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Abstract 
In this paper we consider the problem of the reconstruction of the 
scattering cross section from the solution of a eneralized o~~~rna~~ 
equation. 

: Generalized Boltzmann Equation, 
anach Spaces, Inverse Problems 



-2- 

IR~~du~~~~: Boltzmann wuation CTOUlJ 

The evolution of the distribution function of a spatially homogeneous gas 
consisting of molecules with internal energy is given by: 

$fW.E*) = J(a,f,fl(t,v,e,) with initial value fo E ~UR3xR+). (1.1) 

In (1.1) we have used the following notations: 

JM-‘,g) 

with : 

a(E,ei,e2,el’,e2’,~‘~‘) [f” ‘,+ fl*gl- fg, - f, 

j-J’ 27 lRJxlR+xAixS, with Ar = ((e1’,e2’) : Oi er’, Oi; e2’ and e; + “2’ r: 11, 

du = clM$) del’dez’ ds,dw, 

E= $ IV-WI2 + El + &2 , c’ = ‘mei - e,‘) and er = q/E, i=1,2. (1.3) 

v’ z T$( v + w + q’c’), cl’ = el’E, 

w’ = it v+w - q’c’), Ed’ = ez’E, 

f’ ” f&,vl,q’), f’, = fh,w’&), f, = f(t,w,&-$ (C.3 

The function o in (1.2) is considered to be an element of the f~~~~i~~ s 
introduced below. As usual we denote the space 0~23 ~~~~ti~~~ 
from a metric space X into a metric space Y by C( 

Definition 1.1: The set S of scattering cross sections is the set of alI 
measurable real valued functions k defined on R.+xA1xA1xS, which have the 
properties: 

( i 1 k E C(IR+xk -3 L,(A,x[-1,111) 

( ii 1 k(E,e,e’,x) = k(E,e’,e,x) and k(E,e,(el’,ez’),x) = k(E,e,(ez',el'),-X) a.e. 

( iii 1 ei + e2 = 1 3 k(E,e,e’,x) = 0 a.e. 

( iv 1 Ilk11 = sup I Ik(E,e,e’,xli de*dx < 00 
(E,e) 

AiXS2 

The set of all nonnegative functions in S will be denoted by S,. e denote 
the closed unit ball of S by BI, its boundary by 3 1 and the open unit 

(1.6) 

by B,‘. 
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Notation: For any 6 E S we denote Notation: For any 6 E S we denote 

a,(E,e) = a,(E,e) = 1 2xa(E,e,e’,x) )’ i - e i - e i de’dx 1 2xa(E,e,e’,x) )’ i - e i - e i de’dx (1.7) (1.7) 

AiXf% AiXf% 

and we introduce and we introduce Lt,t = (f c Lt : Lt,t = (f c Lt : 
a! a! 3~lR, 3~lR, 

(i+l~/~+q) If(v,E1)l dqdv < 01 . (i+l~/~+q) tf(v,E1)l dqdv < 01 . 

The aim of this paper is to study the possibility to identify the scattering The aim of this paper is to study the possibility to identify the scattering 
cross section 0 from the behavior of the solutions of (1.1) in C([O,to]+L1). cross section d from the behavior of the solutions of (1.1) in C([O,to]+L1). 
As a first step in this direction we note a scaling property of such solutions, As a first step in this direction we note a scaling property of such solutions, 
Suppose we have found a solution f(*,a) of (1.1) in C([O,to]-+Li) for some Suppose we have found a solution f(=,a) of (1.1) in C([O,to]-+Li) for some 
to > 0. We define for 1,~ > 0 to > 0. We define for 1,~ > 0 

g(t) g(t) = Xf(Xut,a) = Xf(Xut,a) 

and we get and we get 

g(t) g(t) = Xf(Xut,a) = Xf, + x = Xf(Xut,a) = Xf, + x I I 
Xwt Xwt 

J(o,f(s),fki)) ds J(o,f(s),fki)) ds 
0 0 

= Xf, + = Xf, + I I 
t t 

I I 
t t 

J@a,Xf(X~s),f(X&) ds = ga + J(ud,g(s),g(s)) ds J@a,Xf(X~s),f(X&) ds = ga + J(ud,g(s),g(s)) ds 
0 0 0 0 

which shows, that g(m) solves (1.1) with data Xfo and pd in C([O,to/uX~J-+L1). which shows, that g(m) solves (1.1) with data Xfo and P(I in C([O,to/uX~]-+L1). 
Because of this property we assume in the foilowing: Because of this property we assume in the foilowing: 

IIf,ll = 1 IIf,ll = 1 and and d E 3B,, d E 3B,, 

In this section we collect some results which are needed in the sequel. In this section we collect some results which are needed in the sequel. 
For the proofs of the following two propositions see For the proofs of the following two propositions see iesen iesen (19941 and (19941 and 
1991,2). We first note that we can split the collision operatic J in (1.2) into 1991,2). We first note that we can split the collision operatic J in (1.2) into 
a gain and a loss part: a gain and a loss part: 

J(a,f,g) = G(e,f,g) - Vk,f,g) J(a,f,g) = G(e,f,g) - Vk,f,g) 

Proposition u Let d be in S. Then both Proposition u Let 0 be in S. Then both (d;;) and V(a;;) are mappings (d;;) and V(a;;) are mappings 
from LtxLi into Li and there hold the estimates: from LtxLi into Li and there hold the estimates: 

IIV(o,f,g)ll s 2x lbll llfll llgll and II~W,g)ll s 2n llall Ilfll llgll . (2.1) (2.1) 

Moreover we have for any 9 E Cb(1RR3xlR,), f,g c: L,(IRJxlR,): 

IIV(d,f,g)ll s 2x lldll llffi llgll and IIG(d,f,g)ll s 2n lldll IIfll llgll . 

Moreover we have for any 9 E Cb(lRR3xlR,), f,g c: L,(IRJxlR,): 
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For any d in 3B, and to < C47tl-’ there is a unique function f(*,a) E 
C([O,t,]* L1) which solves (1.1) with data fo and 0. If we introduce the 
following sequence ~C,(cr)~ of functions 

Go(~) = fo 
(2.3) 

C,(a) = ; ,,I-,(a),G,(u)), n 2 1, 

then we have the estimate: IIG,(c)II P ~4~ll~ll]nand the solution of (I.0 
in [-to,to] may be represented as: 

i f(t,a) = t” G,(a) ) t 6. b-t&“J* (2.4) 

If u and fo are nonnegative functions then for any to > 0 there is a uni 
solution f(*,a) E C([O,to]+ L,) of (1.1) havin the property : 

vt 2 0: Ilf(t,a)ll = llf,ll. 

Definition &Ii Let c and f. be a nonnegative f~~ct~~~s in and ~~~IR~xlR~~ 
respectively, We define for h 2 27~ I[c(l the operator 

Q&4f,g) = J(a,f,g) + k { f f g(w,e$ deadw + f(W&) dE‘2 1, c2.6) 
if;%d~, IR”xlR, 

and the following sequence {H,(a)) of functions 

Ho(c) = f, 
n-i cz.7) 

H,(c) = hit Qh(d,Hn-l-,(6),H,(a)) I if n z 1 . 
(I’0 

Proposition a Let CI E S and fo be nonnegative functions. Then each of 
the functions H,(a) in (2.6) is nonnegative and we have IIH,(o)II = IIfoll 2: I 
for any n E IN. The unique solution of (1.1) can be represented as 

co 

f(t,a) = c e -ht (1 .” tf- htJn H,,(a) , 
n=O 

where we can choose any h z 2xllall 

” 
Remark: For the rest of this paper we 
function. 
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Remark: For both sequences {G,(*), n 20) and 1 
start value of the sequence. 

f, is called the 

Proposition 3 I* Let f(*,aJ and f(*,a$ be two solutions of (1.1) with data -A....2 
and c12 E B,’ and suppose: f(*,bl) =+= f(+,o$ in C([O,to]-+L,), where 

to is an arbitrary positive time. Then the set of all times t E ui, with 
the property: f(t,a,) = f(t,Q in L, is closed a there is no finite limit 

Proof: The closedness of is a direct consequence of the continuity af 
f(*,dl) and f(*,a32, see proposition 2.1, 
Assume now, we have a finite limit point T, E . Then there exists a 
sequence ft,) in with the property: 

Vn f IN: t, %r T1 and 
n+a, 

We set Y. = f(T,,d,) = f(T,,cQ and define the sequences (Q;;,(dt), n&I} and 
{G,(cs,), nr0) with start value YoS In the time interval1 [T1-C4n3-‘,T,+C4n1-1] 
the solutions of (1.1) with data CJ~ and 02 can be represented as 

M 

f(t,cQ = c 
n=Q 

(t-T,)” C&r) und f(t,rr2) = (t-TIP G&J,) (3.1) 

Now the fact: V n E IN: f(t,,a,) = f(t,,cQ yields: 

V k E IN : !jym Ilf(t,,a,)-f(t,,a2)11 = (j 
ITi-t,lk 

(3.2) 

and we get with the help of standard techniques from (3.1) and (3.2): 

Vn c IN : C,(ciI) = C,(cQ. 

But (3.3) implies f(*,a,) = f(*,d+$ in C([T1-C4~l-*,T,*C4rc3-“I --) 
iteratian procedure yields f(*,+) = f(~,a,) in C([O,tol]+ L,) w 
contradiction. 

An immediate consequence of proposition 3.X and of the theorem of the 
continuation of the solution of differential equations in anach spaces 
(see e.g. artin, 1976, chapter 6) is the following 

Corol~ 3A Let oi and o2 be two nonnegative functions in S and let 
f(*,q) and f(*,02) be the corresponding solutions of (1.0. Then there are 
equivalent: 
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t 

(9 There exists a to > 0 such that f(*,a,) = f(*,a$ in C!([O,to] + L,) 

(ii) Vn E IN : G,(al) = Gn(c$, where the functions G,,(.) are given by (2.3) and 
for any to > 0 there holds : f(s,ot) = f(*,a$ in C([O,to]-+L1). 

Thearem u Let cl, CI~ E S, be two different scattering cross sections. Let 
f(*,c,) and f(*,a,) be the correspondin solutions of (1.1). We denote 
a(X) = Xal + (l-X)62, O<Xsl. Suppose there exists a tt > 0 such that 
f(tl,al) =k= f(tl,d2). Then, for any to > 0, the map 

co,11 3 x --) f(u,a(XI) E C([O,to]-+L,), with 6(X) = dl * X(0,-$), 

f(*,a(X)) being the solution of (1.1) with data fo and d(X), is injective. 

Roof: As a consequence of corollary 3.1 there exists a N > 0 such that: 

GNbi) =k GN(a,), 

where the functions G,(e) are given y (2.3), e set = i~f(~~ : 

G,(a,) + G,(a,)I. Using (2.3) we obtain 

r 
n-f 

G&(X)) ” n c (1-X) Jbi,G,.+,(a(X)), 
(I=0 

which yields 

G&(X)) = G,(a,) = G,(a,) , n = O,l,.., and 

G,(a(X)) - (1-X) GM(cr,) + X GMb2). (3.4) 

Now equation (3.4) implies that we have for any two Xi and X2 E LO,il: 

Xi =I= X2 =3 GMbO.,)) + GM:(a(X2)) 

* 
and the assertion follows from corollary 3.1. 

/// 

44 ~r~~~~~6 of the collusion -- 

In this section we use the injectivity criterion of corollary 3.1 to see that 
there exists for any two different scattering cross sections cl and 62 an 
initial condition fo such that the corresponding solutions of (I.11 are 
different, regardless of the observation time to, o this end we note that 
the function G1 of the sequence (2.3) is given by Gl(a) = J(c,f,f) where f is 
the start function of the sequence. So all we have to show is that, for 
any two different bl and 62, there is a ~~~neg~tive function f such that 
J@,f,f) =I= J(a,,f,f). 

P 

* 



-  7 -  -  7  -  

Lemma 4.1: The family of mappings Lemma 4.1: The family of mappings 

{S 3 tl -+ J(a,f,f) , f {S 3 tl -+ J(a,f,f) , f nonnegative function in Li,,I nonnegative function in Li,,I 

separates on S. separates on S. 

Proof: Let bt and o2 be two different scattering cross sections. Due to Proof: Let bt and o2 be two different scattering cross sections. Due to 
property (i) of definition 1.1 there exist rational numbers Eo C: IR, and property (i) of definition 1.1 there exist rational numbers Eo C: IR, and 
eo=(eio,e2o) E AL such that eo=(eio,e20) E AL such that 

kW,,eo, . 7 . kW,,eo, . 7 . 1 : (e’,x) + ol(Eo,eo,e’,x) - a2(Eo,eo,e’,xl 1 : (e’,x) + ol(Eo,eo,e’,x) - a2(Eo,eo,e’,xl (4.1) (4.1) 

is not the null function. We have to show : is not the null function. We have to show : 3f E L,,t : J(k,f,f) * 0 in L,. 3f E L,,t : J(k,f,f) * 0 in L,. 
Suppose this is not the case, Then we have: Suppose this is not the case, Then we have: 

VT E C%RJxlR 1 f E L VT E C%RJxlR 1 f E L + v + v i,i : i,i : I I rp(v,~) J(k,f,fl(v,sl) deldv rp(v,~) J(k,f,fl(v,sl) deldv = 0 = 0 (4.21 (4.21 
IR3xlR, IR3xlR, 

Due to the properties of the function k, recall lil, (ii) and (iii) in definition Due to the properties of the function k, recall lil, (ii) and (iii) in definition 
1.1, the map 1.1, the map 

IR3xlR+~~R3xlR,\~(~,~~,v,~~), v E lR3, E$,E~ E IR,) 3 (v,xl,w,ez) --) IR3xlR+~~R3xlR,\~(~,~~,v,~~), v E lR3, E$,E~ E IR,) 3 (v,xl,w,ez) --) 
(4.3) (4.3) 

I I k(E,e,e’,q*q’) l~P(v’,~~‘) - k(E,e,e’,q*q’) l~P(v’,~~‘) - (P(V$j)l ‘l/l-e+$ ~~(~~)~~‘~ (P(v,E~)I ‘l/l-el’-e2’ ~~(~~)~~‘~ 
Ah,xS2 Ah,xS2 

is a continous function in its variables (v,rt,w,~~I. is a continous function in its variables (v,rt,w,~~I. ecall ecall that we used in that we used in 
(4.31 the notations (1.3) and (1.4). We set (4.31 the notations (1.3) and (1.4). We set 

El0 = e,,E,, E20 = El0 = e,,E,, E20 = ezoEo, v1 = tr,O,Q), v2 = f-r,&01 , ezoEo, v1 = tr,O,Q), v2 = f-r,&01 , r = r = 

and define for n F: iN: and define for n F: iN: 

‘” ‘” g,(v,d = 5 v, [ g,(v,d = 5 v, [ H(E-&to) expC-n(lv-vl12+~)l * H(E-&to) expC-n(lv-vl12+~)l * 

where H(a) is the Heaviside function. It can be seen easily that for n E IN where H(a) is the Heaviside function. It can be seen easily that for n E IN 
gr, is in L,,,. In addition we have gr, is in L,,,. In addition we have 

Vn E IN : 1 Vn E IN : 1 gJv,q) dcldv = 1 gJv,q) dcldv = 1 
IR3xiR, IR3xiR, 

Because of (4.2) there holds: Because of (4.2) there holds: 

Vn E IN , 43 E Cb(lR3xiR,): \ Vn E IN , 43 E Cb(lR3xiR,): \ ~(v,Q) J(k,g,,g,)(v.E1) dEtdv = 0. ~(v,Q) J(k,g,,g,)(v.E1) dEtdv = 0. (4.4) (4.4) 
IR3xlR+ IR3xlR+ 

Due to the continuity of the mapping (4.3) we get (see e.g. Folland, 1976, Due to the continuity of the mapping (4.3) we get (see e.g. Folland, 1976, 
Thm. 0.13): Thm. 0.13): 

b b 
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lim I q(vsJ J(k,g,,g,Hv,&i) de,dv = 
‘jrn IR3xlR, 

+ 1 k(Eo,eo,e’,qoq’) 
*ixs2 

- q?(v,,qO)l dMrj)de’ 
4 (4.5) 

I k(Eo,eo,e’,--qo$ 
4 A,xS2 

o) - ~h2,~20)1 dll(q’)de’ y 

In (4.5) qO den&s the unit vector in the direction of vi. If we use now the 
symmetry properties of k, see (4.1) and (1.61, we get from (4.4) and (4.5): 

vq, E Cb(lR3XIR*) : 

0 = I/i-e,‘-eT i-Q4 $- (4.6) 

* ixs2 
- V"(q,Q -. 'P(v~,E~& dfI(T’) de’, 

Ta discuss the integral on the right hand side of (4.6) we perform the 
following changes of integration variables: 

(el’,e2’) -+ (2 = “*‘-e e2’, y = q’- e2’) 

Y’Y’=f I 2 -+ 2’ = 1-z ) z+r= , 

y’ -3 y” = - (Eo-2r2)(l+y’) 

and we obtain: 

o= I- k (Eo, ( ei0,e2& ( el”(x,z),e2’(x,z)),~lo’rl’(x)) 
G(Eo) 

d E,S 
(4.7) 

’ [Ip(x,z) dzixi d”x , 

where we have: C(E,) = {(x,z) E iR3xiR+ : o/2 and 0 I z E,-21x1’1, 

q’(x,z) = z, e2’(x,z) = q’(x,z) = z, e2’(x,z) = 
Eo-21x12-2 Eo-21x12-2 

E, E, Eo ’ Eo ’ 
q’(x) = fi , q’(x) = fi , 

We consider the following measures We consider the following measures on (Eo) (E,) and its induced and its induced 
algebra. algebra. 

dp&x,z) = dp&x,z) = -I!!----. -I!!----. 
E,S E,S 

k(E e e o, 1o, 20,e,'(~,~),e2'(x,z),r)0".~~(x)) dzad"x 

h h 



dp2(x,z) = $ \ 
I 

k(Eo,eo,e’,x) 
Alx~-l,l~ 

dxde’ 

and note that (4.7) implies: 

VJ~, E: C%RJxlR+): 1 qdx,z) dpt(x,z) - \ qdx,z) dp$x,z) = 0 (4.10) 
G(E,) G(Eo) 

Because of (4.0, dvt(x,z) is not the zero measure, A comparison of (4,.8) 
and (4.9) shows that dp, is absolutely continous with respect to the 4 
dimensional Lebesque measure whereas dpZ is singular to this measure. So 
bath measures are different. 
Now, using that the dual space of the real measures on WE,) is isomorphic 
to Cb(G(Eo)), we get: 

3~’ E C”(G(E,)) : 1 q’(x,z) dpt(x,z) - I q’(x,z) d&x,z) + 0 (4.11) 
G(E,) ME,) 

A comparison of (4.10) and (4.11) shows that we get a contradiction, 
provided we can show that the restriction map 

WE,) : Cb(!RJxIRJ + Cb(G(Eo)) : T-+9) 
I (E,) 

is surjective, 
Due to the compactness of G(EJ there exists a r r 0 such that 

*(O,r) = ~(x,z) E IR3xlR+ : [xj’+z $: l-1. 

Now Tietze’s extension theorem (see Reed-Simon, 1980, Thm, Now Tietze’s extension theorem (see Reed-Simon, 1980, Thm, .ll) yields .ll) yields 
the surjectivity of the mapping the surjectivity of the mapping 

: C~~B~(~,r)) + C”(G(Eo)) : C~~B~(~,r)) + C”(G(Eo)) : p-+ql : p-+ql 
I I G(E,) . G(E,) . 

The surjectivity of the map R(E,) is now a direct consequence of The surjectivity of the map R(E,) is now a direct consequence of 
lemma (see Rudin, 1970, Thm. 2.12). 

Remark: The set VC+ = {x E IR : x2 

4.J There exists a sequence 
properties 

if,) of n~~n~g~tiv~ functions in Ll,i 
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( i 1 VII E IN : 1 1 
IR’xlR, 

( ii ) Vn c: IN : 1 v f,(v,st) dgrdv = 0 
IR’xlR, 

( iii ) 32 E IR, : Vn E IN : I (1 + Id2 + ~~1 dqdv s (4.14) 
IR3xlR+ 

such that the set of mappings 3 o + J(o,f,,f,) e: L,) separates on S. 

Proof: We start with the sequence of functions introduced in (4.4). 
These functions are parametrized by the the values r, s20 . Therefore 
we write here g,(r E , 10,~&(~,~). We have the following properties: 

( a) 1 gIl(r,++,,+o)(v,e) dadv = 1 for arbitrary 
IPXIR, 

ib)/ v g,(r,qO,~~O)(v,~) dsdv = 0 for arbitrary 
IR3xlR, 

(c)j (1 + Iv1 2 + E) gnk,Eio,&&(v,z)dedv = 1 + r2 
IR%R+ 

+ -$E + -& , 

because we have vr=(r,O,O) und v2=(-r,O,O) . 

We define for arbitrary but fixed C > 0 the functions: 

fn(r,q0,E20, C) = X(r,EI0620 ,C) gn(r,q0,E20) with 

C) = min 
I 
1 ) 

c .- 
P2 1 

Obviously the set Ms = 1 fn(r,EIO,E~o,C), n E IN, r E Q,> is 
countable and the functions En have the p~~~ert~es (4.121, (4.13) and (4.14). 
Moreover we can see easily from the proof of lemma 4.1 that the set of 
mappings 

cl -+ J(a,f,f) E L,, f E Ms) 

separates on S, 

/// 

Y Y 

Defintion 4.1: We call a sequence (h,) of nonne Defintion 4.1: We call a sequence (h,) of nonne ative functions in ative functions in 
separating sequence, if it has the properties mentioned in theorem 4.1. The separating sequence, if it has the properties mentioned in theorem 4.1. The 
constant C occuring in (4.14) is called energy bound of the sequence (II,>. constant C occuring in (4.14) is called energy bound of the sequence (II,>. 



Notation: As usual we denote the space of tl 
some Banach space X by I,(X). It is equipped with the norm 

1, 3 Y 3 IIYII, = sup lIYnllX * 
nelN 

Suppose now we have a separating sequence (h,). Then theorem 4.1 motivates 
the study of the following mapping 

S, 3 6 -j F(4) = (ft(.,ol,f2(-,el, * , * 1 E l,iC(TO,t,l+L,)). (4.15) 

In (4.151 to is any positive time and the functions f,(+,al are the solutions 
of (1.1) with data o and h,, It is a direct consequence of theorem 4.1 that 
this mapping is injective. So we study the inverse of the mapping (4.19 

0’ on the image of S, which will be denoted by F6,). 

4 
s) On the inveree aroblem 

Lemma u Let ft and f, be two nonnegative functions in with the 
following property: there are canstants Ct, C, > 0 such that: 

VR> 0: 1 f&V,E) dEdv i 
c, 

I + R” ’ 
i =I,2 , (S.1) 

B,‘YR) 

where we have B,?R) = ((v,E) : ivlz-+ E > t kc: + a f~~cti~!~ with the 
property: 

3 D > 0 : VE 5 2D”, e E A, : k(E,e;;) = 0 . (5.2) 

Then we have : 
1 

I/JW,,f,l/ s ~~I’~~ Kyf,ll + C&II 1 * (S.3) 
e 

Proof: Using proposition 2.1 and the nonne ativity of f,, f2 and k we 

ilJ(k,f,glll 5 2 I V(k,f,gKv,Ez) dEldv 
iR3xlR, 

I 
= k(E,e,e’,~*~‘) )Gx Cf~(v,~~)f~(w,~~) 

lR3xlR+xlR3xlR, xA,xS, 
+ f2(v,&l)fl(w,E2)3dn(rll)de’d~~dwd&~dv. 

Recall that we have in (5.4): 

E = $v-WI2 + El + &a s Iv-l2 * El + lw12 + “2 f.5.S) 
? 

” 
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The set lT= IR3xlR+xlR3xlR+ can be decomposed into four disjoint The set 19=IR3xlR+xlR3xlR+ can be decomposed into four disjoint sets: sets: 

lY= B,(D)xB4(D) i i B,“(D)xB4(D) u B,(D)xB,YD) in B4YD)x lY= B,(D)xB4(D) i i B,“(D)xB4(D) u B,(D)xB,?D) in B4YD)x 

Now (5.3), (5.4) and (S.9 yield: Now (5.3), (5.4) and (S.9 yield: 

s s k,(E,e) Cfl(v,eI)f2(w,sZ) + f2(v,sI)fl(w,E2)l deadwdsidv = 0 , k,(E,e) Cfl(v,eI)f2(w,sZ) + f2(v,sI)fl(w,E2)l deadwdsidv = 0 , (5.6) (5.6) 

B*(D)xB*(D) B*(D)xB*(D) 

where the function k, is given by (1.7). As a consequence of (5.6) we get: where the function k, is given by (1.7). As a consequence of (5.6) we get: 

21 21 V(k,f,,f,) detdv V(k,f,,f,) detdv I: 4Tcllkll 1 fl(v,al) de,dv 1 I: 4Tcllkll 1 fl(v,al) de,dv 1 fz,(w,sZ) ds,dw fz,(w,sZ) ds,dw 

IR3xR, IR3xR, II II ,. B,YD) ,. B,YD) IR3xlR+ IR3xlR+ 

+ + I I f+Jv,Q dsldv 1 f+Jv,Q dsldv 1 fl(w,s2) de2dw fl(w,s2) de2dw 
B,?D) B,?D) lR3xlR, lR3xlR, I I 

Now (5.3) is a direct consequence of (S.1). Now (5.3) is a direct consequence of (S.1). 
/// /// 

Motivated by this lemma we introduce a shift operrator on a subset of S. Motivated by this lemma we introduce a shift operrator on a subset of S. 

Definition S.1: We denote by S’ the set of all scatterin Definition S.1: We denote by S’ the set of all scatterin CXKW sections k CXKW sections k 

Theorem .S.J Let to be an arbitrary, but fixed positive time and let x and 
be positive real numbers. There exists a positive constant D(to,s,CI such 
that we have for all separating sequences {h,> with energy bound C and 
all k E S’+,t and o E B, : 

have in (5.7): 



Lemma 5.1: Let c and d be nonnegative real numbers with c s 2. Suppose 
we have a sequence (a,) of nonnegative numbers satisfying 

(i) a0 r 0 

n-i 
( ii ) a, S A c % + d 

n p=o 
, n 2 1, 

Then there holds the estimate: a, 5 (n+l)ao + nd for n 2 0. 

Proof of the lemma: Obviously the above inequality is true for n = 0. Now 
supposeit is true for all k E (O,l,..,n-11, 1121. hen we have 

n-l n-l 
an an 

c c 5----- 5----- 
n n 

C(p*l)ao + pdl * d C(p*l)ao + pdl * d 

c c 63 = = n+l n+l 63 
-- - n a0 + -- - n a0 + 
n 2 n 2 y $ (n-1) d + d y $ (n-1) d + d 

L (n+l)ao + (n-i)d + d , L (n+l)ao + (n-i)d + d , because we assume because we assume 

which implies that the above estimate is true for ail k E IO,l,...,n> which implies that the above estimate is true for ail k E {O,l,...,n> 
/// /// 

Proof of theorem S.1: We first note that we have for any k f S’,,,: Proof of theorem S.1: We first note that we have for any k f S’,,,: 

lb + kDll - lldl + 1 lb + kDll - lldl + 1 and 116 +kD - clll = 1, and 116 +kD - clll = 1, 

Without any restriction we may assume that the null function is not an Without any restriction we may assume that the null function is not an 
element of our separating sequence so that we have: element of our separating sequence so that we have: 

I I hk(v,zlI dcldv = ak > 0, k E IN. hk(v,E1) dcldv = ak > 0, k E IN. 
IR3xlR+ IR3xlR+ 

For h = For h = S~c(ll~1l+i) we can use the series representation (2.8) of the 8~c(ll~11+1) we can use the series representation (2.8) of the 
solution of (1.1): solution of (1.1): 

Lx7 Lx7 
f&e’) = f&e’) = c c ak eXp[-haktl(~-eXp[-ha,t3)” &k(d) , 6’ E b,a+kD) . ak eXp[-haktl(~-eXp[-ha,t3)” &k(d) , 6’ E b,a+kD) . 

n=O n=O 

Note that we have used the scaling property (1.8). The functions Note that we have used the scaling property (1.8). The functions 
(Hnk(d’), n 6 IN) in (5.8) have to be calcluated as shown in (2.7) and use (Hnk(d’), n 6 IN) in (5.8) have to be calcluated as shown in (2.7) and use 
hk/ak as start function. Using this formula we can calculate recursively hk/ak as start function. Using this formula we can calculate recursively 
the difference AH,, = H,,(a+k,-,) - Hnk(~): the difference AH,, = H,,(a+k,-,) - Hnk(~): 
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Af-Lk = H,,(a+k,) - HnkW 

1 n-l 
z- 

nh c 
p=O 

J(k,$-L.i-Cc,&) ,Hp,&)) 

1 n-i 
=- 

nh c 
p=o 

J(a+kD,H,-i-,,k(a)+H,_i_,,k(a+ka),AH,,k) + 

If we use now (2,2), proposition 2.2 and the nonnegativitj 
6’ E (6, a+k&, we obtain: 

V k E IN, n f IN : 1 (1+(~1%~) Hnk(a’) dsidv :: C/ak 
iR3xlR+ 

which implies &‘)(v,q) de*dv 

The constant C in (5.10) is the energy bound of the separati 
From (5.10) we can see that there holds for any k E S’,,,: 

IIJ(kD,H,+,k$ 1 * 

If we use this estimate in (5.9) we get: 

IIAIYI,,~~~ r; [ ‘,- fl 
p="O 

211AH,,kllo 1 + ’ 
.+(I” “(l+llall) 

If use now (5.11) and (5.8) and lemma S.1 we 
simple formula 

m 

c rlqn = a: 
n=O (i-q)2 

IIf,(t,d+k,)-fk(t,6)II 5 ~l+ll$‘~l+D2~ [expC8xak(l+llall) tl - 11 

C 
r; ~l+llnll~(l+132) 

[expT8?r(l+llall ItI - l] 

If we choose 

D(&,t,,C) 

-  , , - , ( , . -  -  I  

now 

C LexpC16xt.l -” 
2 

15.7) is a direct consequence of (5.12). 
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.!2 .!2 

In this paper we have considered the problem of the reconstruction of the In this paper we have considered the problem of the reconstruction of the 
scattering cross from the knowledge of the solution of a generalized 
Boltzmann equation. To this end we first introduced a suitable function 
scattering cross from the knowledge of the solution of a generalized 
Boltzmann equation. To this end we first introduced a suitable function 
space for the scattering cross sections and we discussed some injectivity 
properties of the solution of the Boltzmann equation, 
In the next step we have shown that there is a countable family of initial 
conditions such that the collision operator separates on our function space. 
As a consequence of this result we have proposed the function space 
L&3Co,t,l+ L,N as solution space for the reconstruction of d. In the last 
section we have shown the inverse of the mappi hich assigns to a given 
d a sequence of solutions of the generalize olt~ma~n equation, is 
discontinous. This shows that our inverse prabl~m is ill posed. 
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