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St qbilizability of nonlinear systems 

S. Nikitin 

Abstract 

Elements of the differential topology are used to prove nesessary conditions for stabi- 
lizability iq,large by a smooth feedback. Criteria for the gmooth feedback stabilizing a 
smooth nonlinear system locally to have the smooth piecevise smooth extention, which 
stabilizes the system over a given compact set, have been obtained. 
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1. Introduction 

An investigation of the stabilizability of dynamic system is one of the basic problem in the 
system theory. A solution of this problem is especiallv complicater for nonlinear systems. 
It was proved in [9], that “if a real analytic control system is completely controllable, 
then for every point p in the state space there exist a piecewise analytic feedback control 
that steers every state into p”. An examples of the analytic controllable system being 
not smoothly stabilized (i.e. stabilized by a smooth feedback) has been given also in 
[1,3,9,11]. Th e 1 ocal smooth stabilizability (i.e. the stabilizability by smooth feedback in 
some neighbourhood of equilibrium point) has been investigated in [3] and with the help 
of the Lyaponov’s second method the necessary topological type condition of the smooth 
local stabilizability has been obtained. In [1,4] the local stabilizability of the real analytic 
control system having the linearization with noncontrollable imaginary modes has been 
considered. 

The purpose of this paper is twofold. Firstly we prove the necessary conditions of a 
topological type for a smooth control system to be smoothly stabilized in large. Secondly 
we establish criteria for the smooth feedback w = W(Z) stabilizing a smooth nonlinear 
system locally in equilibrium L* to have the smooth (piecewise smooth) extention u = Z(z) 
which steers every point from a given compact A’ into the equilibrium x* and 21(x) = W(X) 
in some neighbourhood of z*. The feedb ac u - u z is called the smoothly stabilizing k - -( ) 
extention of w .= w(r) over K. 

The paper is organized as follows: In Section 2 we give necesvary definitions and notations. 
In Section 3 we present some facts about the transversality, the degree of a function, the 
intersection numbers, the Euler characteristic and the linking numbers. In Section 4 we 
prove the necessary conditions of smooth stabilizability. In Section 5 the criteria for the 
smooth feedback locally stabilizing a smooth control system to have a smoothly (piecewise 
smoothly) stabilizing extention over a given compact II: are proved. Finally, Section 6 
contains concluding remarks. 

2 Preliminaries 

In this paper we consider control systems whose state space is a real smooth manifold 
(P-manifold) M E C”, i.e., M Hausdorff, a finite dimensional, paracompact topological 
space with the real smooth differential structure. The term “submainfold” is used in the 
sense of “regulary embedded submanifold”. N is a submajnfold of M, when immersion 
C : N -+ M is an embedding, i.e., C maps N homeomorphically into its image (‘(M) C M. 
The standard notations lR”,R”, are used for n-dimensional Euclidean space, and for its 
nonnegative orthant, respectively. 
A control system Cf is defined as a 3-tuple (M, U, f), where 

(a) M is a C”- manifold, called the state space of the system, 

(b) I/ is a C--manifold, called the control space, 
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(c) f is a mapping, such that the following diagram is commutativ: 

where TM is a tangent bundle of the manifold 111, P, : T.\I + .\I is the standard natural 
projection TM onto ‘11, id is an identity mapping. 

Such a treatment of a control system is close to that of used in [6]. Throughout the paper, 
it is tacitly assumed that dimI: < dim .!I and J(x, U) denotes simultaneously both the 
element in Txx .\I and the map .f : ,\I x CT --t 1’.21 x I’. We call the system C, smooth: 
if f E C”(.\J x 1’, T.ZI x C*)- the set of all C” -mappings from M x I- to TM x Ci, i.e., 
the mappings having continuous derivatives of any order. The feedback from only two 
classes P( Al, I:) and PS( .!I. l!) are considered in t,he paper. PS(:\I. CT) is the set of 
all piecewise smooth mappings form ;\I into I... X function 11 G U(L) is called picccwisc 
smooth on some set Q, iff there.esist a covering Q G U I/;, such that. 1 I n 11; = 0 when 

i # j, for all i In t q # 0, th e closure Int Vi of the interior Int b: coincides with x 
the restriction ullnl v, of u to the Int V, is smoot.h and all derivatives of u are continuous - 
functions on Vi. 

Having fixed the feedback u = U(X) we obtain the flow c’f generated by the closed loop 
system 

i = f(x,u(x)) 

evolving over the manifold M. e’fxo denotes the point into which the flow ctf steers .r and 
e”f(P’) = {e’f,,; xo E 1~~). L’ is called an invariant set of the system. iff ~“1,’ 2 1.’ for all 
tzo. 

To define the smooth or piecewise smooth stabilizability we need the notions of an asymp- 
totically stable equilibrium and the domain of its attraction. 

Definition 2.1 A point x* E hf is called an equilibrium or a singular point of a vector field 
< on M, if t(s*) = 0, w h ere 0 is the zero in the tangent space T,.A4 at x* to the manifold 
M. The singular point z* is stable, iff for every neighbourhood V of z* (“neighbourhood 
V” means: V is a connected open subset of M) there exists a neighbourhood E of z*, 
such that e”(E) c V for all t >_ 0. The singlar point CC* is asymptotically stable, iff X* is 



stable and there exists a neighbourhood IC*.of .r*, such that 

lim cff.rO = I= 
I-CC 

for all so E It’ n 

Remark: If a singular point r* is stable. then for each so in some neighbourhood of x* 
the solution e’txo can be prolonged onto the infinit time inverval [O,oo) 
l 

Definition 2.2 Let Y be an asymptotically stable singular point of’s vector field [. D(x*) 
is said to be the domain of x*- attraction, iff for every x0 E Q(x*) the solution etero exists 
for all 2 > 0 and lim e’(x 0=x * n - t+oo 

Remark: It follows from the definition 1, that D(i*) is not’empty and open for an 
asymptotically stable singular point I* n 

The set 
E(S,) = {(x,lL) E .\I x LCf(x,u) = 0 E T,‘\f} 

is called an. equilibria set of the control system S,. 
As we shall see later, E(S, ) plays a very important role in the investigation of stabiliz- 
ability. 

Definition 2.3. A system C, is said to be smoothly (piecewise smootly) stabilized in 
(x*N) E W/J over a domain 9 C M, if there exist a smooth (piecewise smooth) 
feedback u = U(X), such that u(x*) = u*,z* is an asymptotically stable singular point of 
the field f(s,u(x)) and 9 G D(z*) n 

If 9 = M, then Cf is called (completely) smoothly (piecewise smoothly), stabilized in 

(x*,U*) E E(q) ( over M or in large). If there exists a neighbourhood 0(x*) and Cf is 
smoothly stabilized in (x’, u’) E E(C/) over 0(x*), then Cf is said to be locally smoothly 
(piecewise smoothly) stabilized in (I*, u’). 

3 Transversality, degree of functiop, intersection num- 
bers, Euler characteristic, linking numbers. 

3.1 Transversality 

Let C,“(M, N) be the set of C”-maps from M to N with P-Whitney topology on it 
(see [7]). If cp E C”(M, N) and A c N a submainfold, then y t- A denote transversality 
9 to A, i.e., TYN is spanned by T,A and the image d,cp(T,M), wherever v(x) = y E A, 
where d,v : T,M ---) T 9p(t)N is the derivative of v(z).p(e) = {v(s); x EM} n A = 0 
implies cp l- A. If B, A C N are submainfolds, then B t- A denotes in l- A, where iB is an 
embedding corresponding to the submanifold B c N. 
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Theorem 3.1 (71 Let .\I. .V be P-manifolds and A c ,\’ a C”-submanifold. Then the 
set (9 E Cm( :\I. N) : 9 I- ,A} is residual (and therefore dense) in Cz( .YJ, .V). n 

If follows from the Theorem.S.1, that for almost every control system with f E Cz(.\! x 
I’. Z’.\J x I;) the equilibira set E(S,) is a (“= -submainfold in Al&Let V(.r) be a set in 
Tr.\J. Then rurzk,\. denotes the dimension of the vector space spanned by I*(r). 

Theorem 3.2 The set 

{f E C;(AJ x Ii, TM x U) : rank(,,,){d,f, d,f} = dimAl 
, 

for every (I, u) E E(C/)} is dense in C;r(;\J x I’. T.ZJ x U). 

Proof Let P : A4 x CJ -+ T.11 x ii is the standard embeddiug of :\I x Cl ,in ThJ x Cf, sucl~ 
that for every (I, u) E M x U P(z, u)nT,.l\J = 0. P(M x Cr) is C”-submanifold in T.lJ x lI. 
It follows from Theorem 3.1, that the set (f E Cc(M x Cl,TM x U) : f t- P(;CI x ri)} 
is dense in Cz( M x I/, TM x C;). f I- P(izJ x U) implies rank~,,,~{d,f, &f} = dim M, 
whenever f(s, U) E P(,M x IT), i.e., whenever (.c, U) E E(Y:,). This completes the proof. 
u 

Corollary 1. The set of all systems Cf. whose equilibria set E(C,) is C”-manifold of 
the dimention equal to dim II, is dense in Cr( ,\I x U, T,VJ x I![) w 

3.2 Degree of function . 

Let M, N be compact manifolds with fixed orientations, dim M = dim N and N is con- 
nected. Let 9 : M -+ N be a Cl-map (i.e., 63 has at least first continuous derivative) and 
y E N is a regular point of q, i.e., rank,{d,q} = dim N for all IC E v-‘(y) = {(p(z) = y}. 
Due to compactness of hl, the set p-‘(y) is finite. Thus the degree of 9 can be defined 
in the following way. 

Definition 3.1 Let M, N be oriented manifolds. Suppose y E N is any regular value for 
v E CW(M, N). Cp and Z 
v is defined as 

are fixed atlases on hl and N, respectivly. The degree of y over 

deg(p,y) = c sgn(det 
NC’(Y) 

where 2 = { z}z=i (n = dim M = dim N) and an n-tuple (z r, . . . , z,) is local coordinates 

in a neighbourhood of z. If v-‘(y) = 0, th en deg(tp, y) 7 0. For A4, N which are not 
oriented, the degree is defined as 

deg&w) = { c sgn(det(F])}mod(2) 
REV’ 



Two maps \r3. I+’ : :\\I -+ .V are called C’-homotopic (0 5 r 5 oc), as long as there exist 
C’- homotopy 

F : .\I x [O. 1) --t .v. 

such that F E C’(.\l x [0, l), .V), 

The following Theorem is important to define the degree of a continuous map 9 : M -+ N. 

Theorem 3.3 [7). Let M, N be a compact oriented, n-manifolds without boundaries, 
n 2 I, with N connected. Then homotopic Coo-maps ~,11, : M --$ N have the same 
degrees, i.e., deg($,y) = deg(p,z) for all (y,z) E N. , 

If y : M + N is continuous map, then p can be approximated by P-maps homotopic 

to Y a 

This theorem allows us to define the degree of a continuous map 9 : M -+ N by the 
following way. degcp is defined to be deg(g, z) where g : M -+ N is a C”-map homotopic 
to 9 and .z E N is a regular value for g. By Theorem 3.3 such a g exists, and degv 
is independent of g and z. If $1, ,Y are not orientable, then degz(v) is defined to be 

degdg, 4. 

3.3 Linking and intersection numbers, Epler Characteristic 

Let M, N C Wq be compact oriented submanifolds without boundaries, of dimensions 
m, n respectively. Assume that A1 II N = 0 and dim 121 + dim N = g - I. The linking 
number Lk( M, N) is degree of the map 

L : M x N --t S9-‘, 

kY) = b - Y)Ilr-YI7 

where S9-’ - (q-l) - dimensional sphere, 1 z-y 12=< z-y,~-y > and < Z,Z >= g xizi. 
i=l 

Ad. a corollary of Theorem 3.3 we obtain the proposition. 

Theorem 3.4 [7]. Let F : M x [0, l] + R9 be a homotopy of manifold M, such that 
F(Xx0) = MandF(Mxt)nN = 0forallt E [O?l]. Thenik(F(Mxl),N) = Lk(M,N) 
w 

By the Theorem 3.4 we have Lk( M, N) = 0, when tere exist? a homotopy F : M x [0, l] --) 
lW’,F(MxO) = M, F(Mxt)nN = 0forallt E [O,l]anddimN+dim(F(Mxlj) < q-l. 

Now we recall the notion of intersection number. Let w be an oriented mainfold of 
dimension m + n and N c W a closed n-dimensional submanifold with oriented normal 
bundle. Let M be a compact oriented m-dimensional manifold, aM = 8N = 0. Let 
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; : .\I 3 II’ be a C’x-map transverse to .\‘. \\‘e assign to point s E +-I( .\‘) a posit 
~iegat ive type according as the composite linear isomorphism 

ive or 

preserves or reverses orientation: we write :Jp. ;V) = 1 or -- 1. respectively. 
The int.crscction number of (9, .Y) is the integer 

:($7.-Y) = c :,(gLY). 
ZEbop-‘(.Y) 

~(9. .Y) = 0. whenever +$.\I) n .V = 0. It is known (see[7)), that if (r3,g : M + W are 
homotopic C”- maps, then ~(9, -V) = r(g, ‘V). Thus for any continuous map g : Af -+ 
Ik’ $(g. LV) is defined as $(g, lV) = j(p, ,V) where 9 is a (?-map, which is transverse to 
N and homotopic to g. If 31 is also a submainfold of W, then jj(M, N) denotes fl(i, N), 
where i : .\I -+ IV is the inclusion. 
For .U, .I’ or II/ which are not oriented, intersection numbers $l(f, ‘V) and flz(M, Iv) are 
defined in the same way as deg,(q). 
Let <( .\I) be a zero section of a tangent bundle T.If and ;r? be a vector field on M. Then 
Euler characterist.ic of .\I is 

+ W) = :(t3,aM)). 

E\very vector field +J is homotopic to zero section [. Therefore + (lc/) is independent from 

If 2 is an asymptotically stable singular point of a vector field,p, then jg2(v,t(M))l = 1. 
Thus D(Z) = hi implies Is( = 1, where D(z) is the domain of t-attraction. 

4 Necessary conditions for smootix stabilizability 

Firstly we consider the system Cf with E(E/) being a. smooth submanifold in M x U 
without boundary and P,(C,) being a compact subset in M. P,, P, denote the natural 
(projectors) from M x 0’ onto M and I/, respectivly, i.e., PZ(z, u) = t and PU(z, u) = U. 
We write ur 2 &, whenever ulru2 : M --f U are homotopic continuous maps. The 
compactness of P=(E(Cf)) * pl’ im res the compactness of the graph 

for any continuous mapping u : M -4 Il. 
Therefore the intersection number 

where rU(Af) = {(z,u(x)) : 2 E M} is well defined and 

for g ‘v u. 
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Theorem 4.1. Let .\I. IV be connected (-‘“-manifolds . Yj be a .smooth control system, 
I:‘( XI j be submanifold in .\! K IV without boundary. and Px(E(S,)) be a compact subset 
in .\I. 1‘11eri if X, ‘.. 1~ completl!. smoothly stabilized over .I/ in ,a point (t’, u*) by the 
fwdbac-k If = u(.r). then 

I:( l-,( .\I ). E( X,)) I= 1 

Proof: If the smooth’feedhack (1 = u(r) stabilizes Sf in (x’, u*) over M, then I’,(M) n 
E( 5,) = (.I-‘. IL-) and 

I ?(I-,u*, (ru(Jf), Wj)) I= 1 

.A function u : -11 --t I’ is said to be homotopic to zero, if u “v u. where u is a constant-value 
map, i.e.. I’(S) = T; E I: for all S E AI. 

Corollary 1. Let all the conditions of Theorem A.1 be fultiled. Then if C, is completly 
smoothly stabilized over .\I in a point (z’, tl-) by the feedback u = u(x) being homotopic 
to zero, then 

f,(E(Cf)) = l!;. (1) 

Proof: If r’\P,,(E(\3,)) # (b and u = U(Z) is h omotopic to zero, then it follows from the 
conncctncss of I-. that u z 72. where pi E C’\P,(E(X,)). Therefore 

:(r.(M). E(q)) = 3(r-&li), E(C,)) = 0 

and according to Theorem 1.1 u = u(r) does not stabilize Cf in (t*, u*) over M. Thus 
(1) is a necessary condition for the smooth stabilizability in large. n 

Corollary 2 Let C: = W”” and 

runk(,.,) {dJ(~:, u)} = m 

; the set 

P,-‘(4 = ((2,u) E lqC,); P&z, u) = 2) 

be finite for every z E P,(E(CJ)). Then the smooth system C, with compact P,(E(Cj)) C 
h4 is not smoothly stabilized over hf. 

Proof: Since raralc{d,f( 2,~)) = n we can choose for each point z E P,(E(Cf)) a 
neighbourhood O(Z), such that 

PL’(O(Z)) = (J{(XyUi(x)) : Z E O(Z)}, 
i=l 

where 1 is a finite natural number, and {ui(z)}f,, are the functions satisfying 

f(ty U;(Z)) = 0 E TZM 



for all J E O(z). P,( E( 3,)) is compact. That means the existence of the finite covering 

P~(E(C/)) C (J O(Zj). Thus 
J=1 

EC’/) C ‘;L(iJ ‘(‘J)) = (J Pc’(O(tJ)) = (J h((X$i(X)) : X E O(Zj)}. 

J=l j=l J=l i=l 

Therefore PU( E( CJ)) is bounded. An application, of the Corollary 1 of Theorem 4.1 
completes the proof. n 

Corollary 3: Given U = W” and M = W”. Then under the condition 

(2) 
the system Cf is not completely smoothly stabilized. 

Proof: it follows from (2), that E(Cj) is compact. Therefore P,(E(C/)) # B”. Thus by 
the Corollary 1 we complete the proof. m 

The following two Theorems 4.2, 4.3 give necessary conditions for the smooth stabiliz- 
ability of the system 

by oytput-feedback controller u = u(y) and by dynamic-feedback 

= 4&Y), ,‘ 
= 9kY). 

h, Cf are supposed to be a smooth mapping and a smooth system respectivly. That 
means C, corresponding to 3-tuple (2, Y, g) with 2 being C”-manifold, and the conditions 
(a), (6), (c) from the Section 2 are fulfiled. h E C”(M, Y), 1’ is a C”-manifold. 
Consider 

‘H(E(Cf)) = {(h(x),u) E Y x u : (x,u) E E(C,)). 

If ?f(E(Cf)) is a..submanifold in Y X U, and P,(‘H( E( C,))) is compact, then 

is well defined, where 

L(Y) = {(y+(y)) E y x u : y E Y) 
and u E P(Y,U) is an output feedback controller. 

Theorem 4.2. Let M, U, Y be connected C”-manifolds, pf,h be a smooth control sys- 
tem with output y = h(z),h(z) E C”(M,Y),‘H(E(C,)) be submanifold in Y x U, and 
www~))) b e a compact subset in Y. Then if C f,h is cvmpletely smoothly stabilized 
over M in a point (x*,2(*) E N((E(C,))) by the output-feedback u = u(y), then: 
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6) tVWWW(~f)) = 1; 

(ii) if u = u(y) homotopic to zero, then P,(E(Cj)) = U 

n 

The proofs of the conditions (i), (ii) are exactly the same as the proof of the Theorem 4.1 
and the Corollary 1. 
,Let C,,h,g denote the system CJJ, closed by the dynamic feedback D9, i.e., 

1 

k = f(v4 ” 
i 

%w : u 
= 9(GY)? 
= q&Y) 

Y = h(x). 

E(Cj,h,s) is the equilibria set of the system Cf,h,s. Thus E(Cf,h,g) C X x Z x Y x U and 

‘%%h,g) = {( x,z,y,u)~XxZxYxU:f(x,u)=O,y=h(x),g(z,y)=0}. 

Having applied the Theorem 4.2 to the system C,,.,s with the output-manifold Y x 2 we 
obtain the following proposition. 

Theorem 4.3 Let X, U, I’, 2 be connected P-manifolds, Cf,h,g be a smooth control 
system closed by a dynamic smooth feedback D9, Pz,,,,(E’(Cf,h,g)) be a submanifold in 
2 x Y x U, and P,,,(E(C f&g)) be a compact subset in 2 x Y, where fz,V(~) = (v,, v~) for 
all v = (vz, v,, u,,, v,,) E X x Z x Y x U. Then if Cf,h,s is completely smoothly stabilized 
over X x Z x Y x U in a point (x*,z*,Y*,u*) E E(Cf&,) by the feedback u = u(z,y), 
then: 

. . 
6) it&@ x y), &y,u(E@f,h,g)) = 1; 

(ii) if u = u(z, y) homotopic to zero, then PV(E(Cf,h,g)) -T u 

n 

Corollary 1 Given U = HP” and M = W”, W” = R?ji x IRZ!; Then under the condition 

liminf 
12z12+lu12No 

< f(x,u),f(x,u) >>: 0 

the system 
31 = AXI + CP(G, 4, 

i2 = f(x24, 

Y = x2 
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with cp E P(R”,W~~),~(zl,O) = 0 for all x1 ~‘ll%::,A E RnXn,a(A) c C(a(A)- 
eigenvalues of A, C- = {V E @; ReV < 0)) is not completely stabilized by the dynamic 
feedback of the form 

U = u(w), 

i = li~+ly,ralz; 

where u is P-mapping, R E R’“‘, 1 E W’ n 

Now we consider the smooth stabilizability of a system C, over a compact set in W” by a 
smooth feedback taking values in HP”‘. 
Let u : W” + R” be a smooth controller and $3 be an (n-1)-dimensional surface homotopic 
to the sphere 9-l and f(z,u(t)) # 0 forall z E S. Then (u = u(z);$) generates the 
following submainfold in W” x W” 

I?,(S) = {(z!,u(z)) E HP” x I[Q” : 2 E S}. 

It is easily seen, that dim I’,($) = n - 1. As long as dim E(C,) = m the linking numbers 
Llc(I’,($), Ei(Cf)) (i = 1,2, . . . . Y(V = 00 also possible)), 
where (-Ei( C,)}y==, are connected components of E(Cf), are correctly defined. 

Definition 4.1. Let G be a connected closed subset in HP” with the smooth dG being 
homotopic to the sphere 9-i let u : W” -+ W” be a smooth feedback, such that I’,(aG) n 
E(C,) = 8. Then { Ki(G, u, Cl) = Llc(I’,(aG), Ei( C,))}y=i are called equilibria numbers 
of the closed loop system C, in G. n 

The equilibria numbers provide the information about equilibria of the closed loop system 
Cl in G c HP”. 

Theorem 4.4. Let Cf be closed by the smooth feedback u = U(Z) : R” + W” and pi 
be the,number of equilibria in Ei(Cf) n (G x Wm)(i = 1,2, . . ..v). where G is as in the 
definition 4.1. Then 

pi 21 Ki(G,uy Cl) 1 (i = 1, .*.2, u). 

Proof: The Theorem follows from 

This equality is quite wellknown in the theory of linking and intersection numbers [2] n 

The following necessary condition of smooth stabilizability ona compact set follows im- 
mediately from the Theorem 4.4. 

Corollary 1 Let G be such a compact subset in W” as states, in the definition 4.1. Then if 
a system G, is stabilized in (z*, u’) E IntG x W” over E by a smooth feedback u = U(Z), 

then 2 (~ci(G, u, C,)l = 1, w h ere Y is the number of connected components of E(C,) n 
\ i=l 
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The Corollary 1 has an especial simple form in the case qf single-input systems (i.e., 
m= 1). 

Corollary 2. Let S=/ be a single-input system, wi = {(x(~)yU(~));,ai I 7 5 bi}(i = 
1,2, . . . . V) connected components of the intersection E(S,) n (G x W) and t(ai), z(bi) E 
dG, i.e., E(C,) n (G x W) = U wi. Th en if a system C, is stabilized in some point 

i 

(z’,u*) E IntG x W over c by a smooth feedback u = y(s) then there exists such a 
connected component toi, that 

(W(x(ui)) - u(ai))(w(x(bi)) - u(bi)) < 0 

and for any other j # i 

The corollary 2 provides a simple answer to the question: “When shall the feed,back 
u = W(Z) stabilizing a system C, locally in (z*, u’) E G x R not stabilize also the Et over 
C?” 

5 Stabilizing extention 

Consider the system Cl being locally stabilized in (z*, u’) 6 E(C,), i.e., there exists the 
feedback u-= U(E), which stabilizes the C, in x* over a neighbourhood 0(x*) of the point 
x*. Let I< be a compact set in HP. Then it is natural to ask whether or not we can extend 
u = U(Z) to B”, such that the extention Z(X) is smooth (piecewise smooth), G(X) stabilizes 
the Cf in (z*,u*) over I< and Z(X) = U(X) in some neighbourhood 0(x*) C 0(x*). If the 
extention Z(x) exists then U(X) is said to have a (piecewiese smooth) smooth-stabilizing 
extention over I(. 

5.1 Piecewise smooth stabilizing extention 

A control u : [O.,T] + U is said to be piecewise constaqt, iff there exist time points 
0 = to < tl < tz < . . . < tN = T and ~1, . . . . UN E U, such that U(t) = Ui for ii-1 5 t < 
ti(i < N) +nd U(t) = UN for tN-1 5 t 5 tN. 

Definition 5.1 A point p is called piecewise constantly steered into a point q, if there 
exist 0 < T < 00 and pieceweise constant control u : [0, T] t U, such that the solution 
x,(t,P) of the initial value problem 

i = fb u(t)) 
44 = P 
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exists on the time interval [0, T], is unique, z,(T,p) = Q. If every point p E K c M 
is piecewise constantly steered into some point q E V c M, then the set K is called 
piecewise constantly accessible from the set V in the sense of the system Cf n 

The piecewise constant accessibility has for us a very important property contained in the 
following Lemma. 

Lemma Let K, V be a compact and an open subset in C”-manifold hl respectively. 
Then if K is piecewisely constant accessible from V in the b;ense of the system C-j, then 
there exist natural number N E N(N is the set of natural numbers), real number T > 0 
and 

{ Ul, *-*, UN} E UN = y x .)’ x y, 
N 

where I/ is the control space, such that for each point p’ E A’ there exist a point q E V 

and ti 2 0 , . . . . t#L 0, $J ti < T, such that 
i=l 

e-‘lfbl) 0 e-t21(u2) 0 
. . . 0 ,-tNfh)~ = p, 

where f(ui) denotes the vector field f(z, ui)(i = 1,2, . . . . N). 
. 

Proof: The set 
V(N, u, T) = {e-‘lf(ul) 0 e-“f’u” 0 ... o e-‘Nf(“N), : ti > O(i = 1,2, ...( 

is open for all /J E N, T > 0, u E U? 
i=l 

The piecewiese constant accessibility K from V in 
the sense of C-f implies 

K c U U V(n,u,T). 
TIE1 UEU” 

T>O 

. Thus from the compactness of K it follows, that there,exists p E N, such that 

K C (J V(niyui,Ti), 
i=l 

where u’ - ,,- (uii,tiis, -..,uin,)(i = 1,2, . . . . p), Therefore we cap take N = 5 ni. 
i=l 

{ Ul 1 “‘, UN) = {UII, U12, -.., Uin, U219U22, --.7Uw, 1 

and T = 5 2’; 
i=l 

Theorem 5.1 Let M = R”, U be P-manifold, 20 = W(Z) a smooth feedback stabilize 
locally the Cf in (z*, UP), K a compactset in M. Then tu = k(z) has a piecewise smoothly 
stabilizing extention over K, iff K is pieceweise constantly accessiblp in the sense of the 
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. - 
system C-J from such an open neighbourhood 0(x’) oft-, that 0(x*) is an invariant set 
of the closed loop system 

i = f(r,w(t)) 

and w = io(r) stabilizes the 2, in (x-, u’) over 0(x*). 

Proof. Necessity. If, w(x) has a piecewise smoothly stabilizing extention over I<, then 
I( is evidently piecewise constantly accessible in the sense of the system C-j from the 
neighbourhood 0(x’). 

-- 
Sufficiency. Let w = w(x) stabilize the Cl over O(k*). Then according to the arti- 
cle [lo] there existra Liapunov’s function u(x) > 0 in some neighbourhood O’(x*) c 
0(x’), uw = 0, O’(x*) = {x E R”;v(x) 5 c} and L,v(x) < 0 for x E O’(x*)\x’, 
where ,C,u(x) is the Lie derivative of the function V(X) with respect to the vector field ’ 
f(x,w(t)). i.e., Lfv(x) = $u(e’/x) Jt=s. Under the conditions of the Theorem Ii’ is also 
piecewise constantly accessible form the O’(x’) in the sense of the system C-f. Let F(X) 
be a smooth extention of u(x) to W”, such that a(x) 1~ u(x) and i?(x) > E for all 
x @ O’(Y). Then the following function is correctly defined. 

qt1, t2, *a-, TV, x) = (etl’(‘l)ro (e’2’(“2))* 0 . . . 0 (etWf(uN))T(x), 

where N E N, {ui, . . . . UN} are the same as in the Lemma and (e’l”“~))*q(x) = p(e”J(“*)x) 
for 9 : W” + W. Due to the Lemma T E HP+, N E N, {u,, . . . . UN} can 
way, that 

I\’ c (J z’(tli7 t2ir -:., tNi)v 

i=l 

where 
“(h, t2, ‘e-t tN) = {x E W” : v(t&, . . . . ty,x) < 6). 

(tli, t2i7 ***7 tNi) E WT(i = I,..., U) are fixed N-tupels and 5 tji 5 

The piecewise smoothly stabilizing extention ii(x) of w = I&*) over 
following way 

be chosen in such a 

(3) 

T for 1 5 i _< V. 

I< is defined in the 

= w(x) for x E u(0, . . ..O). 

E(x) = uN for x E u UP, “‘, T)\v(o,, 

ii(x) = UN-1 for x E u v(O, . . . . T,tNl)\{ u ’ v(o,...,7)uv(o,...,o)} 

o<+tN-11 o<T$,,l 

and so on until 
u(xj = u1 for x E U v(r,k, . . ..t~r)\{ U V(O,r, . . ..tk)U 

o<rg11 O<r<tzl 
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Thus E(z) is defined on the set 

=1 - =( u V(T,l*1,..., iN,))U( u UK0 ,...T ~N~U...U@L..~O). 

O<T$ll O<rStz1 

If K E Ei, then the proof is completed. If A’\Zi # 8, then there exist 1 5 i 5 v for which 

We put 

ii(x) = UN for 5 E u 40, . . ..f.)\% 
O<r<tN, 

n(x) = UN-1 for X E u 40,0, . . . . 7, iNi)\{ U ( U ~(0, ---( 7,))) 

o<TstN-1, o<T<tN, 

Thus we have defin$lti(x) on the set 

If K C 2s , then the proof is finished. Otherwise, if K\Zg # 0, then there exist j # 1 
and u(trj 9 . . ..t/&'j) g Z2. We can define the feedback U(X) or) the set 

‘Es = ( u , o(7 3.*-,tNj))U( U v(O,T,;-.,tNj))Uau l US, 
O<r<t1, O<r<t-J, 

in the same way as it has been done on the set Z2. 
The existence of a natural number IL, such that IC C 3, follows from the (3) 

Many important consequences for applications follow from the above prooved Theorem. 
To formulate some of them we introduce the notion of appToximate controllability. 

Definition 5.2 The system Cj is called completely approximately piecewise constantly 
controllable (CAPC controllable), if for every c > 0 and every p,q E R” there exist 
I+ E UP) = (3: E R”; I z -PI < 4 d E &W, such that p’ \s pie&& constantly steered 
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into q’, where ] .r (= 
J 

2 rf. 
I=1 

It is easily seen, that CAPC controllability of the system S, implies the piecewise constant 
accessiblity of every compact I\’ C W” from any open set 0 C W” in the sense of the 
system C-f. At the same time there are relatively simple verifiabie sufficient conditions 
of CAPC controllability (see for example [Fj,S]). All these allow us to formulate the 
following corollaries of the Theorem 5.1. 

Corollary 1 Let a system C, be CAPC controllable. Then the Cl is piecewise smoothly 
stabilizable over W” in every point (c*,u*) E E(C,), such that Cf is locally stabilizable 
in (T*, u*). 

Proof. R” is a locally compact separable space. Therefore W” G 5 Ki, where Ki is 

compact for all i = 1,2, . . . . After application of the Theorem 5.1 we%ve the piecewise 
. 

smooth feedbacks u,(z), U*(I), . . . . such that ui(r) stabilizes the 3, in (z*, u’) over Ir’i(i = 

1,2, . ..). Thus W” E E I;‘i. where 12; is an invariant compact set of the system J! = 

f(Xy Ui(Xi), Iii C r I=’ lr and ui( r) stabilizes the Z, in (z*, u’) over I;‘i. We define the piecewise 
smooth feedback 

ii(x) = ~~(5) for t E I;‘*, 

ii(x) = us(x) for t E ti2\1?r, 

G(x) = Q(X) for 3 E &,\(Rz U I;‘,) 

and so on, U(x) = u;(x) when x E Ri\(ifjr Kj)* 0 n account of the design procedure the 

feedback U(Z) stabilizes the system C, g;,*, u’) over W” w 

Let [X, Y] denote the lie bracket of the vector fields X, Y i.e., IX, Y] is such a vector field, 
that &.YIV = Lx LY v - Ly Lx9 for every smooth real function cp. a&Y = adx(a&‘Y) 
and ud$Y = Y;adxY = [X, Y]. 

Corollary 2 Let CJ = W”, M = R”,Cf be CAPC controllable. Then Cf is piecewise 
smoothly stabilizable over W” in every point (x8, u*) E E(C,), such that 

where f(u*), $$(u*) denote f(z, u*), {&z, u*), . . . . $$-(z, u*)), respectively n 

Let L be a family of smooth vector fields. Then ad”f denoteg the following vector fields set 
a&,f = (ad’,f; t E L}. Lie(L) is lie algebra generated by E, i.e., Lie(L) is the minimum 
vector fields module over the ring C”(R) satisfying the coqditions: 

a) f C Lie(C), 
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b) X, Y E Lie(L) implies [S, I’] E Lie(C). 

Corollary 3 
Let Af = w”, (/ = If!“, CJ,B be of the form 

5 = f(X) + 2 Uibi(X)y3k E N rank & = n, 
i=l 

B(x) = {b,(x), . . ..b.(x)},& = LieB and 

Li = Lie(a8Q+:f U Li-I), where 

&i-l is a maximal subset of 1ci-1, which fulfils the condition a&$-,f C Li-1 for some 
natural number k > 1. Then the system CJ,B is piecewise emoothly stabilizable over W” 
in every point (z*, u’) E E(C/,B), such that 

rankp{(ad, + 2 uj’adb,)’ 6,; 0 5 i 5 n - 1,l _< v I m)} = n 
j=l 

The Corollary 3 follows immediately from the sufficent condjtions of CAPC controllability 
obtained in (61 and from the corollary 1 of the Theorem 5.1. 

Corollary 4 Let Cj,b be the system of the form 

i = f(x) + I+), 

I 5 E ~2J(4, 44 b e smooth vector field and v(z) = det(f(z),a(s)), where det(.) is 
determinant of (-). Then if &q(z) # 0 for z E 9-l (0) = {z E IR’; v(z) = 0) and for 

. every point x E IX2 there exists t E HP, such that v(etbz) = 0, then Cf,b is piecewise 
smoothly stabilizable over W2 in any point x* E v-‘(O), 

u*=i&p < fW,&‘) >r, 

where < z,y >= ‘.k qy; and 1 z 12=< Z,Z > w 
i=l 

This corollary is a consequence of the Theorem 5.1 and the criterion of CAPC controlla- 
bility prooved in [5]. 

5.2 Smooth stabilizing extention. 

Here we describe a sufficient condition (it turns out to be a criterion for a nonlinear afEne 
system) for the feedback w = w(t) stabilizing Cf locally to have a smooth extention 
u = G(Z), which stabilizes Cf over a given compact I< c 4”. We consider only the case 
M=R”,U=R”. 
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Definition 5.3. Let PR” be the class of all subsets in R”‘ and Is/ = 5 xf for x E Rm. 
ix1 

The topology on PR” defined by the base of the neighbourhoods’ 

{&(S); s 2 W”, c > O}, 
6,(S) = {Z E Pliirn* , s\s c O,(S), s\z c O,(E)} for s # HP”, 

6,(Rm) = {Z E PR”; B+(O) c Z}, 

where O,(S) = {x E Rm;slES inf Ix - yj < c}, is called Hausdorff’s topology on PR” n 

The crucial role in the investigation of the smooth stabilizability is played by the notions 
of U-accessibility and U-controllability. 

Definition 5.4 Let mapping U : R” + PR” be continuous in the sense of Hausdorff’s 
topology. Then a point p is piecewise constantly U-steered into a point Q (in the sense of 
the system Cl on a connected set P c R”p, q f P) if there exist 0 < T < 00 and piecewise 
constant u : (0, T] + R” such that the solution xU(t,p) of the initial value problem 

i = f(x, 4w7 
x(O) = P 

: 

exists on the time interval [0, T] is unique, z,(T,p) = q (zU(t, p) E P for all 0 5 t 5 T) 
and t lj~+~ 4~) E LJ(x& P)) f or all 0 < t < T and lim u(7) E U(p), lim u(~) E U(q). 

A set-K is called piecewise constantly U-accessibl~~~“the sense of t&?i$tern Et on P 
from a set V(V U I( C P) if f or each point q E K one can find a point p E V being 
piecewise constantly U-steered into q (in the sense of then system Cf on P). n 

Generally speaking controllability does not imply the smooth stabilizability. Some exam- 
ples have been given in [l, 3,9]. But if the set mapping U : R” + PR” is of some special 
type then U-controllability implies the smooth stabilizability of the system CJ satisfying 
the condition 

(S): there exist real numbers v+ > u- > 0, such that 
f(vw+(l - 4~2) E {km (Bf(x,w) + (1 - P)f(x,up)):u- 5 k 5 Y+, o < p 5 .I}, 
for all 0 5 o 5 1 and ulr u2 E U(X). 

Namely, we have the following proposition. 

Theorem 5.2 Let w = W(Z) stabilize locally Cf in (z*, w’) E E(Cf), I( be a compact 
in R”. Then w = w(z) has smoothly stabilizing extention over K, if there exists a set 
mapping U : R” + PR” such that: 

a) U(z) is continuous on R”\z’ in the sense of Hausdorff’s topology; 
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b) U(z) is convex for all z E R”, and condition (S) is fullfiled, U(z*) = w*, (r, U(z)) n 
E(C,) = 8 for z # Z* and W(Z) E Int U(z) for z E O(z*)\z*, where O(x*)is such 
an open neighbourhood of z*, that 0(x*) is an invariant set of the sysem 

and 10 = w(z) stabilizes C, over 0(x*); 

c) there exists a copnected set P, such that O(Z’) U I< c P, (x, u(z)) n E&Et.) = 8 for 
z E P\x* and K is piecewise constantly Int U-accessible from the neighbourhood 
0(x’) in the sense of the system C-f on P. ” 

Proof. Without Ioss of generality we can assume that P s R”. The feedback w = W(Z) 
stabilizes the system locally in (z*, w’). Therefore there existrLiapunov’s function v(x) 
(see [lo]) in some neighbourhood O/(x+) C O(x*),O’(x*) = {x E R”;V(x) 5 e},‘Mx) > 0 
for x E O’(X*)\~*,~(X*) = 0, Ljvx) < 0 for x E O’(X~)\X*, where f = f(x,~(x)). 
It is easy to see, that the Lemma from the previous section is true also in the case of 
U-accessiblity. Therefore, according to the Lemma 

for some N E N, 2’ E R+, where 

Vg(t&*, “., tJv) = {x E W”; qt1,t2, ..‘, t&x) < f) 

and 6’ is defined in the proof of the Theorem 5.1.’ Let us t?ke 

x E q(t1, t2, . . . . tN). 

Due to Sard’s Theorem [7] we can assume without loss of generality, that 

where 51 = e tN-l ftUN--l ) 0 . . . 0 etdf(ul) x. Otherwise we can change a little bit c > 0, in order 
to get this inequality. Let wa(x) E C” (R”, R), 0 5 lug(x) 5’ 1 for all x E R” and 

w(x) = 1 for 5 E V)(O, . . ..O). 

wg(x) = 0 for x E R”\O~(v~(O, .;.,O)) 

(the existence of wa(z)) is wellknown [7]). Then the smooth feedback 

3:(s) = w(x)wa(x) + (1 - W&))UN 
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stabilizes the system Cl in (Y, d) over the set 

wp = {x E W”; ( ,frc4)-q,) ,< f}. 

Now we prove the existence of such 6 > 0, that for all 6 < 6 $1 E Int W;. Let y = e’ff“d%:l 
and i’(y) = f. Then v(y) = V(y) and f or some p > 0 there exist 7 > 0, such that 
L,(,(,))V(z) < -~,Lf(~,,,)v(z) < -p for x E B,(y) = {x E W”; 1~ - yl I y}. The set 
mapping U(z) is continuous, uN E Int U(x) and consequently y ‘> 0 can be chosen in 
such a way that guaranties CUD(X) + (1 -o)uN E L/(x) for aII x E f??(y) and aII 0 < a 5 1. 
Thus f(x,t$(x)) # 0 for x E B,(y) and zrrB;TY, If(x;‘@(.r))l 5 A4 < 00. Moreover, 

in according to the conditions (S) f(x,$(x)) = k(Pf(x, U(X)) + (1 - /3)f(z,~N)) for 
V, 5 k 5 Y+,O < p 5 1 and x E {O~(u:(0, . . . . O))\v;(O, . . . . 0)) f? B,(y). 
Therefore 

and 

v’( ,(f+A)f(ii:),l) 5 f+ff(o:)zl) - u-p. A 

where a e(.!+r)/(fi’) - l Xl E {06(U~(O,..., w\qzzg r-l WY) 
for 0 5 r 5 A. 

(4) 

Let ya = e’6f(*)S1, where e(fa+Al/(uh’)Z1 f Os(u:(O, . . ..O))\u.(O, . . ..O) and e(t~-Alf(“~)5., $ 

Os(v;(O, -a*, 0)) for all sufficiently small A > 0. It is easy to see, that prny6 = y and con- 4 
sequently F-y V(y6 ) = f . We take such 8 > 0, that for all r> < 6 < 8 

and 
P(x) =v(x) for x E O~(ui(0, . . ..Q)). 

ta is defined such, that &f(‘:)?r = ~6. 
Inequality (4) implies 

~(~(‘6+A)f@:)q) 5 ; 

%I+ f when A = v-.p . At the same time 

for 0 5 7 < A. Thus ~1 E Int Wf. 

Let us take the following set Er = {x E R”; ($Nf(Q))*$‘(r) < i, $(e”(“:‘))*~(+)lt=~ < 
-PI for such 0 < f 5 tN, that (erf@r))‘v(x) = f), where & > O,pl > 0. It was proved, 
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that i1 E Int Zr. 
Let z2 = etN-2/tuN-2) 0 ... 0 etlftul) x. Without loss of generality it is supposed 

where 7 > 0 such, that (e~f(UN-l))*(etNf(B~‘))*~(~2) = s. 
We take the feedback 

where wb2(.x) f C”(R”, R),w6L(5) = 1 for 2 E EI,wb2(x) = 0 for z f lR2\0,(ZI) and 
0 < wg,(x) < 1 for 5 E &(Er)\Er. 
We constract Z2 in the way being analogous to that used for the constraction of 5r and 
choose 62 > 0 such, that z2 E Zz,Zr c Z2. Then the following feedback 

-61 ,62,,..6,” 
UN (x) = ti~~‘~“*6N-1(5)~6N (x) + (1 + w6N(x))UN2 

stabilizing the system C, over the set 5 is obtained, where 
z,, = (2 ,E W”; (eTf(sd,:“-“6N))*~(*) 5 i, ~(et1(8~“..‘6N))*~(Z) Itic< -p,, for such 0 < - 
t 5 T, that (eV(83’---~*N))o~(Z) = f}, where p,q > 0 and x E Int EN. If K- c ZN, 
then II(X) = ti$i”.P6~(z) is the smooth feedback, which we are looking for. Otherwise, 

if I<\$ # 8, then we can take z E I<\= -N and {ti 2 O};N=r ,c ti 5 T, such that 
i=l 

etNf(uN) 0 . . . 0 etlf(ul)z E Id= YN.Therefore by repeating the procedure described above, we 
obtain the smooth feedback ti$*.‘62N (x) stabilizing the system Cf over the set &J and 
EN c Int Z3N. If Ii’ c $v, then the smooth feedback is designed. If I<\szN # 8, then 
we continue the described procedure. Due to compactness of K and piecewise constant 
Int U-accessibility of K from the neighbourhood 0(x’) in the sense of C-J this procedure 
leads us to the smooth feedback stabilizing Cf over I< and it is necessary to make only 
finite number of iteration. n 

The Theorem 5.2 turns out to be the criterion for the existence of a smooth stabilizing 
extention in the case of the nonlinear affine system of the form 

Cf,B : i = f(X)+ ebi(x)ui, 

i=l 

where f(z),B(x) = {bi(z)}zr are smooth vector fields. 

Theorem 53 Let w = w(x) stabilize locally the nonlinear a@ne system C~,B in (Y, w’) E 
E@f,B), E(C~,B) be a submainfold in RE x q, K be some compact set in HP”. Then 

- w(x) has smootly stabilizing extention over K, iff there exists a set mapping U : 
gmB+ PR”, such that: 

a) U(Z) is continuous on R”\z* in the sense of Hausdorq topology; 
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b) U(z) is convex for all z E lR”,U(t*) = ID* and UJ(J:) E Int U(z) in some open 
neighbourhood 0(x’)\ t* of z*, such that O(P) is an invariant set of the system 

i = f(X) + 2 Wi(x)bi(x) 
i=l 

and w = w(z) stabilizes C,,B over 0(x*); 

c) there exist a connected set P, such that 0(x*) U I< c P , (2,1/(z)) f’~ E(C/) = 0 
for t E P\x* and Ii’ is piecewise constant Int U-Tcessible from the neighbourhood 
0(x*) in the sense of the system C;f,-B on P. 

Proof. Sufficiency follows immediately from the Theorem 5.2. We should only note, that 

f(x) + E(awi + (1 - a)ui)bi(x) = a(f(x) + ,gl wib(x)) + (1 - a)(f(x) + ,$ uibi(xj) i.e., 

the con%ons (S) is fulfiled. 

Necessity. Let u = U(X) be a smoothly stabilizing extention of w = w(z) over the compact 
I<. V(X) is the extention of Liapunov’s function V(Z) to HP”, which was constructed to 
prove the Theorem 5.1. Consider the function 

There exist 6 > 0, such that filzs = v, the restriction p(x) to S:6 = {z E R”;G(x) < 6) is 
continuous, p(x) > 0 for x # x8 and p(x*) = 0, Introduce the set 

s = {,~m~)) z;t E I-,t > 0). 

where 

f(u(x)) = f(x) + 2 ui(x)h(x)- 
i=l 

9 is a compact and (x, U(x)) 4 E( C~,B) for x E s\(%). Therefore we can find such c > 0, 
that p(z) > c for all x E s\(E;). Let w(x) E C”(R”,R) and 

w(x) = 
{ 

1 for zEZ, 
0 for 2 $gb. 

The set mapping 

U(x) = {u f R”; Iu - 

satisfies all the conditions of the Theorem. F 

The quilibira set E(C 1,~ o a nonlinear tine system CJ,B with B(x) being of complete ) f 
rank is described by the following way 
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Jvf.B) = { (5, u) E lR” x It”; rank{f(x), B(x)} = m, 

u = -(BT(=)B(=))-‘BT(=)f(=)}, 

where B*(z) is transpose of B(z) = {br(t), . . . . b,(z)} and {b;(z)}g”=, are smooth vector 
fields, 

/ This description of E(C~,B) allows us to formulate the following Corollary of the Theo- 
rem 5.3 in the case of a single-input system CI,~. 

Corollary 1 LA P,(E(C,,B)) b e submanifold in R” ‘and P,(E(C/,B)) = U.wi, {wi}i 

regular curves, i.e. 
i 

K be a compact subset of JR”, C/,b be the nonlinear affine sjngle-input system 

k = f(x) + 6(+ 

with b(s) # 0 for all z E W” and 

{e’*=0; t E R} I- P’(E(Cf,b)), for all xv E II?, 

w = w(z) stabilize C,,b locally in 

(=*4 = Wb(W E Wl = {(x(+(T)); -cm < T < +cm}, 

for x E w;(i # 1) 
- u”(x(7))) > 0 for x(7) q wr 7 > 0 
- u”(x(7))) > 0 for x(r) Cj w1 7 < 0 

for x = xT, 

where u’(z) = L’$#$&~ C = (C)i22 U{G, cr} and either ci = +1 or C = -1, 

Then w = w(z) has smoothly stabilizing extention over K, iff there exists (C)i>,, such 
that K is piecewise constantly UC-accessible from the neighbourhood O(z*) in tge sense 
of the system C -f,-b where O(z*) is an invariant set of the closed loop system 

iz = f(z) + +)w(=) 
and w = W(2) stabilizes Cf,b over m. 
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Proof. Let 6 > 0, Bs(s*) n 20; = 0 for i # 1 and w: = {Z(T) E wl; fr > 0). Then there 
exists for every R > 0 such 0 < 6 < 8, that 

06(B~(x:‘) n Wi) flO6( BR(~*) fl wj) = 0 for i # j. 

We introduce the following smooth function 

0 5 <i(x;b, R) 5 1, 
0 5 (lf(x;b, R) 5 1, for all x E HP”, 

[,'(x; 6, R) = 1 for x E we\&, 

ti(x;6, R) = 1 for x E Wi, 

(,'(x; 6, R) > 0 for x E wlf\lxf, 

su~~{t;tb; 6, R)} n SUPP{&-(x; 4 W = ‘4, 
: SUPP{~&; 4 R)) II supp{&(x;6, R)} = 0 for i # j, 

suPP{ti(x; 6, R)} n supp{t,f(x; 6, R)} = 0 for i 2 2, 

supP{ti(x; 6, R)} n BR(x*) C oa(B~(x’) 17 wi), 

SUPP{t,f(X; 6, R)) n BR@*) c 06(BR(X’) 0 W,f\&(X*))v 

where suppcp(x) = {x E R;cp(x) # 0). Th e f unctions {clf(x; 6, R), {{i(x; 6, R)}+z} evi- 
dently exist [7]. 

Let 

R for xc U SUpp{[i(X; 6, R)} U ,X’ 

. 
CC"- C--A +ci +u'(X))> > 0 

for x E supp{ti(x; 6, R)), 
c,'<u - c-&j + cf + UW)) ' 0 

for 3: E SUPP{~,~(X, 4 R)), 
UP for 2 = x*. 

I/c(s; 6, R) is continuous on R”\z* in the sense of Hausdorff’s topology and there exists 
a neighbourhood 0(x*), such that u(x) E Int U,(x;&R) for x E O(x*)\x*. Moreover 
it follows from the transversality {etbxo; t E R} I- P,(Zf,&) for ‘all x0 E R”, that the 
compact K is piecewise constantly UC-accessible from O(q*) for some {ci}izl, iff there 
exist R > 0,O < 6 < 6, such that K c BR(z*) and K is Int Uc(z; F)-accessible from 
0(x’). Thus it is easy to see, that all the conditions of the Theorem 5.3 are fullfilled. 
Therefore the application of the Theorem 5.3 completes the proof. n 
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Corollary 2 Let Cf,a be the system of the form 

k = f(x) + u - b(x), 

* x E R2,f(x),6(x) b e smooth vector fields, &J(Z) # 0 for all x E p-‘(O), where (p(x) and 
v-‘(O) have been defined in the Corollary 4 of Theorem 5.1, and for every point z E IR2 
there exist t E R, such that p(e’*z) = 0. Then C,,b is smoothly stabilizable over every 
compact IIT C HP2 in any given point 5’ E p-‘(O), 

Th,is proposition immediately follows from the Corollary 1 and the results on the control- 
lability of the system Cf,b obtained in [5]. 

6 Conclusion 

We have assumed in the paper, that the system Cf is smo,oth. But all the main results 
obtained here can be generalized to the system Cl with f(x, IA) having at least continuous 
derivatives of the first order. The Theorem 5.1 remains to be true also for an abstract 
nonlinear system in Banach space under the natural suppositions OE the existence and 
uniqueness of the solution. If the Liapunov’s function used 10 prove the Theorem 5.1, the 
feedback w = w(x), vector fields f(x,~),f(x,w(x)) are real analytic, then the designed 
stabilizing extention u = U(X) is piecewise analytic in the sense of the paper [9]. 
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