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Featured Application: The presented image-based telecentric probe is unique in its functionality
and can be applied to determine particulate properties of various multiphase flows.

Abstract: In this work, steady-state droplet size distributions in a DN300 stirred batch vessel with a
Rushton turbine impeller are investigated using an insertion probe based on the telecentric transmit-
ted light principle. High-resolution droplet size distributions are extracted from the images using
a convolutional neural network for image-analysis in order to investigate the influence of impeller
speed and phase fraction (up to 50 vol.-%). In addition, Sauter mean diameters were calculated and
correlated with two semi-empirical approaches, while the standard approach only accomplished 5.7%
accuracy, and the correlation of Laso et al. provided a relative mean error of 4.0%. In addition, the
correlated exponent in the Weber number was fitted to the experimental data of this work yielding a
slightly different value than the theoretical (−0.6), which allows a better representation of the low
coalescence tendency of the system, which is usually neglected in standard procedures.

Keywords: liquid–liquid; droplet size distribution; modelling; Sauter mean diameter; image-based
probe; inline probe

1. Introduction
1.1. Motivation and State of the Art

Stirred batch vessels are commonly used apparats in process engineering applications
for tasks like polymerization, emulsification or liquid–liquid extraction. These apparats are
applied in a variety of fields, e.g., in the chemical, pharmaceutical, biological, petrochemical
or food industry [1,2]. In all these fields, the droplet size is a key parameter, which
critically influences the desired mass transfer area or is even a product property, e.g., in
the production of stable emulsions. Although the droplet size plays a vital role in many
processes, its measurement, control and prediction are still challenging tasks.

Since industrial equipment is usually monitored only by global parameters such as
holdup, pressure, temperature or pH-value, the hydrodynamic details remain vague. In
order to get deep understanding of the occurring processes and to foster knowledge of
local parameters, the droplet size distribution (DSD) plays a vital role and a Sauter mean
diameter represents a droplet swarm unsatisfactorily. Correlations for its prediction exist
depending on phase fraction (holdup), the impeller speed and the impeller type [3–5]. In
contrast to this, there are few data and correlations with respect to predicting a DSD. This
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is due to the fact that measurement techniques available to determine the DSD are mostly
limited to low phase fractions, are inaccurate or lack statistical significance due to low
numbers of measured droplets.

In that respect, sampling is the oldest and a most common used technique to measure
a DSD, either discontinuously via a sampling tube or continuously via a bypass, being
analyzed either by laser diffraction or by microscopy. The time between sampling and mea-
suring needs to be short to avoid coalescence, separation or sedimentation in the sample [6].
An addition of surfactants will prevent coalescence by forming a stable emulsion [7,8],
but one cannot be sure that the actual DSD has not changed during sampling or sample
transport. Therefore, these methods have been controversially discussed in the literature
since more modern measuring probes exist that record the measurand inline [2,9]. These
inline probes often use laser backscattering or image-based methods to determine the DSD.

The Optical Reflectance Measurement (ORM) and its further developments, the 2D
and 3D-ORM [10], as well as the Focus Beam Reflectance Measurement (FBRM) [11,12] are
the commonly used laser-based probes. The 2D-ORM and the FBRM measure a droplet
chord length. The FBRM measures the linear distance between opposite particle borders,
while the 2D-ORM measures the arc chord lengths on the surface of the droplets. These
approaches are often used due to a high rate of data acquisition at high disperse phase
content with a good statistical significance. However, the chord length needs models
and assumptions to calculate the actual droplet diameter. Therefore, these measurement
techniques are controversially discussed regarding their accuracy [9], and a comparison of
Maaß et al. [9] showed large differences between a 2D-ORM, a FBRM-probe and an image-
based endoscope. In their work, the authors questioned the principle of laser backscattering
for meaningful DSD detection [9].

In contrast to laser-based probes, image-based probes, so-called endoscopes, are an
alternative to measure the DSD [2]. Most image-based probes use incident light methods,
in which the camera and the illumination are on the same side of the inserted probe [13].
However, reflected images often suffer from a low contrast making automated image
processing difficult. In this approach images need to be analyzed manually or using
advanced image processing numerical tools like the ones from Mettler Toledo [12], Pixact
or SOPAT [14]. A detailed overview in that respect is given elsewhere [6,9,15].

Most of the existing data are limited to a holdup below 35 vol.-%. In that respect
Zerfa and Brooks measured droplet diameters manually up to 40 vol.-% in a sample cell
with a microscope [3] and Godfrey and Grilic also measured their emulsion photograph-
ically in a sample tube at a holdup up to 50 vol.-% [16]. Desnoyer et al. used a laser
granulometer. up to 60 vol.-% disperse phase fraction but dilution was necessary as the
laser granulometer is limited to 1 vol.-% holdup [17]. Qi et al. [18] used FBRM and a
Particle Vision Measurement (PVM) probe from Mettler Toledo, to detect phase inversion
in regions above 50 vol.-% disperse phase fraction [18]. Kraume et al. developed an ento-
centric light-based endoscopic image-based probe and measured the DSD at disperse phase
fractions up to 50 vol.-% [19,20]. Since all these measurement methods have limitations in
terms of accuracy and disperse phase fraction concentration, they are difficult to compare.
Therefore, the significance of any models to predict the DSD is depends highly on the type
of measurement method used in the specific environment (e.g., phase fraction).

It can be summarized that offline methods (sampling) provide a defective DSD. Inline
probes, as if laser backscattering, as a measurement principle, is controversially discussed,
so minimal invasive, optical inline probes are probably the best choice.

In this work, a novel image-based telecentric shadowgraphic probe is utilized to
acquire images of droplets over a large range of phase fraction concentrations in a DN300
stirred batch vessel in a water/paraffin oil system. The images are analyzed with a modern
neural network image processing tool to determine statistically significant, high resolution
DSD database, which is rarely found in the literature. With these data and Computational
Fluid Dynamics (CFD) methods, a deeper understanding of the hydrodynamic phenomena
in liquid–liquid systems can be achieved, which was already shown in our previous work of
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Rave et al. [21]. In that respect, a telecentric image-based optical probe suitable to measure
at industrial relevant phase fractions above 35 vol.-% is described in more detail below.

1.2. Optical Multimode Online Probe

The Optical Multimode Online Probe (OMOP) is an image-based shadowgraphic
measurement technique, with an opposite based array [22] as depicted in Figure 1. One of
the probe tubes contains an illumination unit that generates parallel light via a LED and a
plan convex lens. The light passes out through an inspection window at the front end of
the probe tube and afterwards through the measuring volume between the two diametrical
probe tubes. On the opposite side, a camera with a telecentric lens acquires the resulting
shadowgraphic image. The arrangement of illumination and lens result in images having
high contrast and significantly better image quality compared to commercial incident light
probes. In addition, at equal magnification, a significantly higher depth of field is achieved
by telecentric lenses than by conventional entocentric lenses [23].
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Figure 1. Scheme of a OMOP in a DN100 extraction column. The invasive tubes are mounted
eccentric and do not interfere with the impeller shaft.

Telecentric optics use an aperture at the image-side focal point, whereby the image is
formed exclusively by parallel light. This results in images with a distance-independent
and constant magnification. In contrast, when images are taken with entocentric lenses,
objects are projected at different sizes depending on their distance to the optics, which
either requires calibration or leads otherwise to erroneous measurements. With telecentric
systems, on the one hand, calibration is not necessary due to the constant magnification [24],
and, on the other hand, the high contrast and greater depth of field make it much easier
to evaluate images using simple image evaluation algorithms. With entocentric systems
complex image processing algorithms are required even for simple evaluations at low
holdup. The drawback of the first version of OMOP are a roughly four- to eightfold in-
crease in installation space with the opposite illumination unit compared to incident light
probes. Therefore, telecentric endoscope probes were developed to overcome the disadvan-
tages [25], as a one-sided installation via a flange reduces the required installation space,
but retains the complete measuring principle with adjustable size of the measurement gap
and its position in the apparatus. In recent years, a probe for industrial-scale apparatuses
has been developed that is inserted via a DN80 flange [26] and can be used for apparatus
sizes from about DN450 to DN1000. In addition, the probe has been scaled down, and a
laboratory probe [27] has been developed for a small apparatus between DN80 and DN600
and can be inserted via a DN40 [28] or DN50 [27] flange. In this work, the laboratory probe
is used, which is depicted in Figure 2.

Although the method of probe insertion has been further developed, both a two-sided
measuring flange and an endoscope probe can be usefully applied. Endoscopic probes are
particularly useful for a large (<DN500) and existing apparatus, while two-sided measuring
rings are mainly used at small scales (DN25-DN450), e.g., in pipes and small vessels.
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Figure 2. Endoscopic probe at laboratory scale. The mounting flange is adaptable to DN40 or larger.

In addition to these design improvements the application of the measurement technol-
ogy has been extended to other multiphase flows and apparats, from extraction columns
to mixer-settlers [29,30], reaction pumps [31], bubble columns [24,25,27,32], crystalliza-
tion processes [28], evaporation [33] and spray regimes in distillation and absorption
columns [34,35], where for the latter minor adaptions were necessary [36].

In order to determine the DSD from the experimental OMOP data, an image analysis
using conventional image processing or neural networks (NN) is necessary. This includes
binarization and, if necessary, watershed segmentation to segment touching or overlapping
particles [32,37] as well as Hough transformation [38], which detects specific shaped objects
in an image [38–40]. Unfortunately, conventional image processing algorithms are limited
to images at low and medium phase fractions [41]. As to that, at higher phase fractions
with strong overlapping, advanced image processing methods, like the use of NN [42] is
an option.

However, it is necessary to train the NN in advance with extensive labeled data,
which is rather time-consuming. Alternatively, a training with synthetic data using labeled
training sets with known DSD is extremely effective. Schäfer et al. used computer generated
synthetic data to train a Convolutional Neural Network (CNN) [43] at phase fractions up
to 25 vol.-%. A detailed comparison between this technique and a commercially available
probe for droplet detection can be found elsewhere [44].

1.3. Theory and Modelling

Based on the model of isotropic turbulence developed by Kolmogorov [45] the follow-
ing expression (Equation (1)) was derived for the maximum stable droplet diameter in a
fully turbulent flow at high Reynolds numbers:

u2 = C1(ε·dmax)
2/3 (1)

The mean relative velocity u, caused by turbulent pressure fluctuations in the direction
of the flow, is proportional to the mean energy dissipation ε and the maximum stable
droplet diameter dmax and a correlation coefficient C1. Based on this theory, Hinze [46]
derived a Weber number We(d) for the maximum stable droplet diameter:

We(d) =
Ekin
Eσ

=
ρc·u2·d

σd,c
(2)

Herein Ekin is the turbulent kinetic energy and Eσ is the surface energy, with the
density of the continuous phase ρd, the mean relative velocity u, the drop diameter d and
the interfacial tension σd,c. If the turbulent kinetic energy and the surface energy are equal,
the droplet is stable. According to Hinze a droplet remains stable at a Weber number
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We(d) ≤ 1, otherwise it breaks up into one or more smaller droplets [46]. Substituting
Equation (1) in Equation (2) gives:

We(dmax,crit) =
ρcC2ε 2/3d5/3

max

σd,c
(3)

and rearranged for dmax is:

dmax = C2·We−0.6
(dmax,crit)

(
σd,c

ρc

)0.6
ε−0.4 = C2

(
σd,c

ρc

)0.6
ε−0.4 (4)

with the correlation coefficient C2. In stirred tanks, ε is independent of the liquid properties
according to the theory of isotropic turbulence:

ε = KN3D2 (5)

Herein N is the stirrer speed, D is the impeller diameter and K is a correlation coefficient
that depends on the impeller design. With Equations (4) and (5) a basic model for droplet
breakup in stirred vessels by Shinnar and Church [47] is as follows:

dmax

D
= C3

(
ρcN2D3

σd,c

)−0.6

= C3We−0.6
T (6)

This results in a proportionality of dmax ∝ We−0.6
T , whereby WeT is the Weber number

of the tank and isotropic turbulence is assumed. Nowadays, stirred tank drop diameters are
usually described by the Sauter mean diameter (see Section 2.4). In the work of Sprow [48],
the mean diameters, e.g., d50 or the Sauter mean diameter d32 are linearly related to the
maximum stable diameter via a correlation coefficient C4 [49]:

d32 = C4dmax (7)

This approach is much more practical for describing the droplet size, since the Sauter
mean diameter is proportional to the specific surface area being essential for describing
mass transfer processes.

The equations above only describe droplet breakage and are only valid at low holdup
where coalescence is negligible. As technically relevant phase fractions are significantly
higher, drop–drop interactions will occur, resulting in coalescence. As to that, Equation (6)
is extended by a linear function considering the influence of the phase fraction [50]:

d32

D
= f(ϕ)C4We−0.6

T = C4(1 + C5 ϕ)We−0.6
T = C4(1 + C5 ϕ)WeC9

T (8)

In this commonly used approach, the correlation coefficient C4 reflects the impeller
design, while C5 is for coalescence. The exponent for the Weber number in Equation (6)
is valid in systems without coalescence, and some authors found C9 as a function of the
phase fraction ϕ [14,17]. Laso et al. [51] developed another interesting approach, which
covers high disperse phase fractions with the general form as:

d32

D
= C6 ϕC7

(
µd
µc

)C8

Wec9
T = C6 ϕC7

(
νdρd
νcρc

)C8

Wec9
T (9)

Herein µ is the dynamic and ν the kinematic viscosity with the index c for the con-
tinuous phase and d for the disperse phase, with C6 = 0.118, C7 = 0.27, C8 = −0.056 and
C9 = −0.4. Noteworthy is that it takes the phase fraction as a nonlinear function and the
viscosities of both phases into account.
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2. Materials and Methods
2.1. Substances

Demineralized water is used as continuous phase and paraffin oil (FC 2006, Fauth
GmbH + Co. KG, Mannheim, Germany) as disperse phase. For standardization, dem-
ineralized water is adjusted by admixing 50 mmol/L Na2SO4. Thereby, the continuous
phase is not altered in its physical properties as given in Table 1. The standardization
of the continuous water phase results in a defined electric conductivity of 8800 µS/cm,
which is necessary to guarantee measurement repeatability damping the influence of hardly
detectable impurities on coalescence [48,52]. The density of the water/Na2SO4 solution and
the oil are measured with a density meter (DMA55, Stabinger Messtechnik GmbH, Graz,
Austria). The kinematic viscosity of the oil was measured with a viscometer (Viscoboy 2,
LAUDA Scientific GmbH, Lauda-Königshofen, Germany), the value for water was taken
from literature. The interfacial tension of oil in water was determined with a contact angle
microscope (DataPhysics Instrument GmbH, Filderstadt, Germany) using the pendant
drop method.

Table 1. Physical properties of the used substances at a temperature of 20 ◦C.

Substance Density
ρ [kg/m3]

Kinematic Viscosity
ν [mm2/s]

Interfacial Tension
σd,c [mN/m]

Water + Na2SO4
(50 mmol/L) 1000 1.0 -

Paraffin oil FC 2006 825 13.1 53

2.2. Experimental Setup

The experiments in this work are performed in a DN300 stirred tank shown in Figure 3.
The tank is made of transparent polymethyl methacrylate (PMMA) and the geometry is
based on a setup published by Montante et al. [53,54] with detailed measured velocity
profiles [53,54]. Due to the same geometry, the data obtained in this study can be considered
complementary to data from [54,55]. Therefore, an extensive database is available for CFD
investigations, which have been presented on the same test case by, e.g., Rave et al. [55].
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Figure 3. Experimental setup of the DN300 stirred vessel and the measurement position MP1 of the
OMOP probe; (a) side view and (b) top view of the vessel.

The tank has an inner diameter of T = 290 mm and a height of H0 = 400 mm. The tank
is filled to H = 290 mm height to ensure a ratio of H/T = 1. The tank is surrounded by
another square tank, which is filled with water and ensures a constant temperature in the
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inner tank by means of thermostat T1 and pump P1. A six-blade Rushton impeller with a
diameter of D = 98 mm (D/T ≈ 0.3) is positioned at an off-bottom-height C = T/2 = 145 mm
and driven by a stirring unit (Heidolph RZR 2052 control). The impeller has the identical
dimensions as in the work of Montante et al. [53,54], a disc diameter of 73.5 mm, a blade
height of 19.6 mm, and a blade width of 24.5 mm. The tank is equipped with four radial
equally distributed baffles. They have a width of B = T/10 = 29 mm, a thickness of 3 mm
and cover the entire height H0 of the tank.

The small single-sided probe (see Figure 2) is inserted vertically from above such that
its measurement gap is located at the height of the impeller at measuring point MP1. The
measuring point is arranged radially at 87 mm from the center of the impeller shaft with an
offset of 45◦ between two baffles. The probe is fitted with a Basler Aca 1300-60 gm camera
and 1× telecentric lens. The chosen resolution is 1024 pixel × 1024 pixel, which equals
5.4 mm × 5.4 mm.

The camera with this lens results in a typical error range of +/−20 µm for measured
lengths and diameters. The probe captures 1500 pictures at each measurement point with
10 fps. The gap between the probe heads, which form the measurement volume, was set to
2 mm. A further measuring point MP2 near the liquid surface was additionally investigated
experimentally up to 10 vol.-% and simulations are reported by Rave et al. [21].

2.3. Experimental Procedure

Experiments were performed at impeller speeds of N = 250, 325, 400 rpm. Phase
fractions from ϕ = 5 vol.-% to 50 vol.-% are investigated in steps of 5 vol.-% at each impeller
speed, whereby ϕ is defined according to Equation (10):

ϕ =
Vd

Vd + Vc
(10)

Here, Vd is the volume of the disperse phase and Vc the volume of the continuous
phase. Each experiment with a specific impeller speed N and phase fraction ϕ was carried
out twice using the following routine.

At the beginning of each experiment, the tank was cleaned and the chemicals were
weighed in the correct ratio. The thermostat and the pump for temperature control were
switched on and the system was set to 20 ◦C. Na2SO4 was dissolved in the water and
added to the tank and then the paraffin oil was added. The filling level H was checked
manually with a scale. Then, the impeller was turned on and a period of 40 min was used
to ensure that a steady-state droplet size was established. The temperature of the emulsion
was checked using a thermometer. After that, the droplet measurement is started taking
2.5 min to acquire the 1500 pictures. After each experiment, the chemicals were disposed
and new ones were used for the next experiment in order to preclude a change in the
physical properties due to long-term accumulation of impurities. Hence, for each impeller
speed and phase fraction two droplet size measurements are available resulting from two
separate experiments. One exception is the experiment for N = 400 rpm and ϕ = 5 vol.-%,
which was measured only once without a repetition.

2.4. Data Analysis and Modelling

The images of the droplets captured by the camera are analyzed using a Convolutional
Neural Network (CNN), which detects spherical droplets in a series of images to ensure
statistical significance as depicted in Figure 4. The CNN is based on a U-net architecture
using PyTorch with pre- and post-processing by the corresponding OpenCV functions. The
CNN is specially trained for this use case as described elsewhere [43]. For the training
of the CNN, the synthetic dataset from [43] was augmented with real images of droplets
to increase the detection quality. In previous work, the detection of droplets with the
CNN was validated up to ϕ = 25 vol.-% with an average error of 4.26% for the Sauter
mean diameter. The CNN was used without any additional training for phase fractions
ϕ ≥ 25 vol.-% and images were manually crosschecked to ensure accurateness.
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Figure 4. CNN analysis at different phase fractions at N = 325 rpm. (a) 10 vol.-%, (b) 30 vol.-% and
(c) 50 vol.-%. The green circles represent the detected droplet circumference.

The evaluated images show a precise detection of the droplets, whereas strongly
overlapping droplets were not evaluated. Overall, more droplets were detected in the
image at low phase fractions than at high phase fractions. In particular, Figure 4 shows
that at 50 vol.-% only about half of the droplets were analyzed. However, since almost all
detections are accurate, the network can be used for the evaluation of all phase fractions
investigated. Overall, 15,000 to 300,000 droplets were detected per experiment, which is on
average 100,000 droplets per experiment ensuring a statistic significance.

Crosschecking of the images revealed a few false detections for large droplets (diame-
ters from 2 mm to 8 mm). Since these erroneous detections lead to false droplet sizes, they
falsify the volume distribution and the Sauter mean diameter in particular. Therefore, 1%
of droplets with the largest diameters were systematically excluded from the evaluation
and not considered further.

The measured droplet diameters were converted to a number and volume distribution.
The following relationship was used for the number distribution q0,i:

q0,i =
∆Zi

Z·∆di
with ∆di = di − d1−i (11)

The number distribution q0,i describes the number of particles, ∆Zi, of all measured
particles, Z, that are in a specific diameter range, ∆di, the so-called class width, which was
set to 20 µm for all classes. The number distribution is suitable for showing phenomena
such as unwanted emulsification, but has limited use for the description of mass transfer
processes. The volume distribution, q3,i, is calculated from the number distribution without
considering any shape factor as follows:

q3,i =
d

3
i ·q0,i

∑n
i=1

(
d

3
i ·q0,i·∆di

) with di =
di + di−1

2
(12)

The volume distribution is more relevant for the description of mass transfer pro-
cesses than the number distribution, since very small droplets contain almost no transfer
component, and therefore have almost no contribution to mass transfer.

Although a complete DSD is decisive for a detailed description of processes, in many
cases the Sauter mean diameter, d32, is sufficient. It is calculated from the second moment,
M2,0 and third moment, M3,0 of the number distribution as follows:

d32 =
M3,0

M2,0
=

∑n
i=1

(
d3

i ·q0·∆di
)

∑n
i=1

(
d2

i ·q0·∆di
) (13)
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No shape factor was used, as the drops in the images are perfect circles (shape factor
equals 1). Using the measured Sauter mean diameter and the given process parameters, the
coefficients of Equations (8) and (9) are determined using the Thrust Region algorithm of
the Matlab® Curve Fitting Tool (Matlab® version 9.6.0.1072779; R2019a and Curve Fitting
Toolbox 3.5.9).

3. Results and Discussion
3.1. Influence of the Impeller Speed

The droplet diameters and the width of the distribution are mainly affected by the
impeller speed [1,56]. Selected number distributions for the investigated impeller speed at
ϕ = 40 vol.-% are exemplarily depicted in Figure 5a.
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Figure 5. (a) Number distribution at different rpm at ϕ = 40 vol.-% phase fraction; (b) volume
distribution at different rpm at ϕ = 40 vol.-% phase fraction. The lines are a guide to the eye.

The shape of the measured number distributions in Figure 5a show a lognormal-
distribution by trend. Local maxima in number distributions occur at the class d = 50 µm.
These droplets are too small for further breakup or coalescence in this fine dispersion.
Schäfer et al. [43] describe their CNN in combination with the presented camera and lens
setup as poorly suited for small droplets, since the relative error for droplets smaller than
d ≤ 80 µm exceeds 10%. This error is insignificant for the volume distribution q3, since
the fine dispersion has a negligible contribution to the volume distribution as depicted in
Figure 5b. The volume distributions are nearly q3,(<100 µm) ≈ 0 µm−1 for particle classes
smaller than 100 µm and are normally distributed in shape, which indicates a coalescing
system [3]. As expected, the droplet size in the number as well as in the volume distribution
decreases with increasing impeller speed. In addition, the distribution becomes narrower
with increasing energy input and thus increasing impeller speed. This trend is observed for
all experiments. DSD data of all q0 and q3 is given in the Supplementary material. For a
simpler visualization of multiple experiments, Figure 6 depicts the Sauter mean diameters
calculated according to Equation (13). The Sauter mean diameter decreases with increasing
impeller speed. The qualitative trend of the Sauter mean diameter at different impeller
speeds is similar for all phase fractions, with the trend shifting towards a larger droplet
diameter for higher phase fractions.
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Figure 6. Experimental Sauter mean diameter (experiment 1: blue solid symbols, repetition
experiment 2: red hollow symbols) at different rpm and phase fractions (dotted lines are a guide to
the eye).

All experimental data are in the typical error range. The average deviation of the
Sauter mean diameter between two repetitions of an experiment (same impeller speed and
phase fraction) is less than 4 µm and the maximum deviation, with one exception, is less
than 9 µm, which confirms a high reproducibility. Small deviations are especially found
for N = 250 rpm and are already discussed in the work of Rave et al. [24]. The largest error
with approx. 25 µm is found at N = 250 rpm and ϕ = 50 vol.-% and could be caused by a
slight malfunction of the CNN at those high phase fractions. All measured Sauter mean
diameters and the number of measured particles are listed in the Supplementary Material
in Tables S3–S48.

3.2. Influence of the Phase Fraction

As already seen in Figure 6, the DSD and the Sauter mean diameters are significantly
affected by the phase fraction. The volume distributions in Figure 7a shifts towards larger
droplets and becomes slightly broader with higher phase fractions. This effect is more
pronounced for lower phase fractions than for higher ones. The experimental data for
the phase fractions ϕ = 30 vol.-% and ϕ = 50 vol.-% in Figure 7a are almost identical.
This indicates that the influence of the phase fraction on the DSD cannot be adequately
represented by a linear function and that more complex functions have to be used. This
effect was observed with all investigations within the typical error range of +/−20 µm.
The Sauter mean diameter as a function of the phase fraction is depicted in Figure 7b. It
decreases with increasing impeller speed. This is expected and reasonable since the mean
energy dissipation increases with the impeller speed. An increase for the Sauter mean
diameters is found for increasing phase fractions due to the higher collision rate of droplets.

Table 2. Coefficients and confidence intervals for Equation (8) [50] and Equation (9) [51].

Coefficients Confidence Intervals

Values Equation (8) C4 C5 C9 R2 C4 C5 C9
0.1601 1.9190 −0.6456 0.9503 0.1113 to 0.2089 1.6180 to 2.2200 −0.6948 to −0.5964

Values Equation (9) C6 C7 C9 R2 C6 C7 C9
0.4283 0.2933 −0.6475 0.9719 0.3306 to 0.5260 0.2693 to 0.3173 −0.6845 to −0.6105
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are a guide to the eye; and (b) experimental Sauter mean diameters of both experiments at different 
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Table 2. Coefficients and confidence intervals for Equation (8) [50] and Equation (9) [51]. 
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Values  

Equation 

(8) 

𝐶4 𝐶5 𝐶9 𝑅2 𝐶4 𝐶5 𝐶9 

0.1601 1.9190 −0.6456 0.9503 
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2.2200 
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Values  

Equation 

(9) 

𝐶6 𝐶7 𝐶9 𝑅2 𝐶6 𝐶7 𝐶9 
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3.3. Modelling of the Sauter Mean Diameter

Table 2 lists the coefficients and their corresponding confidence intervals of Equa-
tions (8) and (9), which were determined in this work. Table 3 summarizes the quality of
the re-correlated models. The coefficient C8 of the viscosity in Equation (9) was taken from
the data of Laso et al. [51], because the influence of the viscosity is not studied in this work.

Table 3. Absolute and relative deviations of the models.

Calculated Errors

Maximum
Relative Error

Mean
Relative Error

Maximum
Absolute Error

Mean
Absolute Error

∆dmax,%
32 in % ∆

¯
d

mean,%

32 in % ∆dmax,µm
32 in µm ∆

¯
d

mean,µm

32 in µm

Values Equation (8) 21.9 5.7 63 24
Values Equation (9) 11.4 4.0 50 18

Both models show a good agreement with the measured values (see Figure 8), which
is confirmed by high coefficients of determination, R2 > 0.95. The model of Laso et al. [51]
represents the experimental data slightly better (higher value of R2). The deviation from
the model to the experimental data is less than 12% absolute and 4.0% as mean deviation
for Laso et al. [51] and less than 22% absolute and 5.7% as mean deviation for Doulah [50].
The errors are randomly distributed with the approach of Laso et al. [51], over all data.
The standard approach by Doulah [50] has the highest errors for ϕ = 5 vol.-%, which is a
result of the linear dependence of the phase fraction in the model. The value of the Weber
exponent is for both models around C9 ≈ −0.65, which is close to the theoretical one of
−0.6 being obtained if coalescence is neglected [47]. The results with a Weber exponent
C9 = −0.6 are shown in the Supplementary Material in Tables S1 and S2 and in Figure S1.
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Figure 8. Parity plot: (a) model of Laso et al. [51] within 12% error, (b) model of Doulah [50] within 

22% error (coefficients from Table 2). 

4. Conclusions 

In this work, a telecentric endoscopic transmitted light probe was used to measure 

the droplet size in a DN300 stirred vessel near the impeller region. The DSD was measured 

at phase fractions between 𝜑 = 5 vol.-% to 50 vol.-% and impeller speeds between 𝑁 = 

250 rpm and 400 rpm. The endoscopic probe can be easily installed and the measurement 

technique including a CNN based analysis is appropriate for the characterization of liq-

uid-liquid systems with industrially relevant phase fractions up to 𝜑 = 50 vol.-%. In ad-

dition, large quantities of droplets can be reliably detected resulting in statistically signif-

icant and highly resolved DSD with at least 10,000 droplets per distribution. A repetition 

of the experiments showed minimal deviations for the same experimental parameters 

within the typical error range of approx. 20 µm. It could be shown, that telecentric shad-

owgraphic probes with a modern image analysis based on a CNN can be utilized to accu-

rately characterize particulate liquid–liquid flows at industrial relevant phase fractions. 

The experimental results show, that the impeller speed as well as the phase fraction 
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4. Conclusions

In this work, a telecentric endoscopic transmitted light probe was used to measure the
droplet size in a DN300 stirred vessel near the impeller region. The DSD was measured at
phase fractions between ϕ = 5 vol.-% to 50 vol.-% and impeller speeds between N = 250 rpm
and 400 rpm. The endoscopic probe can be easily installed and the measurement technique
including a CNN based analysis is appropriate for the characterization of liquid-liquid
systems with industrially relevant phase fractions up to ϕ = 50 vol.-%. In addition, large
quantities of droplets can be reliably detected resulting in statistically significant and highly
resolved DSD with at least 10,000 droplets per distribution. A repetition of the experiments
showed minimal deviations for the same experimental parameters within the typical
error range of approx. 20 µm. It could be shown, that telecentric shadowgraphic probes
with a modern image analysis based on a CNN can be utilized to accurately characterize
particulate liquid–liquid flows at industrial relevant phase fractions.

The experimental results show, that the impeller speed as well as the phase fraction
mainly affect the Sauter mean diameter in stirred vessels. Especially the latter has a strong
influence below a phase fraction of ϕ ≤ 30 vol.-%. For higher phase fractions, the influence
is marginal and can be neglected. Two models from literature were re-correlated [50,51]
and adequately represent the experimental data within relative deviations of 12% [51]
and 22% [50]. As expected, the experimental data is better represented by the approach
of Laso et al. [51] than by the standard approach [50], which can be explained by the
additional substance properties that were taken into account.

The enhancement and validation of image analysis techniques in combination with
telecentric shadowgraphic probes are part of future work, especially with a focus on
industrial phase fractions and apparatus geometries. This new technique discussed here
enables the improvement and development of models for the prediction of the behavior
of dispersions and other particulate multiphase flows. Possible future applications are
manifold, like the detection of cavitation bubbles, the measurement of bubbles in jet-loop-
reactors or the use in fixed bed reactors for the characterization of the flow regime to name
a few.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12084069/s1, Figure S1: Coefficients for the fitted models
with the theoretical Weber exponent C9 = −0.6; Table S1: Coefficients for the fitted models with the
theoretical Weber exponent C9 = −0.6; Table S2: Relative and absolute deviations for the fitted models
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with the theoretical Weber exponent C9 = −0.6; Tables S3–S48: Measured DSD’s and Sauter mean
diameters of all experiments.
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