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Abstract 

A method of decoupling normalizing transformations has been developed. According to 
the method only the part of differential equations corresponding to the dynamic on a 
center manifold has to be modifyed by means of the normalizing transformations of a 
Poincare type. The existence of the normalizing transformation completely decoupling 
the stable dynamic from the center manifold dynamic has been proved. A numerical 
procedure for the calculation of asymptotic series for the decoupling normalizing trans- 
formation has been proposed. The developed method is especially important for the 
perturbation theory of center manifold and, in particular, for the local stabilization 
theory. In the paper some sufficient conditions for local stabilization have been given. 



1 Introduction 

Consider the system 

i = Az + q5, y), 
(1) 

7j = B?j + qz, y), 

where (5, y) E R” x R”, R” is used for n-dimensional Euclidean space, the eigenvalues 
of A E R”‘” have zero real parts, the eigenvalues of B E R”‘” have negative real parts, 
6 and G , are at least C2 functions which vanish together with their derivatives at the 
origin, i.e., 

@ E Ck( R”’ x RF’, R”‘), qo, 0) = 0, 

X&J E C”(R” x R”, R”), G(O,O) = 0, 

d+(O, 0) = 0, 

d%(O,O) = 0, 

where k 2 2, d@ = (g,:) and Ck(R” x R”, R’) is the class of all functons 

cp : R”’ x R” t Re, 

which have the continuous derivatives of order k. 

To investigate the dynamic of the system (1) in a neighborhood of the origin we apply 
the center manifold theory which mainly consists of the following three theorems. 

Theorem 1.1 [4,8] G iven the conditions (2), then there exists a center manifold 

A& = ((2, y) E &(O) x R”; y = h(x)}, 

whereBh(0) = {Z E R.“; 1 x I< S}, 1 x I’=< X,X > and < X,Z >= &xiZi for x,z E 

R4, h E Ck(Rm, Rn) a,nd 6 is a sufficiently small real positive number. 

It is convenient to use t’he following notations: 

f&y) = (AZ + 6(?,g),By+ %(Z,$, 

etf denotes the flow g enerated by the vector field f. e”( 2, y) is the point drifted by the 
flow etf in time t from the point (x. y). The zero solution is said to be stable, iff for 



every neighborhood W there exists a neighborhood V, such that 

8V c w w 2 0, 

where e*flr = (elf(,,y); (~,y) E V}. Th e zero solution is asymptotically stable, iff it 
is stable and there exists a neighborhood E, such that 

for all (x, y) E E. The flow on the center manifold M, is governed by the system 

i = AZ + @(z, h(z)). (3) 

The next theorem tells us that (3) h as all the necessary information needed to determine 
the asymptotic behavior of (1) in a neighborhood of the origin. 

Theorem 1.2 [4] 

(a) If the zero solution of (3) is stable (asymptotically stable) (unstable), then the 
zero solution of (1) is stable (asymptotically stable) (unstable). 

(b) If the zero solution of (3) is stable, then there exists a neighborhood V of the 
origin, such that for every (20, yO) E V one can find ~(1, such that 

e’f(xo,Yo) = (z(t, ZO), h(z(t, 20))) + O(e+), 

where y > 0 is a constant, z( t, q,) is the solution of(3) with initial condition 
=(O, zo) = 20. 

The center manifold can be approximated to any degree of accuracy. For C1 functions 
p : R” -+ R’” define the nonlinear operator 

(Ah,+?!) = dp(z)[Az + @(it, cp(z))] - B&z) - Q(%:, y(2)). 

. For the function h(s) defining the center manifold MC we have (Mh)(%) = 0. 

Theorem 1.3 [4] Let p be a C1 mapping of a neighborhood of the origin in R” into 
R” with y(0) = 0,&q(O) = 0. Suppose that as z + 0, (Mv)(z) = O(l 2 1”) where 
q > 1. Then as .r + 0, 1 h(r) - V(X) I= O(I z 1”) . 

The main results of this paper occupy the place of Theorem 1.2 among these three 
theorems. In fact, Theorem 1.2 can be replaced by two stronger theorems (Theorem 2.2 
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and Theorem 3.1), which are the core of the theory proposed here. At the same time, 
the method developed here together with the theorems 1.1, 1.3 give us a powerful tool 
for the investigation of stability and stabilizability of nonlinear systems. 

We prove for small (z, y) th e existence of the decoupling normalizing transformation 

.i: = z + I&y - h,(z)), I&O) = 0, dv(O,O) = 0, 

(4) 
ij = ij - h(z), 

under which the system (1) has the form 

(5) 
fj = By + q.,:, ij), 

where h(z) is the function from Theorem 1.1, &(2, h(Z)) is from (3), $(2,0) = 0 for all 
2 sufficiently small and dQ~(0,0) = 0. If @, $ are Ck functions, then v(z,~ - h(s)) is 
also C” function. ~(5, y) can be approximated to any degree of accuracy. We will show 
that the theorem analogous to Theorem 1.3 holds. To know ~(5, y, ) is important, both 
for the investiga.tiou of the stabilization and for the design of a stabilizing feedback. 
To illustrate that, we will prove several sufficient conditions for local stabilizability of 
nonlinear systems with noncontrollable linearizations and propose a stabilizer design 
procedure for a bilinear system. 

2 Existence of decoupling normalizing transforma- 
tion 

Here we prove the existence of the decoupling normalizing transformation (4). The 
proof is analogous to the proof of Theorem 1 .l [8]. 

The system (1) is more convenient to rewrite in the new coordinates 

where h(F) is from Theorem 
has the form 

1. 1. Under the coordinate transformation the system (1) 
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where 

i(z, y) = dh(.x)(iP(L7+ h(z)) - 6(x, y + h(z))) + \k(qy + h(s)) - qs, h(q). 

Now for the system (5) we prove the existence of the function Y(X, y), such that under 
the transformation 

31: = rc + z&y) 

the system (6) has the form (5). 

Theorem 2.1. Let 6(.x, y), $J(x, y) be C” functions ( k > 3 ) which vanish together 
with their derivatives at the origin, i.e., &(O, 0) = 0, d@(O, 0) = 0, dlk(O,O) = 0 and in 

addition 6(x,0) = 0 for all (x,0) E Q, where Q is a neighborhood of the origin. Then 

there exists in a neighborhood Q c Q of the origin a CkW2 function V(Z, y), such that 
z+,O) = 0 v (x,0) E Q, dv(O,O) = 0 and under the normalizing transformation (7) 

the system (6) has the form (5). 

]proof.Introducing the scalar change of variables (z, y) ----+ (Xz,Xy) and multiplying 
a, QJ by ~(1 5 I2 + / y I2 +KX2) 1 . I w iere i is a sufficiently large positive constant and 

u(r) is a C” real valued function satisfying 

u(r) 5 1 v 0 < 7‘ I ;, 

w(r)rO VlIr<cq 

we obtain 

(8) 
j/ = By + q?Y, A), 

, where 

q.E, y, A) = $(I I- I2 + 1 y I2 +IiX2)&+c, Xy), 

x&r, y. A) = &(I z I2 + 1 y I2 +KX2)\jr(Ax, Xy) 

and the following conditions hold: 

(ai) @(.r, y. A)! *( .I’~ y. A) exist and are continuous for all (x, y, A) and for each fixed 

X are c”; funct,ions in (.r, y). 



(aii) @(O, 0, A) = 0, for any fixed X d@(O, 0, A) = 0, dQ(O,O, A) = 0. There exists a 
real positive value S > 0, such that Q(z, 0, A) = 0 V 2 E Rm, 1 X I< 6. 

(aiii) a, XIJ 3 0 V ] 2 I2 + 1 y I22 1, where ) . ) represents the Euclidean norm 
corresponding to the usual scalar product < ., . > on pairs of vectors. 

(aiv) (e)‘(&)‘(+, 9) --+ o uniformly in (z, y) E R” x R” as X -+ 0 for 1 i 1 + I j 15 k; 

(!&+(LJ.. . (gq-(&)-%.. ($, 

nl n 

where i = (ii,.. ..im), j = (jl,...,.in) are an m - tuple and an n - tuple of 
nonnegative integers respectivly, ( i I= ii + . . . + i,, 1 j I= jr + f.. + j,. 

If X # 0, then system (6) and (8) are locally (near the origin) related by a scalar change 
of variables. Therefore it is sufficient to prove Theorem 2.1 only for system (8). 

The function v(r, y) is a solution of the following equation in partial derivatives. 

z/(x, 0) = 0 V 5 E RI”, 

dv(O,O) = 0. 

To solve the equation (9) we take into account that 

where f = (-43~ + +(r, y. A), By + Q’(z,y: xi)‘, $eAt = AeAt, eAtIt= = I, I is the 
identity matrix. 

(etf)*~(x, y) = p( etf(x, y)) Vt E R. 

After integrating (10) with respect t.o t we obtain 

. 
e t“ye.-t~)-V(S,y) - ‘/(.L?/) = i’ E~tT(e-Tf)-[qx)y, A) - cf?(z + l/,0, A)]&. (11) 

In according with condition’ (aii j we have 

and (aiv) yields 
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uniformly in (5, y) E R” x R” as X t 0. Therefore we can choose the positive real value 
S from (aii), such that 

/& P,(e”‘(z, y)) = 0 V (z, y) E R” x R”, 

where PY : R” x IX” t Rn, PY(x, y) = y. Th us it follows from boundary condition 
v(z,O) = 0 V’z E R”’ and (11) that 

J 

0 

+,Y) = --oc, eA7(eeTf)*[tb(cc, y, A) - G(zc + ~(5, y), 0, A)]&. 

Consider the nonlinear operator 

(e-‘f)‘[@(x, y, A) - qx + I+, y), 0, q]dT 

which is defined on the following Banach space Y k-2. 

I? = {v = v(z, y) satisfying (bi - biv)}. 

(bi) v is a real vector - valued C’ function defined on R” x R” and Y : R” x R” -+ R”. 

(bii) V(Z, 0) = 0 ‘v’ r E R”, dv(O,O) = 0. 

It follows from the theorem of differentiation of improper integrals with respect to 
parameter (see [9]) that 5”x~ E Yke2 V v E Ykm2. 

Introduce the notations 

Then {(X,$(t), Y:;;(t))} 111t1J15k-l is the solution of the following system 

i(t) = AT(t) + !qLT(t),y(t),X), 

!a) = wq + w w, Y(t), A>, 

$-~ycti = .A-Q:y(t) + (~)i(~)%?(~(t), y(t), A), 
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where 1 i 1 + 1 j I< k - 1, r(t) = Px(e”f(x,y)), y(t) = Py(e”f(z,y)) and X$,(O) = 

0, Y;:;(o) = 0 for 1 i 1 + ) j I> 2, &Px(etf(z,y))lkO = 0, &py(etf(x,y))lt=O = 0, 

where 1, E R”‘“, I, E Rnxn are identity matrices. Using the method of the induction 
with respect to ( i I + 1 j I= 1 we can prove the existence of 6 > 0, such that for 1 X I< 6 

suP I (~)i(7$-)JPy(et~(,l,, I< G(t). ,[-@+~tA)It, l~l+l.i121 (12) 
(-X,Y) 

where G(t) is a polynomial in t with positive coefficients, B(A) 2 0 is continuous in X 
and p(X) + 0 as X --t 0, p = max{I Re z 1; z E a(B)}, a(B) is the set of eigenvalues 
of B. 

Step 1. Let 1 i 1 + I j I= 0. Then 

and the eigenvalues of B have negative real parts . Therefdre there exists positive real 
value 6 > 0, such that for 1 X I< 6 and ) i I + I j I= 1~ the inequality (12) holds. 

Step 2. Let inequality hold for all 1 i I + ) 3 I< 1. Consider the case I i I + I j I= 1. 

$Y:$(t) = Be:;(t)+ gQ(x(t), y(t), ~).I;::~(t)+~( {X~f~(t))lil+l~~</> {C$(t)>li~+l~l<l, A>, 

(13) 
where X,“!;(t) = z(t), Y;“,“(t) = y(t) and the function Z(., -, A) satisfyes the following 
conditions 

z({-~~,~(t)),,,+,j,<r, 03 4 = 0, 

z3( P-~;(t>lli1+131<1, w-$(t))li,+,j,<i, 0) = 0. 

Due to the conjecture of the induction 

where 6 > 0 is small enough, 6(t) is polinomial in t with positive coefficients, p(X) > 0 
is cont,inuous in X and ;I( A) t 0 as X --+ 0. 

Thus (13) and (14) imply (12). 

The inequality (12) yields 

‘ll(e”)*lI 5 a(t)e(-,L+P(si))t v t > 0, (15) 



where I[(c”‘)‘II is th e norm of the operator 

(e”f >* : yk-1 t p-1 

and 4% PO) are of the same type as b(t), p( A) and 6(t), /3(X). 

The condition (aii - aiv) imply 

whenever Q is C” function and v E Yke2. Moreover, 

llQ(? 0, A> - @b + 4X? YMA 411 I 
II+p(? Y, A) - a’(& 0, x)11 + DI; . I/@(? 0, ~)llc- . (lb’11 + l)k-‘, 

where X: 2 3, constant Dk dependes only on k and 

Thus, taking into account (15), we obtain 

llT\~ll L J” ^( ) -p ct T e( +“‘“hh( II@(x, y> X)-+(x,0, X)II+Dk.ll+(z,O, X)II,~-l.(l+llyll)k-l) 
-cc 

where G(t) is polynomial in t with positive coefficients. 

Therefore there exists 6 > 0, such that for ) X I< 6 

TA : yk-2 j yk-2. 

(aiv) implies 

for any positive real value 1’. Hence for any r > 0 there exists S(T) > 0, such that 

T\ : B, -+ B, 

for 1 X I< Sir). where B, = {v E Ykm2 : llv/l < r}. 

We now prove the existence r > 0, such that for all vl, v2 E B, 
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and ] X ]< b(r). It follows from (15) and the definition of TA that 

It is easy to see that 

Due to (aiii) we obtain from (18) 

II@(x + Vl,O, A) - @(x + v2,0, X)ll I ll@(? 0, qllck-’ . ccl-1 . lb1 - v2ll, (19) 

where C(T) is a constant depending only on T. 

Thus (19) together with (17) and (aiv) yield (16). We have proved the existence of 
r>OandS>O,suchthatfor]X]<6 T x is a contraction mapping on B, C Fe2. 
Therefore according to the Banach’s contraction principle [6] there exists the function 
V( z, y ) E Y 1;-2, which we are looking for. 

Theorem 2.1 can be reformulated in terms of the original system (1). 

Theorem 2.2. Let S(?E, jj), $(z, y) be Ck f unctions (k > 3) which vanish together with 
their derivatives at the origin, i.e., G(O, 0) = 0, %(O,O) = 0, ds(O,O) = 0, d%(O,O) = 
0. Then there exist in a nieghborhood Q of the origin a Cke2 function ~(5, y) and a Ck 
function h(z), such that v(a,O) = 0 V (x,0) E Q, dv(O,O) = 0, h(0) = 0, dh(0) = 0 
and under the norrnalizing transformation 

:f = s + z&y - h(q), 

cj = ij - h(z), 
the system (1) has the form 

where 6j2.0) = 0 V (.?, 0) E Q, dG(O, 0) = 0. 

Rerllark.DecoupliIlg normalizing transformation is not unique because of non - unique- 
ness of the center manifoltl. 
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3 Approximation of the decoupling normalizing trans- 
formation 

The function <(z, y) = V( Z, g - h(z)) can be approximated to any degree of accuracy. 
To show that we introduce the following nonlinear operator 

where Lip is Lie derivativ, i.e., 

d - 

h(z) is the function frorn Theorem 1.1. We remind that 

y(x,y) = O((l .1: I + I1J.l)“. 1 tj - la(?) I) as (.E,ji) + 0, 

iff there exists a neighborhood of the origin TV, such that 

where C is a positive real constant. 

Theorem 3.1. Suppose that i1 is Cl function with dp(O,O) = 0 and there exists p > 0 
such that p( 2, h(z)) = 0 V 1 2 I< p and that 

3:(p) = O((l g 1 + 1 5 1)“. 1 !I - h(2) I) as (z,Y) --f 0 

where 2 q 1. Then 

((Z,y) - ~(2, ij) = O((l Z 1 + 1 ij 1)“. 1 tj - h(T) I) as (?i,ij) + 0. (20) 

Proof. Following the proof of Theorem 2.1, it is sufficient to prove (20) only for the 
system (8) with X sufficient,ly srnall. Take the function 

O,A( I. y) = t/1( xcr, Xy) w( 1 z I2 + 1 y I2 +h’X2), (21) 
A 

where z = 2, IJ = 3 - /l(z) and w(r) is truncated function introduced in the proof 
of Theorem 2.1. Then 8,i E Y” and there exists 1 > 0, such that 

0,~ E IntB, = {v E Y" ; llvll < r} V 1 X I< A. 

Define a mappi .ng SX : Y” + ITo bq 

Is,\-- = T\(Z + &\) - 8x. 
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Since T,\ is a contraction mapping on B, for 1 X I< S(r), SX is a contraction mapping 
on 

where 12 is a positive real constant. Indeed, it is only sufficient to show that 

s,, : E( A, q) + q A, q). 

If v E E( X, q), then 

IISAP + 611 = llG(f + &>I1 5 T, 

where the last inequality follows from 

T,, : &. --t I?,. 

Thus it remains to prove that for all (x, y) E R’l’ x Rn 

I fb>Y) Is I;-. ((1 32 I + I Y I>“* I Y I> 

yields 

1 (S,\f)b, Y) I< I;-. ((I z I + I Y I)” I Y I) 
for some positive IT. 

The function O,\(X) can be represented as 

-8,,(s) = - J -1, &4T(e-Tq*B(x))dT = - J” --oo eA7(e+)*(A@ - L&k 

Since ‘3(p) = O((l z ( + ( y 1)“. ( y I) and h enc.2 3(k) = O(( ( z 1 + ( y 1)“. ( y I) we 
obtain 

O 4,(qy) = - J eAi(e-rf)*{ [@(z, y, A) - qx + o,o, A)] + N(z, y)}d7, --Is1 
where 

Thus 

N(:c, y) = -40 - L,B + qx + B,O, A) - qx, y, A). 

(S,,p)(x: y) = I0 &( e-Tf)*[q.z + 8,0, A) - @( zr + I9 + yJ,o, A) - N(z, y)]d7-. 
--ix, 

Hence having applied ( 15), (19) we obtain t,he existence of 8 > 0, such that 

I Y4.vd I< I;-. (I XI I + ( Y I>“. I Y I> 9 E q&q> 

which yields 

I 6%74b, Y) I< I-c. (I J: I + I Y I)” I Y I 
for all (x, y) and 1 X I< b. The proof is completed. 



Now using Theorem 1.3 and Theorem 3.1 we can approximate the decoupling normal- 
king transformation 

s = s + l&y - h(T)) 

y = ij - h(z), 

to any degree of accuracy, where V( %,O) = 0, h(0) = O’, dv(O,O) = 0, &(O) = 0. 

Consider more thoroughly the numerical procedure for the calculation of asymptotic 
series for V. For simplicity we suppose that the coordinate transformation 

x = .7: 

y = ij - h(2) 

has been already applyed. Thus we deal with the system (6). Then the function V(IC, y) 
satisfies the equation 

.Iu = -duo - {iqx, y) - &(x + u, O)}, 

where 

Au = acl,iu + a”Bu, au 
a!! 

a$Av = -Ax - Au 
8X 

and 
Q(n,y) = (i(x.y),+(x,y))T. 

Let y.g~’ be a linear space of vector fields whose coefficients are homogeneous polynomials 
of degree i + 1 and for every g E y . $3; y(z, 0) = 0 Vx E Rn’ holds. ‘Suppose further 
we have the asymptotic series 

.V= fJ”i: 
i=l 

R = CCli, 

I>2 - 

iq.r,y) - &(:r + 240) = &?(x,y) - @(x + U,O)]i+1, 

2=1 

where v,, [a(~, y) - a(~ + Y, O)];+l E y . g3i and Ri E p’, p’ is a linear space of vector 
fields whose coefficients are homogeneous polynomials of degree i. Then we have to 
solve for {vi}::, the following linear equations in the linear spaces {y . pi}zI. 

Au, = - c ClUiOj - [+(X, y) - Q(X + U, O)][+l (1 = 1727.. .) (21) 
a+j=l+l ,121, j>2 

The solution (v~}E~ exists and is unique. Namely the following statement is true. 

Proposition 3.1. There exists 11-l . ,L ‘ : 9 . go’ t y . 69’ and 

for h E y.rji (; = 1,2,...). 
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Proof. Suppose there exists y # 0, g E y . $, such that Ag = 0. Then 

${e-;“g(eAtx, eB’y)) = 0. 

Thus 
e-Atg(eAtx, Py)} = g(z, y). 

for t 2 0. But g E y. 63’ and consequenbly 

lim e-‘4tg(eA4’2, eBty) = 0. 
tic.2 

Hence g(r, y) = 0. Th us Ag = 0 implyes g = 0. That means the existence of A-‘. 

Example 3.1. Consider the polynomial system 

.i = As + (VI@ + V12y). < k,y >, 

?j = By + (v&n: + v&y). < k,y >, 

where the eigenvalues of A E R”“” have zero real parts, the eigenvalues of B E Rnx” 
have negative real parts, 1’11 E R.“‘Xm! V12 E RmXn,V2i E R”‘“, VZ2 E Rnxn and 
k E R”. Then for 1 = 1 the equation (21) has the form 

Using Proposition 3.1, we obtain 

J 

8X, 
VI = e--AT(&Ie”Tx + V12eB7y). < k,eBTy > d7 

0 

and 

1’ = Ul + or 2. I + I Y I>” I Y I>, 

4 Additional smoothness 

Smoothness and/or real analyticity of a decoupling normalizing transformation is com- 
pletly determined by smoothness and/or real analiticity of a center manifold. Consider 
the sequence 

where +(.r,y.X) and T,\ are defined in the proof of Theorem 2.1. Then {[j},“=O are C” 
functions whenever f is c” vector field and / X I< 6, where 6 is a sufficiently small 

positive real value. It has been proved in Section 3, that lirn,,, I; = v in the ‘Ykm2 
topology. Thus a restrictiou of v t,o any closed ball in R” x R” is the limit of {[i}zo in 
the Ckp2 topology. Moreover for sufficiently small 6 and 1 X I< S the (k -2)th derivatives 

of v are uniformly Lipschitzian. Using this fact and the proof method of Theorem 4.2 
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from [ 5 ]> one can show that, for X sufficiently small, v is a Ck function on a closed ball 
in Rm x R”. 

In general real analiticity of the vector field f does not imply the existence of a real 
analytic center manifold [ 8 1. But if th e f unction h(z) from Theorem 1.1, the vector - 
field f are real analytic and moreover 

A = -AT, 

then the decoupling normalizing transformation is also real analytic. To prove that one 
define the norm 

11911~ = , .,:‘yzl I $d? Y) I on y.ggi. 
2 Y 

If A = -AT, then there exists a constant K > 0, such that 

Ilil-‘II; <IF Vi = 1,2,.... (22) 

Thus using (21) one can show that 

where constant M > 0. (23) means real a.nalyticity of V. The details of this scenario 
are quite laborious so we do not present them here. It is necessary only to note, that 
the condition A = -AT is quite important. In general, for arbitrary matrix A, whose 
eigenvalues have zero real parts: there not exists any constant li’ > 0 for which (22) 
holds. 

5 Local stabilization of nonlinear system with non- 
controllable linearization 

Here we continue the work begun in [ 1,3 1. N amely we apply the results obtained above 
in order to investigate the local stabiliza,tion of the single - input nonlinear system 

ci = A.? + +(z, y) + G(z, y) . u, 

c = By + qz, y) + (q + Q(2, y)) . u, 
where control value u E R and A, B, a’, @ have been defined in (l), 

G : R”‘xR”+Rm, 

Q : RI” X.,‘_t.,, 

are C’” function which vanish at the origin, i.e., G( 0,O) = 0, &(O, 0) = 0. 
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Definition 5.1 The system (24) is said to be locally stabilizable in the origin iff there 
exists the C2 feedback u = W(X, y) which vanish together with their derivatives at the 
origin (i.e., w( 0,O) = 0, clw(0, 0) = 0 ), such that the zero solution of the closed loop 
system ( the system (24) with u = w(r, y)) is asymptotically stable. 

Due to Theorem 2.2 there exists a decoupling normalizing transformation (4) under 
which the system (24) has the form 

i = A2 + 6(2, h(Z)) + G(z, y) . u, 

(25) 

where 

and (.?>y), (?,y) are connected by the decoupling normalizing transformation (4). 

It is easy to see that ?j = 0 yields 2 = Cc and g = h(Z). Thus 

G(?,O) = G(i!, h(F)) + &,O)(q + @, h(i)) - &s)G(& h(5))) 

The next theorem gives us some sufficient conditions for local stabilizability of nonlinear 
system (24). 

Theorem 5.1. Let the system 

be stable, V(Z) be its C’” weak Liapunov’s function, i.e, there exists 6 > 0, such that 
V(2) > 0 for all 0 <I j: I< 6, V(0) = 0 and < &f(Z), A?+&(?, h(2)) >I 0 V 1 5 I< 6. 
Suppose further that for every complete trajectory i(t,~?(O)) = {Z(t); 1 Z(O) I< 6, 0 5 
t < m} of (26) which satisfy-es 

< dV(*~(t)).cq.~(t),O) >= 0 v t 2 0 (27) 

it follows that, .r( t) = 0. Then the system (25) is locally stabilizable in the origin by the 
feedback u = - < clV(.?). G(.?, Q) > . 

Proof. According t’o Theorem 1.1 the system (25) with u = - < dV(li;),tT((?,fj) > has 
a center manifold i = H(Y). Then due to Theorem 1.2 ( and/or Theorem 2.2) the zero 
solution of the closed loop system is asymptotically stable iff the zero solution of the 
sys tern 

1 = -4.f + @(i,h(Z)j - C;‘($,H(L)) < dV(S),G(i,Hrc) > (28) 



is asymptotically stable. If there exists S > 0, such that lim*,, Z(t, x*) = 0 V 1 x* I< 
S, where Z(t, x*) is the solution of (28) g enerated by the initial conditions ~(O,ZC*) = x*, 
then the proof is completed. Otherwise for every 6 > 0 one can find 0 <] X* ]< 6, such 
that limtim Z(t, x*) # 0 and Z(t, x*) saticfyes 

< dT/(iqt, Lx*)), qqt, Z*), qqt, ix:*)) >= 0 v t > 0. 

But (Z(t. r*), H(Z(t, r*))) is a solution of the system (25) with 2~ = 0. Hence, due to the 
stability of the zero solution of (26) liml,, H(Z(t, x*)) = 0. Thus there exists nontrivial 
trajectory of (26) which satisfyes (27). That contradictes the conditions of the theorem. 
The proof is completed. 

Using the sufficient conditions of stabilization obtained in [7] we can formulate the 
following corollary of Theorem 5.1. 

Corollary 1. Let a(~?, h(Z)) = 0, AT = -.4, C(Z, 0) be C” function and for S 
sufficiently small 

1-ank{c~cl~C:(i,O)}~, = n2, VO <I 5 I< 6 

where atliC(~F.0) = G(Z,O), wd~C(.f,O) = &G(i,O)Ai - AG(fi,O) and adaC(i,O) = 
ad&dfi’C-l’(i,O)). Tl ien the system (25) is locally stabilizable in the origin by the 
feedback 2~ = - < 2, C(Z, 1J) > . 

The next theorem follows from the sufficient conditions of the stability of homogeneous 
polynomial systems [2]. 

Theorem 5.2. Let A = -AI', 

G(.F,ij) = C’;,(.i,lj) + O((l 2 1 + 1 ij p+l), 
where 60 E 69, G,, E 63” and $I’, @ care defined in Section 3. Suppose further 
19 2 2q+ 1 and 

{i E S”-’ ; < 2, G,(;r, 0) >= O} c {z E sm-’ ; < zJ&(2) >< O}, 

where 9-l is the (m-l)- dimensional unit sphere. Then there exists y > 0, such that 
the feedback 

u(i) = -2 < 5, G’,,(Z, 0) >I s le-2T1-1 

stabilizes the system (25). 

Proof. Consider the system (25) closed by u(Z) = -y < :i,C,(g,O) >] 2 lem2’JW1 . 
Having applied Theorem 1.1 we obtain the existence of the center manifold y = H(Z) 
for the closed loop system. Hence the feedback stabilizes the system (25), iff the zero 
solution of the system 
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. Then ’ is asymptotically stable. Take the Liapunov’s function V(Z) = 2 1 fi I2 

g(s) =< g%?(ig > -^r(< ?,G,,(Z,O) >)2. 1 5 y-2v-1 +O( 

. 
According to the result of [2], there exists y > 0 such that 

, < 2, &T(Z) >< y(< 5, G&O) >)2 1 2 le-2q-1 vz # 0. 

Thus t,he st,atement of the theorem follows from (29). 

Now we formulate sufficient conditions for local stabilizability of the bilinear system 

:i = Az + (V,,s + V@J)v, 

(30) 
jl = BY + (Q + v,,x + v22Y)T 

where control value v E R, q E R.“, the system 

tj = By + q . v 

is stabilizable and A, {V13}~,J11 are defined in Example 3.1. 

We will design the stabilizing feedback in the form 

v =< k,y > +u(q y) (31) 

with ,u(O,O) = 0, du(O,O) = 0 and k E R”, such that all eigenvalues of B = B + q . k 
have negative real parts. 

After inserCng (31) in (30) we obtain 

i = ,4.r + (V1lx + I,i2y). < k,y > +(V,,x + V12y) . u, 

P-4 
jl = BY + (I’& + 7/22y). < k,y > +(q + v,,z + v22y) . u. 

Theorem 5.3. If =1 = -.A* and 

. < .r, b-11x > + 
/I’ 

< CZ^“~X, I/ile.4’x >< k, eB7q > d7 = 0 
0 

implies .r = O> then the system (30) is sta,bilized by the feedback 

s 

x, 
‘V =< k. y > - < .?I, VIln: > - < ~~5, Vlle~47~ >< k, eBTq > dr. 

0 

(33) 

(34) 
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Proof. It is easy to see that for the system (32) with u = 0 we have h(z) = 0 and 
6(x, h(z)) = 0. Th e d ecoupling normalizing transformation is of the form 

it = 5 + +,y), 

(35) 

G = Y, 

where 

I/= JW CAT( V1l/;leAT z + K2eb'y) < k, eBTy > dr + O(( I x I + I Y 1'). I Y I> 
0 

that was calculated in Example 3.1. 

Under the normalizing transforma.tion (35) the system (32) has the form 

i=A;:+q+j)+ 

3 = Bg + 5ir(Z, 6) + (q + S(.% 6)) * 21, 

where \k, & are analogous to the corresponding functions in (25). 

Consider the system (36) closed by 

J 
cc u(x) = - < x, v,,n: > - < e*‘x:, VlleATx >< k, eB+q > dr (37) 

0 

where (x, y) and (,.Z, g) are connected by the transformation (35). Then using Theorem 
1.1 we obtain for the system (36) closed by (37) the center manifold c = H(Z). Hence 
to prove the theorem we need to investigate a local behaviour of the system 

i = A? + G(Z, H(cq) . u(5), (38) 

where :r = i - ~(x,rr(,Z)). Take the L’ I la xmov’s function V(2) = i ( 2 I2 . Then 

s, qci, H(i)) > .u(z). 

But 

< 2, G(Z, H(i)) >=< 2. P’~1.i: > + J 
cc 

< e.4Tti, V~le.“‘.i! > . < k, eBTq > dr + 0( 1 2 j3), 
0 

. 
J 
'-Dz u(x) = - < s. IH;lLf > - < e%, Vile% >< I;, eBTq > dr + 0( 1 5 I”). o 

Therefore 

g(i) = -(< .?.I,;*; > + J m < e%, V@‘"' 
0 

i! >< k, eBTq > d?)’ + 0( 1 ii I”). 

and due to the condition (33) that means asymptotic stability of the zero solution of 
(38). Hence the zero solution of the syst,em (30) which is closed by the feedback (34) is 
also asymptotically stable. 
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