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Zusammenfassung

Hamiltonsche Damonen ermoglichen es Energie von Systemen mit sehr schnellen auf
solche mit langsameren Freiheitsgraden zu iibertragen, auch iiber viele Grofsenordnun-
gen der entsprechenden Zeitskalen hinweg. Sie agieren auf kleinsten Skalen und kénnen
als Mikromotoren angesehen werden.

Bisher wurden solche Damonensysteme im klassischen sowie im quantenmechanischen
Bereich beschrieben. In dieser Arbeit wird nun der semi-klassische Bereich untersucht,
in dem Quantenphénomenen als Korrektur an klassischen Systemen auftreten. Das Au-
genmerk liegt hierbei auf numerischen Simulationen.

Untersucht werden zunéchst einfiihrende Modelle die sich mit dem Tunneleffekt be-
fassen, da dieser als bedeutende Quantenkorrektur auftritt, sowie mit dem Gewinn und
Zerfall gebundener Zusténde, da dies die Ubergéinge zwischen den dynamischen Phasen
eines Damons — adiabatische Entkopplung und Downconversion — darstellt.

Die Untersuchungen erfolgen numerisch anhand von Wellenfunktionen aus der Schro-
dinger-Gleichung und mittels Wignerfunktionen in einem quantenmechanischen Phasen-
raum im Rahmen des Weyl-Wigner-Groenewold-Moyal-Formalismus. Die Wignerfunk-
tionen werden zum Einen aus den Wellenfunktionen berechnet, zum Anderen kommt
eine numerische Methode auf Grundlage der Moyalgleichung zum Einsatz, welche hier
vorgestellt wird.

Die so erarbeitete Methodik wird anschlieffend zur Betrachtung eines Ddmonsystems
mit tilted washboard-Potential eingesetzt. Untersucht wird das Verhalten des Dadmon
im Hinblick auf auftretende Quantenkorrekturen, insbesondere im Phasenraum und
beziiglich des Kruskal-Theorems, welches den Einfang von Phasenraumfluss durch eine
zeitlich verdnderliche Separatrix beschreibt.

Der semi-klassisch quantisierte Phasenraum wird schliefilich als Grundlage einer kom-
binierten Beschreibung von klassischen und quantenmechanischen Damonen diskutiert.
Das Verhalten des Energiespektrums im tiefen Quantenbereich wird hier durch dyna-
misches Tunneln erklart.






Abstract

Hamiltonian daemons allow the transfer of energy from systems with very fast degrees
of freedom to systems with slower ones across several orders of magnitude. They act on
small scales and can be regarded as micro-engines.

Such daemons were previously described in the classical as well as the quantum me-
chanical regime. In this thesis the semi-classical regime is examined, where quantum
phenomena occur as corrections to classical systems. Here, the focus is on numerical
simulations.

First some introductory models are examined. They are concerned with quantum
tunneling, since it occurs as an important quantum correction, as well as with the
capture and decay of bound states, since this represents the transition between the
dynamical phases of a daemon: adiabatic decoupling and downconversion.

The examinations are carried out using wave functions, as solutions to the Schréodinger
equation, and by means of Wigner functions in a quantum mechanical phase-space in
the framework of the Weyl-Wigner-Groenewold-Moyal formalism. For one these Wigner
functions are computed from the wave functions, but they are also obtained from a
numerical method based on the Moyal equation, which will be introduced here.

After developing this methodology, it is employed in the study of a daemon system
with a tilted washboard potential. The daemon behavior is studied with regards to
quantum corrections, especially in phase-space and concerning Kruskal’s theorem, which
describes the capture of phase-space flow via a time-dependent separatrix.

Lastly the semi-classically quantized phase-space will be discussed as a basis for a
combined description of both classical and quantum daemons. The behavior of the
energy spectrum in the deep quantum regime is explained by dynamical tunneling pro-
cesses.
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|. Introduction

This chapter introduces the fundamentals of Hamiltonian engines given in previous pub-
lications, upon which this thesis will build.

First, section [[.a] provides a brief motivation for micro-engines from the realm of
cellular biology, delivering some important keywords of the topic in advance.

Section [[.b|gives the introduction to Hamiltonian daemon engines and their behavior
in phase-space in the scope of classical mechanics, followed by the deep quantum regime.

Section delivers the outline, which highlights the areas of interest to be explored
and presents the structure of this thesis. It also contains a few remarks about the
handling of constants and units.

l.a. Motivation

The big picture is about energy exchange and transport processes on microscopic scales,
1. €. MICTO-ENGINES.

In biological systems there are proteins that act as molecular machines?. They con-
vert chemical energy to mechanical work and can generate movement or transport cargo.

A concrete example from the field of cell biology is the enzyme V-ATPasé?, illustrated
in [Figure 1.1} In its upper section (Vi) the molecule adenosine triphosphate (ATP)
is used as an energy source by hydrolyzing it to adenosine diphosphate (ADP) and
phosphate, whereupon chemical energy is made available. This lets the lower section
Vo rotate, facilitating the (active) transport of protons through the membrane. This
protein therefore is a proton pump, acting against the concentration gradient of the
protons.

In other terms, V-ATPase is an engine that uses energy from a fuel source to power
a pump.

This demonstrates the direct coupling of different subsystems with dynamics on vastly
different time scales: the chemical energy corresponds to a fast time scale (1013 Hz),
whereas the rotation happens a much slower time scale (10! to 10> Hz)?. Energy is
converted over many orders of magnitude.

Such proteins may be macromolecules, but they are still microscopic systems on the
boundary between classical and quantum physics. While macroscopic engines are de-
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Figure I.1.: from ; The enzyme V-ATPase converts the chemical energy of the hydrol-
ysis of ATP to mechanical work in the form of rotation.

scribed in terms of thermodynamics with large ensembles and thermal reservoirs, this
will not work at these scales.

To explore the mechanisms behind micro-engines, Hamiltonian Daemons use the
formalism of closed Hamiltonian systems. This could even lead to the microscopic
origins of thermodynamics.

I.b. Introduction to Hamiltonian Daemons

Engines are complex systems that are commonly described in the language of thermody-
namics. In this section a description based on closed Hamiltonian systems is presented,
that does not rely on macroscopic baths, but rather shows energy transfer between
weakly coupled microscopic subsystems.

This section serves as an overview of the subject and a background for the thesis with
the necessary definitions. Further details can be found in the journal articles [6} 7] and
the dissertations @]I
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Figure 1.2.: from |[6]; Illustration of an engine with different time scales.

1. Introduction to Hamiltonian Engines

To understand Hamiltonian daemons it is necessary to look at adiabatic decoupling
first. For this a systems is regarded that contains subsystems with dynamics on greatly
differing time scales. For these subsystems to effectively interact and exchange energy
some sort of resonance condition has to be fulfilled. Otherwise they are considered to
be decoupled and can be regarded as independent of each other. This phenomenon is
called adiabatic decoupling and is usually used as an approach to eliminate high fre-
quency terms in Hamiltonians describing slower evolutions.

The idea behind Hamiltonian daemons is to bypass the decoupling and facilitate an
exchange of energy, even across multiple orders of magnitude between the time scales
of the subsystems.

This invokes a thought experiment of James Clerk Maxwell: Mazwell’s demon. Just
like this suggested a violation of the second law of thermodynamics, Hamiltonian dae-
mons target the concept of adiabatic decoupling.

The kind of systems these daemons represent should be made a bit more concrete.
shows an illustration of an engine that lifts a weight in a gravitational field.
It can be described by a general classical Hamiltonian

H = Hw + Hr + 7 He. (L.1)

This engine features a fuel tank (F) — representing the fast degrees of freedom — coupled
with strength + to the engine subsystem (E) — with time scale 2 — which in turn is
coupled to the work subsystem (W) — with time scale w — lifting the weight with a
speed vc.

Such an engine can already be understood by means of thermodynamics, e. g. a com-
bustion engine. The description involves thermal reservoirs, . e. macroscopic subsys-
tems.

Daemon engines on the other hand are micro-engines: closed systems described in
terms of Hamiltonian mechanics which can also work on microscopic scales.
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Figure 1.3.: from ; Dynamics of a classical engine for the Position . left: The quan-
tum system splits into multiple branches. right: The classical system shows
steady lift with speed v.
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Figure 1.4.: from ; Dynamics of a classical engine for the Momentum P. left: The
quantum system shows periodic quantum jumps in downconversion. right:
The classical system oscillates around pe.

2. Description of the Dynamics

The phenomenon of the energy exchange despite adiabatic decoupling is called down-

conversion, as the energy of the fast subsystem is converted down to the slow subsystem.

This works via non-linear coupling, which can occur in small regions of phase-space.
A classical Hamiltonian for a daemon engine can be given af}

2
H = % + MgQ+ QL, — v (Ly cos(kQ) + Ly sin(kQ)) , (1.2)
where @) is the height, P the momentum, M the mass raised against gravity g. The
angular momentum L represents the fast degrees of freedom with high frequency €.
The rate v and the inverse length k are coupling parameters.

The resulting dynamics are depicted in for the position @ and in
for the momentum P. Without downconversion the weight follows the usual parabola
with a linearly decreasing momentum. At momentum P = % a transition to a different
dynamical phase occurs. The weight rises at critical speed v, = % against gravity, while
the momentum oscillates around a critical value p.

#Equation (1) from
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Figure I.5.: from [6]; The tilted washboard potential of the effective Hamiltonian Hj

in [6], which is closely related to [Equation I.3]

The potential can exhibit local potential wells, facilitating bound orbits.

Since total energy is conserved, the power needed to drive the weight upwards is
supplied by the high-frequency subsystem, i. e. the engine’s fuel tank, until its energy
reserve is expended. The resonant effects keep the weight’s speed near v, during this
driving. The steady transfer of energy is steady downconversion.

The Hamiltonian of [Equation 1.2 can be rewritten as the effective Hamﬂtonianlﬂ

272

kL
_ 2 _ 2_ 12 1.3
Hesr oM +gk?th Y L Lz ( )

This is now an explicitly time-dependent Hamiltonian. The problem is reduced to
a single particle (the weight) in a time-dependent potential exhibiting local potential
wells.

Due to the sinusoidal shape (for fixed t) the potential V' of is called a
tilted washboard potential. Such a potential is depicted in [Figure T.5| V is considered
adiabatically, where it is taken at fixed point in time with the parameters then slowly
changing with ¢.

In Reference [6] a series of transformations is shown to result in a Hamiltonian (Hs),
which is closely related to the effective Hamiltonian. This amounts to a shift in the
momentum, changing the problem to the comoving frame where v. = 0, since the stable
fixpoint is now a local minimum in the potential.

3. The Phase-Space of Daemon Engines

For the phase-space yet another version of the daemon Hamiltonian is introduced: a
rescaled effective Hamiltonian from [8]:

PEquation (4) from [7], obtained from the semi-classical limit of
°from H> (Equation (8)) in [10]
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Figure 1.6.: from ; The phase-space of the rescaled effective Hamiltonian for dif-
ferent times ar.
Unstable fixpoints are marked by a red circle, the stable fixpoint by a blue
cross. Thin red lines are open trajectories, blue lines the bound orbits. The
thick red line marks the separatrix.

F2
Het = -5 T a(t —10)F — V1 — F? cos(¢). (L4)
Here (¢, F) are canonically conjugate action-angle variables, where F' can be regarded
as the amount of fuel in the tank.

The phase-space for this Hamiltonian at different times a7 is shown in
The separatrix divides the adiabatic regions. Open trajectories belong to the adiabat-
ically decoupled phase, indicating that the engine is not running. Bound orbits are
closed around the stable fixpoint and slowly drift downwards to lower fuel levels with
it, indicating a running engine.

For the effective model with a tilted washboard potential the phase-space in[Figure I.7]
is now quasi-periodic. The two dynamical regions are still present. Most trajectories are
open and display adiabatic decoupling, with only slight undulations. However, within
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Figure 1.7.: from ; The phase-space for a tilted washboard potentia V = )\gf) -
(2 cos ¢ with flow around the separatrix.

an enclosed separatrix area (As4) bound orbits are possible, corresponding to the local
wells in the potential.

In order for the daemon engine to start — or stall — transitions between these regions
must be possible. Incompressible phase-space flow, based on Liouville’s theorem, would
not permit this. However, for systems with a slowly time-dependent Hamiltonian the
separatrices slowly move and deform while also changing in size. Trajectories can then
cross over because of post-adiabatic effects, as the trajectories close to a separatrix are
non-adiabatic. The effective Hamiltonian (or is now explicitly time-dependent.

The probability for transitions is given by Kruskal’s theorem™ based on the rate
of growth of the separatrix area. In this is extended and additionally transport
processes in phase-space are considered.

4. Daemons in the Deep Quantum Regime

Hamiltonian daemons can not only be regarded in classical mechanics, and truly mi-
croscopic systems would invoke the laws of quantum physics. The Hamiltonian [[.2] was
already the classical analog of:

w1 4 A - Y ikQ 5  —ikQ

With the effective Hamiltonian:

k2L
N - . .
Heff = W + gktLZ — ")/Lx (16)
If the phase-space is quantized by the Bohr-Sommerfeld procedure and thus regarded
semi-classically, the separatrix area corresponds to a maximum number of allowed
bound states N. The quantum daemon is considered here in the deep quantum regime
for N < 1.
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Figure 1.8.: Quantum evolution generated by ﬁeff . (a): The instantaneous eigen-
spectrum with avoided crossings. (b): The probability for fuel occupation
numbers m over time. probability for the fast subsystem to occupy partic-
ular |m) states over time.

The evolution generated by H g can now be understood by the examination of
the instantaneous eigenspectrum, depicted in It implies that the system’s
amplitude to make transitions between different |m) 7 statesﬂ is negligible, thus not
performing steady downconversion. The spectrum shows that the instantaneous eigen-
values of different |m) s states would cross. However, there are quantum mechanical
resonances which resolve this, leading to avoided crossings. This can now be regarded
with Landau-Zener transitions, which gives a probability for adiabatic transitions from
initial |m) to |m — 1) states.

The quantum evolution for position and momentum is shown in the left plot of
respectively Starting in the ground state |m) = |I) of the eigenspectrum
the systems remains adiabatically in the |I) f state until the first avoided crossing is
encountered. Here a bifurcation into a diabatic (decoupling) and an adiabatic (down-
conversion) branch occurs. The diabatic branch corresponds to the continued fall along
the parabolic curve with linearly decreasing momentum, while the adiabatic branch
means a drop from [l) ; to [l — 1), resulting in an upwards kick in the momentum.

shows how the probability for different fuel occupation numbers favor a
decrease in m over time. The probability amplitude does, however, oscillate back and
forth several times, as can also be seen in the inset of

4The quantum number m describes occupation numbers in the fuel system, in contrast to the weight’s
Mass M.



IL.c. Outline

l.c. Outline of the Thesis

1. Scope

So far daemon engines have been examined in the classical and the deep quantum
regime.

The classical description of daemon engines as well as transport mechanisms is based
on phase-space quantities, while the quantum description utilizes the Hamiltonian’s
energy spectrum.

The question is: How are these descriptions connected?

Now the semi-classical regime is regarded. This provides insight into the emergence
of quantum behavior and the resulting quantum corrections to otherwise classical sys-
tems. And additionally enables the examination of the direct quantum analogs as an
extension of such classical systems.

Apart from the usual approximations, a phase-space formalism of quantum mechanics
lends itself to the description of semi-classical daemon engines. This extends classical
theories to quantum mechanics and allows the use of phase-space quantities, like the
separatrix area, for the quantum daemon engines and quantum transport processes.

Numerical methods to study such system are of interest.

This thesis examines the semi-classical regime of Hamiltonian daemons with an em-
phasis on numerical computations.

An example for a daemon Hamiltonian is simulated, modeled as an analog of a system
described in a previous publication. Additional models illustrate aspects thereof.

2. Structuring

Quantum Tunneling is thought to be the main correction to classical systems. Thus
starts with theoretical background on tunneling processes and the decay of
quasi-bound states.

This is then examined numerically through a series of model systems: the scatter-
ing of a particle on a barrier, the decay of a particle trapped behind a barrier via
tunneling and the inverse problem of capturing a free particle behind a barrier. These
models exemplify some aspect of the tilted washboard potential examined in[chapter TV]

Chapter [[TI] introduces the Weyl- Wigner-Groenewold-Moyal-formalism of quantum
mechanics on a phase-space, involving the Wigner quasi-probability distribution. The
the models of are then explored in phase-space by computing the Wigner
functions as a transform of the numerical wave functions.

After that an alternative scheme for simulations of time evolutions in phase-space is
presented, which is followed by exemplary models. The chapter concludes in a compar-
ison of both methods.
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Chapter [[V]examines a quantum daemon engine by simplifying a tilted-washboard-
Hamiltonian via a time-dependent control parameter conveying the dynamical evolution
of the potential. The model and its characteristics are presented in the context of
daemon engines. The time evolution is simulated with the methods of the previous two
chapters.

Afterwards an attempt at going further beyond the simplified model is undertaken.
For that, a genuine quantum daemon Hamiltonian is rewritten in an exact quantum
phase model representation. The results and the occurring problems are discussed.

Chapter [V] deals with merging classical and quantum daemons into one description,
based on a semi-classical phase-space. The proposed theory explains the dynamical
evolution of daemon engines through phase-space quantities.

For this, avoided crossings in the quantum spectrum are linked to dynamical tunnel-
ing processes between different regions in phase-space.

Chapter [VI] concludes the main part of this thesis by summarizing the results and
indicating potential future research.

Appendix [A] elaborates on some of the theoretical framework concerning quantum
mechanics in phase-space.

Appendix |B| explains the numerical algorithms used for the simulations and sum-
marizes details on computational implementations.

Appendix [C| delivers additional derivations of equations and other entities.

3. Explanatory Notes

Equations will be given in natural units, with Planck’s constant i = 1 and the weight’s
mass M = 1, resulting in dimensionless quantities, e. g. position ¢, momentum p and
time t.

Sections introducing theoretical background and equations will feature A or M for
clarity.

M (upper case) describes a mass, whereas m (lower case) describes a quantum num-
ber, usually in regards to occupation numbers.

10



II. Basics of Tunneling and Decay
Theory

This chapter takes a look at tunneling in different contexts.

Section establishes a theoretical basis concerning the tunneling of particles
through an arbitrary potential barrier in general, as well as the decay of initially bound
states via tunneling.

Section introduces a numerical scheme to solve the Schrédinger equation first.
Then several models are introduced and their behavior is simulated numerically. This
will showcase different aspects of tunneling, primarily the decay of bound states in
a local potential well. Additionally, the inverse problem will be treated: capturing
initially free particles in a potential, either by tunneling through a barrier or by raising
the barrier behind the particle.

Il.a. Theoretical Overview

1. Tunnel Effect

One effect not witnessed in classical mechanics is the so-called tunnel effect’?, where a
particle can start out on one side of a potential barrier and appear on the other side,
even though the energy of the particle is lower than the local maximum of the potential.
In the following textbook example a brief theoretical explanation will be given for the
specific case of a rectangular potential barrier.
The barrier of height V; and width w is given by

_ W —ysasy,
V(q) - {0’ else (IIl)

An illustration of such a potential is given in [Figure IT.1] Assuming an incoming particle
from the left (¢ < —%) with mean energy Ej;, < Vo, the region of the finite barrier
(=% < ¢ < %) would be classically forbidden and and a classical particle could not
traverse it to reach the right side of the barrier (¢ > ¥).

In quantum mechanics this is different, as can be deduced from these solutions to the

Schrédinger equation:

etk 4 Re—tka, q<-—3,
Y(g) = { Ceifd 4 De™ia, —% < q< Y, (11.2)
Tequ’ q > %’

11
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(a) A wave packet approaches the barrier. (b) A part of the wave packet has
been reflected, but the rest tun-
neled through the barrier, contin-
uing to travel to the right.

Figure II.1.: A rectangular potential barrier of height Vj centered around g = 0.

where k = V2E, k = V2(Vo — E) and R, C, D, T are energy-dependent constants.
The solutions in describe an incoming wave superposed with a reflected
wave of amplitude R to the left. Due to constraints on the continuity and differentia-
bility of the wave function at the boundaries of the potential barrier, the wave function
does continue into the barrier region, where it decreases exponentially, and further
beyond the barrier to the right as an outgoing wave of amplitude 7T .

The probabilities for reflection and transmission are then given by |R|* and |72
This means that for a barrier which is neither too high nor too wide, there exists a non-
negligible amplitude of the solution at the right boundary, giving rise to a non-vanishing
probability of transmission.

In classical mechanics this cannot happen, but a quantum particle can tunnel through
a potential barrier, This is an effect inherent to quantum systems because of the wave
characteristics of solutions to the Schrodinger equation.

2. Decay of Quasi-Stationary States

Tunneling also comes into effect when a particle is trapped behind a barrier. The initial
situation is a potential well with infinitely high walls. At the initial time ¢ = 0 one
wall of the potential is changed to a barrier of finite height Vp and width uff] with a
vanishing value beyond that (see . This system does allow for quasi-bound
states with energies Er below V| as well as unbound states above Vj.

The setup for a system regarded in this section is the following: A single particle is

2Generally, w = r2 — 71 (see [Figure 11.2b) and thereby energy-dependent. For the the rectangular
barrier this simplifies to w = b — a.

12
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Figure 11.2.: Two types of potential barrier, separating a well from the free region. The

dashed red line shows an arbitrary resonance energy E'r of an initial quasi-
bound state.
(a): The rectangular barrier has a width of w = b — a and a height Vj.
(b): The cosine barrier has a height of V5 = 2y and an energy-dependent
width defined by the classical turning points, which are marked in red as
9 to T2.

bound in the infinite potential well, represented by an eigenstate |¥o(Eg)) with corre-
sponding eigenenergy Fr which does not change over time and is therefore stationary.
The potential is then changed to the finite barrier with Vy > Egr. This change is assumed
to be happening without altering the particle’s state. Now |¥() is not an eigenstate
anymore, but rather a superposition of all energy-eigenstates. Thus, it will decay over
time and it will do so by tunneling through the barrier. Such a state is referred to as
being quasi-stationary. These systems are of interest in particle and nuclear physics,
and the theory was first developed to describe a-decay.

Non-decay Probability

Of interest is now the time-evolution of such a quasi-stationary state and especially
the probability that the state has not decayed within the time interval (0, ), called the
non-decay probability Ppq(t).

The starting point for the decay problem|14] is:

Paa(t) = |A(H)2, (I1.3)
with the amplitude:
A(t) = (] e ). (11.4)

H is the time-independent Hamiltonian which determines the system’s evolution.

13



II. Tunneling & Decay

|1} is not an eigenstate of the system and will therefore be expanded in the energy
basis. A complete set of commuting operators including H is considered: (I;T , &), with

the common eigenstates |¢g ) and the eigenvalues:

ﬁ |¢E,a> =FE |¢E,a> ) (H'5)
« ’¢E,a> =a ’¢E,a> . (11'6)

By expanding the state |¢) in a series of these |¢f q), [Equation 11.4] can be written as:

Aty = [ dE w(E)e *F! (I1.7)
.

with the energy distribution

w(E) = / da |(65 o). (IL8)

The limit F,;, in the integral of stems form the fact the Hamiltonian of
any physically relevant system is bounded from below. By defining:

- O, FE < Emin
Y= {wa E> Eminv (119)
the integration can be written as a Fourier transform:
+0o0
At) = / dE (E) e Pt (I1.10)
—00
For w the Breit-Wigner516 fornﬁ can be chosen, which is given by:
1 r
w(E) = /2 (IL.11)

- w(E—Eg)?+ (7))’

where I' is the half-width of the distribution.

Any energy distribution w’ that is very similar to the Breit-Wigner form w in a large
enough interval around Ep results in probabilities P/, which are close to Pyq.

If Fpin = —o0 is assumed in , then A(t) is the Fourier transform of w, resulting
in A(t) = exp(—iEgt — 5t) and P(t) = exp(—TI't), which would give the well-known
exponential law of decay. But this assumption is not physically possible. A finite lower
bound on the energy effectively means cutting of a part of the energy distribution.
Hence A(t) cannot be a pure exponential’,

The derivative of Pyq(t) vanishes at ¢ = 0. For large times, tl—igllfA(t) =0 and Pyq(t)

vanishes. Thus P,q(t) is larger than the exponential e ' for small and large times. At

Palso called a Cauchy or Lorentz distribution

14



II.a. Theoretical Overview

intermediate times Pphq(t) follows an exponential lawf]}

The smaller the width I' gets, the smaller is the contribution of w for E below Ep,
and the closer P(t) resembles the exponential.

Decay Width

The half-width T' of the distribution in is called the decay width in the
framework of decaying states. Its inverse 7 = I'"! is the mean lifetime of the initial
state and the half-life is given by ¢/, = In(2) 7. Thus, smaller values for I' correspond
to more stable systems.

The semi-classical derivation for the probability Pr of a particle tunneling out of the
bound region usually*? gives

Pr = exp(—2G) (I1.12)
where G is the Gamow factor?’
T2
G = /dr Ip(r)] (I1.13)
T1

with the semi-classical momentum p(r) = /2(E — V(r)). In order to evaluate tunneling
rates, this is then correlated with the frequency associated with the particles movement:
Everytime it approaches the barrier, there is a chance for it to tunnel through or be
reflected. But is based on the exponential decay law, from which
and the explanations following that showed a deviation.

In |21, 22| the decay width of a quasi-stationary state is derived with a different
approach.

The derivation uses a two-potential approach and gives I' in terms of the wave func-
tions. For the scope of the following simulations, however, the result in semi-classical
approximation should suffice without the derivation.

The result for the decay width is:

o
N
= - XP —2/dr Ip(r)] (I1.14)
I
where:
T1 T
N1 = /p(lr) cos? /p(r') dr’ — T]dr (I1.15)
70 o

is the semi-classical normalization of the quasi-stationary state. The integrals are
evaluated between the classical turning points as indicated in

“These are only a few observations useful in the examination of the simulations, further aspects of
non-exponential decay are given in |14] and [18].

15



II. Tunneling & Decay

Ex

%- ________

Bp{ t-----

|
|
- - -
|
|
|
|
!
R

N

T2

Figure I1.3.: An arbitrarily chosen potential showing a local potential well with the
classical turning points rg, 71 and ro for an energy Eg.

This result is of the same form as the Gamow factor (II.13)), but the prefactor N is
more general and applicable to low-lying states as well.

Lastly, a mentioning of Fermi’s golden rule is in order when it comes to transition
rates, like the transition here from bound to unbound states here.
The formula for a transition to a continuum of states is given in first order perturba-
tion theory by:
. 2
Doy =2 |[(fLA'10)] p(Ey) (11.16)

where |i) and |f) describe the initial and final state, (f| H'|i) is the corresponding

element of the transition matrix due to the perturbation described by H’ and p(Ey) is
the density of states in the continuum.

The golden rule can be recovered from the approach in [22], but is
easier to handle for the cases studied in the following simulations, as it involves only
readily available parameters of the system.

3. Particle Capture in Potential Wells

Previously, quasi-stationary state were introduced by setting up a system where in-
finitely high walls were changed to a finite barrier. This is useful for analytical com-
putations and for implementing initial values in numerics, but in regards to Daemon
systems this procedure does not seem realistic. Instead, the particle is initially in a
decoupled phase and should therefore be considered to be moving freely.

The question to be pursued here is: How can a free particle be trapped in a local
potential well?

16
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E . . to E . . t1 > to E/\ . . to >t
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(a) to: initial setup (b) t1: particle moved over (c) ta:  barrier is now
barrier higher than the parti-

cle’s energy

Figure I1.4.: An illustration of trapping a particle by raising a potential barrier. The
particle is indicated in red, its direction of motion by the underlying arrow.
The grey area shows the region allowing for quasi-bound states.

Two ways of particle capture will be discussed:

1. a stationary potential barrier through which a free particle can tunnel into the
well,

2. and a time-dependent potential, raising the barrier after the particle has passed
it.
Approach [I] works on the basis of tunneling as discussed before, but now the initial state
can be chosen freely, while tunneling is supposed to lead to a quasi-stationary state with
a corresponding resonance energy.
Approach [2], as illustrated in is a rather classical idea. For it to work the

particle must be sufficiently localized in ¢ in comparison to the width of the potential.

The particle can move over the barrier into the region of the potential well. The
height of the barrier is increased with time and after the particle passes the barrier it
should be too high to pass over again, effectively trapping the particle in the potential
well. However, in quantum mechanics a particle moving over a potential barrier is still
influenced by it, as will show. Therefore, a part of the wave packet is
expected to be reflected by the barrier when first passing, and some part is expected to
pass it later, when the barrier has been significantly raised.

In both cases the result should be a particle trapped behind barrier, that can then
tunnel free, as laid out in

There is no particular theory to describe this proposed particle capture, thus at this

point reference is made to the discussion of the simulations in [Section I1.b.3]

II.b. Simulations of Introductory Models

With the general considerations of the previous section as a basis, simple models will
be introduced in this section along with numerical simulations thereof.

17



II. Tunneling & Decay

Numerical Scheme

First, a brief introduction into the numerical scheme used will be given. A more detailed

description is given in

The numerical solutions to the Schrédinger equation ihd; [1)(t)) = H (q,t) [1(t)) are

computed with a finite difference approzimation using the Crank-Nicolson method?.
This scheme?? is second order in time and implicit — meaning it a system of linear
equations is solved at every time-step — and it is numerically stable. It operates on a
discretized grid, approximating the differentials by central difference quotients.

On one end of the grid Dirichlet boundary conditions were implemented, setting the
wave function to zero. In most of the models this boundary coincides with an infinitely
high potential wall and 1) = 0 is the physically correct solution there. For the other
models (7. e. tunneling through a barrier) the wave packets do not reach the boundaries
over the course of the simulation.

The other boundary of the grid is undetermined, as no conditionﬂ gives the correct
physical behavior of the wave function there. This leads to reflections of the outgoing
wave functions back into the domain of the simulation. By choosing a large enough
extent of the grid these reflections are kept from interfering with the relevant part of
the model.

1. Tunneling: Scattering on a barrier

First, the behavior of a free particle encountering a localized potential barrier is simu-
lated based on The barrier has a maximum height of Vy and extending
over a some finite width w. This leads to three different regions, as depicted in
ure [1.5] with the incoming particle in I, a transmitted particle in III, and the classically
forbidden region II.

The initial wave function is a gaussian wave packet:

2
o = (g, t = 0) = (27Aq) " exp (igpo) exp | — <‘if;§°> (I1.17)
q

with mean position gp, an uncertainty of A, in ¢ and mean momentum py.

In contrast to the solutions to the Schrodinger equation in describing
plane waves, the wave packet is localized both in ¢ and p. For the simulation the
parameter

For the simulation two different forms of potential barriers have been chosen: a

rectangular barrier (see [Figure 11.5a)) and a barrier based on a single period of a cosine
(see|Figure I1.5b)), referred to as the cosine or pendulum-potential (in connection to the

quantum pendulum examined in the next part of this section).
The barriers are defined on a region of ¢ bounded by a parameter a:
B={q|-a<q<a}.

dexcept for transparent boundary conditions, see also |Appendix B.iii
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(a) rectangular barrier (b) cosine barrier

Figure I1.5.: The two types of barrier used in the tunneling simulations: (a) rectangular
and (b) cosine barrier.
The outline of the barrier with height Vj is in blue. The width (at $Vj)
is given in green. The red wave form indicates the incoming particle with
energy F; = %VO. Additionally marked are the regions in roman numerals.

The rectangular barrier is approximated by a flat-topped gaussian function and de-
fined as:

128
V}ect = Voexp (_ (ﬁ) > ) q S B7 (1118)

with height V4, width w and boundary a = %w.
The cosine-barrier is defined as:

Veos = 3Vo (cos(Zq) + 1), q€ B, (I1.19)

where V| again defines the height and w gives the half width of the cosine at %VO, with
boundary a = w.

The computations have been done for different sets of parameters: V, fixed with
three different widths w each for the two barriers. shows the results for
these examples, where the parameters were chosen so that the plots are comparable
between both barriers.

There is no significant difference between both barrier types in the qualitative behav-
ior. The incoming wave packet moves towards the barrier, where it is partly reflected,
while also partly tunneling through the barrier and subsequently moving away from the
barrier on the other side. The wave packet widens over time, regardless of which path
it takes.

The apparent holes in p for ¢ < %w stem from the superposition of the slow part
of the incoming part of the wave packet with the fast part of the reflected one. This
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Figure I1.6.: The probability density p(q) = |w|2 of the tunneling model for two barriers
and three sets of parameters each. The dotted yellow lines mark the width
w of the barrier (compare and thus indicate the position of the
barrier.
For the initial state the parameters ¢ = —8, A; = 2 and E; = %Vo, thus
po = v/ Vo, were chosen.
left: rectangular barrier, Vo = 6; (a) w = 0.2, (b) w = 0.4, (¢) w = 0.6
right: cosine barrier, Vp = 8; (d) w = 0.2, (e) w = 0.35, (f) w = 0.5
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Figure I1.7.: Probabilities to localize the particle in the different regions of the systems;
blue: ¢ < —a, purple: —a < ¢ < a, orange: ¢ > a. The parameters

correspond to (a)-(c) of [Figure II.6| (left column). For later times the

orange (blue) curve shows the probability for transmission (reflection).

is similar to |[Equation II.2} In the region ¢ > %w there is only the transmitted wave

packet, hence no interference occurs.

The probability to locate the particle in certain regions of the system is given in
for the rectangular barrier. The curves were computed by numerically inte-
grating the wave function over the three distinct regions: ¢ < —a for reflection, ¢ > a
for transmission and —a < ¢ < a for the barrier. In the beginning the wave packet is
located on one side (blue), but it can be transmitted to the other side (orange) during
barrier interaction. The purple curve rises and falls, corresponding to the wave packet
passing through the barrier region. After the barrier interaction is over, it falls back
to zero. The other curves remain at stationary values, too, and the probability for
reflection Pr = |R|? and transmission Pr = |T|? can be obtained. The relation of the
amplitudes R and 7 depends on the barrier parameters, in this case w. The dependence
on the height is implicitly contained in the relative energy € = E"}—é"

shows the results for different initial energies £ for a barrier of fixed width
and height. The transmission probability grows for larger energies, as would be ex-
pected. But for £ = 1 there is still a chance for reflection Pr > 0.3, and Pr < 0.01
is only achieved for £ > 4.2. The reason for this behavior is the distribution around
the particle’s mean energy, giving a decent probability for the actual energy value to be
lower than the Vj even for £ > 1. Only with a high energy of the incident particle the
part of the distribution below Vj is negligible.
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Figure I1.8.: Probability for transmission (orange) and reflection (blue) in relation to
the relative kinetic energy for the case of a rectangular barrier with V5 = 6
and w = 0.4. The dashed grey line indicates an initial energy higher than
the barrier.

This simulation therefore shows behavior not possible in classical mechanical systems:

A particle with an initial relative energy £ < 1 can move through a classically for-
bidden region and move on beyond the barrier. For £ > 1 the barrier is still not
fully opaque, with considerable probability for reflection remaining. This means that
the barrier influences the particle, even if it would classically move above the barrier
unobstructed.

Both of these features can be explained by the uncertainty principle, a distinctive trait
of quantum systems due to the probabilistic description of quantum systems. These fea-
tures, however, also show the description of particles in terms of wave functions, as is
inherently given by the solutions of the Schrédinger equation.

In conclusion, this introductory simulation shows the features of quantum systems
expected from the study of these textbook examples.

2. Decay of Quasi-Stationary States

Next, the time-evolution of the quasi-stationary state introduced in [Section II.a.2] is
examined in simulations. Again, two types of potential are considered here: the rect-
angular barrier as an easy example and the cosine-potential of the quantum pendulum
in preparation of the Daemon system.

Analytical expressions for the decay width I' can be found for the rectangular barrier,
this is derived in and the cosine barrier in terms of elliptic integrals.
However, expressions and are evaluated numerically, since this is necessary
anyway if an additional tilt is introduced in the cosine-potential.
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Figure I1.9.: An example of the actual rectangular potential barrier (black) used in the
simulations, approximated by a flat-topped gaussian function. Also shown
is the energy distribution w(E) (blue) of the initial state.

Rectangular Potential Barrier

The basic setup for this system is illustrated in [Figure 11.2a] The initial state of this
problem is given by the n-th eigenstate of a particle in a box1:

Yo = \/? sin (%T q) , (I1.20)

with the corresponding eigenenergy (or resonance energy ER)
1 /nm\?2
B, =~ (7) —E 11.21
n 9 a ( R) ) ( )
where the lowest energy for n = 1 was chosen in the simulation.
The rectangular steps of the potential are approximated by using a flat-topped gaus-
sian function:

V = Vhexp <— (o.gw)m) (I1.22)

and is thus continuous everywhere. The infinitely high wall at ¢ = 0 is achieved by the
boundary condition | g=0 =10

The actual potential for the particular set of parameters is given in
overlain with the energy distribution function w(E). It shows a distinct portion of the
distribution pertains to an energy value £ > Vj.
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The time-evolution of the system is shown in given by the probability
density p(q) = |1,ZJ|2, together with the non-decay probability P,q(¢). This was numeri-

cally obtained by integrating [1)|* over the region of well (¢ < a). The analytical curve
is defined by [Equation IT.7, which was evaluated numerically. For comparison, the ex-
ponential form exp(—TI't) is shown as well.

For the bound particle in the well oscillations in the density can be observed. With
every approach to the barrier a portion of the distribution can be seen to emerge beyond
the barrier, moving away in a straight line as a free particle. As a result, the probability
to find the particle in the well decreases. The intensity of the oscillations decreases as
well, indicating a reduce in mean energy. This is also indicated by the emerging flow.
The time needed to reach the edge of depicted domain increases, indicating a decreasing
momentum.

The non-decay probability in reflects this. The simulated (blue) curve’s
behavior over time relates to the oscillations: the decrease accelerates when the maxi-
mum of the distribution approaches the barrier. With less prominent oscillations, the
curve becomes smoother.

For small times, the probability deviates significantly from the exponential exp(—TI't).
The analytical curve of is initially higher than the exponential and then
approaches it. The simulated probability resembles this closely for small times. It
then drops corresponding to an approach of the oscillation and deviates further from
the analytical curve, but closer to the curve of the Phase-Space Evolution (green). It is
slightly below the exponential for a brief time, but slows its decline, corresponding to the
absence of strong oscillations, and stays above the analytical curve for the remainder
of the simulated time span. The probability of the Phase-Space evolution resembles
this behavior, but at higher values. In the end, both numerical curves approach the
analytical one.

The simulation shows the predicted behavior for initial and intermediate times, with
the probability higher than the exponential and approaching it. The behavior for larger
times could not be studied, since the simulation did not cover a long enough time axis.

In addition to 1(q), wave functions ¢(p) in momentum representation can be gained
via Fourier transform. The momentum probability density o(p) = |gZ>|2 is depicted in
alongside the corresponding plot of the quantum pendulum model.

Initially the momentum is distributed around p = 0, with bounds around p ~ +1.8.
Early on a bulk flow of the distribution forms, focussed around p ~ 0.65. This represents
the particle leaving the well and moving away freely. There is a rather sharp upper
bound around p ~ 1.5, slowly decreasing to p ~ 1.4 over time. From this bound smaller
streaks of the distribution form, which curve towards the bulk flow asymptotically. This
indicates a movement of the particle over the barrier with high enough momentum,
which is possible due to the uncertainty principle.

Beyond this boundary, at higher momentum, there is one more faint flow, superposed
with an extension of the lesser streaks, around p ~ 2 and narrowing in momentum over
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Figure I1.10.: The spatial probability density p(q) = [1(g)|? for the rectangular barrier
with parameters a = 2, w = 0.3 and Vy = 4.4, resulting in I' = 0.27,
€ = 0.28. The dotted yellow lines indicate the position of the barrier
between a and b = a 4+ w.
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Figure II.11.: The non-decay probability from simulations and analytical computation
with the exponential e for comparison.
The additional green curve from a numerical simulation with the Phase-

Space Evolution scheme discussed in
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Figure I1.12.: Probability densities o(p) = |4(p)|* for the decay models. The wave
functions ¢(p) in momentum representation where obtained via fast
Fourier transforms of the numerical wave functions presented in

ure 11.10| and [IT.14]

time.

The lower bound of the main part of the distribution slowly rises, crossing p = 0
at t &~ 15. After that the probability for negative momentum of an oscillating bound
particle is marginal. From this lower part of ¢ form additional lesser flows at lower
values of p, one around p ~ 0.4 and another around p ~ 0.2, indicating a reduction in
the momentum of the tunneled particle over time.

The comparison to p in shows the the same aspects of the behavior,
since they are based on the exact same data, but with a different portrayal. ¢ shows
the initial relaxation phase with a broad spectrum in p and signs of oscillations in the
lower part of . From this emerges then a more stationary flow pattern for later times,
which shows streams of varying p forming at different times, indicating the tunneling
of high energy first.

The system’s behavior can be characterized appropriately by the two quantities I,
giving all information about the system, and &, describing the particle within the sys-
tem. This also means that any change in a system parameter can be seen as a change in
I" or &, since the height and width of the barrier directly influence I' via the definition
in [T.141
Single-Well Quantum Pendulum Potential

The second decay model is determined by the potential function

U(g) = (cos (35q) + 1) (I1.23)

hereafter called the cosine- or quantum pendulum-potential.
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Figure 11.13.: An example of the single well quantum pendulum potential barrier used
in the simulations. Also shown is the energy distribution w(FE) of the
initial state.

From this, the well and barrier, and the complete potential, follow as:

o, ¢<0,
V(g)=1U(q), 0<g<b=3R (11.24)
0, else

This is reduced to a single well with an infinitely high wall to one side and a barrier
of limited extend, depicted in [Figure II.13] The maximum depth of the well is given by
Vo = 27, the maximum width by a.

For the initial state and resonance energy, an excursion to the mathematical de-
scription of the quantum pendulum?® is needed, which is given in The
resulting eigenfunctions are special functions?®: the Mathieu sine Seoy, and cosine ceoy,
of even order. These do not have an analytical representation. They are implemented

with . The wave function (see [Equation C.5|) corresponding to n = 2m = 2 was

chosen as the initial solution.

The potential barrier, shown in [Figure T1.13] is implemented according to
ion I1.24] The initial wave function is defined between the turning points ro and 1 (as

given in |[Figure 11.2b)) and appropriately shifted.

The result of a simulation is shown in The parameters were chosen such
that the decay width (I" = 0.28) is close to that of the rectangular barrier (I' = 0.27).
Both simulations show very similar behavior. Oscillations can be observed again, but
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Figure I1.14.: The spatial probability density p(q) = |¢(q)|2 for the cosine barrier with
parameters a = 5, b = %77 and Vy = 5.2, resulting in I' = 0.28, £ = 0.69.
The dotted yellow line indicates the maximum of the barrier a an thereby
the maximum width of the well R.
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Figure 11.15.: The non-decay probability from the simulation and analytical computa-
tion with the exponential e 1" for comparison.
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they are less prominent and disappear sooner.

In this model the well is less wide for lower energies, so the available space for the
particle decreases along with the energy over time. The edge of the distribution along
the barrier is thus less sharp compared to the edge towards the wall (at ¢ = 0) or the
rectangular model.

The streams of probability move away from the well show at a higher momentum
due to the higher resonance energy of the quasi-stationary state. They disappear from
the plot — due to the color scale — earlier than in the rectangular model. In addition,
these streams, as well as the blurred edge of the distribution, exhibit stripes due of
interferences of different parts of the wave function.

For this model the momentum distribution o(p) was computed as well via Fourier
transform. The result is depicted in [Figure IL.12D] The distribution again shows a main
part with flows branching off, but there are also additional flows at higher momentum.
The bulk is centered around p ~ 2.4 and appears to form more directly out of the initial
distribution. The bounds of the distribution are p ~ 4+2.1. The lower part rises quicker
and forms more of the lesser streaks.

The second large flow forms right after ¢ = 0 and shows as a wide straight line centered
around p =~ 5.0. This corresponds to the lines in that lead away from the
well right in the beginning.

A third flow can be seen around p ~ 2.5. It is superposed with lesser streaks forming
close to the upper bound of the main part.

The non-decay probability shows the same overall behavior as before in the rectangu-
lar model, but the simulated curve drops considerably faster in the beginning compared
to the two other curves. For intermediate times the decline is slower and the curve is
only slightly above the exponential.

3. Capture of a Particle in a Potential Well

This section is concerned with obtaining quasi-bound states. Presented here are simula-
tions of the two approaches of particle capture described in In both cases

the initial wave function is given by the wave packet of with parameters
go = 8 and A, = 2, located outside the potential well and moving towards it.

Particle Capture Through Tunneling

The first approach is about a free particle tunneling through a barrier into a potential

well. This system has the same setup as the decay model in [Section T1.b.2] with the
barticr given by

The simulation has been performed for two cases which vary only in the the initial
momentum — and thereby energy — of the particle: the resonant case, where the particle’s
energy matches the resonance energy of the wellf] & = 0.28, and a non-resonant case,
where £ = 0.40.

®More precisely, the expectation value of the kinetic energy of the initial wave function matches the
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Figure I1.16.: Tunneling of a particle through the rectangular barrier into a potential
well with V) = 4.4 and w = 0.3, the same parameters as in[Figure IL.10] In

(a) the initial energy is & = 0.28 (pg = —7), equal to the well’s resonance
energy Fpr of the rectangular decay model. In (b) the relative initial
energy is £ = 0.4 (pp = —1.88). The dotted yellow lines indicate the

position of the barrier between a and b = a + w.
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Figure 11.17.: Probabilities in the raising-barrier model to localize the particle within
the well, 4. e. for ¢ < a. The blue curve corresponds to the non-resonant
case, the orange one to the resonant case.

The resulting probability densities p(q) are depicted in [Figure 11.16| Additionally
the probability to locate the particle within the region of the well, i.e. ¢ € [0,a], was

computed via numerical integration. The results are shown in

Both cases exhibit a very similar time evolution. The particle moves towards the bar-
rier. There it is either reflected and moves away, or it is transmitted through the barrier
and into the well, possibly resulting in a trapped particle. This trapped particle bears a
great resemblance to the quasi-stationary decay (compare [Figure I1.10| and [[L.11]). The
density in the well diminishes over time and the probability curves show a downward
slope similar to the non-decay probability of the decay model, starting around ¢ = 7 for
the non-resonant case, or around ¢t = 8 for the resonant one. This indicates a particle
tunneling out of the well. Also, oscillations occur in the density in the well at least for
a short time.

These two cases also show some differences. With the initial momentum chosen to be
different, the particle in the non-resonant case encounters the barrier earlier and has a
sharper angle between the incoming and the reflected parts of the distribution. This is
also discernible in the probabilities, where the non-resonant curve shows an earlier rise.

The density values in the well are higher in the resonant case. The probability reflects
this. While the peak value is higher in the non-resonant case, the resonant case shows
a higher probability over a longer period of time, which corresponds to the higher

eigenenergy (see [[1.21]) corresponding to the initial quasi-stationary state in the rectangular decay

model of Section 15,3
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Figure I1.18.: Time evolution of the probability density p for a wave packet encountering
a rectangular potential barrier that rises with time. The system param-
eters are: a = 4, w; = 0.4 towy =1, V; = 0 to Vy = 12, By, = 0.31
(po = —0.79). The dotted yellow lines indicate the position of the barrier
between a and b = a + w and shows the increasing width.

probability density values.

Another difference is apparent in the resonant case: p shows a flow of the distribution,
emanating from the barrier approximately in the time period ¢ € [8,15]. This, again,
indicates the possibility for the particle to tunnel out of the well. The probability curve
shows a greater change for the resonant case in this time period, whereas the non-
resonant case shows a much slower change in the similar time period ¢ € [7,14]. To
clarify, in both cases the particle can and will tunnel out once it is trapped. But the
resonant case has a higher probability to capture the particle, making the change in the
probability over time more visible.

These two examples show that in principle the capture of a particle in a potential
well is possible. The probability for capture is dependent on the energy in relation to
the system parameters, as is the general probability for tunneling through a barrier. On
the basis of these simulations, the trapped particle appears to be quasi-bound. It will
tunnel out of the well at some point.

Particle Capture Behind a Raising Barrier

The second approach utilizes a (rectangular) time-dependent potential that raises a bar-
rier from height V; = 0 to a finite value Vy = 12, which is high compared to the kinetic
energy of the particle, while also increasing the width from w; = 0.4 to w; = 1.0. Both
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of these processes are linear. In this case, the well itself is wider in order to facilitate
the particles movement through the well to wall and back, without having to raise the
barrier too rapidly. The wider barrier reduces the probability of the particle to tunnel
through it further.

The particle encounters the barrier first at a low height. It can move over the barrier,

but is also partly reflected by it, as can be seen in the tunneling model of
After crossing the well, the particle is reflected and moves back towards the barrier.

This time, it is higher and the particle is mostly reflected, being now trapped inside the

well. This time evolution is shown in effectively portraying a superposition
of a particle being reflected by a barrier or the wall, and a bound particle in a wide well.

The resulting quasi-bound state is less likely to decay, the higher the barrier rises.
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[Il. The Example Models in
Phase-Space

The aim of this chapter is to establish a phase-space formulation of quantum mechanics
for the examination of daemon systems, utilizing Wigner functions. Furthermore two
different methodsf| are introduced to examine such Wigner functions and their time
evolution numerically.

Section [[TI.a] gives a short overview of the theoretical framework. The basic defini-
tions and equations used throughout the following chapters are introduced.

Section [III.bl shows the results of the first numerical method. The wave functions
from the previous chapter to are transformed to the corresponding Wigner functions in
phase-space.

In Section [[TI.cl the second numerical method is derived and examined. The time
evolution of Wigner functions is determined solely on the basis of the phase-space de-
scription. Results are given for selected models of the previous section.

Lastly, Section [[TI.d] compares the the two methods and their possible uses.

Ill.a. Quantum Mechanics in Phase-Space

1. Short Review of Phase-Space Quantum Mechanics

A formulation of quantum mechanics would be useful, but the canonical quantization
does not allow it because of the incommensurability of position and momentum. This
problem is circumvented in the Weyl- Wigner-Groenewold-Moyal-formalism (WWGM).

It is an consistent and autonomous quantization procedure, that delivers a descrip-
tion of quantum theory in terms of c-number functions in phase-space with position and
momentum as coequal variables instead of operators on a Hilbert space.

The cornerstone is the Wigner function%ﬁ

W 4] (¢,p) = % /dyw* <q - Zy> e WP (q + Zy> : (IIL.1)

AFigure I11.14| shows a schematic overview of the relations between equations, numerical schemes and
results.
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III. Quantum Models in Phase-Space

W (q, p) acts as a probability distribution of a state in phase-space, but it can also take
on negative values in small areas. It is therefore also referred to as the Wigner quasi-

probability distribution. The discrete version of the Wigner transform (Equation III.1))

will be called the Wigner-Ville-transform here, in accordance with its use in signal pro-
cessing.

Some useful properties?” of Wigner functions are:

e The marginal probability densities are given by:

[awian) = sta) (111.22)
/ dg W(gq,p) = o(p). (1IL.2b)
e The probability over an area 2 in phase-space is:

pP= / /Q dgdp W (q, p). (IT1.2¢)

e W is normalized to 1 (for normalized wave functions).
o IV is real.

The composition of phase-space functions is given by the x-product=Y:

h = =
* = exp <z2 <gq8p - gﬂ%)) . (IIL.3)
The Weyl-correspondence mediates between phase-space functions and operators:

F(q,p) > F(q,p),
) A (I11.4)
F(q,p) *G(q,p) <> F'(4,p) G(q,P).

The mapping of operators onto phase-space functions is the Wigner-transform, its in-
verse is called the Weyl-transform.

The dynamic evolution of a function f in phase-space is specified by the Moyal equa-
tion>L:

0uf = - (Hx f = [ H) = {{H, [}, (11L5)

where {{-,-}} describes the Moyal bracket.
Moyal’s equation extends the Liouville equation d;f + {f,H} = 0 for a classical
Hamiltonian H (g, p) to quantum mechanics.

PThis is based on the wave functions. For the transform of the density operator, see

(Equation A.2)).
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IIl.a. Quantum Mechanics in Phase-Space

2. About Tunneling in Phase-Space

At this point, a review of the theory concerning quantum tunneling in phase-space
would be in order. However, researching the available literature shows that there is no
closed theory.

Reference [32] features a brief review of the literature and the various methods therein
and points to numerous further references. It can be used as a starting point. Most
publications focus on specific problems (e. g. barrier types) or take the asymptotic ap-
proach of scattering theory. Both features are not particularly useful here.

On a classical phase-space, the time evolution of distribution functions obeys the Li-
ouville equation and can be described as an incompressible flow along the trajectories,
in accordance with Liouville’s theorem. Moyal’s equation contains the Liouville equa-
tion as an approximation in the zeroth order and extends it through higher orders of £,
adding the quantum corrections. On the quantum phase-space the flow of a distribu-
tion can thereby not be considered incompressible and does not necessarily follow the
trajectories. Distributions can spread in accordance with the uncertainty principle and
can flow across trajectories, possibly into classically forbidden regions.

Further considerations concerning quantum tunneling are discussed in the context of
the following simulations.

Overview for the Presentation of Results

The following sections and will examine Wigner functions of the various
models.

Additionally the marginal distributions p(q) and o(p) and the probability Py over a
phase-space region {2 can be obtained from W (g, p) through integration.

p(q) = [¥(q)|* was a subject of the previous chapter and o(p) = |¢(p)|* was shown
for the two decay models.

Not every method will be used for every system, but rather where they are informa-
tive.

The models of rectangular tunneling and barrier raising will serve as test cases, with
p and o shown for each models with both numerical method.

In addition to the marginal distributions the probability will be discussed for the
barrier raising model because it features a time-dependent separatrix that confines a
phase-space region {2 both in ¢ and p.

A probability curve computed with the Phase-Space Evolution scheme was already
shown in [Figure II.11] for comparison. A discussion thereof will be picked up in the
context of the numerical scheme and the resulting Wigner function.
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III. Quantum Models in Phase-Space

I1l.b. Revisiting the Introductory Models in Phase-Space

In this section the wave functions of the previous chapter are transformed with the
Wigner-Villé®¥ transformation®], which is directly based on and utilizes
a fast Fourier transform (FFT) algorithm to expand the one-dimensional problems to
the two-dimensional phase-space.

The models therefore use the same parameters and initial states as the Crank-Nicolson
simulations.

The depictions of the Wigner functions feature additional trajectories, based on the
classical relation p4(E,q) = £+/2(E — V(q)) for arbitrary energies E, with the sepa-
ratrix p4 ep for £ = Vinax. These trajectories are on accordance with the the Liouville
equation and are hence regarded as first order approximations of the Moyal equation.
The higher order terms in the quantum evolution can lead to deviations from the clas-
sical trajectories.

1. Barrier Penetration

For these simulations the Gaussian wave packet of was chosen as a repre-
sentation of the free particle because of its minimal uncertainty. In phase-space this has
the additional benefit that it transforms into a superposition of Gaussian distribution
in ¢ and p.

The time evolution is shown in given by six plots at different times. The
classical trajectories take the form of straight lines up to the barrier, where they go to
zero and almost coincide with the separatrices. Because of the Gaussian form of the
barrier the trajectories are densely packed there, but do not overlap.

As the initial Gaussian distribution moves towards the barrier it slightly deforms due
to different traveling speeds, which is how the spreading of a wave packet presents in
phase-space.

As the foremost part of the distribution encounters the barrier it spreads to higher
and lower momenta along the edge of the barrier. Additionally a pattern of lines with
alternating positive and negative values starts to show around p = 0 to the left (incoming
side) of the barrier.

A part of the distribution is reflected, stretching along the separatrix to negative
momenta. But another part is transmitted through the barrier, seemingly ignoring the
separatrix. As the transmitted part moves away, the stripe pattern occurs on the right
side as well.

Two bulks of distribution emerge from the barrier, one with positive momentum on
the right side representing a tunneled particle and one with negative momentum on the
left side representing a reflected particle. Both move freely away from the barrier. The
pattern of lines centered around (g, p) = (0,0) persists as an interference pattern of the
two distributions indicating a superpositiorﬂ of both possibilities.

“For more information on the implementation, see [Appendix B.iii

4Such an interference can be seen in [28] for a pair of Gaussian wave packets.

38
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momentum Yo

position g

Figure III.1.: The Wigner function of the rectangular scattering model with parameters
of case (b) in at six time instances, depicting the phase-space
evolution.

The system parameters are: go = =8, Ay =2, Vo =6, w =04, E; =3
(po = 1.73). The additional lines represent classical trajectories, with the
separatrix in red.
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time ¢
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(a) distribution p(q) (b) distribution o(p)

Figure II1.2.: Marginal distributions of Wigner functions computed with the Wigner-

Ville transform for the tunneling model; compare to

(a) The spatial distribution reproduces (b) The momentum
distribution shows the change in p for the reflected particle and the spread
during the interaction with the barrier.

The initial distribution in is located almost completely beneath the sep-
aratrix and this distribution of momentum remains after the interaction. Thus there
are no classically allowed trajectories for the particle to get to the other side.

As stated beforehand the marginal distributions p(q) and o(p) where obtained ac-
cording to [Equation III.2al The result is shown in

The spatial distribution p is the same as in given by the wave functions.
This is as expected, since the Wigner function W] here is directly computed from
these wave functions. Computing p with the Wigner-Ville transform is therefore a more
complicated way of performing |¢|2.

o(p) however delivers additional information. But it could be gained the same way
as for the decay models before in instead, so this is basically a Fourier
transform of the wave function with extra steps.

At first the wave packet moves towards the barrier with a momentum distribution
around pyg.

Upon encountering the barrier, the distribution spreads in p to higher and lower
values, whereas the main part steers to p = 0. At that point a second distribution
emerges around —pg, which is spread out at first as well, but then focuses to a straight
line along time similar to the incoming wave packet before. This represents the reflected
particle traveling backwards without a change in momentum.

The transmitted wave packet moves onwards from the initial incoming distribution,
but it forms partly from higher momentum during barrier interaction.

How can quantum tunneling be understood in this numerical model?
It presents itself as a spreading in the momentum distribution close to the edge of
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IIL.b. Introductory Models Revisited

the barrier and a smearing of the Wigner function around the trajectories, enabling it
to take a classically allowed path over the barrier.

2. Decay of Quasi-Stationary States
Rectangular Barrier

The time evolution for this model is shown in [Figure III.3] on the basis of six time
instances. The classical trajectories take the same form as in the tunneling model with
the rectangular barrieif] except they are not open to the left of the barrier, but cut off
and set to zero at ¢ = 0 because of the wall.

The Wigner function is initially contained with in the separatrix, except for small
tails along the edges of the well extending to high (and low) momentum, similar to the
free particle approaching the barrier in Such an extension is also seen in
the energy distribution w(F) (compare and gives an initial probability for
the particle to be unbound.

The distribution flows partially through the barrier, crossing the separatrix similar
to the tunneling model .

The bulk of the tunneled distribution flows away. Interference patterns form, ex-
hibiting negative values in small areas. This pattern stays mostly unaltered over time
indicating the continued, almost stationary, flow away from the well. The density within
the well sinks steadily and the oscillations of the bound distribution die down. The mo-
mentum of the distribution flowing away decreases over time.

For the most part this shows the expected behavior: A particle’s distribution function
is located either in the well, where it oscillates or it penetrates the barrier and moves
away from it on the other side.

Quantum Pendulum Barrier

The Wigner function for the quantum pendulum barrier is shown in The
bound trajectories form closed orbits that do not extend to the separatrices because of
the energy-dependent width of the potential well (compare .

Overall, the behavior is very similar to the rectangular model, especially for the free
particle beyond the barrier.

The initial distribution is more confined in ¢, but also with more prominent tails and
large negative values between them. These tails stretch to higher momenta, giving the
indication that this extension along p is a result of the uncertainty principle.

The parts of the distribution at high momentum vanish fast and form a complex
pattern of positive and negative values above the separatrix.

®compare to [Figure II1.1
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momentum p
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position ¢

Figure II1.3.: Plots of the Wigner function for |[Figure I1.10|at six time instances depicting

42

the evolution in phase-space for the rectangular decay problem.

The system parameters are: a = 2, w = 0.3 and Vy = 44, ' = 0.27,
€ = 0.28. The additional lines represent classical trajectories, with the
separatrix in red.
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momentum P

position g

Figure IT1.4.: Plots of the Wigner function for[Figure II.14]at six time instances depicting
the evolution in phase-space for the quantum pendulum decay problem.
The system parameters are: a = 5, b = %7‘(’, Vo =52,1=0.28, £ =0.69.
The additional lines represent classical trajectories, with the separatrix in
red.
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The relaxation phase is rather brief and oscillations of the bound distribution are
only discernible for a short initial time interval.

Afterwards the stationary flow pattern is quickly established and the bound distribu-
tion diminishes in density. With this it is also more confined to the inner orbits, except
for the outward flow.

The similarities between the time evolution of both systems of quasi-stationary decay
show that the qualitative behavior is not dependent on the shape of the barrier, but it
influences quantitative measures, especially concerning time.

Remembering the theory of the parameters defining the barrier deter-
mine the decay width I (see and thereby the time scale of the evolution
through the half-life of the system ¢,/ = %

The time scales of both systems are close because of the choice for the parameters
resulting in closely matching decay widths.

3. Particle Capture
Capture Through Tunneling

This model shows the resonant case of particle capture through tunneling. The Wigner
functions in[Figure IT1.5 show the particle moving towards and encountering the barrier.
In the beginning the distribution representing the free particle is localized beneath the
separatrix in regards to the momentum, thus no movement over the barrier is expected,
at least classically.
In the interaction with the barrier the particle can be reflected or transmitted. The
transmitted part is then reflected by the wall and encounters the barrier again.
In summary this means that there are three possibilities of how the system evolves:
e reflection on the outside of the barrier,
e tunneling through the barrier twice — into and out of the well — and
e tunneling just once into the well, where the particle is trapped.
The first two possibilities result in a particle that moves away freely, while the third
possibility develops a quasi-bound state which will subsequently decay.

Of course, all of these possibilities appear in concurrently. The time evo-
lution of the Wigner function basically presents itself as a combination of the tunneling

model (Figure II1.1]), especially the reflected part, and the decay model, especially the
stationary flow phase.

The Wigner function also makes it possible to look at the momentum with which
a particle is more likely to tunnel through the barrier. Initially, the distribution is
approximately centered around the innermost trajectory. The part of the distribution
moving away has higher average momentum, as it is located between two trajectories
now, while the decaying distribution moving away is now at a lower momentum beneath
the trajectory.
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momentum Yo

position g

Figure IIL.5.: Plots of the Wigner function at six time instances depicting the phase-
space evolution for the capture of a particle through tunneling in the
resonant case of
The system parameters are: Vo =4.4, w=0.3,q = =8, A; =2, & =0.28
(po = —%). The additional lines represent classical trajectories, with the
separatrix in red.
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In of the introduction the post-adiabatic effects of a time-dependent
separatrix were said to be the important part of transitioning into a different dynamical
region of phase-space, i. e. the particle capture here.

But this model features a separatrix with a fixed area that does not change over time.

How is the particle capture possible? The difference here is that this model is a
quantum system. It obeys the Moyal equation — not Liouville’s theorem on which
Kruskal’s theorem is based — and therefore the Wigner function does not necessarily
exhibit an incompressible phase-space flow.

This can lead to quantum tunneling, where the phase-space distribution flows into
the separatrix area through the classically forbidden region. This indicates corrections
to the classical theory of Liouvillian control via separatrices.

Capture Through Barrier Raising

The Wigner functions of the raising barrier model are shown in This is
the second test case showcasing the marginal distributions ?( q) and o(p). These are

presented in |[Figure II1.7, p just reproduces |1/)|2 of [Figure I1.18[ as before.

This model now features something not seen in the other models before: a time-
dependent separatrix with increasing area, given by the rise of the barrier height over
time. It is a simple example for the capture through separatrix growth introduced in
Section [b.J]

In the beginning the barrier is low and the separatrix still has a small area. As the
barrier rises and the separatrix grows, a small part of the distribution at low momentum
is deterred by it, but the bigger part moves towards the wall and a reflection pattern
due to the two possibilities for the particle interfering with each other. The distribution
is reflected by the wall and encounters the barrier again, but by now the separatrix has
crossed over it. The particle can now tunnel through or be reflected by the barrier.

The distribution caught inside the well is oscillating, split up into one part in the
center of the well and another part moving around the center further out at higher
momentum.

The barrier interaction can be seen in ¢ at ¢ ~ 2. The distribution spreads in the

momentum, similar to the tunneling problem (see [Figure II1.2b)). Undulations occur
around pg and additionally around p = 0, indicating the oscillations within the well.

The corresponding curve around the positive momentum is superimposed with several
different streaks distinguishable by momentum. In turn, they correspond with different
flows away from the barrier. This than be seen by direct comparison with p(q) in

lll.c. Introduction of the Phase-Space Evolution Scheme

The previous section (Section I11.b|) showed Wigner functions obtained by transforming

numerical wave functions.
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Figure II1.6.: Plots of the Wigner function at six time instances depicting the phase-
space evolution for the capture in a growing separatrix.
The system parameters are the same as for [Figure II.18 a =4, w; = 0.4
towy = 1,V,=0to Vf =12, g9 = -8, Aq =2, Fy, = 0.31 (po = —0.79).
The additional lines represent classical trajectories, with the separatrix in
red.
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=
0 5 10
position g momentum p
(a) distribution p(q) (b) distribution o(p)

Figure II1.7.: Marginal distributions of the Wigner function for the raising barrier
model.
(a) The spatial distribution reproduces [Figure 1118l () The momen-
tum distribution shows the change in p for the reflected particle and the
oscillations of the bound particle.

Here a method is introduced to simulate the time evolution of phase-space distribu-
tions directly. This means that Wigner functions are evolved in time as native phase-
space distributions via Moyal’s equation. This numerical method will be termed the
Phase-Space Evolution scheme.

More of the theoretical background#3% is derived in [Appendix A.iiil and the techni-
calities of the numerical scheme®® are presented in [Appendix B.ii}

1. Equation of Motion for the Wigner Function

The basis lies in the Koopman-von Neumann®““% formalism, an operator method for
classical mechanics, aiming at a unification of quantum and classical mechanics by
rewriting the latter in terms of operators on a Hilbert space.

First classical operators are introduced for position and momentum:

)
)

a=q¢-"4, p=p+2ix (IIL.6)

Nl
]

These must commute because of their assumed classicality. 6 and X\ are known as

Bopp operators® which facilitate the Bopp shifts used to evaluate the x-product (e. g.

Equation A.6).
For the Moyal equation ih W = H x W — W x H the Bopp shifts yield:

h

o = [ (4 +i5 0 p-i50,) — (4415 0 p+i50,) | Weaop). (1)
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The differentials can be expressed through the operators 0 and \:

i=q, p=p \=-i0, 0=-i0, (IT1.8)

These are given in the g-p representation of the usual phase-space, where ¢ and p are
c-number functions. Three additional representations will be useful: ¢-6, A-6 and \-gq,

which are are defined analogously to and connected to each other via

Fourier transforms.

Assuming Hamiltonians of the form H = ﬁﬁz + V(@) [Equation II1.7| reads (in ¢-p):
. h i ]
hoW(g,p) = | ~i_pdg + V" =V~ | W(g,p), (IT1.9)

where: V¥ =V (q + %”8][,).

Solutions are obtained by a spectral method with the time-evolution operator U gt

~

W(t +dt) = U, W(t)

) e V@) - v, ) (TI1.10)
U, =exp | —idt |— + .
m h

For the purpose of numerical computations, [Equation III.1(] is evaluated using a

split-operator method, giving the kinetic propagator ﬁkm = exp (—i%ﬁﬂ) in p-A rep-

. = exp (—i% (V= =V™)) in ¢-0, with fast
Fourier transforms (FFT) between the different representations. As a side note, the
use of the FFT leads to periodic boundary conditions.

resentation and the potential propagator Upo

The Hamiltonian leading to [Equation I11.9]is time-independent. For time dependent
problems|Equation IT11.10|can still give results, assuming the potential V' (§,t) only varies
slowly in time is adequately approximated by instantaneous evaluations.

A comparison of the resulting Wigner functions to the Wigner-Ville transforms jus-
tifies the use of the Phase-Space Evolution scheme for time-dependent models.

2. Selected Problems in Tunneling, Capture and Decay

This sections mainly shows that the previously examined evolutions in phase-space
can also be achieved by the Phase-Space Evolution scheme, but there are no further
discoveries on the physical properties. Since the simulations show no behavior differing
qualitatively from the Wigner functions of the models regarded here will
be limited to the tunneling, decay and raising capture model, each with a rectangular
barrier.
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Figure II1.8.: The evolution of the Wigner function at six time instances via the Phase-

50

Space Evolution scheme for the rectangular scattering problem.

The setup is the same as in with the parameters: Vj = 6,
w =04, pp =245, Ay, =2, A, = 12, = 0.25. The additional lines
represent classical trajectories, with the separatrix in red.
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(a) distribution p(q) (b) distribution o (p)

Figure II1.9.: Marginal distributions of Wigner functions computed with the Phase-
Space Evolution scheme for the tunneling model; compare to
(a) The spatial distribution reproduces [Figure IL.6] (b) The momentum
distribution shows the change in p for the reflected particle and the spread
during the interaction with the barrier.

Barrier Penetration

The first system presented here that is simulated with the Phase-Space Evolution scheme
is the particle tunneling through a rectangular barrier. The result is shown in
lure TIT.§| which can be directly compared to The setup of the system is
the same as showcased for the Wigner-Ville transform. Which also means that boundary
conditions are not an issue for this model.

Since the problem is now two-dimensional, the initial distribution needs to be defined
in ¢ and p. The Wigner transform of a Gaussian wave packet can be regarded as a
superposition of Gaussian distributions in ¢ and in p. Thus the initial phase-space-
distribution is given by:

2 2
1 q—qo P — Do
Wo=———exp| — — . I11.11
0= orAA, P (ﬁA) <\/§Ap (HL11)
qo and pg are the initial values for position and momentum. A describes the standard

deviation in g or p. Due to the uncertainty principle the two are connected through:
AgA, > % For the simulation the minimum uncertainty was chosen.

The depictions in shows almost the same development as the Wigner
transforms in One difference is the initial state, which is not quite iden-
tical. Wj is slightly elongated along the g-direction. This leads to the distribution
encountering the barrier sooner. But this difference runs through all the panels equally.

Another problem with the scheme is the density of the distribution. Initially it
is normalized by [[dgdpWy(¢g,p) = 1. While the time evolution should be unitary
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and thus norm conserving, this requires small step sizes in the grid. Computational
restraints limiting the size of the grid and additional numerical errors introduced in the
calculations lead to a decrease in the norm over the course of the simulation.

The distribution has therefore been renormalized after every time-step. However, this
implies a decrease of the norm uniformly spread over the entire grid, but a localized
decrease due interferences is a reasonable assumption.

Quasi-Stationary Decay

The time evolution is shown in with the same parameters for the barrier
and the initial state as in |[Figure II1.3]

In the Crank-Nicolson method of the underlying grid ended at ¢ = 0,
with the corresponding boundary condition set to 1| =0 =0, thus also defining the
corresponding boundary values of the Wigner-Ville transforms. For the Phase-Space
Evolution scheme the wall was approximated by a flank of the flat-topped gaussianﬂ
(see , which was also used for the rectangular barrier.

The initial state is given through W], the Wigner transform of the initial wave
function in [Equation II.20] But there is still a difference between these distributions
when directly compared, because the systems is discretized differently. Wy in the t=0-
panel of is altogether less confined and more spread out to higher momenta.

Otherwise the behavior is very similar, especially after the initial relaxation, when a
more stationary decay picture has established itself in the system. The relaxation shows
more flow over the barrier due to the larger spread in momentum.

The spreading along the wall does occur as well, but the distributions seems to be less
separated from it. The reason for this is found in the setup of the numerical system: the
flank of the flat-topped gaussian makes less of a hard boundary and gives the possibility
to move closer to ¢ = 0. As such the cut-off in the Wigner-Ville model is steeper and
the resulting Wigner function is more separated from the wall.

The Wigner functions also present the possibility to compute probabilities (see
ftion II1.2¢). |[Figure II.11| already showed the curve of the non-decay probability that
was obtained with the Phase-Space Evolution scheme. It was computed by numerically
integration of the Wigner function at different time-steps over the well area, here de-
fined as ¢ € [—1,a] without limits in p. The extension to —1 is necessary because the
flank of the wall does not strictly end at ¢ = 0 for every energy. But beyond the wall
the contributions to P,q should still vanish.

Raising-Barrier Particle Capture

Lastly, the problem of the raising and widening barrier is discussed for the Phase-Space
Evolution scheme. The resulting Wigner functions are shown in [Figure IT1.12] This
model features an example for a time-dependent potential.

fcentered around —40 with height Vo = 10'° and half-width w = 78.15
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momentum Yo

0 2 4 6 8 0 2 4 6 8

position g

Figure II1.10.: The evolution of the Wigner function at six time instances via the Phase-
Space Evolution scheme for the quasi-stationary decay with a rectangular
barrier.

The setup is the same as in with the parameters: a = 2,
w=0.3and Vj =4.4, I = 0.27, £ = 0.28. The additional lines represent
classical trajectories, with the separatrix in red.
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Figure III.11.: Comparison of the probabilities for a bound particle in the raising-barrier
model obtained through the three different methods.
C-N': integration of \w|2 over the well area without restrictions on the
momentum; W-V: integration of the Wigner-Ville transform over the
separatrix area; P-S evo.: same as W-V, but uses the Phase-Space Evo-
lution scheme.

This simulation uses the same system parameters as the previous one shown in
Still, for some unknown reason the initial state does not match the one in the
Wigner-Ville transform.

As with the other models the qualitative results are very similar. The Wigner func-
tions show no problems or differences that could be attributed to a failure in the nu-
merical scheme because of the time-dependent potential.

Within the well the negative areas between the rings of bound states are more promi-
nent.

The distribution for ¢ = 10 shows similarity to the initial bound state of the rectangu-
lar decay problem, underlining the possibility to gain bound states in this time variable
potential.

At this point three different ways of computing probabilities are available: integrating
the spatial probability distribution p(gq) gained from the Crank-Nicolson method or
integrating the Wigner function gained from Wigner-Ville transforms or the Phase-
Space Evolution scheme. shows a comparison of these three methods for
the raising barrier model.

Using only the wave functions in ¢ for probabilities has the additional probability of
an unbound particle moving across the well area and leaving it again, because there is
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0.3

momentum Y&

position g

Figure III1.12.: The evolution of the Wigner function at six time instances via the Phase-
Space Evolution scheme for the capture with a raising barrier.
The setup is the same as in with the parameters: a = 4,
wi:0.4towf:1, ViZOtOVf:12, qo = —8, AqZQ, Eyin = 0.31
(po = —0.79), A, = 12A, = 0.25. The additional lines represent classical
trajectories, with the separatrix in red.
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time t
time ¢

0 5 10 -5 0 5
position g momentum p

(a) distribution p(q) (b) distribution o(p)

Figure II1.13.: Marginal distributions of the Wigner function for the raising barrier
model.

(a) The spatial distribution reproduces the qualitative behavior seen in

Figure 11.18, (b) The momentum distribution shows the change in p for
the reflected particle and the oscillations of the bound particle.

no additional condition for a trapped particle in ¥(q). Therefore the Crank-Nicolson
(C-N) curve starts to rise earlier and shows higher probability values until the unbound
portion of the distribution has left the well area.

The Wigner functions W (q,p) are two-dimensional and the separatrix gives addi-
tional limits in p for the integration. Thus only the part of the distribution within the
separatrix contributes to the probability.

The integration can result in negative values if the Wigner function within the sep-
aratrix takes on mostly negative values. But this is only for a short time before the
probability curve starts to rise. The orange curve is rather jagged. The reason for
this is not clear. But it still has a similar shape compared to the green curve of the
Phase-Space Evolution scheme. The difference in quantitative behavior of these two
curves could be traced back to the different numerical methods and was also visible in

the probabilities of the rectangular decay model (see |[Figure I1.11]).

Ill.d. Assessment of Phase-Space Methods in Quantum
Mechanics

This chapter employed two different methods to obtain the time evolution of Wigner
quasi-probability distributions numerically. Both of them deliver basically the same
distribution in phase-space, at least qualitatively, which is a great feat since they are
build upon very different schemes.

The Wigner-Ville transform translates wave functions into phase-space and is there-
fore dependent on a numerical method that solves the Schrédinger equation (e. g. the
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Crank-Nicolson method) first. But if the wave functions are already given, this method
can be used at any time step. It is not necessary to evolve an initial distribution.

The p-vector is defined by the sampling rate of the fast Fourier transform. A fine grid
in ¢ thus leads to a coarse grid in p and vice versa. Since the Wigner-Ville transform is
used in signal processing there are implementations readily available®]

The Phase-Space Evolution scheme utilizes a split-step method to find solutions to
a wave equation-like equation of motion for the Wigner function derived from Moyal’s
equation. It therefore operates completely on the basis of a phase-space description.
The p-vector is here defined directly, giving more control over the resolution in the
momentum.

€e. g. the MATLAB function wvd in the Signal Processing Toolbox, introduced in version R2018b

_Nj Wigner-Ville
Selhufidiuse Cr.ank Nlcolson ¥(a) g Wiyl
finite differences transform

p(q)
FFT -
f—:ﬁ

é(p) a(p)

i Phase-Space Evolution scheme
- Wigner eom - Wi(q,p)
split operator
Figure III.14.: Hlustration of the paths from equations to numerical results that are used

in this thesis.
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V. The Tilted Lattice: A Simplified
Approach to the Tilted Washboard
Potential

The models so far introduced tunneling and particle capture in with wave functions as
well as with Wigner functions in the phase-space-picture. Now, these are going to be
used as a basis for the simulation of a daemon system.

Section introduces the model and explains the scaling.

Section m presents the results of simulations of the wave function v¥(q,t) via
the Crank-Nicolson method and of the Wigner function W (q, p;t) via the Phase-Space
Evolution scheme. A discussion of the characteristics follows.

Section [IV.dis concerned with quantum mapping. A quantum canonical transfor-
mation is given in analogy to classical Hamiltonian daemons. Further approaches for
going beyond a simplified model are explored as well.

IV.a. Introduction to the Time-Dependent Tilted Lattice

The model presented here is termed the tilted lattice. While it has the sinusoidal struc-
ture of a tilted washboard? it is also simplified compared to the effective rescaled

Hamiltonian in [Equation 1.4}

The tilted lattice exhibits possible bound states in a local potential well, i. e. a down-
conversion phase, and time-dependent separatrix change, i. e. capture of phase-space
points in the separatrix. It is therefore an example of a daemon system.

The Hamiltonian is given byﬁ

A~

A (q,t) = 5* +V(d,1) ey

V(q,t) = aG —vB(t) cos(sq)

where s can scale the potential wells, v gives the amplitude of the cosine, & gives the
tilt, so that v and & together determine the maximum depth of the potential wells.

*as introduced in [Section I.b.2} also compare |[Figure 1.5

Pthe quantum version of Ha in [10]
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Figure IV.1.: (a) Development of the control parameter 8 over time. Hann was used in
the simulations, with triang given here for comparison.
(b) Potential of the tilted lattice model for the simulation depicted in
[Figure TV.2d and [[V.2d}
Initial linear potential at ¢ = £300 in green and maximum depth of the
wells at ¢ = 0 in blue, with the solid curve for the scaling of shallow wells
and the dashed curve for the semi-classical scaling. The dashed violet line
indicates the kinetic energy %pg of the particle.
The potential is comparable to

B(t) € [0,1] is a time-dependent control parameter, modifying the potential depth,
which enables the opening and closing of the local potential wells. Examples for the

shape of 8 are given in [Figure IV.1al Different forms of 5 do not change the behavior
qualitatively.

The tilted washboard Hamiltonian shows a \/L? — L2-prefactor of the cosine,
which can be rescaled to v/1 — F2. The parameter 3 is used here as a simplification
thereof. A momentum-dependent potential is difficult for numerical computations and
adds complications in the quantization procedure of a classical Hamiltonian (see

fion IV.c.3).

The control parameter governs the dynamical behavior by opening up the potential
wells, or separatrices, and thus enabling a downconversion phase. With the change in
the separatrix area it also enables the capture of the weight in a bound orbit.

This model is given in the comoving frame, meaning the critical velocity is shifted to
ve = 0. A captured particle is kept around a fixed height, so the downconversion phase
acts against the falling of the particle.

“Both are window functions available in MATLAB’s the signal processing toolbox.
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IV.a. Introduction to the Tilted Lattice

Scaling of the System

The potential in is quasi-periodic with a quasi-period II = %’r This sets
the maximum width of the wells and barriers. The system parameters & (measure of
the adiabaticity) and 7 (coupling strength) set the maximum depth of the wells. From
this the semi-classical number of bound states Ny. can be computed by means of the
Bohr-Sommerfeld quantization scheme.

A few assumptions ought to be made about the system:

e [t should be rather small, measured in terms of 11, so that it can be considered as
a quantum system.

e It should also be within the semi-classical regime with Ng. > 1.

e There should be tunneling in the model in order to study it. Since larger sys-
tems also feature wide barriers which could hinder tunneling, the wells should be
relatively shallow.

e Neighboring wells should show no overlap. Tunneling out of a well should lead to
an unbound state in the examinations here.

e For convenience, the particle should only be bound in the least number of wells
possible (i.e. one or two). For this, the uncertainties o, and o, as well as the
initial momentum pg need to be regarded in relation to II and the time scale of
the evolution, otherwise the wave packet might not be localized but spread over
the entire system.

Choosing parameters for the system without also scaling up the potential (i.e. II =
27) would mean only a slight incline with very shallow wells, basically giving a linear
potential with small undulations, unless restricted to a very small region of ¢ with only
a few periods of the potential. Such a small region would be problematic, because the
particle would be effectively delocalized quickly due to the spreading of the wave packet.

Furthermore this corresponds to the deep quantum regime. Increasing the depth of
the wells on the other side leads to considerable overlap of the wells.

This gives a lower bound for a semi-classical system of II = 20, where Ny ~ 1.4

Table IV.1.: Parameters of four systems at two different length scales.

(a) quantum scaling: I=20, &=0.01, v=0.08

—~ N =05 AV =007, 6V =—013
(b)  small scaling: =20, &=0.01, y=0.14

= N =14, AV =019, §V = —0.01
(¢)  shallow scaling: II=50, &=0.006, v=0.1

= Ny =18, AV =0.07, &V =-023

(d) semi-classical scaling: 11 =50, & =0.006, ~=0.21
= Ngc = 5.6, AV =0.28, 06V =—-0.02
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IV. Tilted Lattice Model

for the maximum depth of non-overlapping wells. At this scale lies the border to the
quantum regime.

Additionally a further scale-up can be considered. With II = 50 the range of Ng
is given approximately from 1.8 to 5.6. These considerations lead to four scales of the
model regarded here: quantum (shallow wells) and small (deep wells) scale with IT = 20
and shallow (shallow wells) and semi-classical (deep wells) scale with II = 50. The
parameters for these systems are given in [Table TV.1]

AV refers to the maximum depth of a potential well, given by the difference of
the potential energy at the unstable fixpoint and at the stable fixpoint for ¢ = 0:
AV = V(q¢7max, t= 0) — V(Qi,min;t == 0).

0V indicates the overlap of two neighboring wells through the difference of the poten-
tial energy at the unstable fixpoint and at the stable fixpoint of the next higher order:
AV = V(gimax;t = 0) — V(gi—1min,t = 0). A negative value indicates the absence of
overlap.

IV.b. The Time Evolution of the Tilted Lattice

All of the numerical tools of the previous chapters have been used to examine the tilted
lattice Hamiltonian ([V.1]). First the different plots of p, o, P and W are described,
then the time evolution is discussed in detail. The focus is on the larger systems with
IT = 50.

1. Numerical Results of the Tilted Lattice
Spatial Probability Densities p(q)

The particle is initially launched upwards with momentum pg. It keeps close to the
classical parabola, albeit spread out in q. As [ increases the wells open up, and it
becomes possible for the particle to be trapped. But there is also a chance for a continued
fall.

In the beginning of the downconversion phase a focusing of the probability density
occurs as the particle is guided into the well. There is a chance to leave the well quickly
after. In a division in the initial parabolic distribution can be seen, where
the upper part with higher momentum is delayed from falling by the local deepening
of the potential, whereas the lower part accelerated by the local raising of the barrier.
Otherwise the particle is captured in the well. It is eventually released as the wells
shrink and close up, ending the downconversion phase.

At the smaller scaling of II = 20 the spreading of the wave packet appears more
pronounced in relation to the wells, even on the shorter time scale. This leads to the
probability density being dispersed over two or three wells. The initial values pg and
04 where chosen to feature one main well with a lesser likelihood for the lower neighbor
thereof.
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Figure IV.2.: Time probability densities p(q) = [)(q)|* for the tilted lattice model. The
dotted yellow line shows the classical trajectory of the weight in a linear
potential. This represents the initially decoupled particle

The parameters are given in [Table IV.1| (a) and (b) show II = 20 for
times t € [—200,200], (c) and (d) show IT = 50 for times ¢ € [—300, 300]

(next page).
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Figure IV.3.: Momentum distributions of the Wigner function for the tilted lattice
model in (a) shallow and (b) semi-classical scaling.
The momentum distribution shows the decoupling phase as a straight line.
The dashed yellow line illustrates this for the initial trajectory of the free
particle. The dotted grey lines mark the start and end of the downconver-

sion phase (compare[Figure IV.4)). The dotted red lines show the limits of p

for bound states in the potential, given by |p| < ﬂQAV) (see|Table TV.1J).

The downconversion phase presents as oscillations around p = 0.

With the larger scaling of II = 50 the particle can be lead into one Wel]E|. The prob-
ability density seems to split up into multiple "stripes", indicating a superposition of
different oscillation modes. This is much more prominent in the semi-classical scaling

(Figure IV.2d)).

Tunneling can be seen in these systems. Both the quantum and the shallow scaling
show a continued flow of the probability density away from the bound distribution.

Momentum Probability Distributions o

The momentum probability distributions for the shallow and semi-classical scaling are
shown in These were obtained with the Phase-Space Evolution schemd]
Initially the momentum decreases linearly from pg because of the linear potential.
This is indicated by the dotted yellow line, which corresponds directly to the classical
trajectory marked in With the onset of the downconversion phase the
distribution is divided. The part of the distribution pertaining to lower momentum keeps
moving downwards. However, most of the distribution deviates from the free fall towards

dThe probability to capture the particle in a neighboring well does not vanish entirely, but is considered
to be insignificant and not visible in[Figure IV.2dor[[V.2d]due to the color scaling of the pseudo-color
plot.

°It should be noted that inaccuracies in the numerical evaluation lead to negative values in the
distributions, occurring in the continued fall for p < 0 and ¢ > —150.
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Figure IV.4.: Probability to find the particle inside the well, i. e. undergoing downcon-
version, for the shallow and semi-classical scaling in and
[V2d] using the Wigner-Ville transform. Start and end of the downcon-
version phase are clearly visible.

p ~ 0 and shows oscillations, indicating the bound particle in the downconversion phase.

From the energy difference AV, between the top of the barrier and the bottom of the
well, the limits of the momentum for a bound particle can be calculated, indicated by
dotted red lines in

In the semi-classical scaling the momentum reaches a maximum of ppa.x = 0.56,
clearly within the limits of |p| < 0.75 set by AV.

In the shallow scaling the maximum is pmax =~ 0.40, which exceeds the limits of
Ip| < 0.38 for some times.

After the downconversion phase ends the particle again transitions to the free fall of
the decoupled phase.

Capture Probabilities

The probability curves in were computed using the Wigner-Ville transform
of the wave functions for the shallow and semi-classical scaling with II = 50. They
show the probability for a captured particle within the well, or within the separatrix if
regarded in terms of the phase-space.

The probability is equal to zero as long as no bound states are possible. It is therefore
possible to see the beginning (¢;) and the end (¢7) of the downconversion phase, where
t; = —ty because of the symmetry of ().

For the semi-classical scaling this transition happens at ¢;/; ~ £185. The probability
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IV.b. Time Evolution

quickly rises and reaches a maximum of P = 0.72 at t & —100. The curve stays at this
value until an initially slow decline sets in at ¢ =~ 65.

For the shallow scaling the downconversion lasts between ¢;,; ~ +130. A maximum
value of P = 0.57 is reached around ¢ =~ —50. But in this case the curve slowly declines,
indicating a tunneling out of the well.

Phase-Space

The time evolution shown in features only one system: the shallow scaling.
The other systems differ only in a few aspects. Most importantly, the semi-classical
scaling does not show tunneling. Since the two II = 20-systems have the probability for
capture split between two wells, interference patterns appear of the Wigner functions in
two separatrices appear, making it more difficult to visually discern important features.

The Wigner functions were obtained with the Phase-Space Evolution scheme. The
Wigner-Ville transforms of the numerical wave functions are very similar. They are not
shown here for brevity.

The trajectories are initially parabolic curves that gradually form into separatrices,
then back to parabolas. The particle moves in the potential along these trajectories and
spreads out, changing into a crescent shape.

When the separatrix forms a loop, the distribution is already present in that area of
phase-space. The part of the Wigner function to the right of the separatrix cannot be
captured and moves away, as it stays in the decoupled phase. The distribution moves
slowly (v ~ 0) and the growing separatrix crosses over more of it. But the distribution
is still partly outside, moving slowly away outside the separatrix.

The bound distribution starts to oscillate slowly, but keeps close to the separatrix. A
continuous flow out of the separatrix shows the possible tunneling of the particle out of

the well, comparable to the behavior seen in

In the semi-classically scaled system the separatrix growth continues after the avail-
able distribution is already captured, leading to an increasing separation of the bound
distribution from the separatrix. This effectively suppresses the tunneling of the parti-
cle. In this larger system the distribution is elongated as it moves around in phase-space
and crosses the separatrix, forming a spiraled pattern. Due to the greater separatrix
area it is able to persist longer. It also shows more distinct oscillations, apparently at

different orbits giving these stripes seen in when viewed as a projection
on the g-direction.

When the separatrix area shrinks, the distribution eventually crosses over it and
moves away along the classical trajectories.

This phase-space-picture shows the behavior of such a Daemon system very well and
can be used to explain its distinct features that appear in the plots of the probability
density and localization probabilities.
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Figure IV.5.: The time evolution in phase-space of the tilted lattice with shallow wells
at six time instances. The Wigner function was computed with the Phase-
Space Evolution scheme.
The red lines indicate the separatrices.
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2. Summary of the Time Evolution

On the basis of these numerical results the time evolution of the tilted lattice model is
now examined. It shows behavior expected from a daemon system with a tilted wash-
board potential. It exhibits both dynamical phases: decoupling and downconversion.

Decoupling

The decoupled particle experiences free fall in the potential. This can be see in the

density probabilities: in o as a declining straight line, corresponding to
the downwards parabolic curves in p . In phase-space it is seen as basically
anything outside an enclosed separatrix area.

By design the system is in the decoupled phase in the beginning and the end. In
between the particle is decoupled either if it fails to transition to downconversion — the
daemon motor does not to start — or if it tunnels out — corresponding to a premature
stalling of the motor.

Transition

The transition to the downconversion phase sets in before the separatrix opens at ;.
This point in time is clearly visible in the probability curves (Figure IV.4]) and marked
accordingly in the p- and o-plots. Deeper wells open comparatively faster, meaning
that larger values for v lead to smaller ¢.

Before that (¢ < t;) the phase-space trajectories deform. The momentum distribution
stays close to the critical speed p ~ 0 for an extended time if it is leftﬂ of the separatrix,
or the fall is accelerated if the distribution is on the opposite side. In o this is seen as
a division. In a short period of time before t; most of the distribution deviates from
the straight line and reaches p ~ 0 at ¢;. This is comparable to the behavior of the
raising-barrier capture model in phase-space , where the wave packet is

partly reflected according to its momentum.

A difference in the transition process can be seen between smaller and larger values
of v, as in the the shallow respectively semi-classical scaling.

The semi-classical scaling shows the apex of the initial parabola — and thereby the
zero-crossing of in the momentum — close to t;. o shows multiple streaks
in the distribution at different values of p that curve towards downconversion, resulting
in multiple modes of oscillations. It is possible to catch more regions of the distribution
pertaining to lower momentum.

In the shallow scaling ¢; is later, so the zero-crossing occurs long before that point in
time. There is only one part of the distribution curving away from the decoupled fall,
as no additional parts of the distribution have a momentum close enough to zero at t;.

In phase-space the separatrix of the semi-classical scaling is larger and growing faster.
It is therefore easier to catch the distribution before it moves away. The shallow scaling

fThe trajectories are curved to the right in the mathematical sense.
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Figure IV.6.: Comparison of Wigner function and trajectories at t = 0 for the shallow

and semi-classical scaling in [Figure 1V.2d and [IV.2d] using the Wigner-
Ville transform. The separatrix is in shown red. The additional classical

trajectoriesﬁ are evenly spaced with AE = 0.05 in both cases.

also shows that a part of the distribution is simply outside of the separatrix due to its
smaller area.

Generally speaking, the transition from the decoupled to the downconversion phase is
more probable for deeper wells. This is clearly reflected in the plot of the probabilities:
the curve of semi-classical scaling reaches a higher value (P = 0.72) than the shallow
scaling (P = 0.57).

Downconversion

As expected from a tilted washboard potential, the downconversion phase appears as
bound states. This is best seen in where all of the Wigner function within
the separatrix exhibits downconversion. But both probability distributions p and o the
vastly different dynamics compared to the decoupled phase, with oscillations around a
stable fixpoint instead of the free fall.

o is similar to the previously published momentum distribution (compare,
but without the jumps of the quantum regime. p can be compared to previous pub-
lications as well, but there are no bifurcations in the distribution with
possibilities for a further rise (since v. = 0 for the tilted lattice). However there is a
chance for the decay of the (quasi-) bound state and tunneling is more likely to happen
when the particle approaches the barrier. This can already be see in the decay model

(e. g. [Figure 11.10]).

The systems with differently scaled parameters (see [Table IV.1)) show different be-
havior, which is most distinct between smaller and larger values of v. The quantum
scaling (a) shows just one band of the spatial distribution within the wells, whereas the

&These are not Bohr-Sommerfeld orbits, although the number of additional curves lines up with Ng.
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small scaling (b) shows oscillations. This is similar for the II = 50-systems, but the
wells are larger in regards to ¢ and allow for more movement of the bound particle. In
the shallow scaling (c) small oscillations appear within the well, visible in both the p-
and o-plot. The semi-classical scaling (d) even exhibits multiple modes of oscillation,
akin to an excited state. shows the Wigner function at ¢ = 0. The dis-
tribution extends to the innermost region (around p = 0) as well as to a region of the
separatrix further out (higher momentum). This can be regarded as two modes with
partly overlapped distributions. In comparison the Wigner function in shallow scaling
(Figure IV.6al) shows just one oscillating distribution. The inner region coincides with
the separatrix as a whole.

Tunneling

Tunneling is present in systems of smaller v (quantum and shallow scaling), but sup-
pressed for larger v (small and semi-classical scaling). This can be seen in
The shallow scaling (left) shows a flow across the separatrix out of the region of down-
conversion, as opposed to the semi-classical scaling (right), where the bound distribution
is rather separated from the decoupled region. The probability curves in
show this distinction. Such flow away from the well, apart form times around ¢;, is also
visible in the p-plots of the quantum and shallow scaling.

The suppression of tunneling in systems with deeper wells indicates a transition from
the quantum to more classical behavior.

Flow and Capture in Phase-Space

The capture probability is given by the separatrix. The area determines how much of
a distribution can be caught inside it at all. The growth rate competes with the flow of
the distribution.

For this initial values are important. The parameters ¢& and v determine the area
and [ the growth rate.

An unsuitable choice for the initial momentum py of could mean the particle has
already passed the area in phase-space relevant for capture, or it moves away outside
the separatrix if it arrives to late. The distribution should be close to the stable fixpoint,
once it emerges.

But a combination of parameters that leads to a successfully running daemon engine
is not hard to find.

The behavior of the tilted lattice model in phase-space is similar to the description
linked to Kruskal’s theorem in Reference |10] — after all it is a quantum analog of the
Hamiltonian Hs in that publication. But in this case quantum corrections are present:
tunneling out of the separatrix can occur, and tunneling into it as well, albeit much
less likely. A quantum version of Kruskal’s theorem could follow from an analytical
description of this phase-space capture.
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IV. Tilted Lattice Model

Simplified Daemon

Lastly some additions to this model regarding daemon systems are in order. There is no
connection between different subsystems as such, e. g. no fuel, just parameters & and -~y
which represent adiabaticity and coupling within the framework of daemon engines, but
are chosen here somewhat arbitrarily, since no direct correlation with previous numerical
examinations was possible. In part this is because of the methods employed here and in
part due to the requirements formulated for and leading to the scaling of the systems.

All of the dynamical behavior comes from £(¢). This control parameter subsumes all
of the time-dependence of more complex systems and the intricate interaction of the
subsystems in a daemon engine.

IV.c. Beyond the Tilted Lattice Model

This section takes a look at quantum mapping and tries go beyond a simplified model.

First a quantum canonical transformation of the tilted lattice Hamiltonian is pre-
sented in analogy to the classical transformation in Reference [10].

Afterwards an exact quantum phase model representation is derived for a quantum
daemon Hamiltonian.

Then some difficulties in dealing with quantum daemons are described.

1. Quantum Canonical Transformation of the Tilted Lattice

Separatrix engineering and control, based on Kruskal’s theorem referenced in [10], was
introduced in in the context of the classical Hamiltonian Daemon. The
results of the previous section show that this could be extended to quantum dynamical
descriptions within the description of phase-space quantum mechanics.

Furthermore Reference |10] describes a canonical transformation

G4, P—p=P—a(t) (IV.2)
that shifts the momentum, changing the Hamiltonian:

1

Hy = 2 (P = a(t)* - 5(t) cos(a) (1V.3)
to the comoving Hamiltonian:
1 .
Hy = —p* + aq — B2(t) cos(q). (IV.4)

2
The tilted lattice Hamiltonia fITL can be considered the quantum analog of Hs
by promoting the dynamic variables to operators. Now the quantum analogs of the
transformation and the Hamiltonian H; are regarded.

b compare to [Equation IV.1] with v3(t) substituted by 5%(t) and the scaling by s dropped
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IV.c. Beyond the Tilted Lattice

Time-dependent Transformation of the Tilted Lattice

Here only the essentials needed to perform the transformation are given.
contains more details on quantum canonical transformations in the WWGM-formalism

and the reduction to ordinary exponentials.

The transformations are generally defined as:

F(§,p)q F~(q,p) = Q(4.p)
F(q.p)p F~(4.5) = P(4.p) (IV.5)
~i [@.P] =1

where F is the generating function and Flits algebraic inverse.

Three elementary canonical transformations can be assumed, making others combi-
nations thereofft

1. gauge transformation

2. point transformation

3. interchange of position and momenta

Classically, the time-dependency of a transformation is considered by time-derivative
of the generator. In the quantum case the description of the momentum operator in po-
sition space p = ﬁq = —i 0, is extended to time: p, = —i J; (the energy operator), which

is then transformed as well. With this the Schrédinger equation reads p, [1) = H |1)).

The specific type of transformation used here is the one-variable similarity (or gauge)
transformation, given by:

i»Q=eqgel =g,
prP=epel =p+io,f, (IV.6)
t»—)ﬁ :efﬁte_f:ﬁt+i8tf,

with the generating function F=e @

A function g(g,p) transforms as: g(§,p) — e/ ge™/ = g(Q ]5), thus the Hamiltonian
is transformed:

~

H(G,p)—~e HeF =K(Q,P) (IV.7)

where K is used for the transformed Hamiltonian, also called the Kamiltonian.

'This at least true for a large number of transformations.
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IV. Tilted Lattice Model

At first a general case is considered, where f =i 0(q,t) is set for the generator. The
transformation is time-dependent and unitary. An expression for © specific to the the
tilted lattice is chosen later. The resulting transformations for the momentum operators
are:

p—p—0, p—p —06. (IV.8)

Now the Schrodinger-operator A =H— P, is regarded, which contains p, and thereby
takes the time-dependency into account. With this, the Schrédinger equation is short-
ened to A |) = 0.

The Schrodinger-operator transforms as:

H = A =K(Q,P)-P, (1V.9)
= —Ist + %152 + &g + (t) cos(§) (IV.10)

. 2
= —p, 6 +4 () +ag+ (1) cos(d). (IV.11)

This works, if 32 does not depend on p. Otherwise it would have to be transformed

as well: B2(p,t) — B2(P, 1)
The tilt can be eliminated by choosing © = ¢ §. From this follows:
O=a(t—ty) ¢ =alt)q. (IV.12)

For this gauge transformation here, the generating function F o= eif d26(@ pag the

effect of a transformation p — p + 6(q,t) with 0 = &(t — tg) = ©’, resulting in:

0 =alt)q, 0 = at), O =a4, (IV.13)

which can be put in [Equation IV.11]

The complete transformation of the tilted lattice Hamiltonian now reads:

F,, = e (IV.14)
¢4, D—p—a(l), (IV.15)

R R 1. 2 R
Ay = Koy = 5 (p - a(t)) + B2(¢) cos(q). (IV.16)

The transformed Hamiltonian KTL IV.16) can be seen as the quantum version of

H; (IV.3). The transformation in [Equation IV.15|is then the quantum analogue of
the classical canonical transformation from the perturbed pendulum H; to the tilted
washboard Hj in [10].
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IV.c. Beyond the Tilted Lattice

The quadratic term in KTL can be expanded:
(p—a)?=p" —20p + o> (IV.17)

In position basis p = —id,, introducing an additional derivative to the Schrédinger
equation. The Crank-Nicolson method is not well suited for this type of equation and the
Phase-Space Evolution scheme would require a different propagator. The transformed
system was therefore not examined numerically.

In the following section such systems will be briefly introduced as advection-diffusion
systems.

2. Exact Quantum Phase Model of the Quantum Daemon Engine

The ezact quantum phase model (EQPM) is based on Reference [41]. It was developed
in the context of Josephson Junctions, but it is used here to describe the Hamiltonian
daemon engine. It starts from a two-mode Bose- Hubbard model — which is also a possible
model for the description of the fuel system in Hamiltonian daemons — and treats the
phase term ¢ as a quantum mechanical coordinate.

The idea is to take the quantum Hamiltonian and rewrite it to eliminate the angular
momentum operators from the potential. For that purpose the EQPM replaces the
annihilation and creation operators by their action on states via associated functions.

In the end, the approach did not prove to be fruitful, therefore only an overview with
the important results is presented here. Derivations and other technical details and can

be found in

Starting point is the the quantum Hamiltonian (Equation 1.5)):

1 29 A - Y[ ikqg , 3 —ikq

which can be rewritten for this problem as the quantum engine Hamiltonian:

. 1/~ N2 1 . i
A, =5 (8. -a) +5w(s +8") (IV.19)
by defining a(t) = &t — t9) with & = %2 and rescaling to dimensionless variables

and quantities. Furthermore the annihilation operators a_ are substituted by B_ =

~

_e_ikg. This also changes the L-operators to in [Equation IV.18|to the corresponding

S'—operators to in [Equation IV.19

With these substitutions it can be seen that the quantum engine Hamiltonian resem-
bles the effective daemon Hamiltonian (Equation 1.6). A more complete derivation is

given in
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IV. Tilted Lattice Model

Applying the representations of the EQPM to [Equation TV.19| results in the Hamil-
tonian:

Hpopum = —%8; + (yosin(¢) — ia) y + a® + %'yo (N +2) cos(¢), (IV.20)
where the time-dependence is given by «(t) = &(t — tp) and the quantum mechanical
coordinate ¢. This already resembles the Hamiltonian of a daemon system. By shifting
the representations in the EQPM the states and heir inner product are changed as
well*!' as well. The inner product then features a cutoff at the finite particle number NN,
depending on the particular system, which matches the tank system of a daemon engine,
which consists of N particles.

Additionally the Schrédinger equation I:IEQPM |t)) = i0¢ [¢) can be regarded. Trans-
forming the states via [1)) = e~ 2™8 |¥) effectively changes the Hamiltonian in order to
achieve different properties of the model.

Here, two choices for the argument A are presented that aim at different goals:

The first attempt aims at eliminating the dy-term, since it could prove bothersome
for numerical computations. The choice for the argument is:

Ai(¢,t) = — (70 cos(p) + ia(t) ) , (IV.21)

which results in the Hamiltonian:

=5+ V(6.0
9 (IV.22)
Vi = 272 sin2(¢) + yn cos(o) — % + 2vesin(¢) + 2¢¢,

where é =i, v = %'yo, and vy = yN.

The Hamiltonian shows the tilt and the time-dependent wells in the potential akin to
a tilted washboard. However, the time-dependence is now imaginary and the resulting
Schrédinger equation proves to be non-hermitian and non-P7T-symmetric243 and is
therefore not likely to lead to a physically relevant system.

From this follows the second aim: gaining a hermitian Schrédinger equation. The
transformation is performed with the argument

A = —vycos(¢) +iA(¢ + 2\ — 2sin(¢)), (IV.23)

which now gives:

A~

By = 59° +C(6:0)p + T(6.1),
C(p,t) = dyacos(9), (IV.24)

Va(o,t) = & + v cos(¢) + 292 sin®(¢) — dydsin(g) + a®(8+% cos®(¢) + 1),
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IV.c. Beyond the Tilted Lattice

where v = %fyo and vy = (/N — 1). However, this transformation is not unitary.

This will be called the advection-diffusion-reaction Hamiltonian (ADR). The termi-
nology resorts to classical problems involving advection** (or convection), where the 835—
term describes diffusion, the 0y-term describes advection or drift with a coefficient C' and
the last term, i. e. the potential, describes reactions as sources or sinks. The Schrodinger
equation corresponding to H ADR
tions. The advection coefficient C' = 2i7y a(t) cos(¢) in [Equation IV.24]is a function in
¢ and t.

In addition to the advection—ternﬂ the potential also shows the properties of a tilted
washboard.

is not in the usual form of advection-diffusion equa-

This model was briefly numerically examined. For this purpose a finite difference
scheme on the basis of the general Crank-Nicolson-ansatz has been developed.

The initial results did show the decoupling- and downconversion-phase, strongly re-
sembling the dynamics of the classical daemon. But two major problems with the
numerics did arise. The results changed drastically with variations in the underly-
ing grid. Additionally, the phase-space-picture showed odd behavior, where the Wigner
functions showed oscillations wildly crossing the separatrix areas. The numerical results
are therefore not presented here.

A further analysis in search for the correct form of the phase-space-trajectories then
lead to examination of canonical transformations of the system.

A quantum canonical transformation can eliminate the advection term by shifting

the momentum (see [C.v]):

g—dq, p—P=p+C(,1),
(IV.25)
N . o 1o
H=2p"+Cp+V o K =P+,

where the transformed potential U = W + ¢I' now exhibits an imaginary part that
results from the commutator of p and C(q,t).

Applying this transformation to the ADR-Hamiltonian of [Equation TV.24] results in
the potential:

U = a + vy cos(¢) + 272 sin?(¢) — 8v%a? cos®(¢) — 2iyasin(¢) + o, (IV.26)
which can be further reduced to:
Uy = &+ yn cos(¢) + 2 (2ya cos(4))? — 2iyasin(¢) (IV.27)

by leaving out terms that would not contribute to the dynamical behavior of the system.
This potential now clearly describes the tilt and the washboard-like wells, but with an
additional imaginary term.

The problems with this model so far have been:

iThe p-dependent term already appears in KTL [V.16|or classical daemon Hamiltonians with (p—a)2.s
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IV. Tilted Lattice Model

questions about the nature of the wave functions and the inner product,

the hermiticity of Hamiltonians and the unitarity of transformations,
instabilities in the numerical computations and

the emergence of an imaginary term in the potential after the canonical transfor-
mation.

Furthermore, the transformed Hamiltonian resembles the tilted lattice model which has
been examined in this thesis.

There could be ways to treat this model with different techniques, both analytical
and numerical. This is picked up briefly in [Section VL]

3. Difficulties with the Treatment of Quantum Daemons

The study of further — more complex — systems within the scope of this thesis and its
methodology proved to be rather difficult. Several approaches were discarded as they
were considered as unfeasible.

The effective Hamiltonians describing a daemon engine (Equation or involve
momentum-dependent potentials or other additional terms that scale with p or some
angular momentum J through the action F'. Simply taking a classical Hamiltonian
H(q, p;t) with a p-dependent potential V (g, p; t) raises the question of the correct quan-
tization procedure. Can the usual approach of ¢ — ¢,p — p work?

The quantum canonical transformation of the tilted lattice shows that there exist
simple quantum analogs of classical systems in which even the canonical transformation
works. The quantization of classical Hamiltonians should work as usua]ﬁ

But the problems with handling momentum-dependent potentials remains, especially
in numerical evaluations.

Taking the genuine quantum Hamiltonian lead to the exact quantum phase model
representation to get rid of problematic terms. This approach itself turned out to be
not quite successful.

®The correspondence of classical and quantum daemon Hamiltonians is also seen based on |7] in
conjunction with [6].
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V. Uniting Hamiltonian Daemons in
Semi-Classical Phase-Space

This chapter strives to find a unifying theory for Hamiltonian daemons that can describe
both the classical and quantum behavior. To this end, the classical phase-space is
quantized and characteristics of daemons in the deep quantum regime are connected to
phenomena in such a phase-space.

A first step of bringing together classical and quantum daemons is the phase-space
formalism of quantum mechanics. It was introduced in and the model of
showed its potential for the description of quantum daemons. The tilted
lattice model showed quantum behavior for small systems and a suppression of quan-
tum effects (i. e. tunneling) in larger systems. Additionally an extension to a quantum
Kruskal theorem was hinted at. The WWGM-formalism contains the classical Liouville
equation as the limiting case of the Moyal equation.

V.a. Summary of Classical and Quantum Daemons

As stated in the introduction to Hamiltonian daemons (see the dynamical
behavior of the classical daemon engine can be well described in terms of the phase-
space as shown in[Figure V.1l The downconversion phase is seen as bound orbits around
a stable fixpoint, enclosed by a separatrix. The fixpoint drifts toward lower fuel levels
and transports the separatrix and the orbits with it. The unbound trajectories exhibit
adiabatic decoupling. They can cross over to downconversion through post-adiabatic
effects near a time-dependent separatrix.

In contrast, the canonical formulation of quantum mechanics does not allow a phase-
space description. Instead the energy transfer between the subsystems of a quantum
daemon engine is described by a series of avoided crossings in the instantaneous eigen-
spectrum of the Hamiltonian, as depicted in [Figure V.2] or [[.8a] These crossings are
described by adiabatic Landau-Zener transitions.

V.b. The Semi-Classical Phase-Space and Dynamical
Tunneling
1. The Quantized Phase-Space

A semi-classical phase-space would mean a combined theory of adiabatic transport
in Hamiltonian engines, that contains the description of classical as well as quantum
behavior and allows to revert to phase-space quantities.
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Figure V.1.: from |7]; Contours of constant instantaneous eigenenergies given by the
classical limit in the horizontally periodic (¢, L,)-plane at different times.
L, corresponds to the fuel variable F'in The separatrix is shown
in blue. The other contours are given by semi-classical Bohr-Sommerfeld
energy levels.

Two issues need to be clarified:

1. the movement and the growth of the separatrix area in the classical regime, and

2. the transition (or tunneling) between different |m)-states in the quantum regime.
Dynamical tunneling serves as a description of transitions between regions in phase-
space.

But first a quantization of the classical phase-space is needed in order to find a con-
nection to the quantum states.

The Hamiltonian is expressed in terms of action-angle-variables (¢, F') (see the re-
scaled effective Hamiltonian in . The action F' is now quantized via the Bohr-
Sommerfeld method which gives rules for the allowed orbits. Such a procedure was
already described in |7] and the result (in the classical limit) is shown in

From the quantum description of daemons follows a direct correlation of the relative
occupation numbers m to the action F. Within the separatrix are quantized bound
orbits, outside the free trajectories.

The probability for fuel numbers (compare indicates the possibility to use
the expectation value of the fuel occupation numbers as a (quasi-) continuous spectrum,
in line with the F-axis of the classical phase-space.

This concludes the introduction of the semi-classical phase-space. For the dynami-
cal description the behavior of the separatrix and the diabatic transitions have to be
discussed.

2. Transitions as Dynamical Tunneling

The separatrix is defined analogously to the classical theory. Its increasing area can
sustain a growing number of bound orbits. The downwards movement then transports
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V.b. Tunneling in Phase-Space
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Figure V.2.: from ; multiple eigenspectra of quantum Hamiltonian showing possible
crossings of instantaneous energy levels F,, belonging to different states
| - The panels show different degrees of adiabaticity, lifting the degen-
eracy of the crossings.

the bound orbits with it.

A particle, described by a phase-space distribution, moving along a free trajectory,
can be captured on a bound orbit by crossing over the separatrix. The additional orbits
due to separatrix growth then isolate this bound particle. The basics of such an isolation
were already seen in the phase-space picture of the semi-classically scaled tilted lattice
simulation , where it lead to a suppression of tunneling. The difference
between classical and quantum behavior would then be given by the separatrix areaf]
and the separation of bound particles and free trajectories. Orbits further out from
the stable fixpoint correspond to systems that are not fully excited initially, leading to
higher order crossingsﬂ

So far, capture and transport can be explained without resorting to quantum the-
ory. However, it comes into play when describing tunneling: leaving a bound orbit
prematurely and transitioning to an unbound trajectory.

For this tunneling is not just limited to the penetration of a potential barrier. It

#This was already used in the introduction to define the deep quantum regime.
Pregarded in
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Figure V.3.: from [45]; The tunneling in a double well potential is connected to avoided
crossings in the energy spectrum.

is extended to dynamical tunneling, which describes transitions between any separate
dynamical regions — like the different regions of the decoupled and the downconversion in
the phase-space of Hamiltonian daemons. The description commonly involves a reqular
island — 4. e. bound orbits of the downconversion phase — embedded in a chaotic sea —
the trajectories showing adiabatic decoupling.

But the connection between Hamiltonian daemons and quantum chaos is not clear.
The answer could lie in the Chirikov standard map®® or the examination of a perturbed
pendulum system?®. Both are standard examples of the corresponding literature on
dynamical tunneling and bear resemblance to the description of daemons.

Assuming such a connection could be stated, Hamiltonian daemons could then be
described as a mixed regular-chaotic system and resonant regular-to-chaotic tunneling
processes?’ would be a suiting descriptio of the transition from a bound state to the
surrounding chaos.

The link between avoided crossings and dynamical tunneling, however, has been es-
tablished in literature®. To illustrate this, the example of a double well potential is used
(see. The wave functions in the left and right well cannot be treated indepen-
dently. These wave functions can be coupled symmetrically and an anti-symmetrically.
The corresponding energies E,, (k) (left) and E,, (k) (right) cross at £*, but the cou-

“or at least starting point
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V.c. Proposed Characteristics

pled energies E_ (k) and E_ (k) avoid the crossing and exhibit an energy splitting AFE.
This splitting indicates a tunneling probability. Thus a tunneling between two wells in
a potential is directly connected to an avoided crossing, which presents as dynamical
tunneling between different dynamical regions in phase-space.

V.c. Proposed Characteristics of a Unified Theory

These bits and pieces will now be summed up and arranged more clearly.

The phase-space is quantized semi-classically according to the Bohr-Sommerfeld pro-
cedure. This couples the orbits to occupation numbers of the fuel subsystem.

This phase-space is then mapped to a different representation, usually involving reg-
ular islands within a chaotic sea, that facilitates a description of dynamical tunneling
processes. These processes portray the transitions from a bound orbit to an unbound
state.

The separatriz moves through phase-space towards lower fuel values. The fixpoint
indicates the m-value, and the orbits around it are quantized in units of F'.

An additional growth of the separatrix area can sustain more orbits, leading to more
distance between the innermost orbit and the separatrix. Thus tunneling is more preva-
lent in the early evolution and increasingly suppressed afterwards, comparable to the
change in the probability of Landau-Zener transitions.

The adiabatic evolution of a particle in such a system corresponds to a transport
within the separatrix on the innermost orbit. Diabatic transitions then correspond to
a dynamical tunneling process out of the regular region. Higher order crossings are
correlated to orbits closer to the separatrix.

Still open is the connection, respectively mapping, of Hamiltonian daemons to the
chaotic quantum systems that form a basis of dynamical tunneling descriptions. Aside
from that the theoretical background and mathematical elaboration of such systems
need clarification.

The gain could be semi-classical description of daemons on the basis of phase-space

quantities and processes. A confirmation of this proposal could unify the classical and
quantum mechanical behavior of Hamiltonian daemons.
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VI. Concluding Remarks

Vl.a. Summary

Numerical Methods

Two different methods were employed for numerical results.

1. The Crank-Nicolson method (Section I1.b)) finds solutions to the Schrédinger equa-
tion with a finite difference approximation.
Additionally the resulting wave functions ¥ (q) were transformed to Wigner func-

tions W [¢] (¢, p) by the Wigner-Ville transform (Section I111.b)).

2. The Phase-Space Evolution scheme (Section IIl.c) computes the time evolution
of Wigner functions according to the Moyal equation by using a split operator
method.

The results of the Crank-Nicolson method are expectedly good — as it is an established
numerical scheme for the Schrédinger equation — and are generally in agreement with
theoretical predictions. Problems arose with the discretization. Especially the decay
model with the cosine-barrier needed a rather fine grid. Reflections due to the lack of
adequate (i.e. transparent) boundary conditions commended the use of large spatial
domains.

Both methods for Wigner functions deliver results that are in agreement with each
other, although they are based on different equations for the time evolution and different
numerical schemes (compare .

The Wigner-Ville transform is especially useful if wave functions are available, but it
can be lacking adequate resolution in the momentum p.

The Phase-Space Evolution scheme still allows the computation of probability den-
sities p(q) and o(p) without the wave functions, but it can lead to problems with the
normalization and negative values in the probability values and densities. However, it
has great potential as it can be used with different propagators for other systems in
phase-space, e. g. classical Liouvillian or open quantum systems.

Example Models

Numerical results were obtained for several introductory models:
e the tunneling through a barrier,

e the decay of quasi-stationary state and
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VI. Conclusion

e the capture of a particle in a potential well.

This showcased the methodology used later for the study of a Hamiltonian daemon.
The characteristics of these example systems and their time evolution were examined.
The evolution of Wigner functions was of particular interest, since it extends the clas-
sical phase-space to a semi-classical framework and allows a first look at how quantum
corrections emerge there.
These models all exhibited some behavior which also occurs in Hamiltonian daemons.

The tunneling model showed barrier interaction which is a substantial part of all the
other models.

The decay models showed the time evolution of quasi-bound particles, which can
move out of a potential well by tunneling through the barrier. This was in prepared
the description of a mechanism for the premature stalling of a daemon engine and was
accompanied by analytical expressions of system parameters, i. e. the decay width I’
and the the non-decay probability.

The two capture models exemplified how bound states could be gained from an ini-
tially free wave packet.

Tunneling into a well showed how this could be achieved purely through a quantum
effect. In classical phase-space this process violates Liouville’s theorem, but the exten-
sion to quantum mechanics and the Moyal equation enables the phase-space distribution
describing the particle to cross over the separatrix into the bound region.

For daemon systems a more classically inclined mechanism showed to be of greater
impact. A time-dependent barrier makes it possible to capture parts of a phase-space
distribution in a growing separatrix area.

These models showed that certain phenomena of semi-classical Hamiltonian daemons
can be examined in simpler models, with the possibility for analytic descriptions.

Tilted Lattice Model

The tilted lattice was studied as a simplified version of a daemon system’s Hamiltonian.
It can be regarded as the quantum analog of a classical Hamiltonian in a previous
publication.

Four systems with differently scaled parameters were examined. The tools that were
devised alongside the example models were employed for this purpose.

The numerical results show the typical behavior of a daemon engine with a tilted
washboard potential. A free particle can be trapped in local potential wells, thereby
transitioning from the decoupled to the downconversion phase. Tunneling can be ob-
served depending on the system parameters. This can lead to corrections of the engine’s
runtime.

The phase-space picture is very well suited for the evaluation of the time evolution. It
indicates the possibility to extend Kruskal’s theorem into the (semi-classical) quantum
regime.
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VI.b. Outlook

Going beyond the simplified model proved to be difficult. A representation of a
quantum daemon Hamiltonian in the exact quantum phase model was obtained, but it
showed several problems.

Daemons in Semi-Classical Phase-Space

The last chapter introduced the possibility of unification of classical and quantum dae-
mons on the basis of a semi-classical phase-space description. Some aspects of this
proposal were already published previously and put together here.

The phase-space is quantized by the Bohr-Sommerfeld procedure. Avoided crossings
in the instantaneous energy spectrum of the deep quantum regime are connected to
dynamical tunneling processes.

However, several parts of this approach are still unclear.

VI.b. Outlook

There are a couple of questions and approaches to problems left open, offering oppor-
tunities for future research.

The quantization of classical Hamiltonians with momentum-dependent potentials is
still unclear. Using new techniques for the exact quantum phase representation could
lead to further discoveries. Additionally the numerical evaluation of such Hamiltonians,
as well as systems involving advective terms, needs different approaches.

The phase-space description of quantum daemons can be extended. The processes of
capturing distributions in time-dependent separatrices was only seen in numerical sim-
ulations here. It lacks an analytical description, which means that a quantum version
of Kruskal’s theorem is needed.

The Phase-Space Evolution scheme that was introduced here has great potential for
different types of systems. A direct comparison of classical and quantum behavior could
be done, or open systems could be considered.

The representation of the Hamiltonian of a quantum daemon in the exact quantum
phase model seemed to be unfeasible. But for the numerical treatment a different
scheme could be employed. A finite difference approximation can be problematic for
convective models, and a finite elements method would probably be better suited. Also,
a further analytical examination could provide new insights, for example by searching
for non-decay solutions for the imaginary potential or by looking further into the PT
symmetry of the system, perhaps by splitting the Hamiltonian into parts of different
Symmetry.

Lastly, the unifying theory remains a hypothetical proposal. The relation of this
semi-classical daemon in phase-space to quantum chaos needs to be explained.
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A. Alternative Formulations in the
Theory of Mechanics

This part delves into the alternatives to the standard formulations of classical and
quantum dynamics.

First, the WWGM-formalism is presented to describe the time evolution of quantum
mechanical phase-space distributions. Second, a reformulation of classical mechanics is
introduced, incorporating operators on a Hilbert space. This results in an operational
approach to phase-space dynamics.

A.i. Quantum Mechanics on Phase-Space

There are several introductory texts on a phase-space description of quantum mechanics,
among them References [28| [29} |48| |49], which form the basis for this section. Addi-
tionally, Reference [50| contains a section on selected publications.

Three autonomous ways of quantization have been formulated:
e operators acting on elements of a Hilbert space, the standard formulation,
e path integrals and
e the phase-space formulation, based on Weyl-quantization.

Quantum theory in phase-space is based on Wigner’s quasi-probability distribution®*
and Weyl’s correspondence®?, linking operators and ordinary c-number functions via
representations in group theory.

The composition structure is given by the x-product, formulated by Groenewold=",
and the dynamical evolution is described by Moyal’s equation3Y.

Thus, the framework of phase-space quantum mechanics will be referred to as the
Weyl- Wigner-Groenwold-Moyal-formalism (WWGM-formalism).

The Weyl transform (or Weyl-map) maps phase-space functions to the corresponding
operators in Hilbert spacé®®, whereas the Wigner transform (or Wigner-map) is its
inversd?.

#This does not seem to be used consistently in literature.
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Framework of Weyl-Quantization

The Wigner quasi-probability distribution”

1 h
W(q,p) = 27T/dy <q —5Y

represents a system in a mixed state given by the density matrix p.

e~ WP

0+ ’;y> (A1)

For a pure state [¢) this is given by p = [¢) (¢|. In the position basis it is expressed

as (q| p |¢'). The density operator can easily be generalized to mixed states*”, leading
to the definition:

1 . h _ h
Wig.p) = 5 /dy Y <q - y) ey (q + y> : (A.2)
us 2 2
Some properties of the Wigner function W(q, p) are:
e It is normalized: [dg dpW =1,

e It is real and bounded by: —% <W L %7

Expectation values are given by: (G) = [dg dpW(q,p) g(g,p) with a classical
kernel g of G,

The projections on ¢ and p are positive, semi-definite probability distributions
(marginal distributions):

JdpW =p(q), [dgW =a(p), (A.3)

Negative values occur in some areas of phase-space, but the areas are small.

Smoothing of W is possible, e.g. with a phase-space Gaussian, resulting in the
positive semi-definite Husimi Q-representation,

e W is the generator of all autocorrelation functions.

The Wigner function W for a given Hamiltonian H is found through Moyal’s equation
(where f=W):

Ouf = o (Hox f— fx H) = {{H, /1) (A4)

This can be regarded as the quantum mechanical extension of Liouville’s equation in
classical mechanics and is similar to Heisenberg’s equation of motion.

The x-product in is defined as:
ih = =
* = exp (2 <§q8p - gp@q)> , (A.5)
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A.i. Phase-Space Quantum Mechanics

which itself is used to define the Moyal-bracket {{-,-}}, the quantum extension of the
Poisson-bracket.
The *-product is an exponential of differential operators and can be evaluated using
Bopp-shiftsio3:
ih = th =

fan)woan) =1 (a+ 5 8hp =03, olan (A6)

Moyal’s equation is necessary but not sufficient to specify the Wigner function W for
a system.
An additional functional equation is given by the x-genvalue equation for a static W:
th = ih =

Hlaop)« Wian) = (4 + 5 0p= 5 3,) Wiawp

=W(q,p)x H(q,p) = EW (q,p)

This defines the energy eigenvalue F of the system with the same spectral properties
as given in Hilbert space.

(A7)

The time evolution of a system is given by solving Moyal’s equation via the x-
exponential, a x-unitary evolution operator defined as:

itH/h
* — €4
" 1 2 A8
E1+;H+(Zh> H+H+... (4.8)

Giving the time evolution for a function f in phase-space:

flapit) = U a pst) = fla.p;t) * Ud(q, p; t) (A.9)

As a conclusion, the Weyl-quantization of a c-number phase-space monomial ¢™p" is
given through the image in Hilbert space as a symmetrically ordered operator:

+o0
F(a.5) = @) [ dodrdgdpFap) e (} [ola -0+ 76 -p)]) (A0

—00

For a given operator F (q,p) (symmetrically ordered) its phase-space kernel F(q,p) is
given by the relation:

g—=q, p—=p (A.11)

with the x-product as the operator product, resulting in the Weyl-correspondence, the
general correspondence between Hilbert space operators and phase-space c-number func-
tions:

—
(A.12)
<~
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A.ii. Quantum Canonical Transformations

In this section canonical transformations from classical mechanics are extended to quan-
tum mechanics by utilizing the WWGM-formalism of phase-space quantum mechanics.
Basis for this section is Reference [54].

Afterwards this description is reduced to ordinary exponentials and the gauge trans-

formation needed for the tilted lattice model (Section IV.c.1) is constructed.
Quantum Canonical Transformation in WWGM-Formalism

The canonical transformation of phase-space coordinates (g, p) resulting in new coordi-
nates (@, P) is given through:

F(q,p)*q* F~'(q,p) = Q(g,p)

71 (A.13)

F(g,p) xp*F~(q,p) = P(q.p)
{{Q, P}} =ih (A.14)
FxFl=F1ly4F=1 (A.15)
{F q}} =ihd,F,  {{F,p}} = —ihd,F (A.16)

where F is the generating function with the algebraic inverse F~1.
From this follows:

.p) = q—1ihd,F(q,p) » F (g,

Q(g.p) =q b F(q,p) (¢:p) (A17)

P(q,p) =p+ihd,F(q,p) x F'(q,p)

Now, three elementary transformations can be constructed: the gauge and point
transformation and the interchange of position an momentum. Others are combinations
of these.

gauge:
M@ *q*e:kf(q) —q (A1)
D s pr ;M = p 4 i, f
point:
ei\f(Q)*p *q*x e:)\f(Q)*P = A(q)
Af(a)xp —Af(@)*p -1 (A-19)
€% *Px ey = (94A(q))" *p
interchange: to construct the generating function, take:
Fi(q,p) *q = p* Fi(g, p) (A.20)
Fi(g,p) *p = —q* Fi(q,p)
= Fi(q,p) = /") (A.21)

with the x-exponential as given in [Equation A.8 and X\ as a purely imaginary number.
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A.ii. Quantum Canonical Transformations

Transformations with Ordinary Exponentials

Finding the generating functions can be simplified by employing ordinary exponentials
instead of the starred forms.
Starting with a system of partial differential equations:

M@P) 4 g = Qg,p) * M (a:p)

A.22
eMaP) w p = P(q, p) * M (@P) ( )

both the generating function and the coordinates (@, P) can be found without the need
for the inverse of the generator.

Expanding the transformation in [Equation A.13|for a general function u(q, p) givesﬂ

B oo n )\n+r
M (@p) *u(q,p) * €5 Af(ap) _ Z <r> (—1)" (i) ffrux fr (A.23)

n,r=0

It holds that e~/ is always the inverse of e’ and therefore the expansion (A.23) is
equivalent to the partial differential equations (A.22)), giving:

=M, ()" = (A.24)

With this, quantum canonical transformations can be defined with operators through

the Weyl-correspondence (see [Equation A.12)):

. o A (A.25)
F(q,p)pF (q,p) = P(q,p)
[Q,P} — il (A.26)
The generating function is given by exponentials:
DY Ry NG Dt P P
Mg pe M =a+a[fa)+ 5[4 [Fa]] - (A.27)
The general forms of the elementary transformations read:
gauge:
eAf(d) (j 6_/\f(‘j) — (j
A ) (A.28)
e)\f(Q)ﬁ e*)‘f(Q) — ]5 + zhﬁqf
point:
A(G) ~ —Af(q ~
e f(lI)qe @ _ A(§) A 20)
M) ~ A4 1. '
e f(q)pe @) _ (0,A) 1p
A((j) — e—ifv\f(‘f)aqq (A.30)

PThis is always possible if f(g,p) = f(q) or f(p).
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A. Alternative Theory

interchange:
(g1 =5
o (A.31)
IplI = =—q
400 ]
=) = (2m)" / dq f(g")e*ne? (A.32)

The ordinary exponentials can now be used to find the recipe for the gauge trans-
formation used in The other transformations are left out for brevity[]

The gauge transformation is now given by:

Q=q¢ P=p+uq) (A.33)
with the generating function:
Fg = e B4 dau@ (A.34)
as a result of the solution to:
—0,Fc = 0,Fa
! y (A.35)

ih0yFc = u(q +1i% 0,) Fg

Implications for Functions

In addition, the effect of canonical transformations on functions in ¢ and p and energy
eigenvalues E should be considered in phase-space.
Functions change under a linear canonical transformation as:

F(q,p) xu(q,p) » F~ (¢q,p) = u (FqFfl, Fprl) (A.36)

This holds for arbitrary phase-space functions u.
Especially for any gauge transformation it can be shown that:

PP (p+ihAd,f)? and p Tl (p4ihAd,f)! (A.37)
The Hamiltonian is transformed accordingly:
H(q,p) — K(Q,P) (A.38)

The energy eigenvalue can be considered by the *-genvalue equation (A.7)):
H(q,p) x W(g,p) = EW(q,p)

= H'(q,p)»W'(q,p) = EW'(q,p) (A.39)

where. H'(q,p) = F(q,p)  H(g,p) » F~'(q,p) (A40)

W'(q,p) = F(q,p) * W(g,p) x F'(q,p)

The transformation leaves the eigenenergies unchanged.

“for more, see |54]
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A.iii. Classical Hilbert Space

Time-Dependent Transformations

So far no time-dependency has been regarded.
In order to do so, the time-component is effectively treated as the zeroth component
in the (1,n)-dimensional Minkowski space. As such there is an momentum operator

in time p, or p, = id;, in addition to p = —id,, that transforms as a momentum

operatmﬂ

For the example of a gauge transformation this gives (compare [A.28]):
b, — P, =p, — ihAO,f (A.41)

For time-dependency not just the system’s Hamiltonian is regarded, but the time-
dependent Schrédinger equation.

HU =ihd¥ & V=0 (A.42)

= H=H-p, (A.43)

where 7 can be considered the Schridinger-operator™>.

For explicitly time-dependent systems the transformation takes the form:

A ~ A~ A ~

A (G, p;t) = A (Q,Pit) = K — P, (A.44)

and for the gauge transformation:

H(Q,Pit) =K —p, +ih\ 0 f (A.45)

A.iii. Classical Mechanics in Hilbert Space

This section gives the theoretical basis for the Phase-Space Evolution scheme. While it
does give Wigner functions as quantum mechanical phase-space distributions, it does so
not by using Moyal’s equation within the WWGM-formalism, but rather by employing
a Hilbert phase-space formalism=>2% that is closely related to the Koopman-von Neu-
mann formulation®” of classical mechanics.

Therefore a short introduction to Koopman-von Neumann mechanics will be given
first, followed by the derivation of equation of motion producing the Wigner function
within the Hilbert phase-space formalism.

dwith regard to the metric signature of a Minkowski space
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Mechanics in Operator Formulation

Classical and quantum mechanics are formulated with different tools: Where the formu-
lation of classical mechanics uses phase-space and the Poisson-bracket to describe the
dynamics of a system, quantum mechanics is defined in terms of states and operators
on a Hilbert space.

To unify these two formulations, two approaches could be taken:

1) A reformulation of quantum mechanics in a "classical" language with phase-space
distributions
— WWGM-formalism, as described in a previous section

2) An operator method for classical mechanics on a Hilbert space
— Koopman-von Neumann classical mechanics

The second approach was devised by Bernard Koopman®? in 1931 and developed
further by John von Neumann®®2Y in 1932.

It introduces a Hilbert space of square integrable complex-valued functions ¥ (q, p),
with probability density W!Q = p(q,p).

The following postulates®® are given:

i) The states of a system are represented by normalized vectors |¢) of a complex
Hilbert space b.

i) The expectation value of a measurable A is given by A(t) = (4 (t)| A [4(t)) at time
t.
iit) The probability for the measurement of A at time t to yield the result A is given

by [(A|1h(t))[*, where A |A) = A|A).

iv) The state space of a composite system is the tensor product of the state spaces of
the subsystems.

With these the state spaces, observables and equations of motion can be deduced by
observable data.

The postulates are known from quantum mechanics, but in this formalism [¢) en-
compasses classical and quantum behavior as a general state.

Equation of Motion for Wigner Functions

In the following the variables  and x will denote different entities, where x is a c-number
coordinate in phase-space and x is a classical operator.
Starting point to derive an equation that determines the time evolution of the Wigner

function is the unitary evolution for the density operator p:

ihowp = [ @,p), 5|, |a.p|=in (A.46)
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A.iii. Classical Hilbert Space

or in the position representation for p(q,q’):
ihop = [H(q,—ihdy), —H(q', —ihdy)] p (A.47)
With a change of variables:
a=q—5%0, d =q+5%6 (A.48)
this yields the function:
B(q,0) = (q— 56| pla + 50) (A.49)
as a solution to the equation of motior}
ih 0 B(q,0) = [H(a - 56,1 (9 — 50,) ) — H(a+ 50,1 (9 +40,) )| Bla,0) (A.50)

Defining p as the conjugate to 6 gives W(q, p) as the Fourier transform of B(q,0):

B(q,0) = /de(q,p)e‘ipe, Wiq,p) = 217T/d93(q,9)6ip9 (A.51)

In general B € C holds, thus W € R. Additionally, W is normalizable to 1.
In phase-space the equation of motion now reads:

ihOW (q,p) = [H (q+1i20,,p —i20,) — H (¢ — i20,,p +i29,)] W(g,p)  (A.52)
This can be rewritten with x-products by utilizing Bopp-shifts (see [Equation A.6|):

ih0:W (q,p) = H(q,p) x W(q,p) — W(q,p) x H(q,p) (A.53)

which is the Moyal equation.

Representations of the Hilbert Phase-Space Formulation

As mentioned in the introduction, the commuting operators Z and p form the the basis
of the Koopman-von Neumann representation of classical mechanics.
The additional operators X and 6 are the Bopp-operators*¥358 related to the Bopp-

shifts. This leads to the canonically conjugate position and momentum:

N>
Do

a=q¢—", p=p+hix (A.54)

where [q,f)] = ih.

The four operators ¢, p, 6 and \ define a Hilbert space, thus leading to the termi-

nology Hilbert phase-space formalism>>.

¢called the double configuration space representation

99



A. Alternative Theory

The mirrored operators are defined as:

(A.55)

A common orthonormal eigenbasis exists for g 8) (or |\ p)), where (¢ 0|\ p) = %ei(pe_q)‘)

Now the evolution of the quantum density operator in position space (Equation A.47))

is given as:

ihDy |p) = [H (3.5) — H ('.5") | 10} (A.56)

with |p) in the Hilbert phase-space.
q,p, é, A can be realized as differential operators, leading to different representations:

i=q p=p, \=-i0, 0=-i0, g-p representation

or:
g =4q, p=i0y, A= —iaq, =0 g-0 representation
Considering Hamiltonians of the form H = ﬁﬁQ + V(q) the abstract formulation of

the equation of motion can be written as:

: (R 5 hj 5 hp
D lp) = |53 +V (- 40) —V(q+20>} 1) (A.57)
or in the g-6 representation:
‘ [ A
ihdi1p)gp = | DP9+ V (g = 50) -V (a+ 39)] 10) g0 (A.58)

where: [p),g = (q6]p)

This is the same differential equation as thereby:

1
B(q,0) = — A.59
(@.0)= 7= Il (A.59)

Alternatively it can be written as:
, h _
ihox|p),, = —zgpaq V=V Py (A.60)
where: V¥ =V (q + %"8]3), giving the Wigner functions with:

1
Wi(q,p) = A.61
(¢:p) oo 1) gp (A.61)
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on the usual phase-space.

Thus, simply by choosing an appropriate representation, an integro-differential equa-
tion (Moyal equation in ¢-p) can be changed to a second order partial differential equa-
tion (equation of motion in ¢-0) with the same computational complexity as a
two-dimensional Schrédinger equation.

Altogether there are four representations:

¢p: W(gp)

¢-0:  B(q,p)

A0: AN 0) = [dqB(q,0)e ™M

g Z(\p) = % qu dé B(q, H)ei(pe_AQ)

A(),0) is the ambiguity function in signal processing and Z(\,p) can be called the
double momentum space representation.

The different representations with respective functions are related by Fourier trans-
forms. An overview of the functions and representations is depicted in

This general formalism can be used for classical dynamics (Liouville equation), open
systems (Lindblad form master equation, Fokker-Planck equation) and quantum dynam-
ics in phase-space (Moyal equation).

Numerical solutions can be obtained with a split-operator method. Such a scheme is

derived in
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B. Numerics

B.i. Crank-Nicolson Method

For numerically solving the Schrodinger equation, the Crank-Nicolson?® method was
implemented. It was initially proposed for solving the heat equation, but is now an

established method for the Schrodinger equation as well.
An introduction is found in many textbooks on numerical methods, among them [24].

The overview in [59]| proved useful as well.

Derivation of the Scheme

The Hamiltonianff] for quantum problems is:
1
H(z,t) = faag + V(z,t) (B.1)

giving the Schrédinger equation:

HY =0, ¥ (B.2)
For numerical computations the problem needs to be discretized:
e grid:
xj=gh, 1<j<J
t,=nk, 1<n<N

where j,n € N number the grid and h, k are the step sizes;
e wave functions:

U(x,t) — 7
e central differences instead of differentials:

1 1
RV — ﬁ&@% =52 (i1 + 25 + i)

1 1
at\p N %5(+1)wn — % (wn+1¢n)

e Hamiltonian:

H(z,t) = = =165 + o

#Technically, H, x and p are operators but will not be specially denoted as such for brevity.
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e Schrodinger equation:

) .
SO =y

The Schrodinger equation will be taken at the intermediate time—steplﬂ n + 1/2 by
taking the average of the rhs.:

L) = 5 e ) B3

ik ik
= <1 + Z2n> Pt = <1 - ZQn) Y (B.4)
This is the general ansatz for Crank-Nicolson schemes. The evolution operator is
unitary, making this method numerically stable.
Matrix Algorithm
The next step is to take this ansatz and construct an implementable algorithm from it.
Define: r = 4%2 and w = 2h% and take the potential at n 4+ 1j: v"'/2 = o™ 4
1/2 (Un+1 _ ,Un)
Putting this in or [B:4 results in:
—r (7/)?+1 _ 1/};1)
41
= U 2t = 20 s — e (9 ) (B5)
Reorder terms with respect to time-steps:

—P @ =it w) T =l = gl — (24 i w) OF + (B.6)

This can be written as a matrix equation, where M denotes a matrix and v denotes
a vector:

LRyt = gy, (B.7)
al —1
-1 ay -1 O
where L = ) ) ) , a}”lh =2 —ir+ U;L+1/2 and R = —L"
O -1 ajy_1 -1
-1 aj

By taking v at the intermediate time-step it is used as an approximationfq] both for n
and n+ 1. With this one of the coefficient matrices can be expressed through the other.
This improves the computation speed significantly.

The system @ must be solved for all n > 2, but since R and L are tri-diagonal
matrices this can be done numerically with good efficiency.

PThe time-index for 7 is left out for the moment, but will effectively be taken at an intermediate
time-step n + 1/2, effectively by averaging the potential appropriately.
“This is appropriate as long as k is small or V' varies slowly in time.
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B.ii. Split Operator Method for the Phase-Space Evolution
Scheme

In [Appendix A.iii the general method for solving the Moyal equation efficiently was
derived.

Based on that, the focus here is on a numerical scheme to compute the time evolution
of Wigner functions, which will be referred to as the Phase-Space Evolution scheme.

The equation of motion (see [Equation A.60|) for the Wigner function on the usual

phase-space is:

h
ihOW (q,p) = | =i 0y + V' = V™| W(g,p) (B.8)

where: VE =V (¢ £ 29,).

With a transformation to a different representation the differential operators are re-
placed by variables. In the g-0 representation for the potential term: —id, is transformed
to 6, and in the A-p representation for the kinetic term: —i0, is likewise transformed
to A

These changes in the representation are indicated in by dashed arrows.

The functions are given in their natural representation, with Fourier transforms between

-1
| A<z \

|

|

—1 —1 I
.Fgg}p ]:9<—p ]:9<—p ]:9*”3 l
I

|

|

\ -1 l

\ B f}\(ﬁw |

(2,0) _ L0

Figure B.1.: Schematic overview of the different representations and their relations
through Fourier transforms in the Phase-Space Evolution scheme.
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them.
The unitary time-evolution operator for an increment dt is given by:

> (B.9)

Using the Trotter product formula® this is approximated by:

Vo -V
pr_ VT -V*

Ugt = —idt
dt exp( 7 in W

Uiyt = exp (—zﬁﬁi) exp (—zcilit (V™ - V+)) + O(dt?) (B.10)

This is the split-operator method and results in the first order scheme:
dt dt o, n
W (t+dt) = Fasq €xp —zﬂp/\ Fo—p Fygsn €Xp —ie (V -V ) Fpo W(t)
(B.11)

where: F,_,;, describes a Fourier transform (or its inverse) between a and b, acting on
the terms to the right.

Numerically, these Fourier transforms can be implemented using fast Fourier trans-
forms (FFT). An algorithm is presented in |36].

B.iii. Notes on Implementations

All numerical results were computed with MATLAB, version 9.3.0.713579 (R2017b).

For the Wigner-Ville transformation the command tfrwv from the Time-Frequency
Toolbox®> for MATLAB was used.

Characteristic values and special functions of the Mathieu equation were obtained
from the Mathieu Functions Toolbox v.1.0%".

The Crank-Nicolson method required large domains in ¢ because of undefined — and
thereby reflecting — boundary conditions. This would have been avoided with transpar-
ent boundary conditions. A method is described in Reference [61], but its implementa-
tion was not fully functional in time.
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C.i. Eigenfunctions and -values of the Quantum Pendulum

The eigenfunctions and -values of the quantum pendulum, used in the simulations of

will be derived.
Starting point is the Hamiltonianﬂ of a pendulum H = %pQ — 7y cos(0), leading to the

time-independent Schrodinger equation?® Hep = E:

(—;892 — ~y cos(f) — E) Y(6) =0, (C.1)

where the eigenfunctions 1 are 27-periodic in 6: ¥(0) = (0 + 27).
This can be rewritten as the Mathieu equation=:

d2
32 W) + (a = 2gcos(20)) $(v) = 0, (C.2)

by defining: 8 =2v, g = —v, a = 2F.

The solutions of this differential equation are special functions: the Mathieu functions
of even orderlPt

Mathieu cosine: cegn, (V)
with m = 0,1,2, . .. (C.3)
Mathieu sine: seom (V)

These functions do not a have simple analytic form, but they can be represented via
a Fourier series. They were implemented using |27].

The Mathieu functions are usually defined for positive ¢, so a change of variable to
T — v is needed, resulting in the functions:

2
ceo(v, —q) = ceo(5 — v, q)
ceam (v, —q) = (—=1)"ceam(5 — v, q) (C.4)
seom (v, —q) = (—1)"segn (5 — v, q)

#the general and unshifted variant of [E quatlon H 23

PMore solutions exist, but are disregarded because of the required periodicity.
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- -/2 0 /2 T
angle 0

Figure C.1.: Mathieu functions of even order for n = 2m < 4.

(b) v=6

57\ (N

- 0 T

05 N\

n=0

-0.5¢

-7 0 T - 0 T
angle 0

Figure C.2.: Characteristic values of the Mathieu equation corresponding to energy

eigenvalues of bound states in the quantum pendulum. Values with the
same number n correspond to even/odd pairs of eigenfunctions.
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which are commonly normalized to 7 on the interval (0, 27).
The wave functions to the Schrodinger equation (C.1)), normalized to 1, are then:

0670, —a) = =ceo(%52,9)

(e) _ =™ m—0

P m 0,—q) = ceam(—5 ¢ even
2 ( ) N3 +12 ( 2 ) ( ) (C5)
60, ~q) = O =) (odd)

with m =1,2,3, ...

These are linearly independent and orthogonal.

The Mathieu cosine and sine for orders n = 2m < 4 are shown in The
cosine ceq of lowest order n = 0 corresponds to a delocalized wave function and is there-
fore disregarded for the decay simulations.

The characteristic values a lead to the eigenenergies F,, via:

1

shows characteristic values corresponding to bound states in a quantum
pendulum potential for four different values of . For very large v the eigenvalues
would effectively degenerate since pairs of even and odd values show little difference
in their energies. Also at large v the energies are approximately equidistant, but for
lower values the difference increases with decreasing n. For very low ~ there is only one
possible eigenvalue with n = 0 left, which approaches zero. Thus there is always one
bound state possible with the eigenfunction corresponding to the delocalized ceq.

C.ii. Analytical Expression for the Decay Width

The decay width for a quasi-stationary state is given by[}

T2

N
F:Zexp 2/dr|p(r)| ,

T1

" . (C.7)
N~l= /p(lr) cos? /p(r’) dr’ — Z | dr,
r0 ro

where m = 1, A = 1 has been used.
The rectangular barrier has a (= ER), w, b = a + w, Vj as system parameters. The
momentum is given by:

o)< {12 VAR B e ©

“see [Equation 11.14
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with the barrier B = [a, b].
The integral f:f dr |p(r)| gives the Gamow factor: G = aw

N
=T = 1 exp(—2aw)

normalization constant NN:

T

/ &' p(r) = k(r —a) <= p(r)|,gp = b

a

= N1= dr#cos2 (k(r—a)——)

1
k/ r cos’ r—a)—z>
0

Define:  k(r—a) =5 =kr—ka—75 =kr—9
=6

~—

O\a

= cos? (kr — )
11 2
=N :k/drcos (kr —9)
0

dp

Substitute: r+ p=Fkr — 6 = dr =3¢

¢
\é
—_

(o}
A

aQ

@)

N

e 2
. (p)
r(a)
i[ + sin(p) cos( )}_Z
o P p p s
a 1 : ™ s .
=3 + o (sin(—%) cos(—%) — sin(—4) cos(—d))
1
= % + % (—sin(%) cos(F) + sin(ka + §) cos(ka — F))
a 1 . -
=3 + % (sin(ka) cos(ka + 5))
_a 1 .,
=3 + 57, Sin (ka)
The result is:
N~ = Qlk; (ka — sin®(ka)) (C.9)
-2
L = gp SXP(E200) (C.10)

ka — sin?(ka)’
With k = v2F follows T’ ~ VE.
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C.iii. Quantum Daemon Hamiltonian for the EQPM

The derivation of the quantum engine Hamiltonian that was used for the EQPM starts
with the Hamiltonian in

A~

H Py

1 . At At o ot ikE . At —ikZ
= 537? +Mgz+Q+a+a++Qaa+2<a a_e’” t+a_a,e ,  (C.11)

with the angular momentum operators L written out in terms of a 4 and &l.
Define:

~

J=p+Mgt—ka a_, (C.12)

where [H ,J] = iMg, so that %j =0, and [J, 2] = 1.
Furthermore the annihilation operator

b =a ™ (C.13)
is defined, where [j,IA)J = 0. The number operators are: 7 = &T,CAL = lA)Tj)i =1m_
and the total number operator N = n,+n_=n_+m_Iis conserved.

New angular momentum operators can now be defined with the operators a N and I;_:
g = L(ath +a bt (C.14)
z T 9 \T+7— +7=)7 '
o _ (gt
8, =5 (alb —a '), (C.15)
~ 1/, N
S, = 3 (n+ - m_) , (C.16)

and 5_ =S +iS,.

Altogether the Hamiltonian can be written as

R 1 (. 1 . . 2
H=_— “kN — kS — Mgt
2M<J+2 : g>

1o . a4 1o & 1 (& et
+ Q4 <2N + SZ> + O (21\7 - SZ> + 57 (S_ + S_) . (C.a7)

This is now rearranged to

et (s —a) et (5 - 51) (.15)
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with the additional identities:

AQ=Q, —Q, (C.19)
G = 11 (Mgt _ %AQ J> a(t— 1), (C.20)
4= %7 (C.21)
i = ]\;g (j _ AQf) , (C.22)

H,=QN —dAQ+M22292. (C.23)

The term ﬁo can be eliminated by defining the propagator U = exp(i [dt ﬁo) and
shifting the states |.J, N;ny) to U |J, N;ny) = |ng).

An additional rescaling to dimensionless time 7 = k—]\;t and coupling vy = 7% finally
results in the Hamiltonian

i = % (S a)2 n %% (S_ n S{) : (C.24)

which is now in the form used for the EQPM in

C.iv. Representations in the EQPM

The EQPM is used for Hamiltonians that contain annihilation dj, creation &; or num-

ber operators ﬁj For an arbitrary state [¢) an associated function is defined by

F(f4,6-) |64, 6-), with phase terms ¢, ¢_.

The action of an operator on a state can now be replaced by the action on the
associated function by using differential operators:

P63, — € £(5)
F(8)a} = 0, | £(6))] (C.25)
F(65)7; = € ()

To exemplify this, an arbitrary number state [n) = >~ fj: dge™? £(0) |m) is
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considered. The effect of the number operator 7 = a'a on |n) is as expected:
ata|n) = Z/ A6 ™ f(0) ' a |m) (C.26)
m=0""T
00 4 '
_ / 46 ¢m £(6) v/l m — 1) (C.27)
m=0 4
00 4 ‘
- / a0 6™ £(0) m |m) (C.28)
m=0 4

_ imBe=i0 f(g) J_”r i i /Jﬂr de [8 eime} e £(0) [m)
™ m—o’—m
_ i /+7f 40 ei(mfl)ef(g) m ‘m> (029)
m=0"""T

ey / d0 ¢mPe £(0) |m)

m=0""T

-y / A0 1m0 £(g) |m) (C.30)
m=0""T

= alan) — Y / 4 08, [89 ¢ime f(e)} Im)

m=0"""T

_ Z / 4o 62(m+1)0m e—zﬁf(e) |m>
m=0"""T

= Z/ d6 €™ £(0) m |m) (C.31)
m=0""T

Thus, applying the operators a'a to a state |n) has the same effect as using the repre-

sentations. For a' (C.30 , integration by parts was used. The boundary term vanishes,

+m
since f(0) is assumed to be 2m-periodic, giving: f(6)| =0.

The average and relative phase terms are introduced:

O+ = Q_Sj: (57
¢ = 5(¢+ +¢-), (C.32)
b= 64— oo,
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with their differentials:

Do = 505+ 0y (C.33)

The states can now be given by Bargmann states with the associated functions:

1 [T

=5 [ 000 (C3)
1 [t
[v) = W/ﬂ doy des f(d1, P2) |1, ¢2) (C.35)
|61, ¢2) = > O |1y |m) (C.36)
1,m=0
= f(6+5.6-8) = Nu(9). (C.37)

The general approach is now:
e Multiply with f(¢4,¢_) on left.
e Use the differential representations.

e Follow the calculations through, then reorder so that f(¢,¢_) is on the right
and simplify.

= EQPM representation of the Hamiltonian

Some additional identities will be useful:

. Gp
ey, b) = e 2 f(pr,0-)

_ (mittG -iNG (o) (C.38)
_ e—z‘(N—H)q_S GZF% V()
B3¢~ NHDETFE Y (6) = 5 (Li(N 1)) f(bs6o) (C.39)
Dpe— NHVBFD (5) = =D (34 1 0,) (4, 6-) (C.40)
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This leads to a table of representations for occurring operators and their combinations:

Flor d-) a, — €* f(oy,0-) (C.41

)

f(64r0-) al = 0, [T f(010-)] (C.42)

f(o,0-) ny — i0p, f(P+,0-) (C.43)

F(oy,0-) Y — —id3, f(¢1,0-) (C.44)

Flor.0-) aa. — €70 (5 +1x1id,) (C.45)
f(@y0-) (A —n_)? = =205 f(d4,0-) (C.46)
F(o40) (@ha_+ala,) — (N +2)cos(¢) + 2sin(¢) dy (C.47)

Now these representations for the Hamiltonian’s constituents can be used on the

quantum engine Hamiltonian ([V.19):
R 1 /4 N2 1 R At
=3 (5.-a) + 570 (S_ + S_) . (C.48)
Rewriting this a bit and using the representations leads to:

Wa L oaty_ 0t Lt
50(5_ +50) = Eo(aib_ +b'a,)

% ((N +2)cos(¢) + 2sin(¢)0y)
= ((% + 1) cos(¢) + sin(¢)dy) ,

- — %8; — a0y + o’
From here follows the Exact Quantum Phase Model Hamiltonian of the Quantum
Daemon engine:

A~

Hyopy = — 305 — 100y + a® + 70 (5 + 1) cos(¢) + sin(¢)0,)

= —303 + (qosin() — ia) 9y + ® + 70 ((§ + 1) cos(¢)) (C.49)

C.v. Quantum Canonical Transformation of the
ADR-Hamiltonian

Starting Point here is the general ADR-Hamiltonian:

- 1,

Hypr(d,p) = 5P P+ C@,0p+V(q,0), (C.50)
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where p = —i9, and C,V € R.
For the tilted washboard in the EQPM, the potential function is:

V(G,t)=A\j — 37 (cos(cj) +4A sin(d)) + 3797 (sinz((j) + 4\ sin(cj)) , (C.51)
which can be reduced by leaving out terms that are not relevant for the dynamics:
V(@) = Ad +2 (3A0) cos((j)>2 + Y cos(q). (C.52)
The advection coeflicient function is:
C(G,t) = —2yA(t) cos(q). (C.53)

First, the Hamiltonian function will be rearranged. In classical mechanics, the Hamil-
2 2
tonian H = & + Cp + V can easily be put into the form H = % +V - %2 by

completing the square. In the quantum case the commutator [C(q,t),p] has to be
considered.

(p+C)? =p* +pC + Cp + C* (C.54)
(6, C(§)] =pC — Cp = —i0,C (C.55)
= pC = Cp —iC'’ (C.56)

= (p+C)=p>+2Cp + C* — i’ (C.57)

For this leads to:

1 1
H=2p +Cp+V =3 (5" + 205 +2v) (C.58)
= % (ﬁ2 +20p +C? —iC' —C* +iC' + 2v) (C.59)
1 1 )
= +O+V - 7 - %C’ (C.60)

A new potential can be defined by U =V — CQ‘gicl, resulting in the Hamiltonian:

S 1
H =2+ 0 +U. (C.61)

This suggests a one-variable similarity transformation — or gauge transformation — to
shift the momentum:

q+—>q,p+—>if’:]3+0, (C.62)
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with the generator F = e_f(q’t), leading to:
P=e?" —p _ig,f (C.63)
' . A~ . q . A
Lo = fan =i [ acEn =na.o. (C.64)

The time-dependency of the transformation is taken into account by:
b, — P, =p,+if =p,— 4. (C.65)

This transforms the Schrodinger operator:

. 1. .
%»—)Ji/:Pt—FiPQ—I—U (C.66)
with the transformed potential U:
i 2 PC
oy ¢~
2 2
c? 1
VL s+ O)C (C.67)
z 2
_ 2 2 /
=V-C 20.

o 1 4
R e
A L o 2 Lo
:pt+§ +V - C+§C—|—’7
. Lo
=Dt §P +V —w, (C.68)
where: w = C? + 5"+ = (v)* + 37" + 4,
From this follows the Kamiltonian as:
A 1
K=-(p+OC)P?+V—w. (C.69)

2

Taking a closer look at the transformed potential V = V — w shows an imaginary

part:

~ 1
Im(V) = =7 =T,
m(N) 2 (C.70)
Re(V)=V - (¥ —4=W
= K = %(p +C)? + W +il. (C.71)

' is connected to the commutator of p and C(q,t), which was introduced by rear-
ranging the Hamiltonian.
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