Algebraic Aspects of Controllability
for AR-Systems
J. HOFFMANN!

This paper examines some aspects of controllability for behaviour systems
in AR-representation. The approach is based on the theory of dipolynomial
modules and dipolynomial matrices. Explicit criteria for controllability in
terms of the representing matrices are derived and an effective test algorithm
is given. Furthermore, controllability indices are introduced for AR-systems.
The new theory is compared to existing index concepts in the literature on
linear systems.

1 Introduction

In the recent years J.C. Willems developed in a series of papers a general theory of
dynamical behaviour systems (see e.g. Willems (1986a, 1986b, 1987, 1988, 1991)). In
this framework controllability is defined as an intrinsic system property which does
neither depend on special dynamical properties like linearity, finite dimensionality etc.
nor on the model representation. In particular, the considered models are not necessarily
state-space models. However, in Willems (1991) it is shown that the general concept
coincides with the classical controllability concept if the systems are time-invariant,
linear and finite dimensional state-space systems.

In this paper our starting point are linear time-invariant behaviour systems which in
the case of instantaneously specified behaviour (in continuous time) resp. complete
behaviour (in discrete time) can always be represented as autoregressive (AR)-models.
Controllability of those systems can be characterized by the relative right primeness
(RRP) of the representing polynomial resp. dipolynomial matrices (cf. Willems (1991)).
In the polynomial case explicit equivalent criteria for RRP in terms of the coefficients
of the representing matrices are given in the paper of Emre and Silverman (1977).
In particular, the structure algorithm of Silverman (1969) can be used as an efficient
procedure to test controllability of AR-systems with time domain 7' = Z, R, resp. R.
In this paper we extend these results to dipolynomial AR-representations associated
to the time domain T' = Z and derive explicit controllability test algorithms for AR-
representations.

Furthermore we apply the module theoretic concepts introduced for behaviour systems
in Hoffmann and Prétzel-Wolters (1992) to define a list of algebraic controllability
indices for linear dynamical systems in AR-representation. Our approach is a straight-
forward extension of the characterization of controllability indices as minimal indices of
the F[s]-modules ker(s/ — A, B) in the state-space setting. It covers Fagnani’s general
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geometric concept of controllability indices (cf. Fagnani (1991)) if the system class is
restricted to linear, time-invariant complete behaviour systems with time axis T' = Z.
Section 2 contains some preliminary remarks concerning the ring of dipolynomials,
dipolynomial modules and dipolynomial matrices.

In section 3 we shortly summarize some basic results from the theory of behaviour
systems.

Section 4 deals with the derivation of controllability criteria for behaviour systems in
AR-representation. After a summary of criteria for RRP of polynomial matrices we
derive controllability tests for dipolynomial representations.

Finally, in section 5 controllability indices are defined for linear systems in AR-represen-
tation. A characterization of controllability via the controllability indices and an effec-
tive algorithm for their computation is given. Moreover, in the discrete-time case we
establish a tight connection between degree-preserving isomorphisms of the associated
modules of return to zero of two AR-systems and bicausal isomorphisms of their beha-
viours; in particular, this indicates that our index list is equal to the Fagnani list for

T=7.

2 Preliminaries: Dipolynomials
Let F denote any field, F'[s] the ring of polynomials in the indeterminate s with coeffi-
cients in F', F(s) the field of rational functions with coefficients in F' and

Fls,s7' = {aLsL +.otous', LUeZ (<L o€ Fforke {K,...,L}} (2.1)

the ring of dipolynomials with coefficientsin F'. It is well known that F[s]is an euclidian
ring with respect to the degree function

Fs] — N

apst 4+ . +apst — L (2'2)

deg :

The units in F[s] are the nonzero constants a # 0, a € F'. Modifying (2.2) for F[s, s™!]
in the following way:

Fls, s — N

ddeg : apst + . +apst — L -4

(2.3)
we obtain:

2.1 Lemma:

(F[s,s7'],ddeg) is an euclidean ring. The units in F[s,s™!| are the elements of the
form as?, d € Z,a € F, a # 0. O



Note that deg(s®) = L for L € N, while ddeg(s”) = 0 for L € Z. Let further F9*[s]
resp. F9%9[s, s7!] denote the set of ¢ x ¢ polynomial resp. dipolynomial matrices.
The units in the rings F™*"[s], F™*"[s,s™'] are called unimodular matrices. An easy
calculation shows:

R(s) € F™"[s] unimodular < det(R)=a, a € F,a #0
R(s) € F™*"[s,s7!] unimodular < det(R) = as®, a #0,a € F, d € Z

For dipolynomial matrices the notions of common right divisors, greatest common right
divisors (gerd) and relative right primeness (RRP) are defined analogous to the cor-
responding polynomial notions. Also the proof of the following result is completely
analogous to the polynomial case:

2.2 Proposition:

Two dipolynomial matrices P(s,s™t) € FF™[s s71, Q(s,s7!) € F*™[s,s7 ], k+ £ >
m are RRP if and only if

I, P(s,s71)
Smp = for R :=
0 Q(s,s71)
where Smp denotes the Smith-Form of R over F[s,s™!] (cf. Newman (1972)). ]

To every dipolynomial matrix G(s,s™1) € FF*"[s, s71],

—1 1 1 -
gi(s,s71) a, 8" 4. oy smTY

G(s,s™") = : = : (2.4)

—1 k k -
gr(s,s71) ap S ag ST

there is associated the free F[s, s !]-module of vector dipolynomials Mg spanned by
the rows of G-

Mg = FYFs s7G(s, 57

dimpp, -1y Mg = rankpp, ;-1 G(s,s7") (2.5)

Conversely, there exists for every free F[s, s™!]-module M C F'*"[s, s7!] with
dimpy, 1) M = k a matrix G(s,s™) € F**"[s,s7'] of F[s,s™']-rank k such that

M = Mg.

Matrices G(s, s™*) with F[s, s™!]-linear independent rows are called bases for the module
M. For those basis matrices we have:

Mg, = Mg, <« 3T(s)e Fka[s,s_l] unimodular s.t. G = TGy



The extension of the scalar degree function ddeg to the vector case associates degree-
structures to submodules M C F'*"[s, s71]:

F1xnls, s71] — N

ddeg : aps'+ .. +ast — L—4

For a matrix G(s,s™") as in (2.4) the numbers

v; = ddeg gi(s,s7!), i€k
s

are called the dipolynomial indices and the dipolynomial order of G.

(2.6)

2.3 Definition:

A matrix G(s,s7!) € F**"[s, s7!] is called a dipolynomial minimal basis of a F'[s,s™!]-

module M C F'*"[s,s7] if
(i) G is a basis of M.

(ii) The dipolynomial order of G is minimal among all dipolynomial bases of M. O

Associated with G(s,s™!) as in (2.4) are the highest row coefficient resp. lowest row
coefficient matrix

oqujl ozé
GL=|  |er™s[G:=] : (2.7)
ok ok

Hoffmann and Pratzel-Wolters (1992) contains several equivalent conditions for the
minimality of a dipolynomial basis. We only quote two conditions here which will be
applied in the sequel; it should be mentioned that these conditions are also derived in
Willems (1991) in a matrix theoretical framework.

2.4 Theorem:
Let G(s,57!) of the form (2.4) be a dipolynomial basis of M. Equivalent are:

(i) G is a minimal basis for M.
(ii) rankp[G]; = k and rankp[G]; = k.
(iii) Let f(s,s7) = (f1,.-. ,f(n)), where the f; are the k x k-minors of G, then
k

k
vi= Z v; = ddeg(f) O

Moreover, the dipolynomial indices do not depend - up to ordering - on the specific
minimal basis but only on the module M. Hence one can define the dipolynomial indices
and the dipolynomial order of a k-dimensional submodule M C F'*"[s,s7!] as the
(decreasingly ordered) indices resp. order of any dipolynomial minimal basis of M.
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3 Preliminaries: Behaviour systems

In the recent years J.C. Willems developed in a series of papers a general theory of
dynamical behaviour systems ¥ = (7', W, B) with time axis 7' C R, signal alphabet W
and behaviour B C W7 (see e.g. Willems (1986a, 1986b, 1987, 1988, 1991)).

Y is called time invariant if 7" is an additive subgroup of R and B is invariant with

respect to all ¢-shifts
oW S W w(t) - wt+t), teT

A time invariant system ¥ with time axis 7' = Z or T" = R is called controllable if,
for every w; and wy in B, there exists 0 < ¢ € T" and w € B such that w™ = w] and
(c'w)t = w], where w™ :=w |(—o0,0)nTs W 1= w |[g,00)T-

Y is said to be complete if

{’Ll) € B} = {LU |[t1,t2]€ B |[t1,t2]7 \V/tl,tg € T, —o <t <ty < OO} .

In Willems (1991) it is shown that every linear time-invariant complete system
Y = (Z,R% B) has an autoregressive (AR)-representation:

B = B(P)=kerP(o,07")

P(s,s7Y) = Ppsb+...+ Ps* € RP¥[s,571] (3.1)

The operator

®R? — (R

-1 .
P(o,07"): w(t) — Ppw(t+L)+...4+ Puw(t+1() L€ Z

is called a dipolynomial shift operator. If ¢ > 0 then P(c,07!) is polynomial and
denoted by P(c). ¢ denotes the dimension of the signal alphabet space W = R,
whereas p, the number of equations representing B, is flexible. However, among all
dipolynomial matrices P(s,s™!) satisfying (3.1) there exist those with full row rank.
They are unique up to multiplication from the left by unimodular matrices U(s,s™!).

Willems (1991) calls a full row rank matrix P a minimal lag description, if among all
full row rank AR-representations its total lag, i.e. the sum of the row degrees of P, is
as small as possible.

Moreover, in the case of time axis T'= Z, R, or R we consider analogous polynomial

AR-representations with:

B = ker P(o) resp. B = kerP(%) (3.2)
where P(s) € RP*[s].

In the literature different signal spaces for continuous time systems are discussed (see
e.g. Willems (1991), Blomberg and Ylinen (1983)). If we consider e.g. B C C*(T,R?)
for T'=R,R; = (0,00) it can be shown that the dipolynomial parametrization results
completely carry over to the cases T' = Z,, R, or R; the dipolynomial concepts only
have to be replaced by the corresponding polynomial notions.
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4 Controllability Criteria for Behaviour Systems
in AR-Representation

Whether or not a behaviour system in AR-representation is controllable can be read off
from the behavioural equations:

4.1 Theorem [Willems (1991)]

Let ¥ = (Z,R?% B(P)) a dynamical system in AR-representation with
P(s,s7t) € RP¥[s,s7!] of full row rank. Then the following conditions are equivalent:

(i) ¥ is controllable.
(i) rankcP(A, A7) =pforall0 £ A e C
(iii) SmP(S,s_l) = [Ip Opx(q—p)] U

4.2 Remark:

ForT'=7Z,,R, resp. R Theorem 4.1 remains true if we replace P(s,s™!) by a polynomial
matrix P(s) € R?*9s] and require condition (ii) for all A € C, i.e.

rankcP(A\)=p YAeC

In particular, a necessary condition for controllability of a polynomial AR-representation
is:

rankc P(0) = rankc Py = p (4.1)

O
Conditions (ii) and (iii) in the above Theorem are not very explicit criteria to test con-
trollability. One likes to have an analogous criterion to the state-space rank condition:

rank(B AB ... A”_IB) =n (4.2)

for systems x(t + 1) = Az(t) + Bu(t), z(t) € R™

For polynomial AR-representations (7' = Zy,Ry,R) we suggest explicit criteria for
controllability via the RRP of the representing matrices P(s). In the literature there
can be found several results which generalize the classical Sylvester Resultant matrix
test for coprimeness of two scalar polynomials to the matrix case (see e.g. Kung et
al. (1976), Barnett (1983) and the references therein). We take here an equivalent
characterization of RRP which is available from the paper of Emre and Silverman
(1977).

Combining Theorem 4.1 and Proposition 2.2 we have for

P(s) = ZPij € RP*[s], P, # 0, rankggP(s) =p (4.3)

i=0



the following equivalence:

B(P(s)) controllable < PT(S) RRP (4.4)

4.3 Theorem [Emre and Silverman (1977)]

Let P(s) as in (4.3) with rank Py = p. Then the following conditions are equivalent:

(i) PT(s)is RRP.

(ii) Let
P pPr PT 0 0
MO = 0 M1 = :
: : 0
0 Pt pr pPr
Then
My My 0 ... ... 0
0 My, M :
rank :
: .. . . 0
0 ... ... 0 My M
My 0 ... ... ... 0
M, My M,
0 0o
= rank ) + rank
0 : . . . 0
0 ... ... 0 My M
(the above matrices have p block rows) O

Under the assumption rank Py = p, which is necessary for controllability of polynomial
AR-representations condition (ii) of Theorem 4.3 generalizes the state-space condition
(4.2). Indeed, given the special AR-system ¥4 g = (T,R" x R™, B(P)), where P(s) :=
(sI — A, —B) € R™ 0[] an application of (ii) yields - after some algebra - equation

7



(4.2) as a criterion for the controllability of ¥4 g; for the details of the proof we refer to
Hoffmann and Pratzel-Wolters (1991). Moreover the structure algorithm of Silverman
(1969) gives an effective recursive procedure for the rank test in (ii).

In the following we extend these results to AR-systems with time domain 7' = Z, i.e.
dipolynomial AR-representations. Let:

B = ker P(o,07?)

P(s,s71) € RP*[s,s7Y] (4.5)
rankR[M—q]a[s, s =0p

4.4 Theorem:

Let ]5(3,3_1) as in (4.5). Then there exists T'(s,s™) € RP*?[s, s7!] unimodular such
that

P(s,s7Y) :=T(s,s ) P(s,s7}) (4.6)
is polynomial and
rankg[P(s, s )]o = p (4.7)
Proof:

Let W (s,s™1) := diag(s") € RP*?[s, s~!] such that

QU(s,s71) =W (s, s ™) P(s,57) =Y QVs", po > 1.

k=

o

Assume ¢; := rankQéO) < p (otherwise (4.7) is satisfied). Then there exists
UM € GL,(R) such that

rOQo — ( 0 Q ) (4.8)

(p—g1)xq

with rankRQ = ¢1. Define

where

_ I, 0
V(l)(svs 1) = ( 8 3—1] >
P—g1

is unimodular. Then Q®W(s,s7!) = > 7 Q;Cl)sk is polynomial because of (4.8). If
p1 = 0, we have:

rankR[&S—qQ(l)(s,s_l) = rankRQél) = rankR[M—qP(s, s =p
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If p1 > 0 and rankRQél) = p, then (4.7) is proved.

If p > 0 and rankRQél) < p, then repeat (4.8).

After a finite number d of these steps either rankQéd) = por QW(s,s71) is constant
because in every step the column degree of at least one column of the Q*)-matrices is
reduced by 1. Hence:

rankR[M—J]Q(d)(s, 3_1) = rankRQéd) = I’a,nkR[&s—l]p(S, 5_1) =p

O
In view of equation (4.6) there holds BN(]ND) = B(P). Since controllability is a property

of the behaviour, this implies that B(P) is controllable iff B(P) is controllable. Thus
by (4.7) and Theorem 4.1 (ii) there holds:

Y= (Z,Rq,B(ﬁ)) controllable &  rankcP(A\,A7') =p YaeC (4.9)

Combining (4.9) and Theorem 4.3 we obtain that Silverman’s structure algorithm also
gives a controllability test for dipolynomial AR-representations if we preassume P po-
lynomial and

rank Py = p (4.10)

for ﬁ(s) as defined in (4.5). However, in contrary to the polynomial case condition
(4.10) is not necessary for controllability for 7' = Z. Hence, in order to be able to test
controllability one has to perform the reduction step in Theorem 4.4 in advance.

The proof of this Theorem leads to a construction algorithm for the transformation
matrix 7. However, the calculation of the matrix U(®) is quite involved and the following
algorithm simplifies this step.

4.5 Lemma:

Let U(s,s7') := I+ s7'B € RP*?[s,s7 '], B € RP*?. Then U(s,s™!) is unimodular iff
B is nilpotent.

Proof:
(I + s7'B) unimodular < 0 ¢ (I + A™'B) for all 0 # A € C.
For A # 0:
I+ )\'B singular < )\_1()\] + B) singular

& M+ B singular & —)X€o(B)
Hence U(s,s™!) unimodular iff o(B) = {0}. 0

Let P(s,s7') := Y1_ Pus* € R?*[s, s7'] of full row rank and U(s,s™") as in Lemma
4.5. Then it is easy to prove that U(s,s™')P(s,s™!) is polynomial if and only if BP, = 0.



4.6 Lemma:

Let P(s,s™') as above with rankg Py < p. Let
vPy = 0, 0#v= ( V1 Vg

and

with 0 # (A1, A9y ..., A,) € R¥P. Then B := (AT,

(i) BP, = 0.
(ii) B is nilpotent.

Proof:

(i)

BPOZ

)\1’0?0

)\p’Upo

vp ) e R

(4.11)

o AT T £ 0 and

=0

(ii) Assume g # 0 is an eigenvalue of B and hence of BT. Then there exists z :=

T
T2

Lp

Define n := >, Xiz;. Then:

vin=px;, J=1,...

This implies A\;jv;n = prjz;, 3 =1,...,pand

# 0, such that BTz = uz, i.e. v, Yob o diwg = pajfor 1 <j <p.

» (1.12)

P P
D Nvin =Y phjag = g
7=1 7=1

From (4.11) we conclude pn = 0 and n = 0 because g # 0. From (4.12) it follows:
0=pzj, 1 <j<p, hence: z; =0, 1 <3 < p, contradicting the fact that = is an

eigenvector.

Finally we need:
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4.7 Lemma:

Let A € RP*? p < ¢, rankgA < p and 0 # v € R' such that vA = 0. Let
further (Ay,..., ;) and B as in Lemma 4.6. Finally let C € RP*? v(C # 0. Then
rankg(A + BC) > rankg A. O

Summarizing we obtain the following algorithm:

Given: ]5(5,511) =37 Pk € R[5, 571, p<gq, By #0,

rank Py < p, rankgp, - P(s,s7") =p
Select: 0 # v € R'*? such that vPy=0, A\, ..., A, and B as in Lemma 4.6.
Form: P(s,s™') = (I + s™'B)P(s,s™") and iterate

Then we obtain: P(s,s7') = > 1_ Pis® € RP*Y[s] with rank Py = p

5 Controllability Indices for AR-Systems

In the literature there are several approaches for the investigation of controllability
indices (c.i.) for different representations of linear systems (cf. e.g. Miinzner and
Pratzel-Wolters (1979)). Here we define a list of algebraic controllability indices for
linear dynamical systems in AR-representation. Our approach is a straightforward
extension of the characterization of controllability indices as minimal indices of the
F[s]-modules ker[s] — A, B] in the state-space setting.

Assume that ¥ = (Z,R? B(R)) is a dynamical system in AR-representation:

B =ker R(c,07")

R(s,s') = Rps™ + ...+ Rys" € RP[s,57] (5.1)
rankp ;-1 R(s, sy =p

Here we implicitly assume that p < ¢; otherwise the following construction does not lead
to a reasonable definition of c.i.’s; observe that p = ¢ corresponds to the autonomous
case (compare Willems (1991)).

Interpreting R(s,s™') as the R[s,s™']-linear mapping:

Ris,s™'] — R?[s, s7]
z(s,s7t) — R(s,s')a(s,s7!)

R(s,s7"):

we obtain that M(R) := ker R(s,s™!) is a free R[s, s™!]-submodule of R%[s, s7!], satis-

fying:
M(R) = M(UR) for U(s,s™") € R”"[s,s™'] unimodular
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Following the notation in Miinzner and Prétzel-Wolters (1979) we call My := M(R(s,s™'))
the module of return to zero. The list of dipolynomial indices

v(X) = (n1(X),...,0n(X)), mi=qg—p

of the module My, is called the list of (algebraic) controllability indices.

5.1 Remarks:

(i) Another possible way to introduce c.i.’s is to define the index list as the polynomial
indices of My, N R[s] (cf. Miinzner and Pratzel-Wolters (1979)). However, these

two sets of integers coincide.

(ii) Observe that M(R) = M(FR) for F(s,s™') € RP*?[s,s7!], det F' # 0 holds true.
Expressed in system theoretic terms this means that two different AR-systems
which have identical controllable parts (see Willems (1991)) give rise to the same
module of return to zero. O

The above definition leads to a natural equivalence concept for behaviour systems. We

ind
call two AR-systems 3; and X, index equivalent (¥; ~ ) if there exists a degree-

preserving R[s, s7!]-isomorphism between My, and My, ; observe that this condition is
equivalent to the equality of the associated index lists. In other words:

ind

R, e o(S)) = u(Ds) (5.2)

If ¥ =(T,R%B) is a linear time-invariant system in AR-representation with time axis
T =7Z+,Ryor R, i.e. B =B(R) where R(s) is a polynomial p x ¢g-matrix satisfying
rankggR(s) = p, then the developed algebraic construction carries over completely to
the R[s]-linear mapping:

RYs] —  R?[s]

E(s) - z(s) — R(s)z(s)

and the associated module
M(R) = ker R(s) C RY[s]

(see also Kuijper (1992)). However, we will only elaborate the dipolynomial case in this
paper.

5.2 Remark:

For arbitrary Rosenbrock-type polynomial system matrices (and hence especially for

state-space forms):

R(s) = e RGP (EEm)[4] (5.3)



det T'(s) £ 0, (VT ~'U + W) strict proper rational

as well as for singular state-space systems

Ez = Az + Bu (5.4)

E,A€R™" BeR™" det[sE — A] £ 0

the lists of controllability indices defined in the literature (cf. Miinzner and Pratzel-
Wolters (1979) and Glising-Liieren (1991)) coincide with the list v(X) of

Y = (Z,R%*™ B(T(s),U(s))) with T, U as in (5.3) respectively the list v(X) with
> = (Z,R™™ B(sE — A, B)) and E, A, B from (5.4). O

Let ¥ = (Z,R% B(R)) be again a dynamical system in AR-representation with R satis-
fying (5.1). Let further

f(575_1) = (fl;- . '7f(g)>
be the vector of all p x p-minors f; of R. Willems (1991) defines the Mc Millan degree
of ¥, Mm(¥), as:

Mm(X) = Mm(R) = ddegf(s,s™") (5.5)

Mm(Y) is well defined because Mm(R) = Mm(UR) for any unimodular U. Even
Mm(RQ) = Mm(R) is true for nonsingular constant matrices Q.

5.3 Theorem:

Let ¥ = (Z,R% B(R)) where R satisfies (5.1). Let further v(X) = (v1,...,v,) be the
list of controllability indices of Y. Then:

Y controllable & Mm(X) = Z'vi

Proof:

An easy argument shows that there always exists a permutation matrix ¢) € R?*? such
that for RQ := (Ry, Ry), Ry € RP*P[s, 57|, Ry € RP*(47P)[s, 571] there holds: Ry'R; is
proper rational.

Moreover, let U(s,s™) € RP*?[s, s7!] such that P := URQ € RF*![s] is a dipolynomial
minimal basis for the R[s, s™']-module R'*?[s, s7!] - P satisfying rank Py = p.

Observe that for P = (P, P;) partitioned as above P;'P, = (UR,)"'URy; = R{'R; is
proper rational. Furthermore, the polynomial and dipolynomial row degrees of P coin-
cide; we denote them by (g1, ..., ft,). The transformations U and () leave controllability
invariant, i.e. B(R) controllable iff B(P) controllable; moreover Mm(R) = Mm(P).
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In view of (4.9) controllability of B(P) is equivalent to controllability of P viewed as a
polynomial Rosenbrock-type system matrix. For these matrices we have:

m

P controllable &  deg(det P;) = Z U; (5.6)

where 9;, ¢ = 1,...,m are the polynomial indices of M(P) N R%s|; by Remark 5.1 (i)
we have v; = v;, 2 = 1,...,m. Moreover,

deg(det Py) Z i (5.7)
since by Theorem 2.4 (ii) there holds rank[P]} = p
Finally, an application of Theorem 2.4 (iii) yields Mm(P) = > F_, p;. This together
with (5.6) and (5.7) proves the result. O

For the derivation of an effective algorithm for the calculation of controllability indices
we need the following lemma:

5.4 Lemma:

Let ¥ = (Z,R% B(R)) where R satisfies (5.1). Furthermore, let U € RP*?[s, s™!] uni-

modular and ) € R?*? nonsingular such that

deg deg
P:=URQ = ZPksk =: Z(Pk,fjk)sk
k=0 k=0

with Py # 0, rank Pdeg p and Pdeg = Opx(g—p)-
Then U R(Q) is strict system equivalent to the state space form (s/geg., — As, By) where:

0 0 0 —PFR-Pp,
I, 0 0 : : 2,
ool el : P
Ay = | " | C By=| )
: . . . 0 . o
: . . 0 _?deg g ?_e; Pdeg—l
0 ... ... 0 I, —Piy- Py,

Proof:
We will show that there exist matrices M., My, € Rdegpxdeg ?[s] polynomial unimodular
and K € Rds»x(@=P)[s] such that

Mge [X’ ](deg—1)~p 0
Mle(SIdeg~p — Ag, Bg) = (58)
0 I, 0 P
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Now

8]p 0 0 ]D()Pd_6£17 PO
-1, sI, 0 : : :
0 - .
(S]deg.p — AE, Bg) = .
0 :
. . Slp Pdegﬁ—? . Pd_e; P;deg—Z
0 cee e 0 —Ip SIp + Pdeg—l . PC;; Pdeg—l
Successive multiplication from the left by the unimodular matrices
I, Iy I, sI,
. I,
]p Slp ’ ]p S]]p 7ttty
I, b I I,
yields the matrix
0 0 Xi Y]
—1, :
0
: . : 0 Xdeg—l 1/deg—l
0 “e e e 0 _]p Xdeg i/deg
where
X =50 4 5% T Pagg 1 - Py + ...+ Py - Pyl € RP[s]
and

Y = Sdeg_i}adeg—l + ...+ Pi—l € Rpx(q—p)[s]

fore=1,...,deg.
Multiplying successively from the right by the unimodular matrices

]p ]p X2 1/2
I, X Yaeg |- I,
L, 0 I
]q_p ]q_p




0 0 P
I -1, 0
. 0
and I, one obtains .
Pdeg
I, : Lo 0
o ... ... 0 -1, 0

which gets transformed by elementary row transformations into

I(deg—l)'p 0
0 P

In total all the transformations are of the form (5.8). O

5.5
(1)

Remark:
Let ¥y = (Z,R?%, B(R)), where R satisfies (5.1). Furthermore, let

Yo = (Z,R% B(RT)) where T' € R?*? is nonsingular. Then ¥ £ ¥,, since the
mapping

ME1 - MEQ

z(s) — T lz(s)

is a degree-preserving R[s, s~!]-isomorphism.

Let Zi = (Z,qu,B(RZ’)), RZ = (Ti,UZ’), q; = EZ + m, TZ' S Rgixgi[s], det Ti §é O,
U; € R%*™[s], i = 1,2. Moreover assume that 7;'U; is strictly proper for i = 1,2
and that ¥; and ¥, are strict system equivalent. Then there holds ¥ Z%d Y. For
the proof we refer to Theorem 3.4 in Miinzner and Pratzel-Wolters (1979). O

Based on Lemma 5.4 and Remark 5.5 we obtain an effective algorithm for the determi-
nation of the controllability index list.

Starting with a system ¥ = (Z,R?, B(R)) satisfying (5.1) we first construct a strict sy-
stem equivalent state-space system (Ay, By) € R(des?)x(dee=1)2+a according to Lemma
5.4. For the explicit construction of the transformation matrix Uwe use the reduction
algorithm in section 4; an elementary step is now of the form I 4+ sB, B nilpotent and

B Pye; = 0. Note that (Ayg, By) is not uniquely determined; however, all possible state-
space systems generate the same index list. Having obtained (Ay, By) we determine
v(X) by the Kalman-Rosenbrock deleting procedure.

5.6

Example:

Consider the nonsingular system of difference equations:

wi(t + 2) + 3ws(t + 2) 4 6wa(t + 2) + 3ws(t + 2)+
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+2wi(t+ 1) Fwa(t+ 1) —ws(t 4+ 1) +ws(t+ 1)+
for t € Z with the associated dynamical system ¥ = (Z,R® B(R)), where:
s24+254+1 s+2 3s2—s5 6s2+2 3s2+s+3
R(s,s7") := € R*[s,s71]
252 0 0 1 0

Hence p = 2, ¢ = 5 and deg = 2. Obviously rankg, ,—1R(s,s™") = 2. Furthermore,
simple calculations show that the ged of the 2 X 2-minors of R is a dipolynomial unit,
which yields the controllability of ¥ (cf. Willems (1991)).

Observe that R is polynomial; moreover, R is a (dipolynomial) minimal lag description

with Mm(X) = 4. Define Q € R>*® by

1 00 O 0
001 O 0
O=010 —2 -1
0 0 0 1 0
0 00 O 1
Then
1 3 000 2 -1 1 2 2
P(s) := R(s) QZ(z 00 0 0)52+<0 0 00 0>8+

102 2 3
00010

Now P is in the form as in Lemma 5.4. For the matrices Ay and By, we obtain

000 —3 2 23
000 O 010
Ae=11 R Be=11 199
01 0 0 0 00
Moreover,
223 00 0 0 —% 0 0 0 0
01000 O0OO0O O OO O O
(By,AsBy, A3Be, A3Bs) = [ | ) 0 7 s 1 7 5 1 7 _16 1
3 3 3 9 18 9 27 27 27
0o ooo01 00 0O O 0O 0 O
and the controllability indices of ¥ are v; =2 > vy = v3 = 1.
Finally Z?zl v; =4 =deg-p=Mm(Y). O
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Recently, Fagnani (1991) has introduced a general concept of c.i.’s for linear time-
invariant behaviour systems ¥ = (7, R% B) with time domain 7" = Z exclusively in
terms of the behaviour B, i.e. independent of a certain system representation. We
suggest to call this approach the geometric description of controllability indices. In the
sequel we will elaborate the connections to our algebraic approach.

The geometric index list is determined by the dimensions of quotient spaces of truncated
behaviour spaces of B. Fagnani showed that the c.i.’s are invariants with respect to a
”controllability equivalence relation” on the set of all linear time-invariant behaviour
systems defined as follows:

Two linear time-invariant systems ¥, = (Z,R%, B;), ¢ = 1,2, are said to be controllably

equivalent (X4 ~ ¥,) if there exists a linear bijection v : By — Bj such that:

(i) For all t € Z there holds

Yoo =cl o (5.9)
(ii) Let w € By; then
0 =0 & (B(w) =0
wt=0 & ($u)* =0 10

Observe that controllability is preserved under controllable equivalence. Moreover the
geometric c.i.’s constitute a complete set of invariants under this equivalence relation
if the considered behaviours are complete and controllable.

The geometric and algebraic controllability indices coincide for complete discrete-time
behaviour systems:

5.7 Theorem:

Let ¥ = (Z,R?%, B(R)) where R satisfies (5.1). Denote by ¢(X) the list of geometric
controllability indices of ¥. Then ¢(X) = v(X). O

For the proof of the theorem we need the following lemma:

5.8 Lemma:

(i) Let ¥1 = (Z,R% B(R)) where R satisfies (5.1). Let ¥y = (Z,R? B(RT)) where
T € R?*? is nonsingular. Then ¢(X1) = ¢(X3).

(i) Let ¥; = (Z,R% B(R,)), R = (T;,U;), ¢ = {; +m, T; € R¥*4[s], det T} # 0,
U; € R%*™[s], 4 = 1,2. Furthermore, assume that 7, U, is strictly proper rational
for : = 1,2 and that ¥; and ¥, are strictly system equivalent.

Then ¢(X1) = ¢(X2).
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(iii) If ¥ is in state space form, i.e.
Y = (Z,R"™, B((sl, — A, B))), (A,B)¢eR+m),

then the list ¢(¥) coincides with the list of the ordinary c.i.’s for state space
systems.

Proof:

(i) Define ¢ : B(T) — B(RT), w — T~ 'w. Then 1 is an isomorphism and clearly
satisfies conditions (5.9) and (5.10). Hence ¥4 ~ Y,

11) By the definition of strict system equivalence there exists ¢ > max(#, ;) and
y y q q )
polynomial matrices M;., My, and Y with M., M,. polynomial unimodular such

that
Ly 0 0N (I, 0 0 My, —Y
(e )= (v n ) (5 al) e
Let il _ (Z,Rq—l—m,B(f%i)) where Ez _ ( ]qaﬁi f? 8 ) c ]qu(q-l-m)[s]7

t =1,2. Then ¢(¥;) = C(SZ) for 7 = 1,2. Define:

B(R) — B(Ry)
P ’ Mse(o) =Y(o) \ (5.12)
w — ( 0 I ) w

Then v is an isomorphism (cf. (5.11)) which commutes with the shift o. It
remains to show that (5.10) is satisfied.

Let 7 : (R**™)Z — (R™)Z denote the projection (5) — y and let w € B(fx’l).
Assume w™ = 0. Then by (5.12) 7(¢)(w))” = 7w~ = 0; now

- Oq—@
(L =mlw))” = (T;lUQ(a)ww(w))—)

since T, 'U, is strictly proper rational, and hence (1 — 7)(3(w))” = 0. The
converse implication (¢(w))” =0 = w™ = 0 is proven analogously because ¢~*
is of the form

7t My (o) M'Y(o) \ (5.13)
w —_— < 0 ]m ) w



with M. polynomial.

Assume wt = 0. Since M3, and Y are polynomial we have (¢ (w))t = ¢ (w™),
which gives (¢¥(w))* = 0. Furthermore, the implication (¥ (w))* =0 = w™ =0
is an immediate consequence of the unimodularity of Ms. and (5.13). Summari-
zing, there holds ¥ ~ Y.

(iii) See Fagnani (1991). O

Proof of Theorem 5.7:

Let P := URQ), Ay and By as defined in Lemma 5.4 and let ¥; := (Z,R%, B(P))
and Yy := (Z,REs=1P+ B(sly., ., — As, By)). Since left multiplication of R by a
unimodular matrix U does not change the behaviour we obtain ¢(¥1) = ¢(¥) and
v(¥1) = v(¥) by Lemma 5.8 (i) resp. Remark 5.5 (i). By Lemma 5.4 ¥; and ¥, are
strict system equivalent and satisfy the assumptions of Remark 5.5 (ii) resp. Lemma
5.8 (ii). Finally, by Lemma 5.8 (iii) the list ¢(¥3) coincides with the list of ordinary
c.i.’s for state-space systems, which is identical to v(X3) (cf. Remark 5.2). O

5.9 Corollary:
Let ¥, = (Z,R% B(R;)) where R; satisfies (5.1), 1 =1,2.

Then:
co ind
Zl ~ 22 = Zl [ 22
If ¥; and ¥, are controllable, the converse is also true. O

5.10 Remark:

The converse implication in Corollary 5.9 is in general not true. As mentioned above,
systems with the same controllable part give rise to the same module of return to zero.
Hence in one equivalence class under index equivalence there are as well controllable as
non-controllable systems. However, this is not the case for controllable equivalence. O

In Corollary 5.9 there is established a connection between bicausal isomorphisms of
behaviours and degree-preserving isomorphisms of modules of return to zero. Starting
from a given bicausal isomorphism one can explicitly construct the induced isomorphism
on the level of the modules of return to zero.

For this purpose we identify sequences and doubly infinite Laurent series via the exten-
ded Z-transform

2 (w(k)ez — 3 w(v)s™

V=—00

where (w(k))rez € (R?)Z.
Now let ¥;, ¢ = 1,2 as in Corollary 5.9 be controllable equivalent and let
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Y : B(Ry) — B(R3) the associated isomorphism satisfying (5.9) and (5.10). Define

CRu[s, s — R%[s, s7']
Pu z(s,s7Y) — ZYZla(s,s7h)

?

Then @y, is a degree-preserving R[s, s !]-isomorphism from My, onto Ms,:

1
An easy calculation shows that x(s,s™') € My, implies Ry(s,s ')pyz = 0. Using
property (5.10) one can show that ¢, is degree-preserving. That ¢y, is an isomorphism
follows from the fact that s‘Z = Zo*, ¢ € Z. a

6 Conclusions

The purpose of this paper was the development of explicit controllability tests for linear
time-invariant behaviour systems (cf. Willems (1991)) in AR-representation and the
definition of controllability indices for these systems in an algebraic framework.

Our starting point was the characterization of controllability via the relative right pri-
meness of the representing matrices. In the polynomial case, this can be achieved by
applying a result of Emre and Silverman (1977) which provides a test for RRP in terms
of the coefficients of the representing matrices. As has been shown in Hoffmann and
Pratzel-Wolters (1991) this test leads to the classical rank test for controllability if
state-space models are considered.

Furthermore it is proven that the result of Emre and Silverman remains valid in the
dipolynomial case. However, to obtain a characterization of controllability in this case,
the constant coefficient of the representing matrix has to have full row rank. A reduction
algorithm which always achieves this by unimodular left multiplication is given.

It should be mentioned that the obtained results can directly be applied to test control-
lability of ARMA-systems. Furthermore, observability (as defined by Willems (1991))
for MA- and ARMA-systems can be included. The corresponding results as well as a
detailed description of the different test algorithms can be found in Hoffmann (1991),
which also contains the realization of Silverman’s structure algorithm (cf. Silverman
(1969)) and the reduction algorithm as Matlab programs.

The investigation of the index structure of the module of return to zero associated to
a complete behaviour system leads to the definition of a set of algebraic controllability
indices; this new concept incorporates several existing concepts of controllability indices
for different representations of linear systems as special cases. The tight connection of
our approach to the recently developed theory in Fagnani (1991) is worked out. Because
of this connections, the effective algorithm for the calculation of the algebraic index list
given in this paper is also useful in the geometric framework.
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