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Weil der Stadt, im September 2022 Marius Graf





Abstract

Important properties for the design of dynamically loaded components are strongly in-
fluenced by microstructural features. With regard to steel materials, the martensitic
microstructure is of great importance due to its outstanding strength. In this context,
the mechanisms involved in the formation of the complex microstructure are still subject
of current experimental research, whereby simulations at the microstructure level may
contribute to a further understanding.

One focus of this work are experimental investigations in which the influence of the cool-
ing rate on the martensite transformation and the resulting microstructure in a low-alloy
steel is examined. From this, a possible transformation mechanism is derived. Another
focus of this work is the development of a simulation model which describes the marten-
sitic morphology and its evolution. In this context, a phase field model is presented.
Here, order parameters are introduced which describe the material state, in this case
austenite and martensite. The evolution of the order parameters is assumed to follow
the time-dependent Ginzburg-Landau equation. A major extension to previous models
is the consideration of twelve crystallographic martensite variants corresponding to the
Nishiyama-Wassermann orientation relationship. To describe the ordered displacement of
atoms during transformation and to account for the martensitic substructure, the well-
known phenomenological theory of martensite crystallography is employed. The presented
experiments as well as thermodynamic calculations are used as a basis in the identification
of model parameters.

The presented model simulates the evolution of a thermally induced martensitic mi-
crostructure in monocrystals as well as polycrystals by means of the finite element method,
whereby in the polycrystalline structures the predominant nucleation at lattice defects
(grain boundaries) is considered. Furthermore, the model is able to represent the stress-
induced autocatalytic nucleation. Basic features of the martensitic transformation can
be reproduced. These include the martensite start temperature and the hierarchical
microstructure consisting of blocks and packets. The sizes of the blocks are in good
agreement with the real sizes of the experimental database.





Kurzfassung

Wichtige Eigenschaften für die Auslegung dynamisch belasteter Bauteile werden stark
von den mikrostrukturellen Eigenschaften beeinflusst. Im Hinblick auf Stahlwerkstoffe
ist die martensitische Mikrostruktur aufgrund ihrer herausragenden Festigkeit von großer
Bedeutung. Dabei sind die Mechanismen bei der Entstehung des komplexen Gefüges im-
mer noch Gegenstand aktueller experimenteller Forschungsarbeiten, wobei Simulationen
auf Mikrostrukturebene zum Verständnis beitragen können.

Ein Schwerpunkt dieser Arbeit sind experimentelle Untersuchungen, bei denen der Ein-
fluss der Abkühlrate auf die Martensittransformation beziehungsweise der resultieren
Mikrostruktur in einem niedriglegierten Stahl untersucht wird. Hieraus wird ein möglicher
Transformationsmechanismus abgeleitet. Ein weiterer Schwerpunkt dieser Arbeit ist die
Erarbeitung eines Simulationsmodells, welches die martensitische Morphologie und deren
Entwicklung beschreibt. In diesem Zusammenhang wird ein Phasenfeldmodell vorgestellt.
Hierbei werden Ordnungsparameter eingeführt, welche den Materialzustand, in diesem
Fall Austenit und Martensit, beschreiben. Bezüglich der Evolution der Ordnungsparam-
eter wird angenommen, dass sie der zeitabhängigen Ginzburg-Landau Gleichung folgt.
Eine wesentliche Erweiterung zu bisherigen Modellen ist die Berücksichtigung von zwölf
kristallographischen Martensitvarianten entsprechend der Nishiyama-Wassermann-Orien-
tierungsbeziehung. Um die geordnete Verschiebung der Atome während der Transfor-
mation zu beschreiben und die martensitische Sub-Struktur zu berücksichtigen, wird
die bekannte phänomenologische Theorie der Martensitkristallographie eingesetzt. Die
vorgestellten Experimente sowie thermodynamische Berechnungen dienen bei der Identi-
fizierung der Modellparameter als Grundlage.

Mit dem vorgestellten Modell wird die Entwicklung eines thermisch induzierten martensi-
tischen Gefüges in Monokristalllen sowie Polykristallen mittels der Finite-Elemente Meth-
ode simuliert, wobei in den polykristallinen Strukturen die vornehmliche Nukleation an
Gitterdeffekten (Korngrenzen) berücksichtigt wird. Weiterhin ist das Modell in der Lage,
die spannungsinduzierte autokatalytische Nukleation abzubilden. Grundsätzliche Merk-
male der martensitischen Transformation können reproduziert werden. Dazu gehören
unter anderem die Martensitstarttemperatur sowie die hierarchische Mikrostruktur beste-
hend aus Blöcken und Paketen. Die Größen der Blöcke werden mit den realen Größen
der experimentellen Datenbasis abgeglichen, wobei eine gute Übereinstimmung gefunden
wird.
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1. Introduction

The microstructure of materials is decisive for the macroscopic material and component
behavior, cf. Schäfer et al. (2019a); Welschinger et al. (2019). This also applies to
the microstructure phase martensite, which can basically occur in metals, but also in
non-metals, e.g. ceramics. With this allotrope phase, highest strengths of steels can
be achieved with a given chemical composition, which leads to an enormous technical
importance of martensite. Due to e.g. wear resistance requirements of technical compo-
nents, the particularly hard martensite is a frequently desired microstructure. Usually,
martensite is produced with an appropriate heat treatment process. In this process, the
steel must be cooled (usually quenched) from the temperature of high-temperature phase
austenite to the temperature of low-temperature phase ferrite (α-phase). If the super-
cooling below the equilibrium temperature of these two phases and thus the driving force
is large enough and at the same time built up fast enough so that no diffusion takes place,
then martensite is formed.

1.1. Motivation and State of the Art

Despite extensive experimental research on martensite and its formation in steels, the
underlying mechanisms are still not fully understood. Many complex mechanisms interact
in martensite transformation, and the extreme speed under conditions that are difficult
to control experimentally makes in-situ observation of nucleation and subsequent growth
difficult. In principle, several size scales are relevant for a holistic view of martensite
transformation, cf. Fig. 1.1. The nucleation takes place on the nanoscale and with further
growth of the martensite crystals the mesoscale is reached, on which the characteristic
martensitic microstructure can be observed. The dramatic changes in the microstructure
lead to shape changes and stresses, which at the macro scale lead to relevant effects for the
design as well as the process control in the manufacturing (heat treatment) of components.

In order to simulate heat treatment processes at the component level, a phenomenolog-
ical relationship based on the well-known Koistinen-Marburger equation (Koistinen &
Marburger (1959)) is classically used to model the austenite-martensite transformation.
Such formulations are used to determine the fraction of martensite that forms from high-
temperature austenite during monotonic cooling below the martensite start temperature.

several mm several µm several Åseveral nm

Macroscale Mesoscale Nanoscale

Figure 1.1: Different length scales relevant for martensite transformation
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Heat treatment simulations on component level coupling corresponding physical aspects
and describing the austenite-martensite transformation by a phenomenological relation-
ship were performed in the context of induction hardening (Schwenk (2014)), quenching
(Huiping et al. (2007)) and selective laser melting (Schänzel et al. (2019)), to mention only
a few. Since the change in mechanical behavior as well as undesirable effects are accompa-
nied by a dramatic change in microstructure, it is of interest to resolve the microstructure
and physical mechanisms on the microstructure length scale. A two-scale coupling of bulk
microstructural evolution and macroscopic material behavior was recently developed by
Kochmann et al. (2016). However, a modeling technique that couples the macroscopic
component behavior with the resolved microstructure during a heat treatment process,
taking into account the various physical fields that occur, remains a major challenge. A
few key aspects to work on are mentioned by Kochmann et al. (2016): (i) the microstruc-
ture model, (ii) multiple length- and timescales (iii) and the computational approach.
While Kochmann et al. (2016) refers to points (ii) and (iii), this work is devoted to
point (i).

One possibility of modeling microstructures is based on the minimization of the energy
with respect to microstructural parameters describing sequential laminates. With ne-
glecting the interface energy and the dissipative interface motion this approach allows
a prediction of sequential laminates, which is a characteristic feature of martensite mi-
crostructures. Regarding the simulation of martensite microstructures, applications are
given by Luskin (1996); Aubry et al. (2003); Kruž́ık et al. (2005). In addition, modi-
fications of this approach are known that consider dissipative effects. In such models,
a dissipative evolution of certain microstructural parameters and a minimization with
respect to the rest takes place (partial relaxation). Applications to martensite transfor-
mations are given by Bartel & Hackl (2008); Bartel (2009); Bartel & Hackl (2009); Bartel
et al. (2011). Extensions to incorporate size effects by including interface energy and dis-
sipation are given, for example, by Petryk & Stupkiewicz (2010); Petryk et al. (2010). As
a drawback of these relaxation-based approaches remains their limitation to idealized se-
quential microstructures, while in reality more complex martensitic microstructures occur,
minimizing the misfit energy.

Prediction of more realistic martensite morphologies requires models capable of resolving
and predicting the evolving spatial morphology of the microstructure without a priori
assumptions. With such models it is possible to contribute to the understanding of the
martensite transformation. This requires the postulation of additional constitutive re-
lations to describe the kinetics of interfaces, which can be realized in the framework of
the continuum mechanical theory of sharp interfaces, see e.g. Abeyaratne & Knowles
(1990, 2006); Hildebrand (2013). The main challenge here is the explicit description of
the time-dependent topology of sharp interfaces as discontinuity surfaces. Concerning the
simulation of martensite evolution on the mesoscale and in accordance to Hildebrand &
Miehe (2012b), the known procedures may be divided into two classes based on continuum
mechanics of interfaces.

The first class represents sharp interface approaches, where interfaces are modeled as
actual discontinuity surfaces. The extended finite element method (XFEM) is a prominent
numerical implementation of the sharp interface approach, see e.g. Ji et al. (2002) for
application to phase transformations. However, this approach is unsuitable for complex
interface topologies, especially if more than two phases are considered. Furthermore,
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complex mechanisms such as the formation, unification and dissolution of interfaces must
be defined by special criteria.

The second class represents regularized sharp interface approaches, which approximate
the sharp interface by a smooth approximation of the discontinuity. These approaches
lead to the phase field models, where the sharp discontinuities between different phases
are approximated by smooth transitions with appropriate order parameters describing
the presence of the respective phase. In a general continuum-thermodynamic context, the
theoretic considerations of Fried & Gurtin (1993, 1994); Fried & Grach (1997) provide the
basis for such models. The final resulting formulations are generally extensions of the clas-
sical Ginzburg-Landau equation to coupled problems of phase transformation and elastic
deformation (Hildebrand & Miehe (2012b)). The phase field approach allows formation
of unrestricted martensite evolution. It also incorporates interface energy and dissipative
effects. Further, it can be shown that suitable phase field formulations achieve sharp
interface limit, cf. Fried & Gurtin (1993); Garcke (2000); Alber & Zhu (2008). In con-
trast to sharp interface approaches, no additional computational effort to track multiple
interfaces is required, cf. Chen & Khachaturyan (1991); Levitas et al. (2010). A general
overview on phase field modeling is given by Moelans et al. (2008), while Mamivand et al.
(2013) focus on phase field models concerning martensite transformations.

Numerous phase field models to describe martensitic phase transformation have been
developed. Chen et al. (1992); Wang & Khachaturyan (1997) introduced the first (elastic)
phase field models for martensitic transformations, by integrating the micro-elasticity
theory according to Khachaturyan & Shatalov (1969). Many others followed, see e.g.
Artemev et al. (2000, 2001); Jin et al. (2001), with application to different material systems
and different boundary conditions. In recent years, the focus has been on extending
phase field models by certain physical mechanisms to improve the prediction of martensite
microstructures and its evolution, e.g. by considering elasto-plastic materials (Yamanaka
et al. (2008); Malik et al. (2012); Yeddu et al. (2012a,b); Schmitt et al. (2013b)), crystal-
plasticity (Yamanaka et al. (2009); Schmitt et al. (2014, 2017)) and dislocation dynamics
(Kundin et al. (2011)). In 2015, Schmitt et al. (2015) proposed a phase field model for
martensitic transformation coupled with a phase field model for microcracks. A phase field
model coupled with the heat equation is proposed by Schmidt et al. (2017); Schmidt &
Müller (2017). Furthermore, the phase field method was applied with regard to martensite
evolution in dual-phase steels (Schoof et al. (2018b,a)), heterogeneous austenite-graphite
structures (Schoof et al. (2019)) as well as shape memory alloys (Ahluwalia et al. (2004);
Zhong & Zhu (2014); Cui et al. (2017, 2018)). Effects of prior austenite grain (PAG) sizes
were investigated in Fe-Ni alloys (Cui et al. (2016)), shape memory alloys (Ahluwalia et al.
(2015)) and recently by considering plasticity (Yeddu (2018)). Partitioning following the
martensite transformation after quenching was considered by Mecozzi et al. (2016); Amos
et al. (2019); Zhang et al. (2019) with phase field models. The microstructural evolution
due to nano-indentation was simulated by Rezaee-Hajidehi & Stupkiewicz (2020). One
size scale lower, at the nanoscale scale, the interaction between martensite transformation
and dislocations could be modeled and simulated using the phase field method (Levitas
& Javanbakht (2015); Javanbakht & Levitas (2015)).

Many publications on phase field modeling of martensite transformation are based on a
Fourier transformation formalism with regard to numerical implementation. This is due
to the efficiency of the method. Others use finite differences, which is probably motivated
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by the simple and flexible implementation, see e.g. Yamanaka et al. (2009); Du (2017);
Schoof et al. (2018b,a). In order to consider complicated boundary conditions as well as
complex material models, Müller (2016) argues that the finite element method is the most
effective for such cases. Examples of phase field models for martensitic transformations
with the finite element method are given by Levitas et al. (2010); Hildebrand & Miehe
(2010); Roumi (2010); Hildebrand & Miehe (2012a); Yeddu et al. (2012b); Schmitt et al.
(2012); Levitas et al. (2013); Malik et al. (2013); Schmitt et al. (2013a).

In addition to continuum approaches, atomistic simulations were also performed. The
first studies on martensitic transformations using molecular dynamics (MD) simulations
were based on a NiAl system by Rubini & Ballone (1993, 1994). Later, studies were also
carried out on ferrous alloys by Entel et al. (2000) and pure Fe by Engin & Urbassek
(2008). Both strain- and temperature-induced transformations could be analyzed. Since
the Fe-C system is the basis of steel, Wang et al. (2014) investigated a bulk with different
carbon contents in order to study the temperature induced austenite-martensite (and
vice versa) transition. With simulations of this length scale (nanoscale), details of the
transformation path become accessible, see Sandoval & Urbassek (2009). In addition, the
energetics and dynamics of the transformation are included and can be analyzed, see e.g.
Wang & Urbassek (2013). A detailed review of the previous research in this field is given
by Urbassek & Sandoval (2012); Ou (2017). However, when the mesoscale is of interest,
the use of MD simulations is of limited utility because length scales beyond 102 nanometers
and time scales beyond a few nanoseconds are difficult to access with current computer
architectures. Phase field models, however, can serve as a scale-bridge tool in this regard,
cf. Diewald (2020). By regarding simulations of a smaller length scale, it would be possible
to identify reliable model parameters without complex experiments. Investigations that
use MD simulations for the parameter identification of phase field simulations concerning
martensite transformations are presented by Schmitt et al. (2013c), where the parameters
for pure Fe have been identified.

1.2. Objectives and Overview

Based on the numerous publications, the phase field method seems to be a valid tool for
simulating martensite transformation. Nevertheless, many publications do not provide a
quantitative comparison with experimental results. The aim of this work is to develop a
phase field model which allows to simulate thermally induced martensitic microstructures
of low-alloy steels on the mesoscale in a quantitative way. Thus, the focus is on the
formation of lath martensite morphology. To achieve this, experimental investigations are
carried out with the low-alloy steel 50CrMo4 (SAE 4150). The goal of these investigations
is to provide an understanding of the underlying martensite transformation mechanism
that will be modeled. Further, experimental data is used to identify model parameters
and in order to compare simulation results with reality. The work is structured as follows:

Section 2 collects foundations of martensite in steels, with a focus on lath martensite.
First, general aspects of martensite transformation, such as the resulting shape change and
thermodynamics with respect to driving forces, are covered. In order to introduce some
terminology important for the explanation of martensite evolution, subsequently essential
features of the resulting martensitic microstructure are explained. Thereafter, the focus is
on the theoretical considerations describing martensite crystallography and shape change.
The last important point discussed is the martensite mechanisms at initiation and growth.
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In Section 3, the most important continuum mechanical fundamentals are introduced.
This includes the kinematic relationship in the context of small strains and the balance
equations.

Section 4 presents the experimental results, whereby at first some background informa-
tion is provided and the specific motivation of the experimental design is clarified. The
setup and the methodology are presented afterwards. Subsequently, the results from the
different heat treatments and the resulting material hardnesses are presented. Focusing on
the martensite sizes, the microstructure is then characterized. The results are discussed
and evaluated on the basis of literature results. Based on this, a possible underlying
martensite transformation mechanism is elaborated.

Section 5 takes up the findings from Sec. 4 and Sec. 2 with regard to modeling. First,
the phase field model for the mesoscopic martensite transformation is presented. The nu-
merical implementation is described in detail hereafter, referring to the two-dimensional
plane strain case for the sake of simplicity. The three-dimensional extension is straight-
forward. The procedure for generating polycrystalline austenite structures, which serve
as input for martensite simulation in polycrystals, is then presented. Based on this, it
is described how the initial athermal nucleation in polycrystalline structures and the im-
portant mechanism of autocatalytic nucleation are modeled. Furthermore, an extension
to viscoplastic material behavior is carried out in this work. The choice of boundary con-
ditions is discussed in the next step. The last important point is the detailed description
of how the transformation strain and the martensite variant orientations are determined.
This is done based on a crystallographic theory (e.g. the phenomenological theory of
martensite crystallography, PTMC), which allows to take into account the substructure
of the martensite crystals.

Section 6 presents numerous numerical studies. First, simple model setups are calculated
in order to understand the basic model behavior and to review it with regard to relevant
mechanisms. The complexity of the models is constantly increased. Effects of plasticity
and martensite transformation in polycrystals are investigated. As the highest level of
complexity, three-dimensional simulations with twelve martensite variants are performed.
A quantitative comparison of the simulated martensite sizes with the real martensite sizes
is also made.

Section 7 concludes this thesis and provides an outlook on future tasks and challenges
that can be addressed.

Some of the elaborations and results of this work have already been published in inter-
national journals or conference proceedings: Graf et al. (2020), Graf et al. (2021a), Graf
et al. (2021b), Graf et al. (2021c). Furthermore, a student thesis supported the present
work: Steinmetz (2020). They are cited where appropriate.
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2. Martensite in Steels

This section describes the foundations of martensite as a product of a transformation. The
focus is on martensite in steels, although it is known that martensite can occur in many
other metallic, non-ferrous alloys and ceramics, cf. Nishiyama (2012). The formation of
body centered cubic or tetragonal (BCC or BCT) α′-martensite from face centered cubic
(FCC) γ-austenite in ferrous alloys is the most common transformation path. Relevant
monographs or publications that deal with martensite and its transformation are, for
example, given by Bhattacharya et al. (2003), Khachaturyan (2013), Nishiyama (2012),
Pereloma & Edmonds (2012) and Zhang & Kelly (2009). These works form the basis of
this section. In addition, the extensive works of Villa (2013) and Löwy (2015) are used as
references. Supplementary findings from recent publications and other aspects relevant
to this work are added accordingly.

2.1. General Aspects

Generally, martensite transformation is defined as diffusionless, lattice-distortive, shear-
dominant transformation, which occurs by nucleation and growth, cf. Olson & Cohen
(1981); Sinha (2003). Diffusionless means that there is no rearrangement and thus no
change of the composition due to a movement of atoms larger than the inter-atomic
distance. However, a coordinated movement of the atoms is allowed. In contrast to shuffle
displacement, a lattice-distortive transformation is accompanied by a relative movement
of atoms that converts the initial austenite lattice into the product martensite lattice,
implying a transformation strain.

2.1.1. Shape Change

In non-clamped cases, the effect of transformation strain is accompanied with an ob-
servable mesoscopic deformation, which is plane-invariant, meaning that the interfaces
between parent and product phase is an undistorted and unrotated plane. In Fig. 2.1(a),
the unconstrained shape change resulting from invariant plane strain is shown. While
there is a slight dilatation strain it is dominated by the shear component, cf. Bhadeshia
(2001a,b).

In clamped cases, where the free deformation is counteracted by surrounding material, the
strain minimization introduces some curvature in the interface, cf. Fig. 2.1(b). Satisfying

(a) (b)

Austenite

Martensite

Austenite

Dilatation Shear

Austenite

Austenite

MartensiteHabit plane

Figure 2.1: Schematic illustration according to Bhadeshia (2001a,b) of an invariant-plane
strain shape deformation accompanying martensitic transformation in a non-clamped sys-
tem in (a), and cross-sectional plate-like martensite formation in a clamped system in (b)
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Figure 2.2: Schematic representation of chemical free energies of austenite and marten-
site as a function of temperature, cf. Wayman & Bhadeshia (1996)

the conditions of invariant plane strain, it has been shown by Eshelby (1957) that the
strain energy associated with martensite transformation can be reduced to zero in the form
of an infinitesimally thin oblate, see Christian (1976). In reality narrow strips, called laths
or plates are formed. Either the interface plane between austenite and martensite or the
middle plane of the martensite unit is referred to as habit plane, cf. Klostermann (1972);
Villa (2013). Thus, for both cases the habit plane is identical.

2.1.2. Thermodynamics and Driving Forces

The thermodynamics of martensite transformation is typically described in terms of molar
Gibbs free energy (free enthalpy), although in martensite transformation the Gibbs free
energy can be used interchangeably with the Helmholtz free energy (or simply free energy).
To produce martensite, the parent phase is not allowed to be the most stable energy
configuration of the system. An excess of Gibbs free energy in the system and thus a
driving force must be present in order to initiate a phase transition.

Fig. 2.2 illustrates the chemical Gibbs free energy of austenite and martensite as function
of temperature. At an equilibrium temperature T0 the energies of both phases are identi-
cal. At temperatures higher than T0, austenite is the energetic more favorable phase and
below that temperature (T < T0) it is martensite. The difference between those energetic
levels is the chemical driving force, which is denoted as ∆Gchem. If the chemical driv-
ing reaches a certain value ∆Gchem = ∆GMS

chem by supercooling, the martensite starts to
grow at the martensite start temperature TMS. For temperatures between T0 and TMS the
chemical driving is not sufficient to trigger the transformation mainly due accompanying
elastic stress. In general, it is possible to provide the necessary activation energy by the
mechanical energy due to an applied stress. However, this case will not be considered
further in this work.

Note that during the transformation into martensite, a partitioning of the atoms cannot
take place fast enough. Thus, martensite is a non-equilibrium structure, which is energet-
ically more favorable than austenite, but represents not the most energetically favorable
structure of the system.
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2.2. Characteristics of Martensite Microstructures

In order to introduce some terminology important for the explanation of martensite evo-
lution, this section explains the essential features of the resulting martensitic microstruc-
ture. It should be mentioned in advance that martensite occurs in different variants
with different crystal orientations. These variants can be divided into groups of different
transformation strains. The properties of the martensite variants lead to characteristic
martensite morphologies (shape of the martensite units). First, Sec. 2.2.1 discusses the
martensite morphology, focusing on the lath morphology. Subsequently, in Sec. 2.2.3,
the characteristic orientation relationships between the parent and product phases are
explained.

2.2.1. Microstructural Morphology

In general, there are five morphology types of α-martensite1 reported, see Maki (1990):
lath, butterfly, (225)γ plate type, lenticular and thin plate. These different morphologies
arise in dependence of the chemical composition and the martensite start temperature
TMS. The aforementioned martensite types tend to occur with decreasing TMS in the
mentioned order. Besides TMS, the strength of parent austenite and product martensite,
the critical resolved shear stress for slipping and twinning, and the stacking fault energy
of austenite seem to be determining factors for the resulting morphology, see e.g. Davies
& Magee (1971), Krauss & Marder (1971), Maki et al. (1972), and Carr et al. (1978).
Otherwise, the factors are rather poorly defined, see Maki (2012). This work focuses on
the lath morphology, which is reported in Fe-C (≤ 0.6% C), Fe-Ni (< 28% Ni), and Fe-Mn
(< 10% Ni) alloys, cf. Maki (2012).

The crystallography of lath martensite has been examined by Morito et al. (2003, 2006a)
using Kikuchi patterns and electron backscatter diffraction (EBSD) analysis at mesoscopic
length scale. In these works, Fe-C alloys with different carbon contents are analyzed and
schematic illustrations of structures with high and low carbon contents are given in Morito
et al. (2003), see Fig. 2.3(a+b). Accordingly, typical structures consist of a three-level
hierarchy, see also Krauss (1990): martensite laths, blocks and packets. In low carbon
alloys (0.1 C – 0.4 C), well developed blocks with parallel boundaries are found. Each block
consists of laths from two martensite variants with small misorientation angle. Typically
they are referred to as sub-blocks, cf. Kitahara et al. (2006). In high carbon alloys (≈0.6
C) packets consist of six variants of blocks with laths from a single variant. As Fig. 2.3
indicates, it has been observed that packet and blocks are of smaller size in the high
carbon alloy.

2.2.2. Substructure of Martensite

The substructure of the transformation product martensite refers to the structure within
a martensite unit and is an important strain accommodation mode. In lath martensite, a
martensite unit is considered as martensite crystal of the lowest hierarchical level, namely
a lath. In the case of plate martensite, the plate is considered as one martensite unit.
There are two types of substructures: internal twins and arrays of dislocations. Internal
twins are mainly observed in thin plate martensite at low transformation temperatures,
while dislocations as substructure are dominantly observed in lath martensite with high

1martensite is often denoted with α′ to distinguish it from other α-phases, cf. Nishiyama (2012). For
the sake of compactness, the apostrophe is omitted in the further course of this work.
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Figure 2.3: Schematic illustrations of hierarchical structure of lath martensite in Fe-C
alloys with different carbon contents according to Morito et al. (2003), (a) 0 − 0.4 % C,
(b) 0.6 % C

transformation temperatures, cf. Maki (2012). However, the partial presence of internal
twins in lath martensite is not excluded, cf. Ping et al. (2018).

2.2.3. Orientation Relationships

In terms of crystallographic orientations, there is a clear relationship between the crystal
structure of the parent phase austenite and the product phase martensite. This is ac-
companied by the fact that the growth of a martensite unit is limited to a single grain
of the austenite phase. In steels, the orientation relationships according to Kurdjumov
& Sachs (1930), Nishiyama (1934), Wassermann (1935) and Greninger & Troiano (1949)
are frequently a good description of the experimentally observed orientation relationships,
see e.g. Kitahara et al. (2005, 2006) and Kelly et al. (1990). They can be expressed with
reference to parallel crystal planes and parallel crystal directions within those planes.
Accordingly, the mentioned orientation relationships are typically reported as:

Kurdjumov-Sachs (KS): (111)γ || (011)α , [1̄01]γ || [1̄1̄1]α , (2.1)

Nishiyama-Wassermann (NW): (111)γ || (110)α , [112̄]γ || [1̄1̄0]α , (2.2)

Greninger-Troiano (GT): (111)γ 1◦ from (001) , [1̄01]γ 2.5◦ from [1̄1̄1] , (2.3)

where the respective first specification defines the relation between the planes and the
respective second specification the relation between the directions.

Due to the cubic symmetry there are in total four equivalent planes to the (111)γ plane2,
with six variants living on such a plane in case of the KS orientation relationship. Over-
all, there are 24 variants in this orientation relationship, which also applies to the GT
orientation relationship. The NW orientation relationship results in twelve variants, since
there are three variants per invariant plane.

The three or six variants on a (111)γ-plane, or on one of its equivalent planes, form a
crystallographic packet corresponding to the illustration in Fig. 2.3. Since these planes are
the four close packed planes (CPPs) in a FCC, the variants share the same CPPs. These

2 (111)γ , (1̄11)γ , (11̄1)γ ,(111̄)
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Parallel directions

Parallel planes

(a) (b)

Figure 2.4: Visualization of the NW orientation relationship, (a) parent FCC phase
(austenite), (b) product BCC phase (martensite), black arrows indicate possible accom-
panying movements during the transformation parallel to the invariant direction on the
invariant plane

variants also have the same habit planes. Concerning the KS orientation relationship
observed in low carbon steel, the variants are not randomly distributed in a packet.
Instead, they frequently appear in specific pairs (sub-blocks), cf. Sec. 2.2.1. These pairs
tend to have low misorientation angles of about 10◦, see Morito et al. (2006a). With the
NW orientation relationship, there are only high misorientations of 60◦ between the three
variants forming a packet, see e.g. Morito et al. (2006a) and Suikkanen et al. (2011). An
analogous analysis of the misorientations occurring for GT is currently not known. Since
this relationship lies between KS and NW, it is often not considered in literature, see e.g.
Morito et al. (2006a) and Maki (2012).

In Fig. 2.4(a+b) an attempt is made to visualize the NW transformation path. In addition,
the parallel planes (111)γ and (011)α (gray shaded) and the parallel directions [112̄]γ and
(011̄)α (black vectors/dashed lines) on that planes are depicted. In order to transfer the
austenite FCC system into an BCC martensite system, a shear is indicated in which
the specific planes and directions are kept parallel (invariant). A possible snapshot after
this shear is illustrated in Fig. 2.4(b). A second step, which is not shown, would be an
expansion or contraction of the BCC structure to obtain the corresponding atomic density.
It should be noted that this sequence of movements does not have to take place in such
a way, but serves here merely as an illustration in order to transform the known initial
state to the known final state.

2.3. Crystallographic Concepts for Shape Change Modeling

An essential advance in the theoretical consideration of martensite crystallography is
the PTMC, independently developed by Wechsler et al. (1953) and Bowles & Mackenzie
(1954). With this theory, the atomic displacements accompanied by the martensite trans-
formation is described in terms of basic matrix algebra. In this section, the basic idea of
PTMC will be presented, partially referencing to the explanations by Graf et al. (2021c).
As an important basis, the Bain correspondence is explained beforehand.
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aγ
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cα

Bain variant 1 (b=1) Remaining Bain variants

Figure 2.5: Schematic illustration of Bain correspondence for martensite in steels. Two
unit cells of austenite (gray) and a unit cell of martensite (black) are depicted. Interstitial
carbon atoms are not shown for simplicity’s sake.

2.3.1. Bain Correspondence

An essential concept to describe martensitic transformations in steels is the lattice cor-
respondence between the FCC austenite and the BCC martensite. For steels the Bain
correspondence, see Bain & Dunkirk (1924), shown schematically in Fig. 2.5 can be ver-
ified experimentally, cf. Kelly (2012). To obtain a unit cubic cell of martensite, it is
necessary to deform the parent phase austenite by one of three possible deformations.
The corresponding deformation gradients are known as the Bain deformations B(b), e.g.

B(1) =

η1 0 0
0 η2 0
0 0 η3

 ,B(2) =

η3 0 0
0 η1 0
0 0 η2

 ,

B(3) =

η2 0 0
0 η3 0
0 0 η1

 with η1 = η2 =
√

2
aα
aγ
, η3 =

cα
aγ
, (2.4)

where aα, cα and aγ are the lattice constants shown in Fig. 2.5. According to Fig. 2.5 there
are three Bain variants B(b). For ferrous materials, η1, η2 > 1 and η3 < 1 usually applies.
The total volume change is given by η1 η2 η3−1. Note that for steels containing significant
amounts of carbon, the martensite deviates from the ideal cubic BCC shape. Depending
on the carbon content, the lattice is tetragonally distorted to BCT, see Nishiyama (2012).
The Bain correspondence follows the most intuitive transformation path to transfer the
FCC to the BCC crystal. However, the resulting orientation relationship expressed as

(001)γ || (001)α , [1̄01]γ || [1̄1̄1]α (2.5)

does not explain the experimentally observed orientation relationships, cf. Sec. 2.2.3.
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Figure 2.6: Illustration of the PTMC, based on the illustration by Bhadeshia (2001b)

2.3.2. Phenomenological Theory of Martensite Crystallography

The PTMC takes into account the Bain correspondence and at the same time approxi-
mates the observed orientation relations. An illustrative representation of the concept is
given in Fig. 2.6. It shows that the Bain deformation B combined with an appropriate
rigid body rotation J converts the atomistic structure of austenite (FCC) into martensite
(BCC or BCT). However, the structure that results from the deformation JB has a shape
which is not observed in reality. According to the PTMC, an invariant plane deformation
P converts the material into a shape that is experimentally observed. A second invariant
plane deformation Q converts the material into a proven atomistic structure, since J B is
equal to the combination of the two invariant plane strain deformations P Q. In accor-
dance with the previously described substructure in Sec. 2.2.2, the experimental proven
shape is achieved by slipping or twinning.

Note that the PTMC only describes the correspondence of the crystal structure based on
the atomic positions of the parent and product phases. The underlying mechanism that
generates martensite is not described. Furthermore, an ideal situation without lattice
imperfections is assumed. With the PTMC, it is possible to exactly predict the charac-
teristics of thin plate martensite. However, variations may occur in other morphologies,
which is reviewed, for example by Kelly (2012). Deviations are probably due to lattice de-
fects or plastic effects. Kelly (1992) states that the PTMC explains all the crystallographic
features of lath martensite. However, there has never been a reliably measuring of the
shape strain, cf. Kelly (2012) and a large scattering of the habit plane in lath martensite
is reported, cf. McDougall & Wayman (1992). Nevertheless, according to Kelly (2012),
the PTMC can be considered as the best predictive theory of phase transformation in
crystalline solids.



14 Martensite in Steels

2.4. Mechanisms of the Transformation

As mentioned earlier, during martensite transformation, crystal lattice sites are rearranged
purely by deformation to reduce the free energy of the system. Due to the deformation
a martensitic transformation within a parent phase is associated with elastic strain. This
requires high driving forces, which may be achieved by significant supercooling. This
section deals with the transformation mechanisms that take place when the conditions for
a martensite transformation are met.

2.4.1. Nucleation

The martensite transformation in steel is a first-order phase transformation and follows the
nucleation-and-growth mechanism. This means that by exceeding an absolute instability
temperature, the development of martensite involves formations and growth of nuclei.
However, formation of a martensite embryo (local displacive heterogeneity) is accompanied
with an increase in elastic strain energy and in contrast to transformations involving
diffusion such embryos may not be formed by the thermo-nucleation mechanism. Instead
such embryos are always present as crystal lattice defects in the parent phase, where
they act as nuclei, see e.g. Olson & Cohen (1981) or as source of an elastic strain field
supporting a martensite formation, see e.g. Magee (1970).

Many researchers proposed various lattice defects as possible microstructural nucleation
sites. Accordingly, grain boundaries, twin boundaries, free surfaces and inclusion inter-
faces are possible nucleation sites, see e.g. Gaggero & Hull (1962); Dash & Brown (1966);
Ferraglio & Mukherjee (1974); Krauss et al. (1989); Ueda et al. (2003). Furthermore,
Olson & Cohen (1981), Suezawa & Cook (1980) and Kajiwara (1986) discuss the role of
dislocations on martensite nucleation. Olson & Cohen (1981) proposed that the nucle-
ation of martensite occurs due to dissociation of certain ordering of dislocations. The
findings of Suezawa & Cook (1980) indicate that martensite nucleates at areas with high
dislocation densities. Kajiwara (1986) states that dislocations themselves do not act as
preferential nucleation sites. However, they may contribute to martensite transformation
by serving plastic accommodation. A review of existing theories of the martensitic phase
nucleation is given by Lobodyuk (2014). More recently, Song & De Cooman (2014) found
that grain boundaries containing intrinsic grain boundary dislocations act as preferential
nucleation sites.

When a critical size of the martensite embryo is exceeded, it starts to grow. The typical
critical size in metal alloys corresponds to the crystal lattice spacing. In real structures,
possible nucleation sites are distributed heterogeneously. After the first nucleation event
has taken place, the martensite formation can have a strong autocatalytic character, which
results from the stimulation of further nucleation events, whereby it is difficult to distin-
guish autocatalytic nucleation from spontaneous nucleation in the bulk. Autocatalytic
nucleation can take place within a grain as well as across grain boundaries, cf. Rios &
Guimarães (2008).

The following three mechanisms can contribute to autocatalytic nucleation (Olson & Co-
hen (1981), Lin et al. (1992)): stress-assisted, strain induced, and interfacial autocataly-
sis. The latter was proposed by Olson & Cohen (1976) and is a direct nucleation of new
martensitic units by a dislocation-dissociation process in existing martensitic interfaces.
However, this mechanism seems to be disregarded nowadays, c.f. Villa (2013). Strain-
induced nucleation is accompanied with plastic deformation in the surrounding austenite,
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which activates new embryos. This effect may be autocatalytic if the strengthening of the
material and the resulting increase in the critical free energy difference does not prevent
further martensite growth. Stress-assisted nucleation of pre-existing embryos results from
the interaction of the stress field with the transformation strain (Maxwell et al. (1974)).

2.4.2. Formation Kinetics

Historically the macroscopic martensite transformation kinetics can be classified in ather-
mal and isothermal transformations (Villa (2013)) introduced by Fisher et al. (1948).
Sometimes the burst kinetics is also considered as a separate class, see e.g. Van Bohemen
& Sietsma (2014). Under continuous cooling, athermal martensite transformation starts
the transformation from austenite to martensite at a well-defined and cooling rate insen-
sitive temperature TMS. When the cooling process is stopped, the growth of martensite
fraction in a macroscopic specimen stops and no further martensite transformation oc-
curs with isothermal holding. The degree of athermal martensite transformations depends
on the temperature (degree of undercooling) and is independent of time. This type of
transformation can be observed in low-alloy steels, see Magee (1970). Isothermal marten-
site transformation is time-dependent and forms at a constant temperature below TMS.
Typically, isothermal martensite forms in Fe-based alloys with high Ni content at low
temperatures. Villa (2013), concludes that the auto-nucleation dominates the martensite
transformation in isothermal transformations, since the number of spontaneous nucleation
events is too small to be compatible with macroscopic transformation in bulk materials.

By extrapolation of typical isothermal kinetics at low temperatures to temperatures com-
parable to TMS ≈ 250 ◦C of low-alloy steels, Entwisle (1971) argues that the observed
athermal kinetics might be a result of rapid isothermal transformation with reaction
times between 10−6 and 10−1 s. Such reaction times are too fast to be measured exper-
imentally by classical methods, which makes the transformation appear athermal. In
athermal transformations it is not immediately evident that autocatalysis takes place,
however, it cannot be ruled out that this is a relevant mechanism on very small time
scales (Van Bohemen & Sietsma (2014)).

The burst transformation can be regarded as an extreme form of autocatalysis (Raghaven
(1992)), where a large part of the material is transformed in a unique quasi-instantaneous
stress-assisted nucleation event. A burst transformation is recognizable by a pronounced
zig-zag morphology.

Based on the review given by Ivanov & Kozlov (2002), the research group of Shastlivt-
sev conducted extensive investigations on the influence of cooling rates on the structure
and phase state of iron and low-alloy carbon steels (Mirzaev et al. (1979, 1983); Mirzaev
(1987); Schastlivtsev et al. (1994)). Accordingly, a fast isothermal martensitic transfor-
mation takes place in steels with low and medium carbon contents at moderate cooling
rates. At high cooling rates, an athermal mechanism of martensitic transformation was
observed. Regarding steels with carbon concentrations ≥ 0.7 wt%, an athermal mecha-
nism of martensitic transformation was already observed at moderate cooling rates. The
absence of an influence of the cooling rate on the kinetics of martensite formation was
confirmed for plain carbon Fe-0.8 wt% (Van Bohemen & Sietsma (2014)) and FeNiCoMo
alloy (Loewy et al. (2014)).

Despite past intensive research, the formation of lath martensite is still not fully under-
stood, cf. Ping et al. (2018). Furuhara et al. (2010) describe the transformation process as
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follows (Villa (2013)). The first nucleation event is triggered at a grain boundary, where
the most favorite variant starts to grow. Thereafter, continuous strain-induced autocatal-
ysis forms parallel laths within a block. After that, the growth is stopped and a further
martensite growth requires either a reduction of the strain energy due to formation of a
new variant of another block or an increase of the driving force obtained by an increasing
undercooling. Thus, strain-induced autocatalysis is active on the lath level, while the
autocatalytic formation of martensite blocks is of stress-assisted type.
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3. Continuum Mechanics and Thermodynamics

To describe the physical phenomena considered in this work, a continuum approach is
used. Therefore this section deals with two basic ingredients: the description of motion
and deformation as well as the balance principles. The essential equations of these fields
are introduced while the reader who is interested in further information is referred to
Holzapfel (2000), Altenbach & Altenbach (1994) and Haupt (2013).

3.1. Kinematics

3.1.1. Configurations and Motion of Continuum Bodies

A material body, denoted by B, is considered as a continuous distribution of matter in
space and time t, see Fig. 3.1. It is assumed that the material body is a composition of
a continuous set of material points P ∈ B. In a three-dimensional Euclidean space R3

this set occupies a certain domain B ∈ R3. The behavior of a particle P goes along with
the collective behavior of all the molecules constituting that particle. By moving from
one instant of time to another, the continuum body B occupies continuously a sequence
of geometrical regions B0, ...,Bt. The configuration at a reference or initial time t = t0 is
referred to as the reference configuration B0 and Bt represents the current configuration
at a certain time t > t0. With placement

χt :

{
B→ Bt ⊂ R3

P 7→ x = χt (P)
(3.1)

the mapping of the matter into the Euclidean space is described. At a certain time t
the placement χt uniquely maps a material point P onto a coordinate triple x ∈ R3.
Concerning the reference configuration

χ0 :

{
B→ B0 ⊂ R3

P 7→X = χ0 (P)
(3.2)

is defined. It is assumed that the mapping is a one-to-one correspondence between a
particle P ∈ B and X ∈ B0, which is why χ0 is invertible (χ−1

0 ) and excludes inter-
penetration of matter. By a composition of the mappings (3.1) and (3.2) a relative
description of the body’s motion is defined, which is the nonlinear deformation map

φ (X, t) :

{
B0 × T → Bt ⊂ R3

(X, t) 7→ x = φ (X, t) = χt
[
χ−1

0 (X)
] , t ∈ T ⊂ R+ (3.3)

In a time interval T, the referential position X ∈ B0 of a particle P ∈ B is mapped to
its deformed spatial position x = φ (X, t) ∈ Bt in current configuration. With (3.3) the
entire motion of a deformed body is described, whereas with reference to the notation in
(3.1) and (3.2) the configuration at a certain time t is defined with the mapping

φt (X) :

{
B0 → Bt ⊂ R3

X 7→ x = φt (X) .
(3.4)

Analogous to (3.4), the path of particle P is denoted with φX (t).
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Figure 3.1: Configuration and motion of a continuum body B in the Euclidean space R3

3.1.2. Displacement, Velocity and Acceleration Fields

The considered fields refer to a reference frame of right-handed, rectangular coordinate
axes at a fixed origin O with orthonormal basis vectors depicted in Fig. 3.2. The difference
between position X in the undeformed configuration and position x in the deformed
configuration gives the Lagrangian form of the displacement field

u (X, t) = x (X, t)−X. (3.5)

By deriving the entire motion φ (X, t) with respect to the time t and holding X fixed,
the velocity of a material point

v(X, t) =
∂φ (X, t)

∂t
= ẋ (3.6)

is obtained and further derivation gives the material acceleration

a(X, t) =
∂v (X, t)

∂t
= v̇ = ẍ. (3.7)

The spatial acceleration a(x, t) = a(X(x, t), t) is classically given as the sum of a local
and convective part and is thus obtained with

a =
dv (x, t)

dt
=
∂v (x, t)

∂t
+ ∇xv (x, t)

∂x (X, t)

∂t
=
∂v

∂t
+L · v with L = ∇xv (x, t) ,

(3.8)

where ∇x (·) denotes the gradient grad (·) with respect to the spatial coordinates x.
Furthermore, the spatial velocity gradient L can be identified.

3.1.3. Deformation Gradient and Small Strain Theory

In order to describe the strain kinematics it is usual to define the deformation gradient

F = ∇X φ (X, t) =
∂φ (X, t)

∂X
=

∂x

∂X
. (3.9)
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Figure 3.2: Material body B

as gradient with respect to the reference positions X ∈ B0 of the deformation map (3.3).
The assumption that there is a one-to-one mapping between reference and current posi-
tions results in a non-vanishing determinant of the deformation gradient. By further ex-
cluding matter penetrations associated with negative values of the Jacobian J = det (F ),
the following condition is obtained:

det (F ) > 0. (3.10)

Therefore F is invertible and the former introduced velocity gradient may be formulated
as

L = Ḟ F−1. (3.11)

Starting from Eq. (3.9) and splitting x into X and the displacement u according to (3.5)
leads to

F =
∂x

∂X
=

∂

∂X
(X + u) = I + ∇Xu = I +H , (3.12)

where I denotes the second order identity tensor and H = ∇X u the displacement
gradient. The Green-Lagrange strain tensor is defined by

E =
1

2

(
F TF − I

)
. (3.13)

With the use of Eq. (3.12) the strain tensor E can be expressed as

E =
1

2

(
H +HT +HTH

)
.
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In this equation the third term may be neglected by assuming small strains |H| � 1,
which leads to the linearized strain tensor

ε =
1

2

(
H +HT

)
=

1

2

(
∇X u+ (∇X u)T

)
. (3.14)

In the context of (geometrically) small strains no distinction of reference and current
configuration is made which leads to following simplifications.

B = B0 ≈ Bt, ∂B = ∂B0 ≈ ∂Bt, X ≈ x, ∂(·)
∂X
≈ ∂(·)

∂x
(3.15)

3.2. Balance Equations

To construct a general balance equation for a material field density ϑ in B, the field
quantity θ =

∫
B ϑ dV is formulated. The time derivation of θ must be equal to a flux f θ

over the boundary ∂B, a production pθ of ϑ in B and a supply sθ of ϑ in B. It follows the
general structure of the balance equations

d

dt

∫
B
ϑ dV =

∫
∂B
f θ · n dA+

∫
B
pθ dV +

∫
B
sθ dV , (3.16)

where n is the outer normal along ∂B, see Fig. 3.2. Note that within the small strain
framework N ≈ n is valid. For easier transferability to the following mechanical and
thermodynamic balance equations, a summary of the components of Eq. (3.16) is given
below.

ϑ – field density in B,

pθ – production of θ in B,

sθ – supply of θ,

f θ – flux of θ over ∂B,

By applying the divergence theorem to the surface integral in Eq. (3.16) for any arbitrary
B the local form of, the general balance equation

dϑ

dt
+ ϑ div (v) = div (f θ) + pθ + sθ (3.17)

is obtained, which must be fulfilled for each material point x ∈ B at all times.

3.2.1. Mechanical Balance Principles

Conservation of Mass. The mass of a body is determined by the density field % = dm
dV

.
In classical mechanical systems there is no production or supply of mass. Furthermore,
in closed systems there is no flux over the surface, after which

ϑ = % – density of mass m in B,

pm = 0 – production of mass m in B,

sm = 0 – supply of mass m in B,

fm = 0 – flux of mass m over ∂B,
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applies in summary. According to this,

d

dt

∫
B
% dV = 0 (3.18)

is obtained for the global form of balance of mass. The local form then results in

d%

dt
+ % div (v) = 0. (3.19)

Accordingly, the mass balance can be used to rewrite expressions of the form d
dt

[∫
B % (•) dV

]
as follows:

d

dt

[∫
B
% (•) dV

]
=

∫
B
%̇ (•) + % ˙(•) + % (•) div (v) dV =

∫
B
% ˙(•) dV . (3.20)

Balance of Linear Momentum. The total linear momentum of a material domain is
defined as

I =

∫
B
%v dV . (3.21)

It is postulated by Newton’s second law of motion that the temporal change of the linear
momentum I of a region B is equal to the resulting external force acting on that region.
Written as global balance it is

d

dt

∫
B
%v dV =

∫
∂B
t dA+

∫
B
% b∗ dV , (3.22)

where t is the traction vector acting on the boundary ∂B and b∗ the force density per
unit mass of B. The production term is equal to zero. Regarding the general balance
Eq. (3.16) it is

ϑ = %v – density of linear momentum I in B,

pI = 0 – production of linear momentum I in B,

sI = % b∗ – supply of linear momentum I in B,

fI · n = t – flux of linear momentum I over ∂B.

In order to formulate the local form

%a = div
(
σT
)

+ % b∗ with t = σT n (3.23)

Cauchy’s theorem with the Cauchy stress tensor σ is used.

Balance of Angular Momentum. The balance of total angular momentum

L =

∫
B
x× %v dV (3.24)

postulates that the temporal change of the angular momentum with respect to a certain
point of a fixed coordinate system is equal to the resultant external torque which acts on
the considered region B with respect to the same point of reference. With the components

ϑ = x× %v – density of angular momentum L in B,

pL = 0 – production of angular momentum L in B,

sL = x× % b∗ – supply of angular momentum L in B,

fL · n = x× t – flux of angular momentum L over ∂B,
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the global balance of angular momentum reads

d

dt

∫
B
x× %v dV =

∫
∂B
x× t dA+

∫
B
x× % b∗dV . (3.25)

The local form gives the well-known condition

σ = σT . (3.26)

By considering the symmetry of the Cauchy tensor as well as assuming the acceleration
a is zero and the absence of volume forces, Eq. (3.23) becomes the equilibrium condition

div (σ) = 0. (3.27)

3.2.2. Thermodynamic Extensions

Balance of Energy. The balance of energy is the first law of thermodynamics, which
postulates the equivalence between the temporal change of total energy E and the sum of
external mechanical power Pext and thermal power Qext. Thereby, the total energy

E =

∫
B

1
2
% |v|2 dV +

∫
B
%w∗ dV (3.28)

consists of the kinetic energy
∫
B %

|v|2
2
dV and the internal energy

∫
B %w

∗ dV , where w∗

denotes the specific internal energy per unit mass. A change in this energy is associated
with the energy supply from a mechanical part

Pext =

∫
∂B
t · v dA+

∫
B
% b∗ · v dV , (3.29)

which is the power of the external forces and the heat supply

Qext =

∫
B
% r dV −

∫
∂B
qth · n dA. (3.30)

In Eq. (3.30) r denotes the scalar heat radiation and qth the heat flux. A positive heat
flux corresponds to a heat supply across the boundary ∂B. The balance of energy is then

d

dt

∫
B

(
1
2
|v|2 + w∗

)
% dV =

∫
∂B

((σn) · v − qth · n) dA+

∫
B

(b∗ · v + r) % dV . (3.31)

In comparison with the general balance Eq. (3.16) the following densities are identified.

ϑ = % 1
2
|v|2 + %w∗ – density of energy E in B,

pE = 0 – production of energy E in B,

sE = % b∗ · v + % r – supply of energy E in B,

fE · n = (σn) · v − qth · n – flux of Energy E over ∂B.

Since the energy is a conservation quantity no term of production occurs in Eq. (3.31).
By using the above densities and taking Eqs. (3.19) and (3.27) into account, results in
the local form of energy balance

%
dw∗

dt
= − div (qth) + σ : ∇v + % r. (3.32)
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Balance of Entropy. The balance of entropy is the second law of thermodynamics. It
states that the temporal change of total entropy H is equal to the sum of the entropy
supply an the entropy production. It is

H =

∫
B
s dV with s = % s∗, (3.33)

where s∗ denotes the specific entropy per unit mass. The global balance of entropy reads

d

dt

∫
B
s dV = −

∫
∂B

qth · n
T

dA+ %

(∫
B
ps∗ dV +

∫
B

r

T
dV

)
, (3.34)

where ps∗ is the specific production of entropy per unit mass and T the absolute temper-
ature (T > 0). The supply, production and flux terms may be identified as

ϑ = s – density of entropy H in B,

pH = % ps∗ – production of entropy H in B,

sH = % r / T – supply of entropy H in B,

fH = −qth / T – flux of Entropy H over ∂B,

resulting in the local form

%
ds∗

dt
= %

(
ps∗ +

r

T

)
− div

(qth

T

)
. (3.35)

The second law of thermodynamics postulates that the entropy must always be greater
than zero, which is why

ps∗ ≥ 0 (3.36)

applies to any material point x ∈ B at any time t in every admissible thermodynamic
process. Inserting Eq. (3.35) in (3.36) yields the Clausius-Duhem inequality

%
ds∗

dt
+ div

(qth

T

)
− % r

T
= % ps∗ ≥ 0 (3.37)

and the elimination of the supply term % r by Eq. (3.32) yields

%
(
T ṡ∗ − ẇ∗

)
− 1

T
∇T · qth + σ : L ≥ 0. (3.38)

Following Coleman & Noll (1963) and Coleman & Gurtin (1967) by introducing the local
Helmholtz energy per unit mass

ψ∗ = w∗ − T s∗ and ψ̇∗ = ẇ∗ − Ṫ s∗ − T ṡ∗, (3.39)

Eq. (3.38) may be formulated as

σ : ε̇− %
(
ψ̇∗ + s∗ Ṫ

)
− 1

T
qth ·∇T ≥ 0, (3.40)

which is often referred to as the Clausius-Plank inequality. Note that in the small strain
context L = ε̇ is valid. Suppose ψ = %ψ∗ is a function of strain ε and absolute Temper-
ature T , the time derivate

ψ̇ =
∂ψ

∂ε
: ε̇+

∂ψ

∂T
Ṫ (3.41)
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gives by inserting in Eq. (3.40)(
σ − ∂ψ

∂ε

)
: ε̇+

(
−% s∗ − ∂ψ

∂T

)
Ṫ − 1

T
qth ·∇T ≥ 0. (3.42)

Eq. (3.42) has to be fulfilled for all rates of ε and T . This can be achieved by

σ =
∂ψ

∂ε
and − % s∗ =

∂ψ

∂T
(3.43)

and the heat conduction inequality

qth ·∇T ≤ 0. (3.44)
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4. Experimental Investigations

This section deals with the experimental characterization of the exemplary investigated
low-alloy steel 50CrMo4 (SAE 4150) with a special focus on martensite sizes. Parts of this
section are already published by Graf et al. (2020).

4.1. Background and Motivation

The packet and block sizes can significantly affect the mechanical properties of the con-
sidered materials (Morito et al. (2006b); Swarr & Krauss (1976)), which can be explained
by grain boundary strengthening according to the Hall–Petch strengthening mechanism
(Hall (1951); Petch (1953)). As a consequence, there is an interest in quantifying such
size effects in order to predict the structure–property relationships.

The resulting martensite sizes are determined by various factors. It has been observed
that packet and block sizes decrease with increasing carbon content, see Morito et al.
(2003). A correlation between the PAG size and the packet size as well as the block
thickness is reported by Morito et al. (2005); Furuhara et al. (2008). With a finer austenite
grain structure, a finer packet and block width is achieved. However, no significant
correlation between the block width and the PAG size was found by Hanamura et al.
(2013). Nevertheless, there seems to be some consensus on the lath sizes, which seem
to be insensitive to changes in the PAG sizes, cf. Swarr & Krauss (1976); Morito et al.
(2005); Hanamura et al. (2013). Furthermore, higher cooling rates can lead to finer packet
and block structures, cf. Morito et al. (2010); Bardelcik et al. (2010); Tsuzaki & Maki
(1981); Eggbauer et al. (2018); Loewy et al. (2015); Shtejnberg et al. (1977). No size
effects with regard to the cooling rate were found by Villa et al. (2014). The effects
of process parameters related to induction hardening on phase transformation including
microstructure size effects were recently investigated by Vieweg et al. (2016, 2017c,b,a);
Liu et al. (2018); Hu et al. (2018); Javaheri et al. (2019); Eggbauer et al. (2019); Vieweg
et al. (2018).

With regard to the effect of the cooling rate on resulting size effects on the microstructure,
several discussions can be found in the literature. In Loewy et al. (2015), a modulated
martensite formation in a Fe-22 wt% Ni alloy was investigated. It was concluded that
subsequent simultaneous block formation is influenced by thermally activated local stress
relaxation. Based on Eggbauer et al. (2018), it can be argued that the quenching rate
influences the volume fraction gradient concerning temperature. With shorter cooling
times, more martensite is formed at lower temperatures, which means a higher resistance
against lattice displacement, resulting in higher stresses. From an energetic point of
view, it is therefore beneficial to minimize the stresses by forming a finer block structure.
Another explanation was formulated by Hu et al. (2018). Thus, due to the higher cooling
rate, the amount of dislocations increases. These lattice defects may act as nucleation
sites for martensite. Additional higher driving forces lead to an increase in the growth
rate of martensite.

In this work, the microstructure of different quenched specimens is evaluated by means of
EBSD. Based on the orientations, the cross-sections of martensite blocks are reconstructed
and analyzed. In addition to Eggbauer et al. (2018), the CPPs packets and PAGs are re-
constructed based on the martensite orientation relationship. With this method, sections
of the microstructure on the scale of representative volume elements can be evaluated,
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resulting in a statistically significant amount of data. The findings serve as an essential
basis for the development of the phase field simulation model describing the evolution
of martensite on mesoscopic length scale in order to contribute to the understanding of
martensite transformations.

4.2. Experimental Setup and Methodology

For the experimental investigations in this work, referring to previous studies, the material
50CrMo4 is used, cf. Schäfer et al. (2019a,c,b); Eggbauer et al. (2018). For the sake of
completeness, mean values of the chemical composition are documented in Tab. 4.1. These
values were determined by spark emission spectroscopy analysis, see Schäfer et al. (2019a).
The initial material condition is pre-hardened.

Table 4.1: Chemical composition of the investigated material 50CrMo4 in wt.%; the
remainder is Fe.

Material Reference C Si Mn P S Cr Mo

50CrMo4 Schäfer et al. (2019a) 0.52 0.26 0.74 0.014 0.008 1.31 0.18

Different types of cylindrical specimens are heat-treated in order to form a homogeneous
and purely martensitic microstructure. In Fig. 4.1(a), the three types are depicted with
their nominal dimensions. Types A and B are analyzed with regard to the morphology of
their martensite structure. The reason for the hole in type B is that, due to the reduced
mass, a higher quenching rate is achieved with the same quenching medium. Specimen
type C only serves as an accompanying specimen to measure the temperature inside. The
temperature is measured with a thermocouple (type K), which is inserted and fixed in
the blind hole of specimen type C.

In order to achieve different quenching rates, two different heat treatment processes were
used. The first was performed with the dilatometer DIL 805A from TA Instruments.
Specimens of type A and B were heated by induction at a rate of 20.0 Ks−1 to a tem-
perature of 860 ◦C. A vacuum in the chamber containing the specimen prevented the
decarburization of the surface layer of the specimen. For supercooling, the chamber was
flooded with nitrogen, where a linear temperature curve was specified. The temperature
was measured with a type S thermocouple. With this experimental setup, the critical
quenching rate necessary to obtain a fully martensitic microstructure was determined
step by step with specimen type A. Furthermore, the highest cooling rate possible with
this test configuration was tested with specimen types A and B.

As the quenching rate of the dilatometer was limited, a second experimental setup was
used. With this setup, specimen types A and C were heated in a furnace and then
quenched in a water bath. The temperature inside ( 1 ) and outside ( 2 ) the specimen
was measured, see Fig. 4.1(a). With both experimental setups, a holding time of 30 min
at high temperature was employed to guarantee full austenitization.

After heat treatment, the specimens were divided crosswise as depicted in Fig. 4.1(b).
In order to check the homogeneity of the microstructure, hardness measurements were
taken on the new surface highlighted in gray with the low-load Vickers hardness tester
KB30 BVZ. Two runs of measurements were performed in each case. Before each run, the
specimens were ground and polished (final polishing step: 3.0µm diamond suspension).
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Figure 4.1: Specimen geometry and measurement methodology, (a) specimen types with
nominal dimensions of material 50CrMo4, Specimen type C is only used for temperature
measurement, (b) specimen handling after heat treatment

A second cut lengthwise exposed the surface on which the microstructure was character-
ized, see Fig. 4.1(b). For the EBSD analyses, the surface was ground with SiC sand paper
with grades up to 4000 followed by diamond polishing with suspension sizes of 3.0µm and
1.0µm. The final polish was performed with a 0.06µm aluminum suspension (Eposal).
The EBSD measurements were performed with the scanning electron microscope Zeiss
Supra 55 VP. Areas of 114µm× 85µm with a step size of 0.15µm were measured. Only
phases that could be assigned to martensite or retained austenite were indexed. After the
analysis was performed at a suitable location, the surface was etched with 1% alcoholic
HNO3 (Nital) in order to analyze the location with optical microscopes (Axioimager.M2m
and Axioplan 2 Imaging) to check whether a completely martensitic structure was present.

In order to calculate the high-temperature austenite grains, the python tool ARPGE
(version 2.4) was used (Cayron (2007)). The visualization, as well as the evaluation of
the morphology, was performed with the Matlab toolbox MTEX 5.1.1 (Bachmann et al.
(2010)).

4.3. Heat Treatment and Hardness

To differentiate different heat treatments, cooling times from 800 ◦C to 500 ◦C (t85),
from 800 ◦C to 100 ◦C (t81) and from the martensite start temperature TMS to 100 ◦C
(tTMS→100 ◦C) were used. Furthermore, the approximated quenching rates

˙̃T85 =
800 ◦C− 500 ◦C

t85

, ˙̃TTMS→100 ◦C =
TMS − 100 ◦C

tTMS→100 ◦C

and ˙̃T81 =
800 ◦C− 100 ◦C

t81

(4.1)

were defined.
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(a)

(b) (c)

Figure 4.2: Heat treatment of the specimens, (a) dilatation curves of 50CrMo4 during
heating, (b) dilatation curves of 50CrMo4 during cooling, (c) temperature profile during
cooling, note that temperature curves are time-shifted so that T (t = 0) = 800◦C

In Fig. 4.2(a), the dilatation curves of the specimens during the heating are shown. The
linear course of all curves from a temperature of 825 ◦C indicates that, for all specimens,
full austenitization is achieved. Fig. 4.2(b) shows the corresponding dilatation curves dur-
ing the quenching. Concerning the martensite start temperature, no significant influence
of the quenching rate is observed. However, the yellow curve corresponding to t85 = 30.5 s
has a different gradient, which indicates the formation of a non-martensitic phase at high
temperature. All other curves show a parallel course. Thus, the critical time interval is

t85 = 20.0 s, corresponding to a quenching rate of ˙̃T85 = 15.0 ◦Cs−1.

The temperature curves with respect to time in Fig. 4.2(c) are extended by the tempera-
ture measurements during the water bath quenching. The reduction of the temperature
rate at approximately the martensite start temperature is due to the exothermic austenite–
martensite transformation. The black dashed lines indicate the corresponding ideal linear

course. Based on this diagram, the parameters t85 and ˙̃T can be determined. Accordingly,
by using water as quenching medium, a time interval of t85 = 0.62 s corresponding to a

quenching rate of ˙̃T85 = 484 ◦Cs−1 is achieved inside the sample.

Four heat treatments were selected for the next analysis step, which are summarized in
Tab. 4.2 with their respective cooling times. The further investigated test runs corre-
sponded to the lowest possible quenching rate to form a fully martensitic microstructure,
the maximal possible quenching rate with specimen types A and B with the dilatometer
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(a) (b) (c) (d)

Figure 4.3: Variation of the hardness measurements by indicating the deviation from
the mean value of the individual samples (a) A1, (b) A2, (c) A3, (d) A4

setup and the water bath quenching rate, which is the overall maximum rate investigated
in this work. Note that the dilatometer with the chosen quenching medium could not
keep the specified cooling rate below the martensite start temperature. As a result, the
sample from analysis A2 experienced slower cooling below TMS.

Table 4.2: Relevant measured quenching parameters and martensite start temperatures
of EBSD-analyzed specimens; parameters for A4 refer to measuring point 1©.

Analysis A1 A2 A3 A4
Specimen Type A A B A

TMS in ◦C 279.3 277.1 286.8 -

t85 in s 20.0 6.3 4.9 0.62
tTMS→100 ◦C in s 18.1 20.1 15.3 0.47 *
t81 in s 52.8 33.5 25.0 1.9

˙̃T85 in ◦Cs−1 15.0 47.6 61.2 484
˙̃TTMS→100 ◦C in Ks−1 9.9 8.8 12.2 383 *
˙̃T81 in ◦Cs−1 13.3 20.9 28.0 368

* underlying assumption: TMS = 280 ◦C.

The results of the hardness measurements for each test run and specimen are depicted in
Fig. 4.3. In these diagrams, the deviation from the overall mean per specimen is given
depending on the position number. Hereby it is shown that with the chosen specimen
geometry and the heat treatment with the first experimental setup, a homogeneous hard-
ness course, and thus a homogeneous martensite structure, is obtained. Regarding the
fourth specimen (Fig. 4.3(d)), decarburization took place at the edge of the specimen.
Outside the surface layer zone, however, a homogeneous structure is achieved.

In Fig. 4.4, the correlation between the quenching rate and the hardness is shown. By
increasing the cooling rate, a higher hardness is obtained.

4.4. Microstructure Characterization

The results of the EBSD analyses are shown as orientation maps in Fig. 4.5, where the
inverse pole figure (IPF) color scheme is used for the illustration of the martensite orien-
tations. Note that the raw data have been smoothed and filtered using the half-quadratic
minimization of manifold-valued data (Bergmann et al. (2015)). Within the measuring
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Figure 4.4: Correlation between measured hardness and cooling time, number above
data points indicate cooling rates

accuracy, no retained austenite could be detected for all heat treatments. In accordance
with Vieweg et al. (2017c), the present measured orientations confirm the KS orienta-
tion relationship. Based on this, PAG boundaries are automatically reconstructed and
depicted as black lines in Fig. 4.5. White lines indicate recrystallization twin boundaries
of PAGs, which are identified via their special orientation to each other. Contrary to
expectations, in several cases, the (twin) boundaries follow somewhat jagged lines, which
is a sign that some orientations have been misindexed. This can be attributed to the fact
that austenite grains and their twins share equal martensite variants. A detailed discus-
sion about this can be found, for example, in Nyyssönen et al. (2018). In the context of
the statistical analyses in the present study, twins are considered as single PAGs.

Moreover, the CPP packets (in the following, these are referred to as packets) are calcu-
lated, which are shown in Fig. 4.6. For the grain reconstruction, the threshold misorien-
tation angle indicating a grain boundary is defined with θcrit = 5◦. Since the laths cannot
be clearly identified in this purely orientation-based reconstruction, the reconstructed
“martensite grain” is called a “block”. As a reminder, in the martensite hierarchy, blocks
are the superordinate structure of the laths and a block consists of several laths of the
same or a very similar orientation. The cross-section areas of the structure recorded with
the EBSD system are referred to as areas A2D.

According to the heat treatment, no significant differences in the grain sizes of the PAGs
are expected. In Fig. 4.7, this is checked by means of the median and mean equivalent
grain diameter

deq = 2

√
A2D

π
. (4.2)

Reconstructed austenite grains which are intersected by the measurement boundary are
excluded from the evaluation. Furthermore, here and in the following, grains and marten-
site blocks with a size smaller than 0.32µm2 are not evaluated. The resulting number of
evaluable grains is indicated above the corresponding bars. Experiments with a higher



31

(a) (b)

(c)

001011

1̄11

(d)

Figure 4.5: EBSD map in IPF color scheme with superimposed PAG boundaries (black)
and recrystallization twin boundaries (white), (a) A1, (b) A2, (c) A3, (d) A4

amount of evaluable grains tend to have a smaller mean; however, a systematic influence
from the heat treatment cannot be identified. Differences are therefore due to the size of
the measurement section.

In Fig. 4.8 the empirical cumulative distribution function of the packet and martensite
block areas – respectively, A2D

CPP and A2D
B – are shown. Note the different scale of the

abscissa in Fig. 4.8(b). No systematic correlation between the quenching rate and the
packet areas as well as the martensite block areas can be derived.

The diagrams in Fig. 4.8 only represent a one-dimensional representation of the data,
which is why the analyses are supplemented by a two-dimensional representation. Thus,
Fig. 4.9 shows the packet areas A2D

CPP over the PAG areas A2D
PAG. In Fig. 4.9(a), the

complete data of the highest and lowest tested quenching rates are documented as an
example. The black dashed line depicts the highest possible packet area A2D

CPP(A2D
PAG)−1 =

1 in this diagram. A wide spread of packet areas is identified.

In order to evaluate whether the cooling rate has an influence on the distribution of packet
sizes, an attempt is made to represent the holistic trend of the data. Based on the data
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(a) (b)

(c) (d)

Figure 4.6: EBSD map in IPF color scheme with superimposed PAG boundaries, re-
crystallization twin boundaries (black) and CPP packets (white), (a) A1, (b) A2, (c) A3,
(d) A4

recorded, as shown in Fig. 4.9(a), for each quenching rate, a curve of type

g(x) = c1 x
c2 + c3 (4.3)

with the fitting constants c1, c2 and c3 is fitted with the nonlinear least squares method
to represent the data. The resulting curves are shown in Fig. 4.9(b). Based on this, the
packet size depends considerably on the PAG areas. Accordingly, a larger austenite grain
tends to contain larger packets. However, a clear correlation of the quenching rate with the
packet areas as a function of PAG areas is not identified. The same evaluation procedure
is applied to the martensite block areas, see Fig. 4.11. The curves fitted in Fig. 4.11(b)
show a lower dependency of the martensite block areas on their PAG area. However,
again, no systematic influence of the cooling rate can be identified. The evaluation of the
numbers of packets and blocks in each PAG leads to the same results, see Fig. 4.10.
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Figure 4.7: Comparison of mean and median of the equivalent diameter of the PAG
cross-sections in the measured EBSD domain, number above bars indicates the number
of evaluable grains in the domain

(a) (b)

Figure 4.8: Empirical cumulative distribution function (ECDF), (a) normalized packet
cross-section areas, (b) normalized block cross-section areas

4.5. Discussion

In the present investigation, specimens were heat-treated with comparable austenitization
conditions but different quenching rates. A typical partitioning was omitted in order to
isolate the quenching process, which is responsible for the formation of martensite. Hard-
ness measurements were used to prove that a homogeneous microstructure was present.
Accordingly, the specimens were chosen small enough to neglect influences of the temper-
ature gradient. In accordance with the current state of knowledge, a higher hardness was
achieved with a more intensive quenching, see Fig. 4.4.

Since microstructure size effects can contribute to an increase in hardness, it was in-
vestigated how the quenching intensity affects the microstructure scales. For the same
material, an influence of the cooling rate on the resulting block size was determined by
Eggbauer et al. (2018). However, with a comprehensive evaluation of the sizes of the
hierarchical microstructure, no significant systematic influence of the cooling rate could
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(a) (b)

Figure 4.9: Packet cross-section area in dependence of PAG area, (a) measured data,
(b) representation of measured data with fitted curves

(a) (b)

Figure 4.10: Number of blocks in (a), and packets in (b) depending on the PAG size

be identified. The difference could be due to the size of the measurement domain, which
was chosen to be larger in the present investigation. Furthermore, Eggbauer et al. (2018)
do not describe how the values that were considered representative for the block sizes
were evaluated in detail.

Due to the comparable austenitization conditions, the PAGs were expected to have the
same appearance in size and shape. In order to verify this, the mean and median values of
the areas were analyzed. It was shown that the median values were very similar and the
mean values differed. This was due to the size of the measurement domain. However, in
this study, the focus was on martensite; a possible influence of the austenite grain size was
considered by the presentation of the data in relation to the austenite grain cross-section
areas, see Figs. 4.9 and 4.11. The following can be derived from these analyses.

The packet size as well as the number of packets is dependent on the austenite grain size.
This is in agreement with the concept of pre-existing nuclei of martensite, representing
crystal lattice defects in the parent austenite phase, cf. Olson & Cohen (1981). Assuming
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(a) (b)

Figure 4.11: Martensite block cross-section area in dependence of PAG cross-section
area, (a) measured data, (b) representation of measured data with fitted curves

that packets are generated from these kind of nucleation points, the probability of lattice
defects increases with the size of the PAG. Considering fitting curves in order to evaluate
the holistic trend of block sizes with regard to PAG sizes reveals a slight dependency,
which decreases with increasing A2D

PAG. This is consistent with the Hall–Petch concept of
grain boundary strengthening, where a term of type kHP d

−0.5 is added to the initial yield
strength. In this term, kHP represents a material specific constant and d is the diameter
of the grain. However, the geometric restriction of grain boundaries is most likely the
dominant effect which leads to smaller blocks in smaller PAGs.

The observations of the size effect in this work are in contrast to the phenomenon ob-
served in the majority of the literature, in which martensite sizes become smaller with
increasing cooling rates (Morito et al. (2010); Bardelcik et al. (2010); Tsuzaki & Maki
(1981); Eggbauer et al. (2018); Loewy et al. (2015); Shtejnberg et al. (1977)). This moti-
vates a detailed discussion of the differences. For this purpose, relative differences of the
equilibrium temperature and martensite start temperature (T0 − TMS)/T0 as well as the
chemical driving forces ∆GMS

chem necessary to initiate the martensite transformation are
calculated with Thermo-Calc TCFE 8 and compared. These values give an indication of
the size of energy barrier, which must be overcome. The energy barrier is composed of an
additional mechanical energy component due to the displacement of the atomic structure
and an interface energy component.

For comparison, references were considered in which the influence of the quenching rate
was systematically investigated, TMS was specified and a size effect was verifiable via cor-
responding images. Investigations whose temperature profiles simulated induction hard-
ening processes and thus did not have a corresponding holding time at austenitization
temperature were not considered. The limited number of references with the correspond-
ing values are documented in Tab. 4.3.
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In Loewy et al. (2015) (Fe-22 wt.% Ni), a subsequent block formation (simultaneous in all
packets and PAGs) is stated. The size dependency is explained by a thermally activated
relaxation of austenite in the direct vicinity of the new blocks. A faster cooling rate leads
to less relaxation, which is accompanied with a higher amount of elastic energy being
introduced by the transformation. A reduced size of the block at a single block formation
event is the consequence of this. The subsequent block formation mechanism is consistent
with the small energy barrier indicated by the relatively low values of (T0 − TMS)/T0 in
Table 4.3. With a small energy barrier, the induced stresses must be relatively small.
Furthermore, the chemical driving force ∆GMS

chem is relatively small. If the energy barrier
is exceeded, only a small amount of material has to be converted due to the low chemical
driving force. The simultaneously induced stresses are too low to cause a stress-assisted
auto-nucleation of another block.

Another martensite formation mechanism is stated in Villa et al. (2014). An energy
barrier crossing event is accompanied by the formation of martensite clusters consisting
of several blocks and packets. These martensite clusters extend over several PAGs, which
are significantly smaller than in Loewy et al. (2015). The plausibility of this fundamentally
different formation mechanism can be explained by comparing (T0−TMS)/T0 and ∆GMS

chem

values with those of the material investigated by Loewy et al. (2015). The significantly
larger ratio of (T0 − TMS)/T0 indicates a higher energy barrier. A significantly higher
chemical driving force is therefore necessary to overcome this barrier. Higher induced
stresses lead to a stress-assisted auto-nucleation mechanism which is stopped when the
total of the additional mechanical energy and interfacial energy equals the driving force
for martensite formation (Villa et al. (2014)). Higher mechanical stresses during the
transformation could be caused by elements such as C, which reduces TMS and increases
solid solution hardening, cf. Morito et al. (2003). Furthermore, smaller austenite grain
sizes contribute to higher mechanical stresses due to grain boundary strengthening.

Based on the limited data available, the materials in Loewy et al. (2015) and Villa et al.
(2014) seem to be extreme cases. As for the influence of the cooling rate, the first discussed
mechanism of block formation shows a significant dependence on the cooling rate. The
second mechanism is insensitive against the applied cooling rate. Indicators of which
mechanism is present seem to be (T0 − TMS)/T0 and ∆GMS

chem, see Tab. 4.3. It is assumed
that there is a smooth – currently unclear – transition of one mechanism into the other.
Based on the results in Sec. 4.4, and with regard to the influence of the cooling rate, the
investigated 50CrMo4 is sorted into the group of the latter discussed martensite formation
mechanism. It is assumed that the block formation is at least so fast that no significant
size effects due to time-dependent relaxation of the austenite matrix is noticeable.

The lack of size effects raises the question of the origin of the increase in hardness. This
can be explained by decreased carbon segregation to lattice defects with an increasing
quenching rate, which results in a higher lattice distortion and therefore higher hardness.
In addition, a reduced retained austenite ratio lead to higher hardness. With the chosen
methods of analysis, both effects cannot be proven beyond doubt, but an experimental
confirmation is given by Eggbauer et al. (2018). Furthermore, it should be noted that
Mirzaev et al. (1979) observed a morphological transition from lath to (225)γ-martensite
by increasing the cooling rate. This morphological change could also increase the hardness
without having an influence on TMS.
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5. Modeling of Multivariant Martensite Transforma-

tions

Despite intensive research, the formation of lath martensite in carbon steels is still not
fully understood. This is due to the complexity and speed, which leads to limitations in
experimental observation. In this work, therefore, some idealizations/simplifications as
well as assumptions are made, which are based on the presented experimental findings
(Sec. 2) as well as findings from the literature (Sec. 4):

• The martensite transformation is initiated at lattice defects, mainly on the PAG
boundaries.

• Further martensite transformation is performed by sequentially forming of marten-
site clusters consisting of laths and blocks that form crystallographic packets by
auto-nucleation. Such a transformation event is considered as a fast isothermal
transformation.

• The carbon segregation, which was identified as the key factor of hardness increase
is neglected. This is due to the fact that in the context of this work mainly the
martensite morphology is of interest.

• The martensite transformation can be described with a continuum model in small
strain context.

• The substructure is not resolved. The shape change and the resulting orientations
on the size scale considered are estimated via the PTMC.

• The laths as well as the sub-blocks and their most likely strain-induced auto-
nucleation are not resolved. Sub-blocks and laths are of less interest, since no crack
initiation is expected at sub-block or lath boundaries due to the relatively small
misorientation in a subsequent microstructure-based fatigue simulation.

• A maximum of twelve variants approximating the NW orientation relationship are
considered. The NW orientation relationship is considered here as a simplified KS
orientation relationship, cf. Koumatos & Muehlemann (2017), without a sub-block
structure.

• The nucleation/formation of blocks within a crystallographic packet is of the stress-
assisted auto-nucleation type. The auto-nucleation of blocks of another packet is
inhibited, since the other variants are created on a different CPP.

• The phase boundary, which in general extends over few atomic lattice distances, is
described as diffuse interface whose width is determined by the numerical (spatial)
discretization.

Based on these points, the modeling methodology is described in this section in detail.
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5.1. Phase Field Model

The phase field model used in this work and its numerical implementation was recently
published by Graf et al. (2021c) and is an advancement based on the work of Müller
(2016). Parts of this sections strongly follow these works. Another reference concerning
the thermodynamics of the model and the numerical implementation was the work of
Kuhn (2013).

In this work, the evolution of multivariant martensite phase transformation is described by
a set of order parameters ϕi (with i = 1, . . . , nmart), where ϕi = 0 represents the austenitic
parent phase and ϕi = 1 the ith martensitic variant (product phase). Each order param-
eter has its separate evolution equation. For the sake of clarity, this evolution equation is
derived for the monovariant case, without index i in Sec. 5.1.1. In Sec. 5.1.2, the multi-
variant free energy potential is presented. Together with the determined weighting factors
in Sec. 5.1.3, the strong form of the model equations is then derived in Sec. 5.1.4.

5.1.1. Thermodynamics and Order Parameter Evolution

In order to derive an evolution equation concerning the order parameter ϕ a thermody-
namic consistent continuum theory was proposed by Fried & Gurtin (1993, 1994) and
Gurtin (1996). Accordingly, micro-forces are introduced whose working is accompanied
with changes in ϕ. The micro-force system is described by a vector stress ξ as well as
internal and external scalar body forces $ and ς, respectively. The following declarations
are made (Gurtin (1996)):

• The micro-forces act as thermodynamic conjugate to the rate ϕ̇. Concerning a
control volume B, the external power is thus

Pext,mic =

∫
∂B
ξ · n ϕ̇ dA+

∫
B
ςϕ̇ dV . (5.1)

• The micro-force system is consistent with the global micro-force balance∫
∂B
ξ · n dA+

∫
B

(ς +$) dV = 0 (5.2)

and the equivalent local form

divξ + ς +$ = 0. (5.3)

The external power of the micro-force system (5.1) is added to the external mechanical
power (3.29) resulting in a supplemented energy balance. Finally, with use of micro-force
balance (5.3) and restriction to isothermal conditions, a modified version of the Clausius-
Planck inequality (3.40) is obtained with

σ : ε̇+ ξ ·∇ϕ̇−$ ϕ̇− ψ̇ ≥ 0. (5.4)

The free energy density is now a function of the strain, the order parameter and its
gradient: ψ = ψ(ε, ϕ,∇ϕ). Accordingly, with

ψ̇ =
∂ψ

∂ε
: ε̇+

∂ψ

∂ϕ
ϕ̇+

∂ψ

∂∇ϕ
·∇ϕ̇. (5.5)
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the time derivate is calculated. Following the procedure in Sec. 3.2.2, Eq. (5.4) becomes(
σ − ∂ψ

∂ε

)
: ε̇+

(
ξ − ∂ψ

∂∇ϕ

)
·∇ϕ̇−

(
$ +

∂ψ

∂ϕ

)
ϕ̇ ≥ 0. (5.6)

by inserting Eq. (5.5). Eq. (5.6) is fulfilled with the constitutive relations

σ =
∂ψ

∂ε
and ξ =

∂ψ

∂∇ϕ
, (5.7)

when the inequality

$dis ϕ̇ ≤ 0 with $dis = $ +
∂ψ

∂ϕ
(5.8)

is fulfilled. The most general form of $dis, which is consistent with Eq. (5.8) is given in
the work of Gurtin (1996) and reads

$dis = −β ϕ̇ with β ≥ 0, (5.9)

where β is a constitutive modulus. Thus, the internal force

$ = −β ϕ̇− ∂ψ

∂ϕ
(5.10)

has a dissipative contribution (first term) and a contribution due to changes in the free
energy. By choosing a constant mobility M = 1/β and in absence of external forces ς = 0
the time-dependent Ginzburg-Landau or Allen-Cahn equation

ϕ̇ = −M
(
∂ψ

∂ϕ
− div

(
∂ψ

∂∇ϕ

))
= −Mδψ

δϕ
(5.11)

can be derived by inserting Eq. (5.10) and the constitutive relation of ξ (Eq. 5.7) into the
local micro-force balance (5.3). Accordingly, the rates of the order parameter are propor-
tional to the variational derivate of ψ, the free energy density or phase field potential.

5.1.2. Free Energy Potential

With minimizing free energy
∫

Ω
ψ dV as driving force, the phase field approach computes

the martensite evolution in a dissipative gradient-descent fashion. The potential ψ may
be expressed in the spirit of Schrade et al. (2007) by three contributions

ψ = ψel + ψsep + ψgrad, (5.12)

where ψel represents the elastic energy density, ψsep the phase separation potential and
ψgrad the gradient potential. The elastic energy density is defined as

ψel =
1

2

(
ε− ε0

)
: C
(
ε− ε0

)
with ε0 =

nmart∑
i=1

hiε̃i, C = Cγ +
nmart∑
i=1

hi (Cαi − Cγ) . (5.13)

In Eq. (5.13), ε0 considers the martensite strains ε̃i due to the transformation of the ith

martensite variant. The tensors Cγ and Cαi indicate the elasticity tensor with respect to
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austenite (γ) and the martensite (α) variant, respectively. With the function hi = hi(ϕi)
the transformation strain and the elasticity matrix is interpolated between the parent
and product phase. Eq. (5.13) is the generalization to nmart martensitic variants of the
formulation of Schmitt et al. (2013a, 2012), which is limited to two variants (Schmidt
et al. (2017)).

Concerning the formulation of the phase separation potential, the Landau polynomial

ψsep(ϕi) =
ca

2

nmart∑
i=1

ϕ2
i −

cb

3

nmart∑
i=1

ϕ3
i +

cc

4

(
nmart∑
i=1

ϕ2
i

)2

(5.14)

with the constants c{a,b,c} is utilized (Wang & Khachaturyan (1997); Yamanaka et al.
(2008)). With this fourth-order polynomial the transition path from austenite to marten-
site can be described energetically as a function of temperature, cf. Engin & Urbassek
(2008) and Schmidt et al. (2017).

Considering the simple case of one order parameter, the constants c{a,b,c} can be defined
with ca = 32 g̃, cb = 3 ca − 12 ∆g and cc = 2 ca − 12 ∆g, where g̃ is a parameter regarding
the height of the chemical energy barrier and ∆g defines the chemical energy difference
between austenite and martensite, cf. Yeddu et al. (2012b). Following Yeddu et al.
(2012b), the Landau polynomial in Eq. (5.14) can be reformulated as

ψsep(ϕi) = 16 g̃

nmart∑
i=1

ϕ2
i − 2

nmart∑
i=1

ϕ3
i +

(
nmart∑
i=1

ϕ2
i

)2


︸ ︷︷ ︸
=f int

+∆g

4
nmart∑
i=1

ϕ3
i − 3

(
nmart∑
i=1

ϕ2
i

)2


︸ ︷︷ ︸
=fbulk

, (5.15)

where it is split into two parts. The first term is referred to as the interface part with the
dimensionless polynomial f int, the second as the bulk part with fbulk. Using the case of
a single order parameter, Fig. 5.1 illustrates the courses of interface and bulk part. With
nmart = 1, Eq. (5.15) simplifies to

ψsep(ϕ) = 16 g̃ ϕ2 (1− ϕ)2 + ∆g ϕ3 (4− 3ϕ) . (5.16)

The gradient potential ψgrad is defined as

ψgrad =
1

2
β∗

nmart∑
i=1

|∇ϕi|2 . (5.17)

where the constant β∗ is a scaling parameter of the gradient potential and ∇ϕi denotes
the gradient of ϕi.

In order to be able to control the width of the interface l without affecting overall energy,
a further scaling factor α∗ is introduced into the interface part of the separation potential.
Thus, the phase field potential becomes

ψ = ψel + ∆gfbulk + 16 g̃ α∗ f int +
1

2
β∗

nmart∑
i=1

|∇ϕi|2︸ ︷︷ ︸
ψint

, (5.18)
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Figure 5.1: Landau polynomial for the simple case of a single order parameter

where the interface energy density ψint can be defined. The volume integral Ψint =∫
Ω
ψint dV gives the interface energy of the model.

5.1.3. Determination of Weighting Factors

The basic idea for following procedure goes back to Cahn & Hilliard (1958). Consider the
standard equilibrium case (∆g = 0) of an indefinitely extended one-dimensional contin-
uum, which consists of two phases as depicted in Fig. 5.2. In equilibrium state, the order
parameter function

ϕ =
1

2

[
tanh

(
2x

l

)
+ 1

]
(5.19)

solves the Euler-Lagrange equation

∂ψint

∂ϕ
− d

dx

[
∂ψint

ϕ′

]
= 0 with ϕ′ =

dϕ

dx
(5.20)

of the variational problem

Ψint =

∫ ∞
−∞

ψint dx. (5.21)

Multiplying Eq. (5.20) with ϕ′ and utilizing the identity

d

dx

[
∂ψint

ϕ′

]
dϕ

dx
=

d

dx

[
∂ψint

ϕ′
dϕ

dx

]
− ∂ψint

ϕ′
d2ϕ

dx2
(5.22)

leads to

d

dx

[
ψint − ∂ψint

∂ϕ′
dϕ

dx

]
= 0. (5.23)

From Eq. (5.23) follows

ψint − ∂ψint

∂ϕ′
dϕ

dx
= const. = cd. (5.24)
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(a)

(b)

Figure 5.2: Indefinitely extended two phase continuum, one-dimensional with two phases
(a) field plot, (b) profile plot of the order parameter

The constant cd is found to be cd = 0 by evaluation of Eq. (5.24) regarding the specific
order parameter ϕ = 0 with ψint(ϕ = 0) = 0 and dϕ

dx

∣∣
ϕ=0

= 0. Analogously to Eq. (5.18)
it is

ψint = 16 g̃ α∗f int +
1

2
β∗|ϕ′|2,

∂ψint

∂ϕ′
= β∗ϕ′. (5.25)

Inserting Eq. (5.25) in (5.24) leads to

dx =

√
β∗

32α∗g̃f int
dϕ. (5.26)

With Eq. (5.26), the integral with respect to x in Eq. (5.21) can be rewritten as an integral
with respect to ϕ. Eventually,

Ψint =
√

32α∗β∗g̃

∫ 1

0

√
f int dϕ = γ (5.27)

is obtained. Evaluation of the integral leads to

√
32α∗β∗g̃

6
= γ (5.28)

Furthermore, Eq. (5.26) can be used to derive

dϕ

dx

∣∣∣∣
x=0

=

√
32α∗g̃f int

β∗

∣∣∣∣∣
ϕ= 1

2

=

√
2α∗g̃

β∗
=

1

l
. (5.29)
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By solving Eq. (5.28) and (5.29), the parameters α∗ and β∗ according to Eq. (5.30) are
determined.

Considering a one-dimensional system, the constants

α∗ =
3 γ

4 g̃ l
and β∗ =

3

2
γ l (5.30)

can be obtained, where γ is an interface energy parameter. The substitution of these
parameters in Eq. (5.18) leads to

ψ = ψel + ∆g fbulk + 12
γ

l
f int +

3

4
γ l

nmart∑
i=1

|∇ϕi|2 . (5.31)

The pre-factors 12 γ l−1 and 3/4 γ l in Eq. (5.31) are the same as in Diewald et al. (2018).
Remarkably, the energy barrier g̃ is canceled out, which follows from the parameter setting
with γ and l.

5.1.4. Strong Form of Model Equations

By inserting Eq. (5.31) in Eq.(5.11) with respect to the ith phase field, the strong form

1

M
ϕ̇i = −∂ψ

el

∂ϕi
− γ

(
12

l

∂f int

∂ϕi
− 3

2
l∆ϕi

)
−∆g

∂fbulk

∂ϕi
for i = 1, 2, . . . , nmart, (5.32)

is obtained, where ∆(•) represents the Laplacian div(grad(•)), respectively. The consti-
tutive relation (5.7)2 results in

ξi =
3

2
γ l∇ϕi (5.33)

considering Eq. (5.31). The corresponding von Neumann and Dirichlet boundary condi-
tions acting on the disjointed boundary surfaces are

ξi · n =ξi on ∂Bξ, (5.34)

ϕi =ϕi on ∂Bϕi , (5.35)

ϕi|t=0 =ϕ0,i in B. (5.36)

In order to achieve compatibility,

ϕi
∣∣
t=0

= ϕ0,i on ∂Bϕi , (5.37)

is additionally required. The mechanical quantities are coupled to the phase field via the
elastic energy potential. According to Eq. (3.27), the mechanical stress σ has to satisfy

divσ = 0

with the constitutive relation (5.7)1

σ =
∂ψ

∂ε
= C

(
ε− ε0

)
.

Note that Eq. (3.27) is a simplification of Cauchy’s first equation of motion (3.23), which
neglects inertia effects and volume forces such as gravity. The corresponding von Neumann
and Dirichlet boundary conditions are

t = σn = t on ∂Bσ, (5.38)

u = u on ∂Bu, (5.39)

respectively, where ∂Bσ and ∂Bu are the disjointed boundary surfaces.
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5.2. Finite Element Implementation

The finite element formulation is obtained by inserting shape functions into the weak
forms of the mechanical force balance and the evolution equation for the phase field. Af-
ter evaluating the integrals of the weak forms, a vector-matrix formulation is obtained,
which can be solved with the help of computers. The explanations in this section are
limited to the two-dimensional plane strain case, since three-dimensional implementation
is straightforward. The spatial discretization is done with four noded quadrilateral ele-
ments. In addition, the time integration scheme is presented, which is required by the
presence of transient term ϕ̇.

5.2.1. Weak Forms and Spatial Discretization

In order to obtain the weak forms, the procedure of Galerkin is applied. Accordingly,
the field Eqs. (5.32) and (3.27) are scalar multiplied by the corresponding virtual test
function δϕi and δu, respectively, and integrated over the domain B. The application of
partial integration, taking into account the respective boundary conditions, finally leads
to the weak forms ∫

B
δϕi

(
1

M
ϕ̇i +

∂ψel

∂ϕi
+ 12

γ

l

∂f int

∂ϕi
+ ∆g

∂fbulk

∂ϕi

)
+

3

2
γ l (∇δϕi) · (∇ϕi) dV =

∫
∂Bξ

δϕ ξ dA (5.40)

and ∫
B
(∇δu)T : σ dV =

∫
∂Bσ

δu · t dA. (5.41)

In Eqs. (5.40) and (5.41), the left hand sides represent the first variation of internal
potential and right hand sides the first variation of the external potential. In this work,
only cases with t = 0 and ξ = 0 are considered, which is why these terms are not
considered further. With the symmetry of the Cauchy stress σ and the definition of the
symmetrical linearized strain tensor ε, the relation

(∇δu)T : σ = δε : σ (5.42)

holds.

The geometric region B is approximated by nfe elements and the assembly of the system
is described by

B ≈
nfe⋃
e=1

Be, (5.43)

where Be occupies the element domain. Using the following equations, the displacement
u as well as the order parameters ϕi and their rates ϕ̇i are approximated element wise,

u ≈
nn∑
I=1

N IûI , ϕi ≈
nn∑
I=1

N Iϕ̂i,I , ϕ̇i ≈
nn∑
I=1

N I
˙̂ϕi,I . (5.44)

Here, N I is the bilinear shape function at node I, which interpolates the nodal values and
nn is the total number of nodes per element. The superimposed hat ˆ(•) indicates nodal
quantities.
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Using the Voigt notation, denoted by (•)V, the gradient quantities are approximated with
the differential operator matrices

Bu
I =


∂NI

∂x
0

0 ∂NI

∂y
∂NI

∂y
∂NI

∂x

 and Bϕi
I =

∂NI

∂x
∂NI

∂y

 (5.45)

by

εV ≈
nn∑
I=1

Bu
I ûI and ∇ϕi ≈

nn∑
I=1

Bϕi
I ϕ̂i,I . (5.46)

Analogously, the virtual field variables

δϕi ≈
nn∑
I=1

N I δ̂ϕi,I , ∇δϕi ≈
nn∑
I=1

Bϕi
I δ̂ϕi,I ,

δεV ≈
nn∑
I=1

Bu
I δ̂uI (5.47)

are approximated. Applying discretization to the weak forms by inserting Eqs. (5.44),
(5.46) and (5.47) in Eqs. (5.40) and (5.41) yields the discrete forms

nfe⋃
e=1

nn∑
I=1

δ̂ϕi,I R
ϕi
e,I = 0 (5.48)

and

nfe⋃
e=1

nn∑
I=1

(δ̂uI)
TRu

e,I = 0 (5.49)

with the nodal residuals

Rϕi
e,I = −

∫
Be

[
N I

M
ϕ̇i +N I

(
∂ψel

∂ϕi
+ 12

γ

l

∂f int

∂ϕi
+ ∆g

∂fbulk

∂ϕi

)
+ (Bϕi

I )T ξi

]
dV (5.50)

and

Ru
e,I = −

∫
Be

(Bu
I )T σV dV . (5.51)

According to the fundamental theorem of the calculus of variations, Eqs. (5.48) and (5.49)
hold, if Ru

e,I = 0 and Rϕi
e,I = 0.

In order to obtain the global residual vector R, the nodal residuals are collected in the
vector

Re,I =
(Ru

I )T , Rϕi
I , · · · , R

ϕnmart
I

T

. (5.52)

It depends on the nodal degrees of freedom

d̂e,I =
ûT , ϕ̂i, · · · , ϕ̂nmart

T

e,I
(5.53)
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and their rates. The residual vector for an element is then

Re =
(Re,I)

T , · · · , (Re,nn)T
T

. (5.54)

Assembling the element residuals yields the global residual vector

R(d̂,
˙̂
d) =

nfe⋃
e=1

Re. (5.55)

5.2.2. Temporal Discretization

In order to solve the time-dependent model numerically, the continuous course of time is
evaluated at discrete time steps. Therefore, in each time step tn → tn+1, the nonlinear
system of equations

Rn+1 = 0, (5.56)

needs to be solved, which is typically rewritten as

Rn+1 = F̃ n+1 − P̃ (d̂n+1,
˙̂
dn+1) = 0, (5.57)

where F̃ n+1 represents the external (prescribed) force contributions and P̃ represents the
internal forces. Note that in Eqs. (5.50) and (5.50) only the internal force vector P̃ is
present, which is due to the choice of boundary conditions t = 0 and ξ = 0. In order to
solve Eq. (5.57), the fully implicit backward Euler scheme is applied. Accordingly, the

time derivate of the nodal degrees of freedom
˙̂
dn+1 is approximated by

˙̂
dn+1 ≈

d̂n+1 − d̂n
∆tn

. (5.58)

With this approximation, P̃ is a function of the known degrees of freedom d̂n and the
unknown degrees of freedom d̂n+1, i.e. P̃ (d̂n, d̂n+1). The solution for d̂n+1 is obtained

iteratively by means of the Newton-Raphson method. With the initial guess d̂
(0)
n+1 = d̂n,

the solution for the next iteration step is updated with

d̂
(k+1)
n+1 = d̂

(k)
n+1 + ∆d̂

(k)
n+1, (5.59)

where the superscript (•)(k) denotes the iteration step. In Eq. (5.59), ∆d̂
(k)
n+1 is determined

by linearization of the residual equation

R
(k+1)
n+1 ≈ R

(k)
n+1 − S̃

(k)
n+1∆d̂

(k)
n+1 = 0 with S̃

(k)
n+1 =

∂P̃ (d̂n, d̂
(k)
n+1)

∂d̂
(k)
n+1

, (5.60)

where S̃ is the system matrix. If the residual (5.60) vanishes with a given precision, the
solution is found. With reference to the approximation of transient terms, the system
matrix can be determined by total derivation according to

S̃n+1 =
∂P̃ (d̂n, d̂n+1)

∂d̂n+1

=
dP̃ (d̂n+1,

˙̂
dn+1)

dd̂n+1

=

∂P̃ (d̂n+1,
˙̂
dn+1)

∂d̂n+1

+
1

∆t

∂P̃ (d̂n+1,
˙̂
dn+1)

∂
˙̂
dn+1

. (5.61)
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With suppression of time step index, Eq. (5.61) can be rewritten in compact form

S̃ = K̃ +
1

∆t
D̃ (5.62)

with the global stiffness matrix

K̃ =
∂P̃

∂d̂
(5.63)

and the global damping matrix

D̃ =
∂P̃

∂
˙̂
d
. (5.64)

As the residuals, these matrices are calculated on element level. Accordingly, the stiffness
matrix K̃e,IJ is defined with

K̃e,IJ =



K̃uu K̃uϕ1 · · · K̃uϕi · · · K̃uϕnmart

K̃ϕ1u K̃ϕ1ϕ1 · · · K̃ϕ1ϕi · · · K̃ϕ1ϕnmart

...
...

. . .
...

. . .
...

K̃ϕiu K̃ϕiϕ1 · · · K̃ϕiϕi · · · K̃ϕiϕnmart

...
...

. . .
...

. . .
...

K̃ϕnmartu K̃ϕnmartϕ1 · · · K̃ϕnmartϕi · · · K̃ϕnmartϕnmart


e,IJ

, (5.65)

where the matrix entries are given by the derivative of the internal forces at node I with
respect to the nodal degrees of freedom at node J . With

σ̃i = (Cαi − Cγ)(ε− ε0)− C ε̃i (5.66)

the following matrix entries are found:

K̃uu
e,IJ =

∂P̃ u
e,I

∂ûJ
=

∫
Be

(Bu
I )T CVBu

J dV , (5.67)

K̃uϕi
e,IJ =

∂P̃ u
e,I

∂ϕ̂i,J
=

∫
Be

(Bu
I )T

∂hi
∂ϕi

σ̃V
i NJ dV (5.68)

K̃ϕiu
e,IJ =

(
K̃uϕi

e,IJ

)T
, (5.69)

K̃ϕiϕi
e,IJ =

∂P̃ϕi
e,I

∂ϕ̂i,J
=

∫
Be
N I

(
∂2ψel

∂ϕ2
i

+ 12
γ

l

∂2f int

∂ϕ2
i

+ ∆g
∂2fbulk

∂ϕ2
i

)
NJ

+
3

2
γ l (Bϕi

I )T Bϕi
J dV ,

(5.70)

K̃
ϕiϕj
e,IJ =

∂P̃ϕi
e,I

∂ϕ̂j,J
=

∫
Be
N I

(
∂2ψel

∂ϕj∂ϕi
+ 12

γ

l

∂2f int

∂ϕj∂ϕi
+ ∆g

∂2fbulk

∂ϕj∂ϕi

)
NJ dV , (5.71)

K̃
ϕjϕi
e,IJ =K̃

ϕiϕj
e,IJ . (5.72)

Note the symmetry of K̃e,IJ . The corresponding damping matrix reads

D̃e,IJ =
∂P̃ e,I

∂
˙̂
dJ

=
1

M

∫
Be
N INJ dV

 0(2×2) 0(2×nmart)

0(nmart×2) I(nmart×nmart)

 . (5.73)
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Figure 5.3: Isoparametric quadrilateral element with four nodes

5.2.3. Isoparametric Representation and Numerical Quadrature

In order to approximate an arbitrary geometry with quadrilateral elements, the isopara-
metric concept is used. The integrals are evaluated with Gauss quadrature. Both are
established methods in the context of the finite element method. For the sake of com-
pleteness, they are nevertheless briefly described.

When applying the isoparametric concept, the same shape functions are used as for the
degrees of freedom. For two-dimensional quadrilateral elements, the shape functions are
defined element wise as function of natural coordinates ξ and η in the unit space [−1, 1]×
[−1, 1] in order to simplify the numerical implementation, see Fig. 5.3. Accordingly, the
bilinear Lagrangian shape functions are

N I(ξ, η) =
1

4
(1 + ξ̂I ξ)(1 + η̂I η), I = 1, . . . , 4. (5.74)

The physical coordinates within an element are approximated by the mapping

x ≈
nn∑
I=1

N I(ξ, η)x̂I . (5.75)

Thus, the spatial position within an element can be expressed using the natural coordi-
nates. Applying the chain rule differentiation yields

∂N I

∂ξ
=
∂N I

∂x

∂x

∂ξ
+
∂N I

∂y

∂y

∂ξ
, (5.76)

∂N I

∂η
=
∂N I

∂x

∂x

∂η
+
∂N I

∂y

∂y

∂η
, (5.77)

which can be expressed in matrix notation∂NI

∂ξ
∂NI

∂η

 = J

∂NI

∂x
∂NI

∂y

 with J =

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 , (5.78)
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where J is the Jacobian matrix, which links the derivatives with respect to natural co-
ordinates and the derivatives with respect to the global physical coordinates. Using the
approximation of the geometry (5.75), the Jacobian matrix can be determined with

J =
nn∑
I=1

∂NI

∂ξ
x̂I

∂NI

∂ξ
ŷI

∂NI

∂η
x̂I

∂NI

∂η
ŷI

 . (5.79)

In the following, the integrals, which form the element residuals, the stiffness matrix as
well as the damping matrix are represented by∫

Be
q(x, y) dV , (5.80)

where q(ξ, η) is a placeholder function. With regard to the reference element in natural
coordinates, this integral must be transformed accordingly. In the isoparametric concept
with the corresponding shape functions, this is done with∫

Be
q(x, y) dV =

∫ 1

−1

∫ 1

−1

q(ξ, η) detJ(ξ, η) dξ dη. (5.81)

The numerical evaluation using the Gauss quadrature is then computed with∫ 1

−1

∫ 1

−1

q(ξ, η) detJ(ξ, η) dξ dη ≈
nint∑
p=1

q(ξp, ηp) detJ(ξp, ηp)wq, (5.82)

where nint is the total number of Gauss points, with their respective positions ξp and ηp
and weights wq. For the specific values, reference is made to Zienkiewicz et al. (2005). In
this work, the Gauss quadrature is performed with 2× 2 integration points.

5.2.4. Irreversibility of Martensite Transformation

When simulating martensite transformation, it may be of interest to suppress a transfor-
mation from one martensite variant to another. To implement this, a method presented
by Kuhn (2013) is used, which introduces an irreversibility in the fashion of Dirichlet
boundary conditions. The procedure adapted to the problem at hand is described in the
following, whereby Kuhn (2013) is strongly followed.

Once a martensite variant is fully transformed, a constraint is imposed to prevent re-
transformation. In the time-discretized setting, this leads to

ϕ
i,I,n+1

= 1 if ϕ̂i,I,n > 1− εirr, (5.83)

where εirr is a numerical tolerance. In order to fulfill this requirement, in each iteration
step (k) the value of ϕ̂

(k+1)
i,I,n+1 must be one, if ϕ̂i,I,n > 1 − εirr is detected in the previous

time step. This is achieved by modifying the element system matrix S̃e and the residuals
Re. The individual steps of the modification are described below, whereby these steps
are carried out for each martensite variant.

1. The column S̃
[:,ϕ̂i,I ]
e referring to ϕ̂i,I is multiplied with difference (1 − ϕ̂i,I,n) and

added to the residual:

Re ← Re + (1− ϕ̂(k)
i,I,n+1)S̃

[:,ϕ̂i,I ]
e
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2. The residual entryR
[ϕ̂i,I ]
e referring to ϕ̂i,I is overwritten with difference (1−ϕ̂(k)

i,I,n+1):

R
[ϕ̂i,I ]
e = 1− ϕ̂(k)

i,I,n+1

3. The row S̃
[:,ϕ̂i,I ]
e and column S̃

[ϕ̂i,I ,:]
e are overwritten with zeros:

S̃
[:,ϕ̂i,I ]
e = 0

S̃
[ϕ̂i,I ,:]
e = 0

4. The matrix entry S̃
[ϕ̂i,I ,ϕ̂i,I ]
e is overwritten with one:

S̃
[ϕ̂i,I ,ϕ̂i,I ]
e = 1

Using this manipulation, the system of Eqs. (5.60) yield a solution ∆d̂
(k)
I,n+1 with

∆ϕ̂
(k)
i,I,n+1 = 1− ϕ̂(k)

i,I,n+1, (5.84)

which means that for the update

ϕ̂
(k+1)
i,I,n+1 = ϕ̂

(k)
i,I,n+1 + ∆ϕ̂

(k)
i,I,n+1 = 1 (5.85)

the value one is obtained. Unless otherwise noted, irreversibility is deactivated in the
following studies.

5.3. Generation of Prior Austenite Grain Structure

As the current work is concerned with the martensite transformation in an austenitic
matrix, a necessary input quantity is the PAG structure. A physically reasonable way
would be to use of a physically based model, which describes the austenitization process.
Such a model would be computationally demanding and is outside the scope of this work.
However, by means of the orientation relationship between austenite and martensite it
is possible to reconstruct the austenitic structure based on the measured martensitic
structure, see e.g. Nyyssönen et al. (2018) and Cayron (2007). The validity of such
reconstructions can be seen in the work of Brandl et al. (2019), where the reconstruction
shows good agreement with high temperature EBSD measurements in a PH 15-5 with
austenite memory effect.

With reconstructed and present austenite structures, several options are conceivable to
use the data as input to the simulation. The first option is a direct reproduction and
discretization of the reconstructed austenite structure. In the martensite phase field con-
text this was done by Graf et al. (2021a,c) and Schmidt et al. (2018). This approach
has the limitation that microstructural features cannot be varied. The systematic influ-
ence of microstructural features such as austenite grain size is thus difficult to analyze.
Furthermore, in this work only two-dimensional EBSD data is available, which limits the
reproduction to two dimensions. In principle, three-dimensional measurements could be
obtained by sequentially ablating and measuring the surface. However, this procedure is
extremely elaborate and costly. Concerning martensite, only one paper is known in which
three-dimensional data were generated (Morito et al. (2013)).
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Table 5.1: Statistics of austenite grain structure in material 50CrMo4

Experiment No., Equivalent grain diameter deq Circularity 1− s2D

see Sec. 4 mean in µm stdev in µm mean stdev

A1 7.8 5.1 0.16 0.084
A2 9.4 5.8 0.16 0.082
A3 8.7 6.3 0.17 0.099
A4 8.4 5.4 0.15 0.086

Average 8.6 5.7 0.16 0.088

With some loss of physical justification and geometric information, geometric models pro-
vide an efficient alternative. Such approaches use mathematical tessellation techniques to
generate polycrystalline structures, which are used in this work to generate the austenitic
structure. The basic principle of this generation is briefly described here, whereas for
further details reference is made from Kuhn et al. (2020). The implementation of the syn-
thetic generation in the script-based work-flow in this work was supported by Steinmetz
(2020).

Focusing on convex grains, Voronoi tessellation is a popular technique, see e.g. Fritzen
et al. (2009); Quey et al. (2011). Here, the tessellation of space is determined by a set
of seed points. For each seed point, a corresponding cell is formed that encompasses all
points that are closer to the seed point of the considered region than to any other seed
point. This corresponds to a simple model for homogeneous and isotropic grain growth.
However, it has been empirically shown that Voronoi structures are generally unsuitable
to reproduce microstructures with realistic grain size distributions (Döbrich et al. (2004);
Luther & Könke (2009)). Laguerre tessellations, on the other hand, satisfy the require-
ments by grain size distributions in microstructures. In this tessellation technique, a
positive scalar weight is assigned to each seed point. With appropriate adjustment of
the weights, the size distribution can be influenced. In combination with suitable opti-
mization algorithms, structures are found that statistically represent the experimentally
observed microstructure. In the recent work of Kuhn et al. (2020), various algorithms are
presented and compared in this regard.

In this work the open-source software toolkit Neper (Quey et al. (2011); Quey & Renver-
sade (2018); Quey (2019)) is used to generate PAG structures of the in Sec. 4 analyzed
material 50CrMo4.

5.3.1. Statistical Description of Microstructures

Usually polycrystalline morphologies are described in terms of their average grain sizes
and grain size distributions (Quey & Renversade (2018)). In addition, the grain shape
may also be relevant. With regard to the grain size description, the equivalent grain
diameter according to Eq. (4.2),

deq = 2

√
A2D

π
,

is used. Empirical studies have shown that grains sizes deq of materials that underwent
grain boundary migration by capillarity effect follow a log-normal distribution. The grain
size distribution of the austenitic structure in 50CrMo4 also corresponds to a log-normal
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1− s2D = 0.3614

(a)

1− s2D = 0.0885

(b)

1− s2D = 0.0745

(c)

Figure 5.4: Comparison of exemplary form factors between (a) a raw data grain, (b) a
smoothed grain, and (c) a synthetic grain

distribution.

The grain shape is described by form factor

s2D =
π deq

p2D
, (5.86)

where p2D is the cross-section perimeter of the considered grain. The dimensionless form
factor s2D is called circularity and lies between zero and one, where the value one represents
a circular grain. From Spettl et al. (2014) and Quey & Renversade (2018) it is known
that 1 − s2D of experimental measured grains shapes follow a log-normal distribution.
This is also a valid approximation of the distribution in the austenitic microstructure of
50CrMo4.

The probability density function of log-normal distribution of a generic quantity r is given
by

fr(r) =
1

r

1

σr

√
2π

exp

{
−(ln(r)− µr)

2

2σr

}
, (5.87)

with logarithmic mean µr and logarithmic standard deviation σr as parameters. Mean
and standard deviation are given by

mean = exp
{
µr + 1

2
σr

2
}

and stdev = exp
{
µr + 1

2
σr

2
} √

exp {σr
2} − 1. (5.88)

5.3.2. Synthetic Austenite Grain Structure of Low-Alloy Steel 50CrMo4

The analysis of the microstructure generation parameters is performed based on the re-
constructed austenitic microstructures of analyses A1-A4 in Sec. 4. Tab. 5.1 shows the
determined statistical parameters. For the evaluation of circularity, a further intensive
smoothing is performed. The reason for this can be seen from Fig. 5.4. This figure shows
an example of a raw reconstructed grain, a smoothed grain and a synthetic grain with
a similar shape and the respective shape factor. Due to the rough surface, the raw re-
constructed grain has a significantly higher form factor compared to the synthetic grain.
The rough surface of the grain is caused by measurement inaccuracies and the recon-
struction. With smoothing of the rough surface, the circularity is reduced to a size in
the order of the synthetic grain. Another effect is that the reconstructed grain structure
approximates a convex grain structure, which is reproducible with the synthetic struc-
ture. The non-convexity of the reconstructed grains is mainly due to misindexing during
reconstruction.
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25µm

(a) (b) (c)

Figure 5.5: Synthetic microstructures of material 50CrMo4 with different sizes:
(a) 25µm, (b) 50µm and (c) 100µm

(a)

(b)

Figure 5.6: Statistics of synthetic microstructures in comparison with the experimental
results, (a) probability density of equivalent grain diameter, (b) probability density of
circularity

The average values in Tab. 5.1 of the four analyses are used to generate the synthetic
microstructures. Fig. 5.5 shows exemplary morphologies with three different domain sizes:
25µm, 50µm and 100µm. In Fig. 5.6 the histograms of the equivalent grain diameter
and the circularity of the synthetic microstructures from Fig. 5.5 are shown. In addition,
the probability density function of the experimental data is plotted. All microstructures



56 Modeling of Multivariant Martensite Transformations

represent the experimental data. However, with larger domain size the data is reproduced
more accurately. A disadvantage of the smallest domain size is that there is no complete
grain in the bulk.

Another important criteria is the misorientation distribution. The misorientation be-
tween the grains results from the individual orientations of the grains. An analysis of the
pole figures of the austenite structure reveals an isotropic distribution of the orientations
present in the mircostructure. Accordingly, there is no texture and the orientations are
randomly drawn from a uniform distribution.

5.3.3. Finite Element Meshing

In this work, a regular mesh is used to spatially discretize the tessellations generated above.
This results in a pixelated representation of the austenite grain structure with loss of the
smooth grain boundaries, which are approximated stepwise. The smaller the element size
is chosen, the better the actual grain boundary is reproduced. The alternative would
be an unstructured mesh where the grain boundaries could be represented as smooth
boundary. With respect to the phase field martensite simulation, a detailed analysis of
the influence of the meshing method is not known. From studies by Böhlke et al. (2010)
and Zhang et al. (2015), however, it is known that the influence on the effective properties
as well as the stress and strain distribution under mechanical load is negligible using a
sufficient fine mesh. The meshes used here in the phase field context tend to be finer, so
it is concluded that the use of structured meshes is permissible.

5.4. Nucleation Modeling

Regarding martensite nucleation, there seems to be a certain consensus that several types
of defects or accompanying stress-fields promote martensite nucleation, see e.g. Sec. 2.4.2.
However, the exact nature of martensite nucleation is not fully understood and is still the
subject of current research, see e.g. Zhang et al. (2007), Song & De Cooman (2014),
Wang et al. (2019). Within the phase field context, nucleation occurs when the system
is locally brought out of the metastable state and the energetic barrier is overcome. All
parameters, which influence the transformation path also have an impact on the nucleation
behavior. For example, the required deviation from the metastable state increases with
increasing interface energy parameter. In order to model the martensite nucleation in
the current model, a distinction is made between two nucleation mechanisms: initial
nucleation (Sec. 5.4.1), and auto-nucleation (Sec. 5.4.2). The implementation of the initial
nucleation model in the script-based work-flow in this work was supported by Steinmetz
(2020).

5.4.1. Initial Nucleation in Polycrystalline Structures

Assuming that pre-existing embryos of the product phase become super critical below
TMS, it could be shown empirically that martensite at TMS occurs heterogeneously (Cech
& Turnbull (1956); Kaufman & Cohen (1958); Löwy (2015)). Accordingly, the classical
martensite nucleation theory describes a nucleus with the same structure as the fully
transformed product, which increases in size due to a moving interface (Löwy (2015)).
Regardless of the exact nature of nucleation, grain boundaries seem to play an important
role in the initial martensite transformation in polycrystals, see e.g. Ueda et al. (2002,
2003); Furuhara et al. (2010); Song & De Cooman (2014).
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Figure 5.7: Mesh categorization, (a) connecting nodes (1) in a detailed view with
element-wise grain assignment, (b) remaining categories (2-4) (without connecting nodes)

(a) (b) (c)

Figure 5.8: Example application of the two-dimensional nucleation model, nuclei radius
to edge length ratio is 0.01, (a) 52 nucleation sides with about 50% at grain boundaries
and 50% within grains, (b) 52 nucleation sides with 100% at grain boundaries, (c) full
occupation of tripel junctions

In the context of martensite simulation using the phase field method, several methods are
known to initiate martensite transformation. For example, Artemev et al. (2001) initiate
the transformation by noising the order parameters in the initial time step, Yeddu et al.
(2012b) define a pre-existing nucleus, and Zhang et al. (2007) define an initial dislocation
loop. In addition, the martensite transformation can also be initiated by applying an
external strain or stress, see e.g. Yeddu et al. (2013). With reference to the important
role of grain boundaries in nucleation, a model was developed by Heo & Chen (2014)
in which martensite transformation is initiated at grain boundaries. In this model, The
austenite grain boundaries are described as a diffuse interface, which is coupled with



58 Modeling of Multivariant Martensite Transformations

the martensite transformation strains. The martensite intrinsic strain are scaled down
within the diffuse austenite-austenite boundaries, making the transformation in the grain
boundaries more energetically favorable due to the lower strain energy. Initial nucleation
is then triggered by noise and growth begins primarily at the grain boundaries. This
model is applied, for example, in the works of Schoof et al. (2018a,b, 2019).

In this work, the initial nucleation is controlled by the order parameter by assigning a
value ϕi = 1 (product phase) to nodes at individual heterogeneously distributed locations
in the considered microstructure. For this purpose, the nodes of the generated mesh
are assigned to three categories: (1) connecting nodes (2) inner grain nodes, (3) grain
boundary nodes, (4) triple junction nodes. Connecting nodes are nodes which connect
adjacent grains. These nodes are colored black in the exemplary illustration in Fig. 5.7(a)
and are excluded from the assignment regarding the remaining categories, illustrated in
Fig. 5.7(b). Inner grain nodes are all nodes within a grain, excluding the outermost nodes
of each grain. Grain boundary nodes are the remaining outermost nodes of a grain, where
the respective closest node to the geometric triple point is assigned to the triple point
nodes.

The experimental investigations in this work indicate that the number of nucleation points
within a grain or at grain boundaries of a grain correlate with the size of the correspond-
ing grain. A predefined nominal total number of nucleation points is therefore distributed
based on the number of nodes within the grains, which correlates with the grain size. Fur-
ther weighting factors are used to influence with which distribution the nucleation points
are assigned to the different categories (2-4). The subsequent positioning of the nucleation
points is random within the respective category. For the initialization of a martensite em-
bryo, all nodes of categories (2-4) within a predefined radius are allocated. This defines
circular segments as nucleation sites, with martensite variants drawn randomly from a
uniform distribution.

In Fig. 5.8 several examples of different nucleation configurations are shown. It should
be noted that overlapping of nuclei may occur. Furthermore, grain boundary nucleation
points can occur close to triple points, since no safety distance has been defined for this. A
pronounced embryo formation at triple junctions, as shown in example (c), is not known
from the literature.

Note that the interface energy can only be reproduced correctly with a fully developed
diffuse interface, cf. Apel et al. (2009). With the initial definition of the nuclei, the
presented method introduces a quasi-sharp interface between the nuclei and the austenitic
matrix. This massively overestimates the interface energy until the diffuse interface has
built up. If the nucleation points are defined as initial condition and a nucleation radius
smaller than the interface width is chosen, the nuclei tend to shrink away rather then
grow. Furthermore, induced mechanical stresses can promote initial shrinkage. To prevent
possible shrinkage, the nuclei are often specified as Dirichlet boundary conditions in this
work. This allows the interface to build up adequately and thus form a martensite embryo
capable of growth.

5.4.2. Auto-Nucleation Mechanism

After the initial nucleation event is initiated, autocatalytic nucleation may occur dur-
ing further transformation, see Sec. 2.4.2. This section describes how this effect can be
modeled. For this purpose, reference is made to the interpolation function introduced in
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Figure 5.9: Evolution of martensite morphology in a clamped austenitic matrix with
edge length of 6.25µm using (a) hp1

i , (b) hp5
i , (c) hp5

i and additional injection of new
martensite variants, (d) hp3

i , the dashed line illustrates exemplary the path for further
evaluations – model parameters are given in Appendix B

Sec. 5.1.2, which is relevant for modeling autocatalysis in the context of the martensite
transformation. In addition, results of numerical simulations are anticipated to clarify
or illustrate the effect of different modeling techniques. Since individual laths within a
martensite block are not resolved in this work, the motivation is to describe stress-assisted
autocatalytic martensite block formation.

In general, following types of interpolation functions are frequently used in phase field
simulations, cf. Moelans et al. (2008):

hp1
i (ϕi) = ϕi, (5.89)

hp5
i (ϕi) = ϕ3

i

(
6ϕ2

i − 15ϕi + 10
)
. (5.90)

In the context of this work, these functions are applied with respect to the interpolation
h in the elastic energy potential (Eq. (5.13)). Fig. 5.9(a+b) shows the corresponding
evolution of a pre-existing martensite lath in a clamped austenitic matrix, where two
martensitic variants are considered. With Eq. (5.89) an autocatalytic formation of new
blocks of alternating variants is obtained, whereas with Eq. (5.90) only one block of the
pre-existing martensite variant is formed. The ability of Eq. (5.89) to autocatalytically
form variants results from a shift in the local minima in the overall energy landscape.
In interaction with the transformation strains induced by this, auto-nucleation becomes
possible. By taking advantage of this effect, an additional noise term can be omitted.
This was exploited, for example, in the works of Yamanaka et al. (2010), Yeddu et al.
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(a) (b) (c)

Figure 5.10: Path of order parameters along the diagonal, (a) hp1
i , (b) hp5

i and additional
injection of new martensite variants, (c) hp3

i

(2012b) and Malik et al. (2012). A diagonal line path (from the upper left corner to the
lower right corner) of the order parameters illustrates the side effect of this minima shift,
see Fig. 5.10(a). Within an apparently fully formed block, the order parameter takes
values less than one. According to this, an unrestricted application of the irreversibility
according to Sec. 5.2.4 would hardly be possible.

The auto-nucleation with Eq. (5.90) can be implemented with injection of an artificial
noise. With reference to the martensite transformation this was done e.g. by Schoof
et al. (2018b). Fig. 5.9(c) shows a result in which a disturbance was introduced with the
respective other variant in the austenite-martensite interface by adding a corresponding
order parameter field at equidistant time steps. These disturbances could represent lattice
defects that promote martensite growth of another variant when this is energetically
favorable. With some trials, a time interval and an amplitude can be found with which
the final microstructure in Fig. 5.9 can be approximately reproduced. Since there is no
shift in the energy minima with this function, the order parameter values zero and one are
obtained within the martensite blocks, see Fig. 5.10(b). However, a choice must be made
as to when and how strong the disturbance/noise is to be applied. Furthermore, with the
chosen implicit time integration scheme, the abrupt disturbance can lead to convergence
issues in more complex systems.

A pragmatic approach seems to be

hp3
i (ϕi) = −1

2
ϕ3
i +

3

2
ϕi. (5.91)

With this function, the minima of the austenitic state is slightly shifted and an auto-
nucleation is possible, while the minima of the martensitic state remains at value one,
see Fig. 5.9(d) and Fig. 5.10(c). Thus, the irreversibility according to Sec. 5.2.4 can be
used without restrictions. It should be noted, however, that

∑nmart

i hi > 1 for 0 < ϕ < 1
applies and due to the shift of the austenitic minima, values of

∑nmart

i ϕi > 1 are obtained,
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especially in the edge area of the simulation domain. A comparison of the morphologies
with Eq. (5.91) and Eq. (5.89) indicates no relevant influence. In this work, Eq. (5.91) is
used consistently, on the one hand to exploit the intrinsic auto-nucleation effect and on the
other hand to keep the option of irreversibility open. The shift of the austenitic minima
and the accompanying induction of the transformation strains could be considered as an
effect of nucleation-supporting defects.

5.5. Extension to Viscoplastic Material Behavior

In the martensite transformation, the plastic deformation (of the austenite matrix in par-
ticular) seems to play an important role. On the one hand, the stress-assisted nucleation
is affected by the reduction of these due to plastic relaxation. On the other hand, plastic
effects can lead to strain-induced nucleation by creating new potent nucleating defects.
According to the transformation process discussed in Sec. 2.4, the strain-induced nucle-
ation creates new martensite laths within a martensite block. The martensite laths are
not resolved with the simulation model, so the influence of plastic effects on stress-assisted
block formation is of interest.

With regard to elasto-plastic phase field models for martensite transformations Yamanaka
et al. (2008, 2010) combined the elastic phase field model by Wang & Khachaturyan (1997)
(Khachaturyan model) with the evolution equation of plastic strain proposed by Guo et al.
(2005). An elasto-plastic (rate-independent) phase field approach with finite element
implementation is, for example, given by Schmitt et al. (2013b). More complex models
which couple crystal plasticity and the phase field method with regard to microstructure
evolutions are, for example, proposed by Yamanaka et al. (2009); Hildebrand & Miehe
(2012a); Schmitt et al. (2014). To implement plasticity in the elastic model presented in
Sec. 5.1, the first choice, for simplicity and numerical cost efficiency, is rate-dependent
plasticity with linear isotropic hardening, knowing that on the size scale considered, crystal
plasticity is closer to reality. The choice of a rate-dependent formulation in contrast to
the rate-independent model of Schmitt et al. (2013b) is justified by the fact that with
rate-independent plasticity, stress-assisted auto-nucleation is unlikely to occur because
there is insufficient stress to motivate the formation of a compensatory variant, cf. Yeddu
et al. (2012a).

The viscoplastic model implementation in this work is limited to isotropic material behav-
ior. With this, basic effects of plasticity on the martensite transformation can be studied.
In this section, the viscoplastic model is briefly described using the basic equations. For
further details the reader is referred to Simo & Hughes (2006).

In order to consider plasticity the total strain is now

ε = εel + εpl + ε0, (5.92)

which leads to the adapted elastic energy potential

ψel =
1

2

(
ε− εpl − ε0

)
: C
(
ε− εpl − ε0

)
(5.93)

and the constitutive relation

σ =
∂ψ

∂ε
= C

(
ε− εpl − ε0

)
. (5.94)



62 Modeling of Multivariant Martensite Transformations

The plasticity model is described by the following equations:

deviatoric stress: s = dev(σ), (5.95)

yield condition: fy = |s| −
√

2

3
(σy +H epl), (5.96)

flow rule: ε̇pl = γc
s

|s|
, (5.97)

isotropic hardening law: ėpl = γc

√
2

3
, (5.98)

viscoplastic consistency: γc =
〈〈fy〉〉
ηv

, (5.99)

where 〈〈•〉〉 denotes the ramp function 〈〈•〉〉 = (•)+|•|
2

, dev(•) determines the deviatoric
part of (•), H is the hardening modulus, σy = σy(ϕi) is the yield stress depending on
the material condition, ηv is the viscosity of the material and epl is the equivalent plastic
strain. According to other works, the internal variables are inherited from the parent
phase to the product phase, cf. Yamanaka et al. (2008); Schoof et al. (2018a).

5.6. Choices of Boundary Conditions

The choice of boundary conditions at the simulation domain edges has a significant in-
fluence on the simulation result. At the same time, the boundary conditions on the
considered meso-level in the bulk material are not unique, since only a segment of the
microstructure is simulated. The behavior of the surrounding material is unknown and
must be replaced by suitable boundary conditions.

Fig. 5.11 shows basic realizations of boundary conditions. With the boundary condi-
tions in Fig. 5.11(a), no restriction is imposed except for the constraint on rigid body
motions. With the Neumann boundary conditions in Fig. 5.11(b) external stresses are
applied. With these boundary conditions, the material is free to expand during the shape-
changing martensite transformation. However, imagine a virtual multiplication of the vol-
ume cutout in all spatial directions, creating a patchwork-like structure. Compatibility
of all parts is not guaranteed under these conditions, as holes and overlaps may occur
on the surfaces of the carpet parts. This circumstance can be overcome with Dirichlet
boundary conditions, where the opposites surfaces undergo the same prescribed degrees of
freedom. Fig. 5.11(c) shows a material segment, which is clamped by Dirichlet boundary
conditions. In Fig. 5.11(d), the degrees of freedom of the opposite surfaces are linked,
resulting in periodic boundary conditions. With both realizations, the relative difference
between the opposite surfaces is zero and thus the piece of the patchwork is compatible
with the adjacent (imaginary) pieces. A disadvantage is that these boundary conditions
imply that the homogenized total strain is zero, which does not reflect the macroscopic
volume expansion due to the martensite transformation.

Yeddu et al. (2012b) compared the three-dimensional evolution of a martensitic embryo
in a cubic austenitic clamped and non-clamped matrix. In the non-clamped system
the martensite embryo grows without auto-nucleation of other martensite variants, while
in the clamped system auto-nucleation occurs and typical martensitic morphologies are
formed. The same effect was observed in the context of this work. In order to generate
microstructures with a martensitic appearance as well as a homogenized strain reflecting
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Non-clamped

t

(a) (b) (c) (d)

Loaded Clamped Periodicity

Figure 5.11: Four possible types of simulation edge boundary conditions for the sim-
ulation of martensite transformation on the mesoscale, (a) non-clamped, (b) loaded,
(c) clamped, (d) periodic boundary conditions

the macroscopic strain, auto-nucleation could be simulated with a high number of pre-
existing nuclei, cf. Graf et al. (2021c). However, clamped systems are typically used, cf.
Yeddu (2018); Schoof et al. (2018b), or periodic boundary conditions, cf. Yamanaka et al.
(2010); Ahluwalia et al. (2020). For the simulation of martensitic microstructures this
work joins the publications which use clamped systems. It should be noted that with the
used parallelized FEAP version 8.5 no periodic boundary conditions are usable. However,
a parallelization is absolutely necessary for a large part of the simulations carried out in
this work.

5.7. Transformation Strains and Variant Orientations

In this work, the martensite substructure is not resolved. Nevertheless, the martensite
substructure should be somehow taken into account. Therefore, the PTMC is used to
approximate the shape strains accompanying the martensite transformation and deter-
mine the resulting martensite crystal orientation due to internal slipping. This implies
the assumption that the shape deformation P is decisive for the martensite morphology
on the length scale considered here, cf. Fig. 2.6. The following describes how the PTMC
is used to determine the corresponding input parameters for the simulation, using the
work of Graf et al. (2021c) as a reference. An orthonormal system with the basis vectors
a1, a2, a3 and b1,b2,b3 according to Fig. 2.5 is taken as a premise. Further explanations
are given by Bhadeshia (2001a).

5.7.1. Lattice Deformation at Substructure Level

The transformation deformation is given by

S = PQ, (5.100)

where P and Q are invariant plane deformations, cf. Sec. 2.3.2, with the corresponding
invariant line vectors pm and qm as well as invariant plane normals pn and qn, respectively.
The concatenation of these two deformations results in an invariant line shear described
by S with the corresponding invariant line vector sm. Furthermore, the normal denoted
by sh = pm × qm remains invariant. Note that the vector pn represents the habit plane
normal.
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In addition to the lattice constants, the invariant lines qm and normals qn of the lattice
invariant shear Q are necessary input quantities of the theory. In Tab. 5.2 the assumed
invariants are specified, cf. Bhadeshia (2001a). These invariants must be consistent with
the invariants of the transformation strains S. To ensure this for the invariant line, sm of
S,

sm · qn = (sm
j aj) · (qn

i ai) = sm
i q

n
i = 0 (5.101)

must be ensured. Furthermore, the vector sm should be of length one, which leads to

|sm|2 = (sm
i ai) · (sm

j aj) = sm
i s

m
i = 1. (5.102)

The Bain transformation leads to a new vector s̄m = Bsm, which should have the same
length

|s̄m|2 = (Bijsm
j ai) · (Bmnsm

n am) = 1. (5.103)

With

Bij =

{
i = j : Bij 6= 0
i 6= j : Bij = 0

and |s̄m| = |sm| the following equation can be derived:

(sm
1 )2 + (sm

2 )2 + (sm
3 )2 = (B11s

m
1 )2 + (B22s

m
2 )2 + (B33s

m
3 )2. (5.104)

The system of equations consisting of Eq. (5.101), Eq. (5.102) and Eq. (5.104) leads to
two crystallographic relevant solutions for sm. In a similar way, the equations

sh · qm = 0, (5.105)∣∣sh
∣∣2 = (sh

i ai) · (sh
jaj) = sh

i s
h
i = 1, (5.106)

(sh
1)2 + (sh

2)2 + (sh
3)2 =

(
sh

1

B11

)2

+

(
sh

2

B22

)2

+

(
sh

3

B33

)2

(5.107)

concerning the invariant normal sh can be obtained, where s̄h = sh(B)−1 was used. Again
two crystallographic relevant solutions for sh are computed. With

a = sm × sh, (5.108)

b = s̄m × s̄h, (5.109)

it is possible to set up the matrix equationsm
1 sh

1 a1

sm
2 sh

2 a2

sm
3 sh

3 a3

 = J

s̄m
1 s̄h

1 b1

s̄m
2 s̄h

2 b2

s̄m
3 s̄h

3 b3

 . (5.110)

By combining solutions for sm and sh in different ways, four solutions can be obtained for
the matrix J . Since there are three Bain variants, there is a total of twelve solutions for

S = JB or Sijai ⊗ aj = J ikBkjai ⊗ aj (5.111)

per variant of Q. With the six equivalent slip systems of Q in Tab. 5.2, 72 solutions can
be computed, with some of them being identical.
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Table 5.2: Shear systems of lattice invariant shear Q, cf. Bhadeshia (2001a) and Graf
et al. (2021c)

Name Shear system Normalized direction and plane normal
qm qn q̃m q̃n

Q 1 [0 1̄ 1](0 1 1)
(

0 − 1√
2

1√
2

)T (
0 1√

2
1√
2

)T
Q 2 [0 1 1](0 1 1̄)

(
0 1√

2
1√
2

)T (
0 1√

2
− 1√

2

)T
Q 3 [1 0 1̄](1 0 1)

(
1√
2

0 − 1√
2

)T (
1√
2

0 1√
2

)T
Q 4 [1 0 1](1̄ 0 1)

(
1√
2

0 1√
2

)T (
− 1√

2
0 1√

2

)T
Q 5 [1 1̄ 0](1 1 0)

(
1√
2
− 1√

2
0
)T (

1√
2

1√
2

0
)T

Q 6 [1 1 0](1 1̄ 0)
(

1√
2

1√
2

0
)T (

1√
2
− 1√

2
0
)T

5.7.2. Martensite Crystal Orientations

The coordinate transformation matrix J ijbi⊗ aj is identified in order to identify suitable
solutions. For this, the respective Bain correspondence matrix with

T (1) =

1 1̄ 0
1 1 0
0 0 1

 , T (2) =

0 1 1̄
0 1 1
1 0 0

 , T (3) =

1̄ 0 1
1 0 1
0 1 0

 , (5.112)

are used to solve the following equation:

(J ijbi ⊗ aj) (Sklak ⊗ al) = T ijbi ⊗ aj. (5.113)

The crystal orientations obtained with the transformation J ijbi⊗aj can be represented in
pole figures, as exemplary shown in Fig. 5.12. Here, the yellow and green bullets represent
the orientations of possible martensite variants calculated by the PTMC. Furthermore, the
orientations of the NW orientation relationship are depicted with black dots. For further
consideration twelve NW near solutions are selected. These solutions are represented by
the green numbered bullets in Fig. 5.12.

5.7.3. Shape Change and Mesoscopic Transformation Strain

With the previous considerations it is now possible to calculate the relevant deformations
P . As a reminder, the shape deformation is determined by Eq. (5.100), e.g.

S = PQ,

where the invariant plane deformations P and Q may be rewritten as

P ij ai ⊗ aj =
(
δij + m p̃m

i p̃
n
j

)
ai ⊗ aj, (5.114)

where p̃m and p̃n are the normalized invariant line and plane vectors of P and analogously

Qij ai ⊗ aj =
(
δij + n q̃m

i q̃
n
j

)
ai ⊗ aj. (5.115)
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NW

PTMC

Legend:

PTMC – NW near solutions

Figure 5.12: Pole figure of the orientations calculated by the PTMC with the lattice
constants of pure iron as well as the NW orientation relationship, see Graf et al. (2021c)

The scalar quantities m and n represent the magnitude of the deformations. With the
inverse S−1 = Q−1P−1, the relation (q̃n)T (q̃m (q̃n)T ) = 0 and detQ = 1,

p̃n =
q̃n − q̃nS−1

|q̃n − q̃nS−1|
(5.116)

is derived and by multiplication of Eq. (5.100) with q̃m from the right hand side,

p̃m =
Sq̃m − q̃m

|Sq̃m − q̃m|
(5.117)

is obtained. Note that (q̃m (q̃n)T )q̃m = 0 applies. With Eq. (5.116) and (5.117) the
currently unknown magnitude can be calculated with

m =

∣∣∣∣Sq̃m − q̃m

p̃n · q̃m

∣∣∣∣ . (5.118)

Using Eq. (5.100) it is now possible to calculate the twelve different shape change matrices
(P ) for the NW near variants selected in Sec. 5.7.2. The transformation strains introduced
by the formation of martensite are obtained with

ε̃ =
1

2

(
P TP − I

)
. (5.119)

With this method, twelve strain tensors (denoted by ε̃i with i = 1, . . . , 12) corresponding
to twelve NW near martensite variants can be obtained. Four variants share the same
Bain group, while each martensite variant results in a different orientation of the crystal.
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6. Numerical Simulations of Martensite Transforma-

tions

The exemplarily investigated material 50CrMo4 is a low-alloy steel, which shows char-
acteristics of an athermal martensite transformation. A major challenge in the holistic
simulation of this martensite transformation are the different time scales that have to
be considered. With reference to the macroscopic sample, the martensite transforma-
tion from 0 to 100% takes place in the order of 100 s. At the same time, the growth of a
martensite needle takes place at very high velocities, which is in the order of magnitude of
sound propagation. A simulation of the growth of a needle with a corresponding number
of computational steps over the entire macroscopic cooling process seems to be impossi-
ble with the currently available computational capacities. In this work, the reasoning of
Entwisle (1971) is followed, according to which the athermal martensite transformation
should be considered as a rapid isothermal transformation. Accordingly, the numerical
studies are carried out under isothermal conditions below TMS and thus a small time slice
of the macroscale transformation is considered at the mesoscale.

6.1. Analysis of Basic Model Behavior

In this section, the basic model behavior is analyzed. The findings of these investigations
form an important basis for the interpretation of the results in the following sections.
In a first step (Sec. 6.1.1), a quasi-one-dimensional problem is considered on which pa-
rameter studies are performed. Subsequently, the influence of the spatial discretization is
investigated in Sec. 6.1.2.

6.1.1. Quasi One-Dimensional Austenite-Martensite Transformation

Based on a quasi one-dimensional example representing the one-dimensional consideration
in Sec. 5.1.3, the influence of selected model parameters is investigated in detail. This is
motivated by the fact that the derivation of the model parameters γ and l are derived
from a state where the mechanical and the bulk potential is neglected (ε̃i = 0, ∆g = 0).
Thus, a deviation from this state influences the effective interface energy and interface
width, which is evaluated with this study.

In a two-dimensional plane strain continuum with height ly and length lx � ly and
two martensite variants, two phases representing austenite and martensite (variant 1)
are initialized, where an initial non-diffuse interface is defined at x = lx/2. At constant
temperatures T corresponding to a constant chemical driving force ∆g < 0, the relaxation
behavior to the equilibrium state is observed. In order to avoid rigid body movements,
the displacements of the node at x = 0 and y = 0 are fixed in horizontal and vertical
direction, and furthermore the displacement of the node at x = lx and y = 0 is fixed in
vertical direction. With lx = 7µm and ly = 1.5µm, the spatial discretization is done with
84× 18 elements. This results in an element edge length of lel = 1/12µm.

In this study the influence of the interface width, the chemical driving force, the transfor-
mation strain in x-direction, and the interface energy parameter are of interest. Therefore,
the parameters are systematically varied in the following intervals:
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Interface width l =
[

1
6
; 1

2

]
µm

Chemical driving force ∆g = [−600.0; 0.0] mJ(mm)−3

Transformation strains ε̃1 =

(
ε̃x 0
0 0

)
with ε̃x = [0.02; 0.14]

ε̃2 = −ε̃1

Interface energy parameter γ = [0.01; 0.03] mJ(mm)−2

With these parameter settings, the smallest interface width value corresponds to two ele-
ment lengths, and the biggest value corresponds to seven element lengths. The chemical
driving force interval is chosen based on realistic free energy differences with regard to
steels and represents values from free energy equilibrium at high temperature to energy
differences at room temperature. With the transformation strain interval, realistic magni-
tudes calculated based on the Bain correspondence for steels are covered. For the sake of
completeness, the transformation strain tensor of the second martensite variant is given.
However, due to the boundary conditions, the second martensite variant is not formed
in this example. The parameter interval of the interface energy parameter was defined
retrospectively based on initial results of the parameter study. The mobility parameter
scales the transformation kinetics and is chosen to be constant. The resulting velocity
hereby varies within a similar order of magnitude as the velocity determined by Wang &
Urbassek (2013) based on atomistic simulations for pure iron. For simplicity, an isotropic
material behavior is assumed. Accordingly, the Young’s modulus and the Poisson’s ratio
are defined as material parameters. In summary, the remaining parameters are selected
as follows:

Young’s modulus E = 210 000 MPa
Poisson’s ratio ν = 0.3
Mobility M = 50 000 mm2(Ns)−1

Influence on the Effective Interface Energy. First, the influence of the relevant input
parameters on the effective interface energy γ̃ is investigated. A total of 625 simulations
with five variations of each parameter are simulated and compared. For this purpose, the
integral

γ̃ =
1

ly

∫
Ω

ψintdV (6.1)

is evaluated numerically in each simulation at a time t > 0, at which a stationary diffuse
interface has been formed. The results are shown in Figs. 6.1-6.3 as relative deviation
to the interface energy parameter (γ̃ − γ)/γ in dependence of the variated parameters.
Each of these figures contains the information of all simulations, with the results plotted
differently to highlight the observed influences.

An increasing interface energy parameter leads to an increasing ratio of interface energy.
The effective interface energy converges to the value of the interface energy parameter, see
Fig. 6.1. An increasing negative magnitude of the chemical energy difference ∆g increases
the weight of minimizing the bulk energy. Thus, the effective interface energy tends to
increase its deviation to the value of the interface energy parameter.

With focus on the influence of the interface width parameter l, Fig. 6.2 is provided. In
a material with ∆g = 0 an increasing interface width l leads to a convergence of the
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γ

(γ̃
−
γ

)/
γ

Figure 6.1: Influence of model parameters on the resulting interface energy with focus
on the interface energy parameter γ and chemical energy difference ∆g, the ordinate is
the relative deviation to the interface energy parameter (γ̃ − γ)/γ, black circles indicate
simulations where no interface motion occurs, spatial discretization: 84×18 finite elements

calculated interface energy to the value of the interface energy parameter γ. In highly
undercooled materials (∆g = −600 mJ/mm3), the increase of l leads to an increase of the
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effective surface energy, resulting in increased deviations to γ. Regarding conditions with
−600 < ∆g < 0 mJ/mm3 a combination of these effects can be observed. Increasing l
initially reduces the deviation, but the deviation increases again after a certain threshold
value, depending on the other parameters.

A reversed effect is observed with regard to the variation of the transformation strains,
see Fig. 6.3. With ∆g = 0 an increasing transformation strain leads to an increasing
deviation of the effective interface energy to the value of the interface energy parameter γ.
Observations of undercooled systems predominantly show a decrease in deviation with
increase in the transformation strain.

In order to understand and explain the observed effects, the formation of the interface is
investigated in the following.
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l

(γ̃
−
γ

)/
γ

Figure 6.2: Influence of model parameters on the resulting interface energy with focus
on the interface width l, the ordinate is the relative deviation to the interface energy
parameter (γ̃− γ)/γ, black circles indicate simulations where no interface motion occurs,
spatial discretization: 84× 18 finite elements
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ε̃x

(γ̃
−
γ

)/
γ

Figure 6.3: Influence of model parameters on the resulting interface energy with focus
on the transformation strain ε̃x, the ordinate is the relative deviation to the interface
energy parameter (γ̃ − γ)/γ, black circles indicate simulations where no interface motion
occurs, spatial discretization: 84× 18 finite elements
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Influence on the Interface Geometry. The influence of the relevant input parameters
on the geometric formation of the interface is now investigated. The geometric formation
of the interface is significant for the resulting interface energy and provides further insight
into the effects observed in the previous section. For this purpose, a line path at y = ly/2
with respect to the field variable ϕ1 is evaluated at time t > 0. For comparison, the sta-
tionary interfaces are shifted so that the interface position xif of the linearly interpolated
nodal solution ϕ̂1 = 0.5 is at x = 0. With focus on the solutions within the interface
ϕ̂if

1 = {ϕ̂1| 0.01 < ϕ̂1 < 0.99}, the difference to the one-dimensional smooth interpolation
with Eq. (5.19) is shown in Fig. 6.4. With this definition, positive values of ϕ− ϕ̂if

1 |y=0.5 ly

for ϕ < 0.5 and negative values for ϕ > 0.5 correspond to an effective smaller interface
width and vice versa. Furthermore, the error norm

e =
1

nif

∣∣∣dϕ − d̂ϕ∣∣∣ (6.2)

is shown, where nif is the number of nodes in the interface with the chosen line path,
vector d̂ϕ contains the calculated order parameter solutions, and vector dϕ contains the
corresponding solutions with Eq. (5.19).

As expected, the results in Fig. 6.4 show the same characteristics of the influences of
the model parameters on the formation of the interface. The influence of the interface

(a)

(b)

Figure 6.4: Influence of model parameters on the diffuse interface in a two-phase beam
with (a) l = 0.25µm, ε̃x = 0.1, ∆g = −200 mJ/mm3 (b) l = 0.25µm, γ = 0.02 mJ/mm2,
ε̃x = 0.1, (c) γ = 0.02 mJ/mm2, ε̃x = 0.1, ∆g = −200 mJ/mm3, (d) l = 0.25µm,
γ = 0.02 mJ/mm2, ∆g = −200 mJ/mm3, spatial discretization: 84× 18 finite elements
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(c)

(d)

Figure 6.4: Influence of model parameters on the diffuse interface in a two-phase beam
with (a) l = 0.25µm, ε̃x = 0.1, ∆g = −200 mJ/mm3 (b) l = 0.25µm, γ = 0.02 mJ/mm2,
ε̃x = 0.1, (c) γ = 0.02 mJ/mm2, ε̃x = 0.1, ∆g = −200 mJ/mm3, (d) l = 0.25µm,
γ = 0.02 mJ/mm2, ∆g = −200 mJ/mm3, spatial discretization: 84 × 18 finite elements
(cont.)

energy parameter γ on the interface is shown in Fig. 6.4(a). An increase of γ leads to a
convergence to the analytical solution. This results from the fact that with increasing γ
the equation terms responsible for the formation of the interface according to Eq. (5.19)
are strengthened against the dominant bulk part.

An increase in the chemical energy difference leads to a smaller effective interface width,
see Fig. 6.4(b). The larger the negative magnitude of ∆g, the larger the deviations to the
idealized analytical interface. With ∆g = 0 a wider interface is observed. In addition, the
error norm e indicates an increased deviation to Eq. (5.19), which cannot be explained at
first.

Basically, with an increasing interface width, the interface is described with more break-
points, which leads to a more precise description of the interface. Concerning the variation
of the interface width l with ∆g = −200 mJ(mm)−3, the number of interface nodes along
the line path at y = ly/2 are evaluated in Tab. 6.1. However, a further increase of l
increases the deviation to the idealized analytical solution, see Fig. 6.4(c). The reason
for this is that an increased interface width l is contrary to the effect of ∆g < 0 on the
resulting interface width. Since the bulk portion is dominant in undercooled materials,
the ideal interface cannot be formed with respect to interface regularization.
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Table 6.1: Number of nodes in the diffuse interface with γ = 0.02 mJ/mm2, ε̃x = 0.1,
∆g = −200 mJ/mm3

l in µm 0.17 0.25 0.33 0.42 0.50
nif 4 6 8 9 11

In an undercooled material, an increasing transformation strain up to a certain value
leads to a convergence to the idealized analytical solution, which is accompanied with
an increasing width of the resulting interface, see Fig. 6.4(d). If a certain threshold is
reached, a wider interface results (compared to the analytical solution) and the deviation
increases. The influence of the transformation strain ε̃x also explains the mentioned and
yet unexplained increased deviation in Fig. 6.4(b) with ∆g = 0. In this configuration, the
strains in the interface lead to the increased deviation.

Influence on the Interface Formation and Kinetics. In order to further deepen
the understanding of the model, the numerically solved contributions of the evolution
Eq. (5.32),

1

M
ϕ̇i = −∂ψ

el

∂ϕi︸ ︷︷ ︸
1©

−∆g
∂fbulk

∂ϕi︸ ︷︷ ︸
2©

−12
γ

l

∂f int

∂ϕi︸ ︷︷ ︸
3©

+
3

2
γ l∆ϕi︸ ︷︷ ︸

4©

for i = 1, 2...N, (6.3)

are analyzed. Note that with the chosen parameters, the gradient part 4© is factors
smaller than the other contributions ( 1© - 3©) and is thus neglected in the following. The
other relevant parts are illustrated exemplary in Fig. 6.5 as field plots. The mechanical
part 1© has a positive contribution to the interface mobility for ϕ1 < 0.5 and a negative
contribution for ϕ1 > 0.5. This makes clear why the mechanical field widens the interface.
However, the positive contribution is greater than the negative (and slowing) contribu-
tion. This course results mainly from the elastic strains that occur in the interface and
the chosen interpolation function. The chemical bulk part has an exclusively positive

contribution to the mobility in the interface, according to the course of ∂fbulk

∂ϕ1
with its

maximum at ϕ1 = 2/3. This explains why an increased negative magnitude decreases the
effective interface width. The contribution of the chemical interface part is negative for
ϕ1 < 0.5 and positive for ϕ1 > 0.5 with approximately equal magnitudes. This course
results from ∂f int

∂ϕ1
with its extrema at ϕ1 = 1/2± 1/(2

√
3).

In Fig. 6.6, the homogenized martensite content

〈ϕ〉 =
nmart∑
i=1

〈ϕi〉 with 〈ϕi〉 =
1

V

∫
B
ϕi dV (6.4)

in dependence of normalized time is shown with selected parameter configurations. Fur-
thermore, the homogenized and normalized quantities of parts 〈 1©〉 - 〈 3©〉 are depicted.
Fig. 6.6(a) shows that in an undercooled material an increase of the interface energy pa-
rameter is accompanied with an increase in the interface velocity. While the mechanical
part 〈 1©〉 and the interface part 〈 2©〉 seem to be constant, the chemical bulk part increases
significantly compared to part 〈 1©〉 and part 〈 2©〉 and thus mainly increases the interface
velocity. The increasing part 〈 1©〉 can be explained by the fact that the bulk part density
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ϕ1
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0

2©

max.

0

3©

max.

−|max.|

0

Figure 6.5: Illustration of interface mobility at a time t > 0, vertical black line represents
the isoline with ϕ1 = 0.5, parameter setting: γ = 0.02 mJ/mm2, ∆g = −200 mJ/mm3,
l = 1/3µm, ε̃x = 0.1, spatial discretization: 84× 18 finite elements

is distributed over an increasing effective interface width, which was demonstrated in the
previous section.

With chemical phase equilibrium (∆g = 0), the diffuse interface forms but no signifi-
cant interface motion occurs, which results in an apparently constant martensite ratio
of 〈ϕ〉 = 0.5, see Fig. 6.6(a). By decreasing ∆g, the martensite becomes energetically
more favorable, which initiates a significant interface motion until a full martensitic state
is achieved. The interface velocity increases with decreasing ∆g, which corresponds to
a higher undercooling of the material. The higher interface velocity results from the
increasing bulk part 〈 2©〉, which is scaled by ∆g.

In an undercooled material an increase of the interface width l increases the interface
velocity, see Fig. 6.6(c). Again, this is a result of massive growth of the bulk part 〈 2©〉
due to the distribution of its density over an increasing interface width. The mechanical
part 〈 1©〉 decreases slightly due to the decreasing elastic strains in the interface, which is
accompanied with the increasing interface width. The slight increase of the interface part
〈 3©〉 is an effect of the increasing deviation of the interface geometry to the equilibrium
solution with ∆g = 0, which was demonstrated in the previous section.

The influence of the transformation strain ε̃x is shown in Fig. 6.6(d). As demonstrated
in the previous section, the transformation strain leads to a wider effective interface
width and thus to a massive growth of the bulk part 〈 2©〉. Furthermore, the increasing
transformation strain increases the elastic strains in the interface and thus increases the
mechanical part 〈 1©〉. The increasing effective interface width leads to a decreasing in-
terface part 〈 3©〉. In total, the mobility increases with increasing transformation strain.
The same applies for the interface velocity.
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(a)

(b)

(c)

(d)

Figure 6.6: Influence of model parameters on the interface kinetics in a two-phase beam
with (a) l = 0.25µm, ε̃x = 0.1, ∆g = −200 mJ/mm3, (b) l = 0.25µm, γ = 0.02 mJ/mm2,
ε̃x = 0.1, (c) γ = 0.02 mJ/mm2, ε̃x = 0.1, ∆g = −200 mJ/mm3, (d) l = 0.25µm,
γ = 0.02 mJ/mm2, ∆g = −200 mJ/mm3, spatial discretization: 84× 18 finite elements
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6.1.2. Influence of Spatial Discretization

The previous investigations took place based on a fixed discretization with 84 × 18 fi-
nite elements. The chosen discretization was motivated by published works in the field
of phase field simulation of martensite transformations, where the interface is typically
described with 3 to 4 elements resulting in about 6 to 8 interface breakpoints, cf. works of
Schoof et al. (2018b) and Yeddu (2018). In order to evaluate the influence of the spatial
discretization, in this study the interface width l is set analogous to the previous studies,
while the number of elements is increased. In Fig. 6.7, the mobility parts of simulations
with 336 × 72 finite elements corresponding to Fig. 6.6 are depicted. Furthermore, the
local mobility parts in dependence of the order parameter are depicted in Fig. 6.8. The
solid line represents the analytical solution.

Concerning the variation of the interface energy parameter, the chemical energy difference
and the interface width, the same characteristic of the total mobility is observed. However,
with increasing the number of elements, the influence of the transformation strain ε̃x is
reduced. This is due to the fact that with the increased number of breakpoints in the
interface, the elastic strains in the interface can be described more precisely and results
effectively in lower elastic strains in the interface. These smaller strains are accompanied
with smaller magnitudes of the mobility (part 1©) within the interface and thus have less

(a) (b)

(c) (d)

Figure 6.7: Influence of model parameters on the interface kinetics in a two-phase beam
with (a) l = 0.25µm, ε̃x = 0.1, ∆g = −200 mJ/mm3 (b) l = 0.25µm, γ = 0.02 mJ/mm2,
ε̃x = 0.1, (c) γ = 0.02 mJ/mm2, ε̃x = 0.1, ∆g = −200 mJ/mm3, (d) l = 0.25µm,
γ = 0.02 mJ/mm2, ∆g = −200 mJ/mm3, spatial discretization: 336× 72 finite elements
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(a)

(b)

Figure 6.8: Comparison of numerical results of mobility parts in a two-phase beam with
∆g analogous to Fig. 6.6(b), l = 0.25µm, γ = 0.02 mJ/mm2, ε̃x = 0.1, solid line represents
the analytical solution, spatial discretization: (a) 84 × 18 finite elements, (b) 336 × 72
finite elements

influence on the formation of the interface, cf. Fig. 6.8. Furthermore it is observed that
with a finer mesh the homogenized mobility of part 〈 1©〉 and 〈 3©〉 reduce to approximately
zero, since with a finer discretization the derived mobility parts can be described more
precisely, cf. Fig. 6.7. Accordingly, the homogenized parts of 〈 1©〉+〈 3©〉 6= 0 in Fig. 6.6 are
a result of the discretization. This is why this effect is called retained mobility. However,
the retained mobility is small compared to the actual mobility.

In order to assess the impact of spatial discretization on practical problems, a practical
example is investigated. In a two-dimensional domain, a quadratic homogeneous field with
two martensite variants is considered. The edge length of the quadratic domain is chosen
to be 9µm, motivated by the austenite grain sizes determined in Sec. 4. At the edges
of the field, all degrees of freedom are set to zero using Dirichlet boundary conditions.
In this field, the martensite transformation is initiated by a lath-like nucleus, where the
order parameter of the first martensite variant is defined with ϕ1 = 1, also with Dirichlet
boundary conditions. The model and material parameters are defined comparable as in
Sec. 6.1.1 with l = 0.25µm, ∆g = −500 mJ/mm3, γ = 0.02 mJ/mm2. The transformation
strains are defined with

ε̃1 =

(
ε̃x 0
0 −ε̃x

)
, ε̃2 = −ε̃1

and material parameters remain the same. Five different mesh resolutions are investigated:
54× 54, 108× 108, 216× 216, 432× 432, 864× 864. The 108× 108 mesh corresponds to
the element edge length of lel = 1/12µm, which was chosen in Sec. 6.1.1.

Fig. 6.9 shows the martensite content of the first four mesh variants with respect to time.
From t0 to t2, a slightly slower transformation takes place with the 108×108 discretization
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Figure 6.9: Homogenized martensite volume fraction with respect to time with four
different spatial mesh resolutions, parameters: l = 0.25µm, ∆g = −500 mJ/mm3, ε̃x =
0.1, γ = 0.02 mJ/mm2, the 864× 864-variant is not shown because it is indistinguishable
with the 432× 432-variant

1.0

-1.0

ϕ1 − ϕ2

t0:

t1 : t2 : t3 : t4 : t5 : t6 : t7 : t8 :

(a)

(b)

(c)

Figure 6.10: Evolution of martensite morphology with (a) 108 × 108, (b) 216 × 216,
(c) 432 × 432 finite elements, parameters: l = 0.25µm, ∆g = −500 mJ/mm3, ε̃x = 0.1,
γ = 0.02 mJ/mm2

compared to the finer meshes. However, from time t2 no significant differences between the
three mesh resolutions are observed. An almost constant martensite content is observed
from time t5 for the three finest variants in Fig. 6.9. With 54× 54 elements a significant
different transformation behavior is obtained.

For further analysis, the evolution of the martensite morphology is shown in Fig 6.10.
With a similar homogenized martensite content over time a decreasing martensite block
width is observed. It is concluded that the transformation induced stresses in the austenite-
martensite interfaces as well as in new forming martensite-martensite interfaces are the
reason for this. With a coarse mesh, the stresses in the interfaces are overestimated.
This can be seen in Fig. 6.11, where exemplary the von Mises stress distribution of two
mesh resolutions at time t1 is shown. Due to the higher stresses in the interfaces, the
self-accumulation of the two variants is delayed longer, resulting in a larger block width.
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(a) (b)

σvM,max

0

σvM

Figure 6.11: von Mises stress field at t1 with (a) 108×108, (b) 432×432 finite elements,
parameters: l = 0.25µm, ∆g = −500 mJ/mm3, ε̃x = 0.1, γ = 0.02 mJ/mm2

Figure 6.12: Block width dependency on the discretization with parameters l = 0.25µm,
∆g = −500 mJ/mm3, ε̃x = 0.1, γ = 0.02 mJ/mm2

The block width which occurs at time t8 is quantified in Fig. 6.12. With increasing mesh
resolution a smaller mean block width is obtained. Full convergence is achieved with
432× 432 finite elements. Accordingly, the interface width l covers twelve finite elements.

6.1.3. Discussion and Conclusions for Further Simulations

For the phase equilibrium state with ∆g = 0 in combination with ε̃x = 0, the analyti-
cal solution is perfectly reproduced. The introduction of a transformation strain ε̃x > 0
leads to a distortion of the interface. More precisely, the interface becomes wider. The
introduction of a phase imbalance with ∆g < 0 leads to a movement of the interface,
whereby the width of the interface is narrowed. With a favorable ratio of the terms,
which support the interface formation to the chemical bulk driving forces, satisfactory
interface formations can be reproduced. However, the physical value of interface energy
of austenite-martensite interfaces rather is γ ≈ 1.0 × 10−3 mJ/mm2, cf. Wang et al.
(2014), Yang & Johnson (1993), Murr (1975). Such a small value combined with the high
magnitudes of ∆g in martensite transformation results in excessive interface distortion.
Furthermore, this may cause the interface being insufficiently resolved for a given dis-
cretization. In order to ensure a stable interface formation with precise kinetics and the
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absence of transformation strains, the control condition

|∆g| l
γ
≈ 1 (6.5)

should be fulfilled, cf. Borukhovich (2016); Schoof (2020). However, with the stabilizing
effect of transformation strains, a ratio greater than one can be chosen.

With regard to finite-difference implementations, several strategies to counteract excessive
interface distortion due to an unfavorable ratio of interface supporting terms and chemical
bulk driving forces are conceivable (Schoof (2020)):

• Local limitation of the driving forces when a certain threshold value is exceeded
according to Borukhovich (2016).

• Increasing the interface-supporting terms by additional terms, which support the
diffuse interface but do not contribute to curvature minimization according to Chen
et al. (2014)

In addition, the interface supporting terms can be increased by decreasing the interface
width while refining the mesh (Schoof (2020)). However, at the mesoscale considered here,
this leads to computational costs that are not accessible within the scope of this work.
For this reason, a sufficiently large interface energy parameter is selected in a simplified
manner.

Regarding the spatial discretization, it was found that there is a mesh dependency that
affects the block formation. This is most likely due to the high stress and strain gradients
in the interface, which can only be poorly described with linear shape functions. With
linear shape functions, derived quantities within an element can only be represented as
constants. In order to nevertheless obtain comparable results with adequate computa-
tional effort, uniform element sizes as well as uniform interface widths are chosen in the
following investigations. A threefold element width regarding the interface width param-
eter, e.g. l = 3 lel, which results in about five nodes discribing the interface is in line with
other works with similar model formulations, cf. Yeddu (2018).

The local incompatibility between the phases is accommodated by elastic strains, cf.
Basak & Levitas (2018, 2017). This results in elastic stresses and strains within the
austenite-martensite and martensite-martensite interfaces in the simulations. Further-
more, the chosen interpolation function hp3

i (ϕi) with
∑nmart

i hi > 1 for 0 < ϕ < 1 in-
creases elastic strains within the martensite-martensite interface. Note that stresses in
the martensite-martensite interface are also obtained with the other interpolation func-
tions investigated in Sec. 5.4.2 and are also observed in other works, cf. Basak & Levitas
(2018, 2017). Vanishing elastic strains may be of great importance in resolving internal
martensitic twins on a lower length scale. Quantitative data of stresses in martensite
block interfaces are not available within the scope of this thesis. Thus, the problem of
interfacial stresses is not addressed further. For the limited number of advanced modeling
techniques of solid-solid interfaces concerning the interfacial stresses/strains, the reader
is referred to Basak & Levitas (2017, 2018) and Schneider et al. (2015).
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6.2. Two-Dimensional Isotropic Elastic Monocrystal

In the following investigations in this section, the austenite-martensite transformation
is analyzed based on isotropic elastic material behavior in a two-dimensional domain.
Due to the two-dimensional restriction, two martensite variants are considered. At the
simulation domain edges all degrees of freedom are set to zero via Dirichlet boundary
conditions. According to Yeddu (2018), thus a clamped monocrystal is modeled in order
to investigate the effect of austenite grain size on the martensite start temperature and the
martensite block width. The motivation is to verify that the phase field model is basically
capable of representing important phenomena known from the literature. However, the
applied modeling technique implicitly considers a grain embedded in an infinitely stiff
environment, resulting in an overestimation of the austenite grain size effect. Isothermal
simulations at different quenching temperatures with different carbon contents are made.
The initiation of the martensite transformation is done by a pre-existing martensite lath
with a constant length of 0.6µm and a constant width of 0.25µm. The longitudinal axis
is inclined 45◦ to the horizontal. The pre-existing lath is imposed as Dirichlet boundary
condition. This allows the diffuse interface to build up without the nucleus disappearing
first, cf. Sec. 5.4.1. With the shape of the initial lath, a uni-directional orientation of the
martensitic plates is forced.

6.2.1. Parameter Identification

The determination of the model parameters is based on literature as well as on experi-
mental investigations. This section describes successively how elastic constants, transfor-
mation strains, chemical driving force and the interface energy parameter are determined.

Elastic coefficients. In this investigation, isotropic material behavior defined by the
Young’s modulus E and the Poisson’s ratio ν is considered. In general, both parameters
are temperature dependent, cf. Spittel & Spittel (2009). However, the influence of tem-
perature on Young’s modulus is higher, which is why this work focuses on a temperature
dependence of Young’s modulus. A possible dependency on the chemical composition
is neglected and regarding the material behavior of austenite and martensite the same
temperature dependence is assumed. Laptev et al. (2012) investigated the temperature de-
pendency of Young’s modulus of five different steels. The mean of the results are reflected
in Fig 6.13. Depending on the temperature, austenite and/or pearlite is present. For
both material states, the Young’s modulus decreases with increasing temperature. Based
on the results of Laptev et al. (2012), a linear approximation of the Young’s modulus is
defined with

E(T ) = −111.5
MPa
◦C

T + 213 340 MPa. (6.6)

The graph of Eq. (6.6) is shown in Fig. 6.13 as red solid line.

Transformation strains. The transformation strains (mesoscopic shape change strains)
are calculated via the procedure presented in Sec. 5.7. As input quantities the lattice con-
stants regarding austenite and martensite are needed. In this work these parameters
are identified via reverse engineering in order to reflect experimentally observed marten-
site dilatation, which is the measured dilatation in Sec. 4 minus the thermal dilatation.
Nevertheless, care is taken to ensure that the determined values make physical sense by
reviewing corresponding literature.
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Figure 6.13: Temperature dependence of Young’s modulus

With focus on Fe-C alloys the influence of carbon content on the austenite lattice param-
eters was investigated by Onink et al. (1993) using neutron diffraction. With increasing
carbon content an increasing austenite lattice constant could be confirmed. Furthermore,
the austenite lattice parameter was identified as a function of temperature. From these
findings the lattice parameter of austenite is

aγ
Onink = (0.36306 + 7.83× 10−4 × Cat.%) (1 + αth,γ (T − 1000)) in nm

with αth,γ = (24.9− 0.5× Cat.%)× 10−6 in K−1,
(6.7)

where Cat.% is the atomic percent of carbon and T the temperature in Kelvin. Lee
et al. (2007) used Eq. (6.7) in a conversion model of transformation strains occurring
during austenite decomposition to phase fractions concerning low-alloy steels with up
to approximately 0.4 wt.% C. With data from Honda & Nishiyama (1932) (reflected by
Nishiyama (2012)), the following equation can be extracted for carbon steels with 0.4
wt.% C to 1.6 wt.% C:

aγ
Honda = 0.005× Cwt.% + 0.3545 in nm. (6.8)

Concerning the martensite lattice constants, Lee et al. (2007) developed temperature and
carbon content dependent equations based on the work of Roberts (1953). Accordingly,
the martensite lattice constants of low-alloy steel up to approximately 0.4 wt.% C are

cα
Lee = (0.2861 + 0.0025855× Cat.%) (1 + αth,α (T − 273)) in nm,

aα
Lee = (0.2861 + 0.0002898× Cat.%) (1 + αth,α (T − 273)) in nm

with αth,α = (14.9− 1.9× Cat.%)× 10−6 in K−1.

(6.9)

Again, the data of Honda & Nishiyama (1932) is used to extract an equation for carbon
steels with 0.4 wt.% C to 1.6 wt.% C:

aα
Honda = 0.0125× Cwt.% + 0.2855 in nm. (6.10)

The cα/aα ratio is given by Roberts (1953) and Roberts et al. (1953)

cα
Honda

aαHonda
= 1 + 0.045× Cwt.%. (6.11)
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Fig. 6.14 shows the graphs of the equations for the lattice constants known from the
literature. Based on the equations from Lee et al. (2007) the lattice constants of two
temperatures are depicted. It should be noted that with regard to Eqs. (6.7) and (6.9)
the conversion from weight to atomic percent is based on a two-phase Fe-C system. The
high temperature of T = 720 ◦C corresponds to the martensite start temperature of pure
iron published by Morito et al. (2003). Furthermore, the lattice parameters of pure iron
at martensite start temperature given by Morito et al. (2003) are depicted. The functions
for cα agree particularly well at room temperature, since they are based on the same data.

(a)

(b)

Figure 6.14: Lattice constants (a) aγ and aα, (c) cα/aα in dependence of carbon content

The aim is to identify transformation strains that reflect the experimentally evaluated
macroscopic martensite dilatations. The macroscopic dilatation of the simulation can be
determined by assuming a homogeneous distribution of all martensite variants. Thus, the
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sum of the martensite transformation strains (shape change strains) calculated with the
PTMC within a crystallographic (CPP) packet gives the macroscopic volumetric strain,
which is identical in all three directions. The macroscopic dilatation determined in this
way is fitted to experimentally determined data by adaption of the lattice constants. The
martensite dilatation data of two materials are available in this work, which are shown
in Fig. 6.15. In Fig. 6.15, the red curve represents the dilatation finally determined with
the lattice parameters depicted in Fig. 6.14 as red crosses. The lattice constants thus
determined are in plausible orders of magnitude compared to literature data. Based on
the available data, an increasing dilation with increasing carbon content is obtained.

Figure 6.15: Macroscopic martensite dilatation in dependence of carbon content

Based on the PTMC, three-dimensional strain tensors in dependence of the carbon content
are determined. These shape deformation strains are determined from invariant plane
deformations. Thus, a principal axis transformation results in a tensor, where two entries
of the main diagonal are occupied. The strain of the third direction is zero. The non-zero
principals strains εI and εII are used to construct the martensite transformation strain
tensors for the two-dimensional plane strain case

ε̃1 =

(
εI 0
0 εII

)
, ε̃2 =

(
εII 0
0 εI

)
. (6.12)

In contrast to Graf et al. (2021c), who simply set the components with respect to the third
spatial direction to zero, the dilation of the three-dimensional case can be reproduced in
this way. In Fig. 6.16, the determined strains are plotted against the carbon content. The
magnitudes of the strain components decrease as carbon content increases, whereas the
dilatation (εI + εII) increases.

With the chosen martensite transformation strains determined with the NW orientation
relationship two martensite variants of two Bain groups are considered. One NW variant
represents two KS variants of the same Bain group, cf. Koumatos & Muehlemann (2017).
In the often observed lath morphology, a martensite block consists of laths that can be
assigned to two KS variants of the same Bain group in the same crystallographic packet, cf.
Kitahara et al. (2006) and Morito et al. (2003). Accordingly, simplified block structures
consisting of two martensite variants are simulated with the variants selected here.
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Figure 6.16: Martensite transformation strain for two-dimensional plane strain simula-
tions

Chemical driving force. Here and in the rest of the work, isothermal temperatures
T ≤ TMS are considered. With limitation to this regime, the parameter ∆g is deter-
mined with Thermo-Calc (2020b) steels database version 8.1, which uses the CALPHAD
methodology, see Andersson et al. (2002). Based on the material system 50CrMo4, the
(Gibbs) free energy in J/m3 is calculated for FCC and BCC material phase. In a temper-
ature range from 0 ◦C to 1000 ◦C the difference of the energies are evaluated and used as
temperature dependent model input parameter ∆g(T ). Fig. 6.17 shows the energy den-
sity difference with different carbon contents. As carbon content increases, the austenitic
phase is stabilized and the equilibrium temperature decreases. This leads to the fact that
for a constant temperature T ≤ TMS, the magnitude of chemical driving force decreases
with increasing carbon content.

Figure 6.17: Free energy difference on basis of low-alloy steel 50CrMo4 with different
carbon contents

Interface energy parameter. In this model, the interface energy parameter γ is a
numerically driven parameter. With a given ∆g, the interface energy parameter γ should
be chosen large enough to form a stable interface, cf. Sec. 6.1.3. Therefore, for a given
model setup with a critical ∆g at martensite start temperature, the maximum value of γ
is determined at which martensite embryo growth is still achieved.
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In this section, γ is calibrated based on the two-dimensional clamped monocrystal with
centered initial lath. Calibration is performed for a material system with carbon content
of 0.4 wt.% (based on 50CrMo4). The material system with 0.4 wt.% corresponds ap-
proximately to the middle of the examined carbon variation (0.1 - 0.8 wt.%), with which
the validity of the model can be examined in both directions. A simulation edge length of
lγ = 9.0µm is chosen based on the measured austenite grain sizes of material 50CrMo4.
The martensite start temperature is approximated with the relevant parts of the equation
from Jäniche et al. (2013),

TMS
Jaeniche = 0.495× TMS

HJN + 0.00095× (TMS
HJN)2 + 40 in ◦C (6.13)

with

TMS
HJN = 550− 350× Cwt.% − 40×Mnwt.% − 20× Crwt.% − 10×Mowt.% in ◦C (6.14)

by Hollomon et al. (1946). Eq. (6.13) represents a correction of Eq. (6.14) with respect
to low-alloy steels, based on the data published by Wever et al. (1954) and Rose &
Hougardy (1972). The measured TMS of the actual 50CrMo4 agrees well with the marten-
site start temperature determined with Eq. (6.13). With simulating an isothermal state
at TMS

Jaeniche = 332 ◦C, the martensite starts to grow with a maximum interface energy
parameter of γ = 7.16 × 10−3 mJ/mm2. Despite the simplified model configuration, the
determined value is remarkably in the order of magnitude of the natural interface energy
with 1.0× 10−3 mJ/mm2.

6.2.2. Prediction of Martensite Start Temperature

The martensite start temperature with the current model is identified with a number of
isothermal simulations at constant quenching temperatures Tq in relevant temperature
ranges. The martensite start temperature is then the highest at which the pre-existing
nucleus starts to grow. Using this method with the previously defined parameters, the
prediction of the martensite start temperature with different carbon contents is possible.
The results are shown in Fig. 6.18.

For validation, Fig. 6.18 shows the results of Eqs. (6.13) and (6.14), as well as the result
of the model developed by Capdevila et al. (2002) with

TMS
Capdevila = 764.2− 302.6× Cwt.% − 30.6×Mnwt.% − 8.9× Crwt.%

+ 2.4×Mowt.% − 14.5× Siwt.% − 273.15 in ◦C
(6.15)

and the experimentally determined start temperature of material 50CrMo4. Compared
with literature results, the martensite start temperature is underestimated for Cwt.% < 0.4
and overestimated for Cwt.% > 0.4. With reference to the result of Capdevila et al. (2002),
the predicted martensite start temperature is about 4% lower with Cwt.% = 0.1 and about
11% higher with Cwt.% = 0.8. The discrepancies could be in the simplified assumption of
a constant interface energy parameter. Additionally, the simplified assumption of a two-
dimensional and fully clamped simulation with a constant size is probably the reason for
deviations. For example, a smaller carbon content increases the required austenitization
temperature, cf. Jäniche et al. (2013), while an increasing austenitization temperature
can lead to enlarged austenite grains, cf. Yang & Bhadeshia (2009).

The influence of the austenite grain size on the martensite start temperature is investigated
next. By means of phase field simulation, this has already been investigated recently by
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Figure 6.18: Martensite start temperature with different carbon contents on basis of
low-alloy steel 50CrMo4

Yeddu (2018) with regard to stainless steels. In contrast to the work of Yeddu (2018),
however, a temperature-dependent, purely elastic material behavior is assumed here. In
this investigation, the size of the simulation domain is varied, keeping the discretization
with a constant element length of 1/12µm. Within the scope of this investigation, the
simulation domain size lγ is declared as austenite grain size.

Regarding the definition of the interface energy parameter, two variants are investigated.
In the first variant, as before, the interface energy parameter is defined as constant γ =
7.16 × 10−3 mJ/mm2. In the second variant, the ratio ∆g/γ is held constant. With
increase of the negative magnitude of ∆g, γ is linearly increased with

γ(∆g) =
7.16× 10−3

∆gMS(Cwt.%)
∆g(T ) mJ/mm2, (6.16)

where ∆gMS(Cwt.%) is the critical ∆g at TMS. With this the ratio in Eq. (6.5) is held
constant, which ensures the formation of the diffuse interface even with high negative
magnitudes of ∆g.

The results are shown in Fig. 6.19. With increasing austenite grain size, the marten-
site start temperature increases, whereas the slopes of the curves decrease with increas-
ing austenite grain size. This is consistent with previous experimental observations, cf.
Yang & Bhadeshia (2009). The reason for decreasing martensite start temperatures are
increasing mechanical stresses (accompanied with the martensitic transformation) with
decreasing austenite grain size. Compared to the slopes of the curves with γ = const.
in Fig. 6.19(a), the slopes of the curves with γ/∆g = const. are larger, which is due to
the ∆g-dependence of the interface parameter. An increase of γ additionally inhibits the
initial martensite formation, which is the case for lγ < 9µm. With lγ > 9µm a smaller
energy parameter results, which leads to transformations at higher temperatures.
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(a) (b)

Figure 6.19: Martensite start temperature with different carbon contents and austenite
grain sizes on basis of low-alloy steel 50CrMo4 with (a) γ = const. and (b) γ/∆g = const.

6.2.3. Martensite Size Effects and Retained Austenite

In order to evaluate martensite size effects and retained austenite, isothermal simulations
at several quenching temperatures Tq are performed. The interface parameter is chosen
analog to Eq. 6.16 in order to ensure smooth interfaces at low quenching temperatures.
The evaluation is performed using the fully relaxed state. Size effects are quantified
in terms of the block widths that occur and are shown in Fig. 6.20. Additionally, the
number of fully formed blocks is evaluated and noted above the block widths in Fig. 6.20.
Accordingly, a different number of martensite blocks is formed depending on the quenching
temperature. At high temperatures it is energetically favorable to form nine blocks,
while at low temperature eleven blocks are formed. As the carbon content increases,
the temperature at which nine blocks are counted decreases. The jump from nine to
eleven blocks leads to a shift in the average block width. With a constant number of
blocks, the average block size increases as the quenching temperature decreases. At lower
temperatures a higher final martensite fraction is obtained. With the same number of
blocks this results in larger block widths.

In Fig. 6.21, the block widths of 50CrMo4 with different carbon contents at a constant
quenching temperature of Tq = 30 ◦C are compared. With increasing carbon content a
slightly decreasing block width is obtained. Based on experimental investigations, Morito
et al. (2003) also identified decreasing blocks sizes with increasing carbon content. How-
ever, the effect seems to be much more significant in reality. Morito et al. (2003) state
that a possible reason for this effect is that in low carbon alloys, laths in a large block
are formed by autocatalysis and significant plastic accommodation might occur in the
austenite matrix. According to Morito et al. (2003) it is further argued that in high car-
bon alloys the strain of martensitic transformation could not be easily relieved by plastic
accommodation in the austenite matrix. The austenite is harder than in low carbon alloys
due to solid solution hardening by carbon and lower martensite start temperatures. This
effect cannot be described with the purely elastic model used here.

In the current modeling, the effect of increasing block widths with decreasing quenching
temperature and the effect of decreasing block widths with increasing carbon content are
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Figure 6.20: Martensite block widths with different carbon contents on basis of low-alloy
steel 50CrMo4 at different quenching temperatures

Figure 6.21: Martensite block widths with different carbon contents on basis of low-alloy
steel 50CrMo4 at Tq = 30 ◦C

a result of the chosen interface energy parameter with γ/∆g = const. With decreasing
quenching temperature, the magnitude of ∆g increases, resulting in a higher γ. This
is also the case at constant quenching temperature and decreasing carbon content. An
increasing interface energy parameter inhibits the formation of martensite blocks during
evolution, which results in a larger block width.

As the austenite grain size increases, the mean block width increases proportionally with
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an increasing number of martensite blocks, cf. Fig. 6.22. Based on experiments, this
effect has already been reported by Morito et al. (2005) regarding low-alloy steels with
0.2 wt.% C. In a Fe–0.1C–5Mn steel, however, no significant block width dependence on
austenite grain size was found by Hanamura et al. (2013). It is assumed that an increased
plastic relaxation rate in the austenite matrix with decreasing carbon content mitigates
this effect.

Figure 6.22: Martensite block widths on basis of low-alloy steel 50CrMo4 with 0.4
wt.% C at Tq = 25 ◦C depending on austenite grain size

The retained austenite content 1−〈ϕ〉 is evaluated with Eq. (6.4) at the fully relaxed state.
Fig. 6.23 shows the result with different carbon contents in dependence of the constant
quenching temperature. When the quenching temperature falls below the martensite start
temperature, a large volume > 70% is suddenly transformed into martensite. With further
decreasing quenching temperature, the retained austenite content decreases steadily to
below 10% at Tq = 30 ◦C. With increasing martensite content an increasing level of
retained austenite is obtained. This effect is consistent with the literature, cf. Jäniche
et al. (2013). Depending on the cooling rate, an amount of 5 - 7% retained austenite is
experimentally detected in a quenched 50CrMo4 by Eggbauer et al. (2018), which is in
good agreement with the results obtained here.

Figure 6.23: Retained austenite at different quenching temperatures on basis of low-alloy
steel 50CrMo4 with different carbon contents
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Figure 6.24: Martensite content over time of low-alloy steel 50CrMo4 with 0.4 wt.% C
at different quenching temperatures

6.2.4. Transformation Kinetics

Based on the time course of the martensite volume fraction, the transformation kinetics are
now investigated. Fig. 6.24 shows the martensite volume fraction of a steel with 0.4 wt.% C
on basis of 50CrMo4. With decreasing quenching temperature, the final martensite con-
tent is reached earlier, whereby the final martensite content increases with decreasing
quenching temperature. The slope of the martensite content over time increases with
lower quenching temperature, which indicates an increased transformation velocity. The
reason for this is the increasing chemical driving force.

The smaller the grain, the faster the final martensitic state is reached at a constant
quenching temperature, see Fig. 6.25. Especially in the initial phase (〈ϕ〉 < 0.2), the
transformation rate decreases with increasing austenite grain size. This is most likely
due to the decreased stresses in systems with increasing austenite grain sizes. Based on
experiments with continuous cooling an initially higher martensite transformation rate
in microstructures with decreasing austenite grain size was observed by Van Bohemen &
Sietsma (2014).
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Figure 6.25: Martensite content over time of low-alloy steel 50CrMo4 with 0.4 wt.% C
at Tq = 25 ◦C with different austenite grain sizes

6.3. Two-Dimensional Isotropic Viscoplastic Monocrystal

In Sec. 6.2.3 was found that martensite size effects with different carbon contents reported
by experimental investigations in literature are not reflected by a purely elastic material
behavior. Therefore, in this section the influence of plasticity on the martensite evolution
is analyzed. The influence of plastic accommodation seems to be particularly relevant at
low carbon contents. For this reason, the following investigation is based on the steel with
0.2 wt.% C studied in Sec. 6.2. Unless otherwise specified, the same model configuration
as in Sec. 6.2 with lγ = 9.0µm and γ/∆g = const. is used.

6.3.1. Influence of Interface Yield Stress Modeling

In general it is conceivable that the yield stress changes with transition from austenite to
martensite. Thus, a yield stress regarding austenite σy,γ and martensite σy,α is defined. By
means of a function in dependence of the order parameter, the yield stress is interpolated
between austenite and martensite. Various equations for calculating the effective yield
stresses are known from the literature. As an example, consider the work of Schoof et al.
(2018a), where the effective yield stress is weighted linearly. In other works a threshold
is defined, see e.g. Yamanaka et al. (2008). In order to make a meaningful choice in
this work, the following interpolation functions are investigated, where cb and ca are user
constants:

hσy ,1 =

{
σy,α , if

∑nmart

i=1 ϕi > 0.5
σy,γ , else

, (6.17)

hσy ,2 =
nmart∑
i=1

[ϕ3
i (6ϕ

2
i − 15ϕi + 10)] (σy,α − σy,γ) + σy,γ, (6.18)

hσy ,3 = exp

{
−
(∑nmart

i=1 ϕi − 0.5

ca

)2
}
cb + hσy ,1. (6.19)
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(a) (b) (c)

Figure 6.26: Graphs of yield stress in dependence of two order parameters with σy,α =
800 MPa, σy,γ = 400 MPa (a) hσy ,1 (b) hσy ,2 (c) hσy ,3, ca = 1/8, cb = 20 GPa, black dashed
line encloses the relevant region

The graphs of Eqs. (6.17)-(6.19) are shown in Fig. 6.26 for the current case of two marten-
site variants. Eq. (6.17) describes an unsteady transition and is inspired by the work of
Yamanaka et al. (2008). Eq. (6.18) is a smooth transition from austenite to martensite.
The characteristic of Eq. (6.19) is that within the austenite-martensite interface the yield
stress assumes such high values that no plastic deformation takes place within these inter-
faces. This is based on the assumption that the interface acts as a barrier to dislocation
motion. With ca the width of the barrier can be modified and cb scales the height of the
barrier.

Simulations with constant quenching temperature at Tq = 30 ◦C are performed. Inspired
by Yeddu (2018), the plasticity parameters are chosen to be

Viscosity ηv = 0.006 MPa s,
Yield stress (Austenite) σy,γ = 500 MPa,
Yield stress (Martensite) σy,α = 1000 MPa,
Hardening modulus (Austenite and Martensite) H = 700 MPa.

Fig. 6.27 shows the martensite content and the resulting block widths of the corresponding
simulations. Simulations with hσy ,1 and hσy ,2 do not show visible differences. At times
0 < t < 1 × 10−6 s with hσy ,3 a constant level of martensite content is achieved earlier,
which can be explained by the increased elastic strains in the interface due to the high
yield stress, cf. Sec. 6.1. From t ≈ 1 × 10−6 s a sightly lower final martensite content is
observed, which is accompanied with a slightly smaller mean block width.

Fig. 6.28 shows the von Mises stress fields as well as the equivalent plastic strain fields
with the final martensite structure. The martensite structure is similar with all yield
stress functions and the choice of the function does not seem to have a significant in-
fluence on the stress and strain distribution inside the simulation domain for this model
configuration. The cluster of plastic strain in the center is a result of the pre-existing
martensite lath, which induces high stresses at the beginning of the simulation. At the
edge of the simulation domain, higher stresses result with hσy ,3 due to lower plastic activ-
ity. Due to the high yield stresses between the martensitic phase and the boundary, where
the transformation is restricted via Dirichlet boundary condition, the acting stresses can-
not be relaxed here. This leads to the slightly lower final martensite content and the
accompanying slightly thinner martensite blocks.
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(a) (b)

Figure 6.27: Martensite content in (a) and final block widths in (b) with different yield
stress functions at Tq = 30 ◦C

hσy ,1 hσy ,2 hσy ,3

σvM,max

0

σvM

epl
,max

0

epl

Figure 6.28: Final von Mises stress and equivalent plastic strain fields at Tq = 30 ◦C
with black isolines at ϕi = 0.5

6.3.2. Influence of Viscosity

It is known that the choice of the viscosity material parameter ηv influences the martensite
evolution significantly, see e.g. Yeddu et al. (2012a) and Schoof et al. (2018a). Yeddu
et al. (2012a) investigated the influence on the growth behavior of a spherical martensite
embryo in an austenitic matrix at TMS. In contrast to the numerical studies in this work,
the martensitic embryo was initially set but not prevented from shrinking by boundary
conditions. Thus, a critical value was found, which defines the limit with which a natural
growth through sufficient relaxation is possible. With higher viscosity, the elastic driving
force is too high and a reverse transformation takes place. With viscosities significant lower
than the critical value a purely relaxation driven growth appear with no auto-nucleation of
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(a) (b)

Figure 6.29: Martensite content in (a) and elastic energy density in (b) with different
viscosities at Tq = 30 ◦C

other martensite variants. Moderate viscosities below the critical value allow martensite
grow and the typical auto-nucleation of other variants is simulated. Based on these results,
in several studies the relaxation rate or viscosity is calibrated to reflect the martensite
start temperature (Yeddu (2018); Yeddu et al. (2012b); Malik et al. (2012)). Schoof et al.
(2018a) note that the size of the initial martensite nucleus affects the critical value of
viscosity and is thus not a classical material constant, but rather a problem dependent
quantity. However, no other methodology is known from the literature.

ηv = 3.4×10−3 MPa s
t = 2.1× 10−7 s

ηv = 1.2×10−2 MPa s
t = 2.0× 10−7 s

σvM,max

0

σvM

epl
,max

0

epl

Figure 6.30: von Mises stress and equivalent plastic strain fields in the early transfor-
mation stage at Tq = 30 ◦C with black isolines at ϕi = 0.5

In this work, initial reverse transformation is prevent by boundary conditions and the
numerical parameter γ is calibrated in order to reflect the martensite start temperature by
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Figure 6.31: Block widths in dependence of viscosity at Tq = 30 ◦C

taking stable interface formation into account. Accordingly, the conditions are different,
which is why the influence of ηv is investigated in this model configuration based on
isothermal simulations at Tq = 30 ◦C. As interpolation function for the yield stress,
hσy ,1 is chosen. Based on the previous results, this selection is not expected to have a
significant impact on the resulting martensite structure. The plasticity parameters remain
unchanged, while the viscosity is varied.

From the course of martensite content with respect to time in Fig. 6.29(a) a significant
influence on the transformation behavior is detected. With increasing ηv the martensitic
transformation occurs more rapidly. In the time interval 0 < t < 1×10−6 s a constant level
of martensite content is achieved later with decreasing ηv. The final martensite content
decreases with increasing viscosity. This is consistent with the results of Yamanaka et al.
(2010). Fig. 6.29(b) shows that with increasing viscosity the mechanical stresses are
relaxed more slowly. This results in a peak in the elastic energy density that becomes
more pronounced with increasing viscosity.

In Fig. 6.30, the von Mises stress and equivalent plastic strain fields of two exemplary early
transformation states is shown. With ηv = 3.4×10−3 MPa s stresses are relaxed with more
plastic accommodation compared to the simulation with ηv = 1.2 × 10−2 MPa s. Due to
the increased plastic accommodation, auto-nucleation takes place at larger block widths.
Fig. 6.31 shows the block widths of the final structure in dependence of viscosity. As ηv

increases, the block widths decrease. A significant reduction of the block width can be
observed in the range 1.0 × 10−3 < ηv < 1.2 × 10−2 MPa s. It should be noted that in
the region around 1.0 × 10−3 MPa s no typical lath- or plate-like martensitic structure is
formed due to the high degree of plastic accommodation.

In accordance with the discussion in Sec. 4.5, it can be concluded that a high level of elastic
energy supports auto-nucleation and the martensite transformation can be designated as
auto-nucleation driven. A low level of elastic energy accompanied by significant plastic
accommodation inhibits auto-nucleation and the martensite growth can be designated as
relaxation-driven.

6.3.3. Martensite Sizes at Different Quenching Temperatures

From the experimental investigation in this work it is known that there are martensitic
steels, which block sizes seem to be unaffected from the corresponding cooling rates. With
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other steels decreasing block sizes and/or widths with shorter cooling times are detected.
Based on the investigation of modulated martensite transformation in Fe-Ni alloys, Loewy
et al. (2015) conclude that the thermal activated mechanism behind that is the local
stress/strain relaxation. Kim et al. (2012, 2011) compared the microstructural features
of lath martensite isothermally formed at a temperature just below TMS and athermally
formed with continuous cooling to room temperature. In addition to a significant influence
on the lath formation, a coarser and more complex block structure was observed with
respect to the isothermally formed martensite at high temperature. In this section, the
developed model is used to test whether this effect can be reproduced within the scope of
fast isothermal martensite transformations, by consideration of plasticity.

With the currently chosen definition of the interface energy parameter according to
Eq. (6.16) an increasing block width with decreasing quenching temperature is predicted.
This effect counteracts the effect which is to be investigated here. Since no data is cur-
rently available to validate the martensite sizes at different quenching temperatures, an
attempt is made to adjust γ in order to predict constant block widths for quenching
temperatures Tq < TMS in an elastic material. This is achieved by the linear dependency

γ(∆g) = cc ∆g + cd (6.20)

with cc = −1.2030×10−5 mm and cd = 6.3×10−5 mJ/mm2. The determined block widths
with the adapted definition of γ are presented in Fig. 6.32(a). The viscosity and the yield
stress of austenite are chosen to be temperature dependent with

ηv(T ) = −2.29× 10−5 MPa s
◦C

T + 9.6× 10−3 MPa s (6.21)

based on the results in Sec. 6.3.2, and

σy,γ(T ) = −1.7
MPa
◦C

T + 851.4 MPa. (6.22)

Using Eq. (6.21), the effective viscosity lies between 1.0×10−3 < ηv < 9.0×10−3 MPa s for
the investigated temperatures 30 ◦C ≤ Tq < TMS. The effective yield stress of austenite
is in the range of 200 ≤ σy,γ ≤ 800 MPa. Eq. (6.21) and (6.22) are strong simplifications
of the temperature dependence that is probably present in reality. However, the focus is
more on the basic representation of the thermally activated relaxation mechanism than
on the exact simulation of a specific material.

Fig. 6.32 shows that taking visco-plasticity into account results in a larger block width
at a higher quenching temperature. Based on the assumption that with higher quenching
rates more martensite is produced at lower temperatures, the quenching rate dependence
of the block width can be explained. It is also plausible that the viscosity increases with
increasing carbon content. A higher viscosity leads to an auto-nucleation dominated trans-
formation mechanism. This process is faster and the plastic relaxation is not sufficiently
large to cause a rate-dependence of the block widths.

6.4. Two-Dimensional Polycrystalline Structures

In this section, martensite evolution in polycrystalline austenite structures is investigated.
The investigation is carried out within the two-dimensional framework and is therefore
limited to two martensite variants. In contrast to previous numerical studies in this
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(a) (b)

Figure 6.32: Block widths in dependence of quenching temperature Tq, (a) elastic ma-
terial with interface parameter correction, (b) elasto-viscoplastic material behavior

work, anisotropic elasticity is considered here. In detail, an orthotropic symmetry of the
elasticity tensor is assumed, see Vannucci (2018). With

(Cγ)V = (Cαi)V = (C∗)V =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


(6.23)

the elastic crystals of austenite and martensite have identical properties along the three
axis. In the polycrystal framework the elasticity tensors and the martensite strain tensor
are rotated according to random angles around the axis perpendicular to the plane of
display (z-axis). With the rotation matrix R(φEul

1 ,ΦEul,φEul
2 ) according to the chosen

Euler angle convention, the elasticity tensor as well as the martensite strain tensors for a
specific austenite grain are thus calculated in tensorial notation with

Cijkl = RimRjnRkoRlpC∗mnop, (6.24)

and

ε̃i,kl = RkmRlnε̃
∗
i,mn, (6.25)

respectively.

In Sec. 6.3 it was shown numerically that a block size dependency can result from a
thermal activated plastic accommodation of the material. However, in Sec. 4 no system-
atic dependency of the martensite block sizes is observed within measuring accuracy and
within technical relevant ranges of cooling rate. It is therefore concluded, that the marten-
site evolution is dominated by the auto-nucleation mechanism. In order to resolve the
resulting morphology, a purely elastic material behavior seems to be sufficient. The corre-
sponding simulation parameters of this study are summarized in Tab. 6.2. The martensite
transformation is simulated under isothermal conditions at room temperature. Note that
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Table 6.2: Simulation input parameters for martensite transformation in material
50CrMo4 with two spatial dimensions

Name Symbol/Value Remark

Material specific:
Elastic constants: C11 = 253.1 GPa cf. Schäfer et al. (2019a);

Xie et al. (2004)C12 = 132.4 GPa
C44 = 75.8 GPa

Transformation strains: εI = 0.1134 Calculated with PTMC,
cf. Sec 6.2.1εII = −0.1066

Free energy difference: ∆g = −520 mJ/m3 Calculated with Thermo-Calc
TCFE 8 (Andersson et al.
(2002)), corresponds to differ-
ence at approximately room
temperature, cf. Sec 6.2.1

Mobility constant: M = 50 000 mm2(Ns)−1 cf. Sec. 6.1.1

Numerically driven:
Interface energy parameter: γ = 0.02 mJ/mm2 Large enough to ensure a

smooth interface
Interface width: l = 0.25µm Corresponds to edge length of

three elements

with this configuration, the athermal history of the material is ignored. According to
Sec. 6.2 the quadratic simulation domain is discretized with a constant edge length to
element number ratio of 1/12µm. Similarly, at the edges of the simulation domain, all
degrees of freedom are set to zero via Dirichlet boundary conditions.

6.4.1. Influence Prior Austenite Grain Boundary and Irreversibility

According to Schoof et al. (2018b) martensite phase field simulations in polycrystalline
structures can be divided into two groups. The first group consists of models, where a
continuous order parameter for each martensite variant is used, regardless of the austenitic
parent grain. The works of Jin et al. (2001) and Yamanaka et al. (2010) are examples of
this group. The second group consists of models, where a separate set of order parameters
is used in each austenitic parent grain, see e.g. Heo & Chen (2014) and Shi et al. (2015).
Typically, a grain shape function is introduced here, which is zero outside the parent
grain and one inside. This defines the grain to be updated and prevents variant growing
of one grain into an adjacent one. Schoof et al. (2018b) presented a model based on the
multiphase field formulation of Steinbach et al. (1996), Steinbach & Pezzolla (1999) and
Nestler et al. (2005), where additionally the interface energy between austenitic grains
can be taken into account.

The polycrystalline model of this work is part of the first group, where the interface energy
between the austenite grains is not taken into account. However, the influence of different
austenite grain boundary modeling techniques on martensite evolution is investigated.
The following three variants are examined:
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Figure 6.33: Evolution of martensitic structure with (a) variant A, (b) variant B, (c) vari-
ant C

Figure 6.34: Martensite content over time with different boundary conditions at the
PAG boundaries

Variant A No additional boundary conditions at the PAG boundaries.

Variant B Restriction of the order parameters via Dirichlet boundary conditions at PAG
boundaries.

Variant C Restriction of displacements via Dirichlet boundary conditions at PAG bound-
aries.

With variant A there is an elastic incompatibility between the grain boundaries. Variant B
additionally prevents the continuous growth of order parameters across grain boundaries
and variant C corresponds to infinitely stiff grain boundaries.

A PAG structure is generated with Neper 3.5.3 grain growth parameters and 13 grains,
see Quey (2019). With the method presented in Sec. 5.4.1, nucleation points are randomly
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(a) (b) (c)

15 GPa < σvM,max

0

σvM

Figure 6.35: von Mises stress field in last snapshots in Fig. 6.33 with (a) variant A,
(b) variant B, (c) variant C

distributed at triple junctions and grain boundaries. The corresponding PAG structure
with edge length 37.5µm, as well as the nucleation configuration are shown in Fig. 6.33.
Nucleation sides represent pre-existing nuclei, which act as Dirichlet boundary conditions,
where the order parameter of the corresponding variant is fixed at value one.

The resulting evolution of the overall martensite content in the exemplary PAG structure
with identical nucleation sides is given in Fig. 6.34. With Variant A, a higher martensite
content is obtained earlier compared to Variant B and C. The slowest development occurs
with variant C, where additionally a stagnation of the martensite content starting at
about 0.25 × 10−5 s is observed. Between seconds 0.5 × 10−5 and 0.75 × 10−5, there is
another slight increase in the martensite content. The final martensite content is about
the same level as with variant A. Variant B predicts the lowest final martensite content,
which is due to the order parameter restriction at the grain boundaries.

The evolution of the morphology is illustrated in Fig. 6.33(a-c) with several snapshots.
The times of these snapshots are marked as dots in Fig. 6.34. With all variants, the typical
plate-like structure is achieved, although the structures differ in detail. With variant A
continuous growth of martensite of one grain into an adjacent grain takes place especially
at grain boundaries with low misorientation. In some places, a martensite needle of one
variant triggers a martensite needle of the other variant in the adjacent grain. With variant
B, there are clear boundaries between the grains. The mechanical interaction between the
grains can nevertheless trigger a growth of a martensite needle in the neighboring grain.
With the restriction of the displacements at the grain boundary (variant C), a finer block
structure is obtained. It is remarkable that there is a clear correlation between grain size
and block width, which was already determined in Sec. 6.2.3. This is not observed in
variant A and B. The stagnation of the martensite content in variant C can clearly be
attributed to the unfilled grain. After a certain time, however, the grain boundary is
crossed and the last grain is filled with martensite.

The von Mises stress fields of the respective last snapshots in Fig. 6.33 are shown in
Fig. 6.35. For illustration, the iso-lines with ϕi = 0.5 are overlaid as black lines. Due
to the elastic incompatibility between the grains, stress peaks at PAG boundaries are
predicted with variant A and B. Furthermore, stress peaks can be detected at the block
ends, as well as at the edges of the simulation domain. With variant B, stress peaks with
the same characteristics at the edges of the simulation domain are obtained at the PAG
boundaries. Despite the high stresses, a continuous martensitic transition occurs without
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(a) (b)
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Figure 6.36: Illustration of martensite structure (a) at t = 0.23 × 10−5 s (b) at t =
1.63× 10−5 s (c) fully relaxed microstructure with irreversibility

residual austenite at the grain boundaries.

In lath martensite, Mao et al. (2021) observed that localized stress is indirectly introduced
into adjacent PAGs and can initiate a block growth. Thus some martensite blocks have
special connectivity features. Accordingly, it is concluded that Variant B is the most
realistic choice of boundary conditions at the PAG boundaries in the current model.
Thus, a mechanical interaction between the grains is possible, while the evolution of the
order parameter is stopped at the PAG boundaries. Therefore, Variant B is generally
selected in the following.

The last snapshots shown in Fig. 6.33 correspond to a point in time at which the ho-
mogenized martensite content apparently does not change further. However, with almost
constant martensite content, the martensite structure continues to change. This is shown
in Fig. 6.36(a+b), which additionally shows a snapshot from a later point in time. At
this point, re-transformations of one martensite variant into the other have dissolved in-
dividual block structures. One reason for this could be the overestimated interface energy
due to the chosen interface energy parameter, which is factors higher than calculated
with atomistic studies, cf. Wang & Urbassek (2013). A higher interface energy results in
higher driving forces, which reduce the number of interfaces. Another reason may be the
overestimated mechanical stresses, due to the purely elastic material behavior. Changes
in the martensitic structure may be accompanied by load rearrangements, which may
further cause changes in the structure. With plasticity taken into account, these high
stresses would be relieved, cf. Sec. 6.3.

In a further simulation, the irreversibility presented in Sec. 5.2.4 is used in order to
suppress a re-transformation. Hereby, the order parameter is fixed as soon as it reaches
a threshold value 1 − εirr with εirr = 1 × 10−8. Fig. 6.36(c) shows the corresponding
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fully relaxed martensitic structure. This reveals a disadvantage of the irreversibility.
At some martensite-martensite boundaries a disrupted interface of the order parameters
occur. This is exemplary demonstrated using a detailed view of a specific grain. The
highlighted artifacts result from the fixed order parameters. However, comparison of the
structures in Fig. 6.36(a) and (b) shows that essential features of the relaxed structure
with irreversibility can be reproduced with the configuration without irreversibility by
stopping the simulation at a time when there is no significant increase of the overall
martensite content.

6.4.2. Influence of Austenite Grain Sizes and Nucleation

The influence of austenite grain structure as well as the number of nucleation sides is
investigated in this section. For this purpose, microstructures with different numbers of
nucleation points and PAG grain numbers are generated. The resulting average equivalent
grain diameters are deq = 16.9, 11.2, 9.4 in µm. Fig. 6.37 shows the microstructures of
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Figure 6.37: Resulting martensite morphologies in different PAG structures and nucle-
ation configurations
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(a)

(b)

Figure 6.38: Martensite content evolution with respect to time in microstructures with
different average austenite grains sizes (9.4/11.2/16.9µm) and different numbers of nu-
cleation points (small/medium/high), comparison regarding (a) austenite grain sizes, (b)
nucleation point numbers

these different configurations. According to the previous section, the snapshots show the
microstructure of the point in time, where no further significant increase of the overall
martensite content takes place. The nucleation sides are marked in red.

With the used PAG boundary modeling, a smaller austenite grain size leads to reduced
lengths of blocks. Some grains with smaller grain sizes consist of blocks with smaller
block widths. As an example, the lower left grain of the microstructures with the lowest
number of nucleation points can be pointed out. However, a clear correlation between
block width and PAG size cannot be identified. In the current modeling, the block width
seems to be significantly influenced by the neighboring grains. Since direct coupling of
the phase fields of adjacent grains is prevented by boundary conditions, this must result
from mechanical interaction.

In the two-dimensional case with two martensite variants, those areas which have the
same block orientation are considered as one packet. Focusing on the lower left PAG in
the microstructures of the first row, shows that an increasing number of nucleation points
can lead to an increasing number of packets. However, this is not universal, which is
due to the fact that there are only two energetically favorable alignments of the block
boundaries per grain in the two-dimensional environment. Thus, the martensite needles
of different nucleation points often merge into one packet.

Fig. 6.38 shows the martensite content evolution regarding the different PAG and nucle-
ation configurations. The comparison of the martensite content evolution with different
average grain sizes in Fig. 6.38(a) shows no significant systematic influence of the grain
size on the homogenized transformation behavior. The exception is the final martensite
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Figure 6.39: Elastic energy density with respect to time in microstructures with differ-
ent average austenite grains sizes (9.4/11.2/16.9µm) and different numbers of nucleation
points (small/medium/high), comparison regarding austenite grain sizes

content, which decreases with increasing PAG number, resulting from the higher PAG
boundary density. From Fig. 6.38(b) it can be concluded that with an increasing number
of total nucleation points, the considered domain is filled faster with martensite. With
increasing number of PAGs (decreasing average equivalent diameter), a higher level of me-
chanical stresses is induced due to the martensitic transformation, cf. Fig. 6.39. This is
most likely a result of the higher elastic incompatibility density, due to the higher density
of PAG boundaries.

6.4.3. Martensite Transformation in 50CrMo4 Austenitic Microstructures

In this section, the martensitic transformation in austenitic structures, which represent
the PAG structure of 50CrMo4 is simulated, see Sec. 5.3. The simulation domain edge
length is chosen to be 50µm. The initial martensite transformation event is stimulated
by definition of pre-existing nuclei with the nucleation modeling presented in Sec. 5.4.1.
Based on the assumed transformation process in Sec. 5 it can be concluded that the main
number of packets result from single nucleation points at grain boundaries. According
to Fig. 4.10 about twelve packets are counted in PAGs with deq ≈ 8.5µm. Note that
inevitably, packets that grew from a nucleation point outside the cutting plane were also
counted. For this reason, a simplified average of four nuclei per grain is assumed in this
two-dimensional simulation. Accordingly, 120 nucleation points are specified with the
total number of 30 PAGs.

Fig. 6.40 illustrates the evolution of martensite in a 50CrMo4 austenitic microstructure.
Starting from the initial nucleation, individual martensite blocks grow, and further ones
are triggered by stress-assisted auto-nucleation. The overall martensite content with re-
spect to time is shown in Fig. 6.41 in five microstructures with different PAG structures

Figure 6.40: Simulated evolution of martensite (blue and red) in a 50CrMo4 austenitic
structure, austenite is gray
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Figure 6.41: Martensite content with respect to time in different 50CrMo4 austenitic
microstructures and plot times of snapshots in Fig. 6.40

A
D

E

B
C

Figure 6.42: Simulated martensitic microstructures (blue and red) in different 50CrMo4
austenitic structures, austenite is gray

corresponding to the experimentally determined statistics. Fig. 6.42 shows the analogous
resulting martensitic microstructures.

The final structures have a typical martensitic appearance with parallel blocks. Since the
blocks in this two-dimensional view are aligned only in two directions within a PAG, the
block structures of individual nucleation points unite. Consequently, the final structure
does not represent the number of packets according to the number of nucleation points. In
some large grains, a larger block width compared to other smaller grains can be observed,
compare PAG A and B in Fig. 6.42. This effect could result from the stresses due to
the elastic incompatibility at the grain boundaries. This can magnify the auto-nucleation
within small grains. However, a strict correlation cannot be observed, since the block
widths within a PAG are strongly influenced by the neighboring PAGs. With the identifi-
cation of parallel blocks of one direction as a packet, it can be observed that, according to
the experiment, larger PAGs tend to produce a higher number of packets, compare PAG
A and B. In even smaller grains (PAGs C-E), sometimes only one block is formed. Such
a characteristic is also documented in the literature, cf. Hanamura et al. (2013).

The simulations in two dimensions give a much more plate-like structure than observed
in the experiment. This is partly due to the fact that the experimental observation
is a two-dimensional cross-section of an actual three-dimensional problem. In the two-
dimensional problem considered here, the variants can accumulate perfectly in the plane
under consideration, resulting in an idealized martensite image. Therefore, a quantitative
size comparison of the two-dimensional simulation with the experiments performed in this
work is omitted.
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6.5. Three-Dimensional Simulations with Twelve Martensite Vari-
ants

Regarding martensite in steels, a dominant amount of published phase field models so far
simulate two martensite variants based on the Bain correspondence in two spatial dimen-
sions or three martensite variants in three spatial dimensions. Such models can be used
to simulate idealized martensitic microstructures. Basically, martensite evolution in steel
is a three-dimensional problem and in order to simulate the hierarchical structure of lath
or plate martensite in the future, it is necessary to consider the frequently experimentally
observed twelve or twenty-four martensite variants. As for the lath martensite, Du (2017)
and Shchyglo et al. (2019) were the first to consider the full set of twenty-four martensite
variants according to the KS orientation relationship. Here, athermal martensite for-
mation was simulated with randomly distributed pre-existing nuclei with different sizes.
Monocrystaline simulation domain sizes up to 25.63 µm3 corresponding to austenite grain
sizes were considered. Ahluwalia et al. (2020) investigated the effect of (rate-independent)
plasticity under isothermal conditions, where monocrystaline simulation domain sizes of
643 nm3 were considered. Based on the mesoscopic shape changes determined with the
PTMC, Graf et al. (2021c) considered twelve martensite variants similar to the NW orien-
tation relationship in a monocrystal with a size of 6.253 µm3 motivated by experimentally
observed austenite grain sizes. The martensite transformation was initiated by randomly
placed pre-existing nuclei.

In this section, three-dimensional simulations with twelve martensite variants according to
the NW orientation relationship are carried out. The material parameters are taken from
Tab. 6.2, whereby the corresponding three-dimensional transformation strains are used.
Furthermore, the crystal elasticity tensors of the martensitic states are rotated according
to the orientation determined with the PTMC. In contrast to Graf et al. (2021c) an
advanced interpolation concerning the elastic energy potential is used to reflect the in
Sec. 5 assumed transformation mechanism. At the element level, at each time step it is
checked which order parameter had the maximum value in the previous time step. The
CPP packet of the corresponding variant is declared as active. For all variants within the
active packet, an interpolation with hp3 is used. For all variants within the non-active
packets an interpolation with hp5:

hi =

{
hp3 , for all variants i in active packet
hp5 , for all variants i in non-active packets

. (6.26)

With this, the auto-nucleation of variants in the same packet is supported, while the
auto-nucleation of variants from other packets is suppressed. The functionality of this
principle is verified in Sec. 6.5.1. In Sec. 6.5.2, the model is applied to polycrystalline
structures.

6.5.1. Clamped Monocrystal

To test whether auto-nucleation works as desired, a test scenario is set up. For this
purpose, clamped austenitic monocrystals with different sizes are considered (4.253, 6.253,
8.253, 10.253 µm3). In the initial time step, nucleation points are set in the respective
centers of the cube, which is mentally divided into eight equal partial volumes. The size
of the nucleation points is chosen so that natural growth can occur in the smallest austenite
grain considered after the corresponding shrinkage due to curvature minimization and the
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t7−→

1 2 3 4 5 6 7 8 9 10 11 12

Martensite variants color code

i =

b = 2 3 1 2 3 1 2 3 1 2 3 1

(Martensite variants,
ordering according to
Kitahara et al. (2005))

(Bain variants)

CPP 1 CPP 2 CPP 3 CPP 4

Figure 6.43: Martensite variant evolution in a clamped austenitic matrix with size
8.253 µm3 with iso-surfaces at ϕi = 0.5

induced stresses. The first variant of each of the four crystallographic packets is assigned
to the nucleation points lying on the respective spatial diagonal, cf. Fig. 6.43. The
simulation is stopped as soon as the overall martensite content stagnates.

Fig. 6.43 shows the evolution of the martensite variants within the clamped austenite
matrix with a size of 8.253µm3. From the second snapshot can be seen that martensite
variants of corresponding packets are created autocatalytically in order to reduce the in-
duced stresses by variants from different Bain groups. As time progresses, the initially
differently oriented blocks align themselves along primarily one spatial diagonal. The fi-
nal packet formations regarding different sizes are shown in Fig. 6.44. In these examples,
the variants of packet CPP 2 combine into one large package. In larger simulation do-
mains, more packets are created consisting of one block. The number of separate packets
consisting of several blocks also increases with larger simulation domains, cf. Tab. 6.3.
According to this, auto-nucleation is not completely suppressed by blocks of another
packet. The formation of one dominant packet and the increased packet number is due
to the fact that in the current formulation each material point at each time step has
an active packet. The dominant formation of one packet then has numerical reasons.
If this is undesirable, it can be suppressed by defining all packets as inactive when the
maximum order parameter is approximately zero. Due to the more complex structure, in
Tab. 6.3, the respective exemplary block widths of the block along the spatial diagonal is
documented. As with the two-dimensional simulation, the block width increases with a
larger simulation domain. However, as the simulation domain increases, the influence of
the clamped boundary condition decreases and converges to a width of 1.1 mm.

6.5.2. Polycrystalline Structure

The simulation of three-dimensional polycrystalline structures with simulation domain
edge length sizes of about 50µm according to Sec. 6.4.3 would be a computational de-
manding task. Currently, no work is known in which a three-dimensional simulation has
been performed with twelve or more martensite variants in the order of representative
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(a)

(b)

(c)

(d)

Figure 6.44: Final CPP packet formation in a clamped austenitic matrix with sizes
(a) 4.253 µm3, (b) 6.253 µm3, (c) 8.253 µm3, (d) 10.253 µm3, iso-surfaces at ϕi = 0.5, color
code according to Fig. 6.43

(polycrystalline) volume elements. In this section, an attempt is made to represent the
character of a polycrystalline structure in a simplified way by placing a complete grain in
the center of the simulation domain. This grain is surrounded by further grains, whereby
these are cut by the cube-shaped simulation domain, cf. Fig. 6.45. Random orientations
are assigned to the grains. Martensite transformation is initiated by a total of 68 nuclei
randomly placed at the PAG boundary surfaces. With a simulation domain edge length of
10.25µm an equivalent diameter of deq = 8.6µm of the centered PAG is obtained. This is
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Table 6.3: Number of CPP packets consisting of more than one block and block widths
of blocks along the spatial diagonal

PAG size in µm3 Block width in µm Number of CPP packets

4.253 0.7 7
6.253 1.06 10
8.253 1.1 13
10.253 1.1 20

Complete centered PAG

10.25µm

10.25µm

10.25µm

deq = 8.6µm

Figure 6.45: PAG structure with a complete PAG in the center, surrounded by parts of
other PAGs.

t7−→
Figure 6.46: Martensite variant evolution in a clamped austenitic matrix with size
8.253 µm3 with iso-surfaces at ϕi = 0.5, color code according to Fig. 6.43

in good agreement with the mean equivalent diameter of the 50CrMo4 microstructure, cf.
Sec. 4. The time-dependent simulation is stopped as soon as there is no further significant
increase in the total martensite content, cf. Sec. 6.4.

The time-dependent martensite block evolution is shown in Fig. 6.46. At the beginning,
martensite growth mainly takes place at the nucleation sites remote from the simulation
domain surface. At the surface of the simulation area, the transformation-related and
very high mechanical stresses due to the boundary conditions prevent martensite growth.
Nevertheless, supported by stress-assisted auto-nucleation, martensite development pro-
gresses. The final simulated structure shows a typical martensitic appearance, in which a
clear grouping of martensite blocks into martensite packets can be seen.

In Fig. 6.47, the focus is on the central grain, by showing the individual packets with
the corresponding martensite blocks. Since no three-dimensional data are available from
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CPP 1: CPP 2: CPP 3: CPP 4:

Figure 6.47: Martensite CPP formation inside the centered PAG, color code according
to Fig. 6.43

Cross-sections of simulation: Experiment:
(color code according to Fig. 6.43) (IPF color code)

Figure 6.48: Cross-sections of 50CrMo4 martensite microstructures – cross-sections of
the simulation are through the domain center along the three spatial directions, cross-
section of experiment shows a PAG (black boundaries) with its CPP packets (white
boundaries) with similar size, block boundaries are not highlighted in the experimental
microstructure, same size scale for all images, color code according to Fig. 6.43

the experiment, a direct comparison is not possible. However, in the work of Morito
et al. (2013), a three-dimensional quantitative measurement of a martensitic material
with similar carbon content and lath morphology was performed. The austenite grain
size of the material studied by Morito et al. (2013) is considerably larger, although the
basic shape of the blocks and packets is remarkably similar.

In order to compare the results with the present experimental measurements, cross-
sections through the simulation center are generated in the direction of the three spatial
directions, cf. Fig. 6.48. Fig. 6.48 also shows the measured martensitic structure of a
PAG with comparable size. The quantitative comparison of the block sizes is shown in
Fig. 6.49, where the simulated cross-section areas of the centered PAG are evaluated. The
experimental database are the block sizes within the PAGs of similar size from the mi-
crostructures in Sec. 4. From this follows that in this simplified polycrystalline structure,
the simulation tends to predict larger block sizes.

Based on the findings of the investigations in the previous sections, it can be concluded
that the following aspects lead to a coarser martensite block structure and most likely
explain the deviations to the experiment. Firstly, due to the high chemical driving force
in the supercooled material, the interface formation is stabilized by the choice of a cor-
responding interface energy parameter. With this, the interface energy is most likely
higher than it is expected from reality. A higher interface energy leads to a coarser block
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Figure 6.49: Probability density of martensite block cross-section areas of experiment
within the reconstructed PAG cross-section areas with A2D

PAG ≈ 58µm2 ∓ 10% and simu-
lation, data basis are the experimental results presented in Sec. 4 with θcrit = 12 ◦ since
no sub-blocks are considered in the simulation

structure. Furthermore, a compromise had to be made regarding spatial discretization
and interfacial stress precision. The higher the number of elements in the interface the
lower are the interface stresses. High stresses in the interface counteract the stress-assisted
auto-nucleation and thus also lead to coarser structures.
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7. Conclusion and Outlook

The martensitic microstructure is of great relevance for highly loaded components. How-
ever, despite decades of intensive research, the complex mechanism of martensite transfor-
mation is still not fully understood. In order to increase the understanding of martensite
transformation, experimental results and a simulation model capable of resolving mi-
crostructural martensite transformation (on the mesoscale) were presented in this work.
The investigations were carried with focus on a technically relevant low-alloy steel. Sec. 7.1
summarizes the present work and Sec. 7.2 provides an outlook.

7.1. Conclusion

First, this work gives an overview of the current knowledge about martensite transforma-
tion in steels, focusing on lath martensite. The characteristics of the martensite morphol-
ogy and the formation mechanisms form an important basis with regard to the modeling
strategy. The continuum mechanics form the second fundamental part of this work. In
this regard, assuming small deformations, the kinematic relations, equilibrium equations,
and important fundamental notations of continuum mechanics were introduced.

In order to gain an understanding of the martensite transformation in the low-alloy steel
50CrMo4, different heat treatment routes were performed experimentally. The focus
here was to systematically investigate the influence of the cooling rate on the resulting
martensite. It was found that the cooling rate influences the hardness of the as-quenched
martensite. A detailed analysis of block and packet sizes reveals no significant dependence
on the rate of cooling. It is therefore concluded that the increase of hardness is an effect
of reduced carbon segregation and reduced retained austenite.

No significant dependency of the martensite start temperature on the cooling rate was
observed. This is consistent with an athermal initial nucleation mechanism. The number
of initial nucleation points seems to depend largely on the size of the PAG: the larger
the grain, the greater the probability of defects that can serve as martensite nucleation
points. The block size – and thus also the packet size – is influenced by the grain size of
the PAG due to the limitation of the grain boundary and grain boundary strengthening
effects.

The invariance of the resulting martensite sizes against the cooling rate seems to be
a consequence of fast isothermal formation of martensite clusters consisting of self-ac-
commodating martensite blocks in order to reduce the transformation-induced stresses.
Under these conditions, thermally activated and time-dependent processes during the
martensite growth such as plastic relaxation do not influence the block and packet sizes
in the considered technical relevant cooling rate regimes. Other publications with other
materials have reported an effect of cooling rate on the resulting martensite sizes. The
results of this work have been discussed in detail against this background. Based on
this, the values of the relative difference between the equilibrium temperature and the
chemical driving force at the martensite start temperature are proposed as first indicators
to estimate whether the block and packets sizes are related to the cooling rate.

In order to be able to describe the martensite transformation in a model developed within
the framework of this work, the evolution of the martensite transformation was idealized.
With these idealizations at hand, a phase field model was developed and its numeri-
cal implementation based on the finite element method was presented in detail. This
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model is capable of using synthetic PAG structures that statistically represent measured
structures as input. Furthermore, according to the current state of knowledge, the PAG
boundaries can be considered in the initial martensite nucleation event. Further, stress-
assisted auto-nucleation is enabled via a suitable choice of the interpolation function in
the elastic energy potential. In addition, a simplified plasticity model was implemented
to investigate the basic effect of plastic relaxation on martensite transformation. Partic-
ular emphasis was placed on determining the transformation strains for the model. In
contrast to previous phase field models for martensite transformation, the transformation
strains are determined with the PTMC and correspond to the mesoscopic shape change.
Thus, the substructure of the martensite is taken into account in this model. A complex
material model, which takes into account a slipping according to the CPPs, can thus be
dispensed with.

Numerous numerical studies have been performed to analyze the basic model behavior.
With an increasing magnitude of the chemical driving force, the effective interface width
decreases, while an increasing transformation strain increases the effective interface width.
Due to the high chemical driving forces in the martensite transformation, the interface
energy parameter must be chosen large enough to form an adequately diffuse interface
with an practicable spatial discretization. Accordingly, the interface energy parameter
represented a numerically driven quantity.

Considering a two-dimensional clamped elastic monocrystal with a temperature depen-
dent Young’s modulus, transformation strain dependent on carbon content, and chemical
driving forces dependent on temperature and chemical composition, the model is able to
predict the martensite start temperature of materials with different carbon contents. In
qualitative and quantitative agreement with the literature, carbon stabilizes austenite,
from which it follows that a decrease in martensite start temperature is predicted with
increasing carbon content. It is also possible to consider the influence of the PAG size.
Regarding the residual austenite content below TMS, the model reflects findings from the
literature. With higher supercooling, the model predicts less retained austenite and with
higher carbon content a higher amount of retained austenite is predicted.

With the choice of a constant ratio between chemical energy difference and the interface
energy parameter (to keep the interface stable), an increasing block width with higher
supercooling is predicted. Since there is no experimental evidence for this effect, in the
next step, the interface energy parameter was chosen in order to predict a constant block
width at each level of undercooling. Thus, with the viscoplastic extension it could be
shown that the time-dependent relaxation has an influence on the stress-assisted auto-
nucleation. With faster relaxation, a wider block width is obtained. The influence of
relaxation explains the martensite block size sensitivity to the cooling rate, which is
observed in some materials.

In addition, polycrystalline structures were considered in the plane strain case. With this
enhancement, a martensite evolution could be simulated, which reflects key features of
natural martensite. Martensite crystals nucleate at crystal defects at the grain bound-
aries. Further growth of martensite is accompanied with stress-assisted nucleation of
accommodating variants from the corresponding other Bain group. A higher number of
nucleation points in larger grains can lead to a higher number of packets. In relatively
small PAGs mainly only one martensite block is formed.

A major step forward in the simulation of martensite transformation with the phase
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field method was the three-dimensional extension with twelve martensite variants. The
model supports auto-nucleation of variants from the same crystallographic packet. Thus,
the three-dimensional model can be used to simulate the hierarchical structure of the lath
martensite. Hence, a quantitative comparison of the block sizes with the experiment is also
possible in a meaningful way. With the simulation slightly larger block sizes are predicted
compared to the experiment, which could be explained by the numerical driven interface
energy parameter and by the resource-limited fineness of the spatial discretization.

The presented model describes an idealized form of the transformation mechanism, which
cannot be used to answer all questions regarding variant selection, especially for high-
carbon steels with a rather random variant selection within a crystallographic packet.
However, with a minimum of model parameters, realistic (three-dimensional) martensitic
microstructures can be simulated. Thus, the presented model in this work is a step forward
to a holistic simulation of martensite transformation and leads to an understanding of the
three dimensional formation of martensite, which can be approximated with the NW
orientation relationship. The simulated martensitic microstructures may serve as input
for e.g. microstructural based fatigue simulations according to Schäfer et al. (2019a).

7.2. Outlook

A major limiting factor of the presented model are the required computing resources.
Therefore, in this work, a compromise between computational accuracy and discretiza-
tion had to be chosen. In order to obtain comparable results, the influence of the mesh
was quantified. Based on the results a consistent spatial discretization was used, which is
in line with other publications. In fact, the model offers potential to increase numerical
efficiency. For example, a sequential solution of the physical fields could lead to an in-
crease in efficiency. Furthermore, the use of an adaptive mesh represents an improvement
possibility. With a more efficient model, the interface width could be reduced to the point
where the interface energy parameter can be chosen in a physically motivated manner. In
addition, complex material models could be used, also for three-dimensional simulations.

So far, only isothermal conditions have been considered in this work. With PAG structures
in the size of a representative volume element, the full martensite evolution from TMS to
the martensite finish temperature could be considered. For this, temperature-dependent
material parameters should be taken into account. With more complex boundary condi-
tions, such a model could also reproduce the macroscopic martensite dilatation. With a
fixed aspect ratio for the mechanical boundary conditions, Shchyglo et al. (2019) achieved
promising results. In their simulations, the simulation domain is allowed to expand or
contract to its equilibrium volume by relaxing the hydrostatic pressure in the simulation
domain while keeping the ratio between the side lengths of the simulation domain the
same. This would most likely also make it possible to obtain realistic stress values in the
final microstructure.

With the presented model it is also possible to investigate the Hall-Petch effect in a
polycrystalline microstructure. To the best of the author’s knowledge, the Hall-Petch
effect has so far only been studied in the clamped single crystal, cf. Yeddu (2018).

With the interface part in the phase field potential (5.31), the (chemical) energetics of an
austenite-martensite interface is well defined by the model parameters γ and l. However,
the (chemical) energetics of martensite-martensite interfaces cannot be defined separately.
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With the chosen model formulation, the martensite interfaces result from the overlapping
of austenite-martensite interfaces. However, different and anisotropic interface energies
could play an important role in the formation of the hierarchical lath martensite. Such
a distinction could be addressed with the multiphase formulation according to Steinbach
et al. (1996), Steinbach & Pezzolla (1999) and Nestler et al. (2005). Implementations of
this formulation with respect to the martensite transformation have already been made in
several works, cf. Du (2017); Schoof et al. (2018b); Shchyglo et al. (2019); Rezaee-Hajidehi
& Stupkiewicz (2020). Nevertheless, with exception of Rezaee-Hajidehi & Stupkiewicz
(2020), constant isotropic interface energies for all occurring interfaces were assumed.

In the diffuse interface of the phase field, local incompatibilities between the phases are
compensated by elastic strains. Thus, elastic stresses and strains within the austenite-
martensite and martensite-martensite interfaces are present, which influence the stress-
assisted auto-nucleation. As in many publications on phase field simulation of martensite
transformation, this fact has been neglected in this work, but cannot be further ignored
in the future. Important works, which addresses this topic have been published by Basak
& Levitas (2017, 2018) and Schneider et al. (2015). These approaches should also be
considered for this model.

In this work, little effort was made with respect to the choice of the mobility constant.
The mobility constant scales the velocity of interfaces. The interface velocity is strongly
related to the martensite substructure. In the literature, velocities in the order of 103 m/s
are reported for a martensite growth with internal twins, whereas for a dislocation sub-
structure, velocities from 10−6 m/s to 10−1 m/s are reported (same order as dislocation
velocities). The mechanism controlling the interface velocity in the intermediate regime is
not yet clear, cf. Villa (2013). Typically, lath martensite has dislocations as substructure.
However, it should also be noted that recent results indicate that internal twins can also
be observed in the final lath martensite, cf. Ping et al. (2018). According to Ping et al.
(2018), the twinning substructure is the initial product of the martensite transforma-
tion, whereas these substructure is resolved by detwinning in the auto-tempering process.
These findings should be considered in the further development of the simulation model.
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Appendix

A. Geometric Formation of the Interface with Fine Meshing

(a)

(b)

Figure A.1: Influence of model parameters on the diffuse interface in a two-phase beam
with (a) l = 0.25µm, ε̃x = 0.1, ∆g = −200 mJ/mm3 (b) l = 0.25µm, γ = 0.02 mJ/mm2,
ε̃x = 0.1, (c) γ = 0.02 mJ/mm2, ε̃x = 0.1, ∆g = −200 mJ/mm3, (d) l = 0.25µm,
γ = 0.02 mJ/mm2, ∆g = −200 mJ/mm3, spatial discretization: 336× 72 finite elements
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(c)

(d)

Figure A.1: Influence of model parameters on the diffuse interface in a two-phase beam
with (a) l = 0.25µm, ε̃x = 0.1, ∆g = −200 mJ/mm3 (b) l = 0.25µm, γ = 0.02 mJ/mm2,
ε̃x = 0.1, (c) γ = 0.02 mJ/mm2, ε̃x = 0.1, ∆g = −200 mJ/mm3, (d) l = 0.25µm,
γ = 0.02 mJ/mm2, ∆g = −200 mJ/mm3, spatial discretization: 336 × 72 finite elements
(cont.)
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B. Model input parameters

Table B.1: Simulation input parameters of the simulations in Sec. 5.4.2

Name Symbol/Value

Material specific:
Elastic constants: C11 = 253.1 GPa

C12 = 132.4 GPa
C44 = 75.8 GPa

Transformation strains: εI = 0.1143
εII = −0.1048

Free energy difference: ∆g = −500 mJ/m3

Mobility constant: M = 50 000 mm2(Ns)−1

Numerically driven:
Interface energy parameter: γ = 0.015 mJ/mm2

Interface width: l = 1/3µm
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Formgedächtnislegierungen unter Verwendung relaxierter Energiepotenziale. PhD the-
sis, Ruhr University Bochum.

Bartel, T. & Hackl, K. (2008). A novel approach to the modelling of single-crystalline
materials undergoing martensitic phase-transformations. Materials Science and Engi-
neering: A, 481, 371–375.

Bartel, T. & Hackl, K. (2009). A micromechanical model for martensitic phase-
transformations in shape-memory alloys based on energy-relaxation. ZAMM-Journal
of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik: Applied Mathematics and Mechanics, 89(10), 792–809.

Bartel, T., Menzel, A., & Svendsen, B. (2011). Thermodynamic and relaxation-based
modeling of the interaction between martensitic phase transformations and plasticity.
Journal of the Mechanics and Physics of Solids, 59(5), 1004–1019.

Basak, A. & Levitas, V. I. (2017). Interfacial stresses within boundary between martensitic
variants: Analytical and numerical finite strain solutions for three phase field models.
Acta Materialia, 139, 174–187.

Basak, A. & Levitas, V. I. (2018). Nanoscale multiphase phase field approach for stress-
and temperature-induced martensitic phase transformations with interfacial stresses at
finite strains. Journal of the Mechanics and Physics of Solids, 113, 162–196.

Bergmann, R., Chan, R. H., Hielscher, R., Persch, J., & Steidl, G. (2015). Restora-
tion of manifold-valued images by half-quadratic minimization. arXiv preprint
arXiv:1505.07029.

Bhadeshia, H. K. D. H. (2001a). Geometry of crystals. Institute of Materials, London.

Bhadeshia, H. K. D. H. (2001b). Martensite transformation. In Encyclopedia of materials:
science and technology (pp. 5203–5206). Elsevier.

Bhattacharya, K. et al. (2003). Microstructure of martensite: why it forms and how it
gives rise to the shape-memory effect, volume 2. Oxford University Press.
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schichthärtung. PhD thesis, Karlsruhe Institute of Technology.

Shchyglo, O., Du, G., Engels, J. K., & Steinbach, I. (2019). Phase-field simulation of
martensite microstructure in low-carbon steel. Acta Materialia.

Shi, R., Zhou, N., Niezgoda, S. R., & Wang, Y. (2015). Microstructure and transforma-
tion texture evolution during α precipitation in polycrystalline α/β titanium alloys–a
simulation study. Acta Materialia, 94, 224–243.

Shtejnberg, M. M., Mirzaev, D. A., & Ponomareva, T. N. (1977). Gamma → alpha
transformation during cooling of Fe-Mn alloys. Fizika Metallov i Metallovedenie, 43(1),
166–172.

Simo, J. C. & Hughes, T. J. R. (2006). Computational inelasticity, volume 7. Springer
Science & Business Media.

Sinha, A. K. (2003). Physical metallurgy handbook. McGraw-Hill Professional Publishing.

Song, T. & De Cooman, B. C. (2014). Martensite nucleation at grain boundaries contain-
ing intrinsic grain boundary dislocations. ISIJ International, 54(10), 2394–2403.

Spettl, A., Werz, T., Krill, C. E., & Schmidt, V. (2014). Parametric representation of
3D grain ensembles in polycrystalline microstructures. Journal of Statistical Physics,
154(4), 913–928.

Spittel, M. & Spittel, T. (2009). Materials: metal forming data of ferrous alloys – de-
formation behavior, Landolt Börnstein, group VII advanced materials and technologies
2C1: AISI 4140 715-718.

Steinbach, I. & Pezzolla, F. (1999). A generalized field method for multiphase transfor-
mations using interface fields. Physica D: Nonlinear Phenomena, 134(4), 385–393.



REFERENCES 137

Steinbach, I., Pezzolla, F., Nestler, B., Seeßelberg, M., Prieler, R., Schmitz, G. J., &
Rezende, J. L. L. (1996). A phase field concept for multiphase systems. Physica D:
Nonlinear Phenomena, 94(3), 135–147.

Steinmetz, F. (2020). Simulation of martensite transformation using the phase field
method. Bachelor thesis. Technische Universität Kaiserslautern.

Suezawa, M. & Cook, H. E. (1980). On the nucleation of martensite. Acta Metallurgica,
28(4), 423–432.

Suikkanen, P. P., Cayron, C., DeArdo, A. J., & Karjalainen, L. P. (2011). Crystallographic
analysis of martensite in 0.2 C-2.0 Mn-1.5 Si-0.6 Cr steel using EBSD. Journal of
Materials Science & Technology, 27(10), 920–930.

Swarr, T. & Krauss, G. (1976). The effect of structure on the deformation of as-quenched
and tempered martensite in an Fe-0.2 pct C alloy. Metallurgical Transactions A, 7(1),
41–48.

Tsuzaki, K. & Maki, T. (1981). Effect of cooling rate on the morphology of lath martensite
in Fe-Ni alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals,
45(2), 126–134.

Ueda, M., Yasuda, H., & Umakoshi, Y. (2002). Effect of grain boundary on marten-
site transformation behaviour in Fe–32 at.% Ni bicrystals. Science and Technology of
Advanced Materials, 3(2), 171–179.

Ueda, M., Yasuda, H. Y., & Umakoshi, Y. (2003). Controlling factor for nucleation of
martensite at grain boundary in Fe-Ni bicrystals. Acta materialia, 51(4), 1007–1017.

Urbassek, H. M. & Sandoval, L. (2012). Molecular dynamics modeling of martensitic
transformations in steels. In Phase transformations in steels (pp. 433–463). Elsevier.

Van Bohemen, S. M. C. & Sietsma, J. (2014). Kinetics of martensite formation in plain
carbon steels: critical assessment of possible influence of austenite grain boundaries and
autocatalysis. Materials Science and Technology, 30(9), 1024–1033.

Vannucci, P. (2018). General anisotropic elasticity. In Anisotropic Elasticity (pp. 19–73).
Springer.

Vieweg, A., Povoden-Karadeniz, E., Ressel, G., Prevedel, P., Wojcik, T., Mendez-Martin,
F., Stark, A., Keckes, J., & Kozeschnik, E. (2017a). Phase evolution and carbon
redistribution during continuous tempering of martensite studied with high resolution
techniques. Materials & Design, 136, 214–222.

Vieweg, A., Raninger, P., Prevedel, P., Ressel, G., Ecker, W., Marsoner, S., & Ebner, R.
(2017b). Experimentelle und numerische Untersuchung des induktiven Anlassens eines
Vergütungsstahles. HTM Journal of Heat Treatment and Materials, 72(4), 199–204.

Vieweg, A., Ressel, G., Prevedel, P., Marsoner, S., & Ebner, R. (2017c). Effects of the
inductive hardening process on the martensitic structure of a 50CrMo4 steel. HTM
Journal of Heat Treatment and Materials, 72(1), 3–9.



138 REFERENCES

Vieweg, A., Ressel, G., Prevedel, P., Raninger, P., Panzenböck, M., Marsoner, S., &
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