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e 1 Introduction 

The original definition of positive real (PR) rat ional funct ions g(s) E c(s) goes back to 
the thirties. Brune (1931) introduced PR-functions to characterize time-invariant, ratio- 
nal one port passive networks. Gewertz (1933) extended the PR-concept to symmetric, 
rational PR-matrices G(s) E c(s) PxP for which the quadratic from z*G(s)z E c(s) is a 
PR-function. For p = 2 he showed that rational PR-matrices coincide with the impedance 
matrices of certain a-port passive networks. This result was extended to arbitrary p E N 
by Oono (1950), MC Millan (1952) and Bayard (1949). In the fiftieth passive networks 
were embedded into the general theory of dissipative dynamical systems. The equiv- 
alence of the positive realness of a p x p-transfer-function G(s) and the passivity of a 
minimal realization (A, B, C, 0) of G( ) s was shown nea.rly simultaneously by Meixner 
(1954,1958,1964) and Youla, Castriota and Carlin( 1959). 
In the following PR-functions gained increasing interest, in particular in control theory. 
There are several papers extending the theory in different aspects like: 

Generalizations to non rational PR-matrices G = (g;j);,j=l,,..,, , gij : @. + c. 

- Modification of PR-matrices to strict positive real (SPR) and almost strict positive 
real (ASPR) matrices. 

- Relations between high gain resp. hyper stable systems and PR-transfer functions. 

The purpose of this paper is to complete the discrete version of the theory of PR-systems. 
To the best of our knowledge discrete positive real (DPR) systems are defined and al- 
gebraically characterized the first time in Hitz and Anderson (1969). The algebraic charac- 
terization in the DPR-lemma is extended in Anderson (1986) t 0 d iscrete strict positive real 
(DSPR) systems, however only for the scalar case. 
In section 2 of this paper the extension of the DSPR-1 emma to the multivariable case and 
an alternative characterization of DSPR-systems which can be interpreted as the discrete 
versions of theorem 2.1 in Tao and Iannou (1988) and lemma 10 in Narendra and Taylor 
(1973) is given. 
In section 3 discrete almost strict positive real (DASPR) systems and their relations to 
high gain stable systems are analyzed. The presented results are partly contained in 
Bar-Kana (1986), h owever, stated there with incomplete or weakly formalized proofs. 

2 Discrete strict positive real functions 

The following definition is due to Hitx and Anderson (1969). 

2.1 Definition: 

A square rational matrix G(z) E Iw(z)P’P is called discrete positive real (DPR) if: 

(i) The entries gij(z),;,j E p_ of G( ) 2 are analytic in r = (2 E QI; 121 > 1). 

(ii) G(z) + m2’ is p ‘t’ osl lve semidefinite hermitian in r. 
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An algebraic characterization of DPR matrices is given by the discrete positive real lemma: 

2.2 Lemma (Hitz and Anderson (1969)): 

Let G(z) E W(z)P’P, where G(z) has no poles outside the unit disc and simple poles 
only on the unit circle. Further let C = (A, B, C, 0) be a minimal realization of G(z). 
G(z) = D + C[zl- A]-lB. Then G(z) is DPR ‘f 1 an d 
and IV, P > 0, P symmetric such that: s 

only if there exist real matrices P, L 

(i) ATPA-P = -LLT 
(ii) ATPB = CT-LW 
(iii) WTW = D+DT-B’PB. 

(24 

0 

2.3 Remark: 

a) In particular this lemma implies that DPR matrices G(z) are always proper rational 
with: 

pi& GC4 # 0 (2.2) 

b) Furthermore it is shown in Hitz and Anderson (1969) that the poles of a DPR-matrix 
lie in Ic = {Z E @/]z[ 5 1) an d are simple on the unit circle {Z E @I 1~1 = 1) and 
that G(ei”) + GT(eWi”) * p ‘t’ IS osi ive semidefinite hermitian if eiw is not a pole of G(z). 

2.4 Definition (Anderson (1986)): 

A square rational matrix G(z) E W”P( ) z is called discrete strict positive real (DSPR) if: 

3p E (0,l) such that G(pz) is DPR. (2.3) 
0 

The following lemmata are characterizations of DSPR-matrices G(z). They are obtained 
as applications of analagous results for DPR-systems (Lemma 2.2, Remark 2.3) and can 
be interpreted as discrete versions of theorem 2.1 in Tao and Iannou (1988 ) and 
lemma 10 in Narendra and Taylor (1973). 

2.5 Lemma 

Let C = (A,B,C,D) b e a minimal realization of the proper rational transfer function 
G(z) = D + C[zl- A]-lB. Then G(z) is DSPR ‘f 1 an only if there exist a real positive d 
definite symmetric matrix P, real matrices L and W and a real number y such that 

(9 ATPA - P = -LLT - y2P (2.4a) 

(ii) ATPB = CT - LW (2.4b) 

(iii) WTW = D + DT - BTPB (2.4~) 

3 



f Proof: Let G(p) DPR or some p, 0 < p < 1. Then C, = (;A, B, fC, 0) is a minimal 

realization of G(pz) = f$‘(zl- ;A)-‘B + D. By lemma 2.2 G(pz) is DPR if there exist 

real matrices L, W and P, P positive definite symmetric such that 

~AT~A- p = -iiT 
P2 

iATpB = &‘-LW 
P P 

WTW = D+DT- BTPB. 

Equivalent is: 

ATPA-p2P = -p2LiT 

A*PB = CT -ptrV 
WTW = D+DT- BTPB. 

0 < p < 1 implies 0 < 1 - p2 < 1. With L := pL,y2 := 1 - p2 we obtain: 

. 

ATPA - P = -LLT -y2P 
ATPB = CT--W 
WTW = D+DT-B’PB 

q 

2.6 Proposition: 

Let G(z) E XX(z) PxP be DSPR and let C = (A, B, C, D) b e a minimal realisation of G(z). 

1. Then: 

(9 9i&),U E p_, analytic in 77 = {z E @) JzI 2 1) 

(ii) G(ei”) + GT(emi”) p osi ive semidefinite hermitian for all w E R ‘t’ 

2. If additional 

a) rh(z)(G(z) + GT(i)) = p or 

b) mn(B> > 0 

then 

(ii’) G(e”“) + GT(emi”) p ON ive definite hermitian for all w E Iw ‘t’ 

3. G(z) DSPR if (i) and (ii’). 
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1. (i) G(z) DSPR + G(pz) DPR for all p E [p*, l] and some p*,O < p* < 1. Ry 
definition 2.1 all entries g;j( z) of G( ) 2 are analytic in ]z] > p* in particular in 
F. 

(ii) Let C = (A,B,C,D) b e a minimal realization of G(z), G(z) DSPR. Then 
there exist real matrices P > 0, L, W and a real number y, such that (2.4) 
holds. From (2.4a): 

@I- A*)P(zI - A) + ATP(zI - A) + (Z - AT)PA (2.5) 
= lz12P - A*PA = (1~1~ - 1 + r”)P + LLT. 

Applying (2.4b) and (2.4~) we obtain 

G(z) + GT(z) = D + DT + BT@1 - AT)?? + C(zl- A)-‘B 
= WTW + BTPB + BT@1 - AT)-l(ATPB + LW) 
+ (BTPA + WTLT)(zI - A)-lB 
= WTW + BTPB + BT ((“I - AT)-lATP + PA(zl - A)-‘) B 

+ BT(51 - AT)-‘LW + WTLT(zI - A)-lB 
= WTW + BTPB + BT@1 - AT)-l (ATP(zl - A) 
+ (FI - AT)PA) (~1 - A)-‘B 

+ BT@1 - AT)-‘LW + WTLT(zI - A)-lB, 

Using (2.5) 

= WTW + BTPB 
+ BT@1 - AT)-’ ((IzI” + y2 - l)P + LLT - (X - AT)P(zI - A)) (zI- A)-‘B 
+ BT@1 - AT)-‘LW + WTLT(zI - A)-lB 
= WTW + BTPB + (1~1” + y2 - l)BT(FI - AT)-‘P(zI - A)-‘B 
+ BT@1 - AT)-’ LLT(zI - A)-lB - BTPB 
+ BT@1 - AT)-’ LW + WTLT(zI - A)-lB 
= (1~1~ + y2 - l)BT(X - AT)-‘P(z1 - A)-‘B 
+ (W’ + BT@1 - AT)-‘L)(W + LT(d - A)-‘B). 

In particular from: 

G(e”“) + GT(ci“‘) = y2BT(e-i”l - AT)-lp(eiwl - A)-‘B 

+(WT + BT(ci”I - AT)-‘L)(W + LT(ei”l - A)-%), 

we have for w # 0 : 
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if*(GT(ei”) + GT(emi”))w 2 Y2arnin(P)a~in(B)~~in(eiwI - A)-lI/~jli 
27 2 f-@xin(B) 1 IwI 1; 

lle”“I - Alli 
2 72%dP)~kin(~) I IwI 12 

(1 + 11412)2 2 
2 0 if amin = 0 
> 0 if 0,;,(B) > 0 (2.6) 

hence 
G(ei”) + GT(eei“‘) > 0. 

2. rh+,(G(z) + GT(i)) = p, together with G(z) analytic on {z E @I IzI = 1) implies 

rk(G(e”“) + GT(emi”)) = p for all w E R. (2.7) 

amin > 0, implies (2.6). (2.6) as well as (2.7) imply: 

G( eiw) + GT(emi”) > 0. 

. 3. Let C = (A,B,C,D) b e a minimal realization of G(z). There exists po, 0 < po < 1, 
such that G(pz) is analytic in IzI > 1 for all p E [po, 11. In the following let p > po. 
Because G(8’) + GT(ewi”) > 0 for all w E R there exists a 77 > 0, such that 

G(ei”) + GT(evi”) > ~1 for all w E R. 

For G(pe”“) we obtain: 

G(p@‘) = D + C(pe”“I - A)-lB = G(ei”) + C((pei”I - A)-l - (e’“I _ A)-l))B 

= G(e”“) + C ((e’“I - A)(pei”I - A)-‘(ei”I - A)-l 

- (pe”“I - A)(pei”I - A)-‘(ei”I - A)-l) B 

= G(ei”) + (1 - p)ei”C(pei”I - A)-‘(ei”I - A)-lB. 

Hence: 

G(p@‘) + GT(peeiW) 2 VI+ (1 - p)eio (C(pe”“I - A)-‘(ei“‘I - A)-lB 

+BT(epi”I - AT)-l(pemi”I - AT)-lCT), 

or 

with 

wT (G(pe”“‘) + GT(pemi”)) w 2 ~llwl12 + 6, 

6 



s = (1 - p)e”“Y? (C(p ,jwI - A)-+““1 _ ,J)-lB 

+ BT@-‘“I - AT)-‘(pe-‘“I - AT)??) w. 

Then: 

161 L 2(1 - P)llClI IIBII Il(PeiWI - W’ll Il(e’“l- W’ll llwl12~ 

From peiW # a( A) (G( ) z analytic in IzI 2 1 implies llAjj2 5 PO < 1) 
we obtain: 

JJ(pe’“1 - A)-‘\\ 2 ’ 
IP - IIAII I* 

Hence 
w - Pwll2ll~ll2 

I” ’ (1 - IIAl12)(p - IIAl12)“““” 

The right hand side converges to zero monotonically for p + 1. Hence there exists 
a p1 with 1 < p1 < p. such that 

2llCll2ll~ll2 1 - P 
1 _ /IAll p - [IAll;! < ' for p ' (ply 'I' 

Therefore ISI 5 ql/w(j2 for p > p r and G( pe”“) + GT(pemi”) 2 0 for all w E IX. 

Lemma 2 from Hitz and Anderson (1969) (cf. remark 2.3) implies that G(pz) is 
DPR for p > pl. 

2.7 Remark: 

t 

The condition a) in proposition 2.6 excludes the singularity of G(ei”) + GT(eAiw) for all 
z-o.5 11 

w E Iw. For example G(z) = zso6 
.( > 

1 1 satisfies definition 2.‘4, but not 2.(ii’) in 

proposition 2.6. 

q 

. 
3 Discrete positive realness and high gain stability 

A scalar system (p = 1) with transfer function g(z) E IX(z) is called high gain stable if 
there exists some real number K* 1 0 such that the closed loop system: 

y = G(z)u, u = -4-y (3-l) 

is asymptotically stable for all I< > I(*. To generalize this concept to multivariable 
systems, G(z) E R(z)pXp, Ir’ E I[B PxP, the problem is to define what is meant by “K -+ co” 
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(cf. Brockett and Byrnes (1981)). H ere we restrict ourselves to the following class of 
feedback-gains: 

3.1 Definition: 

A linear time-invariant discrete system C with transfer function G(x) E lR(z)PxP is called 
high gain stable if there exists some X* E R+ such that the poles of the closed loop transfer 
function (I + XG( z))-l G( Z) 1 ie inside the unit disc {z E @I ]z] 5 1) for all X > X*. 

q 

The system (I + XG(z))-‘G( ) z is a special case (K = IP) of the closed loop system: 

Y = GW, u = --My, det K # 0 (3.2) 

whose high gain pole behavior (X + 00) is characterized as follows: 

3.2 Lemma: 

Let G(z) E R(z) pxp, Ii’ E RPx*, det K # 0. 

(i) If det G(z) $ 0 th en in (3.2) as many poles as there are transmission zeros converge 
to these zeros. The remaining poles go to infinity. 

(ii) If det G(z) E 0, ~J%R(~)G(z) = r < p, s = rkRG(oo),n(z) the zero polynomial of 
G(z), and x0(z) the pole polynomial of G(z), and 

t(Z) = ~~~~ ,lim det[’ +xxG(z)nl E rw[*l 
--to3 T (3.3) 

then for X t 00 as many poles as there are transmission zeros (deg n(z)) converge 
to these zeros, some poles converge to the zeros of t(z) and the remaining poles go 
to infinity. 

Proof: 
(i) is proved in McFarlane and Postlethwaite (19’77) for G(KJ) = 0. This proof carries 

over to G(m) # 0. For (ii) let G(Z) = (g;j)l<;,j<p, g;j(z) = $#,xij,yij coprime and y;j 
normalized. Let further d(z) = Icm{y;j, 1 5 ;,j 5 p}, 
G(z) = & N(z),N(z) E WPxP[~],f = ~ICnrq~)G(z). The Smith form S(Z) of N(z) is of the 
form 

s*(4xr @x(*--r) 

qp--r)xr O(P-4 x (P-7) 
, S(z) = L(z)N(z)R(z), L(z) and R(z) unimodular 

with 

s*(z) = diUg(ij(Z)y 1 5 j 5 T), ;j(Z) = d.i(z> 
dj-l(z) 

and 

8 



. 

d,(z) f 1 

dj(t) = gcd det N { ( ( :::::::~)(l)),l~~l<...<kj<p,l~~l<...<Ij<pJ, 

i.e. dj(z) is the gcd of all minors of order j of N(z). 
Then T 

det S*(Z) = n &(z) = 4(Z). 
k=l 

The McMillan-Form M(z) of G(Z) and G(z)K is: 

SC4 
w-4 = d(2) = 

M*wTXT %X(,-T) 
qp-T)XT O@-4 x (P-T) > 

M*(z) = diag 
G(Z) 
pi ,l _< i 2 T 

> 
. 

With 4~) = jfil ;( > 6 z zero polynomial and x0(z) = fi g,;(z) pole polynomial we have 
i=l 

d&M*(z) = * = 
d44 _ 

x0(4 44' 

For a p x p-Matrix A we have: 

P-1 

det(1 + XA) = 1 + Xtr(A) + c X’ c 
i=2 l<kl<...<ki<p 

detA( ii:::::::) +XPdet(A), (3.5) 

(cf. Markus (1973)), hence for G(z): 

* 

det(l+ XG(z)K) = 1 + Xtr(G(z)K) + ‘2 Ai c det (G(z)Ii) 
i=2 l<kl<...<ki<p 

( ,- ( ::::::::: )) 

+ A’ c 
l<kl<...<kr<p 

det ((coli) ( p:::;; )) . (3.6) 

. / 

:= X’g(z) 

l 

X’ 

-  

xTg(z) = d(z)T l<kl< <b <p 

c det (s(z)Ic (  p::;;: )). 

. . . Or-  

Because d, is the gcd of all minors of order T of N(z), d, divides every principle minor of 
order r of N(z)K. Let t kI,...,k,.(Z) be the associated quotient polynomial, i.e. 

tkl,...,k, (2). 

l<h<...<k,<p 
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With t(z) = C tkl,...,k,(z) E IR[z], (3.4J gives: 
l<h <k,<p 

X’g(z) = X’det M*(z)t(z) = Ar”~~~~~). 

With s = rk(D) 5 rkl(,)G(z) we obtain with (3.6) and (3.7) 

(3.7) 

XXK(z) - = 
x0(4 

det(1 + XG(z)K) = I + Atr(G(z)K) + * * * + A’% 

det(l+ XOK) 1 + UJ + * * * + u,xs 7 (3.8) 

a; = 
l<kl<...<ki<p 

det (0 ( p::;;; )) (3.9) 

and therefore 
XXK(z) +)t(z) 

;$& F = 
a, 

. 

Putting (3.6) and (3.7) together the claimed equation for t(z) follows. 
0 

3.3 Corollary 

Y Let GC(Z) E IwP’P(z) be th e t ransfer function of a discrete linear system C. Then: 

(i) If det GC(Z) $ 0 then C is high gain stable if and only if GC(Z) has relative 
degree 0 and all transmission zeros of GC(Z) are asymptotically stable 

(ii) If det G=(z) = 0 then the condition of (i) is sufficient for the high gain stability of 

c- 

Consider now (3.1) with G(z) E IW(z)pxp,K E lKPxP. 

3.4 Lemma: 

Let G(z) DSPR and K + KT positive semidefinite then the closed loop system (3.1) is 
asymptotically stable for all X > 0. In particular DSPR systems are high gain stable. 

Proof: 
By Landau (1979) we have that (3.1) 
inequality: 

is asymptotically hyperstable because the Popov- 

T@o, k,) = 5 ,uT(k)y(k) = x 2 y’(k)KTy(k) 
k=ko k=ko 

k=ko 
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is satisfied by the associated feedback-block. Then (3.1) is asymptotically stable for X 1 0. 

El 

Combining proposition 2.6 and corollary 3.3(i) we have: 

3.5 Corollary: 

A discrete linear system C with invertible DSPR transfer function G=(z) has relative 
degree 0 and asymptotically stable zeros and poles. 

In Bar-Kana (1989) a class of systems is considered which are high gain stable, however 
not DSPR. The following results complete the theory developed in Bar-Kana (1986) and 
provide complete proofs for the results therein. 

3.6 Definition: (Bar-Kana) 

G(z) E lR(z)pxp is called discrete almost strict positive real (DASPR) if 

P 

X E Wpxp such that H(z) = (I+ G(~)lc)-~G(z) is DSPR 

0 

I 
In Pugh and Ratcliffe (1981) t i is shown that the zeros, the infinite zeros and the number 
of (finite and infinite) poles of a rational transfer function are invariant with respect to 
constant output feedback. This together with corollary 3.5 implies: 

3.7 Corollary 

Let G(z) invertible and DASPR then the zeros of G(z) are asymptotically stable and the 
number of zeros coincides with the number of finite and infinite poles of G(z). 

q 

Discrete almost strict positive systems are high gain stable: 

3.8 Lemma: 

1 

Let G(z) DASPR and I( E lIJ?“P such that H(z) = (I + G(z)lc)-‘G(z) is DSPR. Then 
the closed loop system: 

is asymptotically stable if 

y = G(z)u, u = -Fy (3.10) 

(F + FT) - (Ii- + KT) > 0. (3.11) 

In particular G(z) is high gain stable. 
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c Proof: 
Let S(A, B, C, D) a minimal realization of G(Z). Then: 

ii = A-BK(I+DK)-*C 
il = B - BK(I+DK)-‘D 
6 = (I+ DK)-‘C 
Ij = (I+ DK)-*D 

is a minimal realization of H(z). Let E := F-K. Consider the system matrices A, B, C, 6 
of S(A, B, C, D), which results from S(A, B, C, 0) by output feedback with F. Then 

ii = A - B(K + E)(I + D(K + E))-lC 
= A - BK(I + DK)-‘C - BK ((I + DI- + DE)-’ - (I + DK)-‘) C 

-BE(I + DA- + DE)%. 

T Because (I+ DK + DE)-l - (I + DA’)-’ = -(I + Dli’)-lDE(I + DA’ + DE)-l we have: 

1 ii = ii + BK(I + DK)-‘DE(I + DK + DE)-‘C - BE(I + Dir’ + DE)-% 
= ii - (-BI-(I + DK)-lD + B)E(I + DK + DE)-% 
= ii - hE(I - DK + DE)-l(I + DI@ 

= ii - BE ((I + DK)-l(I + DK + DE))-’ 6’ 

= /i - ilE(I + tiE)-‘L?. 

Similarily we obtain for B, C and 0: 

h = B - B(Ii- + E)(I + D(K + E))-‘D 
= 

v 6 
B - AE(I + I3E)-Q 

= (I + D(Ii’ + E))% = (I + hE)-‘e 
b = (I + D(K + E))-‘D = (I + BE)-%. 

From these formulas it is evident, that A, B, C and fi describe also the system, which is 
obtained by output feedback with-E -around S(A, &, C’, fi). By lemma 3.4 H(z) DSPR 
and E + ET 2 0 imply that S(A, B, C, D) is asymptotically stable. 
If F = X1 then there always exist a X* > 0 s.t. F-K+ (F--IOT = 2X1 - (Ii’+KT) > 0 
for X > X*, hence S(A, B, C, D) is high gain stable. 

El 

The following theorem of Bar-Kana describes a “principal” possibility to obtain DASPR 
systems by augmentation from strict causal linear systems which are stabilizable by con- 
stant output feedback. 
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r 3.9 Theorem: 
Let G(z) E R(z) PxP, be strict proper rational and K E WxP, det I( # 0, a matrix such 
that H(z) = (I + G(z)K)-‘G( ) z is asymptotically stable, then 

is DASPR. 

F(z) = G(z) + I--l (3.12) 

Proof: 
Let S(A, B, C, D), D = Km1 a minimal realization of F(z). Let 
kr := max{X(X E If& X E a(I)-‘) U {0}}, then det(l+ kD) # 0 for k > ICI. For the closed 
loop system S(Ak, Bh, Ck;&) with: 

A,, = A - kB(I+ kD)-‘C 

BI, = B - kB(I + kD)-lD = B(I + kD)-’ 

Ck = (I+ kD)-lC 

? Dk = (I+ kD)-lD 

and transfer function 

we have: 

G/c(z) = Ck(zl - A/J-‘BI, + Dk 

(i) iii Al, = A - BD-lC = A - BKC is asymptotically stable by assumption. Then 

there exists k2 > 0, such that for k > k2, Al, is asymptotically stable. Hence 

(ii) Define 

Gk(z) analytic in IzI 2 1 for k > k2 (3.13) 

? 
Hk(z) := C,(zI - A/J-lBk 

= (I + kD)-‘C (zI- (A - kB(I + kD)-%‘))-I B(I+ kD)-‘. 

Then det D # 0 implies 

lim k’Hk(z) = D-lC(zl- (A - BD-‘C))-‘BD-I. 
k-Km 

Hence: 

Therefore: 

lim kHk(z) = 0, 
k+oo 

for z 6 a(A - BDelC). 

hm kGk(z) = ai%(kHk(z) + kDk) = lim kDk = Ji”, k(D-l -I- kI)-’ = 1 
k-co + k+oo -+ 

13 



for z # a( A - BD-lC) and so: 

lim k(Gk(ei”) + Gr(emi”)) = 21 > 0, o E R. 
k-e3 

However then there exists ks > 0 such that for k > k3 

Gk(e’“) + Gz(e-““) > 0, for allw E 18. (3.14) 

(3.13) and (3.14) together with prop. 2.6 part 3 imply DSPR for k > max(kI, kz, kg). 
Hence F(z) is DASPR by definition (3.6). 
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