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1) Introduction: The Boltzmann equation and scattering cross sections

The evolution of the distribution function of a spatially homogeneous gas
consisting of molecules with internal energy is given by:

Saz-f(t,v,sl) = J(0,f,(tv,e)  with initial value fo € L;(R3xR,). (L.1)

In (1.1) we have used the following notations:

Jof,g) = 312-[ V1-ey-e;' olEeqeser en 1) [Fgut fug'~ Fgu-fugldu (1.2)
I“I'
with :

II' = R3xR,xA;xS, with Ay = {(eg ;) : O<e,, O< ey and ey + ey’ < 1},

dp = dQ(n) dey'de,’ deydw,

E = %glwwlz tg tey ,C 0= .VZE(I - e -ey) and e = g/E, i=1,2. (1.3)

v o= -% (v +w+7'cd), gy = e'E,

‘ (1.4)
w' = -‘1;2 (v +w=177c) & = ek
f' = f(t,v,gy), 'y = flt,wies), fu = flt,wep) {1.5)

The function s in (1.2) is considered to be an element of the function space
introduced below. As usual we denote the space of continous functions
from a metric space X into a metric space Y by C(X- Y)

Definition 1.1: The set S of scattering cross sections is the set of all
measurable real valued functions k defined on R,xA;xA;xS, which have the
properties:

(i) k€ C(R,xA = Ly(Ax[-1,1]))
(ii ) k(Ee,e,x) = k(E,e',e,x) and k(E,e,(eq,e3),x) = k(E,e,(e3,e),~x) a.e. (16)

(ili) ey +ex =1 2 ki(Eee,x) =0 ae.

(iv) Ikl = sup [ k(E,e,e',x)| /1~e{~ey de'dx <

(E,e) Aixsz

The set of all nonnegative functions in § will be denoted by S,. We denote
the closed unit ball of S by B, its boundary by 0By and the open unit ball
by Bl"



Notation: For any ¢ € § we denote

i [T T
o.(E,e) = [ 2no(E,ee’,x) ]/ 1~e{~-e, dedx (1.7)
A1XSZ ‘

and we introduce Lyq={f ¢ L;: LS (1+|v]?+ey) If(v,e)] deydv < @),
xR,

The aim of this paper is to study the possibility to identify the scattering
cross section ¢ from the behavior of the solutions of (1.1) in C([0,tg]=Ly).
As a first step in this direction we note a scaling property of such solutions.
Suppose we have found a solution f(-,6) of (1.1) in C([0,t5]L,) for some
to > 0. We define for A,p > 0 ‘

g(t) = Af(xpt,0)

and we get
Apt
Mo+ A J(0,f(s),E(s) ds

0 (1.8)
t t
Mo + | JoAEOws),FOws) ds = go + [ J(uo,g(s),g(s) ds
(o] o]

g(t) = Af(\pt,o)

i

which shows, that g(-) solves (1.1) with data A fy and po in C([0,tg/ur]-Ly).
Because of this property we assume in the following:

Ifol =1 and o € dBy.

2) Some known results

In this section we collect some results which are needed in the sequel.
For the proofs of the following two propositions see Wiesen (1991,1 and
1991,2). We first note that we can split the collision operator J in (1.2) into
a gain and a loss part:

Je,f,g) = Glofg) - Viof,g

Proposition 2.1: Let ¢ be in 8. Then both Gl(g, ) and V(g,,') are mappings
from LyxL; into Ly and there hold the estimates:

IVie.£,2)l < 2rllollflligh and Glo,f,@) < 2rlolllIfl gl . (2.1)

Moreover we have for any o ¢ CP(R3xR,), f.g € Li(lR:’le,,):



p(v,gq) J(o,f,g)(v,e9) deydv =
R3xR, (2.2
'15[3 Ll-el'*ez' U(E’ei’ez’ef,ez'ﬂ)‘ﬂ') (o'~ [fga+ fugl dum deqdv.
R°xR , xIT'

For any o in 9By and tg < [4n]"! there is a unique function f(-,0) ¢
C([0,tg]=Ly) which solves (1.1) with data fy and o. If we introduce the
following sequence {G,(0)} of functions

Go(d) = fo

n-1 (2.3)
Gn(@ = L 3 36,6, 1-4(0),G,(0)), n 2 1
n n = 1ep \YHNY y I ’

u=0

then we have the estimate: |G, (o)] < [4r]lol 17 and the solution of (1.1)
in [-tg,tp] may be represented as:

8

1

f(t,o) = t"™ G, (g) , te€ [-tgtpl (2.4)

n=0

If 6 and fy are nonnegative functions then for any tg > O there is a unique
solution f(-,0) € C([0,tg]l— Ly of (1.1) having the property :

Ve20: [ft,0l = ifel. (2.5)

Definition 2.1: Let ¢ and fy be a nonnegative functions in § and Li(IR:"xIRJ

respectively. We define for h 2 2n|oll the operator
Quiofg) = Jofig + -g—{f‘[' gwien) deadw + g | flw,ey) depdw 1, (2.6)
R3xR, R3xR,

and the following sequence {H,(0)}) of functions

it

Ho(d) f()

(2.7

it

n-1
Hoo) = 1o 3 QuoHuq,(0H,6) , ifnzi.
=0

Proposition 2.2: Let o € S and fy be nonnegative functions. Then each of
the functions H, (c) in (2.6) is nonnegative and we have [[H,()l = [Ifgl = 1
for any n € N. The unique solution of (1.1) can be represented as

o0

f(to) = Y et (1-e ™t H (o), (2.8)
n=0

where we can choose any h = 2r|o|

Remark: For the rest of this paper we assume fy to be a nonnegative
function.




Remark: For both sequences {G,("),n20} and {H,,(*), nz 0}, f, is called the
start value of the sequence.

3) Injectivity properties of the solution of (1.1)

Proposition 3.1: Let f(-,06) and f(:,0,) be two solutions of (1.1) with data
oy € By and ¢, € By and suppose: f(:,0;) = f(-,65) in C([O,tn]—Ly), where
to is an arbitrary positive time. Then the set M of all times te R, with
the property: f(t,0;) = f(t,05) in L; is closed and there is no finite limit
point in M.

Proof: The closedness of M is a direct consequence of the continuity of
f(-,09) and f(-,0,), see proposition 2.1.
Assume now, we have a finite limit point Ty € M. Then there exists a
sequence {t,,) in M with the property:
¥ne N:t, + T, and lim t, = Ty

n-co
We set Yo = f(Ty,0 = f(T,05) and define the sequences {G,(cy), n20} and
{G,,(05), n20} with start value ¥q. In the time intervall [Ty~[4r1™1,T+[471"1]
the solutions of (1.1) with data ¢; and ¢, can be represented as

o] o
f(t.,O«l) = ZO (t"’Tl)n Gn(dl) und f(t,ﬁz) = Z() (t“TI)n Gn(dz) (3.1
n= n=

Now the fact: YneN: f(t,,00 = f(t,,0,) yields:

‘ . If(t,.,00)-F(t o)l
VkeN: Illl_l;nm nl';i“t Il’(‘ 2= = () (3.2)

and we get with the help of standard techniques from (3.1) and (3.2):
Vn € N : G,loy) = Gp(o5). (3.3)

But (3.3) implies f(-,0;) = f(:,05) in C{[T~[4n1 1 T{+[4n1"1]> L,). Now an
iteration procedure yields f(-,0y) = f(-,65) in C{[O,t5]=L,) which gives a

contradiction.
Va4

An immediate consequence of proposition 3.1 and of the theorem of the
continuation of the solution of differential equations in Banach spaces
(see e.g. Martin, 1976, chapter 6) is the following

Corollary 3.1: Let oy and ¢, be two nonnegative functions in 8§ and let
f(:,01) and f(-,05) be the corresponding solutions of (1.1). Then there are
equivalent:



(i) There exists a tg > O such that f(:,qy) = f(-,65) in C([0,to]=>Ly)

(i) YneIN: G,(0y) = G, (05), where the functions G,(-) are given by (2.3) and
for any tg > O there holds : f(-,0,) = f(-,65) in C([0,t5]~ Ly).

Theorem 3.1: Let o4, 0, € S, be two different scattering cross sections. Let
f(-,0)) and f(-,065) be the corresponding solutions of (1.1). We denote
o(A) = Aoy + (1-\)oy, O<isl. Suppose there exists a t; > O such that
f(ty,09 == f(ty,05). Then, for any tg > 0, the map

[04]3 X = f(,000) € C0,to]= L), with o(d) = o, + Moy=0y),

f(-,6(X)) being the solution of (1.1) with data fy and o(}), is injective.

Proof: As a consequence of corollary 3.1 there exists a N > 0 such that:
GN(Ui) o GN(OZ)'

where the functions G,() are given by (23). We set M = infin

! n-1
Gplo) = 7 )

(1-X) J(64,Gpoqo, (6(0), G (0 ()))
u=0 ,

+ A J(dz,Gn«l_,u(G()\.)),Gu(d()\)))
which yields

G,(6(\) = G,loy) = Gulog) , n = 0,1, M-, and

Gaglo(W) = (1-X) Gpqlop) + X Gpglog). (3.4)
Now equation (3.4) implies that we have for any two Xy and X, € [0,1]:

Xy F Ay = Gplo(hg)) = Gpylolhy))

and the assertion follows from corollary 3.1.
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4) Separation properties of the collision operator J(,',)

In this section we use the injectivity criterion of corollary 3.1 to see that
there exists for any two different scattering cross sections ¢; and ¢, an
initial condition fn such that the corresponding solutions of (1.1) are
different, regardless of the observation time to. To this end we note that
the function Gy of the sequence (2.3) is given by Gy(o) = J(o,f,f) where f is
the start function of the sequence. So all we have to show is that, for
any two different o, and o, there is a nonnegative function f such that
Jlo £,6) = J(o,,f,0).



Lemma 4.1: The family of mappings
{§30 = J(f.f), f nonnegative function in L ;}

separates on S.

Proof: Let oy and ¢, be two different scattering cross sections. Due to
property (i) of definition 1.1 there exist rational numbers Eg € R, and
eo=(ep,e20) € Ay such that

k(EO,eO, RN ) (E',X) g di(EQ,eo,e',x) - Gz(Eo,eo,e',X) ‘ (4.1

is not the null function. We have to show : 3f € Ly : J(f,f) & 0 in L;.
Suppose this is not the case. Then we have:

Vo € CP(R3xR,), f e Ly J elv,e) Jk £, (v,e)) degdv = 0 (4.2)
R3xR,

Due to the properties of the function k, recall (i), (ii) and (iii) in definition
1.1, the map

IR3xiR+x¥R3le+\{(v,si,v,sz), v € R3, epta € Ry} 3 (vigq,w,ep) =
(4.3)

I k(E,ee', ) [e(v',ey) = @lv,ey)] l/_l‘»*e{—-ez’ dQ{(n)de',
A‘lXS?_‘

is a continous function in its variables (v,g{,w,g5). Recall that we used in
(4.3) the notations (1.3) and (1.4). We set

£10 = e10E0, €20 = enpEq@ vy = (r,0,0), vy = (~r,0,0) , r = Eg(l-ejg-ezq “"? ~€20)

and define for n € N:
3
gn(v,e) ‘—‘-g- [/% [H(e~g,0) expl-n(lv-v |?+e)1 + Hle=s,5) expl=-n(lv-v,|%+e)1], (4.4)

where H(-) is the Heaviside function. It can be seen easily that for n € N
gn is in Ly 4. In addition we have

Vne N |  gulviey) degdv =1
R3xR,

Because of (4.2) there holds:

Vn e N, @ € CP(R3xR,): | o(v,e) J(kgngn)(v.ey) degdv = 0. (4.4)
R3xR,

Due to the continuity of the mapping (4.3) we get (see e.g. Folland, 1976,

Thm. 0.13):



lim [ v,y Jk,g,80) (Ve deydv =
= R3xR,

1 ’ L] A Al Al
1 [ k(Eg.eq.e' mom) |[/1-eq'~e,
A1XSZ
Lo ] 2Eo(l-er-e5), e/Eg) = #(vy,810)] dQ()de’
o (4.5)
1 [ k(Eg,eq.e',~ngn) |/ 1-ey'~ey’
A1XSZ
Lo ] 2Eo(i-es'-e,), eEg) - (V3,201 dQ(n)de’,

In (4.5) ng denots the unit vector in the direction of vy. If we use now the
symmetry properties of k, see (4.1) and (1.6), we get from (4.4) and (4.5):

Yo € CP(R3xR,) :

0 = | k(Egeoe'mom) [1-ey-ey [2@(:121' /2Eq(1-e,~e5), eyEo) (4.6)
A1XSZ .
-~ (P(Vl,slo) - CP(Vz,Ezo)] dO("f]') de'.

To discuss the integral on the right hand side of (4.6) we perform the
following changes of integration variables:

(ef\er) = (z = e +ey, y = ey ~ey)
C_Y . EQZ;w
y=y = » z >z =1~z 7 o= ,
z 2
y 2y = = (Eg-2rd)(1+y)

and we obtain:

0= [ k (Eg, (e10,820), (1 (x,2),e5'(x,2)),n5n'(x)) 1/ g g .
G(Ep) "0 (4.7)

[ptx,2) - %(@(vl,slb)—tp(vz,szo))] dzwd3x |

where we have: G(Eg) = {(x,2) € R3%R, : |x|% < Eo/2 and 0 < z < Eg-2Ix/%},
~2|x|2-

ey (x,z) = %—g, e,'(x,z) = E&%%i, N'(x) = -!-ET,

We consider the following measures on G(Eg) and its induced Borel o

algebra.

duy(x,z) = B k(Eg, €10,820,81'(X,2),85'(x,2) 1 (x)) dztt d®x (4.8)

5
Eq




and

dus(x,z) = »—723»[ J' k(Eg,eq.e',x) |/1-e,-e,’ dxde'}

Ayx[-1,1] (4.9)
© [3{x-v )8 8(z-g10) + §(X-Vo)BE(z-E00)]
and note that (4.7) implies:
Ve € CORxR): | olx2) duy(x2) - | elx2 duylxz) = 0 (4.10)

G(Ep) G(Eg)

Because of (4.1), ‘dul(x,z) is not the zero measure. A comparison of (4.8)
and (4.9) shows that dy; is absolutely continous with respect to the 4
dimensional Lebesque measure whereas dy, is singular to this measure. So
both measures are different.

Now, using that the dual space of the real measures on G(E) is isomorphic
to CP(G(Eg)), we get:

Ip' € CYGEQ) : | ¢'(x2 duylx2 - [ ¢(x2 duplx2) * 0 (4.11)
G(Eo) G(E,)

A comparison of (4.10) and (4.11) shows that we get a contradiction,
provided we can show that the restriction map

R(Eg) : CP(R3xR,) = CP(G(En) : o =
o 0 ® P G(Ep)

is surjective.
Due to the compactness of G(Eg) there exists a r > 0 such that

G(Eg) € B4(O,r) = {(x,2) € R3xR, : |x|%+z < r).

Now Tietze's extension theorem (see Reed-Simon, 1980, Thm. IV.11) yields
the surjectivity of the mapping

R, : CP(B4(0,r) » CP(G(Ep) : ¢ = ¢ :
G(Eg)
The surjectivity of the map R(Ey) is now a direct consequence of Urysohn's

lemma (see Rudin, 1970, Thm. 2.12).
Y4

Remark: The set l/Ei = {x € R: x% ¢ Q) is countable.

Theorem 4.1: There exists a sequence {f,) of nonnegative functions in Lyq
with the properties
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(i) VneN: [ flve) dedv < 1 (4.12)
R3xR,
(i) ¥neN: | v (ve) degdv = 0 (4.13)
R3xR,
(iii ) 3C € R, : Vn € N : ] (1 + V]2 + &) flvie) degdv < C (4.14)
R3xR,

such that the set of mappings (S 3 ¢ = J(o,f,.f,) € L} separates on S.

Proof: We start with the sequence {g,) of functions introduced in (4.4).
These functions are parametrized by the the values r, ¢;0, 2o . Therefore
we write here g, (r,e109,600)(v,e). We have the following properties:

(a) J " Bn(rei0.820)(v,e)  dedv = 1 for arbitrary  n,r,g0,520
R3xR,
(b) I V 8a(r810:620) (v,8) dedv = 0 for arbitrary  n,r,g40,820
R3xR,
. ) 2, 1 S
(¢) ] (A +IvI%+ O gulreipep0) (Vieddedy = 1+ 12+ _2(810+22()) *on
RBXR+

because we have v=(r,0,0) und v,=(-r,0,0) .
We define for arbitrary but fixed C > O the functions:

fn(l',slo,gzo, C) = )\(Y,Eio,SZO,C) gn(r’,&'“),izo) with

- C
Mr,e10890,C) = min |
10220 : "2 %(810“820) +:2Z~ J

Obviously the set Mg = { f,(re10,620,C), n € N, r € [/Q,, 510,600 € Q,) is
countable and the functions f,, have the properties (4.12), (4.13) and (4.14).
Moreover we can see easily from the proof of lemma 4.1 that the set of
mappings

(S306 = J6,60 €Ly, fe Mg

separates on S.
‘ a4

Defintion 4.1: We call a sequence {h,} of nonnegative functions in L;q a
separating sequence, if it has the properties mentioned in theorem 4.1. The
constant C occuring in (4.14) is called energy bound of the sequence thy,}




- il -

Notation: As usual we denote the space of the bounded sequences over
some Banach space X by 1,(X). It is equipped with the norm

lo 3y = lyllw = sup lly,lix -
neiN

Suppose now we have a separating sequence (h,). Then theorem 4.1 motivates
the study of the following mapping

S. 306 = Flo) = (£(,0),f5¢,0), -, ) € 1,(C[0,to]>Ly). (4.15)

In (4.15) ty is any positive time and the functions f;(:,0) are the solutions
of (1.1) with data o and h;. It is a direct consequence of theorem 4.1 that
this mapping is injective. So we study the inverse of the mapping (4.15)
on the image of S, which will be denoted by F(S,).

S) On the inverse problem

Lemma S5.1: Let f; and f, be two nonnegative functions in L; with the
following property: there are constants Cj, C5 > 0 such that:

VR>0: |  filve) dedv <

1,2 | (5.1)
B,S(R) |

u_._L._._.i
1+ RZ2’

where we have B4S(R) = {(v,e): [v|2+¢ > RZ?) Let k¢ S, a function with the
property:

3D > 0: VYE< 2D? e€ Ay : k(Ee, ) =0, (5.2)

Then we have :

4relikll

1+ DZ (C]”fz” + C2”f1“> . » (5.3)

3G, £y, foll <

Proof: Using proposition 2.1 and the nonnegativity of f,, f5 and k we get

Dkt <2 |  Vikfglve) degdy
R3xR,
_ - (5.4)
= k(E,e,e',n'n") \l/i-e{“-ez’ [fy(v,epfr(w,e5)
R3xR,xR3xR, xA; xS,
+ £5(v,e)fy(w,65)1dQ(n")de'de p,dwdeydv.

Recall that we have in (5.4):

E = é—lwwlz tegrey < V2 e g w2 v gy (5.5)
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The set I'=R3xR,xR3xR, can be decomposed into four disjoint sets:
= B4(D)XB4(D) U B4C(D)XB4(D) U B4(D)XB4_¢(D) U B4C(D)XB4C(D) .
Now (5.3), (5.4) and (5.5) yield:

k. (E,e) [fi(v,e)falw,ep) + folv,e)fy(w,e2)] depdwdeydv = 00
B4(D)XB4(D)

where the function k. is given by (1.7). As a consequence of (5.6) we get:

2| VkFLfy) dedv < dnlikl [ [ Eyviep deydv [ falwien) depdw
R3xR, . B4S(D) R3xR,

o falvey degdv | fy(wiep) depdw J
B,S(D) R3xR,

Now (5.3) is a direct consequence of (5.1).
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Motivated by this lemma we introduce a shift operrator on a subset of S.

Definition 5.1: We denote by S' the set of all scattering cross sections Kk

with the property:
Voee €A xe[01]: k(0ee,x) =0

S', 1 denotes the set of all nonnegative k € S' with [kl = 1. We define the s-
hift operator Tp:

TD: S"")S:O“)OD with
0 , 0s< Ex<2D?
op(E,ee'\x) =
o(E~2D?,e,e',X) ,  else .

Theorem 5.1: Let to be an arbitrary, but fixed positive time and let ¢ and C
be positive real numbers. There exists a positive constant D(tg,s,C) such
that we have for all separating sequences {h,) with energy bound C and
all k € ', y and o € By :

[F(o+kp) - F(o) |, < ¢.

Remark: Recall that we have in (5.7):
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[F(o+kp) = F(o)l, = sup sup |f,(t,o+kp)-f(t,0)l]
nelN te[0,tq]

To prove theorem 5.1 we need a technical lemma:

Lemma 5.1: Let ¢ and d be nonnegative real numbers with ¢ < 2. Suppose
we have a sequence {a,} of nonnegative numbers satisfying

(i) ap 2 0
n-1
(ii)aHS—fr Z a, +d,nz1
u=0
Then there holds the estimate: a, < (n+l)ag + nd for n > 0.

Proof of the lemma: Obviously the above inequality is true for n = 0. Now
supposeit is true forall k € {0,1,..,n-1}, nz1. Then we have

n-1
a, < aﬁ-—- [p+Dag + pdl  + d
k=0
- & n+l LD -
-nzna0+n2(n1)d+d
< (n+ldag + (n-1d + d , because we assumed : ¢ < 2,

which implies that the above estimate is true for all k € {0,1,...,n}
Va4

Proof of theorem S5.1: We first note that we have for any k€ S’
lo+kpl = llol +1 and llo+kp-ol = 1.

Without any restriction we may assume that the null function is not an
element of our separating sequence so that we have:

[ hk(\f,Si) dEidV = AR ? O, k € N,
R3xR,

For h = 8n(|cl+1) we can use the series representation (2.8) of the
solution of (1.1):

[we]
fr(t,o) = Z ay expl-hatl(l-expl-ha t)™ H,, (¢") , ¢ € {o,0+kp} . (5.8)
n=0
Note that we have used the scaling property (1.8). The functions
{H, (67, neN} in (5.8) have to be calcluated as shown in (2.7) and use
hy/a), as start function. Using this formula we can calculate recursively
the difference AH,, = H, (o+kp) - H, . (0):
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Aan = an(d+kD) - an(d)
1 n""1
e JkpHpyo gy 1(0) Hy, i (6))
u=0 | (5.9)

1 n_1
= Th 2 Jovkp Hpopoy @+ Hooi (ovkp) AH, 10 + hAH,,
p=0

If we use now (2.2), proposition 2.2 and the nonnegativity of H,(d",
¢' € {0, o+kp}, we obtain:

VKEN, neN : | (+lvI2+e) Hpyp(o) degdv s Clay
R3xR, - (5.10)

which implies [ _ Hy i (6)(v,ey) deydv sz) .

B4(D)
The constant C in (5.10) is the energy bound of the separating sequence.
From (5.10) we can see that there holds for any k € S',

8rC

13k, Hoogo (o) (o)l < 270

If we use this estimate in (5.9) we get:

n~1
- C
< [ L 2 2IlAH ] b e 5.11
”Ann.k“ n p.': I “’kuo ak(1+D2(1+”G“) ( )

If use now (5.11) and (5.8) and lemma 5.1 we get with the help of the

simple formula
(o8]

Z ng" = S

n=0 (1-q)?

C

 lhaens Lexpterai(isal e - 1]

I, (t,0+k ) ~Fy (£,0) ]

C (5.12)

s Lexpl8r(l ] -1
Sin s Lexpiar (ol - 1]

If we choose now

/ -
D(g,tp,C) > / max [0‘ C[exp[lgnﬂ - 1] 1 J

(5.7) is a direct consequence of (5.12).
Vo4
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6) Conclusions

In this paper we have considered the problem of the reconstruction of the
scattering cross from the knowledge of the solution of a generalized
Boltzmann equation. To this end we first introduced a suitable function
space for the scattering cross sections and we discussed some injectivity
properties of the solution of the Boltzmann equation.

In the next step we have shown that there is a countable family of initial
conditions such that the collision operator separates on our function space.
As a consequence of this result we have proposed the function space
1,(C{[0,tn] > L,)) as solution space for the reconstruction of . In the last
section we have shown the inverse of the mapping, which assigns to a given
o a sequence of solutions of the generalized Boltzmann equation, is
discontinous. This shows that our inverse problem is ill posed.
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