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Abstract

Aerodynamic design optimization, considered in this thesis, is a large and complex area spanning
different disciplines from mathematics to engineering. To perform optimizations on industrially
relevant test cases, various algorithms and techniques have been proposed throughout the literature,
including the Sobolev smoothing of gradients. This thesis combines the Sobolev methodology for
PDE constrained flow problems with the parameterization of the computational grid and interprets
the resulting matrix as an approximation of the reduced shape Hessian.
Traditionally, Sobolev gradient methods help prevent a loss of regularity and reduce high-frequency
noise in the derivative calculation. Such a reinterpretation of the gradient in a different Hilbert
space can be seen as a shape Hessian approximation. In the past, such approaches have been
formulated in a non-parametric setting, while industrially relevant applications usually have a
parameterized setting. In this thesis, the presence of a design parameterization for the shape
description is explicitly considered. This research aims to demonstrate how a combination of
Sobolev methods and parameterization can be done successfully, using a novel mathematical result
based on the generalized Faà di Bruno formula. Such a formulation can yield benefits even if a
smooth parameterization is already used.
The results obtained allow for the formulation of an efficient and flexible optimization strategy,
which can incorporate the Sobolev smoothing procedure for test cases where a parameterization
describes the shape, e.g., a CAD model, and where additional constraints on the geometry and the
flow are to be considered. Furthermore, the algorithm is also extended to One Shot optimization
methods. One Shot algorithms are a tool for simultaneous analysis and design when dealing with
inexact flow and adjoint solutions in a PDE constrained optimization. The proposed parameterized
Sobolev smoothing approach is especially beneficial in such a setting to ensure a fast and robust
convergence towards an optimal design.
Key features of the implementation of the algorithms developed herein are pointed out, including
the construction of the Laplace-Beltrami operator via finite elements and an efficient evaluation
of the parameterization Jacobian using algorithmic differentiation. The newly derived algorithms
are applied to relevant test cases featuring drag minimization problems, particularly for three-
dimensional flows with turbulent RANS equations. These problems include additional constraints
on the flow, e.g., constant lift, and the geometry, e.g., minimal thickness. The Sobolev smoothing
combined with the parameterization is applied in classical and One Shot optimization settings and is
compared to other traditional optimization algorithms. The numerical results show a performance
improvement in runtime for the new combined algorithm over a classical Quasi-Newton scheme.
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Zusammenfassung

Aerodynamische Designoptimierung ist ein weitreichendes, komplexes Arbeitsfeld, welches ver-
schiedene Disziplinen von der Mathematik bis zu den Ingenieurwissenschaften involviert. Um
Optimierungen in industriell relevanten Fällen zu betrachten, stehen in der Literatur eine große
Bandbreite an möglichen Algorithmen zur Verfügung. Unter anderen ist hier das Sobolevglätten des
Gradienten zu nennen. Die vorliegende Arbeit verbindet die Sobolevmethode für Strömungsprob-
leme, welche durch partielle Differenzialgleichungen beschränkt sind, mit der Parametrisierung des
numerischen Netzes und interpretiert die resultierende Gesamtmatrix als eine Approximation der
reduzierten Shape-Hessematrix.
Traditionell vermeiden Sobolev Methoden Regularitätsverluste und helfen, hochfrequente Fehler bei
der Ableitungsberechnung zu reduzieren. Eine solche Sobolev Neuinterpretation des Gradienten in
einem anderen Hilbertraum kann auch als eine Approximation des Shape-Hesseoperators betrachtet
werden. Bisherige Ergebnisse hierzu berücksichtigen jedoch nicht die Parametrisierung, welche für
industriell relevante Anwendungen stets gegeben ist. Ziel dieser Forschung ist es, die genannten
Punkte erfolgreich zu kombinieren. Hierzu wird ein neues mathematisches Resultat verwendet,
welches auf einer Verallgemeinerung der Faà di Bruno Formel basiert. Eine solche Formulierung
kann auch dann vorteilhaft für die Optimierung sein, wenn die verwendete Parametrisierung selbst
bereits glatt ist.
Für Testfälle, in denen die Form durch eine Parametrisierung, z. B. ein CAD Modell, beschrieben
wird, erlauben die vorgestellten Resultate Sobolevglätten effizient und flexible in das Optimierungsver-
fahren einzubinden. Darüber hinaus kann der Algorithmus für die Anwendung von One Shot Ver-
fahren erweitert werden. Diese erlauben einen gleichzeitigen Simulations- und Designprozess unter
Verwendung von inexakten, approximierten Strömungs- und adjungierten Lösungen. Parametrisiertes
Sobolevglätten ist für solche Situationen besonders geeignet, da es eine schnelle und gleichzeitig
robuste Konvergenz des Verfahrens garantiert.
Kernpunkte der Implementierung des hier entwickelten Algorithmus werden in der vorgestellten
Arbeit beschrieben. Insbesondere die Berechnung des Laplace-Beltrami Operators mit Hilfe einer
Finite-Elemente-Methode und der Einsatz von Algorithmischem Differenzieren zur effizienten
Auswertung von Ableitungen der Parametrisierung. Die neuentwickelten Algorithmen werden zum
Test auf Widerstandsminimierungsprobleme für dreidimensionale, turbulente Reynolds-gemittelte
Navier-Stokes-Gleichungen angewendet. Die beschriebenen Testfälle enthalten darüber hinaus
weitere Nebenbedingungen, wie konstanten Auftrieb für die Strömung und minimale Dicken für
die Flügelgeometrie. Parametrisiertes Sobolevglätten wird hier sowohl in einem klassischen als
auch in einem One Shot Algorithmus getestet und die Ergebnisse in beiden Fällen werden mit
anderen traditionellen Verfahren verglichen. Diese Vergleiche zeigen, dass der neue kombinierte
Algorithmus die Laufzeit gegenüber bekannten Quasi-Newtonverfahren verbessert.
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List of Symbols

In this thesis the following notation is used to ensure a unified style. The meaning of symbols is
explicitly introduced in the chapters of their introduction or for reappearances the relevant chapter is
referenced.

I. Aerodynamic Symbols:
Ω flow volume
Γ design surface
Θ volume of the flow obstacle to be designed
n surface normal vector
v flow speed
ρ density
W flow field, analytic solution of the flow equation
Re Reynolds number
α angle of attack
cP,cD,cL,cM aerodynamic pressure, drag, lift and pitching moment coefficients

II. Optimization Functions and Variables:
F objective function
u state variable, solution of the discrete flow equation
x vector of mesh coordinates
p design parameters for optimization
M mesh parameterization, mapping p 7→ x
H discrete flow equations
G iterative flow solver, pseudo time-stepping of the finite volume method
E equality constraint for optimization
C inequality constraint for optimization
Bε(x) ε-neighborhood around a point x
S∗ feasible set, i.e., the set of possible values for variable ∗

ix



III. Derivatives and Algorithmic Differentiation:
Dx f partial derivative of f w.r.t. x, for finite-dimensional vector spaces the Jacobian matrix
DF (Ω;v) shape derivative or directional derivative of a functional f in direction v
∂

∂xi
partial derivative of a scalar function w.r.t. the i-th component of the input vector x

d
dxi

total derivative of a scalar function w.r.t. the i-th component of the input vector x
dw

α weak derivative w.r.t. a multiindex α

ϕ elementary statement in algorithmic differentiation
zk intermediate result value in algorithmic differentiation

IV. Discrete Adjoint Calculus and One Shot Optimization:
L Lagrangian function
λ adjoint state variable
I identity operator, for finite dimensions the identity matrix
ε1,ε2 coefficients in the Laplace-Beltrami operator

V. Function spaces and Sobolev smoothing:
Lp space of p-integrable functions
Hk Sobolev space of order k
φ test function
MS surface parameterization, mapping p to the surface mesh nodes
MV mesh deformation, mapping surface to volume mesh nodes
B approximation of the reduced shape Hessian on the mesh
B parameterized (hybrid) Laplace-Beltrami operator

x



Chapter 1

Introduction

Starting from the title of this thesis, ‘Combining Parameterizations, Sobolev Methods and Shape
Hessian Approximations for Aerodynamic Design Optimization’, this work aims to combine different
topics and apply them together. To better explain this, an overview of the state of the art and
references to the relevant literature are given for each topic.
Beginning with introducing the intended application in aerodynamic shape optimization, the adjoint
optimization framework and its extension to One Shot methods are discussed. This is followed by
an overview of the role of design parameterization in shape optimization. Next, relevant results on
shape calculus and shape Hessians are listed. In particular, results investigating a connection to
partial differential operators, like Sobolev methods, and their potential uses to improve optimization
algorithms. After presenting an overview of the existing literature, the research objectives and
the scientific contributions of this thesis are listed. This is then followed by an explanation of the
structural layout of this work.

1.1 Background of This Thesis
This section describes the current state of the art in the research fields this thesis builds upon. It lists
previous publications by various authors, some of which inspired this work with their research on
related topics. A particular inspiration for this thesis was the joint work by Kusch, Schmidt, and
Gauger on approximated Newton methods for shape optimization via smoothing [70, 71].

Aerodynamic Shape Optimization
Design optimization, also known as shape optimization, is a broad term used in engineering [84, 15,
16] that generally refers to improving and possibly optimizing the geometry of an object with respect
to one or multiple of its properties. In aerodynamic applications, a component which is in contact
with a fluid, e.g., wings, turbine blades, and rotors, should be optimized. The property of interest is
derived from the interaction of the component with the fluid, e.g., drag and lift forces, structural
loads, or heat exchange. Such examples can span a wide variety of questions, like increasing the
efficiency of modern jet engines by improving the turbine blades, as done by Backhaus, Schmitz,
et al. [12], or reducing the noise of an airframe, see Zhou, Albring, et al. [126], or improving the
electricity production of a wind power plant, see King, Dykes, et al. [68].
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Of the different algorithms proposed for shape optimization, the adjoint framework for derivative-
based optimization has proven itself as one of the most successful [86]. Mainly, because of its
independence from the number of design parameters, in terms of computational cost. The framework
can be divided into discrete adjoint methods, pioneered by Giles [46], and continuous adjoint
methods, pioneered by Jameson [62]. Both have their advantages and disadvantages. However,
discrete adjoints have some benefits in industrial applications. Mainly, when set up using algorithmic
differentiation [49], they allow to create consistent and efficient adjoint solvers for the simulation
algorithms in an automated way [4]. Such approaches have been deployed in large scale industrial
applications, where the above mentioned adjoint property of being independent of the number of
design variables in terms of computational cost is particularly interesting [86].

One Shot Optimization
The One Shot optimization algorithm has been discussed extensively for its great potential to im-
prove adjoint-based aerodynamic shape optimization. The term itself was first proposed by Ta’asan
[119]. A good introduction and an overview of the historical development can be found in the
overview paper by Bosse, Gauger, et al. [23]. The idea can be motivated in two different ways, first
as a Newton step on the whole KKT system, with extensive convergence analysis done by Hamdi
and Griewank [51, 52]. The second approach views the method as a pseudo time-stepping for the
design equation, as done by Ta’asan [120], or Hazra, Schulz, Brezillion, and Gauger [55]. Both
approaches are equivalent, ultimately resulting in the same algorithm, which was applied in various
aerodynamic settings [55, 24]. This also includes more complicated partial differential equation
constrained optimization methods, e.g., for unsteady aerodynamics by Günther [50], or even the
design of tokamak nuclear fusion reactors by Blommaert [19].
Of course, many extensions and refinements to the original One Shot idea were introduced over the
years, with some of the more noteworthy being multistep algorithms, as studied by Özkaya [92], and
even asynchronous execution of the involved solvers, as suggested by Bosse [21]. Multiple authors
also studied the incorporation of additional constraints into this optimization [54, 22, 72], either by
treating them in an SQP like fashion when updating the design, as done by Hazra and Schulz [54],
or by adding them to the Lagrangian of the original problem via multipliers, as introduced by Kusch,
Walther, et al. [124, 72].
Most of this research emphasizes the adequate choice of a design preconditioner to ensure the
convergence and stability of the algorithm. Therefore, as part of the presented thesis, the introduced
Sobolev smoothing motivated techniques are tested as preconditioners within the One Shot frame-
work. Multistep One Shot algorithms are used and the additional design constraints are handled
following the ideas in [54], since they can be easily extended to include multiple additional con-
straints, including geometric inequalities, without additional changes to the underlying adjoint solver.

Parameterization
In shape optimization, the shape to be designed is the component’s geometry which has to be de-
scribed. In industrial and engineering applications, this is done in a computer-based format, usually
given by a CAD model [112]. Such a model uses a mathematical parameterization and describes
the shape by several discrete values, called the design parameters. Naturally, the optimization then
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becomes a question of finding the optimal set of design parameters. Derivative-based algorithms
have to consider this when deriving their formulation of gradients. However, these typically only
compute first order derivatives. The matter becomes much more involved when considering higher
order differentiation as computational costs increase [48].
Theoretically, only requiring correct generalization of the chain rule, the exact formula for multidi-
mensional higher order derivatives is known as the generalized Faà di Bruno formula [31, 38]. It
can be adapted and simplified in the presented context to incorporate the parameterization into the
formulation of an approximated reduced shape Hessian matrix.
Special focus is given to keeping these results independent from the particular choice of parameteri-
zation. For the results presented in this thesis, Hicks-Henne functions [57] and FFD boxes [111] are
used since these approaches are representative of a wide array of common parameterizations used
throughout the aerodynamics community. Other parameterizations can be used as well, as long as
their first order derivatives are available.

Shape Hessians and Sobolev Smoothing
Next, shape calculus, especially regarding shape Hessian approximation and Sobolev smoothing,
has to be considered. A general overview of the topic can be found in multiple textbooks [116, 84,
6]. Such mathematical formulations usually require very complex differential calculus and a deep
understanding of the functions and operators involved. Naturally, this can be a significant drawback
for the fast adaptation of such work in numerical applications.
Discretization of the calculated derivatives on the computational mesh often leads to high-frequency
oscillations in the sensitivities and subsequent induced errors. This has led to several techniques to
increase the regularity of the search direction and smoothen the sensitivities, with Sobolev smoothing
being one of the most popular ones. An introduction can be found in the books of Faragó and
Karátson [39], or Neuberger [88]. A related idea was first proposed in a CFD context by Jameson
[62], although not fully formulated back then.
Most actual research papers on shape Hessians focus on applying general mathematical techniques to
derive the Hessian formulation for a specific problem. This is either done in a completely continuous
formulation or as a free node optimization on the mesh level. For example, Schmidt [105] presented
a method to derive weak and strong formulations of shape Hessians automatically and applied this to
an iso-perimeter problem and incompressible Navier-Stokes equations. Until now, no research has
explicitly considered the effect of the geometry parameterization on the formulation of a smoothing
operator as a shape Hessian approximation.
An approach to formulate the operator symbol for the Hessian of a drag minimization problem with
Euler equations was done by Arian and Ta’asan [10], where the investigation of a ‘small disturbance
problem’ leads to the smoothing of sensitivities on the design surface in a chord-wise direction while
coarsening them in a span-wise direction. Following up on this, Arian and Vatsa [11] developed
a smoothing operator for shape optimization and proposed to remesh the deformed area after the
update step. Based upon these results, Kusch, Schmidt, and Gauger [70, 71] investigated the drag
minimization problem for Stokes equations. The authors were able to formulate the operator symbol
for the Hessian in local coordinates and approximate it in terms of a Laplace-Beltrami operator. A
result that inspired the research done in this thesis
Other researchers proposed alternative partial differential operators as well to improve the regu-
larity of the search direction, e.g., using a Stecklov-Poincaré type metric proposed by Schulz and
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Siebenborn [110], or a p-Laplace problem suggested in a more recent study by Müller, Kühl, et
al. [85].

1.2 Research Objectives
This thesis aims to combine different research areas relevant to aerodynamics shape optimization.
First, the discrete adjoint optimization framework, and especially the One Shot optimization ap-
proach, are extended by a novel optimization technique. This technique combines the Sobolev
smoothing method for sensitivities on the surface or volume level with design parameterizations of
the computational mesh. The aim is to interpret this combination as a shape Hessian approximation
and deploy it in a flexible optimization framework, with the potential to perform simultaneous
analysis and design. Furthermore, all of this is formulated in a general way to allow for the extension
of additional constraints straight away. To achieve this stated objective and demonstrate the presented
methodology’s capabilities, this thesis begins by formulating the mathematical framework, discusses
the implementation, and finally presents numerical experiments.
Mathematically, to achieve such a novel Sobolev smoothing methodology, a theorem on the con-
nection of the discretized shape Hessian and the second order derivatives with respect to the design
parameters is introduced and proven. These theoretical results are used to construct an efficient yet
computationally cheap, Sobolev smoothing operator on the space of design parameters. A special
focus is given to incorporating the new results into a flexible reduced SQP optimization framework.
Issues, such as additional constraints and the extension to One Shot optimization, are discussed and
practical solutions are formulated.
The presented algorithms are implemented within a state of the art software framework for aero-
dynamic optimization. This implementation’s key ideas and relevant features are highlighted and
addressed in detail.
Numerical experiments are performed for relevant reference test cases using the newly developed
algorithms. The results are examined and compared to similar, commonly used optimization
techniques, both in terms of mathematical performance and computational cost. This includes
investigating the improvement in the objective function, adherence to constraints, and convergence
behavior. In addition, computational costs are examined in terms of runtime and iteration counts on
different processor architectures on an HPC cluster. These numerical evaluations and results are
discussed with respect to applicability in the initially proposed aerodynamic shape optimization.
The novelty of the presented thesis is the successful combination of Sobolev smoothing with a
design parameterization and its application as a shape Hessian approximation for aerodynamic
design optimization. The work combines all of this within a flexible One Shot algorithm to achieve
considerable benefits for industrially relevant applications. Thus, not only pure Sobolev gradients
are used, but also a powerful optimization algorithm for constrained shape optimization problems is
formulated.

1.3 Structure of This Thesis
The layout of this thesis aims first to establish all fundamental topics and then introduce the results
step by step. To this end, the earlier chapters may initially stand on their own, but they will all be
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interconnected later on.

• Chapter 2: This chapter serves as an in-depth introduction to the scientific background. Fun-
damental concepts and the related notation are introduced, including aerodynamic concepts,
such as flow equations, aerodynamic functionals, and turbulence modeling. This is extended
by the basic notations for computational meshes and finite volume flow solvers. Afterwards,
the notation for mathematical optimization and derivative-based optimality criteria is stated,
and basic concepts from shape calculus are introduced. Here, the role of design parameteriza-
tion is pointed out and the parameterizations used in this thesis are derived from geometric
modeling. Finally, the discrete and continuous formulations of the optimization problem are
compared to each other.

• Chapter 3: This chapter aims at an introduction of the discrete adjoint optimization framework.
First, the adjoint calculus is derived from the optimality conditions. This is done in a free
node formulation. Next, special attention is given to presenting the effects a parameterization
has on this formulation. Afterwards, an overview of algorithmic differentiation is combined
with an explanation of how it can be used to calculate the derivatives appearing in the adjoint
formulation. With this, the basic iterative algorithms for solving the adjoint equation are
formulated. At the end of the chapter, the mathematical framework is used to construct a
reduced SQP optimization algorithm, allowing the basic adjoint method to consider additional
constraints.

• Chapter 4: This chapter enhances the discrete adjoint methodology into the One Shot
optimization framework. A short overview of the convergence analysis for the simultaneous
analysis and design strategy is given and then the One Shot algorithms used in this thesis
are formulated. In the end, the incorporation of additional optimization constraints into the
presented setting is discussed as well.

• Chapter 5: This chapter has two key objectives. First, different results on shape Hessians and
their connection to elliptic smoothing operators are presented, motivating the approximation
by such an operator. The Sobolev smoothing technique for function spaces and its application
to free node optimization are formulated. The second half of this chapter combines these
results with the design parameterization. The central theorem for the connection of reduced
shape Hessian matrices and discrete second order derivatives with respect to the parameters
is derived from the Faà di Bruno formula and proven. At last, this is combined with the
optimization algorithms for adjoint and One Shot optimization derived in Chapters 3 and 4.

• Chapter 6: After establishing the new algorithm for parameterized Sobolev smoothing in
the previous chapter, this chapter explains the implementation. It starts by introducing the
existing software frameworks in which the algorithms will be implemented. Afterwards,
the implementation for the computation of the smoothing operator based on finite elements
is discussed. This includes presenting the necessary changes to the existing adjoint solver
and how to compute and incorporate the derivatives of the parameterization. Finally, the
optimization algorithms introduced in Chapters 3 and 4 can be realized by building upon these
newly established implementations.
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• Chapter 7: In this chapter, the methodology derived in this thesis is applied to relevant test
cases from aerodynamic shape optimization. Two different test cases are considered and the
discussion is split into two parts for each of them. First, the newly developed preconditioner is
applied for classical adjoint optimization with exact, fully converged functions and gradients.
Second, it is tested for One Shot optimization. In both areas, the performance is evaluated in
several ways. The observed improvement of the optimization and the convergence behavior of
the implementation are compared to other relevant algorithms. In addition, the computational
costs, e.g., the runtime, are evaluated on different hardware architectures.

• Chapter 8: In the final chapter, the scientific results of this thesis are discussed. Beginning
with the theoretical results, followed by a discussion of the numerical experiments and their
findings. Afterwards, conclusions are drawn from these results on how to apply the new
algorithms for relevant aerodynamic shape optimization problems. Finally, a short outlook on
future research questions in the area is given, including ideas for potential improvements of
the presented algorithms.
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Chapter 2

Fundamentals

This chapter introduces the background of this work from different fields of research. This introduc-
tion aims to state the critical concepts used throughout this thesis and define the notation.
The first Section 2.1 gives a brief overview of aerodynamics, including the formulation of the flow
equations as conservation laws. Additionally, some essential aerodynamic functionals are defined
since they are used as objective functions and constraints in the numerical test cases for this work. At
last, the Reynolds averaging of the Navier-Stokes equations is stated and some information about the
turbulence models, used for numerical test cases, is given. In the second Section 2.2, the fundamental
ideas of a finite volume flow solver are introduced, as far as they are relevant for the computations
done in this work. This is complemented by a discussion on the role of the computational mesh,
which will become relevant when formulating the optimization problem. The third Section 2.3
revolves around the concepts from mathematical optimization used in this thesis. This begins with
the basic formulation of optimality criteria in optimization. Next, the definitions from shape calculus
for a continuous shape Hessian are stated, which are relevant later for understanding results from the
literature on how the Laplace-Beltrami operator can model the operator symbol of such a Hessian.
This is followed by a detailed discussion of the shape parameterization and its role in describing the
design, including the formulation of the parameterizations used in this thesis. Finally, the discrete
and continuous approaches to optimization are compared to each other.

2.1 Aerodynamics
This thesis discusses methods for aerodynamic shape optimization problems in the context of
engineering and industrial application. Much of the focus of this thesis lies on the construction of
algorithms, mathematical aspects of the partial differential equation (PDE) constrained optimization
problems, and the computationally efficient application of these ideas in relevant simulation software.
However, such a discussion still requires an understanding of the underlying PDE structure. This
section introduces essential concepts from aerodynamics to understand the flow equations involved
and the aerodynamic functionals used in the optimization problems. Note that it is not part of this
overview to discuss these physical equations’ exact modeling or derivation.
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2.1.1 Flow Equations
The term flow equation refers to the physical conservation laws dictating the state and movement
of a fluid, i.e., a gas or a liquid. Typical quantities described by this are mass, momentum, angular
momentum, and energy, whose conservation form the main laws of classical mechanics [73] and have
a deep connection to the symmetry of such physical systems via the famous Noether theorem [91].
In mathematical terms, the equations take the form of partial differential equations. The following
notation is based on the introductory textbook by Blazek [18, Chapter 2]. Further explanations can
be found in many standard textbooks, e.g., Anderson [8], or Schröder [107].

Ω

Γ

n

v

Figure 2.1: Flow domain around an airfoil.

As shown in Figure 2.1, the flow can be described in terms of several quantities, including the flow
volume Ω, the boundary Γ, the normal vector n, and the flow speed v. Following the idea of a
conservation law, some physical quantities must be preserved in an arbitrary flow volume. Listing
these conserved physical quantities gives three independent equations.

1. The continuity equation is the conservation of mass. For a fluid with density ρ , this means
that the rate of mass change over time must be equal to the mass flow over the boundaries of
the control volume ˆ

Ω

∂

∂ t
ρ dx+

˛
∂Ω

ρ〈v,n〉ds = 0. (2.1)

2. The momentum equation is the conservation of the flow momentum. According to Newton’s
second law, a change in momentum must equal the forces acting on the fluid. Overall,
summation of the involved forces results in an equation in integral formˆ

Ω

∂

∂ t
(ρv)dx+

˛
∂Ω

ρv〈v,n〉ds =
ˆ

Ω

ρFE dx−
˛

∂Ω

pnds+
˛

∂Ω

τnds. (2.2)

Here, three source terms are present on the right-hand side, representing different kinds of
forces. The term FE are the external (volume) forces acting on the fluid body, e.g., gravity.
The second term is the pressure distribution across the surface, resulting in a distributed force,
while in the last term of the expression τ is the so-called viscous stress tensor, related to the
fluid’s internal friction. It is worthwhile noting that the viscous stress tensor plays an essential
role in turbulence modeling, see Subsection 2.1.3.

3. The energy equation is the conservation of the total energy E, as stated by the first law of
thermodynamics. Normally, the ideal gas law

p = ρRT, (2.3)
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where R is the specific gas constant, is assumed to simplify the formulation. In addition, it is
assumed that

p = (γ−1)ρ(E− 1
2
〈v,v〉) and ρHE = ρE + p, (2.4)

where γ denotes the heat capacity ratio of the fluid and HE the enthalpy. Also, assume that the
heat transfer on the surface is modeled by Fourier’s law

qS =−k〈∇T,n〉, (2.5)

where T is the total temperature and k is the thermal conductivity coefficient. Then the
temperature can be expressed as

T =
p

Rρ
. (2.6)

With these connections, the conservation of energy can be written as
ˆ

Ω

∂

∂ t
(ρE)dx+

˛
∂Ω

ρHE〈v,n〉ds =
˛

∂Ω

k〈∇T,n〉ds+
˛

∂Ω

(τv)nds. (2.7)

Combining all three equations (2.1), (2.2), and (2.7) into one overall set of equations results in the
famous Navier-Stokes equations, which govern the behavior of a fluid according to classical physics

ˆ
Ω

∂

∂ t
W dx+

˛
∂Ω

(FC−FV )ds =
ˆ

Ω

Qdx. (2.8)

The short formulation, in Equation (2.8), utilizes several simplified terms, so one should clarify their
meaning. W is the vector of conservative variables

W = (ρ, ρv1, ρv2, ρv3, ρE)T . (2.9)

Where vi is the component of the velocity in the i-th unit dimension. The two flux terms have slightly
more involved formulas. To express them in a more readable way, the velocity normal to the surface
is denoted by vn = 〈v,n〉 and the Einstein sum convention is used, stating that a sum is taken over all
indices which appear multiple times in an expression. Then the flux terms are

FC =


ρvn

ρv1vn +n1 p
ρv2vn +n2 p
ρv3vn +n3 p

ρHEvn

 , FV =


0

τ1,ini
τ2,ini
τ3,ini

ni

(
τi, jv j + k ∂

∂xi
T
)

 . (2.10)

Finally, the source term on the right-hand side of the equations is given by

Q = (0, ρFE,1, ρFE,2, ρFE,3, 0)T . (2.11)

Instead of the conservation formulation, also referred to as weak formulation, given in Equation
(2.8), the Navier-Stokes equations are often expressed in differential form. For this, the solution is
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assumed to contain no shocks and a Newtonian fluid is assumed. Therefore, the viscous stress tensor
can be written as

τi j = µ

((
∂

∂x j
vi +

∂

∂xi
v j

)
− 2

3
∂

∂xk
vkδi j

)
. (2.12)

Here, the scalar constant µ is known as the shear viscosity.
When using the notation stated above, the Navier-Stokes equations are transformed into a system of
partial differential equations, which can be written separated into the three components for mass,
momentum, and energy [107, Chapter 4, Pages 45-48].

∂

∂ t
ρ +div(ρv) = 0

∂

∂ t
(ρv)+div(ρv⊗ v) = ρFE −∇p+∇

T
τ

∂

∂ t
(ρE)+div((ρE + p)v) =−div(k〈∇T,n〉)−div(τv)

(2.13)

Here, ⊗ denotes the outer product between two vectors. Due to the complicated nature of the
Navier-Stokes equations and the abundance of physical phenomena they describe, e.g., shocks,
vortices, turbulence, boundary layers, etc., many simplifications have been introduced in the past.
One of the most famous are the Euler equations. They neglect the viscous terms in the equations to
describe an inviscid fluid, thus taking the form

ˆ
Ω

∂

∂ t
W dx+

˛
∂Ω

FC ds =
ˆ

Ω

Qdx. (2.14)

While solutions of these equations do not show turbulence or boundary layer effects, they can still
model shocks. Therefore, they are a valid approximation in various applications, like laminar flows.
The Euler equations can be expressed in a differential form as well.

∂

∂ t
ρ +div(ρv) = 0

∂

∂ t
(ρv)+div(ρv⊗ v) = ρFE −∇p

∂

∂ t
(ρE)+div((ρE + p)v) =−div(k〈∇T,n〉)

(2.15)

Of course, more complex physical models exist to express more complicated flows, e.g., turboma-
chinery applications [34, 121], non-equilibrium flows [78], etc., but these applications are beyond
the scope of this work.

2.1.2 Aerodynamic Functionals
While the last Subsection 2.1.1 explains the equations describing the flow of a fluid in a given
geometry, the solutions of such partial differential equations are highly nonlinear functions. From a
purely theoretical viewpoint, the continuous vector field W contains all the necessary information
in the conservative variables. Nonetheless, they are not stated in the most convenient form for an
engineer or anyone else interested in optimizing an aerodynamic shape. The total forces imposed by
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xref

α: angle
of attack

v: freestream
velocity

pitching
moment

drag

lift
aerodynamic

force

Figure 2.2: Aerodynamic forces acting on an airfoil.

the fluid on the geometry are usually what one is interested in. They can be stated in terms of scalar,
dimensionless aerodynamic coefficients, which allow a comparable measure for the aerodynamic
performance of different shapes. In this subsection, a few of them are defined, as long as they
are relevant to the scope of this thesis. Regardless, one should remember that many more such
coefficients and efficiency functionals are known throughout the engineering community. For
example, multiple efficiency definitions are used to evaluate the performance of turbomachinery [34,
Chapter 2].
The force acting on an object moving through a fluid depends on the pressure distribution p and the
shear stress tensor τ over the surface

F =

ˆ
Γ

−pn+ τnds. (2.16)

It is a major goal in aerodynamics to calculate the pressure p and shear stress tensor τ and to
derive expressions for the forces from them. In general three-dimensional settings, this can get very
involved and the following discussion is simplified to shorten the notation here. The complete force
calculation can be found in the introductory textbooks by Blazek [18, Chapter 2], or Anderson [8,
Chapter 1]. The total force can be subdivided into a superposition of forces in different directions,
see Figure 2.2. In general, the component of this force parallel to the freestream direction is called
the drag, while the orthogonal component is named the lift. Also, a common technique is to express
these in a dimensionless form to avoid the influence of the size, as making an object smaller naturally
reduces the total force.
First, consider reference values derived from the freestream condition and the shape to calculate a
dimensionless expression for the force.

• p∞: The static pressure in the freestream.

• ρ∞: The fluid density in the freestream.

• v∞: The freestream velocity, i.e., the negative velocity of the shape through the fluid.

• lref: The reference length of the shape, which gives a notion of the overall size.
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• Sref: The reference surface area of the shape. For two-dimensional cases Sref = lref.

Some additional terms can be defined to simplify the notation using these quantities.

• dynamic pressure: q∞ = 1
2ρ∞v2

∞

• pressure coefficient: cP = (p−p∞)
q∞

• skin friction coefficient: cτ =
τ

q∞

These dimensionless numbers link the static pressure and friction in the evaluation point with the
freestream conditions, i.e., the flow solution in an infinite distance to any obstacle. So now the three
most common aerodynamic coefficients from engineering can be calculated as parts of the total
force and defined as integrals over the flow surface.

1. The drag coefficient cD gives a dimensionless measure of the drag. Let iv∞
denote the unit vec-

tor in direction of the freestream velocity. For a given angle of attack α and following standard
convention, this is iv∞

= (cos(α),sin(α))T in two dimensions and iv∞
= (cos(α),0,sin(α))T

in three dimensions. Then

cD =
1

Sref

ˆ
Γ

−cP〈iv∞
,n〉+ 〈iv∞

,cτn〉ds. (2.17)

This is the resistance of the given shape against being moved through the fluid. Compared to
classical friction, for solid on solid movement, here the resistance is caused by viscous and
convective forces. However, the drag is sensitive to effects like shocks and turbulent effects
that would not occur for any solid friction.

2. The lift coefficient cL is a dimensionless measure for the lift produced by a shape. This
is the force acting perpendicular to the drag. Following the previous convention, one
can define the vector i⊥v∞

as i⊥v∞
= (−sin(α),cos(α))T in two dimensions and i⊥v∞

=
(−sin(α),0,cos(α))T in three dimensions. Then

cL =
1

Sref

ˆ
Γ

−cP〈i⊥v∞
,n〉+ 〈i⊥v∞

,cτn〉ds. (2.18)

For level flight, this force acts in the opposite direction as gravity, e.g., in aircraft wings, where
it is of key importance. There are also applications in which a negative lift, meaning in the
same direction as gravity, might be desired, e.g., the spoiler of a race car.

3. The pitching moment cM(xref), with respect to a reference point xref, is given by

cM(xre f ) =
1

Sref lref

ˆ
Γ

−cP((x− xref)×n)+((x− xref)× (cτn))ds. (2.19)

The components of this vector are the pitching moments around the corresponding coordinate
axis and this dimensionless constant is used to illustrate the torque imposed by the aerodynamic
forces acting on a shape.
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This is only a tiny glimpse at the vast amount of possible functionals used in aerodynamic shape
optimization. Nonetheless, they give a good example to the reader about the kind of functionals
relevant to the scope of this work. In particular, they demonstrate what mathematical form the
objective functions and the constraints used for aerodynamic shape optimization might take. For the
rest of this thesis, optimization problems are generally formulated with such quantities as objectives
and constraints, thus requiring the application of nonlinear optimization techniques for real-valued
functions.

2.1.3 Turbulence Modeling
One of the most significant problems when dealing with computational fluid dynamics is the
treatment of turbulence. Introductions to turbulent flows can be found in many textbooks, such
as Pope [96] or Wilcox [125]. A vast quantity of research has been done on this topic and many
possible approaches are known. The most accurate way would be to use a computational mesh
that is fine enough to resolve all relevant turbulent effects in the flow solution completely. This
approach is known as the direct numerical solution (DNS) and requires an unfeasible amount of
computational power, even in relatively simple cases. Therefore, it is usually inapplicable for larger
simulations, outside of academic test settings.
A much more practical idea is to solve an averaged version of the flow equations and compute an
additional turbulence model, which imitates the main properties of the turbulent behavior. For this,
another set of equations is introduced, the so-called Reynolds averaged Navier-Stokes equations
(RANS). Their main purpose is to run computations with coarser computational meshes while still
capturing the major flow properties in the solution.
Of course, not all flows are turbulent by nature. A useful indication for the occurrence of turbulence
is a high Reynolds number

Re =
ρv∞lref

µ
. (2.20)

The dimensionless Reynolds number describes the ratio of inertia to viscous forces and plays an
important role in fluid dynamics. It turns out that flows with low Reynolds numbers tend to be
laminar, while high Reynolds numbers are a sign of turbulent flows.
In the case of turbulent flows, an averaging approach can be used to split the occurring terms into
two parts. For example, a quantity x might be written as

x = x+ x′. (2.21)

With x being the time average of x and x′ being the fluctuation around this average. The time average
itself is defined as

x = lim
δ t→∞

1
δ t

ˆ
δ t

xdt. (2.22)

Averaging over time is appropriate for stationary turbulence phenomena, but the same basic principle
can be applied to spatial or other averaging if the kind of flow requires it, see Wilcox [125, Section
2.1]. For a shorter notation, it is useful to calculate the mass weighted time average as well, where a
quantity is written as

x = x̃+ x′′, (2.23)
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with the average being defined via

x̃ =
lim

δ t→∞

1
δ t

´
δ tρxdt

lim
δ t→∞

1
δ t

´
δ tρ dt

. (2.24)

The original Navier-Stokes equations (2.13) can be averaged into the RANS equations, using a
combination of time and mass weighted averages in a process known as Favre averaging, see for
example Eisfeld [36] or Wilcox [125, Section 5.2]. For brevity, expressions are once again written
using the Einstein sum convention.

∂

∂ t
ρ +

∂

∂xk
(ρ ṽk) = 0

∂

∂ t
(ρ ṽi)+

∂

∂xk
(ρ ṽi ṽk)+

∂

∂xk
(ρv′′i v′′k ) =−

∂

∂xi
p+

∂

∂xk
τik +ρFE

∂

∂ t
(ρẼ)+

∂

∂xk
(ρ H̃E ṽk)+

∂

∂xk
(ρ H ′′Ev′′k ) =

∂

∂xk
(τikṽi)+

∂

∂xk
(τikv′′i )−

∂

∂xk
(qS)k

(2.25)

These equations have a similar structure to the original Navier-Stokes equations. However, new
terms appear for the turbulence and therefore, there are more unknowns. These terms are known as
the Reynolds stress tensor

ρv′′i v′′k = ρ ṽ′′i v′′k , (2.26)

or the specific Reynolds stress tensor
R̃ik = ṽ′′i v′′k . (2.27)

The main idea behind any turbulence model is to replace these terms in the RANS equations with an
approximation expressed in terms of the other variables. The aim is to give a closure for the system,
i.e., have as many equations as there are unknowns. Two popular turbulence models are used for the
test cases in this work.

1. The Spalart–Allmaras (SA) model [117] introduces a new variable called the turbulent eddy
viscosity ν̂ and a transport equation for it. Because of this, it is normally referred to as a one
equation model.

2. The Menter Shear Stress Transport (SST) model [83] blends two turbulence models into each
other, with both of them being two-equation models. First, a k-ω turbulence model is used
for the inner boundary layer. This model is based on the turbulent kinetic energy k and a
dissipation rate ω for this energy. Second, a k-ε model is used in the flow domain consisting
of two PDEs to describe the behavior of the turbulent kinetic energy k and a different rate of
dissipation ε .

Naturally, each turbulence model represents a compromise between simplicity and accuracy. Higher
degrees of accuracy, and thereby better flow solutions, can be achieved by using more involved
Reynolds stress models [37, 61]. However, this requires additional knowledge and effort for the
implementation and increases computational costs. Also, it is worth noting that recent developments
try to employ machine learning to enhance the accuracy of existing turbulence models [95].
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2.2 Computational Fluid Dynamics
Establishing the physical model and formulating partial differential equations for the flow problem
is only the first step of doing actual shape optimization with them. Next, the equations introduced
in Subsection 2.1.1 have to be solved. Unfortunately, a proof for the existence and uniqueness of
solutions to the Navier-Stokes equations remains one of the biggest open problems in mathematics
[40], so it should not be expected to have an analytical solution at hand for optimization. Nonetheless,
a wide variety of numerical schemes for approximate solutions is available. These approaches vary
and can range from finite volume methods [18, 76], or discontinuous Galerkin methods [30], over
lattice Boltzmann methods [27], all the way to meshfree and particle simulations [75]. In this thesis,
the simulations are done using the state of the art CFD framework SU2 [35, 93], more details on
this will be given in Subsection 6.1.1. The SU2 flow solver uses finite volume methods, which have
proven to be very powerful in the past and offer great potential for using adjoint approaches.

2.2.1 Computational Meshes
Before discussing the numerical schemes themselves, some words about spatial discretization are
helpful. Computational meshes or grids arise as a natural consequence of numerical representation
in an algorithm [18, 58, 74]. Finding a good way to represent a function inside a computer is a
relevant research topic in its own right, but in most cases, this is solved by storing a triangulation of
the domain and storing discrete function values on the vertexes or cells. Applying this principle to
the spatial domain directly leads to the flow domain being represented by a set of coordinate points
called the nodes, which form the mesh.

(a) Structured rectangular grid. (b) Unstructured triangular grid.

Figure 2.3: Examples for a structured grid (surface cells on an ONERA M6 wing) and an unstructured
grid (cells around a NACA 0012 airfoil).

Different types of grids are available, which can be generally divided into structured and unstructured
grids [17, 26]. Figure 2.3 shows a visualization for both types of meshes.

1. Structured grids form a regular pattern with their mesh cells. Meaning all nodes are ordered,
which simplifies the formulation of numerical schemes, e.g., loops and other accesses, since
neighboring cells can be identified from the indices of the involved nodes.
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2. Unstructured grids do not have this regularity allowing for a higher degree of freedom. This
is used to better adapt to the shape of the flow domain Ω and especially the boundary. In
addition, it can be easier to adapt the resolution to a finer scale in some crucial areas. This
property can be seen in Figure 2.3, where the unstructured grid has a very fine resolution
around the front and trailing edge of an airfoil. Nevertheless, unstructured meshes are more
complicated for implementation since the connectivity between nodes has to be stored and
can no longer be computed by simple node index arithmetic.

The test cases in this thesis use unstructured meshes and the unstructured SU2 solver, see Palacios,
Colonno, et al. [93, Section 4]. In particular, an edge-based structure on a dual grid, as visualized in
Figure 2.4. Median-dual control volumes are constructed by connecting the primal grid cell centers
of all cells around one node and a vertex-based numerical scheme is formulated based on this dual
mesh.

Ω j

Ωi

ni j

black: primal grid
red: dual grid

Figure 2.4: Schematic image of the primal and dual grid and control volumes.

2.2.2 Finite Volume Methods
The SU2 flow solver [35, 93] used for this work is based on the finite volume method [18, 76]. Here,
a brief summary of the structure and principles of such schemes is given, as far as they are relevant
for this work. For a detailed description of the numerical schemes, see Palacios, Colonno, et al.
[93, Section 4]. The main idea of the finite volume method is to discretize the flow equation in two
stages.
First, the spatial domain of the flow problem is discretized by a computational mesh, as introduced
in the last Subsection 2.2.1. This leads to discrete values for the conservative variables in each
control volume, therefore the name finite volume. Taking a look at the structure of the Navier-Stokes
equations (2.8) in integral form, they should hold on each control volume Ωi in the mesh,

ˆ
Ωi

∂

∂ t
W dx+

˛
∂Ωi

(FC−FV )ds =
ˆ

Ωi

Qdx. (2.28)
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Following the dual mesh based formulation in [93], the spatial terms in Equation (2.28) can be
replaced by discrete quantities leading to a semi-discretized formulation

∂

∂ t
Wi|Ωi|+ ∑

j∈N (i)

(
F̄C(Wi,Wj)+ F̄V (Wi,Wj)

)
−Qi|Ωi|=

∂

∂ t
Wi|Ωi|+Ri(W ) = 0. (2.29)

Here, the terms F̄C(Wi,Wj) and F̄V (Wi,Wj) represent the convective and viscous fluxes from the i-th
to the j-th control volume and Qi is a source term, also see Figure 2.4. Their exact computation varies
depending on the finite volume scheme. For the test cases in this thesis, the Jameson-Schmidt-Turkel
(JST) scheme is utilized. This scheme was originally developed for structured meshes [66], with
newer versions for unstructured meshes being available [65, 63].
The important point is that the spatial terms can be combined into the residual Ri(W ), leading to an
ordinary differential equation (ODE) in time. Equation (2.29) can then be solved by a numerical
time integration method. Here, the implicit Euler method is shown. Although, it is important to
remark that most implementations also offer explicit Runge-Kutta methods.

|Ωi|
δ tn

i

(
W n+1

i −W n
i
)
=−Ri(W n+1) (2.30)

The unknown value of the residual at the next time step R(W n+1) can be computed by linearization

Ri(W n+1) = Ri(W n)+
∂

∂ t
Ri(W n)δ tn

i +O((δ tn
i )

2)

= Ri(W n)+ ∑
j∈N (i)

∂

∂Wj
Ri(W n)(W n+1

j −W n
j )+O((δ tn

i )
2).

(2.31)

Inserting Equation (2.31) into Equation (2.30) results in a linear system of equations for the time
update δW n

j =
(

W n+1
j −W n

j

)
,(
|Ωi|
δ tn

i
δi j +

∂

∂Wj
Ri(W n)

)
δW n

j =−Ri(W n). (2.32)

At last, the solution for the next timestep can be computed with a linear equation solver. Due to the
nature of the underlying equations, the matrix in Equation (2.32) is very high-dimensional and has
a sparse structure. This means that iterative solvers are preferable, e.g., the Generalized Minimal
Residual Method (GMRES) [102] or the Lower-Upper Symmetric-Gauss-Seidel Method (LU-SGS)
[67].
The example above shows how finite volume methods can be used to compute a solution to the flow
equations, yet the kind of solution one is interested in may vary. One import type are steady state
solutions, that is solutions to Equation (2.29) where ∂

∂ tW = 0. Such situations arise naturally in many
engineering and industrial applications, e.g., consider the case of a plane flying at a constant speed
and altitude. Here, the source terms in the flow equation are constant over time and the solution at
each position should have this property too. For this scenario, the ODE solver from Equation (2.30)
is mathematically just a fixed point iteration to find the steady state solution.
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Definition 2.2.1 (pseudo time-stepping). Assume that W ∗ is a steady state solution which solves
Ri(W ∗) = 0, then time iteration for the ODE from Equation (2.29) converges against W ∗, if the
numerical time integration method is stable, i.e.,

lim
n→∞

W n
i =W ∗i . (2.33)

This procedure is known as pseudo time-stepping.

Remark 2.2.2. From now on, it is assumed that the flow problems in this thesis have a steady state
solution computed by pseudo time-stepping with a finite volume scheme.
This solution can be represented by storing the values of W ∗i on all cells Ωi into a vector which is
denoted by u ∈ Rnu .

For finite volume methods, one usually assumes consistency and accuracy of the obtained solution.
Let W |mesh ∈ Rnu be a vector containing the exact solution in the control volumes. Then the error in
a suitable norm should be smaller than a given tolerance

‖u−W |mesh‖< tol1. (2.34)

Since the exact solution is oftentimes not available and experimental data is hard to obtain, mesh
refinement studies are used instead. The basic idea is that a consistent method must converge
against the exact solution if the size of the mesh cells approaches 0. Therefore, one constructs a
series of refined meshes and accepts the solution if it does not change too much under further mesh
refinement.

2.3 Fundamentals of Optimization
In this subsection, basic topics from mathematical optimization are summarized. The topics are
ordered in four subsections, first defining the fundamental criteria for optimality in numerical
optimization in Subsection 2.3.1. This is followed by a definition of the continuous shape Hessian
in Subsection 2.3.2, which will help understand the motivation of approximating Hessian operator
symbols later in this thesis. Then the role a mesh parameterization plays in describing the design
and how this affects the optimization are discussed in Subsection 2.3.3, followed by a comparison of
discrete and continuous optimization in Subsection 2.3.4.

2.3.1 Numerical Optimization
Since the topic of this thesis are methods for aerodynamic shape optimization and their applications,
a major recurring point throughout this work will be concepts from mathematical optimization.
Therefore, it seems appropriate to start by introducing the basic ideas and state fundamental theorems
for optimization. These results can be found in many standard-issue textbooks. Within this thesis,
the notation is inspired by the books of Nocedal and Wright [90, Chapter 12] and Luenberger and
Ye [77, Chapter 11].
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Definition 2.3.1 (optimization problem). Let F : Rn→ R, Ci : Rn→ R for i ∈IC, E j : Rn→ R for
j ∈IE be functions, IC = {1, . . . ,nC} and IE = {1, . . . ,nE} be sets of indices, then

min
x∈S

F(x)

s.t. ∀i ∈IC : Ci(x)≥ 0
∀ j ∈IE : E j(x) = 0

(2.35)

is called a constrained optimization problem.

Here, x is the optimization variable, F the objective function, Ci and E j the inequality and equality
constraint functions, and S⊂ Rn compact and simply connected the design space.
It is worth noting that the notation of the constraints can be simplified to get more convenient
expressions when formulating optimization criteria and algorithms. For this, they are combined into
vector-valued functions

C(x) :=

C1(x)
...

CnC(x)

 , E(x) :=

 E1(x)
...

EnE (x)

 . (2.36)

A point z ∈ S is called feasible if it fulfills the constraints, i.e.,

∀i ∈IC : Ci(z)≥ 0∧∀ j ∈IE : E j(z) = 0. (2.37)

Naturally, this defines the feasible set,

S f = {z ∈ S | ∀i ∈IC : Ci(z)≥ 0∧∀ j ∈IE : E j(z) = 0}. (2.38)

Throughout the rest of this thesis, the feasible set S f is assumed to be compact and non-empty.
Also, in constrained optimization some of the inequality constraints might be precisely zero for
a feasible point z. The notation of an active set SA is often used to mark for which inequality
constraint indices the constraint value is equal to zero

SA = {i ∈IC |Ci(z) = 0}∪IE . (2.39)

Remark 2.3.2. In this work, equality constraints are always assumed to be active.

The fundamental question in optimization is whether or not a feasible solution to the optimization
problem in Definition 2.3.1 exists and how to find it?
For an investigation of this question, possible solutions can be classified into two different types.

• A point x∗global ∈ S f is called a global optimum, if it has the smallest objective function value
among all feasible points

∀z ∈ S f : F(x∗global)≤ F(z). (2.40)

• A point x∗ ∈ S f is called a local optimum, if

∃ε > 0 : ∀z ∈ (S f ∩Bε(x∗)) : F(x∗)≤ F(z), (2.41)

where Bε(x∗) is the ε-neighborhood around x∗, with respect to the standard Euclidean norm.

19



While it is known from basic analysis that a global optimum must exist if F is continuous and
S f is compact and non-empty, this does not state how such an optimum can be found. If F is a
differentiable function, results from multi-dimensional analysis can be applied to give conditions
that any locally optimal point must fulfill. For unconstrained optimization problems, there is a
well-known necessary condition for optimality.

Proposition 2.3.3 (unconstrained first order necessary optimality condition). Assume IC = IE = /0.
Let x∗ be a local minimum of the objective function F, then DxF(x∗) = 0.

Remark 2.3.4. There are many equivalent notations for Proposition 2.3.3 throughout the literature.
It can also be stated in terms of the gradient ∇F(x∗) = DxF(x∗)T = 0, or the directional derivative
in arbitrary directions v, i.e., ∀v ∈ S : DxF(x∗)v = 0.

When dealing with a constrained optimization problem, there can be minima for which the derivatives
of the objective function do not vanish. In fact, the gradient of F only has to be zero inside the
feasible set S f to fulfill the optimality condition, while on the boundary of the feasible set S f , it is
sufficient that all directional derivatives pointing inside the set are larger or equal zero.
This implicit dependency on the constraints can be problematic in practice since a closed formula
for S f is often unknown, and it is preferable to have a different formulation. The introduction of a
Lagrangian function for the optimization problem allows for such an explicit formulation.

Definition 2.3.5 (Lagrangian function). The function

L(x,λ ) = F(x)+λ
T
E E(x)+λ

T
C C(x) (2.42)

is called the Lagrange function or Lagrangian associated with the optimization problem in Definition
2.3.1. The entries of the vector λ = [λE ,λC] ∈ RnE+nC are called Lagrange multipliers.

While everything up to this point holds without further assumptions, additional regularity conditions
are necessary to formulate optimality conditions with the Lagrange function.

Definition 2.3.6 (LICQ condition). For a local optimum x∗ and active set SA , the gradients of all
active constraints

{DxE1(x∗), . . . ,DxEnE (x
∗),DxC1(x∗), . . . ,DxC|SA |(x

∗)} (2.43)

must be linearly independent. This is called the linear independent constraint qualification (LICQ)
condition.

Using the Definitions 2.3.5 and 2.3.6 from above, the following famous theorem can be stated.

Theorem 2.3.7 (Karush-Kuhn-Tucker condition). Let x∗ ∈ S f be a local minimum, F(x),C(x),E(x)
be continuously differentiable in x∗, and the LICQ condition from Definition 2.3.6 be fulfilled, then
there exists a unique Lagrange multiplier λ ∗ such that

DxL(x∗,λ ∗) = DxF(x∗)+(λ ∗E)
T DxE(x∗)+(λ ∗C)

T DxC(x∗) = 0 (2.44)

C(x∗)≥ 0 (2.45)

E(x∗) = 0 (2.46)

∀i ∈IC : λ
∗
i ≤ 0 (2.47)

∀i ∈IC : (λ ∗i )
TCi(x∗) = 0 (2.48)

These equations are called the KKT (Karush-Kuhn-Tucker) conditions.
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Proof. A proof for this theorem is given in many introductory textbooks for optimization, e.g.,
Nocedal and Wright [90, p. 331-342].

Remark 2.3.8. The equations ∀i ∈IC : (λ ∗i )
TCi(x∗) = 0 imply that the Lagrange multipliers for

inactive constraints are 0, and thus the values of these constraints do not effect the value of the
Lagrangian L(x∗,λ ∗). This is known as complementarity.

For twice differentiable functions, further optimality conditions can be stated using the Hessian
matrix of the Lagrangian function DxxL. It is important to note that these are sufficient, and not
only necessary, conditions. Once again, it is helpful to start with the condition statement for the
unconstrained case.

Proposition 2.3.9 (unconstrained second order sufficient optimality condition). Let x∗ ∈ S f be a
critical point and let for all directions v ∈ Rn hold

DxF(x∗) = 0

and vT DxxF(x∗)v > 0,
(2.49)

then x∗ is a local minimum.

Proof. See Luenberger and Ye [77, Section 7.3].

To state this condition for the constrained case, the Hessian matrix of the Lagrange function has
to be positive semidefinite in all feasible directions. The feasible directions can be qualified by
introducing a set

W :=

w ∈ Rn

∣∣∣∣∣∣
∀ j ∈ {1, . . . ,nE} : DxE j(x∗)T w = 0
∀i ∈ SA with λ ∗i < 0 : DxCi(x∗)T w = 0
∀i ∈ SA with λ ∗i = 0 : DxCi(x∗)T w≥ 0

 . (2.50)

This definition looks confusing at first, but essentially it consists of all directions in the tangent cone
of the feasible set for which it is unclear whether F increases or not. So now, second order conditions
can be stated for the constrained problem similar to the KKT conditions using the Lagrangian.

Theorem 2.3.10 (second order sufficient optimality condition). Let x∗,λ ∗ fulfill the KKT conditions
and F(x),E(x),C(x) be twice continuously differentiable in x∗. If

∀w ∈W,w 6= 0 : wT DxxL(x∗,λ ∗)w > 0 (2.51)

then x∗ is a local minimum.

Proof. See Nocedal and Wright [90, Theorem 12.6].

Almost all derivative-based optimization algorithms are designed to find points fulfilling these opti-
mality conditions. The second order condition is superior in the sense that it is a sufficient condition,
meaning it already implies optimality. However, it is considerably harder to computationally find
points fulfilling Theorem 2.3.10, than to compute points fulfilling Theorem 2.3.7.
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Figure 2.5: Flow area, design boundary, and flow obstacle.

2.3.2 Shape Calculus and Shape Hessians
In Subsection 2.3.1, the fundamentals of numerical optimization for a finite-dimensional setting are
introduced. Nonetheless, this thesis is partially inspired by and deals with approximations of shape
Hessians. Formulating a shape optimization problem in a continuous setting will be done in the
following Subsection 2.3.4. But first, it is important to define differentiability for a functional F
with respect to a domain Ω. Here, the introduction follows the book by Sokolowski and Zolesio
[116, Chapter 2].
The situation is shown in Figure 2.5. It is generally assumed that the flow domains are from a set of
admissible shapes, Ω ∈ SΩ ⊂P(Rd). For the definition of shape derivatives, assume that Ω is a
closed manifold with boundary Γ piecewise in class C2, with intersections in C1, see the discussion
in [116, Chapter 2]. Also, the flow domain Ω is part of a compact, simply connected domain called
the hold-all, i.e., Ω⊂M (Ω). Then let F : SΩ→ R,Ω 7→F (Ω) be a functional depending on the
flow field in Ω. At first, a variation in the domain must be defined. For first order derivatives, the
following class of deformations is used.

Definition 2.3.11 (perturbation of identity). Let v ∈C2(M (Ω),Rd) be a differentiable vector field,
then

Ω(t)[v] := {x+ tv(x)|x ∈Ω} (2.52)

is a deformed domain.

Remark 2.3.12. In Definition 2.3.11, the vector fields v have to be twice continuously differentiable
to ensure that admissible shapes are mapped to admissible shapes. The boundary Γ being in class
C2, with intersections in C1, is necessary in case the functional F is defined by a boundary integral
on Γ. For more details on the regularity requirements see [116, Section 2.32].

Using the perturbation of identity, it is possible to define the derivative canonically as the limit with
respect to change in the domain.

Definition 2.3.13 (shape derivative). Let v ∈C2(M (Ω),Rd) be an arbitrary vector field, then the
shape derivative or Eulerian derivative in direction v is defined as the one-sided limit

DF (Ω;v) = lim
t→0+

F (Ω(t)[v])−F (Ω)

t
. (2.53)

The functional F is called shape differentiable if:
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1. The shape derivative DF (Ω;v) exists for all v ∈C2(M (Ω),Rd).

2. The mapping DF (Ω) : C2(M (Ω),Rd)→ R : v 7→DF (Ω;v) is linear and continuous.

With this notion of differentiability in place, one might be inclined to directly define the second
order derivative as applying the shape differentiation twice.

Remark 2.3.14. Applying the shape derivative in a direction twice does not lead to a well-defined
second order derivative. The mapping is not bilinear in v1, v2 because the second perturbation of
identity would be applied to an already deformed manifold.

Instead, a new definition is necessary, being linear in two arguments, to define second order
differentiation.

Definition 2.3.15 (double perturbation of identity). Let v1,v2 ∈C2(M (Ω),Rd) be differentiable
vector fields, then

Ω(t1, t2)[v1,v2] := {x+ t1v1(x)+ t2v2(x)|x ∈Ω} (2.54)

is a doubly deformed domain.

Definition 2.3.16 (second order shape derivative and shape Hessian). Let v1,v2 ∈C2(M (Ω),Rd) be
two arbitrary vector fields, then the second order shape derivative in those directions is defined as

D2F (Ω;v1,v2) = lim
t2→0+

lim
t1→0+

F (Ω(t1, t2)[v1,v2])−F (Ω(t1)[v1])−F (Ω(t2)[v2])+F (Ω)

t1t2
.

(2.55)
This limit defines a bilinear mapping in the two arguments v1,v2.
Assume that (χ,〈•,•〉) is a suitable Hilbert space, with χ ⊂ C2(M (Ω),Rd), then there exists a
unique representation

D2F (Ω;v1,v2) = 〈HessF (Ω)v1,v2〉. (2.56)

The operator HessF (Ω) is commonly called the shape Hessian of F .

2.3.3 Shape Parameterization
For engineering applications, the design has to be stored and processed in a computer and thus can
not be described in the mathematical terms of domains and manifolds. Instead, a parameterization
has to be used, which is oftentimes done in the form of a computer-aided design (CAD) tool [112].
To better understand how the connection between shape, parameterization, and computational mesh
is relevant for this work, these concepts are explained here in more detail.

1. The shape refers to the object itself, which is assumed to be a compact manifold Θ with a
closed boundary Γ piecewise in class C2, with intersections in C1. Γ is also called the surface
for obvious reasons, see the situation depicted in Figure 2.5. Subsection 2.3.4 discusses this
setting and how to formulate an optimization problem there in more detail. However, it is
challenging to do analytic computations on this level.
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2. Parameterization itself is a word used in various contexts, from mathematics, physics, me-
teorology, and other sciences. Here, it is used in its geometric or mathematical meaning,
which is giving a parametric equation to describe the geometry. A parametric equation refers
to a description that gives the desired object as a function of a finite number of real-valued
parameters. Usually, one also demands those equations to be explicit algebraic expressions,
but implicit formulations are also possible.

3. The computational mesh is, by definition, a triangulation of the flow area Ω. Therefore, the
surface cells are naturally a triangulation of Γ. For the present context, this means that a
parameterization will consist of two combined mappings, one from the design parameters
to the surface nodes of the computational mesh and one for the internal deformation of the
volume mesh according to the surface movement.

Figure 2.6: Example of a shape and the associated mesh.

To better visualize these points consider the trivial example shown in Figure 2.6, where the shape
itself is just a circle with a fixed radius. Here, the design parameter is the radius p that describes the
surface coordinates by the equation √

(x−0.5)2 + y2 = p (2.57)

and an example of a mesh can be seen on the right side of the figure.
The key ideas introduced in this thesis are focused on this concept of parameterization. In particular,
how parameterization has to be taken into account and influences the results when applying certain
types of shape optimization techniques. When working on a discrete level, it is not apparently clear
at what level of discretization the optimization is done. Two possibilities for this can be summed up
as follows.

1. Using the computational mesh from the CFD solver as a discrete representation, see Section
2.2 for more details. The obvious advantage is that the discretized flow equations are already
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expressed on this level, which helps with consistency. This approach can yield a very well
attuned solution, but it is undesirable from an engineering viewpoint. An optimized mesh
geometry can not easily be returned to an industrial design or manufactured and projecting it
back into a manufacturing-friendly form typically leads to a performance loss.
Furthermore, using all node coordinates as a high-dimensional design space leads to problems
with regularity and the optimization process will suffer from high-frequency noise if the
movement of vertices is not restricted.

2. Alternatively, a parameterization can be used as a discrete representation of the geometry,
meaning that the mesh and thereby the entire design depend on a vector of design parameters
p. In this case, the use of gradient-based optimization requires further projections, via the
derivatives of the parameterization. For example, CAD representations common throughout
the industrial design process might be used in such a way.

For theoretical work and academic test cases, mathematicians prefer to directly work on the mesh
coordinates. This is called the free node approach and simplifies the process since the computational
mesh and the design parameters are equal, omitting the necessity of a parameterization. However,
it should be clear by now that a parameterization is the norm in industrial applications and that a
discrete set of parameters represents the object to be designed.
Naturally, there is an enormous amount of theory on the properties of such a description and how to
find a good representation. The different types of parameterizations used in this work are introduced
in the following. The objective is to highlight how the design parameters p are connected to the
Cartesian coordinates of a computational mesh via parameterization and introduce their role in the
formulation of shape optimization problems. Ultimately, this results in the next definition.

Definition 2.3.17 (mesh equation). Let p∈Rnp be a vector of design parameters and M : Rnp→Rnx

be a differentiable function, such that for the mesh coordinates x ∈ Rnx it holds that

x = M(p), (2.58)

then Equation (2.58) is called the mesh equation.

At this point, it should be mentioned that the parameterization consists of two steps. First, only the
nodes s on the design surface Γ are directly determined via parameter changes

MS : Rnp → Γ; p 7→ s. (2.59)

This part is the surface parameterization. All the other node coordinates x in the flow volume Ω

must be computed from s. This can be done by shifting the mesh nodes in a smooth deformation
according to the change in surface coordinates

MV : Γ→Ω;s 7→ x. (2.60)

The process is referred to as mesh deformation. In this thesis, a linear elasticity approach is used.
This can be calculated by a finite elements approach, where the stiffness can be based on different
settings, e.g., wall distance or inverse cell volume. A stiffness matrix A ∈ Rns×nx is set up and the
resulting linear equation system is solved,

Ax = s. (2.61)
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Together, such a two-staged parameterization approach expresses Equation (2.58) by a successive
computation

x = M(p) = MV(MS(p)). (2.62)

In the rest of this section, the surface parameterizations MS for the test cases in Chapter 7 are
presented.

Hicks-Henne Functions

The first parameterization used in this thesis are Hicks-Henne bump functions [57]. While they are
an old concept going back to the 70s, they are still a popular choice in research since they allow for
an easy setup of test cases. Starting with them also allows the introduction of concepts in a simple
formulation.
Consider an airfoil in two dimensions, as shown in Figure 2.2. A deformed airfoil can be created by
adding a smooth bump function to the surface. Assume that an airfoil is scaled to a unit coordinate
system υ1,υ2, such that the angle of attack is α = 0◦ and the chord length is lc = 1. This can be
done using the transformation

(
υ1
υ2

)
=

 cos(α)
(

x
lc

)
+ sin(α)

(
y
lc

)
−sin(α)

(
x
lc

)
+ cos(α)

(
y
lc

) . (2.63)

Then the functions

f (υ1) =

[
sin(πυ1)

log(0.5)
log(a)

]b

, υ1 ∈ [0,1] (2.64)

are called Hicks-Henne bump functions, where a is the position of the maximum and b is the width
of the bump. An exemplary sample of Hicks-Henne functions is shown in Figure 2.7.

Figure 2.7: Multiple Hicks-Henne bump functions.

Given a number of these functions np, with maxima spaced equally across the upper and lower sides
of the airfoil, new Cartesian coordinates (x,y) of the surface points can be calculated by adding
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Hicks-Henne functions in the unit coordinate system and projecting them back. Define the auxiliary
function

ϒ : [0,1]→ R,υ1 7→

{
υ2 = υ2,0 +∑

b np
2 c

i=0 pi fi(υ1), for υ2,0 ≥ 0

υ2 = υ2,0−∑
b np

2 c
i=0 pi fi(υ1), for υ2,0 < 0

, (2.65)

then the new Cartesian coordinates can be written as(
x
y

)
=

(
lc(cos(α)υ1− sin(α)ϒ(υ1))
lc(sin(α)υ1 + cos(α)ϒ(υ1))

)
. (2.66)

The weights pi used in this sum are the design parameters and form a vector p = (p1, . . . , pnp)
T ,

which uniquely defines any given design.
Extensions to three dimensions are possible by modifying different cross sections along a wing with
Hicks-Henne functions and interpolating in between. Similar approaches are still used in industrial
applications today. While Hicks-Henne functions are no longer the preferred method of choice, it
is still common in turbomachinery design to describe a turbine blade with a series of airfoils and
interpolation in between them. Such airfoils are then parameterized by quantities such as their chord
length, the opening angle at the leading and trailing edge, and the curvature of the surface.

Free-Form Deformation

The second parameterization presented in detail is the free-form deformation (FFD) [111, 97]. This
idea is based on embedding the geometry inside a cuboid with evenly distributed control points on the
surface of the cuboid, see Figure 2.8. Deformation can be achieved by moving the control points and
smoothly shifting the cuboid’s interior. The original method uses Bernstein polynomials to construct
a trivariate tensor, though other interpolations have been developed since, e.g., NURBS-based FFD,
volume-preserving FFD, etc. In general, the surface of the deformed object can be seen as a hyper
patch, an idea that is a generalization of the famous Bézier curves in two dimensions.

Figure 2.8: The free-form deformation box with a local coordinate system.

27



To achieve such a deformation with high enough derivative continuity, i.e., second order, the
interpolation inside the FFD box must be constructed accordingly. Here, the original formulation is
stated, as introduced by Sederberg [111]. Assume that a point X is given, then its position can be
expressed in terms of a local coordinate system (S,T,U), as shown in Figure 2.8,

X = X0 +aS+bT + cU. (2.67)

The parametric coordinates (a,b,c) can be calculated for X by

a =
〈T ×U,(X−X0)〉
〈T ×U,S〉

, b =
〈S×U,(X−X0)〉
〈S×U,T 〉

, c =
〈S×T,(X−X0)〉
〈S×T,U〉

. (2.68)

Distributing control points in an equidistant pattern across the FFD box gives the positions

Pi jk = X0 +
i

nS
S+

j
nT

T +
k

nU
U. (2.69)

To calculate a deformed point X , the deformation is first applied to the control points Pi jk. The
Cartesian coordinates for X are then found by evaluating Bernstein polynomials, with the parametric
coefficients for the old position of X computed by Equations (2.68).

Xi jk =
nS

∑
i=0

(
nS

i

)
(1−a)(nS−i)(a)i

(
nT

∑
j=0

(
nT

j

)
(1−b)(nT− j)(b) j

(
nU

∑
k=0

(
nU

k

)
(1− c)(nU−k)(c)kPi jk

))
(2.70)

As mentioned, different basis functions for interpolation have been applied over the years to achieve
certain levels of continuity, or other desirable properties, such as constant volume. Overall, FFD
as a deformation technique has a lot of nice mathematical properties, allowing for application in
optimization while still providing a powerful design tool. For this work, it is particularly relevant
that an implementation of FFD using the Bernstein polynomials from Equation (2.70) can be easily
differentiated. Furthermore, note that the transformation is linear in the control coordinates. A
desirable property for the design process, where repeated shifts in the geometry should add up.

2.3.4 Basic Discrete and Continuous Shape Optimization
With the basic notation for numerical optimization and shape calculus in place, the next logical step
is to introduce the concept of shape optimization [116, 84]. Shape optimization problems include
many of the most crucial questions in engineering since most desired behaviors can be expressed by
minimizing some function with respect to the shape under construction constraints. Considering
aerodynamic shape optimization, it is apparent that a designer would be interested in optimizing the
properties of the shape with respect to the flow surrounding it, as described by the flow equations.
Some examples would be minimizing the drag of an aircraft, increasing the efficiency of a turbine
blade, the noise reduction of wind energy turbines, and many more. Additional problems can be
formulated based on other physical state equations, such as the optimization of structural properties
like stiffness or weight, or the maximization of heat exchange on a cooling surface. In the case of
aerodynamics, the relevant PDE is a flow equation, as introduced in Section 2.1, while for structural
problems, it would be some form of stiffness equation. Also, in recent years the consideration of
coupled problems, where one might have multiple interacting state equations, has become more and
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more relevant.
In this Subsection, the connection between the two Subsections 2.3.1 and 2.3.2 is discussed in more
detail. The objective is to find a methodology to apply the results from numerical optimization
to a problem governed by differentiable shape functionals. As a starting point, to formulate the
continuous optimization problems mathematically, it is necessary to define which shape is actually
meant. In Section 2.1, the flow domain Ω already appeared when formulating the flow equations.
Taking a look at Figure 2.5, several equivalent formulations are possible.

1. One could describe the shape by the flow domain Ω, which allows for an easy formulation of
the state equations.

2. An engineer might be more interested in the flow obstacle Θ, i.e., the designed and built part.

3. Also, one can describe the entire shape by the design ´surface Γ := ∂Ω = ∂Θ. The functionals
from Subsection 2.1.2 are typically integrals over this domain.

Here, the problem is set up in terms of Ω, although one should keep in mind that the descriptions
using Θ or Γ are equally valid as well. Assuming that the PDE constraint Q(W,Ω) has a solution
of sufficient regularity, then Sokolowski and Zolesio [116, Section 2.32] state that the shape
optimization problem can be written as follows.

Definition 2.3.18 (constrained shape optimization problem). Let SΩ ⊂P(Rd) be a set of admissible
shapes, i.e., compact sets with a closed boundary Γ piecewise in class C2, with intersections in C1,
and let F : SΩ→ R,Ω 7→F (Ω) be a real-valued shape functional and Q(W,Ω) be a set of flow
equations, then

min
Ω,W

F (Ω)

s.t. Q(W,Ω) = 0
(2.71)

is a shape optimization problem.

Solving this continuous functional formulation of the shape optimization problem has a couple of
drawbacks attached to it.

1. How to generalize all the mathematical properties for optimality and optimization introduced
in Subsection 2.3.1?
While optimality and derivatives in a finite-dimensional R vector space are straightforward,
their formulation in a general shape setting in a well-defined way is a very involved task [116].

2. The second question is how to formulate a suitable optimization algorithm for Definition
2.3.18?
This is directly linked to the first point and requires much additional mathematical theory to
do successfully. Usually, one would be interested in constructing an improving sequence of
designs. However, mathematically it is not easy to formulate convergence for such a sequence.

3. At last, there remains the problem of how to compute numerical solutions to the involved
equations?
To put it briefly, one wants to do computations with the geometry and use numerical simula-
tions to determine its properties. For this, a discrete representation of the shape must be stored
in a computer.
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A natural solution is to replace the whole continuous setting with a discrete formulation. In the case
of aerodynamic shape optimization, this is closely linked to the discretization of the flow equations
and their numerical solution. The evaluation of the aerodynamic functionals requires solving the
discretized flow equations in any case and this is done numerically on a computational mesh, see
Subsection 2.2.1.
Assume that there exists a computational mesh on the domain Ω, represented by the vector x ∈ Rnx

containing the coordinates of each of the mesh nodes, then the optimization problem 2.3.18 can be
rewritten in discrete form. This means that the nature of the design variables changes, as the control
is no longer a set Ω, but instead a discrete vector x ∈ Rnx of mesh coordinates. Also, the discrete
flow solution u ∈ Rnu is a vector containing constant values for all state variables on each of the
dual mesh cells, approximating the steady state solution W ∗, similar to Subsection 2.2.2. Then it is
possible to replace the continuous flow equation with a discrete approximation

Q(W,Ω) = 0⇔ H(u,x) = 0, (2.72)

where the function H : Rnu ×Rnx → Rnu is called the discrete flow equation. Solutions can be
computed with finite volume methods and then used to evaluate the aerodynamic functionals
necessary for the optimization process.
With this, the discrete definition of the shape optimization problem can be given.

Definition 2.3.19 (flow constrained discrete shape optimization problem). Let x ∈ Sx ⊂ Rnx be the
vector of coordinates of the mesh vertexes and u ∈ Su ⊂ Rnu the corresponding steady state solution
for this mesh. In addition, let F : Rnu×Rnx →R be a discretization of the functional F , and H(u,x)
be the discrete flow equations, then

min
u,x

F(u,x)

s.t. H(u,x) = 0
(2.73)

is called the discrete shape optimization problem.

This discretization changes the nature of the problem dramatically since all relevant functionals have
been replaced by functions on finite-dimensional, real-valued vectors. Using the mesh coordinates
directly as the control is called free node optimization.
Now, the optimality conditions from Subsection 2.3.1 can be applied, as long as the derivatives of F
and H with respect to x are available. To compute them, one needs to solve the implicit Equation
(2.72) for u first and then evaluate F . This process, and how to remove the cross dependencies on u,
will be discussed at length in Chapter 3.

continuous problem

discrete problem

continuous optimum

discrete optimum

optimize

optimize

discretize consistency

Figure 2.9: Principles of discrete vs. continuous optimization.
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The discretization approach explained in this subsection is only part of a more fundamental distinc-
tion in the underlying philosophy on when it is best to apply discretization. Take a look at Figure 2.9.
For aerodynamic shape optimization, two principally different methods are available. One follows
the principle of ‘First discretize, then optimize’, where the results from Subsection 2.3.1 are applied
to Definition 2.3.19 to find optimal solutions for the discrete problem. Such an approach will be
used in this thesis and is extensively discussed when introducing the discrete adjoint methodology in
Chapter 3. The alternative is to ‘First optimize, then discretize’, meaning shape calculus is applied
to find an optimal solution to the continuous problem in Definition 2.3.18.
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Chapter 3

Discrete Adjoint Optimization

This chapter introduces the adjoint methodology and presents its application to the shape optimiza-
tion problem introduced in Subsection 2.3.4. To achieve this, the chapter introduces the discrete
adjoint formulation for a free node optimization in Section 3.1 and continues with a discussion on
the influence the shape parameterization has on the adjoint framework in Section 3.2. Section 3.3
shows how algorithmic differentiation is used to compute the derivatives in the adjoint equation
efficiently. This knowledge is then used to formulate iterative adjoint solution strategies in Section
3.4, which are incorporated into a complete optimization algorithm in Section 3.5.
In Subsection 2.3.4, the differences between ‘First discretize, then optimize’ and ‘First optimize,
then discretize’ were already discussed. These approaches lead to the two methodologies commonly
known as the discrete adjoint and the continuous adjoint approach. Both have been extensively
discussed and compared in the literature in the past [86, 46, 84].
The discrete adjoint approach is used throughout this work, as it allows for the application of very
efficient, existing adjoint solvers based on algorithmic differentiation. Such solvers benefit from
being compatible with a wide variety of different flow equations and providing a computationally
efficient solution scheme [4, 5].

3.1 Adjoint Derivation for Free Node Optimization
The role of design parameterization in comparison to a free node formulation is a crucial point of
discussion in this thesis. To better understand this, the discretized optimization problem 2.3.19 is
combined with a parameterization of the computational mesh to form the following definition.

Definition 3.1.1 (parameterized discrete shape optimization problem). Let x ∈ Sx ⊂ Rnx be the
coordinates of a mesh triangulation of Ω, u∈ Su ⊂Rnu the discrete flow solution, F : Rnu×Rnx→R
be a discrete objective function, N : Rnp ×Rnx → R be a parameterization of the computational
mesh with parameters p ∈ Sp ⊂Rnp , and H : Rnu×Rnx →Rnu a discretization of the flow equations
on Ω, then

min
u,x,p

F(u,x)

s.t. N(x, p) = 0
H(u,x) = 0

(3.1)
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is called the parameterized discrete shape optimization problem.

The mesh parameterization can be written as an explicit equation

N(x, p) = 0⇔ x = M(p), (3.2)

following Equation (2.58) and the reader might ask why this is not used immediately to remove the
dependence on x? However, it is beneficial for the analysis in later chapters of this thesis to keep
the dependency on the mesh coordinates when deriving the discrete adjoint approach in a free node
formulation and apply the chain rule afterwards.
Also, certain aspects of the flow solver can be exploited to provide a robust and efficient adjoint
framework for the optimization problem, crucially that the flow equations can be expressed in a
fixed point formulation. This is because numerical solution schemes for conservation laws, e.g.,
flow equation, are usually iterative by design. For example, the finite volume methods applied in
computational fluid dynamics have this property, as shown in Subsection 2.2.2. These schemes
discretize the spatial derivatives first and then apply a pseudo time-stepping scheme, which results
in a fixed point iteration for the state variables when computing a steady state solution. In a
mathematical sense this means there exists a function G : Rnu×Rnx → Rnu , such that

H(u,x) = 0⇔ u = G(u,x). (3.3)

Throughout the rest of this work, the fixed point iteration G is assumed to be continuously differen-
tiable in u and x and contractive in u, i.e.,

‖DuG(u,x)‖2 < 1. (3.4)

The fixed point formulation will be crucial throughout the rest of this work since it ensures the
numerical stability of the adjoint solvers in this chapter and also helps in formulating the algorithms
in Chapter 4.
For simplicity, the adjoint method is first formulated with the coordinates of the mesh nodes from
the triangulation x of Ω as the design space in a free node optimization. The influence of the
mesh equation (2.58) will be added afterwards in Section 3.2. Consider the simplified free node
optimization problem of Definition 3.1.1 with the fixed point formulation of the flow constraint,

min
u,x

F(u,x)

s.t. G(u,x) = u.
(3.5)

Assuming that the flow equation constraining the problem has a unique solution for a given mesh,
derivative-based optimization techniques can be applied. In contrast to the basic optimization
concepts in Subsection 2.3.1, the objective function F(u,x) now depends on two vectors of variables
u and x. However, this is not a true increase in the degrees of freedom since the variables are
implicitly linked by the flow equation G(u,x) = u. Therefore, only x can be modified within
the optimization process and the total derivative of the objective function with respect to x is
required to formulate optimality conditions. This fixation of u by x via an equation can be exploited
mathematically by applying the following theorem.
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Theorem 3.1.2 (implicit function theorem). Let H : S(u,x)→ Rnu,(u,x) 7→ H(u,x) be continuously
differentiable on S(u,x) ⊆ Rnu×Rnx , H(u∗,x∗) = 0 at a point (u∗,x∗) ∈ S(u,x), and DuH invertible in
(u∗,x∗). Then there exists an open set Bε(u∗)×Bε(x∗)⊆ S(u,x) and a unique function ϕ : Bε(x∗)→
Bε(u∗), such that:

1. ∀x ∈ Bε(x∗) : H(ϕ(x),x) = 0

2. Dxu∗ = Dxϕ(x∗) =−DuH(ϕ(x∗),x∗)−1DxH(ϕ(x∗),x∗).

Proof. A proof can be found in many introductory textbooks on analysis, e.g., Forster [42, Page
104].

Essentially, this theorem states that u can be locally expressed in terms of x and that there is a
connection between the derivatives. The connection to the flow equation H(u,x) = 0 becomes
apparent when examining the total derivative of the objective function. The total derivative with
respect to the i-th component xi, is given by the chain rule

d
dxi

F(xi) =
∂

∂xi
F(u,x)+

nu

∑
j=1

∂

∂u j
F(u,x)

∂

∂xi
u j. (3.6)

The central issue with evaluating this expression for practical applications is the partial derivative
of the flow variables with respect to the coordinates, i.e., the Jacobian Dxu. This matrix can be
evaluated in several ways.

1. It is possible to adequately evaluate the derivative by a direct method, e.g., finite differences,
algorithmic differentiation, etc. However, since the matrix has dimensions Rnu ×Rnx this
process is expensive to compute, requiring O(nx) evaluations of the flow equation. Further-
more, since it is almost impossible to give an explicit expression for u(x), it is hard to apply
knowledge from analysis to simplify the expression.

2. The more computationally efficient way to solve this problem is to exploit the implicit function
Theorem 3.1.2. This method is commonly known as the adjoint method.
By the implicit function theorem H(u,x) = 0 and DuH having full rank imply that a function
u(x) exists locally and that Dxu(x) =−DuH(u,x)−1DxH(u,x). Inserted into Equation (3.6)
this leads to

DxF(u(x),x) = DxF(u,x)−DuF(u,x)DuH(u,x)−1DxH(u,x)

= DxF(u,x)+Ψ
T DxH(u,x),

(3.7)

where Ψ is the solution of the adjoint equation

DuH(u,x)T
Ψ =−DuF(u,x)T . (3.8)

This approach allows the total derivative of the objective function to be computed by one linear
equation system solve for Equation (3.8), instead of potentially nx evaluations to compute Dxu
directly.
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Both formulations compute the derivative DxF(u(x),x), as long as the flow equation can be solved.
Using the results from Subsection 2.3.1, optimality conditions for constraint problems can be stated
by introducing Lagrange multipliers and a Lagrange function, see Definition 2.3.5. The Lagrangian
function in this case is

L : Rnu×Rnu×Rnx → R,(u,λ ,x) 7→ F(u,x)+λ
T (G(u,x)−u), (3.9)

directly yielding the KKT conditions as formulated in Theorem 2.3.7:

Dλ L = 0⇔ u = G(u,x) (state equation)

DuL = 0⇔ λ = DuG(u,x)T
λ +DuF(u,x)T (adjoint equation)

DxL = 0⇔ 0 = DxG(u,x)T
λ +DxF(u,x)T (design equation)

(3.10)

Here, the LICQ condition from Definition 2.3.6 reduces to Du(G(u,x)−u) having full rank, i.e.,
being invertible, in a local minimum. The use of a KKT formulation is a well-known approach for the
adjoint setup and various gradient-based optimization frameworks exist to solve those equations [4].
The second equation in the KKT conditions and Equation (3.8) are both called adjoint equations
since they are equivalent formulations of each other, as stated by the following corollary.

Corollary 3.1.3. Let Du(G(u,x)− u) be invertible, then for the two formulations of the adjoint
equation, it holds that

DuH(u,x)T
Ψ =−DuF(u,x)T ⇔ λ = DuG(u,x)T

λ +DuF(u,x)T (3.11)

for the vectors Ψ = λ being equal.

Proof.

DuH(u,x)T
Ψ =−DuF(u,x)T ⇔ (Du(G(u,x)−u))T

Ψ =−DuF(u,x)T

⇔ (DuG(u,x)− I)T
Ψ =−DuF(u,x)T ⇔Ψ = DuG(u,x)T

Ψ+DuF(u,x)T .
(3.12)

Meaning both adjoint equations are equivalent for Ψ = λ .

Since the Lagrangian is an exact penalty function finding a local minimum which fulfills the
optimality conditions from Subsection 2.3.1 is equivalent to solving the original minimization
problem with the flow constraint. In terms of a mathematical statement, this is expressed by the
following corollary.

Corollary 3.1.4. Assume that (u∗,x∗,λ∗) solve the flow equation u∗ = G(u∗,x∗) and the adjoint
equation λ∗ = DuG(u∗,x∗)T λ∗+DuF(u∗,x∗)T respectively, then for the design equation it holds
that

DxL(u∗,λ∗,x∗) = DxF(u∗,x∗). (3.13)

Proof. By definition

DxL(u∗,λ∗,x∗) = (λ∗)
T DxG(u∗,x∗)+DxF(u∗,x∗) (3.14)
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together with Corollary 3.1.3 and Equation (3.8)

λ
T
∗ DxG(u∗,x∗)+DxF(u∗,x∗) = DuF(u∗,x∗)(Du (G(u∗,x∗)−u∗))

−1 DxG(u∗,x∗)+DxF(u∗,x∗)
(3.15)

and by Theorem 3.1.2 it follows that

DuF(u∗,x∗)(Du (G(u∗,x∗)−u∗))
−1 DxG(u∗,x∗)+DxF(u∗,x∗) = DuF(u∗,x∗)Dxu∗+DxF(u∗,x∗).

(3.16)
Since u∗ = u(x∗) solves the flow equation, it follows that total and partial derivatives with respect to
x are the same, i.e.,

DuF(u∗,x∗)Dxu∗+DxF(u∗,x∗) = DxF(u∗(x∗),x∗). (3.17)

With the KKT conditions, it is possible to show the major stability advantage of the fixed point
formulation for adjoint optimization.

Proposition 3.1.5. If the fixed point operator of the numerical flow solver is contractive, i.e.,
‖DuG(u,x)‖2 < 1, then the fixed point iteration for the adjoint equation

λn+1 := DuG(u,x)T
λn +DuF(u,x)T (3.18)

converges to a unique solution
lim
n→∞

λn = λ
∗. (3.19)

Proof. The adjoint vector λ is in Rnu , which is a Banach space, and for the operator norm of the
right-hand side of the adjoint equation, it holds that

‖Dλ (DuG(u,x)T
λ +DuF(u,x)T )‖2 = ‖DuG(u,x)‖2. (3.20)

Utilizing the contractivity of G from equation (3.4), Banach’s fixed point theorem implies that the
adjoint equation has a unique fixed point, see Forster [42, Page 103].

This means the adjoint fixed point iteration inherits the contractive behavior of the flow iteration. For
stability, this is a major advantage compared to solving the linear system in Equation (3.8), which is
known to be ill-conditioned in many cases [5].

3.2 Reduced Gradients and Design Parameterization
The adjoint formulation above yields a way to compute sensitivities for optimization with respect to
the mesh coordinates. As explained in Subsection 2.3.4, discrete design optimization aims to find
optimal design parameters p. Taking this into account, the design equation (3.10) must be adjusted
by an additional projection step.
Here, the mesh equation x = M(p) comes into account. Assuming the existence and uniqueness
of the flow and adjoint solutions implies that the objective function solely depends on the design
parameters. This means that it is possible to define a function

F̃(p) := F(u((M(p)),M(p)), (3.21)
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where the notation u(M(p)) refers to the implicit flow solution for the equation u = G(u,M(p)),
which exists by the implicit function theorem 3.1.2. While an explicit analytic expression for F̃
is not available, this theorem also enables expressing the derivatives of F̃ in terms of F . Overall,
the optimization problem from Definition 3.1.1 can alternatively be written as an unconstrained
optimization problem

min
p∈Sp

F̃(p). (3.22)

The derivatives of F̃(p) are referred to as reduced derivatives. A similar approach for the Lagrangian
allows the replacement of dependencies on x with dependencies on p when stating optimality
conditions.

L : Rnu×Rnu×Rnp → R,(u,λ , p) 7→ F(u,M(p))+λ
T (G(u,M(p))−u), (3.23)

with the corresponding KKT conditions:

Dλ L(u,λ ,x) = 0⇔ u = G(u,x) (state equation)

DuL(u,λ ,x) = 0⇔ λ = (DuG(u,x))T
λ +(DuF(u,x))T (adjoint equation)

DxL(u,λ ,M(p))DpM(p) = 0⇔ (design equation)

0 =
(
λ

T DxG(u,M(p))+DxF(u,M(p))
)

DpM(p).

(3.24)

Going a step further, if λ (u(M(p)),M(p)) denotes the corresponding solution of the adjoint equation
from (3.24), a reduced Lagrangian can be formulated

L̃ : Rnp → R, p 7→ L(u(M(p)),λ (u(M(p)),M(p)),M(p)). (3.25)

Application of the chain rule allows for the following formulation.

Corollary 3.2.1. Let F̃ , L̃ be defined as stated above, then

DpF̃(p) =DxF(u,x)DpM(p) = DxF(u(M(p)),M(p))DpM(p)
DpL̃(p) =DxL(u,λ ,x)DpM(p)

=
[
λ (u(M(p)),M(p))T DxG(u(M(p)),M(p))+DxF(u(M(p)),M(p))

]
DpM(p),

(3.26)

and for the two reduced functions the equation

DpL̃(p) = DpF̃(p) (3.27)

holds true.

Proof. If u,λ are the flow and adjoint solutions from Equation 3.24, then the stated result is just
Corollary 3.1.4 together with the application of the chain rule for x = M(p).

Corollary 3.2.1 means the derivatives of the reduced functions can be computed by evaluating the
KKT system. This implies that any derivative-based optimization algorithm that uses the adjoint
methodology has to operate in three steps:

1. Create a mesh from the current design.
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2. Solve the state and adjoint equations from the KKT system and evaluate the design equation.

3. Project the sensitivities back by evaluating Equation (3.26).

Traditionally, only the second step is considered in the development of adjoint solvers, while the
other two are left as separate tasks provided by the optimization framework. However, this paradigm
is changed to a certain degree in this work since the projection of sensitivities from the mesh to
the design parameters will play a crucial role in formulating Sobolev smoothing for parameterized
optimization later on.
The permanent switch between regular and reduced functions can be inconvenient for notation. To
simplify this, it is possible to introduce the notion of a reduced gradient.

Definition 3.2.2 (reduced gradient). Let F : Rnu×Rnx → R,(u,x) 7→ F(u,x) be a function, where
u,x are implicitly dependent on p by the mesh and flow equations, then

D̃pF(u,x) :=
(
DxF(u,x)−DuF(u,x)(Du(G(u,x)−u))−1DxG(u,x)

)
DpM(p) (3.28)

is called the reduced gradient of F.

This is strongly linked to the adjoint calculus already introduced and the theory established so far
directly leads to the following proposition.

Proposition 3.2.3. For the reduced gradient from Definition 3.2.2 applied to the objective function
F(u,x) the following equations holds,

D̃pF(u,x) = DpF̃(p). (3.29)

Until now, only KKT conditions, i.e., first order optimality conditions, are considered. However,
Theorem 2.3.10 from Section 2.3.1 stated second order conditions as well, raising the question of
what can be said about the Hessian when working with discrete adjoint methods.
Differentiating the Lagrangian function twice gives a condition for the Hessian with respect to u and
x. The Hessian matrix can be split into four blocks.

D(u,x)2L(u,λ ,x) =
[

DuuG(u,x)T λ +DuuF(u,x)T DuxG(u,x)T λ +DuxF(u,x)T

DuxG(u,x)T λ +DuxF(u,x)T DxxG(u,x)T λ +DxxF(u,x)T

]
(3.30)

Theorem 2.3.10 introduced the set W , representing all feasible directions within a tangent cone of
the constraints. Similarly, the flow constraint G(u,x) = u and the implicit function Theorem 3.1.2
can be utilized to formulate the second order optimality condition in terms of x only.

Corollary 3.2.4 (adjoint second order optimality condition). Assume that for a critical point
u∗,λ ∗,x∗ solve the flow, adjoint, and design equations respectively. If

∀vx ∈ Sx : vT
x ZT D(u,x)2L(u,λ ,x)Zvx > 0, (3.31)

then x∗ is a local minimum. Here,

Z =
[
(−DuG− I)−1DxG, I

]
(3.32)

is the projection onto the feasible subspace via the implicit function theorem 3.1.2, and vx are the
feasible mesh movements.
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There are several remarks worth pointing out about this result.

• The central matrix in this condition is the discretized equivalent of the continuous shape
Hessian. Meaning for HessF (Ω) from Definition 2.3.16, it holds that

HessF (Ω)≈ ZT D(u,x)2L(u,λ ,x)Z. (3.33)

• Usually, one assumes that the adjoint equation is fulfilled, leading to the following result. Let
u∗,λ ∗ be the flow and adjoint solutions respectively, then

DxxL(u∗,λ ∗,x) = ZT D(u,x)2L(u∗,λ ∗,x)Z. (3.34)

This matrix is referred to as the reduced shape Hessian in this thesis.

• Due to the high dimensions of u and x, this second order optimality condition is prohibitively
expensive to compute for practical application test cases.

Finding a connection between DppF̃(p) and DxxL(u,λ ,x) leads directly to the central results of this
thesis. The computation of this result and a detailed analysis are presented in Chapter 5.
Here, the following subsections show how the KKT system can be solved in a computationally
efficient way, to set up a fast and stable adjoint solver and use the resulting adjoint solution and
sensitivities in an optimization algorithm.

3.3 Discrete Adjoints by Algorithmic Differentiation
The derivation of discrete adjoint methods in the previous sections introduced a multitude of
derivative expressions. These derivatives’ fast, accurate, and reliable computation is a crucial
prerequisite for successful discrete adjoint optimization. In fact, it is naturally an important aspect
of all derivative-based optimization algorithms. While various differentiation methods exist, one of
the most accomplished ones is algorithmic differentiation (AD) [49, 87].
To understand how the discrete adjoint optimization benefits from AD, the core principles of the
method are explained in more detail, which will help the reader to understand the algorithms
presented throughout the rest of this thesis. Once the key ideas of AD are introduced, using them to
evaluate the adjoint and design equations in the KKT system will become obvious.
In short, AD means differentiating a computer program, or more precisely, differentiating the
elementary statements a computer program calculates and connecting them via the chain rule.
Every numerical simulation code will necessarily be built out of simple mathematical statements
like (+,∗,

√
•,exp, log), which for the rest of this section will be denoted by ϕk. Assuming for a

function f : Rn→ Rm,x 7→ y there exists an implementation to evaluate the function value y, then
this implementation can be seen as a series of elementary statements.

y = f (x) = ϕK ◦ϕK−1 ◦ · · · ◦ϕ1(x). (3.35)

This can also be written as an algorithm with intermediate values zk = ϕk(zk−1).
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Algorithm 3.3.1 function evaluation

z1 = ϕ1(x)
for k = 2, . . . ,K−1 do

zk = ϕk(zk−1)

y = ϕK(zK−1)

AD evaluates the derivatives for each of those elementary statements to compute the overall derivative
of f . Let f ′ := Dx f be a shorthand notation for the derivative of f , then if written down a complete
chain rule evaluation looks like

f ′(x) = (ϕ ′K ◦ϕK−1 ◦ · · · ◦ϕ1(x))(ϕ ′K−1 ◦ · · · ◦ϕ1(x))◦ · · · ◦ϕ
′
1(x), (3.36)

or with intermediate values zk

f ′(x) =
K
©
k=1

ϕ
′
k(zk−1) = ϕ

′
K(zK−1)◦ · · · ◦ϕ

′
1(x). (3.37)

This formulation leaves two possible ways to evaluate the derivative expression. First, to evaluate
Equation (3.37) from the inside out, called the forward mode of AD, also commonly referred to
as tangent or tangent-linear mode. Here, the evaluation chain starts with the innermost statement
ϕ ′1(x), or if seen as a computer program with the first executed statement. Naturally, this requires a
starting value for the derivatives ẋ, which is called the seeding of variable x and expressed in terms
of Equation (3.37). Then the forward mode computes a value

ẏ =
(

K
©
k=1

ϕ
′
k(zk−1)

)
ẋ. (3.38)

The procedure is also shown in Algorithm 3.3.2.

Algorithm 3.3.2 forward mode

z1 = ϕ1(x)
ż1 = ϕ ′1(ẋ)
for k = 2, . . . ,K−1 do

zk = ϕk(zk−1)
żk = ϕ ′k(zk−1)żk−1

y = ϕK(zK−1)
ẏ = ϕ ′K(żK−1)

It is possible to express the forward mode in terms of the Jacobian of the original function f ,

ẏ = Dx f ẋ = f ′(x)ẋ, (3.39)

meaning the forward mode of AD computes a matrix vector product between the Jacobian and the
seeding vector ẋ.
The second way to evaluate the chain rule is by starting with the outermost statement. This is called
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the reverse mode of AD, also sometimes referred to as adjoint mode. It can be written down similarly
to the forward mode yielding

x̄T = ȳT
(

K
©
k=1

ϕ
′
k(zk−1)

)
, (3.40)

or as a procedure shown in Algorithm 3.3.3.

Algorithm 3.3.3 reverse mode

z1 = ϕ1(x)
for k = 2, . . . ,K−1 do

zk = ϕk(zk−1)

y = ϕK(zK−1)
z̄T

K−1 = ȳT ϕ ′K(zK−1)
for k = K−1, . . . ,2 do

z̄T
k−1 = z̄T

k ϕ ′k(zk−1)

x̄T = z̄T
1 ϕ ′1(x)

The critical difference to the forward mode is that the sensitivity information in Algorithm 3.3.3 is
passed through the source code in reverse order, flipping around all the data dependencies. This idea
has been discovered several times by different authors [47]. In terms of the Jacobian, the reverse
mode computes the transposed matrix vector product from the forward mode

x̄T = ȳT Dx f = ȳT f ′(x). (3.41)

Some important observations can be drawn from the two modes of AD.

• Both modes offer matrix vector products with the Jacobian, thus the full derivative matrix can
be calculated by n forward mode or m reverse mode evaluations.

• In reverse mode, the intermediate values zk are required in the second loop to calculate
the derivatives. This can lead to increased memory consumption or the need to recompute
intermediate values. A whole subfield of AD, so-called checkpointing techniques, is concerned
with balancing runtime and memory for such situations, see Griewank and Walther [49,
Chapter 12].

• In the formulation of adjoint methods in Sections 3.1 and 3.2, many matrix vector products
with the transposed of different Jacobians appeared throughout the formulas. Indeed, this
connection is the primary reason why the reverse mode of AD is such an efficient tool for
implementing discrete adjoint optimization algorithms.

Overall, it can be concluded that both modes of AD have their respective fields of application. For
example, the reverse mode is heavily utilized in training neural networks for machine learning,
where it is called backpropagation [14].
The most important advantage AD offers is precision. In contrast to other techniques, AD calculates
the derivatives of a computer program up to machine precision. This means that if an implementation
for a function f is available, the use of AD will compute a machine accurate derivative of the
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implemented routine. This property is especially beneficial in numerical applications, where
equations are solved approximately since it always guarantees that the derivatives are consistent
with the corresponding approximated function values.
After introducing the theoretical modes, a look at the actual implementation is necessary. In
Algorithms 3.3.2 and 3.3.3 the general procedures are stated, yet it is unclear how to translate them
into actual source code. How can an AD tool, i.e., a program that takes an implementation of
Algorithm 3.3.1 and creates an implementation of Algorithms 3.3.2 or 3.3.3, be built?
Two prominent approaches for this are widely used, both accompanied by their own sets of benefits
and contraries.

• Operator overloading is based on the idea of overloading the elementary statements to do the
computation directly. This requires the programming language to support the overloading
of operators and functions for custom data types. Overloading is a common feature in
programming languages like C++, where a custom AD type can replace the floating-point type
in the original code. For this AD type all of the elementary statements are overloaded to not
only compute the value zk = ϕk(zk−1), but to also evaluate the derivative żk = ϕ ′k(zk−1)żk−1
as well or to store the reverse statement z̄T

k−1 = z̄T
k ϕ ′k(zk−1) for later evaluation. Operator

overloading tools are normally easier to maintain for a large project. Once the floating-point
types are exchanged, the operator overloading tool automatically keeps itself up to date with
any source code changes made to the original code. The original and the differentiated codes
are compiled simultaneously, instead of having to process every change of the original code by
separate measures. However, this benefit in maintenance comes at a cost since it is significantly
harder, if not impossible, to optimize the code structure for the reverse AD evaluation, e.g.,
reordering of functions, loop restructuring, etc. Additionally, the overloading can lead to less
compiler optimization and problems with the memory layout and access patterns.
In the implementations for this thesis, the operator overloading tool CoDiPack is used for AD
[103]. A more detailed overview of this tool can be found in Subsection 6.1.2 and aspects of
the application of AD will be discussed as a part of Section 6.2.

• Source transformation uses the whole source code for the function evaluation as its input. A
source transformation tool usually reads the source files and outputs a new source file, contain-
ing code for the derivative calculation. The source transformation method is nonintrusive by
definition, as the original source files are not changed in any way. This allows the AD tool to
perform a lot of possible code optimizations and to do massive changes in the code structure
first. Nonetheless, such advantages are hard to exploit since all the knowledge to handle any
possible form of source code must be built into the AD tool. In general, source transformation
tools have potentially higher performance for the derivative evaluation, but buy this ability by
being much more restrictive to the kinds of source code they accept and by being significantly
more challenging to implement. For example, as of 2021, there are very efficient tools for
C or Fortran code, but still no source transformation tool can handle heavily templated C++
code. A common example of source transformation tools is Tapenade [53] developed by the
french INRIA institute.

The actual implementation and application of both types of AD tools are a research field in their
own right. To conclude this section, the points discussed so far are compiled into a short comparison
of AD in contrast to other derivative computation techniques. Also see Figure 3.1, where some of
these different key concepts for derivative computation approaches are visualized.
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Figure 3.1: Different methods for differentiation.

• AD does not form a difference quotient of the change in function value between two points,
like finite differences would do, thereby avoiding any issues with rounding errors. Note
however, that the forward mode of AD introduced in this section is equivalent to the concept
of dual numbers, in particular complex step approximation [80].

• AD does not symbolically differentiate, as it does not work on the complete mathematical
function, but rather on individual statements and their implementation. To clarify this point,
take a look at the statement x = x+ 1. While this is unsolvable, if seen as a mathematical
equation, it is trivial to handle as a computer statement from an AD perspective by setting
ẋ = ẋ or x̄ = x̄.

• AD does not manually differentiate. Instead, the AD tool works completely autonomously, in
contrast to the programmer manually deriving the derivative and then implementing a function
for it, thus gaining a considerable advantage in development time and cost.

These points should clarify the contrast between AD and other common methods for implementing
derivatives. Now that the fundamental concepts of AD are established, recall the KKT system from
Equation (3.10). As the names suggest, the adjoint equation from the discrete adjoint approach and
the adjoint mode of AD are closely connected. In fact, when analyzing the structure of the adjoint
fixed point equation, the transposed Jacobian DuG(u,x)T of the flow iteration is at its center. This
is ideal for employing the reverse mode of AD, with the current adjoint vector λ as seeding. See
Equation (3.41) for comparison. In Section 3.4, different ways to formulate an algorithm around
this idea are introduced. Using the AD methods shown here, these algorithms are designed to solve
the adjoint and design equations to get accurate derivatives.

3.4 Discrete Adjoint Algorithms and Reverse Accumulation
In this subsection, different strategies for solving the adjoint equation of the KKT conditions (3.10)
are introduced. They are based on applying the algorithmic differentiation techniques from Section
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3.3 to the discrete adjoint framework from Section 3.1. All of these strategies aim at computing a
solution λ ∗ of the adjoint fixed point equation

λ
∗ = DuG(u,x)T

λ
∗+DuF(u,x)T , (3.42)

but differ in their implementation. As a starting point the numerical scheme for the flow solver,
to calculate a steady state solution with pseudo time-stepping, is formulated in pseudocode in
Algorithm 3.4.1.

Algorithm 3.4.1 Flow solver
input Initial values x,u0
for i=0,...,I-1 do

ui+1 = G(ui,x)
y = F(uI,x)
return uI,y

Throughout this work, iterative processes in algorithms are written as for-loops. In an actual
implementation, these would be while-loops with suitable convergence criteria to determine that
uI ≈ u∗. This notation was chosen since the number of flow iterations I is important in formulating
the adjoint algorithms in the rest of this chapter. In practice, I is set to whatever step number the
flow convergence criteria are fulfilled.
At the core of the adjoint fixed point equation is a matrix vector product with the Jacobian of the
flow iteration DuG(u,x)T λ . Recalling Section 3.3, this term can be calculated by the reverse mode
of AD, which is the main reason why the reverse mode of AD is so efficient when working with
discrete adjoint methods.
The first algorithm treats the whole flow solver and the evaluation of the objective function as a
black box and differentiates the whole process. In pseudocode, this results in Algorithm 3.4.2.

Algorithm 3.4.2 Black box algorithm
input Initial values x,u0, ȳ
start recording of the AD tape �
for i=0,...,I-1 do

ui+1 = G(ui,x)
y = F(uI,x)
end recording
start evaluation of the AD tape 	
ūI = DuF(uI,x)T ȳ
x̄ = DxF(uI,x)T ȳ
for i=I-1,...,0 do

ūi = DuG(ui,x)T ūi+1
x̄+= DxG(ui,x)T ūi+1

end evaluation
return uI,y, x̄
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No other variables are taken into account when calculating y, so it is clear that for ȳ = 1 the value of
x̄ is exactly the derivative DxL(u,x) required in an optimization process, i.e., differentiating the flow
solver G by reverse mode AD in black box fashion yields the required derivative. This can be seen by
the actions of the AD tool depicted in gray. The whole flow simulation is recorded and then evaluated
using the reverse mode, see Algorithm 3.3.3. Analysis of the black box algorithm reveals that the
dependencies on the variables ui are an issue in practice, as they lead to high computational costs.
For extensive simulations, a single flow solution is quite large in terms of memory consumption and
the necessity to reuse all intermediate ui values in the second loop thus leads to an unfeasibly high
cost. See the previous Section 3.3 and the checkpointing techniques mentioned there for a possible
solution. However, checkpointing still increases the memory and runtime significantly. It would
therefore be highly preferable to have a better solution.
The most widely adopted practical solution is the so-called reverse accumulation approach, as
formulated by Christianson [28, 29]. This idea allows for the efficient differentiation of iterative
procedures, as long as they are exactly converged to a fixed point. The procedure is shown in
Algorithm 3.4.3.

Algorithm 3.4.3 Reverse Accumulation algorithm
input Initial values x,u0, ȳ
for i=0,...,I-1 do

ui+1 = G(ui,x)
start recording of the AD tape �
uI+1 = G(uI,x)
y = F(uI,x)
end recording
for j=0,...,J-1 do

λ j+1 = DuG(uI,x)T λ j +DuF(uI,x)T ȳ

x̄ = DxG(uI,x)T λJ +DxF(uI,x)T ȳ
return uI,λJ, x̄

Basically, the algorithm linearizes the algorithmic differentiation of an iterative process in the last
step, i.e., when convergence is reached, resulting in the following theorem.

Theorem 3.4.1 (Reverse Accumulation). Let the two iterations

ui+1 = G(ui,x) and λk+1 = DuG(uI,x)T
λk +DuF(uI,x)T ȳ (3.43)

be strict contractions, i.e., ‖G(u,x)‖< 1 and ‖DuG(u,x)‖< 1. Furthermore, let the solution of the
flow iteration in Algorithm 3.4.3 be a fixed point u∗, i.e.,

lim
I→∞

uI = u∗. (3.44)

Then for Algorithm 3.4.2 the following limit exists

lim
I→∞

(
DxF(uI,x)T ȳ+

I−1

∑
i=0

DxG(ui,x)T ūi+1

)
= x̄BB, (3.45)
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and for Algorithm 3.4.3 the following limit exists

lim
I→∞

lim
J→∞

(
DxG(uI,x)T

λJ +DxF(uI,x)T ȳ
)
= x̄RA. (3.46)

Both limits have the same value, meaning both algorithms calculate the same result

x̄BB = x̄RA. (3.47)

Proof. See the convergence proof of Algorithm 3.1 in the paper by Christianson [29].

Clearly, this approach is highly beneficial in terms of memory. Using a good AD tool, only one
recording of an AD tape, for the flow solver in the converged fixed point, is necessary, as shown
in gray in Algorithm 3.4.3. Then, the adjoint iteration can be done by repeated tape evaluation.
However, the flow solver must be convergent up to machine precision for Theorem 3.4.1 to apply.
For industrial test cases, this is often impossible due to numerical approximations in the finite volume
schemes and test case settings, which can cause serious convergence issues for the computation of
adjoints with reverse accumulation. Numerical stabilization techniques for this situation have been
proposed in the past, e.g., in a paper by Albring, Dick, and Gauger [3].
Viewing the two algorithms under the aspect of solving the KKT conditions, it becomes obvious
they both sequentially evaluate the KKT conditions. First, the flow equation and then the adjoint
equation are solved. The design equation is evaluated afterwards, allowing for an optimization step
based on x̄ to update the design.
An interesting alternative approach is to solve the fixed point equations for flow and adjoint together
in a coupled iteration. This is called the piggyback method since the adjoint is set up on top of the
flow solver itself. As a mathematical equation, this is a new fixed point problem[

u
λ

]
=

[
G(u,x)

DuG(u,x)T λ +DuF(u,x)T

]
. (3.48)

The AD tool can record the evaluation of the flow iterator, i.e., the first line of the equation, and
immediately evaluate one adjoint step, i.e., the second line.

Algorithm 3.4.4 Piggyback algorithm
input Initial values x,u0, ȳ
for i=0,...,I-1 do

start recording of the AD tape �
ui+1 = G(ui,x)
y = F(ui,x)
end recording
start evaluation of the AD tape 	
λi+1 = DuG(ui,x)T λi +DuF(ui,x)T ȳ
end evaluation

x̄ = DxG(uI,x)T λI +DxF(uI,x)T ȳ
return uI,λI, x̄

The main difference is at what point the derivatives of G and F are evaluated. Reverse accumulation
evaluates them exclusively in the converged fixed point u∗, while piggyback uses the current
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intermediate value of the state variable ui. For reference, see how in each piggyback iteration in
Algorithm 3.4.4 the AD tool records the flow solver and then immediately evaluates the tape, as
shown in gray. An additional distinction is that the objective function F is now evaluated in every
step. However, the overhead can be neglected since the cost is normally small compared to the flow
iteration G. A detailed convergence analysis of the piggyback iteration can be found in the paper by
Griewank and Faure [48, Corollary 3]. For the purpose of this work, it is sufficient to remark that if
the contractivity assumptions stated in Theorem 3.4.1 are fulfilled, then Algorithms 3.4.3 and 3.4.4
converge towards the same fixed point values for u∗,λ∗, x̄.
A final note to end this subsection is that there are two possible strategies for setting up the piggyback
iteration. The first uses the flow solution from the previous step in the adjoint iteration, resulting in
the equation

λi+1 = DuG(ui,x)T
λi +DuF(ui,x)T ȳ. (3.49)

This is referred to as a Jacobi type iteration. The second always uses the latest information available.
The first part of the loop in Algorithm 3.4.4 calculates ui+1, so this value is clearly available and the
adjoint could take the form

λi+1 = DuG(ui+1,x)T
λi +DuF(ui+1,x)T ȳ. (3.50)

In the literature, this is called a Seidel type iteration. For comparison, see the similarity with iterative
Jacobi and Seidel solvers for linear equation systems, e.g., in the book by Saad [101, Chapter 4].

3.5 Reduced SQP Optimizer
Optimizing highly complex and nonlinear problems, like the ones typical in aerodynamic shape
optimization, requires close attention when designing the optimization algorithm. In this section,
the results achieved so far are combined to introduce a fast and efficient optimization framework.
The adjoint problem in Equation (3.42) can be solved by any of the algorithms from Subsection 3.4
and then reduced gradients can be computed, as shown in Subsection 3.2. Furthermore, additional
constraints must be considered since they are practically always required in larger application test
cases.
In Chapter 5, a new Hessian approximation technique, using parameterized Sobolev gradient
reinterpretation, is presented. Currently, it is enough to assume that an approximation of the second
order derivatives is available for the optimization algorithm, fitting naturally into a Quasi-Newton
setting. Quasi-Newton methods are a powerful tool in optimization, whenever the second order
derivatives of the Lagrangian function are not directly available, but some level of approximation
can be obtained. One of the more general approaches is the sequential quadratic programming
(SQP) framework [90, Chapter 18]. In particular, a partially reduced SQP approach is used, based
on the previous work of Schulz [108] and Schmidt [104]. For a start, consider the definition of the
complete optimization problem with additional equality and inequality constraints, see Equation
(2.36).

Definition 3.5.1 (constrained shape optimization problem). Using the notation from Definition 3.1.1,
let there be sets of additional equality constraints E : Rnu×Rnx → RnE and inequality constraints

48



C : Rnu×Rnx → RnC , then the problem

min
u,x,p

F(u,x) (objective function)

s.t. M(p) = x (mesh equation)
G(u,x) = u (flow equation)
E(u,x) = 0 (equality constraint)
C(u,x)≥ 0 (inequality constraint)

(3.51)

is called the constrained shape optimization problem.

The key idea of an SQP method is to find an optimal point fulfilling the first and second order
optimality conditions from Propositions 2.3.3 and 2.3.10, by solving a sequence of simplified,
approximate problems. In particular, the Lagrangian is approximated by a second order (quadratic)
Taylor expansion and the constraints are approximated by their first order (linear) Taylor expansions.
Since inequality constraints require extra care when formulating the method, the derivation is first
shown only considering equality constraints.
Consider the extended Lagrangian function depending on the flow state u, the adjoint state λ , the
parameters p, and the multiplier θ . Here, the mesh equation is explicitly evaluated. This is defined
by

LExt :Rnu×Rnu×RnE ×Rnp → R,
(u,λ ,θ , p) 7→ F(u,M(p))+θ

T E(u,M(p))+λ
T (G(u,M(p))−u).

(3.52)

According to Subsections 3.1 and 3.2, KKT conditions can be formulated. However, since the mesh
equation is already implicitly inserted in the definition of the extended Lagrangian, additional care
is required when forming derivatives for the KKT conditions. For brevity, the dependence on p is
sometimes omitted, writing x instead of M(p) again.

Dλ LExt(u,λ ,θ ,x) = 0⇔ u = G(u,x) (state equation)

DuLExt(u,λ ,θ ,x) = 0⇔ (adjoint equation)

λ = (DuG(u,x))T
λ +(DuF(u,x))T +(DuE(u,x))T

θ

Dθ LExt(u,λ ,θ ,x) = 0⇔ 0 = E(u,x) (equality constraint)

DxLExt(u,λ ,θ ,M(p))DpM(p) = 0⇔ (design equation)

0 =
(
λ

T DxG(u,M(p))+DxF(u,M(p))+θ
T DxE(u,M(p))

)
DpM(p)

(3.53)
An optimization algorithm needs to calculate a solution to these KKT conditions. One possible
approach is to apply a Newton method, see [104, Section 8.3]. The expressions for such a Newton
step can be simplified to a certain extent by replacing dependencies on x with dependencies on p.

DuuLExt DupLExt (DuG− I)T (DuE)T

DpuLExt DppLExt (DpG)T (DpE)T

DuG− I DpG 0 0
DuE DpE 0 0




δu
δ p
δλ

δθ

=


−(DuLExt)T

−(DpLExt)T

−H(u, p)
−E(u, p)

 (3.54)

This Jacobian matrix contains the Hessian of the extended Lagrangian function as its upper left
block. Also, note that it is a mixed Hessian with derivatives with respect to u and p. Assuming
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(DuG− I) to be invertible, the expression can be simplified significantly using the reduced gradient
from Definition 3.2.2.

D̃pF =
(
DxF−DuF(DuG− I)−1DxG

)
DpM(p) (3.55)

For the second order derivatives of the Lagrangian D̃ppLExt, a similar expression for the reduced
shape Hessian is derived, using projections similar to the ones seen in Corollary 3.2.4. Let B be an
approximation of this reduced Hessian matrix with respect to p, then this fulfills[

(−DuG− I)−1DpG I
][ DuuLExt DupLExt

DpuLExt DppLExt

][
(−DuG− I)−1DpG

I

]
= D̃ppLExt ≈ B (3.56)

and if used in Equation (3.54) the linear system simplifies to[
B D̃pET

D̃pE 0

][
δ p
δθ

]
=

[
−(D̃pLExt)T

−E

]
. (3.57)

The last expression of interest is D̃pE. Since the evaluation of the constraint is similar to the
objective function, evaluating the reduced gradient means solving an adjoint problem for each of the
constraints. A Lagrangian function, including the flow equation, can be constructed accordingly for
each of them.

∀k ∈ {1, . . . ,nE} : LEk(u,λ Ek , p) = E(u,M(p))k +(λ Ek)T (G(u,M(p))−u) (3.58)

Now the reduced gradient can be computed by Corollary 3.2.1 and Proposition 3.2.3,

D̃pEk(u,x) = D̃pLEk(u,λ Ek , p). (3.59)

The fact that the dependency on the flow variables themselves has completely vanished from the
formulation by using the discrete adjoint method gives this approach its name, reduced SQP method.
While SQP methods were initially designed to use the exact second order derivatives D̃ppLExt, they
have advanced since and are a general tool using all sorts of approximated Hessian matrices in a
Quasi-Newton like fashion.
To better demonstrate the connection to the classical SQP algorithm, consider the quadratic opti-
mization problem used in each optimization step.

min
v∈Sv

1
2

vT D̃ppLExtv+ D̃pFv (objective function)

s.t. D̃pEv+E = 0 (equality constraint)
(3.60)

Here, Sv ⊂ Rnp is a suitable set of feasible design updates. Minimizing such a quadratic approx-
imation of the Lagrangian under linearized constraints is the basic idea of SQP methods and the
quadratic optimization problem has a unique solution (v,µ)T , fulfilling the relation

D̃ppLExtv+ D̃pFT + D̃pET
µ = 0

D̃pEv+E = 0.
(3.61)

This can be written as a linear equation system, which is then solved in each optimization step.[
D̃ppLExt D̃pET

D̃pE 0

][
v
µ

]
=

[
−D̃pFT

−E

]
(3.62)
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Since B≈ D̃ppLExt, the solutions of Equations (3.57) and (3.62) can be identified with each other,
resulting in

δ p = v
θ +δθ = µ.

(3.63)

The remaining open question is if the linear system always has a unique solution? The following
theorem can guarantee this.

Theorem 3.5.2. Let v,µ fulfill the KKT conditions for the quadratic problem (3.60), such that

1. For the current p, the rows of D̃pE are linear independent. This is equivalent to the LICQ
condition 2.3.6.

2. ∀k = {1, . . . ,nE} and ∀w 6= 0 with D̃pET
k w = 0, it holds that wT D̃ppLExtw > 0.

Then the matrix in Equation (3.62) is invertible.

Proof. This theorem, together with a detailed proof, can be found in the book by Geiger and Kanzow
[44, Theorem 5.28].

Now that the process is clear, the overall optimization algorithm can be formulated. Algorithm 3.5.1
shows the full optimization procedure for an equality constraint problem.

Algorithm 3.5.1 reduced SQP method for equality constraint optimization
input Initial design variables p0, set iteration counter i = 0
while err ≥ tol do

xi = M(pi) . compute a deformed mesh
for j = 0,1, ...,Ju do . solve the flow equation

u j+1 = G(u j,xi)

ui = uJu; y = F(ui,xi)
for j = 0,1, ...,Jλ do . solve the adjoint equations

λ j+1 = DuG(ui,xi)
T λ j +DuF(ui,xi)

T

λi = λJλ

for k = 0,1, ...,nE do
for j = 0,1, ...,Jk do

λ
Ek
j+1 = DuG(ui,xi)

T λ
Ek
j +DuEk(ui,xi)

T

λ
Ek
i = λ

Ek
Jk

D̃pF =
(
λ T

i DxG(ui,xi)+DxF(ui,xi)
)

DpM(pi) . evaluate the design equations
for k = 0,1, ...,nE do

D̃pEk =
(
(λ Ek

i )T DxG(ui,xi)+DxEk(ui,xi)
)

DpM(pi)

solve:
[

Bi D̃pET

D̃pE 0

][
v

θk+1

]
=

[
−D̃pFT

−E

]
. compute design update

pi+1 = pi + v . update the design
i = i+1

return pi
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Returning to Definition 3.5.1, the only step missing is the introduction of inequality constraints
into Algorithm 3.5.1. From the literature [90, Chapter 18], it is known that the quadratic problem
assembled in each SQP step in Equation (3.60) has to be extended. Doing so leads to the formulation
of a convex optimization problem.

min
v∈Sv

1
2

vT Bv+ D̃pFv

s.t. D̃pEv+E = 0
D̃pCv+C ≥ 0

(3.64)

While it is no longer possible to calculate an optimum for this by solving a linear system of equations,
it is still possible to apply a convex optimizer for the subproblem in each step of the SQP algorithm.
The expanded SQP algorithm is then given as an extension of Algorithm 3.5.1. Overall, Algorithm
3.5.2 shows how this is set up, following the general layout of an SQP method.
Some important points about this algorithm should be remarked upon.

1. The flow solution is still the steady state solution computed by a standard iterative finite
volume flow solver.

2. For the adjoint solution, the reverse accumulation Algorithm 3.4.3 is used to obtain fast and
consistent solutions.

3. A solution for the quadratic problem (3.64) can be calculated by any convex optimization
package, many of which come equipped with special solvers for this kind of problem. The
inequality constraints can be treated by an active set approach, where only the constraints
close to zero are taken into account when computing the update v.

4. In practice, a globalization strategy for the optimizer may be necessary. Furthermore, it is
oftentimes helpful to do a line search on the solution of the quadratic problem v. This is done
if the quadratic approximation is not very accurate with respect to the overall problem, or if
the length of v is large, since then the optimizer generally should check if the proposed step v
indeed yields good descent.

This thesis applies the reinterpretation of the gradient in a Sobolev space, by parameterized smooth-
ing, to compute a matrix B and apply it in the SQP algorithms shown above. It thereby replaces
traditional gradient descent optimizations with an approximated Newton algorithm for aerodynamic
shape optimization problems.
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Algorithm 3.5.2 reduced SQP method for mixed constraint optimization
input Initial design variables p0, set iteration counter i = 0
while err ≥ tol do

xi = M(pi) . compute a deformed mesh
for j = 0,1, ...,Ju do . solve the flow equation

u j+1 = G(u j,xi)

ui = uJu; y = F(ui,xi)
for j = 0,1, ...,Jλ do . solve the adjoint equations

λ j+1 = DuG(ui,xi)
T λ j +DuF(ui,xi)

T

λi = λJλ

for k = 0,1, ...,nE do
for j = 0,1, ...,Jk do

λ
Ek
j+1 = DuG(ui,xi)

T λ
Ek
j +DuEk(ui,xi)

T

λ
Ek
i = λ

Ek
Jk

for l = 0,1, ...,nC do
for j = 0,1, ...,Jl do

λ
Cl
j+1 = DuG(ui,xi)

T λ
Cl
j +DuCl(ui,xi)

T

λ
Cl
i = λ

Cl
Jl

D̃pF =
(
λ T

i DxG(ui,xi)+DxF(ui,xi)
)

DpM(pi) . evaluate the design equations
for k = 0,1, ...,nE do

D̃pEk =
(
(λ Ek

i )T DxG(ui,xi)+DxEk(ui,xi)
)

DpM(pi)

for l = 0,1, ...,nC do
D̃pCl =

(
(λCl

i )T DxG(ui,xi)+DxCl(ui,xi)
)

DpM(pi)

solve the quadratic problem: min
v∈Sv

1
2

vT Biv+ D̃pFv

s.t. D̃pEv+E = 0
D̃pCv+C ≥ 0

. compute design update

pi+1 = pi + v . update the design
i = i+1

return pi
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Chapter 4

One Shot Optimization

One Shot optimization simultaneously computes solutions for all nonlinear equations in the KKT
system, i.e., the flow, adjoint, and design equations [23, 43, 52, 119]. Different variations of the
general One Shot idea have been deployed in various settings for PDE constrained optimization in
the past [55, 24] and a detailed overview and discussion of the different One Shot approaches can be
found in [23].
Contrary to the algorithms presented in Section 3.5, which calculate converged state and adjoint
solutions and use them to update the design, One Shot methods apply a simultaneous update in the
flow, adjoint, and design variables, intending to perform a simultaneous analysis and design (SAND).
This gives the algorithm excellent theoretical potential for an overall speedup in runtime if individual
design updates are computationally cheap. However, the necessity to operate with approximated,
i.e., non-converged, objective function and gradient values will increase the number of optimization
steps. Overall, this trade-off must be carefully balanced to exploit the One Shot optimization to its
maximum potential.
Section 4.1 will derive the basic equations for the One Shot method. Then, the actual algorithms are
formulated in Section 4.2, partially utilizing the AD-based discrete adjoint algorithms from Chapter
3. Finally, the incorporation of additional constraints into the One Shot algorithm is discussed in
Section 4.3.

4.1 Derivation of the One Shot Method
The previous Section 3.4 introduced a series of algorithms to evaluate the adjoint equation and use
the result in the design equation. With the sensitivities from the design equation in the KKT system
(3.10), it is possible to do a descent step on the mesh coordinates in a free node fashion. If feasibility
in the flow and adjoint states in each design step is left aside for a moment, one might combine this
with the piggyback method (3.48) into a single iterationui+1

λi+1
xi+1

=

 G(ui,xi)
DuG(ui,xi)

T λi +DuF(ui,xi)
T

xi−P−1
i
(
DxG(ui,xi)

T λi +DxF(ui,xi)
T)
 . (4.1)

Here, Pi is some suitable preconditioner. This iteration establishes a coupled fixed point formulation
for flow, adjoint, and design to solve all three KKT conditions at once. It is therefore named One Shot
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method.
Before introducing further analysis, it is worth pointing out that this iteration might be interpreted
from different angles. For example, it is possible to view Equation (4.1) as a Quasi-Newton method
for the KKT system, e.g., in the papers by Hamdi and Griewank [51, 52].
An alternative interpretation is to view Equation (4.1) as an explicit Euler step for finding stationary
points of the following differential algebraic equationui+1

λi+1
d
dt x

=

 G(ui,xi)
DuG(ui,xi)

T λi +DuF(ui,xi)
T

−DxL(u,λ ,x)T

 . (4.2)

Since the fixed point equations for flow and adjoint are already derived from pseudo time-stepping
via an iterative finite volume method, it is possible to view Equation (4.1) as a simultaneous pseudo
time-stepping for the state, adjoint, and design. Many authors have suggested this in the past,
including Ta’asan [120] and Hazra, Schulz, Brezillion, and Gauger [55].
Both approaches are equivalent and in the following, the analysis uses the Quasi-Newton interpreta-
tion. To simplify the notation, it is helpful to define the shifted Lagrangian function

N(u,λ ,x) = L(u,λ ,x)+λ
T u = F(u,x)+λ

T G(u,x), (4.3)

which allows for the expression of the original KKT conditions in a shortened form:

Dλ L = 0⇔ u = G(u,x) (state equation)

DuL = 0⇔ λ = DuN(u,λ ,x)T (adjoint equation)

DxL = 0⇔ 0 = DxN(u,λ ,x)T (design equation)

(4.4)

The convergence properties of the One Shot iteration (4.1) were investigated at length in the work
of Hamdi and Griewank [51, 52]. Obviously, they depend heavily on the choice of a suitable
preconditioner P. To understand what a good preconditioner has to offer, it is helpful to give an
outlook on the actual convergence analysis. The basic idea is to show that solving Equation (4.1) is
equivalent to minimizing a doubly augmented Lagrangian function

LAug(u,λ ,x) = L(u,λ ,x)+
α

2
‖G(u,x)−u‖2 +

β

2
‖DuN(u,λ ,x)T −λ‖2. (4.5)

The gradient of LAug might be written asDuLAug

Dλ LAug

DxLAug

=−Ms(u,λ ,x), (4.6)

with

M =

α (I−DuG)T −I−βDuuN 0
−I β (I−DuG) 0

−αDxGT −βDuxNT P

 , (4.7)

and

s(u,λ ,x) =

 G(u,x)−u
DuN(u,λ ,x)T −λ

−P−1
i DxN(u,λ ,x)T

 . (4.8)
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Here, the vector s is the increment vector in each One Shot iteration step. In their analysis, Hamdi
and Griewank derived conditions on α,β , such that the doubly augmented Lagrangian LAug is an
exact penalty function. In [52], they propose the following preconditioner,

P =
1
σ

(
α(DxG)T DxG+β (DuxN)T DuxN +DxxN

)
, (4.9)

where ρ is the spectral radius of G and

σ = 1−ρ−

(
1+ β

2 ‖DuuN‖
)2

αβ (1−ρ)
. (4.10)

If the Hessian of the shifted Lagrangian DxxN is positive semi-definite this is a valid choice.

Remark 4.1.1. This preconditioner is strongly linked to the Hessian of the augmented Lagrangian,
since P≈ DxxLAug, and strict equality holds if flow and adjoint feasibility are fulfilled.

Sometimes it can be beneficial to take a step back and look at results from different angles. The
theoretical descent conditions from the literature are great from a mathematical viewpoint, as they
give precise requirements for a good preconditioner. However, the individual terms involved are
highly impractical to evaluate. Second order derivatives of the shifted Lagrangian, like DuuN, DuxN,
or DxxN, are too expensive to compute in most cases. Therefore, many implementations end up
using BFGS approximations of DxxLAug, or heuristics for α,β to calculate the preconditioner.
This thesis takes a different route and in Chapter 5 a new approximation of the Hessian, via Sobolev
smoothing, is derived from well-established shape optimization theory. The constructed matrix is
positive definite by design and has strong smoothing properties for fluctuations in the sensitivities.
This is backed up by strong numerical results for the effectiveness of this preconditioner in practical
One Shot applications, presented in Chapter 7.

4.2 One Shot Algorithms
Having discussed the One Shot iteration in Equation (4.1), the next task is to translate this into an
algorithm for practical application. Direct integration into an iterative procedure yields the most
basic version.

Algorithm 4.2.1 Jacobi One Shot
input Initial values x0
for i = 0,1, . . . , I−1 do

ui+1 = G(ui,xi)
λi+1 = DuG(ui,xi)

T λi +DuF(ui,xi)
T

xi+1 = xi−P−1
i
(
DxG(ui,xi)

T λi +DxF(ui,xi)
T)

return xI

This original One Shot algorithm can be significantly extended and optimized to increase perfor-
mance.
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1. As mentioned in the introduction of this chapter, the One Shot method aims at achieving an
optimal trade-off between the accuracy of the flow and adjoint solution and the design updates.
In many cases, it is beneficial to do more than one step for the flow and adjoint iterations
before updating the mesh. This is especially true in industrial applications, where external
parameterizations, e.g., CAD tools and mesh creation software, are involved in the mesh
deformation, making the computation costly. Such algorithms are known as multistep One
Shot algorithms and have been studied in the past, e.g., Özkaya [92].
Depending on the number of flow and adjoint iterations used in each step, they act on a scale
from pure One Shot as in Algorithm 4.2.1 to classic, fully converged optimization.

2. Algorithm 4.2.1 is a natural extension of the Jacobi type version of the piggyback algorithm
and it is also possible to implement this as a Seidel type, by always using the latest information
available. While this might seem advantageous at first, the Jacobi type can offer better
potential for parallelization. That is, one might run the three iterators simultaneously on
different machines. In fact, it has been suggested in experimental research to run the three
separate solvers asynchronous and only exchange the variables u,λ ,x via interfaces during
the iteration at specified points [21].
For this thesis, the implementation is set up to use a coupled Jacobi type piggyback driver,
where the resulting ui+1 and λi+1 are then used to compute an update in the design. A detailed
explanation of the implementation is given in Subsection 6.2.2.

3. Last, the mesh parameterization has to be incorporated when updating the design. In Subsec-
tion 3.2, the importance of projecting the mesh sensitivities back onto the design variables
was established. Considering this, the algorithm must be extended by projecting gradients
onto design parameters, updating them, and then deforming the mesh consistently.

A parameterized multistep One Shot algorithm is formulated by bringing all these points together.
This is achieved in Algorithm 4.2.2, which serves as the backbone for One Shot optimization when
deriving a constrained formulation in Section 4.3.

Algorithm 4.2.2 Multistep One Shot with mesh update
input Initial values p0
for i = 0,1, . . . , I−1 do

xi = M(pi)
for j = 0,1, . . . ,J−1 do

u j+1 = G(u j,xi)
λ j+1 = DuG(u j,xi)

T λ j +DuF(u j,xi)
T

δ p = DpM(pi)
T (DxG(uJ,xi)

T λJ +DxF(uJ,xi)
T)

pi+1 = pi−B−1
i δ p

return pI

As seen previously, the convergence of One Shot algorithms depends on the correct choice of the
preconditioners Bi. Note that this is now a matrix with dimensions np× np, so it must act in the
parameter space. In Chapter 5, a new combination of shape derivative smoothing techniques and
parameterization is introduced, enabling an efficient construction of Bi for every design update
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and allowing Algorithm 4.2.2 to run on a smooth trajectory towards feasibility and optimality
simultaneously.

4.3 Constrained One Shot Optimization
One important aspect missing in the formulation of the One Shot algorithm so far is the incorporation
of additional constraints for the optimization. In aerodynamic shape optimization, most relevant
test cases require additional restrictions during the design process. These can range in complexity
starting with simple direct limits on the design parameters, e.g., with bl,bu ∈ Rnp ,

bl ≤ p≤ bu. (4.11)

Such simple limits and other more complex geometric constraints to the design and the mesh, e.g.,
minimal thickness, limited length, etc., can be expressed in terms of algebraic functions depending
only on the geometric coordinates

Cgeo(x, p)≥ 0. (4.12)

Finally, there might be restrictions on the aerodynamic properties, depending on the calculated flow
field. In this case, evaluating them has similar costs to an evaluation of the objective function, for
example keeping a constant lift or limiting the pitching moment of a wing

Caero(u,x)≥ 0. (4.13)

The treatment of constraints for One Shot optimization has been studied from different aspects [72,
22, 54]. Existing approaches focus mainly on equality constraints and integrating them into the
formulation of the algorithm. Although the proposed methods could potentially be generalized,
currently no complete convergence analysis for inequality constraints in this setting has been
presented.
Throughout the literature, there are two main ways for constraint treatment. In this work, they are
called the direct and indirect approaches, respectively. The direct treatment uses the constraint
values and gradients for a linear approximation of the constraints in a quadratic subproblem when
computing a design update [54, 109]. It coincides with the reduced SQP optimizer introduced in
Section 3.5, if the inner piggyback iteration from the multistep One Shot method is converged in the
flow and adjoint solutions. That means, if the iteration count J in Algorithm 4.2.2 is chosen large
enough, the constrained multistep One Shot algorithm derived in the following becomes a reduced
SQP optimization again.
Recall Definition 3.5.1 from Section 3.5:

min
u,x,p

F(u,x) (objective function)

s.t. M(p) = x (mesh equation)
G(u,x) = u (flow equation)
E(u,x) = 0 (equality constraint)
C(u,x)≥ 0 (inequality constraint)

(4.14)
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For each component of the constraints Ek and Cl , additional adjoint problems are set up by defining
a Lagrangian and shifted Lagrangian to compute a reduced gradient. For example,

LEk(u,λ Ek ,x) = Ek(u,x)+(λ Ek)T (G(u,x)−u)

NEk(u,λ Ek ,x) = Ek(u,x)+(λ Ek)T G(u,x)

D̃pEk = DxNEk(u,λ Ek ,x)DpM(p).

(4.15)

Using a reduced SQP algorithm for the optimization problem (4.14) means that each design update
step solves a quadratic approximation of the real problem.

min
v∈Sv

1
2

vT Bv+ D̃pFv

s.t. D̃pEv+E = 0
D̃pCv+C ≥ 0

(4.16)

Integrating the solution of this quadratic problem as the design update into the One Shot algorithm
results in the complete method used in this thesis, see Algorithm 4.3.1.

Algorithm 4.3.1 One Shot with direct treatment of constraints
input Initial values p0
for i = 0,1, ..., I−1 do

xi = M(pi) . compute a deformed mesh
for j = 0,1, ...,J−1 do . iterate multiple piggyback steps

u j+1 = G(u j,xi)
λ j+1 = DuN(u j,λ j,xi)

T

for k = 0,1, ...,nE do
λ

Ek
j+1 = DuNEk(u j,λ

Ek
j ,xi)

T

for l = 0,1, ...,nC do
λ

Cl
j+1 = DuNCl(u j,λ

Cl
j ,xi)

T

D̃pF = DxN(uJ,λJ,xi)DpM(pi) . evaluate the design equations
for k = 0,1, ...,nE do

D̃pEk = DxNEk(uJ,λ
Ek
J ,xi)DpM(pi)

for l = 0,1, ...,nC do
D̃pCl = DxNCl(uJ,λ

Cl
J ,xi)DpM(pi)

Compute Bi . calculate the preconditioner

solve the quadratic problem: min
v∈Sv

1
2

vT Biv+ D̃pFv

s.t. D̃pEv+E = 0
D̃pCv+C ≥ 0

. compute design update

pi+1 = pi + v . update the design
return pI

Observe, how the direct approach computes multiple adjoint states λ , λ Ek , and λCl by separate
adjoint computations. This allows the algorithm to use existing adjoint solvers out of the box, thus
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making the implementation relatively easy and allowing for parallel evaluation of the different
adjoints. Nevertheless, it is important to keep in mind that this increases the computational cost
significantly. In a worst-case scenario, the optimization has to run nE + nC + 1 different adjoint
solvers, each with their own cost and overheads for initialization, file IO, etc. However, this can be
alleviated if the constraints do not depend on the flow state. From the different types of inequality
constraints shown at the beginning of this section, only aerodynamic constraints, as in Equation
(4.13), need their own adjoint state. For box and geometric constraints, as in Equations (4.11) and
(4.12), the gradient can be computed directly.
The alternative is to use an indirect treatment of the constraints, as analyzed by Kusch, Walther, et al.
[72]. Here, the equality constraints are integrated by extending the existing Lagrangian function.
Note that this is the same extended Lagrangian as in the original introduction of SQP methods in
Equation (3.52).

LExt(u,λ ,x) = F(u,x)+θ
T E(u,x)+λ

T (G(u,x)−u)

NExt(u,λ ,x) = F(u,x)+θ
T E(u,x)+λ

T G(u,x)
(4.17)

It is then possible to use Algorithm 4.2.2 directly, where the derivatives of the shifted Lagrangian N
are replaced by the derivatives of its extended counterpart NExt.

Algorithm 4.3.2 One Shot with indirect treatment of constraints
input Initial values p0
for i = 0,1, ..., I−1 do

xi = M(pi)
for j = 0,1, ...,J−1 do

u j+1 = G(u j,xi)
λ j+1 = DuNExt(u j,λ j,xi)

T

D̃pNExt = DxNExt(uJ,λJ,xi)DpM(pi)

compute preconditioners Bi, B̂i
pi+1 = pi−B−1

i (D̃pNExt)T

θi+1 = θi− B̂−1
i E(uJ,xJ)

return pI

This keeps the cost from the incorporation of the additional constraints low, but may require
significant changes to the discrete adjoint implementation to be able to evaluate and differentiate
the expression F(u,x)+θ T E(u,x) and its associated adjoint. Furthermore, B̂−1

i has to be chosen
carefully and the conditions on the choice of α and β are stricter.
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Chapter 5

Shape Hessian approximation, Sobolev
Smoothing, and Parameterization

Sobolev gradient smoothing, interpreted as a shape Hessian approximation, can be combined with a
parameterization to offer significant benefits for design optimization. To demonstrate this central
result of the presented thesis, all of these parts are brought together here, demonstrating how they
can be combined successfully.
Sobolev gradient smoothing is based on deriving connections between gradients with respect to
different function spaces. Central to this approach is the reinterpretation of the gradient in different
scalar products. By choosing the right Hilbert space, and therefore the right scalar product, the
regularity of the problem can be significantly increased, naturally leading to faster convergence rates
for derivative-based optimization schemes.
In optimization, the use of second order derivative information can lead to crucial increases in speed.
To this end, many different approximations of Hessian matrices have been proposed to formulate
approximated Newton methods, including the transfer of theoretical results on the shape Hessian to
discrete adjoint optimization.
Approximate Newton methods need to take the crucial role of the design parameterization into
account. That means any form of higher order derivative information must not only consider
derivatives with respect to surface nodes, but with respect to design parameters. Sobolev smoothing
can be applied here to offer benefits, even if the parameterization used is smooth already.
This chapter creates a synthesis of these different approaches. It starts with a motivational background
on the approximation of shape Hessian operators and their connection to the Laplace-Beltrami
operator in Section 5.1. Next, it recapitulates the theory of Sobolev smoothing for a free node
formulation in Section 5.2. All of this leads up to the central result of this work, a new methodology
for Sobolev smoothing in the context of parameterization. To achieve this, the equation connecting
the reduced shape Hessian and the second order derivatives with respect to the parameters is derived,
and the Laplace-Beltrami operator from Sobolev smoothing is inserted into this equation in Section
5.3. At last, the incorporation of the new method into the optimization algorithms presented before
is discussed in Section 5.4, including One Shot algorithms for simultaneous analysis and design.

63



5.1 Reduced Shape Hessian approximation
In this section, the background on shape Hessian approximation is further discussed by surveying
the relevant literature. The aim is to motivate the approximation of the reduced shape Hessian by
the Laplace-Beltrami operator. This includes results on the continuous shape Hessian operator, see
Definition 2.3.16, and on the discrete reduced shape Hessian, see Equation (3.34).
Before the different results are listed, the shape calculus established in Subsection 2.3.2 is used
to calculate the Hessian operator for an example. Consider the iso-perimeter problem, also called
‘Dido’s problem’, where the aim is to minimize the surface of an object Ω, while keeping a constant
volume cvol.

min
Ω

F (Ω) =

ˆ
Γ

1ds

s.t.
ˆ

Ω

1dx = cvol

(5.1)

Given a Lagrangian function for this problem

L(Ω,λ ) =

ˆ
Γ

1ds+λ

(ˆ
Ω

1dx− cvol

)
, (5.2)

it is possible to calculate shape derivatives. A detailed analysis and discussion of the problem and
the associated calculations are given in the paper by Schmidt [105]. Applying Definitions 2.3.13 and
2.3.16 and simplifying the resulting terms yields the following expressions. For the shape derivative
it holds that

DL(Ω,λ ;v) =
ˆ

Γ

〈v,n〉(κ +λ )ds. (5.3)

Here, n is the surface normal and κ is the curvature of the surface Γ. Calculating the shape Hessian
results in

D2L(Ω,λ ;v1,v2) =

ˆ
Γ

〈v1,n〉〈v2,n〉(λκ +κ
2)+ 〈∇Γ〈v1,n〉,∇Γ〈v2,n〉〉ds. (5.4)

Here, ∇Γ denotes the tangential gradient on the surface. Looking at the Hessian expression, it can
be identified as the weak formulation of a PDE. Assume that v∗ is unknown, then

∀v2 ∈C∞
0 (M ,Rnd) :

ˆ
Γ

〈v∗,n〉〈v2,n〉(λκ +κ
2)+ 〈∇Γ〈v∗,n〉,∇Γ〈v2,n〉〉ds = 0

⇔
(
(λκ +κ

2)I+∆Γ

)
(v∗)n = 0,

(5.5)

where (v∗)n denotes the part of v∗ in direction of n. It is worth keeping this PDE in mind, as the
partial differential operator, known as the Laplace-Beltrami operator, reappears throughout this
thesis.
For the connection to aerodynamic design optimization problems, one might expect a connection
to the drag reduction problem in aerodynamics, as drag reduction, seen from a trivial viewpoint,
usually corresponds with keeping the surface smooth and the front cross section small.
In general, the nature of the Navier-Stokes equations makes the explicit formulation of the shape
Hessian for arbitrary flow equations and objective functions almost impossible. However, finding
good approximations for relevant special cases is an open research topic and extensive work in this
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field has been done in the past. In the scope of this thesis, some of the results are worth showing in
more detail, so this section aims to give an overview of the relevant literature.
Inspiration for this thesis was drawn from the work by Kusch, Schmidt, and Gauger [70, 71] on the
drag minimization problem for Stokes equations. Here, the key points of the underlying analysis
are highlighted to clarify how they apply in the current context. The core idea is to make use of
the symbol of the Hessian matrix. The symbol of an operator can be seen as the response of that
operator applied to a wave function.

Definition 5.1.1 (operator symbol). Let O : S→ R be a scalar-valued operator on a suitable space
of periodic functions S and g = e−iωx be a wave function with

O(g) = σOe−iωx, (5.6)

then σO is called the symbol of operator O.

This concept is based on Fourier analysis, where it is widely used to calculate the effect of an
operator on the basis functions of a Fourier transformation, e.g., wave functions. Application to
aerodynamic shape optimization problems can be credited to Arian and Ta’asan [10]. In the context
of shape optimization, a small, smooth perturbation of a shape at one point is equivalent to adding
a wave function there. For comparison, see the similarity to the differentiable vector field in the
perturbation of identity 2.3.11, where a wave function could be inserted.
For the application of a Quasi-Newton step in the optimization algorithm, the symbol of the inverse
Hessian σH−1 is mimicked. In [71], a drag minimization problem with Stokes equations for the flow
was investigated and it was shown that

σH = β1 +β2ω, (5.7)

for suitably chosen parameters β1,β2, depending on the analytic expression for the drag and the
current shape. Thus, any choice of a preconditioner B for a Quasi-Newton optimization method
should mimic the behavior of the inverse Hessian symbol

σB−1 ≈ σH−1 =
1

β1 +β2ω
. (5.8)

To obtain this kind of behavior with a simple and computationally cheap preconditioner, B is chosen
to be a modification of the Laplace-Beltrami operator

B = ε1I+ ε2∆Γ. (5.9)

For more details on the background of this particular choice of operator, see Section 5.2. The inverse
of the Laplace-Beltrami operator has the symbol

σB−1 =
1

ε1 + ε2ω2 . (5.10)

While the two symbols are different, the factors β1,β2 and ε1,ε2 can be chosen to make up for the
discrepancy, allowing for Hessian like behavior when applied to the gradient for an approximated
Newton step. It is important to note that this choice has some interesting properties derived from

65



Fourier analysis. Using only even-ordered derivatives can prevent a phase shift in the wave function
and for the correct scaling, it is important to choose the parameters ε1,ε2 accordingly. Since the
parameters β1,β2 were calculated from the analytic expression for the drag in a laminar Stokes flow,
this is a non-trivial task in practice. For the presented thesis, the values ε1,ε2 in the optimization
are instead obtained from a parameter study. Nonetheless, there are theoretical results available for
choosing local approximations of β1,β2 and while our solver uses global values, it seems possible to
extend the implementation for the use of local values for ε1,ε2 on each mesh cell. See the discussion
in Chapter 8 for possible extensions of the presented results in this direction.
The ideas above are based on an older result worth highlighting in this context. Arian and Ta’asan
[10] have done extensive work with potential flows and inviscid Euler flows. Their research gives
a detailed theoretical insight into the problem. The authors follow the approach of investigating a
‘small disturbance problem’, meaning they add a small disturbance to an optimal design Γ∗ and flow
state W ∗.

Γ = Γ
∗+δαn

W =W ∗+δŨ +O(δ 2)
(5.11)

Here, n is the outer surface normal vector and δ is a small positive number. Similar to the Fourier
idea presented before, this change can be seen as adding a wave function and can be analyzed
in local coordinates around the perturbation. If α > 0 is a design parameter defining the wave’s
amplitude, then this defines a half-space of deformations and allows for a minimization problem
with Taylor expansions for flow, adjoint, and design equations. Solving those leads to equations for
the Hessian with respect to the control α , from which the operator symbol can be determined.
Using the same notation as above, the operator symbol of the Hessian for Euler equations is derived
as

σH = c1
k4

1
k2

1(1− c2)+ k2
2
, (5.12)

where k1,k2 are the wave numbers from the basis functions of the Fourier analysis and c1,c2 are
constants. When working in local coordinates on the surface there are two dimensions marked by the
subscripts, one in flow direction and one orthogonal to it. Going back to the previous notation this
implies that k1 =

ω1
h1

is a local chord-wise perturbation and k2 =
ω2
h2

is a local span-wise perturbation,
with mesh cell sizes h1,h2 in the respective directions. In case of a two-dimensional airfoil there is
no span-wise perturbation, leading to

σH = c1
k2

1
(1− c2)

(5.13)

and for the inverse

σH−1 = c1
(1− c2)

k2
1

. (5.14)

This means that the operator symbol smooths in chord direction, similar to the Laplace-Beltrami
operator shown above. Using the results from Arian and Ta’asan [10], Arian and Vatsa developed a
method for shape optimization with Euler equations [11]. In their algorithm, they propose using an
operator of the form c3I+c4∆Γ on the surface to smooth the continuous shape derivative formulation
and then remesh the geometry after the design update.
Finally, a more recent result by Müller, Kühl, et al. [85] deserves mentioning. In this work, the
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authors apply a p-Laplace problem as a relaxation step in the steepest descent algorithm. The focus
is on free node optimization, where the method shows promising results in terms of preserving edges
in the design and maintaining a good mesh quality throughout the optimization. These results are
also connected to another recent study by Deckelnick, Herbert, et al. [32] investigating properties of
Sobolev gradient descent in a W1,∞ topology for shape optimization.
The whole process of calculating shape Hessian operator symbols involves complex calculations
and is so far only understood for some special cases. While it has great potential in giving second
order information for continuous or free node formulations, there is still no general solution. For
example, the exact Hessian symbol for drag minimization with Navier-Stokes or RANS equations is
still an open research topic.
All of these works share the use of Laplacian smoothing, in one form or another, hinting at a deeper
connection between the Hessian of the drag minimization problem for different fluid equations
and the Laplace-Beltrami operator. Therefore, an approximation of the discretized, reduced shape
Hessian, in Equation (3.34), should have the same properties and behavior. This idea is used in this
thesis when Sobolev smoothing is combined with the parameterization in Section 5.3.

5.2 Function Spaces and Sobolev Smoothing
This section introduces the core idea of the Sobolev gradient smoothing method. This approach has
been used in different PDE constraints optimization settings in the past and a good overview of the
general idea, as well as the theoretical background, can be found in the books of Neuberger [88], or
Faragó and Karátson [39]. An introduction to Sobolev spaces can be found in many sources, the
standard one being the textbook by Adams and Fournier [2]. This only deals with Sobolev spaces of
scalar-valued functions and for vector-valued functions the results presented below are based on the
book by Hytönen, van Neerven, et al. [59, Chapter 2].
In Chapter 3, a large emphasis was given to the computation of gradients for shape optimization
problems using the adjoint method. From functional analysis, it is a well-known that the gradient
of a function dependents on the underlying Hilbert space and its scalar product. The derivatives
discussed in this thesis until now are directional derivatives and in a finite-dimensional real-valued
vector space, the gradients are expressed via the canonical Euclidean scalar product. Sobolev
smoothing aims to increase the regularity of gradient-based descent steps, in an optimization, by
using the Sobolev space H1-gradient instead. Therefore, the mentioned relevant Hilbert spaces and
their respective scalar products are presented. With this, the general idea of Sobolev smoothing and
the reinterpretation of derivatives in the sense of an H1-gradient are demonstrated.
For the rest of this section, assume that ζ ⊂ Rnζ is a compact subset of a finite-dimensional real-
valued vector space. Here, the theory is introduced for vector-valued functions f : ζ → Rd . For
the application of this thesis, the dimension d will be 2 or 3, depending on the smoothing being
performed on a surface or in a volume.

Definition 5.2.1 (Lp spaces). Let f be a measurable function on ζ , then the class of all functions for
which (ˆ

ζ

‖ f (x)‖p
p dx
)p

< ∞ (5.15)

is called the Lp(ζ ,Rd) space. Here, ‖•‖p denotes the p-norm on Rd .
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Corollary 5.2.2. The functional

‖•‖Lp =

(ˆ
ζ

‖ f (x)‖p
p dx
) 1

p

(5.16)

defines a norm on Lp(ζ ,Rd), such that the space is a Banach space.

Proof. The proof for Lp(ζ ,R) is given in Adams and Fournier [2, Theorem 2.16]. It carries over
verbatim to the vector-valued case, when the absolute value | f (x)| is replaced by the respective
p-norm ‖ f (x)‖p.

The Lp spaces from Definition 5.2.1 have nice mathematical properties, with the most relevant of
them being the space of square-integrable functions L2(ζ ,Rd).

Definition 5.2.3 (L2 scalar product). Let L2(ζ ,Rd) be the space of square-integrable functions by
Definition 5.2.1, then the mapping

〈•,•〉L2 : L2(ζ ,Rd)×L2(ζ ,Rd)→ R;〈 f ,g〉L2 7→
ˆ

ζ

〈 f (x),g(x)〉2 dx, (5.17)

where 〈•,•〉2 denotes the standard scalar product on Rd , defines a scalar product on L2(ζ ,Rd).

Corollary 5.2.4. The space L2(ζ ,Rd) of square-integrable functions, together with the norm
introduced by the scalar product from Definition 5.2.3, is a Hilbert space.

Proof. The proof of this statement follows directly from Corollary 5.2.2 and Adams and Fournier [2,
Corollary 2.18].

Next, to introduce weak differentiability for a vector-valued function define a multiindex α ∈ Nnζ .
Then the derivative w.r.t. a multiindex can be defined by componentwise partial differentiation

Dα =
∂ |α|

∂xα1
1 . . .∂xαn

nζ

. (5.18)

For vector-valued functions, this is applied componentwise in each dimension.

Example 5.2.5. Let u : R2 7→ R2;
(

x1
x2

)
7→
(

x1 sin(x2)
x2

2

)
be a function and (0,1) be a multiindex,

then

D(0,1)u(x) =
∂

∂x2

(
u1(x)
u2(x)

)
=

(
x1 cos(x2)

2x2

)
. (5.19)

This means that for f ∈C1(ζ ,Rd) a first order componentwise partial derivative Dα f ∈C0(ζ ,Rd)
is a column of the Jacobian matrix.

Definition 5.2.6 (weak differentiability). Let f ,g ∈ L1(ζ ,Rd) be integrable functions. If

∀φ ∈C∞
0 (ζ ,R) :

ˆ
ζ

g(x)φ(x)dx = (−1)|α|
ˆ

ζ

f (x)Dαφ(x)dx, (5.20)

then g is called the weak derivative of f of order α , denoted by dw
α f .
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The definition above is consistent with the definition of a distributional derivative, see [59, Definition
2.5.1]. Also, if the function f has a classical derivative Dα f , then this naturally fulfills Definition
5.2.6 by partial integration.

Definition 5.2.7 (Sobolev spaces). The Sobolev space of weak differentiable functions is defined by

W1,p(ζ ,Rd) :=
{

f ∈ Lp(ζ ,Rd)
∣∣∣ ∀0≤ |α| ≤ 1 : dw

α f ∈ Lp(ζ ,Rd)
}
. (5.21)

Definition 5.2.8 (Sobolev norm). For a weak differentiable function f , the Sobolev norm

‖ f‖W1,p =

(
∑

0≤|α|≤1
‖dw

α f‖p
Lp

) 1
p

, (5.22)

can be defined using the Lp-norm ‖•‖Lp from 5.2.2.

Corollary 5.2.9. The space W1,p(ζ ,Rd) together with the norm ‖•‖W1,p forms a Banach space.

Proof. For a proof of this statement, see the book by Hytönen, van Neerven, et al. [59, Section
2.5].

While Sobolev spaces have many additional, interesting mathematical properties, for the scope of
this work one particular Sobolev space is relevant. It can be once again defined by a scalar product.
To simplify the following notation, let αi be a multiindex of order |αi|= 1 with the i-th component
being 1, then dw

i denotes the weak derivative with respect to the i-th variable, i.e., for differentiable
functions dw

i f = dw
αi

f = ∂

∂xi
f .

Definition 5.2.10 (H1 space and scalar product). The mapping

〈•,•〉H1 : W1,2(ζ ,Rd)×W1,2(ζ ,Rd)→ R;

〈 f ,g〉H1 7→
ˆ

ζ

〈 f (x),g(x)〉2 dx+
ˆ

ζ

nζ

∑
i=1
〈dw

i f (x),dw
i g(x)〉2 dx

(5.23)

defines a scalar product on W1,2(ζ ,Rd), where 〈•,•〉2 denotes the Euclidean scalar product on Rd .
The H1(ζ ,Rd) Sobolev space is defined via

H1(ζ ,Rd) :=
{

f ∈W1,2(ζ ,Rd)
∣∣∣ 〈 f , f 〉H1 < ∞

}
. (5.24)

Corollary 5.2.11. H1(ζ ,Rd) is a Hilbert space with respect to the scalar product 〈•,•〉H1 .

Proof. See Hytönen, van Neerven, et al. [59, Section 2.5].

Next, the connection between the choice of the underlying Hilbert space and scalar product and the
gradient of a function is discussed. The well-known Riesz representation theorem shows how the
directional derivative and the gradient of a function are connected.

Theorem 5.2.12 (Riesz representation theorem). Let L : V → R be a linear functional on a Hilbert
space V , then there exists a unique representative z ∈V such that

∀v ∈V : L(v) = 〈v,z〉V . (5.25)
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Proof. This well-known theorem can be found in many textbooks on functional analysis, e.g., Reed
and Simon [98, Theorem II.4] or Heuser [56, Theorem 26.1].

Example 5.2.13 (Riesz representation of the directional derivative). The directional derivative of
any functional is a linear mapping of the direction and its Riesz representation is the gradient

D f (x;v) = 〈∇ f ,v〉. (5.26)

For a scalar-valued function f ∈C1(Rn,R), i.e., in finite dimensions, this directional derivative
takes the form of the Jacobian

D f (x;v) = Dx f · v. (5.27)

When using the Euclidean scalar product in Rn, then combining the above leads to

Dx f = (∇ f )T . (5.28)

When dealing with shape optimization problems, e.g., as in Definition 2.3.18, it is possible to find a
gradient representation for a given scalar product. Here, the direction takes the form of a vector field
on the domain, see Definition 2.3.11. Thus, requiring a vector-valued Sobolev space H1(ζ ,Rd) for
the gradient representation. As will be discussed in the following, this will result in componentwise
Laplacian smoothing.

Corollary 5.2.14 (Sobolev smoothing). Let F : Sζ → R,ζ 7→ F (ζ ) be a shape differentiable
functional, then the Riesz representation ∇H1F of DF (ζ ;•), with respect to the inner product
(5.23), can be obtained as the solution of

∀ j = {1, . . . ,nζ},v ∈ H1(ζ ,Rd) : DF (ζ ;v je j) =

ˆ
ζ

(
(∇H1F ) j v j +

nζ

∑
i=1

dw
i (∇H1F ) j dw

i v j

)
dx,

(5.29)
where v j is the j-th component of v and e j is the j-th unit vector.

Proof. Since C1(ζ ,Rd) is dense in H1(ζ ,Rd), the shape derivative can be extended for v ∈
H1(ζ ,Rd). By Theorem 5.2.12, the shape derivative of F can then be expressed in terms of
a scalar product with a unique representative denoted by ∇H1F ,

DF (ζ ;v) = 〈∇H1F ,v〉H1 =

ˆ
ζ

〈∇H1F ,v〉2 dx+
ˆ

ζ

nζ

∑
i=1
〈dw

i (∇H1F ),dw
i v〉2 dx. (5.30)

The inner Euclidean scalar products can be written in terms of the components,

DF (ζ ;v) =
ˆ

ζ

nζ

∑
j=1

(∇H1F ) j v j dx+
ˆ

ζ

nζ

∑
i=1

nζ

∑
j=1

dw
i (∇H1F ) j dw

i v j dx

=

nζ

∑
j=1

(ˆ
ζ

(
(∇H1F ) j v j +

nζ

∑
i=1

dw
i (∇H1F ) j dw

i v j

)
dx

)
.

(5.31)

Every v can be written as a linear combination v = ∑
nζ

j=1 v je j and the directional derivative is linear.
Therefore, inserting v je j gives

DF (ζ ;v je j) =

ˆ
ζ

(
(∇H1F ) j v j +

nζ

∑
i=1

dw
i (∇H1F ) j dw

i v j

)
dx, (5.32)

which is the weak formulation of Sobolev smoothing for the j-th component.
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Equation (5.29) is a weak formulation of a vector-valued partial differential equation. It can be
discretized using finite elements on the CFD mesh. For the discretized finite elements representation,
the summation over weak spatial derivatives in all variables becomes the scalar product with the
spatial gradient. Therefore, it can be written more compact as

DF (ζ ;v je j) =

ˆ
ζ

(
(∇H1F ) j v j + 〈∇x(∇H1F ) j,∇xv j〉2

)
dx, (5.33)

where ∇x is the spatial gradient w.r.t. the Euclidean scalar product. Interpreted as a strong PDE this
corresponds to

∀ j = {1, . . . ,nζ},v ∈ H1(ζ ,Rd) : (I−∆)(∇H1F ) j = DF (ζ ;v je j), (5.34)

with zero Neumann boundary conditions. In case the smoothing is done on the design surface, i.e.,
ζ = Γ, the spatial gradients ∇x are replaced with their tangent form ∇∂ζ F = ∇xF −〈F (ζ ,n),n〉.
This results in the Laplace-Beltrami operator in the strong formulation,

∀ j = {1, . . . ,nζ},v ∈ H1(ζ ,Rd) : (I−∆∂ζ )(∇H1F ) j = DF (ζ ;v je j), (5.35)

Corollary 5.2.15. Scaling the Euclidean inner products in Equation (5.23) by constant factors
ε1,ε2 ∈ R≥0 leads to a new scalar product

〈 f ,g〉=
ˆ

ζ

〈 f (x),ε1g(x)〉2 dx+
ˆ

ζ

nζ

∑
i=1
〈dw

i f (x),ε2dw
i g(x)〉2 dx (5.36)

and to a scaling of the smoothing operator (ε1I− ε2∆). Thereby, scaling the Laplace-Beltrami
operator can be interpreted as a change in the scalar product.

Proof. The proof of Corollary 5.2.14 holds verbatim for the new scalar product and since everything
is linear, the scaling factor can be pulled in front of the integrals.

At this point, it is important to speak about the intended application and the dimensions involved.
Let F(u,x) be a discrete version of F (ζ ) on the CFD mesh. The design equation in the adjoint
method from Chapter 3 evaluates a directional derivative of the Lagrangian, or the objective function
respectively, if flow and adjoint equations are fulfilled, see Corollary 3.1.4. This discrete derivative

DxL(u,λ ,x) = DxF(u,x) (5.37)

has the form of an nζ -dimensional vector in each mesh cell, where the j-th entry represents the
sensitivity of the objective w.r.t. movement in the j-th spatial direction. This motivates the following
simplified notation.

Remark 5.2.16. From now on

(ε1I− ε2∆)(∇H1L) = DxL(u,λ ,x)T (5.38)

is used as a shortened notation for Equations (5.34) and (5.35), discretized by a finite elements
approach on the CFD mesh.
The operator (ε1I− ε2∆) is understood to act componentwise in each direction and ∆ can stand for
the volume or surface Laplace operator depending on the setting. In numerical computations, it will
be replaced by the finite elements stiffness matrix.
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Subsection 5.1 showed connections between the Hessian matrix of shape optimization problems and
the Laplace-Beltrami operator. Both Newton methods and gradient descent in the Sobolev space H1

aim to achieve higher regularity for the search direction. The connection between the two becomes
more apparent if both update formulas are compared side-by-side. Assume a Newton method is used
for minimizing L. For simplicity, write L(x) := L(u,λ ,x) assuming that accurate flow and adjoint
solutions are used. Then a single step of the procedure looks like

xk+1 = xk +δx with DxxL(xk)δx =−DxL(xk)
T . (5.39)

The Sobolev gradient steepest descent step gives

xk+1 = xk +δx with δx =−∇H1L(xk). (5.40)

Combining Equations (5.40) and (5.38) leads to

δx =−(ε1I− ε2∆)−1DxL(xk)
T for Sobolev gradient descent,

δx =−(DxxL(xk))
−1DxL(xk)

T for Newton updates.
(5.41)

Such a side-by-side comparison motivates the approximation of the reduced Hessian of the La-
grangian function on the mesh DxxL with the Laplace-Beltrami operator, i.e.,

DxxL(u,λ ,x)≈ (ε1I− ε2∆). (5.42)

This idea is commonly referred to as Sobolev smoothing in the literature. In the past, the method has
been successfully applied to shape optimization using a free node formulation, e.g., by Schmidt, Ilic,
et al. [106].
Finally, note how the Sobolev smoothing procedure, the approximated Hessian operator symbols
from Section 5.1, and the iso-perimeter problem (5.5) all lead to the Laplace-Beltrami operator,
hinting at a deeper connection between the reinterpretation of the gradient in the Sobolev space and
the Hessian matrix.

5.3 Combination of Reduced Shape Hessian and Parameteriza-
tion

This section introduces new calculations, demonstrating how an approximated Hessian or a smooth-
ing operator can be combined with the design parameterization. The results in this and the following
section in this chapter have been published by Dick, Schmidt, and Gauger [33].

• In Subsection 2.3.2, the continuous formulation of the shape Hessian was introduced. Con-
sidering that there is a flow domain and a design surface, with ∂Ω = Γ, the operator can be
formulated on the surface HessF (Γ), or in the volume HessF (Ω), where it typically has a
rank deficit.

• In Section 3.2, the discretized reduced shape Hessian DxxL(u,λ ,x) appeared in the context
of formulating optimality criteria for discrete adjoint methods. For the discrete optimization
problem, this matrix is the respective approximation of the Hessian operator from the continu-
ous formulation. Nonetheless, due to the high dimensions of this matrix, it is rarely explicitly
computed in numerical optimization algorithms.
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For the practical application of shape optimization to industrially relevant test cases, incorporating a
mesh parameterization is imperative. It can be described by

x = M(p), (5.43)

where p ∈ Rnp is the design parameter vector. Section 3.2 already discussed how this affects the
calculation of projected, reduced gradients and when formulating second order derivatives, a similar
dilemma between two paradigms arises.

1. In the CFD simulation, the computational mesh is the discrete triangulation of the shape. Thus
the reduced shape Hessian DxxL(u,λ ,x) is a natural approximation of the continuous shape
Hessian on the level of mesh node coordinates.

2. For an efficient optimization algorithm, one would naturally want to formulate an approximated
Newton step with respect to the design parameters p. This implies that any approximation of
the Hessian should operate on the sensitivities of a reduced objective function with respect to
the design parameters DppF̃(p).

Traditionally, the focus for Sobolev smoothing methods has been on free node formulations where
the optimization works on the mesh coordinates directly, as stated in Section 5.2. Here, this is
translated into the situation of a parameterized mesh description by deriving the connection between
the two Hessian formulations.

Theorem 5.3.1 (discrete parameterization of the shape Hessian). Assume that F̃ : Rnp → R, p 7→ y
is twice continuously differentiable for p ∈ Sp ⊂ Rnp in the space of possible parameters, then for
the second order derivatives of F̃ the following equation holds

DppF̃(p) = DpM(p)T DxxL(u,λ ,x)DpM(p)+
nx

∑
k=1

∂

∂xk
L(u,λ ,x)DppMk(p). (5.44)

Proof. For simplicity, consider the individual components of the derivatives, where the notation (·)i
means the i-th component. Corollary 3.2.1 states the connection between the total derivatives of F̃
and the partial derivatives of L. Consequently, applying the chain rule yields

d
dpi

F̃(p) = (DxL(u,λ ,M(p))DpM(p))i =
nx

∑
k=1

∂

∂xk
L(u,λ ,M(p))

∂

∂ pi
Mk(p). (5.45)

Here, the adjoint calculus with the Lagrangian is crucial to remove dependencies on the flow state u
and transform total into partial derivatives.
Now take a look at the (i, j)-th component of the second order derivative, i.e., the Hessian matrix.

d2

dpidp j
F̃(p) =

d
dpi

(
d

dp j
F̃(p)

)
=

d
dpi

(
nx

∑
k=1

∂

∂xk
L(u,λ ,M(p))

∂

∂ p j
Mk(p)

) (5.46)
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Applying the product rule to each component of this sum results in

d2

dpidp j
F̃(p) =

nx

∑
k=1

(
d∂

dpi∂xk
L(u,λ ,M(p))

∂

∂ p j
Mk(p)+

∂

∂xk
L(u,λ ,M(p))

∂ 2

∂ pi∂ p j
Mk(p)

)
.

(5.47)
For the mixed second order derivative d∂

dpi∂xk
L(u,λ ,x), the chain rule can be applied again to replace

pi with terms of x.

d2

dpidp j
F̃(p) =

nx

∑
k=1

(
nx

∑
l=1

∂ 2

∂xl∂xk
L(u,λ ,M(p))

∂

∂ pi
Ml(p)

∂

∂ p j
Mk(p)

)

+
nx

∑
k=1

∂

∂xk
L(u,λ ,M(p))

∂ 2

∂ pi∂ p j
Mk(p)

(5.48)

Reordering the scalar multiplications yields

d2

dpidp j
F̃(p) =

nx

∑
k=1

nx

∑
l=1

∂

∂ pi
Ml(p)

∂ 2

∂xl∂xk
L(u,λ ,M(p))

∂

∂ p j
Mk(p)

+
nx

∑
k=1

∂

∂xk
L(u,λ ,M(p))

∂ 2

∂ pi∂ p j
Mk(p).

(5.49)

The appearing sums are the result of matrix vector multiplications. Therefore, the expression for the
complete Hessian matrix is

DppF̃(p) = DpM(p)T DxxL(u,λ ,M(p))DpM(p)+
nx

∑
k=1

∂

∂xk
L(u,λ ,M(p))DppMk(p), (5.50)

proofing the statement.

In the formulation presented here, Theorem 5.3.1 was first published by the author of this thesis
in [33, Theorem 1]. The equation in Theorem 5.3.1 can be interpreted as a special case of the
generalized Faà di Bruno formula [31, 38, 79, 114].
The statement shows the full effect of a parameter variation on the second order derivatives. However,
the second term in Equation (5.44) will vanish in many cases, as the following corollary shows.

Corollary 5.3.2. Let M : Rnp → Rnx be a linear function, then

DppF̃(p) = DpM(p)T DxxL(u,λ ,x)DpM(p). (5.51)

Alternatively, for arbitrary parameterizations M, let p∗ be an optimum of the Lagrangian L, then the
same equation holds true

DppF̃(p∗) = DpM(p∗)T DxxL(u,λ ,x)DpM(p∗). (5.52)

Proof. The first statement is trivial, since for a linear parameterization the second order derivatives
must vanish, i.e., DppMk(p) = 0 and therefore,

nx

∑
k=1

∂

∂xk
L(u,λ ,x)DppMk(p) = 0 (5.53)

74



proving the statement.
For the second statement, an optimal point p∗ must fulfill the KKT conditions from Equation (3.10)
and therefore DxL = 0. This implies that all individual components ∂

∂xk
L(u,λ ,x) = 0 and that

nx

∑
k=1

∂

∂xk
L(u,λ ,x)DppMk(p∗) = 0, (5.54)

completing the proof.

The impact of Corollary 5.3.2 will be discussed in more detail in the following subsection, but first
the smoothing procedure on the parameter level is formulated and Corollary 5.3.2 helps to simplify
this significantly. Now, the formula for the first order derivative of F̃(p) already appeared in this
work, as it can be expressed simply by a multiplication of Jacobian matrices

DpF̃(p) = DxL(u,λ ,x)DpM(p). (5.55)

Combining Equations (5.44) and (5.55) allows to transform a Newton step w for the design parame-
ters

DppF̃(p)w =−DpF̃(p)T , (5.56)

into
DpM(p)T DxxL(u,λ ,x)DpM(p)w =−DpM(p)T DxL(u,λ ,x)T . (5.57)

Here, the reduced shape Hessian with respect to the mesh DxxL(u,λ ,x) is used to formulate the
update with respect to the design parameters, thereby eliminating the conflicting paradigms described
above. This means approximations of the reduced shape Hessian B ≈ DxxL(u,λ ,x) w.r.t. the mesh
coordinates can be utilized in the formula

DpM(p)T B DpM(p)w =−DpM(p)T DxL(u,λ ,x)T , (5.58)

to compute an update step w. Using the results on Sobolev smoothing from the previous Section 5.2,
the Laplace-Beltrami operator from Equation (5.42) is used.

DpM(p)T (ε1I− ε2∆)DpM(p)w =−DpM(p)T DxL(u,λ ,x)T (5.59)

This equation is the central result presented in this thesis. It enables the Sobolev reinterpretation of
the gradient for arbitrary finite-dimensional spaces of design parameters. The geometric structure
necessary to formulate a meaningful Laplace operator ∆ is kept by approximating the mesh Hessian,
while simultaneously taking arbitrary, linear parameterizations into account and removing the need
to work on a free node parameterization.

Surface and Volume Mesh Formulation

Corollary 5.3.2 shows how the second order derivatives of the parameterization can be neglected,
but so far in this Section 5.3, the mesh parameterization was treated as a single mapping. Subsection
2.3.3 explained the mesh parameterization in detail and introduced the distinction between the
surface parameterization MS and the volume parameterization, or mesh deformation, MV. On the
other hand, Sobolev smoothing in a free node formulation is traditionally associated with the surface
mesh sensitivities [106]. This leaves two open questions.
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1. Is the Laplace-Beltrami operator formulated on the surface Γ or in the flow volume Ω?

2. How does this choice affect the formulations in Theorem 5.3.1 and Corollary 5.3.2?

For the first question, it is essential to note that the analytic shape Hessian HessF oftentimes has
a rank deficit when formulated in the flow volume [105], i.e., moving interior points of the flow
domain does not affect objective functions depending on a surface integral. Nonetheless, the discrete
reduced shape Hessian DxxL(u,λ ,x) can be approximated on a volume level.
For the second question, recall how the parameterization of the individual mesh components and
especially their Hessian matrices w.r.t the parameters DppMk are a part of Equation (5.44). Because
of the two-staged parameterization approach from Equation (2.62), each Mk is a combined mapping

Mk : Rnp → R; p 7→ (MV)k(MS(p)). (5.60)

Since these are scalar-valued functions, applying the Faà di Bruno formula a second time yields

DppMk(p) = DpMS(p)T Dss(MV)k(s)DpMS(p)+
ns

∑
l=1

∂

∂ sl
(MV)k(s)Dpp(MS)l(p). (5.61)

Insertion of Equation (5.61) into Equation (5.44) gives an extended formulation of the original result.
Thus, the complete second order derivatives are

DppF̃(p) = DpMS(p)T DsMV(s)T DxxL(u,λ ,x)DsMV(s)DpMS(p)+
nx

∑
k=1

∂

∂xk
L(u,λ ,x)DpMS(p)T Dss(MV)k(s)DpMS(p)+

nx

∑
k=1

∂

∂xk
L(u,λ ,x)

(
ns

∑
l=1

∂

∂ sl
(MV)k(s)Dpp(MS)l(p)

)
.

(5.62)

Now, Corollary 5.3.2 can be applied to the parameterizations from Subsection 2.3.3. In the surface
case, there is no internal mesh deformation MV to consider. The Hicks-Henne functions, as in
Equation (2.65), and the FFD boxes, as in Equation (2.70), are both clearly linear in the design
parameters p and so their second order derivatives DppMS(p) must vanish. Let (ε1I−ε2∆Γ)∈Rns×ns

be a discretization of the Laplace-Beltrami operator restricted to the surface, then the smoothing
equation takes the form

DpMS(p)T (ε1I− ε2∆Γ)DpMS(p)w =−DpM(p)T DxL(u,λ ,x)T . (5.63)

Next, for the volume case the same arguments about the surface parameterization MS still hold.
Here, an additional cross derivative term remains from Equation (5.62),

nx

∑
k=1

∂

∂xk
L(u,λ ,x)DpMS(p)T Dss(MV)k(s)DpMS(p). (5.64)

In this work, the mesh deformation is computed via a linear elasticity approach, see Equation (2.61).
This means evaluating x = MV(s) involves solving a linear equation system, which is clearly a linear
process. Therefore, the terms Dss(MV)k(s) will vanish, resulting in

DpMS(p)T DsMV(s)T (ε1I− ε2∆)DsMV(s)DpMS(p)w =−DpM(p)T DxL(u,λ ,x)T , (5.65)

where ∆ is the volume Laplace operator. Both formulations will be tested in Chapter 7, although
Equation (5.63) is closer to the original theoretical results about Sobolev smoothing.
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5.4 Inclusion into SQP algorithms
To use the results of this chapter in a practical, aerodynamic optimization application, the param-
eterized reinterpretation of the gradient must be combined with computing the search direction
in an optimization algorithm. To achieve this goal, recall the SQP methods in Section 3.5. Here,
the second order derivative information is accounted for by the reduced Hessian of a Lagrangian
function, and thus it seems only natural to use the left-hand side matrix from Equation (5.59) in
Algorithm 3.5.2.

D̃ppLExt ≈ B̄ = DpM(p)T (ε1I− ε2∆)DpM(p) (5.66)

This choice fits naturally into the basic concept of Quasi-Newton methods and the approximation can
also be used together with inexact function values and gradients since it does not suffer from poor
derivative approximation to the same degree as other Hessian approximation techniques. Equation
(5.66) is hence a suitable preconditioner for constrained One Shot optimization using Algorithm
4.3.1 as well. This section discusses some of the implications Sobolev smoothing as a Hessian
approximation has for the optimization algorithm in more detail.

The Marathos effect

In numerical optimization, the term Lagrangian is used in different contexts for different functions,
which may differ in the constraints they take into account. Consider how the original Lagrangian
for the discrete adjoint framework from Section 3.1 and the extended Lagrangian from the SQP
algorithm in Section 3.5 are connected

LExt(u,λ , p) = L(u,λ , p)+θ
T E(u,M(p)). (5.67)

This difference can have severe implications when applying SQP algorithms since the quadratic
subproblem in each SQP iteration expects an approximation of D̃ppLExt. Assuming that for a given
objective function one can approximate D̃ppL by some matrix B̄, then the second order information
about the equality constraint term E should be considered by the optimization algorithm as well,

D̃ppLExt(u,λ , p) = D̃ppL(u,λ , p)+θ
T D̃ppE(u,M(p))≈ B̄+θ

T D̃ppE(u,M(p)). (5.68)

Neglecting the term θ T D̃ppE(u,M(p)) can lead to undesirable numerical behavior and for larger
design update steps v the optimizer will violate the equality constraints since the curvature of the
constraint is not taken into account. While such difficulties can be overcome by choosing small
design updates v, this significantly slows down the SQP algorithm, which is undesirable too.
This behavior is closely linked to similar issues, where SQP methods struggle to adhere to highly
nonlinear constraints E(u,x). Those are well known in the literature and are referred to as the
Marathos effect, see [90, Section 18.11] for details. While some heuristics to avoid this issue are
known, they usually deal with iterative Hessian approximations, e.g., BFGS updates, or adapt the
used merit function for line searches. Unfortunately, this means they cannot easily be applied to the
situation at hand.
Another idea is to extend the approximation B̄ by a regularization term cI, with an adequate constant
ε3 ≈ ‖θ T D̃ppE(u,M(p))‖. This approach will be discussed at length in the next section. As an
overall expression the approximated, extended Lagrangian becomes

D̃ppLExt(u,λ , p) = D̃ppL(u,λ , p)+θ
T D̃ppE(u,M(p))≈ B̄+ ε3I, (5.69)

and it is then possible to apply Algorithms 3.5.1 and 3.5.2 with B = B̄+ ε3I.
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Hybrid Laplace-Beltrami operator

In Section 5.3, the combination between the parameterization and the Hessian on the mesh was
introduced and the following equation for the connection between both sides was established,

DppF̃(p) = DpM(p)T DxxL(u,λ ,x)DpM(p). (5.70)

Using Sobolev smoothing to approximate the Hessian of an objective function results in a scaled
Laplace-Beltrami operator,

DppF̃(p)≈ DpM(p)T (ε1I− ε2∆)DpM(p). (5.71)

The key motivation behind this is a reinterpretation of the directional derivative in a different scalar
product resulting in the H1-gradient. In Section 5.1, this was investigated by a literature survey on
operator symbols for the exact Hessian of a drag minimization problem. Until now, the presented
theory was limited to free node optimization, meaning that the mesh coordinates are also the design
parameters, but this can be extended with the new results from this thesis.
When dealing with a parameterization, an interested reader might ask why it is impossible to directly
state a Laplace-Beltrami operator on the design parameters. Obviously, a naive notation like

DppF̃(p)≈ ε3Ip− ε4∆p, (5.72)

makes no sense since a meaningful mathematical operator ∆p cannot be defined for arbitrary
parameters. The components of the vector p can be an arbitrary set of real-valued numbers from
a variety of ranges and there is no need for an attached geometric structure. On the contrary, the
Laplace operator requires a differentiable manifold to be defined, e.g., in the case of the mesh
coordinates, this is part of the spaces R2 or R3 in which the mesh is embedded, depending on the
dimension of the test case.
Yet, the Laplace-Beltrami operator is a linear combination and in a numerical sense, the two parts
serve two distinct functions. First, the Laplace part has smoothing properties and dissipates numerical
noise and high-frequency errors on the mesh. Second, the identity part serves a regularizing purpose,
ensuring that the new gradient in the Sobolev space H1 is still close to the original derivatives.
A close examination reveals that there are three individual components to consider.

1. The term ε1DpM(p)T IDpM(p) is the identity operator on the mesh projected to the parameters,
which arises naturally from using Sobolev smoothing on the mesh. Some observations about
this expression can be made.

• There is a connection to the spectral norm of the parameterization since it is the square
root of the largest eigenvalue in the spectrum

‖DpM(p)‖2 =
√

σ(DpM(p)T IDpM(p)) (5.73)

and as such, preconditioning with this matrix scales the gradient.

• The resulting matrix is not necessarily diagonal dominant. Instead, a resemblance to the
form of a covariance matrix, with correlations between parameters, could be seen in its
entries (

DpM(p)T IDpM(p)
)

i j =
nx

∑
k=1

DpiMk(p)Dp jMk(p). (5.74)
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• If the derivatives from the adjoint solver have high sensitivities in one component,
they can be spread to other components when using the inverse of this matrix as a
preconditioner. In that sense, it is similar to the dissipation property of the Laplace
operator, albeit it lacks the former’s regularity.

2. The term ε2DpM(p)T ∆DpM(p), as the discretized Laplace operator on the mesh projected to
the parameters, is the closest available approximation for a Laplace operator on the parameters.
In that sense, it has several properties.

• As the smoothing part of the equation, this term helps with regularity and error dampen-
ing.

• In the original Sobolev reinterpretation, higher order derivative information is introduced
by the Laplace operator.

• Numerical experiments show that for too large values of ε2 this component will cause
too much smoothing and slow down the progress in the optimization process.

3. The parameter identity ε3Ip can be interpreted in different ways.

• Mathematically, it is the trivial, scaled identity on each component of the design parame-
ter vector.

• Using only this identity Ip as the matrix B in the reduced SQP methods transforms them
into a projected gradient descent.

• The discussion earlier in this section shows how it can be beneficial to approximate
the Hessian of the equality constraints, from the extended Lagrangian LExt(u,λ , p), by
θ T D̃ppE ≈ ε3Ip with ε3 ≈ ‖θ T D̃ppE‖.

• Numerical experiments reveal that including the parameter identity Ip, with a small ε3,
helps to regularize the SQP optimization and keep the constraints.

Overall, this leaves three components from which to build a suitable Hessian approximation. To
achieve the best possible numerical performance, the optimization in this thesis uses a linear
combination of all three. This means that for the approximated second order derivative matrix B in
Algorithms 3.5.1, 3.5.2, and 4.3.1 the following formula is used,

B = DpM(p)T (ε1I− ε2∆)DpM(p)+ ε3Ip. (5.75)

Because this term combines operators from the mesh level and the design parameters into one
approximation, it is called the hybrid Laplace-Beltrami operator.
It can be motivated by the fact that parameterized Sobolev reinterpretation of the gradient does not
directly imply on which level the identity lives. For classical free node optimization, such a situation
would not occur, as only the space of mesh coordinates, as a triangulation of the surface manifold,
exists there. Furthermore, using the design parameter identity can be motivated as a regularization
for the equality constraints in the SQP framework.
As mentioned, when using a pure parameter identity B = Ip, the SQP algorithms are equivalent to
projected gradient descent methods. Therefore, the hybrid Laplace-Beltrami approach offers the
user a variety of possible methods, ranging from fully-approximated Newton algorithms to pure
gradient descent. Utilizing this variety and choosing suitable values ε1,ε2,ε3 for a given test case
helps the optimization to achieve maximum performance.
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Chapter 6

Implementation

This chapter presents an overview of the implementations done as part of this thesis. Starting by
giving an introduction of the different used software tools in Section 6.1, and how they are utilized
to implement the algorithms and run the test cases. Following this introduction, the implementations
of new solvers and driver routines inside the SU2 executables are discussed in Section 6.2, as well
as presenting the optimizer implementation done in the Python script-based FADO package in
Section 6.3.
The source code of SU2 is available under https://github.com/su2code/SU2 and FADO is
available under https://github.com/pcarruscag/FADO. The implementations used can be
found in the authors respective forks of these repositories.
A brief discussion of key features of the implementation presented in this chapter has been previously
published in the appendix of the paper by Dick, Schmidt, and Gauger [33].

6.1 Used Software Packages
Here, the most important software packages used are listed and a short explanation of their function-
ality, features, and code structure is given. This includes the SU2 framework, as the CFD code used
in this thesis to calculate flow and adjoint solutions, CoDiPack and MeDiPack, as they provide the
necessary AD capabilities, and the FADO framework, as an optimization interface in Python.

6.1.1 SU2
The key aspects of this work, namely the development and implementation of a new Sobolev smooth-
ing method incorporating design parameterizations, are done inside the context of aerodynamic
shape optimization. Such an optimization requires solving the underlying flow equations, presented
in Subsection 2.1.1, and evaluating aerodynamic functionals, e.g., the ones introduced in Subsection
2.1.2. Furthermore, the derivatives of those functionals must be computed, which is done using the
discrete adjoint approach discussed at length in Chapter 3.
All of the mentioned tasks are computed using the SU2 code [93, 94, 35], a free, open-source
multiphysics package that provides various solvers. These include flow solvers for the most common
compressible and incompressible flow equations, like Euler, Navier-Stokes, and RANS equations
and corresponding turbulence model solvers, see Section 2.1. In addition, a variety of solvers for
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other relevant sets of partial differential equations from engineering and physics are available. These
include elasticity and conjugate heat transfer solvers and their corresponding coupling with the flow
solvers.
Especially relevant for this work is the included discrete adjoint solver [4] since it provides the
capability to differentiate the flow solver itself in a robust and computationally efficient way. The
underlying mathematical structure is based on the fixed point formulation of the flow problem dis-
cussed in Subsection 3.1. Algorithmic differentiation is applied to compute the appearing derivative
terms, following the theoretical introduction of the topic provided in Subsection 3.3. It should
be emphasized that algorithmic differentiation fits nicely into a discrete adjoint approach since it
adheres to the fundamental principle of ‘first discretize, then optimize’, and thus its use results in
very efficient adjoint code. For comparison, the quotient between a flow simulation and an according
adjoint evaluation in SU2 is down to ca. 2.3 in runtime [4] and ca. 5 to 10 in terms of memory
consumption [103].

SU2_GEO

SU2_DEF

SU2_MSH

SU2_CFD

SU2_DOT

SU2_CFD_AD

SU2_CFD_DIRECTDIFF

SU2_DOT_AD

SU2_SOL

Figure 6.1: Overview of C++ executables in SU2.

The basic code structure of SU2 determines how the algorithms established so far can be implemented.
Viewing it from a top-down perspective, there are several distinct executables shown in Figure 6.1.
They are all implemented in C++, heavily utilizing class structures and templates, and each of these
could be compiled as a stand-alone tool, although they are designed to work together in sequential
order. The most relevant executables used here for the implementation are:

1. SU2_CFD: This can be seen as the core of SU2 since it provides the direct execution of the
different solvers. Simulations with the flow, turbulence, and additional multiphysics solvers
are run using this executable.

2. SU2_CFD_AD: This executable provides the discrete adjoint versions of the solvers from
SU2_CFD. It is created from the differentiated code of the primal solvers using algorithmic
differentiation, see the following Subsection 3.3. It is called to do the sensitivity analysis and
the derivative calculations. Additionally, it can also run the simulations itself, though this will
be slower than running SU2_CFD due to overhead.

3. SU2_DEF: As an implementation of the supported parameterizations, this executable takes
the design parameters as input and calculates the mesh deformation. The output is a new mesh
file containing the deformed design, which can then be used for flow and adjoint simulations.
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4. SU2_DOT_AD: This is another executable using algorithmic differentiation. It provides a
differentiated calculation of the mesh parameterization, i.e., it can calculate derivatives for the
deformation process. Note that the SU2_DOT_AD executable provides a differentiation of
the mesh deformation done by AD. In comparison, the SU2_DOT executable computes them
by finite differences instead.

SU2 executable:

CDriver CIntegration CSolver CNumerics

Figure 6.2: Class hierarchy in SU2.

Clearly, the executables SU2_CFD and SU2_CFD_AD contain the core functions for solvers and
simulations, so the optimal place to implement Sobolev gradient treatment is as a part of the discrete
adjoint capability. To better illustrate their underlying working principles, look at the class hierarchy
of SU2_CFD and SU2_CFD_AD, as depicted in Figure 6.2. The different classes are organized
following a pattern of generalization, from general physics to small scale numerical formulas on the
individual mesh cells.

1. CDriver: Driver classes represent the kind of physical problem. This includes options for
whether this is a primal simulation, e.g., flow simulations, or an adjoint run. The driver class
holds the spatial distribution of the problem, e.g., being all on a single zone, for flow solutions,
or having multiple zones, for fluid-structure interaction. Additionally, the driver controls
the time dependency of the physics. For example, this could be a steady state problem with
pseudo time-stepping or a time dependent, unsteady problem.

2. CIntegration: Integration classes manage the individual timesteps for the simulation, or
pseudo timesteps in case of steady state problems. This class calls the individual solvers,
manages the data exchange between them, and utilizes their output to execute a numerical
time integration step.

3. CSolver: Solver classes implement a specific set of governing equations. Possible options
include flow equations, turbulence models, structural mechanics, etc. They manage everything
necessary for one evaluation of the iterative fixed point solver and store the current, temporary
solution fields.

4. CNumerics: In the numerics classes, the core routines of the individual solution schemes are
implemented. They work in close conjunction with the solver classes to provide the discrete
solution scheme for the physical problem.

While there are other classes for different purposes, such as the geometric representation of the dual
mesh, solution and history file output, etc., this brief overview should be sufficient to understand the
implementation steps discussed throughout the rest of this chapter.
Finally, it is worth mentioning that the SU2 framework also comes equipped with a series of Python
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scripts. They provide easier access, allowing for the call to and execution of the compiled main
executables, and include optimization capabilities. Several different optimizers, stemming from the
SciPy optimization package [123], are provided in the standard version of the interface. However,
SciPy’s own included second order Quasi-Newton method, the SLSQP algorithm [69], does not
allow the user to provide Hessian approximations. More importantly, the existing Python scripts
are unsuited for applying One Shot methods. Therefore, a different interface is used in this thesis,
which will be introduced in Subsection 6.1.3.

6.1.2 CoDiPack and MeDiPack
In the presented work, all flow calculations and adjoint evaluations are done using the SU2 software,
as stated in Subsection 6.1.1. The standard AD tool included within SU2 is CoDiPack1 [103],
the name being an abbreviation for ‘Code Differentiation Package’. CoDiPack is an operator
overloading AD tool for C++ code, especially designed for fast AD support in high performance
computing environments. The tool is based on expression templates and static polymorphism, both
features of modern C++ code, and comes in the form of a header only library making integration
into existing code very simple and straightforward. Support includes the forward and reverse mode
of AD, including some useful features and optimizations for the reverse mode that are relevant here.
This includes the possibility to run multiple reverse mode evaluations of the same recorded primal
evaluation and, in addition, forward evaluations of the recorded tape from reverse mode. Subsection
6.2.1 will further discuss how those features are utilized in this work.
Parallelization is one aspect of modern software architecture, especially in high performance comput-
ing, where AD traditionally struggles. Parallel computations are necessary to run large simulations
and optimizations, e.g., the kind encountered in CFD applications. However, many AD tools lack
proper coverage of common parallelization techniques, like message passing, shared memory, or
vectorization. In the case of parallelization via message passing (MPI) for CoDiPack the additional
tool MeDiPack2, standing for ‘Message Differentiation Package’, is available. MeDiPack offers
strong support for AD with MPI, by providing a C++ library for overloading MPI communication.
The communication interface provided by MeDiPack replaces the standard MPI calls in the source
code with overloaded communication calls, keeping the same general layout and structure. The
process is similar to replacing the floating-point type with CoDiPack, therefore being non-intrusive
to the code and user friendly for the developer. With this approach, a majority of ca. 80% of the
MPI 3.1 standard is covered.
When working together, MeDiPack can automatically set up the adjoint communication calls CoDi-
Pack needs for reverse mode derivative calculations. In such a fashion, it is possible to differentiate
complex codes with many MPI communications while keeping the additional work for the developer
at a minimum. In SU2, the communication routines are automatically replaced by MeDiPack
routines, if the correct build options for AD are set, thus providing differentiated MPI code out of the
box. Since the test cases of this work are generally done on a high performance cluster architecture,
and the methodology aims at industrially relevant applications, the availability of parallel AD tools
is an essential ingredient of the overall implementation.

1CoDiPack – Code Differentiation Package, https://www.scicomp.uni-kl.de/software/codi/
2MeDiPack – Message Differentiation Package, https://www.scicomp.uni-kl.de/software/medi/
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For the proposed implementation of parameterized Sobolev smoothing, special focus must be given
to the efficient computation of the mesh parameterization Jacobian DpM(p) and its transposed
DpM(p)T . In Section 6.2.1, the use of CoDiPack for this calculation is further discussed.

6.1.3 FADO
As the topic of this thesis is the use of a combination of Sobolev smoothing with a shape pa-
rameterization in an optimization process, it is necessary to implement the Algorithms 3.5.2 and
4.3.1 from previous chapters. This means that the optimizer must compute flow simulations and
discrete adjoints, e.g., by reverse accumulation or piggyback, and use different gradients, e.g., fully
converged, accurate derivatives, or approximated, intermediate derivatives.
As mentioned, SU2 itself includes several Python scripts to automate various tasks. However, they
have a couple of limiting factors attached to them. Because of this, the optimization algorithms are
implemented in another extended Python framework. To better understand the involved reasoning,
first specify the key requirements for the optimization interface.

1. Provide an interface between the optimizer and the flow and adjoint solver executables.
Functions, constraints, and gradients should be available to the optimization algorithm via
wrapped function calls in Python.

2. Include support for multiple adjoint solver settings and methods, i.e., work with reverse
accumulation or piggyback. Additionally, allow the optimizer to call newly implemented
solvers, e.g., to compute the Laplace-Beltrami operator.

3. Support for geometric evaluations, via the mesh parameterization, to compute additional
constraints depending on the geometry and their respective derivatives.

4. Handling of the required file I/O and management of (sub-)directories. The optimizer calcu-
lates multiple designs throughout an optimization. These intermediate deformed meshes, flow
and adjoint solutions, and other files should be stored in an organized subdirectory structure.

5. Control and guide the optimization process. Everything should be callable and controlled by a
command script. The script should provide all information the optimization backend needs
and control the data flow.

In this thesis, the relatively recent FADO3 framework is used to fulfill these requirements and
implement the optimization algorithms. FADO stands for ‘Framework for Aerostructural Design
Optimization’ and is originally designed to couple different solvers and optimization packages for
multiphysics problems. It offers a flexible toolbox to couple the SU2 executables with arbitrary
optimization packages in Python and provides several beneficial features.

1. Customized, user-defined command line calls to the executables. While the standard SU2
scripts use the same parameters, e.g., executable names and number of MPI processes, for all
calls in the optimization, in FADO it is instead possible to completely customize all options
for each individual call to the different solvers.

3FADO - Framework for Aerostructural Design Optimization, https://github.com/su2code/FADO
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2. Adaptation of the configuration file via a label replacement system. In FADO, the user
provides a configuration template containing labels for key settings, e.g.,

% M a t h e m a t i c a l problem ( DIRECT , DISCRETE_ADJOINT )
MATH_PROBLEM= __MATH_PROBLEM__
%
% Number o f i t e r a t i o n s f o r s i n g l e −zone prob lems
ITER= __ITER__

These labels can then be specified, i.e., they are replaced with different, individual options
for each function or gradient evaluation call. The label replacement system allows users to
change every SU2 solver setting quickly and efficiently.

3. Active checks for changed design variables and keeping track of computed solutions. The
toolbox stores, whether or not the function or gradient computation has been called already for
certain values and starts a new simulation only if the design has changed. Also, these features
keep track of the solution files and can use them as restart points for simulations in the next
optimization step.

4. Custom handling of (sub-)directories and file I/O. Within FADO, the user can specify where
simulations are done by providing a subdirectory name in which to run the executable, as well
as input files. After termination, it is possible to run user provided postprocessing commands,
e.g., copying back results.

These features will become helpful in Section 6.3, where they are employed in implementing the
general structure of a reduced SQP algorithm. The points listed here will help ensure that the SQP
algorithm is flexible enough to work with fully converged solutions and intermediate values in a
One Shot process.

6.2 Implementations in SU2
After introducing the used software packages, the new implementations in SU2 for this thesis are
presented in this section. An overview of the different solvers and how they fit into the overall
framework is given, including the implementation of new solver classes and the extension of the
existing ones. This section’s objective is not to state the complete source code, as this would be too
long, but to highlight the relevant ideas for a reproduction.

6.2.1 Gradient Smoothing Solver
In Chapter 5, the mathematical formulation for combining a Sobolev reinterpretation of the gradient
with the parameterization was introduced. The next logical step is to implement a solver for the key
equation to conduct an approximated Newton step, see Equation (5.59) in Section 5.3.

DpM(p)T (ε1I− ε2∆)DpM(p)w =−DpM(p)T DxL(u,λ ,x)T (6.1)

In the following, the major steps in the implementation of such a new solver class are outlined. The
CGradientSmoothing solver is introduced as a new specialization of the basic CSolver class of SU2.
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CSolver Flow Solvers:

CEulerSolver CIncEulerSolver CNSSolver

CIncNSSolver CTurbSolver

Discrete Adjoint Solvers:

CDiscAdjSolver CDiscAdjFEASolver CDiscAdjMeshSolver

Continuous Adjoint Solvers:

CAdjEulerSolver CAdjNSSolver CAdjTurbSolver

Multiphysics Solvers:

CMeshSolver CFEASolver CHeatSolver

CGradientSmoothingSolver

Figure 6.3: Solver class structure in SU2.

The hierarchy of different classes in SU2 was explained in Subsection 6.1.1 and shown in Figure 6.3.
The solver classes, derived from the CSolver template, can be roughly grouped into different types
for flow, turbulence, adjoints, etc. The new CGradientSmoothing solver class, which is necessary
for the implementation, is shown in green in Figure 6.3. It is intended to fulfill three distinct steps,
aiming to solve Equation (6.1).

1. A discrete representation of the Laplace-Beltrami operator (ε1I− ε2∆), by an expansion of
the SU2 internal finite element numerics.

2. An efficient AD-based implementation for the evaluation of arbitrary matrix vector products
with the parameterization Jacobian DpM(p) and its transposed DpM(p)T .

3. An overarching structure which enables the solution of the complete linear equation system
for different settings and parameters.

The means to achieve this goal are outlined in the following.

Extension of the linear finite element solver

As the central operator in Equation (6.1) (ε1I− ε24) must be computed and naturally, a solver for
this equation should possess some properties.
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1. As the term is an elliptic partial differential operator and contains the Laplace operator as
the main derivative part, it seems adequate to use a finite element method to solve it. Such
methods have proven capable of solving elliptic PDEs and are widely used throughout the
engineering community.

2. To achieve a high computational performance, the finite element code should be fully integrated
into the existing SU2 structure. Either by implementing it inside the framework or by including
an external C++ implementation. The first approach is chosen within this work, although the
second one seems feasible as well, considering the high number of available open-source C++
libraries for finite elements, e.g., deal.II [13].

To achieve the best possible performance, while keeping good maintainability, the already existing
linear finite element solver in SU2 is used as a basis for the implementation. This solver was
initially introduced by Sánchez [41] for structural mechanics. In its original form, it is intended
for the analysis of linear and special cases of nonlinear elasticity equations and uses linear finite
elements. The implementation is based on the equations derived in the book by Bonet and Wood
[20]. Nonetheless, since the solver was initially intended for structural mechanics, a couple of
extensions are necessary to enable the computation of the operator in system (6.1).

CElement

CTRIA1

CTETRA1

CQUAD4

CPYRAM5

CPRYSM6

CHEXA8

CLINE

CTRIA3

CTETRA4

CPYRAM6

CGaussVariable

Figure 6.4: Element class structure in SU2.

Consider the weak partial differential equation seen in Equation (5.29). A general finite elements
approach for discretizing the Laplace-Beltrami operator can be written as

∀φ ∈ V (Ω) : ε1

ˆ
Ω

f (x)φ dx− ε2

ˆ
Ω

〈∇x f (x),∇xφ〉2 dx =
ˆ

Ω

g(x)φ dx. (6.2)

The basic idea of finite elements is to find a solution of the weak formulation for all test functions
φ from a vector space V (Ω), called the test space. To do this, choose a finite-dimensional space
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called ansatz space, spanned by a set of basis functions, and express f (x) in terms of that basis.
Many approaches with different function spaces exist, leading to different finite element methods.
Following a Ritz-Galerkin approach, the test and ansatz space are the same, see [25, Chapter II.4].
In the SU2 implementation, piecewise linear basis functions are used.

Definition 6.2.1 (linear ansatz space). Let T be a triangulation of Ω, then

ST =
{

φ ∈C0(Ω)
∣∣ φ |T ∈ P1, T ∈T

}
(6.3)

is the space of all continuous, piecewise linear functions on the triangulation that are polynomials
of order one, denoted by P1, on each element of the triangulation.

Choosing a canonical basis of hat functions {φi ∈ ST }i=1,...,na , i.e., functions which are 1 on one
node of T and 0 on all others, and searching for the best approximation of f in terms of ST leads
to the problem of finding coefficients ai, such that

f (x) =
na

∑
i=0

aiφi. (6.4)

The functions φi ∈ ST are called ansatz functions. Insertion into the weak formulation yields a
system of equations.

∀ j = {1, . . . ,na} : ε1

ˆ
Ω

na

∑
i=0

aiφi(x)φ j(x)dx− ε2

ˆ
Ω

na

∑
i=0

ai〈∇xφi(x),∇xφ j(x)〉2 dx =
ˆ

Ω

g(x)φ j(x)dx

(6.5)
This can be rewritten into a linear system of equations

Aa = b, (6.6)

with the so-called stiffness matrix

Ai j = ε1

ˆ
Tj

φi(x)φ j(x)dx− ε2

ˆ
Tj

〈∇xφi(x),∇xφ j(x)〉2 dx, (6.7)

and the right hand side

b j =

ˆ
Tj

g(x)φ j(x)dx. (6.8)

Solving the linear equation system for a = (a1, . . . ,ana)
T is the discrete version of solving the partial

differential equation (6.2). Therefore, it is possible to view the stiffness matrix A as the discrete
representation of the Laplace-Beltrami operator.
However, there is a catch when calculating the matrix A. In Equation (6.7), the evaluation of the
following integral is needed. ˆ

Tj

φi(x)φ j(x)dx (6.9)

Note that this is a major difference from the old SU2 finite element solver. There, only integrals
over ∇xφi(x)φ j(x) or similar derivative expressions are calculated.
If the functions φi are polynomials of degree one, then the integral in Equation (6.9) must be
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evaluated by a second order quadrature formula. For the implementation of Equation (6.9) in SU2,
this means that the quadrature rules for numerical integration must be changed from first to second
order. Several new element type classes are introduced to the solver to enable such a higher order
integration, as shown in Figure 6.4 in green. The number in the classes name stands for the number
of Gauss quadrature points used for numerical integration. The exact second order quadrature
formulas for reference integrals on different kinds of elements can be found in the book by Stroud
[118, Chapter 8].

Figure 6.5: Triangular reference element with second order Gauss points.

Unusually, the equation needs a second order quadrature while working with linear elements. In
finite elements, one would typically expect higher order quadrature formulas to be used when
working with higher order elements.
An explanatory example can be given for a reference triangular element, e.g., the one depicted in
Figure 6.5. A second order quadrature rule on the reference triangle uses 3 Gauss points at the
coordinates (2

3 ,
1
6), (

1
6 ,

2
3), and (1

6 ,
1
6), each with a respective weight of 1

3 , to calculate the exact value
for integrals over polynomials of degree 2. Similar formulas can be implemented for other types of
elements too.
The next issue is that the finite elements approach described so far has not taken the curvature of the
surface into account. The formulation established above is valid if the area Ω in which the PDE is
assembled is planar. In Section 5.3, the gradient smoothing procedure was discussed in detail and
two approaches were mentioned. First, the Laplace-Beltrami operator might be assembled on the
volume grid, i.e., a planar 2D or 3D area depending on the test case dimension. Second, it is also
possible to formulate the method on the design surface. This approach can have advantages, like
a better approximation of the shape Hessian, but it means that the domain for the PDE becomes
a curved manifold embedded in a higher-dimensional space. For example, one might imagine
the surface of a wing to visualize this fact. Clearly, this is a 2D manifold embedded inside a 3D
geometry and since the surface mesh is stored as a subset of the volume mesh, this means that the
node coordinates are also 3D points.
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For finite element methods, different approaches are available for dealing with the change in
dimension when the triangulation elements are embedded in a space with one dimension more. The
base solver presented above uses linear finite elements and since the individual elements shall remain
planar objects, the use of more complex elements is ruled out. Instead, the change in dimensions
is accounted for in the transformation to the reference element, where such a mapping requires
adaptation in the integral transformation [99]. Without loss of generality, the explanation is done for
triangular elements on an embedded surface. It can be extended to other types of elements as well
and it reduces naturally in the case of a 1D boundary curve embedded in a 2D plane.

Figure 6.6: Mapping from reference to surface element.

When evaluating an integral like
´

Tj
φi(x)φ j(x)dx, it is not directly calculated on the triangle Tj

associated with the hat function φ j. Instead, a coordinate transformation is performed and the
numerical integration formula is evaluated on the reference triangle. In Figure 6.6, the mapping is
visualized. The local coordinate transformation

X : (σ1,σ2)→ (X1,X2,X3) (6.10)

has the property of changing the dimension of the problem. This must be taken into account, and
so a natural generalization of the transformation formula for integrals has to be applied. From the
basic analysis, the reader should be familiar with the absolute value of the Jacobian determinant
|det(J)|, appearing in the transformation formula for integrals. Obviously, this term can not be
applied directly since a closer look at the Jacobian of the coordinate transformation shows that it is
not a square matrix.

J =


∂

∂σ1
X1

∂

∂σ2
X1

∂

∂σ1
X2

∂

∂σ2
X2

∂

∂σ1
X3

∂

∂σ2
X3

 (6.11)

When incorporating a dimension change the transformation formula for integrals changes too. The
absolute value of the Jacobian determinant |det(J)| is replaced by the more general Gram determinant√

det(JT J). The functions and there respective derivatives must be adapted as well. Suppose that
a function φ(x) is defined on Tj, then the pullback of that function on the reference triangle T is
defined as Φ(σ) := φ(X(σ)). In addition, the gradients are linked using the Moore–Penrose inverse
J† := (JT J)−1JT , with

∇xφ(x) = (J†)T
∇σ Φ(σ). (6.12)
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In total, the integral transformation for the stiffness matrix entries Ai j is given by,

Ai j = ε1

ˆ
Tj

φi(x)φ j(x)dx− ε2

ˆ
Tj

〈∇xφi(x),∇xφ j(x)〉2 dx =

= ε1

ˆ
T

Φi(σ)Φ j(σ)
√

det(JT J)dσ−

ε2

ˆ
Tj

〈(J†)T
∇σ Φi(σ),(J†)T

∇σ Φ j(σ)〉2
√

det(JT J)dσ .

(6.13)

The implementation of this transformation requires extending the corresponding classes, CElement
and CGaussVariable, in SU2 to deal with such changes in coordinates. The new functions allow the
user to hand (n+1)-dimensional vectors for the mesh node coordinates of an n-dimensional element
to the classes. They also provide an implementation to transform the gradients on the element, by
the Moore-Penrose inverse, and they can evaluate the integrals in Equation (6.13).
In combination, the extensions to the linear finite element solver, described in this subsection, enable
the new gradient smoothing solver to assemble a discrete representation of the Laplace-Beltrami
operator with finite elements on the design surface or in the volume.

AD evaluation of the parameterization

After providing an extended finite element solver, to calculate a discrete representation of the
parameterized Laplace-Beltrami operator, the next task in the implementation of the gradient
smoothing solver class is to provide an evaluation routine for the Jacobian of the parameterization
DpM(p). Instead of evaluating and storing the whole matrix, some observations on the dimensions
and structure of Equation (6.1) can help to determine the most efficient solution.

1. For the optimization algorithm, one needs the solution of a linear system of equations with
the matrix B := DpM(p)T ADpM(p), where A is the stiffness matrix seen previously. The
individual components of this matrix product are never explicitly used on their own.

2. The stiffness matrix A ∈ Rnx×nx has the same dimensions as the vector of discrete mesh
coordinates x. The Jacobian DpM(p) ∈ Rnx×np is of size nx in one dimension, while being of
size np, i.e., the size of p, in the other dimension. It is therefore a highly non-square matrix.

3. For aerodynamic shape optimization, the number of design parameters is usually much smaller
than the number of mesh points, i.e., np� nx. This implies that B is a relatively small matrix
composed of a product of three relatively large matrices.

These three points demonstrate the inefficiency of evaluating the matrix multiplication directly.
Instead, one should adopt the approach to only compute products of B with arbitrary vectors. This
allows the user to either run such a routine np times to get the full matrix B or hand the routine to an
iterative linear equation solver.
Three consecutive matrix vector products must be evaluated to implement such a function. One with
the Jacobian DpM(p), the stiffness matrix A, and the transposed Jacobian DpM(p)T each. Section
3.3 presented the forward and reverse mode of AD and explained how to calculate arbitrary matrix
vector products with a Jacobian matrix in Equations (3.39) and (3.41) respectively. With this in
mind, it is easy to see how applying a powerful AD tool can be genuinely beneficial here.
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Classes to compute deformations:

FFDBox CSurfaceMovement CVolumetricMovement

Geometry classes:

CGeometry CPhysicalGeometry CMultigridGeometry

Classes for handling individual parts:

CPrimalGrid CDualGrid CPoint CVertex

act on

contain as member

Figure 6.7: Different classes for deformation in SU2.

Some derivatives of the parameterization are already available within the SU2 adjoint framework,
namely the right hand side of Equation (6.1), i.e., −DpL̃(p) = −DxL(u,λ ,x)DpM(p), can be
computed. For this, the structure of the parameterization has to be taken into account, with
the relevant class hierarchy shown in Figure 6.7. Instances of the ‘CVolumetricMovement’ and
‘CSurfaceMovement’ classes will act on the geometry classes, which store the individual grid
cells, to calculate a deformation. There are two implementations to evaluate a derivative of the
mesh deformation process. Both are part of the adjoint solution chain and can be found within the
SU2_DOT and SU2_DOT_AD executables. The first one is based on finite differences, namely
for each design variable the SU2_DOT executable calls the deformation routines and computes the
difference quotients in the mesh coordinates. The second approach, located in SU2_DOT_AD, uses
AD and records one evaluation of the deformation M(p) onto a tape. This tape is then initialized
with the sensitivities in the mesh coordinates, i.e., DxL(u,λ ,x), as seeding and evaluated.
The second implementation is a good template for the gradient smoothing solver, but some limitations
require further code implementation. In this work, several steps are taken to deploy a general, flexible
AD-based evaluation of the parameterization Jacobian. Since the CGradientSmoothingSolver class
provides an evaluation of the matrix in Equation (6.1), it makes no sense to distribute this across
several executables. Instead, everything should exist entirely within the SU2_CFD_AD executable.
As a first step, the source code for the evaluation of DpM(p) is transferred into SU2_CFD_AD.
To enable the code to accept arbitrary input vectors, in multiple evaluations, and to compute products
with both DpM(p) and DpM(p)T , the process is split into three functions.
First, record one complete evaluation of the mesh deformation. Following the AD logic, the
function ‘RecordParameterizationJacobian’ shown in Listing 6.2.1 stores the computational graph
of evaluating the parameterization onto a tape. The pseudocode in Algorithm 6.2.1 shows the major
steps computed by the function ‘RecordParameterizationJacobian’. Multiple derivative evaluations
can be computed once all steps are stored on the AD tape.
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vo id C G r a d i e n t S m o o t h i n g S o l v e r : : R e c o r d P a r a m e t e r i z a t i o n J a c o b i a n (
CGeometry * geometry ,
CSurfaceMovement * sur face_movement ,
CSysVector < su2doub le >& r e g i s t e r e d C o o r d ,
CConfig * c o n f i g ) ;

Listing 6.2.1: Function call for recording the parameterization to the tape.

Algorithm 6.2.1 Recording of the parameterization
1: start recording of the AD tape �
2: register input variables p
3: compute x = M(p)
4: register output variables x
5: stop recording
6: return tape �

This is done by the function shown in Listing 6.2.2, i.e., ‘ProjectMeshToDV’. This function can
use the recorded tape, provided by the AD tool, to calculate arbitrary matrix vector products
p̄ = DpM(p)T x̄, with a seeding x̄, by deploying reverse mode AD. The major steps are outlined in
Algorithm 6.2.2.

vo id C G r a d i e n t S m o o t h i n g S o l v e r : ProjectMeshToDV (
CGeometry * geometry ,
CSysVector < su2doub le >& s e n s i t i v i t y ,
s t d : : v e c t o r < su2doub le >& o u t p u t ,
CSysVector < su2doub le >& r e g i s t e r e d C o o r d ,
CConfig * c o n f i g ) ;

Listing 6.2.2: Function call for reverse evaluation of the parameterization tape.

The lacking third function ‘ProjectDVtoMesh’ should calculate the missing matrix vector product
ẋ = DpM(p)ṗ, for arbitrary seedings ṗ. Ideally, this would be computed with the forward mode
of AD, see Equation (3.39). However, there is a major problem with this based on integrating the
AD tool CoDiPack into SU2, where the floating-point type in the source code is exchanged by the
typename ‘su2double’, which is replaced at compile time with the specified AD data type. This
means that there are separate, compiled executables, each using either regular double (SU2_CFD),
the forward mode type codi:RealForward (SU2_CFD_DIRECTDIFF), or the reverse mode type
codi::RealReverse (SU2_CFD_AD). Implementing a solver class mixing forward and reverse mode
AD inside the SU2_CFD_AD executable would break this structure, require an overhead of copy
operations for type conversion, and provide a significant source of error potential. While theoretically
possible, it is highly impracticable from a developer’s perspective.
CoDiPack provides a solution for such situations in the form of tape forward evaluation. This feature
enables the user to evaluate the AD tape in the same order as it was recorded, thus emulating the
forward mode of AD. Applying the tape forward evaluation in the ‘ProjectDVtoMesh’ function
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Algorithm 6.2.2 Reverse mode evaluation of the parameterization tape
1: set seeding for the output variables x̄
2: evaluate the tape 	
3: get sensitivities from the input variables p̄
4: reset the tape 	
5: return p̄

in Listing 6.2.3 allows the CGradientSmoothingSolver to compute the matrix vector product ẋ =
DpM(p)ṗ, while using the reverse mode floating point type codi::RealReverse. While this advanced
feature is a bit slower than pure forward mode evaluation, it still retains a competitive performance,
which is especially beneficial since the tape for the parameterization evaluation is already recorded
by the function in Listing 6.2.1. It allows the evaluation of arbitrary matrix vector products with
DpM(p), as shown in Algorithm 6.2.3.

vo id C G r a d i e n t S m o o t h i n g S o l v e r : Projec tDVtoMesh (
CGeometry * geometry ,
s t d : : v e c t o r < su2doub le >& s e e d i n g ,
CSysVector < su2doub le >& r e s u l t ,
CSysVector < su2doub le >& r e g i s t e r e d C o o r d ,
CConfig * c o n f i g ) ;

Listing 6.2.3: Function call for forward evaluation of the parameterization tape.

Algorithm 6.2.3 Forward evaluation of the parameterization tape
1: set seeding for the input variables ṗ
2: call forward tape 	 evaluation
3: get sensitivities from the output variables ẋ
4: reset the tape 	
5: return ẋ

By combining the three described routines with the calculation of the stiffness matrix by the finite
elements approach from above, it is possible to evaluate all terms of Equation (6.1) inside the gradient
smoothing solver class. Thus allowing the reinterpretation of gradients by Sobolev smoothing for
the optimization.

6.2.2 One Shot Driver
New implementations are necessary to implement the One Shot optimization from Chapter 4, espe-
cially the constrained multistep One Shot Algorithm 4.3.1, in the SU2 framework. These have to
extend the discrete adjoint capabilities and combine them with the optimization process.
So far, the current SU2 adjoint framework was constructed around the reverse accumulation Al-
gorithm 3.4.3, since it provides advantages in runtime and memory requirements, as discussed in
Subsection 3.4. However, this neglects One Shot’s key concept of driving flow solutions, adjoints,

95



and design optimization to convergence simultaneously.
From the mathematical formulation of One Shot, it is apparent to start by implementing a piggyback
iteration and then extend it with design updates. The changes to the adjoint executable include chang-
ing the overall data flow of the problem. Referring to the class hierarchy of SU2, shown in Figure
6.2, this is best done in the driver class. In this subsection, the newly implemented COneShotSingle-
zoneDriver driver is introduced and its relationship with the existing CDiscAdjSinglezoneDriver
class is discussed.

flow solver
u j+1 = G(u j,xi)

adjoint solver
λ j+1 = DuG(u∗,xi)

T λ j +DuF(u∗,xi)
T

mesh sensitivities
DxG(u∗,xi)

T λ∗+DxF(u∗,xi)
T

optimization
algorithm

original design
u∗ λ∗

−DxFxi+1

x0

j

j

Figure 6.8: Optimization process with reverse accumulation.

To understand how the driver has to be changed to use a piggyback iteration, consider how the
old SU2 implementation works. The computational flow during the existing optimization with
reverse accumulation is shown in Figure 6.8. Arrows symbolize successive steps and dashed arrows
symbolize loops. First, the physical flow problem is solved using a corresponding flow driver, then
the adjoint problem is solved by an adjoint driver, iterating the adjoint solver. This is equivalent
to the reverse accumulation Algorithm 3.4.3. The introduction of the Sobolev smoothing solver
already discussed the role of different executables. In Figure 6.8, the flow solver would be executed
with a call to SU2_CFD using a flow driver class and then a call to SU2_CFD_AD would execute
the adjoint solver by utilizing the CDiscAdjSinglezoneDriver class. To implement the One Shot
optimization process, this is now replaced by a single call to SU2_CFD_AD using a new driver
class.
From a mathematical viewpoint, the piggyback iteration in Equation (3.48) does a coupled iteration
for the flow and adjoint equations. As driver classes within SU2 are designed to manage different
solvers working together, the new One Shot driver has to combine the flow and adjoint solvers. This
means a flow solver class, to solve the flow physics, is coupled with an instance of the discrete
adjoint solver class, to evaluate the adjoint equation, in each pseudo timestep. It is also beneficial
to include an instance of the CGradientSmoothingSolver class from Subsection 6.2.1, since the
additional functionality is later needed for the optimizer anyway. See Figure 6.3 for an overview of
these different solvers for flow and adjoint within SU2. The new COneShotSinglezoneDriver driver
class implements the piggyback Algorithm 3.4.4, by combining these solvers in a coupled iteration.
As piggyback uses the current state solution ui in each iteration, it also changes the order in which
the solvers are called and consequently the data flow. The new process is outlined in Figure 6.9.
The new class COneShotSinglezoneDriver is implemented as an overload of the already existing
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CDiscAdjSinglezoneDriver class, since the two share much common functionality. AD is applied to
compute derivatives for the adjoint, so the AD logic has to take the changed data flow into account.
The key points can be summarized as follows.

• For the CDiscAdjSinglezoneDriver, it is only necessary to record the flow iteration onto
an AD tape twice. In Algorithm 3.4.3, two matrix vector products with Jacobians appear,
DuG(u∗,x)T λ and DxG(u∗,x)T λ , both of which can be stored onto AD tapes. Repeated
evaluations of matrix vector products are done by calling the tape multiple times. Note that a
single recording of the whole Jacobian [Du,Dx]G(u∗,x)T is also possible, but would require
more memory overhead.
Therefore, the CDiscAdjSinglezoneDriver class does two recordings. First, DuG(u∗,x)T is
recorded in a preprocess routine, with the converged conservative state variables u∗ as inputs.
The function activates the AD recording and stores one step of the flow solver, and possibly
turbulence solver, on the AD tape. In the main run routine of CDiscAdjSinglezoneDriver, a
pseudo time-stepping loop evaluates this tape and iterates the procedure by setting the tape
back, initializing the seeding with the previous adjoint state, and reevaluating the tape. Once
this iteration converges to the adjoint solution λ∗, the second recording can be done as a
post-process to evaluate DxG(u∗,x)T λ∗ for the design equation once.

• On the contrary the COneShotSinglezoneDriver has to calculate matrix vector products with
different Jacobians DuG(u j,x)T λ j in each iteration. Notice the change in the flow state
u∗→ u j. This implies that the pseudo time-stepping loop must be extended to record one flow
solver step and then immediately evaluate the tape. Therefore, each pseudo timestep becomes
more expensive, requiring the AD overhead from recording each step anew. Once convergence
to an adjoint solution λ∗ is reached, or after a prescribed number of piggyback steps J, the
time-stepping stops. The remaining task is to evaluate the design equation similar to the
post-process of CDiscAdjSinglezoneDriver. Mathematically, this piggyback logic evaluates
the sensitivity of the current Lagrangian with respect to the mesh coordinates DxL(uJ,λJ,x)T .

flow solver
u j+1 = G(u j,xi)
adjoint solver

λ j+1 = DuN(u j,λ j,xi)
T

mesh sensitivities
DxN(u∗,λ∗,xi)

optimization
algorithm

original design

u∗,λ∗

−DxF
xi+1

x0

j

Figure 6.9: Optimization process with piggyback.

It is important to note that this piggyback implementation alone immediately allows for applying
unconstrained One Shot methods out of the box. The new driver can compute the flow and adjoint
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states, the objective function, and the gradient of the Lagrangian in one evaluation. Function
values and derivatives can then be used in Algorithm 4.2.2. More detailed optimization strategies
are discussed in Section 6.3. Overall, by calling SU2_CFD_AD with the piggyback driver and
controlling the number of iterations, a sliding range of methods from classical optimization, with
the converged flow and adjoint solutions, over multistep One Shot, up to single-step One Shot is
possible.

6.3 Incorporation into the Python Optimizer
In Subsection 6.1.3, the features of FADO that make it an excellent choice for the optimization
interface were listed. Now, the reduced SQP Algorithm 3.5.2 and One Shot Algorithm 4.3.1 from
previous chapters are reexamined and special attention is given on how to represent them within
the framework efficiently. In this thesis, several new C++ solver classes and a new driver class
are added to SU2, as discussed in Section 6.2, and the first task is to make these available to an
optimization algorithm. To run these simulations, many new configuration options are added and
hence they produce new types of output files, which contain information relevant to the optimization
algorithm. The additional flexibility of FADO in setting configuration files, via the label replacement
mechanism, and handling file I/O is convenient for this task.
For the new implementation, recall the constrained reduced SQP Algorithm 3.5.2. Different programs
are used to compute different parts of the procedure when implementing it. In Algorithm 6.3.1,
the process is depicted again, with the distribution of individual tasks marked by color. This thesis
implements the reduced SQP optimization as a new optimizer available to the FADO framework.
The overarching procedure and certain tasks are directly implemented in Python, shown by the blue
overlay. They are provided by a series of Python functions and do not require additional calls to
external tools. For function and gradient calculations, different CFD executables have to be called
through the FADO interfaces. These are the parts depicted by a green overlay and use multiple SU2
executables, SU2_DEF for mesh deformation, SU2_CFD for flow computations, and SU2_CFD_AD
for the adjoints. To calculate the design update, the matrix B must be computed by the new solver
implementation from Section 6.2 too. Finally, the quadratic subproblem in each step, in the red
overlay, is solved using the common quadratic solver package ‘cvxopt’4, a widely used Python
package for solving convex optimization problems [122, 7]. The quadratic subproblems in the
reduced SQP algorithm are convex since the Sobolev smoothing system matrix is symmetric positive
definite by design, so this is a valid choice.
The green parts of the algorithm can be computed by existing SU2 capabilities and the new routines
implemented in Subsection 6.2. An external package solves the quadratic problem without needing
a new code implementation. Nevertheless, the blue parts in the algorithm must be computed by the
new Python optimizer. They can be broadly distributed into three separate tasks.

1. Provide the main iterative optimization loop. This includes driving the optimization process,
controlling the data flow and dependencies, and checking for convergence criteria.

2. Compute an adequate step size. In theory, SQP algorithms can use the unaltered solution v
of the quadratic problem (3.64) as a design update. However, this is rarely done in practice.

4CVXOPT: Python Software for Convex Optimization, https://cvxopt.org
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Algorithm 6.3.1 Distribution of the reduced SQP algorithm

input Initial design variables p0, set iteration counter i = 0
while err > tol do

xi = M(pi) . compute a deformed mesh
for j = 0,1, ...,Ju do . solve the flow equation

u j+1 = G(u j,xi)

ui = uJu; y = F(ui,xi)
for j = 0,1, ...,Jλ do . solve the adjoint equations

λ j = DuG(ui,xi)
T λ j +DuF(ui,xi)

T

λi = λJλ

for k = 0,1, ...,nE do
for j = 0,1, ...,Jk do

λ
Ek
j = DuG(ui,xi)

T λ
Ek
j +DuF(ui,xi)

T

λ
Ek
i = λ

Ek
Jk

for l = 0,1, ...,nC do
for j = 0,1, ...,Jl do

λ
Cl
j = DuG(ui,xi)

T λ
Cl
j +DuCl(ui,xi)

T

λ
Cl
i = λ

Cl
Jl

D̃pF =
(
λ T

i DxG(ui,xi)+DxF(ui,xi)
)

DpM(pi) . evaluate the design equations
for k = 0,1, ...,nE do

D̃pEk =
(
(λ Ek

i )T DxG(ui,xi)+DxEk(ui,xi)
)

DpM(pi)

for l = 0,1, ...,nC do
D̃pCl =

(
(λCl

i )T DxG(ui,xi)+DxCl(ui,xi)
)

DpM(pi)

solve the quadratic problem: min
v∈Sv

1
2

vT Biv+ D̃pFv

s.t. D̃pEv+E = 0
D̃pCv+C ≥ 0

. compute design update

pi+1 = pi + v . update the design
i = i+1

return pi

The reasoning behind this is that the quadratic approximation does not take higher order
nonlinearity into account and therefore choosing v itself might not lead to good convergence.
This is similar to gradient descent methods, not using the full length gradient, but adapting the
step size.
An adapted step is calculated using a line search function l(v). The simplest example is just
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multiplication by some constant factor αl < 1, while more advanced methods might perform
backtracking based on the Lagrangian function value or check for descent criteria.

3. Keeping track of intermediate designs, solutions, and the optimization history. Of course, a
user wants to keep track of the optimization’s progress. For this, it is essential to store data on
the intermediate values of functions, constraint values, gradients, and Lagrangian multipliers
on the disc.

d e f S Q P c o n s t r a i n e d ( x0 , func , f_eqcons , f _ i e q c o n s ,
fp r ime , fp r ime_eqcons , f p r i m e _ i e q c o n s ,
f d o t d o t , i t e r , acc , lsmode ,
c o n f i g , xb=None , d r i v e r =None ) :

. . .
I n i t i a l i z a t i o n and P r e p r o c e s s i n g
. . .
# main o p t i m i z e r loop
w h i l e ( e r r > acc and s t e p <= i t e r ) :

# e v a l u a t e t h e f u n c t i o n s
F = func ( p )
E = f _ e q c o n s ( p )
C = f _ i e q c o n s ( p )
D_F = f p r i m e ( p )
D_E = f p r i m e _ e q c o n s ( p )
D_C = f p r i m e _ i e q c o n s ( p )
# H e s s i a n c o m p u t a t i o n
H_F = f d o t d o t ( p )
i f c o n f i g . h y b r i d _ s o b o l e v :

i f ( np . s i z e ( c o n f i g . e p s i l o n 3 ) > 1 ) :
H_F = H_F + c o n f i g . e p s i l o n 3 [ s t e p ]* np . i d e n t i t y ( l e n ( p ) )

e l s e :
H_F = H_F + c o n f i g . e p s i l o n 3 *np . i d e n t i t y ( l e n ( p ) )

. . .
Pack v a r i a b l e s f o r t h e c vx op t q u a d r a t i c s o l v e r
. . .
# s o l v e t h e i n t e r i o r q u a d r a t i c problem
i f np . s i z e ( E ) > 0 :

s o l = c vx op t . s o l v e r s . qp ( P , q , G, h , A, b )
e l s e :

s o l = c vx op t . s o l v e r s . qp ( P , q , G, h )
. . .
# l i n e s e a r c h
d e l t a _ p = l i n e s e a r c h ( p , d e l t a _ p , F , Lagrang , D_F , D_E , D_C ,

func , f_eqcons , f _ i e q c o n s ,
lm_eqcons , lm_ieqcons ,
acc , lsmode , s t e p , c o n f i g )

100



# u p d a t e t h e L a g r a n g i a n f o r l i n e s e a r c h i n t h e n e x t i t e r a t i o n
L = L a g r a n g i a n ( p , func , f_eqcons , f _ i e q c o n s ,

lm_eqcons , l m _ i e q c o n s )
gradL = D_F + lm_eqcons @ D_E + l m _ i e q c o n s @ D_C
# u p d a t e t h e d e s i g n
p = p + d e l t a _ p
e r r = np . l i n a l g . norm ( d e l t a _ p , 2 )
. . .
Code f o r c o n v e r g e n c e c o n t r o l and o u t p u t
. . .
# i n c r e a s e c o u n t e r a t t h e end of t h e loop
s t e p += 1

r e t u r n 0
Listing 6.3.1: Main implementation of the optimization algorithm

In Listings 6.3.1, some major steps of the optimization implementation are shown. After initialization,
the main loop begins by evaluating the necessary aerodynamic functions and derivatives. This is done
in the code via function calls to the wrapped flow and adjoint executables through the FADO toolbox.
For example, the wrapper named ‘fdotdot’ evaluates the parameterized Laplace-Beltrami operator by
calling SU2_CFD_AD. A common interface called ‘ExternalRunWithPreAndPostProcess’ provides
the capability to define such external runs. The user can specify parameters for handling file I/O and
subdirectories in a Python control script and describe pre- and post-processes specific to the given
test case. The additional layer these wrappers provide allows an easy exchange of the SU2 routines.
Utilizing this, function and gradient computations with piggyback can be inserted here to then call a
One Shot optimization if requested.
Once all values are assembled, they are packed into cvxopt matrix classes, required by the cvxopt
package to call its quadratic solver. The solver call itself is executed by the line
‘sol = cvxopt.solvers.qp(P, q, G, h, A, b)’.
This returns an instance of a solution class ‘sol’, packing different information about the quadratic
solution. Afterwards, the proposed design step and the computed Lagrangian multipliers can be
extracted from ‘sol’. Using those results, a line search algorithm is called to test descent conditions
and compute an adequate step length to update the design properly. Finally, the optimizer checks
for convergence, outputs the optimization history data, and terminates the process if an endpoint is
reached.
This implementation allows for the application of Algorithm 3.5.2 and it can also be readily extended
for the One Shot Optimization Algorithm 4.3.1. The Python optimizer itself can stay unchanged and
all the user has to do is alter the configuration for the function and adjoint evaluations of a given
test case. Instead of calls to SU2_CFD and SU2_CFD_AD, to compute converged flow and adjoint
solutions, one has to wrap a call to SU2_CFD_AD and set the configuration file to use the new
piggyback driver. The external run will evaluate a prescribed number of piggyback steps and return
derivatives of the reduced Lagrangian. They can then be plugged directly into the SQP framework
resulting in Algorithm 4.3.1.
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Chapter 7

Numerical Results

In this chapter, the design optimization techniques presented in this thesis are applied to relevant,
standard test cases. Special focus is given to the new methodology for Sobolev smoothing of param-
eterized designs and how it compares as a Hessian approximation to other established techniques in
different optimization settings. To get a good comparison, two different test cases are examined,
both well-known in the CFD community: the NACA 0012 airfoil and the ONERA M6 wing.
The NACA 0012 airfoil has been used extensively in the past and in Section 7.1, the optimization
of this airfoil together with an Euler flow is examined. Tests are done using fully converged flow
and gradient values in the reduced SQP Algorithm 3.5.1 and using piggyback approximations in
the One Shot Algorithm 4.3.1, showing how the new methodology offers excellent performance in
both settings. The ONERA M6 wing is optimized in Section 7.2 to conduct a more challenging test.
This 3D geometry, together with RANS equations and a turbulence model, better resembles relevant
engineering test cases. Both optimization algorithms, reduced SQP and One Shot are compared
with the results of other Quasi-Newton methods, demonstrating the good performance of the new
techniques in an analysis and design framework. Additionally, the computational costs are measured
and set into perspective, showing the excellent competitive performance of the new parameterized
Sobolev smoothing algorithm.
The numerical studies presented here and a report on the results have been published in parts in the
paper by Dick, Schmidt, and Gauger [33].

7.1 NACA 0012 Test Case
The first test case in this thesis is the famous NACA 0012 airfoil. This geometry has been one of
the most widely used reference tests in the CFD community for decades. Since its properties and
dynamics are well understood by now, it is a great starting point for the investigations in this thesis
and a staple test case to apply the ideas introduced in this work.
The original airfoil description stems from the first half of the 20th century and the efforts of the
National Advisory Committee for Aeronautics (NACA), a predecessor organization of NASA, to
standardize and wind tunnel test airfoils [60]. The airfoil is symmetric, with the upper and lower
surface curve having the same reflected shape. While many different flow conditions have been
studied for this airfoil, a steady Euler flow is considered here. The standard conditions are a Mach
number of M = 0.8, an angle of attack α = 1.25◦, and standard air. This results in the appearance
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Figure 7.1: The NACA 0012 airfoil and part of
the surrounding mesh.

Figure 7.2: Flow field pressure distribution
around the NACA 0012 airfoil.

of a typical shock above the airfoil. In this Euler simulation, the drag is induced by this shock. A
successful strategy to minimize drag should therefore aim to remove the shock.
The computational mesh for this case is partially depicted in Figure 7.1. It is a two-dimensional,
unstructured mesh with triangular cells containing 5233 points and 10216 elements. The mesh also
has two boundary markers, one for the airfoil and one for the farfield boundary. For optimization, 38
Hicks-Henne bump functions are utilized as a parameterization of the airfoil. Of these functions,
19 are applied to the upper surface curve and 19 to the lower surface curve to achieve the desired
deformation. As described in Section 2.3.3, the amplitudes of these functions are the design
parameters, with their peaks distributed equally at relative chord lengths of 0.05,0.10, . . . ,0.95.
The Euler simulation is run using a Jameson-Schmidt-Turkel (JST) scheme [63] for the spatial
discretization and an implicit Euler time-stepping. The pressure distribution for the flow solution
can be seen in Figure 7.2, where the mentioned shock on the upper side is clearly visible.

Figure 7.3: Normal surface sensitivities for the NACA 0012 airfoil. The adjoint surface sensitivities
are shown on the left and the H1-gradient on the right.

Before an actual optimization is performed, the finite element solver is validated by a test on the
surface mesh sensitivities. Mathematically, the surface sensitivities of the drag coefficient, calculated
by the adjoint solver, are reinterpreted according to Corollary 5.2.14 to get the H1-gradient. In Figure
7.3, the original surface sensitivities DxcD are depicted on the left and the reinterpreted gradient
∇H1cD on the right. The surface Laplace-Beltrami operator (I−∆Γ) should have typical, strong
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dissipation properties. Therefore, a characteristic behavior is expected when applied to the surface
sensitivities. Here, this becomes visible as high sensitivities are smoothed out, e.g., around the
trailing edge, while the identity part preserves the major contour lines of the sensitivity distribution.

7.1.1 Results for Reduced SQP Optimization
After introducing the test case and validating the finite element solver, the combination of the Laplace-
Beltrami operator and the Hicks-Henne parameterization is used as the Hessian approximation in
a shape optimization test. The aim is to minimize the airfoil’s drag coefficient cD as the objective
function. For a convenient notation, the function values are are given in drag counts (1 count = 10−4)
for the drag coefficient and lift counts (1 count = 10−2) for the lift coefficient. An unconstrained
formulation for the drag minimization problem would reduce the thickness of the airfoil to zero,
therefore additional constraints have to be enforced to ensure a nontrivial solution. In this case,
keeping the original lift coefficient of cL = 32.69 lift counts, together with the implicit limitations
from the Hicks-Henne parameterization, is enough to obtain a well-defined optimization problem

min
u,x,p

cD(u,x)

s.t. M(p) = x
G(u,x) = u
cL(u,x) = 32.69.

(7.1)

In this first optimization comparison, the aim is to investigate the influence of gradient precondition-
ing in the parameterized formulation from Equation (5.59). How do the change in the scalar product
and the associated change to the H1-gradient affect the performance of an optimizer?
To test this, Algorithm 3.5.1 is used with different choices for B. Choosing appropriate values for
the smoothing parameters ε1,ε2 in Equation (5.59) can be an involved task and different sources
suggest different theoretical values, e.g., [70]. In general, the values are test case dependent and
for this work, they were determined by a parameter study to find a good fit for the Hessian in the
optimum. With this, B is constructed according to Equation (5.59), with two settings of weights, first
ε1 = 1.0,ε2 = 0.0625 and second ε1 = 1.0,ε2 = 0.625. The different ε2 values are used to investigate
further the effect of increased Laplacian smoothing on the optimization process. The finite elements
stiffness matrix is assembled on the airfoil’s surface, representing an H1 scalar product there, and
projected using the AD differentiated Hicks-Henne parameterization. Overall, this first approach
results in a parameter formulation of the Laplace-Beltrami operator as a Hessian approximation.
The second algorithm uses classical constrained gradient descent with the adjoint mesh sensitivities
for comparison. Mathematically, this is equivalent to setting B to the identity matrix, in place of the
Hessian, in the SQP Algorithm 3.5.1. For all three optimization runs, the step sizes are determined
by a comparable backtracking heuristic, checking for descent in the optimization problem. It is also
worth noting, that in this thesis the lift constraint is explicitly treated as a constraint according to
Algorithm 3.5.1, while many other studies will adjust the angle of attack to keep the desired target
lift.
Results for the different optimization methods are shown in Figure 7.4. The values for cD and cL are
plotted throughout the optimization. All methods can effectively reduce the drag coefficient to a
comparable degree. The original value of ca. 210 drag counts is reduced down to an optimal drag
coefficient of ca. 13 drag counts for all three optimizations. In direct comparison, the parameterized
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Figure 7.4: Comparison of different shape optimization methods for the NACA 0012 test case. [33,
Figure 4]

Sobolev smoothing achieves a considerably faster convergence than gradient descent. At the same
time, the algorithms keep the lift constraint within close bounds of 0.6 lift counts from the target lift
coefficient. Here, the lift deviation is slightly higher for the Sobolev method. In a direct comparison
of the smoothing parameter settings, the first choice of ε1 = 1.0,ε2 = 0.0625 decreases the objective
function faster, than the second choice of ε1 = 1.0,ε2 = 0.625. Overall, the preconditioned H1-
gradient yields a faster rate of convergence for the optimization algorithm than traditional gradient
descent methods do, despite the parameterization.
The last point in this test is to consider the computed optimized airfoil profiles and the surrounding
flow fields. The optimal solution should be shock free and only have spurious drag stemming from
numerical stabilization since this is an inviscid test case. Figure 7.5 shows the pressure distribution
for the original airfoil (left), the Sobolev smoothing optimized airfoil with ε1 = 1.0,ε2 = 0.0625
(center), and the classical gradient descent optimized airfoil (right). In comparison with the original
NACA 0012 profile, the shock above the airfoil is removed, thereby eliminating the shock-induced
drag. For the gradient descent algorithm, a small scale remnant of a shock remains, but this is
arguably in the range of spurious drag. Therefore, Figures 7.4 and 7.5 show the expected results for
this test case, validating the underlying approach.
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Figure 7.5: Flow field comparison for the original and optimized NACA 0012 airfoil. Starting airfoil
(left), result Sobolev smoothing (center), result gradient descent (right).

7.1.2 Results for One Shot Optimization
The previous Subsection 7.1.1 demonstrated good performance of the Sobolev gradient treatment
when converged flow and adjoint solutions are used in the process. However, application in a
classical reduced SQP framework is not the only focus of this thesis. The Sobolev methodology is
combined with a multistep One Shot optimization algorithm as well and therefore Algorithm 4.3.1
is applied to the NACA 0012 test case. Nonetheless, there are some points to consider when running
such an optimization, which must be discussed first.
For this test, the Laplace-Beltrami operator is constructed with the setting ε1 = 1.0 and ε2 = 0.625
known from the reduced SQP test 7.1.1. The factor ε2 = 0.625 for the Laplace part is chosen because
One Shot can benefit from the smoother deformations associated with it. As a baseline comparison, a
gradient descent type One Shot is done using untreated, approximated surface sensitivities computed
from the multistep piggyback iteration. Mathematically, this can be achieved by using the identity
matrix in place of B in Algorithm 4.3.1 and limiting the step size to compute the design update.
Another important factor for any multistep One Shot optimization is the number of piggyback steps
for flow and adjoint iterations. For the NACA 0012 test case at hand, 10 coupled steps for flow
and adjoint achieve a good balance between computational cost and accuracy. A more in-depth
discussion of this issue will be presented in Subsection 7.2.2.
In Figure 7.6, optimizations with the different settings are plotted. Some observations can be drawn
immediately from this picture.

• One Shot optimization can work successfully for both presented algorithms if the parameters
are chosen carefully, e.g., the red and magenta lines. If the preconditioner is chosen positive
definite enough and the maximum step size for a design update is small enough, then the
iteration will ultimately converge. However, this can lead to small steps and subsequently
slow convergence of the optimization. Here, the maximum step sizes are deliberately set close
to the maximum values for which the One Shot optimization remains stable and does not
diverge to test the limits of the presented methodology.
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Figure 7.6: Comparison of different One Shot strategies for the NACA 0012 test case.

• Using parameterized Sobolev gradient smoothing in place of the Hessian approximation can
result in a fast decrease in the objective function, as shown in green. However, this leads
to violations in the lift constraint and additional iterations are necessary to get back to an
acceptable violation of ca. 0.6 lift counts. Using a more restrictive maximum design update
step size of 2.5e−3 is shown in red. This results in better adherence to the constraint, but limits
the speed with which the objective function decreases. Nonetheless, it results in a net benefit.

• For gradient descent like One Shot, i.e., using B = I and limiting the step size, additional
caution is necessary. A maximum allowed design update of 2.5e−4, as shown in magenta,
leads to a slower but successful optimization. On the contrary, as shown in blue, choosing
too large design updates can lead to stability issues and a violation in the lift constraint in the
presented case.

• All algorithms depicted here can keep the residuals for flow and adjoint within a reasonable
range. There are two factors at work here, the first is that the design updates have to be
restricted to avoid divergence in the flow and adjoint solvers. This will happen if the proposed
steps v from Algorithm 4.3.1 are chosen without further reduction. On the other hand, the
decrease in residual is restricted by technical factors of the solver. Since the mesh coordinates
are deformed and the MPI communication buffers are not stored for a restart of the adjoint
executable, but initialized by zero again, the residuals will jump up after each design update
when the SU2 piggyback method is restarted, see Section 6.2.2. This makes the theoretical
convergence to machine precision impossible while the optimization is ongoing. Instead,
the flow and adjoint solutions are converged again after the optimization is terminated, to
verify the solution. This is not depicted here, but generally does not significantly change the
objective function value.

In total, the objective function is reduced by the new One Shot algorithm with parameterized Sobolev
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smoothing to ca. cD = 10.2 drag counts. By gradient descent, a similar value of ca. cD = 9.8 drag
counts is reached. Both values are in the range of spurious drag, as seen in the previous Subsection
7.1.1. In this test, the Sobolev preconditioned One Shot optimizer with ε1 = 1.0 and ε2 = 0.625,
shown in green and red, helped to stabilize the method. This allowed for larger design updates than
pure gradient descent, while keeping the constraints and avoiding divergence of the flow and adjoint
solvers.

Figure 7.7: Pressure field around optimized NACA 0012 airfoils. Starting airfoil (left), One Shot
with Sobolev smoothing (center), One Shot with gradient descent (right).

After investigating the optimization progress itself, it is also worth taking a look at the resulting
airfoils. They are shown in Figure 7.7, where the results for Sobolev treated One Shot are in the
middle and for the identity as preconditioner are on the right side. As mentioned in Subsection 7.1.1,
the shock induced drag is the primary source of drag to be minimized in this test case. As shown in
Figure 7.7, the One Shot optimization removes the shock on the upper side efficiently, resulting in
flow fields similar to the results for reduced SQP optimization from Figure 7.5.
Overall, the new methodology is successfully applied to a 2D Euler test case, like the NACA 0012
airfoil. In the next section, the method is tested for a more involved 3D RANS test case to see how it
performs for larger scale optimization problems.
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7.2 ONERA M6 Test Case

Figure 7.8: Description of the ONERA M6 geometry.

The ONERA M6 wing is a three-dimensional transonic test case that has been one of the most
widely used reference cases throughout the CFD community. The original geometry dates back
to a swept back wing model originally constructed at the ONERA Aerodynamics Department in
1972. Experimental data from wind tunnel measurements of this wing at different flow conditions
were conducted by Schmitt and Charpin1. The results were introduced as a reference case for CFD
simulations with the publication of a report by the NATO advisory group for aerospace research
and development (AGARD) on the construction of a database for CFD simulations in 1979, see [1,
Appendix B1]. This report provides an extensive collection of experimental wind tunnel data for
different types of airfoil and wing geometries and many of today’s reference tests date back to this
database.
The transonic flow conditions feature a characteristic double shock on the upper wing surface, named
a lambda shock because of its distinct shape. Since this was especially challenging for early CFD
simulations to compute, it became a reference case in validating CFD codes. In particular, after
Jameson published the results of an Euler simulation for this test case in 1982 [64]. For a more
recent description of the geometry, see the work of Mayeur, Dumont, et al. [82, 81].
The wing description is depicted in Figure 7.8. While several different flow conditions were
published originally, one standard setting became dominant throughout the aerodynamic community.
It uses a Mach number of M = 0.8395, though this is rounded to M = 0.84 in many applications.
The angle of attack is α = 3.06◦ and the wing has a mean chord length of lC = 0.64607m and wing
area of Are f = 0.7532m2. Overall, this results in a Reynolds number of Re = 11.72×106.
Measurement data from wind tunnel tests for the pressure coefficient is given along the seven
spanwise cross sections depicted in Figure 7.8. Their locations are given as percentages of the total

1Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers, in [1, Appendix B1]
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length and are listed in Table 7.1. For each section, 34 pressure values at different locations along
the cross section are stated in the database.

section 1 2 3 4 5 6 7
y

lW
0.20 0.44 0.65 0.80 0.90 0.96 0.99

Table 7.1: Cross sections for the pressure measurements in the ONERA M6 wind tunnel database.

Figure 7.9: The ONERA M6 wing and part of the surrounding mesh, used in the CFD simulation
for this test case.

Flow computations on the ONERA M6 wing are performed using a structured C-type computational
mesh. Since SU2 is an unstructured code, the structured mesh is stored in the native SU2 unstructured
format2. The mesh consists of 306577 points and 294912 hexahedral elements describing the shape
and has a logarithmic progression of the cell thickness towards the wing surface for boundary layer
resolution. For a visual impression, see Figure 7.9. It features three distinct boundaries with different
boundary conditions, one Navier-Stokes boundary for the wing surface, one symmetry boundary on
the wall, and one freestream boundary in the farfield.
The design is parameterized by an FFD box with 10 cells in the x-direction, 8 cells in the y-direction,
and 1 cell in the z-direction. The layout of this box around the wing is shown in Figure 7.10. Only
deformations of the control points in the z-direction are considered for shape updates to keep the
wing’s overall length and chord span constant. This results in a total of 198 design parameters. As
discussed in Subsection 2.3.3, this FFD box is used to deform the surface nodes and the volume
mesh is then adjusted using a linear elasticity approach based on the wall distance.
The flow simulation is performed using RANS equations, as described in Equation (2.25). Two
turbulence models, an SA and an SST model, are used for validation. Although, only the SST model
will be used for the shape optimization tests. As finite volume solver a Jameson-Schmidt-Turkel
(JST) scheme is deployed, with artificial dissipation coefficients d(2) = 1

2 and d(4) = 1
128 . For time

integration, an implicit Euler scheme is used, where the time steps are chosen by an adaptive

2See the SU2 documentation, https://su2code.github.io/docs_v7/Mesh-File/
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Figure 7.10: FFD box parameterization of the ONERA M6 wing.

Figure 7.11: Pressure coefficient on the upper side of the ONERA M6 wing showing the typical
lambda shock.

heuristic, keeping a maximal CFL number of ca. 20.
Before an optimization takes place, the mesh and test case are validated against the available physical
pressure data from wind tunnel testing, as well as checking the accordance of the calculated drag and
lift coefficients with other comparable simulation results. Figure 7.11 shows the pressure coefficient
on the wing surface. The depicted merging double shock system is typical for the ONERA M6 test
case. In Figure 7.12, the simulated pressure distribution at different cross sections is plotted for two
different turbulence models against the experimental data.
The CFD simulation accurately resolves the shock position on the upper wing surface. In particular,
the results of RANS computations with the SST and SA turbulence models are in close agreement
with each other. For the cross sections at 20%, 44%, 65%, and 90%, the shock positions are in
accordance with the available experimental data. This result is consistent with the findings of other
studies on this test case done by NASA [100, 115]. Nonetheless, there are two sections where the
flow solver struggles to resolve the physical solution exactly. The first is at the merging of the double
shock system at 80% of the length and the second is on the wingtip at 99%. Here, a wingtip vortex
appears, a situation that is notoriously complex to predict. The observed inaccuracies are due to
limitations in the turbulence models used. The SST model can not resolve the behavior for this test
case exactly, hence a more involved Reynolds stress model would be necessary. More details on this
issue and a detailed explanation can be found in the work of Jakirlić, Eisfeld, et al. [61].
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Figure 7.12: Validation of the ONERA M6 CFD simulation results against the experimental pressure
values at different cross sections. [33, Figure 8]
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While there are experimental data for the pressure coefficients, no precise experimental values for
the drag and lift coefficients are available. However, the results from the simulation used in this
thesis are compared to other simulation values from relevant reference papers in Table 7.2. From
this, one can conclude that the predicted lift seems to be fine, while the predicted drag coefficient is
at the lower end of the spectrum.

own result Rumsey [100] Araya [9] Nielsen & Anderson [89]
cD (in drag counts) 143.9 172.3 189 168
cL (in lift counts) 24.99 26.6 25.3 25.3

Table 7.2: CFD computed drag and lift values for the ONERA M6 wing.

Overall, one can conclude that this is a valid test case for optimization purposes. Especially, if the
emphasis is on developing new optimization techniques.

7.2.1 Results for Reduced SQP Optimization
To begin with the numerical experiments for the ONERA M6 wing, the parameterized Sobolev
gradient reinterpretation is used as a Hessian approximation in a reduced SQP algorithm as the first
test. For this, the exact converged flow solutions and gradients from the consistent converged adjoint
solutions are used. The optimization is run using the reduced SQP implementation for Algorithm
3.5.2 within SU2 and the FADO framework, as described in Section 6.3.
For the Hessian approximation, the hybrid Laplace-Beltrami operator from Equation (5.75) is used.
Following the discussion in Section 5.4, the operator is assembled as a linear combination of three
different terms. The respective weight values ε1,ε2,ε3 are determined as the result of a parameter
study, conducted to fit the hybrid Laplace-Beltrami operator to the Hessian matrix in the optimum.
To classify the performance of the reduced SQP optimizer, it is compared with other optimization
algorithms. Two algorithms are considered for the comparison, representing different classes of
optimization methods.

1. The first comparative method is a projected gradient descent algorithm. It is well known
from nonlinear optimization that insertion of the unmodified identity matrix into the SQP
framework yields an optimization equivalent to classical gradient descent abiding constraints.
This approach has already been used in Section 7.1. The method provides a baseline for perfor-
mance, being a first order method. As comparable step size control and update procedures are
used, any performance differences result from an alternative Hessian approximation resulting
in a different search direction. Thus the difference in optimization when using parameterized
Sobolev smoothing can be measured.

2. The second algorithm used for comparison is the SLSQP algorithm, particularly the imple-
mentation by Kraft [69]. This is the standard SQP optimizer included in the Python SciPy
‘optimize’ module. It uses an iterative BFGS update to approximate the Hessian and com-
putes the step size using a merit function based upon the L1-norm of the constraints. As a
widespread superlinear SQP method, it is a representative example of a standard Quasi-Newton
method with iterative Hessian approximations, which are typical within nonlinear numerical
optimization.
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The optimization problem is a minimization of the drag coefficient cD under mixed equality and
inequality constraints. The optimizer should keep the lift coefficient at a constant value of cL =
24.99 lift counts, i.e., the lift value of the original ONERA M6 wing. At the same time, a set of
geometric inequality constraints is imposed as well. To prevent the wing profile from getting too thin,
there are minimum thickness values twing prescribed along five different cross sections at different
relative lengths shown in Table 7.3. Such thickness constraints could be imposed implicitly by
the parameterization. Here, they are instead given explicitly to the optimizer to demonstrate the
capability to handle additional geometry restrictions.

position y
lW

0.0 0.2 0.4 0.6 0.8
minimum thickness 0.077 0.072 0.066 0.060 0.054

Table 7.3: Thickness constraint positions and values for the optimization problem.

Thus the complete mathematical minimization problem takes the form shown in Equation (7.2).

min
u,x,p

cD(u,x)

s.t. M(p) = x
G(u,x) = u
cL(u,x) = 24.99
twing(u,x)| y

lW
=0.0 ≥ 0.77

twing(u,x)| y
lW

=0.2 ≥ 0.72

twing(u,x)| y
lW

=0.4 ≥ 0.66

twing(u,x)| y
lW

=0.6 ≥ 0.60

twing(u,x)| y
lW

=0.8 ≥ 0.54

(7.2)

This problem is solved using the reduced SQP algorithm for mixed constraints 3.5.2. Two different
settings are used for the Hessian approximation, representing the different ways the Sobolev gradient
reinterpretation can be implemented.

1. The first setting uses Sobolev smoothing on the design surface. This means that the discrete
finite elements representation of the Laplace-Beltrami operator is assembled on the surface
mesh cells forming the wing. It is then projected using the derivatives of the FFD box
parameterization. The weights are set to ε1 = 56.9, ε2 = 0.9, and ε3 = 0.1. These values were
determined by a parameter study to find the best fit for the positive definite part of the Hessian
matrix in the optimum.

2. The second setting assembles the finite element discretization of the Laplace-Beltrami operator
in the whole volume mesh. Mathematically, this means approximating the Hessian in the
flow domain instead of on the surface. The derivatives of the parameterization are calculated
via the chain rule from the FFD box parameterization and the linear elasticity based mesh
movement, see Equation (5.65). The weights for combining the different terms in this case
were ε1 = 0.0, ε2 = 7.2, and ε3 = 0.1.
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When comparing the performance of different optimization methods, it is important to point out the
role of line search procedures and step size control. Obviously, this will significantly influence the
overall performance of different algorithms. For more complex methods, like SLSQP, one has to
distinguish between the main steps of the optimization algorithm and the line search steps. In the
main step, all aerodynamic values of the current design are evaluated, including flow and adjoint
solutions, parameterization, and the reduced gradients. These values are handed to the line search,
which evaluates the functions at different step lengths. For each proposed step length, the mesh
deformation and a flow simulation are calculated to test for sufficient descent. If this is not achieved,
then additional step lengths are tested.
The SLSQP optimizer uses an L1 style merit function to determine a good step length, see [69,
Section 2.2] for details. The reduced SQP implementation offers several different methods. Starting
with a simple scale heuristic that will scale down the step length if the norm is bigger than a given
threshold. More advanced settings include a backtracking strategy based on descent conditions. For
this test, the proposed initial step size is reduced if the objective function does not show sufficient
descent.

Figure 7.13: Comparison of different optimization algorithms, with converged flow and adjoint
solutions, for the ONERA M6 test case.

RSQP surface RSQP volume SLSQP grad. desc.
cD (in drag counts) 105.3 108.1 102.4 105.6
relative reduction 26.8% 24.89% 28.85% 26.6%

Table 7.4: Improvement in the cD value for different optimization strategies.

A comparison between the performance of the different optimization algorithms can be seen in
Figure 7.13. The relevant, resulting drag values are shown in Table 7.4. For analysis, the two
smoothing approaches on the surface, as drawn in green, and in the volume mesh, as drawn in red,
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are compared first. Both offer a considerable overall reduction of the objective function, indicating
that both Laplace-Beltrami approximations can be useful as Hessian approximations. The original
drag coefficient of cD = 143.9 drag counts is reduced to cD = 105.3 drag counts for the surface
smoothing and cD = 108.1 drag counts for the volume smoothing procedure. This represents an
higher improvement of ca. 26.8% for the surface setting compared to 24.89% for the volume setting.
Regarding adherence to the constraints, both methods keep the constraints up to a certain degree,
although the volume approach shows a variation of 0.56 lift counts in the end. In total, the surface
smoothing approach seems to be the superior choice for this test case.
The next question is why there are observable oscillations in the drag and lift values when using
the reduced SQP method? As SQP methods generally only guarantee convergence to a feasible
solution, they are not strictly keeping the constraints at intermediate designs. Instead, they aim at
optimizing the Lagrangian, which incorporates the constraints weighted by their current Lagrange
multipliers. This leads to a behavior where the optimization process violates the equality constraint
at intermediate points and then converges back towards a feasible solution, as can be observed for
the reduced SQP algorithms in Figure 7.13. See Gherman [45] for more details on the properties of
reduced SQP methods.
Next, the gradient descent algorithm shown in blue is used for comparison. Set against surface
smoothing, one can observe slower optimization progress, taking longer to reduce the objective
function. At the same time, the constraints are held within a smaller range during the optimization
and after 25 steps, the algorithm reaches a reduction of the drag value by 26.6%, to a value of
cD = 105.6 drag counts. In total, Sobolev smoothing on the surface converges faster than the gradient
descent method, while both reach comparable optima and both adhere well to the constraints.
For a final comparison, the SLSQP method can be seen in the same Figure 7.13, drawn in black. The
figure distinguishes between the optimization plotted over the major optimizer steps, shown by the
dashed black line, and plotted over the number of tested designs including line search steps, shown
by the solid black line. The method shows a fast rate of convergence towards an optimal solution. It
reduces the drag to cD = 102.4 drag counts, which is a reduction by 28.85%. At the same time, it
can be observed that the method keeps the equality constraint very well after a couple of iterations.
This can be credited to two factors. First, the line search based on a merit function accepts only steps
keeping the constraint violation minimal. Second is the fact that the iterative BFGS Hessian updates
work well in the present situation. A further point worth noting is that the progress is slowed down
considerably when counting all design evaluations, including line searches, instead of just the major
optimization steps. Overall, the SLSQP method has the fastest convergence and reaches the lowest
local minimum for the given setting. However, this will change when using the One Shot approach,
as will be seen in Subsection 7.2.2.
Naturally, not only the resulting aerodynamic coefficients are interesting, but the resulting designs
and their flow fields are relevant as well. Whether or not the lambda shock on the upper wing
surface has been removed is especially important since the shock induced drag is one of the major
contributors to the overall drag value. The relevant pressure coefficient distribution on the surface
is depicted in the two Figures 7.14 and 7.15. The full-sized lambda shock is clearly visible in the
original flow field. In contrast to this, the optimized profiles show a smooth pressure distribution on
the surface and have a highly reduced shock in their flow fields. In particular, the results for Sobolev
smoothing on the surface and gradient descent are very similar. There is an observable difference
for the volume Sobolev smoothed SQP optimizer, with some of the shock remaining on the leading
edge. This is in line with this method showing a slightly lower performance for the given test case,
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Figure 7.14: Pressure coefficient on the wing surface in comparison to the original wing. Starting
wing (upper left), result SLSQP (upper right), result gradient descent (lower left), result Sobolev
smoothing on the surface (lower right).

albeit the drag is still considerably reduced. Again this shows that assembling the Laplace-Beltrami
operator on the surface seems to be better than doing so in the volume mesh.
Next, consider Picture 7.16, where the cross sections at 65% of the wing length are depicted. As
stated before, all optimization algorithms reduce the shock on the upper side. In the cross section
plots, it can be seen how this is achieved by making the wing thinner near the leading edge and
giving the lower side a distinct curvature. The effect is more pronounced for the SLSQP optimized
shape, where only some residue of the original double shock remains. At the same time, the two
other optimizers shown have very similar smooth pressure distributions in the cross section. This
observation confirms how Sobolev reinterpretation of the derivatives can increase the convergence
rate over gradient descent, while resulting in the same local optimum.
When considering the performance of optimization algorithms, there are multiple measurements
relevant for a detailed analysis. After investigating the achieved improvements in the objective
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Figure 7.15: Pressure coefficient on the wing surface for optimized solutions. Result Sobolev
smoothing in the volume (upper left), result SLSQP (upper right), result gradient descent (lower
left), result Sobolev smoothing on the surface (lower right).

function and the optimized flow fields, one should also consider the necessary computational costs
to achieve those results. The standard cost measures for any software implementation in this context
are runtime and memory requirements.
To compare them, all optimizations are run on the high performance cluster ‘Elwetritsch’ at the
‘Regionales Hochschulrechenzentrum (RHRK), Technische Universität Kaiserslautern’3. Each run
performs 25 optimization steps, or less if an algorithm converges before. Executables for the mesh
deformation, flow solver, and adjoint solver are run in parallel using the MPI parallelization provided
in SU2 and two different processor type settings are used. The first setting uses two Intel skylake
XEON SP 6126 nodes with 12 cores and 24 threads, both having 96 GB of attached RAM. The
second setting uses two Intel sandybridge XEON E5 2670 nodes with 8 cores, 16 threads, and 64
GB of RAM per processor. The test is conducted multiple times to ensure standardized results,

3Regionales Hochschulrechenzentrum (RHRK), https://www.rhrk.uni-kl.de
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Figure 7.16: Cross sections and pressure values, at y
l = 0.65 on the wing, for the original and the

optimized wing profiles. Starting profile (upper left), result SLSQP (upper right), result gradient
descent (lower left), result Sobolev smoothing on the surface (lower right).

resulting in averaged times and memory. The complete processor nodes are blocked during the
execution of the jobs to avoid interference from other processes on the cluster.
The resulting values are displayed in Table 7.5. Reduced SQP optimization, with parameterized
Sobolev smoothing, has a comparable runtime to the gradient descent algorithm. This might be
surprising at first since the computation of the Laplace-Beltrami operator and the AD evaluation of
the parameterization need time. Nevertheless, keep in mind that the flow and adjoint solutions are
used as restart values in the next optimization step. This means the increased cost for computing
the Hessian approximation in each step can be entirely offset by achieving a smoother deformation
and thereby faster convergence in the next iteration. In fact, the evaluation of Equation (5.75) is
computational cheap in comparison to the flow solver, which will be important later on for the One
Shot method, where it has to be evaluated after a small number of piggyback steps. With regard to
memory, there is an observable overhead for Sobolev smoothing. Extra memory has to be allocated
to compute the hybrid Laplace-Beltrami operator, via the implementations described in Chapter 6.
Finally, the SLSQP optimizer has the lowest total runtime, mainly because it converges after fewer
steps than the other methods, while the runtimes per optimization step are comparable.
In an overall comparison, it is possible to draw a series of observations concerning the performance
of the Laplace-Beltrami Hessian approximation in the reduced SQP algorithm 3.5.2.

1. The combined matrix from Equation (5.75) can be used in optimization algorithms as an
approximation of the real Hessian matrix. This results in a convergent behavior of the optimizer
and allows for an effective minimization of the objective function for 3D RANS test cases.

2. Both ways of assembling the Laplace-Beltrami operator, on the surface and in the volume, may
be used. Nonetheless, assembling the Laplace-Beltrami operator on the surface seems to be a
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RSQP surface RSQP volume SLSQP grad. desc.
time skylake (sec) 270166.91 263644.04 173046.68 283626.55

time per step skylake (sec) 10806.68 10545.76 9613.7 11345.06
max. RAM skylake (MB) 12378.73 14573.2 9254.96 11322.31

time sandybridge (sec) 396332.82 410679.58 274475.48 395901.84
time per step sandybridge (sec) 15853.31 16427.18 15428.64 15836.07
max. RAM sandybridge (MB) 16852.33 13555.29 9195.27 9534.08

Table 7.5: Averaged time and memory consumption for different optimizers.

better choice than the volume approach and results in improved optimization performance.

3. In comparison to the gradient descent method, one can observe a faster convergence for the
surface-based Sobolev smoothing, as expected for an approximated Newton method. This can
improve the performance of the shape optimization.

4. The reduced SQP optimization struggles to achieve the same performance as other Quasi-
Newton methods with iterative Hessian updates. This can be seen by the SLSQP method
showing a better performance in terms of optimizer iterations and runtime. As can be seen
from the comparison with the number of design evaluations, SLSQP needs some additional
evaluations of the objective and constraint functions to perform line searches and to assemble
its internal BFGS Hessian approximation.

5. Applying the newly developed Sobolev smoothing methodology in a reduced SQP algorithm
does not increase the wall clock time of the optimization steps compared to pure gradient
descent. This means that computing the parameterized Laplace-Beltrami operator is computa-
tionally cheap.

6. In terms of memory consumption, the algorithms can vary, but using the presented Hessian
approximation technique will generally require more maximal RAM allocation since the
adjoint solver is extended. These extensions include the finite element solver for the Laplace-
Beltrami operator and AD functionality for the derivatives of the parameterization, as discussed
in Chapter 6.

These observations are some of the key points to keep in mind from this test case. They leave
two open questions to be answered by the following test case. First, will the computation of the
parameterized Laplace-Beltrami operator still be computationally cheap in a One Shot context?
Second, can Sobolev smoothing perform better in comparison with iterative Hessian approximations
when using approximated gradients in a One Shot optimization? As the following subsection will
show, the answer to both questions is yes.

7.2.2 Results for One Shot Optimization
In this section, the new Hessian approximation and gradient reinterpretation strategies introduced in
this work are evaluated for their performance with respect to One Shot optimization. Subsection
7.1.2 already showed promising One Shot results for the NACA 0012 test case and now the algorithm
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is tested in a 3D RANS setting. For the test, the approximated matrix B from Equation (5.75) is used
as the preconditioner in Algorithm 4.3.1. From theoretical considerations, it is clear that the exact
Hessian matrix of the Lagrangian would be the ideal preconditioner for this system, so it is possible
to evaluate the quality of an approximation by applying it in this context.
For the One Shot test, the hybrid Laplace-Beltrami operator is assembled on the surface mesh.
This approach offers superior performance with converged gradients in the previous Subsection
7.2.1 and is computationally easier as well. For the weights in the surface setting the same values
as in the previous test in Subsection 7.2.1 are used, i.e., ε1 = 56.9, ε2 = 0.9, and ε3 = 0.1. The
preconditioning approach is compared to a gradient descent style method, where the identity matrix
is used as a constant preconditioner and the step size is restricted. Such a restriction is necessary, as
One Shot would diverge for regular-sized update steps based on the approximated gradient. As a
second comparison, the SLSQP implementation is tested as well when given One Shot like functions
and gradients.
In Subsection 7.1.2, other factors to consider when using One Shot algorithms were mentioned,
which will have a significant impact on the performance of the optimization algorithm. They are
reexamined here, beginning first with the number of piggyback steps for the flow and adjoint solvers
in between design updates and second the maximal step size for design updates. These two values
are closely linked and must therefore be chosen in accordance. For the reduced SQP algorithms
from the previous Subsection 7.2.1, larger design updates are no problem since all flow and adjoint
solvers are fully converged for the new design before computing the next optimization step. For
a multistep One Shot algorithm, this is not true. Here, a fixed number of piggyback steps is done
using the previous flow and adjoint states as a restart point. If the design updates are too large,
the chosen number of steps might not be sufficient to recover good flow and adjoint solutions. In
fact, it is expected behavior for One Shot algorithms to diverge under such conditions and it is also
questionable whether one should do large design steps based on inexact function and gradient values
at all.
All of these considerations are linked together, as can be seen by examining Algorithms 4.3.1.
Making the design updates small enough will stabilize the convergence of the optimization, while
simultaneously stalling its progress. This can be easily achieved by choosing a positive definite
preconditioning matrix with a large enough operator norm. Therefore, a good preconditioner must
keep the flow and adjoint simulations stable, while at the same time allowing for design update steps
as large as possible.
In Figures 7.17 and 7.18, the results for several different One Shot optimizations can be observed.
All optimization algorithms perform 10 piggyback steps in between design updates to ensure equal
conditions. Here, they are analyzed individually at first, before comparing them later on.

1. At first, look at One Shot with a constant preconditioner in Figure 7.17, which is equivalent
to gradient descent with a limited maximal step size, shown in blue and magenta. As can be
observed from the blue line, this results in a descent of the objective function, however for a
maximal allowed step size of 2.5e−3, the optimizer shows an oscillating behavior. Increasing
the maximal allowed step size to 5e−3 leads to the computation shown by the magenta
line. This results in a faster reduction in the objective function at first, but also in increased
oscillation, to the point where the whole One Shot process becomes unstable and diverges in
the end. To solve this issue of oscillatory behavior, one might suggest increasing the number
of piggyback iterations between design updates to achieve better function and gradient values.
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Figure 7.17: Comparison of different One Shot algorithms for the ONERA M6 test case.

However, this is counterproductive, as such additional costs would slow down the optimization
progress. In Figure 7.18, the constant preconditioner is shown again, this time with a heuristic
that decreases the allowed step size from a maximum of 5e−3 as the optimization progresses.
This helps to limit the oscillations, albeit some remain, and results in an optimized drag of
101.3 drag counts. All the while, keeping the lift constraint at 24.7 lift counts, close to the
target lift, and retaining stability in the flow and adjoint simulations.

2. Next, the One Shot optimization is run using the Hessian approximation via hybrid, parame-
terized Sobolev smoothing as a preconditioner. The Hessian approximation B was constructed
using the weights of ε1 = 56.9, ε2 = 0.9, and ε3 = 0.1, as stated above. Optimizations utilizing
the surface Sobolev smoothing approach are run for different maximal step sizes, as shown
by the light and dark green lines in Figure 7.17. Considering the course of the optimizations
plotted there, it can be observed that preconditioning the search direction with the hybrid
Laplace-Beltrami operator dampens the oscillations of the optimizer and helps the process
to converge faster and with larger design updates without becoming unstable. This can be
improved even further if a variable maximal step size is used again, as shown in Figure 7.18.
This results in a fast decrease of the drag to 100.9 drag counts, while keeping the lift at 25.1
lift counts, within 0.65% from the target. Overall, the Sobolev based preconditioner appears
to be an excellent choice for this One Shot optimization test case.

3. The test for the SLSQP optimization algorithm is shown by the red line in Figure 7.17. Here,
the SciPy library is given function handles to call a piggyback function and adjoint evaluation
with a limited number of 10 inner iterations. As can be seen from the plot, the SLSQP
algorithm does not work in a One Shot setting. The algorithm has lost the ability to compute
reasonable descent steps, leading to a fast divergence of the whole process. This change in
performance becomes especially noticeable compared to the excellent performance SLSQP
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Figure 7.18: Comparison of One Shot optimization, with varying maximal step size, for Sobolev
smoothing on the surface against constant preconditioning.

demonstrated in Subsection 7.2.1.
The explanation for this behavior involves the same factors which made SLSQP perform so
well with exact functions and gradients. The internal Hessian approximation is built iteratively
using the BFGS update formula. If given inexact derivatives, the numerical errors in the
Hessian approximation will accumulate, leading to poor quality design updates. The second
problem is that the line search is based on the descent of a merit function. If the function
values are not exact, applying descent conditions to them will result in incorrect step size
choices.

As is typical for One Shot optimizations, after the last design update, the flow simulations are
converged to machine precision, which is not depicted in the plots. The resulting drag and lift
values are stated in the text above and are generally in good accordance with the intermediate results
depicted in the figures, i.e., the optima computed by One Shot were valid solutions.
The next point of interest are the optimal shapes resulting from One Shot optimization. The
resulting flow fields for the optimized wing geometries are shown in Figure 7.19. Here, the pressure
coefficients on the upper wing surface are shown since this is the area where the lambda shock is
located. Both converged One Shot preconditioning approaches can efficiently remove the lambda
shock on the upper side of the wing. This means they can eliminate the primary source of drag in
this test case, while simultaneously keeping the lift constraint within close bounds and abiding by
the geometric constraints. As a result, the double shock system is removed and only remnants of a
small shock in the middle of the wing remain afterwards. Although, one can observe that Sobolev
smoothing results in slightly smoother pressure distributions and a smaller residue shock.
The cross sections at 65% of the wing length can be seen in Figure 7.20. The different One Shot runs
both result in smooth flow fields with a reduced double shock, similar to the results seen in Figure
7.19. For Sobolev smoothing on the surface, a smaller residue shock remains and unsurprisingly, it
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Figure 7.19: Pressure coefficient on the wing surface for the original wing and the designs optimized
by One Shot. Starting wing (left), result Sobolev smoothing (center), result gradient descent (right).

also results in a slightly lower drag coefficient.
Considering the promising flow results for One Shot with parameterized Sobolev smoothing, the
next question is how the method compares in terms of the computational cost. The key concept is to
speed up the optimization by simultaneously driving flow, adjoint, and design to convergence. Table
7.6 shows the runtime and memory for the One Shot optimization algorithm in multiple settings.
A number of 250 optimization steps are performed for both settings. Computations are once again
executed on the same two processor architectures as investigated in Subsection 7.2.1. As the first
setting, two Intel skylake XEON SP 6126 nodes with 12 cores, 24 threads, and 96 GB of RAM
each are used, where the piggyback solver, the computation of the Hessian approximation, and the
mesh deformation are run on 48 parallel MPI processes. Second, two Intel sandybridge XEON E5
2670 processors with 8 cores, 16 threads, and 64 GB of attached RAM are used, which results in an
execution on 32 MPI processes.

One Shot One Shot
surface Sobolev smoothing constant preconditioner

time skylake (sec) 41280.76 39346.5
memory skylake (MB) 19932.02 19287.57
time sandybridge (sec) 69830.6 89549.92

memory sandybridge (MB) 19670.87 34036.22

Table 7.6: Averaged time and memory consumption for different One Shot optimizers.

Taking a look at the times recorded in Table 7.6, a significant improvement in runtime can be
observed when using One Shot algorithms as opposed to the times measured previously in Table
7.5. Comparing the One Shot measurements for Sobolev smoothing on the surface to Table 7.5,
a speedup of roughly 3.98−4.19 against SLSQP can be observed. In terms of memory usage, an
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Figure 7.20: Cross section and pressure values, at y
l = 0.65 on the wing, for the original and the

One Shot optimized wing profiles. Starting profile (left), result Sobolev smoothing (center), result
gradient descent (right).

increase in RAM allocation against the reduced SQP optimization tests in Table 7.5 can be seen.
This is due to the One Shot driver described in Subsection 6.2.2. As explained, the piggyback logic
requires a new AD recording after each flow iteration, leading to increased memory consumption.
The retardation factor is frequently used throughout the literature to put the time consumption of
optimization methods into perspective. This quotient is computed by dividing the time required to
do a complete optimization by the time required to converge the flow simulation for one design up
to machine precision. For the given test case, the runtime of one flow simulation is 2224.1 sec. on
the skylake and 4584.53 sec. on the sandybridge architecture. The resulting retardation factors are
shown in Table 7.7.

time retardation time retardation iteration retardation
(skylake) (sandybridge) -

RSQP, Sobolev surface 121.47 86.45 -
RSQP, Sobolev volume 118.54 89.58 -

SLSQP 77.81 59.87 -
One Shot, Sobolev surface 18.56 17.69 4.08
One Shot, const. precond. 19.53 15.23 4.1

Table 7.7: Retardation factors for optimization.

Investigating the retardation factors presented here, one can see that the use of One Shot optimization
results in a significant improvement. It is especially worth noting that time retardation factors view
the process purely in terms of flow simulation cycles. This neglects that each design update will
incorporate multiple adjoint simulations for the objective function and the flow constraint. Therefore,
when investigating retardation factors, one needs to keep the performance of the adjoint solver in
mind. Fortunately, the SU2 framework is used in this work, which has a very fast and efficient
adjoint solver. Nonetheless, the reader should keep in mind that the piggyback solver implemented
for this thesis, as explained in Section 6.2.2, has to do a new recording of the AD tape in each flow
step. This overhead will result in a slower execution of the flow simulation than the pure flow solver
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executable without any AD features. Overall, the computed retardation factors between 17.69 and
18.56 are still very competitive for any optimization algorithm.
For example, the SLSQP optimization in Subsection 7.2.1 needs to perform 18 full flow simulations
alone, without taking adjoint computations, etc. into account. Using the pure wall clock time for
the full optimization results in a retardation factor between 59.87 and 77.81, depending on the
architecture. A comparison of the different optimizers for the ONERA M6 wing test case reveals
that the surface Sobolev smoothed One Shot optimization on the skylake nodes needs only 23.86%
of the runtime SLSQP needs on the same architecture. Overall, this represents the stated 3.98−4.19
speedup that the new algorithm has over established Quasi-Newton methods.
Also, paradoxically the retardation factors seem smaller on the older sandybridge chips. Due to the
flow simulation better utilizing parallelization and vectorization on the newer skylake architecture,
the baseline time is significantly smaller here. At the same time, the involved adjoint and other
solvers cannot exploit these advantages in vectorization and other parallelization features to the
same degree, leading to larger quotients when computing the retardation factors.
The numerical results presented above yield a series of important observations.

1. The hybrid Laplace-Beltrami operator introduced in this thesis can be used successfully as a
preconditioner for One Shot optimization. Inserting the approximated Hessian matrix B from
Equation (5.75) into this role leads to a stable and convergent One Shot optimization.

2. Using the new preconditioning methodology allows for larger design updates than a constant
factor as a preconditioner. In addition, the parameterized Sobolev preconditioning helps
reduce the oscillations in the optimizer, which would otherwise occur due to inexact function
and gradient values. In turn, this enables a faster convergence of the optimization algorithm to
an optimal solution.

3. The poor performance demonstrated by iterative Hessian update formulas, e.g., BFGS, in
contrast, shows that traditional Quasi-Newton methods cannot be trivially adapted to work
in One Shot optimization. Iterative Hessian update formulas struggle to compute a good
approximation from inexact, approximated gradients.

4. Overall, the parameterized Sobolev preconditioned, multistep One Shot algorithm demon-
strates significant advantages in terms of runtime compared to established Quasi-Newton
methods, like SLSQP.

In conclusion, during the presented tests with the ONERA M6 wing, the combination of Sobolev
smoothing and parameterization yielded significant benefits for optimization. Special focus is
given to the application in a One Shot optimization algorithm, where the method can outperform
established, classical Quasi-Newton algorithms.
To finish this chapter, the new methodology introduced in this thesis has been successfully tested for
the different reference test cases for design optimization presented here. The parameterized Sobolev
smoothing demonstrated competitive performance in aspects such as objective function reduction,
retardation factors, runtime, etc. A more in-depth discussion and resulting conclusions will be drawn
in Chapter 8.
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Chapter 8

Conclusion and Outlook

8.1 Conclusion

Discussion
As a starting point, recall all the different backgrounds in design optimization from where the new
methodology is derived. Two main lines of development drive it, beginning with the extensive
research done on discrete adjoint optimization, based on algorithmic differentiation, discussed in
Chapter 3. Such adjoint approaches offer a great way to compute derivatives for optimization
independent of the number of design parameters. Here, using a fixed point formulation is especially
advantageous since it enables the stable computation of consistent gradients. In Section 3.2, the
necessity of projecting derivatives onto the parameters becomes already clear. A point that gets
more involved in later chapters when dealing with second order derivatives. The extension to One
Shot optimization is especially noteworthy when using discrete adjoints, since it is naturally based
on the fixed point formulation, as discussed in Chapter 4. Many authors have worked on this in the
past, and formulating a comprehensive, generally constrained One Shot algorithm with guaranteed
convergence is still an open question. In particular, the construction of a preconditioner which can
guarantee the desired convergence while not being too strict and stalling optimization progress
remains a complex, test case dependent task.
The second background, discussed in its various aspects in Chapter 5, lies in the field of shape
calculus and the reinterpretation of gradients in different Hilbert spaces. Naturally, this kind of
research focuses on computing these gradients, by solving a partial differential equation with an
elliptic operator. Sobolev gradient smoothing particularly uses the Laplace-Beltrami operator for
a reinterpretation, which can help to increase the regularity of search directions and dampen high-
frequency noise in the derivatives. Such methods are further motivated by the connection with the
analytic shape Hessian from continuous optimization. As seen in Section 5.1, a connection between
the Hessian and elliptic differential operators, e.g., the Laplace-Beltrami operator, can be motivated
in two ways. First, by approximating the Hessian operator symbol in terms of Fourier analysis and
second, by investigating Dido’s problem. Such approaches offer considerable potential to apply
theoretical results from differential calculus but can get very involved in practical applications. Many
authors have tried to find a good approximation for the shape Hessian operator, although doing this
for general optimization problems with Navier-Stokes equations remains an open question.
Combining all of these developments, it becomes clear that One Shot optimization benefits from
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preconditioners derived from Sobolev smoothing. An approach that has been demonstrated for
free node optimization in the past. However, there remains a challenge to be addressed. Nearly
all real-world industrial applications will incorporate a mesh parameterization. Usually, such a
formulation involves a CAD tool for designing an aerodynamic component and a mesh generation
process to get the necessary grid for computations. Therefore, an attempt to apply gradient smooth-
ing in such a scenario should be formulated for the gradient with respect to the design parameters.
Furthermore, free node optimization can be unfeasible for large, complicated industrial optimization
problems, due to a large number of design parameters, when all mesh nodes are considered, and the
sensitive nature of the problem. That is, freely deforming a mesh will easily reduce its quality and
subsequently lead to problems with flow and adjoint convergence. Historically, Sobolev smoothing
was partially introduced to deal with the issue of loss of regularity. Also, transforming the optimized
meshes back and expressing them in terms of the parameterization is nontrivial in itself.
For these reasons, this thesis investigates how introducing a design parameterization affects the
optimization procedure with Sobolev smoothing for the derivatives. This involves transforming the
formulation of an approximated Newton step from the mesh to the design parameters. In particular,
a new Theorem 5.3.1 for the connection of the reduced shape Hessian, discretized on the mesh, and
the Hessian with respect to the design parameters is introduced and proven. The result is based
on the generalized Faà di Bruno formula and enables the application of Sobolev smoothing for the
design parameters in Section 5.3. Special focus is given to linear parameterizations, allowing for
a simplified formulation. This new approach is derived from function space and shape calculus
considerations and is independent of the accuracy of the discrete adjoint gradient. As such, it can
have significant benefits in situations where only an approximation of the gradient is computed,
such as One Shot optimization algorithms, which work with intermediate, non-converged adjoint
values. Here, iterative Hessian updates would suffer from an accumulation of numerical errors. Also,
traditional iterative methods, like BFGS, are ill-conditioned for high-dimensional design spaces and
the Hessian approximation deteriorates in quality with subsequent updates. This behavior further
motivates the approach taken in this thesis.
With the results from this thesis, it is possible to apply Sobolev smoothing for arbitrary design
parameterizations and fit it into a flexible reduced SQP framework in place of the Hessian approxi-
mation. The overall optimization algorithm includes treatment of additional equality and inequality
constraints, depending on the mesh or flow state. It can be easily extended with a piggyback iteration
for the flow and adjoint solvers to formulate a constrained multistep One Shot optimization. This
generalized SQP framework is especially interesting as it allows for the straightforward inclusion of
additional constraints into the One Shot setting.
Having all algorithms in place, key implementation ideas are pointed out in Chapter 6. While this
is done in the SU2 framework, the discussed issues are relevant for any potential implementation.
Thus, the presented ideas could be implemented into arbitrary finite volume CFD solvers and design
frameworks. Two points are particularly worth mentioning in this context, as they need to be treated
with additional care. One is the extension of linear finite elements to surfaces. Many libraries support
higher order elements, but not necessarily their embedding into curved higher-dimensional spaces.
Second, multiple matrix vector products with the Jacobian of the parameterization and its transposed
matrix must be evaluated. If the source code is available and can be treated with an AD tool, it is
possible to implement very efficient code for this computation using algorithmic differentiation. For
closed source or commercial design tools, one could still use finite differences in this role, although
a loss in performance has to be expected from such an approach.
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The established methodology and the implemented algorithms are tested for relevant test cases in
Chapter 7. Comprehensive results are shown for the two-dimensional NACA 0012 airfoil with Euler
equations and the more complicated three-dimensional ONERA M6 wing with RANS equations.
In solving drag minimization problems, the presented Sobolev smoothing methodology showed
convergent behavior and good results for reduced SQP optimizers. When reinterpreting the gradient,
the increased regularity can allow for better convergence of the algorithm compared to classical
gradient descent methods. At the same time, the computational cost of calculating the parameterized
hybrid Laplace-Beltrami matrix is small compared to converging a single flow solution, allowing
for computationally cheap preconditioning. However, the method has issues achieving comparable
performance to iterative Hessian updates, like BFGS formulas, for the three-dimensional RANS test
case with exact function values and gradients.
This changes in the next series of tests, when the derived results are combined with a One Shot
optimization, following Algorithm 4.3.1. In this setting, parameterized Sobolev smoothing achieves
stable and efficient convergence to an optimal design for both the NACA 0012 and ONERA M6 test
case. When compared to constant preconditioning schemes, the Sobolev preconditioner is able to
show measurably better performance in stabilizing the iteration. Here, the advantage compared to
iterative Hessian updates becomes significant. For example, BFGS formulas have serious problems
in such situations, as seen for the ONERA M6 test case. As mentioned earlier, this is due to the
inexact approximation of adjoint gradients, provided by only a handful of piggyback steps. In
contrast, the presented Sobolev smoothing based method is independent of low quality gradient
approximations and remains stable even for high numbers of design parameters. Furthermore, the
use of One Shot optimization leads to a significant improvement in runtime over classical fully
converged optimization algorithms. Due to the fast assembly of the Laplace-Beltrami operator
on the design surface mesh and the efficient evaluation of parameterization derivatives with AD,
the additional costs remain controllable, even for the high number of design updates in One Shot
optimization. This leads to a very competitive performance of the new algorithm, as seen in the
investigation of retardation factors in Section 7.2.2. The multistep One Shot algorithm with pa-
rameterized Sobolev smoothing can outperform established Quasi-Newton methods, like SLSQP,
with a speedup factor between 3.98−4.19. At the same time, it achieves better stability than other
One Shot preconditioning methods. Together, this demonstrates significant advantages for the
methodology derived in this thesis and the new algorithm.

Summary
At last, this subsection gives a compact overview of the results from the previous discussion and
compares them with the scientific objectives for this work, as formulated in Section 1.2.
To achieve this, recapitulate the title of this thesis, ‘Combining Parameterizations, Sobolev Methods
and Shape Hessian Approximations for Aerodynamic Design Optimization’ and how it set the
research goal of this work. First, the role of parameterization in design optimization is considered,
particularly when working with an existing discrete adjoint optimization framework and the One
Shot approach. Special focus is given to the incorporation of the chain rule to project derivatives
onto the parameters for computing a design update. Next, an overview survey of shape Hessian
approximation ideas is presented, motivating the use of the Laplace-Beltrami operator from Sobolev
smoothing in this role. All of these results are combined into a novel approach, deriving a theorem
based on the generalized Faà di Bruno formula, which connects the discretized reduced shape
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Hessian on the mesh with the second order derivatives with respect to the parameterization, and
using Sobolev smoothing in this formulation. This novel combination approach forms the main
theoretical result of the presented thesis.
The introduction of parameterized Sobolev smoothing allows the inclusion of the Laplace-Beltrami
operator into an optimization framework, leading to the formulation of reduced shape Hessian
approximation techniques for reduced SQP and One Shot algorithms. Together, these two algorithms
demonstrate how to apply shape Hessian calculations in an industrially relevant optimization setting.
The formulated algorithms are successfully implemented into a modern CFD design framework and
all the key features of the implementation process are documented and discussed. This discussion of
the most important points and known relevant issues can serve as a template for future adaptations
in other solvers.
By applying the implementation to numerical test cases, the full effects of the new formulation can be
studied. The established results demonstrate how parameterized Sobolev smoothing can increase the
regularity of an optimization algorithm. Additionally, due to the flexible formulation of the reduced
SQP update, a complete set of mixed constraints could be included as well. Furthermore, these
techniques prove highly effective as a preconditioner to constrained multistep One Shot optimization
and such a One Shot algorithm is remarkably efficient in practice. By keeping computational costs
low, the method remains competitive while resulting in a good reduction of the objective function
and abiding by the constraints. It outperforms established Quasi-Newton methods based on iterative
Hessian updates with exact gradients.
In conclusion, the novel approach in this thesis achieved considerable benefits in design optimization
by applying Sobolev smoothing to parameterized shapes, even though the parameterization itself
might already be smooth. In summary, this thesis has achieved its research objective of giving an
efficient combination of parameterizations, Sobolev methods, and shape Hessians. This was success-
fully applied to aerodynamic design optimization and established a new, competitive algorithm for
classical reduced SQP and One Shot optimization frameworks.
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8.2 Outlook
Hopefully, this thesis gave answers to some interesting research questions. Although, follow-up
ideas and open topics for further investigation remain. In this last section of the thesis, some of the
possible continuations for this work are pointed out.
The overall objective throughout this thesis was to combine parameterizations with Sobolev smooth-
ing methods and shape Hessian approximations. This goal has been achieved successfully. To do
this, the mathematical background was explored and the incorporation of the parameterization into
approximated Newton steps with a shape Hessian derived. Of course, using these theoretical results
for Sobolev smoothing is only one possibility. Section 5.1 already listed literature with other results
on Hessian approximation. The introduced formulation from Theorem 5.3.1 is quite general and
offers enough flexibility to combine other shape Hessian approximations, e.g., different elliptic
partial differential operators, with a parameterization into a preconditioning method for the design
parameter update. With the multitude of shape calculus results available for various problems, much
future research could be done to improve aerodynamic design optimization in many different areas.
Such ideas are not limited to operator symbols derived by Fourier analysis. If it is possible to calcu-
late an analytic expression for the complete Hessian matrix on the surface for a specific problem, it
can be discretized on the mesh and then inserted into Equation (5.44).
On the other hand, one might not need to look at new techniques. The Sobolev smoothing method
applied in this work is equivalent to a reinterpretation of the gradient in a different scalar product to
prevent a loss of regularity. This means that other scalar products, or their respective hermitian oper-
ator, can also be used in this context. In a sense, the scalar product is already adapted when choosing
a set of weights ε1, ε2, ε3 in Equation (5.75), yet this can be further refined. When computing the
Laplace-Beltrami operator via finite elements, a discrete representation of the operator is gradually
assembled on the mesh cells. There is no reason why the optimal weights have to be constants on
the whole mesh. Instead, a function could be defined to calculate good values for ε1, ε2 based on
the properties of the current mesh cell. Kusch, Schmidt, and Gauger [71] already pointed in this
direction when they derived a formulation based on a local coordinate system along the surface. The
idea could also be expanded to adapt the ε values throughout the optimization, to keep them in line
with the change in shape.
Corollary 5.3.2 simplifies the expression connecting the discrete reduced shape Hessian and the
parameter Hessian. However, it only holds true for linear parameterizations, or if the optimization
process is already close to the optimum. For nonlinear parameterizations and starting points further
away from the optimum, the term ∑

nx
k=1

∂

∂xk
L(u,λ ,x)DppMk(p) might play a relevant role. This

means that an accurate Hessian approximation on the design parameters has to take the second order
derivatives of M(p) into account. It is worth noting that such an approach is nontrivial, as many
tools used in engineering and industrial application do not support the computation of those terms,
and applying finite difference approximations can result in significant computational overheads.
Even if the source code of the parameterization is available for AD applications, computing the full
Hessian will still be expensive.
Another influence of the parameterization, which has not been fully investigated, is how the func-
tion M(p) itself might act as a smoothing procedure. As pointed out in the motivation section,
applying adjoint aerodynamic design optimization on a free node formulation will struggle with
high-frequency noise in the derivatives with respect to the mesh and decreasing mesh quality after
deformation. This is especially true for One Shot optimization, where adjoint solutions are not fully
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converged. For mesh deformation, a surface movement is frequently distributed to the volume mesh
by a linear stiffness method or a similar approach. This has dampening properties for noise in the
volume sensitivities when transferred back to the surface. Next, assume that there is a disturbance
on the mesh coordinate derivatives δ (DxF). This is multiplied by application of the chain rule, i.e.,
δ (DpF) = δ (DxF)DpM. Experience may suggest that there are many surface nodes in the mesh
and that adding a small, high-frequency disturbance to some of them will not affect the parameters
too much. In this sense, the parameterization could act as a dampening in its own right. However,
no thorough mathematical analysis has been conducted, and doing so could lead to interesting new
results.
Another possible extension, which has been outside the scope of this work, is an application to
different design optimization problems. For example, optimizing the shape of an object under a PDE
constraint is not restricted to aerodynamic applications. Instead, other areas of engineering, e.g.,
structural mechanics or thermal regulation, are mathematically similar. The theoretical framework
from this thesis could be expanded to precondition search directions for such problems, potentially
expanding the formulation for coupled problems with flow equations.
Interesting questions remain for One Shot optimization as well. As stated in Chapter 4, many
preconditioning strategies have been tried for different One Shot optimizations to achieve stable yet
rapid convergence. As demonstrated by the numerical results of this thesis in Section 7.2, traditional
iterative Hessian updates will struggle here. Therefore, new methods to derive computationally
cheap preconditioning matrices B are greatly appreciated. Theoretical conditions for a suitable
preconditioner are known from the convergence analysis of the One Shot methods. However, these
properties are very hard to check in practice for each individual design update. Furthermore, they are
trivially fulfilled if B is just positive definite enough. Yet, such a choice is highly undesirable since it
slows down the optimization progress. In this thesis, a new efficient preconditioner was introduced
that can help to ensure convergent and fast optimization. The remaining questions include a rigorous
convergence analysis for this new method.
Finally, there is always room for performance improvements in the implementation and application
of the method. The whole setting could be applied in an improved One Shot algorithm. While
multistep One Shot implementations are very flexible in their own right, recent trends in HPC go
beyond this. With the increased use of parallelization, it is no longer necessary to have different
solvers run in a clear deterministic order. In particular, the idea of asynchronous One Shot could
be very interesting in the future [21]. Here, one would have the flow, adjoint, and optimization
iterations running independently from each other on multiple machines. Coupling can be done by
defining interfaces to exchange deformed meshes, flow, and adjoint states. A further suggestion to
increase the efficiency of such an approach is made here. The exchange of these large data files can
be sped up significantly when using a modern memory layer API, e.g., the GASPI interface1, instead
of traditional file I/O. These techniques have been successfully applied to CFD [113] and could be
adopted to allow for highly efficient One Shot optimization in industrial applications on modern
HPC architectures. Such an implementation combined with the new shape Hessian approximation,
based on parameterized Sobolev smoothing, would be a genuinely remarkable algorithm to tackle
even some of the most challenging industrial aerodynamic design optimization problems.

1GPI-2 - Global Address Space Programming, http://www.gpi-site.com
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