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Abstract

This paper deals with a module theoretic approach to the dipolynomial matrix
parametrization of discrete-time behaviour systems as introducted by Willems [1991].
Canonical minimal lag representations for these behaviours are constructed which are
tighter than the corresponding polynomial representations.

1 Introduction

Matrices of rational functions play an important role in the description of the input/output
behaviour of linear systems via transfer functions (matrices). With the introduction of
minimal bases of rational vector spaces Forney [1975] gave elegant algebraic solutions for
problems in the context of the input/output behaviour of linear systems; for example,
problems of realization and invertibility of linear systems.

For the algebraic description of the state space approach and the system description via
polynomial matrices (introduced by Rosenbrock [1970]) modules over the polynomial ring
are the relevant structures.

The foundation for the module theoretic treatment of linear systems has been layed in the
pioneering chapter 10 of the book of Kalman et al. [1969]. Within the algebraic theory of
linear systems, developed in the last twenty years, very important contributions are due
to Fuhrmann (cf. Fuhrmann [1976], [1977], [1991]). His approach, originally developed for
a better understanding of the concept of strict system equivalence, was extended over the
years to a systematic treatment of a variety of problems for state-space-, transfer-function-
and polynomial system matrix representations of linear systems.

In the last years Willems developed in a series of papers ([1986a], [1986b], [1987], [1988],
[1991]) a general theory of dynamical behaviour systems. In this framework it is shown that
every discrete-time, linear, time-invariant complete behaviour system has an autoregressive
(AR-) representation, where the representing matrix is dipolynomial (cf. Willems [1991]).

In our paper we consider some aspects of a module theoretic treatment of those sytem
representations over the ring of dipolynomials F[s,s™1]. In particular, we extend the
concept of polynomial minimal bases for modules and rational vector spaces (cf. Forney
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[1975], Miinzner and Pratzel-Wolters [1979], Kailath [1980]) to the dipolynomial case. We
proceed as follows:

Section 2 contains some preliminaries concerning the ring of dipolynomials and dipolyno-
mial matrices.

In Section 3 we introduce dipolynomial minimal bases for rational vector spaces and dipoly-
nomial modules and compare these bases to the existing polynomial concepts. Further-
more, we characterize the dipolynomial minimal basis transformations and derive canonical
dipolynomial minimal bases in echelon form.

In Section 4 we apply the results of Section 3 to discrete-time AR-systems. In particular,
we identify the dipolynomial minimal module bases as the minimal lag descriptions (cf.
Willems [1991]) of the associated behaviour system. This way the canonical form con-
structed in Section 3 is shown to be a trim canonical form for the dipolynomial matrix
parametrization of AR-equations. It coincides with a (modified) canonical representation
given in Willems [1991].

2 Preliminaries

Let F denote any field, F[s]| the ring of polynomials in the indeterminate s, F'(s) the field
of rational functions and

Fls,s ' ={arst+ ... 4aps" 1 LlecZ U< L apeFlorke{l,. .. L}} (2.1)

the ring of dipolynomials with coefficients in F resp. . Observe that F7[s,s™!] is the ring
which is obtained by localization of F[s] at S := {s* : k € N}, which is a submonoid of the
multiplicative monoid of F[s] (see e.g. Jacobson [1989]); in particular this means that all
elements of S are units in F7[s, s !].

It is well known that F[s] is an euclidean ring with respect to the degree-function

Fls] — N

deg : aLsL—}—...—I—agsf — L

(2.2)
The units in F[s] are the nonzero constants a # 0,a € F. Modifying (2.2) for F[s,s™!]
in the following way:

F[s,s71 — N

LSL—|-...+O[[8£ — LY (2.3)

ddeg :
eg N
one obtains:

Lemma 2.1 (F[s,s™!],ddeg) is an euclidean ring. The units in F[s,s™'] are the elements
of the form as?,d € Z,a € F,a # 0. [

We skip the easy proof; note that the second statement holds by construction of F[s, s71].
Moreover, the following characterization of irreducible elements in F[s, s~!] is straightfor-
ward:
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Lemma 2.2 ¢(s,s71) € F[s,s™!] is irreducible if and only if ¢ has a representation of the
form q(s,s71) = s*p(s), where k € Z and s # p(s) € F|s] is irreducible in F[s]. |

Note that deg(s) = L for L € N, while ddeg(s") = 0 for L € Z. We denote by F7*9[s]
resp. F9%4[s,s7!] the set of g x ¢ polynomial resp. dipolynomial matrices. The units
in the rings F™"*"[s] resp. F"™*"[s,s™1] are called unimodular matrices. A matrix R €
Frxn[s](Fm%"[s, s71]) is unimodular iff det R is a unit in F[s](F][s,s7]).

3 Minimal bases

To every rational k x n-matrix G(s) € F**"(s) is associated the F(s)-vector space Vg 1=
F'™*(3)G(s), and there holds dimp(,) Vo = rankp,)G.

Conversely there exists for every F(s)-vector space V. C F'*"(s) with dimp,)V = k
a matrix G(s) € F*¥*"(s) of F(s) — rank k such that V = Vi. Matrices G(s) of
full row rank are called bases for the vector space V. Analogously there are asso-
ciated free F[s] — (F[s,s™!]—) modules of vector polynomials (-dipolynomials) Mg :=
FY¥k[s]G(s) (Mg := F'™*[s,571G(s,5~1)) to every polynomial (-dipolynomial) k x n-
matrix G(s) € F¥*"[s](G(s,s™1) € F¥*"[s,s71]). Observe that

dim Mg = rankp(G(s), dim Mg = rankpp, ,-11G(s, s (3.1)

Matrices G(s)(G(s,s7")) with F[s] — (F][s, s~"]—) linear independent rows are called bases
for the modules M¢(Mg). For those basis matrices we have

Mg, = Mg, & 3T(s) € F***[s] unimodular s.t. Gy = TGy
Mg, = Mg, < 3T(s) € F**[s,s7 unimodular s.t. Gy = TGy

The extension of the scalar degree functions deg and ddeg to the vector case associates
degree-structure to submodules M C F'*"[s] and M C F'*"[s,s71]:

Fan[S] —— N len[S,S_l] _ N

deg : OéLSL-}-----I-OézSE — L’ddeg:aLsL—l—...—}-agsf — L -/

The pioneering work of Forney [1975] on minimal bases for rational vector spaces initiated
a series of papers on minimal bases and their relations to controltheoretic constructions.
In this section we extend the concept of minimal bases to the dipolynomial case.

For a dipolynomial matrix G(s,s™') € F¥*"[s,s7!],

g1(s,s71h) oy s 4.4 af s
G(s,s71) = : = : (3.2)
gk(s, 5_1) affk L8t L4 0/5 . gTkTVE
the numbers
v; = ddegg;(s,s7), i€k (3.3a)

k
v o= )y (3.3b)
=1

are called the dipolynomial indices and the dipolynomial order of G.
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Definition 3.1 A matrix G(s,s™!) € F¥*"[s,s71] is called a dipolynomial minimal basis
of a F(s)-vector space V C F1*"(s) if

(i) G is basis of V

(ii) The dipolynomial order of G is minimal among all dipolynomial bases of V' a

Associated with G(s,s7') as in (3.2) are the highest row coefficient resp. lowest row
coefficient matrix

al, ab
[G]} = : eRF"5[G) = : (3.4)
al, ag

A matrix G(s,s™1) with [G]}, and [G]; of full row rank is called row proper.

Theorem 3.2 (dipolynomial minimal vector space bases)
Let G(s,s71) € F**"[s,s71] as in (3.2) be a dipolynomial basis of V = F1*k(s)G(s,s™1).
Then the following conditions are equivalent:

(i) G is a dipolynomial minimal basis for V

(1t) (a) The greatest common divisor (ged) of all k x k-minors of G is a unit in F[s,s™!]
(b) rankp[G]; = k and rankp[G]; = k
(iii) (a) G is nonsingular modulo p(s,s™') for all irreducible dipolynomials p(s,s™!) €
Fls,s7]
(b) Let f(s,s71) = (fi,.. ,f(n)) the vector of all k x k-minors f; of G. Then
k

k
vi= ZI/Z' = ddeg(f)

=1
(iv) If y = G is dipolynomial, then
(a) z is dipolynomial
(b) For x(s,s7') = (w1(s,s71), ..., a5(s,s71)) with xi(s,s7') = BLsh + ...+
Biski—7i there holds

ddeg(y) = Iﬂ?%(ki +n;) — min (k; — 7 + 0y — ;) (3.5)

2.z £0
(predictable degree property)
(v) Foralld>1

dimpVg= Y (d-w) (3.6)
1y <d

where Vg := {y(s) € V.N F1*"[s] : deg(y(s)) < d}.
Furthermore the following conditions are equivalent:

(ii)(a), (iii)(a), (iv)(a) and



3 MINIMAL BASES 5
(c) G(s,s71) is a basis of My =V N F¥*"[s,571]

Proof:

The structure of the proof is as follows:

The proofs for (it)(a) & (i1i)(a) < (iv)(a) < (c) are easily adapted from the correspond-
ing proofs for the polynomial case given in Forney [1975] using the characterization of
irreducible dipolynomials in Lemma 2.2; also the proof of (iv) = (v) and the implication
(v) = (¢) is straightforward following that reference.

(ii)(b) < (iii)(b):
Let N be any k x k-submatrix of G and [N];([N];) the corresponding submatrix of
(GIR((GY;)- Then

det N = det[N]; - s" 4+ ...+ det[N]; - s"7"

where

k k
n:zzni and 1/2221/2'
=1 =1

Hence (ii)(b) is equivalent to the existence of submatrices Ny and N of G such that
det[Nq]; # 0 # det[N,];, which is equivalent to (iii)(b).

(ii)(b) = (iv)(b):
There holds

y=12G =[ylps® + ...+ [y]ss° (3.7)
with
b:= max(k;+n;), e:= min (ki — 7+ n; —v;)
2:x; 70 ;70

Let [G;]n([Gi]e) denote the i-th row of [G]}([G]}); then

k k

[lr = [odn - [Giln, [l =D _[wilelGile
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where

[x] - 0' s ki—l—ni<b
T B, kitni=b

and

[x] . 0 s kEi—1+n,—v;,>e
B, kitmitni-vi=e

The full rank property of [G]; and [G]] implies [y]n # 0 # [yl
(iv)(b) = (ii)(b):

Assume rank[G]; < k. Then there exist z; € F, 1 € {1,...,k}, (z1,...,2%) # (0,...,0)
such that

k
Zwi[Gi]h =0 (3.8)

Let 79 an index such that v;, = max{v; : #; # 0}; furthermore let
w(s,871) 1= (wq - 8™M0TM L wy - s™0 )

and
k
g(s,s71) = a(s, s HG(s,s71) = Zwigi(s, 571y gm0 T
=1

Then because of (3.8) ddeg §(s,s™!) < v;,; however

max (k; + n;) = m%(mo —ni + ni) = ng

2:x; 70
and

Z_%i;élo(ki - Tt —y)= 2_:rglglii;go((n,-o —ni)+ (n; —v)) = i:Iarcl,'i;lO(niO —v) = gy — vy,
Thus

ki+ i) — min (ki — 7+ ni —v) = v
ngf;é)%( + n;) Z':r;lililo( T+ g — V) = vy,

contradicting (iv)(b). The proof for [G]; is completely analogous.

() = (ii):

See the reduction algorithms below. [

Starting with a basis G(s) € F**"(s), one obtains a dipolynomial minimal basis by the
following 3 steps:

(a) Multiply each row of G by the least common multiple of the denominators to make
G dipolynomial
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(b) Reduce the resulting matrix to a basis of My = V N F*¥*"[s,s71]

(c) Reduce further to obtain full rank highest and lowest coefficient matrices

Algorithm performing step (b):

This algorithm proves the implication (i) = (iii)(a) of Theorem 3.2.
Let G(s,s™!) be given in the form (3.2). Define:

gi(s,s7h)
G(s,s7h) = : = diag(s~ (™) s wmmG(s, 571
gr(s,s71)
Let €(s) resp. 6(s) denote the ged of the k x k-minors of G resp. G. Then
k
8(s)=s""e(s) where p:= (n;—v;) (3.9)
1=1

If €(s) is a unit in F[s,s™!] then nothing has to be proved because of Theorem 3.2 (iii)(a)
< ().

Assume €(s) is not a unit in F[s,s71]. Then by Lemma 2.2 ¢(s) has an irreducible poly-
nomial factor p(s) # s, which in view of (3.9) is also a factor of é(s). Hence, modulo
p, G does not have full rank. By applying Algorithm 2 in Forney [1975] we can re-
place a row g;, of G by a row g of polynomial degree strictly less than that of g;,.
Since g is a linear combination of the rows of G and the coeflicient of g;, in this lin-
ear combination is not equal to zero, the resulting matrix é(s,s‘l) is also a basis and
G'(s,571) := diag(st =), ..., sU%=))G(s,571) is a dipolynomial basis of lower dipoly-
nomial order than G(s,s™'), since

ddeg(g) < deg(g) < deg(g;,) = ddeg(gi,)

Algorithm performing step (c):

This algorithm provides a proof for the implication (i) = (ii)(b) of Theorem 3.2.

Assume rank[G]; < k and let §(s,s™) be constructed as in the proof of Theorem 3.2,
(iv)(b) = (ii) (b). Replace row g;, by §(s,s™) to obtain a basis G(s,s71) of Vi of lower
dipolynomial order. Iterate until rankr[G]; = k. If rank[G]; < k proceed analogously to
the case rank[G]}, < k. |

In view of condition (v) of Theorem 3.2 it is clear that the dipolynomial indices do not
depend - up to ordering - on the specific minimal basis but only on the vector space V.
Hence one can define:

Definition 3.3 The dipolynomial indices (v)y = (v1,...,v;) and the dipolynomial order
k

vy = Z v; of a k-dimensional F(s)-vector space V' C F'*"(s) are the dipolynomial indices
=1

resp. the dipolynomial order of any dipolynomial minimal basis of V' (in descending order).

O
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Replacing the F(s)-vector space V. C F'%*(s) by free F[s,s™']- submodules M C
F1%7[s,s71] the notions of bases, dipolynomial indices and dipolynomial order are de-
fined completely analogous to the vector space setting. Without proof we state:

Theorem 3.4 Lel G(s,s71) in the form (3.2) be a dipolynomial basis of the F[s,s™1]-
module Mg = F'*F[s, 571 - G(s,s™1). Then the following conditions are equivalent:

(i) G is a minimal basis for Mg
(1t) rankp[G]; and rankgp[G]) = k
(iii) Let f(s,s71) = (f1,.. ,f(n)), where the f; are the k x k-minors of G, then
k

k
vi= ZI/Z' = ddeg(f)
=1
(iv) For y = aG with x(s,s™') = (21(s,s71), ..., 2k(s,571)) and z;(s,s7") = BL sk +
.+ ﬁéski_“ there holds
ddeg(y) = max(k; + n;) — min (k; — 7 + n; — v;)

1:x; 70 1.z 70
(predictable degree property)
(v) For all d > 1 we have

dimp V, = dimpg{y € Mg n FY7[s] : deg(y) < d} = Z (d—v;)
1 <d

It should be mentioned that the equivalence of (i), (ii) and (iii) is stated in Willems [1991],
however, derived there in a quite different manner.

Again condition (v) in Theorem 3.4 shows that the dipolynomial indices only depend on
the module M. Hence we can also introduce the dipolynomial indices

(D) = (D1yees ), 1> > 0

and the dipolynomial order
k
Py =DV
=1

of a k-dimensional submodule M C F1*7[s, s71] as the indices resp. order of any dipoly-
nomial minimal basis of M.

For polynomial modules M C F'*"[s] polynomial minimal bases, indices (v)py =
k

(v1,...,vk), 1 > ... > v, and order vpyr = Z v; are defined and analyzed in Miinzner and
=1

Pratzel-Wolters [1979].

The following results summarize some properties of the different polynomial and dipoly-

nomial concepts. Their proofs are straightforward consequences of the characterizations

of minimal bases in Forney [1975], Miinzner and Prétzel-Wolters [1979] and this paper.
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Theorem 3.5 Let V C F'X"(s) a F(s)-vector space. Then there holds:
(i) Every Forney-minimal basis of V is also a dipolynomial minimal basis.

(ii) Every dipolynomial minimal basis G(s,s™') of V in the form (3.2) with n; = v; for
t=1,...,k is also a Forney-minimal basis.

(i7i) Forney indices (order) and dipolynomial indices (order) of V coincide. |

Remark 3.6 Contrary to Forney-minimal bases the maximal degree of the k X k- minors
of a dipolynomial minimal basis can be smaller than the order v. Equality holds only
in the case when there exist columns ji,...,j; of [G]; and [G]; such that the matrices
formed by them are nonsingular, i.e.

det [G 7% £ 0 # det[G]]H 7

Consider the example

_ S 1 s+ 2
W(S)_<32—|—25 s+ 1 252—|—1)
Then

. 10 1)
rank[W]h_rank<1 0 2)_2

The 2 x 2-minors of W are —s,s? —3s—1 and s(s? — 4s — 3) which are R[s]-coprime, hence
W is a Forney-minimal basis with indices 14 = 2,5 = 1 and order 3. However, there does
not exist a 2 X 2-minor of dipolynomial degree 3 although there exists one of polynomial
degree 3. The reason is that for j = (j1,72) = (1,3) det[W]] # 0 while det[W]; =0. O

Let G(s) € FF*"[s] with rankpqG = k. As before we associate with G the F(s)-vector
space Vi := F'¥*(s). G(s). Furthermore, we define My, := Vg N F'*"*[s,s7!] and
My, := Vg N F**"[s]. Thus

FX"(s) D Vg D My, D My,

On the other hand, let Mg := F***[s]-G(s) resp. Mg = FY¥F[s, s71] -G/(s) the polynomial
resp. dipolynomial F[s]- resp. F[s,s~!]-modules associated with G. Then

len[éﬁ] D Mg C MG C Vg

Now one can easily derive conditions for the equality of the polynomial resp. dipolynomial
structures in the above inclusions.

Theorem 3.7 Let G(s) € F**"[s] with rankpyG = k.

(i) G is a Forney-minimal basis for Vg iff G is a polynomial minimal basis for Mg and

there holds
Mg = Vg N FY¥"[s] = My, (3.10)

Furthermore, the following conditions are equivalent to (3.10):



3 MINIMAL BASES 10

(a) The ged of the k x k-minors of G is a unil in F[s]

(b) G is nonsingular modulo p(s) for all irreducible polynomials p(s) € F[s]
(¢) G is basis for My,

(d) All left divisors of G are unimodular elements of F¥**|s]

(ii) G is a dipolynomial minimal vector space basis for Vg iff G is a dipolynomial minimal
basis for Mg and

MG =Van len[s,s_l] = AZ[VG (3.11)

Conditions (ii)(a) , (iii)(a), (iv)(a) and (c) of Theorem 3.2 are equivalent condilions
for (3.11).

(iit) Assume G is in the form (3.2) with n; = v; fori=1,... k.
Then G is a dipolynomial minimal basis of Mg iff G is a polynomial minimal basis
of Mg and

Mg = Mg N FY*"[s] (3.12)

(iv) G is a dipolynomial minimal vector space basis for Vg iff G is a dipolynomial minimal
basis for Mg and there holds:

MVG = MG N len[s]

Proof:
(i) Minzner and Pratzel-Wolters [1979]
(ii) Obvious

(iii) ” «” Since G is a polynomial minimal basis, we obtain rank[G]; = k. Assume
rank[G]; < k. Then there exists 0 # zg € F'*F such that z9[G]; = 0. Moreover,
wi=ag- st € FY*[s, s\ F'¥*[s] and zG € F'*"[s]. Hence ¢G € Mg N F'*"[s],
but 2G' ¢ M¢g. Thus G is a dipolynomial minimal basis (Theorem 3.4 (ii)).

=" Let G a dipolynomial minimal basis. Then G is a polynomial minimal basis.
Obviously, Mg C Mg N F*"[s]. Let & € Mg N F'*"*[s]. Then there exists y €
FY¥k[s 571 with @ = yG € F**"[s] and [z], = [y]¢ - [G]} # 0. Since [G]} is of order
0, = polynomial implies y polynomial, and thus (3.12) holds.

(iv) 7=" If G is a dipolynomial minimal basis of Vi, we obtain by (ii) Mg = Vg n
F1*n[s,s71]. Then

Mg 0 FY"[s] = (Vo 0 FY"s,s71) 0 FYX"[s] = Vo n FYX"[s] = My,

"<” We show: Mg = Vg N F1%"[s,s71]; the statement then follows with (ii). Ob-
viously, Mg C Vo N FY*"[s,s7']. Let 2 € Vg N F'¥"[s,s~']. Then there exists
y € F'**(s) such that 2 = yG € F'*"[s,s7']. Let k € N such that s¥z € F'*"[s].
Then s*z = (s*y)G € Von F'*"[s] and, by assumption, there exists z € F1**[s, s71]
such that s* -z = 2 - G. Thus, z = (s7%2)G € F'*F[s,5s71G = Mg. |
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The proof of the following corollary is an immediate consequence of Theorem 3.7.
Corollary 3.8 Lel G(s) € FF*"[s], rankpG(s) = k. Then:

(i) vi(Mg) > :(Mg) > vi(Vg) fori=1,....k

(ii) vi(Mg) = i;(Mg) for i = 1,...k & Mg = Mg N F¥"[4]
(iii) 5:(Mg) = v;(Vg) fori=1,....k & Mg = Vg N F1X"[s,57] ]

Examples:
S 1 s+ 2
$24+2s sZ+4s s2

the 2 X 2-minors is s. Hence G1(s) is a polynomial minimal basis of Mg, , a dipoly-

(i) Let Gy(s) = ( , rank[G1]; = 2 = rank[G1]; and the ged of

nomial minimal basis of ]flgl and a dipolynomial minimal basis of Vi, , however not
a Forney-minimal basis, because the gcd of the 2 X 2-minors is not a unit in F7s].

.. _ S 1 s+2 ro_ _ T

(ii) Let Ga(s) = ( 2495 245 s241 ), rank[Gs]; = 2 = rank[G3]; and the
ged of the 2 x 2-minors is 1. Hence G2(s) is Forney-, dipolynomial and polynomial
minimal basis for Vg,, Mg, and Mg,, resp. . O

We close this section with the characterization of dipolynomial minimal basis transfor-
mations and some results concerning canonical dipolynomial minimal bases in echelon
form.

Theorem 3.9 Let G(s,s™1) € F¥*"[s,571] be a dipolynomial minimal basis for Vo(Mg)
of the form (3.2) with ordered dipolynomial indices vy > vy > ... > v and row-degrees®
deg gi(s,87Y) =mn;, i € k. Let G = TG, T(s,s7') € F¥*k[s,s7'] unimodular. Then G is
a dipolynomial minimal basis with ordered indices for ‘/G(]ffg) if and only if:

tij(s,s_l) =0 for Vi >V (3.13)
pij + ddeg tij(s,s_l) <v;—v; for v; <y (3.14)
where
Pij = deg ti; — ddeg ti; +n; — vy — mill(deg t;; — ddeg ti; +mny — I/j) (3.15)
JEN
Proof:

Let 7; := min(deg ¢;; — ddeg;; + nj — v;), i € k. Let further T = diag(s™™,...,s ™)T.
J€En

Then the elements Z;; of T are of the form Z;;(s,s™') = s~(%=%)+ru . p..(s), where p;;(s) €

*Observe that we now also use the polynomial degree function deg for dipolynomials:

deg:F[s,s_l]—>Z, anst 4.t ast = L
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Fs] and p;;(0) # 0 for all (¢,7) € k x n for which t;; # 0. Note that deg p;; = ddegt;;.
Furthermore the numbers p;; are nonnegative and for every ¢ € k there exists a jg €
{1,...,k} such that p;;, = 0.

Assume now that G = T'G is a dipolynomial minimal basis with the same ordered indices
vi >vy>...>v,. Thenforick

k
ddeg (gi(s,s™ ")) = ddeg (D tij(s, s )gi(s,s7"))

J=1
k

= ddeg (ST"(Zfij(Sys_l) 'gj(SvS_l)))

i=1

k
= ddeg (D ii(s,s7") - gi(s,s71)) = v

j=1

Condition (iv) (b) in Theorem 3.2 gives

max (—(n; —v;) + pij + deg pij + n;) — min (=(n; —v;) + pij + (nj —v;)) = v
Jiti; 720 Jiti; 70

or, equivalently

max (v; + p;; +deg p;;) — min (p;;) = v;
jlt”#O( 7T Pij g pij) j:tiﬂéo(p])

which implies (3.13) and (3.14).
Let conversely T satisfy (3.13) and (3.14). Then

k
Gis,s7h) = ST (s, 57 - gi(s,s7h)

J=1

= (YD ST () (ad, s 4L ad ST
g <vg

= (Y s p(s)(ed, .t ad - sTY)
g <v;

(3.14) shows that
pi; +deg p;; =0 for v, =v;
vitpi;tdegp; <vitvi—v;=v it v #vy; (3.16)
Hence
gi(s,s71) = [giln -7 4+ [gile - ST

Now

[gle= > pi;(0)- al = ¢i[G]; (3.17)

;. V]Sllz‘
;=0

where ¢; € F2** and ¢;; = 0 if j does not appear as summation index in (3.17).
Since T is unimodular and upper block triangular, in every block on the diagonal there is
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at least one nonzero element; hence because p;;(0) # 0 we have ¢; # 0 and [¢;], # 0 with
Theorem 3.2, (ii)(b) (Theorem 3.4, (ii)). Thus

Gle=| : |Gl =:QIG]; (3.18)
9k

However, ) is of the same block structure as T - indeed, the elements in the diagonal

blocks coincide. Hence @ is of full rank and thus rank[G]; = k.
On the other hand,

g:i]n = > [pijln -aij =: w[G]}, (3.19)

- vy <y
]'pi]+deg]m]=vi—vj
with w; € F** and w;; = 0 if j is no summation index. Again (3.16) shows that the

above sum is not empty, and the unimodularity of 7" gives w; # 0 and hence [g;]s # 0
(again because of the row properness of G). Then

wy
Ghh=| @ |[GlL=WIG (3.20)

Wy
Analogously as above one concludes rank[G]; = k. Thus G is a dipolynomial minimal
basis as a consequence of Theorem 3.2, (ii)(b) (Theorem 3.4, (ii)). |

Remark 3.10 Contrary to polynomial minimal basis transformations for the modules
My C F'*"[s] as characterized in Miinzner and Priitzel-Wolters [1979], the dipolynomial
minimal basis transformations depend on the degree structure of the particular basis
G(s,s71) which has to be transformed. The numbers n; = deg ¢;(s,s™') are neither
vector space nor module invariants. a

Theorem 3.9 is a useful tool in determining ”canonical” dipolynomial minimal bases.
Given a dipolynomial minimal bases G(s,s™') € FF*"[s,s7!] with ordered dipolynomial
indices 11 < vy < ... < v we denote by v; the smallest integer, such that the matrix
G which consists of the intersection of columns 71, . ..,7; of [G]} and rows of [G]; which
correspond to indices < v;, is of full rank. The 7; are called pivot indices (cf. Hinrichsen
and Pritzel-Wolters (1983)).

It is easy to show that the pivot indices are as well vector space invariants as module
invariants; the proof essentially follows the line of the proof given in Forney [1975] and is
thus omitted.

Refining the notation (3.2) by

gi(s, 3_1) = af,i N R aé g
= (ol el M (aft, ... a5") - MY (3.21)
fori € {1,...,k}, well call a row proper matrix G € F**"[s, s~!] with row indices vy, ..., v}

and pivot indices 71,...,7 in echelon form, if the following conditions hold:
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(i) <y <...<y (3.22)

(ii) n;=v; for t€{l,...,k} and afj’?i = (3.23)

(i) For 4,5 € {1,...,k},t # j and v; < v; there holds

af;’]%' =oyl == ol =0 (ie. ddeg(gjn~,(s,s7")) < w) (3.24)
Note that this definition coincides with Forneys definition of minimal echelon bases for
rational vector spaces (with a modified notion of row properness) and, up to condtion
(ii), also with the definition of polynomial echelon bases for full polynomial submodules
M C F'*"[s] in Hinrichsen and Prétzel-Wolters [1983]. The proof of the following explicit
characterization of dipolynomial minimal bases in echelon form is completely analogous to
the proof of the corresponding result (Proposition 5.7) in the last mentioned paper. The
only modification which has to be considered is the generalization to rectangular basis
matrices instead of square ones.

Proposition 3.11 A row proper dipolynomial matriz G(s,s™') € FF*"*[s,s71], k < n
with rows g;(s,s™1), i = 1,..., k, of the form (3.21) and ordered row indices vy < ... < vy,
s tn echelon form iff:
(i) G(s,s™1) is polynomial with n; = v; fori € {1,...,k} and
1,1 1
ag” ... Qg
rank : : =k (3.25)
k,1 k.
Qg 0

(ii) There exists a k x k-permutation matriz P with entries 1 al (8;,7) such that for

l,jek

(<j and vij=v; = B¢ <p; (3.26)
and

(g%,...,g%) = It (3.27)

(7ii) The i-th row of [G]} is of the form

(0,...,0,1,%,...,%), 1€k
T
By

T(gP1 ..., gP)5 denotes the submatrix of the highest column coefficient matrix [G]; formed by the
columns fi, ..., B of [G]}
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Remark 3.12 The indices §; introduced above coincide with the pivot indices +;. a

Theorem 3.13 Every F[s, s~ '|-module M C F'*"[s, s~'] has a unique dipolynomial min-
tmal basis in echelon form.

Proof:

Every dipolynomial minimal basis G' of M in echelon form is polynomial because n; = v;
for ¢ € {1,...,k}. Furthermore, by Theorem 3.7 (iii) G is also a polynomial minimal
basis for M = M N F'"*[s] and in echelon form as defined by Hinrichsen and Pritzel-
Wolters ([1983], Def. 5.5). The uniqueness part of Theorem 3.13 then follows with the
corresponding uniqueness result therein (Corollary 5.9).

To show existence, let G(s) be a dipolynomial minimal basis of M with

1
Qg

[G]; = G(0) = : of full rank &
ag

In particular, G(s) is polynomial. Let G(s) the minimal basis in echelon form of the
F[s]-module F**[s]G(s). Then G(s) satisfies the conditions (ii) and (iii) of Proposition
3.11. Furthermore, G(s) = T(s)G(s) where T'(s) is a polynomial unimodular minimal
basis transformation. These transformations leave the rank of G(0) invariant: G(0) =
T(0)G(0), rank G(0) = k, i.e. also (i) of Proposition 3.11 is satisfied and G(s) indeed is a
dipolynomial minimal basis in echelon form. [ |

Remark 3.14 The corresponding result for dipolynomial bases of F(s)-vector spaces fol-
lows directly from the characterization of the echelon form in Forney [1975], since a dipoly-
nomial basis in echelon form is a Forney-basis by Theorem 3.5(ii). O

4 Trim canconical forms for systems in AR-representation

In the recent years J.C. Willems developed in a series of papers a general theory of dy-
namical systems ¥ = (T, W, B) with time axis 7' C R, signal alphabet W and behaviour
B c WT (see e.g. Willems [1986a, 1986b, 1987, 1988, 1991]). In this framework it is
shown that every linear time-invariant complete system ¥ with time axis 1" = Z has an
autoregressive A R-representation

B = ker R(o,07") (4.1a)
R(s,s7') = Rpsl+ ... +Rss" € RPX¥9s, 571 (4.1b)
Here ot : WT — W7 w(i) — w(i+1t),t € T is called the ¢-shift. The operator

(R7)* — (R?)*
R(o,071): , L EZL
w(l) — Rrw(t+ L)+ ...+ Rew(t + ()

is called a dipolynomial shift operator. If £ > 0 then R(o,07!) is polynomial and denoted
by R(c). g denotes the dimension of the signal alphabet space W = R, whereas p, the
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number of equations representing 5, is flexible.
For T'=7Z,,R,R, there are analogous polynomial AR-representations with

B =ker R(o) resp. B =ker R <%) where R(s) € RP*9[s] (4.2)

Among all dipolynomial matrices R(s,s™!) satisfying (4.1a) there exist those with full

row rank. They are unique up to multiplication from the left by unimodular matrices
U(s,s™1). Let

7'1(5,5_1) all,l -8 ...—|—a(1)-5”1_"J

R(s, 3_1) = : = : (4.3)

-1 2 ) P np—v,
rp(s,870) of 8" 4 tag s

ni,v; € Z,v; > 0 such a full row rank dipolynomial matrix. Then R(s,s™!) is called
a minimal lag description of ¥ (c.f. Willems [1991]), if among all full row rank AR-

=1
representations R(s,s™!) of 3 are obtained from a particular one by multiplication form

P
representations of X it has the total lag Lios = > v; as small as possible. Because all the

the left by unimodular matrices U(s,s™!) the minimal lag descriptions are exactly the
dipolynomial minimal bases of the module Mg := R'¥P[s, s7!|R(s,s™!) characterized in
Theorem 3.4 by the conditions

rank[R];, = rank[R]; = p (4.4)

Furthermore, the row degrees (14,...,v,) are the same for every minimal lag AR-
description of a given AR-system Y. They coincide with the minimal indices of the module

Mp. Associated to these indices in a one to one relation are the structure indices (p¢)ien
of an AR-system Y. defined by

pt = the number of /s equal to ¢ (4.5a)

The characterization (4.4) is also derived in Willems [(1991), Proposition X.5 (”bilater-
ally row proper”)]. Furthermore, in that paper there is described a uniquely determined
minimal lag description which yields a trim canonical form for the dipolynomial matrix
parametrization of AR-equations. However, the definition given there is intricate and the
existence and uniqueness result is not completely proved. In the following we show that
this trim canonical form coincides with the dipolynomial bases in echelon form derived in
section 3. This way we obtain a characterization which is easier to verify and to handle
and a complete proof of Willems result.

Theorem 4.1 (Willems [1991]) For every full row rank dipolynomial matriz R(s,s ') €
RP*4[s, s71] with associated minimal indices (v;)icp, and structure indices (vi)ien there
exists a uniquely determined integer list

(¢f )tep KENo, 0< gf < g5 <...<q}, <q (4.5b)

and exactly one polynomial matriz R(s,s™') which is unimodularly left equivalent to
R(s,s™') and satisfies:
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(i) If j=¢
then z'fz':,oo—l—,ol—l—...—I—pt_l—l—t~
then degr;; =t and 7;;(s) is monic
and z'fz'nsteadi#,oo—l—pl—}—...—l—pt_l—I—t~
then degr; <t
(i) If i=po+pi+...+p1+t, 1<E<py, and j# ¢
then if j < ¢
then degr;; < 1
and if instead j > q;
then degr;; <1
(iii) The matriz

711(0) 712(0) ... 714(0)
721(0) T22(0) ... T24(0)
Fa(0) 7(0) .. 7yl0)

has full row rank

Remark 4.2 In Willems [1991] condition (ii) is formulated with the if-conditions ”if j <
q,,” and "if j > ¢},”, i.e. ¢}, is taken instead of ¢f. Morever, in view of Theorem 3.9 it
can be checked that the class of admissable transformations taken into consideration in

the above reference is too restrictive. Consider for example:

0 0 s+1 0
R(s,s™H)=1| s24+1 p(s) 0 0
0 0 0 s4+1

2

with p(s) = 3 prs® a polynomial of degree 2. Then
k=0
0 0 10 0 0 10
R, =11 p2 0 0 and [R];=RO)[ 1 po 0 O
0 0 01 0 0 01

Hence R(s,s™!)is a dipolynomial minimal lag AR-representation with structure index list
p=1(0,1,2,0,0,...).
By Theorem 3.9 every unimodular transformation U(s,s™!) which transforms R(s,s™!)
into another dipolynomial minimal lag matrix is of the form
w17 0 0
Uls, 5_1) = | w9y ugy U

U331 U3z U33

with Uq1, U2, U3, U32, U33 S R, Uu11 7£ O, det ( U2z 423 ) # 0 and Ug1 = AS + b, U3l =
U3z  U33
c-s+d, a,b,c,de R. Then
R(s,s7Y) = U(s,s HR(s,s™1)
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0 0 Ull(S + 1) 0
= ue(s®+ 1) ugg-p(s) wua(s+1) wugs(s®+1) (4.6)
usa(s? 4+ 1) usy-p(s) usi(s+1) wuss(s*+1)

To obtain R(s,s™') in canonical minimal lag description we have to fix the integer lists
(¢F)iep,, k € No. Because p = (0,1,2,0,0,...) and R(s,s™!) is of the form (4.6) one
obtains

=0 for k¢ {1,2}, ¢} =3 and (¢f,q3) is either (1,2), (1,4)or(2,4)

Now assume that R(s,s~') is in canconical form with ¢ = 1. Then by condition (i) in
the original version of Theorem 4.1, uzz = 1. However, condition (ii) requires ug; = 0 for
both cases ¢2 = 2 and ¢2 = 4.

If ¢ = 2, again by condition (i) ug2 # 0 but also uz; = 0 by condition (ii).

Summarizing this example shows that there are dipolynomial matrices for which there
does not exist a minimal lag representation satisfying the original condition (ii) in Willems
Theorem. O

We call an AR-respresentation statisfying the conditions (i)-(ii) of Theorem 4.1 a (modi-
fied) canonical minimal lag representation.

Remark 4.3 Observe that R(s,s™!) in Remark 4.2 is already a (modified) canonical
minimal lag representation with (¢Z,¢3) = (1,4).

Furthermore, R(s,s™1) is also in echelon form with high pivot indices 71 = 3, 72 = 1, 73 =
4, which is immediate from Proposition 3.11. a

The above remark indicates that there is a tight connection between the concept of canon-
ical minimal lag description and the echelon forms. Indeed a further examination yields:

Theorem 4.4 A full row rank dipolynomial matriz R(s,s™1) € RP*[s, s7!] is a canonical
minimal lag representation if and only if R(s,s™') is a minimal dipolynomial basis in
echelon form of the module R *P[s, s71] - R(s,s™1).

Proof:

Assume R(s,s‘l) is in echelon form with ordered indices vy < ... < v, and high pivot
indices {71,...7p}. Let (pt)ien denote the integer sequence defined by (4.5a) and let
(qf)sem, be such that

& = 0 if Eg{m,....,vp}
! Yootdpopa+t i kE {v1,.. .,l/p} ANt < pg

The ordering (4.5b) of the ¢f is a consequence of the ordering of the high pivot indices

YooteApr_14+1 < Vpotetpr_1+2 < -+« < Vpotdpr_14ok

for k € {r1,...,vp}. Then it is easily seen that conditions (i), (ii) and (iii) of Theorem
4.1 are equivalent to conditions (ii), (iii) and (i) in Proposition 3.11. Hence R(s,s™!) is a
canonical minimal lag representation.
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If conversely R(s,s™!) satisfies the conditions of Theorem 4.1, then it suffices to show that
the indices (¢;',.. YRR L .,qup) coincide with the pivot indices of R(s,s™1).
However, by conditions (i) and (ii) of Theorem 4.1 the i-th row of [R]} is of the
form (0,...,0,1,%,...,%) with 1 at position qu‘7 if i = po+ ...+ py,_1 + 1, hence
@' = Vpot..tp. o+ DY the definition of the high pivot indices. [ ]

Remark 4.5 (i) In the cases " = Z4,R4,R one obtains all representations of B =
B(R), R polynomial of full row rank as in (4.2), by polynomial unimodular left mul-
tiplications. Now the minimal lag descriptions as defined in Willems [1991] coincide
with the polynomial minimal bases of the module Mp = R'*?[s] - R(s), and the
associated (rectangular) bases in echelon form (cf. Hinrichsen and Pritzel-Wolters
[1983]) yield a trim canonical form for the polynomial matrix-parametrization of
AR-equations.

(ii) Given a discrete-time linear time-invariant complete behaviour, one can always find
a polynomial AR-representation for this set of trajectories. Hence the question arises
whether it is sufficient to restrict the representation of such behaviours to polynomial
matrices and to regard only polynomial unimodular transformations. However, in
view of Corollary 3.8 (i) this leads to longer minimal lag descriptions.

(iii) So far we have given a system theoretic interpretation to the polynomial resp. dipoly-
nomial minimal module bases by identifying them as the minimal lag descriptions of
the associated behaviours. However, the corresponding vector space constructions
are also neatly connected with system theoretic concepts.

For T = Z(Zy;,R4,R) a system ¥ for the form 4.1 (4.2) with R(s,s™!) €
FFxnls, s71(R(s) € F**"[s]) of full row rank is controllable if and only if all
left divisors of R(s,s™!)(R(s)) are unimodular elements of F¥*¥[s s=1](F***[s]).
By Theorem 3.7 (ii) (Theorem 3.7 (i)) this is equivalent to the module identity
Mg = Vg N F"[s,5 Y (Mg = VR N F'*"[s]), hence the minimal basis in echelon
form for modules M C F'*"[s,s~'|(M C F'*"[s]) which are saturated in their ra-
tional extensions give rise to a parametrization of all controllable AR-systems over
T = Z(Z4+,R4,R). Furthermore Willems [1991] defines the controllable part of a
given system X with behaviour B(R) as the largest controllable linear time-invariant
complete subsystem of ¥ and shows that this subsystem has the behaviour B(R)
where R is left prime and related with R by R = F'- R, det F # 0, F dipolynomial
resp. polynomial.

Now the reduction algorithm for step (b) in the proof of Theorem 3.2 constructs
such a factorization of R. Hence, starting with B = B(R) and interpreting R as a
basis of the vector space Vi, we obtain:

e Reduction of R to a basis of My,, (My,) corresponds to the construction of the
controllable part of B(R)

e Reduction of R to a module basis of Mg (Mg) corresponds to the construction
of a minimal lag description of X
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(iv) The reduction algorithm given in Hoffmann [1993] realizes the transformation of a
given AR-representation of B into a minimal lag description. This algorithm per-
forms a unimodular transformation of the lowest coeflicient matrix to full rank. An
algorithm for the highest coefficient matrix can be obtained analogously (note that
an elementary step of this algorithm is I 4+ s - B with B nilpotent; this transforma-
tion is polynomial unimodular and hence can be also be used for the reduction to
minimal lag descriptions in the case 7' = Z;,R4,R). Hence the associated Matlab
program in Hoffmann [1991] can be applied for the reduction.

(v) The McMillan degree Mm(X) of a system X = (Z,R", B(R)) of the form 4.1 is defined
(c.f. Willems [1991]) as the dipolynomial degree of the vector (f1,.. ’f(Z)) formed
by all & x k-minors f; of R. By Theorem 3.4 this McMillan degree coincides with
the dipolynomial order of the module M. a

5 Conclusion

The purpose of this paper was to provide a module theoretic framework for the inves-

tigation of linear time-invariant complete behaviour systems as introduced by Willems
[1991].

Our starting point was a generalization of the concept of polynomial minimal bases to the
case of dipolynomial matrices and the investigation of minimal basis transformations and
canonical forms.

A control theoretic interpretation for the minimal dipolynomial bases and a trim canon-
ical form for the dipolynomial matrix parametrization of AR-equations was obtained.
Moreover, we showed that the incorporation of dipolynomial concepts for the system rep-
resentation in discrete time results in tighter minimal lag descriptions.
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