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1. INTRODUCTION

The equations governing the motion of a smooth inviscid

compressible flow are:

(1.1) se z 8—(pu) =0
8t ax i .
i 1
du au
(1.2) ——L oy z: u —-f 418 _
at - I ax ax
(1.3) 28 Z u 8. _ ¢
at toax
i i
(1.4) P = F(p,S)

The scalar p(x,t) denotes the density; the vector u(x,t)
denotes the velocity; p(x,t) is the pressure; S(x,t) is the
entropy and F is a general equation of state. The equations
are formulated for points (x,t) where x is an n-dimensional

vector (in our case n=2).

Equations (1.1) and (1.2) can be written as

(1.5) %e Z Q__(m) =0
at ox !
i i
am m m
(1.6) -1y E: é__[ ,3_;] s 2
at ax P ax

3 i
where m(x,t) is the momentum vector with m(x,t)=pu(x,t).
Equation (1.3) is usually replaced by the equation of
conservation of energy, but the equation of state (1.4) is

general.



This paper deals with isentropic flow, i.e. entropy is
taken to be constant. It is an important special case as
there are variety of problems where the assumption of constant
entropy causes a negligible error. So, we are mainly

considering the equations (1.5) and (1.6)‘with p=F(p).

In recent years there exists a variety of kinetical and
Boltzmann schemes dealing with the numerical solution of Euler
equations, especially, the flux vector splitting method of
Deshpande[1] and the Boltzmann scheme of Perthame[2] are to be
noted here. The method dealt here was constructed by
Kaniel[3-5] and is based on a kinetic model built for the
fluid motion, which was originated by Maxwell[6]. In this
model a distribution function f(x,£,t) is considered as such
that it is the distribution of molecules located at x and
having velocity £. The density p(x,t) and the momentum m(x,t)

are then exhibited as moments of the distribution function

f(x,g,t).
(1.7) p(x,t) = I f(x,€,t) dg (zeroth moment)
(1.8) mn(x,t) = I £ £(x,€,t) d (first moment)

Definition: A weak solution of equations (1.5)-(1.6) is a
scalar function p(x,t) and a vector function m(x,t) such that
for all scalar function ¥(x,t) and vector function ¢(x,t)

smooth with compact support in R°x[0,T] such that



(1.9) ITJ {p oy + m Vw} dx dt = -J p(x,0) Y(x,0) dx
at '

T 2 a¢
(1.10) I j {m 8¢ | % E: { -t mm ] + p v¢} dx dt
at ox

1i,3=1 3

= -[ m(x,0) #(x,0) ax
Equations (1.9) and (1.10) are solved, approximately, by the

kinetic model.

The idea of introducing the phase space (x,£) and the
distribution function f(x,£,t) for the solution of the system
(1.5)-(1.6) with p=F(p) is such that a simple evolution in
time of f(x,£,t) will result in approximation to the system to

be computed.

The evolution of f(x,€,t) is determined by time-cycles of
length At (not necessarily be constant). At the beginning of
the cycle f(x,€£,jAt) takes a normal form which is specified
later. The normal form depends on p(x,jAt) and m(x,jAt). For
jAtst=(j+1)At, f(x,£,t) evolves by free streaming, i.e.

(1.11) f(x,£,t) = £(x-€t,£,jAt)

where t=t-jAt. Then equations (1.7) and (1.8) are used to
define p(x,t) and m(x,t). When t approaches (j+1)At from
below, an intermidiate f is determined by

(1.12) £(x,€, (§+1)At) = £(x-EAt,€,jAt)

Then p(x,(j+1)At) and m(x,(j+1)At) are again defined by (1.7)
and (1.8) with change of f to £. Then a new cycle begins,

i.e. f(x,€,(j+1)At) takes again the normal form dependent on



Y

p(x,(3+1)At) and m(x,(j+1)At).

The differential equation that f satisfies is
(1.13) af 4 Z g 25 -0
at ox
i i
which is the Boltzmann equation without the collision term.

Now, let us state the following theorem. The proof is given

in [3].

Theorem 1.1: Let f(x,£,t) be integrable with compact support
in £; x € R’. Let us assume, at discrete times jAt, that
f(x,£,t) 1is changed, so that the total mass and momentum
(equations (1.7) and (1.8)) are conserved. Then assuming
(1.11), there exists a sub domain Q(At):

Q(At) = {xlx—gﬂt € NV £ in support of f}

where the equations

(1.14) Q—Jf(x,s.t) dg + Z 9--[51 £(x,€,t) A€ = 0
8t " 8x1

(1.15) 2. £ f(x,g,t) d€ + 2: é“JE £ f(x,€,t) d€ =0
at)] ? . ax | *?
1 i
are fulfilled in a weak sense. n
By equations (1.7) and (1.8), equation (1.14) is

equivalent to the continuity equation (1.5). Equation (1.15)

is not, in general, equivalent to the momentum equation (1.6).



It is shown in [4]) that it is possible to choose
f(x,s,jAt)-so that the momentum equation will be satisfied for
t=jAt, provided that m and fsisjfdg are differentiable.
Such f is said to be in the normal form. The normal form of
f(x,€,t) is constructed by a generating function g(|£|) which
is in general a thermodynamic function. As such it has to be
dependent on other thermodynamic variables, 1like P,pP,S etc.
The normal form of f(x,£,jAt) is given by
g(l€-u(x,jAt)|) I€-u(x,jAt)|=v2c(x,jAt)

(1.16) f£f(x,£,jAt) =
| 0 I€-u(x, jAt) I>V2c(x, jAt)

where ¢ is the local speed of sound.

In R®, for the equation of state
(1.17) p=2ap’
where A is in general a function of entropy, in our case it is
a constant, and the generating function g is
(1.18)  g(w) = (1/2m) (A.20) D) (3/(3-1)) o(4-20)/(2-1)
where w, being multiple of speed of sound, is also a
thermodynamic variable given by

2 2

- = - 9p
(1.19) W' = 20" = 2 28

For the detailed derivation of g refer [5].

In this paper we have considered an ideal gas with ¥=7/5
(Air) in equation (1.17). In the rest, we have carried out

the two-dimensional computation.



2. ANALYTICAL CoMPUTATION OF Basic FLux FUNCTIONS

The domain is divided into rectangular cells. Let the

cell (i,j) be bounded by x1=xi", x -x*"*"  and x=xi”,

1 3 2

x =x
2

. Denote this by cu. Let plj and mtj denote the
total mass and momentum respectively in cij. The algorithm
consists of the updating of the total mass and total momentum

in the respective cells.

In this case, we have to consider as the donor view point
by which the total mass and momentum that for t=0 in clj
determines the same in Ckl at t=At. This is nothing but the
transport of mass and momentum from cij to Cu. The algorithm
is exhibited by showing how to compute pu{At) and mij(At)
provided plj(O) and mu(OJ are known. The density p is assumed
to be constant in each cell, also the velocity u=m/p is
assumed to be constant in each cell. Discontinuities are
admissible at the cell’s boundaries. This way c¢(x,0) and
u(x,0) are known. These determine f(x,£,0) which determines,

by kinetic model f(x,£,At).

The velocity £ of a molecule 1located at x can be
decomposed into £=u(x,0)+(&-u(x,0)). We are considering here
the first movement of c” by At-u(x,0). Since u(x,0) is

assumed to be constant in each cell, a rectangle cell cu will



move to another rectangle U”. And then the molecule will be

dispersed by At-(£-u(x,0)) where |£-u(x,0)|sv2c(x,0).

The purpose here is to determine the total mass and
total momentum in each cell. In order to do so, it is enough
to compute these in half space (say':&zx?’)(called side flux)

and the quarter space (say x z2x‘'’, x =2x‘?’)
O T 2 a2

(called corner
flux) which in turn serves as basic flux functions. We shall
see in the next section how the flux terms are computed using

these functions.
cell Cij

E . Quarter Space

e

Displaced Cell Uea‘

Half Srmr.e

Fig.2.1 Half Space and Quarter Space

Let us denote these functions by SF_n and CF_

N

respectively, where



m,n
0,0 ——/ mass
1,0 == xl-momentum

0,1 — xz-momentum.

In clear terms, the basic side flux function SF_n(a)
is defined as the total flux that emanates from the region
xi”=b-.=xlsa (az0) crossing the 1line x=0 as shown in

figure 2.2.

C.. ¢ R=VZcat
Y

Fig.2.2 1Integration Domain for the Side Flux

Also notice that for a two dimensional problem, the

integrals involved are four dimensional.



tion:
s side flux computa

s

(a) Ma

= d
(a) f(x,€,At) A€ dx
SF

(2.1) oo ’=| :“

x:Eﬂt € cij

.11))

£,0) d€ dx (by egn.(1

.= f(x-€At,E,

J’J‘ (1)
X z X

x-€At € C

ey J I f(y,£,0) d€ dy
— Y +§lﬁtz 0]

y € C;g

.16))
d€ dy (by egn. (1
= J J g(l&-u _|)
o
y +€ Atz
|§-uu|s \/ic”

Yy € CU

E-Eij=n J J g(|m|) dn ady

CYYyAtz 0
Y1+(n1+ulj )

Yy € c;;

|nl= v2 c |



We have performed firstly the n-integration and then
the y-integration. In our case, it is clearly seen that the

thermodynamic function

(2.2) g(|n|) = 5/2n (Ax2.8)"5/2 Inl3
by taking ¥=1.4 in eqgn.(1.18)
So,

(2.3) SFoo(a) = J (velocity integration (VIQ“u)) dy

where

(2.4) VIS = [ g(|n|) dn

= K j [ |n|3 dn_dmn,

=5/2

where K=5/2m (Ax2.8) and 7° = n’;+ n:-

We have carried out the integration (2.4) by polar

coordinates (see fig.2.3).

£l

Fig.2.3 Velocity Integration for the Side Flux

10



which gives

vV2c
(2.5) VIS =K I (2¢) r’ r dr
y, /At
where ¢-integration is just 2¢ and ¢ = arccos(yx/At)

Remember that C is c(x,0), the local speed of sound.

v2c
(2.6) VIS = 2K J r' ¢ dr

y /At

which leads to

(2.7) VIS = 2K __ { R® arccos(yl/R)—-(yl/o:) R’J R’—y:

e BAt®
- any} ] R-y. - (3/8) ¥, log| e R™-y, ] }
8 Y,
where R=vV2cAt.
Therefore
(2.8) SFO’O = ‘l' [ VIS.... dy1 dy2

where the limits are: 0 = y =aand 0 = y, s Ay(=bx2), but we

have taken Ay=1. After a lengthy calculation we have

11



(2.9) SFoﬂja) = (pR/n){a arccoso - (0°/16) 1og[

where o

40

24

x[ 0'/8 + 0°/6 - 2g/3 ] + 5/6 }

= a/R. When o >1, SF (o) = SF (1).
0,0 0,0

(b) Momentum side flux computation:

(2.10)

SF

a,

n

(a)

E_

e

. Y € C1

13

[ J £ £(y,£,0) d€ dy
yl+51htz 0

3

J [ g, 9(]€ - u | a€ ay

yl+glatz 0
|€-u | veec, |

Y € C1

=1

3

[ J (n + a7’ )g(|n]) dn ay

(1)
y1+(nl+ u1j JAt=z0
Inls vze

13

Y € cij

12



= JJ n_ q(lnl)dndy+u;:’JI9(|'nl)dndy_

(1) (1)
y +(m + u )At=0 y, +(n + u )At=0
|n|= V’:‘Zc” [n|= y/"zcu
y € C” y € Cij

The second term in above is nothing but the mass side flux

function times the flow velocity. Proceeding as in the above

way (i.e. case (a)) we will end up with the velocity

integration of first term of (2.10), reading as

= 2K__[ R (pa_2)™® | R 2 (ge_y2]™”
(2.11a) VIle-mom = { [R yl] + Y, [R y1]

and

(2.11b) VIsz—mom =0

Further computation finally 1leads to SF1 o(a) and
SFO 1(a) given by

7 2
(2.12a) SF (a) = égﬁglj_ {g arcsinoc - g- log[ li—-l:g--—-—]

o 2,8/2 g 2,3/2 75 o’
—3(1-0')’+7(1-0')’[ ---]

13



4 2 .
+ aJ 1- o* [Q- - 22 4 19]} + u“*sFoota)

7 T 112 7 16
and
(2.12b) SF (a) = u"’SFo'o(a)
where ¢ = a/R. When o>R SF'm(a) = SF_m(l).
(c) Mass corner flux computation:
The starting part is same as we have done in the side

flux computation. The integration domain for the corner flux

is given in fig.2.4.

velocit
i&thm _
direction 03 domain i
the Comer Hux / '
{ntegration ‘g
domain
+— UAJ

F1g.2.4 1Integration Domain for the Corner Flux

14



Here also we are doing the velocity integration first and
then follows the space integration. By polar coordinates for

the velocity integration (see fig.2.5).

iﬂ.)ji-.'l

o

— U.i.j

Fig.2.5 Velocity Integration for the Corner Flux

We have

v2e ¢
(2.13) VvIc_ =K [ I r’ r d¢ dr
L ¢

| ' (y_ /At)
where L = [ y: + y2 ]/At, ¢1 = arcsin-if——

¢, = arccos---%-———. After integration

15



5 y':I. Yz
(2.14) VIC = ———— {R [arccos—— + arccos--]
et 5At® R R

- (R’/4)[yl'I_R;"—Y: + YJTj ]
- (3R/8)[Y:JR’_—Y: + Y:J?'Ti )
- 0370 [raos(rel-y) + vioo[eliy; ))

+y. log[yjjy‘ﬁy: ]] - (n/2)R’}

For the space integration, we have the following figure:

R

'(-r” AV F

_,}\‘

— Uj.j

Fig.2.6 space Integration for the Cornmer Flux



where a = uAt and 8 = u®at.

So it is clear that the range for y, is « to JR’-—B’ and
that for Yy, is B to R’-y: . After a very lengthy calculation,

the mass corner flux is given by

(2.15) CFO,O(“'B) = (pR’/Zn){a'e(arccoscr - arcsing)

2 2 2 2
+ (80°/16)10g [91‘“-‘1-19-- + (06°/16)10g [‘1—' -J ‘-’—1'9--]
1+V1-¢" 1+v1-67
4 2 4 2
_J_zg_ a_ .5._-.l_= e_.,8e_,5

I
3

o
)
3

where ¢ = a/R and @ = B/R, and when J o’+6° >1 CF_ (a,B)=0C,
which can be realized easily, i.e. no corner flux
contribution.

(d) Momentum corner flux computation:

A similar computation as in the mass corner flux and as

in the momentum side flux leads to the following:

17



(2.16a)

(2.16b)

and

(2.17a)

VIC, om(¥,¥,) = (K/8){(R'/6) (R*-y?)’

2 &

+ Zl_ R (R-y*)** +
8 Y:I.

1
-

16

Y tog[relr- 2 )

]
[
]
|
1%
In w
1
e
N
+
)
NN
I
e
Mr »

y? | ' y
+ == -log[y2+ yi+y’ ] - -
2 2 /2
[Y1+Y2] }

Vchz—mom(Yx'ya) = Vchl—mom(yz'Yx)

1=
i

/2

R-I R’—y:

st 2 3/2
- g (YY)

Yz'] Y. +Y,

2 o5
5 R

2
CFlo(a,B) = 55?3- {?Z(arcsino - arccose)
‘ 2n
7 2 2 ] 2 2
g 8 6+i0"+6 e ag+ido”+6
+ === log[ --------- sas log[ ————————— ]
112 1+/1-0" 896 1+/1-8°
| 2,2 (706° 30’6 . o®0* ¢’
* A0 71536 * Tias- * T105 556]
L] 4 2
| a e 116 1
*A1-6 [ 856 ~ 1344 * 336 T 24]
l 2 (208 o360 c°e e’ .1
+Al-e ['21 168 'iiz] "[io + Z]



+
wIg
O] w

} + u¥CF_ (a,B)
(2.17b) CF“(a,B) = CFllo(B.a) + u"’cro o(a,B)

where CFIIO is the first term of CF_ (a,8) and when «Io-’+e’>1,
CF (a,B) = CF (a,B) = 0.
1,0 0,1

19



3. THE OrRGANIZATION OF FLux COMPUTATION

The basic assumptions that we made here are:
(1) The fluid is an ideal gas having 7 = 1.4
(2) The time step is limited by
(1u”’| + v2e)At < Ax
(1Ia®| + v2e)at < Ax_
(3) The flow field p,u,c is considered to be piecewise
constant in each cell.

(4) The cells are rectangular.

The assumption (2) is nothing but the CFL condition which
keeps the consideration of the nearest neighbours for the mass
and momentum exchange. Figure 3.1 shows the consideration of

the cell cij and its eight neighbours.

5 4 4 3
i
‘6_,:‘1_'2
+
7 8 9

Fig.3.1 Cell Clj with Outgoing Flux

Let fu(k,l) be the flux from cu to its neighbours such

that

20



f”(k,l) - mass flux
f”(k,Z) - x‘—momentum flux

fu(k,B) = X -momentum flux

where ¢ = 1,2,3, k takes the values 1,2,..,9 and fu(l,l) is

the mass/momentum flux remaining in the cell cu.

The evaluation of f”(k,t) from the basic flux functions
SFm(a) and CF_m(a,B) is given as follows: Let us consider a
general case (fig.3.2) where the displaced cell U13 has moved
through time step At so that the point (xl,xz) = (0,0) is at
(¢ = u’At,8 = u®At).

B | P
« [P| P
B

Fig.3.2 Sub-domains of the Displaced Cell

Here P;’Pg’Ps'P. are the subdomains of the displaced
cell. For example, the flux contribution to the part P3 is the
sum of the four contributions each corresponding to one of the
four parts of Uu’ which involves the computation of SF_' (a)

and CF («,B) in the appropriate combinations.

21



Now, let us look into the computation of fu( 2,1), i.e.
the mass flux from cell 1 to cell 2 (fig.3.3), using the basic

flux functions with the above set up.

5 ool3
[ '
| '

6 | 11

7 g 9

Fig.3.3 computation of Flux Terms when u‘* and u® > 0

By refering fig.3.3., we have

f”(2,1) = fu(l,l)a(i\xz—s) + SF”(Axl—a)(sz-B)
- cf(1+3) - cf(1+9) + cf(422) + sf(3+2)

- SFO'O(a)(bxz-B) - sf(2+3) - sf(2-9)

where cf (83!2) is the corner flux from cell !.1 to cell !2 and

sf(tl-n!z) is for the side flux, such that

cf(1-+3) = CFD 0(0,0) - (:l“0 t,((J,Mta-ﬂ) - CFO o(iﬂmtl-c:z..ﬂ)
+ CF“(Axl-a,sz-B)

cf(1+9) = CF“(O,B) - CF'0 o(:&xl-o:,B)

cf(4-2) = CF“(0,0) - CF“(O,B) - CFO.O(ﬂxl-a,O)

22



+ CFmO(Axl-a,B)

sf(3-2) SF;N(B) a - cf(3-1)

sf(2-3) = SF (Ax -B) a = cf(2+4)
sf(2-9) = {SFoo(l) a - SF_ (B) a} - cf(2-8)

cf(3-1) = CF_ (0,0) - CF_ («,0) = CF_(0,B)

+ CFoo(a,B)

cf(2-4) = CFO 0(0,0) - CFDo(a,O) - CFOO(O,ﬂxz-B)
+ CFoo(a,sz-B)

cf(278) = CF_ (0,8) - CF_ («,B)

and fu(l,l) is the density at every point of the cell Cu at
t=0. A similar approach can be carried for other flux
neighbours. But when we are dealing with momentum fluxes one
has to make attention in the direction of flux and the

corresponding components.

1) (2) (1)

For the other «cases, i.e., u'“’<0, u®>0; u and

u®<0; u”>0 ,u‘”<0; it is just the rotation of the moved
domain Iﬁj by m/2 in the anti-clockwise direction. At every
time step of computation, we have to update the total
mass/momentum in each cell, called flux balance, which is

given by
(3.1) fu(l,z) AL = (1/AREA}{f“(Remaininq) + Z(flux in)}

23



where AREA = area of the cell cij = Axlﬂxz,

fu(Remaining) = AREA x fu(l,Z) . 2 fu(k,z)
k=2

and Z{flux in) can be realized from the following diagram.

Fig.3.4 Flux In

The above fact in the flux balance is true for the
interior flow. But for the boundaries we have considered the
specular reflection from the wall, explained in the next

section.

24



4. PRACTICAL CONSIDERATIONS

We have tested here the 1D shock and 2D shock-obstacle

interaction problems by numerical computation.

(a) 1D shock (taking u‘®=0)

Here we have taken the interior flow.

(i) Riemann Problem: Consider the following figure:

membrane

f],) Pﬂ. fo,Po

Fig.4.1 Riemann Problem (1D)

The computation is carried out for 350 steps. Figures

4.2-4.6 exhibit the pressure shock, density shock and mach

field for different time steps by taking the grid as 360x1.

Univ.-Bibl, ¥
Kalserslauterg

25



Fig.4.2 1D shock-Riemann Problenm

26

DENSITY SHOCK PRESSURE SHOCK
4 4
n | | L ] . ] " L | | L |
T _ ¢F _ T ‘ T |._ T — Li _ T w
MACH FIELD
1-00 SHOCK Time= .@BB465 msec —_
imitral conditrans : T
Fressure : 150000 . 6008 14358.7285 Pa ] \J
i
Density | . 8900 2500  Kgrm¥*3 T W
Velacit, . @Bee . 0peg mssec } I*_ ; ! “ Fr - ﬁ__,
e — ——— i




Fig.4.3 1D Shock-Riemann Problem

DENSITY SHOCK PRESSURE SHOCK

27

i H 4 | N | f | . ] M | ! | L ]
T — T _ T _| T _ T __ T _ T q T —
MACH FIELD
1-D SHOCK Time= .800371 msec I
4
Initral conditions :
+
Pressure : 1 08000 . 3000 14358. 7285 Pa 1
Density 1.6000 2500 Kg/mw»3 T
Velocity : . aaee .0808 m-sec F “ K Hﬁ I\ | —




Fig.4.4 1D Shock-Riemann Problem
DENSITY SHOCK PRESSURE SHOCK
4 4 \
ir._..l ——
| L | L | ! | | 4 l I | |
T T _  J — T — T T u T ﬁ T
MACH FIELD
1-D SHOCK Time= .0B01477 msec —
Initral conditions ¢ T
Pressure : 190608 . 6a0e 14358. 7285 Pa 1
Dons 1ty 1. 0000 2508  Kg/mwx3 T ”
/
Velocity : . 608 .0808 m-sec : -y + P 4 +
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Fig.4.5 1D Shock-Riemann Problem

DENSITY SHOCK

—_—

PRESSURE SHOCK

4
-

-+

1-D SHOCK

Initral conditions

Pressure :

Density

Velocity 3

Time= .

PB1980 msec

| 22aea . Yova 14358, 7285 Pa
(% %5 %) ,2588  Kg-/m»#]
. 2800 088 m-sec

MACH FIELD
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Fig.4.6 1D Shock-Riemann Problem

DENSITY SHOCK

]
|

PRESSURE SHOCK

-+

4 'S

T — T — L _ T
1-D SHOCK Time= .@B2486 msec
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(ii) Moving Shock Problem: Consider the following moving

shock problem:

f:l. ) Pﬂ- ﬂ, ’ Po

Fig.4.7 Moving Shock Problem (1D)

where v is the velocity of the shock, M is the shock mach
number and the shock starts after 150 cells in our
computation. Figures 4.8-4.12 show the development of moving
shock for different time levels. The step-like part in these
figures are the theoretical shocks. Here, the grid is taken as

360x1 and the shock mach number, H‘ is 1.5.
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Fig.4.8 1D shock-Moving

Shock Problem
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Fig.4.9 1D Shock-Moving Shock Problem

DENSITY SHOCK

-
—_
—t

PRESSURE SHOCK

.

1-D SHOCK Time= .@0B759 msec

Initial conditions :

Pressure : 252411.5625 (00008.0008 Pa

Density : 1.9374 1.8008  Kg mwx3

Velocity : 271.5588 0908 mssec

MACH FIELD

+

—_——

-+

33



Fig.4.10 1D Shock-Moving Shock Problem
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Fig.4.11 1D Shock-Moving Shock Problem
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Fig.4.12 1D Shock-Moving Shock Problenm
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_lr. Ls 5 e

Fig.4.13 2p Flow Past an Obstacle

where ef-east flow; wf-west flow; nb-north boundary; sb-south
boundary; eb-east boundary; wb-west boundary; 1r-lower
right; 1ll-lower left; l1lc-left corner; rc-right corner:;

ls-left south:; rs-right south; lw-left west; re-right

east.

The cells are taken in such a way that the cells
boundaries coincide with the boundary of the channel (Refer
fig.4.13). oOn the boundary, we have taken Specular reflection
which causes the change in the flux balance term (egn.(3.1)),

mainly for the boundary cells. Figure 4.14 shows how we are
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approximating the corner flux on the boundary cells.
mb

LT ]

g

[ 13

\ /
.

Fig.4.14 Flux Consideration along Boundary

In the above figure, for the cells ‘rc’ and ‘lc’, on the
corner edge of the boundary, we have taken 50% contribution to
each of the other sides. But further investigation is required
to check properly how far our criteria on the boundary cells

is TRUE. It is still a Question Mark.

The simulation program is written in FORTRAN 77,
implemented and tested on HP work station at the University of

Kaiserslautern, Germany. The graphical simulations are carried

through "STARBASE".

The initial conditions are that of the shock on the left

of the obstacle and is given as follows:
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p;=l; P =1.205; mach=1.12; grid=140x70 {((70-99)x(1-30)
for the obstacle}.

The results are exhibited in figures (4.15)-(4.23) for

different time levels.
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Fig.4.15 Flow Past an Obstacle (2D) (Left of the Obstacle)
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DENSITY FIELD

Count: 1

Time= 120

8 microsec

Fig.4.16 Flow Past
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an Obstacle (2D)

41



MACH FIELD

Count: 11 Time= 120

microsec

rAN

11
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Fig.4.17 Flow Past an Obstacle (2D)
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DENSITY FIELD

Count: 33

Time=

541.2 microsec

Fig.4.19

Flow Past an Obstacle

(2D)
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MACH FIELD

Time= 5412 microsec

13

A2

.18

.17

.23

Fig.4.20 Flow Past an Obstacle (2D)
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Fig.4.21 Flow Past an Obstacle (2D) (Along the Obstacle)
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DENSITY FIELD Count: 51 Time= 877.4 microsec

1.47

ot

49
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Fig.4.22 Flow Past an Obstacle (2D)
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MACH FIELD

Count: 51 Time= 877.4 microsec

Fig.4.23 Flow Past an Obstacle (2D)
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5. CONCLUSIONS

With the presentation of the one-step Kaniel kinetical
scheme for an isentropic compressible ideal gas (Air), we are

making the following final remarks.

The analytic calculations which we have carried out in
section 2 is very lengthy. Also the organization of the flux
terms is not so easy to handle and one can attempt to make
errors in these two steps, w_hich needs careful attention.
Though the approach reveals the practical consideration and
also it is novel, by experience of dealing the 2D case, we can
certainly pin point that the generalization to higher

dimensions will be a complicated one.

On the other hand, in the two-step method of Younis[7],
one can deal with simple and straight forward logic which
makes the algorithm handy. But still further research is
required in order to investigate different aspects of the

two-step approach mathematically.

The following problems are left under consideration and

will be presented in due course:

(1) Our one-step method for the complicated configuration
of the flow, i.e. by taking irregular cells, and

allowing p,u,c to be linear in each cell.
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(2) Extensive comparison between one-step and two-step

methods and with experimental results.
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