


GLOBAL BEHAVIOUR OF SOLUTIONS 
TO THE WAVE EQUATIONS WITH HYSTERESIS 

Pave1 KrejEi 

Abstract. The wave equation with a Preisach hysteresis operator can be considered 
as a one-dimensional projection of Maxwell’s equations in a ferromagnetic medium. An 
initial-boundary value problem for this equation is solved here with emphasizing the 
fact that under a bounded forcing term the solutions remain bounded. This is due to 
the strong dissipation of hysteresis energies. New proofs of hysteresis energy inequalities 

r are given without, referring to the structure of hysteresis memory. 

. 

I 
Introduction. Hyperbolic equations with hysteresis operators appear in various 

problems of mathematical physics (Maxwell’s equations, elastoplastic oscilations etc.) 
We present here a qualitative study of an initial-boundary value problem for the equa- 
tion 

where y is a given function and IV is a Preisach hysteresis operator. It has been proved 
in [5] that this equation is hyperbolic in the sense of finite speed of propagation of 
waves. 

The present pa.per is divided into 9 sections. Section l-3 are devoted to the investi- 
gation of properties of the Preisach operator (representation, continuity, superposition 
and inversion, energy inequalities). We introduce here a new approach which does not 
make use of the structure of memory. This enables us to replace the assumptions of 
oddness a.nd “virgin initial state” (cf. [5]) by weaker ones. The Preisach operator W is 
locally represented by a superposition (Nemytskii) operator @ (Lemma (1.18)). The two 
hysteresis energy potentials still play a crucial role here. The assumption of convexity 
of loops is inkrI)retetl in terms of + as the requirement that u -+ @P(U) is convex if u 
increases and concave if u decreases. Indeed, for a general Preisach operator this is true 
only if u remains small during the whole history of the process (Lemma (3.1)). In $4 
we investigate parameter-dependent Preisach operators. 

The main results of the I)aper are formulated in $5, namely the existence of global 
solutions, sufficient conditions for uniqueness, regularity and asymptotic behaviour. 
Their proofs are given in §SS-9. 
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1. Preisach operator 

Let u E T4”,‘(O,T) b e a given function and h > 0, 5: given numbers, Iz$[ _< h. 
The problem of finding a function zh E W'~'(O, 2’) such that 

(1.1) (9 4t) E [-OIJ E [O,Tl, 
(ii) (n:‘l,(t) - u’(t))(zh(t) - y) 5 0 a.e. 

(iii) S/,(O) = z; 

has a unique solution (cf. e.g. [6]). 
Let 12 > 0 be a given number. We introduce the sets 

A := {A E kV’~“(O,co); IX’(h)1 5 1 a.e. }, 

A(h) := {A E A; X(h) = 0 for h 1 h} 

of a.dmissihle init,ia.l st,at,es a.nd we put 

(1.2) .L.; := sig72 (u(0) - X(h)) min {h I@> - +)I) 
t 

for some x E A. 
The initial condition characterized by the function X E 0 is called Teference (or 

virgin ) shte . 
The existence a.nd uniqueness result for (l.l), (1.2) enables us to define an operator 

fh(., X(h)) : W’J(O,T) -+ JY1tl(O, 7’) for every h > 0 and X E A by the formula 

where rfj is the sollltion of (l.l), (1.2). 
The oper&ors fh is ca.lled stop . We further introduce the operator (I denote the 

identity) 

(1.4 lh(., X(h)) := 1 - fh(., X(h)) 

which is called plo.:r/ (cf. [3], [9]). 
It ca.n be shown easily (cf. e.g. [6]) that Ih(., X(h)), fh(., X(h)) are Lipschlitz conti- 

nuous in T/V1~‘(07 2’) a.nd tha.t for every A, p E A, u,v E W’1’(0,T) we have 

(1.5) IW. WHEN) - hw4m~)l L m~~~lw - Pu-4, lb - “Il[o,t]L 

where we denote (l~ull~~,~l := maz{lw(s)l,O 5 s 5 t}. 
This implies immediately that Ih(., X(h)), fh(., X(h)) can be considered as Lipschitz 

continuous operators in C( [0, T]). 

(1.6) LEhlMA. Let X E A(h),u E C([O,T]),t E [O,T] be given, II~ll~o,~] 2 6. Put 
p(h) := bd~~, wm~) f OT every h > 0. Th,en p E A(h),p(O) = u(t). 

PROOF. The Lipschitz continuity of Ih(., X(h)) and the closedness of r\(h) with 
respect to the uniform convergence imply that it suffices to assume u to be smooth qnd 
piecewise monot,orie. 



”  

More precisely, we assume that 0 = to < tl < . . . < tN = 2’ is a partition of [O,T] 
such that 21’(t) # 0 in (t;-1, tij,i = 1, . . . . N. 

For t E (t;-lJij (1.1) yields 

(1.7) Z-h(t) = 
{ 

min{zh(t;-1) + u(t) - U(ti-I), h} if u’(t) > 0, 

maX{a:h(ti-1) + u(t) - u(t;-I), -h} if u’(t) < 0, 

hence 

(1.8) h(% qw)(q = 
{ 

max{lh(u, X(h))(ti-I), U(t) - h} if U’(t) > 0, 

min{lh(‘u, X(hjj(ti-1 j7 U(t) + h} if u’, (tj < 0. 

An easy induction a.rgument completes the proof. a 

(1.9) REMARK. Relations (1.7), (1.2) p re resent the standard definition of the stop 
for piecewise monotone inputs (cf. [3]). Th e extension to arbitrary continuous inputs is 
then possible by (1.5). 

(1.10) DWINITION. Let p : R1 -+ Rl,v : R’ x b4 --t R’,rl E Jq,,(O, wj,qo E 
L’(0, co), cy > 0 he ginen such that 

(1.11) W P’ E Gw 1, g E Jq,,(R1 x (0, oojj, 

(ii) Y(0, h,) z 0, 

(iii) V(h) 2 $(P,h) 2 70(h), q(h) 2 70(h) 2 0 t2.e. , 

(iv) p'(p) 2 ck n.e. 

Let X E A(h) t )e (I gi,ucn initial state. The operators WA defined by the formula 

(1.12) m(‘ILj(tj := p(Q)) + Jrn qh(% w-Q)(t), hjdh 
0 

L 

is called a Preisach operator. 
If p, u are linear with respect to p, i.e. 

(1.13) P(P) = OPY 4P> hj = PM4 

then th,e Preisach operator ~VJ, is called an Ishlinskii operator. 

In the sequel we assume 

(1.14) (ij 
J 

‘qo(h)dh < a for every r > 0, 

(ii) O lim h(cr - 
h --IT2 [ J Om 77o(uj da) + 

h 00 

JJ qo(uj da db = +CO 
0 b 1 

(1.15) REMARKS. 
(ij It is ea.sy t,o SW t,hat the Preisach operator TVA is continuous in C( [O, 7’1). 
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(ii) It ca.n bc shown ([5]) that formula (1.12) is equivalent to the standard definition 
of the Preisach operator (cf.e.g [2],[8]). 

(iii) In genera.1 we need not require so much regularity for p, “1 (cf. [2]). Here, in appli- 
cation to hyperbolic PDE’s, this regularity plays an important role. 
We present here an alternative approach to the Preisach operator without referring 

to the structure of memory. The philosophy is close to [2] in spite of important diffe- 
rences. 

We first, rcpwscnt, the Preisach operator locally by means of Nemytskii (superpo- 
sition) opcra.tors. .Accorcling to [7] we introduce the identification function S(Q) h) of 
the opc>rator IF’,! as the solution of the Cauchy problem 

(1.16) (4 
(ii) 

(iii) 

Shh - See = v(e, h) 

Shk, 0) = P(e) 

a?, 0) = 0 

We have 

(1.1’7) v( a, b)da db. 

(1.18) LLhlhtA. Let u E C([O, T]) and [tl, tz] C [0, T] be given such that u is mo- 
notone in [tl, tz]. Let TV be a Preisach operator (1.12). Then there exists an absolutely 
continuous increrLsing function ip depending only on {Zh(u, X(h))(tl); h > 0) such that 
for every t E [tl, ta] we have WA(u)(t) = @(u(t)). 

PROOF. (i) Let. u be nondecreasing in [tl, tz]. Put Xl(h) := Ih(u, X(h))(tl), 
h* := ~nns{h,, ))~/.Jl~~~,~y}. By Lemma (1.6) we have X1 E A(h*), hence for every 
21 E [up,), u(t,,)] tl lcre exists Q E (O,co),such that X,(q) + q = U. Put 

(1.19) n+(u) := max{q > 0; v = Q + WI>1 

Indeed, formula (1.8) holds for t E [tl, tz], hence 

Mw W))(t) = 
u(t) - h for h < R+(u(t)), 

Xl(h) for h > R+(u(t)), t ’ ‘t17t2]’ 

This yicltls 

h* 

n/x( u)(f) = p(u(t)) + J 
R+ (W)) 

+(t) - h, h) + J v(b (h), h)dh. 
0 R+(w) 

It is ea.sy to see tl1a.t the function ZJ --t R+(V) is increasing and R+(V) 5 h* for 

7J E [~(wJ4t2)]. 

Putting 

(1.20) 
R+(u) h’ 

W) = p(2’) + J Y(V - h, h)dh + J +,(h), h)dh 
0 R+(u) 
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we obtain using (1.16) 

(1.21) Q(o) = (Sh + S,)(O,h*) - 
J 

1 + %@))(Shp + &&b(h), f+h. 
R+(u) 

It remains to prove that @ is increasing and absolutely continuous in [u(tl), u(Q]. 
Let ~1, ~2 E [~~(tl),~~(b)] b e arbitrarily chosen, ~1 < ~2. 

Then 

i 

J 
R+(d 

v2 - Vl = (1+ X:(h))dk 
(1.22) 

R+(w) 

J 

R+(Q) 
*(?‘2 ) - aqVl> = (1 + wmhe + w(w4, hp. 

R+(r,,) 

We have 

(SQh + S,,>(e, h) = p’(e + q + 
J 

h 6% 
o ,(e + h - a, +a, 

- 
hence (1.11),(1.14) yield 

i f*(Q - Vl) 5 @(v*) - @‘(VI) 5 c2(vz - 3) 

for some positive consknts cl, c2. 
(ii) Let ‘11, be nonincrea.sing. We proceed as before putting 

(1.23) R-(v) = mns{q > 0;v = -q + h(q)} 

for v E [I, ~(tl )]. T1 le f unction R- is decreasing in [u(t2).u(tl)] and by (1.8) 

lh (‘It., W))(f) = 
{ 

u(t) + h for h < R-(u(t)) 

Xl(h) for h 2 X((t)) 

,’ t E [tl,tz]. Analogously to (1.21) the function @ is defined for v < u(tl) by the formula 

5 (1.24) w-4 = c% - S,)(O, h*) - J Rr( ) (1 - XoL))(ShQ - S,,)(W), h)dh ” 
with the same conclusion. 

Lemma, ( 1.18) is proved. n 

(1.25) REMARK. The sa,me argument can be used for deriving the “primary curve” 
of the operat,or 11’~. Indeed, the value of WA(U)(O) depends only on X and u(0). Re- 
placing X1 by X in the computation a.bove we obtain WA(U)(O) = &(u(O)), where the 
function +o is given by (1.21) for u(0) 2 X(0) and (1.24) for U(O) < X(0) with X1 
replaced by X. 



2. Properties of the Preisach operator 
In this s&ion we still assume that (1.11),(1.14) hold and that WA is a given 

Preisach operator (1.12). 
The two following lemmas establish a superposition formula for hysteresis opera- 

tors. 

(2.1) LEhlhiA. Let S be the function (1.17) and let u E W’t’(O,T),X E l\(h),r > 0 
be given, h 2 (Iz~JJ[~~,T]. Then there exists a function h, E W1p’(O, 2’) such that for every 
t E (0,T) we have 

S&h,(d% wrwtt), hrtt)) = f. 

PROOF. Let t E [O,T] be fixed. Th e f unction p(h) := Ih(u, X(h))(t) belongs to 

A(h) by Lc~mm (1.6) and &(S,(/~(h),h)) 2 Q - Sohvo(a)da > O,i@WSe(p(h),h) = 

+oo, S,(,l(O),O) = 0 1)y (1.14),(1.16)(iii)(l e us note that for h 2 6 we have p(h) = 0). t 

Denoting l)y h,.(t) the unique solution h of the equation S,(lh(u, X(h))(t), h) = r 
we obtain for evcr)~ ti < t2, h; := h,(t;), i = 1,2 

where o(r) := inf{~S,(lh(Z1,X(h)) ((t), h);O < h 5 &,t E [O,T]},h, := max{h,(t); 
t E [O,T]}. Tl ierefore, h ,. is a.bsolutely continuous in [0, T] and Lemma (2.1) is proved. 

m 

(2.2) LEMMA. Let 21 E W’~‘(O,T), X E A(h),h 2 jjujlro,q, r > 0 be given and let 
h,. E TY’*‘(O,T) be t/ LC ’ f llnction introduced in Lemma (2.1). Put 

Mh) := h&, W))(O), 

\ ,1(r) := &(Ao(hO,), h.:) + @o(h), h)dh, 

? 
.where 11: i.u th ,qolution of the equation S,(Xo(hO,), h:) = r. For t E [O,T] put 

KU) := S/z (h,&, WW)@), h(t)) + Jrn +t(u, W))(t), h)dh. 
h,(t) 

Then, /I E A, ~(0) = TJr~(l~)(0), uo(t) = WA(u)(t) and U,-(t) = b-(U,,p(r))(t) for 
t E [O, T]. 

PROOF. The itlcntities /l(O) = IV,(u)(O), Uo(t) = WA(u)(t) follow from the fact 
that h,.(t) = 0 for r = 0. We further have 

-$d’.) = (s,, + ~‘(h$%&%Q + X’(h:)S,,)-‘, 
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a 
hence 1 -$,I( r)I 5 1 a..e. 

By definition we have U,(O) = p(r). Let [tl,tz] be a subinterval of [O,T] such that 
u is nondecreasing in [tl,tz]. Put Xl(h) := lh(zl,X(h))(tl) for each h > 0. By Lemma 
(1.S) liO is nondecreasing in [tl,tz]. Let R+ be the function (1.19). We have &h,(t) > 0 
for every fixed t E [tl, tz], h ence there exists a unique F(t) such that h,(t) I R+(u(t)) 
for r 5 l’(t), IZT(t) > n’(z~(t)) for r > F(t). 

Thus for r 5 l’(t) we obtain 

lr,.(l) =sh (h,(r)(u, @r(q))(t), h,(q) 

J R+(u(t)) J 
ii + v(u(t) - h, h)dh + +1(h), Wh. 

L(t) R+(4t)) 

Using (1.16) we obtain analogously to (1.21) 

(2.3) U,(t) = U,(t) - T for r < f(t) 

For 1‘ > 11( t ) \i’c have 

r!,(t) = Sh(~,(h.(~)), h,(t)) + Sm @I W, Wh, h,(t) ! S,(wb(q), L(q) = 7-e 
This yields $hJt) = 0 for T > I’(t) for a.e. t E (tl,tz), in particular 

(3.4) lTr(t) = U,(tl) for r > +(t). 

We have iild(4 I’,.,,,(t) = Uo(t) - F(1). 

Thercforc, (2.3),( 3.4) yield [J,(t) = max{ U,(t,), v,(t) - r}. 
We vclrify in a similar way that if u is nonincreasing in [tl, tz] (and, consequently, 

U, is nonincreasillg in [tl! tz]), then 

I’,.(t) = min{U,(tl), Uo(t) + r} for t E (tl,tz]. 

By induction we conclude tha.t CTrr(t) = l,(Uo, p(r))(t) for every piecewise monotone 
funct,ion II. E I+” ,‘(O, T). Tl le assertion now follows from (1.8),(1.9). l 

. 
(2.5) Pr~ormmoi\l. Let us aJ.q?r.me (1.1 l), (1.14) and let A, p E A(h) be given. 

Let WA, I+;, be the Prei.qach operators (1.12). Then 
(i) for eoc7y II, v E C( [0, T]) and t E [0, T] we have lWx(4(t> - W&WI I (~(411~ - 

410,~l + s,” PV 1 - cON~~(~)~~, where I- := max{h, Il~llp,tl, Il~llp,tl} and v(r) := 
supess {p’(s), s E [O, r)} + sor q(h)dh, 
(ii) if p’ is bounded in R’ and 77 E L’(0, oo), then WA is Lipachitz in C((0, T]), 

(iii) the operator WA is invertible in C([O, T]) and WC’ is Zocally Lipachitz. 
If moreover Jm q”(h)dh < cr, then rv,’ is Lipachitz with the constant ~(CY - 

su” qo( h,)tllr.)-’ 
(iv) if (1.13) holds and TT’ ‘1~ ia nn IshIinakii operator, then WT’ is also an Iahlinskii 
OperntoT. 
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REMA1~K. -4 more complete information about the inversion and superposition of 

Preisach operat,ors in the case X E 0 can be found in [7]. 

PROOF OF (2.5) 
(i) For X E A( 17) we have by (1.5),(1.6) 

IMc WNt) - hh WW)l 5 11~ - ~ll[~,tl, llh(u, W))(t)1 5 m={h, Il~ll~~,~l}, 

hence (i),( ii ) follow ea.sily from (1.14). . 

(iii) Let U, u E T~I”~‘(O,T) b g’ e lven piecewise monotone functions and put U = WA(U), 
v = TVA( ,u). 0 1lr aim is to prove that there exists a function 1c, such that for every 
t E [O, T] wc have 

(2.6) Ill(f) - v(t)1 < $( ~~~~II’14[0,1]~ II4I[o,i]7 Wl~ - Vll[OJ]* 

This implies ;11ready t,he local Lipschitz continuity of WL1 in C([O, 2’1). Indeed, for 

II4[0,r] > h \V(’ have either II~ll~~,~l = u(T+) for some 7+ E [O,t] or IIull~o,tl = -U(T-) 
. for smne T- E [O.t]. Putting /l(h) = 1h(zl, X(h))(~k) we obtain using Lemma (1.6) 

,u(Iu(~~)l) = O,/“(O) = u(q), h ence p(h) = u(T*)Ffh for h E (O,lu(~*)l). Consequently, 
IIUllio,ll 2 Ili(r+))l 2 J~(JIuII[O,~~), where Jo(h) is the function in (1.14) (ii). 

! IVIoreovcr? by Lemma (1 .lS) f or every U, V continuous and piecevise monotone we 
can find continuolls and piecewise monotone functions U, v such that U = WA(U), V = 
T/vx(z~). Asslmling (2.6) we obtain the local Lipschitz continuity of WL’ by a standard 
density a.rgument.. 

It remains t.0 l)rov(l ( 3.6). We can a.ssume U(t) - v(t) = I/u - ~Il~~,~l > 0. Put 
h* := nlin{l-, > 0; I,,( II, x(/~))(t) 5 l,,(?~, X(h))(t)} and 

I.* := S,(l~,. (11, x(1?,*))(t), II*) = S,(l/p (v, X(/L*))(t), h*), 

where S is the itlcntification function (1.17). 
We Ii a.ve 

w - ‘r;‘(f) = i+(f)) - p(a)) + Jm(v(lh(lr, W))(t), q - qh(v, qh))(q, h))dh ,- 
0 

and by Lcllll~li\. (2.2) 
. 

1,. (U,//.(l-*))(t) - lp (v,,/.(r*))(t) = J m(v(lhb? WM q - V(lh(? VW), h))G 
h’ 

hence using (1.5),( 1.11) we obtain 

c+(f) - IQ)) 2 2l(U - VIIpJ] + J h’ (h(% A(h))(t) - b&h ~(h))(f))V@>dk 0 * 
hence . 

((I. - /’ vowq (I - w) L 2~ - qo,t]. 
0 

s 
. 
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(iv> 

We have I,* < rna.x{ ~~~~~~~,~l, llvll~O,ll, h} and (2.6) follows easily from (1.14)(i). 

Formula (1.17), yields S( e, h) = ecp( h), where p(h) := crh + &’ J, v(b) db da. 
Let u E C([O,T]) and X E A(h) b e iven. Put U = WA(U),&(~) = I*(u,X(h))(O). g’ 
We have q~‘( 1,) > 0, iimmy(12) = +CG and Lemma (2.1) implies h,.(t) = v-l(r), 

hence h,.(t) is indc~pendent of t. 
Let /j > O,< E Ljoc(O, oz~) and p E A(F) be arbitrarily chosen and let 2, : 

C( [0, T]) -+ C( [O. T]) l)e the Ishlinski opera,tor 

O” Z,Lw(q = @v(t) + 
/ 

h(T P(‘))~ww. 
0 

According to Lemma ( 2.2) it is convenient to put 

p(r) := Xo(Qq2) + J co ~0(@?(4da 
h 

where h = y-‘(~*). 
Then //, E A( 13 (7,)) and 

l,.(Q”(?.)) = l&L, X(h))(t) * y’(h) + J Oa L (u, +))(e?(a)~~* 
h 

Put a(r) := /%+Jor SD” t(b) db cln. W e ave z,L(u)(t) = (Y,h(t)+S,” zh(%A(h))(i)6(h)dh h 

where S(h) = f$ (4AW), 
For(~=+ we oht,a.in /3 = i and Z,, o WA = I, hence 2, = W,’ is the Ishlinski 

opera.tor genera t.c‘d b\- t,lic function 0 = 9-l . w 

(2.7) Pl~0l~OsI’l’ION (riionotjonicity). Let 21,2, E W’al(O,T), X E A(h) be given fun- 
ctions a,n,d let 11’~ be the Preisa.ch operator (1.12) satisfying (1.11) with ~0 G 0. Pu’t 
Nh(U)(t) := v(l,!( II, x(h))(t), h), !vh(u)(t) := V(lh(v, X(h))(t),h) for h > 0. Then 

(i) [(NA4)‘U~ - (~~h(V))‘~t)][lh(21,X(h))(t) - b&qq(ql 22 

I [(A’hb,)‘(6) - (!l’h(u))‘(t)](U(t) - u(t)) a.e. 
(ii) If TVA is a.n Ishlinuki operator and (1.13) holds, then 

(Tl/x(rL))‘yt) - (w-x( v,)‘(t)] (u(t) - u(t)) >_ 

J w(~h(ll.~(h))(~) - Ih(~,X(h))(t>)2~(h)dh UT 
0 I 

Before proving ( 2.7) we sta.te an easy lemma. 

(2.8) LEA,1 hlA. Let TVA be the Preisach operator (1.12), z > 0 a.e. Let u E 

TYIJ(O,T) b. g’.. , f: P a avcn. rr.nction such that u’(t) # 0 exists and (WA(U))‘(~) exists for some 

t E (0.2’). Then. thcrc exist.~ i(t) 2 0 s?tch that fog- h > A(t) we have s!h(u,X(h))(t) = 

0, fO7. h < i(t) ~IIIC: bane -$h (II, x(h))(t) = u’(t), lh (u, X(h))(t) = u(t) f h. 

RmrAr<I;. The implica.tion zL’(t) = 0 =+ (WA(U))‘(~) = 0 is trivial. 
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PROO1: 01’ (2.8) Let zh be solution of (1.1),(1.2). Let us suppose that for some 

hr < hz we have z:h,(t) E (-h,, hI), [zhz(t)] = hz. Lemma (1.6) and (1.3),(1.4) give 
]&XI,(~)] 5 1, which is a contradiction. Put & = inf{h > 0; jzh(t)j < h}. 

Let IIS suppose that for some h3 < k., the derivative &zh3(t) does not exist. 
This means .~:~,,+(t) = 0 , ~;~--(t) = u’(t) for the right and left derivatives, respectively. 

The same arg’unent, as above shows that the same is true for all h E [hs, &I. Put ,. 
hl = sup{ II < 11’2; -&r,,(f) 1 _ ( oes not exist }. For h < i, we have indeed &zh(t) = 0. 

-4 stan(lar(l IISV of t#hc Lebesgue dominated convergence theorem yields 

(TT,‘~(u))‘,(t)-(Tab)‘_ = u’(t) /“’ &&u, X(h)(t), h)dh, 
hl 

hence hr = k, and (2.S) follows easily. n 

PRooF 01‘ (2. i) 17;~: ohta.in from (l.l)(ii),(1.3),(1.4) putting cp := hb(v,X(h))(t) 

and similarly 
(W&f). [.f&,W4)(t) - f&W))(t)] 2 0, 

which gives (i). Pa.rt (ii) follows immediately from (i) and Lemma (2.8). n 

3. Energy Potentials 
The role of t.llc convcxit~~ of hysteresis loops in the theory of hyperbolic equations 

with hysteresis 1l;l.s bceu pointed out severa. times (cf. e.g. [4],[5]). We present here a 
different, approach which consists in determining sufficient conditions for the function 
G from Lemma. ( 1.1s ) to he convex when u increases and concave when u decreases. 

(3.1) LEalhiA. Let X E A(h) be g iven and let WA be the Preisach operator (1.12) 
with p(u) = ~1, and z, $$$ continuous in R1 x [0, m) ) $O,O) > 0. 

Let @ be the fun.ction (1.21) and let us denote by CD’+, a’_ its right and left deri- 
vatives, respectiocly. Then there exists Ue E (0, +co] and a continuous nonincreasing 
function y : [0, Lie) -3 l?.l, such that for every u E C(O,T]) the following implications 
hold: 

(i) If ‘f~ is r/.o?/,dCC~e(l.,ci71,9 in [tl, tz] and max{h, ]]uIJ[~,~~I} < U < Uo, then Q:(Q) - 
a?‘+@,) 1 3y(1;)(v? - 1’1 ) for a.11 2Q > 211, 2117 vu’ E WI >, +)I; 

(ii) If ‘II. is 7bon.i7~,creaain,g I.n (tl , t2] and ma.x{h, ]]u]][o,t,~} < U < Uo then @L(Q) - 
GP;(v*) < -‘3y(li)(,o2 - 2~1 ) foT all 212 > vl, v2,2)1 E [u(tZ),u(tl)]. 

PROOF. 
(i) Let Rt bc the function (1.19) a.nd put Xl(h) := lh(u,X(h))(t,) for h > 0 as in the 

proof of Lemma (1.1s). Let u(tl ) 5 ~1 < 212 5 u(t2) be given and let us choose an 
a.rbi tri>l‘y sc~c~ll~'llw or, 1 1'1 . Then R+(z),) \ II+ and (1.22) yields 
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Similarly, l)iit,t,ing R:(U) = min{q > 0; 21 = q + Xl(q)} we obtain 

K(v2) = a + 
J 

R,f(uz) dv 

0 

&(V” - h, h)dh. 

Therefore. 

I R+(“l) J 
u2 @‘_(,L!.,) - cq( I!] ) = %(a - h, h)dadh + / 

R+(w) &) 
” 1 Ro+(uz) 

-$v2 - h, h)dh. 

P11t 

S,(U) := min 

62(U) := ma.x{ 

Then hi is Ilollinc.rcasing, 6 2 is nondecreasing and for h, [vi 1, Iv:! ] E (0, U] we have 
I?+@, ). I?,‘( (‘2) E (0, U] and aqv+aqJ~) > (Ro+(v2)-R+(V1))6$q-US2(U)* 
(‘I’2 - 11, ). lTT(> lM\Y~ ‘1’2 - 7J1 5 2(R,+(v2) - R+( vi)), hence putting Uo = inf{ U > 
0: i6,(r7) - I’&(li) > O},y(U) = $(;6,(U) - US,(U)) we obtain (i). 

(ii) The argument is simi1a.r. We use the functions R- defined by (1.23) and 
R,(U) := niin{q > 0; --(I + X,(q) = v} and we obtain the formula 

iR-(“’ J u2 R,(w) 4,‘_(7!2) - a?+( LJl ) = %(a + h, h)da dh - J d”(vl + h, h)dh, 
1’ L R-(uz) de 

2(R,(v,) - K(.U:!)) 2 ‘1’2 - VI, 

@Lb,) - @';(Vl)S -($U) -U~2(U))(v2 -1). 

(3.2) LEMA~A. Let !D be an absolutely continuous increasing function and let @k, Qk’_ 
exist at every point of its domain of definition. Let K > 0 be a given constant and 
u E w’~“” (0,T) a given function such that Q(u) E W2~1(0,T). Then the following 
implica.tions hold: 
(i) If ‘11 is nondccrea.sing in [ti, tz] and Q’_(v~) - V+(vi) 2 K(v2 - vi) for all vr < 

~Q,zII,~‘~ E [~/(tl),~/(f~)], then (i*(u)‘. u’) E BV(t,,t,) and 

(3.3) 
/ . II 

“(‘l’(lr~)“~t)zl’(t)dt 2 [$‘(u(t)))‘u’(t)];; + ;KJ” ju’(t)l”dt, 
t1 

(ii) If 11. is nonincreasing in [ti, f2] a.nd \-I~‘_(24 - ‘k’+(vi) 2 -K(vZ - vr) for all v1 < 
~2. ~11, I::! E [II( I], then (3.3) holds. 

PROOF. The problem consists in justifying the integration by parts at the left-hand 
side of (3.3). Put (o(t) = Q(u(~)) a.nd Q’(U) = Jzn~(n(v - o))Q(g)da, where u E N 

is a.n arbitrary intcgcr an(l j9 E D( -1, 1) is a nonnegative mollifier, !;I y(a)da = 1. Put 
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u&) = Q,‘(w(t)). Tl le f unctions !I?, converge to Q locally uniformly, X&I:, are locally 
bounded a.wa\; from 0 and Q’tl(u,j - \kn(u) = a(u) - Qn(u), hence un ---t u uniformly. 
The identity Q:l(~~/,,)~~.:, = Q’(u)u’ a.e. yields ju’,(t)( < const.lu’(t)( a.e., hence uX + U’ 
in LOC-weak *. Tlw flmction 9’ is monotone in [u(tl),u(tz)] (or [~(tz),~(tl)]), hence it 
has at most. count,a.bly many points of discontinuity. 

If u(t) is R. point of continuity of 9’, then Q’,(un(t)) + Q’(u(t)), hence u;(t) -+ 
u’(t). Put 11 := {t E (tl,tz);u’,(t) -+ u’(t)). We have meas u(M) = (J,u’(t)dt( = 0 
since Q’(U) is discontinuous for every 2) E U(M). C onsequently, u’(t) = 0 for a.e. t E M 
and meas A1 = 0. This implies U, -+ u in W’~P(O, T)-strong for every p E [l, m). 

In the ca.se (i) we 1la.w linnizf \kx (un(t)) 2 K f or every t E [tl.tz] hence the identity 

J” (9( “(t)))“rr’(t)dt 2 [; (O(u(t)))qt)];: + $ jr2 Iu’(t)13dt 
Tl r1 

for a,.~. 71, rz E [tl,tJ, T] < ~2. 
Tllc funct’iorl T +--+ f [( Q( cl(t)))‘~‘(t)] :, + $ j’,: ju’(t)l”& - Jtl(Q(u(t))“n’(t)& is 

nonincrcasing, hclicc 3 ( Q(~/)‘PL’) E BV(t,, t ) 2 and (3.3) holds. The case (ii) is analogous. 
n 

In what, follows wc rrxluce the class of Preisach operators (1.12). We assume 

(3.4) (d 
81, a',/ 
00. va.re continuous in R’ x [0, w), 

(ii) : 17 1s continuous in [0, co), 

(iii) p( ,n) = tug for Q E R’, 

(i71) F >o, 
ag w 2 $(e, h) L 0 V(e, h) E It+ x [O, 00). 

We filrtlicr tlcfinc the fimction 

(3.5) 

For u E lV’~‘(O~T) w introcl1ice the energy potential 

(3.6) 
Q 

(i) Pi(U)(f) = -$(f) + 
J 

O" B(h(u, W))(% h)dh 
0 

(ii) r?,(u)(f) = ~w~(u)'(t)u~(t), 

where B is given 1,~ (3.5) and WA is the operator (1.12). 
The potentia.1 Pl does not’ correspond to the usual physical notion of energy. Its 

physical meaning dots not seem obvious. 
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(3.7)Tr11.:or<l:hf. Put ((1‘) := cr + ~~axtir,r’ q(h)&. For every u E W’1’(0,T) we 
have P](U) E 11 -’ ,’ (0 T) and the inequulities . 

hold (almost) e,ueryuhere in (0, T). 

PROOF. For all (Q, h) E R1 x [0, CO) we have 

,h ence ~~(0, h) < 3r~(h)~(p, h). Put p = ~omaxtL,“u”o*T1’ q(h)dh. For e = z Hijlder’s 
ineclualit\* yields 

(rr’X(rL)(t))2 5 (1 + $cHL(t))‘+(l +&) (I my(lh(u,X(h))(t),h)dh > 
2 

& 0 

c 

and 

(i 
,-x2 

2 
v( I,,( II. A( h))(f), h.)dh s/jr O" L2(Zh (u, X(h))(t), h)dh 0 > J 0 77(h) 

which implies (i ). 
Pa.rt (ii) is an ca.sy consequence of (2.8) a.nd (2.7)(i) for 2) G 0. w 

(3.S) TI! EOI< I-AI. 
(i) Lel E(r) 1 I )e as in (3.7). Then for every u E W1~l(O, T) the inequalities 

[(lV~(u))‘(t)]” 5 2E(Il7~II[O,~)P2(~~)(t), +~y(u’(t))~ < &(u)(t) hold almost eve- 
ryvhwe xn (0, T). 

(ii) Let li,,-, lx: as in Lemma (3.1). Let u E W’+(O,T) be such that WA(U) E 
lV2,’ (0, T). If mas{h, IIu[][o,~} 5 U < Uo, then Pz(u) E BV(O,T) and 

[F’~(~l)(f)]~~ 5 ,r,‘,‘(T~l~~(U))“(t)lL’(t)dt - r(U) s:: Iu’(t)l”dt for all 0 5 tl < t2 5 T. 

r RIC~IART;. WC SW an importa.nt formal similarity between (3.7) and (3.8). This 
justifies the “energy” t,erminology. 

. PROOF OF (3.5) 
(i) It is easy to see that WA(U) is absolutely continuous, hence (i) follows from (2.8). 

(ii) The flmct,ion (WA(U))’ is absolutely continuous, hence the set 2 := {t E [tl, t2]; 

(lVx( u))‘(f) # 0} is open. 2 = U&(nk,bk). By Lemmas (3.1), (3.2) (ii) holds if 
tl is rc~1)lacctl l)y (1~. and f2 by bk. Moreover, for tl < a; < t2,tl < kj < t2 we have 
by (i) pz(l/.)(n;-) = ~),(Y/)(cI,+) = O,Pz(u)(bj-) = Pz(u)(kj+) = 0. The same 
a.rg\ullc:ntJ as at, t.1~ end of the proof of Lemma (3.2) shows that Pi E BV(0, T). 
The assc>rt,ion now follows from t,he additivity of the Lebesgue integral. 

(3.9) COI~LIARY. Let IVx be the Ishlinskii operator (1.19) and let 77 : [O,OCI) -+ 
[0, 00) be continuous and positive in [0, 00). Then the conclusion of Theorem (3.8) holds 

r 
foT lJ0 = +oo rind 7(U) = $ min{q(h), 0 5 h 5 U}. 
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PROOF. The formu1a.s for Uo and r(U) are g iven in the proof of Lemma (3.1). n 

4. Dependence on parameters. 

WC have t,o consider hysteresis operators acting on function of one “time” variable 
and sc~eral “spa t,ial” va.ria.bles. For our purposes it suffices to consider functions u : 
[O,l] x [O, T] t R’ such that for every z E [O,l] th e f unction ~(2, .) belongs to C( [0, I!‘]). 
The initial sta.tr X may also depend on x. 

We a.ssume 

(4.1) (;I X : [0, l] x [0, oo) --t R’ is continuous, 

(ii) X(x, .) E A(h) for every 5 E [O,l], 

and we define for every )I E C([O, 11 x [O,T]) and (z,t) E [0, l] x [O,T] 

(4.2) TY(u)(x, t) := Tv~(z,.)(u(s, e))(t), 

where T,T’A(~,,) is t,lic opera.tor (1.12). 

(4.3) PROPOSITION. Let us assume (3.4) and let X satisfying (4.1) be given. Then 
TV given by (4.2) is a locally Lipschitz operator in C([O, l] x [O,T]) which is invertible 
and IV-l is Ltpschitz. 

PROOF. For II E C( [O,I] x [0, T]) put U(x,t) := W(U)(S, t), [lull := max{U(x,t)], 
z E (0,ll.t E [O,T]},7, = mas{A,((~~((). W e 1 rave to prove first that U E C([O, l] x [O,T]). 
Let 0 5 .G < f < T, .I’. !/ E (0, l] he given. We have by (2.5)(i) 

hence [T is cont,inrrous. The local Lipschitz continuity of W follows easily from (2.5)(i). 
Let further I: E C([O, I] x [0, T]) be given and put ~(2, t) := W,,~,.,(U(z, a))(t) 

(the invertibilit,y of T,i7A(r,,J is ensured by (2.5)(iii)). We have 

IW’ X(r,-)bbs~ .I) - W(,,.,MY, ~))11[0,9] 2 qlbw - 4Y, ‘)ll[O,s], 

lllTix(.;)(lr(?~, *)I - W(y;,(4Y, .M[Op] I J” P(G) - X(Y, qlrlw~, 
0 

hence II E C( [0, l] x [0, T]). The Lipschitz continuity of W-r is an immediate con- 
sequence of (2.5)(iii). n 

(i) The ol~rators T1’ given by (4.2) depends continuously on A. If X1, X2 are two 
frmctions satisfyilrg (4.1) and TVZ is the operator corresponding to Xi, i = 1,2, 
then for cler!- II. I* E C’( [0, l] x [0, T]) we have 
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(ii) There is a slight ambiguity in the formula (4.2), where the dot in ~(5, .) replaces 
the “time” \xrial>lc t a.nd in X(X, .) the “memory” variable h. Here, the “memory” 
character of 1, is not a.s important as in [7]. 

5. Statement of the problem. 
Our aim here is to solve the problem 

(54 (4 J;J’(w)t - uzz = g(d), 
(ii) u(0, t) = uz( 1, t) = 0, 

(iii) 11(x, 0) = u"(z), u&, 0) = d(r), 

where 71 O, 7I ’ , ~1 a.rc given functions and IV is the Preisach operator (4.2) satisfying 
the assumption of Proposition (4.3). 

\Vf: first. gi\-c> a list, of assumpt,ions. 

. (5.2) g E LCJO. cm: L'(0, l)), G : [0, OS) --+ [0, 00 are given functions such that ) 
(i) G is nonincreasing in [0, co], 

+ (ii) g/ E L”(O,30; L2(0, l)), 

(iii) I!],( ,x, t))‘d~~ < G(t) a..e., 

(5.3) (I0 E TI~'""(O, l), u1 E T4~1'2(o, 1) are given functions such that 

,?/“(O) = ,12(O) = P/(l) = 0. 

We ptrt k(O) := f Jii [i(rL0”(5) + 9(X:, 0))” + Iu1’(2)j2]dz, 

(5.4) there exist, lJ E (0, IJO) and 6 > 0 such that h 5 U and 

6) G(O)$$ < ;, 

(ii) G@(O) + 3G(O) 4% + G(0) 
( > 

< (1 - S)U2, where Ue, r,t are introduced in 

Lemma. (3.1 ) ~1~1 Theorem (3.8). 

(5.5) REhf;\RI<. The condition (5.4) needs some comment. For an arbitrary opera- 
tors IV and I’ < CT0 (5.4) holds if the data 12, u” , ul, gt are sufficiently small in approp- 
riate norms. On t’he ot,her hand, if TV is an Ishlinskii operator satisfying the assumptions 
of (3.9) and 

then (5.4) 1 10 c ‘r OI ;11.l>itr;ir\: data. and U sufficiently large. 1 1: f 
1Ve ca.n casilJ* scv t,hat Ishlinski operators satisfying (5.6) exist. Putting in (1.13) 

q( IL) = Ibr’-2 for so111c (7 E ( 1, 3), wehavey(U) = iv(U) = $U"-",r(U) = a+&U"-l 
for U sufficient.ly la.rgc. hence (5.6) holds. 
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The nrairl res~tlts of this paper a.re the following: 

(5.7) THEOREM. (Existence). Let (5.2)-(5.4) hold. Then there exist a continuous 
function 11 : [0, 11 x [0, OS) + R’ such that 

1’11,112.l E qo, 00; L2(0, 1)); u,, E LEJO, 00; P(0, l)), 

(5.1)(Ri),(iii) hold f or all t 2 0 and x E (O,l], (5.1)(i) holds almost everywhere in 
(0,l) x (0,x) (171.d It/,(.r,t)l < U for all (x, t) E [0, l] X [O,oo). 

(5.S) TIIKOK{I:~I. (Uniqueness). Let (5.2)-(5.4) and let u,v be two solutions of (5.1) 
satisfying Theorem. (5.7). 
(i) If Tll is an I.shlin,ski operator, then u = v. 

(ii) If 147 is a genern.1 Preisach operator and utl, vtt E L~,,,(O,oo; Loo(O, l)), then u = v. 

(5.9) THEORIW. (.4symptotic behaviour). Let (5.2)-(5.4) hold and let u be a solu- 
tion of (5.1) safl..4,fj7~.g Th, _ rorem (5.7). let us assume lim G(t) = 0. Then there exists 

a funwiiore h‘ : [o, cm) --t [O, w) such that tllnA Kc(t) = 0 i;T i 

t 
If moreover' G(f) = 0 foT t > to, then there exists a function v E W2!2(0, 1) and a 
constant I< > 0 such that ?.j( 0) = u’( 1) = 0 and 

I?/,(.?-.f)l + J9LJR:,t) - v’(x)I < f V(x, t) E [O, l] x [O, oo). 

R.F:M ,\ II I<. Tlrc cl”alit,at,i\e nna.lysis of the “ordina.ry” equation u” + W-‘(u) = 0 
(cf. (41) shops that t hc cst,irna t,e $ can hardly be improved. 

(5.10) PROPOSITION. (R(bgula.rity). Let (5.7) hold. Then thy functions We, uzt : 
[O, co] --f L’( 0.1) (1.7’~ IIKXAAJ continuous. 

6. Approximation and estimates. 
We apply the sp;\cc-tliscrct,iza.tion method. Let n > 0 be a given integer. For t  2 0 

PIIt, Jlj(f) I= ?? f ~~~,~;g((.T)dTrl~, j=O,l;..,n-1. 

Let 11s cons’jtlrr tlic system of differential equations for j = 1,. . . ,n-1. 
I 

Wl) Wj(ll>)(t) =Ai~(t) + gj(t), 
v;(t) =A,-&), 

for unknown funct,ions 211 , . . . , z~~-~,v~,...,v~-~, where we put ug = v,, = 0, vo = 
~1, t/,, = 1ln-1: Ante I= 7~(111+1 - vi), Aj-ru = Iz(uj - “j-r), Wj := W q i,.)> with 
initial contlit~ions 

l/,,(O) = I/() L . 0 ?I A]P’(O) = (3’0 u1 3 ( 0) n ’ 
%l(O> = 0, 
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where Cpi is the function corresponding to Wj in the sense of (1.25). 
By (2.5)(iii), (3.4) the operators IVIT’ are Lipschitz in C((0, T]) for every T > 0 and 

j 2 1 with the Lipschitz constant 2, hence the system (6.1),(6.2) has a unique global 

classical solllt,ion {llj, IJj;j = 1, *. a, n - 1) and (3.8)(i) implies uj, Vi E W& 2yo, 00). 
We obtain from (6.1),(6.2) U>(O) = u1 (r;> and from (5.3),(5.4) Iu’([)~ 5 

(2E(O))i < [( 1 - h)/3]5U for each [ E [O,l], hence u>(t) < U for every j = 1, ..a ,n - 1 
and t sllfficic~ntly sma.11. Pllt 

T,, = inf{t > 0;21>(t) > U for somej = l,.*.,n - 1) 

and P)(t) = ; ne (p:(u;)(t) + ;(v;(t))2) 
j=l 

for t E (0, YZ’, ), whcrc I?; is the potentkl (3.6)(ii) corresponding to Wj. 
Eqllations (6.1) and Theorem (3.8)(i) yield 

c E’“‘(t) _< & nc i(n(Aju(t) - A,-lu(t)) + g;(t))‘+ 
j=l 

I +?t’(kl’;‘(Ajv + gj)(t) - TVI~‘~(Aj-~v + gj-l)(t>)2] . 

The right-hand side of the la.st inequality is continuous with respect to t, hence 

E'"'(o+) 5 knf [i(n(Aju(O)- Aj-lu(o)) +g>(O))"+ I 
j=l 

+/~‘((@~)-‘(Aj~1(0)) - (+~-‘)-‘(Aj-l~(0)))2] . ’ 

This yields 
lim sup Ecn)(O+) 5 k(O) 

R”W 

I 
hence (5.4) (ii) remains valid if #(O j is repkced by E(n)(O+) for n sufficiently large. 
We can differentiak (6.1) t wice with respect to t, hence 

(6.3) b) 
l 

l+‘j(Pl>)” = Aju” + gJ’, 

(ii) u;’ = A,& 

holds in the S(Y~SC of tlist,ributions and almost everywhere. 
Let, v E (0, T,,) lx a.rbitra.rily chosen. Multiplying (6.3) by ~7 and (ii) by I$ we 

obta.in from (3.8)(ii) for a.11 u < s < t < Z’, 

1 

l 

E’“‘( f -) - I?(“‘( s+)+y( U) 
t 1 n-l 

J c - 

s nj=l 

Iuy(T)13dr _< 

2 

n-l * 

- 1-l CJ lL:)(T)g;(+h. J=l s 
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We lmvc: iIdwd i cyz,’ l$‘(t)12 5 sd lgt(z,t)12da: for every T 5 0, hence (3.8)(i), 
(5.2)(iii) a.ud HGltlcr’s inequality yields 

where 13 : fi~((u)<(I:)-~,Ir’l := (5>$ r(U)-+. 
We fllrt.her mlllt,iply (6.3)(i) by ‘. IL] and we obtain after integration 

Let, IIS ~lloosc a ulu~~bcr ~(a) > 0 such that 

Then (6.5) implies 

J 
t p’(f) - p”(,y)+ E’“‘( T)dT 5 (t - s)+ 3 (- 

;G2(o) + 4e2(a) > 

Let us denok FL”’ (T) := E(‘“)(r) + Bc(a)Vcn)(r) for 7 > 0. 

IVe have by (3.8)(i) V(“)(T) 5 [(U)+@“)(T), hence (5.4)(i) implies 
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for a.e. 7 > u. 
Putt,ing (6.4) ant1 (6.7) together we obtain 

I 

t 

F’“‘(f-) - P$+) + BE(U) n ” E(“)(7-)dT < K&)(t - S), - 
9 

where 
. 

Ii-,,(a) := KIGs(u) + BE(U) ( ;G2(o) + k2(o)) , 

consequently 

(6.8) Fy(t-) - ky(s+) + ;BE(u) J’ s Fp(T)dT 2 K,(a)(t - s). 

f  -i Fy(f) + iBE 

J 

t  FyT)dT -  K&y u 

7 0 

f 
is nonincrca.sing in (a, T,,), hence its derivative in the sense of distributions is non- 
positive. For every smooth positive function 9 and every t E (a, Tn) this yields 

t 

y(t)~~‘f’(t-)-~(u)~~‘i)(u+) + 
Jr 

-F(n)(7)y’(7-)+ u 

+ ~B.-cu)Fp(T)yi:) - h;(44T)] d7 5 0. 

In particular, for y(t) = e~Bc(b)(t--O) this gives 

pd(f-) < ,-~“‘(“)(‘-“)F(“)(a+) + 
3&(a) 

1 _ e-~w~w-4 
n u 2Be(a) 9 

i hence 

I (6.9) K2 b-7) ,-~~~(")(l-u,E(")(a+)~ 
w4 1 

holds for every 0 5 IT < t < T,. 
For d = 0 (6.6),(6.9) imply 

E'"'(O+) + G(0) W) 1 2- 
y(U) + sGCO) 

hence by (5.1)( ii) 

(6.10) E'"'(t-) 5 f(l - S)U2. 
i 



Let us s~~pl)osc T,, < +oo. For almost every t < !I’, we have 

hence 
limsuplu>(t)l < U for all j = l,.**,n - 1, 

t--+-r, 

which is a contrxliction. 
Conseqllently, T,, = +cc for n sufficiently large and (6.9),(6.10) hold for all 

o<a<t<+oc. n 

7. Proof of existence and regularity. 
LCt {ll,j,l!,j; ,j = l:.. , 11 - I} be the solution of (6.1),(6.2). For 2 E [i, G) and 

t 
t 5 0 we put. 

z PW(.7., t) :=uj(t) + 

“(“)(X, t) :=vj(t) + 
li.(“)(T, t) :=llj(t), 

?-@)(.T, t) :=uJ+l(t), 

p$z, t) :=gJ(t), 

X(n)(~,h) :=A 2: h 
( > 1-l ’ 

a.nd for every function z : [0, l] x [0, 00 + R’ such that z(z, a) is continuous for every ) 

r 
2 E [O, l] WC p1t 

W’(z)(a,t) := ~/~~(,,(,;)(Z(~,.))(t). 

The syst.cm (6.1) can be rewritten in the form 
1 

fort>O, .~E(O,l)\{~,~:..,~}. 

The c5t.iiix.tc (G.10) shows , that uZ’, v$), u!:), vi:’ are bounded in 
Lo”(O,m; L’(O.1)) intlcpcncl(lnt,ly of n. For every T > 0 there exist functions z, w E 
C((O,l] x [O,T]) such t,hat. ~X,~l,~~~Z,~ut E L”(0,T;L2(0,1)) and subsequences 

{u(~~),T;(~~)} of { o(“).u(‘~)} such that u:“) ---) .z,~j~) --+ w uniformly, 21;:) 3 z,, 
(m) 

utt 4 z1,2p --+ 11!, ( ‘I’,, (n7) -+ ~7~ in L" (0, T; L2(0, l))-weak *. Moreover, there exist 

20 
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a constant c > 0 such tl1a.t u 1 -p(x, t) - up)(z,t)~2 < ;, Ip(x,t) - .y(x,l)l 5 f, 

hence tijrn) -+ z,6j”” -+ UJ uniformly. 
Remark (4.4)(i) holds also for functions A;, U, v which are piecewise continuous with 

respect to .I’. ‘Tlic’rcforc, II ‘0”) 
( > 

fit”” -+ l+‘(z) uniformly and IV(“) 6:“’ 
( > t + W(4t 

in L”(0, T: L’(O, 1)) - wea.k *. 
We concl~~le from (7.1) that TV(z)l = wz + g, t, = wt almost everywhere and 

putting ,~(.r,t) := J,’ ,~([,t)d[ we obtain w = u,, &(z - ut) = 0, hence z = u1 and 
(5.1)(i) h 11 1 t -. ‘y h o c s a mos cl Ed w ere in (0,l) x (0, T). Th e initial and boundary conditions 
(5.l)(ii),(iii) are satisfied trivially. 

We can now repea.t the same procedure in the interval [0,2T] choosing a convergent 
suhsequencc {u(“), v(“) } of {u(‘“), I,(~)}. B y induction we construct a sequence (u(~)} 
of sollrtions of (5.1) sluh tha.t U(~) is defined in [0, l] x [0, Kf] and ~(~)]l~,,r] = ul 
for 1 < k. Let us not,c t,ha?t (6.10) is independent of T, hence u can be extended to 
[(A 11 x [(A oc iii sl~ch a way that. (5.7) holds. I 

Proposit.ioii (5.10) f o ows from a. standard a.rgument ([l]). Let t, + t be an arbitary 11 
seqiwncc am1 let 5 > 0 be given. For $1 E L2(0, 1) we find 6 E W’r”(O, 1) such that 

t 1 
J I 

7 
2 

0 7+’ - Ii’? d.u < -;. The flluction u,,,u~~,~V(U~)~ : [O,oo) + L2(0, 1) are (locally) 

bolmtlcd, hcncc thcrc vsist,s a consknt c > 0 such that e.g. 
? 

II 

1 

(~fl.~r(.I:,t,,)--Il.~z(S,t))~(x)dx 5 ce+ 

. 0 

+ 
II 

ol(~~z(-~.~n) -Uz(X,t))$‘(X)dX 

and (5.10) follows easily. 

8. Proof of uniqueness. 
Let 11s asslunv t,llat, the IlypotJleses of Theorem (5.8) hold. We have 

6 

(8.1) 

t 
for a.?. t > 0. 

In the cask (Z.S)( i) t#he a.ssertion follows immediately from (8.1) and (2.7)(ii). In the 
ca.se (5.8)(ii) wc pnt, ~/.~(.r,t) := Ih(7r,(.z:,.),X(n:,h))(t),vh(a:,t) := Zh(~(x,.),X(~,h))(t). 
Then (8.1) and (3.7) (i) yield 

(8.2) -$+~~‘(~.t);h) - &‘(x,t),h))] (u’(x,t) -t?‘(x,i)) dhdx+ 

: for a..c. t > 0. 
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c 
The expression g( Q, h) is bounded away form 0 for l.gl+ h 5 U (we have y(U) > 0, 

cf the proof of (3.1)):Putting 

AI(t) :=; 

1 

/ ([J . 0 
om E (Uk(X, t), h) (dyx,t) - u”(x,t))dh] + 

+ (UT(.T. t) - v,(x, t))’ + c+(x, t) - v(x, t,)‘) dx 

we wee thab thcare exists a function k E Lf,,(O, oo) such that $M(t) 5 k(t)M(t) a.e. 
and Gronwall’s lemma. completes the proof of Theorem (5.8). n 

9. Asymptotic behaviour. 
The proof of Theorem (5.9) relies on the inequality (6.9). We can choose E in (6.6) 

such tha.t ,l&in’~(f) = 0. Let, us construct a sequence {tk},tk + +oo by induction: 

t1 = o.tl-+1 - fk = g-J / log (w) I. 1% have $$$ <_ clan, where c1 is a 

positive constaut. 

t 
For an arbitrary inkger n and for t 5 tk+l we obtain from (6.9),(6.10) 

E’“)(t-) 5 cze(tg), 

r: where c:! > 0 is a, constant independent of n and k. It suffices to put I := 
[2C2E(t&~ )]“’ for t E [tk, tk+, ). 

Let us suppose now C;(t) = 0 for t 5 to. Putting e(t) = $ for t > to we obtain 

from (6.9) E(“)( r-) 5 i: 
( 

c-+” E(“)(t+) + g) f or every T 2 2t, where c ip a positive 
constnnt~. 

Choosing S sl&Yc*ic:nt,ly la.rge (t&kg a larger t,, if necessary) we obtain 

EC”‘+) 5 +(t+) + $ 

for all T > 2t. 
Put, tl; := Zkto. WC? choose I< >_ 32~6~ such that E(“)(to+) 5 $. By induction we 

obtain 

for T E [tn., fk+tl ). 
WC ll;l\T g( ,I’, f ) = g”( .x) for t 5 t 0. It suffices to put V(X) = s,” Jt g”(b)dbda. We ha- 

ve (rc)“)(a,f)12 5 ,/i I~r~‘[r,t))‘dz < 2@“)(t) a.e., lz~~‘(x,t> - v’(z)12 < 
5 J; 1 J/J: ( 11) ( I, ; 71 ) ),12d.r I 2J(Lr)E(‘“)(t) + o(n) for a.e. t < to and Theorem (5.9) is - 
proved. 
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