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Abstract 

We treat the mathematical properties of the one parameter version of the Mr& 
model for plastic flow. We present continuity results and an energy inequality for 
the hardening rule and discuss different versions of the flow rule regarding their 
relation to the second law of thermodynamics. 

1 Introduction 

In a material body, which undergoes plastic deformation, the current values of the stress 
and the strain tensor at a given point no longer uniquely determine each other, and one 
must take into account some aspects of the time history of either the stress or the 
strain. This is commonly achieved through the classical and well established concept 
of a yield surface. But since a single fixed yield surface does not describe correctly 
many experimentally observed phenomena, a lot of modifications and generalizations 
have been developed. There are various hardening rules which specify translations and 
changes in size or shape of the yield surface, and there are multi-surface theories to 
allow for a more complex memory of the past history. 

In this paper, we study a particular model whose origin is usually attributed to 
Mroz [ll]. It employs a one parameter family of yield surfaces embedded into each 
other and subjected to a kinematic hardening rule due to Prager and Ziegler. Chu [3], 
[4] has already observed that, in the case of spherical yield surfaces (in the space of 
stress deviators, as usual), the hardening rule of the Mroz model leads to a surprisingly 

*Supported by the Alexander v. Humboldt Foundation during his stay at Kaiserslautern 

1 



simple structure of memory. although the movement of the individual surfaces may be 
somewhat involved. Actually. in the uniaxial case one obtains the memory structure of 
the scalar hysteresis model due to Prandtl [13]. Preisach [13], and Ishlinskii [6], which has 
been studied recently by mathematicians, see e.g. [i’], [2] and [8]. This constitutes the 
starting point of our mathematical analysis of the Mroz hardening rule in section 2. We 
present there a rigorous definition as well as some continuity and regularity theorems. 
Such theorems are important for both theoretical and computational investigations, 
since they show in which sense the M&z model is well posed. As the proofs of the 
theorems are somewhat involved, we delegate them to the sections 4 and 5. In section 
3, we discuss the flow rule of the Mroz model. It turns out that the standard von Mises 
normality rule, if applied indifferently, may lead to a violation of the second law of 
thermodynamics. In analogy to the vector Ishlinskii model of (91. we present a different 
flow rule and study its energy dissipation properties. 

Our original motivation to study the Mr& model came from low cycle fatigue anal- 
ysis, where one wants to estimate the life span of a certain workpiece subject to loads 
of Larying size and direction. In order to do this, one has to find out which features of 
a (very long) sequence of different loads are relevant for the accumulation of damage. 
While this question seems to be largely open for multiaxial or multipoint loading, there 
are various established procedures in the case of scalar loads. Among the more success- 
ful ones is the so-called rainflow counting method due to Endo (see [lo] for a reprint of 
his original papers), which basically identifies and counts the nested hysteresis loops in 
the stress-strain diagram and then computes an estimate for the total damage from this 
count. The rainflow method is intimately related to the memory structure of the uniax- 
ial hysteresis model cited above, and hence also of the uniaxial Mroz model. Therefore, 
a detailed analysis of the Mroz model also helps in the development and analysis of a 
vector version of the rainflow method. This aspect, however, will not be pursued in this 
paper. 

2 The hardening rule 

A mathematical formulation of the constitutive stress-strain relation of plastic flow in 
terms of yield surfaces usually has three ingredients: 

l A yield condition to specify the form of the yield surface(s). 

l A hardening rule to describe their time evolution. 

l A flow rule to characterize the plastic strain. 

Usually, hardening rules determine the yield surface evolution from the time history 
of the stress. Let us therefore consider a stress function c- : [O,T] + T, where we denote 
by T the space of symmetric 3 x 3 tensors endowed with the scalar product 

and with. the norm 



In plastic constitutive laws. only the deviatoric part of the stress tensor 

with the pressure 8 = i g,, . plays any role. Consequently, T is decomposed into the 
orthogonal direct sum 

T = Tdie 5 Tdev 

of spaces of diagonal tensors 

Tdia = { c E ‘I’ : (,, = AS,, for some X E R} 

and of deviator+ tensors 

Tdev = { t E T : (,, = o } . 
In conformity with the van Mises yield criterion, our yield surfaces are spheres in 

Tdev . Specifically. we consider the one parameter time dependent family S,(t) of 
spheres in Tdev with radius r and center d( t, r ), namely 

S,(t) = { t E Tdcv : It - d(t,r)( = r}. 
We further denote by 

E,(t) = {tETdev: I< - WJI -1 
the region of elasticity of the yield surface S(t). To describe the time evolution of the 
yield surfaces, we have to define the yield center function 4 = d(t, r) for any given 
stress deviator atd) = gtd)(t). First. we require that the stress deviator always remains 
within every yield surface. This means that 

1 dd)(t) - +(t,r) 1 < r for any t E [0, T] , r > 0. (2) 

Next, a yield surface should not move when the stress deviator lies in its interior, so 

I 
gd(t.r) = 0 if 10(~)(t) - +(t,r) 1 < r. (3) 

While the conditions (2) and (3) are common to most yield sirface models, the 
nonintersection condition 

E&) c Er,U) for any 0 < r1 < r2, t E [0, T] , (4 

constitutes the distinctive feature of the model of hIr&. It can be equivalently rewritten 

as 

I4(t,rd - 4tt.r2) I 5 r2 - rl for any 0 < ri < r2, t E [0, T] . (5) 

Finally, let US assume that initially the yield surfaces are concentric around 0, so 

d(O-.r) = 0 for any r > 0. (6) 

We will see that the conditions (3) - (6) uniquely define a function ~5 and therefore 
completely specify the movement of the yield surfaces for a given stress deviator O(~) = 
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dd’( t ). \Ve call the map otd) -P o the. (continuous) Mrdz hardening rule . It is 
a kinematic hardening rule, since the yield surfaces move but do not change shape; 
nevertheless it is able to 1nodc1 anisotropic material behaviour through its memory 
stored in the function ~(t, .) at time t. 

For the mathematical treatment of the Mr& hardening rule, it is completely immate- 
rial that we are working with deviatoric stresses as inputs, except for the scalar product 
structure of Tdev . To emphasize this fact. we replace in the following the space Tdev 
with an arbitrary separable Hilbert space L’ and denote the input function by u instead 
of ~(~1. But actually, nothing is lost if the reader always interpret.s I’ as th,e deviatoric 
plane and u as the stress deviator. 

To ‘start with the formal theory. we define an appropriate function space !I! for the 
memory in order to have o( t.. ) E 9 . Due to (3), the yield surface with radius T will 
move away from zero only if the norm of the stress deviator exceeds the value r. 

Therefore, we adopt the following dcfini tion. 

Definition 2.1 Let U be a Hilbert *upace ,with the scalar product < ., . > and the norm 

(1) ’ We call U the input space and its elements input value3. We define the space @ 
of admissible memory states by 

9 = { ~1 1 y : lo, x)) 4 I’. JL*( r) - z,L(.s)j 5 jr - sI for any ~.,9 2 0, 

and there ezists R > 0 with V(T) = 0 for any T 2 R } . (V 

For ti E Ik and r > 0. we interpret CT(T) as the center of the yield surface with radius T, 
and T&(O) as the current input value (compare (2)). M oreover, we call Jl(r) a corner of 

the memory state 6, if + is not diflerentiable at T. 

Actually, Q is a metric space if we consider it as a subset of the space of bounded 
continuous functions on the nonnegative real numbers with values in t’, endowed with 
the norm 

I’ ” IL = sup ] U’(T) ) . 
r>O - 

(8) 

We will now describe the memory update, i.e. the movement of the yield surfaces, 
for a given memory state w, if the input changes from its current value 4(O) to a new 
value c along a straight line in the input space U. We first note formally that there is a 
smallest radius CK( U, G) such that the new input value ZJ does not lie outside any yield 
surface with radius r 2 Q(U, @) . 

Lemma 2.2 Let J, E \k and v E U be given. Then 

a(v, 2;) = min { r 2 0 : 1 q?(r) - 2: ) = r } (9) 

is well defined, and 

F < I+(r) - VI if and only if 0 5 r < cu(u,w). (10) = 

Proof: Since 
(IL~(T)-v~ - If+.(s)-~‘(1 5 Ir - s( 

for any r,s 2 0. the function 



is nondecreasing, continuous. and sat i&es f( 0) < 0 as well as limrdm f(r) = 00, so all 
assert ions follow. 0 

Due to (3), no yield surface with radius r 2 o(u, ~7) should move if the input value 
changes from Q( 0) to 1’ along a straight line. On the other hand, the yield surfaces 
with smaller radius should move so as to form a new memory state in \k as well as 
to include the value V. Because of (!3), their centers have to arrange themselves along 
the straight line connecting u and the center of the surface wit11 radius o(v.ti) with a 
common normal at the common boundary point u, see figure 1.. Therefore, the following 

Figure 1: Arrangement of the yield surfaces. 

definition specifies the unique hardening rule compatible with (2) - (6). 

Definition 2.3 We define an operator G : U x \k * Q by 

Gh $4(r) = 

for any r > 0 and any 17 E U. 11~ E \k. where a( u, T+!J) is defined in lemma 2.2. We cull 
G the Mrdz hardening rule. 

To update a piecewise linear memory state ~1 with the rule (ll), we insert a (possibly 
degenerate) corner P at $(a(~, q)) and connect it to the point U, thereby discarding the 
piecewise linear segment from q(O) to P. We present in figure 2 the resulting possible 
corner structures for various input values. There we imagine the input value v traveling 
along a straight line, and we may think of P moving along the old state $ while eating 
up corners in the process. We also see, and easily check formally, that no yield surface 
can stay fixed while a larger one is moving. In terms of the operator G, this means that 

G(v, v)(r) # c(r) + G(v,+)(s) # S(S) for any s < r. (12) 

Next, let us consider a piecewise linear input function u : (0, T] + U represented 
by a sequence {uk} of input values. Naturally, we apply definition 2.3 successively to 
obtain the corresponding movement, of the yield surfaces. 
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Figure 2: Update of the memory state. 

Definition 2.4 (i) For any sequence {uk}, k = 0, 1,2,. . . of input values in U we define 
the corresponding sequence of memory states {4k} in @ by 

d’k = Gbk,4k-l) , 0-1 = 0. (13) 

(ii) Let 0 = to < t, < . . . < t, = T be a partition of [0, T] and u : [0, T] -+ U be the 
piecewise linear interpolate GOT the values ZL(tk) = Uk with uk E u. Then we define the 
memory state function C$ : [0, T] x [O,oo) + U by 

d’(t, “1 = G@(t), h))(d , t E (tk, tk+l) , I‘ 2 0. 

We write (14) in operator notation as 

qb 4 F(u). (15) f 

This is justified since GOT any piecewise linear u : [0, T] + U , the function 4 in (14) 
does not depend on the choice of the partition as long as u is linear within each interval. 

From the definitions (2.3) and (2.4) it is obvious that the memory states {C#Jk} gen- 
erated from (13) are piecewise linear curves with finitely many corners in the space U. 
They have the length 

L(+k) := (16) 

and satisfy 

as well as 

$k(r) = 0 if r > L(4k), (17) = 

, 

16;(f)I = 1 if f < L(&k)r (18) 

except in corners, of course. IVe also note two other obvious consequences of the defi- 
nitions above related to ;he storage and deletion of corners. 
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Lemma 2.5 Let the memory Jtdes {c&j be generated by the input dues {uk}. 

(i) If &(f) i8 @ Corner, then &m,(s) = &(S) for any 3 > T. 

(ii) If d#k, uk+l> > u.( $k-1, uk) , then 

Gh+dk) = 4k+l = G(W+dk-d, (1% 

ao the memory due to the input value Uk is deleted. q 

8 Our first main result shows that the Mr& hardening rule is well posed. More pre- 

cisely, the operator F is :-Holder continuous with respect to the sup norm. 

I Theorem 2.6 The map F defined by (15) can be extended to an operator 

and we have 

, (20) 

u(t) - v(t) I)’ (21) 

for any 21, u E C(0, T; U), where c++ = F(u), JO = F(v), and 

R = max { Ill, Izj(t)l : 0 5 t 5 T }. 

Proof: This will be given in section 4. o 

The exponent i in equation (21) cannot be improved in the vector case, i.e. if dim 
U >_ 2. In figure 3 we see an example where the linear interpolates U, 2’ of (us, ~1) and 
(2)s, ul) satisfy (we assume R > 36) 

II u - ?J Iloo = 6, IIF - F(u) Iloo 2 W)~ 3 

l 

Figure 3: Optimality of the Holder exponent. 

In the scalar case dim I/’ = 1, the operator F is Lipschitz continuous, see [2],[7]. 
‘.loreover, if the input function u is Lipschitz continuous (with respect to time), then so 
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is the memory state function Q = F(v). Again, this is no longer true in the vector case. 
The counterexample 2.9 below shows that a,c$(t,u), i.e. the partial time derivative of 
the motion of the centers of the yield surfaces, in general does not lie in LP if p > 1. 
For p = 1, the question is open. Actually, we do not even know whether 8, $(t, U) exists 
almost everywhere if the input function u is not piecewise linear. We do however have 
some positive results. Let us denote by C*(O, 7’; V) the space of o-Holder continuous 
functions, where 0 < o 5 1. Then the following theorem holds. 

Theorem 2.7 Let u E C(0, T; I!) be given, set q+ = F(u). Then we have 

for any s, t E [O,T] and any r > 0. In particzllar, if u E Ca( 0, T; U), then 4(., r) E 
c?‘~(O, T; L:). 

Proof: Fix t, s E [O, T]. J < t, and define 2) E C(0, T; U) by v = u on [0, s] and 27 = U(S) 
on [s. t]. Then Theorem 2.6 implies that. setting R = ]I u ]Icl), 

IWJ) - cv)l = I(J’u)(t, ~1 - (Fv)(t, r)l L Qyt 144 - WI - - 

so (22) follows. If now u E C”(O,T; U), then Ju(t) - u(s)] < C)t - sj” for some C 
independent from t and s, and (22) implies that 

JqS(t,r) - $(s.r)I 5 hEC\t - sIQ’2 .O 

We also have an estimate for a, 4(t, r), if the input function u is piecewise linear. We will 
use this result later to derive continuity properties of the stress-strain law. As usual, 
we denote by W’*‘(O,T; U) the Sobolev space of functions with values in U whose first 
derivative is Bochner integrable. 

Theorem 2.8 For any piecewise linear u E W”*(O, T; U), the function t H 4(t, r) = 
(Fu)(t, r) is an element of W”‘(O, T; U) land satisfies 

Proof: This will be given in section 5. q 

We now present the example of a Lipschitz continuous input function u whose cor- 
responding state function 4 does not have a time derivative in any LP, p > 1. 

Example 2.9 For r = 1 and a specific T > 0 to be defined below, we construct a 
function u : [O,T] + R2 such that u is Lipschitz continuous, u’(t) = 1 a.e., but 
&d(t, r) $ WO, T; W f or all p > 1. (By resealing and embedding, the example is easily 
extended to arbitrary values of r, T and arbitrary input spaces U with dim U 2 2.) The 
idea is to let the input value u(t) run through a sequence of loops (A + B, ---t C,, ---) A) 
of decreasing size but bounded total length T. A single loop is shown in figure 4. We 



Figure 4: Construction of the counterexample. 

fix a point A in the plane with I.41 = 2 and choose points I?,, C,, D, such that for some 
given 6, > 0 

I&I = 1, I.4 - D,I = 1+&i,, B, = 2D,, 

C, = LD, + LA,. 
1 + 6, 1 + & 

We easily compute that 2 < A, D, > = 4 - 26, - 6: and therefore 

I& - AI2 = 26,(2+6,), IC, - B,12 5 46,, IA - C,J2 = 6;. (24) 

Let us define 6, for n > 3 by 

f&yn-&G, p,=l+E” 2ln(lnn) -- 
1 + E, ’ cn = Inn, ’ (25) 

Then the sum T of the loop lengths for n = 3,4,. . . can be estimated as 

T = F(IBn - Al + IC,, -4 + IA-W L 42& + (1+&h, 
n=3 n=3 n=3 

= .45 1 
n=3 n In2 n + (I+ “jnC3 ,2;‘4n < +cm. 

We define u : [O,T] + R2 as the linear interpolate of the sequence A, B3, C3, A, Bq, . . . 
satisfying ju’] = 1 a.e.. If I, denotes the time interval during which u(t) moves from 
C,, to A, we obtain, using (24) and (25), 

. 
K-l J , lwJ(~, 1) IPdt 1 n (/; 

n 
l&#(kl)ldt)P 1 (;IB,-AI)P > 6;‘2, 

so 

The example is complete. o 



3 The flow rule 

In plastic flow theory, the flow rule serves to determine the plastic strain ep from the 
current value of stress and the current position of the yield surfaces. The total strain e 
is given by 

c= e? + 8, 8 = AU) (26) 

where the elastic strain @ is obtained from the stress via Hook’s law expressed with 
the symmetric positive definite matrix A. Chu [3], [4] presents a flow rule which has 
the following two properties: 

i 

l The plastic strain rate tensor points in the direction of the outward normal n(t) 
common to the active yield surfaces. 

l For uniaxial stress, the standard stabilized stress-strain behaviour characterized 
by Masing’s law and the memory properties of the uniaxial version of the Mroz 
hardening rule (which is in fact identical with Prandtl’s model in [12]) is obtained. 

These properties result in the formula 

ap)(t) = f’(a(f)) < n(t),t,(dyt) > n(f), 

where a(t) is the radius of the largest active yield surface 

(27) 

a(t) = max{r : r 2 0, I4(t,r) - dd)(t)l = r} , 72(t) = - iQ(t,o), (28) 

and the function 16’1 = f(la(d)l) with f(0) = f’(0) = 0, f” 2 0, denotes the stabilized 
uniaxial initial stress-strain curve. 

It is useful to rewrite the flow rule (27) in a derivativefree form. To this end, let us 
introduce an auxiliary function 1c, = +(t, r) via the Stieltjes integral 

$,(t, r) = ($(O, r) + /,’ a(d)(r) ; NT, 4 < a(d)(T) ; 4(T7r) ,&$(T,?-) 7 . (29) 

A straightforward,computation shows that equation (27) together with the initial con- 
dition 

rP(0) = f(a(o)),W(o), 
40) 

a(0) = ldd)(0)l) (30) 

is equivalent to the formula 

EP(f) = / Ix) V’(f. r)V(r) &, 7l(d := f”(r), 0 (31) 

if the functions occuring are smooth enough. This follows since we have at+(t,r) = 0 
for r > a(t) and 

< W(O)‘N > = < &‘d’(t) - ril(f),n(f) > = < s”d’(t),n(t) > (32) 

for r < a(t). We obtain a continuity result for this version of the flow rule. 
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Proposition 3.1 The hardening rule 4 = F(acd)) f rom definition 2.4 together with (29) 
and (31) defines an operator ep = .21(Jd)), 

M : C(0, T; Tdev) C-I BL’( 0. T; Tdev) --$ c(0, T; Tdev) n BV(O, T; Tdev) . 

Moreover, for any sequence ( u,,),,~,v in C(0, T; Tdev) n BV(0, T; Tdev) with uniformly 
bounded variation and 11 u, - ~(~1 Ilrx) + 0 we obtain that M(u,) has uniformly bounded 

I variation and that I( .U(u,) - M(o(d)) ([‘X1 -+ 0. 

Proof: This follows from Theorems 2.6 and 2.8 together with the convergence result of 
. [5], Theorem 11.15.3 and its consequences. Cl 

As many other extensions and refinements of the basic yield surface model for plastic 
flow, the flow rule (27) is obtained from a mixture of various guiding principles and as 
such is not a priori consistent with the framework of thermodynamics. In particular, 
one has to impose additional restrictions in order to exclude a violation of the second 
law. Let 

W(f) = I’ < i(r),o(r) > dT (33) 

denote the total mechaniFa1 work. According to (26) and (27), this is decomposed as 
W(t) = We(t) + W’(t), where 

Iv(f) = /’ 
t 

< P)(T) a(r) > dT = , 
0 L ; < AU(T),U(T) > 1 0’ 

(W 

Wp(i) = /,’ < i’“‘(r),a(r) > dr = jgLf’(+)) < &‘d’(~),n(~) >< a’d’(+n(7) > dr 

(35) 
are the elastic and plastic work, respectively. We now construct ti cyclic process whose 
energy dissipation has the wrong sign. 

.  

Figure 5: A cyclic process which produces energy. 

Example 3.2 Let the situation be as in figure 5. We define afd)(t;) = ui, 0 5 i 5 4, 
for some 0 = to < tl < . . . < tq. We interpolate 0 td) linearly in [0, tl] and [tz, t a ] ,  and by 
a circular path with radius equal to u(tl) and a(t3) in the intervals [tl,tz] respectively 
[ t 3 ,  t 4 ] .  Consequently, a( t )  remains constant and < bid)(t), n(t) >= 0 during the circular 
motion, whereas 

< dd)(f) n(f) > > 0 . 9 < dd)(f) n(f) > < 0 3 7 t E (t233). (36) 
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We compute the total work along the cycle ur + 212 -+ 213 ---) 7~4 = ur from (34), (35) 
and (36) as 

W4) - wt,) = l;3 f’@(t)) < &‘d’(t),n(t) >< dd’(t),n(t) > dt. (37) 

Now if the interval [a(tz), a(t3)] belongs to the range of plastic deformation where f’ is 
positive, we obtain from (36) that W(t4) - u’(tr) < 0, which contradicts the second law 
of thermodynamics. 0 ; 

A standard way to overcome this problem (see e.g. [.l]) is to restrict the model to 
situations where 

tip(t) = < $1 w,m > 2 0 (38) 

3 

almost everywhere in t. Looking at the figures accompanying the definition of the Mroz 
hardening rule one notices immediately that 

< &(d)(t), n(t) > > 0 - (39) 

holds for piecewise linear stress functions. We present a precise formulation and proof 
of (39) for general stress functions. This is unfortunately a bit tedious since the limit 
process underlying Theorem 2.6 does not have a clear relation to the weak limit of the 
corresponding normals n(t). 

Lemma 3.3 Let otd) E IV’-‘(0, T; Tdev) and t E [0, T] with a(t) > 0 be given and 
assume that bfd) is continuous in [s, t] for Jome s < t. Then we hatie 

< a’d’(t),n(t) > >_ 0. (404 

Proof: Assume that d := - < dd)(t),n(t) > > 0. We revert to the notation u(t) = 
dd)(t). We abbreviate a = u(t) and choose s < t such that, with 4 = F(u) and 
M = maxS~T~t hi(r we have 

It-1 < -g, I4(W - dh4l < g 7 I?i(t) - Ii(p)1 < ; vp E [SJ]. (41) 

We then have for every p, T E [s, t] 

< ti(p),u(7) - f#(s,u) > = < z;(t)+(t) - qqt,u) > 

+ < G(p) - ti(t),u(t) - $+,a) > + < q&u(T) - u(t) > 

+ cqp),$(t,a)-qqs,a)> < -$. (42) 

We now want to prove that ~$(t, u) = d(s, u). To this end, we choose an equidistant 
partition s = SO < sr < . . . < s, = t and set ok = u(sk), ~$0 = 4(s, a) and 4k = 
G(uk, 4k-1). We claim that 

+k(a) = +0(a) - Iuk+l - cbk(a)( < a * 4k+l(Q) = 4k(a). (43) I 

The right implication is trivial. The left one follows from the estimate (we use (42)) 

bk+l - dk(d12 _ 1 < U;+; - ukj2 + a2 + 2 < uk+l - uk,uk - 4k(a) > 

Iuk+l - uk12 + (Ii2 + 2 
I 

“+I = < ti( p), u( Sk) - &J(u) > dp 
Sk 

ad 
< ki2(8k+l - 8k)2 + a2 - 2(8k+, - ““‘T < u2. 
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From (43) we conclude that &,(a) = &,!a), and passing to the limit as n -+ 00 we obtain 
d(t, a) = d(s, a), so we have [u(t) - I$( ~.a)( = a. Since (42) also implies that 

t < u(t) - u(s),u@) - qqs,a) > 5 
J 

ad 

s 
< w, 0) - b(w) > 4) I -(t - “)-;i- 7 

we arrive at the contradiction 

I 
a2 2 Iu(s) - c#J(s,a)~’ = [u(s) - u(t)l2 + a2 - 2 < u(t) - +)4(t) - 4hd > 

. > Iu(s) - u(t)12 + a2 + (t - s)$ > a2. 

The lemma is proved. o 

We now show that condition (38) is satisfied for the flow rule (27) if and only if the 
maximal stress does not exceed twice the value of the yield stress. 

Proposition 3.4 Let atd) E W’~‘(O, T; Td,,,) be given, and assume that bfd) is piecewise 
continuous. If f’(r) = 0 in the range 0 5 r 5 II CT(~) 11,/Z, then condition (38) is 
satisfied. Conversely, if f'(r) > 0 f or some r > 0, then for any 6 > 0 we ma9 construct 
along the Iinea of Ezample 3.2 a function atd) with 11 uld) 11, < 2r + 5 such that the 
second law is violated. 

Proof: Because of Lemma 3.3, it suffices to prove that < atd)(t), n(t) > > 0 for any t 
with a(t) 2 rg := 11 Jd) 11,/2. Setting C$ = F(Jd)), we have 4(t,2ro) = d(t, 11 Ad) II,) = 
0, hence l+(tdl 5 rg and therefore, if u(t) > rg, 

< a’d’(t),n(t) > = < d(t ro)+ron(t) n(t) > 2 f0 - I$(t,ro)l > 0. 3 . - 

For the converse, Example 3.2 works whenever we choose (~01 > 2r and 1~0 - us( = 2r. 
.o 

Although l’roposition 3.4 suggests that the flow rule (27) might be physically correct 
if only it is restricted to an appropriate range, we find this approach problematic for 
two reasons. First, the flow rule (27) implies that the plastic work is zero in neutral 
motion, i.e. along circular paths in deviatoric stress space, even if the amplitudes are 
well within the range of plastic deformation for uniaxial loading. Second, it seems more 
natural to connect the flow rule to the hardening rule through a mechanism of energy 
dissipation rather than to develop them as separate entities. Similar to the approach 
in [9], we now present such a connection as a generalization of the energy dissipation 
mechanism of ihe uniaxial hysteresis model. This will lead to a flow rule different from 

; t (27). (We do not try here an embedding into the full framework of thermomechanics of, 
for example, (141.) W e write the total mechanical power ( = rate of work) in the form 

< i(t),a(t) > = 1 (c!dt) + eb&N + w - (44 

Here, D(t) is the dissipation rate, which should turn out to be nonnegative, PE(t) 
denotes the standard elastic potential 
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and we propose a memory poten.tial P,%,(t) (or hyJteresi3 potential in the terminology of 
[9]) of the form 

(46) 

where, as in (31), n = f” > 0. We also propose the flow rule 

EP(f) = J m d(t, r)r,(r) dr . 
0 

(47) 

Actually, (31) and (47) coincide in the uniaxial case. From (26), (33), (34) and (44) - 
(47) we compute, assuming that &~$(t, ) r exists almost everywhere and is bounded for 
r > 0, which is the case if e.g. utd) is piecewise linear, 

: 

D(t) = Jw < a,q5(t,r),a(d)(t) - +(t,r) > q(r)dr. (48) 
0 

We will prove below that the Mr& hardening rule satisfies a certain energy inequality 
which in turn implies 

< &&(t, r), otd) (t) - #W-) > 1 0 (49) 

almost everywhere. This leads to a satisfactory state of affairs, since then D(t) 2 0 
almost everywhere, and consequently no cyclic process will violate the second law of 
thermodynamics regardless of the form or amplitude of the loading history. This follows 
from the observation that the function t I+ 4(t, r) (and therefore, also I?‘, PE and PM 
as functions of t), are T-periodic in t for T-periodic piecewise linear (and hence, by 
continuity, for T-periodic continous) input functions atd) with the possible exception of 
the fkst cycle. Before we prove (49), however, we briefly note that the flow rule (47), 
too, yields a continuous (i.e. well-posed) stress-strain relation. 

Proposition 3.5 Let us define the modified M&z operator 6’ = AcP(~(~)) as the com- 
position of the flow rule (47) and the Mrdz hardening rule 4 = F(utd)). Then for any 
ul, 62 E C(0, T; Tdev) we have 

11 M*(ay’) - hfyayp 11, 5 rnf’(R)(\j aid) - up 11,)~ ) 
where R = max{ 11 aid) [loo, I( ay) II,}. 

Proof: This is an immediate consequence of Theorem 2.6. q 

We now present an energy inequality for the Mr6z hardening rule. 

Proposition 3.6 Let ~(~1 E W’~‘(O,T;Tdev) be given, yet q5 = F(~Y(~)). Then we have 

f (I4(t,r)l” - Id(v)12) - < W, r)dd)(t) > + < 4(vWd)(s) > 

I 
t + < ~(7 7 r) 3 btd)( r) > dT 5 0 (50) s 

for every 0 5 s < t 5 T and every F >_ 0. 
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Dividing both sides of (50) by t - s and letting s tend to t, we immediately see that 
( 49) holds for every t E (0. T] f or which a,~$( t, r ) exists and at which &td) is continuous 
(actually it suffices that t is a Lebesgue point of c+(~)), so the dissipation rate II(t) as 
defined above is always nonnegative. 

The remainder of this section is devoted to the proof of Proposition 3.6. We”fkst 
prove a discrete version of the energy inequality (50). 

f Lemma 3.7 Let {u k k>O be a sequence of input values in U, set bk = G(uk,4k-I), } 
~+4-, = 0. Then we have 

: < @k(r) - 4k-l(T),d’k(r) - uk > 5 o (51) 

for every k 2 0 and every r 2 0, and 

f (IMr)12 - Mr)12) - < om(r).um > + < h(S),W > 
m-1 

-t c < ok(r). uk+l - uk > < 0 

k=l 
(52) 

for every m > 1 > 0 and every r 2 0. 

Proof: We first prove (51). Set 

ak = Q(Uk,C$k-l) = min {r 2 0 : [uk - $k-l(T)/ } . 

Assume that 0 < r < ak, otherwise (51) holds trivially. Then 

< 4k(f) - d’k-l(+#‘k(T) - Uk > = < 4k(r) - 4k(ak) + 4k-l(ak) - dk-l(r), 4k(r) - uk > 

= -r(ak - T) + < ($k-l(ak) - 6k-l(r),4k(r) - uk > 5 0 

so (51) is proved. We now substitute the right hand side of 

+kcT) = ;@k(r) + d’k-l(r)) + ;($L(T) - ($k-l(r)) 

for the second occurrence of @k(r) in (51) and obtain 

0 1 2 < bk(“) 4k-I(‘=)) - > uk 
k=l+l 

- d’k-1(r), &$k@‘) + 

= - - . * i (Idh( 1ddr)l’) 2 - < 4k(r) 6k-l(f),uk > 

k=l+l 

. Rearranging the last sum, inequality (52) follows. o 

Proof of Proposition 3.6 Let 0 5 s < t < 2’ be given. We approximate the function 
dd) by piece w se linear interpolants un : [0, T] + U on the partition 7rn = (tT;) with i 
0 = t,” < t; < . . . < trn = T such that t and s belong to each partition and that 

m=k(t;f+l - t;) t 0 as n tends to infinity. Fix n E N and set d” = F(u”). We apply 
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(52) to the sequence uk = u”(t;) with m and 1 chosen such that t = ti, .s = t;. Since 
ok = $“(t;), we get 

E” := * f (lo”(t.~)12 - 14°C s, r,I’) - < o”(t, r), u”(f) > + c 4yS,r),dyS) > 

J t + < fyr,r),ti”(r) > dr s 
J t 

m-1 

I < @(T,f)$(T) > dT - c < bn(t;,+Uk+l -Uk > 
? 

s k=l 

m-l 

= c ’ /ntl < q”(v) - dn(t;!F),Uk+l - Uk > dr. 
k=l t;+, - ‘;: ‘; 

(53) 
i 

From Theorem 2.6 we obtain, if t; 5 T < t;,,, 

WV, d - f-w, dl 5 J 211 un Ilmlw~> - w;)l 
< - 211 otd) IIIx) rnpx [~7(~)(ti+,) - a(d)(tz)l _ =: 6”. Gw 

From (53) and (54) we conclude that 

m-l 
E” 5 c bnlUk+, - ukl < 6” (55) 

k=l J oT ldd)(r) dr . 

Since un converges to Otd) in W’~’ and 4” converges to 4 uniformly, E” converges to 
the left hand side of (50). W e a so 1 see from (54) that S” converges to 0. The proof is 
complete. 

4 ,Proof of the continuity result 

In this section we prove Theorem 2.6. We have to estimate differences 114 - $J 11, in 
terms of differences )I u - u 11, of the corresponding input functions. We begin with a 
lemma ‘which relates II 4 - ~,LJ 11, to the distance of the two extreme corners in a special 
case. 

Lemma 4.1 Let $J,$ E \k be two memory states with 4(r) = 0 for r 2 b, T/J(~) = 0 for 
7. 2 Q, Idw = a. Then for 6 = max{ (b - al, I+(O) - d(O)l} we have 

IIO-@II, 2 $=az, 

and if moreover 6 5 : max{a, b}, then 

IM-1cIll, I J6maxo. 

(56) 

z 

(57) + 
(The latter estimate is sharp as the ezample in figure 3 shows.) 

Proof: Since we have 1$(r) - d(r)1 < 6, f i r 1 ies between a and b, and since 6 5 a + b, 
we only have to consider the case where 0 5 r 5 min{a, b}. In this range, II, has to be 
a straight line, so 
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By assumption, we have 

a* = 1 l/J(O) I2 = Id(r) - P(o)/* + I o(r) I2 - 2 < d(hw - W) > - 

Inserting (59) into the square of (58) we obtain with the aid of 

1$(r) - dwl I IdW - wu + 6 I 7. + 6 9 

the identity plus estimate 

I d(r) - W-J I* = 

I 

iI d(r) I* + (1 - $W - 11(r) I* - f(a -d 

(b-a):(b+a-2r) + (l-i)f5(2r+b). (60) 

If we introduce c = b - a, then (60) becomes 

1 q+(r) - G(r) I* 5 f(c. r) = i(f5 + c)r(a - r) + ic’ + (1 - k)h2. 

Maximizing f with respect to r yields 

g(c) := orni.c$f(e,r) = i a(6 + c) + 6* + e* + 
S 

(6 - c)*(s + E) 

4a - - I* 
To conclude the proof, we have to consider the following cases separately. 

l b 5 a. Then 0 2 c > max{ -S,6 - 2a}, and 

g’(e) = &(2a + 6 + 3~)( 2a - 6 + e) L 0, g(e) < g(0) = %(a + i)*, 

and the assertion follows easily. 

l b > a, 6 5 b. Then 0 < c 5 6 and 

g(c) 5 gl(r) := f 
6* - E2 

b6+e(b-6)+62+F 1 , g;(e) = f(b - 6 - ;). 

For 6 I ib we have gi(e) 5 g,(6) = b6, for 6 E (!b, b) we get gi(c) 5 gl(2(b-6)) < 
2b6. 

l b > a,6E(b,2b). ThenO<c~2b-6,hence6-c<2(b-e)=2aand 

!m 5 g*(e) := f 
6* - E2 

b6+c(b-6)+6*+- 1 2 1 ’ g;(E) = f(b - 6 - E) < 0. 
This implies g(r) I g*(O) < 2b6. and lemma 4.1 is proved. o 

The following lemma, whose proof constitutes the main effort of this section, is crucial 
for the derivation of Theorem 2.6. 
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Lemma 4.2 Let R > 0 and 6o > 0 be given. Let UJ call admissible pair any pair of 
input sequences {~lk};!~, {v~};=, with n E N and 

(61) 

Let us assume that there ezists an admissible pair such that the corresponding sequences 

{dk);=o, bh);=o f o memory states from Definition 2.4 satisfy 

(62) 

Let N be the total number of corners of {t$k}& and {$,k}&, i.e. 

N = 2 (Ncb#‘d + Ncb#‘k)) , 
k=O 

where, for any piecewise linear 11, E \k, NJ $) d enotes the number of corners of +. 
Then there ezists an admissible pair {ck}&, {ck}j!=O satisfying (62) such that the total 
number of the corners of the corresponding memory states is less than N. 

.4s an immediate consequence, the memory states corresponding to any admissible pair 
satisfy 

o~kyn II6k - d’k Iloo I J=i. 
- - 

(63) 

Since the proof of Lemma 4.2 takes several pages, we first use it to prove the main 
continuity result. 

Proof of Theorem ‘2.6. For a fixed R > 0, we define 

UR = IUEU: IUI I R}, QR = {$EE: $(r)=Oforanyr 2 R}. 

Now let u E C(0, 2’; UR) b e p iec,wise linear. We first claim that 4 = F(u) E C(O,T; \k~). 
To this end, we observe that Lemma 4.1 implies for any $ = c$(t, e), t E [0, T], and any 
v E U the estimate (see (11) and (16) for the definition of G and L) 

and this in turn implies that q5(t, .) depends continously upon t. Next, we consider 
piecewise linear inputs u, v E C(O,T; UR) with 6 := II u - v Ilclo. We fix t E [0, T] and 
let {tk}EzO denote a partition of [0, T] w ‘c includes the point t and is such that both l-n h 
u and v are linear within each interval [tk. tk+r]. We apply Lemma 4.2 to the admissible 

PGr {.Uk);=07 bk)h where uk = u(tk), Vk = V(tk). From (63) we obtain the estimate 

Therefore, the operator F is uniformly continuous on the set of piecewise linear in- 
put functions, which is dense in the space C(0, T; UR), and F has values in the space 
c(o, T; *R)- Because UR and \k~ are complete metric spaces, F can be extended 
uniquely to an operator from C(O,T; UR) to C(0, T; \kR), such that (65) holds for any 
u,v E c(O,T; UR). Th is concludes the proof of the theorem. o 
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The remainder of this section is devoted to the proof of Lemma 4.2. Some interme- 
diate steps will be formulated as separate lemmas within the proof. 

Proof of Lemma 4.2 Let’ {~k};=~, {~k};,~ b e an admissible pair such that the corre- 
sponding memory states { &}zCO, { q!~k};=~ satisfy (62). Let us call { uk}, { vk} reducible, 
if the conclusion of the lemma holds. We set b = max{ [uk - vkl : 0 5 k 5 n} 5 60. We 
obviously have 

? IWk) - &h)l L 6 for my 0 5 k 5 n . (66) 

We may further assume that 
: 

M := II&-A Ilrx) > I(& - $k II, for any 0 I k I n - 1 , (67) 

otherwise { uk}, { Vk} is obviously reducible. Since we have to analyze the structure of c$,, 
and $,, in great detail, we will simply write 4 and $J instead. We denote the corners of q$ 

and+bbyPJ%,... =lQ1,Q2,.... where we count from the end points PO := d(O) = u,, 
and Q0 := $(O) = v,; the end points PO, Qo are not counted as corners. Both 4 and 
$J must have at least one corner; otherwise (62) could not hold. Let us further define 
the unit vectors (we will use the primed ones only after we have established that the 
corners referred to exist) 

p* - PO p2 - Pl e& = Q1 - Qo 
ipl - pal ’ e’ = I& - p,l ' e' = IQ, _ Qol ’ 

el, = Q2 - ~1 
IQ2 -&,I ’ 63) 

which point along the first two line segments of 4 and $. Let us moreover define 

p = max{r>O: I~$(r)-$~(r)l = M}. (69) 

Because of (67) and Lemma 2.5(i), at least one of the memory states +?J and +, let us 
say q!~, has no comers in the interval [O,p], so Q, = +(s) for some s > p. The definition 
of p then implies that 4(p) is a comer of 4. The line 

X = { d(s) + Xx : X E R } , x = 4(p) - $(s) , v-v 

which passes through the points 4(s) and q%(p), will also play a central role. 

Lemma 4.3 (i) Th e memory state q!~ has at least two cornera, so Q2 = $(s’) for Some 
s’ > s. 
(ii) We have < eti, 4(p) - $(p) > < 0 and < e+,, x > < p - s < 0. 
(iii) We have 

. 14’ > MZ + (s-p)‘. (71) 

(iv) The memory state 6 has at least two corners, so P2 = 4(p’) for some p’ > 0. 

. Proof: (i) If 1c, has only one comer, then Lemma 4.1 together with (66) implies that 
II cj - q!~ 11, 5 &?% in contradiction to (62). 
(ii) We have $(p) - q, = pe+ and 

(P+q2 2 IddP) - un I2 

= I d(P) - 11,b) I2 + I tl,(p) - u?l I2 + f! < 4(P) - d+-q, G(P) - %I > 

= M2 + p2 + 3-p < ed,, d(p) - d!(p) > . (72) 
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On the other hand, we have 4(R) = 2/1(R) = 0, hence 

d2&5 < .ci = 1 b(p) - q’(p) 1 5 2( R - p) . 

This yields 2(R - p)” > R6 > (R - p)6, h ence 2R > 2p + 6 and 2R6 + p2 > (p + 6)‘. 
Comparing the last inequality to (72) we obtain the first inequality and also the second, 
since < e+, $(p) - t/~(s) >= p - s. 
(iii) The assertion follows from (ii), since 

Id2 = MP) - ZL(P)I~ + (s -P)’ - W -P> < eti4~) - Ii(P) > . 

(iv) Assume that 4(p) is the only corner of 4. Then we have 4(p) = 0 and L(b) = p, 
and from (iii) we conclude that 

L(l)) 2 s +,121,(s) - (j(p)1 2 s + M > s +. 6 > P + 6. 

which contradicts (66). q 

Lemma 4.4 If < cc, e 1L - er > < 0 does not hold, then the pair {uk}, {vk} is re{ucible. 

Figure 6: Illustration of the proof of Lemma 4.4 

Proof: Let us assume that < 2, e+ > > < x, e$ >. Introducing an auxiliary point 
Q. = V, + s’e$, compare figure 6, we obtain IQ. - $(s)l = s’ - s and 

lb(p) - &.I2 = M(P) - +W + WI - &*I2 = Id2 + (s’ - s12 
- 2(s’ - s) < 2, e+ > 5 1x1” + (s’ - s)2 - 2(s’ - s) < 2, ek > 

= 14(P) - dJ,(s) + tit4 - 9w>12 = MP) - dwl’ * (73) 

We now choose ‘some &., E U with I$(s’) - &I = s’ and 14(p) - &,I = p + 6; this is 
possible since (73) and (ii) imply that Is’ - (p + S)] I Iti - +(p)J I S’ + p + S. We 
define 
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The pair (~0,. . . ,u,-~,~,,},{u~,. . . ,u,-i,Z’,,} is admissible, since [&,I < L(&,)* = L($) < 
R. From Lemma 2.5 (ii) we conclude that {o,,, . . . , &,-i, &}, {&, , . . ,1(),-i, $,,} are the 
corresponding memory states. Since $,, has fewer comers than II,, the proof will be 
complete if we can show that I&(p) - G,,(p)/ 2 /b(p) - $+)I. To this end, from the 
identities 4,,(p) = 4(p) and 

z I+(p) - &.I2 = I@(p) - u,12 + s-" - 2s’ c 4(p) - un,eti >, 
Iqqp) - l&‘)l’ = (p + q2 + d2 - 2s’ < d(p) - I&, e^G > , 

t M(P) - d4P)12 = Id(p) - %I2 + P2 - 2P < 4(P) - Un*fQ ’ 7 

I&(P) - 4iI(P)12 = (p + Q2 + p2 - ‘>P < 4(P) - cd% > 9 

we get with the aid of (73) that 

I&(P) - Aa( - Id(p) - 1;“(P)12 = (1 - 5, [(P + 6J2 - Id(P) - AZ] + 

+ 5 (Id(p) - dG)12 - Id(p) - Q-12) 2 0. 0 

We now focus our attention upon the memory state 4. 

Lemma 4.5 If Q(p) is not the first corner of d, then the pair {ulr}, { vk} is mfucibk. 

1 . . . . . . 
Mss; 

Figure 7: Illustration of Lemma 4.5 

Proof: We choose 6, E U with I+(s) - 6,) = s and Jq5(p) - ??,,I = p + 6, see figure 7; 
this is possible since obviously Is - (p + 6)l 5 [G(s) - qb(p)( 5 s + p + 6. We defin.e . 

j l &,r&,&,Gti as in (74). Again, the pair {us,. . . ,u,-i.ti,}, {us,. . . ,u+i,&,} is admis- 

sible, Fd {~o,...,~~-I,~~},{~o~...,~~- _ I,$~} are its corresponding memory states. 

9 Since & has less corners than &, it is again sufficient to prove that l&(p) - &,(p)I 2 
: i M(P) - $4~11. We have 

Iqqp) - ?&(s) + l/J(s) - &I2 = (p + q2 > lb(P) - 4(s) + Tw - %I2 7 

hence < r,Z + - e* > > 0 and therefore 

l&&(P) - A( - Id(p) - J?(p)j2 = 2(s - p) < I, f3+ - eti > > 0. cl 

The next lemma shows that the comer Q, = $(s) is formed earlier than the corner 4(p). 
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Lemma 4.6 Let UJ define 

m = min{j < n : Vk(S) = v(s) fork = j,. . . Jl} , 

i = min{j<n: Ok(p) = O(p) for k = j.. . . ,n} . (75) 

Then we may assume in the following that m < i; otherwise, the pair {uk}, {vk} is 
reducible. 

Proof: Let us assume that i 5 m. From the definition of m and (12) we infer that 
nz < n and that <I,,,( r ) = u, + rei, for any r E [0, s’]. We may also assume that 
< L. erL - ek > < 0; otherwise we are done because of Lemma 4.4. We then have for any 
r E [0, s’] 

IQ(p) - dh(r)12 = IQ(p) - v(s) + v(s) - t'h(r)l* = (76) 

=. 1x1’ + (s - r)2 + 2(.5 - r) < z.e\, > > Is + (s - r)eq12 = id(p) - $(r)[‘. 

We have Id(p) - P,,, ] = lo,,,(p) - P,~ I 5 p + ~5 by definition of m. Since moreover 
I@(p) - ZJ,] > IQ(~) - ej,] 2 p-6 by (i6) with r = 0. we may choose an il,,, E U such that 
Id(p) - &,,I = p and I&,, - P,,, I < b. see figure 8. Consequently, the pair { uo,. . . , u,,,, 2i,,,}. 

Figure 8: Illustration of the proof of Lemma 4.6 

1 v,,,} is admissible. Its memory states have asmaller total number of corners, 
b:;use v;C;,,) = !V,( 11) - 1 and AT,(&) 5 I\rC(4), where &,, = G(&,,,&,,) = G(&,,d). 
On the other hand, if we set r = p in (76) we conclude that (b(p) - &,(p)I > M, so the 
lemma is proved. 0 

To eliminate certain possible directions e> of the second arc of 4, from consideration, 
we construct comparison inputs Cn as rotations of the input value v, with respect to 
the line X. The orthogonal projection of v, on X is given by 

f= v(s) - s < e,,e* > e,, (nj ’ 

Lemma 4.7 Let y E U with jy[ = 1 and < y.z >= 0 be given. Set 
* 

I?” = z + Ivn - z(y , & = G(2;,,y:) ( & = f(ti(s) - i)*) . (78) 

Then, if 
< E.I, - G,,. o(p) - &(p) > 

: 
2 0, (79) 

the pair {uk}, { uk} is reducible. 



Proof: Since the vectors z - 6, and : -tv, have the same length and are both orthogonal 
to I, we have I+(s) - C,,J = j@(s) - v,[ = 9. so we obtain G,, from r,!* if we replace the 
arc from LY( s ) to t:n by an arc from LT( 9) to 0,. Equation (7%) then implies that 

II - $,(r,i=It -w(r)/ forany<f,Y andany 0 5 r 5 s. (80) 

? 
We have in particular 

P - b I lob) - finI = Id(P) - cl 5 p + 6, 

3 and we can therefore choose &,, E Lr with IQ(P) - li,l = p and IiL,., - ;,,I 5 6. Setting 
o,, = G(&, 4) we see that the pair {~c,. . , , u,-r, C,}, {uo,. . . , c,-~,&,} is admissible ^ 
and that the corresponding pair { oo. . . . , o,,-~, &}, {<ho.. _ . , Q,,-,; uf,} of memory states 
has a total number of at most :V corners. From (SO) we conclude that 

I&(p) - c;,,(p)1 = Id(p) - L”(P)1 = -11. 

This enables us to compute for q = min{p’, 5) > p 

lQq) - $&)I2 - Al2 = J pq &i(r) - vidr)12~r 

J P = 3 < elp - iti, o(r) - G,(r) > dr 

= (q 1 P)~ Iek - &I2 + < e; - &Y 4(p) - Gl(P) > 2 0 3 (81) 

where we have used the assumption (79) in the last inequality. Now q = s is im- 
possible since then (81) contradicts (67), so q = p’ < s. We-are then in the situa- 
tjon of figure 7 if we replace there 4,t,f~ and 4(p), $(s) by &,,ti, and &(p’),+,,(s). If 

dk(P’) = 4(p’) is the first corner of J,, then 4, has less corners than 4 and we are 
done. Otherwise, the maximum distance II& - &,]I, = &,(fi) - d,(F) is realized at 
some corner &cl;) with p’ 5 lj < s, and we conclude from Lemma 4.5 that the pair 

{ UC),... ,%-I, kJ3 {?-Jo,. * * 7 ~‘~-1, iln} and th ere ore f also the original pair { uk}, {vk} is 
reducible. cl 

At this point, let us look at figure 9 for a moment. Lemma 4.3(ii) states that the angle 
Q is greater than r/2, and lemma 4.4 means that el cannot point towards directions in 
the cone indicated by P. We now show that the pair {uk}, { vk} is reducible if ei does 
not lie in the range described by y. 

I , Lemma 4.8 We may a33ume that z = 4(p) - $(s) satisfies 

. 
otherwise, the pair {uk}, { vk} is reducible. 

Proof: We fix any y E U with IyJ = 1. < y.r >= 0 and < y,ei > 5 0; moreover, if x 
and ei are not parallel, we require y to be a linear combination of x and ek. According 

to lemma 4.7, we may assume that G,. e$ as defined in (78) satisfy 

< e; - &.. o(p) - L&(p) > < 0. (83) 



/ 
, 

Figure 9: Restrictions on the second arcs. 

The construction of (ii) and (78) yields the orthogonal decomposition 

ek = ae, - JC7y. a = <e,.e’, >, 

e, = ce, - JiTFy, c = < er,tti > = < e,,e, > . 

as weli as the formula 

(84) 

o(p) - 4kp) = x + (s - p)&. (85) 
With the aid of (84) and (85), the estimate (83) becomes 

0 > < el, - i+., x + (s - p)& > 

= a( 15) + (s - p)c) + (s - p)dCTm - (CIx 

= 1x1 (a(1 - c*) - cdDdC2J - 

I + ts - PH 

- ((S - p) + clxl) (1 - ac - diTFdC7) WI 

Since s - p + c(x) < 0 by lemma 4.3(ii) and 

l-ac-&TPJ1-cZ = +((&T7- JC-2)’ + (U-C)*) > 0, 

we conclude from (86) that ad= < c&?? and therefore Q < c, as the function 
t + t/Jm is increasing on (-1,l). Lemma 4.8 is proved. cl 

To finish the proof of lemma 4.3, we show that we already have exhausted all possible 
cases. To this end, we assume that the pair {uk}, {uk} is not reducible and derive a 
contradiction to (82). With m and i as defined in (75), we know that i > m from 
lemma 4.6, so $i( s) = ti(s). From (15) we see that 

&i(r) = Ui + r-e; for any 0 < r < p’ . - (87) 

The following computation formally expresses that u, is “too far out”. Assumption (82) 
and lemma 4.3(ii) imply s - p < - < r. el >. so we get from (87). (il) 

(S + S)* 2 Iti’,i(S) - U*l* = IL’(S) - O(p) + O(p) - U;I* 
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= )z12+p2-2p < r. eIp > > J12 + (s - p)2 + p2 + 2p( s - p) 

= M2 i- s2 > s2 + 2R6. 

On the other hand, with o(R) = L!(R) = 0 we obtain from (‘il) 

((R-s) + (R-P))2 > lr12 > .1f2 + (s-P)~ > 2R26 + (s-p)‘. 

P .Moving the term (s - p)’ to the left and simplifying we get 

2(R-s)(R-P) > R6. 
2 

We put (88) and (89) together and obtain 

(89) 

b2 > 2(R-s)h > 
R 

-c!Y2, 
R-P 

which is a contradiction since p < p’ 5 R. This completes the proof of lemma 4.2. 

5 Proof of the bounded variation result 

This section IS devoted to the proof of Theorem 2.8. Due to the memory buildup, it 
may happen that J lCI,d(t, r)ldt b ecomes large for some time period although ju’( t ) 1 is 
small during that time. (It does not happen if dim(U) = 1, i.e. in the memory structure 
of the scalar Preisach operator.) This constitutes the essential difficulty, and we have to 
introduce several intermediate quantities attached to the corners of the evolving memory 
state to overcome it. 

For the whole of this section, let us fix a piecewise linear input 21 : [0, T] + U together 
with the corresponding piecewise linear memory state $(t, r) = (Fu)(t,r), and let US 

fix a number r > 0. To estimate J Id,~$(t, r)ldt, we have to study the actual movement 
t I+ ~$(t,r). Let Pi(t), 0 5 i 5 N(t) denote the corners of 4(t, a) counted from the end 
PO(~) = 0, ~0 4(t, -) h as N(t) + 1 corners. The other end ~$(t, 0) = u(t) is not counted as 
a corner, but we use the convention P,vt,)+,(t) = u(t). (We have reversed the numbering 
of section 4 since we now have to do a forward instead of a backward analysis.) For each 
corner pi(t), we define its r-coordinate r;(t) and the unit vector e;(t) pointing towards 
it from Pi+,(t) by the formulas 

ei(t) = 
E(t)- pi+*(t) 

JR(t) - E+l(t)l ' 
piCt) = 4(t7ri(t)) 7 0 5 i I N(t) 9 (90) 

l Actually, rg( t ) is not uniquely specified by (go), so we set 

1 
r0W = o~~Ft IWI - - - (91) 

The last corner P,v(,,(t), which represents the midpoint of the largest currently active 
yield surface, plays a central role in our analysis. We therefore introduce the abbrevia- 
tions 

p(t) = h(t)(t) t a(t) = r,~(t)(t). e(t) = eN(t)(t), (92) 
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so a(t) denotes the radius of the largest currently active yield surface and e(t) the inward 
normal common to all active yield surfaces. We obviously have 

P(t) = u(t) + a(t)e(t). (93) 

We choose a partition 0 = ta < tr < . . . < TV = T of the interval [0, T] such that u’(t) 
is constant in each subinterval (tj, tj+r ). We may obviously assume that u’ # 0 in each 
subinterval (otherwise we just drop such an interval). Passing to a suitable refinement, 
if necessary, we may also assume that, in each subinterval [tj, tj+r], one of the following 
five cases occurs. 

. 
Case (E) (Enlarge) For t E [tI, t,+r] we have 

Figure 10: Enlarge 

a(i) = r&) = ItA(t N(i) = 0, (W 

and a’(t) is a positive constant. 

Case (CM) (C rea e and Move) Here, r;(t) and Pi(t) are constant for i < N(tj), and t 

Figure 11: Create and Move 

N(t) = N(tJ + 1, a(t) = ;(t - tj) 
WI2 

< e(tj), 21’ > ’ 
t E tt,vtj+l] * (95) 

Since a(tj) > 0, the function a has a downward jump at t - tj. 
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Figure 12: &love 

Case (M) (Move) For t E [tI, tj+r] we have N(t) = N(t,) 2 1, and fi(t) and Pi(t) are 
constant for i I N( tI) - 1. The values n(t) and e(t) are implicitly determined by 
le(t)l = 1 and by 

p(t) = u(t) + We(t) = (a(t) - a(tj))e. + a(t,)e(t,) + U(tj), 6-W 

where we have abbrev;ated e. := eN(l,)-l(tl). An elementary computation involv- 
ing the implicit function theorem shows that the function a = u(t) is continous 
and strictly increasing in [t], t,+,]. 

Case (MM) (M ove and Merge) This is the same as case (M) except for the modifica- 

Figure 13: Move and Merge 

tion N(tj+r ) = N(t, j - 1 which takes into account the merge at t = tj+r. 

Case (MDM) (M eve and Double Merge) Here, both corners vanish in the merge. 
The description of case (M) remains valid for t < tj+r, but we have N(tj+r ) = 
N(tj) - 2 2 0 and a(t,+r) > limtlt,+, a(t), so a has an upward jump at t = tj+r. 

Finally, we may assume that on every partition interval (tj, tj+l), either a(t) < r for all 
t, or a(t) > r for all t. 

A partition with all the properties above will be called regular. It is easy to see that 
any partition can be refined to a regular partition, and that any refinement of a regular 
partition is again a regular partition. 
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Figure 14: 34ove and Double Merge 

Next, for any regular partition {t,} we want to define the activity period Ii of the 
corner Pi(tj ) as the time period prior to t, during which Pi or a corner merged into Pi 
has moved. This is achieved as follows. Set I,(to) = Ii(O) = 0 for any i 2 0 and define 
recursively for j = 1, . . . , hi 

Ii(tj+*) = lt(tj) 7 i < N(t,+1> 

I,V(t,+,)(tj+l) = (tj~t~+l) U U Ik(tj) 7 (97) 

kZN($+1) 

Ii(tj+l) = 0, i > N(tj+l). 

We see in particular that in the cases (MM) and (MDM), the activity period of the last 
corner swallows up the activity periods of the corners which merged into it. It is easy 
to see that 

U LCtj) = [o,tj] 7 0 5 j < AlI, (98) 
i?O 

and that, for any i # k and any j, 

Is(tj) U Ik(tJ) = 8. (99) 

Next, we denote by K(tj) the input variation during the activity period Ii( namely 

Vttj) = J, (t ) l”‘Ct)l CA! * WO) 
1 J 

Because of (98) and (99), we have 

Cli;(tj) = / ”  IU’(t) lU!t, 

J 

0 5 j < Ad. (101) 

i>O 0 

i 

It turns out useful to extract from the memory state t#(t, s) the numbers 

&Ii(t) = r;(t) 1  e;(t) -  G-l(f) I * 

hIi = 0. otherwise. 

1 < i < *V(t) , 

(102) 

which represent the smallest input variation capable of producing the corner Pi(t). 
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Finally, we want to define the contribution to the output variation related to the 
movement of the comer Pi(t). Since a,ti(t. r) = 0 if r > a(t) and 

@(f-r) = u(t) + re(t). if 0 < r < u(t) , (103) 

we are interested in the variation of e(f) in the time period where r < a(t). We therefore 
define the index set J,‘(r) by 

” J/(r) = { k : @k.fk+l) c IiCfJ), a(t) 2 r on (tk.tk+l) } 7 VW 

and the contribution to the output variation d,( tl) by 
4 

di(t,) = C lepk+l) - e(t)]. 

&J:(r) 
(105) 

The following lemma, which relates the various quantities just defined, constitutes the 
key to the proof of Theorem 2.8. 

Lemma 5.1 For every regular partition we have 

wt,) L WJ) 1 

J;‘(r) = 0. iff,(tJ) 5 r 

(106) 

(107) 

di(t,) 5 (; - +)) W,L ifr;(tj) > r ’ .(108) 

for any j = 1,. . . , K and any i 2 0. 

Proof: We use induction over j. It is easy to see that (106) - (108) hold for j = 0 (or 
j = 1 if u(0) = 0). L e us suppose now that (106) - (108) hold for some j 2 0 and all t 
i > 0. For i > N(fj+i) we have from (97) that -bli(tj+l) = K(tj+l) = 0 and J:+‘(r) = 0, 
hence (106) - (108) hold for j+l in place of j. For i < N(tj+l) we have Ii(tj+l) = li(tj), 

r;(tj+r) = r;(tj) and e;(tj+l) = e;(tj), h ence (106) - (108) with j replaced by j + 1 follow 
from the induction hypothesis. It remains to perform the induction step for i = N(tj+l). 

We consider the five cases (E), (CM), (M), (MM) and (MDM) separately. 

(E) We have i = 0, so Mi(tj+l) = 0 and there is nothing to prove for (106). If 
ro(tj+r) I r, then j 6 J;+‘(r) and ro(tj) < r, so J:+‘(r) = J,‘(r) = 0. If 
ro(tj+r) > r, then Jd+l (r) = J;(r) U {j}. In this case we have 

"(f,+1) 
+J+l) = ro(t,+l) 7 

u(tj) 
e(fj) = -  

J ro(tj) ’ 

hence 

le(fj+l) - 4t~)l I &l”ttj+l) - u(tj)l * 
8 Formula (105) then gives 

h(tj+lJ 5 dOttj) + &l”(fj+l) - u(tj)l * 
J 

Together with the identity V (t 0 J+i) = tb(t,) + lu(tj+l) - u(tj)) and the induction 
hypothesis, we obtain the induction step for (108) in both cases rc(tj) = r and 
To(tj) > r. 
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(CM) One immediately checks from figure 11 and the definitions that Ii(tj+l) = 
(t,,t,+i), ‘jf,(t,) = x(t)) = ]u(t,+i) - I] and J,'"(F) = 8, so (106) - (108) 
hold for j + 1. 

(M) Since N(tj+l) = N(tl) a.nd a(t) = Fi( t) in [t,, t,+l], the basic identity (97) can be 
rewritten for t = t,+i as 

ri(t,+i)(et(t,+l) - ei-l(t,+l)) = rt(t,)(ei(t,) - ei-l(t,)) - (u(tj+l)- u(tj)), 

and ( 103) yields 

We have I,( t,+, ) = IiCtj) U ((tj)9(tj+l))v so 

‘:(‘J+l) = ‘:CtJ) + (“(t]+l) -  U(tj)( 7 (110) 

and the induction step for (106) follows easily. In the case Fi(tj+l) 5 r, the 
induction step for (107) and (108) is trivial since J!+‘(r) F J;‘(r) = 0. If, on the 
other hand, ri(t,+i) > r, then J:“(F) = J:(r) U {j}: hence 

dt(tj+l) = d,(t,) + W,+d - e(t,)l. (111) 

Another reformulation of (97) at t = t,+I gives 

, F;(tj+*)(e(tj+l) - e(t,)) = (ri(tj+l) - ri(tj))(ei-l(tj> - G(tj)) - (“(tj+l) - dtj)) 7 

(112) 

which implies 

lettj+l) - e(tj)l 5 & - 
( 

’ 
I ‘ittj+l) 

) Mi(tj) + F,ttf+,)lu(tj+l) - U(tj)l. 
t 

The induction hypothesis for’ri(tj) > T (the other case is analogous) and (110) 
and (111) yield 

di(tj+l) 5 di(tj) + - - 
( 

1 

ritt,) 

’ (S - Fi(k+lI, 

ri(tj+l) ) 
W,) + r.(k+,) l”Ctj+I) - u(tj)l 

W,+,) - (f - ri(t+,;, l”Ctj+l) - uCtj)l 9 

which completes the induction step in the case (M). 

(MM) Now we have t 

attj+l) = ri(tj+l) = ri(t,), Gj) = ei+l(tj), e(tj+l) = ei(tj+l). 

The basic identity (97) becomes at t = t,+i 

“ttj+l) - u(tj) + ri(tl+i)ei(t,+i ) = (Fi(tj) -Fi+~(tj))ei(tj) + ri+*(tj)ei+l(tj). 

(113) 
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Using ri(t,+l) = r,(t,). e,-r(t,+,) = e,-i(t,), we easily obtain from (113) that 

.Wf,+, ) 5 -W,) + .M+df,) + I”(tJ+l> - 4QI * 

We have by definition that I,(t,+i) = I,(t,) U I;+l(t,) U (tj,tj+l), hence 

(114) 

KCtJ+l) = l’i(t~) + t:+l(t~) + Iu(tj+*) - U(t~)l9 (115) . 
E 

. 

and the induction step for (106) follows easily from (115) and the induction hy- 
pothesis. Concerning (107) and (108), the case ri( tl) < r is again triviaI, assume 
now that ri(t,) > r. We have 

J,‘+‘(r) = J,‘(r) U J:+l( r) U {j} 

di(tJ+l) = diUJ) + di+l(tJ) + le(tj+l) -e(tj)l. (116) 

We rewrite (113) as 

ri(tJ+l>(etfj+i> - eV,H = tri(t,> - r,+l (tj))(ei(t,) - ei+l(tj)) - (u(tj+l) - u(tj)) 7 

therefore 

‘e(tJ+l)-e(tJ)’ ’ r, Fci 1 - & 
I+ J ’ J 

Mt+l(tJ) + r,~,f+~)l~(tj+~)-u(tj)l. 
I 

the induction hypothesis together with (115) and (116) now yields the induction 
step similarly as in the case (M). 

(MDM) We have obviously A4i( tj+i ) = ,%I;( tJ) and 

k=O 
(117) 

hence 

and the induction step for (106) follows easily. For (107) and (108), the case 
r;(tj+i) I r is as simpIe as in the previous situations (M) and (MM). If r;+i(t,) _< 
r 5 r;(tj+i), then J,!“(r) = J;‘(r), h ence di(tj+i) = di(tj), and the assertion 
follows immediately from the induction hypothesis and (118). The last case to be 
considered arises when r 5 ri+2(tJ) < r;+r(t,). From (117) we get 

J!+'(r) = {j} u fi J/+,(r), 
k=O 

di(tj+l) = le(tj+l) -  e(tJ)l + 2 di+k(tj)m 

k=O 
(119) 

The basic vector identity (97) at t = t,+i becomes 



therefore 

le(t,+d - f(h)1 2 ( r’ ;(t,) - r,+,l(t.) ) hfi+2(tj) + 
'-+ I I 

f, 
I+ 

fct,) I"Ct,+l ) - u(ti)l . 

The induction hypothesis together with (118) and ( 119) now completes the induc- 
tion step similarly as in the cases (M) and (MM). 

Lemma 5.1 is proved. o 

Proof of Theorem 2.8 First, from the description of the five cases above it is easy 
to see that t H c$( t, r) is absolutely continous in each partition interval of a regular 
partition. Next, we note that Lemma 5.1 implies that 

t 

for any i 2 0 and any j 2 1. From (103) - (105) and (120) we obtain for any regular 
partition 

K-l 

c w,+1 ,r) - qqtg)l = c c Iwk+lJg - 4hd>l 
I=0 20 ~EJ,~-’ tr) 

Since we may arbitrarily refine the partition, the assertion of Theorem 2.8 is proved. 
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