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Abstract 

As the usage of concurrency in software has gained importance in the last years, and is still rising, 
new types of defects increasingly appeared in software. One of the most prominent and critical 
types of such new defect types are data races. Although research resulted in an increased 
effectiveness of dynamic quality assurance regarding data races, the efficiency in the quality 
assurance process still is a factor preventing widespread practical application. First, dynamic 
quality assurance techniques used for the detection of data races are inefficient. Too much effort 
is needed for conducting dynamic quality assurance. Second, dynamic quality assurance 
techniques used for the analysis of reported data races are inefficient. Too much effort is needed 
for analyzing reported data races and identifying issues in the source code. 

The goal of this thesis is to enable efficiency improvements in the process of quality assurance 
for data races by: (1) analyzing the representation of the dynamic behavior of a system under 
test. The results are used to focus instrumentation of this system, resulting in a lower runtime 
overhead during test execution compared to a full instrumentation of this system. (2) Analyzing 
characteristics and preprocessing of reported data races. The results of the preprocessing are 
then provided to developers and quality assurance personnel, enabling an analysis and 
debugging process, which is more efficient than traditional analysis of data race reports. Besides 
dynamic data race detection, which is complemented by the solution, all steps in the process of 
dynamic quality assurance for data races are discussed in this thesis. 

The solution for analyzing UML Activities for nodes possibly executing in parallel to other nodes 
or themselves is based on a formal foundation using graph theory. A major problem that has 
been solved in this thesis was the handling of cycles within UML Activities. This thesis provides a 
dynamic limit for the number of cycle traversals, based on the elements of each UML Activity to 
be analyzed and their semantics. Formal proofs are provided with regard to the creation of 
directed acyclic graphs and with regard to their analysis concerning the identification of 
elements that may be executed in parallel to other elements. Based on an examination of the 
characteristics of data races and data race reports, the results of dynamic data race detection are 
preprocessed and the outcome of this preprocessing is presented to users for further analysis.  

This thesis further provides an exemplary application of the solution idea, of the results of 
analyzing UML Activities, and an exemplary examination of the efficiency improvement of the 
dynamic data race detection, which showed a reduction in the runtime overhead of 44% when 
using the focused instrumentation compared to full instrumentation. Finally, a controlled 
experiment has been set up and conducted to examine the effects of the preprocessing of 
reported data races on the efficiency of analyzing data race reports. The results show that the 
solution presented in this thesis enables efficiency improvements in the analysis of data race 
reports between 190% and 660% compared to using traditional approaches. 

Finally, opportunities for future work are shown, which may enable a broader usage of the results 
of this thesis and further improvements in the efficiency of quality assurance for data races. 
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1 Introduction 

This chapter elaborates on the context and topic of this thesis and explains the 
contributions of this thesis. The chapter presents the research approach and 
closes with an outline of the following chapters.  

1.1 Context 

Distributed systems are an established area in computer science since many 
decades [La78]. With the rise of multicore CPUs and multiprocessor systems in 
the past years [Ch09], [JT14], problems, which were specific to distributed 
systems became part of common programming [La78], [WS06].  

In processor assembly, there was a shift from creating more processing power 
in terms of CPU clock rates towards creating multi core processors [La10]. To 
benefit from these developments, software needs to be developed using 
multithreading techniques, so that computations may be executed in parallel 
on different cores [La10], [Pa19b]. Nowadays, multithreading techniques are 
widely used in software development [Bo19], [OGH20].  

With multithreading techniques being used in software development, 
parallelism and concurrency are part of modern software applications [Me15], 
[Ro19]. Parallelism itself does not necessarily lead to concurrency. Instead, 
software using concurrent computation regularly involves the usage of shared 
memory [OGH20]. 

The following Figure 1 demonstrates this distinction. While the computations 
in the upper part of this figure are executed in parallel, the lower part shows 
resource 2 as shared resource. This shared resource leads to the different 
computations not only running in parallel, but concurrently. 

However, with concurrent computation, new types of defects evolved, which 
are perceived as being hard to detect and more time consuming than defects 
not related to concurrency [PLZ09], [Er10], [Ka17], [Li19].  
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Figure 1:  Parallelism and Concurrency 

Concurrency is related to non-determinism in the execution of different 
concurrently executed computations [Ba06b]. This means that it is not clear, 
and not predictable, in which order the computations, and the instructions 
involved in these computations, are executed. It cannot be determined 
upfront. With non-deterministic execution of concurrent instructions, access to 
shared memory may happen in different interleavings [Ab17], [O’05], [Kl12],  
[Ab17]. Some of those interleavings may be unexpected and may lead to 
problems [FQ03], [PS08], [KZC13], [Kl13].  

Unexpected interleavings may, for example, be reached due to 
misunderstandings of program and compiler behavior. Often, the assumption 
of sequential consistency is made, it is assumed that instructions are executed 
in the order, in which they appear in the source code [KZC15]. However, in 
many modern programming languages, such as Java or C++, this sequential 

consistency is not guaranteed in the case of multithreaded software [Bo12a], 
[Ro19]. In addition, changes in variables executed in one thread may not 
always be immediately visible to other threads [Bo12a], [KZC15]. 

In the following Figure 2, an example for a concurrent computation is given 
and four exemplary out of 24 possible interleavings and the consequences of 
these four interleavings are demonstrated.  

The methods runByThreadOne and runByThreadTwo are executed in 

parallel by two different threads. Both methods access both variables x and y, 

and thus, a concurrent computation is given. The first three interleavings show 
typical examples, of how the instructions in the two methods may be executed. 
The fourth, separated, interleaving is possible due to instruction reordering. 
This instruction reordering leads to the instructions in each method not being 
executed in the order written in the application. Sequential execution of the 
instructions in any of these methods is not guaranteed. As a result, the two 
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variables resultOne and resultTwo can have any of the depicted value 

combinations after the execution of the code shown. 

 

Figure 2:  Pseudo Code and Exemplary Interleavings 

Various categorizations exist for concurrency defects [Lu08], [As15], [Lo17], 
[WLW17]. Most categorizations mention the following types: 

• Data Race – a data race is defined as a concurrent access of at least two 
threads to the same memory location, of which at least one access is a 
write, without proper synchronization [Ba06a], [La10]. 

Often, literature focuses on data races consisting of two threads, i.e., two 
concurrent accesses, as in [NA07][La10].  

• Deadlock – a deadlock “is the situation in which one or more processes in a 
system are blocked forever because of requirements that can never be 
satisfied” [Ho72]. An example for such a blocking situation in concurrent 
systems is a thread waiting for a resource held by another thread, which 
cannot be released by this thread. Deadlocks are not necessarily related to 
concurrency [Ho72], but new types of deadlock situations emerged due to 
concurrency [Lu08], [As15].  

• Livelock – a livelock has similarities with a deadlock, except that threads 
are executing, i.e., they are not blocked, and change state, but cannot 
progress [As15], [Lo17].   

• Starvation – starvation occurs when a thread is delayed forever because 
other threads are given priority, so that this thread cannot proceed [St18]. 
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• Order violation –  an order violation occurs, whenever the interleaving 
expected by the developer of operations does not happen, e.g., when the 
access to shared memory does follow the intended order [Lu08], [As15]. 

• Atomicity violation – an atomicity violation occurs, when a section of code 
was intended by the developer to be executed atomically, but was not 
executed atomically, i.e., whenever another code sections was executed in 
parallel  [Lu08], [As15]. 

• Unintended sharing – a resource meant to be used in isolation is shared 
between different threads [Er10]. 

These categories for concurrency defects are not orthogonal, e.g., a data race 
can be related to an atomicity violation, order violation or an unintended 
sharing of resources [KZC13].  

Detecting concurrency defects is more challenging than detecting defects in 
sequential software [Ab17]. Concurrency defects may not occur in every 
execution of the software, but may be dependent on certain interleavings. Due 
to the huge interleaving space of concurrent software [ZSL10] and the non-
deterministic behavior [AS15], detecting and debugging such defects is very 
time consuming [Sa97], [Bl18].  

Out of these concurrency defects, data races are especially critical [HMR14], 
[Xu20]. A data race may not only lead to directly observable behavior, such as 
a crash of the software, but may also result in data corruption [Kl13], which 
may not be directly observable [RGB20], or inconsistent program states [JT14]. 
Data races can lead to critical defects. Examples are Therac-25 [Ka17], 

[Bi17], which resulted in deaths of multiple patients, or the Northeast Blackout 
of 2003 [ZSL10], [Bi17], which resulted in 55 Million people being without 
electricity, a financial loss of estimated six billion dollars [Mi08], and which 
contributed to the deaths of almost 100 people [Re12].  

Precisely detecting and debugging data races is said to be NP-hard [Ba06a] 
[SI09]. Since the amount of parallel and concurrent software is still growing, 
the number of data races in software is expected to further grow [KZC15], 
[Bi17], [Ge19]. Thus, although data race detection is an active research area 
since many years, there is still a growing need for efficient data race detection 
[ZSL10], [Ge19], [Li19]. 

1.2 Problem Statement 

Both static and dynamic quality assurance techniques have been developed 
with a focus on data race detection. Sophocleous and Kapitsaki conducted a 
survey with 252 individuals and came to the conclusion, that 96.8% of these 
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individuals are using static and dynamic quality assurance techniques [SK20]. 
While this is a sign that the usage of both static and dynamic quality assurance 
techniques is widespread in general, the situation is different when focusing on 
concurrency. Vasallo et al. conducted a survey with 56 developers, interviewed 
eleven experts from industry and investigated 176 open source systems with 
regard to the usage of automated static analysis tools [Va20]. They came to 
the conclusion, that when “using static analysis tools, only 8% use it for 
concurrency” [Va20]. This means that when targeting data races or 
concurrency in general, dynamic quality assurance techniques are most 
prevalent. A reason might be that “for object-oriented software, static analysis 

does not suffice” [ABF04], [SH20]1. Static data race detectors are “prone to 
excessive false warnings” [Er10], may miss data races, or require annotations 
[Er10]. In addition, Kasikci et al. mention that static data race detection 
techniques report more false positives than dynamic techniques [KZC15].  

Nevertheless, static quality assurance techniques are a valuable and necessary 
technique, as they are not as limited as dynamic quality assurance techniques. 
Dynamic quality assurance techniques rely on actual program execution, and 
can only observe those parts of a program, which are executed. As such, these 
techniques depend on, e.g., the depth of source code coverage reached with 
test cases used for executing different paths through a program. Parts that are 
not executed are not observed, and data races may be missed. In contrast, 
static quality assurance techniques are not limited to any execution, and 
analyze complete programs. Thus, both techniques have value and should be 
used together. 

Dynamic testing techniques usually rely on instrumentation [PG08], i.e., code 
is added to the system under test, e.g., “to observe the runtime behavior of 
each thread in the program” [Ba06b]. Besides affecting system behavior and 
the timing in the software itself, one of the main problems related to 
instrumentation is runtime overhead. Erickson et al. report about dynamic data 
race detection tools that it “is not uncommon for such tools to incur up to 200𝑥 
slowdowns” [Er10], which means a runtime overhead of up to 20,000%. 
Bodden and Havelund report about runtime overheads of up to 230% [BH08]. 
Chew and Lie report about runtime overheads of up to 72% [CL10].  Flanagan 
and Freund report slowdowns of up to 8.5𝑥, which results in a runtime 
overhead of 850% [FF09]. Besides the improvements achieved in research, 
the overhead in current techniques is considered to be significant [Xu20]. 
Roemer et al., e.g., present an optimization for a dynamic quality assurance 
approach, that still induces a runtime overhead of more than 6𝑥 [RGB20]. 

Based on these observations, it can be concluded that dynamic quality 
assurance techniques suffer from a huge runtime overhead and as a result, 

 
1 The techniques for static and dynamic data race detection will be examined in more detail in 

Chapter 2.4.  
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that too much time is needed for conducting quality assurance. This leads to 
the first practical problem to be solved by this thesis:  

Practical Problem 1 

Dynamic quality assurance techniques used for the detection of data races are 
inefficient – too much effort is needed for conducting dynamic quality 
assurance. 

Besides this runtime overhead, mainly the effectiveness has been improved in 
recent years. In 2008, Bodden and Havelund reported a number of 70 data 
races found [BH08], and Sen reported 547 data races detected in the 
application jigsaw [Se08]. Nowadays, however, modern approaches are 

able to detect thousands of data races in a single program. As an example, 
Roemer et al. present statistics for different systems under test [RGB20]. Even 
for small applications, such as pmd with 61,000 lines of code, up to 10,000 data 

races have been reported by the data race detector [RGB20]. For others, such 
as xalan with 176,000 lines of code, the data race detector even reports more 

than 12 million data races [RGB20]. 

These huge numbers of data races detected lead to difficulties in the practical 
application. Raychev et al. warned for their own approach, that “the race 
detector produces too many races to be practically useful” [RVS13]. For 
analyzing all these reported data races, “developers have to manually check all 
the reports, which is tedious and very time consuming. As a result, the wide use 
of data race detectors has been limited in practice.” [Zh11] 

The increased effectiveness of dynamic quality assurance techniques, i.e., the 
increased number of reported data races, has also worsened these drawbacks, 
as modern techniques, as shown above, result in huge log information, i.e., 
data race reports to be analyzed.  However, only few publications mention 
techniques to ease analysis of the reported data races besides possibilities to 
reproduce detected data races [HMR14] or record and replay techniques 
[LD19]. Such replay techniques allow replaying the situations, during which a 
data race occurred. Still, all data race reports found need to be analyzed 
manually for identifying and resolving problems in the source code, resulting in 
a huge effort necessary. Godefroid and Nagappan conducted a survey with 
684 employees from Microsoft [GN08] and observed that analyzing data races 
is very time consuming; it “often takes days of work to analyze a single 
concurrency bug” [GN08]. Remaining work focuses on visualization of data 

races [Tr14], [Ko15], [Pa19b], [Wa20] 2.  

 
2 The techniques for the analysis of data race reports will be examined in more detail in 

chapter 3.5. 
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To make it worse, many of the reported data races are duplicates. As an 
example, out of the 12 million reported data races for xalan, there are only 

162 distinct data races, and out of the 10,000 data races reported for pmd, only 

12 data races are distinct (with distinct meaning affecting “distinct program 
locations”) [RGB20]. 

These observations lead to the second practical problem to be solved by this 
thesis:  

Practical Problem 2 

Dynamic quality assurance techniques used for the analysis of data races are 
inefficient – too much effort is needed for analyzing reported data races and 
identifying issues in the source code. 

Summarized, the process of dynamic quality assurance for data races lacks 
efficiency in terms of time and effort needed. A simplified depiction of this 
process for dynamic quality assurance technique can be found in Figure 3.  

On the left side, and shown as out of scope, is the creation of test cases. 
Dynamic data race detectors rely on existing test cases, and do not include 
specific techniques for their creation. Instead, test cases are created using 
standard test case creation techniques, e.g., during unit testing. On the right 
side of this figure, the process of dynamic quality assurance for data races is 
shown: the source code is instrumented and test cases are executed under 
control of the dynamic data race detector. This instrumentation and the 
techniques used by the dynamic data race detectors to detect data races result 
in the runtime overhead, and thus, in the inefficiency described in the first 
practical problem. After the execution of the test cases, the reported data 
races need to be analyzed to identify problems in the source code, and finally 
for debugging the system under test. Since this is a manual process without 
much guidance besides the log information in the data race reports, as 
described above, this is a time consuming task.  

 

Figure 3:  Simplified Process of Dynamic Quality Assurance for Data Races 
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Running example – Original approach 

The system Apache Tomcat in Version 8.0.26 is to be tested using the 

dynamic data race detection tool RV-Predict3 [HMR14]. The test cases to 

be executed are the unit test cases shipped together with Apache Tomcat 

8.0.26 without any modification. Testing is conducted under Ubuntu 18.0.4. 

Executing the test cases without any instrumentation takes 46 minutes and 
two seconds. Now, the same test cases are executed with the goal to detect 
data races, and the code is instrumented by the data race detection tool. This 
instrumentation is conducted automatically, and executing the test cases takes 
345 minutes and ten seconds. The runtime overhead for testing with a focus on 
data races is 6.5𝑥, i.e., test execution takes 650% the time it took without 
instrumentation and analysis. Testing results in 771 folders containing the 
results. It is unknown, how many reported data races are duplicates, and which 
variables and which source code classes are affected.  

Thus, the developers need to manually analyze all reports to identify 
problematic accesses to variables in the source code. Since the number of 
reports is too high for one developer to be able to complete the analysis in a 
reasonable amount of time, the reports are split up between the developers. 
However, there are overlaps in the reports each developer analyzes, and thus, 
effort is spent on communication and coordination, and on the analysis of data 
races already under investigation of other developers.  

1.3 Contribution 

The goal of this thesis is improve the efficiency in the process of dynamic 
quality assurance for data races.  

To solve the practical problems described above, the idea is to optimize the 
runtime overhead during test execution by using knowledge about the 
dynamic behavior of the system under test and by providing guidance and 
knowledge for the analysis of data race reports.  

The instrumentation of source code, usually conducted as instrumentation of 
the complete source code, shall be optimized by focusing instrumentation on 
those source code locations that can be prone to data races, i.e., classes in the 
source code, which can be executed in parallel to other classes in the source 
code. This leads to a reduction in the amount of instrumentation necessary, 
and thus, reduces runtime overhead.  

 
3 This tool can be downloaded online: https://runtimeverification.com/predict/ (last visited: 

30.01.2021) 

https://runtimeverification.com/predict/
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Guidance for the analysis of data race reports shall optimize the process step 
of analysis by providing information on duplicate entries and on the number of 
data races reported, and by providing possibilities to focus analysis on specific 
variables and source code classes. With the possibility to ignore duplicates, 
time spent on navigating through data race reports and reading reports for 
data races already analyzed can be saved. Furthermore, an analysis can be 
conducted more focused, and communication and coordination effort can be 
reduced in a team of developers analyzing data race reports.  

These efficiency improvements shall be illustrated with the example described 
above: 

Running example – Optimized approach 

The system Apache Tomcat in Version 8.0.26 is to be tested using the 

dynamic data race detection tool RV-Predict [HMR14]. The test cases to 

be executed are the unit test cases shipped together with Apache Tomcat 

8.0.26 without any modification. Testing is conducted under Ubuntu 18.0.4. 

Executing the test cases without any instrumentation takes 46 minutes and 
two seconds. Now, the same test cases are executed with the goal to detect 
data races, and the code is instrumented based on the knowledge, which 
source code classes can be executed in parallel to other source code classes, 
and which source code classes can be ignored. This instrumentation is 
conducted automatically, and executing the test cases takes 212 minutes and 
two seconds. The runtime overhead for testing with a focus on data races is 
3.6𝑥, i.e., test execution takes 360% the time it took without instrumentation 
and analysis. Testing results in 771 folders containing the results, with 489 
empty result files and 282 result files with data race reports.  

These reports contain 2,079 data races, of which 2,002 are duplicates. The 
remaining 77 data races affect 28 variables and 21 different source code 
classes. The developers split the reports between each other, so that a distinct 
set of variables is analyzed by each developer. 

This example demonstrates that quality assurance can profit from the results 
of this thesis. With a reduced instrumentation, runtime overhead is reduced, 
and faster quality assurance is possible. As a side-effect, as instrumentation, 
i.e., code injected in the original source code, also alters the runtime behavior 
of a system under test, the reduction in the amount of instrumentation also 
leads to a system under test, which is more close to the original system 
compared to a fully instrumented system. 

Developers can benefit from more information, and thus, a more goal-
oriented debugging. With the ability to sort out duplicate reports, and to focus 
on specific variables and source code classes, analysis and debugging can be 
conducted more efficiently, as no effort needs to be spent to analyze data 
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races, which already have been analyzed or are currently under analysis. In 
addition, the effort for communication and coordination of the debugging 
activities can be reduced. 

The scientific problems to be solved in this thesis are connected to the 
challenge of using knowledge about the dynamic behavior of the system to 
improve the efficiency for dynamic quality assurance for the detection of data 
races, and to the challenge of improving efficiency in the analysis of data race 
reports by using knowledge about data race characteristics. 

This thesis therefore is targeted at answering the following research questions: 

Research Question 1 

How can knowledge about the dynamic behavior of the system be used to 
achieve a reduction in the runtime overhead during dynamic quality assurance 
for data races? 

 

Research Question 2 

How can knowledge about the characteristics of data races and data race 
reports be used to improve the efficiency in analyzing data race reports? 

To answer these research questions, the following solution is proposed in this 
thesis, targeting two challenges:  

1) providing a tool-supported technique for the systematic and complete 
usage of knowledge about the dynamic behavior of a system for the 
instrumentation of a system under test, and  

2) providing a tool-supported technique for the incorporation of knowledge 
of characteristics of data race reports into guidance for the analysis of 
these data race reports.  

To solve these challenges, the dynamic behavior of a system must be analyzed, 
and all classes in the source code, which may run in parallel to other classes, 
must be identified. To achieve this, models of the dynamic behavior of a 
system shall be analyzed. Goal of the analysis is the identification of elements 
in these models, which represent parts of the source code that can be executed 
in parallel to other parts of the source code. The results of the analysis shall 
then be used to focus the instrumentation for dynamic quality assurance for 
data races, so that only classes in the source code, which are subject to data 
races, are instrumented.  



Introduction 

 11 

After execution of the test cases for the detection of data races, the data race 
reports shall be analyzed, and the results shall be provided to the development 
team. This preprocessing allows the development team to sort out duplicates, 
and to group the data races according to the source code classes affected and 
according to the variables affected.  

As described, this approach is not meant to substitute existing approaches to 
dynamic data race detection. Instead, the process of dynamic data race 
detection for data races is optimized. This means, the approach provides input 
to the dynamic data race detection tool, and processes the output of this data 
race detection tool.  

The solution idea is depicted in the following Figure 4. 

 

Figure 4:  Proposed Solution Idea - Optimized Process 

To solve the problems mentioned above and to establish the solution idea, 
several research objectives are to be reached. These research objectives form 
the remaining outline of this thesis.   

Research Objectives 

1) Assess the representations of dynamic behavior of a system with the goal 
to select one representation for the analysis. 

2) Analyze the characteristics of the chosen representation of the dynamic 
behavior with the goal to understand the specifics and how these specifics 
influence the interpretation of this representation. 
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3) Create a technique to analyze the chosen representation of the dynamic 
behavior of a system for parallel elements, with the goal to obtain an 
algorithmic approach for the analysis. 

4) Show the completeness and correctness of the obtained algorithmic 
approach, with the goal to establish confidence in this approach. 

5) Evaluate the effects on efficiency of the test execution of the algorithmic 
approach compared to not using the algorithmic approach to focus 
instrumentation. 

6) Enable the practical application of the algorithmic approach, with the goal 
to obtain a fully automated tool implementing this algorithmic approach. 

7) Analyze characteristics of data race reports, with the goal to obtain 
knowledge about how to preprocess data races reports so that the 
analysis is more efficient. 

8) Enable the practical application of the knowledge obtained on 
characteristics of data race reports, with the goal to obtain tool support. 

9) Empirically evaluate the effects of the preprocessing of the data race 
reports and of the tool support on the efficiency on the analysis of data 
race reports compared to analyzing unprocessed data race reports. 

While research objectives 1 to 6 are concerned with the first practical problem, 
research objectives 7 to 9 are concerned with the second practical problem.  

Upon realization and usage of the solution idea, several benefits are expected. 
From a scientific perspective, the benefit is related to the analysis of the 
representation of the dynamic behavior of a system. 

Hypothesis 1 – Complete and Correct Analysis 

H1. The analysis of the representation of the dynamic behavior of a system for 
parallel elements is complete and correct, .i.e., there are no false positives and 
no false negatives. 

From a practical point of view, the benefit can be perceived as efficiency 
improvement in the process of dynamic quality assurance for data races in 
terms of a reduced effort without impact on the outcome.  

No precise hypotheses can be given regarding the efficiency improvement 
concerning the dynamic detection of data races, in terms of the runtime 
overhead when executing test cases, as this depends on the amount of 
parallelism in the system under test.  Assuming a direct relation of the amount 
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of parallelism in a system and the efficiency improvement in the runtime 
overhead, the hypothesis is formulated as: 

Hypothesis 2 – Efficiency Improvement in the Dynamic Detection of Data 
Races (Runtime Overhead) 

H2. Using the focused approach for the instrumentation, the runtime overhead 
of test execution of a system under test is reduced compared to the runtime 
overhead using the same test execution technique on the same system under 
test without the focused approach. The reduction in the runtime overhead is at 
least inversely proportional to the amount of parallelism in the representation 
of that system under test. 

For illustration, if 10% of the elements in the representation of a system 
represent parallel behavior, a reduction of the runtime overhead of 90% can 
be achieved, and if 80% represent parallel behavior, a reduction of 20% can 
be achieved. 

The efficiency improvement in the analysis of data race reports is defined 
using one main hypothesis, which can be split up into three different 
hypotheses. 

Hypothesis 3 – Efficiency Improvement in Analyzing Data Races 

H3. Using the log preprocessing, the effort for results analysis is at least 40% 
less with at least the same effectiveness compared to using the unprocessed 
log files. 

 

Hypothesis 3.1 – Efficiency Improvement in Analyzing Data Race Reports for 
Data Races 

H3.1. Using the log preprocessing, the number of analyzed reported data races 
in a given amount of time is at least 40% higher compared to using the 
unprocessed log files. 

Hypothesis 3.2 – Efficiency Improvement in Analyzing Data Race Reports for 
Data Races affecting a Variable in the Source Code  

H3.2. Using the log preprocessing, the number of analyzed reported data races 
related to specific variables in a given amount of time is at least 40% higher 
compared to using the unprocessed log files. 
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Hypothesis 3.3 – Efficiency Improvement in Analyzing Data Race Reports for 
Data Races affecting a Source Code Class 

H3.3. Using the log preprocessing, the number of analyzed reported data races 
related to specific source code locations in a given amount of time is at least 
40% higher compared to using the unprocessed log files. 

Analysis in this context means identifying the location of a reported access. 
Specific in this context means that in the experimental evaluation, a variable or 
a source code location (source code class) is predefined and only these 
predefined items are of interest. The term effectiveness refers to an amount 
(of analyzed data races), while the term efficiency refers to an amount in 
relation to the time needed. 

As can be seen, no hypotheses are stated regarding the effectiveness of 
testing. The test case creation, the execution of test cases and the analysis of 
the instrumented parts of the source code and the information gained during 
testing are not affected by this thesis. The solution is not meant to replace or 
improve the effectiveness of test case execution, but instead focuses on 
efficiency improvements as mentioned above. As such, the solution proposed 
in this thesis complements existing approaches for dynamic data race 
detection. 

The following Figure 5 shows the relations of the practical and underlying 
scientific problems, the goals and research objectives of this thesis, and the 
related hypotheses. 
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Figure 5:  Problems, Goals, Research Objectives, and Hypotheses 

 

1.4 Assumptions and Limitations 

The solution idea and earning the benefits when applying this solution idea 
cannot be realized in every case. Instead, this thesis builds upon the following 
assumptions and accepts some limitations: 

Existence of a representation of the dynamic behavior: the approach 
presented in thesis assumes that a representation of the dynamic behavior of a 
system already exists in the representation format needed or can be created or 
generated.  

However, the solution idea includes a transformation of the elements of the 
chosen transformation to a limited subset of elements, so that other 
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representations can be used by adjusting the transformation or adding another 
transformation part. This can be seen as an interface, which allows connecting 
other representation formats without a need to change the algorithm for 
analysis. Admittedly, semantics exclusive to such a representation may not be 
considered by the analysis; in such a case, the algorithm would need to be 
adapted.  

Completeness of the representation of the dynamic behavior: furthermore, it is 
assumed that the representation is complete, in the sense that the system 
under test is correctly and completely included. 

Granularity of the representation of the dynamic behavior: finally, it is assumed 
that the representation is on a granularity level, which allows a direct 
connection between source code classes and elements in the representation. 
Since such a direct connection can then be broken down into single source 
code classes and elements using standard methods, it is assumed for 
simplicity, that there is a one-to-one relationship between elements in the 
representation and classes in the source code (and not a one-to-many, many-
to-one, or many-to-many relationship). 

Compatibility of the dynamic data race detection tool: since the solution idea 
includes focusing the instrumentation, the dynamic data race detection tool 
needs to be configurable in terms of controlling the instrumentation. 

Data Race Reports: the solution idea relies on the dynamic data race detection 
tool to report the data races found in a format, which can be processed in an 
automated manner.  

As can be seen later, the solution idea relies on basic information regarding 
data race reports (access type (read or write), variable affected, and location in 
the source code) for preprocessing, so that no further assumptions or 
limitations are given. Adjusting the preprocessing to different representations 
(e.g., a different ordering of the information in a report) is an engineering task 
and the assumption of a specific format for the tool support is a necessity, 
which does not limit the approach.   

1.5 Research Approach 

The research approach followed in this thesis can be broken down as follows: 

State of the Practice analysis: the current state of the practice was captured by 
a literature review with respect to quality assurance in the field of concurrency. 
As data races are considered as a prominent and critical issue in practice, 
research was focused on those. Current problems in quality assurance for data 
races were identified. Based on these problems, requirements for a solution to 
mitigate these problems could be derived.  
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For the analysis of representations of dynamic behavior, the first step was to 
identify a representation format, which is of practical value. Thus, a literature 
survey was conducted to obtain information regarding the suitability of 
representation formats for the dynamic behavior of a system, with 
consideration of the usage in practice. 

State of the Art analysis: the identified problems drove the literature review 
regarding research approaches. The requirements derived on basis of those 
problems were used to assess the approaches from research, and gaps were 
identified regarding the analysis of representations of the dynamic behavior of 
a system.   

Regarding the analysis of data race reports and efficiency improvements in the 
analysis of data race reports, a general lack of research was detected, as not 
much literature exists in this regard. Literature mostly focuses on detecting or 
visualizing data races, and less on the analysis of found data races with the goal 
to debug a system under test. Still, the existing literature was valuable, as it 
helped identify directions for the own research. 

Development of the solution idea: based on these research gaps, the solution 
idea was developed. For the analysis of representations of the dynamic 
behavior, two major gaps were identified: first, a lack of a formal basis for the 
analysis, and second a lack in the systematic and complete analysis of all 
elements and element combinations in the chosen representation.  

In addition, mitigating the limitation to only one possible representation was 
another driver for the solution idea. Thus, a subset of all elements of the 
chosen representation format (called “basic elements”) was selected. A 
transformation of all other elements to one or a combination of basic elements 
under consideration of the semantics of the elements was then created. The 
transformed set of elements served as basis for the formal model and the 
systematic algorithmic approach to analyzing the representation format.  

The data race reports, on the other hand, were analyzed, and characteristics 
were derived, which then formed the basis for the preprocessing of those 
reports.   

Examination of Efficacy: the approach for analyzing representations of the 
dynamic behavior was formally proven to be correct and complete (hypothesis 
1). The effect of the results of the analysis, i.e., the focus for the 
instrumentation, in terms of efficiency improvements, was tested on an 
exemplary system. As described above, a general statement regarding the 
improvement of the runtime overhead cannot be given. However, it could be 
tested for a system, if the improvement of the runtime overhead is at least 
inversely proportional to the amount of parallelism in the representation, as 
stated in hypothesis 2.   
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Finally, a controlled experiment was performed to assess efficiency 
improvements in the analysis of data race reports with regard to the 
preprocessing of data race reports (hypothesis 3).  

1.6 Outline 

In chapter 2, the foundations for the contents of this thesis are presented. 
These foundations enable a deep understanding of this thesis. Furthermore, 
the concepts, formal definitions, and results of this chapter form the basis for 
the decisions taken and the solution presented in this thesis. 

In chapter 3, related work is discussed with regard to analyzing behavioral 
models, and with regard to analyzing data race reports. The approaches found 
in the literature are discussed in terms of strengths and gaps regarding the 
mitigation of the practical problems and the scientific problem, and 
requirements for a solution are identified.  

In addition, the possibilities and limitations for the classification of data races 
with the goal to minimize the effort for data race analysis and debugging are 
discussed. Multiple research approaches to classify data races in harmless 
(benign) data races and harmful data races have been developed. However, 
such classifications are controversially discussed in research. It is shown why 
these classifications cannot be used without misclassifications. As the reliability 
of such classifications is low, such a classification is not part of the solution 
presented in this thesis. 

In chapter 4, the main contribution of this thesis is presented. This chapter 
contains the formal foundation for the analysis of the representation of the 
dynamic behavior of a system and the approach for the analysis. The analysis 
itself is conducted in three steps: the transformation of the elements of the 
representation format to the set of basic elements, the analysis of behavioral 
models based on this set of basic elements, and a post-analysis handling of 
special cases. Formal proofs regarding the analysis of the representation of the 
dynamic behavior show the completeness and correctness of the analysis. The 
theoretical and formal approach for analysis is implemented in a tool for 
practical application. Finally, this solution is assessed based on the identified 
requirements for a solution. 

In chapter 5, the approach for the analysis and preprocessing of data race 
reports, i.e., the results of the dynamic data race detection, is presented. 
Characteristics of data races and data race reports form the basis for the 
preprocessing, which is then implemented in a tool. This tool not only presents 
the results of the preprocessing but also provides guidance in terms of 
knowledge about the reported data races and in terms of their distribution to 
variables and source code classes. 
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In chapter 6, the examinations of efficacy for each step in the process of 
dynamic quality assurance are presented. Besides an exemplary application of 
the approach for focusing the instrumentation, the results of the analysis are 
discussed, and the impact of applying this analysis and its results on the 
efficiency of dynamic data race detection are demonstrated exemplarily. 
Finally, a controlled experiment regarding efficiency improvements for the 
analysis of data race reports is presented and the results and implications are 
discussed. 

The thesis closes with a summary and an outlook on future work in chapter 7. 

1.7 Summary 

As the usage of concurrency in software has gained importance in the last 
years, and is still rising, new types of defects increasingly appeared in software. 
Quality assurance is still struggling with such concurrency-related defects. One 
of the most prominent and critical types of such defects are data races. 

Although research resulted in an increased effectiveness of dynamic quality 
assurance regarding data races, the efficiency in the quality assurance process 
still is a factor preventing widespread practical application of these techniques. 

The contributions presented in this thesis enable efficiency improvements in 
the process of dynamic quality assurance for data races. The main scientific 
contribution in the area of the analysis of representations of the dynamic 
behavior of a system is presented. The results of the analysis are used as input 
to steer the instrumentation of a system under test, resulting in a lower 
runtime overhead during test execution compared to a full instrumentation of 
this system. The results of the test execution are then preprocessed, enabling 
an analysis and debugging process, which is more efficient than the traditional 
analysis of data race reports.  

This thesis describes the concepts, the formal basis, and the realization of the 
solution idea as well as the examinations of the efficacy. Besides dynamic data 
race detection (i.e., test execution), which is complemented by the solution 
idea, all steps in the process of dynamic quality assurance for data races, as 
depicted in Figure 3, are discussed in the subsequent chapters. 
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2 Foundations 

As described in chapter 1, this thesis provides a solution for efficiency 
improvements in the process of quality assurance for data races. This chapter 
gives an overview on the foundations in the areas discussed in this thesis. The 
goal of this chapter is to enable a deeper understanding of topics, as the 
concepts, formal definitions, and results of this chapter form the basis for the 
decisions taken as part of the solution idea. 

2.1 Research Approach 

The areas discussed in this thesis comprise different steps in the process of 
quality assurance of data races. As such, different topics need to be 
considered. The existing literature was thus reviewed with the goal to identify 
the central concepts of those topics. 

As data races are in the focus of this thesis, the questions to be answered are: 

1) What is a data race? 

2) What can be done in software engineering, i.e., programming, to prevent 
data races? 

3) How can data races be detected? 

4) What are advantages and disadvantages of different approaches to detect 
data races? 

In addition, as behavioral models of software are part of this thesis, further 
questions arise: 

5) What types of behavioral models exist? 

6) What can be represented by these models? 

While reviewing the literature with the goal to answer these questions, further 
questions came up with regard to the background of the topic of those 
questions. As an example, a formal definition of data races requires an 
understanding of ordering relations. This understanding is also required for an 
informed insight into the advantages and disadvantages of quality assurance 
techniques for data races. The topics discussed in questions 1 to 4 are 
interrelated and cannot be viewed in isolation. As such, the literature review 
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was an iterative process, leading to a deeper understanding in those areas. The 
result of this research provides a common foundation of the topics of this 
thesis.   

2.2 Orderings, Consistency Models and Data Races 

The following definitions partially follow the contents of the publication “Time, 
clocks, and the ordering of events in a distributed system” by Leslie Lamport 
[La78].  

When executing a sequential program, all events in that execution take place 
one after the other. Assuming two events 𝑎 and 𝑏, either 𝑎 is executed and 
afterwards 𝑏 is executed, or 𝑏 is executed first and then 𝑎 is executed. With 
defining an ordering relation < between two events, expressing a relation of 
two events to the order in time they took place, the relation 𝑎 <  𝑏 can be 
understood as “𝑎 took place at an earlier point in time than 𝑏”. Since the 
execution is sequential, no two events can take place at the same point in time. 
All events in such a sequential execution can be compared. The relation is 
transitive, i.e., if a third event 𝑐 exists and 𝑎 <  𝑏 and 𝑏 <  𝑐, then 𝑎 <  𝑐. The 
events of an execution of a sequential program form a sequence, a total order 
[La78]. 

When executing a parallel or concurrent program, this does not hold. With two 
processes 𝑝 and 𝑞, with the events 𝑝𝑎  and 𝑝𝑏  within process 𝑝, and the events 
𝑞𝑎  and 𝑞𝑏  within process 𝑞, and those two processes executing in parallel, the 
following can be observed: 

1) Either 𝑝𝑎  <  𝑝𝑏 , or 𝑝𝑏  <  𝑝𝑎 , and 

2) Either 𝑞𝑎  <  𝑞𝑏, or 𝑞𝑏  <  𝑞𝑎. 

For simplicity, it is assumed that 𝑝𝑎  <  𝑝𝑏  and 𝑞𝑎  <  𝑞𝑏 . Since for each 
process, the events in that process are executed sequentially, the set of 
elements in each process is totally ordered. However, the set of all elements (in 
this case: the events in the two processes) is not necessarily totally ordered. 
Assuming that 𝑝𝑏  involves notifying process 𝑞, and process 𝑞 cannot start to 
execute without notification (following the definitions of [La78]) , meaning that 
𝑝𝑏  <  𝑞𝑎 , then with 𝑝𝑎  <  𝑝𝑏 , and 𝑞𝑎  <  𝑞𝑏  these events can be ordered: 
𝑝𝑎  <  𝑝𝑏 <  𝑞𝑎  <  𝑞𝑏. However, assuming an event 𝑝𝑐  with 𝑝𝑏  <  𝑝𝑐 , this 
event 𝑝𝑐  cannot be compared to the events 𝑞𝑎  and 𝑞𝑏. Thus, there is no total 
order, but a partial order [La78]. 

As mentioned, an analogous definition has been published by Leslie Lamport 
[La78]. However, the author mentioned the necessity of precise and global 
clocks to be able to use the notion of time, and speaks of “happened before” 
using the relation → [La78] instead of using a relation < meaning “took place at 
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an earlier point in time”. With this definition, “two distinct events 𝑎 and 𝑏 are 
said to be concurrent, if 𝑎 ↛ 𝑏 and 𝑏 ↛  𝑎” [La78], with ↛ meaning “not →”. 
The happened before relation, in the literature often referred to as happens 
before, is one of the two central concepts used by most quality assurance 
techniques for data race detection. 

Note that the definitions above apply to executions of software, and cannot be 
compared to the order, in which instructions are written in that software 
without assuming sequential consistency [La79]. However, sequential 
consistency is not guaranteed in all cases in various modern programming 
languages, e.g., it is not guaranteed in all cases in Java [Ma04] or c++ 

[BA08]. 

Based on such a relation, Netzer and Miller developed a formalization of data 
races [NM92]. The authors use a program execution 𝑃 containing events, a 
temporal ordering relation and a shared-data dependence relation as starting 
point. A shared-data dependence relation describes a relation of two events, in 
which one event accesses a shared variable, which another event later 
accesses, with at least one access modifying that variable [NM92]. In a 
situation, in which one event accesses a shared memory location with a write 
access and another event accesses this location with either a read or write 
access, there exists a data conflict between those two events. 

The authors formulate three different sets of program execution prefixes of 𝑃. 
Such a prefix contains the same events as an initial part of 𝑃, operating on the 
same input. Netzer and Miller further use the term feasible to denote program 
executions, which can actually happen based on the program semantics. This 
includes explicit synchronization operations, i.e., synchronization using 
operations provided by the respective programming language exactly for this 
purpose, but also self-constructed operations to force some order of execution 
or control flow. An example for such an implicit operation is the usage of a flag, 
which may trigger a certain event 𝑒, but which needs to be set upfront by 
another event 𝑓 in another process.  If event 𝑓 is executed before the flag is 
computed, the event 𝑒 is executed. If event 𝑓 is not executed before the flag is 
computed, the event 𝑒 is not executed. In such a case, there is a shared-data 
dependence [NM92]. 

The set of program executions 𝐹𝑆𝐴𝑀𝐸  contains all feasible program executions 
with the same events as a prefix of 𝑃 and the same shared-data dependences 
as 𝑃 . The set of program executions 𝐹𝐷𝐼𝐹𝐹  contains feasible program 
executions with the same events as a prefix of 𝑃 , but the shared-data 
dependences may differ. Finally, the set of program executions 𝐹𝑆𝑌𝑁𝐶  contains 
the same events as a prefix of 𝑃, but the relations in terms of ordering and 
shared-data dependence only need to adhere to explicit synchronization 
constructs.  
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This means that 𝐹𝑆𝑌𝑁𝐶  may contain executions, which are not feasible, i.e., the 
program cannot be executed in this way [NM92]. The authors point out that 
many quality assurance techniques only consider explicit synchronization, and 
thus implicitly use the set 𝐹𝑆𝑌𝑁𝐶  [NM92]. 

Netzer and Miller define a data race between two events 𝑎 and 𝑏 over a (here 
unspecified) set of program executions 𝐹 as 

1) A data conflict exists in 𝑃 between 𝑎 and 𝑏, and 

2) There exists a program execution 𝑃’ ∈  𝐹, containing events 𝑎’ and 𝑏’, 
such that 𝑎’ ↛  𝑏’ and 𝑏’ ↛  𝑎’ [NM92]. 

With these definitions, two types of data races can be defined: 

1) A feasible data race between events 𝑎 and 𝑏 exists, iff a data race between 
events 𝑎 and 𝑏 exists over 𝐹𝐷𝐼𝐹𝐹  or 𝐹𝑆𝐴𝑀𝐸  [NM92]. 

2) An apparent data race between events 𝑎 and 𝑏 exists, iff a data race 
between events 𝑎 and 𝑏 exists over 𝐹𝑆𝑌𝑁𝐶  [NM92]. 

Due to the usage of 𝐹𝑆𝑌𝑁𝐶 , not all apparent data races can occur in a program 
execution. However, as mentioned above, many quality assurance techniques 
imply 𝐹𝑆𝑌𝑁𝐶 , and thus, report data races, which may not be possible. This is 
especially an issue in static quality assurance, as the code is not executed. But 
depending on the analysis technique used, also dynamic quality assurance may 
be prone to reporting apparent data races.  

The existence of apparent data races indicates the existence of at least one 
feasible data race, but it is not clear, where this feasible data race is located and 
what variable is involved [NM92]. As there may be many apparent data races 
indicating one feasible data race, developers and quality assurance personnel 
“can be overwhelmed with large amounts of misleading information, irrelevant 
for debugging, that masks the location of actual failures.” [NM92] This issue 
has already been mentioned in chapter 1.2.  

2.3 Process Synchronization in Software 

Modern programming languages provide possibilities to implement different 
concepts to cope with concurrency. As this thesis is not concerned with 
programming details, but with quality assurance for data races, the goal of this 
chapter is not to provide a complete overview of all techniques, but to provide 
an overview of the most prominent techniques.  
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A fundamental concept in concurrency is the concept of mutual exclusion, first 
defined by Dijkstra in 1965 [Di65b]. Since then, many concepts have been 
defined to control access to shared resources and to realize mutual exclusion.  

Semaphores have been published  by Dijkstra in 1965 [Di65a]. These are data 
structures used to control access to shared resources or to synchronize 
concurrent events to enforce an order of operations. Semaphores can be 
binary, used for implementing locks (explained below), or counting. A counting 
semaphore controls the number of free resources or waiting threads. A thread 
requesting a resource, which is not free, will be sent to a wait state, and 
notified upon availability of that resource, so that this thread can continue to 
operate on the now free resource. With this mechanism, a queue for waiting 
threads can be realized. Java offers a class semaphore for the implementation 
of this concept. 

Monitors have been described by Brinch Hansen [Br73] and Hoare [Ho74]. A 
monitor is a programming language construct with a set of operations. Only 
one thread can use a monitor at a certain point in time. Thus, monitors can be 
used for mutual exclusion. Often, monitors use the concept of locks. 

A lock, also called mutex, is a mechanism for controlling access to a resource, 
thus enforcing mutual exclusion. A thread trying to access such a resource has 
to acquire this lock and then releases it when the access is finished. A lock can 
be blocking, which means a thread accessing a resource with a lock, has to wait 
passively if that resource is not free, or a spinlock, which means a thread waits 
and tries repeatedly to acquire the lock. A problem with locks is that the 
operation to check availability and to acquire the lock needs to be atomic to 
prevent synchronization problems. This is not guaranteed in software, and 
among the most prominent solutions to this problem are the first known 
accepted algorithm for this problem, Dekker’s Algorithm (published by Dijkstra 
[Di65a]), Peterson’s Algorithm [Pe81], the Eisenberg & McGuire algorithm 
[EM72], Lamport’s bakery algorithm [La74], and Szymański’s algorithm [Sz88].  

If a thread accesses such a shared resource secured with a lock, it may have 
acquired one or more locks (due to former operations). The accumulation of 
the different locks held by a thread at this point in time is called lockset [Sa97]. 
Locksets are the second of the two central concepts used by most quality 
assurance techniques for data race detection. 

The keyword volatile for variables in Java is used to guarantee that accesses to 
this variable are immediately visible to all threads and that there exists a 
happened-before relation between different operations on volatile variables 
[Ma04]. Actions on volatile happen in a total order. The usage of volatile does 
not induce the overhead of ensuring mutual exclusion [Ma04]. 
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In general, there is a total order over all synchronization actions. Manson 
describes this order as follows: “volatile writes are ordered before subsequent 
volatile reads of the same variable. Unlocks are ordered before subsequent 
locks of the same monitor.” [Ma04] 

As mentioned before, operations in different threads cannot be totally ordered 
due to parallelism. However, synchronization mechanisms create 
dependencies between threads, which generally enable partial order relations 
between events in different threads. 

Operations or keywords provided by programming languages that enable 
implementing and using the techniques or concepts are called explicit 
synchronization operations (as mentioned in chapter 2.2). 

Synchronization, or mutual exclusion, may also be achieved using other 
programming constructs, such as the usage of a flag described in chapter 2.2, 
and is referred to as implicit synchronization. 

2.4 Static and Dynamic Quality Assurance for Data Races 

As mentioned in chapter 1.2, both static and dynamic quality assurance 
techniques should be used for data race detection. Both types of techniques, 
however, bring along drawbacks. 

Static quality assurance analyzes applications without executing them. As such, 
programming constructs and their implications need to be considered during 
analysis. Static quality assurance suffers from three different drawbacks: 

1) Code constructs that cannot be analyzed without ambiguity 

2) Analysis techniques that have to trade off between precision and 
scalability 

3) Code constructs that cannot be analyzed with static methods 

In object-oriented programming, inheritance, polymorphism and dynamic 
binding bear problems in identifying correct paths, as it is often unclear before 
execution, which methods are called [ABF04], [SH20]. Thus, analysis may 
consider paths in a program, which cannot be executed. This may result in 
findings, which are not feasible, i.e., the program cannot be executed in a way 
that would enable such a data race to appear.  

In addition, as mentioned before, often only explicit synchronization constructs 
are considered, but not implicit synchronization [NM92] (see chapter 2.3). As 
explained above, techniques only considering explicit synchronization report 
apparent data races, and not feasible data races [NM92] (see chapter 2.2). 
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Static analysis often relies on lockset analysis [NA07] (see chapter 2.3), i.e., for 
each access to a variable, the set of locks held is examined. If a variable may be 
accessed at the same time by different threads, the sets of locks held in these 
concurrently executing threads are compared. If the intersection of these sets 
is empty, this is interpreted as an access without mutual exclusion. Whenever 
such pairs of accesses are found, and one of these accesses is a write access, a 
data race is reported.  

However, lockset analysis requires further techniques to be employed, since it is 
not always clear, if two references refer to the same element, or not. Due to 
this, pointer analyses in terms of alias analyses or points-to analyses are used 
[Sp16]. A points-to analysis is used to “determine the set of objects pointed to 
by a variable or field carrying a reference” [OM08]. An alias analysis [DMM98] 
determines accesses to memory locations. If several accesses exist to the same 
memory location, the references, or pointers, are said to alias.  

Different algorithms exist for such analyses, and different sensitivity levels, 
which influence the precision and the general outcome of the analysis, can be 
distinguished. Widely used are context- and flow-sensitivity [SAB19], [HS09] as 
well as field- [SAB19] or object- [HS09] sensitivity. As an example, a flow-
sensitive analysis considers the order of statements in an application, and a 
context-sensitive analysis distinguishes between different calls to the same 
method [HS09]. While sensitivity improves the precision, the analysis will 
become more complex, and due to this, scalability is affected negatively: 
“precise analyses need to encode a drastically larger - even infinite - data-flow 
domain that leads to analyses that are difficult to scale.” [Sp19] Gharat, 
Khedker and Mycroft, as an example, presented a “fully flow-and context-
sensitive exhaustive points-to analysis to C programs as large as 158 kLoC” 
(Kilo Lines of Code) in 2020 [GKM20]. However, modern applications can be 
much larger than this.  

Due to this, a tradeoff has to be made in static quality assurance for data races: 
different algorithms for analysis with varying precision and scalability have 
been developed. Two of the most prominent algorithms used, Steensgaard’s 
Algorithm [St96] and Andersen’s Algorithm [An94], are flow-insensitive and 
context-insensitive. In practice, an over-approximation is used for analysis, i.e., 
the analysis is scalable and less precise, but does not contain false negatives. 
The drawback is that such analyses “produce an unacceptable amount of false 
positives”. [Sp19] 

Finally, code constructs exist that cannot be analyzed by static quality 
assurance techniques. Among those are code that is dynamically generated or 
loaded, binary or native code parts, which cannot be accessed by the 
algorithms used during static quality assurance, and programming techniques 
or code, such as reflection or invoke statements (e.g., for invoking a method 
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that is defined by a value in a variable), for which no possibility exists to analyze 
them without executing the program [SK18]. 

Summarized, static quality assurance techniques imply a tradeoff between 
scalability and precision, leading to either a limitation in the size of the 
programs to be analyzed, or a high amount of false positives. These techniques 
do not produce false negatives, but false positives, with the exception of code 
that cannot be analyzed without execution of the program. Such code may 
also contain data races, which could then not be detected, thus resulting in 
false negatives. 

Static quality assurance is thus a valuable means for data race detection, but 
should not be used alone, but in conjunction with dynamic quality assurance 
techniques.  

Dynamic quality assurance techniques execute applications, usually using test 
cases, and use instrumentation. Code is injected into those parts of the 
application, which shall be analyzed. This injected code then enables to extract 
information relevant for the analysis. As explained in chapter 1.2, such 
instrumentation may lead to a massive runtime overhead and results in a 
changed runtime behavior of the application under analysis.  

Dynamic quality assurance often relies on the happened-before relation (see 
chapter 2.2) to detect data races. The necessity of using global clocks 
mentioned in chapter 2.2 is replaced by using vector clocks [Fi88], [Ma88] or 
variants of those. The underlying concept is to establish causal relationships 
between events of different processes, so that the existence or non-existence 
of ordering relations can be used to assess events for possible data races. 

The concept of vector clocks introduces the usage of several process-specific 
clocks in absence of a globally available clock. These clocks are combined and 
used as a vector [Ma88]. Considering three different processes, such a vector is 
three-dimensional (and 𝑛 -dimensional for 𝑛  different processes). Each 
dimension in each vector starts with the number zero, and can only be 
increased. Each process is assigned to one dimension. Processes may influence 
each other by sending messages and receiving messages, and process-internal 
events may exist. Each of these three types of events in such a process 
increases the value in this specific dimension. Every message sent contains a 
copy of the vector specific to the sending process. The vector in the receiving 
process is then updated, i.e., the vectors are combined, and for each 
dimension, the higher number is used. This way, an approximation of the 
global time is calculated based on the information available to this process. 
Considering two processes, the process-specific vectors used for a 
combination may be (2, 0) and (0, 3), resulting in the vector (2, 3). Such 
vector clocks establish a causal relationship. If there is no causal relationship 
between two events, a possibility for a data race exists [Ma88]. The following 
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Figure 6, adapted from [Ma88], shows an exemplary computation including 
three different processes. 

 

Figure 6:  Event Diagram, Adapted from [Ma88] 

In this figure, events are depicted with a green dot, containing a number 
indicating the process number (1, 2, or 3), followed by the number of the event 
in that process. Arrows represent messages sent and received by processes. 
These messages, or arrows, establish causal relationships. As an example, 
event 33 sends a message to process 1, which is received in event 13. The 
vector of process 1 is then updated and changes from (2, 0, 0) to (3, 0, 3). For 
events in process 1, if the first number of the vector is equal to or greater than 
3, an order is then evident related to all events of process 3 with the process-
related number in this vector smaller or equal to that number (3). Event 14, 
with vector (4, 4, 3) is in an order compared to event 32 with vector (0, 0, 2). 
This order has been established by the message sent in event 33 and received 
in event 13. But there is no order established between event 14 with vector 
(4, 4, 3) and event 34 with vector (0, 0, 4). Thus, even if events 14 and 32 
access the same variable and there is at least one write access, there is no 
possibility for a data race. However, a data race may, e.g., exist between events 
14 and 34, or between events 12 and 32. 

Vector Clocks are an early and fundamental concept. However, as systems have 
become dynamic, other concepts with more flexibility were needed and 
introduced. It may not be clear from beginning of the execution, how many 
processes may exist, as this may, e.g., depend on the input to the execution. In 
addition, processes may be created and finish dynamically during runtime of 
an application.  
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A concept considering this variability was created by Fidge [Fi91] a few years 
after the Vector Clock concept was introduced. Since then, various mechanisms 
have been developed, such as Clock Trees [Au97], improved Matrix Clocks 
[DB03]  (originally introduced by [FM82]), Tree Clocks [La07], and Interval Tree 
Clocks [ABF08].  

Vector Clock-based concepts focus on events in general, and this “generality of 
concepts if unnecessary in most cases” [FF09], when using such concepts for 
data race detection. As a result, optimizations exist, which reduce the 
complexity of such approaches. Among the most popular approaches is using 
an epoch to capture many of the events in a lightweight format, and then to 
order these epochs to the remaining vector clock-monitored events [FF09]. 

In addition to those concepts, many other mechanisms exist in other areas of 
computer science, such as Version Vectors [Pa83], used with regard to mutual 
(in)consistency in distributed systems. 

Conducting dynamic quality assurance using the happened-before relation relies 
on an execution of the application to be checked. Thus, the quality of the 
results of such approaches depends on the proportion of executed different 
paths through an application compared to all possible paths through this 
application. Parts of the application that are not executed cannot be analyzed 
for data races using dynamic data race detection. 

However, even parts of the program, which are executed, may contain data 
races, which are not detected by approaches using the happened-before 
relation. The order of events may differ in other executions, and such a 
different order may lead to data races not present in the observed execution of 
an application. Thus, in dynamic data race detection, techniques have been 
developed to reorder events in execution traces, with the goal to detect more 
data races. Such techniques are called predictive data race detection techniques. 

However, the happened-before relation itself implies limitations in the 
possibilities to reorder events. These limitations prevent creating some orders 
of events, although these different orders of events are feasible [KMV17]. 
Therefore, other relations as happened-before have been explored in research, 
which allow more data races to be detected. 

The happened-before relation was introduced within the context of message 
passing [Sm12]. Such message passing is strict in the sense, that sending and 
receiving messages is only possible in one ordering. However, mutual 
exclusion, e.g., introduced by using locks, is not limited to only one order of 
executing sections protected by locks [Sm12]. This means when two different 
parts of a program can only be executed one after the other due to a lock used, 
there is no strict order implied by this lock, which of these sections has to be 
executed first. Referring to Figure 6, if the arrows would not represent 



Foundations 

 31 

messages, but synchronized accesses, their direction could be reversed, 
leading to a different order of execution. 

Research thus tried to create new ordering relations, which more flexibly 
capture the nature of issues related to data races. Smaragdakis et al. 
introduced the causally-precedes relation (CP) [Sm12], weakening the 
happened-before relation. The CP relation is targeted at causality of events 
[Sm12]. Due to this, it allows a more flexible reordering of events, and thus 
enables to detect more data races. However, this relation was criticized and 
another relation was introduced by Kini et al. [KMV17]. This new relation, Weak 
Causal Precedence (WCP) slightly relaxes the rules enforced by CP, to enable the 
detection of additional data races. However, the authors show that whenever 
their algorithm detects a so-called WCP-race, it could not only be data race, but 
also a deadlock [KMV17]. Although such a WCP-race is a true positive 
regarding concurrency, in the strict sense of data race detection, one could 
argue that such a finding might be a false positive. 

Roemer et al. mention that WCP is “the weakest known” relation “that is also 
sound” (sound means in this context that any reported issue is a true issue), but 
still misses data races [RGB18]. The authors introduce a doesn´t commute 
analysis (DC), which is weaker than WCP but may contain false positives 
[RGB18].  Thus, data race detection using only DC is not sound. Due to this, an 
additional component is used by the authors to analyze each reported issue 
[RGB18]. The authors present a proof that the detection using DC is complete, 
however, the analysis, used to filter out false positives by searching for a 
reordering that confirms a reported issue, is not complete [RGB18]. For their 
proof of completeness, the authors use the assumption that conflicting 
accesses cannot be reordered [RGB18]. 

Pavlogiannis shows that this assumption is not true in all cases, and presents 
examples, for which both the DC and the accompanying analysis of the results 
fail, thus producing false negatives [Pa19a]. The author introduced Trace-close 
Partial Orders and a decision-solving algorithm to decide if two events are 
conflicting, i.e., if a data race might exist. Although the author reports to find 
more data races than the approaches mentioned before, the algorithm is 
limited to input traces of two processes [Pa19a].  

Summarized, there has been a development in using partial ordering 
techniques for data race detection towards weaker and more flexible orderings 
compared to the traditional happened-before relation, which allow finding more 
data races than stricter ordering techniques. However, this flexibility leads to 
more event reorderings, which have to be analyzed, thus increasing runtime 
overhead of the approaches. This problem of increased runtime overhead has 
been captured in Practical Problem 1 (chapter 1.2). 
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This increased runtime overhead is the reason, why Pavlogiannis has limited 
the data race detection to two processes [Pa19a]. Other approaches operate 
with a limitation in the reordering of events, the so-called windowing. When 
reordering events, such approaches do not examine the full set of events, but 
limit the set of events to a certain number of events, a window. As an example, 
Huang et al. limit their approach to windows of 10,000 events each, and these 
windows are examined separately [HMR14]. The downside of such an 
approach is, that events, which are in different windows, are analyzed 
separately, and thus, data races involving events in different windows cannot 
be detected. However, the tool implementing their approach can be 
configured to compute smaller or bigger windows, with reduced or increased 
runtime overhead. 

A slightly different approach has been used by Mathur et al., who introduced 
the schedulable happens-before (SHB) ordering [MKV18]. This ordering builds 
upon the happened-before relation. The authors tackle a different problem, not 
considered by other approaches. Whenever a data race in an application exists, 
the behavior of this application after this data race is affected. This means that 
data races, which are detected after the first data race in an execution 
happened, might not reflect the behavior an application would show when this 
first data race would have been corrected [MKV18]. SHB strengthens the 
happened-before relation, and with using reordering of events following the 
SHB, aims to detect data races [MKV18]. 

Finally, an optimization for approaches using predictive data race detection 
has been presented by Roemer et al. [RGB20], using conflicting critical section 
optimizations for reducing the general runtime overhead of approaches. Using 
this optimization, critical sections are compared, i.e., sections protected, e.g., 
by locks, and conflicting critical sections are identified, which are used as basis 
for further analysis. Two critical sections conflict, when the same variable is 
accessed, and at least one of the accesses is a write access. The authors also 
use an optimization for the vector clocks used, and report an improvement in 
the runtime overhead, which allows predictive analysis techniques “to perform 
nearly as well as state-of-the art non-predictive race detectors” [RGB20]. 
While non-optimized predictive data race analysis usually can cause a runtime 
overhead of 30𝑥 , the optimizations lead to a runtime overhead of 6𝑥 
compared to a non-instrumented execution of an application [RGB20]. 

A completely different research direction is established by SAT (Satisfiability) - 
or SMT- (Satisfiability Modulo Theory) solving approaches. Such approaches 
are based on the same execution traces and events as the partial order based 
and predictive approaches described above. SAT- or SMT-solving approaches 
rely on execution traces and the characteristics of data races. A data race is 
then detected using a constraint solving algorithm. Feasible trace reorderings 
are examined using an SMT-solver, with consideration of certain constraints. 
Such reorderings are examined to detect data races. 
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A basis for this research direction was set by Serbănută et al., who introduced a 
maximal causal model, which opposes the partial order relations by focusing on 
consistency of shared memory accesses and formulating constraints for 
shared memory consistency [SCR08].  

However, with regard to specific programming languages and their 
concurrency-related constructs (see Chapter 2.3), the maximal causal model is 
not encompassing, as not all such constructs are considered. Said et al. have 
thus extended the maximal causal model to include “a wide range of 
synchronization primitives in Java” [Sa11]. The authors also introduced the 
usage of an SMT-solver instead of enumerating all feasible trace reorderings 
[Sa11].  

Based on this work, Huang et al. presented an approach with “maximal 
detection capability for any sound race detector given the same execution 
trace under sequential consistency” [HMR14]. The authors minimize the 
constraints for trace reordering to obtain maximal flexibility for such 
reorderings, thus enabling a higher  detection capability [HMR14]. The authors 
formulate a data race as a property over a model of execution traces, 
representing the set of feasible traces following the maximal causal model. This 
model is created using a formula for specifying all feasible traces based on the 
observed execution trace, while adhering to the maximal causal model.  
Constraints are then formulated for must happen-before relations, locking, and 
for data races. The must happen-before constraints differ from the happened-
before relations already mentioned, as the constraints are not used with regard 
to read and write events for different threads, and acquire and release events. 
This is because, as explained above, such an ordering would unnecessarily limit 
the flexibility and thus, prevent detecting possible data races. Instead, the must 
happen-before constraint considers the creation (i.e., fork) and start events of a 
thread, and the end and possible join events. Lock constraints are used for 
formulating mutual exclusion consistency with regard to acquire and release 
events. Race constraints consist of arithmetic constraints with regard to read 
and write events to the same variable, and control flow constraints [HMR14].  

An SMT-solver is then used to examine possible feasible traces for the 
constraints formulated with regard to a pair of variables. If the SMT-solver 
reports a feasible trace, a data race is detected [HMR14].  

Besides their usage for detecting data races in multithreaded programs, such 
SMT-solver based approaches are also used in the area of distributed systems 
[PMS20].  

Finally, a variety of other approaches for quality assurance with regard to data 
races exist, such as explicitly specifying mechanisms for synchronization and 
then verifying the adherence of an application to those specifications [FF20]. 
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Hybrid approaches combine one or more techniques, such as lockset analysis 
and happened-before analysis. 

As runtime overhead is one of the prevalent problems in quality assurance for 
data races, as shown above, due to the inherent complexity [MPV20], research 
also focused on optimization approaches that complement existing 
approaches for data race detection. Besides optimizations regarding the 
vector clock concept [FF09], or regarding conflicting critical sections as basis 
for the analysis in predictive data race detection [RGB20], the number of 
events to consider during an analysis has been targeted. 

Huang et al. introduced an approach to filter out events that are redundant. 
Redundancy in this context means, that those events cannot be used to detect 
new data races, e.g., multiple read or write events to the same variable in the 
same critical section [HZZ13], [RH15]. 

Other approaches use a sampling strategy. Using such a strategy, not all read 
or write events are examined. Instead, a proportion of those events is 
examined, leading to a reduced runtime overhead [BCM10], [MMN09], 
[BCM10]. However, this leads to the possibility of missing data races, which 
could have been detected examining those events, which are ignored.  

Besides sampling instrumentation, another strategy is to reduce the level of 
detail of the instrumentation. Von Praun and Gross used instrumentation on 
the object level instead of instrumenting single variables [PG01]. The authors 
use this concept for object race detection, and not data race detection [PG01].  

The concept of object level instrumentation has been adopted for data race 
detection by Yu et al., who relied on an adaptive analysis [YRC05]. The authors 
dynamically adapt the tracked granularity (e.g., object granularity and field 
granularity) and history (lockset and set of threads) information of an 
application, with the goal to reduce the runtime overhead [YRC05]. As such a 
reduced amount of details may lead to missed data races, the algorithm also 
presents warnings to the users [YRC05]. 

Effinger et al. introduced interference-free regions to reduce instrumentation 
[Ef12]. Instead of instrumenting single accesses to a variable, regions are 
identified for instrumentation, and multiple accesses to the same variable are 
combined during the instrumentation. This leads to a lower runtime overhead, 
but this approach may miss data races [Ef12]. 

The approach presented in this thesis can be classified into the optimization 
approaches. However, instead of targeting the events in an execution trace, 
the instrumentation itself is in the focus for optimization. Based on an analysis 
of the dynamic behavior of an application, classes to instrument are identified, 
and instrumentation is conducted only for those places, which may be 
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executed in parallel to other places or to themselves. For such an analysis, an 
abstract model of the dynamic behavior is used, leading to reduced complexity 
compared to analyzing whole applications.  

2.5 Behavioral Models of Software 

Various languages and notations are employed in the area of model-driven 
development. Seven languages and notations can be identified as being the 
most prominent ones [BK20], [St20], [GG21], [Sc21]: 

1. BPMN (Business Process Model and Notation) 

2. WS-BPEL (Web Services Business Process Execution Language) 

3. ER Diagrams (Entity-Relationship Diagrams) 

4. EPC (Event-Driven Process Chains) 

5. Petri Nets 

6. YAWL (Yet Another Workflow Language). 

7. UML (Unified Modeling Language) 

BPMN [OM13] provides a notation for business users for creating business 
processes. Developers may implement the software supporting those 
processes using the created model. BPMN is used to create “a standardized 
bridge for the gap between the business process design and process 
implementation” [OM13]. A BPMN model may consist of three types of sub 
models: processes, choreographies, and collaborations. A process is a 
“sequence or flow of activities”. A collaboration is used to model interactions 
between business entities [OM13]. A choreography defines the expected 
behavior between different processes. The notation provides, among others, 
elements for events, activities, message exchange, data objects, sequence 
flows, and gateways (used for decisions, merging, forks, and joins) [OM13]. The 
BPMN contains compliance points, and software can claim compliance with 
BPMN if those compliance points are fulfilled [OM13]. Software may be 
modeled using this notation, but the intent of BPMN is not to provide a 
notation for modeling software. Instead, “Inter-operation of Business 
Processes at the human level, rather than the software engine level, can be 
solved with standardization of the Business Process Model and Notation 
(BPMN)” [OM13]. 

WS-BPEL is directed at specifying the behavior of business processes based on 
web services in the form of abstract and executable business processes 
[OA07].  The intention of this language is to “achieve interoperability between 
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applications by using Web standards” [OA07]. The language defines, among 
others, elements for activities, message exchange, conditional behavior, 
repetitive behavior, concurrency and synchronization (both as special forms of 
activities), as well as events [OA07]. The WS-BPEL standard does not provide a 
modeling notation, but only a language in a style similar to XML [OA07]. As 
with BPMN, this language is targeted at business processes, and not software. 
The BPMN standard provides a mapping from BPMN to WS-BPEL [OM13].  

The Entity Relationship Model, introduced by Chen [Ch76], serves to model data 
and associations between data. It consists of entities and entity sets, 
relationships, roles and relationship sets, and attributes, values and value sets. 
An entity, which can be classified into an entity set, is described as “a thing 
which can be distinctly identified” [Ch76]. A relationship is used to describe 
associations between such entities. Relations can be formulated as a 
relationship set, a mathematical relation. An entity can have a role associated 
with a relationship, which is used to define “the function that it performs in the 
relationship” [Ch76]. An entity or a relationship can have attribute-value pairs, 
to express information about such an entity or relationship. Values can be 
classified into value sets. An attribute is a function mapping from a relationship 
set or an entity set into a value set [Ch76]. An Entity Relationship Model is a data 
model, originally used for database design [Ch76], and does not contain any 
elements to describe the behavior of a system. 

Event-Driven Process Chains are process models used to describe a dynamic 
view on the execution of functions driven by events [KNS92], the control flow. 
An event is a passive state representing the occurrence of values of attributes, 
which triggers a function. A function describes the execution of an operating 
process contributing to reaching a corporate objective [KNS92]. In the model, 
events may trigger functions, which may lead to triggering an event. Events 
and functions may be connected directly or using connection operators. Such 
connection operators may describe a conjunctive connection, a disjunctive 
connection, or an adjunctive connection. To model the data view and for meta 
modeling, originally Entity Relationship Models were used [KNS92]. However, 
using these models for meta modeling was discarded in favor of the UML 
[Sc02]. Event-Driven Process Chains are targeted at organizational workflows, 
and are separated from implementation specific considerations related to 
software [NZ98]. 

Petri Nets, introduced by Petri, consist of a formal model and graphical 
notation for describing distributed systems [Pe62], thus providing support for 
concurrency. Petri Nets are used in many different areas, including software 
engineering and workflow specification. A Petri Net consists of places, 
representing states, and transitions, representing state changes. Graphically, 
places are represented as circles, and transitions are represented as 
rectangles. Different definitions of Petri Nets exist, which are mostly equivalent 
[Wi08]. One definition states that Petri Nets are a triple (𝑃, 𝑇, 𝐹) , with 𝑃 being 



Foundations 

 37 

a finite set of places, 𝑇 being a finite set of transitions, and 𝐹 being a flow 
relation (𝐹: 𝑃 ⨯ 𝑇 ∪  𝑇 ⨯ 𝑃). Flow relations are graphically represented as 
directed arcs leading from a place to a transition or leading from a transition to 
a place. 

The state space (the set of all states) of a Petri Net is defined as ℕ𝑃 , with the 
relation 𝑠: 𝑃 →  ℕ being a state or marking of a Petri Net [Wi08]. If 𝑠(𝑝𝑖)  =
 𝑘, then the place 𝑝𝑖  holds 𝑘 tokens. Graphically, a token is shown as a dot in 
the place. A transition in state 𝑠 is enabled, i.e., the Petri Net may change its 
state, if 𝑠 ≥  𝐹(·, 𝑡), meaning ∀𝑝 ∈  𝑃: 𝑠(𝑝)  ≥  𝐹(𝑝, 𝑡). In other words, a 
transition is enabled, if there is a token in each place connected to this 
transition, with this connection representing a flow from this place to the 
transition.  

The state 𝑠  changes to 𝑠’  if 𝑠 ≥  𝐹(·, 𝑡)  and 𝑠’ =  𝑠 –  𝐹( ·, 𝑡)  +  𝐹(𝑡,·) 
[Wi08]. A Petri Net starts at an initial state 𝑠0 and is called dead when no 
transition is enabled. Different variations of Petri Nets exist, such as Colored 
Petri Nets or High-Level Petri Nets [Je82]. 

Yet Another Workflow Language has been created with consideration of Petri 
Nets, but with a different semantics [vH05]. Van der Aalst and Hofstede 
examined different workflow patterns, and the suitability of Petri Nets and 
several workflow management systems to model those patterns [vH05]. On 
the basis of their results, the authors extended workflow nets, which are 
themselves extensions of Petri Nets [va98], to support constructs, such as 
multiple instances with different levels of synchronization or cancellation 
patterns. Although Yet Another Workflow Language is formally defined, with 
similarities to Petri Nets, the token concept, e.g., is not formally defined [vH05]. 
Yet Another Workflow Language may be used for modeling software and its 
behavior, but the language is focused on workflows.  

The Unified Modeling Language (UML) consists of a language and specifications 
for a variety of models and is accompanied by graphical representations of 
such models. The UML is currently available in Version 2.5.1 [OM17]. The UML 
originated from different concepts for object-oriented development [BRJ96] 
and is targeted at analysis, design and implementation of software systems, 
although processes and workflows also may be modeled using the UML. The 
specification consists of two main areas: structural modeling (e.g., using the 
graphical representations class diagram or component diagram), and behavioral 
modeling (e.g., using the graphical representations activity diagram or sequence 
diagram). The focus in this thesis is on UML Activities instead of other 
representations of the UML, because the focus is on representing the behavior 
of an application and because UML Activities are more commonly used for 
representing complete applications. Just as UML Activities, UML Sequences 
may also be used for modeling concurrent behavior, but UML Sequences are 
more likely to be used for modeling the interactions between objects in 
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specific cases, and not the application as a whole [Fo10]. In recent versions, 
especially UML Activities have received changes in the form of extensions and 
formalizations.  Basically, an activity captures dynamic behavior and consists of 
nodes and edges. Nodes may be executable, hold data, or may be nodes 
“specifying the sequencing of executable nodes” [OM17]. Edges may be 
control flow edges or data flow edges. As such, activities represent both the 
control flow and the data flow. Activities describe “models of computation” 
[OM17], which are “inherently concurrent” [OM17]. Activities may form 
hierarchies, and special constructs exist for, e.g., timing, events, signals, or 
exceptions [OM17]. 

2.6 Summary 

Research in the area of concurrency has been conducted both to understand 
and define concurrency and related issues, such as data races, and to cope with 
these issues in a constructive and analytical manner. 

Based on the happened-before relation, describing a partial order over events in 
parallel or concurrent processes, a formal definition for data races has been 
defined. In addition, data races were separated into feasible data races and 
apparent data races. 

To cope with concurrency, the concept of mutual exclusion was defined. In 
development, both implicit and explicit synchronization can be implemented 
using different programming language constructs. Explicit synchronization is 
implemented using specific programming language elements, such as 
semaphores, monitors, or locks. Besides the happened-before relation, the 
concept of locksets is used as central concept for quality assurance for data 
races. 

Static quality assurance often relies on lockset analysis as central concept. As 
the source code of an application is not executed, not all code constructs can 
be analyzed correctly or without ambiguity. In addition, static quality assurance 
techniques have to balance between precision and scalability. Although static 
quality assurance in general may be able to detect all data races, with the 
limitations mentioned, the techniques usually suffer from a huge amount of 
false positives. One reason is that static quality assurance techniques often not 
only report feasible data races, but also apparent data races. 

Dynamic quality assurance, on the other hand, classically only reported feasible 
data races, but was limited to data races related to executions observed. Based 
on the happened-before relation, other relations were defined, which were less 
strict and enabled data race detection techniques to find a higher number of 
data races. Additionally, techniques to reorder events in the observed 
execution traces were developed. The development of less strict ordering 
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relations has lead to techniques, which report a high number of data races, but 
also report false positives.  

As a less strict ordering relation implies more possibilities to reorder events in 
execution traces, more data races could be detected, but at the cost of an 
increased runtime overhead. This has lead to a research area focused on 
optimizations of existing approaches in terms of the runtime overhead. 
Optimizations were introduced regarding the underlying vector clock concept, 
the analysis phase in predictive data race detection, the events of an execution 
trace to consider for analysis, and, as in this thesis, the instrumentation itself.  

Behavioral models form the basis for the solution presented in this thesis. In 
model-driven development, several different approaches for modeling exist, 
and seven languages and models have been identified as being the most 
prominent ones. These approaches vary in their main application domain, 
targeting mainly business processes or workflows, or mainly software 
development, have different levels of underlying formalisms, and vary in their 
support for concurrency and software related constructs.   
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3 Related Work 

This chapter shows an overview on the related work with regard to the 
practical and scientific problems of this thesis, and the research questions.  

The purpose of this chapter is on the hand to discuss the decisions made with 
regard to the solution presented in this thesis, and on the other hand to assess 
similar approaches found in the literature regarding their ability to fulfill the 
goals of this thesis. 

3.1 Research Approach 

As shown in chapter 2.4, a variety of static and dynamic techniques exist for 
quality assurance focused on data races. Research has led to a substantial 
improvement in the effectiveness of quality assurance approaches, but at the 
cost of increased runtime overhead. Although research has identified 
approaches to reduce this runtime overhead, it is still perceived as a problem. 
Current solution ideas focus on different aspects with regard to the usage of 
the data collected by instrumenting the code, or on different depths of 
instrumentations. Research on the instrumentation itself has focused on how 
to instrument code, but not on what to instrument. The solution presented in 
this thesis is new in terms of providing a systematic approach regarding what 
to instrument.  

Existing approaches rely on a sampling strategy to steer the examination of 
read or write accesses, which may lead to missed data races, as explained in 
chapter 2.4. The solution idea presented in this thesis instead steers 
instrumentation based on places in the source code, i.e., source code classes. 
The definition of a data race (as stated in chapter 2.2) shows that several 
requirements need to be fulfilled for a data race to exist: multiple accesses to 
the same data with at least one of the accesses being a write access, and 
concurrency without proper synchronization. The approaches discussed in 
chapter 2.4 are based on these requirements to detect a data race. The 
solution presented in this thesis reduces the runtime overhead by focusing on 
one of these requirements, the concurrency. If there is no concurrency, i.e., no 
parallel execution of threads, there cannot be a data race, independent of what 
data is accessed and how it is accessed. If source code classes in the code exist, 
which cannot be executed in parallel to other source code classes, they do not 
need to be analyzed regarding possible data races, as there cannot be data 
races. Thus, there is no need to instrument those source code classes. 
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To obtain the basis for such a decision on what to instrument, a model of the 
dynamic behavior of a system is analyzed. As multiple models are used in the 
area of model-driven development (see chapter 2.5), an assessment is made in 
this chapter, which model to use in the solution. 

Having identified the model, requirements for an approach to analyze such 
models can be set up. Related work is then analyzed with regard to their ability 
to fulfill these requirements.  

The related work described in this chapter has been identified and analyzed 
following the guidelines for systematic literature reviews defined by 
Kitchenham et al. [Ki07b], [KE14]. The following figure shows the steps 
conducted for the literature review. 

 

Figure 7:  Literature Review of Related Work 

 

As such a systematic literature review, its goal and the research question to be 
answered, as well as the requirements for a solution, depend on a clear 
definition of the type of model in the focus of research, the decision on the 
type of model to focus on has to be made before starting the systematic 
literature review. This decision is presented next. 

A detailed explanation of all activities conducted during the literature review, 
following the guidelines provided by Kitchenham et al. [Ki07b], is given in 
chapter 3.3. 

3.2 Behavioral Models of Software as Basis for the Analysis of the Dynamic 
Behavior  

The models presented in chapter 2.5 target different areas and can thus be 
classified into the following categories: 
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1) Workflow and process models: BPMN, WS-BPEL, EPC, YAWL 

2) Software models: ER Diagrams, Petri Nets, UML 

As workflow and process models target different areas, and are not meant for 
modeling software, they have been discarded. Of the software models, ER 
Diagrams serve to model data and relations between entities. Such diagrams 
are not able to describe the dynamic behavior of software. 

Of the models mainly used in model-driven engineering, only two types are 
suitable for representing the dynamic behavior of software, and have thus 
been examined in detail. The assessment resulted in UML Activities being 
selected as the type of behavioral model used as basis for the analysis of the 
dynamic behavior of software. 

Both UML Activities and Petri Nets share a token concept. While for UML 
Activities, the tokens are related to the execution of the activities (regarding 
control tokens), the tokens in Petri Nets are related to their state. The token 
concept in Petri Nets is embedded in formalisms as foundation for the model. 
Petri Nets are based on formal semantics, and analysis techniques exist for 
different properties, such as invariants or deadlocks [va98]. In contrast, UML 
Activities and the related token concept are not formally defined.  

However, van der Aalst and ter Hofstede mention three “serious limitations” 
regarding Petri Nets [vH05]: 

1) A process or thread may instantiate several sub threads. The number of 
such threads may be flexible, and, e.g., depend on the input to an 
application. In addition, some of those threads running in parallel may 
need to be synchronized at various occasions.  In such a situation, creating 
a Petri Net may require keeping track of the identities of those sub threads 
and the number of threads active using a counter [vH05]. Van der Aalst 
and ter Hofstede judge the tasks to create such elements manually by 
designers as being ”not acceptable” [vH05]. 

2) Additional challenges arise when considering threads that are optional, 
i.e., in some cases, a number of threads need to be executed, and in other 
cases, a different number of threads need to be executed in the context of 
the same main task. After all those threads have been completed, the 
main task may be continued. Such a situation may, e.g., arise in 
computations, for which different sub tasks of this computation are 
spread to different threads. Thus, different forms of synchronization 
occur: no synchronization, partial synchronization and full synchronization 
[vH05]. In such cases, substantial effort has to be made to create 
appropriate Petri Nets capturing this flexibility [vH05]. 
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3) By definition, enabling a transition in Petri Nets is based on tokens being 
present on incoming arcs; this transition is always local [vH05]. Thus, to 
capture non-local events, such as a timer or a cancellation of an action, 
additional effort is necessary to capture the nature of removing tokens 
based on non-local events. This often results in “spaghetti-like” diagrams 
[vH05]. 

Using UML Activities, such situations may be modeled using standard modeling 

elements provided by the language. ControlNodes4, such as ForkNodes and 
JoinNodes, DecisionNodes and MergeNodes, are used to manage the control 
flow. Additional nodes may, among others, be used for referencing other 
activities, i.e., to establish calling hierarchies, to send and receive signals, to 
raise and react to events or exceptions, to model loops, or to define groups of 
nodes, which may be interrupted during execution [OM17].  

These differences show the different foci and strengths of the languages. 
Although Petri Nets enable automated analyses, modeling programming 
constructs as those mentioned above, are only possible with additional effort. 
This shifts the effort of modelers from modeling the actual program behavior 
towards modeling administrative constructs [vH05]. Compared to using UML 
Activities, more effort is thus needed for modeling a concurrent application 
using Petri Nets. The analysis capabilities regarding data races using Petri Nets 
are limited in terms of the state space or the variables to be analyzed and often 
require additional manual steps [BHO20], [KO20], [XZL21].  

Thus, the existing advantages of Petri Nets regarding analysis cannot be fully 
used in the context of this thesis. The disadvantage in terms of modeling the 
behavior of concurrent applications however, is present. With regard to this 
and considering the possibilities of transforming UML constructs to source 
code for further usage of the results of modeling, i.e., a more efficient software 
engineering process, UML Activities have been selected as representative for 
behavioral models used in the solution presented in this thesis. 

3.3 Analyzing UML Activities 

To retrieve related work in terms of using UML Activities in the detection of 
data races, a systematic literature review was conducted as mentioned in 
chapter 3.1.  

When examining the UML superstructure [OM17] regarding UML Activities, 
several requirements can be defined for an approach to analyze such UML 
Activities: 

 
4 In the following, the elements of UML Activities are written according to the notation in the 

UML superstructure [OM17]. As an example, a “control node” is written as “ControlNode”. 
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• Requirement 1 – Multiple UML Activities: using the node type 
CallBehaviorAction, it is possible to connect UML Activities. Situations can 
be created, in which an activity 𝐴 contains a CallBehaviorAction, which 
leads to activity 𝐵, which in turn contains a CallBehaviorAction leading 
back to activity 𝐴. This would lead to an activity spanning cycle. Any 
approach capable of fully analyzing UML Activities must not only consider 
CallBehaviorActions, and thus a set of connected UML Activities, but also 
provide solutions for such an activity spanning cycle. 

• Requirement 2 – Multiple InitialNodes: as defined in the UML 
superstructure, an InitialNode is a starting point for the execution of an 
activity. However, any activity may contain several InitialNodes. When 
execution of such an activity begins, all InitialNodes are executed, thus 
forming a parallel execution without a ForkNode. An approach capable of 
handling concurrency must be able to consider multiple InitialNodes as a 
source of parallelism. 

• Requirement 3 – Multiple FinalNodes: according to the UML 
superstructure, there is no limit in the amount of FinalNodes included in an 
activity [OM17]. While FlowFinalNodes end one of possibly multiple 
executions (i.e., a flow of tokens) in an activity, an ActivityFinalNode ends 
the execution of the whole activity (i.e., all token flows). An approach must 
consider that multiple FinalNodes with different semantics may exist 
within the same activity.  

• Requirement 4 – Cycle Traversals: an activity may contain node 
combinations that form cycles. Depending on the nodes within that cycle, 
such a cycle may have different exit conditions, which may require 
multiple cycle traversals to be fulfilled. The exact amount of necessary 
cycle traversals depends on the specific cycle characteristics. Thus, any 
approach properly handling cycles must take into account the 
characteristics of such cycles.  

• Requirement 5 – ForkNodes and JoinNodes: according to the UML 
superstructure, a ForkNode has multiple outgoing edges, which are all 
followed concurrently [OM17]. A JoinNode has one outgoing and multiple 
incoming edges and may have a joinSpec, which specifies the condition, 
which must hold for the JoinNode to offer a token at the outgoing edge. 
The UML superstructure mentions no dependency between ForkNodes 
and JoinNodes [OM17]. An activity may contain ForkNodes without 
JoinNodes. In case of multiple InitialNodes, JoinNodes may also be present 
without any ForkNodes. An approach handling concurrency therefore must 
account for both ForkNodes and JoinNodes independently. 

• Requirement 6 – UML Activity Elements: besides well known control node 
types, such as InitialNodes, FinalNodes, ActionNodes, DecisionNodes, 
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MergeNodes, ForkNodes and JoinNodes, and object node types, many other 
node types or elements exist. Examples for additional elements are 
AcceptEventActions, StructuredActions, InvocationActions, 
RaiseExceptionActions, InterruptibleActivityRegions, InterruptingEdges, or 
different types of Pins. Any approach fully capable of analyzing UML 
Activities must consider the complete set of elements related to UML 
Activities specified in the UML superstructure [OM17]. 

3.3.1 Process of the Systematic Literature Review 

The first step was the planning of the literature review. In this phase, the 
rationale for the survey and the research question to be answered were 
specified. Based on those, the search strategy including selection and 
assessment criteria could be defined. The search was limited to publications 
from 2005 on, as in this year the UML was released in Version 2.0, which 
included several additions to UML Activities. 

The research question to be answered by the literature review was: What 
approaches exist to detect places with parallel access to shared data in UML 
Activities? 

This question targets the existing literature regarding approaches analyzing 
UML Activities with the goal to identify either data races directly or modeling 
elements involved in data races.  

The second step (searching and filtering) included testing and then applying 
the search string developed as part of the search strategy to the identified 
sources. The search string was applied at SCOPUS, IEEE Xplore Digital Library 
and ScienceDirect. Those libraries include most of the relevant work in the 
area of this thesis. The libraries also cover contents of other databases, such as 
the Proceedings hosted by Springer. Thus, a search using other databases was 
not necessary. 

The first part of the analysis consisted of filtering out duplicates and invalid 
entries, such as entries referencing tables of contents of proceedings. As many 
publications were found using the search string, which were not related to the 
context of this literature review, a filtering was applied by reading and 
analyzing the titles and the abstracts (step two). Publications, which were 
found to not being relevant in the context of this research, were sorted out. 
Publications selected as being relevant were then analyzed in detail (step 
three). The references of those publications have been examined to identify 
additional publications not yet identified (step four). For those additional 
findings, the filtering and analysis approach steps have been repeated.  

The systematic literature review and the process described have been 
repeated several times, with the last time of the review being at the time of 



Related Work 

 47 

writing the thesis. Although results published in the last years could not be 
considered when creating the solution presented in this thesis, they serve for 
comparison regarding the current state regarding approaches to analyze UML 
Activities. 

Although a systematic approach was applied, this chapter is not entitled to 
provide a complete overview on all publications related to the topic of this 
thesis.  

The majority of the publications found are concerned with methods for test 
generation. The remaining publications focus on other model-related quality 
assurance techniques, such as model checking, formal modeling and proof, 
product line tests, methods, which do not focus on test generation, and 
analysis techniques. The literature review also revealed two methods for 
model conversion, i.e., one technique for model reduction, and one technique 
for the specification of Event-B models based on UML Activities. One 
publication is concerned with a comparison of two methods for test generation 
based on UML Activities, but does not present an own method. 

13 publications contained an approach for the analysis of UML Activities 
considering parallel access to shared data or nodes, which may be executed in 
parallel to other nodes or to themselves. The analysis revealed several 
limitations and inabilities in the approaches.  

3.3.2 Sun 

The approach from Sun et al. [Su08], [SZL09], [Su15] targets concurrent 
applications and derives test scenarios based on coverage criteria. The 
approach transforms UML Activities to extended binary trees. Then, the nodes 
are traversed to generate test scenarios. Finally, test cases are derived. The 
approach is limited to UML Activities, which include specific combinations of 
ForkNodes and JoinNodes to detect concurrency, for which all outgoing edges 
of a ForkNode eventually lead to incoming edges of one JoinNode. Such 
combinations form clearly limited areas, concurrent regions, in which parallel 
execution of nodes is possible. This results in a defined amount and 
combination of nodes between a pair of ForkNodes and JoinNodes. The authors 
describe three coverage criteria for concurrent regions to steer the amount of 
test cases in terms of the coverage of paths achieved. “Weak concurrency 
coverage” is used for generating one sequence of nodes for a concurrent 
region without considering interleavings between parallel nodes. “Moderate 
concurrency coverage” results in generating all sequences regarding parallel 
branches without considering different interleavings of parallel nodes. “Strong 
concurrency coverage” is used for generating all sequences of nodes, with 
consideration of interleavings. As UML Activities may contain cycles, the 
solution to the problem of how to control and limit possibly infinite cycle 
traversals is critical to any approach. Sun et al. limit the cycle traversal to one 
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cycle traversal. The approach only supports UML Activities with one InitialNode 
and one FinalNode. 

3.3.3 Sapna 

Sapna and Mohanty [SM08] present an approach to generate test cases in 
terms of paths through a UML Activity. The authors rely on user input to apply 
criteria for constraints. These constraints result in a reduction of the 
interleaving possibilities of concurrent operations defined in UML Activities, 
and thus, in a reduction of the test cases to generate. In the article, two types 
of criteria are defined for test scenario generation: priority-based criteria, in 
which the interleavings are based on priorities added by users, and level-based 
selection, in which dependencies are used to reduce the number of possible 
test paths. In this context, dependency means that one node has to be 
executed before another node can start. To steer the amount of paths 
generated for testing, three coverage criteria are supported in addition: node, 
transition and path coverage are supported. The approach also relies on 
combinations of ForkNodes and JoinNodes to detect concurrency. There is no 
proposal to solve the problem of cycle traversals and infinite paths. Instead, 
cycles are only traversed at most twice. The approach supports UML Activities 
with one InitialNode and one FinalNode. 

3.3.4 Xu 

Xu et al. present an algorithm to generate abstract test cases from UML 
Activities [XLL05], [Xu08]. The authors propose using adaptive agents to find all 
paths in activities. The authors mention that the tool also relies on pairs of 
ForkNodes and JoinNodes to detect concurrency. The authors present four 
patterns for such pairs, which describe different scenarios, such as a nested 
fork-join, or a branch inside a fork-join-pair. Test cases are derived based on all 
interleavings of nodes within such concurrent regions. The approach supports 
one InitialNode and multiple FinalNodes. Cycle traversals are limited to a fixed 
number of traversals, which can be defined by users. ExpansionRegions, which 
can be executed multiple times depending on the input provided to that 
region, are limited to a single execution. ExceptionHandlers are considered in 
the test case generation similar to a DecisionNode, i.e., two test cases are 
created. One test case assumes that an exception has been raised, and the 
second test case assumes that the exception has not been raised. For 
InterruptibleActivityRegions, all possibilities for an event that interrupts 
execution of the nodes in that InterruptibleActivityRegion are listed and multiple 
test cases are created.    

3.3.5 Chandler 

Chandler et al. present a method to generate usage scenarios for testing of 
programs based on UML Activities [CLL07]. For creating such usage scenarios, 
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each edge of a UML Activity is visited at most once during a cycle traversal, and 
twice overall. The authors enlarge the patterns for detecting concurrency 
presented by Xu et al. [XLL05], and present six categories for classification of 
situations describing concurrency, which are based on the aforementioned 
approach, and extend these. The patterns include nested fork-join-pairs and 
cycles inside a fork-join-pair. These patterns also describe situations, in which 
the processing of nodes inside such a fork-join-pair is dependent on certain 
guard conditions. For these patterns, possible test sequences are generated. 
However, more complex situations are not supported, e.g., activities, which do 
not contain pairs of ForkNodes and JoinNodes, or branches and cycles, which 
span across the borders of ForkNodes and JoinNodes. The approach considers 
multiple InitialNodes and FinalNodes, and relies on combinations of ForkNodes 
and JoinNodes to detect concurrency. The algorithm processes UML Activities 
and generates paths through the diagrams, which can be used for testing. 

3.3.6 Lei 

Lei et al. present an approach and a tool for testing Java programs based on 
UML Activities for data races [LWL08]. Data races are identified by checking 
state transitions of the shared variables. To enable the analysis of state 
transitions for shared variables, UML Activities are extended with so-called 
“data operation tags” and the system under test is instrumented accordingly. 
Test cases are generated randomly by using a path analysis based on the UML 
Activity. Several restrictions apply with regard to the UML Activities: swim lanes 
are mandatory and are named after the class in the source code. Any method 
that implements a certain node of the UML Activity must be known and 
annotated to this node. The swim lanes and the references to source code in 
the UML Activities have to be annotated manually. There is no statement 
regarding handling of cycles in UML Activities for path analysis. The generated 
test cases can be executed using the provided tool. The information added to 
UML Activities is used for instrumentation of the source code. In addition, users 
are required to specify the input and the expected output regarding the test 
cases. During execution of the system under test, a trace file is written, and 
monitored state transitions of the shared variables are analyzed for data races. 
Access times are recorded by wrapping the first and last lines of getter and 
setter methods for shared variables. If time overlaps are found, a data race is 
reported. However, the authors mention, that due to the inherent non-
determinism related to concurrency, the system under test has to be executed 
several times to reveal specific interleavings. The approach supports activities 
with one InitialNode and multiple FinalNodes.  

3.3.7 Boghdady 

Boghdady et al. transform UML Activities stored in an XML format to a table 
containing information related to the nodes, input and output, and 
predecessor and successor information [Bo11b]. The table is then used to 
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create an activity dependency graph. Paths through this directed graph form 
test cases. The approach relies on a single InitialNode and FinalNode. Cycles are 
traversed at most once. Parallel nodes are summarized to a single node in the 
activity dependency graph. Thus, clearly separated concurrent regions are 
required by the approach. 

3.3.8 Kundu 

Kundu and Samanta use directed cyclic graphs as intermediate representation 
of UML Activities [KS09]. Those graphs are used for generating test cases. The 
approach only considers isolated activities and relies on a single InitialNode, but 
multiple FinalNodes per activity are considered. Cycles are traversed at most 
once. The approach also requires concurrent regions, and parallel nodes are 
serialized, i.e., one sequence of node execution is considered. 

3.3.9 Kim 

Kim et al. present an approach for black box testing, and focus on inputs and 
outputs from and to users or testers. The authors propose to transform UML 
Activities to I/O explicit activity diagrams [Ki07a] (I/O refers to Input/Output). 
Then, a directed graph is generated and test cases are extracted as paths 
through this graph. It is unclear, how the information whether an action node 
involves data visible to users is obtained. Activities may only include a single 
InitialNode and a single FinalNode. Cycles are traversed once. The approach 
relies on concurrent regions. Nodes in the concurrent region are classified as 
being related to either input or output data. Only nodes related to input are 
considered regarding interleavings of concurrently executing nodes. It is 
assumed that “if a tester waits long enough”, then nodes providing output “will 
eventually execute” [Ki07a]. This assumption is used for reducing the amount 
interleavings considered for test cases by always using nodes providing output 
as starting points. 

3.3.10 Verma  

Verma and Arora present an approach to generate test cases based on isolated 
UML Activities [VA14]. Based on an XML representation, in a first step all 
incoming and outgoing edges for each node are identified. Assuming only one 
InitialNode, all test cases start with this node. The identified outgoing edges of 
this node are then used to identify the successor node. If a DecisionNode is 
reached, the path up to this node is copied, and each outgoing edge of the 
DecisionNode is appended to one of the copies, i.e., additional test cases are 
created. In case of ForkNodes, all paths are followed “simultaneously” in the 
same test case [VA14]. The pseudo code algorithm does not contain 
information, how exactly test cases are generated in such a case. After all test 
cases are generated, all test cases, which do not contain pairs of ForkNodes and 
JoinNodes, are discarded. Cycles are traversed once.  
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3.3.11 Lima 

Lima et al. propose a framework to detect non-determinism in UML Activities 
[LTN19]. The authors use CSP, process algebra, as representation. UML 
Activities are transformed to CSP and then analyzed using an existing model 
checker. The approach considers SendSignalActions, AcceptEventActions, and 
CallBehaviorActions. No information is given related to the handling of cycles of 
activities calling each other.  UML Activities compatible with the approach may 
have multiple InitialNodes and FinalNodes. There are also no restrictions 
regarding ForkNodes and JoinNodes. The model checker, however, only reports 
that non-determinism is present, and gives an example of such a situation, i.e., 
a path leading to a point in an activity, where the non-determinism occurs. 
Such a non-deterministic situation may not necessarily be related to 
parallelism, but may also be related, e.g., to a DecisionNode with outgoing 
edges, for which it is not defined which edge to follow [LTN19].  

3.3.12 Summary and Assessment 

Summarized, none of the approaches contain a formal and theoretic basis for 
the included algorithms, which is shown to be correct. Several of these 
approaches also rely on pairs of ForkNodes and JoinNodes to detect 
concurrency [Su08], [SZL09], [Su15], [SM08], [XLL05], [Xu08], [CLL07], 
[Bo11b], [KS09], [Ki07a], [VA14]. However, there is no mandatory relation of 
ForkNodes and JoinNodes, and UML Activities adhering to the UML specification 
can include ForkNodes, but no JoinNodes, and may also contain multiple 
InitialNodes, which then start in parallel. Most approaches restrict the number 
of InitialNodes and / or FinalNodes to be contained in UML Activities [Su08], 
[SZL09], [Su15], [SM08], [XLL05], [Xu08], [LWL08], [Bo11b], [KS09], [Ki07a], 
[VA14].  

Additionally, two of the approaches are only able to recognize certain 
concurrency patterns, for example the “looping-nested-fork-join” pattern 
[XLL05], [Xu08], [CLL07], as mentioned above. In case models include 
combinations of concurrent nodes, which do not match these patterns, the 
combinations will not be analyzed appropriately or the UML Activity will even 
be rejected.  

Support for concurrency requires full coverage of the implications of 
concurrency. With relying on certain coverage criteria, an approach can only 
capture some of the interleavings possible in concurrent regions. In some 
cases, interleavings are even enforced, while other interleavings are neglected 
[SM08]; parallel executions are serialized to obtain a certain execution order. 
Non-determinism, respectively the problem of data races, is not appropriately 
covered using such an approach.  
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None of the articles discussed explicitly mentions the problems of cycle 
traversals, which is however, a critical and non-trivial problem with regard to 
nodes, which may run in parallel to other nodes or to themselves. Instead, 
cycles are often always traversed to a limited or hard-coded extent. The most 
flexible approach is published by Xu et al., and includes a hard limit, which can 
be set by users [Xu08]. As can be seen in chapter 4.6.5, such a limit is 
insufficient, as UML Activities can be created, for which any fixed limit 
(regardless of the hard-coded number) is not enough to obtain complete 
results. To fully consider the implications of such UML Activities, users would be 
required to manually analyze each activity to obtain the correct number for a 
limit. 

Finally, although all approaches discussed are published after the publication 
date of the UML V2.0, only two of the publications discuss modeling constructs 
newly introduced with Version 2.0 [Xu08], [LTN19]. One of those articles also 
contains a discussion regarding possible relationships and hierarchies between 
UML Activities [LTN19]. 

The following Table 1 summarizes the results of the assessment.  

Approach 

Require-
ment 1 

Require-
ment 2 

Require-
ment 3 

Require-
ment 4 

Require-
ment 5 

Require-
ment 6 

Multiple 
UML 

Activities 

Multiple 
Initial 
Nodes 

Multiple 
Final 

Nodes 
Cycle 

Traversals 
Forks and 

Joins 
UML 

Elements 

Sun - - - - - - 

Sapna - - - - - - 

Xu - - + 0 - 0 

Chandler - + + - - - 

Lei - - + ??? + - 

Boghdady - - - - - - 

Kundu - - + - - - 

Kim - - - - - - 

Verma - - + - - - 

Lima 0 + + - + 0 

   (-: not fulfilled, 0: partially fulfilled, +: fulfilled, ???: unclear) 

Table 1:  Assessment of Existing Approaches 

As can be seen, many of the requirements are not completely fulfilled by 
existing approaches. The areas the least fulfilled are handling of multiple UML 
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Activities (requirement 1), Cycle Traversals (requirement 4), and support for a 
complete set of UML Activity Elements (requirement 6). The solution 
presented in this thesis is targeted at closing these gaps. 

3.4 Classifying Data Races 

As the practical problems defined in chapter 1.2 are strongly related to the 
effort spent in quality assurance for data races, it was initially intended that the 
solution presented in this thesis also contains an approach for the classification 
of data races. However, a review of the literature and existing approaches 
revealed that classifying data races into harmful and harmless data races 
cannot be conducted with the reliability required for a solution to be applicable 
in practice.  

Based on the high number of reported data races (see chapter 1.2), several 
approaches to classify data races have been published. Researchers stated that 
80% to over 90% of all reported data races are harmless and benign [Er10], 
[KZC12], [Na07], [Zh11], [YRC05]. It is assumed that such data races do not 
affect the correctness of an application, and may also be intentionally included 
in an application [KZC12].  

Due to this, eliminating such types of data races from the amount of reported 
data races would lead to effort reduction, as no time would be spent on data 
races, which do not affect the correctness of an application. The main 
approaches for classification of data races into harmful or benign data races 
include heuristic classification, replay-based classification, and identification of 
ad-hoc synchronization.  

Heuristic classification uses patterns to identify data races to be considered 
harmless. Such patterns may be, among others, updates of statistics counters, 
usage of special variables, which include intentional and harmless data races 
(such as for the current time, which is constantly updated), and concurrent 
read and write operations to different flag bits in the same memory location 
[Er10]. 

In replay-based classification, the execution of an application is replayed for a 
specific data race. In the replay, the order of accesses to the shared variable is 
switched with regard to the original execution. If both executions yield the 
same result, the data race is considered as being potentially benign [Na07]. 

Identifying ad-hoc synchronization is concerned with finding custom 
synchronization operations in an application. If such operations exist, and a 
data race is involved in that ad-hoc synchronization, the data race is 
considered as being benign [Zh11]. 
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However, all these approaches suffer from drawbacks. Heuristic classification 
is dependent on the context of an application. If, e.g., such a statistics counter 
is critical to that application, then such a data race could not be classified as 
being benign. In general, heuristic classification can produce false positives and 
false negatives [KZC15].  

Replay-based classification also can produce false negatives and false 
positives. If a replay of two concurrent operations produces the same result as 
the original execution, this may be due to the input parameters. A different 
input to the test case may produce different results. Different results in the 
original execution and the replay with switched accesses may also be 
intentional and correct, e.g., when printing the order of accesses. Another 
problem arises when a different ordering of two concurrent operations is not 
possible due to programming constructs, leading to a classification of the data 
race being harmful, which may or may not be correct. 

Finally, the identification of ad-hoc synchronization may also produce false 
positives and false negatives. It may not be possible for such an approach to 
identify all code constructs leading to synchronization. In addition, if ad-hoc 
synchronization is detected, there is no analysis whether such a custom 
synchronization operation is correctly implemented.  

The problems mentioned can lead to high misclassification rates, and Kasikci 
et al. report misclassification rates of 50% for ad-hoc synchronization, and of 
74% for replay-based classification [KZC15]. 

Finally, it is disputed whether benign data races in an application, independent 
of how they are identified, are indeed harmless [Bo11a], [Ad10], [Bo12b]. For C 

and C++, the semantics for an application with data races are undefined, and 

the reason is that due to compiler optimizations, an application with data races 
may lead to unforeseen behavior [Ad10], [Bo12b]. For Java, only weak 

semantics are given for applications with data races [Ad10], [Bo12b]. It can be 
argued that the language specifications do not consider that memory accesses 
will happen concurrently, i.e., without proper synchronization with regard to a 
defined behavior of an application [Ad10], [Bo12b]. An example for unforeseen 
behavior of an application due to instruction reordering has been presented in 
chapter 1.1 (see interleaving 4). 

Often, classification approaches make assumptions regarding memory 
models, which are not always true, i.e., assuming single processor 
environments and sequential consistency (see chapters 1.1 and 2.4) [KZC15]. 
However, in multiprocessor environments, updates to a memory location may 
not always be immediately visible to other threads on other processors. When 
assuming only a single processor, schedulers only execute one thread at a 
time. In multiprocessor environments, multiple threads may be executed 
concurrently on different processors. Together with delayed visibility of 
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updates on different processors, it is not guaranteed that threads on different 
processors see updates to memory locations in the same order than they were 
originally processed [KZC15]. Thus, those classifications are conducted under 
wrong assumptions. 

Finally, Adve and Boehm argue that although it is known that compilers can 
perform optimizations, an instruction reordering may not only appear due to 
such optimizations, but also due to store buffers, which enable performance 
optimizations [AB10]. Such an instruction reordering may have unforeseen 
consequences, if concurrent accesses are not synchronized. The authors state 
that “even with sequential consistency, such simultaneous accesses can remain 
dangerous” [AB10].  

Based on such doubts regarding data races being benign, Boehm has stated 
that “non-determinism is unavoidable, but data races are pure evil” [Bo12b]. 
Automated approaches for classification of data races often include wrong 
assumptions and may lead to false positives and false negatives with a 
misclassification rate of up to 74%, as shown above. In addition, even if a data 
race is classified as being benign, it is unclear, whether this classification may 
only be correct for the observed case, and perhaps the specific input for 
execution, or if such a classification would be valid in all execution scenarios. 
Finally, unforeseen behavior due to instruction reordering, as discussed above, 
may lead to unknown consequences.  

The consequence for this thesis is, that a classification of data races into 
harmful and harmless data races, being unreliable, has not been included as 
part of the solution.  

3.5 Analysis of Data Races 

Improvements in the efficiency of quality assurance related to data races thus 
cannot be made reliably by sorting out some of the findings, raising the 
question how efficiency improvements may be reached in analyzing the high 
amount of data race reports.  

As explained in chapter 1.2, several techniques exist in this regard, such as 
reproducing detected data races and record and replay techniques. However, 
it is still necessary to analyze all data race reports manually to identify and 
resolve problems in the source code, and those techniques also offer no 
support in identifying duplicate data race reports. The only information given 
with regard to the analysis of reports is contained in those reports, and 
includes information such as stack traces, information regarding the class and 
line of concurrent accesses, the variable or memory location, and locks held by 
threads involved, as e.g., provided by approaches presented in [Ba06b], 
[CL10], [Bl18], [HMR14], [Li19]. However, it is up to users of those data race 
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detectors to analyze the information given. Thus, the problem of too much 
effort needed for analyzing data race reports is not solved by such solutions.  

Considering the problem regarding the effort necessary for analyzing data 
race reports and the reasons for this problem (see chapter 1.2), as well as the 
characteristics of data race reports, several requirements can be defined for an 
approach to enable efficiency improvements in the analysis of data race 
reports: 

1) Duplicates: many of the data race reports by data race detection tools are 
duplicates. A data race consists of a pair of accesses to the same shared 
variable. Assuming two data races 𝑑𝑟𝐴 and 𝑑𝑟𝐵, a duplicate may exist in 
that both data races contain exactly the same pair of accesses. However, a 
duplicate may also exist in terms of single accesses, when both data races 
are related to the same shared variable. Assuming that 𝑑𝑟𝐴 contains 
accesses 𝑑𝑟𝐴1  and 𝑑𝑟𝐴2 , and 𝑑𝑟𝐵  contains accesses 𝑑𝑟𝐵1  and 𝑑𝑟𝐵2 , 
duplicate single accesses exist, iff {𝑑𝑟𝐴1, 𝑑𝑟𝐴2}  ∩  {𝑑𝑟𝐵1, 𝑑𝑟𝐵2}  ≠ ∅. 
Thus, duplicate entries may not only exist on data race level, but also on 
access level. A solution to improve the efficiency of data race analysis shall 
consider such duplicate entries on both levels. 

2) Focus on shared variables: any data race is related to one shared variable, 
and multiple different data races may exist related to the same shared 
variable. When multiple data races related to the same shared variable 
exist, eliminating one of the data races from the source code may not 
impact other data races. Data races may still exist, and may even exist in 
the same source code classes and lines that have just been rewritten for 
eliminating a data race regarding the same variable. Thus, to effectively 
eliminate data races related to the same shared variable, all those related 
data races need to be considered. Any approach for the analysis of data 
race reports shall thus enable an overview on all accesses to the same 
shared variable. 

3) Focus on source code classes: any access to a shared variable is related to 
a specific source code class and line. There may be different source code 
classes involved in data races related to the same shared variable, and 
there may be multiple accesses to different shared variables related to 
data races located in the same source code class. For analyzing the source 
code, an approach shall thus be able to not only focus on shared variables, 
but also on source code classes. Such a focus can especially be valuable 
for risk-based approaches, with different risk levels assigned to 
components and source code classes of an application. 

4) Status tracking: since data race detection often results in hundreds or 
more data race reports, it is useful to keep track of the status of data race 
reports and the entries included. Using a status, such as “closed” or “fixed”, 



Related Work 

 57 

it is possible to monitor progress in the analysis of data race detection, and 
also to concentrate on entries not yet analyzed. Any approach shall thus 
allow monitoring the current status of an entry regarding the analysis of 
data race reports. 

5) Information preservation: approaches to improve the efficiency in the 
analysis of data race reports always include a processing of data race 
reports (with a minimum of reading the information provided to identify 
duplicate entries according to requirement 1, see above). However, as 
such approaches have to present the results of this processing, users have 
a different view on the results compared to just analyzing the unprocessed 
data race reports. This view shall nevertheless allow seeing all information 
contained in the original data race reports, so that no possibly important 
information is hidden from and inaccessible to users. Especially when 
identifying duplicates, those duplicates shall not be deleted, as the 
information is then lost. Thus, any approach shall preserve all information 
contained in data race reports and allow users to access this information. 

Only a few publications cover the problem of how to use the information 
provided to efficiently analyze data race reports. 

Pande has published an approach to visualize modified execution traces using 
AspectJ, additional instrumentation of the code, and refactoring [Pa19b]. 
However, the tool only visualizes one execution trace by highlighting source 
code entries, and does not provide further information regarding data race 
analysis. The purpose of the tool is to visualize thread-based events of an 
execution trace. However, when focusing on data race reports, such 
information is usually provided in clear text, and thus, highlighting these places 
in the source code would not need additional instrumentation, but a parser and 
static access to the source code (i.e., without the need to execute the source 
code again). In addition, the scalability of the approach is limited and further 
decreases not only with the size of an application, but also with the number of 
active threads. The author mentions that the usability of the visualization is 
limited if many interleavings happen. Finally, the instrumentation used adds 
additional thread switches to the execution, thus producing incorrect 
interleavings [Pa19b].  

Trümper also presented an approach for visualization of execution traces for 
multithreaded applications [Tr14]. The approach focuses on visualizing sets of 
hierarchical event sequences and can be used for analyzing dependencies 
between threads. Although different views are provided, there is no focus or 
support for the analysis of data races or a possibility to integrate data race 
reports [Tr14].  

Walker et al. focus on static analysis tools and mention the need to “show 
results in a concise, comprehensive way” [Wa20]. The authors present a 
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dashboard providing an overview on the results of static analysis reports 
[Wa20]. The approach presented only covers results of static analyses, and is 
not related to concurrency issues, such as data races. Due to this, there is no 
specific assistance related to the characteristics of data races.  

Koutsopoulos et al. identified the need for an efficiency improvement of “the 
manual investigation and classification process of the data race warnings 
through improved usability of the available information” [Ko15]. The authors 
focus on visualization and a reduction of information. Reduction is achieved by 
merging access locations, which have “the same full path, location (line and 
column), thread id, shared variable id, and action (read/write)” [Ko15]. The 
visualization of access pairs is thus lost, as “the typical representation of race 
pairs no longer exists” [Ko15]. Accesses are presented graphically on a file-
based graph representation. Shared variables are shown in a row on top of the 
screen. All files with accesses to a shared variable are presented below and are 
connected to this shared variable with lines. Using such an approach, not only 
pairs of accesses, but all accesses to a shared variable can be observed. The 
authors acknowledge the complexity of such a view, and provide further 
functionality, including a filter function for code conditions, a zoom function to 
view details of accesses within a file, and an abstracted view of the call graph 
[Ko15]. 

Summarized, the need for efficiency improvements in the analysis of data race 
reports has been identified in research, but only a small amount of approaches 
have been developed. Only one approach focuses on data race reports 

[Ko15].5 This approach tackles the problem of duplicate entries by merging 
access locations, which share characteristics (as described above); however, 
the information on duplicates is lost by such a merge, and cannot be recovered 
by users. The approach focuses on shared variables, and lists all of them at 
once, i.e., in the same view. The authors mention the complexity of this view, 
and considering large applications with thousands of data race reports, it 
remains unclear how this amount of information can be managed within the 
same view. The listing of different files enables an overview on all files, within 
which a shared variable is accessed, but the information, how many different 
accesses exist, is only visible by inspecting all information in those related file 
listings, as there may be multiple accesses within the same file. Additionally, by 
presenting all accesses within a file in a long list, and several connections to 
other files and to multiple shared variables at the same time, readability is 
impacted. It is not clear, which part of the list is related to other file list parts, 
i.e., other source code classes, or to which variable. As the approach relies on 
static analysis, it is not possible to provide lock ids for comparison or an 
execution trace. Finally, although the tool supports analysis, the article does 
not mention possibilities to track the progress of the analysis, i.e., to set a 

 
5 Due to this, the assessment of fulfillment of the requirements defined in this chapter is only 

given textually, and not within a table. 
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status for an entry, and to filter out data races, which have already been fixed 
[Ko15]. There is no quantitative evaluation of the approach. Although “a 
qualitative evaluation suggested a definite speedup in the investigation 
process of data race warnings” [Ko15], there is no additional information given 
on this evaluation besides that it has been applied to real-time systems with 
more than 100,000 lines of code. Thus, it is not possible to assess this 
evaluation and the efficiency improvements achieved by using this tool. 

3.6 Summary 

In this chapter, the focus of the thesis has been narrowed to UML Activities as 
basis for the analysis of representations of the dynamic behavior of an 
application. An overview on related work in this area has been presented. 
Although approaches for analyzing UML Activities have been identified, many 
of those approaches reveal gaps with regard to the identified requirements for 
a solution. The largest gaps in the related work are concerned with analyzing 
sets of connected UML Activities (requirement 1), handling Cycle Traversals 
within a UML Activity (requirement 4), and support for a complete set of UML 
Activity elements (requirement 6).  

This chapter also presented an overview on the literature regarding the 
classification of data races into harmful and harmless data races. Based on the 
discussions in research, it has been shown why such classifications cannot 
provide reliable results. Thus, it has been decided that such a classification, 
although initially planned, will not be part of this thesis. 

Finally, this chapter has provided an overview on related work regarding 
analyzing data race reports. In this area, little research has been conducted, 
and although improvements have been reached by the sole identified existing 
approach, which focuses on efficiency improvements in the analysis of data 
race reports, gaps still exist. The ideas underlying this approach serve as 
valuable input for the solution presented in this thesis.  

Profound knowledge of the current state of the art and existing research gaps 
is the basis for scientific work. This chapter has thus provided the basis for the 
solution presented in the following chapters of this thesis. 

Chapter 4 will present the solution for the analysis of UML Activities, which 
closes the identified research gaps. The result of the analysis, a set of nodes 
representing source code classes, can be used to steer the instrumentation for 
dynamic data race detection. Support for the analysis of data race reports is 
not yet sufficiently provided, and research gaps exist in this area. In chapter 5, 
this thesis presents a solution for the analysis of data race reports, tackling 
those identified research gaps. Chapter 6 is concerned with assessments and 
evaluations of the solution. 
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4 Analysis of UML Activities as Basis for Focusing Quality 
Assurance 

In this chapter, the solution for the analysis of UML Activities is presented. This 
solution is targeted at the first practical problem (as defined in chapter 1.2). 

The solution consists of three parts: in a first step, UML Activities are read in 
and the UML elements are transformed into a limited set of basic elements, 
with preserving the semantics of the elements as necessary for the goal of the 
analysis: identifying nodes that can be executed in parallel to other nodes. 

This transformation on the one hand allows limiting the analysis to a reduced 
set of UML elements. On the other hand, such a transformation enables 
creating transformation approaches for other modeling languages besides 
UML, so that the further steps of this approach can be reused. 

The transformed set of UML Activities is then analyzed using Directed Acyclic 
Graphs, in short DAGs, forming the second step. 

As the analysis shall obtain complete results, the longest path possible is 
required, i.e., paths that may be shortened are not shortened. Such a 
shortening could lead to loosing information, e.g., in the form of missing nodes 
that may run in parallel to other nodes, thus possibly leading to false negatives.  

The third step consists of a post-analysis handling of elements, for which 
further measures are necessary besides those of the transformation and the 
analysis phase. 

Technically, the solution processes files created by Enterprise 

Architect from Sparx Systems Ltd. The transformation tool reads such 

files, processes the transformation, and outputs an XML file. This XML file is 
then read in for the analysis. Output of the analysis is a list of nodes. This list 
can then be used to limit the instrumentation for the dynamic analysis related 
to data races. 

4.1 Research Approach 

The first part of the research for creating a solution for the analysis of UML 
Activities consisted of an analysis of the structure of UML Activities. These 
activities are treated as graphs, but they do not have a formal foundation (see 
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chapter 3.2). Furthermore, the tokens used in UML Activities are only able to be 
transported in one direction.  

For the analysis of UML Activities, the intent is to employ a formally defined 
representation, thus allowing certain properties to be formally proven. As UML 
Activities already are specified as graphs according to the UML [OM17], but 
with semantics specific to the UML, the direct formal representation is a graph. 
Due to the token flow within UML Activities, directed graphs are selected.  
Finally, since UML Activities may contain cycles, and those have to be analyzed, 
the idea is to break up these cycles for the formal representation to be 
analyzed. Thus, directed acyclic graphs are used for the analysis of UML 
Activities. 

Since such a directed acyclic graph only contains nodes and edges, and not a 
multitude of different node types and edge types, as UML Activities, the next 
step was to analyze the elements of UML Activities according to the UML. 
Since all those elements have different and specific semantics, a mapping of 
the semantics represented by the elements of UML Activities to graphs 
containing nodes and edges had to be created. As a direct mapping was not 
possible in all cases, the approach for the analysis consists of several phases: 
the transformation, the analysis, and the post-analysis phase.  

Presenting the results of this research approach resulted in the following 
structure of the chapter. As the solution presented in this thesis is related to 
the field of graph theory, a short introduction into important concepts relevant 
for this solution is given in chapter 4.2.  

This chapter then provides a concise description of the set of UML elements 
provided the UML superstructure (chapter 4.3). As this superstructure consists 
of more than 700 pages, of which more than 200 pages are related to UML 
Activities, only a short description can be provided. Those UML elements are 
split up into basic elements and additional elements, since these elements 
require different strategies for handling them during the analysis (chapter 4.4). 

With the knowledge provided in the former chapters, the transformation part 
of the solution can be presented (chapter 4.5). Chapter 4.6 then presents the 
solution for the analysis of UML Activities for nodes that may run in parallel to 
other nodes. The analysis is accompanied with a post-analysis phase, targeted 
at elements, which cannot be completely handled during the analysis phase 
(chapter 4.7). 

In chapter 4.8, the solution is then discussed and assessed with regard to the 
solutions presented in chapter 3.3. 
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4.2 Graph Theoretic Concepts  

All graphs 𝐺 = (𝑉, 𝐸) in this chapter are simple and directed with node set 𝑉 
and edge set 𝐸 ⊆  𝑉 𝑥 𝑉, except where explicitly noted. For a given graph 𝐺, 
the sets 𝑉 and 𝐸 may be referred to as 𝑉𝐺  and 𝐸𝐺 , for clarity. In edge 𝑒 =
(𝑢, 𝑣)  ∈  𝐸, node 𝑢 is its tail and node 𝑣 is its head. In that case, 𝑒 is an 
incoming edge of 𝑣, and an outgoing edge of 𝑢. 

Since 𝐺  is simple, it contains no self-loops: ∀ 𝑣 ∈  𝑉, (𝑣, 𝑣)  ∉  𝐸, and no 
parallel edges: |{𝑒 ∈ 𝐸 |𝑒 = (𝑢, 𝑣)  ∧   𝑢, 𝑣 ∈ 𝑉}|  ≤ 1.  

Given a vertex (i.e., node) 𝑣 in a simple and directed graph 𝐺 = (𝑉, 𝐸), the 
neighborhood of 𝑣 is the subgraph of 𝐺 built by all incoming and outgoing 
edges of 𝑣 and all nodes connected to these edges except for 𝑣 itself (since 𝐺 
is simple). Any node in the neighborhood of 𝑣 is called adjacent to 𝑣 or neighbor 
of 𝑣. The degree of a vertex 𝑣 is the number of neighbors of 𝑣. The degree of 𝑣 
in 𝐺 can be split up into the indegree and the outdegree. The indegree of 𝑣 is the 
sum of all nodes connected to 𝑣 with an edge, of which 𝑣 is its head. The 
outdegree is the sum of all nodes connected to 𝑣 with an edge, of which 𝑣 is its 
tail. Thus, the indegree of 𝑣  in 𝐺  𝑑𝐺

−(𝑣) ∶=  |{𝑢 ∈  𝑉 |(𝑢, 𝑣) ∈  𝐸}| and the 
outdegree of 𝑣 in 𝑑𝐺

+(𝑣) ∶=  |{𝑢 ∈  𝑉 |(𝑣, 𝑢)  ∈  𝐸}|.   

A walk 𝑤 =  𝑣1𝑣2 … 𝑣𝑖  in a graph 𝐺 is a sequence of nodes such that 𝑣𝑗  ∈  𝑉 

for 𝑗 =  1, . . . , 𝑖  and (𝑣𝑘 , 𝑣𝑘+1)  ∈  𝐸  for 𝑘 =  1, . . . , 𝑖 − 1 with $𝛼(𝑤): = 𝑣1 
and 𝜔(𝑤): = 𝑣𝑖 . A walk with 𝑣1 = 𝑣𝑖  is called a cycle. A directed graph without 
any cycle is called a Directed Acyclic Graph or DAG, for short. 

Given the walks 𝑤1 = 𝑣1𝑣2 … 𝑣𝑖  and 𝑤2 = 𝑢1𝑢2 … 𝑢𝑗, let 𝑐𝑎𝑡(𝑤1, 𝑤2) denote 

a new walk 𝑤′ = 𝑣1𝑣2 … 𝑣𝑖𝑢2 … 𝑢𝑗  whenever 𝜔(𝑤1) = 𝛼(𝑤2) , otherwise 

𝑐𝑎𝑡(𝑤1, 𝑤2)  is undefined. The walk 𝑤′  is called the concatenation of 𝑤1 
and 𝑤2.  

Given the walks 𝑤1 and 𝑤2, 𝑤2 is a direct successor of 𝑤1, iff 𝜔(𝑤1) = 𝛼(𝑤2). 
The walk 𝑤1 is then called a direct predecessor of 𝑤2.  

Given the walks 𝑤1 , 𝑤2, . . . , 𝑤𝑛 with 𝑤𝑖+1 being a direct successor of 𝑤𝑖  ∀ 𝑖 ≤
 𝑛 − 1, then 𝑤𝑗  is called an indirect successor of 𝑤𝑖 , if 𝑖 + 1 <  𝑗 ≤  𝑛. In such a 

case, 𝑤𝑖  is called indirect predecessor of 𝑤𝑗 . 

The following Figure 8 shows a directed graph 𝐻 illustrating these concepts. 
Nodes are depicted as dots and identified with letters, and edges are depicted 
with solid and with dashed arrows and are identified with numbers. 
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Figure 8:  Directed Graph 

As can be seen, this graph is cyclic (e.g., walk 𝑤1 = 𝑎𝑏𝑐𝑎) and is thus not a 
DAG. This graph is also not simple, as it contains parallel edges (edges 6 and 
8), and a loop (edge 9), and is thus not adhering to the definition of graph 𝐺 
above. Eliminating the red edges 8 and 9 results in a simple graph. Eliminating 
the edges 6, 8, and 9 results in a DAG.  

The head of edge 1 is 𝑒, and the tail of edge 1 is 𝑎. The neighborhood of 𝑏 
consists of the nodes 𝑎, 𝑐, 𝑑, 𝑒 and the edges 2, 3, 4, 5. The degree of 𝑏 is thus 
4, which can be split up into the indegree 𝑑𝐻

−(𝑏) = 1 and the outdegree 
𝑑𝐻

+(𝑏) = 3 . The walks 𝑤1  and 𝑤2 = 𝑎𝑒  can be concatenated and 
𝑐𝑎𝑡(𝑤1, 𝑤2) = 𝑎𝑏𝑐𝑎𝑒. 𝑤1is the direct predecessor of 𝑤2, and 𝑤2is the direct 
successor of 𝑤1. Given the walks 𝑤3 = 𝑎𝑏, 𝑤4 = 𝑏𝑐 and 𝑤5 = 𝑐𝑑, 𝑤5  is an 
indirect successor of 𝑤3 , and 𝑤3  is an indirect predecessor of 𝑤5 . As 
𝑐𝑎𝑡(𝑐𝑎𝑡(𝑐𝑎𝑡(𝑤1, 𝑤3), 𝑤4), 𝑤5) is defined, 𝑤5is also an indirect successor of 
𝑤1.  

4.3 UML Elements 

In this chapter, UML Activities and elements within activities are discussed. The 
semantic implications of different elements and combinations of elements are 
analyzed. This chapter provides the knowledge required to understand the 
decisions made for the solution to analyze UML Activities. This chapter does 
not intend to provide a complete overview on UML Activities. Such an overview 
can be found in the UML superstructure [OM17]. 

According to the UML superstructure, “a Behavior is a specification of events 
that may occur dynamically over time” [OM17]. Thus, such a Behavior can be 
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used to describe what happens during the runtime of a system. A UML Activity 
is a “kind of Behavior [...] that is specified as a graph of nodes interconnected 
by edges” [OM17]. The graphical description of a UML Activity is called UML 
Activity Diagram. 

A UML Activity may have input and output parameters, so-called 
ActivityParameterNodes.  An example for such an input parameter is a postal 
address for a UML Activity specifying a delivery. 

As already described in chapter 3.2, UML Activities use a token concept: nodes 
offer tokens to edges. Edges can transport tokens to nodes connected to their 
head. Whether a token is transported or not depends on two requirements: 
first, an edge may have a guard condition. If this guard condition evaluates to 
false, then the token is rejected. Second, the token type must match the type 
of the edge: both object and control tokens exist, and both object edges 
(ObjectFlow) and control edges (ControlFlow) exist.  

This token concept not only defines how an activity is executed, but also how 
the execution can be stopped. The execution of an activity ends as soon as an 
ActivityFinalNode is reached by a token, or when no more tokens can be 
transported by edges and no nodes are currently executing. 

UML Activities may be modeled implicitly and explicitly. In the first case, certain 
nodes or combinations of nodes and edges are not modeled, but implied. In 
the latter case, all nodes and edges are modeled. The interpretation of implicit 
modeling constructs is given in the UML superstructure [OM17]. 

UML Activities may contain the following types of nodes: 

1) ControlNodes: these nodes steer flows between nodes within an activity. 
Seven types of ControlNodes exist [OM17]: 

a) InitialNodes: these nodes are automatically executed as soon as the 
execution of a surrounding activity is started. InitialNodes have an 
indegree of 0 and an outdegree >  0, and place a control token to 
outgoing edges. If an InitialNode has multiple outgoing edges, a token 
is placed on all these outgoing edges, thus starting a parallel 
execution. This implies a single edge from an InitialNode to a ForkNode 
(explained below), which then has multiple outgoing edges. An 
activity can have multiple InitialNodes, which are executed 
simultaneously. This implies a single InitialNode, which is connected 
by a single edge to a ForkNode, which is then connected to these 
former InitialNodes. If an activity has no InitialNode, all nodes in that 
activity, which have an indegree of 0 start executing. This again 
implies a single InitialNode, which is connected by a single edge to a 
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ForkNode, which is connected to those nodes implicitly modeled with 
an indegree of 0. 

b) FlowFinalNodes: a FlowFinalNode has an indegree of 1 (assuming 
explicit modeling) and an outdegree of 0. Any token reaching such a 
node is destroyed. This assumes explicit modeling. Implicitly 
modeled, an FlowFinalNode may have an indegree >  1, which is 
interpreted as having a MergeNode (see below) connected to those 
incoming edges, which itself is connected by a single edge to that 
FlowFinalNode. 

c) ActivityFinalNodes: an ActivityFinalNode has an indegree of 1 
(assuming explicit modeling) and an outdegree of 0. If a token 
reaches an ActivityFinalNode, all tokens within the surrounding activity 
are destroyed, thus ending the execution of this activity. Furthermore, 
this also impacts other activities synchronously invoked from within 
the activity. If an ActivityFinalNode is modeled with an indegree >  1, 
again a MergeNode  is implied, similar to FlowFinalNodes. 

d) DecisionNodes: a DecisionNode has one incoming ControlFlow and may 
have an additional ObjectFlow representing the input to that decision. 
Such a node has at least two outgoing ControlFlows, which represent 
the flows followed based upon the decision made. Each of these 
outgoing ControlFlows may have a guard condition. If the condition is 
satisfied, the edge may accept the token offered. If conditions of 
multiple outgoing edges are satisfied, the token is offered to only one 
ControlFlow, and the choice of this ControlFlow is made non-
deterministic according to the UML [OM17]. Thus, a DecisionNode has 
an indegree of 1 or 2, and an outdegree >  1. 

e) MergeNodes: a MergeNode unites several incoming flows into one flow 
without synchronization. It has multiple incoming edges and one 
outgoing edge. The edge may either be all ObjectFlows or all 
ControlFlows. Thus, a MergeNode has an indegree >  1  and an 
outdegree of 1.   

f) ForkNodes: a ForkNode is used to start parallel flows and has one 
incoming edge. The token received through the incoming edge is 
copied and one of these tokens is offered to each of the outgoing 
edges in parallel. Since an edge may have a guard condition attached, 
it depends on whether such a condition is attached, and whether this 
guard condition is evaluated to true, if the token is accepted by the 
edge. Assuming that at least two outgoing edges are present, a 
ForkNode has an indegree of 1 and an outdegree of >  1. Having 
more than one outgoing edge is not required by the UML for 
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ForkNodes, however, as the intent of using a ForkNode is to start 
parallel flows, it can be argued that such a construction is a mistake. 

g) JoinNodes: a JoinNode is used to synchronize parallel flows and 
continue with one flow. A JoinNode has a ValueSpecification, which 
defines the conditions for the node to offer a token to the outgoing 
edge. If no explicit specification is provided, then tokens need to be 
offered on all incoming edges, to be consumed by the node. Using a 
ValueSpecification, it may also be sufficient to offer tokens on some of 
the incoming edges. The evaluation of this ValueSpecification (to true 
of false) is started whenever a new token is offered on an incoming 
edge, and cannot be interrupted by newly arriving tokens. It is also 
not possible to start multiple evaluations in parallel. However, the 
format of such a ValueSpecification is not exactly defined in the UML 
[OM17], and a ValueSpecification may also be given using textual 
expressions. Thus, it cannot be guaranteed that the ValueSpecification 
can be processed by an algorithm, and thus it is not considered during 
the analysis. Assuming explicit modeling, a JoinNode has an indegree 
>  1 and an outdegree of 1. 

Both JoinNodes and ForkNodes can implicitly be modeled with an 
indegree and an outdegree >  1. In these cases, a combination of a 
JoinNode (with an indegree >  1) connected by a single edge to a 
ForkNode (with an outdegree >  1) is implied. 

2) ObjectNodes: such nodes hold object tokens, representing objects, i.e., 
some kind of data. An ObjectNode may hold several object tokens, 
independent of the value represented by the individual token. All 
ObjectNodes except ActionPins (see below) have an indegree and an 
outdegree of 1, assuming explicit modeling. Four different types of 
ObjectNodes are defined in the UML [OM17]: 

a) ActivityParameterNodes: These nodes are attached to an activity, and 
represent input and output parameters for objects, thus forming 
sources and sinks of objects used in an activity. 

b) CentralBufferNodes: such nodes act as buffers between incoming and 
outgoing ObjectFlows. All object tokens offered to such nodes are 
immediately accepted and held until they can be passed to an 
outgoing ObjectFlow. 

c) DataStoreNodes: these nodes are similar to CentralBufferNodes, but in 
addition act as a store. All object tokens passed to outgoing 
ObjectFlows are copied, and this copy is stored in the DataStoreNode 
as long as the surrounding activity is executing. 
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d) ActionPins: an ActionPin holds object tokens and represents an input 
to or an output from an action. As such, an ActionPin is associated 
with a node, and therefore either has an indegree of 0 and an 
outdegree of 1, or vice versa, assuming explicit modeling. 

3) ExecutableNodes: these are nodes that represent an execution as a step 
within the overall desired behavior specified by the surrounding activity 
[OM17]. ControlNodes steer the flow of execution, i.e., they are used to 
influence the sequences of ExecutableNodes computed (i.e., the control 
flow). ObjectFlows are used to manage the data flow between these 
ExecutableNodes [OM17].  

All ExecutableNodes are ActionNodes. All incoming and outgoing edges are 
ControlFlows. For processing data, ActionPins are used (as described 
above). An ExecutableNode has an implicit JoinNode or ForkNode attached 
in case of multiple incoming or outgoing edges, thus with explicit 
modeling, such a node has an indegree and an outdegree of 1.  

When an ExecutableNode has finished its execution, a control token is 
offered to the outgoing edge.  

An ExecutableNode may raise an exception (RaiseExceptionNode, see 
below), and if this exception is not handled during the execution of this 
node, this exception is propagated to the outside of the ExecutableNode.  
Any ExecutableNode may be associated with one or more 
ExceptionHandlers, i.e., ExecutableNodes, which match certain types of 
exceptions. If multiple ExceptionHandlers match an exception, it is not 
defined in the UML, which ExceptionHandler will be executed [OM17].  

The UML defines 42 different ActionNodes, which can be categorized into 
ten categories [OM17]: 

1) InvocationActions: actions related to the invocation of behaviors or 
operations in behaviors, sending signals or objects. 

2) ObjectActions: actions related to operations on objects. 

3) LinkActions: actions related to operations on links, i.e., associations 
and their instances.  

4) LinkObjectActions: actions related to operations on link objects, i.e., 
instances of AssociationClasses (associations with class properties).  

5) StructuralFeatureActions: abstract class for all actions concerning 
structural features (e.g., attributes). 
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6) VariableActions: actions related to operations on variables. 

7) AcceptEventActions: actions waiting for certain events to be triggered 
before executing. 

8) StructuredActions: actions containing nodes and edges themselves to 
realize more complex behaviors (in comparison to single actions).  

Some of the action types are not clustered into categories by the UML 
itself, and have been put into categories as shown below for the purpose 
of further processing:  

9) None: actions, which are not specified by the UML (functionality not 
defined by the UML), so-called OpaqueActions. 

10) Other actions: ReduceActions that reduce a collection of values to a 
single value, and RaiseExceptionActions, which throw an exception. 

The ActionNode category StructuredActions bears a special complexity and 
is thus further examined in this chapter. Details for all other ActionNode 
types can be found in the UML superstructure [OM17]. 

StructuredActions can contain nodes and edges themselves, and may thus 
serve as containers for other nodes. The following StructuredActions exist: 

StructuredActivityNodes: this type acts as container in the form of a sub-
activity, without further semantics. It is also called simple. 

ConditionalNodes: such a node type consists of at least one clause, which 
represents a branch of the conditional executions. Each clause contains 
body and test sections, which contain disjoint subsets of the 
ExecutableNodes contained in the ConditionalNode. When a 
ConditionalNode is executed, all test sections are executed, and if the 
evaluate to true, the respective body section is executed. Test sections 
(and related body sections) may also be executed in parallel to each other. 

LoopNodes: these node types represent iterations in the computation. All 
ExecutableNodes within a LoopNode are either part of the setup, the test, or 
the body. The setup contains the initialization of the LoopNode, the test 
decides whether the body is executed, and the body contains 
ExecutableNodes to be executed during the iterations. Different types of 
loops can be created using LoopNodes, e.g., the body part may be 
executed before the test part, or after the test part. 
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SequenceNodes: a SequenceNode contains nodes, which are executed in 
sequence, i.e., one after the other. It defines a total order of 
ExecutableNodes within itself. 

ExpansionRegions: such types process collections of values or objects and 
contain ExecutableNodes and edges. For each value or object in the 
collection, the ExpansionRegion is executed once. Collections are defined 
by the execution engine executing the activity, and could be sets, bags or 
other collection types. If results are produced, these can be stored in 
output collections. There may be different numbers of input and output 
collections. The flow across boundaries of an ExpansionRegion is specified 
by ExpansionNodes (which are ObjectNodes). The nodes and edges 
contained in an ExpansionRegion are executed once per element of the 
input collections. The mode, i.e., how the execution is conducted, is 
defined by a parameter. Tokens offered to InputPins of an 
ExpansionRegion and tokens offered by edges crossing the boundaries of 
an ExpansionRegion (in this case from outside to inside the region), are 
copied for each execution of an ExpansionRegion, so that an execution 
does not influence other executions of that same region. For edges 
crossing a boundary of an ExpansionRegion from inside to outside the 
region, the semantics are not defined [OM17]. If an ExpansionRegion 
contains an ActivityFinalNode, then all executions of this ExpansionRegion 
are stopped, and the results are offered at the output ExpansionNodes, i.e., 
the activity containing such and ExpansionRegion continues to execute. 
The mode of execution may be parallel, in which case all executions are 
processed concurrently, iterative, in which case one execution has to finish 
before the next execution can start, or stream. In stream mode, there is 
only one execution, but multiple tokens are offered on the outgoing edges 
[OM17].  

Finally, activities may contain ActivityGroups, in the form of ActivityPartitions 
and InterruptibleActivityRegions. StructuredActivityNodes belong to both 
ActivityGroups and Actions [OM17], and have thus been included in the action 
types above. Nodes and edges may belong to multiple of such ActivityGroups, 
and an ActivityGroup may itself contain multiple nodes and edges.  

ActivityPartitions “do not affect the token flow of the model” [OM17] and are 
used to allocate characteristics or resources among the nodes of an activity.  

InterruptibleActivityRegions form a group of nodes, which may be interrupted 
without interrupting the whole surrounding activity. Such regions contain 
InterruptingEdges, which lead from within to outside of the region. Not all such 
edges must be InterruptingEdges. When a token flows through such an 
InterruptingEdge, all nodes within the region stop executing and all tokens 
within the region are deleted, except tokens traversing an edge leading from 
within to outside of the region. This means that although an execution may be 
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interrupted, it depends on the timing of the interruption whether another 
token is transported to nodes outside of the region as a result of the 
interrupted execution [OM17]. An AcceptEventAction inside such a region with 
an indegree of 0 is only reacting to events if a token exists within this region 
[OM17]. 

4.4 Handling of UML Elements in the Analysis 

UML Activities can be modeled using implicit and explicit notation. As 
Schattkowsky and Förster show, implicit modeling, which consists, e.g., of the 
combination of certain nodes into one node or omitting nodes (which are then 
implied during the interpretation, as shown above), can lead to ambiguities 
and wrong interpretations of UML Activities [SF07]. It is thus assumed for the 
analysis that explicit modeling has been used. Implicit notation constructs, if 
found, are transformed into explicit modeling constructs during the 
transformation from the source file.  

A UML Activity 𝐷 is a graph and is created to capture the essential steps in 
computation (assuming a UML Activity is used in the context of representing 
dynamic behavior of software). A UML Activity may contain several types of 
nodes and edges. The solution presented in this thesis includes a preprocessing 
for UML Activities to reduce the types of nodes to consider in the analysis, i.e., 
certain types of nodes are transformed to constructs of other types of nodes 
(see chapter 4.5). For the analysis, the elements in UML Activities, discussed 
above, are split up into basic elements and additional elements. Basic elements 
are directly considered in the analysis, i.e., they are not changed during the 
preprocessing.  

Additional elements can either be transformed to a combination of basic 
elements, which form an equivalent in terms of the goal of the solution, or need 
to be considered after the analysis, e.g., to filter out false positives.  

In this thesis, a concrete occurrence of a node in a UML Activity during 
traversal, i.e., execution, is called an instance of a node. If a UML Activity is 
executed, and a certain node is reached and traversed, this is referred to as an 
instance. Since nodes can be traversed multiple times, given that cycles are 
possible in 𝐷, each traversed node is considered as a separate instance of this 
node in 𝐷. There may be several instances of the same node. An edge 𝑒 of a 
UML Activity 𝐷 is also referred to as 𝑒𝐷  whenever it is suitable for clarity 
reasons. 
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4.4.1 Basic Elements 

As mentioned, only basic elements need to be considered in the analysis, as for 
all other elements of UML Activities, a dedicated handling is used. These basic 
elements are as follows: 

1) InitialNodes.  

2) ActionNodes. There exist various types of ActionNodes, which have to be 
handled differently. Thus, ActionNodes form an exception in that they are 
also included in chapter 4.4.2. 

3) DecisionNodes. For simplicity, it is assumed that a decision can directly 
lead to one (but only one) of multiple cases (represented by the outdegree 
of this DecisionNode in 𝐷) without nesting multiple binary if-then-decisions 
into each other; it is also assumed that there are at least two different 
cases.  

4) MergeNodes. MergeNodes can appear independent of case distinctions, 
i.e., there is no rule in the UML, which restricts their usage to the context 
of case dependent decisions (by former DecisionNodes).  

5) Final nodes. For the analysis, only FlowFinalNodes are considered, as 
ActivityFinalNodes are transformed (see chapter 4.4.2). 

A UML Activity containing these five types of nodes represents all possible 
executions of a single computation thread, which computes a single result on a 
single processor by a single sequence of computation events (computations 
and decisions). A finishing execution results in a finite sequence, a non-
finishing execution results in an infinite sequence. To represent a single 
execution instance by a DAG, all cycles are rolled out by numbering multiple 
instances of the same node in the sequence consecutively. Any such single 
execution instance starts with an InitialNode, followed by a sequence of action 
and control nodes that ends with a FinalNode if and only if the execution 
instance finishes its computation. 

To represent parallel computations in a UML Activity, two more types of nodes 
are required: 

6) ForkNodes. A ForkNode represents a single incoming computation thread 
and 𝑑𝐷

+ outgoing computation threads that run in parallel. It is always 
assumed that a ForkNode is followed by at least two different threads. 

7) JoinNodes. A JoinNode represents one outgoing and 𝑑𝐷
−  incoming 

computation threads. Semantically, it represents a situation where 
threads are synchronized. 
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Parallel computations may also emerge directly at the start of the computation 
of a UML Activity, as explained above. In such a case, computation starts in 
parallel at each of the InitialNodes in that UML Activity. During the 
preprocessing, such nodes are substituted with a single initial node, which is 
directly connected to a ForkNode, after which the parallel computation starts.  

An example of a fragment of a UML Activity Diagram can be seen in Figure 9. 
This diagram consists of five different ActionNodes and six ControlNodes, i.e., 
one InitialNode and one FinalNode, one ForkNode and one JoinNode, one 
DecisionNode and one MergeNode. 

 

Figure 9:  Exemplary UML Activity Diagram 1 

The UML Activity Diagram shows parallel computations, which are started at 
the node “Fork1” and which end at node “Join1”. Due to the DecisionNode 
“Decision1”, two different computations and thus, two different execution 
instances are possible, one leading through node “Action3”, the other leading 
through “Action4”. Both instances lead to “Merge1”, after which there is no 
further difference in the computations. 
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4.4.2 Additional Elements 

Besides the nodes mentioned in chapter 4.4.1, further elements exist, for which 
a special handling was necessary during the transformation and/or after the 
analysis. 

The biggest group, which had to be handled separately, was the group of 
action types (i.e., the different ActionNodes). The following Table 2 shows the 
different action types and their according categories. The categories of action 
types are independent of those groups. Note that during the transformation, it 
is not necessary for the purpose of the solution presented in this thesis to 
retain the exact structure of an activity, but to obtain all possible executions, 
with the statements made in chapter 4 in mind. 

The action types are divided into four groups and different strategies are 
applied for handling those action type groups: 

• Group Reduction: all action types, for which no special handling was 
necessary, are transformed into an ActionNode (see chapter 4.4.1); this 
transformation is called a reduction. All node types belonging to this group 
are marked with a “Y (a)” in Table 2, in the transformation column.  

• Group Specific: All action types, which are marked with a “Y” in the 
transformation column and no marking in the post-analysis column of 
Table 2, are treated with a specific handling during the transformation. 
This may result in those elements being transformed to other elements, 
which belong to other groups. An example is the BroadcastSignalAction, 
which is transformed to a SendSignalAction, which itself is handled in the 
post-analysis phase. 

• Group Post-Analysis: the action types marked with a “-” in the 
transformation column of the table are treated according to the semantics 
of ActionNodes. This means they are treated as ActionNodes, but their 
special type and semantics are preserved. They are handled after the 
analysis, to reflect their specialized meanings and semantics (marked with 
a “Y” in the post-analysis column in Table 2).  

• Group Structured: special cases are the StructuredActivityNode and the 
ExpansionRegion, which needed a special handling both during the 
transformation and after the analysis (marked with a “Y” in the 
transformation and in the post-analysis column). 

The specific strategies and rationales are explained in chapter 4.5 for the 
transformation and in chapter 4.7 for post-analysis handling.  
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Category   Name Trans-
formation 

Post-
Analysis 

(none) OpaqueAction Y(a)  - 

InvocationActions 

StartObjectBehaviorAction Y(a)  - 

CallBehaviorAction  - Y 

CallOperationAction Y(a)  - 

SendObjectAction Y(a)  - 

SendSignalAction  - Y 

BroadcastSignalAction Y - 

ObjectActions 

CreateObjectAction Y(a)  - 

DestroyObjectAction Y(a)  - 

TestIdentityAction Y(a)  - 

ReadSelfAction Y(a)  - 

ValueSpecificationAction Y(a)  - 

ReadExtentAction Y(a)  - 

ReclassifyObjectAction Y(a)  - 

ReadIsClassifiedObjectAction Y(a)  - 

StartClassifierBehaviorAction Y(a)  - 

LinkActions 

ReadLinkAction Y(a)  - 

CreateLinkAction Y(a)  - 

DestroyLinkAction Y(a)  - 

ClearAssociationAction Y(a)  - 

LinkObjectActions 

ReadLinkObjectEndAction Y(a)  - 

ReadLinkObjectEndQualifierAction Y(a)  - 

CreateLinkObjectAction Y(a)  - 

StructuralFeatureActions 

ReadStructuralFeatureAction Y(a)  - 

AddStructuralFeatureValueAction Y(a)  - 

RemoveStructuralFeatureValueAction Y(a)  - 

ClearStructuralFeatureAction Y(a)  - 

VariableActions 

ReadVariableAction Y(a)  - 

AddVariableValueAction Y(a)  - 

RemoveVariableValueAction Y(a)  - 

ClearVariableAction Y(a)  - 

AcceptEventActions 

AcceptEventAction  - Y 

AcceptCallAction Y(a)  - 

ReplyAction Y(a)  - 

UnmarshallAction Y(a)  - 
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Category   Name Trans-
formation 

Post-
Analysis 

StructuredActions 

StructuredActivityNode Y Y 

ConditionalNode Y  - 

LoopNode Y  - 

SequenceNode Y  - 

ExpansionRegion Y Y 

Other actions  
ReduceAction Y(a)  - 

RaiseExceptionAction Y(a)  - 

Table 2:  Handling of Action Types 

Besides the action types mentioned above, further elements exist, which need 
to be considered individually. The following Table 3 contains all other 
elements, which need to be considered. Note that elements in the same 
groups in this table are not necessarily in the same category according to the 
UML. In some cases, they are put together because certain relations between 
them are considered, e.g., between ObjectNodes and ObjectFlows. 

The element “ActionNode” in the group ExecutableNodes is in parentheses, 
because all ActionNodes are handled in Table 2.  

Group   Name Trans-
formation 

Post-
Analysis 

FinalNodes 
ActivityFinalNodes Y  - 

ObjectElements 
ActivityParameterNodes Y  - 

ActionPins Y  - 

CentralBufferNodes Y  - 

DataStoreNodes Y  - 

ObjectFlows Y  - 

ExecutableNodes 
“ActionNodes” see Table 2 see Table 2 

ExceptionHandler Y  - 

InputPin Y  - 

OutputPin Y  - 

ActivityGroups 
ActivityPartitions Y  - 

InterruptibleActivityRegions Y Y 

InterruptingEdges Y Y 

Table 3:  Handling of Further Elements 

All elements marked with a “Y” in the transformation column in this Table are 
handled during the transformation. Details on the individual handling and 
rationales for each handling can be found in chapter 4.5.  
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All elements marked with a “Y” in the post-analysis column in this Table are 
handled after the analysis. Details on the individual post-analysis handling can 
be found in chapter 4.7. 

As a short summary in this section, elements marked with a “Y” in the 
transformation column, but no “Y” in the post-analysis column are either 
transformed to other elements or basic elements, or deleted (other 
transformations may be necessary for deletion). All other elements are 
handled according to the semantics of ActionNodes, but their special semantics 
are retained for post-analysis consideration.  

The purpose of the analysis is identifying nodes that may run in parallel to 
other nodes, but with the goal to steer instrumentation for detecting data 
races. Due to this and since parallelism itself is not a problem, the computation 
of pairs of nodes that can possibly run in parallel is limited to nodes that 
actually may be related to source code parts accessing data.  

By definition InitialNodes, FinalNodes, MergeNodes, ForkNodes, and JoinNodes 
are not related to data accesses. Thus, the focus of the analysis can be set to 
DecisionNodes and ActionNodes. In the following, these two types of nodes are 
called data accessing nodes, short DANs. Note that the UML actually defines 
many other node types, which are related to possible data accesses, but that 
the limitation to these two node types is possible due to the preprocessing, 
which transforms those other node types. 

The goal of the analysis of UML Activities can thus be reformulated to 
identifying all DANs that may be executed in parallel to other DANs or to 
themselves. For this, an intermediary representation of a superset containing all 
possible execution instances as DAGs, based on UML Activities, is used. 

4.5 Transformation of UML Activities 

The transformation of UML Activities serves to limit UML elements to be 
considered for the analysis to basic elements. The transformation of UML 
elements, together with a formal reasoning for the decisions regarding the 
transformation are extensively documented by Zimmer in [Zi16], a master 
thesis conducted in the context of this thesis. In this chapter 4.5, only a short 
summary is given. 

 This transformation is conducted using eight steps: 

1) Reducing ActivityFinalNodes 

2) Reducing ExpansionRegions 

3) Reducing non-structured actions 
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4) Reducing ObjectNodes and ObjectFlows 

5) Reducing ConditionalNodes, LoopNodes and SequenceNodes 

6) Reducing ExceptionHandlers 

7) Remodeling regarding InitialNodes and FlowFinalNodes (implicit to explicit) 

8) Remodeling regarding ForkNodes and JoinNodes (implicit to explicit) 

First, ActivityFinalNodes are reduced to FlowFinalNodes, ExpansionRegions to 
simple StructuredActivityNodes and most non-structured actions to generic 
actions. ActionNodes related to signals and CallBehaviorActions require special 
considerations, since they might have an impact on the execution order. In the 
next step, ObjectNodes and ObjectFlows are reduced. All pairs of ObjectNodes 
ordered by ObjectFlows are then expressed via ControlFlows between 
ExecutableNodes. 

The transformation of SequenceNodes, LoopNodes and ConditionalNodes 
follows the idea of expressing the implied ControlFlow ordering of these nodes 
explicitly by means of new DecisionNodes and MergeNodes. Next, 
ExceptionHandlers are reduced.  

Finally, additional actions are performed to make implicit constructs in UML 
Activities explicit. This involves two steps: first, the InitialNodes and 
FlowFinalNodes of each container are combined, and implicitly modeled 
constructs are explicitly modeled. Second, implicit ForkNodes and JoinNodes 
are explicitly modeled by the introduction of new ForkNodes and JoinNodes. 

As the transformation of elements may require a former transformation of 
other elements, the sequence of the steps of the transformation is critical to 
the success of the transformation. Elements related to signals and 
CallBehaviorActions may impact the order of the execution of ExecutableNodes 
in UML Activities. The transformation of ObjectNodes and ObjectFlows may 
have an impact on all other transformations following this step. The 
transformation of ExceptionHandlers may require the introduction of new 
CallBehaviorActions.  

The elements requiring a dedicated handling during the transformation, 
presented in chapter 4.4.2, are analyzed in the following. It is shown how these 
elements are handled and what assumptions, if any, have been made. 

4.5.1 Group Reduction 

All elements in the “Group Reduction” are transformed to “plain ActionNodes” 
(reduced), i.e., the information that data may be read or written is retained.  
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ObjectActions, LinkActions, LinkObjectActions, StructuralFeatureActions, 
VariableActions, and ReduceActions deal with data manipulation and are thus 
contained in this group. 

During the execution of RaiseExceptionActions, an exception is thrown. If the 
current container has an ExceptionHandler, it is executed. Otherwise the 
exception propagates to the outside. If no ExceptionHandler matches, the 
exception terminates the current activity [OM17]. As will be explained in 
chapter 4.5.7 concerning ExceptionHandlers, it is not relevant, where an 
exception is exactly thrown, but where and how this exception is handled. Thus, 
RaiseExceptionActions can be reduced. However, the exception raised still 
needs to be taken into account, i.e., the respective ExceptionHandlers are 
considered during transformation and re-arrangement of the UML Activity. 

OpaqueActions are actions whose impact is described in a textual modeling 
language. Since the functionality of such actions is not defined by the UML and 
thus cannot be evaluated, they are reduced.  

As the focus of the solution is set to UML Activities, the analysis does not 
support elements, which refer to other UML elements outside of activities, 
such as UML Class Diagrams. Because of this, the following elements of 
activities are also reduced: StartObjectBehaviorActions, CallOperationActions, 
SendObjectActions, AcceptCallActions, ReplyActions, and UnmarshallActions.  

For SendObjectActions, the UML mentions that objects sent may also be 
signals. In such a case, it is assumed that the respective element is modeled 
using a SendSignalAction. 

4.5.2 Group Structured 

StructuredActivityNodes are handled both during the transformation and post-
analysis. These elements are containers for nodes and edges. Edges are 
allowed, which cross the borders of these containers, and which directly 
connect an element outside of the container with an element inside the 
container (CrossingEdges). 

CrossingEdges require a special handling after the analysis due to the special 
semantics for such edges and the target nodes (see [OM17]).  

Thus, StructuredActivityNodes are left intact during the transformation. In the 
output of the transformation, there is an element “StructuredActivityNode”, 
which itself contains other elements. 

Both the StructuredActivityNodes and the contained elements are subject to the 
analysis: there can be (1) parallel executions of elements outside a 
StructuredActivityNode and the structured activity itself (and thus, the elements 
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inside, with consideration of CrossingEdges), and (2) parallel executions of 
elements inside a StructuredActivityNode.  

ExpansionRegions also are containers for other elements, and also may contain 
CrossingEdges. With ExpansionRegions, collections of values or objects can be 
processed in three different processing modes: iterative, streaming and 
parallel (see chapter 4.3). The collections of elements are realized by 
ExpansionNodes. ExpansionRegions can have InputPins, whose tokens are 
copied for each execution of an ExpansionRegion, and OutputPins. 

The UML states that the “semantics is undefined for offering tokens to such 
OutputPins” [OM17]and for “ActivityEdges from within the expansion 
executions” [OM17] to outside of the ExpansionRegion. 

ExpansionRegions in iterative mode are transformed to StructuredActivityNodes, 
and these are handled as described above. ExpansionNodes are transformed 
into pins. 

In the iterative mode, values are processed one by one, i.e., each value is 
processed in an execution of the ExpansionRegion, and such executions can 
never run in parallel in iterative mode. Thus, no data races between executions 
of an ExpansionRegion can exist. 

For the streaming and the parallel mode, executions may be parallel to each 
other [OM17]. If a collection of elements to process contains references to the 
same object, this can lead to a data race. However, whether a data race is 
actually possible, depends on the modeling, and on whether a modeler has 
taken measures, so that duplicate references to the same object cannot exist.  

ExpansionRegions in parallel and in streaming mode are also transformed to 
StructuredActivityNodes, and the mode can be attached to this 
StructuredActivityNode for further analysis. That way, possible false positives, 
introduced by ignoring whether duplicate references may exist in a collection, 
could be resolved after the analysis, if modelers use assertions regarding 
duplicate object references in a collection. However, such assertions are not 
standardized. 

4.5.3 Group Specific 

For each of the elements in the “Group Specific”, an individual handling during 
the transformation is necessary. 

A BroadcastSignalAction sends a signal similar to SendSignalActions (which are 
handled post-analysis and left unchanged during the transformation), but to 
multiple targets. The UML states, that the “manner of identifying the exact set 
of objects that are broadcast targets is not defined in this specification, 
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however, and may be limited to some subset of all the objects that exist.” 
[OM17] For being able to at least partially support such types of actions, it is 
assumed that there is exactly one target. Since then, the behavior is exactly the 
same as for SendSignalActions, BroadcastSignalActions are transformed to 
SendSignalActions. Checking whether there is an element receiving this signal 
is done in the post-analysis phase. 

ConditionalNodes, LoopNodes and SequenceNodes are all containers for 
elements, and order the execution of contained nodes implicitly with regards 
to the ControlFlow. In general, such loops, branches and sequences can be 
expressed by means of DecisionNodes, MergeNodes and ControlFlows.  

Because of this, such nodes are transformed and StructuredActivityNodes are 
used to retain the distinct parts contained in those nodes, e.g., setup and test 
parts. These parts are ordered using DecisionNodes, MergeNodes and 
ControlFlows.  

4.5.4 Group Post-Analysis 

Elements in the “Group Post-Analysis” are CallBehaviorActions, 
AcceptEventActions and SendSignalActions.  

A CallBehaviorAction is used to invoke other Behaviors, in the context of this 
thesis UML Activities (the UML also describes other types of Behaviors). Such 
invocations may be synchronous or asynchronous. 

A SendSignalAction itself only sends a signal and then execution is continued 
without waiting for the reception of this signal. AcceptEventActions, in contrast, 
wait for a signal before execution can continue. This means that for each 
AcceptEventAction, a respective signal had to be sent before the 
AcceptEventAction can execute. Whether this is the case depends on the 
concrete execution. Since possible executions are analyzed after the 
transformation, these nodes are preserved during the transformation and then 
handled in the post-analysis phase. During the analysis, these nodes are 
treated as if they were ActionNodes. Information on callers and callees for 
SendSignalActions and AcceptEventActions is attached to the respective nodes. 

4.5.5 ActivityFinalNodes 

ActivityFinalNodes end all flows in a UML Activity. In case of a synchronous call 
of other UML Activities within such a UML Activity, these other activities are also 
aborted. Since only the worst case is relevant, i.e., the longest execution 
possible, all flows, which are currently executing are further executed until 
these flows also end at a FinalNode. This is effectively the same as interpreting 
ActivityFinalNodes as FlowFinalNodes. Because of this, all ActivityFinalNodes are 
transformed into FlowFinalNodes. 
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4.5.6 ObjectElements 

Two different ObjectElements can be distinguished: ObjectNodes and 
ObjectFlows.  

Different types exist for ObjectNodes: ActivityParameterNodes, ActionPins, 
CentralBufferNodes, and DataStoreNodes.  

ObjectNodes represent objects, which are produced, manipulated or read in 
actions. ObjectNodes have ObjectFlows as incoming and outgoing edges. 
Instead of using ObjectNodes, the flow of objects can also be represented by 
using pins attached to ActionNodes.  

ActivityParameterNodes are used for representing input and output parameters 
of UML Activities, and are used for holding objects. Both CentralBufferNodes 
and DataStoreNodes represent buffers between ObjectNodes, with slight 
differences (chapter 4.3). 

ObjectFlows, although transporting objects, define an ordering of actions due 
to the necessity of the objects being transported to nodes before these nodes 
can and will be executed. 

ObjectNodes are replaced during the transformation, and ObjectFlows are 
replaced by ControlFlows and re-connected (see [Zi16]).  

ActivityParameterNodes, as they influence how and when activities are started 
and ended (objects must have reached the respective ActivityParameterNodes), 
are replaced by InitialNodes and FinalNodes. 

DataStoreNodes and CentralBufferNodes are also replaced analogous to 
ObjectNodes. During these transformations, it is necessary to consider and 
reflect the special semantics of ObjectFlows and ObjectNodes, which differs 
from that of ControlNodes and ControlFlows. See chapter 4.3 and [OM17] for 
the semantics and [Zi16] for details on the transformations. 

ActionPins are reduced and transformed depending on whether an ActionPin is 
related to an ActionNode or to a container. In the former case they are 
transformed to a combination of MergeNodes and JoinNodes, or to a 
combination of DecisionNodes and ForkNodes (adhering to the semantics of 
ObjectNodes and ActionNodes). In the latter case, ActionPins are additionally 
handled similar to ActivityParameterNodes for the edges leading to or coming 
from nodes inside such a container. See [Zi16] for additional information. 
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4.5.7 ExecutableNodes 

ExecutableNodes are abstract and the UML states, that all concrete kinds of 
them are actions. All ExecutableNodes can be associated with an 
ExceptionHandler. ExecutableNodes can have input pins and output pins 
attached to them, associated to ObjectFlows, as explained above. 

ExceptionHandlers in turn also contain ExecutableNodes. ExceptionHandlers are 
always associated with a certain type of exception, which can occur during the 
execution of an ExecutableNode. 

If during an execution, an exception occurs, an appropriate handler is searched 
for along the hierarchies, i.e., from inside the current container, where the 
exception was thrown, to the enclosing containers. If a handler was found, the 
nodes contained in this ExceptionHandler are executed, i.e., control flow is 
transferred from the node throwing the exception to the appropriate handler. 
Afterwards, the control flow is returned, and the execution continues from the 
point after the node throwing this exception.  

An exception may be thrown from a region containing several nodes, and in 
that case, the control flow returns to the point reached when the region has 
finished execution.  

For ExceptionHandlers, considering the overall goal of the analysis, the longest 
execution path possible needs to be considered, as otherwise some possible 
parallel executions of nodes could be missed.  

Thus, ExceptionHandlers are replaced with DecisionNodes, and the nodes inside 
the handlers are combined with the DecisionNode using a ControlFlow, i.e., an 
exception is thrown, or not. This DecisionNode is placed at the latest point 
possible, i.e., if an exception is thrown, it is always assumed that all nodes, 
which can be executed before the exception occurs, are executed.  

4.5.8 ActivityGroups 

An ActivityGroup is a collection of ActivityEdges, ActivityNodes and other, 
possibly nested, ActivityGroups. ActivityGroups are abstract, and the UML 
describes two concrete types: ActivityPartitions and InterruptibleActivityRegions 
[OM17].  

As ActivityPartitions do not have any impact on the execution semantics and 
are meant for structuring purpose only, they are not relevant for the analysis 
and are deleted. 
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InterruptibleActivityRegions may contain InterruptingEdges, which may either be 
ControlFlows or ObjectFlows. As soon as an InterruptingEdge is traversed, the 
execution of all contained nodes in the region terminates. 

An additional element, which needs to be considered in combination with 
InterruptibleActivityRegions, is the AcceptEventAction (see chapter 4.3).  

In contrast to StructuredActivityNodes, the region itself is not connected to 
other elements with edges, and is not a region, for which encapsulation holds. 
This means, there always exist CrossingEdges, which connect an element 
outside of the region to an element inside of the region. InterruptingEdges are 
CrossingEdges by definition. 

Thus, during the transformation, the nodes inside such 
InterruptibleActivityRegions are preserved (and possibly transformed because of 
their type). The connections between the nodes inside the region, and to and 
from the nodes outside the region are also preserved. Finally, the information 
regarding which nodes are located in which InterruptibleActivityRegion, is 
preserved for post-analysis handling. 

4.6 Analysis of UML Activities 

The input for the analysis of UML Activities is the XML file produced by the 
transformation tool. This file may contain multiple UML Activities, which are 
processed one after the other. Possible relations from one activity to another 
activity are considered during the analysis, thus enabling the analysis of 
hierarchies of UML Activities. The analysis is conducted using a formally 
defined approach, and consists of creating and analyzing DAGs.  

4.6.1 Representing Execution Instances of Computations by DAGs  

A UML Activity 𝐷 represents the way to compute the result given any input. It 
thus represents multiple, possible execution instances where the input is 
known. For the analysis, the exact timing of the computation steps is irrelevant, 
and thus abstracted. For each execution instance, the single computation 
threads can be represented by directed walks (as defined in chapter 4.2).  

Single sequential threads occur in the following situations:  

• between an InitialNode and the first ForkNode or a FinalNode,  

• between a ForkNode or JoinNode and the next ForkNode or JoinNode, and  

• between a ForkNode or JoinNode node and a FinalNode.  
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Given a ForkNode 𝑢, 𝑑𝐷
+(𝑢) walks start, and given a JoinNode 𝑣, 𝑑𝐷

−(𝑣) walks 
end. This can be easily represented by a DAG where the vertices are the walks 
and where the edges connect instances of JoinNodes or ForkNodes.  

The following procedure summarizes the creation of all possible DAGs based 
on a given UML Activity such that each possible execution instance is 
represented by exactly one DAG. The set of all DAGs produced by the following 
procedure is a superset of all possible DAGs representing an execution instance 
since some decisions along the computation might not be independent of each 
other such that some combinations of walks might never occur. 

The superset 𝑆 of DAGs is created by the following procedure. Each 𝐷𝐴𝐺 =
(𝑊, 𝐸)  ∈  𝑆 has a vertex set 𝑊, a set of walks (where exactly one walk begins 
with an InitialNode), and an edge set 𝐸 ⊆ 𝑊 × 𝑊, the connections between 
walks described by the procedure, also referred to as 𝐸𝐷𝐴𝐺  whenever suitable 
for clarity reasons.  

Consider a UML Activity 𝐷 with InitialNode 𝑢. 

1. Create a DAG with single vertex 𝑤0 = 𝑢 and add the DAG to 𝑆. Set the 
current edge 𝑒 of 𝐷 to the outgoing edge of 𝑢. Set the current vertex 𝑤 of 
the DAG to 𝑤0. 

2. For current edge 𝑒 = (𝑢, 𝑣)  ∈  𝐸𝐷 , create a new instance 𝑣′ of 𝑣 and 
update 𝑤 to 𝑤𝑣′. 

a. If 𝑣 is an ActionNode or MergeNode, set the current edge to be the 
outgoing edge of 𝑣 in 𝐷 and repeat step 2. 

b. If 𝑣 is a DecisionNode, copy this DAG 𝑑𝐷
+ − 1 times. For each copy, set 

the current walk to 𝑤 and add the DAG to 𝑆. For each outgoing edge 
(𝑣, 𝑥)  ∈  𝐸𝐷  of 𝑣, repeat step 2 for a separate DAG (with current walk 
𝑤) with the current edge in 𝐷 updated to (𝑣, 𝑥).  

c. If 𝑣 is a ForkNode, mark vertex 𝑤 ∈  𝑊 as complete. Let 𝑛 = |𝑊|. 
Create a vertex 𝑤𝑖 = 𝑣′ ∈  𝑊 and edge (𝑤, 𝑤𝑖)  ∈  𝐸𝐷𝐴𝐺  for each 𝑖 
where 𝑛 ≤  𝑖 ≤  𝑛 + 𝑑𝐷

+(𝑣)  − 1. For each outgoing edge (𝑣, 𝑥)  ∈
 𝐸𝐷  of 𝑣, repeat step 2 with the current vertex 𝑤 set to 𝑤𝑖  ∈  𝑊 with 
the current edge 𝑒 in 𝐷 set to (𝑣, 𝑥). 

d. If 𝑣 is a JoinNode, mark vertex 𝑤 ∈  𝑊 with current edge 𝑒. Search 
for vertices 𝑧 in the DAG such that 𝜔(𝑧) is an instance of the JoinNode 
𝑣 . Let 𝑛 = |𝑊|. If there is a set {𝑤𝑖1

, 𝑤𝑖2
, … , 𝑤𝑖𝑑𝐷

−(𝑣)− 1
}  of such 

vertices which have marks, the set 𝐸′ such that |𝐸′ ∪  {𝑒}| =  𝑑𝐷
−(𝑣),  
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i. Create vertex 𝑤𝑛 = 𝑣′  ∈  𝑊, edge (𝑤, 𝑤𝑛)  ∈  𝐸𝐷𝐴𝐺 , and edges 

(𝑤𝑖ℎ
, 𝑤𝑛)  ∈  𝐸𝐷𝐴𝐺  for each ℎ where 1 ≤  ℎ ≤  𝑑𝐷

−(𝑣) − 1. 

ii. Set current edge 𝑒 to the outgoing edge of 𝑣 in 𝐷, set the current 
vertex to 𝑤𝑛  ∈  𝑊, and repeat step 2. 

e. If 𝑣 is a FinalNode, then do nothing. The current vertex is complete.  

 

An example for created DAGs can be seen in Figure 10. It shows two DAGs 
created based on the UML Activity depicted in Figure 9. Each of the DAGs 
contains four walks and two marks, each containing an edge. The DAGs differ 
in one walk, more precisely in the node following the node “Decision1”: DAG 1 
covers “Action3”, and DAG 2 contains “Action4”.    

 

Figure 10:  DAGs Created for the Exemplary UML Activity Diagram 1 

As can be seen, each instance of a node is only contained once in the DAG, 
with the exception of ForkNodes and JoinNodes. Although one instance of these 
nodes is always contained in directly succeeding walks, it only belongs to one 
computation step, as every other single instance of a node. However, as 
ForkNodes and JoinNodes represent the transition from one walk to another, 
they are included more than once.  

Only valid UML Activities are considered. To be valid, a UML Activity must 
adhere to the definitions for the UML Activity itself and the nodes and edges 
given above. UML Activities can be implicitly and explicitly modeled, and the 
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preprocessing during the transformation creates explicitly modeled activities 
out of implicitly modeled ones. 

Concerning execution instances, worst case execution instances are 
considered. This means that, if due to parallel execution, one of the parallel 
computations reaches a FinalNode, it is always assumed that other parallel 
computations have proceeded as far as possible. With this assumption, the 
number of considered execution instances is reduced without losing 
information, as shorter execution instances are subsumed under the longest 
path possible. Since the goal of the solution is to find possible data races, the 
worst case is the relevant case, as otherwise possible data races (in the 
analysis: nodes that may be executed in parallel to other nodes) could be 
missed.  

Every execution instance leads to a single DAG by construction. However, two 
sets of input values may result in the same traversal of a UML Activity, and thus 
in the same DAG. Execution instances resulting from such sets of input values 
are equivalent, they are the same. 

 

Lemma 1 

Every pair of non-equivalent execution instances through a UML Activity 𝐷 
results in a unique DAG. 

 

Proof 

Assumption: two non-equivalent execution instances 𝑒𝑖1 and 𝑒𝑖2 result in the 
same DAG. 

By definition, non-equivalent execution instances result in different outgoing 
edges of a DecisionNode 𝑢  being followed at least once. Thus, different 
DAGs are created. 

For each of the DAGs, a different outgoing edge of 𝑢 is followed, thus leading 
to a difference in the resulting DAGs. As each instance can only be processed 
once by definition, one DAG is created for each single outgoing edge of an 
instance of a DecisionNode.  

If two different execution instances result in the same DAG, this thus means 
that for each DecisionNode encountered in 𝐷, the same outgoing edge has 
been followed for the construction of the DAG. However, if for each 
DecisionNode all outgoing edges followed are the same, then 𝑒𝑖1  and 𝑒𝑖2 
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represent the same single execution instance. Thus, there cannot be different 
execution instances that lead to the same DAG, and thus, every execution 
instance results in a unique DAG.                ∎ 

 

It is also possible that there is no set of input values that leads to a given 
combination of edge traversals of a UML Activity, due to DecisionNodes 
possibly being dependent, as explained above. For this reason, a DAG in the set 
𝑆 of DAGs might not reflect any execution instance. 

Since an execution instance may be infinite, a DAG can have an infinite size. 
This will be discussed in chapter 4.6.5. 

Two different DAGs based on the same UML Activity differ in at least one 
decision made at one of the DecisionNodes because that is the only way to 
create different DAGs. Every directed path in any DAG describes a sequence of 
computational threads that need to be executed sequentially and that never 
run in parallel. The following fundamental corollary is now proven, which 
highlights the relation of paths in a DAG and parallelism: 

 

Corollary 1 

Two computation threads 𝐴, 𝐵 can run in parallel if an only if there is no path in 
the DAG in which 𝐴 and 𝐵 are contained, i.e., no path from 𝐴 to 𝐵 or 𝐵 to 𝐴. 

 

Proof 

By construction, all computations in a computation thread are finished before 
any successor threads as represented in the DAG can start. Let there now be a 
directed path from 𝐴 to 𝐵 (without loss of generality). Then, the computations 
from computation thread 𝐴 are, by construction of the DAG, finished before 
𝐵's results are computed and the two threads cannot run in parallel. Thus, if 
two threads run in parallel, there cannot be a directed path between them in 
the DAG. 

If there is no single path containing both 𝐴 and 𝐵 in the DAG, let 𝑃(𝑢, 𝐴) and 
𝑃(𝑢, 𝐵) denote the set of all directed paths from the InitialNode 𝑢 to 𝐴 and 𝑢 
to 𝐵, respectively. For any given paths 𝑝𝐴  ∈  𝑃(𝑢, 𝐴) and 𝑝𝐵  ∈  𝑃(𝑢, 𝐵) there 
needs to be some common vertex 𝑤 to both paths as both start at 𝑢. The last 
common vertex 𝑤 cannot be either 𝐴 or 𝐵, as otherwise the longer path would 
contain both 𝐴 and 𝐵 in contrast to the assumption. After 𝑤, there exist no 
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further common vertices along 𝑝𝐴 and 𝑝𝐵. Thus 𝜔(𝑤) needs to be a ForkNode, 
because a ForkNode is the only node of the UML Activity that creates more than 
one outgoing edge attached to its corresponding node in the DAG. Since 𝐴 and 
𝐵 are thus in different computation threads regarding any pair of paths, they 
can run in parallel.                 ∎ 

 

4.6.2 Parallelism and Data Races 

As mentioned above, nodes in walks, which are executed in parallel and access 
data are in general prone to possible data races. Not all parallel executions lead 
to a data race, but each data race is related to parallel executions. In the 
following, the link between walks in DAGs and DANs in UML Activities is 
discussed.  

 

Theorem 1 

Let 𝑤1 and 𝑤2 be two walks in some DAG.  

If two walks 𝑤1 and 𝑤2 are executed in parallel then so are all pairs of instances 
of DANs from the UML Activity 𝐷 (𝑢1, 𝑢2) with 𝑢1  ∈  𝑤1 and 𝑢2  ∈  𝑤2. 

 

Proof 

Assumption: Let 𝑤1 and 𝑤2 be two walks in some DAG, which are executed in 
parallel. Let 𝑢1 and 𝑢2 be a pair of instances of DANs in a UML Activity with 
𝑢1   ∈  𝑤1   and 𝑢2  ∈  𝑤2. 

As defined above, each walk contains a sequence of nodes, which are executed 
sequentially. Let 𝑤3  be a walk with 𝑛 elements 𝑣1 . . . 𝑣𝑛. Then ∀ pairs of nodes 
(𝑣𝑖 , 𝑣𝑖+1)  with 𝑣𝑖  ∈  𝑤3  and 𝑣𝑖+1  ∈ 𝑤3  and 1 ≤  𝑖 <  𝑛 , ∃  an edge 𝑒  with 
𝑒 = (𝑣𝑖 , 𝑣𝑖+1). 

A walk 𝑤4, which is a direct successor of 𝑤3  is defined to start executing after 
𝑤3 has finished. This means that 𝜔(𝑤3)  = 𝛼(𝑤4). This means that all DANs 
that are contained in 𝑤3 have been executed when the DANs contained in 𝑤4 
start.  

If the two walks 𝑤1 and 𝑤2 are executed in parallel, neither does 𝑤1 start after 
𝑤2  has been completely executed, nor does 𝑤2  start after 𝑤1  has been 
completely executed. Thus, no edges exist in the DAG, which lead from 𝑢1 to  
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𝑢2. If 𝑢1  and 𝑢2 are not executed in parallel, then they either run sequentially, 
or they represent the same instance of a certain DAN. However, if they 
represent the same instance, they cannot belong to different walks by 
definition, as each instance of a DAN is contained only in one walk.  

Thus, if 𝑢1 and 𝑢2 are not executed in parallel, then they run sequentially. If 
they run sequentially, then edges exist, which lead from 𝑢1 to 𝑢2 or from 𝑢2 to 
𝑢1 in the DAG. However, since the walks 𝑤1 and 𝑤2 are executed in parallel, no 
edges exist in 𝐷 between nodes in 𝑤1 and nodes in 𝑤2. Thus, the nodes 𝑢1 and 
𝑢2 cannot run sequentially, they are executed in parallel.             ∎ 

 

Due to this, if two walks are executed in parallel, all DANs in one walk are prone 
to possible data races with all the DANs in the other walk. The remaining 
questions are whether such two DANs actually access the same data, if at least 
one of the accesses is a write access, and if there is a correct synchronization of 
these accesses. Answering these questions is part of the dynamic data race 
detection.  

4.6.3 On the Number of DAGs as a Result of Transforming UML Activities 

After elaborating on walks in a single DAG, parallelism and data races, the 
different possibilities for results of the construction of DAGs out of a UML 
Activity are discussed. 

Since only the traversal of DecisionNodes influences the number of DAGs 
created, there are three different situations to consider: 

1) A UML Activity contains no cycles and no DecisionNodes. 

2) A UML Activity contains DecisionNodes, which can be traversed once each. 
This is the case when there are DecisionNodes, but no cycle, or when there 
are cycles, but the DecisionNodes cannot be traversed within a cycle 
traversal. 

3) A UML Activity contains DecisionNodes, which can be traversed more than 
once. This is the case when there are cycles, and within a cycle traversal, a 
DecisionNode can be traversed. 

In the following, the effects of these situations on the number of DAGs created 
for a UML Activity are examined. 
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Lemma 2 

If all nodes in a valid UML Activity 𝐷 are executed sequentially and 𝐷 contains 
no decisions, then ∃ a walk through every node in a single DAG of 𝐷.  

 

Proof 

Assumption: all nodes in a valid UML Activity 𝐷 are executed sequentially and 
𝐷 contains no decisions, and there is no walk through every node in a single 
DAG of 𝐷. 

Let 𝑢𝑖  be the nodes in 𝐷 , with 𝑖 = 1, … 𝑛. If all nodes in 𝐷  are executed 
sequentially, then (𝑢𝑗 , 𝑢𝑗+1)  ∈ 𝐸 ∀ 𝑗 =  1, …  𝑛 − 1.  

Since all nodes are executed sequentially, i.e., there are no ForkNodes, and 
there are no DecisionNodes, each node has 𝑑𝐷

+  ≤  1. In such a case, during the 
construction of the walks for DAGs, no new walks are created and no new 
DAGs are created. Thus, there is a single DAG of 𝐷 with exactly one walk. 

If ∃ 𝑣 ∈ 𝑉 and 𝑣 is not in the walk, and since this walk is the only walk in the 
DAG, then no edge 𝑒 exists between 𝑣 and any node 𝑢. However, since all 
nodes in 𝐷 are executed sequentially and an edge exists for each node in 𝐷 
either to its direct successor or its direct predecessor or both in a sequence of 
nodes, 𝑣 has to be included in the walk.              ∎ 

 

Lemma 3 

If all nodes in a valid UML Activity 𝐷  are sequential and 𝐷  contains 
DecisionNodes but no cycles, within which a DecisionNode can be traversed, 
then ∃ a walk through every node in a set of DAGs of 𝐷. For a UML Activity 𝐷 
with a set of DecisionNodes {𝑢1, 𝑢2, … , 𝑢𝑛}, the set of DAGs has a size of 
∑ (𝑑𝐷

+(𝑢𝑖 ) −  1) +  1𝑛
𝑖=1 .  

 

Proof 

Assumption: All nodes of 𝐷 are sequential and 𝐷 contains DecisionNodes but 
no cycles, within which a DecisionNode can be traversed. Then ∃ a node 𝑣 
which is not covered in any walk.  

By Lemma 2, if all nodes in 𝐷 are executed sequentially, a single walk is 
created. However, due to DecisionNodes multiple DAGs are created. Each of 
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these DAGs contains one walk, covering one execution instance. Since, given a 
DecisionNode 𝑢 with  𝑑𝐷

+(𝑢)  >  1, 𝑑𝐷
+(𝑢)  − 1 new DAGs are created and each 

of the DAGs containing 𝑢 represents the traversal of a different outgoing edge 
of 𝑢, all outgoing edges of 𝑢 are covered. Thus, all possible differences in 
execution instances are represented in different DAGs.  

Since all nodes in 𝐷 are sequential and 𝐷 is valid, there is an edge 𝑒, which 
connects 𝑣 either to its direct predecessor or to its direct successor, or both. 
Since all nodes are sequential, there exists exactly one initial node 𝑠. Without 
loss of generality, we can thus assume that 𝑣 is a (direct or indirect) successor 
of 𝑠 or that 𝑣 is 𝑠. If 𝑣 =  𝑠, it is included in every DAG and thus the assumption 
is wrong.  

If 𝑣 ≠  𝑠, then in the sequence of nodes from 𝑠 to 𝑣, there is either no 
DecisionNode or there is at least one DecisionNode. If there is no DecisionNode in 
the sequence, then up to 𝑣, only one execution instance exists, and this 
execution instance includes 𝑣, as shown above. 

If there is at least one DecisionNode in the sequence of nodes from 𝑠 to 𝑣, then, 
as shown, all different execution instances resulting from the outgoing edges 
of DecisionNodes are covered in different DAGs. Thus, ∃ a DAG, which includes 
the sequence of nodes from 𝑠 to 𝑣, and thus, ∃ a DAG, which includes 𝑣. Since 
all nodes in D are sequential, this DAG contains one walk. Thus, ∃ a walk in a 
DAG that covers 𝑣. 

Given a DecisionNode 𝑢, 𝑑𝐷
+(𝑢) − 1 different DAGs are created. Since no cycles 

exist in 𝐷, within which a DecisionNode can be traversed, each DecisionNode in 
an execution instance can only be instantiated once. Since all execution 
instances cover all decisions and the set of DAGs covers all execution instances, 
during the construction of the set of DAGs, ∑ (𝑑𝐷

+(𝑢𝑖) − 1)𝑛
𝑖=1  new DAGs are 

created. Since the construction of DAGs starts with an empty DAG, a UML 
Activity, which contains at least one DecisionNode, results in ∑ (𝑑𝐷

+(𝑢𝑖 ) −𝑛
𝑖=1

 1) +  1 DAGs.                  ∎ 

 

Lemma 4 

If all nodes in a valid UML Activity 𝐷 are sequential and 𝐷 contains at least one 
cycle, within which DecisionNodes can be traversed, then ∃ a walk through 
every node in a set of DAGs of 𝐷. There are infinitely many resulting DAGs.  
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Proof 

By Lemma 3, if all nodes of 𝐷 are sequential and 𝐷 contains decisions, every 
node is included in at least one walk of a DAG out of the set of DAGs created. 

𝐷 contains at least one cycle, and this cycle contains at least one DecisionNode 
𝑢. Due to the cyclic structure, this 𝑢 may be instantiated more than once, up to 
infinitely many times. Since each instance of 𝑢  is independent of other 
instances, for each of these instances 𝑑𝐷

+(𝑢) − 1 DAGs are created. Since a 
cycle can be traversed infinitely many times, infinitely many decisions have to 
be made. Thus, a UML Activity 𝐷, which contains at least one cycle, within 
which a DecisionNode can be traversed, results in infinitely many DAGs.            ∎ 

 

4.6.4 Token Concept for Walks in a DAG 

It is now clear, and proven, how many DAGs will be created using the solution 
shown above in the different situations that exist using the basic elements of 
UML Activities. It has also been shown, that if two walks are executed in parallel, 
all DANs in one walk may run in parallel with all DANs in the other walk. The 
remaining question is how such parallel walks may be identified. 

For identifying parallel walks, and for symbolizing the execution path of nodes 
contained in walks in a DAG, tokens are used. Each token is modeled by a set of 
sequences of numbers for each walk in each DAG in the set of DAGs. Each walk 
has exactly one token, which contains one or more sequences of numbers. The 
numbers are separated by a dot.  

𝑇𝑎  is defined as the token of a walk 𝑎, containing a set of sequences. |𝑇𝑎| is 
defined as the cardinality of 𝑇𝑎 , i.e., the number of sequences in Token 𝑇𝑎. 

𝑠𝑎𝑗  is defined as being the 𝑗-th sequence in the token 𝑇𝑎. 𝑃(𝑠𝑎𝑗) is defined as 

the prefixes of sequence 𝑠𝑎𝑗 . A prefix is defined as a proper prefix, i.e., the 

length of a prefix of a sequence is always smaller than the sequence itself. 
∀ 𝑝 ∈  𝑃(𝑠𝑎𝑗), with the length of 𝑝 =  𝑘, the 𝑗-th position with 1 ≤ 𝑗 ≤ 𝑘 is 

identical to the 𝑗-th position of 𝑠𝑎𝑗 . The sequences in tokens are constructed as 

follows: 

1. There is exactly one token 𝑇 at the root walk of the DAG, i.e., the walk 
containing the InitialNode of a UML Activity. This token is modeled by the 
sequence 0. 

2. The sequences and the set of sequences in a token 𝑇 follow the outgoing 
edges of a walk. They will be changed according to the following case 
distinction: 
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a. The current walk 𝑒 has 𝑘 outgoing edges, with 𝑘 >  1. Copy 𝑇 𝑘 –  1 
times such that in total there are 𝑘 copies,  𝑇1, 𝑇2, … , 𝑇𝑘. Append a 
dot and one of the numbers 1 to 𝑘 to all sequences in each token, 
corresponding to the index of this token. The token 𝑇𝑖  is then 
assigned to the 𝑖-th successor of 𝑒, with 1 ≤  𝑖 ≤  𝑘. 

b. The current walk 𝑒 has 1 outgoing edge and the successor walk 𝑣 has 
𝑗 incoming edges. Let 𝑇1, 𝑇2, . . . , 𝑇𝑗  be the tokens of the incoming 

neighbors of 𝑣 . The sequences in the tokens of the incoming 
neighbors of 𝑣 are copied and attached to the token of 𝑣. The walk 𝑣 

then has one token with ∑ |𝑇𝑛|
𝑗
𝑛= 1  sequences. 

The intuition behind the sequences in a token is to memorize the walks on 
which this token builds on, i.e., the token contains only those sequences of the 
tokens of walks that are definitely finished, when the walk related to the token 
is executed. The sequences may either be unchanged and combined out of 
sequences of other tokens, or extended, according to the rules for the 
construction of the sequences in tokens described above. Actions that are in a 
sequence are combined into one walk, and new walks only emerge when 
parallel threads are started or synchronized. As an example, if the InitialNode in 
a UML Activity leads to four actions in a sequence, these would all be contained 
in the root walk and covered by the token 0. Note that tokens in different DAGs 
cannot be set into relation to each other, as different DAGs for the same UML 
Activity represent alternative executions. 

 

Theorem 2 

Let 𝑎, 𝑏 be two walks in some DAG. The walks 𝑎, 𝑏 can be executed in parallel, 
iff ∀ 𝑠𝑎𝑖  ∈  𝑇𝑎  and ∀ 𝑠𝑏𝑗  ∈  𝑇𝑏  it holds that 𝑠𝑎𝑖  ≠  𝑠𝑏𝑗 , 𝑠𝑎𝑖 ∉  𝑃(𝑠𝑏𝑗) , and 

𝑠𝑏𝑗 ∉  𝑃(𝑠𝑎𝑖).  

 

Proof 

(⇐) Walks 𝑎 and 𝑏 run in parallel ⇐ ∀ 𝑠𝑎𝑖  ∈  𝑇𝑎 and ∀ 𝑠𝑏𝑗  ∈  𝑇𝑏  it holds that 

(1) 𝑠𝑎𝑖  ≠  𝑠𝑏𝑗 , (2) 𝑠𝑎𝑖 ∉  𝑃(𝑠𝑏𝑗), and (3) 𝑠𝑏𝑗 ∉  𝑃(𝑠𝑎𝑖). 

Assuming ∀ 𝑠𝑎𝑖  ∈  𝑇𝑎  and ∀ 𝑠𝑏𝑗  ∈  𝑇𝑏  it holds that (1) 𝑠𝑎𝑖  ≠  𝑠𝑏𝑗 ,  

(2) 𝑠𝑎𝑖 ∉  𝑃(𝑠𝑏𝑗), and (3) 𝑠𝑏𝑗 ∉  𝑃(𝑠𝑎𝑖) and walks 𝑎 and 𝑏 run not in parallel. If 

𝑎 and 𝑏 do not run in parallel, they are identical or are successors of each 
other.  
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If (1), (2) and (3), then 𝑠𝑎𝑖  and 𝑠𝑏𝑗  are different at at least one position 𝑛, with 𝑛 

≤  length of 𝑠𝑎𝑖  and 𝑛  ≤  length of 𝑠𝑏𝑗  ∀ 𝑠𝑎𝑖  ∈  𝑇𝑎  and ∀ 𝑠𝑏𝑗  ∈  𝑇𝑏  by 

construction. Since all sequences start with a 0, representing the root walk, 𝑠𝑎𝑖  
and 𝑠𝑏𝑗  are identical at the first position by construction. A given sequence is 

only changed, if during the construction of the DAG, a ForkNode is reached; in 
such a case, a dot and a number are added to each sequence in the token, with 
each succeeding walk being represented by a different number (see the 
construction of the sequences and the tokens above). Thus, the sequences of 
walks represented by 𝑠𝑎𝑖  and 𝑠𝑏𝑗  both contain the same ForkNode.  

Since (2) and (3) ∀ 𝑠𝑎𝑖  ∈  𝑇𝑎 and ∀ 𝑠𝑏𝑗  ∈  𝑇𝑏, walks 𝑎 and 𝑏 are not successors 

of each other, which are separated by a ForkNode in the sequence of walks 
between 𝑎 and 𝑏 or directly between 𝑎 and 𝑏. 

Since (1) ∀ 𝑠𝑎𝑖  ∈  𝑇𝑎  and ∀ 𝑠𝑏𝑗  ∈  𝑇𝑏 , walks 𝑎  and 𝑏  are not identical and 

walks 𝑎 and 𝑏 are not successors of each other, which are directly separated by 
a JoinNode. Since two succeeding walks can only be separated by ForkNodes or 
by JoinNodes by construction, walks 𝑎 and 𝑏 can thus not be successors of each 
other. 

However, if the sequences of walks represented by 𝑠𝑎𝑖  and 𝑠𝑏𝑗  both contain 

the same ForkNode, 𝑎 and 𝑏 are not identical to each other and are not direct 
or indirect successors of each other, 𝑎  and 𝑏  are different successors or 
successors of different successors of the common ForkNode. Thus, they run in 
parallel. This is a contradiction to the assumption. 

 

(⇒) Walks 𝑎 and 𝑏 run in parallel ⇒ ∀ 𝑠𝑎𝑖  ∈  𝑇𝑎  and ∀ 𝑠𝑏𝑗  ∈  𝑇𝑏  it holds that 

(1) 𝑠𝑎𝑖  ≠  𝑠𝑏𝑗 , (2) 𝑠𝑎𝑖 ∉  𝑃(𝑠𝑏𝑗), and (3) 𝑠𝑏𝑗 ∉  𝑃(𝑠𝑎𝑖). 

1. Assumption: walks 𝑎 and 𝑏 run in parallel, and ∃ 𝑠𝑎𝑖  ∈  𝑇𝑎  and ∃ 𝑠𝑏𝑗  ∈

 𝑇𝑏 , so that 𝑠𝑎𝑖  =  𝑠𝑏𝑗.  

Then, the tokens 𝑇𝑎  and 𝑇𝑏  contain the same sequence 𝑠, with 𝑠 = 𝑠𝑎𝑖 =
𝑠𝑏𝑗 . This can only happen, if 𝑇𝑎  and 𝑇𝑏  are identical, or if a sequence from 

token 𝑇𝑎  is copied to token 𝑇𝑏 , or vice versa. 

If 𝑇𝑎  and 𝑇𝑏  are identical, then 𝑎 and 𝑏 are identical, as, by construction, 
the same walk can only be contained once in each DAG with identical 
tokens. However, a walk cannot run in parallel to itself. 

If a sequence from token 𝑇𝑎  is copied to token 𝑇𝑏  or vice versa, then a 
JoinNode has been encountered between walks 𝑎 and 𝑏. Without loss of 
generality, it can be assumed that a JoinNode has been encountered 
between 𝑎 and 𝑏 (and not between 𝑏 and 𝑎). It can be excluded that a 
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ForkNode is encountered between 𝑎 and 𝑏, as otherwise, the sequence 
would have been changed due to that ForkNode.  

If the JoinNode between 𝑎 and 𝑏 is not the same, then a sequence is not 
copied from one token to another token. Thus, 𝑠𝑎𝑖  ≠  𝑠𝑏𝑗. If the JoinNode 

between 𝑎 and 𝑏 is the same, then 𝑏 can only be executed after 𝑎 has 
been finished. Thus, they cannot run in parallel. 

2. Assumption: walks 𝑎 and 𝑏 run in parallel, and ∃ 𝑠𝑎𝑖  ∈  𝑇𝑎  and ∃ 𝑠𝑏𝑗  ∈

 𝑇𝑏 , so that 𝑠𝑎𝑖  ∈  𝑃(𝑠𝑏𝑗).  

Then, 𝑠𝑎𝑖  is a prefix of 𝑠𝑏𝑗  and the length of 𝑠𝑎𝑖  is smaller than the length 

of 𝑠𝑏𝑗. A number is by construction only attached to a sequence, if a 

ForkNode is encountered during the construction of the DAG. Since 𝑎 and 
𝑏 run in parallel, the sequences of walks represented by 𝑠𝑎𝑖  and 𝑠𝑏𝑗  both 

contain the same ForkNode.  

Let the length of 𝑠𝑎𝑖  be 𝑘 and let the length of 𝑠𝑏𝑗  be 𝑛. Then, 𝑘 < 𝑛, since 

𝑠𝑎𝑖  is a prefix of 𝑠𝑏𝑗. Since 𝑠𝑎𝑖  being identical to 𝑠𝑏𝑗  up to the 𝑘-th position, 

each sequence of a walk directly following a ForkNode being extended by a 
number, and the number being separate for each different direct 
successor of a ForkNode, the sequences of walks represented by 𝑠𝑎𝑖  and 
𝑠𝑏𝑗  cannot both contain the same ForkNode, or both share the same 

successor walk following a ForkNode, up to the 𝑘 − 1-th position of the 
sequence. If the sequences of walks represented by 𝑠𝑎𝑖  and 𝑠𝑏𝑗  both 

contain the same ForkNode and the same direct successor walk of this 
ForkNode, they cannot run in parallel. 

However, they can share a ForkNode in the 𝑘-th position of the sequence. 
This means that 𝑎 ends with the same ForkNode that 𝑏 starts with and that 
𝑏 is a successor of 𝑎. Thus, 𝑏 can only run after 𝑎 has been executed and is 
finished. Thus, they cannot run in parallel. 

3. Assumption: walks 𝑎 and 𝑏 run in parallel, and ∃ 𝑠𝑎𝑖  ∈  𝑇𝑎  and ∃ 𝑠𝑏𝑗  ∈

 𝑇𝑏 , so that 𝑠𝑏𝑗  ∈  𝑃(𝑠𝑎𝑖). 

Then, 𝑠𝑏𝑗  is a prefix of 𝑠𝑎𝑖  and the length of 𝑠𝑏𝑗  is smaller than the length 

of 𝑠𝑎𝑖 . A number is by construction only attached to a sequence, if a 
ForkNode is encountered during the construction of the DAG. Since 𝑎 and 
𝑏 run in parallel, the sequences of walks represented by 𝑠𝑎𝑖  and 𝑠𝑏𝑗  both 

contain the same ForkNode.  

Let the length of 𝑠𝑏𝑗  be 𝑘 and let the length of 𝑠𝑎𝑖  be 𝑛. Then, 𝑘 < 𝑛, since 

𝑠𝑏𝑗  is a prefix of 𝑠𝑎𝑖 . Since 𝑠𝑏𝑗  being identical to 𝑠𝑎𝑖  up to the 𝑘-th position, 

each sequence of a walk directly following a ForkNode being extended by a 
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number, and the number being separate for each different direct 
successor of a ForkNode, the sequences of walks represented by 𝑠𝑎𝑖  and 
𝑠𝑏𝑗  cannot both contain the same ForkNode, or both share the same 

successor walk following a ForkNode, up to the 𝑘 − 1-th position of the 
sequence. If the sequences of walks represented by 𝑠𝑎𝑖  and 𝑠𝑏𝑗  both 

contain the same ForkNode and the same direct successor walk of this 
ForkNode, they cannot run in parallel. 

However, they can share a ForkNode in the 𝑘-th position of the sequence. 
This means that 𝑏 ends with the same ForkNode that 𝑎 starts with and that 
𝑎 is a successor of 𝑏. Thus, 𝑎 can only run after 𝑏 has been executed and is 
finished. Thus, they cannot run in parallel.              ∎ 

 

4.6.5 Complete Analyses of UML Activities with Limited Cycle and Edge Traversals 

It has been shown how to create DAGs based on UML Activities using basic 
elements. The token concept is used for identifying parallel walks. DANs in 
such parallel walks may be executed in parallel.  

In this chapter, the challenges related to using UML Activities to determine 
pairs of nodes that may run in parallel with regard to cycles are discussed. 
Obviously, to determine all possible pairs of DANs, all such nodes must be 
contained in at least one of the considered execution instances of the UML 
Activity.  

It is desirable to determine such pairs in a reasonable amount of time and one 
common solution is to limit the number of traversals of a cycle in the UML 
Activity (see chapter 3.3).  

However, it is possible that a data accessing node, 𝑢, runs in parallel with itself. 
Thus, if it is possible to execute 𝑢 twice or more often in the same execution 
instance, then it is also possible that there exists an execution instance where 
one instance of 𝑢 is running in parallel with a different instance of 𝑢. For this 
reason, some cycles must be traversed at least once (compare the definition of 
cycles in chapter 4.2) if such a pair is to be determined as possibly running in 
parallel.  

Figure 11 illustrates a UML Activity Diagram exhibiting this situation with node 
“Action2”. 
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Figure 11:  Exemplary UML Activity Diagram 2 

Additionally, considering nodes and edges that are contained in at least one 
execution instance, then the following conditions together are not enough to 
ensure that all possible pairs of data accessing nodes, which may run in 
parallel, are identified:  

• all nodes of the UML Activity have been traversed at least once, 

• all edges of the UML Activity have been traversed at least once, and 

• all cycles of the UML Activity have been traversed at least once. 

 

Figure 12 shows an example of a UML Activity, for which there is no way to 
determine that the node “Action2” is in parallel with itself given adherence to 
the above conditions. Note that the number of incoming edges to the JoinNode 
“Join1”, 𝑘, need only be 2 and these conditions will already be too limiting. It 
can be seen that requiring 2 ∗ 𝑑𝐷

−(𝐽𝑜𝑖𝑛1)  traversals of each cycle are 
necessary to ensure that all possible data races are determined for this figure. 
Since 𝑘 can be varied by including additional edges, there is no fixed limit in the 
number of cycle traversals that might be necessary for computing all pairs of 
data accessing nodes possibly running in parallel with this requirement. 
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Figure 12:  Exemplary UML Activity Diagram 3 (2*k Cycle Traversals) 

This figure can be edited slightly (see Figure 13) leading to requirements that 
the number of traversals of cycles be quadratic in the indegree (more precise: 
for the two JoinNodes “Join1” and “Join2”, it is  2 ∗  𝑑𝐷

−(𝐽𝑜𝑖𝑛1)  ∗  𝑑𝐷
−(𝐽𝑜𝑖𝑛2).  

This means there is no fixed limit in the number of cycle traversals that might 
be necessary for computing all pairs of data accessing nodes possibly running 
in parallel with this requirement. It has been shown that for all approaches 
computing nodes that may run in parallel, which use hard-defined limits in the 
number of cycle traversals, an example demonstrating the incompleteness of 
the analysis can easily be created. This shows the limitations of the approaches 
for the analysis of UML Activities discussed in chapter 3.3. 
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Figure 13:  Exemplary UML Activity Diagram 4 (2*k*l Cycle Traversals) 

By definition, the number of DAGs created depends on the number of 
traversals of DecisionNodes in a UML Activity (see chapter 4.6.1 and chapter 
4.6.3). If there are cycles in the activity, this results in an infinite number of 
resulting DAGs. If there are no cycles, but a set of DecisionNodes {𝑢1, 𝑢2, … , 𝑢𝑛} 
then the number of DAGs created is ∑ (𝑑𝐷

+(𝑢𝑖) −  1) +  1𝑛
𝑖=1 . If there are no 

DecisionNodes, then one DAG is created that captures all nodes in the UML 
Activity. Parallelism in a UML Activity does not affect the number of DAGs 
created, but instead the number of computation threads, i.e., walks in a DAG. 

Cycles are insofar related to DecisionNodes as without such a DecisionNode 
inside a cycle, it would not be possible to exit a cycle, resulting in an infinite 
DAG. UML Activities with a possibility to exit cycles instead lead to an infinite 
number of resulting DAGs.  
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Without a stopping criterion, cycles would thus not be analyzable. It has been 
shown that any fixed limit in the number of cycle traversals is not enough for 
UML Activities in general to be completely analyzed for nodes that may run in 
parallel.  

Thus, a dynamic stopping criterion is required, which is adapted for each UML 
Activity.  

In addition to the challenge of exiting cycles, nodes possibly running in parallel 
to themselves must be considered in this stopping criterion.  

In this regard, the criterion forming the lower bound for cycle traversals is not 
related to a single DAG or to a number of nodes or edges traversed within a 
DAG. Instead, all combinations of two traversals of edges must be contained in 
the sum of the DAGs. A DAG, which contains all edges of a UML Activity 
traversed at least twice (where possible), is called DAG*.  

The addition “(where possible)” refers to the fact that some edges cannot be 
traversed twice or more often. This is, e.g., true for the first edges in a UML 
Activity, following the InitialNode, when there is no cycle at this point. There is 
only one InitialNode as the analysis follows the transformation and 
preprocessing, as shown in chapter 4.5. As there is no cycle at that point, these 
edges cannot be traversed more than once. Thus, all edges until a MergeNode 
is reached are ignored for this stopping criterion (but traversals are still 
counted). 

The following Figure 14 shows a UML Activity Diagram, for which it is not 
enough to create a random DAG containing two traversals of each edge. 
Instead, a certain combination of edge traversals is required.  

 

Figure 14:  Exemplary UML Activity Diagram 5 (Combination of Edge Traversals) 

In the example above, the node “Action 2” may be executed in parallel to itself. 
However, the edge (Decision 2, Action 2) must be traversed twice, and the 
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walks containing these two traversals must not be successor or predecessor of 
each other. The following two paths contain two traversals of the edge 
(Decision 2, Action 2), but do not exhibit the parallel execution of node “Action 
2”:  

Path 1: Start – Action 1 – Merge 1 – Decision 1 – Fork 1 – Merge 2 – Decision 2 – 
Action 2 – Merge 3 – Decision 3 – Merge 1 – Decision 1 – Fork 1 – Merge 2 – 
Decision 2 –  Action 2 – Merge 3 – Decision 3 – Join 1 – FlowFinal.  

Path 2: Start – Action 1 – Merge 1 – Decision 1 – Fork 1 – Decision 4 – Join 1 – 
FlowFinal. 

The following two paths instead show the parallel execution of node “Action 
2”: 

Path 1: Start – Action 1 – Merge 1 – Decision 1 – Fork 1 – Merge 2 – Decision 2 – 
Action 2 – Merge 3 – Decision 3 – Join 1 – FlowFinal. 

Path 2: Start – Action 1 – Merge 1 – Decision 1 – Fork 1 – Decision 4 – Merge 1 – 
Decision 1 – Fork 1 – Merge 2 – Decision 2 – Action 2 – Merge 3 – Decision 3 – 
Join 1 – FlowFinal. 

In this example, the edge (Decision 2, Merge 3) has not been traversed. It is not 
possible to traverse the edge (Start, Action 1) or the edge (Action 1, Merge 1) 
more than once. 

It has been shown that the challenges of detecting nodes running in parallel to 
themselves and of cycle traversals cannot be solved in isolation. Only 
considering nodes that may run in parallel to themselves may lead to missing 
exit criteria for cycles, and to infinite DAGs. Only considering cycle traversals 
may lead to missing such nodes running in parallel to themselves. Thus, the 
following two challenges needs to be considered in combination: 

1) all combinations of two edge traversals are needed to capture the parallel 
execution of an instance of a node with another instance of the same node 
(if possible).  

2) how the challenge of cycles can be solved with a dynamic stopping 
criterion resulting from analyzing the elements within a specific cycle and 
considering the semantics of those elements, leading to the possibility to 
exit cycles (when possible) while preventing infinite cycle traversals.  

Only elements that may have an outdegree or indegree >  1 may influence 
these criteria, as all other elements can just be traversed following the only 
outgoing or incoming edge. These are ForkNodes, JoinNodes, DecisionNodes, 
and MergeNodes.  
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MergeNodes are necessary for cycles to be possible. Such nodes have an 
indegree >  1 . Assuming explicit modeling (which is guaranteed by the 
transformation step), at least one of the incoming edges can be traced back to 
the same MergeNode, if a cycle exists. The other node type possibly having an 
indegree >  1 is the JoinNode. However, a JoinNode cannot be used to initiate 
or close a cycle, as the JoinNode requires tokens offered on all edges to be 
traversed. This assumes the standard ValueSpecification being used. As the 
ValueSpecification cannot be considered in the analysis, this assumption holds. 
A ValueSpecification could be formulated, that uses an “OR” semantics, leading 
to only one of the incoming edges offering a token would be sufficient to 
traverse this node, basically simulating a MergeNode. However, it can be 
argued that this violates the purpose of a JoinNode to synchronize incoming 
flows [OM17]. Thus, such a construction can be considered as being invalid as 
per the definition provided in chapter 4.6.1. The analysis only considers valid 
UML Activities, and thus such a construction can be excluded without loss of 
generality.  

ForkNodes start parallel flows. As such, these nodes are required for a node 
being able to be executed in parallel to itself. All outgoing edges of a ForkNode 
are traversed in parallel, and in the creation of DAGs, a ForkNode leads to 
initiating new walks within a DAG.  

DecisionNodes offer alternative flows. As explained, such node types affect the 
creation of new DAGs and the number of DAGs created in the analysis of a 
UML Activity. These nodes also affect the traversals of edges, as only one of 
the outgoing edges is following per instance of such a node within a DAG. 
Thus, DecisionNodes affect challenge 1 mentioned above. 

JoinNodes affect challenge 2 mentioned above, as explained. The indegree of 
JoinNodes within cycles, if existing, affects the ability to progress past these 
JoinNodes, and thus, to reach edges following such JoinNodes and eventually to 
exit, i.e., progress past such cycles. Since, as per challenge 1, each edge needs 
to be traversed at least twice, the relevant number for a JoinNode 𝑢 in a UML 
Activity 𝐷 is 2 ∗ 𝑑𝐷

−(𝑢). The criterion is then created by summarizing the 
numbers for all JoinNodes in a UML Activity. This criterion is a stopping criterion 
and is called EmergencyExit. If there is no JoinNode, then according to challenge 
1, the limit is 2. 

Both criteria are counted for each DAG and each edge in a DAG individually 
and only affect the current DAG. As for the criterion related to challenge 1, 
some edges are ignored for this limit, as explained above. 

Still, UML Activities can be created, for which this criterion cannot hold alone, 
as there may also be edges after a MergeNode, which cannot be traversed 
twice or more often. Thus, the second criterion is required to be processed in 
combination.  
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As shown, no hard-coded, i.e., fixed, limit for the number of cycle traversals 
can be used. In this regard, the “each edge twice” criterion does not induce a 
fixed limit on the number of cycle traversals, as the number of needed cycle 
traversals for traversing each edge twice depends not only on the structure of 
the UML Activity, but also varies from DAG to DAG (as at each DecisionNode, 
for each outgoing edge, a new DAG is created). 

As for the EmergencyExit, if at least one edge is traversed as often in a DAG, as 
the EmergencyExit is set to, then this EmergencyExit is reached and any further 
attempt to traverse the respective edge is stopped. Other parts of the DAG, 
i.e., other edge traversals continue.  

The creation of a DAG does not fully stop when the EmergencyExit is reached, 
but just the traversal of the respective edge. This means that other parts of a 
DAG might continue to be created. Because of this, there might be several 
edges in one DAG, for which the EmergencyExit is reached. 

When an EmergencyExit is reached, the respective DAG or walk in this DAG is 
called incomplete. For avoiding misinterpretations of incomplete walks, an 
“artificial EmergencyExit node” is inserted at the end of such walks, i.e., instead 
of the node that would follow the edge just traversed. This artificial node is 
identified during the analysis of walks and nodes contained in these walks. 
These artificial nodes are interpreted as FlowFinalNodes. 

Even if it is possible to traverse an edge of the UML Activity twice or more in a 
single DAG, it is unclear when that edge will appear in a DAG more than once if 
it will at all. Because of this, the EmergencyExit has to be reached during the 
analysis to be stopped. Even if an edge is not traversed twice, and thus, the 
“two edge traversal” criterion is not reached, any traversal path through a UML 
Activity will either eventually lead to a FinalNode or end up in a cycle. In this 
cycle, some edge is continued to be traversed, and at some point in time, the 
EmergencyExit is triggering. Then, the further creation of walks will be stopped, 
and the problem of infinite DAGs is avoided. 

It is not guaranteed that with the above criteria, a DAG* is always created. In 
some cases, this is also not possible. Creating a DAG* is on the one hand not 
enough, and on the other hand, not necessary to detect all nodes that may be 
executed in parallel to themselves 

As shown above, it is not enough to obtain just any DAG* to find all pairs of 
nodes possibly running in parallel, because in some cases, it is not enough to 
traverse each edge twice, but a certain combination of edge traversals is 
necessary to obtain complete results.  

It is, however, not necessary to traverse each edge twice and to analyze all 
possible combinations of edge traversals to find a certain pair of nodes. It is 
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sufficient to traverse some edges twice and to fulfill some combination of edge 
traversals to find a certain pair of nodes (as shown above). Due to the 
systematic exploration of edges and traversals, these different combinations of 
traversals are captured in different DAGs. These DAGs are systematically 
constructed while following edges and counting traversals of single edges.  

Considering the algorithm to create DAGs in chapter 4.6.1, step 2.(b) includes 
the creation of new DAGs when a DecisionNode is analyzed and the instruction 
to follow each of the outgoing edges in a separate DAG. This allows to explore 
a UML Activity in the breadth and then to extend the DAGs in the depth. 
Because of this, it is not necessary to wait for a DAG* to be created (if it will be 
created), where possible. Instead, since DAGs with different combinations of 
traversals and different edge traversals are created, those edges traversed at 
least twice mentioned above as some and the combinations of traversals 
mentioned above as some are included in a DAG before a DAG* would be 
created, if possible. Because of this, there is no need to construct a DAG* to 
find all pairs of nodes possibly running in parallel. Instead, all edge traversals 
and all combinations of edge traversals required are reached with using the 
EmergencyExit. 

After DAGs and walks have been created, tokens and sequences in the tokens 
are added to each walk for each DAG. This process of attaching tokens and 
sequences to walks follows the procedure defined in chapter 4.6.4. 

With these tokens and sequences, walks, which may run in parallel, are 
calculated by comparing the sequences in the token for each walk with each 
other walk. This comparison follows the rules defined and proven to be correct 
in chapter 4.6.4. The calculation of tokens and sequences is conducted in 
between the post-analysis (as explained next). 

Based on walks, which may run in parallel, it is trivial to extract nodes contained 
in these walks. These nodes are then collected, and cleaned from duplicates. 

4.7 Post-Analysis of UML Elements 

As mentioned, for some elements of UML Activities, it is not sufficient or not 
possible to handle the specific semantics during the transformation. Instead, a 
post-analysis handling is necessary. This post-analysis handling takes place 
after DAGs and walks have been created.  

Some parts of the handling have to be conducted before calculating tokens 
and sequences, and some parts have to be executed while identifying nodes 
possibly running in parallel.  
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The following elements require a post-analysis handling: 

• CallBehaviorAction 

• AcceptEventAction 

• SendSignalAction 

• StructuredActivityNode 

• CrossingEdge 

• ExpansionRegion 

• InterruptibleActivityRegion 

• InterruptingEdge 

A CallBehaviorAction is used to invoke other behaviors, in the context of this 
thesis other UML Activities. After creating DAGs and walks, each walk is 
analyzed for such CallBehaviorActions.  

If the call is synchronous, all the elements of the called activity, except for 
InitialNodes and FinalNodes, are inserted into the current walk, replacing the 
CallBehaviorAction. Afterwards, this walk is again analyzed for 
CallBehaviorActions, as the called activity may contain other 
CallBehaviorActions. As per the assumption that all elements contained in a 
UML Activity can be executed, all elements of the called activity can be 
included. The order, in which the elements of the called activity are executed, 
is not important in this context, because this order is analyzed when analyzing 
this called UML Activity itself. If a CallBehaviorAction can be executed in parallel 
to another node, all elements of the called UML Activity may run in parallel to 
this node. After this handling, all CallBehaviorActions are eliminated. 

It is possible that CallBehaviorActions in UML Activities form a cycle, i.e., a node 
in activity 𝐶 calls an activity 𝐷, in which activity 𝐶 is called. In such a case, the 
insertion of nodes ends after inserting all the elements of activity 𝐶 in the 
currently analyzed walk of activity 𝐶. In case of such a cycle, all elements of 
activity 𝐶 may run in parallel to any node possibly running in parallel to the 
CallBehaviorAction of activity 𝐶  initiating this cycle. As all necessary 
information is already obtained and duplicated entries cannot provide 
additional information, it is not necessary to insert further elements, and 
further CallBehaviorActions, continuing this cycle, are just deleted in this walk 
and the cycle is resolved. 
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In case the call is asynchronous, the flow continues with the outgoing edge of 
the CallBehaviorAction, while the called UML Activity is executed in parallel. A 
new walk is created, which runs in parallel to the further elements of the walk 
containing this CallBehaviorAction instance. This is achieved by replacing the 
CallBehaviorAction with a ForkNode. The walk is then split at this ForkNode, and 
the elements of the called activity are placed in a new walk, which runs in 
parallel to the walk containing all the elements of the original walk, which 
follows the CallBehaviorAction. The newly formed walks follow the rules for 
walks stated in chapter 4.6.1. The reflections on cycles using 
CallBehaviorActions also hold for asynchronous calls.  

AcceptEventActions and SendSignalActions are checked per DAG. As each 
signal sent by a SendSignalAction can only be received by one 
AcceptEventAction, it is necessary to track which signal sent by a 
SendSignalAction has already been received and used. For each 
AcceptEventAction to continue executing, a corresponding signal has to be 
received. Because of this, for each AcceptEventAction it is checked if there is a 
corresponding SendSignalAction, whose signal has not been consumed yet, 
and which has been executed before, or which is executing in parallel.  

The corresponding SendSignalAction can be contained in the same walk or in 
another walk as the AcceptEventAction waiting for the signal. In the latter case, 
this walk has to be executed either before or in parallel to the walk containing 
the AcceptEventAction. If both are contained in the same walk, then the 
SendSignalAction has to be executed before the AcceptEventAction is executed. 

If these conditions are not met, then an AcceptEventAction waits for a signal, 
which will not be sent, and the node cannot be executed. In such cases, the 
DAG and the walk containing such an AcceptEventAction are shortened. The 
walk containing this node is shortened at the position of this node. All walks, 
which are successors of this walk, are deleted, as they cannot execute. This 
shortened DAG can then be analyzed using tokens as described. 

The post-analysis handling of InterruptibleActivityRegions and InterruptingEdges 
consists of using additional information obtained during the transformation. 
For each node contained in such an InterruptibleActivitiyRegion, the ID of this 
region is added to the node and the node is marked as “interruptible”.  

Afterwards, the InterruptingEdges are checked. For the node connected by the 
InterruptingEdge as head, and all nodes following this node in a DAG, the ID of 
the source region is added, and the flag “interruptingFollower” is set.  

Afterwards, for each node it is checked, if it is interruptible. If yes, then it is 
checked if there are other nodes marked as “interruptingFollower”. If this is the 
case, and the IDs of the regions are the same, then these nodes cannot run in 
parallel. Such an InterruptibleActivityRegion can be interrupted at different 
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stages of execution, i.e., different nodes may have been executed when the 
execution of the nodes inside a region is interrupted, and this needs to be 
considered during the handling of such constructs.  

There is a special semantics of AcceptEventActions in such regions (chapter 
4.5.8). Also, CrossingEdges currently executing when the interrupt is triggered 
continue to execute.   

StructuredActivityNodes, along with CrossingEdges, are again handled post-
analysis using additional information. For each edge, the information whether 
this edge is a CrossingEdge is contained in the XML file. For the creation of the 
DAGs, these edges have been ignored.  

For each CrossingEdge, all walks in each DAG are examined. If any of the nodes 
in a walk is the tail of this CrossingEdge, then all nodes before this node and the 
node itself in this walk are marked as “incoming” and the ID of the CrossingEdge 
is added. All nodes in predecessor walks of the current walk are also marked as 
“incoming” and the ID is added to each of these nodes.  

Then, the node that is the head of this CrossingEdge is searched for. This node 
and all succeeding nodes in the walk containing this node, and all nodes in all 
successor walks are marked as “outgoing” and the ID of the CrossingEdge is 
added. Any node may be contained several times in a DAG, and it is crucial to 
not only identify the correct node, but also the correct instance of a node. 

CrossingEdges define a sequential ordering. Thus, when a pair of nodes that 
may run in parallel is found, the IDs and “incoming” and “outgoing” marks are 
examined. If one of these nodes is “incoming” for an ID, for which the other 
node is “outgoing”, they cannot run in parallel. 

As mentioned in chapter 4.5.2, ExpansionRegions in parallel or streaming mode 
are transformed to StructuredActivityNodes, and the mode can be attached to 
this StructuredActivityNode for further analysis, if modelers additionally use 
assertions regarding duplicate object references in a collection. Analyzing such 
assertions is not implemented, as there is no standardized method for these 
assertions. 

4.8 Discussion 

As described in chapter 3.3, several approaches exist to analyze UML Activities. 
In contrast to those approaches, the solution provided in this thesis includes a 
formal and theoretic basis for analyzing UML Activities. 

In the following, an assessment of the fulfillment of the requirements stated in 
chapter 3.3.12 is presented. 
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Requirement 1: only one of the approaches discussed considers 
CallBehaviorActions in the analysis [LTN19].The analysis is limited to 
synchronous execution of the called activity and does not consider cyclic calls 
of activities. In this regard, the analysis may not terminate in case of cycles. 
The solution advances the state of the art in that CallbehaviorActions with 
synchronous and asynchronous calls are considered, and in that the solution 
considers cyclic calls of activities, as shown in chapter 4.7. This ensures 
termination of the analysis without missing information with regard to the 
purpose of the analysis.  

Requirement 2: two of the approaches discussed are not limited to a single 
InitialNode in the analysis [CLL07], [LTN19]. The solution presented in this 
thesis also considers multiple InitialNodes. 

Requirement 3: as most of the approaches discussed, the solution presented in 
this thesis considers multiple FlowFinalNodes and ActivityFinalNodes.  

Requirement 4: the challenge of cycle traversals is one of the key challenges to 
a complete analysis of UML Activities (see chapter 3.6). For the approaches 
discussed in chapter 3.3, there is either no information on handling cycles 
([LWL08]), or a fixed limit for the traversals is set, e.g., a limit of one cycle 
execution ([Su15]), at most two cycle traversals ([SM08]), or traversing each 
edge once during a loop and twice overall ([CLL07]). The most flexible 
approach discussed uses a hard limit, which can be set by users ( [Xu08]). Such 
limits are not sufficient and for each hard limit, UML Activities can be created, 
for which such algorithms produce incomplete results (see chapter 4.6.5). To 
solve this challenge, a dynamic limit based on the structure of the UML Activity 
has been introduced and discussed with regard to completeness of the results 
(chapter 4.6.5).  

Requirement 5: most of the approaches discussed rely on pairs of ForkNodes 
and JoinNodes with regard to the analysis of UML Activities [Su08], [SZL09], 
[Su15], [SM08], [XLL05], [Xu08], [CLL07], [Bo11b], [KS09], [Ki07a], [VA14]. As 
such relations of ForkNodes and JoinNodes are not defined in the UML [OM17], 
this is a limitation. The solution presented in this thesis considers ForkNodes 
and JoinNodes independent of each other. Two of the approaches discussed 
also set no limitations on ForkNodes and JoinNodes [LWL08], [LTN19]. 

Requirement 6: as shown in chapter 4.3, the UML offers a variety of elements 
for modelers. An approach for the analysis of UML Activities should therefore 
not be limited to a small subset of the elements, but consider most, if not all of 
the possibilities provided. Only two of the approaches discussed are able to 
consider more than the basic elements (see chapter 4.4.1). Xu et al. consider 
ExpansionRegions to a limited extent, ExceptionHandlers and 
InterruptibleActivityRegions [Xu08]. Lima et al. consider CallBehaviorActions to a 
limited extent, SendSignalActions, and AcceptEventActions [LTN19]. However, 
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all of the other elements discussed in chapter 4.4.2 are not supported. The 
solution presented in this thesis instead advances the state of the art in that all 
elements of UML Activities, for which both semantics and a definition of its 
representation are given, are considered (see chapters 4.5, 4.6, and 4.7). 
Elements, which are not fully specified and standardized in the UML, cannot be 
considered due to a missing basis for identification and recognition. Examples 
of such elements are assertions for duplicate data references regarding 
ExpansionRegions in parallel and in streaming mode. Note that this may not 
lead to false positives, as the results of the analysis serve as an input for 
dynamic data race detection, and not to directly identifying data races. As the 
elements of ExpansionRegions are considered nevertheless, this may also not 
lead to false negatives in the sense of not identifying classes, which should be 
instrumented in dynamic data race detection. 

The solution presented in this thesis tackles the challenges described in 
chapter 3.6 and closes the gaps left by the approaches discussed in chapter 3.3 
and summarized in Table 1. The assessment shown in this table is extended 
with the solution presented in this thesis, resulting in Table 4. 

Approach 

Require-
ment 1 

Require-
ment 2 

Require-
ment 3 

Require-
ment 4 

Require-
ment 5 

Require-
ment 6 

Multiple 
UML 

Activities 

Multiple 
Initial 
Nodes 

Multiple 
Final 

Nodes 
Cycle 

Traversals 
Forks and 

Joins 
UML 

Elements 

Sun - - - - - - 

Sapna - - - - - - 

Xu - - + 0 - 0 

Chandler - + + - - - 

Lei - - + ??? + - 

Boghdady - - - - - - 

Kundu - - + - - - 

Kim - - - - - - 

Verma - - + - - - 

Lima 0 + + - + 0 

Klaus + + + + + + 

Table 4:  Assessment of Existing Approaches and the Solution Presented in this Thesis 
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4.9 Summary 

In this chapter, the analysis of UML Activities has been presented. As the 
analysis is based on a formal foundation using graph theory, the most 
important graph theoretic concepts have been presented. 

The UML offers a variety of elements with regard to UML Activities. To analyze 
UML Activities, a three-step approach was introduced. First, the UML Activities 
are transformed, and the set of elements provided by the UML is reduced: 
some elements are preserved and other elements are transformed. The 
analysis is then conducted on the adapted UML Activities. However, not all 
elements of the UML can be transformed with preserving their complete 
semantics. Thus, they need to be considered in the post-analysis step. 

This analysis is conducted by creating DAGs out of UML Activities. Tokens are 
then attached to the walks contained in each DAG. By analyzing these tokens, 
walks, which may be executed in parallel to other walks, are identified. Walks 
always represent a sequential execution of the DANs contained in these walks. 
Thus, by identifying such walks, nodes, which may be executed in parallel to 
other nodes, are identified, and the goal of the analysis is fulfilled. 

The analysis of existing approaches in the analysis of UML Activities revealed 
three main gaps: analyzing sets of connected UML Activities (Requirement 1), 
handling Cycle Traversals within a UML Activity (Requirement 4), and support 
for a complete set of UML Activity Elements (Requirement 6). It has been 
shown how these gaps are closed by the solution presented in this thesis.  

Handling cycle traversals within a UML Activity required introducing two 
criteria for traversals. On the one hand, a node may run in parallel to itself, 
which introduces one criterion regarding edge traversals. On the other hand, it 
is required that incoming edges of JoinNodes are considered, to enable the 
outgoing edge to be traversed. Both criteria are considered for edges in each 
DAG. UML Activities are explored in the breadth, and the DAGs are then 
extended in the depth. This ensures (1) that the necessary combinations of 
edge traversals to detect all nodes, which may be executed in parallel to 
themselves, are covered in a DAG, (2) that cycles can be left, when possible, 
and (3) that traversals are aborted when a certain amount of traversals is 
reached, thus preventing infinite DAGs and infinitely many DAGs. This amount 
is specific to each UML Activity and is calculated automatically during the 
analysis.   

Finally, this chapter contained formal proofs with regard to the creation of 
DAGs and the analysis. 

It has been proven that every execution instance of a UML Activity results in a 
unique DAG. Two parallel threads cannot be contained in one path in a DAG. A 
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path in a DAG is always related to walks. If two walks 𝑤1 and 𝑤2 are executed 
in parallel then so are all pairs of instances of DANs from the UML Activity 𝐷 
(𝑢1, 𝑢2) with 𝑢1  ∈  𝑤1 and 𝑢1  ∈  𝑤2. 

The number of DAGs created with regard to DecisionNodes and cycles 
contained in a UML Activity has been defined and proven to be correct (without 
considering criteria for limiting edge traversals).  

Finally, it has been proven how the tokens and the sequences in the tokens can 
be used to correctly and completely identify walks, which may be executed in 
parallel. 
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5 Analysis of Data Race Reports 

In this chapter, the solution for the analysis of data race reports is presented. 
This solution is targeted at the second practical problem, as defined in chapter 
1.2.  

The solution reads in data race reports, and preprocesses the contents of those 
data race reports. The results are then visualized, enabling users to profit from 
the preprocessing and possible effects of this preprocessing on the efficiency 
of the analysis of data race reports. 

5.1 Research Approach 

The research approach consisted of several steps. As a first step, the 
characteristics of data race reports and the data races contained were 
analyzed.   

Based on the insights gained, the next step was to examine how to utilize those 
characteristics with the goal to improve the efficiency in the analysis of data 
race reports. This utilization resulted in the preprocessing of data race reports. 

Finally, a concept for the visualization of the preprocessed data race reports 
was developed and applied. 

Following the research approach described above, the characteristics of data 
race reports are presented next (chapter 5.2).  

The preprocessing of those data race reports is then introduced in chapter 5.3, 
followed by the visualization of the preprocessed data race reports (chapter 
5.4). 

This chapter closes with a summary and a comparison of the solution 
presented in this thesis with the approaches discussed in chapter 3.5, including 
an assessment with regard to the requirements for a solution defined in 
chapter 3.5. 
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5.2 Characteristics of Data Race Reports 

Reconsidering the definition of a data race from chapter 2.2, originating from 
Netzer and Miller, a data race between two events 𝑎 and 𝑏 over a set of 

program executions 𝐹6 exists, if 

1) A data conflict exists in a program execution 𝑃 between 𝑎 and 𝑏, and 

2) There exists a program execution 𝑃’ ∈  𝐹, containing events 𝑎’ and 𝑏’, 
such that 𝑎’ ↛  𝑏’ and 𝑏’ ↛  𝑎’ [NM92]. 

Based on this definition, the following observations can be made with regard 
to characteristics of data races: 

a) A data race is related to one shared memory location (due to the data 
conflict).  

b) A data race is related to two accesses. Due to the ordering relations 
defined above, those accesses are concurrent. 

c) An access can either be a read or a write access. In the following this is 
called access type. At least one access is of the access type write (due to 
the data conflict).  

d) Since those accesses are found in a program execution, resulting from an 
execution of source code, the accesses are located in this source code. 
There is no restriction on where this access happens. 

e) Furthermore, there is no restriction on the number of data races related to 
a shared memory location, or on the number of times an access may be 
related to a data race. 

Analyzing data race reports, more information on characteristics can be 
identified. Most of those characteristics are general in the sense that many 
different data race reports stemming from different dynamic data race 
detection tools may allow to extract this information. However, the following 
insights are based on the data race reports produced by the publicly available 
dynamic data race detection tool RV-Predict, which has been used in the 

course of this thesis, and to which is referred in chapter 1.3, in the running 
example. 

Any data race report may contain multiple entries, i.e., many different data 
races. The reasons for this are technical and not related to the characteristics 

 
6 Consider the relation of 𝐹 and  𝑃defined in chapter 2.2: 𝐹 contains the same events as a 

prefix of 𝑃. 
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of data races. The following Figure 15 shows an exemplary entry for a detected 
data race.  

 

Figure 15:  Data Race Entry in a Data Race Report 

The entry shows one data race (line 53) to a shared memory location 

org.apache.catalina.startup.ContextConfig.context. 

Two accesses can be seen, hierarchically subordinated below this data race. 
One access is listed in lines 54-61, and the second one in lines 63-66. Each 

of the accesses has an access type (lines 54 and 63). The source code location 

for each access is listed one line below (lines 55 and 64). The second listed 

access, e.g., is of type write, and located in the source code class 
ContextConfig.java, in source code line 297. 

In addition to characteristics a) to e) described above, this entry allows to 
identify additional characteristics, related to those data race reports. 

f) An access can be guarded by one or more locks (see chapter 2.3). This is 
shown in line 54. 

g) In the data race report, an access has trace information, i.e., not only the 
source code location of the access itself is listed, but also source code 
locations related to the flow of execution (lines 55-61). In the following, 

this information is referred to as call history. 

h) As can be seen in lines 55-61, the locks related to the access are acquired 

during the execution of the program, and at different locations than the 
access itself (lines 56 and 59). 

i) Consistent to characteristic b), each access is executed by a different 
thread. The threads of the accesses are listed in lines 54 and 63. 

j) Each thread has an origin. Such origins can be seen in lines 60 and 66. 

This can be either a source code location or the current thread is the main 
thread, i.e., it is created at the start of the system under test. 
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Summarized, the characteristics of data races contained in data race reports 
are shown in the following Figure 16.  

 

Figure 16:  Characteristics of Data Races in Data Race Reports 

The constraint that at least one of the accesses of a data race is a write access 
is not shown in this figure. The reason is that if this constraint is not fulfilled, 
then there is no data race, and thus the access is not contained in a data race 
report (assuming that no pairs of read-only accesses are contained in that data 
race report, as such pairs cannot form a data race). 

5.3 Preprocessing Data Race Reports 

Based on the relations defined in Figure 16, the central element chosen for the 
preprocessing was not a data race, but an access, as each element can be 
associated to a specific access. This is in line with the idea presented in [Ko15]. 

Furthermore, as there can be multiple data races with regard to one variable, it 
is not enough to focus the analysis of data race reports on a specific data race. 
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Instead, all accesses to that variable need to be considered for eliminating 
issues in the source code. The following Figure 17 shows an example, illustrated 
with results of the dynamic data race detection using RV-Predict. 

 

Figure 17:  Exemplary Contents of a Data Race Report (Pictorial Representation) 

This figure shows four data races, which are related to a total of four source 
code locations, all in source code class StandardContext.java. All these 

data races are related to the same variable StandardContext.context. 

Eliminating only one of those data races does not necessarily reduce the 
amount of source code locations related to a data race.  

Assuming that Data Race 1 is eliminated by inserting locks protecting the 
accesses in line 2159 and in line 5451, then those source code locations 

might still be related to data races (this depends on the exact mechanism used 
for eliminating the data race). The access in line 2159 is part of Data Race 3, 

and the access in line 5451 is part of Data Race 2. Further assuming that 

afterwards, Data Race 2 is eliminated by inserting locks then the access in line 
2154 might still be related to a data race, as it is part of Data Race 4. Finally, if 

afterwards Data Race 3 is eliminated by inserting locks protecting the accesses 
in line 2159 and in line 2155, Data Race 4 might still be present, although all 

the accesses contained in this data race already have been treated in the 
context of other data races. This holds, if the locks inserted for eliminating one 
data race are not consistent with the locks inserted for eliminating other data 
races.   

Besides the need to analyze all data races with such an approach, the extensive 
usage of locks may lead to introducing deadlocks to the system. 

When instead focusing on the distinct accesses related to a data race, four 
different source code locations can be identified, as shown in Figure 18. Due to 
this, the effort necessary may be reduced, since less source code locations are 



Analysis of Data Race Reports 

 118 

to be examined, as two of the source code locations were examined twice in 
the former example. In addition, the attention may be raised to take care of 
these accesses in a consistent way.  

 

Figure 18:  Exemplary Contents of a Data Race Report, Focused on Distinct Accesses (Pictorial   
Representation) 

Thus, when focusing on accesses instead of data races as a whole, a view on 
issues in the source code may be induced. In addition, the example above has 
shown that such data race reports may contain multiple entries of the same 
access. Whenever there are at least two accesses related to the same variable, 
with the same access type, at the same location (source code class and line), 
these are called duplicates.  

Any data race report may also contain duplicate data races, which can be 
broken down into sets of duplicate accesses. In addition, as a specific source 
code location may be executed by multiple threads, a single data race may also 
contain the same access twice. 

Note that the definition of duplicates is only related to the access type, the 
variable, and the location. As such, these duplicate accesses may still differ in 
terms of the call history, and thus in terms of the locks acquired up to the 
specific access. As such, duplicates are identified during the preprocessing, but 
may not be deleted. 

This information is used for preprocessing data race reports. The tool for 
preprocessing and visualizing data is written in C#. Users can import sets of 

data race reports in textual form, i.e., a root folder is selected, and all files and 
subfolders are automatically imported. 

During the import, all the entries of the data race reports are read in and stored 
in a data structure. The import process relies on the syntax of data race reports 
as shown in Figure 15. The data structure is created based on the analysis of 
the characteristics of data races and data race reports, and follows Figure 16. 
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By analyzing all accesses, duplicate entries are identified and a flag is set. In 
addition, statistical information is processed. 

5.4 Visualizing Preprocessed Data Reports  

The information is then processed and provided to users in a tabular form. 
Each line in the table shows one of the accesses found. The columns show, 
among others, the variable, the source code class and line, the access type, the 
IDs of the locks held, the thread ID, and the origin of the thread. Below this 
table, the trace information of an access is provided in a separate field. Each 
line additionally shows if an access is contained multiple times, i.e., duplicates 
are marked in a separate column. The entries may be sorted alphabetically or 
by numbers in each column. 

Users have the option to focus on one of the variables prone to data races, to 
focus on one the affected source code classes, or see all information. In 
addition, duplicates may be hidden. The tool also provides an option to add a 
status in free text to an access or to an access and all duplicates at once, and to 
mark an access or an access and all duplicates as solved. Such solved entries 
can also be hidden. However, the tool is still a prototype and there is currently 
no option to save and reload these results. 

Finally, statistical information shows the number of files read, the number of 
accesses, and the number of different variables and source code locations 
affected, differentiated as overall numbers, numbers according to a filtered 
view, and according to a view with hidden entries. Figure 19 shows a 
screenshot of the tool. 

The statistical information reveals that in summary 4,164 entries have been 
read in by the tool. As each data race is related to exactly two accesses, 2,082 
data races have been processed. The current table contents, defined by setting 
the focus to all, a specific variable, or a specific source code class, in this 
example set to the variable StandardContext.context, encompass 52 

entries (shown in the statistical information as “Current”). The current view, 
defined by selecting whether or not to ignore duplicate entries or solved 
entries, is set to ignoring duplicate entries, and contains four entries. 

The entries shown in the screenshot are the same as presented in Figure 18. 
The current table contents relate to all data race reports with regard to the 
variable StandardContext.context, showing that the example shown 

in Figure 17 only represents a part of all data races with regard to that variable. 
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Figure 19:  Screenshot of the Tool for the Analysis of Reported Data Races 

5.5 Summary 

The solution for the analysis of data race reports differs from all the 
approaches discussed in chapter 3.5 in that it is the only solution focusing on a 
simplified presentation of accesses in data race reports without the intent to 
visualize information. The approaches presented by Pande [Pa19b], Trümper 
[Tr14] and Koutsopoulos et al. [Ko15] focus on visualization aspects, and only 
one of those approaches [Ko15] is targeted at data races. Walker et al. also 
considered a need for a succinct presentation of the results, but focus on static 
analysis, and not on concurrency [Wa20].  

Thus, the analysis and the comparison of the solution presented in this thesis 
to approaches presented in the literature had to be reduced to a comparison 
between two approaches – the one presented in this thesis and the approach 
presented by Koutsopoulos et al. [Ko15]. 

Requirement 1 - Duplicates: both approaches consider duplicate entries. 
However, while in [Ko15], the information is lost, the solution presented in this 
thesis provides a choice on whether duplicates are shown or just ignored, i.e., 
hidden. In addition, the solution presented in this thesis includes information 
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on the total number of entries, the number of duplicate entries and the 
number of distinct entries. 

Requirement 2 – Focus on shared variables: both approaches enable to focus 
on accesses related to shared variables, but differ in the presentation of that 
information. The approach of Koutsopoulos et al. presents all shared variables 
in one view, and focuses on the files, within which accesses to those shared 
variables happen. The authors admit the complexity of such a view [Ko15]. The 
solution presented in this thesis instead shows all the shared variables in a 
simple list. When such a shared variable is selected, the focus is on accesses, 
not on files. This emphasizes the focus of the solution presented in this thesis, 
to provide guidance on the elimination of data races. In addition, the 
knowledge about how many accesses exist with regard to such a shared 
variable, is directly visible, while in the approach presented in [Ko15], all the file 
listings need to be inspected for obtaining this information. 

Requirement 3 – Focus on source code classes: the solution presented in this 
thesis is the only approach providing a focus on source code classes, again 
providing directly accessible information on problematic accesses and on 
statistical information.  

Requirement 4 – Status tracking: no information could be found with regard to 
the ability of any of the approaches discussed in chapter 3.5 with regard to the 
tracking of the status of assessing the entries. The solution presented in this 
thesis allows setting the status of an access to “solved” and hiding such solved 
entries. This status can automatically be transferred to all duplicate entries. 
However, at the time of writing this thesis, the solution was still a prototype, 
and the ability to save a set of entries together with the status for later 
continuation of the work was not implemented. 

Requirement 5 – Information preservation: the solution presented in this thesis 
does not delete any part of the information processed. All processed 
information is preserved and can be seen by users. The approach of 
Koutsopoulos et al. instead deletes duplicates [Ko15], and thus does not 
preserve all available information. 

In addition to the fulfillment of the requirements introduced in chapter 3.5, the 
solution presented in this thesis is unique in that it provides knowledge in the 
form of statistical information. Whether such knowledge is useful, and if the 
fulfillment of those requirements is in fact leading to a higher efficiency in the 
analysis of data race reports is not guaranteed and has to be assessed. A 
controlled experiment assessing such potential efficiency improvements is 
presented in chapter 6.5. 
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6 Examinations of Efficacy  

In this chapter, different aspects of the solution presented in this thesis are 
discussed and analyzed. The purpose of this chapter is to examine the analysis 
of UML Activities, to assess the completeness of this solution in practice, and to 
study possible effects of the solution on the efficiency. 

Thus, this chapter contains a description of the research approach used for the 
examination of efficacy (chapter 6.1), followed by an exemplary application of 
the solution to demonstrate its practical usage (chapter 6.2). Aligned on the 
steps of the overall process, depicted in Figure 4, different important aspects 
are then examined. These examinations relate to the completeness of the 
analysis of UML Activities (chapter 6.3), possible efficiency improvements in the 
dynamic data race detection (chapter 6.4), and possible efficiency 
improvements in the analysis of data race reports (chapter 6.5). 

6.1 Research Approach 

The basis for the research conducted and presented in this thesis was a 
thorough understanding of the current state of the practice and the existing 
practical problems, as stated in chapter 1.2. A study of the state of the art 
revealed gaps, which have led to defining scientific problems and related 
goals. For these goals, research objectives had been defined, and hypotheses 
have been stated, defining benefits that were intended to be achieved and 
defining how the fulfillment of these goals shall be assessed. Summarized, the 
practical and scientific problems, and the goals were defined in chapters 1.2 
and 1.3 as shown in the following Figure 20. 

 

Figure 20: Problems and Goals Related to this Thesis 
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The overall goal of this thesis was the efficiency improvement in the quality 
assurance process for data races. Analogous to the quality assurance process 
being split up into finding data races and eliminating data races, two practical 
problems have been defined, both related to the efficiency in the respective 
field.  The underlying scientific problems dealt with using knowledge about the 
systems under test and the detected data races to enable efficiency 
improvements.  

Scientific problem 1 was covered by analyzing UML Activities, representing the 
dynamic behavior of a system, to gain the knowledge required to enable the 
required efficiency improvements in the dynamic data race detection. 
Scientific problem 2 was covered by analyzing data races and the reported 
data races, to provide guidance and knowledge about these detected data 
races, to enable efficiency improvements. 

The goals were closely aligned with the problems defined, and were thus 
targeted at the intended efficiency improvements, both in the detection of 
data races and in the analysis of detected data races. 

Based on these goals, hypotheses have been defined. As already stated in 
chapter 1.3, those hypotheses were: 

Hypothesis 1 – Complete and Correct Analysis (Goal 1) 

H1. The analysis of the representation of the dynamic behavior of a system for 
parallel elements is complete and correct, .i.e., there are no false positives and 
no false negatives. 

Hypothesis 2 – Efficiency Improvement in the Dynamic Detection of Data 
Races (Runtime Overhead) (Goal 1) 

H2. Using the focused approach for the instrumentation, the runtime overhead 
of test execution of a system under test is reduced compared to the runtime 
overhead using the same test execution technique on the same system under 
test without the focused approach. The reduction in the runtime overhead is at 
least inversely proportional to the amount of parallelism in the representation 
of that system under test. 

Hypothesis 3 – Efficiency Improvement in Analyzing Data Races (Goal 2) 

H3. Using the log preprocessing, the effort for results analysis is at least 40% 
less with at least the same effectiveness compared to using the unprocessed 
log files. 
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Hypothesis 3 has been split up into: 

Hypothesis 3.1 – Efficiency Improvement in Analyzing Data Race Reports for 
Data Races (Goal 2) 

H3.1. Using the log preprocessing, the number of analyzed reported data races 
in a given amount of time is at least 40% higher compared to using the 
unprocessed log files. 

Hypothesis 3.2 – Efficiency Improvement in Analyzing Data Race Reports for 
Data Races affecting a Variable in the Source Code (Goal 2) 

H3.2. Using the log preprocessing, the number of analyzed reported data races 
related to specific variables in a given amount of time is at least 40% higher 
compared to using the unprocessed log files. 

Hypothesis 3.3 – Efficiency Improvement in Analyzing Data Race Reports for 
Data Races affecting a Source Code Class (Goal 2) 

H3.3. Using the log preprocessing, the number of analyzed reported data races 
related to specific source code locations in a given amount of time is at least 
40% higher compared to using the unprocessed log files. 

A crucial step in the overall research was to decide, how to evaluate these 
hypotheses.  

The first hypothesis was evaluated using a mixture of methods. Since this 
hypothesis targets an analysis, which is based on formal methods, the 
algorithms were formally proven to be correct and complete, as shown in 
chapter 4.6. However, this encompasses only the theoretic part. From a 
practical point of view, the challenge of limiting possibly infinite cycle 
traversals while retaining complete results is critical to the completeness of the 
results. Thus, it was decided to assess the completeness of the results using 
exemplary UML Activities of varying complexity (see chapter 6.3). It was not 
possible to conduct an assessment of UML Activities to an extent that would 
provide generalizable results, because the possibilities to combine elements of 
UML Activities are too high to provide a set of UML Activities adequately 
representing all possible combinations of elements and thus all possible UML 
Activities. Still, the solution to the analysis has been shown to be complete in 
theory, and regarding the practical application, the challenge can be reduced 
to the question whether the chosen stopping criteria allow obtaining complete 
results, or whether they need to be adjusted.  

The second hypothesis was evaluated using an exemplary examination (see 
chapter 6.4). Such an exemplary examination does not allow drawing 
generalizable conclusions. Since applications can have different levels of 
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parallelism, a representative experimental evaluation would need to include 
these different levels of parallelism. However, even when assuming that a 
representative set of applications could be composed, both test cases and 
models of the dynamic behavior would be required. In addition, single source 
code classes can be of varying complexity and thus may induce a varying 
overhead in the runtime when instrumenting such a class and analyzing the 
data collected for possible data races, and this needs to be considered when 
composing such a representative set of applications. As such, composing such 
a set of applications and conducting the necessary analyses requires too much 
time to be included in this thesis. This is therefore future work. 

Hypothesis 3 targets the efficiency in the analysis of reported data races. 
Although theoretical discussions on the solution provided in this thesis indicate 
a possible improvement in the efficiency, this indication does not allow 
drawing any conclusions. Thus, it was decided to evaluate these hypotheses 
using a controlled experiment (see chapter 6.5). 

6.2 Exemplary Application 

This chapter demonstrates an exemplary application of the solution, 
highlighting how the different aspects of the solution support steps in the 
overall process of dynamic data race detection for data races. 

Preconditions for the exemplary application of the solution presented in this 
thesis are the availability of the source code to test for data races, and of UML 
Activities representing the dynamic behavior of the system under test. As the 
solution presented in this thesis is not related to the dynamic data race 
detection itself, the availability of a tool for such dynamic data race detection 
together with test cases is a further requirement for the overall process. 

The solution requires the input to be in a defined format. Although such a 
format may be changed, the current versions of the tool for the transformation 
of models requires the UML Activities to be modeled using Enterprise 

Architect, as mentioned in chapter 4. The tool for the analysis and 

processing of data race reports requires the reports in a format as created by 
RV-Predict, as mentioned in chapters 1.3 and 5.2. 

The overall process is depicted in the following Figure 21. The UML Activities 
have been modeled using Enterprise Architect. These models are 

read in and analyzed using the algorithms discussed in chapter 4. The results 
are used for focusing the instrumentation. After the execution of the test 
cases, the log files are read in, and processed and presented to users as 
discussed in chapter 5. The preprocessed data race information can then be 
used for debugging the system under test. 
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Figure 21:  Simplified Process of Dynamic Quality Assurance for Data Races with Efficiency Improvements 

The system under test used throughout this thesis, including this exemplary 
application, is Apache Tomcat in Version 8.0.26. This application is open 

source, and is shipped together with test cases. Those test cases are used for 
the dynamic data race detection. However, there were only rudimentary 
models of the dynamic behavior available. Thus, they had to be created 
manually.  

This has been done by executing the shipped test cases in an instrumented test 
run. The logs, containing trace information, have been analyzed, and the call 
history has been analyzed in detail by inspecting the source code, to analyze 
how the control flow is exactly defined. As examples, it may not be clear from 
the log files, if a method call from one source code class to a different source 
code class is dependent on a decision (and a DecisionNode has to be set), or 
where such alternative flows are merged (and a MergeNode has to be set).  

As the same behavior may be modeled in different ways, using different 
amounts of UML Activities, and different combinations of nodes, there is not a 
single solution. The completeness of the model can, however, be checked by 
comparing the results of the dynamic data race detection using complete 
instrumentation and using the focused instrumentation. As the tool used for 
the dynamic data race detection used predictive data race analysis, those 
results may, e.g., differ, when the focused instrumentation would not include a 
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source code class containing an access related to a data race, or when the 
model would not correctly represent classes creating new threads, 
synchronization points, or decisions leading to alternative control flows. The 
model created contains 282 nodes and 314 edges. An excerpt of this model, 
meant for illustration purposes, and not for readability, can be seen in the 
following Figure 22. 

 

Figure 22:  UML Activity Representing Apache Tomcat (Excerpt) 

The model is exported as XMI file using standard functionality of 
Enterprise Architect. This file is read in by the tool 

ActivityReducer. This tool has been created as part of a master thesis, 

and is extensively described in [Zi16]. This tool conducts the transformation as 
defined in chapter 4.5 and saves the results as an XML file. A screenshot of this 
tool is shown in the following Figure 23.  

This XML file then serves as input to the tool ADDAG. This tool creates DAGs in 

a first step and then analyzes those DAGs as defined in chapters 4.6 and 4.7. 
The emergency exit, defined in chapter 4.6.5, has been set to 4. The following 
Figure 24 shows a screenshot of the tool. The result of the analysis is a list of 
nodes. Those nodes represent source code classes, as defined in chapter 1.4, 
and can thus be directly used to focus the instrumentation of the dynamic data 
race detection. 
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Figure 23:  Screenshot of ActivityReducer 

 

 

Figure 24:  Screenshot of ADDAG 

As mentioned, Apache Tomcat is shipped with test cases. These test cases 

are executed with JUnit. The source code can be used to build the 

executable file using Apache Ant. To instead execute the test cases, the 

command ant test is used. The test cases to execute, along with the tool to 

execute, are configured in the file build.xml, which is shipped together 
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with the source code, and which is used to define different properties during 
the build process, which can be set without changing the source code. 

In this file, the properties for JUnit are set, and the dynamic data race 

detector can be inserted, as shown in Figure 25, line 1430. A java agent is 

a jar file using the instrumentation API provided by the Java Virtual 

Machine. The dynamic data race detector RV-Predict is provided as such 

an agent. This allows executing the test cases for the dynamic data race 
detection.  

 

Figure 25:  Screenshot of build.xml (Full Instrumentation) 

As the dynamic data race detector can be configured using parameters in this 
file, the list of source code classes is added as parameter. Those parameters 
allow including and excluding source code classes. All source code classes 
obtained from the analysis of the behavioral model are included, and all others 
are excluded, as shown in Figure 26, line 1430.  

 

Figure 26: Screenshot of build.xml (Focused Instrumentation) 

The test cases and the dynamic data race detection with focused 
instrumentation are then conducted using the command as shown above. This 
test case execution resulted in a total 0f 771 folders created by the dynamic 
data race detector, with each folder containing a results.txt file and a 

debug.log file.  
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These files can then be read in by the tool DataRaceAnalyzer. The data 

races contained in those report files are processed and presented to users as 
defined in chapter 5 and shown in Figure 27. 

 

Figure 27:  Screenshot of DataRaceAnalyzer 

  

6.3 DAGs as Result of Analyzing UML Activities 

In this chapter, the numbers of DAGs created during the analysis of UML 
Activities and the results of the analysis itself are assessed using ten exemplary 
activities, representing different classes of complexity. Additionally, the 
completeness of the results with regard to the EmergencyExit and a possible 
DAG* are discussed. This chapter thus targets hypothesis 1, as explained in 
chapter 6.1. 

For the examinations, UML Activities have been created and manually 
analyzed. Afterwards, these activities have been processed with the tools for 
the transformation and analysis of UML Activities. This approach can only show 
fulfillment for a small sample of UML Activities. The external validity is thus 
limited. Additionally, manual analysis of UML Activities always includes the 
possibility of missing node instances, which may run in parallel to other node 
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instances. However, for none of the activities analyzed, ADDAG could find 

additional results not found in manual analysis.  

Each UML Activity was analyzed using different settings for the EmergencyExit. 
The EmergencyExit was set as defined in chapter 4.6.5, and was manually set 
for analyzing the effects on the analysis. Each DAG created for a UML Activity 
is identified by a number. For each analyzed activity, ADDAG was used to 

calculate: 

• the number of DAGs created, 

• the EmergencyExit, 

• the number of DAGs necessary to obtain all findings, 

• the first DAG, which is a DAG*, and 

• the necessary EmergencyExit number to obtain a DAG*. 

Note that the number of DAGs necessary to find a certain pair of nodes, and 
also to create a DAG, which is a DAG*, differs depending on how the edges are 
traversed during the analysis. When encountering a DecisionNode, then for 
each outgoing edge, a separate DAG is used, as explained in chapter 4.6. 
During the analysis of UML Activities using the tool, the first edge, according to 
the order in the XML file, is always used for the existing DAG, and for other 
edges, new DAGs are created and used. If this order would be changed, the 
analysis would result in the same DAGs, but in a different order. The number of 
DAGs necessary to find a certain pair of nodes may then differ (as their order 
has been changed). This behavior could be observed during the experiments. 

The UML Activity used to demonstrate the behavior concerning the number of 
DAGs in relation to the order of edges in the XML file is shown in Figure 14. For 
this analysis, the order of both outgoing edges of node “Decision 2” has been 
changed in the XML file.  

Table 5 shows the results of the experiments. In each line of the table, the 
results for one UML Activity are shown. Each activity is identified by a number 
in the first column. In the following two columns, the results in terms of DAGs 
created for an EmergencyExit set to “2 * number of incoming join node edges”, 
and the value for the maximum number of edge traversals until the 
EmergencyExit is reached for that specific UML Activity are shown. Since an 
experimentation regarding manually set limits for edge traversals has been 
conducted, exact numbers for the EmergencyExit value necessary to create a 
DAG, which is a DAG*, can be provided. Finally, it is shown how many DAGs 
have been necessary to find all nodes, which may run in parallel to other nodes 
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or to themselves using an EmergencyExit factor of 2, and how many DAGs were 
necessary until a DAG has been created, which is a DAG*. 

UML 
Activity 

DAGs 
created 

EmergencyExit 
Necessary Emergency 

Exit to find a DAG* 
DAGs to find all 
parallel nodes 

First to be a 
DAG* 

1 1 2 1 1 1 

2 1 4 1 1 1 

3 1 16 1 1 1 

4 5 4 3 2 3 

5 17 8 n/a 5 n/a 

6 35 4 6 21 118 

7 1,273 6 8 1,271 14,916 

8a 8,460 4 6 1 153,859 

8b 8,460 4 6 137 153,859 

9 9,385 8 10 3,082 53,764 

Table 5:  Results of Experiments on DAGs and DAG* 

Activities 8a and 8b represent the same UML Activity, but with a changed order 
of outgoing edges, as mentioned above. For both activities, the same numbers 
of DAGs are created. For activity 8a, all relevant nodes are found with the first 
DAG, while for finding the same nodes in 8b, 137 DAGs were necessary. For 
both activities, the first DAG* was found in DAG 153,859. Although the order, in 
which edges are traversed differs for these two UML Activities, the amount of 
traversals of each edge, which are necessary for obtaining a DAG*, is reached 
with the same DAG. 

Activity 5 represents a not yet discussed situation. In this activity, a 
DecisionNode is contained, which can only be traversed once per DAG. This 
UML Activity additionally contains a cycle, and another DecisionNode, which 
can be traversed multiple times. Due to one DecisionNode only being 
traversable once per DAG, there is no DAG*, as in each DAG, one edge is not 
traversed. Still, all nodes running in parallel to other nodes or to themselves 
could be identified. This shows that it cannot be a criterion to obtain a DAG* to 
find all nodes, which may run in parallel to other nodes or to themselves. If it 
would, this UML Activity could not have been analyzed completely.  

The results show that it is not necessary to create DAGs until a DAG* is 
reached to find all nodes possibly running in parallel to other nodes or to 
themselves. With the EmergencyExit, all nodes, which may run in parallel to 
other nodes or to themselves, are obtained. This is especially demonstrated 
with UML Activity 8a, for which all results were already obtained with DAG 1. All 
153,858 further DAGs until a DAG* is created did not reveal any additional 
nodes possibly running in parallel to other nodes or to themselves. 
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The reasons for these results are as follows. For being a DAG*, each edge has 
to be traversed twice in a DAG, where possible. As shown in chapter 4.6.5, it is 
not enough to obtain just any DAG* to find all nodes possibly running in 
parallel to other nodes or to themselves, because in some cases, it is not 
enough to traverse each edge twice, but a certain combination of edge 
traversals is necessary to obtain complete results, and in other cases, it is not 
even possible to obtain a DAG*.  

It is not necessary to traverse each edge twice and to analyze all possible 
combinations of edge traversals to find a certain pair of nodes. It is sufficient to 
traverse some edges twice and to fulfill some combination of edge traversals 
to find certain nodes running in parallel to other nodes or to themselves. Due 
to the systematic exploration of edges and traversals in ADDAG, these different 

combinations of traversals are captured in different DAGs. These DAGs are 
systematically constructed while following edges and counting traversals of 
single edges. UML Activities are explored in the breadth and then the DAGs are 
extended in the depth. Because of this, there is no need to wait for a DAG* to 
be created (if it will be created), where possible. Instead, since DAGs are 
constructed with different combinations of traversals and different edge 
traversals, those edges traversed at least twice mentioned above as “some” 
and the combinations of traversals mentioned above as “some” are traversed, 
before a DAG*, if possible, is obtained. Because of this, there is no need to 
construct a DAG* to find all nodes running in parallel to other nodes or to 
themselves. All edge traversals and all combinations needed are obtained with 
using the EmergencyExit, and before a DAG* is created (if it will be created). 

6.4 On the Efficiency Improvement of Focused Data Race Detection 

To assess the solution with regard to hypothesis 2 (see chapter 6.1), an 
exemplary examination using Apache Tomcat 8.0.26 was performed. 

There are two reasons for using this system in this specific version. There exists 
an extensive bug database for Apache Tomcat [No21b]. In addition, as an 

examination using RV-Predict has shown, version 8.0.26 is known to 

contain a number of data races [Da16]. Those data races have been fixed after 
they have been reported. The same tool is used for the examination presented 
in this thesis. This tool is configured for focusing on code parts identified using 
the approach to analyze UML Activities, as demonstrated in chapter 6.2. This 
allows to not only compare the runtime overhead (no instrumentation versus 
full instrumentation versus focused instrumentation), but also to check 
completeness of the findings, i.e., the data races identified. 

Since UML Activities for Apache Tomcat were not available, they had to be 

manually created, as explained in chapter 6.2. Such an approach can only be 
used to analyze code parts actually executed when running the test cases. 
However, since the same test cases were used to perform the data race 
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detection, possible incompleteness of the traces does not affect the results of 
the examination: completeness is given with regard to those code parts 
examined using the test cases. 

Afterwards, the resulting UML Activities were analyzed using the approach 
presented in chapter 4. All steps of this examination were performed on a 
notebook with a Core i5-6200U processor and 8 GB RAM. During the fully 
automated analysis, 382 DAGs were created. The creation required 11.02 
seconds. Analyzing those DAGs took additional 14.89 seconds.  

A crucial step of the approach is the mapping of nodes in the UML Activities to 
source code parts. In the exemplary examination, the mapping has been 
created on basis of the traces used for creating the UML Activities. Because of 
this, the source code parts to focus the data race analysis on were directly 
identified by identifying nodes in the UML Activities. The existence of such a 
direct connection has been stated as one of the assumptions in chapter 1.4. 
Out of the 97 different source code classes referenced in the model, 65 
different source code classes have been identified as possibly being involved in 
data races. The analysis thus resulted in a reduction of 33% of source code 
classes in need to be instrumented, as 67%  of all source code classes 
contained in the model have been selected for focusing instrumentation on.  

For the exemplary examination, three test runs have been performed. The 
runtime has been measured automatically within the context of the test 
execution. These test runs together with their runtime were: 

1) Execution of the test cases without any instrumentation: 51 minutes. 

2) Execution of the test cases with focused instrumentation (i.e., 
instrumentation limited to the code parts identified): 211 minutes and 52 
seconds. 

3) Execution of the test cases with full instrumentation (i.e., no focus for the 
instrumentation is set): 339 minutes and one second. 

This means the runtime for the focused instrumentation was reduced by 127 
minutes and nine seconds (i.e., 37.4%) compared to the fully instrumented 
test execution. Based on the execution of test cases without any 
instrumentation, the runtime for the focused instrumentation was 415% of 
the runtime without instrumentation. This means the runtime overhead for the 
focused instrumentation is 315%. The runtime for the full instrumentation was 
664% of the runtime without instrumentation. The runtime overhead for the 
full instrumentation is 564%.  

Comparing those numbers, it can be concluded that the focused 
instrumentation reduces the runtime by 37.4% and the runtime overhead by 



Examinations of Efficacy 

 136 

44.1% (related to the runtime overhead of the fully instrumented execution of 
the test cases). Hypothesis 2 stated that the reduction in the runtime overhead 
is at least inversely proportional to the amount of parallelism in the 
representation of that system under test. As stated above, 67% of all different 
source code classes represented in the model are included in a parallel 
computation. As such, the inverse proportion is 33% . As the achieved 
reduction in the runtime overhead using focused instrumentation compared to 
full instrumentation is higher than that, the hypothesis can be confirmed in the 
specific case examined.  

Note that the authors of [Da16] mention a runtime of roughly 260 minutes for 
the fully instrumented test run, and of 50 minutes for the test run without 
instrumentation. It is unclear why these differences appear. Still, using these 
numbers for a fully instrumented test execution, a reduction of the runtime of 
48 minutes (i.e., 18.46%) and of the runtime overhead of 22.9% can be 
calculated. However, since the fully instrumented test execution was reported 
in [Da16] to be much faster than the fully instrumented test execution reported 
in this thesis, chances are that the test execution with focused instrumented 
also would be much faster. This would again result in higher reductions of the 
runtime and the runtime overhead.  

Since runtime reduction can simply be achieved by ignoring code parts, and 
shall not result in false negatives (i.e., data races found with full 
instrumentation, but not with focused instrumentation), the data races found 
during both data race detection runs had to be compared. This comparison has 
shown that all data races found using full instrumentation are also found 
during focused instrumentation. 

As this examination only covers one application, a generalization of the results 
is not possible. Since a runtime reduction can only be achieved by sorting out 
code parts irrelevant for data race detection, the runtime reduction achievable 
is closely related to the type of application in terms of the amount of 
parallelism inside an application. It can be expected that the runtime reduction 
for a highly parallel application is less than that for an application with only few 
code parts possibly running in parallel.  

Finally, manually creating the UML Activities induces a possible bias, as those 
UML Activities were created with the intent to demonstrate the achievable 
reduction of the runtime overhead. This bias has been tackled by relating to 
the traces created during test case execution. In addition, comparing the 
number of data races reported when executing the data race detection with 
full instrumentation to the number of data races reported when using focused 
instrumentation gives insight into the completeness of the UML Activities in 
relation to the code parts executed. 
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6.5 Controlled Experiment on Analyzing Data Race Reports 

To measure possible efficiency improvements in the identification of data 
races, more precise in the identification of problematic source code locations 
related to data races, a controlled experiment has been conducted. As 
understanding and fixing problems in the source code can be very time 
consuming, this important part in the overall process could not be included in 
the experimental evaluation. This chapter is thus focused on evaluating 
hypothesis 3 and its subordinated hypotheses 3.1, 3.2, and 3.3, as explained in 
chapter 6.1. 

6.5.1 Improvement Possibilities 

When thinking about improvement possibilities, the following cases to 
consider can be identified, with two variants for each:  

1. A single data race 

a. Not a specific data race: one data race, regardless of the variable or 
the location (i.e., the variable and the location are not defined 
upfront). 

b. A specific data race: it is known that a data race exists for a certain 
pair of accesses or locations (either the locations or the variables are 
defined upfront), but more information is required (i.e., the reported 
data race). A pair of accesses with a data race is by definition always 
related to the same variable. Thus, this case can also be specified as: a 
single specific pair of accesses to the same variable. 

2. A single pair of accesses in a location in the code with reported data races 

a. Not a specific location (the location is not defined): since by definition 
the accesses reported in a pair of accesses with a data race have to 
take place in some location in the code, this case can also be specified 
as: a single data race (not a specific data race) 

b. A specific location (the location is defined)  

3. A single pair of accesses to a variable 

a. Not a specific variable (the variable is not defined) 

b. A specific variable (the variable is defined) 

4. All accesses in a specific (defined) location in the code with reported data 
races 
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a. Affecting the same variable (one of possibly several variables) 

b. Affecting different variables (in case of access to several variables in 
the same line of code or same operation). This means: all accesses to 
a specific location independent of the variable affected. 

5. All accesses to the same variable (in different or the same location) with 
reported data races 

a. Not a specific variable (the variable is not defined upfront) 

b. A specific variable (the variable is defined upfront) 

Case 1 number of represents a typical task during analyzing and debugging 
results of data race detection. Cases 2 and 3 both represent specific cases, 
which may be of interest in certain situations. This may seem rather unlikely, as 
this would in most of the cases represent an incomplete phase of analyzing 
and debugging data race reports. Nevertheless, these cases are included to 
obtain a more complete overview on improvement possibilities. Finally, cases 4 
and 5 represent relevant tasks for the practice, as they are targeted at all 
reported data races with regard to a single variable or to a single location. 
These cases in sum also subsume the case “all reported data races”, as data 
races always are related to a variable and to locations in the code: analyzing all 
accesses to all variables or in all locations results in having analyzed all 
reported data races. 

Based on an analysis of those cases, three tasks to consider for the controlled 
experiment can be identified. The tasks to consider are: 

1. Identifying distinct accesses related to a variable 

2. Identifying distinct accesses within a source code class 

3. Identifying distinct accesses independent of a specific variable or source 
code class 

For the experimental evaluation, there were no other tools to compare the 
solution presented in this thesis with, as explained in chapter 3.5. Due to this, a 
basic approach, i.e., using traditional office tools was selected. Thus, the 
experimental evaluation can only assess the assumption, that tool support 
focused on specific tasks can improve the efficiency in conducting those tasks 
in comparison to general-purpose tools. Still, such an assumption, as obvious 
as it may be, cannot be relied on and needs to be scientifically assessed. 

For the tasks identified, it was theoretically analyzed, how many and which 
steps are needed to fulfill a task. Those steps were then transformed into a 
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hypothetical required effort in terms of clicks. This analysis did only include the 
process steps of identifying problematic accesses, not the steps of analyzing 
the source code for reasons for issues and ways to fix possible problems. Since 
the information provided is the same in both approaches to compare, and the 
time needed for analyzing and fixing problems can be very high, too high for 
inclusion in the experimental evaluation, and since this time is strongly 
dependent on a specific situation, those steps were not included.  

6.5.2 Goals, Questions and Metrics 

For our experimental evaluation, the GQM approach was used. The main 
hypothesis is, as shown in chapters 1.3 and 6.1:  

H3: using the log preprocessing, the effort for results analysis is at least 40% 
less with the same effectiveness compared to using the unprocessed log files. 

This main hypothesis was then split up for the identified tasks, and 
measurement goals were formulated. 

H3.1: using the log preprocessing, the number of analyzed data races in a given 
amount of time is at least 40% higher compared to using the unprocessed log 
files. 

H3.2: using the log preprocessing, the number of analyzed reported data races 
related to specific variables in a given amount of time is at least 40% higher 
compared to using the unprocessed log files. 

H3.3: using the log preprocessing, the number of analyzed reported data races 
related to specific source code locations in a given amount of time is at least 
40% higher compared to using the unprocessed log files. 

 

MG3.1: Analyze the analysis of reported data races using the approach for 
preprocessing of log files and the analysis of the same reported data races 
without any preprocessing for the purpose of comparison with regard to the 
number of analyzed accesses in a given amount of time from the viewpoint of 
software developers in the context of a controlled experiment. 

MG3.2: Analyze the analysis of reported data races using the approach for 
preprocessing of log files and the analysis of the same reported data races 
without any preprocessing for the purpose of comparison with regard to the 
number of analyzed accesses related to specific variables in a given amount of 
time from the viewpoint of software developers in the context of a controlled 
experiment. 
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MG3.3: Analyze the analysis of reported data races using the approach for 
preprocessing of log files and the analysis of the same reported data races 
without any preprocessing for the purpose of comparison with regard to the 
number of analyzed accesses related to a specific source code location in a 
given amount of time from the viewpoint of software developers in the context 
of a controlled experiment. 

These measurement goals lead to the following research questions: 

RQ3.1: does the proposed preprocessing lead to efficiency improvement with 
the same effectiveness for analysis of reported data races compared to 
analyzing the same reported data races without preprocessing? 

RQ3.2: does the proposed preprocessing lead to efficiency improvement with 
the same effectiveness for analysis of reported data races related to specific 
variables compared to analyzing reported data races related to the same 
variables without preprocessing? 

RQ3.3: does the proposed preprocessing lead to efficiency improvement with 
the same effectiveness for analysis of reported data races related to specific 
source code locations compared to analyzing reported data races related to 
the same source code locations without preprocessing? 

Finally, the null hypotheses and alternative hypotheses can be formulated as 
follows, considering the relation of data races and accesses: 

H0,3.1: the proposed preprocessing does not lead to an improvement of the 
number of analyzed reported accesses of at least 40% with at least the same 
effectiveness in a given amount of time compared to analyzing the same 
reported accesses without preprocessing. 

H1,3.1: the proposed preprocessing leads to an improvement of the number of 
analyzed reported accesses of at least 40%  with at least the same 
effectiveness in a given amount of time compared to analyzing the same 
reported accesses without preprocessing. 

 

 

H0,3.2: the proposed preprocessing does not lead to an improvement of the 
number of analyzed accesses directly affecting a specific variable of at least 
40% with at least the same effectiveness in a given amount of time compared 
to analyzing the same reported accesses without preprocessing. 
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H1,3.2: the proposed preprocessing leads to an improvement of the number of 
analyzed accesses directly affecting a specific variable of at least 40% with at 
least the same effectiveness in a given amount of time compared to analyzing 
the same reported accesses without preprocessing. 

 

H0,3.3: the proposed preprocessing does not lead to an improvement of the 
number of analyzed accesses related to a specific location in the source code 
of at least 40% with at least the same effectiveness in a given amount of time 
compared to analyzing the same reported accesses without preprocessing. 

H1,3.3: the proposed preprocessing leads to an improvement of the number of 
analyzed accesses related to a specific location in the source code of at least 
40% with at least the same effectiveness in a given amount of time compared 
to analyzing the same reported accesses without preprocessing. 

To be able to answer the research questions and to evaluate the hypotheses, 
several measures need to be taken during the controlled experiment: 

• M1: Number of analyzed reported accesses 

• M2: Number of analyzed reported accesses related to specific variables 

• M3: Number of analyzed reported accesses related to specific source code 
locations 

• M4: Time needed for analysis of the reported accesses 

Derived from these measures: 

• M5: Average time needed for analysis of a reported access 

• M6: Average time needed for analysis of a reported access related to a 
specific variable 

• M7: Average time needed for analysis of a reported access related to a 
specific source code location 

Analysis in this context means identifying the location of a reported access. 
Specific in this context means that in the controlled experiment, a variable or a 
source code location (source code class) is predefined and only these 
predefined items are of interest. The term effectiveness refers to an amount 
(of analyzed accesses or data races), while the term efficiency refers to an 
amount in relation to the time needed.  
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6.5.3 Experimental Design 

In the controlled experiment, one factor was examined: the technique 
executed for analyzing reported data races. There were two factor alternatives, 
namely (1) analyzing the unprocessed reported data races, i.e., the log files, 
using office tools, and (2) analyzing the preprocessed reported data races 
using the newly created tool. 

The experimental unit is the analysis phase in the software engineering 
process, after execution of test cases has taken place. Experimental subjects 
are the individuals applying the techniques, i.e., personnel in software 
development. 

Similar to the measures defined above, the response variables are defined: 

• Effort for analysis of reported accesses: the time needed for analysis of 
the reported accesses is measured. This measure is observed as a number 
(ratio scale). 

• Number of analyzed reported accesses (ratio scale) 

• Number of analyzed reported accesses related to a specific variable (ratio 
scale) 

• Number of analyzed reported accesses related to a specific source code 
location (ratio scale) 

Derived from those measures are: 

• Average time needed to analyze one access: this measure is calculated 
from the above measures and is calculated three times (for the number of 
analyzed reported accesses and the time needed, for the number of 
analyzed reported accesses related to a specific variable and the time 
needed, and for the number of analyzed reported accesses to a specific 
source code location and the time needed). 

• Average number of analyzed accesses per time unit, i.e., minutes: this 
measure is also calculated from the above measures and is again 
calculated three times (for the number of analyzed reported accesses and 
the time needed, for the number of analyzed reported accesses related to 
a specific variable and the time needed, and for the number of analyzed 
reported accesses to a specific source code location and the time needed). 

Both of these two derived measures are related to the same data and these 
derived measures can replace each other. As an example, six analyzed 
accesses within three minutes would mean an average time of 30 seconds per 
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finding, and an analysis rate of two findings per minute. Therefore, both 
derived measures have been calculated, but only the analysis rate has been 
used for the statistical analysis. 

There are several parameters to consider, and not all of them are under 
control. 

• Complexity of the software under analysis: under control, as the same 
software is used for both alternatives. 

• Programming language used: under control, as the same software, and 
thus the same programming language, is used for both alternatives. 

• Process for the analysis: under control, as for both factors, the tasks to do 
are defined, and explained to the experimental subjects. 

• Number of reported data races: under control, as the reported data races, 
i.e., the input for the controlled experiment, are chosen according to 
several characteristics, as explained below. 

• Difficulty of the analysis of reported data races selected by experimental 
subjects: not under control, and eliminated by using a substitute for this 
task (main characteristics of an access are noted down instead of 
analyzing a reported access in detail)  

• Familiarity and experience of subjects with debugging, code reading, 
reading bug reports: not under control, and considered as blocking 
variable. Hence, a block design (within-subject design) with a random 
assignment of factor alternatives and experimental subjects is used. 

The controlled experiment is set up as a block design, with two groups and two 
rounds, as depicted in Table 6. In each round, three tasks are to be conducted, 
in accordance with the tasks identified. The tasks are: 

1. Find all distinct accesses related to the variable X 

2. Find all distinct accesses related to the source code class Y 

3. Find as many distinct accesses as possible 

Note that “X” and “Y” in the text above are placeholders. The tasks for both 
groups contain one variable and one source code class each, with those entries 
being different for each group and each round. The term distinct refers to the 
characteristics of data races in terms of the variable affected, the access type, 
the source code class, and the source code line. If for two accesses at least one 
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of these characteristics is different, then those accesses are considered as 
being distinct. 

 Group 1 Group 2 

Round 1 
Factor alternative 1 

Data race set 1 
Factor alternative 2 

Data race set 1 

Round 2 
Factor alternative 2 

Data race set 2 
Factor alternative 1 

Data race set 2 

Table 6:  Groups and Rounds 

Due to the controlled experiment consisting of two rounds, a possible learning 
effect of the experimental subjects needed to be considered as thread to 
validity. If experimental subjects analyze the same data races or accesses 
twice, a learning effect may happen. This learning effect may substantially 
affect the results in terms of effectiveness and efficiency. To avoid this thread 
to validity while not injecting another thread to validity, the data races or 
accesses need to be different for the two experimental runs. Therefore, two 
different sets of reported data races were prepared. Each set is used in one of 
the two rounds, and for each set, one variable and one source code class is 
selected for usage in the tasks, as described above. 

Both sets used are based on the same set of reported data races, which were 
gained by conducting dynamic data race detection on an application using test 
cases shipped with the source code of that application. To retain comparability 
when using two different sets of data races, those sets do not differ in terms of 
the following characteristics: 

• Number of reported data races 

• Number of duplicates  

• Number of files with reported data races 

Although the characteristics for the data races related to the source code class 
and to the variable were the same in each of the two sets, it was not possible to 
obtain sets with completely identical characteristics. Set 1 consisted of 36 files, 
which contained 838 accesses. Of those, 807 were duplicates. The data races 
contained were spread upon 12 different variables and 30 different locations 
(source code class and line). Set 2 consisted of 36 files, which contained 838 
accesses, with 807 being duplicates. The data races were related to eleven 
different variables and 29 different locations. The relation of data races to 
duplicate data races for the two sub sets is the same as in the complete set. 

For task 1 in set 1, three distinct accesses out of 86 accesses had to be 
identified, spread over 29 files (two files considering only distinct accesses). 
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For task 2 in set 1, five distinct accesses out of 202 accesses had to be 
identified, spread over 29 files (two files considering only distinct accesses). 
For task 3 in set 1, 31 distinct accesses out of all 838 accesses had to be 
identified, spread over 36 files (five considering only distinct accesses).  

For task 1 in set 2, three distinct accesses out of 128 accesses had to be 
identified, spread over all 36 files (two files considering only distinct accesses). 
For task 2 in set 2, five distinct accesses out of 212 accesses had to be 
identified, spread over 29 files (two files considering only distinct accesses). 
For task 3 in set 2, 31 distinct accesses out of all 838 accesses had to be 
identified, spread over 36 files (five considering only distinct accesses). 

The characteristics for both sets are similar in many cases, but not completely 
the same. Although, based on the design of the controlled experiment, no 
negative effects were expected on the results, it was planned at this stage to 
not only compare the two factor alternatives, but also to examine and compare 
the results for the two sets with regard to possible differences in the outcome. 

In addition to the task lists (see Appendix A and B), a questionnaire (see 
Appendix C) has been created to obtain an insight into the perception of the 
participants concerning the tasks fulfilled. This questionnaire asked for the 
professional experience in the area of software engineering, and contained 
four statements for each round: 

1. When thinking about the analysis of data race reports with the 
unprocessed log files… 

• … I feel confidence in the completeness of the results 

• … I feel confidence in the correctness of the results 

• … the analysis was difficult for me 

• … the analysis was exhausting for me 

2. When thinking about the analysis of data race reports with the 
preprocessed data race results… 

• … I feel confidence in the completeness of the results 

• … I feel confidence in the correctness of the results 

• … the analysis was difficult for me 

• … the analysis was exhausting for me 
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These statements could be rated using a five point Likert scale, with the values 
“totally disagree” (1), “rather disagree” (2), “neither agree not disagree” (3), 
“rather agree” (4), and “totally agree” (5). 

6.5.4 Conduct of the Controlled Experiment 

The controlled experiment was conducted with professionals in the software 
engineering domain. As their availability was limited, the time was restricted to 
90 minutes. This has been split up into an introduction into the topic (30 
minutes), and two rounds of 30 minutes each. In both rounds, three tasks had 
to be conducted, which were limited to ten minutes each. 

As the controlled experiment was conducted during the pandemic, it was not 
possible to have in-person meetings with the participants. Instead, individual 
video calls were used. Since there were no other possibilities to observe the 
participants, it was required that the call was not only a voice call, but always 
accompanied with live video. 

Each participant received the two sets of data races, the tool to use, one of two 
task lists (one for each group), and the questionnaire. Each task list contained a 
short description of the scenario (i.e., the participant is part of software 
engineering, test case execution has taken place, and now, the findings shall be 
analyzed), and the tasks themselves together with instructions how to 
document their findings. The time needed for each task was measured, and 
the execution had to be stopped for each task after ten minutes. The time 
needed was then noted for each task and each round. After both rounds, the 
participants were asked to fill out the questionnaire. The filled-out task lists 
and questionnaires had to be sent back directly within the video conference. 

6.5.5 Assessment of the Results of the Controlled Experiment 

Due to the necessity of video calls, the controlled experiment was conducted 
over several weeks, with eight participants. As a first step of the assessment, all 
entries were manually checked for correctness. When, during software 
development, a wrong location would be identified as being part of a data 
race, the following review of the source code would reveal this issue, as the 
location would not match the characteristics of the reported accesses. This 
would result in additional work, i.e., the reported access would have to be 
examined again. Thus, it was decided to sort out wrong entries in the task lists. 
This had to be done for two participants, with two entries each. This situation 
occurred one time when using factor alternative 1, and one time when using 
factor alternative 2. The raw data of the controlled experiment, with the 
corrected number of entries, can be found in Table 7. For all the statistical 
calculations, an 𝛼 of 0.05 was used. 
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 Participant ID 1 2 3 4 5 6 7 8 

Unprocessed 
(Factor 
alternative 
1) 

Set 1 1 1 1 2 2 2 2 

Task 1 – Corrected # 3 3 2 2 2 3 3 2 

Task 1 – Time (minutes 
and seconds) 

09:00 05:00 10:00 10:00 09:30 05:40 08:05 10:00 

Task 2 – Corrected # 5 5 5 4 5 5 5 4 

Task 2 – Time (minutes 
and seconds) 

09:00 06:00 10:00 10:00 10:00 08:40 08:45 10:00 

Task 3 – Corrected # 17 20 14 12 11 11 25 9 

Task 3 – Time (minutes 
and seconds) 

10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 

Processed 
(Factor 
alternative 
2) 

Set 2 2 2 2 1 1 1 1 

Task 1 – Corrected # 3 3 3 3 3 3 3 3 

Task 1 – Time (minutes 
and seconds) 

03:00 01:05 00:45 01:40 01:30 00:50 02:30 03:25 

Task 2 – Corrected # 5 5 5 5 5 5 5 5 

Task 2 – Time (minutes 
and seconds) 

02:00 00:50 01:00 01:45 01:30 01:10 01:32 03:30 

Task 3 – Corrected # 29 31 31 21 21 31 30 19 

Task 3 – Time (minutes 
and seconds) 

10:00 06:30 07:55 10:00 10:00 07:30 10:00 10:00 

Table 7:  Raw Data of the Controlled Experiment 

Based on those data, the time per finding and the findings per minute for each 
task and each participant were calculated. These numbers are shown in Table 
8. Although these numbers are displayed with three decimal digits, for all 
statistical calculations except the statistical power, ten decimal digits had been 
used. For the statistical power, eight decimal digits have been considered. 

 Participant ID 1 2 3 4 5 6 7 8 

Unprocessed 
(Factor 
alternative 
1) 

Set 1 1 1 1 2 2 2 2 

Task 1 – Time per finding 03:00 01:40 05:00 05:00 04:45 01:53 02:41 05:00 

Task 1 – Findings per 
minute 

0.333 0.600 0.200 0.200 0.211 0.529 0.371 0.200 

Task 2 – Time per finding 01:48 01:12 02:00 02:30 02:00 01:44 01:45 02:30 

Task 2 – Findings per 
minute 

0.556 0.833 0.500 0.400 0.500 0.577 0.571 0.400 

Task 3 – Time per finding 00:35 00:30 00:42 00:50 00:54 00:54 00:24 01:06 

Task 3 – Findings per 
minute 

1.700 2.000 1.400 1.200 1.100 1.100 2.500 0.900 

Processed 
(Factor 
alternative 
2) 

Set 2 2 2 2 1 1 1 1 

Task 1 – Time per finding 01:00 00:21 00:15 00:33 00:30 00:16 00:50 01:08 

Task 1 – Findings per 
minute 

1.000 2.769 4.000 1.800 2.000 3.600 1.200 0.878 

Task 2 – Time per finding 00:24 00:10 00:12 00:21 00:18 00:14 00:18 00:42 

Task 2 – Findings per 
minute 

2.500 6.000 5.000 2.857 3.333 4.286 3.261 1.429 

Task 3 – Time per finding 00:20 00:12 00:15 00:28 00:28 00:14 00:20 00:31 

Task 3 – Findings per 
minute 

2.900 4.769 3.916 2.100 2.100 3.100 3.000 1.900 

Table 8:  Rates Calculated from Raw Data 
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Then, the means, the variances and the standard deviations for each task and 
each factor alternative were calculated. For each task, a box plot, a p-p plot 
and a histogram were created to visually check the data and the distribution of 
values. The box plots are shown in Figure 28. 

 

Figure 28:  Box Plots for the Tasks 1, 2, and 3 

The visual inspection indicated that there is a difference in the means, and that 
the distribution is skewed for all tasks. Calculated values for the skewness for 
task 1 are 0.887 for factor alternative 1, and 0.562 for factor alternative 2. For 
task 2, the skewness is 1.403 for factor alternative 1 and 0.345 for factor 
alternative 2. For task 3, the skewness is 0.994 for factor alternative 1 and 
0.807 for factor alternative 2. 

Focusing on the tails of the distributions, the kurtosis was calculated. For task 1, 
the kurtosis is −0.765 for factor alternative 1 and −1.236 for factor alternative 
2. For task 2, the kurtosis is 2.945 for factor alternative 1 and −0.207 for factor 
alternative 2. For task 3, the kurtosis is 0.176 for factor alternative 1 and 0.053 
for factor alternative 2. 

As this led to doubts regarding the assumption of a normal distribution, and as 
the sample size is small, a Shapiro-Wilk test was conducted to see if the sample 
data originate from a normally distributed population. Those tests revealed an 
ambivalence, as for all data for tasks with factor alternative 1 the null 
hypothesis of normal distribution was rejected (Task 1: 𝑊 =  0.136, Task 2: 
𝑊 =  0.113; Task 3: 𝑊 =  0.491; critical 𝑊 =  0.818). For all data for tasks 
with factor alternative 2 instead, the null hypothesis was accepted (Task 1: 
𝑊 =  1.087, Task 2: 𝑊 =  1.387; Task 3: 𝑊 =  0.884; critical 𝑊 =  0.818). 
It is unclear, why there is such a clear separation in the data. It has been 
concluded that for further calculations, non-parametric tests have to be used. 

Due to the paired design, a two-tailed Wilcoxon signed-rank test was used to 
check, whether there are differences in the efficiency of the task execution for 
each task when using factor alternative 1 compared to using factor alternative 
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2, assuming that there are no significant differences (null hypothesis). Again, 
the derived number of findings per minute was used for the calculations. 

For all three tasks, the calculated ranks were 36 and  0. As for a two-tailed test 
with a sample size of 8, the critical value for the rank is 3 using an 𝛼 =  0.05, 
the null hypothesis is rejected for tasks 1, 2 and 3. 

Finally, the tool G*Power [Fa09] was used for a post-hoc analysis of the 

statistical power achieved and the effect size for each task. For the calculation 
of the statistical power, a parent distribution had to be selected. However, it 
can only be stated that there is no normal distribution. Out of the options 
“Normal, Laplace, Logistic, and min ARE”, the option “min ARE” has been 
selected, resulting in a “theoretical minimum of the power” [No21a]. This 
results in the actual statistical power being at least as high as the calculated 
value. 

The results of these computations were surprising, as for all three tasks, a high 
statistical power was calculated although the sample size was low. The reason 
for this was always the calculated effect size, which turned out to be extremely 
high. Note that the effect size numbers presented below are still within the 
sizes reported by Sawilowsky [Sa09]. 

For task 1, the calculated effect size was 1.586, resulting in a statistical power 
of the analysis of 0.930. For task 2, the calculated effect size was even higher, 
with 2.244. This resulted in a statistical power of the analysis of 0.9978. A 
screenshot of the calculation with G*Power can be found below in Figure 29. 

Finally, for task 3, the calculated effect size was 1.786, and the statistical 
power was calculated with 0.971. 
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Figure 29:  Screenshot of G*Power for Task 2 

As mentioned above, there are slight differences in the sets of data races for 
the two groups. Thus, possible differences in the efficiency using set 1 or set 2 
for each task were calculated, for both factor alternatives (i.e., six 
examinations). 

Again, descriptive statistics in the form of calculating the means, the variances, 
and the standard deviations was used as a first step. The box plots were almost 
the same for the tasks 1 and 2 with factor alternative 1 and indicated a slight 
difference for task 3 with factor alternative 1, with set 2 having lower values. 
For factor alternative 2, in contrast, the values for set 2 were slightly higher for 
all tasks. 

Once again, supported by the p-p plot, the histogram, and calculations of 
skewness and kurtosis, a normal distribution could not be confirmed, and thus, 
non-parametric tests were used for the further calculations. Note that in these 
calculations, the sample sizes were always 4, as the data had to be split up with 
regard to the set used. 

To check whether there are differences in the efficiency of conducting the 
tasks with using set 1 or set 2, a Mann-Whitney-U test was used. 
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For factor alternative 1 and all three tasks, the test revealed no statistically 
relevant difference, and the null hypotheses had to be accepted with 𝑈 =  17 
for task 1, 𝑈 =  18 for task 2, and 𝑈 =  14 for task 3, all using a two-tailed test 
with 𝛼 =  0.05. The same holds for factor alternative 2, with 𝑈 =  16 for task 
1, 𝑈 =  16 for task 2, and 𝑈 =  14.5 for task 3. 

Because of these measurements, it can be concluded that the sets had no 
statistically significant influence on the efficiency of conducting the tasks. Due 
to the within-subject design, the experience of experimental subjects is also 
excluded as influencing factor. Thus, the differences in the efficiency of 
conducting the three tasks can be attributed to the factor alternatives. 

Finally, the efficiency improvements observed in the controlled experiment 
were calculated by comparing the mean values for the derived measure of 
findings per minute. For task 1, an efficiency improvement of 6.522 could be 
observed, i.e., the efficiency improved from 100% for factor alternative 1 to 
652% for factor alternative 2. For task 2, a similar value was observed, with an 
efficiency improvement of 6.609 when using factor alternative 2. Finally, for 
task 3, an efficiency improvement of 1.999 when using factor alternative 2 
could be observed. 

As these values are much higher than the hypothesized efficiency 
improvements of at least 0.40, all three null hypotheses stated in chapter 6.5.2 
are rejected, and the alternative hypotheses are accepted. 

Besides analyzing the data of the analysis of data race reports, the 
questionnaire was analyzed with regard to the ratings of the participants 
concerning the statements mentioned in chapter 6.5.3. The raw data of these 
ratings can be seen in the following Table 9: 

 Participant ID 1 2 3 4 5 6 7 8 

 Experience (in years) 5 10 6 2 8 13 12 17 

Unprocessed 
(Factor 
alternative 
1) 

Confidence in 
completeness 

2 2 1 1 2 3 2 2 

Confidence in correctness 4 2 2 2 3 4 4 2 

Difficult 1 2 5 3 4 3 2 4 

Exhausting 1 4 5 4 5 4 5 5 

Processed 
(Factor 
alternative 
2) 

Confidence in 
completeness 

5 5 5 5 3 5 5 5 

Confidence in correctness 5 5 5 4 3 5 5 5 

Difficult 1 1 1 1 1 1 1 2 

Exhausting 1 1 1 1 1 2 2 2 

Table 9:  Raw Data of the Questionnaire 

The experience was not further analyzed statistically. This data was instead 
used to examine whether there are any dependencies between the experience 
and the efficiency in the analysis of data race reports. Such a dependency 
could not be found. 
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As the data received from using the Likert scale is ordinal data, the possibilities 
to analyze the data are more limited than when using a ratio scale. A Mann-
Whitney-U test has been used to analyzing the data and comparing the ratings 
for the factor alternatives 1 and 2. It was hypothesized that there is no 
difference between the ratings for both factor alternatives (zero hypothesis). 
The statistical analyses have been conducted with an 𝛼 = 0.05, and due to 
both 𝑛1 and 𝑛2 being 8, 𝑈𝑐𝑟𝑖𝑡  =  13 for the Mann-Whitney U Test.  

All hypotheses had to be rejected. The hypothesis regarding the confidence in 
the completeness of the results had to be rejected with 𝑈𝑚𝑖𝑛 =  0.5, 𝑧 =
 −3.308,  and 𝑝 = 0.001 . The analysis regarding the confidence in the 
correctness of the results revealed values of 𝑈𝑚𝑖𝑛 =  5, 𝑧 =  −2.866, and 𝑝 =
0.005. Computing the rank sums for the ratings regarding the perception of 
the tasks being difficult and being exhausting resulted in the same rank sums, 
and the same values of 𝑈𝑚𝑖𝑛 =  5.5, 𝑧 =  −2.783,  and 𝑝 = 0.005 . The 
calculated effect sizes were 0.827 for the confidence in the completeness of 
the results, 0.709 for the confidence in the correctness of the results, and 
0.696 both for the tasks being difficult and being exhausting.  

Summarized, it can be concluded that the participants had more confidence 
both in the completeness and in the correctness of the results of the analysis 
when using the preprocessed data race reports compared to when using the 
unprocessed log files. In addition, the participants perceived these tasks less 
difficult and less exhausting when using the preprocessed data race reports. 

6.5.6 Discussion of the Results 

Although the sample size for the controlled experiment was low, the immense 
effect sizes allowed drawing conclusions with a high statistical power. Still, the 
small sample size is a threat to the validity. Due to the randomization of 
experimental subjects and group assignment, the risk can be assessed to be 
acceptable. An influence by learning effects due to the experimental subjects 
getting used to analyze data races and accesses has been mitigated by using a 
within-subject design. 

Another possible threat to validity might be related to the sets of data races 
selected for the controlled experiment. Although the sets were selected out of 
a real-world set of data races, the characteristics of the selected sets of data 
races match the source set of reported data races, and those characteristics at 
least in terms of duplicate data races match what is reported for data races in 
general in literature, it cannot be excluded that with other sets of reported data 
races different values would have been observed. 

Thus, the controlled experiment should be replicated with an increased sample 
size, and with a different set of reported data races. 
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It is interesting to note that the efficiency improvements for tasks 1 and 2 are 
much higher than for task 3, and that the efficiency improvement for task 2 is 
higher than for task 1. A possible interpretation is as follows. 

For tasks 1 and 2, specific affected variables and source code locations had to 
be searched for. While the tool presented in this article allows to just filtering 
the data for such criteria, it is a time consuming task to read through all the 
reported data races. For each entry in the result files, it has to be checked 
whether the affected variables or source code locations are those searched for. 
In addition, there is a high number of duplicates, which need to be read and 
compared to what has already been found, which again is time consuming. 
The tool instead allows hiding those duplicate entries. These factors contribute 
to the high efficiency improvement. 

The difference in the efficiency improvements in tasks 1 and task 2 might stem 
from the fact, that for task 1, a certain variable was specified, and for task 2, a 
source code class was specified. As a variable is connected to a data race, and 
a source code class to each of the two accesses building a data race, the effort 
for examining specific source code classes is higher than for examining specific 
variables. 

When conducting task 3, those specific variables and source code classes are 
not of interest, and thus do not influence the efficiency. However, the 
duplicates still are present for factor alternative 1 and can be hidden in factor 
alternative 2. This contributes to the difference in the efficiency of conducting 
task 3 with factor alternative 1 or 2. 

Finally, the tool presents all results in a tabular format, providing a view on all 
the accesses at once (although scrolling may be needed), while for factor 
alternative 1, the accesses were spread across many different files. In addition, 
another important influence on the efficiency stems from the knowledge 
provided by factor alternative 2 on how many distinct accesses exist, with 
regard to a specific variable or source code location, and in general. Without 
such a knowledge, all reported data races had to be examined to gain 
confidence on how many distinct data races or accesses exist, and that all 
existing distinct data races or accesses have been found. It can be assumed 
that this strongly influences the efficiency in data race analysis. 

The results from analyzing the questionnaires support these conclusions. The 
participants profited from the knowledge gained by using the tool in that they 
felt more confident in their results regarding completeness and correctness. 
When using the tool, the participants were able to compare their results with 
the entries the tool displayed. Without having such an overview, there is no 
basis for that judgment except for an overview on how many folders were 
analyzed and how many folders were remaining. However, the number of files 
or folders does not allow a reliable assessment, as there may be different 
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numbers of reported data races within each file. The only concerns that were 
raised during the video calls were that the participants had no possibility to 
review the source code of the tool for the preprocessing itself and thus had to 
trust on its reliability.  

Furthermore, having an organized overview on all the results at one place, and 
not having to browse through several folders and reading files supported the 
participants in their task in that the task was perceived as being less difficult 
and less exhausting. A reason may be that with the presentation in the tool, the 
participants could focus on reading the details of the accesses and data races 
and there was no necessity to concentrate on such surrounding tasks.  

The higher confidence in the completeness of the results when using the 
preprocessing could be confirmed in that the participants could in summary 
indeed detect more accesses or data races in the same amount of time. 
However, the higher confidence in the correctness of the results could not be 
confirmed when analyzing the results of the data race report analysis. For both 
factor alternatives each, one participant had two wrong entries, as stated in 
chapter 6.5.5. For factor alternative 2 (preprocessed), one participant wrote 
down a wrong source code line in two cases. For factor alternative 1 
(unprocessed), another participant inserted two wrong entries in the task list. 
These entries could not be attributed to a specific source of error, e.g., writing 
down a wrong number for the source code line, or reading a wrong variable.  

It has to be noted that the comparison of the efficiency could not be done 
between two tools specialized exactly on the purpose of analyzing data races. 
As such, the controlled experiment can only show efficiency improvements 
when using such a specialized tool compared to not using such a specialized 
tool.  

6.6 Summary 

As the solution presented in this thesis was targeted at efficiency 
improvements in the quality assurance process for data races, the effects of 
the solution have been studied in terms of achievable efficiency 
improvements. Based on the problems and goals, hypotheses have been 
formulated. Some properties of the solution could be formally proven. Other 
properties of the solution have been studied using exemplary evaluations and a 
controlled experiment. 

As for hypothesis 1, the complete and correct analysis has been formally 
proven in chapter 4.6 in theory. As explained, in the practical application, cycle 
traversals need to be limited to prevent infinite DAGs and infinitely sized 
DAGs. This limitation has been implemented as shown in chapter 4.6.5.  An 
additional assessment of the completeness in the practical application of the 
analysis has thus been conducted. Although this assessment confirmed the 
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hypothesis, as shown in chapter 6.3, it is not possible to generalize those 
results, as explained in chapter 6.1.  

The efficiency improvement in the dynamic detection of data races, as 
assumed in hypothesis 2, has been assessed using an exemplary examination 
on one system. Although this system is a real-world system, and not created 
for the specific purpose of this thesis, it cannot be seen as representative for all 
applications that exist. As such, hypothesis 2 could be confirmed in that case, 
as explained in chapter 6.4. These results are again not generalizable.  

A controlled experiment has been conducted with regard to hypothesis 3 and 
the underlying hypotheses 3.1, 3.2, and 3.3, as presented in chapter 6.5. This 
controlled experiment revealed a very high effect size, and due to this, the 
results have a high statistical power despite the rather low sample size.  With 
achieved efficiency improvements of 652% (relating to hypothesis 3.1), 661% 
(relating to hypothesis 3.2), and 199%  (relating to hypothesis 3.3), the 
achieved efficiency improvement in analyzing data race reports is much higher 
than what was expected.  

Table 10 summarizes the results. As explained, experimental evaluations could 
not be conducted for all hypotheses defined in this thesis. To further raise the 
knowledge regarding the achieved effects of the solution presented in this 
thesis, additional experimental evaluations can be set up especially regarding 
hypotheses 1 and 2. This should be addressed in future work.  

Hypotheses Confirmation achieved 

Hypothesis 1: Complete and correct analysis 

(partially) 
Formally proven (theory) and 

confirmed exemplarily (practice) 
No experimental evaluation 

Hypothesis 2: Efficiency improvement in the 
dynamic data race detection of data races 

(runtime overhead) 

(specific case) 
Confirmed exemplarily 

No experimental evaluation 

Hypothesis 3:Efficiency improvement in analyzing 
data races 

Indirectly by evaluating subordinated 
hypotheses 

Hypothesis 3.1: Efficiency improvement in 
analyzing data race reports for data races 

Controlled experiment 

Hypothesis 3.2: Efficiency improvement in 
analyzing data race reports for data races affecting 

a source code class 
Controlled experiment 

Hypothesis 3.3: Efficiency improvement in 
analyzing data race reports for data races affecting 

a variable in the source code. 
Controlled experiment 

Table 10:  Summary of Achieved Confirmation of Hypotheses 
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7 Summary and Future Work 

In this thesis, a solution for efficiency improvements in the quality assurance 
process for data races was presented. The purpose of this chapter is to explain 
the contributions made, related to the research objectives stated in chapter 
1.3, and how the state of the art has been extended. Furthermore, directions 
for future work are given. 

7.1 Contributions 

The solution presented in this thesis consists of two main parts, surrounding 
the test execution in the quality assurance process for data races:  

1. Analyzing the dynamic behavior of a system under test, with the goal to 
identify nodes, representing source code classes that may be executed in 
parallel to other nodes or to themselves. This information can then be 
used to focus instrumentation for the dynamic data race detection, 
enabling a reduction in the runtime overhead without affecting its 
effectiveness, and thus an efficiency improvement in the dynamic data 
race detection.  

2. Analyzing characteristics of data races in general and of data race reports, 
with the goal to process these data race reports, and to provide the results 
of the preprocessing to users. This preprocessing and the presentation of 
the results enable a more efficient analysis of detected data races. 

Several contributions have been made while conducting the research in the 
context of this thesis, aligned with the objectives of the research (see chapter 
1.3), as shown in the following.  

1) Assess the representations of dynamic behavior of a system with the goal 
to select one representation for the analysis. 

Several different representations of the dynamic behavior of a system 
exist. In this thesis, the most prominent types of representations, 
according to the literature, have been examined. As a result, UML Activities 
have been chosen as the representation of the dynamic behavior of a 
system used in the context of this thesis. 

2) Analyze the characteristics of the chosen representation of the dynamic 
behavior with the goal to understand the specifics and how these specifics 
influence the interpretation of this representation. 
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The UML specification has been examined in detail and all elements, for 
which a definition exists, have been analyzed with the goal to understand 
the influence of these elements on the UML Activities. This not only 
includes nodes and edges, but also regions, pins, parameters, 
combinations of elements, and combinations of UML Activities. As a result, 
all elements, for which a definition exists, could be considered in the 
analysis. 

3) Create a technique to analyze the chosen representation of the dynamic 
behavior of a system for parallel elements, with the goal to obtain an 
algorithmic approach for the analysis. 

Based on a systematic literature review, the current state of the art in the 
analysis has been identified. The analysis of the state of the art revealed 
several research gaps, which could be closed by the solution presented in 
this thesis. As such, the state of the art could be advanced in this thesis. A 
core contribution to advancing the state of art is the possibility to obtain 
complete analysis results while limiting possibly infinite cycle traversals. 

Based on the knowledge gained by analyzing the UML superstructure, the 
elements could be categorized into basic and additional elements. While 
basic elements could be directly considered in the analysis of UML 
Activities, additional elements required a specific handling, and those 
elements either had to be transferred to other elements, considered after 
the analysis, or both. 

The solution for the analysis therefore consists of three steps: 
transformation, analysis, and post-analysis. The algorithmic approaches 
forming the core of the analysis and the post-analysis steps are formal 
approaches based on graph theoretic concepts, and thus, the algorithms 
for the analysis could be clearly defined.  

4) Show the completeness and correctness of the obtained algorithmic 
approach, with the goal to establish confidence in this approach. 

As the analysis of UML Activities presented in this thesis is a formal 
approach, formal proofs could be used to show certain characteristics of 
the solution, including correctness of the results. The completeness of the 
approach has been proven from a theoretic viewpoint. The 
implementation of this approach has been examined using several UML 
Activities representing different levels of complexity, and completeness 
and correctness of the results could be confirmed for these examples. 

5) Evaluate the effects on efficiency of the test execution of the algorithmic 
approach compared to not using the algorithmic approach to focus 
instrumentation. 
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As an evaluation of the effects on the efficiency of the test execution with 
the necessary external validity to draw generalizable results would require 
an immense effort, this could not be included in this thesis. However, an 
exemplary examination has been conducted, and for this specific case, a 
reduction of the runtime overhead when using the focused 
instrumentation compared to using full instrumentation could be shown. 

6) Enable the practical application of the algorithmic approach, with the goal 
to obtain a fully automated tool implementing this algorithmic approach. 

The algorithmic approach for the analysis of UML Activities has been 
implemented prototypically in ADDAG. The usage of ADDAG has been 

shown with an exemplary application, and the approach itself has been 
used to demonstrate the completeness of the results of the analysis and to 
demonstrate possible improvements in the runtime overhead in dynamic 
data race detection. 

7) Analyze characteristics of data race reports, with the goal to obtain 
knowledge about how to preprocess data races reports so that the 
analysis is more efficient. 

Based on a formal definition of data races from literature, the 
characteristics of data races have been derived. These characteristics have 
been complemented by the results of the analysis of data race reports, 
provided by the dynamic data race detector used in this thesis. The 
knowledge gained has been transferred to a UML model. In addition, 
possible duplicates in data race reports have been considered in the 
analysis. 

8) Enable the practical application of the knowledge obtained on 
characteristics of data race reports, with the goal to obtain tool support. 

Based on the knowledge gained concerning data races and data race 
reports, the application DataRaceAnalyzer has been developed, 

which preprocesses data race reports, and presents the results of this 
preprocessing to users. Since no other applications exist that are targeted 
at guiding the analysis of data race reports and the elimination of such 
defects despite a need for such tools, the state of the art could be 
advanced. 

9) Empirically evaluate the effects of the preprocessing of the data race 
reports and of the tool support on the efficiency on the analysis of data 
race reports compared to analyzing unprocessed data race reports. 

The effects of the preprocessing of data race reports on the efficiency of 
the analysis of data race reports have been empirically evaluated in a 
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controlled experiment with eight participants. Despite the low sample 
size, the effect size was very high, and thus, a high statistical power could 
be achieved. The results of this controlled experiment have shown that 
immense improvements in the efficiency of the analysis of data race 
reports could be enabled when using the preprocessing compared to 
analyzing unprocessed data race reports.  

7.2 Open Questions and Future Work 

The open questions and directions for future work can be categorized into 
methodologies, tool support, and empirical evaluation. 

In terms of methodologies, multiple opportunities for future work are given. In 
this thesis, it was assumed, that behavioral representations of the system 
under test exist. As this is not always given, an open question is how to 
automatically derive such models, if they have not been created during 
development, on the basis of the source code of an application. In the same 
regard, the completeness of the behavioral representation was assumed. 
Based on such a methodology to derive such models, an approach to check the 
completeness of these behavioral descriptions would be valuable. 

The algorithm and the solution for analyzing behavioral descriptions are 
focused on UML Activities. Since other representations exist, algorithms to 
analyze such other types of representations could enable an extension of the 
solution, providing more flexibility in terms of the prerequisites. In the same 
manner, and interesting direction is to include other models of the UML itself 
in the analysis, such as sequence diagrams or class diagrams. 

Once methodologies to derive behavioral representations in the form of UML 
Activities have been created, the next logical step is to implement these 
methodologies to create tool support, and in the best case a fully-automated 
approach. The solution presented in this thesis can be extended in this regard, 
to provide better support for applications under test by lowering the 
prerequisites for usage.  

The same holds with regard to tool support for deriving other types of 
behavioral representations of a system. In that case, the solution for the 
analysis of UML Activities could be extended to broaden its scope. Since a three 
step approach is used, and the first step is a transformation, the tool is already 
prepared in that the analysis relies on general node types for the analysis. 
Thus, another transformation would be required. If a mapping from the 
elements of a representation of the dynamic behavior to the elements already 
used in the analysis can be created, this analysis could be reused. However, the 
post-analysis phase might require to be extended, depending on the elements 
of that newly supported type of representation.  
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With regard to the analysis of reported data races, the tool presented in this 
thesis can be further improved for continuous usage. Although a status can be 
assigned to each entry in the results list, it is not possible to export or import 
those lists together with the status information. Such a feature allows working 
on the results across several sessions. Another opportunity for future work is to 
prepare the tool for multi user operation. By splitting up responsibilities for 
data races related to certain variables to several users, it would be possible to 
work on the same list in parallel, thus saving time in case multiple users need to 
analyze and eliminate data races for the same application. 

Open questions remain with regard to the empirical evaluations. Although the 
correctness and completeness of the analysis of UML Activities has been 
formally proven, more assessments in terms of the practical application of the 
implementation are desirable.  In the course of this thesis, such an assessment 
has been made using ten activities. However, the possibilities to combine UML 
elements are vast, and a more intensive assessment allows a better 
understanding of the completeness of the analysis with regard to the 
implementation, and would thus provide more confidence in the usage of the 
tool.  

Furthermore, the efficiency improvement of dynamic data race detection 
using a focused instrumentation could only be assessed exemplarily with one 
application. Thus, the external validity of this assessment is low. Additional 
assessments using different applications of various sizes can provide a better 
insight into the benefits of using focused instrumentation, and thus strengthen 
the knowledge regarding its effects. 

Finally, the controlled experiment with regard to the assessment of efficiency 
improvements in the analysis of data race reports could only be done by 
comparing DataRaceAnalyzer to office tools. At the time of conducting 

this controlled experiment, there was no other tool available, which focused on 
the analysis of data race reports in terms of enabling efficiency improvements. 
In the future, other tools supporting the analysis of data race reports may be 
released. It would then be very interesting to compare those tools to 
DataRaceAnalyzer, to obtain insight into different approaches and their 

effects. As DataRaceAnalyzer was the first tool with such a focus, the 

insights gained may then allow additional improvements, with the ultimate 
goal to further improve the efficiency of data race analysis and eventually the 
whole quality assurance process for data races. 

 

  



Summary and Future Work 

 162 

  



References 

 163 

References 

 

[AB10] Adve, S. V.; Boehm, H.-J.: Memory Models: A Case For Rethinking Parallel 
Languages and Hardware. Communications of the ACM 8/53, pp. 90–101, 2010. 

[Ab17] Abbaspour Asadollah, S.; Sundmark, D.; Eldh, S.; Hansson, H.: Concurrency bugs in 
open source software: a case study. Journal of Internet Services and Applications 
1/8, 2017. 

[ABF04] Arisholm, E.; Briand, L. C.; Foyen, A.: Dynamic coupling measurement for object-
oriented software. IEEE Transactions on Software Engineering 8/30, pp. 491–506, 
2004. 

[ABF08] Almeida, P. S.; Baquero, C.; Fonte, V.: Interval Tree Clocks: A Logical Clock for 
Dynamic Systems. In (Baker, T. P.; Bui, A.; Tixeuil, S. Eds.): Principles of Distributed 
Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 259–274, 2008. 

[Ad10] Adve, S.: Data races are evil with no exceptions. Communications of the ACM 
11/53, p. 84, 2010. 

[An94] Andersen, L. O.: Program Analysis and Specialization for the C Programming 
Language. Dissertation, Copenhagen, 1994. 

[As15] Asadollah, S. A.; Hansson, H.; Sundmark, D.; Eldh, S.: Towards Classification of 
Concurrency Bugs Based on Observable Properties. In: Proceedings of the First 
International Workshop on Complex faUlts and Failures in LargE Software 
Systems (COUFLESS '15). IEEE Press, pp. 41–47, 2015. 

[AS15] Atkey, R.; Sannella, D.: ThreadSafe: Static Analysis for Java Concurrency, 2015. 

[Au97] Audenaert, K.: Clock trees: logical clocks for programs with nested parallelism. 
IEEE Transactions on Software Engineering 10/23, pp. 646–658, 1997. 

[Ba06a] Banerjee, U.; Bliss, B.; Ma, Z.; Petersen, P.: A theory of data race detection. July 17 - 
20, 2006, Portland, Maine, USA. ACM Press, New York, NY, 2006. 

[Ba06b] Banerjee, U.; Bliss, B.; Ma, Z.; Petersen, P.: Unraveling Data Race Detection in the 
Intel® Thread Checker, 2006. 

[BA08] Boehm, H.-J.; Adve, S. V.: Foundations of the C++ concurrency memory model. In: 
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language 
Design and Implementation (PLDI '08). Association for Computing Machinery, 
New York, NY, USA ACM, New York, NY, 2008. 

[BCM10] Bond, M. D.; Coons, K. E.; McKinley, K. S.: PACER: Proportional Detection of Data 
Races. ACM SIGPLAN Notices 6/45, pp. 255–268, 2010. 

[BH08] Bodden, E.; Havelund, K.: Racer: Effective Race Detection Using AspectJ. 
Association for Computing Machinery, New York N.Y., 2008. 



References 

 164 

[BHO20] Blondin, M.; Haase, C.; Offtermatt, P.: Directed Reachability for Infinite-State 
Systems, Springer International Publishing, 2020. 

[Bi17] Biswas, S.; Cao, M.; Zhang, M.; Bond, M. D.; Wood, B. P.: Lightweight data race 
detection for production runs. In: Proceedings of the 26th International 
Conference on Compiler Construction (CC 2017). Association for Computing 
Machinery, New York, NY, USA, pp. 11–21, 2017. 

[BK20] Burzynski, P.; Karagiannis, D.: bee-up – A teaching tool for fundamental 
conceptual modelling. Joint Proceedings of Modellierung 2020 Short, Workshop 
and Tools & Demo Papers, pp. 217–221, 2020. 

[Bl18] Blackshear, S.; Gorogiannis, N.; O'Hearn, P. W.; Sergey, I.: RacerD: compositional 
static race detection. In: Proceedings of the ACM on Programming Languages 
OOPSLA/2, pp. 1–28, 2018. 

[Bo11a] Boehm, H.-J.: How to miscompile programs with “benign” data races. HotPar'11: 
Proceedings of the 3rd USENIX conference on Hot topic in parallelism, 2011. 

[Bo11b] Boghdady, P.N. et al. Eds.: An enhanced test case generation technique based on 
activity diagrams. Cairo, Egypt, 29 November - 1 December 2011. IEEE, 
Piscataway, NJ, 2011. 

[Bo12a] Boehm, H.-J.: Position paper: Nondeterminism is unavoidable, but data races are 
pure evil. In (Black, A. P. et al. Eds.): Proceedings of the 2012 ACM workshop on 
Relaxing synchronization for multicore and manycore scalability - RACES '12. ACM 
Press, New York, New York, USA, p. 9, 2012. 

[Bo12b] Boehm, H.-J.: Position Paper: Nondeterminism is unavoidable, but data races are 
pure evil. RACES '12: Proceedings of the 2012 ACM workshop on Relaxing 
synchronization for multicore and manycore scalability, p. 9, 2012. 

[Bo19] Bo, L.; Jiang, S.; Qian, J.; Wang, R.; Yao, Y.: Performance Evaluation of Data Race 
Detection Based on Thread Sharing Analysis With Different Granularities: An 
Empirical Study. IEEE Access 7, pp. 73819–73829, 2019. 

[Br73] Brinch Hansen, P.: Operating System Principles. Prentice-Hall, Inc., New Jersey, 
1973. 

[BRJ96] Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language for Object-
Oriented Development. Unix Review 13/14, 1996. 

[Ch09] Chen, Q.; Wang, L.; Yang, Z.; Stoller, S. D.: HAVE: Detecting Atomicity Violations 
via Integrated Dynamic and Static Analysis. In (Chechik, M.; Wirsing, M. 
Eds.): Fundamental Approaches to Software Engineering. Springer Berlin 
Heidelberg, Berlin, Heidelberg, pp. 425–439, 2009. 

[Ch76] Chen, P. P.-S.: The entity-relationship model—toward a unified view of data. ACM 
Transactions on Database Systems 1/1, pp. 9–36, 1976. 

[CL10] Chew, L.; Lie, D.: Kivati: Fast Detection and Prevention of Atomicity Violations. 
Proceedings of the EuroSys 2010 Conference, Paris, France, April 13-16, 2010. 
Association for Computing Machinery, New York, 2010. 



References 

 165 

[CLL07] Chandler, R.; Li, H.; Lam, C. P.: Generating Usage Scenarios Automatically from 
UML Activity Diagrams. Technical Report: TR-SERG-06-01, Mount Lawley, 2007. 

[Da16] Daian, P.; Guth, D.; Hathhorn, C.; Li, Y.; Pek, E.; Saxena, M.; Şerbănuţă, T. F.; Roşu, 
G.: Runtime Verification at Work: A Tutorial. In (Falcone, Y.; Sánchez, C. 

Eds.): Runtime Verification. Springer International Publishing, Cham, pp. 46–67, 

2016. 

[DB03] Drummond, L. M.; Barbosa, V. C.: On reducing the complexity of matrix clocks. 
Parallel Computing 7/29, pp. 895–905, 2003. 

[Di65a] Dijkstra, E. W.: Cooperating sequential processes. Technical Report EWD-123, 
1965. 

[Di65b] Dijkstra, E. W.: Solution of a problem in concurrent programming control. 
Communications of the ACM 9/8, p. 569, 1965. 

[DMM98] Diwan, A.; McKinley, K. S.; Moss, J. E. B.: Type-based alias analysis. ACM SIGPLAN 
Notices 5/33, pp. 106–117, 1998. 

[Ef12] Effinger-Dean, L.; Lucia, B.; Ceze, L.; Grossman, D.; Boehm, H.-J.: IFRit: 
interference-free regions for dynamic data-race detection. In: Proceedings of the 
ACM international conference on Object oriented programming systems 
languages and applications (OOPSLA '12). Association for Computing Machinery, 
New York, NY, USA, 2012. 

[EM72] Eisenberg, M. A.; McGuire, M. R.: Further comments on Dijkstra's concurrent 
programming control problem. Communications of the ACM 11/15, p. 999, 1972. 

[Er10] Erickson, J.; Musuvathi, M.; Burckhardt, S.; Olynyk, K.: Effective Data-Race 
Detection for the Kernel, 2010. 

[Fa09] Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G.: Statistical power analyses using 
G*Power 3.1: tests for correlation and regression analyses. Behavior research 
methods 4/41, pp. 1149–1160, 2009. 

[FF09] Flanagan, C.; Freund, S. N.: FastTrack: Efficient and Precise Dynamic Race 
Detection. ACM SIGPLAN Notices 6/44, pp. 121–133, 2009. 

[FF20] Flanagan, C.; Freund, S. N.: The anchor verifier for blocking and non-blocking 
concurrent software. Proceedings of the ACM on Programming Languages 
OOPSLA/4, pp. 1–29, 2020. 

[Fi88] Fidge, C. J.: Timestamps in Message-Passing Systems That Preserve the Partial 
Ordering. Australian Computer Science Communications No. 1/Vol. 10, pp. 56–66, 
1988. 

[Fi91] Fidge, C.: Logical time in distributed computing systems. Computer 8/24, pp. 28–
33, 1991. 

[FM82] Fischer, M. J.; Michael, A.: Sacrificing serializability to attain high availability of 
data in an unreliable network. In: Proceedings of the 1st ACM SIGACT-SIGMOD 



References 

 166 

symposium on Principles of database systems (PODS '82). Association for 
Computing Machinery, New York, NY, USA, 1982. 

[Fo10] Fowler, M.: UML distilled. A brief guide to the standard object modeling language. 
Addison-Wesley, Boston, MA, 2010. 

[FQ03] Flanagan, C.; Qadeer, S.: A type and effect system for atomicity. In: Proceedings 
of the ACM SIGPLAN 2003 conference on Programming language design and 
implementation (PLDI '03). Association for Computing Machinery, New York, NY, 
USA, 2003. 

[Ge19] Genç, K.; Roemer, J.; Xu, Y.; Bond, M. D.: Dependence-aware, unbounded sound 
predictive race detection. Proceedings of the ACM on Programming Languages 
OOPSLA/3, pp. 1–30, 2019. 

[GG21] Guizani, K.; Ghannouchi, S. A.: An approach for selecting a business process 
modeling language that best meets the requirements of a modeler. Procedia 
Computer Science 181, pp. 843–851, 2021. 

[GKM20] Gharat, P. M.; Khedker, U. P.; Mycroft, A.: Generalized Points-to Graphs: A Precise 
and Scalable Abstraction for Points-to Analysis. ACM Transactions on 
Programming Languages and Systems 2/42, pp. 1–78, 2020. 

[GN08] Godefroid, P.; Nagappan, N.: Concurrency at Microsoft – An Exploratory Survey. 
Microsoft Research Technical Report MSR-TR-2008-75, 2008. 

[HMR14] Huang, J.; Meredith, P. O.; Rosu, G.: Maximal sound predictive race detection with 
control flow abstraction. In (O'Boyle, M.; Pingali, K. Eds.): Proceedings of the 35th 
ACM SIGPLAN Conference on Programming Language Design and 
Implementation. ACM, New York, NY, USA, pp. 337–348, 2014. 

[Ho72] Holt, R. C.: Some Deadlock Properties of Computer Systems. ACM Computing 
Surveys 3/4, pp. 179–196, 1972. 

[Ho74] Hoare, C. A. R.: Monitors. Communications of the ACM 10/17, pp. 549–557, 1974. 

[HS09] Hammer, C.; Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive 
information flow control based on program dependence graphs. International 
Journal of Information Security 6/8, pp. 399–422, 2009. 

[HZZ13] Huang, J.; Zhou, J.; Zhang, C.: Scaling predictive analysis of concurrent programs 
by removing trace redundancy. ACM Transactions on Software Engineering and 
Methodology 1/22, pp. 1–21, 2013. 

[Je82] Jensen, K.: High-Level Petri Nets. Applications and Theory of Petri Nets. 
Informatik-Fachberichte 66, pp. 166–180, 1982. 

[JT14] Jannesari, A.; Tichy, W. F.: Library-Independent Data Race Detection. IEEE 
Transactions on Parallel and Distributed Systems 10/25, pp. 2606–2616, 2014. 

[Ka17] Kasikci, B.; Cui, W.; Ge, X.; Niu, B.: Lazy Diagnosis of In-Production Concurrency 
Bugs: Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 
New York, NY, USA, pp. 582–598, 2017. 



References 

 167 

[KE14] Klaus, A.; Elberzhager, F.: Retrieving the state of the art and of the practice in QA 
for data inconsistencies. In (Büren, G. et al. Eds.): MetriKon 2014 - Praxis der 
Software-Messung. Tagungsband des DASMA Software Metrik Kongresses ; 
MetriKon 2014, 06.-07. November 2014, Stuttgart. Shaker, Aachen, pp. 127–136, 
2014. 

[Ki07a] Kim, H.; Kang, S.; Baik, J.; Ko, I.: Test Cases Generation from UML Activity 
Diagrams: Eighth ACIS International Conference on Software Engineering, 
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 
2007). IEEE, pp. 556–561, 2007 - 2007. 

[Ki07b] Kitchenham, B.; Charters, S.; Budgen, D.; Brereton, P.; Turner, M.; Linkman, S.; 
Jorgensen, M.; Mendes, E.; Visaggio, G.: Guidelines for performing Systematic 
Literature Reviews in Software Engineering. Version 2.3. EBSE Technial Report. 
EBSE-2007-01, 2007. 

[Kl12] Klaus, A.: Stakeholder-orientierter Software Test für Geschäftsanwendungen. 
Softwaretechnik-Trends 1/32, pp. 8–9, 2012. 

[Kl13] Klaus, A.: Analyse und Test konkurrierender Zugriffe auf Daten bei 
Geschäftsanwendungen - Konzept zur Evaluierung. In (Büren, G. et al. 
Eds.): MetriKon 2013 - Praxis der Software-Messung. Tagungsband des DASMA 
Software Metrik Kongresses ; MetriKon 2013, 14.-15. November 2013, 
Kaiserslautern. Shaker, Aachen, pp. 313–318, 2013. 

[KMV17] Kini, D.; Mathur, U.; Viswanathan, M.: Dynamic race prediction in linear time. In 
(Cohen, A.; Vechev, M. Eds.): Proceedings of the 38th ACM SIGPLAN Conference 
on Programming Language Design and Implementation. ACM, New York, NY, 
USA, pp. 157–170, 2017. 

[KNS92] Keller, G.; Nüttgens, M.; Scheer, A.-W.: Semantische Prozeßmodellierung auf der 
Grundlage „Ereignisgesteuerter Prozeßketten (EPK)“. Scheer, A.-W. (Hrsg.): 
Veröffentlichungen des Instituts für Wirtschaftsinformatik (IWi), Universität des 
Saarlandes 89, 1992. 

[Ko15] Koutsopoulos, N.; Northover, M.; Felden, T.; Wittiger, M.: Advancing data race 
investigation and classification through visualization. Bremen, Germany, 27-28 
September 2015. IEEE, Piscataway, NJ, 2015. 

[KO20] Kharitonov, D. I.; Odyakova, D. S.: Modelling race conditions in multithreading 
programs in terms of Petri nets. IOP Conference Series: Materials Science and 
Engineering 734, p. 12030, 2020. 

[KS09] Kundu, D.; Samanta, D.: A Novel Approach to Generate Test Cases from UML 
Activity Diagrams. The Journal of Object Technology 3/8, p. 65, 2009. 

[KZC12] Kasikci, B.; Zamfir, C.; Candea, G.: Data Races vs. Data Race Bugs: Telling the 
Difference with Portend. Seventeenth International Conference on Architectural 
Support for Programming Languages and Operating Systems, March 3-7, 2012, 
London, England, UK. ACM Press, New York N.Y., 2012. 



References 

 168 

[KZC13] Kasikci, B.; Zamfir, C.; Candea, G.: RaceMob: Crowdsourced Data Race Detection. 
In (Kaminsky, M.; Dahlin, M. Eds.): Proceedings of the Twenty-Fourth ACM 
Symposium on Operating Systems Principles. ACM, New York, NY, USA, pp. 406–
422, 2013. 

[KZC15] Kasikci, B.; Zamfir, C.; Candea, G.: Automated Classification of Data Races Under 
Both Strong and Weak Memory Models. ACM Transactions on Programming 
Languages and Systems 3/37, pp. 1–44, 2015. 

[La07] Landes, T.: Tree clocks: an efficient and entirely dynamic logical time 
system: Proceedings of the 25th IASTED International Multi-Conference: parallel 
and distributed computing and networks, pp. 375–380, 2007. 

[La10] Ladani, A. J.: Dynamic Race Detection in Parallel Programs. Dissertation, 
Karlsruhe, 2010. 

[La74] Lamport, L.: A new solution of Dijkstra's concurrent programming problem. 
Communications of the ACM 8/17, pp. 453–455, 1974. 

[La78] Lamport, L.: Time, clocks, and the ordering of events in a distributed system. 
Communications of the ACM 7/21, pp. 558–565, 1978. 

[La79] Lamport, L.: How to Make a Multiprocessor Computer That Correctly Executes 
Multiprocess Programs. IEEE Transactions on Computers 9/C-28, pp. 690–691, 
1979. 

[LD19] Lidbury, C.; Donaldson, A. F.: Sparse record and replay with controlled scheduling. 
In (McKinley, K. S.; Fisher, K. Eds.): Proceedings of the 40th ACM SIGPLAN 
Conference on Programming Language Design and Implementation. ACM, New 
York, NY, USA, pp. 576–593, 2019. 

[Li19] Li, G.; Lu, S.; Musuvathi, M.; Nath, S.; Padhye, R.: Efficient scalable thread-safety-
violation detection. In (Brecht, T.; Williamson, C. Eds.): Proceedings of the 27th 
ACM Symposium on Operating Systems Principles. ACM, New York, NY, USA, pp. 
162–180, 2019. 

[Lo17] Lopez, C. T.; Marr, S.; Mössenböck, H.; Boix, E. G.: A Study of Concurrency Bugs 
and Advanced Development Support for Actor-based Programs. In: Ricci A.; Haller 
P. (eds) Programming with Actors. Lecture Notes in Computer Science, vol 10789. 
Springer, Cham. 2017. 

[LTN19] Lima, L.; Tavares, A.; Nogueira, S. C.: A framework for verifying deadlock and 
nondeterminism in UML activity diagrams based on CSP, 2019. 

[Lu08] Lu, S.; Park, S.; Seo, E.; Zhou, Y.: Learning from Mistakes —A Comprehensive 
Study on Real World Concurrency Bug Characteristics. Thirteenth International 
Conference on Architectural Support for Programming Languages and Operating 
Systems, March 1-5, 2008, Seattle, Washington, USA. Association for Computing 
Machinery, New York N.Y., 2008. 



References 

 169 

[LWL08] Lei, B.; Wang, L.; Li, X.: UML Activity Diagram Based Testing of Java Concurrent 
Programs for Data Race and Inconsistency: 2008 International Conference on 
Software Testing, Verification, and Validation. IEEE, pp. 200–209, 2008 - 2008. 

[Ma04] Manson, J.: The Java Memory Model. Dissertation, Maryland, 2004. 

[Ma88] Mattern, F.: Virtual Time and Global States of Distributed Systems. In (Corsnard 
M. et al. Ed.): Proceedings of the International Workshop on Parallel and 
Distributed Algorithms. Elsevier Science Publishers B. V., pp. 120–134, 1988. 

[Me15] Melo, S. M.; Souza, S. R. S.; Silva, R. A.; Souza, P. S. L.: Concurrent software testing 
in practice: a catalog of tools. In (Vos, T.; Eldh, S.; Prasetya, W. Eds.): Proceedings 
of the 6th International Workshop on Automating Test Case Design, Selection and 
Evaluation. ACM, New York, NY, USA, pp. 31–40, 2015. 

[Mi08] Minkel, J. R.: The 2003 Northeast Blackout--Five Years Later. Scientific American, 
2008. 

[MKV18] Mathur, U.; Kini, D.; Viswanathan, M.: What Happens - After the First Race? 
Enhancing the Predictive Power of Happens - Before Based Dynamic Race 
Detection. In: Proceedings of the ACM on Programming Languages, Volume 2, 
Issue OOPSLA. ACM, New York, NY, USA, 2018. 

[MMN09] Marino, D.; Musuvathi, M.; Narayanasamy, S.: LiteRace: Effective Sampling for 
Lightweight Data-Race Detection. ACM, New York, NY, 2009. 

[MPV20] Mathur, U.; Pavlogiannis, A.; Viswanathan, M.: The Complexity of Dynamic Data 
Race Prediction. In (Hermanns, H. et al. Eds.): Proceedings of the 35th Annual 
ACM/IEEE Symposium on Logic in Computer Science. ACM, New York, NY, USA, 
pp. 713–727, 2020. 

[Na07] Narayanasamy, S.; Wang, Z.; Tigani, J.; Edwards, A.; Calder, B.: Automatically 
classifying benign and harmful data races using replay analysis. ACM, New York, 
NY, 2007. 

[NA07] Naik, M.; Aiken, A.: Conditional must not aliasing for static race detection. In: 
Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles 
of programming languages (POPL '07). Association for Computing Machinery, 
New York, NY, USA, 2007. 

[NM92] Netzer, R. H. B.; Miller, B. P.: What are race conditions? ACM Letters on 
Programming Languages and Systems 1/1, pp. 74–88, 1992. 

[No21a] No author mentioned: G * Power 3.1 manual. 
https://www.psychologie.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-
Naturwissenschaftliche_Fakultaet/Psychologie/AAP/gpower/GPowerManual.pdf, 
accessed 14 Nov 2021. 

[No21b] No author mentioned: Apache Bug Database. 
https://bz.apache.org/bugzilla/query.cgi, accessed 14 Nov 2021. 

[NZ98] Nüttgens, M.; Zimmermann, V.: Geschäftsprozeßmodellierung mit der 
objektorientierten Ereignisgesteuerten Prozeßkette (oEPK). In (Maicher, M.; 



References 

 170 

Scheruhn, H.-J. Eds.): Informationsmodellierung. Deutscher Universitätsverlag, 
Wiesbaden, pp. 23–35, 1998. 

[O’05] O’Callahan, R.; Jones, C.; Froyd, N.; Huey, K.; Noll, A.; Partush, N.: Engineering 
Record And Replay For Deployability. USENIX Association, Berkeley, Calif., 2005. 

[OA07] OASIS WS-BPEL Technical Committee: Web Services Business Process Execution 
Language, 2007. 

[OGH20] Oortwijn, W.; Gurov, D.; Huisman, M.: An Abstraction Technique for Verifying 
Shared-Memory Concurrency. Applied Sciences 11/10, p. 3928, 2020. 

[OM08] Otto, F.; Moschny, T.: Finding synchronization defects in java 
programs: Proceedings of the International Conference on Software Engineering 
& co-located workshops  Leipzig, Germany, May 10 - 18, 2008. ACM, New York, 
NY, p. 41, 2008. 

[OM13] OMG: Business Process Model and Notation (BPMN), Version 2.0.2, 2013. 

[OM17] OMG: Unified Modeling Language, v2.5.1, 2017. 

[Pa19a] Pavlogiannis, A.: Fast, Sound and Effectively Complete Dynamic Race Prediction. 
In: Proceedings of the ACM on Programming Languages, Volume 4, Issue POPL. 
Association for Computing Machinery, New York, NY, USA, 2019. 

[Pa19b] Pande, M.: Visual Analytics Tool for Java_Virtual Machine Execution Traces. 
Master Thesis, Stockholm, 2019. 

[Pa83] Parker, D. S.; Popek, G. J.; Rudisin, G.; Stoughton, A.; Walker, B. J.; Walton, E.; 
Chow, J. M.; Edwards, D.; Kiser, S.; Kline, C.: Detection of Mutual Inconsistency in 
Distributed Systems. IEEE Transactions on Software Engineering 3/SE-9, pp. 240–
247, 1983. 

[Pe62] Petri, C. A.: Kommunikation mit Automaten. Dissertation, Darmstadt, 1962. 

[Pe81] Peterson, G. L.: Myths about the mutual exclusion problem. Information 
Processing Letters 3/12, pp. 115–116, 1981. 

[PG01] Praun, C. von; Gross, T. R.: Object race detection. ACM SIGPLAN Notices 11/36, 
pp. 70–82, 2001. 

[PG08] Patil, R. V.; George, B.: Tools And Techniques to Identify Concurrency Issues. 
MSDN Magazine 2008, 2008. 

[PLZ09] Park, S.; Lu, S.; Zhou, Y.: CTrigger: Exposing Atomicity Violation Bugs from Their 
Hiding Places. In: Proceedings of the 14th international conference on 
Architectural support for programming languages and operating systems 
(ASPLOS XIV). Association for Computing Machinery, New York, NY, USA, 2009. 

[PMS20] Pereira, J. C.; Machado, N.; Sousa Pinto, J.: Testing for Race Conditions in 
Distributed Systems via SMT Solving. In (Ahrendt, W.; Wehrheim, H. Eds.): Tests 
and Proofs. Springer International Publishing, Cham, pp. 122–140, 2020. 



References 

 171 

[PS08] Park, C.-S.; Sen, K.: Randomized active atomicity violation detection in concurrent 
programs. In: Proceedings of the 16th ACM SIGSOFT International Symposium on 
Foundations of software engineering (SIGSOFT '08/FSE-16). Association for 
Computing Machinery, New York, NY, USA,2008. 

[Re12] Reuters: Spike in deaths blamed on 2003 New York blackout. Reuters, 2012. 

[RGB18] Roemer, J.; Genç, K.; Bond, M. D.: High-coverage, unbounded sound predictive 
race detection. In (Foster, J. S.; Grossman, D. Eds.): Proceedings of the 39th ACM 
SIGPLAN Conference on Programming Language Design and Implementation. 
ACM, New York, NY, USA, pp. 374–389, 2018. 

[RGB20] Roemer, J.; Genç, K.; Bond, M. D.: SmartTrack: efficient predictive race detection. 
In (Donaldson, A. F.; Torlak, E. Eds.): Proceedings of the 41st ACM SIGPLAN 
Conference on Programming Language Design and Implementation. ACM, New 
York, NY, USA, pp. 747–762, 2020. 

[RH15] Rajagopalan, A. K.; Huang, J.: RDIT: race detection from incomplete traces. In (Di 
Nitto, E.; Harman, M.; Heymans, P. Eds.): Proceedings of the 2015 10th Joint 
Meeting on Foundations of Software Engineering. ACM, New York, NY, USA, pp. 
914–917, 2015. 

[Ro19] Roemer, J.: Practical High-Coverage Sound Predictive Race Detection. 
Dissertation, Ohio, 2019. 

[RVS13] Raychev, V.; Vechev, M.; Sridharan, M.: Effective race detection for event-driven 
programs. In (Hosking, A.; Eugster, P.; Lopes, C. V. Eds.): Proceedings of the 2013 
ACM SIGPLAN international conference on Object oriented programming 
systems languages & applications. ACM, New York, NY, USA, pp. 151–166, 2013. 

[Sa09] Sawilowsky, S. S.: New Effect Size Rules of Thumb. Journal of Modern Applied 
Statistical Methods 2/8, pp. 597–599, 2009. 

[Sa11] Said, M.; Wang, C.; Yang, Z.; Sakallah, K.: Generating Data Race Witnesses by an 
SMT-Based Analysis: NASA Formal Methods - Third International Symposium, 
NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings, pp. 313–327, 2011. 

[Sa97] Savage, S.; Burrows, M.; Nelson, G.; Sobalvarro, P.; Anderson, T.: Eraser: A 
Dynamic Data Race Detector for Multithreaded Programs. ACM Transactions on 
Computer Systems 4/15, pp. 391–411, 1997. 

[SAB19] Späth, J.; Ali, K.; Bodden, E.: Context-, flow-, and field-sensitive data-flow analysis 
using synchronized Pushdown systems. Proceedings of the ACM on Programming 
Languages POPL/3, pp. 1–29, 2019. 

[Sc02] Scheer, A.-W.: ARIS - vom Geschäftsprozess zum Anwendungssystem. Springer, 
Berlin, 2002. 

[Sc21] Schäffer, E.; Stiehl, V.; Schwab, P. K.; Mayr, A.; Lierhammer, J.; Franke, J.: Process-
Driven Approach within the Engineering Domain by Combining Business Process 
Model and Notation (BPMN) with Process Engines. Procedia CIRP 96, pp. 207–212, 
2021. 



References 

 172 

[SCR08] Serbănută, T. F.; Chen, F.; Rosu, G.: Maximal Causal Models for Multithreaded 
Systems. Technical Report UIUCDCS-R-2008-3017, 2008. 

[Se08] Sen, K.: Race directed random testing of concurrent programs. ACM, New York, 
NY, 2008. 

[SF07] Schattkowsky, T.; Förster, A.: On the Pitfalls of UML 2 Activity Modeling. 
International Workshop on Modeling in Software Engineering (MISE'07: ICSE 
Workshop 2007), p. 8, 2007. 

[SH20] Schnoor, H.; Hasselbring, W.: Comparing Static and Dynamic Weighted Software 
Coupling Metrics. Computers 2/9, p. 24, 2020. 

[SI09] Serebryany, K.; Iskhodzhanov, T.: ThreadSanitizer – data race detection in 
practice. In: Proceedings of the Workshop on Binary Instrumentation and 
Applications (WBIA '09). Association for Computing Machinery, New York, NY, 
USA, 2009. 

[SK18] Smaragdakis, Y.; Kastrinis, G. Eds.: Defensive Points-To Analysis: Effective 
Soundness via Laziness. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik 
GmbH, Wadern/Saarbruecken, Germany, 2018. 

[SK20] Sophocleous, R.; Kapitsaki, G. M.: Examining the Current State of System Testing 
Methodologies in Quality Assurance. In (Stray, V. et al. Eds.): Agile Processes in 
Software Engineering and Extreme Programming. Springer International 
Publishing, Cham, pp. 240–249, 2020. 

[SM08] Sapna, P. G.; Mohanty, H.: Automated Scenario Generation Based on UML 
Activity Diagrams: 2008 International Conference on Information Technology. 
IEEE, pp. 209–214, 2008 - 2008. 

[Sm12] Smaragdakis, Y.; Evans, J.; Sadowski, C.; Yi, J.; Flanagan, C.: Sound predictive race 
detection in polynomial time. POPL'12 ; January 25-27, 2012, Philadelphia, PA, 
USA. ACM, New York, NY, 2012. 

[Sp16] Späth, J. et al. Eds.: Boomerang: Demand-Driven Flow- and Context-Sensitive 
Pointer Analysis for Java. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik 
GmbH, Wadern/Saarbruecken, Germany, 2016. 

[Sp19] Späth, J.: Synchronized Pushdown Systems for Pointer and Data-Flow Analysis. 
Dissertation, Paderborn, 2019. 

[St18] Stallings, W.: Operating systems. Internals and design principles. Pearson, Harlow, 
Essex, 2018. 

[St20] Striewe, M.; Houy, C.; Rehse, J.-R.; Ullrich, M.; Fettke, P.; Schaper, N.; Oberweis, 
A.: Towards an Automated Assessment of Graphical (Business Process) Modelling 
Competences: A Research Agenda. Lecture Notes in Informatics (LNI), pp. 665–
670, 2020. 

[St96] Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the 
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages 



References 

 173 

(POPL '96). Association for Computing Machinery, New York, NY, USA, 32–41. pp. 
32–41, 1996. 

[Su08] Sun, C.: A Transformation-Based Approach to Generating Scenario-Oriented Test 
Cases from UML Activity Diagrams for Concurrent Applications: 2008 32nd 
Annual IEEE International Computer Software and Applications Conference. IEEE, 
pp. 160–167, 2008 - 2008. 

[Su15] Sun, C.; Zhao, Y.; Pan, L.; He, X.; Towey, D.: A transformation-based approach to 
testing concurrent programs using UML activity diagrams. Software: Practice and 
Experience 4/46, pp. 551–576, 2015. 

[Sz88] Szymanski, B. K.: A simple solution to Lamport's concurrent programming 
problem with linear wait. In (Lenfant, J. Ed.): Proceedings of the 2nd international 
conference on Supercomputing - ICS '88. ACM Press, New York, New York, USA, 
pp. 621–626, 1988. 

[SZL09] Sun, C.; Zhang, B.; Li, J.: TSGen: A UML Activity Diagram-Based Test Scenario 
Generation Tool: 2009 International Conference on Computational Science and 
Engineering. IEEE, pp. 853–858, 2009 - 2009. 

[Tr14] Trümper, J.: Visualization techniques for the analysis of software behavior and 
related structures. Dissertation, Potsdam, 2014. 

[VA14] Verma, V.; Arora, V.: A novel approach for automatic test sequence generation for 
java fork/join from activity diagram. IEEE, Piscataway, NJ, 2014. 

[Va20] Vassallo, C.; Panichella, S.; Palomba, F.; Proksch, S.; Gall, H. C.; Zaidman, A.: How 
developers engage with static analysis tools in different contexts. Empirical 
Software Engineering 2/25, pp. 1419–1457, 2020. 

[va98] van der AALST, W. M. P.: THE APPLICATION OF PETRI NETS TO WORKFLOW 
MANAGEMENT. Journal of Circuits, Systems and Computers 01/08, pp. 21–66, 
1998. 

[vH05] van der Aalst, W.; Hofstede, A. ter: YAWL: yet another workflow language. 
Information Systems 4/30, pp. 245–275, 2005. 

[Wa20] Walker, A.; Coffey, M.; Tisnovsky, P.; Cerny, T.: On Limitations of Modern Static 
Analysis Tools. In (Kim, K. J.; Kim, H.-Y. Eds.): Information Science and 
Applications. Springer Singapore, Singapore, pp. 577–586, 2020. 

[Wi08] Wimmel, H.: Entscheidbarkeit bei Petri Netzen. Überblick und Kompendium. 
Springer, Berlin, Heidelberg, 2008. 

[WLW17] Wu, Z.; Lu, K.; Wang, X.: Surveying concurrency bug detectors based on types of 
detected bugs. Science China Information Sciences 3/60, 2017. 

[WS06] Wang, L.; Stoller, S. D.: Runtime analysis of atomicity for multithreaded programs. 
IEEE Transactions on Software Engineering 2/32, pp. 93–110, 2006. 



References 

 174 

[XLL05] Xu, D.; Li, H.; Lam, C. P.: Using adaptive agents to automatically generate test 
scenarios from the UML activity diagrams. Proceedings 15-17 December 2005, 
Taipei, Taiwan. IEEE Computer Society, Los Alamitos Calif., 2005. 

[Xu08] Xu, D.; Liu, W.; Liu, Z.; Philbert, N.: Tool Support to Deriving Test Scenarios from 
UML Activity Diagrams: 2008 International Symposium on Information Science 
and Engineering. IEEE, pp. 73–76, 2008 - 2008. 

[Xu20] Xu, M.; Kashyap, S.; Zhao, H.; Kim, T.: Krace: Data Race Fuzzing for Kernel File 
Systems: 2020 IEEE Symposium on Security and Privacy (SP). IEEE, pp. 1643–
1660, 2020. 

[XZL21] Xiang, D.; Zhao, F.; Liu, Y.: DICER 2.0: A New Model Checker for Data-Flow Errors 
of Concurrent Software Systems. Mathematics 9/9, p. 966, 2021. 

[YRC05] Yu, Y.; Rodeheffer, T.; Chen, W.: RaceTrack: Efficient Detection of Data Race 
Conditions via Adaptive Tracking. ACM, New York, NY, 2005. 

[Zh11] Zhang, J.; Xiong, W.; Liu, Y.; Park, S.; Zhou, Y.; Ma, Z.: ATDetector: improving the 
accuracy of a commercial data race detector by identifying address transfer. ACM, 
New York, NY, 2011. 

[Zi16] Zimmer, G.: Reduction of UML 2 Activity Diagrams to a Corresponding 
Representation using a Limited Subset of Elements for Concurrency Analysis. 
Master Thesis, Kaiserslautern, 2016. 

[ZSL10] Zhang, W.; Sun, C.; Lu, S.: ConMem: Detecting Severe Concurrency Bugs through 
an Effect-Oriented Approach. Fifteenth International Conference on Architectural 
Support for Programming Languages and Operating Systems, March 13-17, 2010, 
Pittsburgh, PA, USA. ACM Press, New York N.Y., 2010. 

 

 



Appendix  
 

 

Appendix 

  



Appendix A: Task List for the Controlled Experiment – Group 1 

 176 

Appendix A: Task List for the Controlled Experiment – Group 1 

 



Appendix A: Task List for the Controlled Experiment – Group 1  

 177 

 
 
 



Appendix A: Task List for the Controlled Experiment – Group 1 

 178 

 
 
 



Appendix A: Task List for the Controlled Experiment – Group 1  

 179 

 
 
 



Appendix A: Task List for the Controlled Experiment – Group 1 

 180 

 
 
 



Appendix A: Task List for the Controlled Experiment – Group 1  

 181 

 
 
 



Appendix A: Task List for the Controlled Experiment – Group 1 

 182 

 
  



Appendix B: Task List for the Controlled Experiment – Group 2  

 183 

Appendix B: Task List for the Controlled Experiment – Group 2 

 



Appendix B: Task List for the Controlled Experiment – Group 2 

 184 

 
 
 



Appendix B: Task List for the Controlled Experiment – Group 2  

 185 

 
 
 



Appendix B: Task List for the Controlled Experiment – Group 2 

 186 

 
 
 



Appendix B: Task List for the Controlled Experiment – Group 2  

 187 

 
 
 



Appendix B: Task List for the Controlled Experiment – Group 2 

 188 

 
 
 



Appendix B: Task List for the Controlled Experiment – Group 2  

 189 

 
 
 



Appendix C: Questionnaire for the Controlled Experiment 

 190 

Appendix C: Questionnaire for the Controlled Experiment  

 



Lebenslauf  

 191 

Lebenslauf 

Name Alexander Klaus 
   
   
  
   
   
   
   
   
   
   
   
  
   
Schulbildung 1986-1990 Carl-Bosch-Grundschule, Frankenthal (Pfalz) 
 1990-1999 Albert-Einstein-Gymnasium, Frankenthal (Pfalz) 
  Abschluss: Abitur 
   
   
Studium 2000-2007 Studium der Wirtschaftsinformatik 

Universität Mannheim 
Abschluss: Diplom 

   
   
Berufstätigkeit 2007-2016 Wissenschaftlicher Mitarbeiter  

Fraunhofer Institut für Experimentelles Software 
Engineering, Kaiserslautern 

 2016-heute Angestellter 
EXCO GmbH, Frankenthal (Pfalz) 

   
    
 
 
 
 
Maxdorf, den 08. April 2022 


