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GLOBAL BEHAVIOUR OF SOLUTIONS
TO THE WAVE EQUATIONS WITH HYSTERESIS

Pavel Kreyéi

Abstract. The wave equation with a Preisach hysteresis operator can be considered
as a one-dimensional projection of Maxwell’s equations in a ferromagnetic medium. An
initial-boundary value problem for this equation is solved here with emphasizing the
fact that under a bounded forcing term the solutions remain bounded. This is due to
the strong dissipation of hysteresis energies. New proofs of hysteresis energy inequalities
are given without referring to the structure of hysteresis memory.

Introduction. Hyperbolic equations with hysteresis operators appear in various
problems of mathematical physics (Maxwell’s equations, elastoplastic oscilations etc.)
We present here a qualitative study of an initial-boundary value problem for the equa-
tion '

Wi(ug)e — uze = g(z,t),

where ¢ 1s a given function and W is a Preisach hysteresis operator. It has been proved
in [5] that this equation is hyperbolic in the sense of finite speed of propagation of
waves.

The present paper is divided into 9 sections. Section 1-3 are devoted to the investi-
gation of properties of the Preisach operator (representation, continuity, superposition
and inversion, energy inequalities). We introduce here a new approach which does not
make use of the structure of memory. This enables us to replace the assumptions of
oddness and ”virgin initial state” (cf. [5]) by weaker ones. The Preisach operator W is
locally represented by a superposition (Nemytskii) operator ¢ (Lemma (1.18)). The two
hysteresis energy potentials still play a crucial role here. The assumption of convexity
of loops is interpreted in terms of ® as the requirement that u — ®(u) is convex if u
increases and concave if u decreases. Indeed, for a general Preisach operator this is true
only if u remains small during the whole history of the process (Lemma (3.1)). In §4
we investigate parameter-dependent Preisach operators.

The main results of the paper are formulated in §5, namely the existence of global
solutions, sufficient conditions for uniqueness, regularity and asymptotic behaviour.
Their proofs are given in §§6-9.
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1. Preisach operator
Let u € W'1(0,T) be a given function and h > 0, =z} given numbers, |z}| < h.
The problem of finding a function z5 € Wh1(0,T) such that
(1.1) (7) xy(t) € [=h,h],t € ]0,T],
i) () - O)Ea(t) - ) SO me Vg€ [-h A,
(iif)  wn(0) = 2°

has a unique solution (cf. e.g. [6]).
Let h > 0 be a given number. We introduce the sets

A= {d e WH®(0,00); |N(h)] <1lae. },
AR)Y:={ €A, Mh)=0for h>h}
of admissible initial states and we put
(1.2) ¥y = sign (u(0) = A(k)) min {h,|u(0) — A(h)|}

for some A € A. ;
The initial condition characterized by the function A = 0 is called reference (or
virgin ) state .
The existence and uniqueness result for (1.1), (1.2) enables us to define an operator

Cfa(LAR)) s W0, T) — W10, T) for every h > 0 and A € A by the formula

(1.3) fulu, MR))(t) == za(t),  t€[0,T],

where z, 1s the solution of (1.1), (1.2). ‘
The operators fj is called stop . We further introduce the operator (I denote the
1dentity)

(1.4) (o AR)) =1 = fr(,, A(h))

which is called play (cf. [3], [9]). ,
It can be shown easily (cf. e.g. [6]) that [x(., A(h)), fa(., A(R)) are Lipschlitz conti-
nuous in WH1(0,T) and that for every A\, u € A, u,v € W11(0,T) we have

(1.8)  lla(u, AR)(E) = lalv, p(R))(B)] < maz{|A(h) — p(h)], llu — vllo,4},

where we denote [[w]]|g g := maz{|w(s)],0 <'s < t}.
This implies immediately that I, (., A(h)), fa(., A(h)) can be considered as Lipschitz
continuous operators in C([0,T})).

(1.6) LEMMA. Let A € A(h),u € C([0,T)),t € [0,T) be given, lulljo,g < h. Put
u(R) := la(re, M(R))(t) for every h > 0. Then u € A(h), uw(0) = u(t).

Proor. The Lipschitz continuity of l(., A(k)) and the closedness of A(h) with
respect to the uniform convergence imply that 1t suffices to assume u to be smooth and
piecewise monotone.
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(1.7)

More precisely, we assume that 0 = ¢y < t; < ... <ty =T is a partition of [0, T]
such that u'(¢) # 0 in (ti-1,ti),2 = 1,..., N, '
For t € (ti-1,ti) (1.1) yields

ea(t) = {min{xh(t,-_l) +u(t) —u(tisg),h}  ifu'(t) >0,
Tt max{xh(t,‘_l) + u(t) - U(ti—1), _h} if ul(t) <0,

hence

max{lp(u, A(R))ti—1),u(t) — h} ifu'(t) >0,

(1.8) e, MED(E) = {min{lh(u, A(h))(ti-1),u(t) + A} ifu',(t) <O.

An easy induction argument completes the proof. n

(1.9) REMARK. Relations (1.7), (1.2) represent the standard definition of the‘stop
for piecewise monotone inputs (cf. [3]). The extension to arbitrary continuous inputs is
then possible by (1.5).

(1.10) DEFINITION. Letp: R' —» R',v: R' x [0,00) = R',n € L}, (0,00),m0 €
L'(0,00),a > 0 be given such that

loc

A1) ) IR, 5 € LR x (0,00))
(ii)  wv(0,h) =0,
(1) n(h) 2 g—;(p,h) 2 —no(h), (k) 2 no(h) 20 ae.,
(iv)  pllp)z2a ae

Let A € A(h) be a qiven initial state. The operators Wy defined by the formula

(1.12) Wia(u)(t) = p(u(t)) + /000 v(lp(u, A(R))(t), h)dh

18 called a Preisach operator.
If p,v are linear with respect to p, 1.e.

(1.13) plp) =ap, =~ v(p,h)=pn(h)
then the Preisach operator Wy 13 called an Ishlinskii operator.

In the sequel we assume

(1.14) ‘ () / no(h)dh < « for every r > 0,
0

oo h poo
(77) hlilr;o [h(a—/o no(a) da)—{-/0 /1; no(a) da db

(1.15) REMARKS.
(1) It is easy to see that the Preisach operator Wy is continuous in C([0, 7).

=+OO
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(ii) It can be shown ([5]) that formula (1.12) is equivalent to the standard definition

of the Preisach operator (cf.e.g {2],[8]).

(iii) In general we need not require so much regularity for p, v (cf. [2]). Here, in appli-
cation to hyperbolic PDE’s, this regularity plays an important role.

We present here an alternative approach to the Preisach operator without referring
to the structure of memory. The philosophy is close to [2] in spite of important diffe-
rences.

We first represent the Preisach operator locally by means of Nemytskii (superpo-
sition) operators. According to [7] we introduce the identification function S(p,h) of
the operator 1V, as the solution of the Cauchy problem

(1.16) (2) Skh =~ Spo = v(0,h)
(11)  Sw(e,0) = p(e)
(#47) S(e,0)=0

We have

1 o+h gth-b
(1.17) S(e.h) =3 / €)dE + = / / v(a,b)da db.
= Je o—

—h h+b

(1.18) LeMMA. Let u € C([0,T]) and [t1,t2] C [0,T] be given such that u is mo-
notone in {t1,t2]. Let W be a Preisach operator (1.12). Then there ezists an absolutely
continuous increasing function @ depending only on {I(u, A(R))(t1); A > 0} such that
for every t € [t;,t2] we have Wi(u)(t) = ®(u(t)).

Proor. (i) Let u be nondecreasing in [t1,t2]. Put Aj(h) = h(u, A(R))(t1),

h* = mm{ llwlljo,77}- By Lemma (1.6) we have A\; € A(h*), hence for every
v € [u(ty),u(ty )] there exists ¢ € (0, 00),such that A;(¢) + ¢ = v. Put
(1.19) RY(v):=maz{g>0; v=gq+A(q)}

Indeed, formula (1.8) holds for ¢t € [t;,¢2], hence

, , _fu(t)=hfor h < Rt (u(t)),
30 = { | o n s by, e (et
This yields
R* (u(1)) h*
Wa(u)(t) = plu(t)) + /0 (u(t) = b, ) + /R y ())u(/\l(h),h)dh

It is easy to see that the function v — R+(v) is increasing and Rt(v) < h* for
v € [u(ty),u(ta)].
Putting

Rt (v) h*
(1.20) ®(v) = plv) + / v(v — h, h)dh +/ v(A1(R), h)dh
0

Rt(v)
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we obtain using (1.16)

"
(121) @) = (Sh + S,)(0,4") —/ (14 M(h))(She + See) (M (h), B)dh.

R+(v)

It remains to prove that ® is increasing and absolutely continuous in [u(t1), u(t2)].
Let v1,v2 € {u{t;),u(t2)] be arbitrarily chosen, v; < vs.

Then
RY(vy)
Ve — U] = / (1 + )\ll(h))dh,
1 29) R+ (vy)
( i ‘ R+(v2)
B(ry) — B(vy) = / (14 A(h))(She + Seo) (M (h), h)dh.

Rt (vy)

We have

h
0
(Sen + See)eh) =pl(e+h) + / 5,0+ k= aa)de,
0

hence (1.11),(1.14) yield

c1(vg —vy) < @(vg) — B(v1) < c2(v2 — vy)

for some positive constants ¢y, ¢s.
(i) Let u be nonincreasing. We proceed as before putting

| (1.23) R™(v) = maz{q > 0;v = —¢ + A\1(q)}

for v € [u(t2),u(ty)]. The function R~ is decreasing in [u(t2).u(t1)] and by (1.8)

u(t) + h for h < R~ (u(t))

l;,(u,)\(h))(t) = { A(h) for h > R~ ((t))

t € [t1,t2]. Analogously to (1.21) the function @ is defined for v < u(t;) by the formula

. h*
(120 B0)= (S-S0 - [ o (T ) Sk = Seg) O (1), W)
with the same conclusion.
Lemma (1.18) is proved. : [ |

(1.25) REMARK. The same argument can be used for deriving the ”primary curve”
of the operator Wy. Indeed, the value of Wx(u)(0) depends only on A and u(0). Re-
placing A; by X in the computation above we obtain Wi (u)(0) = ®(u(0)), where the
function ®¢ is given by (1.21) for «(0) > A(0) and (1.24) for u(0) < A(0) with A\,
replaced by A.



2. Properties of the Preisach operator

In this section we still assume that (1.11),(1.14) hold and that W) is a given
Preisach operator (1.12). :

The two following lemmas establish a superposition formula for hysteresis opera-
tors.

(2.1) LEMMA. Let S be the function (1.17) and let u € WH1(0,T), A € A(h),r >0
be given, h > lullo, 7). Then there exists a function h, € W1(0,T) such that for every

t €(0,T) we have
Se(lh, (0, A(hr(1))(), hr () = .

PROOF. Let t € [0,T] be fixed. The function u(h) := Ix(u, A(k))(t) belongs to
A(h) by Lemma (1.6) and {—,’%(Sg(p(h),h)) > a— foh no(a)da > 0, hlim So(p(h),h) =
400, S (4(0).0) = 0 by (1.14),(1.16)(iii)(let us note that for h > h we have u(h) = 0).

Denoting by h,.(t ) the unique solution h of the equation S,(In(u, A(R))(t),h) =
we obtain for every t| < to, by := h (t:),2 = 1,2

Sellny (uy A(h2))(t2), h2) — Solln, (u, A(R1))(t2), h1) =
= SQ(lhl(u’ ’\(hl))(tl)v hl) - SQ(lhl(u7 ’\(hl))(tQ)’hl)7

hence

e =] € ]/ Sy (u, AR (), )

where a(r) := inf{??,;SQ(lh(u,/\(h)) ((t),h);0 < h < hyyt € [0,T)}, hy := max{h.(t);
t € [0,T]}. Therefore, h, is absolutely continuous in [0,7] and Lemma (2.1) is proved.
u

(2.2) LEMMA. Let u € WHY(0,T),)A € A(R),h > |lullo,77, T > O be given and let
h, € WH(0,T) be the function introduced in Lemma (2.1). Put

Aolh) =1, (u,/\(h))(O),
u(r) = Sa(Xo(h0), O) + / v(ho(h), h)dh
ho

where hY 1s th solution of the equation S,(Ao(h), h?) =r. Fort € [0,T) put
Un(t) 2= S (I, () (10, A(hr(£))(), R (1)) + /h o ¥ U AU)(E), h) d
e
Then pp € A, (0) = Wa(u)(0), Us(t) = Wa(u)(t) and Ur(t) = L (U, u(r))(t) for

te[0,T).

Proor. The identities yi(0) = Wi (u)(0),Uq(t) = Wy(u)(t) follow from the fact
that h,(t) = 0 for r = 0. We further have

d[ ) = (599 + A (ho)she)(she + X (ho)see) 1,
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- hence ‘%/L(’I‘)‘ <1 a.e.
By definition we have U,(0) = p(r). Let [t;,t2] be a subinterval of [0, T] such that
u is nondecreasing in [t1,%2]. Put A;(h) := Ix(u, A(R))(t1) for each A > 0. By Lemma
(1.8) U is nondecreasing in [t1,t2]. Let Rt bé the function (1.19). We have 2h,(t) >0
for every fixed t € [ty,%2], hence there exists a unique #(t) such that h.(t) < R* (u(t))
for r < #(t), h () > RT (u(t)) for r > 7(t).
Thus for » < 7(t) we obtain

U, (t) =Sy (lh.,(t)(uv ACh+(t)))(2), hr(t))

R*(u(t)) h
+ / v(u(t) - h, b)dh + / v(Ax(h), h)dh.
he(t) R¥(u(t))

Using (1.16) we obtain analogously to (1.21)
(2.3) Un(t) = Up(t) — r for r < 7(1)

For » > #(t) we have

(e o)

Ur(t) = Su(A1(he(1)), hr(2)) +/ v(A1(h), h)dh,

h, (%)

So(ha (1)), ha(8)) = -
This yields %hr(t) = 0 for r > #(¢) for a.e. t € (¢1,t2), in particular

(2.4) Ue(t) = U, (ty) for r > 7(2).

We have indeed U ()(t) = Up(t) — 7(2).

Therefore, (2.3),(2.4) yield Uy(t) = max{U,(t1),Uo(t) — r}.

We verify in a similar way that if u is nonincreasing in [¢;,¢2] (and, consequently,
Up is nonincreasing in [t),tz2]), then

Un(t) = min{U,(t1),Uo(t) + r} for t € [t1,1s].

By induction we conclude that U,(t) = {,{Uy, u(r))(t) for every piecewise monotone
function v € W'(0,T). The assertion now follows from (1.8),(1.9). |

(2.5) PROPOSITION. Let us assume (1.11), (1.14) and let \,u € A(R) be given.
Let Wy, W, be the Prewsach operators (1.12). Then
(1) for every w,v € C([0,T]) and t € [0, T] we have [Wx(u)(t) — Wu(v)(t)] < o(r)||u—
ollog + Jo (k) = u(B)n(k)dh, where r := max{(h, |lullio,q, lollo,q} and w(r) :=
supess {p(s). s € [0,7]} + [y n(h)dh,
(ii) o p' is bounded in R' and n € L'(0,00), then Wy 1s Lipschitz in C([0,T)),
(iii) the operator Wy is invertible in C([0,T]) and W' is locally Lipschitz.

If moreover fuoo no(h)dh < a, then W' is Lipschitz with the constant 2(a —
I mo(h)dh) =",
(iv) of (1.13) holds and Wy is an Ishlinskii operator, then W)\_1 18 also an Ishlinsku
operator.



REMARK. A more complete information about the inversion and superposition of
Preisach operators in the case A = 0 can be found in [7].

PROOF OF (2.5)
(i) For A € A(h) we have by (1.5),(1.6)

[0 G ACR(E) = D (o, MR < Hlu = wlljo,eg,  Halu, A(R))(E)] < max{h, [Jullo,q},

hence (1),(11) follow easily from (1.14).

(iif) Let w,v € W"'(0,T) be given piecewise monotone functions and put U = W (u),
V = Wj(v). Our aim is to prove that there exists a function 1 such that for every
t € [0,T] we have

(2.6) u(t) — o(t)] < w(maz{|lulljo,qg, llvlljo,q, RHIT = V|fo,g-

This implies already the local Lipschitz continuity of Wi ! in C([0, T)). Indeed, for
[Julljo,q > h we have ecither lullo,g = u(74) for some 74 € [0,¢] or ||ul|jo,q = —u(r-)
for some r_ € [0,t]. Putting p(h) = In(u, A(h))(7+) we obtain using Lemma (1.6)
p(lu(r2)) = 0,7(0) = u(r4), hence u(h) = u(r4)Fh for h € (0, |u(r+)]). Consequently,
U0, 2 1U(£)| 2 &o(llulljo,q), where &o(h) is the function in (1.14) (ii).

Moreover, by Lemma (1.18) for every U,V continuous and piecevise monotone we
can find continuous and piecewise monotone functions u,v such that U = Wy(u),V =
Wi(v). Assuming (2.6) we obtain the local Lipschitz continuity of Wy ' by a standard
density argument. ‘

It remains to prove (2.6). We can assume u(t) — v(t) = |Ju — vl|jo,q > 0. Put
R* i=min{h > 0: 7, (u, MR < Ly(v, A(R))(t)} and

Pt = Syl (u, AR))(E), ) = Sy(lne (v, A(B))(E), B7),

where S is the identification function (1.17).
We have

U('t)— V(t) = p(u(®)) — p(v(t)) + /Ooo(lf(lh(u,/\(h))(t),h) = v(la(v, A(R))(2), b)) dh

and by Lemnma (2.2)

oo

Ly (U,/"(‘"*))(f)—l-r'("iﬂ(r*))(t)=/ (v(a(w, A(R)(E), h) = v(Ia(v, A(R))(2), k) dh,

.

hence using (1.5),(1.11) we obtain

.
(0 = 1) €20 = Vo + [ (s XBE) = (o, MDY mo(R)e,

hence

m—A no(h)dR) (u(t) = (1)) < 2/|U ~ V..
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We have h* < max{{|u|ljo,q, |vlljo,g, 2} and (2.6) follows easily from (1.14)(i).
(iv) Formula (1.17) yields S(p, h) = pp(h), where p(h) := ah + foh Jy n(b) db da.
Let u € C([0,T]) and A € A(R) be given. Put U = Wi(u), Ao(h) = lx(u, A(h))(0).
We have ¢'(h) > O,hlim ¢w(h) = +oo and Lemma (2.1) implies h.(t) = ¢~ (1),
— 00
hence h,(t) is independent of t.
Let # > 0,6 € L}, (0,00) and p € A(F) be arbitrarily chosen and let Z, :

loc

C([0,T]) — C([0.T]) be the Ishlinski operator

2 )t) = 8u(®) + [ 1 (0, ul0) @)ECr

According to Lemma (2.2) it is convenient to put

uu»:Aumww»+AwAammww

where h = o7 1(7).
Then g € A(p(h)) and

LU () = e (u, ACR))(t) - '(h) + /:o la(u, Ma))(t)n(a)da.

Put o(r) := Br+f, [, €(b) dbda. We have Z,(U)(t) = aﬁu(t)+f0°° h (u, A(R)) (2)8(R)dhR
where 6(h) = = (a(p(h))).

For o0 = ™' we obtain # = 2 and Z, o W = I, hence Z, = Wy ! is the Ishlinski
operator generated by the function o = ¢ =1, |

(2.7) PROPOSITION (monotonicity). Let u v € WH1(0,T), A € A(k) be given fun-
ctions and let Wy be the Prewsach aperator (1.12) satisfying (1.11) with no = 0. Put
Ni(u)(t) := v(ly(u, A(R))(t), h), Nu(v)(t) := v(ln(v, A(R))(¢), k) for h > 0. Then

() [(Na()) (£) = (Na(0) (8)][la (u, ACR))(8) = T (v, A(R)) ()] <

< (NR () (1) = (Np(0)) (@) (u(t) = v(t)) a.e.
(i1) If Wy 18 an Ishlinski operator and (1.18) holds, then

[(T'V,\(‘u))’ft) — (T’V’,\('U))Yf)](u(_t) - v(t)) >

> I - v(1)) + /Ooo(lh('u,k(h))(t) —vlh(v,)\(h))(t))Qn(h)dh a.c.

— 2dt

Before proving (2.7) we state an easy lemma.

(2.8) LEMMA. Let Wy be the Preisach operator (1.12), g—z > 0 ae Letu €

W10, T) be a given function such that u'(t) # 0 exists and (W,\(u))'(t) ezists for some
t € (0.T). Then there exists h(t) > 0 such that for h > h(t) we have L1 (u, A(R))(2) =
0, for h < h(t) we have %lh (u, MR () = u'(t), 1y (u, /\(h))(t) = u(t) £ h.

REMARK. The implication v'(t) =0 = (W,\(u))’(t) = 0 is trivial.

9



PrRoOOF OF (2.8) Let xp be solution of (1.1),(1.2). Let us suppose that for some
hi < hy we have @4, (¢) € (—hy, by}, |oh, ()] = he. Lemma (1.6) and (1.3),(1.4) give
'dha:h(t){ < 1, which is a contradiction. Put hz = inf{h > 0;|zx(t)] < h}.

Let us suppose that for some hy < hy the derivative %wha(t) does not exist.
This means @, () = 0,2} _(t) = u'(t) for the right and left derivatives, respectively.
The same argument as above shows that the same is true for all A E [Rs, Bs]. Put
hy = sup{h < by %;zrh( ) does not exist }. For h < h; we have indeed xh(t) = 0.

A standard use of the Lebesgue dominated convergence theorem y1elds

(Wat))', ()= (Wa(w)) () = /(1) / "o U A, B) b

hy
hence hy = hy and (2.8) follows easily. [ |

PRrROOF OF (2.7) We obtain from (1.1)(ii),(1.3),(1.4) putting ¢ := ks (v, A(R))(2)

(N4 ()" (8) - [Fa (u M) (1) = Fi(0, A(R))(B)] 2 0

and similarly /
(Nu(0)) (1) Lfa (v, AR (8) = fu (u, A(R)) ()] 2 0,

which gives (1). Part (ii) follows immediately from (i) and Lemma (2.8). n

3. Energy Potentials

The role of the convexity of hysteresis loops in the theory of hyperbolic equations
with hysteresis has been pointed out several times (cf. e.g. [4],[5]). We present here a
different approach which consists in determining sufficient conditions for the function
® from Lemma (1.18) to be convex when u increases and concave when u decreases.

(3.1) LEMMA. Let A € A(h) be given and let Wy be the Preisach operator (1.12)
with p(u) = au and '7", % continuous in R x [0, 00), %(0,0) > 0.

Let & be the f?mctzon (1.21) and let us denote by @', @' its right and left deri-
vatives, respectively. Then there ezists Uy € (0, +o0] and a continuous nonincreasing
function v : [0,Uy) — RY such that for every u € C(0,T)) the following implications
hold:

(1) If u s 71071(hmmeinq m [t1,t2] and max{h, ||ulljp,e,;} < U < Us, then &' (v3) —
Q! (v1) = 29(U) vy — vy) for all vy > vy, v1,v2 € [u ( 1), u(t2)];
(11 ) If w is nnmn(rmwnq i [t t2] and max{h, [Julljo,e;)} < U < Up then @' (’02) -
! (vy) < =29(U)(vy — 1) for all vy > v1, wv2,v1 € [u(t2),u(t1)].

Proor.

(i) Let R* be the function (1.19) and put Ay(h) := Iy (u, A(R))(¢1) for k > 0 as in the
proof of Lemma (1.18). Let u(t;) < vy < v2 < ut2) be given and let us choose an
arbitrary sequence vy, | vy. Then R*(v,) \, RT(v1) and (1.22) yields

R*(vy) v
(I)/*_(l‘t) (Sh&, + SOQ ( (R+(l’ ) R+(‘Ul )) = a+/ "a—g-('l)l h,h)dh

0
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Similarly, putting Rt (v) = min{q > 0;v = ¢ + A\1(¢)} we obtain

. R3 (v2) ov
(D’__(’Ug) = +/ ——(’Ug - h, h)dh
0 69
Therefore,
R¥ () vz g2, R¥(w) g,
& (vy) — P! (zr):/ —(a—h,h dadh+/ —(vy — h, h)dh.
o 0 " 392( ) R} (v3) 69( : )
Put
. |ov
61(U) := min{ 55(9,’1) slol +h < U},

82(U) := max{

8%v
——— . < .
357 (p,h)] ol + A < U}

Then 8, is nonincreasing, 6, is nondecreasing and for h, vy |, |va| € (0, U] we have
RY(v1). RE () € (0,U) and @ (v, )=®! (v1) 2 (Rg(vg)—R+(v1))61(U)—U52(U)'
(g — ¢1). We have vy — vy < Q(R(')F(vg) — R+(v1)), hence putting Uy = inf{U >
0: 561(U7) = Uba(U) > 0}, 4(U) = $(36:(U) — U3(U)) we obtain (i).

(i1) The argument is similar. We use the functions R~ defined by (1.23) and
Ry (v) :=min{q > 0; —¢ + A\;(¢) = v} and we obtain the formula

R™(v2) puo 92v Ry (v1) ov
&' (vy) — D (v ):/ a+ h,h)da dh — —(vy + k,h)dh,
’ L Jo 092( ) R- (v3) 69( ' )

2(Ry (vi) — R™(v2)) > vy — vy,

(25}

Lience

(I)I_(UQ) - (I’I_'_(’l)l) S —(%51(0') - U(Sz(U))(UQ - 'Ul).

(3.2) LEMMA. Let ¥ be an absolutely continuous increasing function and let ¥!, ¥
ezist at every point of its domain of definition. Let K > 0 be a given constant and
u € Whe(0,T) a given function such that ¥(u) € W21(0,T). Then the following
implications hold:

(1) If w is nondecreasing in [ty,t2] and ¥’ (vg) — ¥/ (v1) > K(v — v;) for all v; <

vy, U, 02 € [u(ty). u(ty)], then (li\I’(u)’ -u') € BV(t;,t3) and

& " 1 1., [*®
(3.3) [ (T()) (1) (t)dt > [§(w(u(t)))’u’(t)}§j+§ls /t Ju'(t)3dt.
(1) If w is nonincreasing n [t,t7] and ¥’ (vy) — ¥’ (v1) < —=K(vy — v;) for all v; <

va, vy, 2 € [1(ta),u(t1)], then (3.3) holds.

Proor. The problem consists in justifying the integration by parts at the left-hand
side of (3.3). Put w(t) = ¥(u(t)) and ¥n(v) = [ no(n(v — 0))¥(o)do, where u € N

oo
is an arbitrary integer and » € D(—1,1) is a nonnegative mollifier, f_ll o(o)do = 1. Put

11



un(t) = ¥, ' (w(t)). The functions ¥,, converge to ¥ locally uniformly, ¥/, are locally -
bounded away from 0 and ¥, (u,) — ¥, (u) = ¥(u) — ¥p(u), hence u, — u uniformly.
The identity ¥/ (u,)u!), = ¥'(u)u’ a.e. yields |u,(t)| < const.|u'(t)| a.e., hence u), — v’
in L>-weak *. The function ¥’ is monotone in [u(?1),u(tz)] (or [u(t2),u(t1)]), hence it
has at most countably many points of discontinuity. ‘
If «(t) is a point of continuity of ¥', then ¥/ (ua(t)) — ¥'(u(t)), hence ul(t) —
S u'(t). Put A = {t € (t1,t2);ul (t) — u'(t)}. We have meas u(M) = |fM '(t)dtl =0
since ¥'(v) is discontinuous for every v € u(M). Consequently, u'(t) = 0 for a.e. t € M
and meas A = 0. This implies u, — u in WP(0, T')-strong for every p € [1,00).
In the case (1) we have li}ilgéf vy (un(t)) > K for every t € [t;.t3] hence the identity

[ atate) w00t = [ (alan ) s8] + 5 [ W0

1

for t; <71 < 1y <ty yields

(D] =

/2(\1;(“_(t)))”u,’(f)dt > | (lI/(u(t)))lu'(t)]: +-12£/ 2|u'(t)|3dt

for a.e. 7,12 € [t 1a]. Ty < T2,
The function 7 —— %[(‘I’(u(t))),u'(t)} ITI + L ft: [u'(t)]3dt — ft:(\ll(u(t))"n’(t)dt is
nonincreasing. hence 1 (¥(u)'v') € BV(t1,t;) and (3.3) holds. The case (ii) is analogous.
n

In what follows we reduce the class of Preisach operators (1.12). We assume

o 01
(3.4) (7) —I—, " are continuous in R! x [0, 00),
do 00°
(i7) n is continuous in [0, 00),

(247) p(o) = ap for p € R,
o)

ov
et > (o k) > + i
5% >0, n(h)> 89(9’ )20 VY(o,h)€ R” x[0,00)

We further define the function

. ¢ Jv
(3.5) B(o.h) = ; U%—(U’h)da'

For v € W1(0,T) we introduce the energy potential

(3.6) (2) Pi(u)(t)= —(;—'z[’(t)-f-/ B(In(u, A(h))(t), h)dh
0
. 1
(11)  Py(u)(t) = 51V,\(1L)'(t)u'(t),
where B 1s given by (3.3) and W) is the operator (1.12).

The potential P, does not correspond to the usual physical notion of energy. Its
physical meaning does not seem obvious.

12



(3.7)THEOREM. Put £(r) := a + fomax{h’r} n(h)dh. For every u € W11(0,T) we
have Py(u) € WEY0.T) and the inequalities

() (Walw)(®)® < 26(lullio,m) - Pr(u)(t),
(1) (Pr(w)'(t) < (Wa(w)) (t)u(?)
hold (almost) everywhere 1n (0,T).
Proor. For all (g, h) € R* x [0,00) we have

ov

0 )
o, h)-a—g(g,h) sign ¢ < leln(R) 5

(o, h)

,hence 12(o.h) < 29(h)B(e,h). Put B = [y IMom} f(pyan. For € = & Holder's

0
inequality yiclds

(Walu)(1)? < (14 é)(au(t))Q +(1+ s)(/ooo v(Ip(u, A(R))(2), h)dh)

and

o 2 oo
(/ (L (e ACR))(E), h)dh) < ﬂ/ ! V2(lh (u, A(h))(t), h)dh
JO 0 Tl(h)

which 1mplies (1).
Part (i) is an easy consequence of (2.8) and (2.7)(i) for v = 0. |

(3.8) THLOREM. :
(1) Let &(r) be as in (3.7). Then for every u € WUHY(0,T) the inequalities
(Wau) (O] < 260 ulljo, ) Pa(u)(t),  Fa(u'(t)? < Pa(u)(t) hold almost eve-
rywhere n (0,T). :
(i1) Let Uy,v be as in Lemma (3.1). Let u € W'°(0,T) be such that Wy(u) €
W2H0,T). If max{h,||lullpy} < U < Uy, then Py(v) € BV(0,T) and

(P2 )(t)]? < ft']?(Uﬁ(u))”(t)u'(t)clt —v(U) f:: |u'(¢)?dt forall0 <t <t, <T.

REMARK. We sec an important formal similarity between (3.7) and (3.8). This
justifies the "energy” terminology.

PROOF OF (3.8)

(1) It is casy to sce that Wy(u) is absolutely continuous, hence (i) follows from (2.8).
~ (i) The function (Wx(n)) is absolutely continuous, hence the set Z := {t € [t1,22);
(W',\(u))’(f) # 0} is open, Z = J;,(ax, bx). By Lemmas (3.1), (3.2) (ii) holds if
ty is replaced by ay and ty by be. Moreover, for t; < a; < t2,t; < k; < t; we have
by (i) Pa(u)(a;=) = Py(u)(a;+) = 0,Pp(u)(bj—) = Py(u)(kj+) = 0. The same
argument as at the end of the proof of Lemma (3.2) shows that P2(u) € BV(0,T).
The assertion now follows from the additivity of the Lebesgue integral.

(3.9) COROLLARY. Let Wy be the Ishlinskis operator (1.19) and let n : [0,00) —
[0,00) be continuous and positive in [0,00). Then the conclusion of Theorem (3.8) holds
for Uy = 400 and 4(U) = $ min{n(h),0 <h < U}.

13



PRroOOF. The formulas for Uy and v(U) are given in the proof of Lemma (3.1).

4. Dependence on parameters.

We have to consider hysteresis operators acting on function of one ”time” variable
and several "spatial” variables. For our purposes it suffices to consider functions u :
[0,1)x[0.T] — R' such that for every z € [0, 1] the function u(z, -) belongs to C({0, T).
The initial state A may also depend on x.

We assume

(4.1) (7) A:[0,1] x [0,00) — R} is continuous,
(i1) Mz, -) € A(R) for every z € [0, 1],

and we define for every w € C({0,1] x [0,7T]) and (z,t) € [0,1} x [0, T
(42) "V(U)(l‘,t) = ‘/V/\(::;)(u(ma ))(t)?

where 1, . 1s the operator (1.12).

(4.3) PROPOSITION. Let us assume (9.4) and let A satisfying (41) be given. Then
W given by (4.2) is a locally Lipschitz operator in C([0,1] x [0, T]) which is invertible
and W1 4s Lipschitz. ‘

Proor. For v € C([0,1] x [0,T]) put U(z,t) := W(u)(z,t),|lul| := max{u(z, )|,
z € [0,1].t € [0, T]},» = max{h, ||u||}. We have to prove first that U € C({0, 1] x [0, TY).
Let 0 < s <t <T.r.y€[0,1] be given. We have by (2.5)(1)

Uz t) = Uly,s)| < Ulz,t) = Uz, s)l + ¢(r)l|u(z, ) — u(y, o, +
h
+ / |A(x, ) — Ay, h)|n(h)dh,
Jo

hence U is continuous. The local Lipschitz continuity of W follows easily from (2.5)(3).
Let further U7 € C([0,1] x [0,T]) be given and put u(z,t) := W,\_(lz")(U(:v,~))(t)
(the invertibility of 1y, ) is ensured by (2.5)(ii1)). We have

I s )) = Wage o (eys N,y < 511 ) = u(ys lgo,s)

3
Hn'r/\(r,-)(“(f‘/v )) - 1'/V/\(y,-)(u(yv '))H[O,s] < / l’\(mvh) - A(yv h)l’?(h)dh’
0

hence w € C([0,1] x [0,T]). The Lipschitz continuity of W~! is an immediate con-
sequence of (2.5)(iit). ' |

(4.4)REMARKS.

(1) The operators 1V given by (4.2) depends continuously on A. If A\;, A, are two
functions satisfving (4.1) and 1; 1s the operator corresponding to A;, =1,2,
then for every n.v € C'([0,1] x [0,T]) we have

3
W () = Wale)|] < o(r)]fu = o] + max{ / A1z, h) = Aa(e, h)ln(h)dh; = € [0, 1]}.
0
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(ii) There is a slight ambiguity in the formula (4.2), where the dot in u(z,-) replaces
the "time™ variable ¢ and in A(z,-) the "memory” variable h. Here, the "memory”
character of  is not as important as in {7].

5. Statement of the problem.
Qur ain here 1s to solve the problem

(5.1) () Wiug)e — uzr = g(z,t),
(1) u(0,t) = uz(1,t) =0,
(i) u(z,0) = u’(2), w(z,0) = u'(e),
where u°,u!, ¢ are given functions and W is the Preisach operator (4.2) satisfying

the assumption of Proposition (4.3).
We first give a list of assumptions.

(5.2) g€ L{(0,00;L*(0,1)),G : [0,00) — [0, 00) are given functions such that
(1) (¢ 1s nonincreasing in [0, 00},

(i1) g€ L™(0,00; L*(0,1)),

1
(127) / lge(2, 1) da < G(t) a.e.,
Jo

(5.3) w® € W2%(0,1), uv' € W'%(0,1) are given functions such that
w°(0) = u!(0) = ual(l) = 0.

We put E(0) := 3 _fol [%(u"”(x) + g(z,0))? + [ull(:r)|2]dx,
(5.4) there exist U € (0,Up) and § > 0 such that A < U and

(i) G(0) i <

o 1 poK
-

£
(11) 6E(0) + 3G(0) (4 f’(&,; + G(O)> < (1-8)U?%, where Uy, ~,¢ are introduced in
Lemma (3.1) and Theorem (3.8).-

(5.5) REMARK. The condition (5.4) needs some comment. For an arbitrary opera-
tors W and U < U (5.4) holds if the data h,u®,u?, g; are sufficiently small in approp-
riate norms. On the other hand, if W is an Ishlinskii operator satisfying the assumptions

of (3.9) and

v({U) Uy
=0, m = 400,
=00 £(17) U—oo &(U)
then (5.4) holds for arbitrary data and U sufficiently large.
We can easily sec that Ishlinski operators satisfying (5.6) exist. Putting in (1.13)
n(h) = h"~? for some ¢ € (1,2), we have y(U) = in(U) = U2 ¢(U) = a+ 25U !
for U sufficiently large, hence (5.6) holds.
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The main results of this paper are the following:

(5.7) THEOREM. (Existence). Let (5.2)-(5.4) hold. Then there exist a continuous
function v : [0,1] x [0,00) — R! such that

Uiy Uyt € L= (0,00; Lz(oa 1))’“‘21 € L?SC(O,OO; LZ(O’ 1))’

(5. 1)(7'i) (111) hold for all t > 0 and z € [0,1], (5.1)(3) holds almost everywhere in
(0,1) x (0,2¢) and |u(x,t)| < U for all (z,t) € [0,1] x [0, 00).

(5.8) THEOREM. (Uniqueness). Let (5.2)-(5.4) and let u,v be two solutions of (5.1)
satisfying Theorem (5.7).
(x) If W is an Ishlinski operator, then u = v.
(11) If W is a general Preisach operator and uy,vee € L}, (0,00; L°°(0,1)), then u = v.

(5.9) THEOREM. (Asymptotic behaviour). Let (5.2)-(5.4) hold and let u be a solu-
tion of (5.1) satisfying Theorem (5.7). let us assume tlim G(t) = 0. Then there ezists
— 00

a function r : [0,00) — [0,00) such that tlim k(t) =0 and

[z, )] < K(2) V(z,t) € [0,1] x [0, 00).

If moreover G(t) = 0 for t > ty, then there ezists a fﬁnction v € W%2(0,1) and a

constant ' > 0 such that v(0) = 0'(1) =0 and

o~ |

(e 1) + Jug(a,t) =o' (z)] < V(z,t) € [0,1] x [0, 00). |

REMARNK. The qualitative analysis of the ”ordinary” equation u"” + W~l(u) = 0

(cf.[4]) shows that the cstimate —"— can hardly be improved.

(5.10) ProProOSITION. (Regularity). Let (5.7) hold. Then the functions W(uy)s, Uz :
[0,00] — L*(0,1) arc weakly continuous.

6. Approximation and estimates.
We apply rho spaco discretization method. Let n > 0 be a given integer. For t > 0

put g;(t _nf [ (§.r)drd¢, 3 =0,1,---,n—1.

Let us consider the system of differential equations for j =1,---,n — 1.

(6.1) W;(uf)(t) =Ajv(t) + g;(t),

U;-(t) :Aj~1u(t),
for unknown functions wy,...,un-1,v1,--*,vn—1, where we put ug = v, = 0, vo =
V1, Un = Up—y, DU = nf{vjp —v;), Aju = n(u; - uj-r), W= A(E)! with

initial conditions

(6.2) =i (L) o =2 (« (), o) =0,
Tt n



where (P(J) is the function corresponding to W; in the sense of (1.25).
By (2.5)(111), (3.4) the operators W]-‘l are Lipschitz in C([0,T]) for every T > 0 and
j > 1 with the Lipschitz constant Z, hence the system (6.1),(6.2) has a unique global
classical solution {uj,v;;j = 1,---,n — 1} and (3.8)(i) implies uj,v; € W2 (0, 00).
We obtain from (6.1),(6.2) u}(0) = u! (;71-) and from (5.3),(5. 4) lul(€)] <
(2E(0))? < [(1—6)/3)2U for each € € [0, 1], hence u'(t) < U for every j = 1,--+,n~1
and t sufficiently small. Put ‘

T, = inf{t > 0;u}(t) > U for some j = 1,---,n — 1}

and
B (1) = %Y; < ul)(t) + ( ;-’(t))z)

for t € (0,T5), where PZJ is the potential (3.6)(i1) corresponding to W;.
Equations (6.1) and Theorem (3.8)(i) yield

n—1

B gg;z[ ((Aju(t) = B ju(t)) + gi(0) +

+n? (W (Ao 4+ g;)(8) = Wi (Aj1v + g;-1)(1)°] -
The right-hand side of the last inequality is continuous with respect to ¢, hence

n—1

(04 < - [ (n(570(0) — Bj_yu(0)) + g}(0) +

j=1

+n?(20)7(A;0(0)) = (25771 (8-10(0)))?

This yields 3
limsup E™(0+) < E(0)

n-—+o0

hence (5.4) (ii) remains valid if E(0) is replaced by E(™(0+) for n sufficiently large.
We can differentiate (6.1) twice with respect to ¢, hence

(6.3) (7) Wiui)" = A" + g7,
(i1) o' = Ajoqu
holds in the sense of distributions and almost everywhere.

Let 0 € (0.T,) be arbitrarily chosen. Multiplying (6.3) by u'j' and (i) by vg’ we
obtain from (3.8)(i1) forall 0 < s <t < Ty

"y ; ‘1%
E=) = BV sty +a(0) [ 1 lu(r)ar <
S ]=1

t
/ ul(7)g; ()dr.

1

n

<

St

=1

17



b

We have indeed L DI g )P < fo lg¢(z,t)|*dz for every T < 0, hence (3.8)(i),
(5.2)(i1i) and Holder's mequahty yields

()| dr <

n—1 t

‘ . 1
6.4 E(¢ -y = pln) B~ /
(6.4) (t—) (s+)+ n; s

<K, G%(o)(t —3),
where B 3y (U)E(U) 4, K, = (2)F 4(0)-+.
We further multiply (6.3)(i) by u; and we obtain after integration

Z]/ () %S/:Pg(ug)(ﬂdr—%

-1

+n Z / (T dr + VM(s) — v(™(y),

where V(M(r):= 1 D PP LW (u} wi(7).
The lolatlon : Z'}’ 11 ul(r l S —11;2 IA] 1u’(T) = EJ 1 J(T)I then gi-

ves

(6.5) Vit — i)

1 » L1l o . 3
(n) — )5 | = § ! 2
+/: E'(r)dr < 3(t - s) {n ]-:1/3 le(u])(T)f d‘r:l

1 _,
+§G'(a)(t — 3).

[~TN

Let us choose a number (o) > 0 such that

o et << o]

Then (6.5) implics
t
(6.7) Vi) - v“*>(s)+/ EM(r)dr < (%Gz(a)+462(0’)> (t—s)+
n-—-1 t
1 1
+£(a) ‘n le/s

Let us denote F;,])(T) = EM(7) + Be(a)V (7)) for 7 > a.
We have by (3.8)(i) V") (r) < ¢(U)7 E(™ (), hence (5.4)(i) implies

3
2
dr.

P (u)(r)

SEM(r) < F(r) < Sp(r)
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for ae. 7 2 0.
Putting (6.4) and (6.7) together we obtain

. 1
F,(,”)(f—) . F‘(,”)(S-{P) + BE(U)/ E(")(T)dT < I(z(d)(t — 5)1

where
Ky(o) = I\'IG%(U) + Be(o) (%GZ(U) + 462(0)) ,
consequently
9 t
(6.8) Fi(t=) = Fi(s+) + -;;Be(a)/ F{M(r)dr < Ka(o)(t — s).

We see that the function

D) ) t ,
t— FU(t) + éBe(a)/ F{™(r)dr — Ky(o)t

o

is nonincreasing in (o, Ty), hence its derivative in the sense of distributions is non-

¢ positive. For every smooth positive function ¢ and every t € (0,T,) this yields
t
P(NER" (1 =)= p(0)Fy" (o +) + / [~F{M ()l (r)+
2 . ,
+ 2Be()F (7 )e(r) - Ka(oho(r)] dr <0
In particular, for ¢(t) = e3Be(0)(t=9) this gives
2 _ 3K,(0) _2 _
(n)(p_) < ¢~ &Be()(t=a) pln) S8200) (1 _ g=EBe(o)(t-0)
Fimgoy <e Ft (0+)+2B€(0) (1 g3 )
L hence
2 - Ki(0)]

6.9 EMt—)y <3 2 Be(a)(t C’)E(") 2
SN CX) B <3 e (o) + 5o

holds for every 0 < o0 <t < Th,.

Foro =0 (6.6),(6.9) imply
. U) 1
E™(t—) <3 [E™(04) + G(0 (2—5( + =G(0 )]
)+60) (255 + 560
hence by (5.4)(11)
(n)/s - 1 2
(6.10) E'W(t—) < 5(1 - §)U*.




(s

Let us suppose 1), < +o0. For almost every t < T, we have

2

1 n—1 1 n—1
o ) 2 . 2
max |uj(H)] < | ; A’ @ | =1~ ; ! (8)]

w=

IA

1

< <2E(")(t)) P <V1-4U,

hence
limsup july(t) < U forall j=1,---,n—-1,
t—Ty

which is a contradiction.
Consequently, T,, = +oo for n sufficiently large and (6.9),(6.10) hold for all
0<o <t < +oc. |

7. Proof of existence and regularity. o
Let {uj,vj; j = 1.---,n — 1} be the solution of (6.1),(6.2). For z € [}Lu %) and
t <0 we put

w'™ (2, t) r=u (t) + (:17 - %) Aju(t),

‘l'(”')(ilf,t) ::“U]'(t) + (’L‘ — ]—> Ajv(t),

n
" (z, 1) =u,(t),
sz 1) r=vj 41 (1),
7" (2, 1) =g}(1),

A (2, h) i=A <i,h)
n

and for every function z : [0,1] x [0,00) — R! such that z(z,-) is continuous for every
z € [0,1] we put
WM™ () (z,t) = IfV)\(n)(,,.)(z(z,-))(t).

The system (6.1) can be rewritten in the form

12
(7.1) i (f‘in)) = oM +/ ™ (z, 7)dr,
: 0
.&En) — u(zn)’

fort >0, v € (0.10\ {1, 2,... =1}

nint’ n
The estinate (6.10) shows that ui’f),v(r?),ugf),vgy) are bounded in
L>=(0,00; L?(0.1)) independently of n. For every T > 0 there exist functions z,w €
C([0,1] x [0,T]) such that z,,z,w,w0, € L°°(0,T; L2(0,1)) and subsequences

{ut™ vtm} of {u(™ v} such that w™ = z,0™ = w uniformly, u'P — 2,

w2 ol e o7 = wyin L0, T L?*(0,1))-weak *. Moreover, there exist

Univ.-Bibl,
Kaiserslaitarn

20



a constant ¢ > 0 such that utn)(a: t) — utn)(m t)’ < £
(m) ~(m) '

hence u, ' — z,7, " — w uniformly.

Remark (4.4)(i) holds also for functions A;, u, v which are piecewise continuous with
respect to r. Thercfore, 117 (m) (v&.f’”’) — W(z) uniformly and W™ (aﬁ"‘))t — W(2),
in L°°(0,T: L*(0,1)) - weak *.

We conclude from (7.1) that W(z); = w; + ¢, 2; = w: almost everywhere and
putting w(ax,t) := f v(f t)d¢ we obtain w = u,, 61(2 — u¢) = 0, hence z = u; and
(5.1)(i) holds almost everywhere in (0,1) x (0, T'). The initial and boundary conditions
(5.1)(i1),(ii1) are satisfied trivially. '

We can now repeat the same procedure in the interval [0, 2T choosing a convergent
subsequence {u(") v} of {u(™ v(™} By induction we construct a sequence {u(®}
of solutions of (5.1) such that u*) is defined in [0,1] x [0,kT] and u(k)|[0,lT] = uyy
for I < k. Let us note that (6.10) is independent of T, hence u can be extended to
[0,1] x [0, 0c] 1n such a way that (5.7) holds.

Proposition (5.10) follows from a standard argument ([1]). Let ¢, — t be an arbitary
sequence and let = > 0 be given. For % € L%(0,1) we find ¥ € W12(0,1) such that

fol W —1', dr < z. The function wz,,we, W(ue)e @ [0,00) — L?(0,1) are (locally)

bounded, hence there exists a constant ¢ > 0 such that e.g.

2, 572, 5) — oM(a,1)| < &,

] .
‘/ (tre(rty)=uge(z, t)(z)dz| < ce+
Jo

+ /Ol(uz(.v,tn) — u,(m,t))iﬁ'(:c)dx

and (5.10) follows casily.

8. Proof of uniqueness.
Let us asswune that the hypotheses of Theorem (5.8) hold. We have

| ‘
(8.1) / [(H"(u, ) — T’I/’('v,),)(u, — )+ (ugy — v gy — vu)] dr =0

J)

for a.e. t > 0.

In the case (5.8)(1) the assertion follows immediately from (8.1) and (2.7)(ii). In the
case (5.8)(ii) we put v (2, 1) := ly(u (a,-), Az, h))(2), v*(z,1) := I (ve(z, -), Az, h))(2).
Then (8.1) and (2.7) (1) yvield

(8.2) / /°° [%(Il(uh(l‘..t), h) — v(v"(z, ), h))] (u"(z,t) - vh(:c,t)) dh dz+
Jo Jo

Lo =

+ AI%[wﬂuw—v4a0f+a@maﬂ—w@¢»1szO

for a.e. t > 0.



The expression ?,L;(g, h) is bounded away form 0 for [p|+h < U (we have y(U) > 0,
cf the proof of (3.1)). Putting

M(t) ;:% ‘/01 q/o Ov (uh(x 1), ) (u(z,t) — vt (a, t))dh]
+ (ug(x.t) = vl.(.r,t)) + a(uy(z,t) — vt(x,t))2> dz

we wee that there exists a function k € Lj,.(0,00) such that %M(t) < k(t)M(t) ae
and Gronwall’s lemma completes the proof of Theorem (5.8). =

9. Asymptotic behaviour.
The proof of Theorem (5.9) relies on the inequality (6.9). We can choose € in (6.6)
such that 'lim ¢(#) = 0. Let us construct a sequence {t;},tx — 400 by induction:

La—su?
105_, (1——7——3—5 T )

. We have Ka(te) <c sz(tk), where ¢y 1s a

t] = Ostk'-}-] ~ 1ty = Be(te)

(I)

positive constaut.
For an arbitrary integer n and for t < ¢4+ we obtain from (6.9),(6.10)

E™(t-) < cpe(ty),

where ¢; > 0 is a constant independent of n and k. It suffices to put x(t) :=
[2¢26(tk-1)]'/? for t € [ti, tegr)- |

Let us suppose now G(t) = 0 for t < to. Putting (t) = % for t > to we obtain
from (6.9) E{"(r—) < ¢ (e“%B‘SE(")(t-k) + %;) for every T > 2t, where ¢ is a positive
constnﬁt.

Choosing ¢ sufficiently large (taking a larger t,, if necessary) we obtain

1 cé?
(m)(_ Zomin) -
EMi(r—) < 32E (t+) + 12
for all = > 2¢.
Put t; := 2%t4. We choose I > 32¢6? such that E(")(to-{—)‘g {; By induction we
V]
obtain K K
(n)g < _\‘ < _L
E(r+) < 442 — 72
fOI‘ T E [f[‘-,f[,-.*,] ) ’
We have g(a, 1) = ¢°(z) for t < ty. It suffices to put v( fo fal g°(b)dbda. We ha-
ve |u, )(z Hir < ] [1l(n) (z.t)*dz < 2F ")( ) ae., [u;C )(x t) — v'(z)2 <

< f |17 vy ™Y 2de < 26(U)E™(t) + o(n) for ae. t < tp and Theorem (5.9) is
proved.
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