


ASYMPTOTIC STABILITY OF PERIODIC SOLUTIONS 
TO THE WAVE EQUATION WITH HYSTERESIS 

Pave1 Krej<i 

Abstract 

The wave equation Fx(ut)t-uxx = g(x,t) with an Ishlinskii 

operator F, and a given u-periodic ri ght-hand side g is consid- 

ered here with suitable boundary conditions. Sufficient condi- 

tions are given for the existence, uniqueness and global asymp- 

totic stability of a periodic solution. The proof is based on 

the strict monotonicity of a "strictly convex" Ishlinskii 

operator. 

Introduction 

This paper is a continuation of [7l, where the existence, 

uniqueness and boundedness of solutions have been proved for the 

wave equation FX(u$t-uxx = g(s,t) with an Ishlinskii operator 

FTk' a ,given bounded right-hand side g and simple boundary and 

initial conditions. In fact, the paper [7l deals with a more 

general case, where a Preisach operator W is considered instead 

of FA. We suppose here moreover tha-t the function g is 

a-periodic wi-th respect to t. 

The existence and uniqueness of periodic sollltions of the 

wave equation with hysteresis has been already proved earlier 

(cf. e.g. C-l]) by the Fourier method. We use here the Ficken- 

Fleishman method (cf. CSI for further references) which enables 

us to construct the periodic solution and to prove at the same 

time its global asymptotic stability. 

It turns out that the Ficken-Fleishman method requires to 

consider more general initial configurations h of the Ishlinskii 

operator F,. For this reason the description of the structure of 

memory given in [61 is no longer applicable and we have to 

derive new formulas here. The basic properties of an Ishlinskii 

operator with an arbitrary admissible initial configuration are 

tonicity of 

which 

summarized 

F,o The ma 

in 83 1-3. In §§ 

in auxiliary resu 
4, 5 we study 

It is Proposit 

- l- 

the mono 

ion (4.3) 



characterizes the strict monotonicity of the Ishlinskii 

operator. In § 6 we mention parameter-dependent Ishlinskii 

operators and § 7 contains the main results and proofs. 
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1. Elementary hysteresis operators 

Let u E WIP1(O,T) be a given function and h10, X: E C-h,hI 

given numbers. The problem of finding a function xh t Wl+O,T) 

such that 

(iii) ~~(0) = x: 

has a unique solution (cf. e.g. 151). We mention here for the 

sake of completeness the follow ing simple regularity resu It. We 

denote by u; (u:) th e right derivative (left derivative, respec- 

tively) of u and similarly for xh. 

(1.1) (i) xh(t) E C-h,hl vt E [O,Tl , 

(ii) (xA(t)-u'(t))(xh(t)-$) L 0 a.e. V+ E C-h,hl 

(1.2) Lemma. Let u, h, xh, x: he as above. If for some 

t E [O,Tl u:(t) esists (u’(t) exists), then x A+(t) exists 

(xi-(t) exists, respectively) and s~+(t)(~~~+(t)-u'(t)) = 0 

(,x~_(t)(x~_(t)-u'(t)) = 0, respectively). 

The proof of this lemma is elementary and we omit it here. It 

follows easily from the implication 

CVff E (a,b); x(n) 6 (-h,h)l 

d C\Jt,s E Ca,bl; s(t)-x(s) = u(t)-u(s)1 . 

The existence and uniqueness result for (1.1) enables us to 

define an operator fh(.,xE): W +O,T) + Wl"(O,T) for every h10 

and Ix;1 6 h by the formula 

(1.3) fh(",x;)(t) := s,(t) 1 t E [O,Tl , 

where x,(t) is the solution of (1.1). This operator is usually 

called stop. Its properties have been extensively studied (cf. 

e .g. the monograph Cal). The operator fh(*,xc) is Lipschitz 

continuous in W "'(O,T) and continuous in W l"(O,T) for lLpLa 

(cf. Cll, [Sl). We need here another typical property of the 

stop (cf. C81). 
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(1.4) Lemma (Semigroup property). Fur every u t W +O,T), 

tl,t2 2 0, tl+t2 f T, x; E C-h,hl we have 

fh(U(++ fh(u,x;)(tl))(t2) = fh("'x;)(tL+Cg) ' 

Proof. Put x(t) := fh(u'x;)(t+tl), 

y(t) = fh("('+tl), fh(u,';)(tl))(t) 

for t e C0,t21. We have x(O) = y(O), (x'(t)-u'(tttl))(x(t)-~)~O, 

(y'(t)-u'(tttl)(y(t)-@)LO a.e. for all @ E C-h,hl, hence 

x(t) E y(t) in CO,t,l. q 

We now introduce the confipuration space 

A := 1 x E w lqo,q; IA'(h)1 L 1 a.e. . I 

For h10 we denote 

X E A; X(h) = 0 for h 2 6 . I 

For a given X E A and h10 we define the operator 

'h( '9 X(h)) : W1'L (O,T) + Wl"(O,T) by the formula 

(1.5) ehhx(h))(t) = U(tbfh("'";)(L) 

for every u t W "l(O,T) and t E CO,Tl, where xx is given by the 

relation 

(1.6) x h := sign(u(O)-A(h)) min (h,(u(O)-A(h)I) . 

The operator eh is called play. It can be shown (cf. e.g. [51) 

that for every u,v t W l'l(O,T), h,P f! -h, h10 and t t CO,Tl we 

have 

(1.7) Ieh(u,x(h))(t)-ah(v,~(h))(t)' 

5 ma,x 1 Ix(h)-p(h) I,II~-\~II~~,~~ , 1 

where we denote Ilwll 
[0,tl = max( Iw(s)(; O&s&t). 

Consequently, eh(* ,X(h)) can be considered as a Lipschitz 

continuous operator in C( [O,Tl) for every fixed h E A. 
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The operators eh, fh are hysteresis operators in the sense of 

Visintin's definition (they are causal and rate independent, cf. 

e.g. [81), hence it is meaningful to investigate their structure 

of memory. Let us denote that the case X=0 (so-called reference 

or virpin state) has been studied in [6l in detail. 

The following result is an immed 

(we make use of (l.Z), (1.7) and the 

C( [O,Tl). 

iate consequence of (1.1) 

density of W l'l(O,T) in 

(1.8) Lemma. Let u E C([O,Tl) be monotone in Ctl,t21 c CO,Tl. 

Then for t E Ct,,t,l we have 

eh(u,Q)) (t) = 

max eh(u,x(h)) (t I ) ,u(t)-h), if u is nondecreasing 

in Ct I'%' 

3 if u is nonincreasing 

in Ct l'tal ' 

eh(u,x(h))(tl),u(t)th 

This formula can be used as a defin ition of the play (cf. [Zl). 

2. Structure of memory 

I 
Intuitively, we call memory. of a system of evolution at the 

time t the set of those values of the system in the past (T&t) 

which determine its present value. We will see that in our 

situation the memory is typically a finite or countable set. 

Let us suppose now that u E C([O,T]), h10 and X E A(h) are 

given. For t t CO,Tl we denote 

(2.1) I 
r,(u)(t) := min h&O; 1 A(h)"h = u(t)] , 

RAW(t) := max rx(u)(T); ( 0-t) , 

The case R7(u)(t) = 0 is trivial (we have in this case 

U(T) = u(O) = X(0) for all 7 e CO,tl), hence we always assume 

Rr(u)(t) 1 0. 
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. 

(2.2) Lemma. Let t t CO,Tl be given and let us assume 

RX(u)(t) = r,(u)(t). Then for every 7 t [O,tl we have 

e-&0(h)(~) = X(h) for h h r,(u)(t) , and 

u(t)-h for h L +l) (U, if u(t) = h(h)+h , 

eh(U,h(h)(t,) = 

u(t)th for h L r,(u)(t), if u(t) = h(h)-h . 

Proof. We can assume that u is piecewise monotone (otherwise we 

approximate u uniformly by piecewise monotone functions and use 

the continuity of Bh). Let 0 = so~sl~...Lsn = t be the sequence 

of local extrema of u. 

For every h 1 rA(h)(t) and every 7 E [O,tl we have 

x(h)-h 6 U(T) 6 h(h)th. We obtain from (1.6), (1.8) by induction 

over i for every i=O,l,...,n, putting hi(h) := eh(u,X(h))(si) 

a)h EA, i Xi(O) = U(Sij ) 

b) k(h) = X(h) for h'rh(u)(t) . 

Let us suppose for instance X(rA(u)(t)) t rx(u)(t) = u(t) 

(the other case is analogous). For hLrX(u)(t) (1.8) yields 

~h(u,h(h))tt) = max{xn-l(h),u(t)-h) , where 

r,(u)(t) 
1 n-l(h) = ~,,-l(rJ~~HtH - S 

h 
hA-l(alda 

-L \(r,(u)(t)) t r,(u)(t) - h = u(t)-h 9 

t hence (2.2) follows easily. Cl 

We now introduce the concept of memory sequence. It will 

enable us to derive an explicit formula for e (u,h(h))(t). 
h 

We still assume that u t C([O,T]) and X t A(h) are given. Let 

t E CO,T] be fixed. We find 

E := max 7 E CO,tl ; 1 rX(u) (7) = RX(u) (t,)) 

and we put 

f h 
0 

:= R+)(t), t :=5. , 
0 

if l(r,(u)(t)) - r,(ll)(t.) = u(t) , 

hl := RX(u)(t), tl:=? , if A(r,(u)(t)) t r,(u)(t) = u(t) . 
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The memory sequence MESA(u)(t) := ((tj'hj)) is then construct- 

ed by induction: We put 

(2.3) 

I 'Zk := max -r e ( Ct2k-l't1 ; u(T) = min u("); ( a e Ct2k-l, 

'2ktl Ct 2kd1 ; u(') = min D e Lt2k, 41 

I until t n =t, 

I h jtl := +L(tjilj-u(tdjj j , j = (0),1,2,...,n-1 . 

One of the following possibilities occurs: 

a) the sequence ((tj,hj)] is infinite, lim hj=O, 
j-+m 

t 
b) the sequence 

((tLj'hLj)l 
is finite, t=t n' 

In the case b) we put hn+l := 0. 

(2.4) Proposition. 

$+,x(h))(t) = 

For every t t CO,Tl and h\O we have 

X(h) , hhR#-dW , 

u(tj)+(-1)jh , h l [hjtlrhj), j=(O),1,2,... 

. 

Proof. Let us assume for instance t=tl (the other case is 

analogous), and for h\O put Xl(h) := eh(u,h(h))(tl). By (2.2) we 

have 

I 
l(h), h'R+)(t) , 

Q(h) = 

u(tl)-h, hLR#~)(t) , 

hence xl E A, Al(O) = u(t1). Put ul(r) := u(Ttt1) for 

T E [0,t-tg * Then (2.3) yields 

RX (u,)(t-t,) = rA 
1 

1(u1j(t,2-tl) = ;(u(tl)-u(t2~~ = h;! 3 

hence using (2.2) and (1.4) we obtain 

i 

Xl(h), h&h 2' 

u(t2)th, hLh2 . 
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An easy induction over Us := u(Tttj), j=l,Z,... completes 

the proof. cl 

(2.5) Corollary. Let A E A(hj), u E C( [O,Tl) be given. For 

t E CO,Tl an'd h\O put 

At(h) := eh(u,A(h))(t) . 

Then we have for every t E CO ,Tl 

(i) At E A, At(O) = u(t), 

(ii) At(h) = X(h) for h 2 R.+)(t), 

(iii) Id dh XtUd 1 = 1 for a.e. h L Rx(u)(t), 

(iv) At E A(h), where i = max (L,IIuJiCo T-,]. 
, 

Remark. The configuration ht E A characterizes the memory of the 

play-stop system at the time t. 

3. Ishlinskii operator 

(3.1) Definition. Let 4 t L:oc(O,m) b. e a given nonnegative 

function and let '~'0, 6'0 be given numbers. For h E h(h), 

u t C( CO,Tl) and t E [O,Tl h'e put 

F+)(t) = au(t) t ; e~~(u,~(h))(t)~(h)dh . 
0 

We have indeed eh(u,h(h))(t) = 0 for hAmax h,lliII ( C0,tl I 
hence FX maps C(cO,TI) into C(cO,TI). The operator Fx is called 

an Ishlinskii operator. 

The local Lipschitz continuity of F, is an immediate conse- 

quence of (1.7). Moreover, (1.7) yields for OhsLtLT 

IF&l) (t)-FA(u) (s) 1 L cllu(. )-u(s)11 
rs,t3 ' 

hence F, maps W l"(O,T) into Wl'"(O,T) for every l&p-Lo). 

Using Lemma (1.2) and Lebesgue's Dominated Convergence 

Theorem we conclude that the identity 

0) 

(3.2) (FX(u) J;(t) = m:(t) + ; ( gh(u,A(h) );(t)+(h)dh 
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holds provided u:(t) exists. The continuity of Fh in W1"(O,T) 

for l&pLm is an immediate consequence of the continuity of 

'h( '9 X(h)). 

In the sequel we assume 

(3.3) o(h) 1 0 for a.e. h 1 0 . 

It is clear that (FA(u))'(t) = 0 if u'(t) = 0. For u'(0) k 0 

the following lemma holds: 

(3.4) Lemma. Let t t (0,T) be given such that u’(t) f 0 and 

(FA(u))'(t) exist. Put p(t) = inf (tj;hj) E NS^(u)(t)). 

Then p(t) 1 0 and 

, (eh(u,x(h)))'(t) = 

c 

0 for h 1 p(t) , 

u'(t) for h L p(t) . 

Proof. We can suppose u'(t) 1 0 (the other case is analogous). 

The memory sequence is obviously finite (otherwise we would have 

u'(t) = 0), hence t=t2k+1 for some k-'O and 

a) p(t) = RX(u)(t) = r,(u)(t), if k=O, or 

b) p(t) = h2k+l = i(u(t)-u(t,,)), if k&l. 

In the case a) we have for hip(t) (eh(u,x(h)))l(t) = 0, for 

hLp(t) we have 

x,(t) := u(t)-fh(u,h(hj)(t) = h , 

hence (1.2) yields xk (t) = 0. Consequently, 
t 

0 = (F,(u))~(t)-(F,(u))'(t) 

P(t) 
= s h'(tj-(eh( u,x(h)))'(t)l+(h)dh t 

0 

t 4 (yu, 

P(t) 

h(h)));(t)+(h)dh . 

We have indeed u'(t) 1 (~h(u,i(h)jj'(t), (eh(u,x(h))); h 0 by 

(1.2). Applying the same argument in the case bj we obtain the 

assertion. q 
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(3.5) Lemma. Let 1 t A, u E W1'l(O,T) and h\O be given. For 

t t [O,Tl put p(t) = inf t MEGA(u Then the set 

Mh := t t [O,Tl; is finite or empty. 

Proof. Suppose that Mh is infinite for some h10. We may assume 

that: 

l there exists a monotone sequence 7i + ~~ such that 

~'(7~) 1 0, p(ri) = h (the case u'(T~) L 0 is analogous), 

l Rh(~)(~i) 1 r,(u)(~:~) for all i=1,2,..., 

l there exists a convergent sequence ai + u. such that 

U. L T., 
1 1 Ll(Ti)--U('=i) = 2h, u(t) E [u$) ,U(Ti)l for 

t E [U,,T.l. 1 1 

* Therefore, go L TV, u(T,)-u(o,) = 2h, u(t) E CU(~~),U(T~)~ for 

t E bO,TO I. In both cases 7 i 1 T T\ 7 
0' i we obtain a contra- 

0 

i diction with (2.3). 

4. Monotonicitp 

(4.1) Proposition. Let alO, 610, X,/1 E A(h), u,v E Wl'l (OPT) 

and + t L lop' m) satisfying (3.3) be given, and let F,, Ep be 

the Ishlinskii operators (3.1). Then for almost all t E (0,T) 

we have 

, 
(F,(u)-F~(v))'(t)(u(t)-v(t)) 

, 
+ ; (Eh(u,X(h))-eh(v,~(h)))2,(h)dhl . 

0 

Proof. Let us choose t E (O,T) is such a way that u'(t), v'(t), 

(FA(u)'(t), (FA(v))'(t) exist. Then (eh(u,h(h)))'(t), 

(eh(v,dh)))'(t) exist for all values of h\O except of two at 

most. For all such h (1.1) yields 

(4.2) (e,(u, x(h))-eh(v,~(h)))'(u(t)-v(t)) 

h ; gy( @h(u, x(h))-eh(v,~(h)))2(t) , 

? Integrating with respect to h we obtain (4.1) 
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(4.3) Proposition (Strict monotonicity). Let the assumptions of 

(4.1) be satisfied and let us suppose X(O) = u(O), P(O) = v(0). 

Then the following 4 conditions are equivalent: 

(i) (F~(u)-F~(v))'(t)(u(t)-v(t)) 

for a.e. t E (0,T); 

(ii) For every h\O we have 

(eh(",x(h)))'(t)(Xh( t)-yh (t) 1 

= (eh(v,~(h)))'(t)(xh(L)-rh(t)) = 0 

for a.e. t t (O,T), 

where we denote 

xh(t) := u(t)-eh(u,h(h))(t) , 

Yhh) := v(t)-~hbw(h))(t) ; 

(iii) For every h10, t t CO,T], 6 E CO,11 we have 

eh( du+( l-S)v, aA(h)+(l-s)p(h))(t) 

= aeh(u,h(h))(t)t(l-6)eh(v,P(h))(t) ; 

(iv) For t t CO,Tl put R(t) 

for every t E CO,Tl and 

= max RX(u)(t), Rp(v)(t)]. Then 

h10 we have 

eh(",x(h)) (t)-eh(v,P(h) (t) = 

for h 3 R(t) , 

X(R(t))-P(R(t)) for h L R(t) . 

Remark. -We see immediately using (2.5)(i) that in (4.3)(iv) we 

have X(R(t))-p(R(t)) = u(t)-v(t). 

Proof of (4.3). Let us denote Ch(t) = eh(u,h(h))(t), 

T,(t) = pv(h)) (t) * 

f 
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(i) d (ii); Let us denote by M the set of all t E (0,T) such 

that u'(t), v'(t), (FA(u))'(t), (F,(v))'(t) exist and (i) holds. 

Let p(t) be as in (3.5) and put analogously 

c ( t ) := inf h.; ( J (tj'hj' t MSP(v)(t)] for t E M. 

The expression ([h(t)-qh(t))(xh(t)-yh(t)) is nonnegative by 

(1.1) (or (4.2)) and continuous with respect to h in 

(0,mJ ' (p(t), o(t)) for every t E M. Thus (i) implies 

(4.4) (~~(t)-s~(t))(xh(t)-Yh(t)) = 0 

for every t t M and h E (0,m) \ (p(t),o(t)). 

Let h\O be now arbitrarily chosen. By Lemma (3.5) the 

identity (4.4) holds for almost all t E (0,T). We have indeed 

by (1.1) I;l(t)( xh(t)-yh(t)) 1 0, yh(t)(yh(t)-xh(t)) A 0 a.e., 

hence (ii) follows from (4.4). 

L ii) 4 (iii); Let h"O be fixed. We have C'(x -+) 2 0, 

r)A(yh-6) 2 0, 8.e. for every (0 E [-h,hl, heiceh(ii) yields 

<;l(yh-@) A O, 7A(xh-@) A 0 8.e. for every + E C-h,hI. 

Consequently, for each 6 E LO,11 we have 

Ch(nsht(l-n)yh-+) 8 0 ) 

qasht(l-a)yh-+) 1 0 

a.e. for all Q E [-h,hl. Therefore, 

(61ht(l-6)~~h)(6xht(l-6)yh-$) a 0 a.e. for all @ t C-h,hl . 

, We have th(0) = X(h), ~~(0) = p(h), hence (l-l), (1.5), (1.6) 

imply (iii).. 

(iii) d (iv): For h&R(t) we have by (2.4) th(t) = A(h), 

vhW = p(h). Let us choose hLR(t) and let us suppose 

Then (iii) yields for every 6 E (0,l) 

1% Bh( dut(l-6)v, dh(h)+(l-6)p(h))(t)' L 1 B 

Then by (2.5)(iii) h'R,,t(l-,)P(~ut(l-~)v)(t). 

Necessarily we must have for every T E [O,tl by (2.1) 

sh(h)t(l-s)p(h)-h L au(?)t(l-6)v(T) L Ex(h)t(l-6)p(h)th . 

L 
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On the other hand, we have either hLRA(u)(t) or hLRp(v)(t). This 

means that there exists t E [O,tl such that one of the four 

inequalities holds: u( to7 1 k(h)th or u(to) L h(h)-h or 

v(t,) 1 p(h)th or v(t,) L p(h)-h. Choosing 6 or (1-a) suffi- 

ciently small we obtain a contradiction. 

(iv) 4 (i): For h'R(t) we have <h(t) = qh(t) = 0, for hLR(t) 

we have by (iv) xh(t) = yh(t) and (i) follows easily. 
q 

Remark. The assumption X(O) = u(O), ~(0) = v(O) is not restric- 

tive. Indeed, if we replace X(h) by ho(h) := eh(u,h(h))(0), then 

for every t&O we have by (2.4) e,(u,x(h))(t) = eh(u,xo(h))(t), 

hence the values of X(h) for hLrX(u)(0) are irrelevant. 

I 
5. Periodic inputs 

Let ~10 be given. We denote by Cw(Wc, lyl) th e space of continuous 

(absolutely continuous, respectively) o-periodic functions. It 

follows immediately from (2.2) and (1.4) that Bh(u,A(h)) is U- 

periodic for every u E C., A E A and h10 for 

t A min T E cO,i~l; rX(u);T) = R,(u)(~J)]. In particular, t 
e (u,A(h)) and F,,(U) are w-periodic for t&o. h 

The following result is an easy consequence of (4.3). 

(5.1) Proposition. Let the assumptions of (4.3) be satisfied 

for some u,v E W 191 and let (4.3)(i) hold for a.e. t'0. Then w 

&( ‘h(“’ X(h) l(t) - “IIt v,y](h) )(t)) = 0 

for all h\O and a.e. t\cJ. 

We note only that the function R(t) in (4.3)(iv) is constant 

in this case for t&o. 

Propositions (4.3) and (5.1) are generalisations of (l.G)(ix) 

of 131. The proof we present here is considerably simpler. 
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6. Dependence on parameters 

In the sequel we deal with functions which depend also on 

spatial variables. We consider the spatial variable as a param- 

eter. More precisely, if 

u : CO,llxCO,Tl -+ R1 and A : CO,llx(O,m) + RI 

are given functions such that for some 610 we have 

(6.1) (i) u(x,*) E C([O,TI) for every x t [O,ll , 

(ii) X(x,*) t A(h) for every x e’CO,ll , 

then we define for a given cvl0 and @ E Lioc,(O,m) the value of 

the Ishlinskii operator 

(6.2) F+)(x,t) := F 
X(x,*) ( u ( x , *j)(t) , 

where FX(,;, .) is the operator (,3.1). We use the same notation, 

since no confusion is possible. We write similarly 

eh(U,X(l,h))(x,t).:= eh(u(~~,.),h(x,h))it) . 

7. The wave equation 

(7.1) Assumptions 

(i) h10) x E C([O,ll); A(Fl)) 

(ii) n10, @ E L;oc(o,-) are g ven such that (3.3) holds. 

We put for r\O 

t(r) = a + 7 @(h)dh , 
0 

and we assume 

are given; 

y(r) = infess (@(h);OLh'r] 

lim -2XA = 0 , 
r+a r2r(r) 

lim * = tm ; 
I'-$" 

(iii) u 0 E WzY2(0,1), uI e Wlf2(0,1) are given functions satis- 

fying ~~(0) = u'(0) = u"' (1) = 0; 

(iv) g E LOJ(O,m; L2(o,l)) is a given function such that 

gt E Lrn(0,m;L2(0,1)) and g(x,ttw) = g(x,t) for every t&O; 

I 
(VI We introduce the space 
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HZ' 
2 

( u E Lm(o,-;LZ(o,l)); Utt,Uxx,Uxt E Lrn(O,m;L 
2 

:= (O,l)) , 

u(O,t) = ux(l,t.) = 0 for all t&O * I 

Assuming (7.1) we consider the problem 

(7.2) (i) Fhbt)t-"xx = g(x,t,) , x E (O,l), t10, 

(ii) u(o,t) = lq1,t) = 0 ) t&O, 

(iii) u(x,O) = u"(x) , ut(x'O~ = ul(x) ) x E co,11 ) 

where F, is the operator (6.2). 

The following theorem is one of the main results of [71 

(Theorems (5.7), (5.8) and Remark (5.5)): 

(7.3) Theorem. Let (7.1) hold. Then the problem (7.2) has a 
2 

I unique solution u E Hz' such that (7,2)(i) holds almost every- 

where in (0,1)~(0,~). 

The main result of the, present paper reads as follows: 

(7.4) Theorem. Let (7.1) hold and let u t Hi" be the solution 

of (7.2). Then there exists a funct.ion u* E Hz' 2 
such that 

U*(X,ttw) = u*(x,t) for all (x,t) E [O,ll~[O,m] and 

1 
lim max (lu,(x,t)-11~(x,t) Itlux(x,t)-u~~(x,t) I) = 0 . 
t+m XECO,ll 

I (7.5) Theorem. Let the assumptions of (7.4) hold. Then u* satis- 

fies (7.2)(i) for almost all (x,t) E (0,1)x(0,-) and u* is the 

uni q ue w-periodic solution of (7.2)(i), (ii) for t&w. 

Proof of (7.4). The sequences ut(s,nu) , I ( ux(x,nw) , J 
n=0,1,2,... are equibounded and equicontinuous in C([O, 11). 

Putting Xn(x,h) := eh(nt,X(x,h))(x,nw), h := max(h,VI, 

V := sup 1 lqx't) 1,x t I0,1l,t-o] we see by (1.7) that the 
h 

sequence IX,) is equibounded and equicontinuous in C(CO,ll;A(h)) 

(note that A(k) is compact in the sup-norm). 

By Arzela-Ascoli theorem there exist v ,wo t C(CO,ll) and 
0 

A:t: ,. 
t C([O,ll;lI(h)) and a subsequence (nil of in) such that 
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ut(* ,nio) -+ vo, ux(*,nio)+ wo uniformly, 

x + h* 
n. uniformly. 

1 

Let us denote u"(x,t) := u(x,t+nu). The semigroup property (1.4) 

yields 

(7.6) FA (uFJt - uz, = g(x,t) a.e. for n=O,l,Z,... . 
n 

“32 We further define the expression D(v,w,P,v)(t) for v,w e Ho 3 

P,L/ E C([O,ll); A(h)) and t'0 by the formula 

(7.7) D(v,w,P,v)(t) Ca(v 
O 

t-wt)2(x,t) t (vx-wJ"(x,t) -I- 

03 

2 
t J (eh(v,p(x,h))(x,t) - eh(w,ll(x,h))(x,t)) @(h)dhldx. 

0 

Indeed, if FP(vt)t-v xx = g(x,t), Fy(~t)t-w,XX = g(x,t) a-e., 

then (4.1) implies 

(7.8) & D(v,w,P,l')(t) 6 0 a.e. 

This yields in particular 

n. n. n. n. 
D(u l,u J,XnA,Xn 

1 <i 

)(t) 4 D(u i,u J,Xn 
i 

,Xn.)(0). 
J 

By hypothesis, the right-hand side of the last inequality tends 

to 0 for i,j + m. Consequently, (uii], [uEi) are Cauchy 

sequences in L"(0,a;L2(0,1)) and there exists a continuous func- 

tion u* such that u*:,u ; E Lrn(O, m;L 2 (0,l)) and u 
ni + u" ni 

t t t' ux + u; 

in Lm(0,~~;L2(0,1)) strong. 

“32 On the other hand, the sequence (un) is bounded in Ho , 

hence u* E Hm' 
2 and u ni + u* in H 0' ) 2 weakly-star, u ni 

t 
+ u* 

0 0 t' 
ni u + u:f: 
x x locally uniformly. This implies ut(x,O) = vo(x), 

uz(x,O) = we(x) and 

(7.9) FA*(uEJt - u:, = g(x,t) c2.e. 1 

Put u**(x,t) := u*(x,ttW), x"*(x,h) := 8h(u$h*(x,h))(x,o) 
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for x E CO,ll, t&O, hlO. 

Our next goal is to prove u ** = & A** = A** 

Put n=l and r := lim D(uL ,U,h l,wt). We have for every t&O 
t+m 

,(,p*,,y**, 1. A*)(t) = lim D(u ,u,X1,X)(t+rlicJ) , hence 
i+m 

(7.10) J)(,lzk*,u*,X**, X*)(t) E r = const. for all t&O . 

Differentiating (7.10) with respect to t and using (4.1) we 

conclude that the condition (4.3)(i) is satisfied for almost all 

x E (0,l) for u := u;*(x,.), v := qx,.,, A := x**Ic(x,+ 

P := x*(x, -). 

: 

t 

The function R(t) in (4.3)(iv) is nondecreasing, hence by 

Proposition (4.3) for almost every x e (,O,L) and every h10 there 

exist the limits 

Lim uE"(s,t)-uE(x,t) =: LJ(x) , 
t+a 

lim (eh(uz*,A 
t+m 

"*(x,h))(x,t)-~h(u;,A*(x,h))(x,t)) =: L(x,h) . 

The function u: is bounded in [O,llx[O,m), hence necessarily 

U(x) = L,(x,h) = 0. 

Let now ~10 be given. We denote by II*Il the norm in Li2(0,1). 

There exists TolO such that for t'T we have 
0 

that for every t&O and j&J q( * ) tto)-uE(*,t)II L z, and J10 such 

we have 

IIuT( - ,t) - Ut( * )t,tn.i3) II 
L J 

Put T 
1 

= TotnjcJ. For t'T 
1. we have t-n 

- 1~1 t ( * ) t ) II L 

L,et now t&O be arbitrary. We find K',J 

have 

CJ 1 T 
0’ 

hence 

3E . 

such that ttn k ~3 1 T 1' We 

II,,; ( * ) tto)-uy ,t) II L q( .,tt~J)-ut(',ttotnko)O t 

t "Ut( * ) t+otnkw)-ut(*,ttnkCJ)lj t nut(',t+nko)-u~(',t) 11 L 5e 
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consequently u ** = u E a.e. 

immediately u*' = u*. 

The boundedness of u* implies 

We now pass to the limit in (8.19) for t+m. This yields r=O, 

hence X*' = h*. 

Using (1.4), (7.6), (7.8) and (7.9) we obtain for each n 

ntl n *,A D(ut ,u;,An+,,~*)(0) = D(u;,u;,$~*)(~~) 6 D(ut,ut ,,h*)(O) , 

hence the sequence (d,), dn := D(u$u~~'~,A*)(0) is nonincreas- 

ing. 

We have indeed ii+; d,,=O, hence d,+O as n+m. 
1 

In the same way as above we conclude that ut + u:, uz + uz 

locally uniformly in [O,ll~[O,~l. 

Let now ~10 be fixed. We find no such that for n&no and 

(x,t) t CO,~IXCO,~JI we have 

qx,t,-u~(x,t)I + lu;(s,t)-u;(x,t)l L z , 

For each t'nou we find n&no such that t E [nw,(,ntl)w) and we 

obtain 

lqx,t)-+,t) It Iux(x,t)-uj~(Y,t) 1 

= lut(x,t-nw)-uE(x,t-nw)I t (ut(x,t-nw)-uz(x,t-nW)I L 8 . 

1 Theorem (7.4) is proved. q 

r Theorem (7.5) is now an obvious consequence of (7.9), (4.1) and 

(5.1). 
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