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1. Introduction 

There is an extensive literature concerning feedback invariants 

of linear multivariable systems and their connection to control 

problems. Popov (1964) introduced feedback invariants in connec- 

tion with a study of stability and linear optimal control. 

The indices which are known as controllability indices in the 

literature were first identified as a complete set of invariants 

of the orbits of controllability pairs under state-coordinate, 

input-coordinate and feedback transformations in a paper by 

Brunovsky (1970). Popov (1972), Rosenbrock (1970) and Kalman 

(1971) published similar results nearly atthe same time. 

Rosenbrock (1970) and Kalman (1971) showed the connection 

between controllability indices and Kronecker indices of a 

singular matrix pencil. Wonham and Morse (1972) analysed 

controllability indices in the context of the geometric state 

space theory.. 

Rosenbrock (1970) and Rosenbrock and Hayton (1974) introduced 

dynamical indices of transfer functions and showed that they 

equal the controllability indices. 

Wolovich (1974) identified the controllability indices with the 

help of coprime factorizations of transfer matrices, where the 

polynomial matrices are in Vcolumn proper form". 

All these papers consider either the classical state-space 

setting or the transfer-function description. 

A module theoretic approach to the definition of controllability 

indices and their controltheoretic properties was given 'in 

Forney (1975), Miinzner and PrStzel-Wolters (1978) and Kailath 

(1980). 

In the recent years singular linear systems and linear systems 

in autoregressive representation have become a major research 

topic in linear control theory. The investigation of the fine 

structure of controllability for these systems plays an 

important role, in particular, the above mentioned module 

theoretic approach has been extended to singular linear systems. 

In Kucera and Zagalak (1988) "input controllability indices" for 

singular linear systems (E,A,B) are defined as minimal indices 

of the FCsl-module ker[sE-A,Bl and an extension of Rosenbrock's 

pole-(invariant factor) assignment theorem is given. However, 

these controllability indices do not form a complete system of 
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invariants for the feedback-action on singular systems. 

In a series of papers, Dai (1989), Shayman (1988), Karkanias and 

Heliopoulou (19891, Malabre et al. (1990) and recently 

Gliising-Ltierfien (1991) refined the above concept of c.i.'s to 

obtain such sets of complete invariants for the feedback action. 

For the more general class of linear systems in AR-representa- 

tions there is no developed theory for the feedback equivalence, 

the pole-assignability-problem and the concept of controllab- 

ility indices. However, recently Fagnani (1991) has introduced a 

geometric concept of controllability indices for general 

dynamical discrete time behaviour systems as defined in a series 

of pioneering papers of Willems ((1986a), (1986b), (1987), 

(19881, (1991)). In Willems' approach controllability is defined 

as an intrinsic system property which does neither depend on 

special dynamical properties like linearity, finite dimen- 

sionality etc. nor on the model representation. Consequently, 

the index list defined by Fagnani is given exclusively in terms 

of the behaviour. 

In our paper we apply the module theoretic concepts introduced 

for behaviour systems in' Hoffmann and Pratzel-Wolters (1991b) to 

construct a list of algebraic controllability indices for linear 

dynamical systems in AR-representation. Our approach is a 

straightforward extension of the characterization of controll- 

ability indices as minimal indices of the FCsl-modules 

ker[sE-A,Bl in the state- space setting. It covers Fagnani's 

definition if the system class is restricted to linear, 

time-invariant complete behaviour systems with time axis T=&. 

Section 2 contains some preliminary remarks concerning 

controllability of behaviour systems, in particular in AR- 

representation. 

In Section 3 controllability indices are defined for linear 

systems in AR-representation. The obtained index list is shown 

to be equal to the Fagnani index list. A characterization of 

controllability via the controllability indices and an effective 
. 

algorithm for their computation is given. 
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2. Preliminaries 

In the recent years J.C. Willems developed in a series of papers 

a general theory of dynamical behaviour systems 1 = (T,W,B) with 

time axis T : IR, signal alphabet W and behaviour B -5 WT (see 

e.g. Willems (1986a, 1986b, 1987, 1988, 1991)). 

C is called time invariant if T is an additive subgroup of IR and 

B is invariant with respect to all t-shifts 

2: WT + wT , w(t) I- w(ttt), t E T . 

A time invariant system C with time axis T=&! or T=lR is called 

controllable if, for every w 1 and w 2 in B, there exists O&t E T 

and w E B such that w-=w- i and (utw)+=wi, where 

W := 
Wi(-m,O)nT ’ w+ := W~[(),m)oT ’ 

1 is said to be complete if 

[w E I?) * (“Ict t ] E BJ[t t ,’ vt19t2 E TY t,1=t2] 
1' 2 1' 2 

In Willems (1991) it is shown that every linear time-invariant 

complete system C = (&,lRq,B) has an autoregressive (AR)- 

representation: 

R = ker P(u,o -1 ) (2.la) 

P(s,s -5 = PLSL&.. tpes 
e 

t lRpxqcs s-l1 , (2.lb) 

The operator 

(IR’)’ - (IR’)” 

P(o,u-l) : ,tEt 

w(t) I- PLw(ttL)t...tPLw(tte) 

is called a dipolynomial shift operator. If e&O then P(u,@-1) is 

polynomial and denoted by P(u). q denotes the dimension of the 

signal alphabet space W=lR', whereas p, the number of equations 

representing B, is flexible. However, among all dipolynomial 

matrices P(s,s -1 ) satisfying (2.la) there exi?t those with full 

row rank. They are unique up to multiplication from the left by 

unimodular matrices U(s,s -l); there holds: 
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U(s,s -1 ) E lRpxp[s,s-l] unimodular e det U = c,sd, 

cx E IR\ (01, d E t 

Introducing the dipolynomial degree function 

ddeg: lR1xq[s,s-ll + N, aLsL+... 
e 

t*p + L-E (2.3) 

Willems (1991) calls a full row rank matrix P a minimal lag 

description, if among all full row rank AR-representations its 

total lag, i.e. the sum of the row degrees of P, is as small as 

possible. 

For T=&+, IR, II?+ we consider analogous polynomial AR-representa- 

tions with: 

B = ker P(u) resp. B = ker P(dt % (2.4) 

where P(s) E IRPXq[s] 

Whether or not a behaviour system in AR-representation is con- 

trollable can be read off from the behavioural equations: 

2.1 Theorem [Willems (1991)l 

Let C = (&,IR', B) a dynamical system in AR-representation: 

B = ker P(u,u-1) , 

-1 with P(s,s ) e IRPXq[s,s -II of full row rank. Then the following 

conditions are equivalent: 

(i) 1 is controllable. 

(ii) rank& P(X,h-') = p for all O&X E CJ (2.5) 
0 

2.2 Remark: 

For T = lR,Iff+ resp. &+ Theorem 2.1 remains true if we replace 

P(s,s 
-1 

) by a polynomial matrix P(s) E (Rpxq[s] and require (2.5) 

for all 1 l 6, i.e. 

rank cl P(A) = p VA E a (2.5a) 

cl 
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A characterization of controllability in terms of the 

coefficient matrices of the representing dipolynomial resp. 

polynomial matrices which generalizes the classical 

controllability matrix in the state-space setting is derived in 

Hoffmann and Pratzel-Wolters (1991a). Furthermore, an effective 

numerical algorithm to test controllability is given in the 

above paper. 
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3. Controllability indices for AR-systems 

In the literature there are several approaches for the investi- 

gation of controllability indices (c.i.) for different represen- 

tations of linear systems (c.f. ex. Miinzner and Prkitzel-Welters 

(1978)). Recently, Fagnani (1991) has introduced a general 

concept of c.i.'s for linear time-invariant dynamical systems 

C=(T, IRq,B) with time domain T=2? exclusively in terms of the 

behaviour B, i.e. independent of a certain system representa- 

tion. We suggest. to call this approach the geometrical 

description of controllability indices. In the sequel we give a 

module theoretic definition of controllability indices for the 

special case of linear time-invariant complete systems and prove 

the equivalence of the two concepts. Furthermore, we also define 

c.i. 's for the time axis T=&+,IR+,IR. 

Let T=& and let supp(w) denote for every w E W& the subset: 

supp(w) := 1 tEt, w(t) f 0) = t 

Let further Bl, t E T denote the truncated behaviour spaces 

defined by: , t t := W E B : 3 v E B with 

t t 
V =w and supp(v-) 5 C-t,-11) 

The Bi are linear subspaces satisfying: 

,$B+ C B+ + t 
‘ B1 2 . . . 5 Bt ” .a. 2 B 

t 
o- o- 

A The dimensions m:(z) := dim Ct, t 6 No, of the quotient spaces 

c; 
B+ := 

O / 
,+ 

/lBt ’ $ := Bt 

0 / Bt-l ’ tk1 

form a descending sequence (mt(I))tEN . 
0 

Following Fagnani (1991) the numbers 

t 
C. := 

1 
#(m:(Z) 2 i) , Irj~m~(E) (3.1) 

are called the future controllability indices,of C. An analogous 

construction with respect to the restrictions Bi, t E ~2~ leads 

to the definition of past controllability indices. 
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3.1 Remark: 

Observe that the sequence (mi(l))tEN will become constant after 
0 

some to E N 
0’ 

but not necessary m;(Z) = 0 for t&t 
0’ 

Hence some 

the future controllability indices can be equal to 03. If one 

only considers finite memory systems, all cl(C) are finite. 

Moreover, the past and future c.i.' s are equal in this case. 

17 

Furthermore, Fagnani showed that the c.i.'s are invariants with 

respect to a "controllability equivalence relation" on the set 

of all linear time-invariant behaviour systems defined as 

follows: 

Two linear time-invariant systems xi = (t,IR qi,BiL i=l,Z, are 

said to be controllably equivalent (1, 5~ 12) if there exists 

a linear bijection iii: BI + B2 such that: 

(i) yQ,at = atOq for all t E t. (3.2) 

(ii) For any w ,w E B 12 1 we have 

wnw 12 EB + 1 Ed E B2, 

and, if this is the case, then 

~(wl~W2) = +(w1L4iw2) , 

whereforw,w tW e 
12 we define 

(3.3) 

I 
w,(t) for tL0 

wyw2(t) := 
w,(t) for t&O . 

An equivalent condition for (3.3) is: 

(iii) Let w E B 1; then 

W =oe w(w))- = 0 

(3.4) 
t 

W =oe w(w))+ = 0 : 

Assume now that 1 q (&,lR',B(R)) is a dynamical system in AR- 

representation: 
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B= ker R(c,c-I) (3.5a) 

R(s,s -5 = RLsL+... 
e 

+Res E lRpxqcs s-5 , 

rank 
-5 

R(s,s-') = p 
IRCs,s 

(3.5b) 

(3.5c) 

Here we implicitly assume that pLq; otherwise the following 

construction does not lead to a reasonable definition of c.i.'s; 

observe that p=q corresponds to the autonomous case (compare 

Willems (1991)). 

Interpreting R(s,s 
-1 

1 as the R[s,s-II-linear mapping: 

lRq[s,s -11 4 IRP[s,s -5 
R(s,s . -1). 

x(s,s -5 I-+ R(s,s-')*x(s,s-') 

we obtain that 

M(R) := ker R(s,s -5 

is a free IR[s,s -1 I-submodule of IRqCs,s -5 9 satisfying: 

M(R) = M(U*R) -1 for U(S,S ) E IRPXP[s,s -1 1 unimodular 

Following the notation in Miinzner and Prgtzel-Wolters (1978) we 

call M 
c 

:= M(R(s,s-')) the "module of return to zero". 

The list of polynomial indices (c.f. Miinzner and Pratzel-Wolters 

(1978)) 

v( C) := (vl(C),...,vm(I)), m := 9-p 

of the module 

is called the list of (alpebraic) controllability indices. 

3.2 Remarks: 

a) Another possible way to introduce c.i.'s is to define them as 

the dipolynomial indices of ME (cf. Hoffmann and PrGtzel- 

Wolters (1991b)). However, these two sets of integers coin- 

cide. Since the definition via the polynomial module is also 

valid for the case T = J?+,lR+,lR, we have chgsen it, 
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b) If 1 is in state space form, i.e. 

I= (?Z, IRntm ,B(bIn-A,B)k (A,B) E IR nx(n+m) 
, 

then the list c(C) coincides with the list of the ordinary 

c.i.' s for state space systems. This is a consequence of the 

special form; the subsets Bt admit in this case: 

B; = w1 

II I w2 
E (,Rn+m)No: wl(k) = -Ak-1Bw2(0)-...-Bw2(k-1) , 

k&l, wl(O)=O and w2(k) l lRm for k&O 
I 

CI-lB+ = 
0 

: ~~(0) E ker B 

B; = for k&l 

and hence: 

dim Ct 
0 

= dim[B'/u-lB+] = n-dim ker B = dim im B , 

0 

dim Cl = dim 

= dim Im(B,AB,...,Ak-'B) 
'Im(B,AB,...,Ak-2B) 

Note that the form of 0 -1 + B. as calculated above contradicts 

the characterization 

&I+ + = WEB : 
0 0 

w(0) = 0) 

given in Fagnani (1991). q 

The geometric and algebraic controllability indices coincide: 

3.3 Theorem: 

Let C = (Z,lR',B(R)) where R satisfies (3.5). Then c(C) = v(c). 

0 

For the proof of Theorem 3.3 we need the following lemmata: 
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3.4 Lemma: 

Let C = (E,lR',B(R)) where R satisfies (3.5). Furthermore, let 

U E lRPXP~s,s-ll unimodular and Q E tRqxq nonsingular such that 

deg 
P :=URQ= 1 Pksk=: 

deg _ _ k 

k=O 
1 (pk'pk)s 

k=O 

with PO&O, rank Pdeg=P and Pdeg = Op,(q-p). 

Then URQ is strict system equivalent to the state space form 

(s* deg.p-AC,BC) where: 

,B = 
c 

6 ’ 
0 

'deg-1 
/ 

3 . . . 
. . 

I '. : 
. . 

P ' * . 
. . . 

0 -. -.* 
. . 

. . . 
. . . 0 . 

AT := 

. . . . 

. 
0 - 0 * I . . . -F 

P deg-1 
.p-1 , 

deg 

Proof: 

We will show that there exist matrices Mle,Mze E 

unimodular and K E IR deg*px(q-PI cs3 such that 
I 

Mle(S1deg.p-AE*BC) M;e 
I 

IK ] 

9-p 

= I '(deg-l)*p 

0 

0 

1 P ' 

PO 

. . . 
. . . 
. . . 

'deg-2 

'deg-1 

(3.6) 

Now 

(s* degap-"CYBC) 

pO 
.p-1 

de 
SI 0 . . . . . . 0 

P 

-1 SI 0 
P P . . 

. . 

0 *. *. ‘. : . . . . 
. . . . . . . . . . . 0 

. . . . 
. . . 

6 deg-2 
.p-1 

da 
. 

. . SI 

. . . P . . . 
. . 

0 
. 

.,. a.. 0 -1 slp+Pdeg-l 
.p-l 

P deg 

Successive multiplication from the left by the, unimodular 

matrices 
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I 
P 

c 

yields the matrix 

where 

I 
P 

. . 
*I SI 

P P 

I 
P 

0 . . . . * . . . . 0 . 

-1 *, . 
P ' 

. . 

0’. ‘Y : . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . 
. 

0 . . . . . . 0 -1 
P 

I 
P 

x1 
. . . 
. 

. . . 

'deg-1 

'deg 

.  .  .  )  

Y 

. 

. 

. 

. 
* 
. 
. 
. 
. 

1 

Y deg- 

'deg 

I 
P 

. 
. 

. 
. 

I 
P 

1 

, 

xi := sdeg-i+lI +,deg-ip 
P deg-1 

.p-1 deg ' "* ' 'i-1 .p-1 
deg 

E IRPXP[s] 

and 

deg-1 ’ ‘*’ ’ ‘i-1 
E ,,@q-d Ls, 

for i=l,...,deg. 

Multiplying successively from the right by the unimodular 

matrices 

'I 
P 

. . . 

\ 

and 

I 
P 'deg 'deg 1 ". 9 

I 0 
P 

I 
9-P' 

'I 
P 

. . 
. 

I 
P 

'I 
P 

* . 

I 
P 

F deg 
. 

I 
9-P, 

x2 Y2 ’ 

I 
P 

I 
9-P, 
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one obtains 

0 ,.....,... 0 P 

-1 l . 
P ' 

. . 0 . . 
0’. *. . . . . 

. . . . 
. . . 

. . . . . . 

. . . . . . . . . . . . 
. . . . . . . 0 : 

. . . . 

0 . . . . . . 0 -1 0 
P 

which gets transformed by elementary row transformations into 

I '(deg-l)*p ' 
I 

. 
0 P 

In total all the transformations are of the form (3.6). 

3.5 Lemma: 

(i) Let I1 = (&,lR',B(R)) where R satisfies (3.5). Let 

I2 = (t,R',B(RT)) where T E IRqxq is nonsingular. Then: 

(a) CCC,) = ~(1,) 

(b) v(Z,) = VU,) , 

(ii) Let Ii = (&,lRqi,B(Ri)), Ri = (Ti,Ui), qi = 'i+m, 

Ti 
E IR 

tiXti 
Csl, det Ti*O, U. E LReiXmCsl, i=1,2. Further- 

1 

more, assume that Ti -9J i is strictly proper rational for 

i=1,2 and that El and X2 are strictly system equivalent. 

Then: 

(a) v(C,) = v(C,) 

(b) c(C,) = ~(1,) 

Proof: 

(i) (a) Define $: B(R) - B(RT), w + T-'w. Then $ is an iso- 

morphism and clearly satisfies conditions (3.2) and 

(3.4). Hence I1 'c x2. 

(b) The mapping Ml n IRq [sl + M n IRq Csl , 
1 x2 

-1 
. 

x(s) + T *x(s) is a (polynomial) degree-preserving 

Rlsl-isomorphism, which implies ~(1,) = ~(1,). 
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(ii) (a) (Compare Theorem 3.4 in Miinzner and Pratzel-Wolters 
(1978).) 

(b) By the definition of strict system equivalence there 
exists qamax(l 1't2) and polynomial matrices Mle, MZe 
and Y with Mle, M2e unimodular such that 

'I 
cl-@1 

0 0‘ 'I 
q-e2 O 

= 

0 *1 5, 0 *2 

0 'M2e -Y 

Mle 
1 u2 \ O Irn 

I 
Let Ci=(t,IRq+m,B(ki)) where 2. = 

1 
I 

q-Li O O 

0 Ti Ui 

*hen ~(1~) = c(Ci) for i=1,2. Define: 

i: B(R1) ---j B(i2) , w t--, 
I 

M2e(“) -Y(u) 

0 Irn 1 
W 

(3.7) 

E IRqX(q+m) Csl , 

(3.8) 

Then $ is an isomorphism (c.f. (3.7)) which commutes with the 
shift 0. It remains to show that (3.4) is satisfied. 

Let n: (lRq+m)a - (IRmja denote the projection [F] t--, y and let 

w E R&). Assume w-- -0. Then by (3.8) n($(w))- = nw- = 0; now 

I 0 

u-w~(w))- = 
q-e2 

*2-1rl,(o)nWW)- 
since T 32 is strictly 

proper rational, and hence (l-n)(q(w))- = 0. The converse impli- 
cation (q(w))- = 0 q > w- = 0 is proven analogously because $ -1 

is of the form 

4: R(R2) - R(R1) ) w c--, 
I 

M,)‘, M;;YW 
W (3.9) 

0 Irn 1 
with Mii polynomial. 

Assume w+=O. Since M 

c+(w) )+ = $(w+), 
2e and Y are polynomial there holds: 

which gives ($(w))+ = 0. Furthermore, the 
implication (q(w))+ = 0 => w t q 0 is an immediate consequence 
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of the unimodularity of Mze and (3.9). Summarizing, there holds 

% =c c,. 

0 

Proof of Theorem 3.3: 

Let P := URQ, A 
c 

and B 
c as defined in Lemma 3.4 and let 

Cl := (&,lR',B(P)) and 1, := (t,IR(deg-l)'p'q,B(sI 
deg*p-Az'Bz))' 

Since left multiplication of R by a unimodular U does not 

change the behaviour we obtain c(l) = ~(2,) and v(C) = ~(1,) by 

Lemma 3.5 (i). By Lemma 3.4 XI and 1, are strict system equiva- 
lent and satisfy the assumptions of Lemma 3.5 (ii), hence 
c(C,' = CCC,) and v(C,) = v(C,). By Remark 3.2 b) the list c(c,) 
coincides with the list of ordinary c.i.'s for state space 

systems, which is identical to v(X,) (c.f. Theorem 3.3 in 

Miinzner and Pratzel-Wolters (1978)). 0 

3.6 Remark: 

For arbitrary Rosenbrock-type polynomial system matrices: U(s) 
R(s) = r 1 E IR( '+P) x( e+m) Csl 

(3.10a) 
-V(s) i(s) 

det T(s) * 0, (VT-lU+W) strict proper rational (3.10b) 

as well as for singular state-space systems 

Ex = AxtBu (3.lla) 

E,A E IR"'", B E IRnxm, det[sE-A] * 0 (3.11b) 

the lists of controllability indices defined in the literature 

(c.f. Miinzner and Pratzel-Wolters (1978) and Gliising-LtierBen 

(1991)) coincide with the list v(C) of C = (&,lRetm,B(T(~),U(~))) 

with T,U as in (3.10) respectively the list v(c) with 

c = (&,lRntm ,B(sE-A,B)) and E,A,B from (3.11). 

q 

Let C = (Z?,lR',B(R)) b e again a dynamical system in AR-represent- 
ation with R satisfying (3.5). Let further 

. 

f(s,s-l) = [fl,...,f 
t;, 

] 
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be the vector of all pxp-minors fi of R. Willems (1991) defines 

the MC Millan degree of 1, Mm(C), as: 

Mm(C) =,Mm(R) = ddeg f(s,s-') (3.12) 

Mm(.C) is well defined because Mm(R) = Mm(UR) for any unimodular 

U. Even Mm(RQ) = Mm(R) is true for nonsingular constant matrices 

Q. 

3.7 Theorem: 

Let C = (&,lR',B{R)) where R satisfies (3.5). Let further 

v(C) = bl,..., vm) be the list of controllability indices of 1. 

Then: 

c controllable 

m 
<=> Mm(C) = C vi 

i=l 

Proof: 

Transform R to P = URQ = (F,G) as in Lemma 3.4 with rank Po=p. 

These transformations leave controllability invariant, i.e. B(R) 

controllable <=> B(P) controllable, and Mm(R) = Mm(P). 

Now by Theorem 3.4 (ii) <=> (iii) in Hoffmann and Pratzel- 

Wolters (1991b) we have 

Mm(P) = F 
i=l 

where p := (IJ ,...,p ) is the 

'i 
(3.13) 

module IR1'P~s~s-lI*P~ i.e. the 

index list associated with the 

'li 's are the lags of a minimal 

lag description of B(P) ( see Hoffmann and Pratzel-Wolters 

(1991b)). 

However, controllability of C is equivalent to controllability 

of B(P) where P is a polynomial Rosenbrock-type system matrix. 

For these matrices we have: 

m 
B(P) controllable <=> deg(det p) = c v 

i=l i 

P 
This together with deg(det P) = C pi and (3;13) proves the 

i=l 
result. 0 
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Finally, based on Lemma 3.4 we obtain an effective algorithm for 

the calculation of the controllability indices. 

Starting with a system 1 = (t,lR',B(R)) satisfying (3.5) we first 

construct a strictly system equivalent state-space system 

(AI,BC) E ,Rdeg*Px(deg-l)P+q - according to Lemma 3.4. For an 

explicit construction of the transformation matrices (Q,U) 

compare Hoffmann (1991). Note that (A E,BC) is not uniquely 

determined; however, all possible state-space systems generate 

the same index list v(l). Having obtained (A YBC) 
we determine 

v(C) by the Kalman-Rosenbrock deleting procedure. 

3.8 Example: 

Consider the nonsingular system of difference equations: 

w1(tt2)t3 w3(tt2)t6w4(tt2)t3w5(tt2)t 

t2wl(ttl)tw2(ttl)-w3(ttl)tw5(ttl)t 

+w1(t)+2w2(t)+2w4(t)t3w5(t) = 0 

2W1(tt2)twq(t) = 0 ) t E k 

with the associated dynamical system C = (Z,IR5 ,B(R)), where: 

s2t2stl 2 

-1) 
si2 3s -s 6s2t2 3s2+st3 

R(s,s := 
2s2 

E lR2x5[s,s-1] 
0 0 1 0 

I 

Hence p=2, q=5 and deg=2. The 2x2-minors of R are 

-2s2(st2), -2s2(3s2-s), s2t2stl-2s2(6s2t2), -2s2(3s2tst3), 
r 

0, st2, 0, 3s2-s, 0, -(3s2tst3). 

* Since there is one minor not equal to zero, 

rank -1 R(s,s-') = 2 . 
IRCs,s 3 

Furthermore, simple calculations show that the gcd of the above 

minors is a dipolynomial unit, which yields the controllability 

of 1 (c.f. Willems (1991)). Now write 

R(s,s-') 10 3 6 3 1 2 I 2 l-101 = 
s t 

2 0 0 0 0 0 0 0 0 0 

Observe that R is polynomial; moreover, R l"s a (dipolynomial) 

minimal lag description with Mm(C) = 4. Define Q E lf?sx5 by 

# 
- 16 - 



i 

Q := 

Then 

P(s) := 

1 0 0 0‘ 0 
0 0 1 0 0 
0 1 0 -2 -1 . 
0 0 010 
0 0 0 0 l/ 

2 2 3 1 010 ' 

Obviously, P is in the form as 

and BY we obtain 

AC = 

0 0 0-i 
0 0 0 0 

10 3-g 
010 0 

in Lemma 3.4. For the matrices A 
2 

‘I 

I 2 2 3 

, B 
c=; ;; 

, I 

1 

0 0 0, 

Moreover, 

, 

0 0 0 0 10 0 0 0 0 0 0 

and the controllability indices of 1 are vl=2 1 v2=v3=1. 
3 
c vi =4=deg*p=Mm(C). 

i=l 0 

For the time axis T=t+, lR+,lR there does not exist a geometrical 

description of the controllability indices of 1 = (T,IR',B). 

However, if 1 is a linear time-invariant system in AR-represent- 

ation, i.e. B = B(R) where R(s) is a polynomial pxq-matrix 

satisfying ranklRCsl R(s) = p, then the developed algebraic 

construction carries over completely to the RCsl-linear mapping: 

lRqCsl - lRpCsl 
R(s) : 

x(s) t---, R(s)x(s) 
* 

and the associated module 

M(R) = ker R(s) c IR’Csl . 

- 17 - 
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4. Conclusion 

The purpose of this paper was the construction of controllabil- 

ity indices for dynamical AR-systems in a module theoretic 

framework. The obtained list of controllability indices 

coincides with the index list introduced by Fagnani (1991) in a 

geometric framework. 

Moreover, several existing concepts of controllability indices 

for different representations of linear systems are shown to be 

special cases of the new definition. 

Finally, an effective algorithm for the calculation of the 

controllability indices was derived. 
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