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A B S T R A C T

In recent years, deep learning has made substantial improvements
in various fields like image understanding, Natural Language Pro-
cessing (NLP), etc. These huge advancements have led to the release
of many commercial applications which aim to help users carry out
their daily tasks. Personal digital assistants are one such successful
application of NLP, having a diverse userbase from all age groups.
NLP tasks like Natural Language Understanding (NLU) and Natural
Language Generation (NLG) are core components for building these
assistants. However, like any other deep learning model, the growth
of NLU & NLG models is directly coupled with tremendous amounts
of training examples, which are expensive to collect due to annotator
costs. Therefore, this work investigates the methodologies to build
NLU and NLG systems in a data-constrained setting.

We evaluate the problem of limited training data in multiple sce-
narios like limited or no data available when building a new system,
availability of a few labeled examples when adding a new feature to
an existing system, and changes in the distribution of test data during
the lifetime of a deployed system.

Motivated by the standard methods to handle data-constrained set-
tings, we propose novel approaches to generate data and exploit la-
tent representations to overcome performance drops emerging from
limited training data. We propose a framework to generate high-qualit-
y synthetic data when few training examples are available for a newly
added feature for dialogue agents. Our interpretation-to-text model
uses existing training data for bootstrapping new features and im-
proves the accuracy of downstream tasks of intent classification and
slot labeling. Following, we study a few-shot setting and observe that
generation systems face a low semantic coverage problem. Hence, we
present an unsupervised NLG algorithm that ensures that all relevant
semantic information is present in the generated text.

We also study to see if we really need all training examples for
learning a generalized model. We propose a data selection method
that selects the most informative training examples to train Visual
Question Answering (VQA) models without erosion of accuracy. We
leverage the already available inter-annotator agreement and design a
diagnostic tool, called (EaSe), that leverages the entropy and semantic
similarity of answer patterns.

Finally, we discuss two empirical studies to understand the feature
space of VQA models and show how language model pre-training
and exploiting multimodal embedding space allows for building data
constrained models ensuring minimal or no accuracy losses.
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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

The era of Deep Learning (DL) has led to substantial progress in mul-
tiple fields like object detection [135], image and speech recognition
[130], neural machine translation [163] and many more. Deep mod- advancements in

deep learning
translating to better
user experience

els are leveraging vast computing resources and enormous training
datasets to achieve the state of the art performances in numerous ap-
plications [5]. Among others, personal digital assistants like Apple’s
Siri1, Amazon Alexa2, and Google Assistant3 by Google are successful
deep learning applications. These assistants have become an integral
part of our lives, helping us perform several daily tasks like booking
a taxi, making appointments, and taking dictation at almost on-par
human accuracy. NLP tasks like NLG and NLU are core components for
building these assistants, and the advancements in these components
directly translate into accuracy improvements.

However, the development of NLG and NLU systems generally re-
quires large labeled datasets, which makes training these systems
an expensive affair. The vast amount of training examples enable a
model’s learning such that it generalizes well at test times. However,
we need to employ human annotators who annotate training pairs
for training models, which makes this complete process expensive in
terms of time, effort, and money. Usually, researchers use Amazon data collection is an

expensive affairMechanical Turk (AMT)4 for data annotations and pay these annota-
tors according to the difficulty of the task. Some tasks like VQA [7],
an image conditioned NLU, employ ten annotators for each training
sample which further increases the annotation cost.

Therefore, data collection seems to be a bottleneck to designing
DL applications, thus, limiting its use to mere big corporations. This
limitation motivates this thesis in which we ask,

Can we develop general methods to build data-constrained
NLP systems?

In other words,

Can we develop NLU and NLG systems with limited labeled
data?

1 https://www.apple.com/siri/
2 https://developer.amazon.com/en-US/alexa
3 https://assistant.google.com/platforms/speakers/
4 https://www.mturk.com/
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4 introduction

1.1 motivation

Data collection is an integral part of any Machine Learning (ML) or
DL model’s learning, but the expenses involved in the collection in-
hibit the development of new features. One can manage these costs
by working with a data-constrained setting, a setting where we use
limited training examples. There are multiple scenarios for a data-
constrained setting, such as limited non-English training datasets, lit-
tle task-specific datasets, etc.

For the former, Bender [13] highlighted that most of the recent
NLP research is based on 10-20 languages whose datasets are read-
ily available, focussing primarily on English. Further, we have very
limited datasets for threatened languages such as Yongning Na, a
Sino-Tibetan language [1]. The language has only 40k speakers withlimited training

datasets for
non-English

languages

only 3k written and unlabeled sentences. Therefore, due to the data-
hungry nature of DL models, we can achieve high performance only
for the high-resource languages. However, low-resource languages
have performance issues because of the data shortage for low-resource
languages [61].

In addition to the limitation of language-specific datasets, researche-
rs face the problem of task-specific datasets. One such example is the
work by Shah et al. [157], who showed that VQA models struggle with
rephrasings at test time due to the absence of rephrasings in the train-
ing split of their dataset. Another real scenario would be the additionlimited task-specific

datasets of new functionality in a dialogue agent [69], where we have min-
imal or no training data during the feature launch. Therefore, in a
data-constrained setting, DL models show poor performance, making
data collection a bottleneck to designing successful and scalable DL

applications.
In this work, we aim to build DL models in a data-constrained set-

ting. We mainly focus on NLP, a vast application area of DL. Language
technology is an emerging field with many real-world applications
like dialogue agents. Users rely on dialogue agents, also known aspersonal digital

assistants emerging
as friendly

companions

personal digital assistants, to carry out various daily tasks and regard
them as their emotional companions. In a study5 from COVID times,
users request Alexa to control their smart home appliances like tele-
visions & air-purifiers around 860000 times per day. They spend most
of their time with these agents to seek personal touch, like requesting
Alexa crack a joke 9000 times a day in 2020 or asking her to laugh
around 12000 times a day. Further, Alexa is optimized to process mul-
tiple modalities. One such example is a search on the Amazon Echo
device, which returns visual responses to enhance the voice replies
from Alexa6.

5 https://www.mumbailive.com/en/tech/alexa-what-are-some-of-the-most-popular-
questions-asked-by-indians-in-2020-61351

6 https://www.geekwire.com/2018/getty-images-visual-assets-will-enhance-alexa-
searches-amazons-echo-devices-screen/



1.2 research questions and goals 5

The above user queries and other interactions fall under the um-
brella of NLU where these assistants understand the textual input, pro-
cess it, and generate an answer (NLG) for the corresponding query. In
this thesis, we aim to build these two components in a data-constraine-
d setting. We focused on conditional NLU, where we studied the well-
known task of VQA. We choose VQA due to its wide adoption in the
research community, broad interest in industrial and commercial ap-
plications, and its implicit complexity that comes from integrating
two different modalities; images and text.

A vast literature exists for handling data-constrained scenarios [61],
such as data augmentation, distant supervision, data selection, ex-
ploiting feature representations, etc. These methods leverage addi-
tional sources or existing model artifacts and share the motivation
to overcome the lack of labeled data. Here, data augmentation [34,
184] is one of the straightforward solutions when you only have lim-
ited labeled data with no unlabeled examples. Another scenario is
the availability of small unlabeled corpora, where weak or distant su-
pervision [179, 200] enables the model to learn by using both labeled
and unlabeled datasets. Instead of using the entire training data, re- methods to handle

data-constrained
settings

searchers have also explored data selection methods [93] which picks
the most valuable examples for training the model while ensuring
minimal or no accuracy losses.

Despite their excellent results, data augmentation and distant su-
pervision can only generate and extend task-specific training data.
Therefore, they do not apply to scenarios when training and test dis-
tributions differ. Several works have explored methods of exploiting
feature representations [35, 157] to handle such systems. Chapter 2

discusses each of these methods in more detail. We will explore some
data-constrained settings scenarios and leverage the above-discussed
dimensions to solve problems emerging from limited training data.

In the following sections, we summarize our research questions
and the corresponding goals that we achieved as part of this thesis.

1.2 research questions and goals

The main research question of this thesis is:
Q:

Can we develop NLU and NLG systems with limited labeled
data?

The above question can be decomposed into five sub-questions
with corresponding goals:

• Q.1 :
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Can we generate high-quality synthetic training examples
with limited parallel data?

Goal: Check the feasibility of using DL models to generate para-
phrases without parallel data. Design a model to generate high-
quality synthetic data for bootstrapping new features with lim-
ited training data. an extensive evaluation of generated para-
phrases so that they help the downstream tasks of intent classi-
fication and slot labeling.

• Q.2 :

Can we minimize semantic information loss when training
NLG systems with minimal training data?

Goal: Investigate few-shot data-to-text (a task of generating nat-
ural language description about table) generation. Investigate
weak-supervision by leveraging the unlabeled tables. Design an
unsupervised algorithm that minimizes semantic information
loss in a few-shot setting. Provide quantitative and qualitative
evaluation of the proposed model.

• Q.3 :

Is “all you need is more training data” always true?

Goal: Analyze the already available ground-truth answers for
each image-question pair. Use the entropy and semantic simi-
larity of these answers to measure the informativeness of each
example. Provide a quantitative study to show that we can re-
cover a significant portion of model accuracy using a subset of
the most informative training examples.

• Q.4 :

Can we exploit feature embedding space to overcome dataset
constraints?

Goal: Conduct empirical studies to understand the feature space
of yes/no and non yes/no question types for VQA models. Presen-
t an extensive study of using yes/no questions to answer non
yes/no ones (and vice-versa) and propose easier annotation meth-
ods for building future VQA datasets.

• Q.5 :
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Upto what extend transfer learning reduce data dependence in
case of data distribution shifts?

Goal: Investigate the role of a language encoder in making VQA

models robust to lexical variations. Empirically show that large
pre-trained Transformer-based language models induce similar
feature embeddings for the rephrasings by strongly emphasiz-
ing on keywords.

1.3 contributions

In this section, we discuss the already published contributions of this
work. We summarize them into two broad areas: a) Methods for auto-
matic data generation and selection, and b) Exploiting latent embed-
ding space to overcome data constraints.

1.3.1 Methods for automatic data generation and selection

This part starts with the scenario when we only have limited labeled
data. As discussed in Section 1.1, data augmentation is the most
straightforward solution. We propose a novel method of data gen-
eration such that we can use the generated data to augment limited
training examples.

1.3.1.1 Data Augmentation

We study a scenario of adding a new feature to a dialogue agent
where minimal training data of this new feature is available. We de- interpretation-to-

text modelsign a neural-based paraphrase generation model that generates high-
quality synthetic data. We introduce an interpretation-to-text model
for paraphrase generation that uses existing training data for boot-
strapping new features in task-oriented dialog systems. Our work is
published in COLING 2020 [69].

1.3.1.2 Improving Distant Supervision using Unsupervised NLG algorithm

As an extension to the problem discussed in Section 1.3.1.1 where we
have limited training examples from one intent, we study the data-
constrained scenario where all classes in a labeled dataset have few
instances. A model learned in such a few-shot setting suffers from a
low semantic coverage problem, where important input table values
are missing in the generated sentences. To overcome this problem, we
use a small unlabeled dataset and employ distant supervision to gen-
erate sentence outputs for these unlabeled tables to augment limited
training examples. However, the problem of low-semantic coverage still
persists. Therefore, we develop a “search-and-learn” algorithm that “search-and-learn”

algorithm
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exploits pre-trained language models (e.g., T5[143]) to fill the miss-
ing slots and improve the semantic coverage. Our work is published
in AAAI 2022 [74].

1.3.1.3 Inter-annotator agreement

The above approaches use the entire training datasets, and depending
on the availability of unlabeled data, we either augment it using data
augmentation or use distant supervision. Using all training examples
is justified when we have a few training examples. Nevertheless, dur-
ing the availability of enormous amounts of training examples, we
need to check if all the examples are helpful or not. Selecting the
most informative subset of training data will allow us to train the
models with minimum compute resources and considerably reduce
the training times.

We study the above scenario for VQA systems and propose a data
selection tool that selects the most informative training examples to
train VQA models. In VQA datasets, each image and question pair con-
tains ten ground-truth answers from ten human annotators. We de-EaSe: a diagnostic

tool based on answer
diversity

sign a diagnostic tool called EaSe that leverages inter-annotator agree-
ment of answers to classify the difficulty level of an image-question
pair and select the smallest & most informative training examples.
EaSe, based on entropy and semantic similarity of annotator answers,
is published in NAACL 2021 [73].

1.3.2 Exploiting latent embedding space to handle data constraints

The methods mentioned above extend and generate only task-specific
training data. However, in real-world scenarios, one may face the
problem of distribution shift where we can not use these methods.
In the next part, we will discover such scenarios and exploit latent
representations to overcome data constraints.

1.3.2.1 Feature Space

We study the widely used VQA 2.0 [56] dataset that contains 38%
of questions with two answer classes (Polar questions: Yes/No) and
the remaining ones spreading over 3,000 classes such as numbers &
nouns (Non-Polar questions). We analyze the feature spaces of thesepolar/non-polar

feature space
analysis

two question types (Polar and Non-Polar). Our experiments show
that we can answer non-polar questions using features induced by
the model trained exclusively on polar questions referring to seman-
tic concepts in non-polar questions (and vice-versa). Our work is pub-
lished in ICPR 2020 [71].
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1.3.2.2 Transfer Learning

We study the sensitivity of language encoders to question rephrasings
in VQA models. One solution is to collect even larger datasets that vqa models robust to

lexical variationsaccount for these rephrasings. As a result, more time, human effort,
and cost investments are needed to develop these models. Therefore,
we a study showing that the use of large pre-trained Transformer-
based language models can circumvent the requirement of additional
data collection for building robust language encoders. Our work is
published in EMNLP Findings 2020 [70].

1.4 thesis structure

We have organized this thesis into five sections: Introduction, Back-
ground and Foundations, Methods for automatic data generation and
selection, Exploiting latent embedding space to handle data constraints,
and Conclusion and Future Work.

1.4.1 Background and Foundations

Chapter 2 presents the relevant background to understand the ap-
plication of DL in NLP. We provide a detailed discussion about the
two tasks, namely NLG and NLU. We also discussed some methods
researchers use to design systems in data-constrained settings.

1.4.2 Methods for automatic data generation & selection

Chapter 3 introduces a scenario in which minimal training data of a
new feature is available for a dialogue agent. A novel method of gen-
erating paraphrases, independent of any parallel data, is explained.
The experimental results show that the proposed interpretation-to- data augmentation

text model improves the accuracy of downstream tasks of intent clas-
sification and slot labeling. The method obtains significant accuracy
gains when applied to a commercial dialog system.

Chapter 4 presents an unsupervised algorithm for overcoming low
semantic coverage problem in few-shot data to text systems. The pro- unsupervised nlg

algorithmposed method recovers a majority of missing input table slots on sev-
eral data-to-text datasets, largely alleviating the low coverage prob-
lem and closing the gap between few-shot and fully supervised learn-
ing.

Chapter 5 presents leveraging inter-annotator agreements to select
the most informative training examples. It explains the role of entropy inter-annotator

agreementand semantic similarity of annotator answers to choose the smallest
and most informative training subset that recovers a significant por-
tion of model accuracy.
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1.4.3 Exploiting latent embedding space to handle data constraints

Chapter 6 presents the analysis of feature embedding space for VQA

models. We conduct an extensive study of answering non-polar ques-feature space

tions using polar-feature space if the polar questions used for training
refer to the semantic concepts in the non-polar questions. The results
indicate that polar questions, which are easier to annotate via crowd-
sourcing, can be used to augment future VQA datasets.

Chapter 7 presents the limitation of current VQA models to gen-
eralize for lexical variations at test times. It shows the use of largetransfer learning

pre-trained Transformer-based language models in inducing similar
feature embeddings for the rephrasings by strongly emphasizing on
keywords. The results establish that replacing the language encoder
with a pre-trained model makes VQA models lexically robust.

1.4.4 Conclusion and Future Work

Chapter 8 presents the conclusion and Chapter 9 explains about some
promising future directions.
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B A C K G R O U N D A N D F O U N D AT I O N S

In this chapter, we provide the background about DL in the field of
NLP. The area of NLP has progressed from traditional ML models to
recent Transformer-based models that have sparked progress in var-
ious applications. Among other successful NLP applications, digital
personal assistants have gained huge popularity (Section 1.1), and
the development of NLG and NLU components explains their good
performance. Therefore, this chapter intends to introduce NLG and
NLU architectures to the reader and make them aware of the state of
the art (SOTA) in this field of research.

We organize this chapter as follows: Section 2.1 explains the deep
learning for NLP. We demonstrate the progress of NLP by discussing
both traditional and current SOTA approaches. This section explains
important deep learning architectures namely Convolution Neural
Networks (CNN) (Section 2.1.1), Recurrent Neural Networks (RNN)
(Section 2.1.2) and Transformers (Section 2.1.3). We will then discuss
about NLG in Section 2.2. This section will mainly focus on traditional
approaches for data-to-text generation; the main focus for this work.
We conclude this section by providing a brief overview of the model- chapter structure

ing approaches, the evaluation, and common datasets for data-to-text
systems. Section 2.3 describes NLU and will introduce multimodal-
NLU i.e., the task of image-conditioned question answering (VQA). We
will discuss VQA datasets, their modeling approaches, and their eval-
uation metric. After explaining these components, we will discuss
data-constrained NLP in Section 2.4. Finally, we will conclude this
chapter with a summary in Section 2.5.

2.1 deep learning for nlp

DL is a subfield of ML to understand the nature of human (and other
forms of) learning and build learning capabilities in computers. Sim-
ilarly, Neural Network is also a subfield of ML and is the backbone
of deep learning algorithms [55]. Neural networks [119] mimic the
human brain and are inspired by the process in which biological neu-
rons signal to one another. These networks are comprised of an input
layer, output layer, and one or more hidden layers and are the core
behind the deep learning models, where the word “deep” refers to
the depth of layers in a neural network. These networks are known
for their representational capabilities and have shown great success in
various fields like natural language processing [193], computer vision
[177], healthcare [126], etc.

13
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NLP deals with building computational algorithms for the auto-
matic examination and representation of human language. These al-
gorithms aims to teach computers the ability to perform complex nat-
ural language-related tasks like question answering, document un-
derstanding, machine translation, etc. The immense growth of NLP

has allowed the release of many successful applications like Google’s
search engine1, Amazon’s Alexa2, Grammarly3, etc., which many users
use for the easiness of their daily lives.

Before the recent approaches, most methods employed shallow ML

models, like logistic regression [33] and SVM [31], to solve NLP prob-
lems. These traditional approaches trained on very high dimensional
and sparse features, leading to issues like the curse of dimensionality.
Furthermore, traditional approaches used hand-crafted features, mak-traditional nlp

ing the process both time-consuming and expensive. Neural networks
handled some of these limitations by introducing the distributed rep-
resentations of word [14] and enabling an automatic feature represen-
tation learning.

In 2013, Mikolov et al. [123] released two models to construct high-
quality distributed word representations, also known as word2vec,
which eventually sparked the progress in deep learning for NLP. The
two neural-based models, CBOW and skip-gram, are approaches to
constructing word embeddings. The objective for CBOW is to com-
pute the conditional probability of a target word given the context
words in a given window size. For skip-gram, the goal is to pre-
dict the conditional probability of context words given a central tar-
get word. The intuition behind word2vec is that words with similarword2vec

meanings tend to occur in a similar context, and therefore similar
words will have similar vector representations. This way, the neural
approach encoded the word semantics within the word representa-
tions. For both models, the dimension of word embeddings is deter-
mined by computing the prediction accuracy. Researchers used these
pre-trained word representations to encode input sequences for mul-
tiple tasks like sentence classification, sentiment analysis, etc.

Despite achieving good performances on multiple NLP tasks, these
vector representations hold some limitations. Their window-based
approach considers only a few words since the model size will in-
crease with more oversized windows. The use of smaller window
sizes produces similar embeddings for contrasting words like “bad”
and “good” [164], which is not desirable for tasks like sentiment anal-
ysis [181] where differentiation plays an important role. Additionally,
the fixed window neural model limits the context, which leads to
incorrect predictions. These limitations motivated the introduction of

1 https://www.google.de/?hl=de
2 https://developer.amazon.com/en-US/alexa
3 https://www.grammarly.com/
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two crucial neural architectures, namely CNN and RNN, that processed
inputs of any length without increasing the model size.

CNN and RNN are the two basic network architectures that powered
the progress in deep learning. CNN is mainly used for image process-
ing, and RNN is used for NLP. Since the introduction of these basic
architectures, researchers have worked on their advancements and
have applied these networks to solve multiple tasks like text classifi-
cation [104], image recognition [158], etc. We briefly introduce these
architectures and discuss their variants in the following sections.

2.1.1 Convolution Neural Networks

A CNN is a deep learning architecture designed to analyze visual im-
ages. CNN performs successive convolution operations over the im-
ages to capture their spatial representations. CNN consists of two
main components feature learning and output layer depending on
downstream tasks. The earlier layers of CNN perform feature learn-
ing by learning low-level features like edges and corners, such that
higher layers use these features to classify the input image. Each con- convolution neural

networksvolution layer uses the output from the preceding layers and learns
to combine these low-level features with learning a higher level of
abstraction. Like traditional neural networks, the outputs from each
layer are passed through non-linear activation functions like sigmoid,
tanh, or relu. These activation functions increase model expressive-
ness and prevent the values from exploding. CNN also have pooling
layers to reduce the spatial dimensions of intermediate image repre-
sentations.

After feature learning, the convolution matrices are flattened into a
vector, and fully-connected layers are added to the network for final
classification. For classification task, the final layer is a softmax layer,
which converts the activations into a probability distribution, s.t., all
values add up to 1, over the label space.

For many computer vision tasks, these CNN have turned out to be a
natural choice [66, 87, 158]. One of the first researchers to apply CNN

based frameworks to NLP problems was Collobert and Weston [29],
who used a look-up table to transform words into a vector represen-
tation and applied 1-D convolutional filters to produce a feature map.
Following, they applied a max-pooling operation to obtain the final
sentence representation. In a follow-up study by Collobert et al. [30],
they proposed a general CNN-based framework that solves many NLP

tasks. Despite the great success of CNN in the succeeding literature
[78, 198], the models hold some shortcomings.

CNN are data extensive models, i.e., they need substantial training
examples due to many trainable parameters [193]. Further, CNN strug-
gle to model long-distance contextual information and fail to preserve
the sequential order in their representations [65, 78]. RNN, discussed
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in Section 2.1.2, address these limitations and are designed to model
sequential information for creating final sentence representations.

2.1.2 Recurrent Neural Networks

RNN [46] is a deep learning architecture designed for processing se-
quential data. A sequential data cannot see future events and takes
past states into account while processing the current state. Common
types of sequential data are natural language and time series. Unlike
weights in traditional neural networks that don’t capture the notion of
similarity between input words, RNN have weights shared at all time
steps. RNN work well for shorter sequences, but they fail to capture
long-term dependencies for longer sequences. The main challengerecurrent neural

networks for RNN is the vanishing gradient problem [62]. A vanishing gradient
problem refers to a case when gradients during backpropagating be-
come small due to repetitive multiplications and, therefore, it makes
RNN incapable of learning long-term dependencies.

This shortcoming of RNN leads to the introduction of Long-short
Term Memory (LSTM) [63]. LSTM overcome the vanishing gradient
problem by introducing different gates and a cell state (c). The celllong short-term

memory cells state stores long-term information, and multiple gates control the
erasing, writing, and reading of information from the cell. The three
gates of LSTM are forget gate, input gate, and output gate. The three
gates are :

it = σ(wi[ht−1, xt] + bi), (2.1)

ft = σ(wf[ht−1, xt] + bf), (2.2)

ot = σ(wo[ht−1, xt] + bo), (2.3)

Here, it, ft and ot represent the input, output and forget gate. It uses
the sigmoid activation function, which clamps values between 0 and
1. A value of 0 for forget gate encourages the network to not for-
get anything, thus allowing LSTM to preserve information for longer
times. Each gate has its own sets of weights, and biases like wf,bf are
weights and biases for forget gate. xt refers to the input at the current
timestep, and ht−1 refers to the previous hidden state input.

We use these gates to decide the output of LSTM. The cell state
equations are:

c′t = tanh(wc[ht−1, xt] + bc), (2.4)

ct = ft ∗ ct−1 + it ∗ c′t, (2.5)

ht = ot ∗ tanh(ct), (2.6)

here c′t, ct are the intermediate cell state and cell state respectively. ht

refers to the hidden state at time step t, which is passed to the next
time step as input.
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Gated Recurrent Units (GRU) [27] is another RNN variant. GRU com-
bines forget and input gates into a single update gate. It also merges gated recurrent

unitscell state and hidden state into one single state. GRU also handle van-
ishing gradient problems and are widely used because of their small
size (fewer parameters).

Researchers showed the success of RNN in various applications
like Lample et al. [90] proposed to use bidirectional LSTM for NER
tasks, Wang et al. [181] proposed the encoding of entire tweets us-
ing LSTM and used the hidden states for predicting sentiment polar-
ity. RNN has also been used in challenging applications like gener-
ating natural language (NLG) and conditional language understand-
ing (NLU). Sutskever, Vinyals, and Le [169] proposed a general deep
LSTM encoder-decoder framework that maps one sequence to an-
other. Here, the encoder is an LSTM that encodes the “source” se-
quence as a fixed-size vector, and the vector is used as an initial
hidden state for another LSTM called decoder. Here, the sequence on
the encoder side is task-specific, like text in the original language
for machine translation, the question to be answered for question
answering, and the table to be summarized for tabular summariza-
tion. The encoder-decoder network is trained end to end using back-
propagation through time [186]. The decoder generates one token applications of

seq2seq architecturesat every time step and updates the hidden state with the last gen-
erated token during inference. Vinyals and Le [175] employed the
same encoder-decoder framework to model human conversations. Re-
searchers also explored conditioning on visual inputs inspired by
conditioning on language inputs. One such task is image captioning
[176], which is considered a translation problem with the only differ-
ence across multiple modalities, namely from visual to text modal-
ity. Visual Question Answering [7] is another example of an image-
conditioned question answering task.

The traditional encoder-decoder frameworks force the last hidden
state to encode the entire input information, increasing the difficulty
of modeling long-term dependencies. Bahdanau, Cho, and Bengio
[11] reported this problem for machine translation and applied at-
tention mechanisms which showed good performance, especially for
long sequences. The attention mechanism uses a direct connection to
the encoder to focus on specific parts of the source sequence on each
decoder step. In other words, attention is a technique to compute the attention mechanism

weighted sum of values (encoder hidden states) dependent on the
query (decoder hidden state). Motivated by the success of attention
to improve translation systems, researchers have used attention in
CNN and RNN based models which improved performance for vari-
ous tasks like summarization [150], sentiment analysis [182], image
captioning [190], etc.

However, CNN and RNN fail to robustly model long sequences and
suffer from the sequential processing during the encoding of the in-
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Figure 2.1: Architecture for the Transformer model (Image Source: [173]).

put sequence. Furthermore, the recurrence behavior of RNN makes
them extremely slow and is not parallelizable. Vaswani et al. [173]
addressed these problems in the Transformer model that uses only
attention to capture the relationships between input and output. We
will discuss the Transformer model in the following sections.

2.1.3 Transformers

Transformers by Vaswani et al. [173] is a novel architecture that relies
entirely on self-attention to compute input and output representa-
tions. Each word attends to its neighboring words to encode its rep-
resentation. Unlike RNN or CNN, Transformers are fast, parallelizable
and capture the long-term dependencies. Transformers have shown
huge improvements in various NLP tasks, especially for pre-trained
models [138]. They have been widely adopted in other fields like com-
puter vision [16, 41], audio processing [21, 39], etc.

Figure 2.1 shows the Transformer architecture, a sequence-to-sequence
(Seq2Seq) model [169] with a stack of identical encoders and decoders.
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As mentioned in Section 2.1.2, attention is a technique to compute
the weighted sum of values dependent on the query. Instead of ap-
plying a single attention function, the Transformer uses multi-head
attention, i.e., using different sets of learned projections to project
original queries, keys, and values and add them to the desired dimen-
sional representation. This way, each attention head learns different transformer

architecturelanguage characteristics like semantics, syntax, etc., to produce rich
representations at the end. Each encoder block includes multi-head
self-attention followed by a layer of the feed-forward network. In ad-
dition to these two sub-layers, the decoder contains multi-head atten-
tion over the output of the encoder stack. Transformers ensure that
the outputs don’t see the future on the decoder side; therefore, future
events are masked on the decoder side. The architecture comprises
residual connections [60] and layer normalization [10] for efficient
training.

Transformers architectures have considerable representation capac-
ities, and therefore researchers leveraged these architectures to create
multiple foundational models in which they pre-trained the encoder,
decoder, or both. One can finetune these pre-trained models with lim-
ited training examples to achieve SOTA results on various NLP tasks.

Devlin et al. [35] released a pre-trained Transformer encoder on
two pre-training tasks: masked language model and next sentence
prediction. The proposed model is BERT, which stands for Bidirection-
al Encoder Representations from Transformers. BERT pre-trains deep
bidirectional representations from the unlabeled text by jointly con-
ditioning on both left and right contexts in all layers. Due to the
consideration of bidirectionality in BERT, it is an ideal choice for
tasks where we need to encode a complete sequence, such as for the
tasks like sentiment classification [128], question answering [140], etc.
RoBERTa [108] and ALBERT [91] are further extensions with improve-
ments over the pre-training data and methodologies like parameter-
reduction techniques [91]. transformer based

foundational modelsAnother foundational model called Generative Pre-trained Trans-
former (GPT) by Radford et al. [141] is based on a pre-trained Trans-
former decoder. The name “generative pre-training” suggests using
text generation as the pre-training objective. GPT is an autoregres-
sive language model trained using BooksCorpus dataset [202] which
contains over 7000 unpublished books from various genres. The pre-
training of GPT on long stretches of contiguous text allows the model
to learn to condition on long-range information, thus making it ideal
for various NLP tasks. GPT-2 [142] and GPT-3 [15] are further exten-
sions with improvements on using larger dataset and adding more
parameters.

Following the separate pre-training of encoder and decoder blocks,
researchers also released encoder-decoder-based models pre-trained
on Seq2Seq based tasks [96, 143]. T5 by Raffel et al. [143] is one of
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the widely used model that treats every text processing problem as
text-to-text and has achieved good performance on a wide variety of
English-based NLP problems [143]. The success attributes to the large
pre-training dataset, which is large, diverse, and clean, making it an
ideal choice for several pre-training tasks.

This completes our discussion about the progress of DL in NLP. In
the following sections, we will discuss in detail the two NLP tasks,
namely NLG and NLU.

2.2 natural language generation

NLG is the task of generating natural language output such that it
resembles a human writing style. Defining NLG is difficult [47] since
the output of an NLG system should be text, but the exact inputs can
vary substantially [120]. There are multiple applications of NLG like:

1. Machine Translation [132, 165]; a task of translating (generating)
sentence from one language to another,

2. Question Answering [17]; a task of generating answer for a
given question based on the provided context,

applications of nlg

3. Simplification [161]; simplify sentence so that it is easily read-
able even by readers with basic education,

4. Summarization [28]; combining sentences to make them concise
for better readability,

5. Dialogue Response Generation [19]; a task of generating dia-
logue agent’s response

2.2.1 Data-to-text Generation

In this thesis, we have focused on NLG for dialogue systems. Dia-
logue systems have input data in a structured form or a table, i.e.,
having key-value pairs, also known as slot names and slot values.
The task of NLG is to summarize those key-value pairs in a natural
language sentence. Researchers address this problem as data-to-text
generation and have released data-to-text datasets for multiple appli-
cations like restaurant descriptions [131], biographies [95], weather
forecasts [101], etc. In the following sections, we will explain recent
architectures for the data-to-text generation, benchmarking datasets,
and their evaluation metrics.

2.2.2 Modeling approaches for Data-to-text Generation

The traditional approaches to NLG [92, 149, 166] use hand-crafted
rules with statistics that lack flexibility and diversity of generatedtraditional

approaches to nlg
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sentences. Generation comprises modular and independent decisions
like (1) content selection decides the selection of parts of the input
field, (2) sentence planning decides the presence of selected parts
in the output sentence, (3) surface realization generates sentences.
Works like Reiter and Dale [146] follows a pipeline approach of con-
tent planning and surface realization, while some works use hand-
engineered rules [88] and statistical induction [101]. However, these
approaches suffer because of the flexibility, diversity of generated sen-
tences and error propagation between pipeline stages.

Neural models consider this limitation and leverage massive amoun-
ts of parallel data for training the text generator [95, 106, 155, 187].
These models combine all three modules of the pipeline approach
and learn a single model end-to-end that determines the relevant in-
put records, dependencies between them, and the best way to de-
scribe them. One of the baseline text generation model is an encoder-
decoder architecture, a Seq2Seq model [169], which is inspired by the
advances in machine translation. . neural approaches to

nlgAs mentioned in Section 2.1, Seq2Seq model by Sutskever, Vinyals,
and Le [169] uses two LSTM networks. The first LSTM network encodes
input sentence in the source language to an n-dimensional vector, and
the second LSTM uses this n-dimensional vector to decode it into the
sentence in the target language. Data-to-text can also be considered
as a translation problem, where we will use encoder LSTM to encode
our data (table), and the decoder will generate a natural language
description of the table. Tabular data (T ) is a structured input, a set
of slot name–value pairs, denoted by T = {(si, vi)}Si=1, where si is
the name of the ith slot, vi is the value, and S is the number of slots.
The output is a sentence y = (y1,y2, · · · ,yn) that describes the given
input T. neural approach for

data-to-textOne of the first works by Mei, Bansal, and Walter [122] uses LSTM-
RNN to select and generate natural language descriptions. A bidirec-
tional LSTM encodes input records, a novel coarse-to-fine aligner rea-
sons over the input for deciding the selection of records, and finally,
an LSTM decoder generates a natural language description of selected
records. Other works also follow the same technique with slight vari-
ations [95, 101, 106]. Recently, pre-trained Transformer [173] based
models have shown great success in the field of language generation
[15, 143].

2.2.3 Datasets for Data-to-text Generation

Researchers use high-quality datasets to evaluate the performance of
their modeling approaches. There are many datasets for data-to-text
generation like E2E [131] from restaurant domain, WikiBio [95] from data-to-text datasets

biography domain, WebNLG [51] contains triplesets from DBPedia
[9], ToTTo [134] designed for controlled data to text generation. We
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will explain the two datasets that we used in our experiments de-
scribed in Chapter 4.

E2E is a crowd-sourced dataset from the restaurant domain and
contains more than 50K table–text pairs. The input table contains slote2e

names and slot values like slot value “yes” for slot name “family-
friendly” indicates that the restaurant is family-friendly. There are
3-8 slots in the input, and the output reference contains one or a few
sentences. The dataset is available for download at http://www.macs.
hw.ac.uk/InteractionLab/E2E/.

WikiBio contains 700K biographies from Wikipedia along with a
tabular infobox. It treats the first sentence of the article as a referencewikibio

for each biography. The dataset is available for download at https:

//github.com/DavidGrangier/wikipedia-biography-dataset

2.2.4 Evaluation of generated texts

Evaluation of NLG systems is a challenging task, and researchers em-
ploy both qualitative and quantitative measures to evaluate machine-
generated outputs. The quantitative evaluations involve automaticevaluation of nlg

metrics, discussed in Section 2.2.4.1, and the qualitative evaluation
employs evaluation by humans (Section 2.2.4.2).

2.2.4.1 Automatic Evaluation

Automatic metrics compare the machine-generated response with gro-
und truth references, where these references are obtained from hu-
man annotators. Metrics like Bilingual Evaluation Understudy (BLEU)
[133] consider n-gram overlaps between the generated and ground-
truth reference. The metric has been widely adopted but has someautomatic evaluation

important limitations, like a semantically equivalent sentence with
low n-gram overlap with ground-truth gets a low BLEU score. Metric
for Evaluation for Translation with Explicit Ordering (METEOR) [94]
extends the idea behind BLEU by introducing the use of synonyms
while calculating the score. Recall Oriented Understudy for Gisting
Evaluation (ROUGE) [102] is a recall-oriented metric that performs an
n-gram recall over ground truth text. National Institute of Standards
and Technology (NIST) [38] is another metric based on BLEU. In con-
trast to BLEU, which gives equal weights to each n-gram, NIST cal-
culates the score by giving more weight to rare words. Consensus-
based Image Description Evaluation (CIDEr) [174] metric computes
Term Frequency Inverse Document Frequency (TF-IDF) weighting for
n-grams.

For a data-to-text generation, Dhingra et al. [36] observe that BLEU

does not correlate well to human satisfaction. They propose Precisionparent metrics for
data-to-text
generation

And Recall of Entailed Ngrams from the Table (PARENT) metrics that
is computed against both input table and a ground-truth reference. In
their study, they show a high correlation between PARENT scores and

http://www.macs.hw.ac.uk/InteractionLab/E2E/
http://www.macs.hw.ac.uk/InteractionLab/E2E/
https://github.com/DavidGrangier/wikipedia-biography-dataset
https://github.com/DavidGrangier/wikipedia-biography-dataset
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the human judgment, thus making PARENT ideal for the data-to-text
generation.

All these metrics have their advantages and disadvantages, hence
making them inapplicable for some scenarios. Therefore, researchers
design task specific criteria to ensure the correctness of generated out-
put. In Chapter 3 and Chapter 4 we will present some the metrics that
we designed and used for evaluating the correctness of our approach.

2.2.4.2 Human Evaluation

In addition to automatic metrics, qualitative evaluation is also per-
formed by employing human annotators. However, it is an expen- human evaluation

sive process, and we need to provide clear task descriptions to avoid
subjective biases from annotators. Human evaluation can be done us-
ing crowd-sourcing platforms like Amazon Mechanical Turk4, and
CrowdFlower5. Furthermore, some works select a random subset of
samples and employ at least three annotators to evaluate task-specific
criteria [8].

2.3 natural language understanding

NLU is a subfield of NLP which aims to make machines understand the
natural language by deriving the semantics, identifying the context,
and interpreting language correctly. Developing NLU components en-
able machines to perform complex tasks like word sense disambigua-
tion [42]. Word sense disambiguation is a task in which models under-
stand two different senses of the word “bank” in the sentences; “Our
banks are closed on Thursday” and “This year, due to floods, the river
will overflow the banks”. NLU is essential for many other applications
like sentiment classification [128], question answering [140], etc. Even
the task of data-to-text generation incorporates the NLU component,
which aims to understand the intent behind the text in the tabular
form to generate human-like natural language text.

2.3.1 Visual Question Answering

In this thesis, we focused on conditional NLU, where we studied the
well-known task of VQA. We choose VQA due to its broad adoption in
the research community, wide interest in industrial and commercial
applications, and its implicit complexity that comes from integrating
two different modalities; images and text.

VQA is an image-conditioned NLU task or image-conditioned ques-
tion answering task, where similar to the question answering systems,
VQA models provide an answer based on the given image. VQA is a

4 https://www.mturk.com/
5 http://faircrowd.work/platform/crowdflower//



24 background and foundations

Figure 2.2: Baseline VQA model (Image Source: [7]).

multimodal task using separate encoders for each modality. In the
following sections, we will discuss the baseline and current models
in the field of VQA.

2.3.2 Modeling Approaches for VQA

Antol et al. [7] introduced this task and released a first model as
shown in Figure 2.2. The model uses CNN variant VGGNet [162] forbaseline vqa model

encoding images and an LSTM to encode questions. Each of these en-
coded vectors is followed by a softmax over K possible outputs. Antol
et al. [7] choose 1000 top answers as possible outputs covering almost
80% of answers in the training and validation splits. Among all the
models mentioned in [7], the baseline model achieved maximum ac-
curacy of 57.75% for the open-ended task of VQA.

The introduction of VQA led to the emergence of multiple mod-
els like Stacked Attention Networks for Image Question Answering
[192] that uses separate attention module inspired from the works ofother vqa models

image captioning [190] and machine translation [11]. Xu and Saenko
[189] introduce spatial Memory Network for the VQA task. The above
models focus only on visual attention [188, 189, 192] while works
like [112] presented a novel co-attention model for VQA that jointly
reasons about both image and question attention.

Anderson et al. [6] proposed one of the most used and accepted
VQA models called Bottom-up and top-down attention (BUTD). BUTDwinner of 2017 vqa

challenge use bottom-up & top-down attention for image captioning and VQA

tasks, and became the winner of the 2017 VQA challenge. BUTD uses a
GRU to encode the input questions and attends the image ROI features
to enable region-based attention for answer generation.

Recent research in VQA, inspired by the Transformers [173], focuses
on pre-trained Vision and Language models. Vision & Language pre-
trained networks, like LXMERT [170], VilBERT [111], VLP [199], have
shown great success in the Visual Question Answering field. Each
of these models is Transformer-based and employs BERT [35] like
pre-training objectives. Learning Cross-Modality Encoder Representa-
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tions from Transformers (LXMERT) is a Transformer-based pre-trained transformer based
pre-trained vision &
language models

model. LXMERT focuses on vision-language interactions to enable a
better understanding of each modality and the relationship between
them. It contains separate encoders like an object relationship en-
coder, a language encoder, and a cross-modality encoder. LXMERT uses
five different vision-language tasks like masked cross-modality lan-
guage modeling, cross-modality matching for pre-training. Similar to
this, ViLBERT is also pre-trained on diverse downstream tasks, in-
cluding VQA, referring expression, and image-to-text retrieval. VLP
by [199] propose a unified encoder-decoder model for general vision-
language pre-training.

2.3.3 VQA Datasets

Following the discussion of top modeling approaches in VQA, we will
discuss some important datasets that researchers use for the evalua-
tion of their modeling approaches. Researchers introduced a wide
range of VQA datasets. Antol et al. [7] introduced one of the first
datasets for VQA, VQA 1.0, in which they employed ten human anno- vqa1.0

tators to answer each image and question pair. The dataset contains
over 760K questions with around 10M answers. Despite being large,
VQA 1.0 is not used because of its linguistic biases.

Goyal et al. [56] handled this problem by releasing a large and bal-
anced VQA 2.0 dataset. VQA 2.0 contains complementary images s.t.,
a pair of similar images result in two different answers for the same
question. The dataset ensures that VQA models learn visual ground-
ing for answering a given question rather than relying on dataset
biases. There are 443757 and 214354 training & validation samples
in VQA 2.0. VQA 2.0 is one of the widely used datasets in the VQA
community. VizWiz is another important dataset that comes from a
natural VQA setting. Gurari et al. [59] released the first goal-oriented two widely used vqa

datasetsVQA dataset called VizWiz. Unlike all the above datasets, VizWiz
originates from a natural VQA setting. Blind people use their mobile
phones to click images and record spoken questions about them. This
real-world scenario makes this dataset quite challenging and contains
unanswerable questions. The dataset is considered one of the most
challenging datasets containing blurred images and conversational
questions. There are 31,000 visual questions and ten crowdsourced
answers for each question.

The other VQA datasets like DAQUAR [117], COCO-QA [147], Vi-
sual madlibs [194] have faded away from use and, therefore, are not
considered as benchmarks in the related work. We will discuss the
evaluation metric for VQA systems in Section 2.3.4.



26 background and foundations

2.3.4 Evaluation of VQA systems

Researchers release a wide range of VQA metrics like Arithmetic and
Harmonic Means [76], WUPS [116], MaSSeS [72] but the most com-evaluation of vqa

monly used is Accuracy [7, 56, 59, 196]. Since VQA is a classification
task, it counts the matches between the model’s prediction and the
original ground truth answer. Our VQA model predicts one ground
truth answer, and we have ten ground-truth answers for datasets like
VQA 2.0, VQA1.0, VQA-Abstract, and VizWiz.

acc = min

(
humans that said answer

3
, 1

)
(2.7)

While Accuracy works well for a single ground-truth answer, [7] de-
signed a special VQA metric that takes into account multiple ground-
truth answers. Equation 2.7 refers to the standard evaluation metricstandard vqa metric

of VQA systems. It averages over all ten over nine sets of ground-truth
answers. The metric is based on the majority vote, i.e., a predicted an-
swer answered by at least four annotators gets 100% accuracy, and
for three, two, or one human vote, the accuracy values are 90%, 60%,
30%, and 0%.

This completes our discussion about two crucial instances of NLP,
namely NLG and NLU, where these models leverage tremendous amoun-
ts of training examples to achieve better results for their in-hand
downstream tasks. However, as explained in Chapter 1, data collec-
tion is an expensive process and, therefore, the scope of successful
NLP applications is limited to big corporations. In this thesis, we
are working towards data-constrained settings. We will discuss some
background about data-constrained NLP in the following sections.

2.4 data-constrained nlp

Data-constrained is a setting where we have limited or no training
examples. Researchers have addressed data-constrained, also known
as low-resource, scenarios in various domains like limited datasets
for threatened languages [1]. Bender [13] presented a study in which
they showed that most of the recent NLP research is based on 10-20

languages whose datasets are readily available. In addition to the
limitation of language-specific datasets, researchers face the problem
of task-specific datasets. One such example is the work by Shah et al.
[157], who showed that VQA models struggle with rephrasings at test
time due to the absence of rephrasings in the training split of their
dataset.

Researchers have proposed standard methodologies for data-constr-
ained scenarios, where all the methods leverage additional sources or
existing model artifacts and share the motivation to overcome the
lack of labeled data. Additional sources like unlabeled data, manual
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heuristics, or cross-lingual alignments may vary depending on the
target task. One needs to understand the requirements of these meth-
ods for choosing a technique well suited for the low-resource setting.
Hedderich et al. [61] presented an extensive review highlighting the
underlying assumptions for different techniques in a low-resource
setting. Following, we will discuss some of these methods.

One of the most simple data-constraint scenarios is when you only
have limited labeled data and no additional datasets like unlabeled
ones. Data augmentation is one of the most straightforward solutions
to handle this scenario. It’s the method to obtain new instances based
on the existing ones by modifying the features with transformations
that don’t change the label. Data augmentation has been a popular ap-
proach in Computer Vision (CV) [160], e.g., an image rotation doesn’t
change image content classification. In NLP, researchers have adopted data augmentation

data augmentation by replacing words with their synonyms [184], or
entities of the same type [34]. Some works perform data augmenta-
tion at the sentence level like Ma et al. [114] used back-translation for
the data-to-text generation.

Another scenario is the availability of small unlabeled corpora in
addition to the limited labeled training examples. Distant or weak
supervision can handle this scenario, where we can obtain the cor-
responding labels through a (semi)-automatic process from an exter-
nal information source. Mintz et al. [125] introduced distant super-
vision for relation extraction with extensions on multi-label learning
[168] and multi-instance [148]. Another work by Wang et al. [179] weak supervision

transfers a document-level sentiment label to all its sentence-level in-
stances. Self-training method or semi-supervised learning is also con-
sidered weak supervision. Zhu and Goldberg [200] introduced semi-
supervised learning, a learning paradigm that uses unlabeled data to
improve supervised learning tasks in data-constrained settings. This
enables DL models to use both labeled and unlabeled datasets.

The above approaches use the entire training data and augment it
using either data augmentation or weak supervision, depending on
the availability of unlabeled data. The use of whole training data is
justified when the number of examples is scarce. However, during
the availability of enormous amounts of training examples, one must
consider if all the training examples are helpful or not. This way, se-
lecting the most informative subset of training data will allow us to
train the models with minimum compute resources and considerably
reduce the training times.

Researchers have addressed this problem and have designed data
selection mechanisms to pick the most useful training examples for
training. A study by Lapedriza et al. [93] showed that object detec- data selection

tion and classification systems don’t benefit from all training exam-
ples. They designed an approach to measuring the training value of
an example and improved SOTA detectors and classifiers by using the
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training subset instead of whole training data. Some other works in
the same field of research have also shown the effectiveness of us-
ing training subsets over the entire training datasets [25, 53, 85, 151].
Hence, one can leverage data selection methods in designing better
datasets with a few high-quality training examples instead of many
low-quality training examples, thus making data collection possible
in a low-resource setting.

The above approaches work assuming that training and test datasets
have a similar distribution. However, this is not true in a real-world
scenario, as users can ask questions in different forms. Researchers
have addressed this problem by releasing datasets like Agrawal et
al. [3] released new test splits and showed that the performance of
VQA degrades significantly when test and training distributions are
different. Similarly, [157] showed that these models fail when ques-
tions are replaced by their rephrasings at test time. Data augmenta-exploiting feature

representations tion and distant supervision are not applicable in such scenarios as
these methods generate and extend only task-specific training data.
A ML method called Transfer Learning handles such problems. It re-
duces the need for labeled target data by transforming models and
learned representations. In NLP, recent works on transfer learning use
pre-trained language representations induced by pre-trained models,
like BERT [35] and GPT [141], trained on large unlabeled text corpora.

As discussed in Chapter 1, this thesis mainly focuses on digital
personal assistants, a successful NLP application, where these assis-
tants perform tasks related to NLG and NLU. We aim to build NLG

and NLU components in a data-constrained setting. For the rest of the
thesis, we will explore some data-constrained settings scenarios and
leverage the dimensions discussed in Section 2.4 to solve problems
emerging from limited training data.

2.5 summary

We started this chapter with a detailed discussion about the progress
of DL in NLP. We provided a detailed discussion about DL models fol-
lowed by two important applications of NLP. We discussed a brief
overview of data-to-text generation, a sub-task of NLG, its evolve-chapter conclusion

ment from traditional template-based approaches to the recent neural-
based encoder-decoder models. We discussed the role of pre-trained
Transformer models in natural language generation. The major datase-
ts for data-to-text generation, namely E2E and WikiBio, were also dis-
cussed. Finally, we discuss quantitative and qualitative evaluations
of NLG systems. We also discussed Visual Question Answering, an
image-conditioned NLU task. A brief discussion of neural-based mod-
els and recent Transformer-based pre-trained models is presented. We
discussed mostly-used benchmarking VQA datasets and concluded
this chapter with the methods addressing data-constrained NLP.
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3
D ATA A U G M E N TAT I O N

In this chapter, we study one of the most straightforward scenarios
when we only have minimal labeled training data. This scenario arises
when adding new functionality for a task-oriented dialogue agent, for
which we have very few training examples. We present the proposed
methods and models to handle the limited training data using data
augmentation, one of the methods described in Section 2.4.

Dialogue agents answer multiple user queries after being trained
from large-scale training utterances from different domains like mu-
sic, weather, and navigation. However, we have minimal training data
when adding a new feature. We can use paraphrasing models to gen-
erate more examples for the limited training data; however, these
paraphrasing models need parallel datasets for training which is again
an expensive and time-consuming process in terms of data collec-
tion. Therefore, this chapter proposes an interpretation-to-text model
for paraphrase generation that uses existing training data for boot-
strapping new features, which improves the accuracy of downstream
tasks of intent classification and slot labeling. We run our experiments
on a public dataset in English & a commercial dialogue system, real-
life data in the German language, and we observe improvements for
downstream tasks, demonstrating the usefulness of our approach.

The methods and models presented in this chapter have been pub-
lished in COLING 2020 [69]. The rest of the paper is organized as fol-
lows. Section 3.1 explains the problem definition. Section 3.2 explains
the related work for data augmentation and paraphrase generation.
Section 3.3 explains our data augmentation approach. We explain our
proposed interpretation-to-text model for paraphrase generation. The
section also explains different paraphrase sampling strategies and the
mechanism of label projection. Section 3.4 explains the two datasets publication and

chapter structurethat we have used for testing our approach. Section 3.5 explains the
complete experimental setup, including the wide range of evaluation
metrics that we use for the validation of our generated paraphrases.
Section 3.6 provides our insights and results from the experiments.
Finally, we summarize the chapter in Section 3.7.

3.1 problem definition

A task-oriented dialogue agent understands user requests (an utter-
ance) and performs required actions to satisfy user needs. E.g., a dia-
logue agent plays the song aspro mavro bill from youtube after hear-
ing the user’s request; Play the song aspro mavro bill from youtube.

31
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U: find movies playing at the closest movie theatre

I: SearchScreeningEvent

S: O B-

Movie-

Type

O O O B-

Spatial-

Rel

B-

Loc-

Type

I-

Loc-

Type

Figure 3.1: Example utterance with intent and slot labels from SNIPS [69].
The slot labels (S) are in BIO-format.

The two fundamental components in task-oriented dialog systems aretask-oriented
dialogue agent intent classification and slot labeling, which produce a formal mean-

ing representation for an utterance that the system can act upon to
fulfill the user’s request.

Figure 3.1 shows an example utterance from SNIPs dataset [32].
The utterance find movies playing at the closest movie theatre belongs
to SearchScreeningEvent intent and the sequence of tokens is labeled
with expressed slots. In our work, we refer to the combination ofan utterance

example intent name & slot names, and slot values as an interpretation of the
utterance. There has been significant performance on these tasks on
benchmarking datasets like SNIPs [32], but this work focuses on the
addition of a new feature.

A new feature is defined as a set of one or more intents and related
slots that were not known to the system before. The main challenge
with such an addition is the limited availability of seed training data.
Since deep learning models are known for their data-hungry nature,
it is difficult to train good intent & slot models for the new feature
due to its limited training data. Manual data collection seems to bereasons for data

augmentation a plausible solution, but as explained in Chapter 1, it is an expensive
and time-consuming process. Therefore, in this work, we aim to re-
duce the time and effort and propose an automatic way to augment
seed training data. In the following sections, we aim to answer our
motivating question:

Can we generate high-quality synthetic training examples with
limited parallel data?

3.2 related work

Related work use machine translation [52] to address data collection
problem if the feature exists for other languages. Do and Gaspers
[37] use cross-lingual transfer learning to use such existing data. Forrelated work on data

augmentation an already active feature, Muralidharan et al. [129] use feedback sig-
nals from users like paraphrases or interruptions to obtain additional
training data. Qiu et al. [139] leverage the paraphrase relationship be-
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tween pairs of unlabeled & labeled utterances to deduce labels for the
unlabeled utterances for the feature.

In contrast to related work, we do not assume labeled data avail-
ability in another language, user feedback, or unlabeled data when
bootstrapping a new feature. Therefore, existing works by [26] and related work on data

augmentation for
limited seed training
data

Malandrakis et al. [115] closely relate to our work, with the same
setup of having limited seed training examples. Malandrakis et al.
[115] generate paraphrases for seed data using conditional variational
auto-encoders. However, they do not evaluate slot labeling and do not
propose any technique to add slot labels to the generated paraphrases.
Cho, Xie, and Campbell [26] use Transformer network for paraphrase
generation and use baseline intent & slot model for self-labeling new
utterances. Their experimental results show good performances on
downstream tasks.

However, our approach is more data-efficient as we don’t rely on
any baseline model for self-labeling, where self-labeling itself em-
ploys training data. We leverage existing features and employ more
advanced sampling strategies to obtain high-quality paraphrases from
limited seed examples. Our experiments demonstrate the applicabil- our approach

ity of our approach to earlier stages of bootstrapping by using fewer
seed data than Cho, Xie, and Campbell [26]. Furthermore, our para-
phrase generation approach employs training an interpretation-to-text
model instead of a text-to-text model, thus using single utterances
with intents, slot names & slot values. Our approach is independent
of any parallel data and uses existing data for the downstream tasks
of intent classification and slot labeling.

Beyond our specific use-case, text-to-text models for paraphrase
generation have gained a lot of attention in recent years [57, 99, 100,
137]. These models use paraphrasing datasets, like Quora Questions test-to-text

paraphrase
generation models

Pairs1 and WikiAnswers2, which mainly focus on questions. In our
preliminary study, we observe the direct application of paraphrasing
models by training in the dialog domain yields unnatural sentences,
thus making their use inapplicable for scenarios like the one proposed
in this work.

Our interpretation-to-text model is closely related to data-to-text ap-
proaches i.e. generating natural language from structured data. There analogy to

data-to-textare various versions of this task with slight variations in the input like
a generation from abstract meaning representations [84], generation
from tabular data [23], as well as unsupervised natural language gen-
eration using denoising autoencoders [48]. The E2E NLG challenge
[45], a competition conducted on the restaurant domain E2E dataset
[131], with slot-based input representations, holds a very strong re-
semblance to our paraphrase generation scenario.

1 https://www.kaggle.com/c/quora-question-pairs
2 http://knowitall.cs.washington.edu/paralex/



34 data augmentation

Figure 3.2: The interpretation-to-text model encodes an interpretation as a
sequence of intent, slot name and slot value embeddings and
is trained to predict the utterance. At inference time, we sample
token by token and shuffle the input slot order (bottom) to obtain
diverse paraphrases [69].

3.3 proposed solution for data augmentation

We formalize DN and DO as the seed examples for the new feature
and all the existing examples for the existing features. An example
(u, i, s) ∈ DN ∪DO comprises a tokenized utterance u, its true in-
tent label i and true slot labels s in BIO-format. We refer to slot nameformalization of new

and existing features as the label of a slot, and the covered tokens are referred to as slot
value. We express the example in Figure 3.1 as ŝ = {Movie-Type :

movies, Spatial-Rel : closest, Loc-Type : movie theatre}, where ŝ is the
mapping of slot names to their values.

In our scenario of adding a new feature, DN is very small and
contains one or a few new intents which are not present in DO. It
is worth mentioning that DN contains all new intents, however, slots
might overlap with DO as generic slots are shared across multiple
intents. We propose PG, as our paraphrase generation model, thatformalization of PG

model generates new examples DP = PG(DN). Our PG aims to improve
the performance of downstream tasks, intent classification, and slot
labeling, when these models use all training examples DO ∪DN ∪DP

instead of just DO ∪DN.
In the following sections, we will describe our PG or interpretation-

to-text model and the method of generating diverse paraphrases.

3.3.1 Interpretation-to-text Paraphrase Generation Model

We use examples (u, i, s) to model utterance sequences token by token
conditioned on their corresponding interpretation. Equation 3.1 refers
to our model,

p(u | i, ŝ) =
n∏

j=1

p(uj |u1:j−1, encj(i, ŝ)) (3.1)

here, encj(i, ŝ) refers to attention-based encoding of the interpreta-
tion (i, ŝ) at decoding step j. We motivate our approach by the notion
of two utterances having the same interpretation are paraphrases.
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Therefore, we model mapping from that unique representation of a
set of paraphrases – the shared interpretation – to all its realizations.
During inference, we use the conditional language model p(u | i, ŝ)
which provides a distribution over all possible realizations condi-
tioned on a specific interpretation, from which we sample the para-
phrases.

We use the downstream training data D for training our PG model,
thus making our approach data-efficient. Our approach allows us to
include the large set DO in addition to the seed data DN for training
a much more powerful PG model instead of using DN only or us-
ing out-of-domain paraphrase data. This way, the model learns more
general language properties specific to the dialogue system and simi-
larities of utterances across multiple intents and slots. Furthermore, at interpretation-to-

text modelthe time of inference, the model can interpolate between utterances
seen in DN or DO while sampling paraphrases for interpretations
from DN token by token. Therefore, it can create novel utterances,
i.e., not seen during training for the interpretation.

Figure 3.2 shows our interpretation-to-text model. We use a sequence-
to-sequence paradigm [169] to implement p(u | i, ŝ). We use a bidirec-
tional GRU for encoding the interpretation and use an attention-based
GRU along with a pointer mechanism for decoding [154]. We use
GloVe vectors [136] to initialize embeddings for utterance tokens, in-
tents, and slot names. The tokens whose embeddings are not present
in GloVe are initialized randomly and updated during model train-
ing. As shown in Figure 3.2, the model takes an interpretation as the
input. The sequence starts with the embedded intent followed by the
sum of vector representations of slot names & values. We keep the
vocabulary and embeddings the same for both encoder and decoder
sides. The model is trained by minimizing cross-entropy loss for the
utterances in DO ∪DN. Each of the encoder and decoder GRU has a
size of 300 and contains two layers each. We use a batch size of 64,
0.3 dropout with early stopping.

3.3.2 Sampling Strategies for Paraphrases

For a given input, Seq2Seq models typically use greedy decoding or
beam search to find the (approximately) best sequence at the infer-
ence times. In our use case, however, we are interested in obtaining
novel & diverse utterances in addition to the most likely realization
of an interpretation. Therefore, we use random sampling and input shuf-
fling.

3.3.2.1 Shuffling of Input Representation

Our sequence-to-sequence model accepts input slots in a specific or-
der; therefore, the simplest way to obtain multiple paraphrases can be
obtained by shuffling this input order. We use shuffling of input rep- shuffling input

representation
generates multiple
paraphrases
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resentation and observe that the model using one order and decoding
with an alternative order provides paraphrases with the values in an
alternative order. Input shuffling allows us to obtain multiple para-
phrases for the same interpretation, but the decoded sentences face
the problem of missing a slot. This limitation motivates our quality
metric partial slot carry-over (PSCO) represented by Equation 3.2;

PSCO(u ′, ŝ) =
1

|ŝ|

|ŝ|∑
j=1

min(1, |{t | t ∈ u ′ ∧ t ∈ ŝvj }|) (3.2)

PSCO measures the fraction of slots ŝ for which at least one token
of the slot value ŝvj is present in the decoded utterance u ′. We use
PSCO to collect k paraphrases for a given seed utterance u. We start
by creating input sequences corresponding to all permutations for the
slot value. We compute the PSCO for each decoded utterance, which
is decoded using beam search for each input. We keep utterances withpsco based selection

a 100% PSCO, i.e., with a rate of 1. We sample k utterances from the
remaining candidates if the candidates are more than k; otherwise,
we upsample to reach k. Finally, we ensure that each seed leads to
exactly k paraphrases and preserves the initial distribution.

3.3.3 Non-deterministic decoding

We use random sampling, a non-deterministic decoding strategy, as
our second approach for generating novel and diverse utterances
(paraphrases). Instead of trying to find the most likely sequence, as in
beam search, random sampling samples an utterance token by tokenmultiple utterances/-

paraphrases per seed
using random

sampling

according to the probability distribution over the vocabulary. The non-
deterministic nature of random sampling yields different utterances
in different sampling rounds, thus allowing us to obtain multiple di-
verse utterances per seed.

p(uj = t |u1:j−1,hj) =
exp(zt/α)∑

t ′∈V exp(zt ′/α)
(3.3)

Equation 3.3 shows a unique technique to improve the outputs of
any decoding algorithm. It scales logits zt over the vocabulary with
a temperature α before applying softmax while decoding the token
uj. After scaling, it then samples from the top-β tokens accordingscaling logits for

generating diverse &
novel utterances

to their probabilities. Here, a lower value of α makes the distribu-
tion spikier, thus encouraging the selection of more probable words.
While higher α values make distributions uniform, i.e., allowing the
selection of less probable words. The latter leads to more diverse &
novel utterances but, at the same time, can produce unnatural utter-
ances. α and β are hyperparameters and need to be tuned based on
validation datasets.
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3.3.4 Projection of labels

We need to turn the obtained paraphrases u ′ for a given seed example
(u, i, s) into a useful example for the downstream tasks. For intent
classification, we use the original label i. However, since u and u ′ are
different utterances, it is intricate for projecting per-token slot labels. using intent i as

intent label for
paraphrase

Nevertheless, considering a high overlap between tokens, we use a
token alignment-based approach inspired by [50].

We first compute a similarity sim(uj,u ′
k) ∈ [0, 1] for each source-

target token pair (uj,u ′
k). To identify identical tokens or slight mor-

phological variations, we use the inverse of character-level Leven-
shtein edit distance normalized by length. We consider all alignments
of source tokens in u to target tokens in u ′ based on their pairwise
similarities and score them by their average similarity of chosen align-
ments. If no better target is found, the source is aligned to a virtual using

alignment-based
label projection to
get token-level slot
labels for paraphrase

empty target token. We found the best alignment greedily and chose
the most similar target for each source from left to right. At last, we
restore prefixes and project slot labels s along that alignment. The
final result s ′ forms the new training examples (u ′, i, s ′) for DP.

3.4 dataset

We use two datasets, a public dataset with English utterances and in-
ternal data from real-world dialog systems in German. We simulate
introducing a new feature for both datasets to test our data augmen-
tation approach.

SNIPs NLU Dataset [32] is a commonly used benchmark for the
task of intent classification and slot labeling. There are seven intents snips nlu dataset

and 39 slots. The dataset contains 13,084 training, 700 validation, and
700 test examples. We pick one of the intents as a new feature each
time and run seven experiments. We use the full training and valida-
tion data of the remaining six intents as Dtrain

O and Dval
O , amounts

to 11,815 instances. We sample 5% of the data for our new feature as
the seed data (Dtrain

N , Dval
N ). The seed data amounts to 100 instances.

We evaluate our approach on the standard test split of SNIPs. We per- experimental setup
for snipsform several runs of our experiment and report the averaged results

to overcome randomness due to the small size of the SNIPs dataset.
We use each of the seven intents as a simulated new feature. We sam-
ple three different 5% seed subsets for the new feature. Finally, we
train models for downstream tasks with ten different seeds, resulting
in 210 different experimental runs per approach.

Our second dataset, in German, is randomly sampled data from
logs of a commercial dialogue system. We simulate introducing five
different features that have been introduced in the past. We use |Dtrain

N | =

450 and |Dval
N | = 50 seed utterances for each of the simulated new fea-

ture. We have large datasets Dtrain
O and Dval

O that cover several hun- real-life dialogue
agent dataset
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dred other intents. It is worth mentioning that Dtrain
O and Dval

O don’t
include any examples from any of the five simulated features. We use
two disjoint test sets, one from the same distribution as Dtrain

O , and
the other containing new feature examples for the evaluation.

3.5 experimental setup

3.5.1 Downstream task models

We use a neural model for our downstream intent classification and
slot labeling tasks. We use a bi-directional GRU with a hidden size
of 512 to encode input tokens where the input tokens are embedded
as 300-dimensional vectors. The concatenated final representations ofneural models for

downstream tasks GRU are fed through a 300-dimensional ReLU layer for intent classi-
fication. We apply dropout and a final softmax layer over the intent
labels. We use a similar two-layer network for slot labeling, but in-
stead of classifying the entire utterance, we perform classification at
each timestep to predict slot labels per token. We use an Adam op-
timizer, a batch size of 64, and a dropout of 0.2 until performance
convergence on the validation data. To study the effect of our data
augmentation approach on both tasks, we trained these models sepa-
rately.

3.5.2 Approaches for Comparison

We compare the following variations of our proposed techniques in
Section 3.3.

• Baseline Training the model using just the seed data DN and
existing data DO. All data augmentation approaches aim to per-
form better than this baseline model.

• Upsampling5 Repeats each seed example five times to match
the amount of training data for the new feature obtained using
augmentation techniques below.variations of

proposed technique
• Beam1 Training model on DO, DN and DP, where DP is ob-

tained from decoding, using beam search, one paraphrase for
each seed in DN. We use a beam size of five and normalize
scores by length.

• Beam5 Same as Beam1, with the only difference of using the
top-5 hypothesis from the beam for each seed.

• Shuffle+Beam5 Adding input shuffling to Beam5. As described
in Section 3.3.2.1, we select five paraphrases for each seed based
on PSCO from the beams across all shuffles.
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A i’m looking for a table
at a pasta restaurant in
serbia

1 BookRestaurant, Dish=pasta, Type=restaurant, Country=serbia

i’m looking to find a table at a pasta restaurant in serbia

2 BookRestaurant, Dish=pasta, Country=serbia, Type=restaurant

book a pasta in serbia restaurant

3 BookRestaurant, Type=restaurant, Dish=pasta, Country=serbia

i’m looking for a restaurant that serves pasta in serbia

B please play the newest
music by evil jared
hasselhoff

1 PlayMusic, Sort=newest, Artist=evil jared hasselhoff

play the newest music by evil jared

2 PlayMusic, Artist=evil jared hasselhoff, Sort=newest

play music by evil jared hasselhoff on the newest

C closest movie theatre
with no time for
sergeants

1 SearchScreeningEvent, Sp.-Rel=closest, Movie=no time for ...

is the closest no time for sergeants at the movie theatre

Figure 3.3: Paraphrases of varying quality sampled for seeds from SNIPS us-
ing beam search and input shuffling (Shuffle+Beam5). Left side
shows the seed, right the input and output of the paraphrase
model. Note that the examples were manually chosen to demon-
strate both good and bad examples [69].

• Rand1 Same as Beam1, with the only difference in decoding
strategy of random sampling. We sample with α = 2 and β =

33.

• Rand5 Same as Rand1, and we are sampling five paraphrases
for each seed.

• Shuffle+Rand5 Same as Shuffle+Beam5, with the difference in
decoding strategy (we use random sampling). We sample three
paraphrases for each shuffle and then select five across all shuf-
fles using PSCO (Section 3.3.2.1).

Our data augmentation approach added 500 & 2500 examples for
100 & 500 seed examples for SNIPs and commercial dialogue system
data. It would be interesting to explore more seed-paraphrase-ratios
for determining an optimal one. Still, we leave this for future work
and focus mainly on comparing different sampling techniques in this
work.

3.5.3 Evaluation Metrics

Since we aim to boost performance for downstream tasks, our pri-
mary evaluation metric is the performance of these tasks. We use ac-
curacy for intent classification and slot F1-score for slot labeling. We
compare all our experiments with the baseline to see the impact of
data augmentation for bootstrapping a new feature. We provide sep-
arate scores for the new feature and the existing features. It allows

3 We manually inspected paraphrases for a range of parameter settings and found
these parameters to represent a good trade-off between novelty and quality.
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Upsampling5 Beam1 Beam5

Shuffle

+Beam5

Rand1 Rand5

Shuffle

+Rand5

PSCO 1.000 0.988 0.984 1.000 0.911 0.910 1.000

ESCO 1.000 0.969 0.956 0.972 0.773 0.772 0.878

Novelty 0.000 0.486 0.574 0.742 0.767 0.766 0.864

Diversity 0.000 – 0.522 0.594 – 0.837 0.881

Table 3.1: Quality comparison of paraphrases generated on SNIPS with dif-
ferent approaches along our four metrics. Bold marks best tech-
nique per metric (excluding the edge case Upsampling5) [69].

us to see if bootstrapping a new feature is detrimental to the existing
ones or not.

We adopt some additional metrics to gain further insights into the
relative strengths of different paraphrase generation approaches.

• Exact Slot Carry Over (ESCO), a stricter version than PSCO,
counts only slots whose complete slot value is present in the
generated paraphrase.

• Novelty, We compute Novelty scores using BLEU [133]. For our
use case, we want the new example to be different from the orig-
inal seed example; otherwise, the data augmentation degener-
ates to simply upsampling the data. Therefore, we compute the
score 1 − BLEU4(u,u ′). for each paraphrase u ′ of seed s and
aim to achieve higher scores for this metric. We report average
over all sampled paraphrases.evaluation metrics

• Diversity, The score checks if the sampled paraphrases are dif-
ferent or it’s the repeated sampling of the same paraphrase. We
compute 1 − BLEU4(u ′,u ′′), where u ′,u ′′ are paraphrases of
the same seed, to measure diversity. We report the average over
all pairs and aim to achieve higher diversity scores.

All these metrics guide a better understanding of paraphrases sam-
pled with different methods. In our results, we will show that higher
novelty or diversity is beneficial for the performance of downstream
tasks.

3.6 results

3.6.1 Qualitative Analysis of Generated Paraphrases

We have presented several paraphrase examples in Figure 3.3, which
are obtained by our approach. The generated utterances differ fromqualitative analysis

the original seed example by dropping some tokens (B1, A1). The
change in input order leads to paraphrases with more dropping of
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SNIPS New Feature Existing Features

Method #Train IC ∆ SL ∆ IC ∆ SL ∆

Baseline 100 88.1 52.1 98.9 88.8

Upsampling5 600 90.5 +2.46 63.6 +11.47 98.8 -0.10 88.4 -0.40

Beam1 200 89.7 +1.67 57.7 +5.58 98.8 -0.06 88.7 -0.08

Beam5 600 90.6 +2.50 62.9 +10.78 98.8 -0.10 88.5 -0.23

Shuffle+Beam5 600 88.7 +0.67 63.1 +11.02 98.7 -0.15 88.5 -0.23

Rand1 200 91.0 +2.97 57.5 +5.36 98.9 -0.02 88.6 -0.11

Rand5 600 92.0 +3.95 63.4 +11.32 98.8 -0.14 88.5 -0.27

Shuffle+Rand5 600 91.3 +3.26 64.7 +12.66 98.8 -0.14 88.4 -0.31

Table 3.2: Intent classification (IC) accuracy and slot labeling (SL) F1-scores
on the SNIPS test set (English) after adding generated paraphrases
as additional training data. ∆ denotes the absolute change with
regard to the baseline. Each result is an average over 210 runs of
the experiments [69].

words (A2, A3), which in the extreme can also become unnatural and
ungrammatical (B2, C1).

Table 3.1 shows comparison between generated paraphrases from
different approaches as defined in Section 3.5.2. It clearly shows that
the decoding strategy of random sampling generates novel & diverse
paraphrases than from beam search. However, this diversity comes
at the expense of carrying over fewer slots, which indicates that too
novel paraphrases might not fully represent the intended interpre-
tation. As mentioned in Section 3.3.2.1, we keep a PSCO of 1, but
the ESCO shows a lower carry-over rate for random sampling. It is input

shuffling+random
sampling generates
more diverse &
novel paraphrases

worth noting that this tradeoff between slot carry over and novelty/-
diversity is balanced with input shuffling, where input shuffling leads
to the highest slot carry over along with higher novelty & diversity
scores for both decoding strategies. Hence, our proposed combina-
tion of shuffling and PSCO-based selection proves to be an effective
way that improves paraphrases across all dimensions.

3.6.2 Downstream Task Performance

Table 3.2 presents the performance of downstream tasks, on SNIPs,
after adding paraphrases generated with different approaches. The
generated paraphrases (500 vs. 100) using both sampling strategies
improve downstream tasks of intent classification & slot labeling. In
line with the increased novelty and diversity scores from Table 3.1 for
random sampling, the decoding strategy helps more than the beam
search. However, due to the coupling of lower slot carry over with diverse & novel

samples help
downstream tasks

higher diversity & novelty, the gains for slot labeling are less pro-
nounced. The shuffling of input representation shows higher gains
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Internal Data New Feature Existing Features

IC∆ SL∆ IC∆ SL∆

New Feature S+B5 S+R5 S+B5 S+R5 S+B5 S+R5 S+B5 S+R5

WeatherForecast +1.48 +4.81 +3.91 +4.98 -0.02 -0.04 -0.02 -0.01

SendMessage +4.84 +7.73 +0.65 +0.47 -0.13 -0.11 -0.01 -0.02

PlayMusic +8.79 +10.12 +1.35 -0.12 +0.11 +0.10 -0.05 -0.13

MovieListing +9.50 +10.32 +1.28 +0.92 +0.05 +0.05 -0.09 -0.06

ApplianceOnOff +0.91 +12.53 +1.25 +0.79 -0.02 -0.18 +0.04 -0.07

Average +5.10 +9.10 +1.69 +1.41 0.00 -0.04 -0.03 -0.06

Table 3.3: Intent classification (IC) and slot labeling (SL) performance change
on internal data (German) across 5 (simulated) new features
when adding paraphrases generated with Shuffle+Beam5 (S+B5)
or Shuffle+Rand5 (S+R5). Numbers are absolute changes with re-
gard to the baseline [69].

for slot labeling but minimal gains for intent classification, which
could be because of less relevance of word order for this task. It is
worth noting that compared to the improvements on the new feature,
the performance drop for existing features is negligibly small. At last,
Upsampling5 seems to be a strong baseline, beating several of our
ablations, but our complete method outperforms it. It indicates that
the diverse and novel paraphrases are beneficial for the downstream
tasks of intent classification and slot labeling.

We only compared our complete method, which includes input
shuffling, across two sampling methods on the commercial data. Ta-
ble 3.3 shows that the average improvement over all simulated new
features achieved is even bigger for intent classification. Similar toour approach helping

real-life German
dialogue system

SNIPs, random sampling performs better than beam search. Also, as
desired, the existing features face negligible drops compared to the
improvements on the new feature. Furthermore, in contrast to SNIPs,
the commercial data shows lower improvements for slots using ran-
dom sampling. We attribute these small improvements to the fact that
the model already knows many (shared) slots due to larger sizes of
existing features, thus making it hard to improve the baseline, which
is already performing better. Table 3.3 shows breakdown by the new
feature. Due to the degrees of variety in utterances for specific fea-
tures and their similarity to existing features, changes are different
across features.

3.7 summary

We started this chapter to answer our motivating question:
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Can we generate high-quality synthetic training examples with
limited parallel data?

We introduced a scenario of adding new functionality to a dia-
logue agent, where limited training data is available for this new
functionality. We proposed a data augmentation approach to gener-
ate synthetic data such that adding this data improves performance
on downstream tasks of intent classification and slot labeling. Our
approach is independent of any parallel data and leverages already
available training examples. We designed an interpretation-to-text mod-
el that generates paraphrases, which we use to augment our training
data for the newly added feature. We presented the role of differ-
ent decoding strategies in generating diverse & novel paraphrases.
The impact of shuffling the input representations in generating more
utterances was also shown. We also presented an alignment-based
label projection to obtain token-level slot labels. We tested our ap-
proach on two datasets: SNIPs, an open-source dataset in English,
and a commercial dialog system dataset in German. We presented
multiple evaluation metrics as exact slot carry over, diversity, and nov-
elty scores to measure the quality of generated paraphrases and par-
tial slot carry over for selecting the best paraphrases for data augmen-
tation. We designed neural models for downstream tasks. Multiple
approaches for comparisons were also presented. It was shown that
diverse and novel utterances are helpful for downstream tasks. The
proposed method of generating data improves performance for in-
tents & slots on an English benchmark and German dialog system
data.

In this chapter, we studied the scenario of the availability of lim-
ited labeled examples from one intent. However, the availability of
training examples from all other intents enabled knowledge sharing,
leading to high-quality text generations. But what if we have limited
training data from all the intents, i.e., a few-shot training setting. A
few-shot setting will not allow knowledge sharing and could lead to
performance degradation on the entire test set. We will delve into
this scenario and leverage another method called distant supervision
(Section 2.4) to overcome accuracy drops arising from limited training
examples.
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As discussed in Chapter 3, we will study a few-shot scenario in this
chapter, i.e., we have minimal training examples. Similar to the task
in the last chapter, we discuss tabular data summarization or data-
to-text generation. It involves generation of textual descriptions for a
given tabular data (Section 2.2.1). We observe that tabular data sum-
marization faces a low semantic coverage problem in a few-shot setting
where important input table values (slots) are missing in the gener-
ated sentence. To overcome this problem, we use a small unlabeled
dataset and employ distant supervision (Section 2.4) to generate sen-
tence outputs for these unlabeled tables to augment limited train-
ing examples. However, the low semantic coverage problem persists.
Therefore, we propose a search-and-learn algorithm that exploits pre-
trained language models (e.g., T5 [143]) to fill the missing slots and
improve semantic coverage. We use the search results to finetune our
system to smooth out search noise, producing fluent text and improv-
ing inference efficiency significantly. We test our algorithm on two
open-source data-to-text datasets. Our method recovers a majority of
missing input table slots on these datasets, largely alleviating the low
coverage problem and closing the gap between few-shot and fully su-
pervised learning.

The proposed algorithm and results presented in this chapter have
been published in AAAI 2022 [74]. We have organized the rest of the
chapter as follows. Section 4.1 explains the problem definition. We publication and

chapter structurediscuss related work in Section 4.2. Section 4.3 discusses the problem
formalization. We present our proposed unsupervised algorithm in
Section 4.4. We discuss the experiments in Section 4.5. The section
comprises two experiments on two datasets. We explain implemen-
tation details and result analysis for both datasets. We also discuss
a detailed analysis of the E2E dataset in Section 4.6. Finally, we con-
clude this chapter with a summary in Section 4.7.

4.1 problem definition

Data-to-text converts structured data into human-readable text de-
scriptions. The data-to-text generation has gained significant atten-
tion in the field of natural language processing, with its applica- applications for

data-to-texttions in multiple fields like restaurants [131], weather forecasts [101],
and biographies [95]. Before the introduction of neural-based models,
some traditional approaches used handcrafted rules with statistics

45
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[92, 149, 166] for text generation. However, the generated text lacks
flexibility and output diversity, thus motivating the use of modern
neural networks like Seq2Seq recurrent neural networks [95, 106].

These Seq2Seq models use massive parallel training datasets to gen-
erate fluent human-readable sentences. For eg., one of the crowd-
sourced data-to-text datasets, namely E2E [131], contains 42k table-
text training pairs. As explained in Chapter 1, these huge trainingdependency of

neural-based models
on large training

datasets

examples are expensive due to the amount and effort involved in
data collection and hence make data-to-text an expensive and time-
consuming affair and restrict its real-world applications.

Therefore, in this work, we focus on a few-shot setting, i.e., consid-
ering a scenario where we have very few parallel training examples.
We use pre-trained language models and fine-tune them using our
few-shot training examples.

In contrast to traditional neural networks, these pre-trained lan-
guage models leverage massive amounts of unlabeled corpora to learn
generic knowledge of the natural language for generating fluent text
using fewer examples. However, we observe that, in a few-shot set-problems in a

few-shot setting ting, these fine-tuned language models miss information slots in the
generated text and thus face the problem of low-semantic coverage. We
handle this problem by proposing a search-and-learn algorithm that
achieves high semantic coverage of input slots. In the following sec-
tions, we aim to answer our motivation question:

Can we minimize semantic information loss when training NLG

systems with minimal training data?

4.2 related work

The generation of human-readable textual descriptions from tabular
data has been a persistent problem from early NLP research. The tradi-
tional works follow a pipeline approach of content planning and sur-
face realization [146]. There have been works using hand-engineered
rules [88, 121] and the ones that employ statistical induction [83, 101].
Despite generating text, these approaches usually lack flexibility anddata-to-text

generation diversity. The recent success of neural-based models for data-to-text
generation [95, 105, 106, 156, 187], handles this problem by learning
from massive parallel data for generating fluent and human-readable
tabular descriptions.

Chen et al. [24] is one of the recent works in few-shot learning
to data-to-text generation. They finetune pre-trained language mod-
els (LMs) with a copy mechanism. They assume the availability of
a small parallel corpus. We observe that despite generating fluentfew-shot data-to-text

generation sentences, these LMs face the problem of low-semantic coverage. It is,
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therefore, difficult to “force” a copy mechanism to copy the entire
source information.

The problem of low semantic coverage has been observed in the
human-written references, which motivated the introduction of the
new metric for better evaluation of data-to-text models by Dhingra
et al. [36]. Another work by Gong et al. [54] focuses on the fidelity
of data-to-text generators. Along with the finetuning of GPT, they
use table reconstruction and content matching. In our preliminary
analysis during development, we observe that T5 does not generate
wrong information but may miss input slots.

Researchers have presented various search approaches to address
unsupervised text generation, like simulated annealing [107] and hill-
climbing [89, 153]. Their approach involves a heuristic objective func-
tion typically involving semantic coherence, language fluency, and unsupervised text

generation using
search approaches

other task-specific scores and text generation by word-level editing
towards the objective. These approaches, however, led to a high infer-
ence complexity. Li et al. [97] propose a search-and-learning approach
that both improves model performance and inference complexity.

Similar to Li et al. [97], we also use a search-and-learning frame-
work with the following differences from the previous approaches: 1)
We address the few-shot setting. We use a fine-tuned language model
to evaluate candidate sentences instead of a heuristically defined ob-
jective. 2) Our search aims for higher semantic coverage rather than a
generic fluent sentence. The main focus of our work is not the search our contributions

algorithm, as the search space is relatively simpler than the entire
sentence space. We adopt a greedy search over multiple missing slots
and are the first to address few-shot data-to-text generation by search
and learning.

There have been some works that learn word edits in a supervised
way [40] or treat rule-edited text as input [98, 183]. However, different
from them, we perform editing as search steps and learn from the
editing results.

4.3 formalization of problem

The data-to-text generation generates natural language textual de-
scriptions for structured input data, which is in tabular form in our
scenario. Each input table is a set of slot name–value pairs, denoted
by T = {(si, vi)}Si=1, where si is the name of the ith slot, vi is the
value, and S represents the number of slots. y = (y1,y2, · · · ,yn) is
the output sentence that describes the given input T. Here, each ex-
ample has a different input table T, but for clarity, we may omit the
example index. formalization of

few-shot settingIn our few-shot setting, we have a small parallel corpus denoted
as Dp = {(T(i), y(i))}Mi=1 and another small unlabeled corpus Du =
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Slot Value

Name The golden 
curry

Food Indian

Rating 1 out of 5

Area Riverside

Near Café rouge

Family 
Friendly

Yes

the golden curry serves indian food with a customer 

rating of 1 out of 5 . it is located near café rouge 

(c) T5 output: the gold curry serves indian food with a customer rating of 1 out of 5. it 
is located near café rouge.  (Missing slots: riverside, family friendly)

(a) Input data (b) Reference: The golden curry is a indian restaurant. it has a customer rating of 1 out 
of 5. it is family friendly. it is located near café rouge.

(d) Search to improve semantic coverage

Select the best
position

in riverside area, the golden curry serves indian food with a 
customer rating of 1 out of 5. it is located near café rouge. 

Iteratively insert all missing slots       

(e) Learn from search results by fine-tuning T5

. . .

Insert “in 
riverside area”

Figure 4.1: An example for data-to-text generation and our proposed ap-
proach [74].

{T(i)
u }Ni=1. Here, T(i)

u and T(i) are different tables and both M and N

are small numbers in our few-shot setting.
In Natural Language Generation, few-shot learning plays a signif-

icant role as it saves human annotation labor. It also alleviates the
cold-start problem of new NLG tasks. In our work, we assume the
availability of an unlabeled corpus Du in addition to Dp, where the
sizes of both Du and Dp are small. Since the collection of unlabeled
data is easier than the labeled pairs containing human-written sen-
tences, our proposed scenario resembles a realistic setting for few-
shot learning. Furthermore, as discussed in Section 3.3.2.1,Du can
also be synthesized by recombining the slots of Dp for a data-to-text
generation.

4.4 proposed solution

Our approach comprises three steps. First-Stage Fine-tuning T5; we
first finetune a pre-trained language model (LM) for conditional text
generation based on input tables. Due to extensive pre-training, a lan-
guage model can generate fluent sentences in a few-shot setting. How-
ever, these models fail to fully learn the correspondence between in-
put table slots and generated text. It faces the problem of low-semantic
coverage. Therefore, we perform a Search to Improve Semantic Cov-overview

erage, iteratively adding a missing slot into the generated sentence
in a greedy manner. Finally, we perform Second-Stage Fine-Tuning
T5 with Search Results, where we treat the search results as pseudo-
ground-truth for further finetuning of our language model. This final
step improves both the inference efficiency and generates fluent sen-
tences. We will explain each of these steps in the following sections.

4.4.1 First-Stage Fine-tuning T5

We use the T5 model [143] for first-stage finetuning for a data-to-text
generation. As explained in Section 2.1.3 of Chapter 2, T5 is a text-to-
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If Then the phrase template is

SN = food SV food

SN = pricerange; SV is a number price range SV

SN = pricerange; SV is a string SV price range

SN = eattype SV

SN = name SV

SN = near near SV

SN = family friendly; SV is yes family friendly

SN = family friendly; SV is no/not not family friendly

SN = customer rating SV customer rating

SN = area in SV area

Table 4.1: Rules for the E2E dataset.

text Transformer [173] model, pre-trained on multiple NLP tasks, and
have achieved state-of-the-art performance in sentiment classification,
question answering, document summarization etc. We must note that
none of the pre-training tasks relate to data-to-text generation. There-
fore, our experiments are in the few-shot setting, even if we use a
pre-trained language model T5.

We linearize the input table by concatenation of all table slots as
“name[value]”. Here, “[” is a special token that separates the slot
name and slot value. Another special token “]” separates different
slots. leverage pre-trained

model to generate
fluent text

In this step, we finetune T5 using a small corpus of a few hundred
data-text pairs. This corpus is considerably smaller than the usual
NLG training sets. Equation 4.1 presents the method of learning the
conditional probability P(y|T) in an autoregressive way.

P(y|T;θ) =
∏n

i=1
P(yi|y<i, T;θ), (4.1)

Here, T is the input table, y is the output with length n, and θ

represents the model parameters. Equation 4.2 presents the equation
to finetune T5 with the cross-entropy loss.

J(θ) = − logP(y|T;θ) (4.2)

4.4.2 Search to improve Semantic Coverage

In our experiments, we observe that T5 certainly generates fluent
sentences, but it faces the problem of low semantic coverage. Fig-
ure 4.1 clearly shows this problem in which two slots, namely “river-
side” and “family-friendly”, are absent in the generated text. This
coverage problem arises from the limited training data as the model
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If Then the phrase template is

SN = fullname SV

SN = birth date born on SV

SN = currentclub plays for SV

SN = nationality SV

SN = position SV

SN = occupation is a SV

SN = death rate died on SV

SN = party serving in SV party

SN = birth place born in SV

Table 4.2: Rules for the WikiBio dataset.

fails to learn the correspondence between input and output from lim-
ited data–text pairs. Our experiment of analyzing the coverage per-
centage and the training size provides supporting evidence. The T5

model fine-tuned with 1% of E2E data has coverage of 84.46% input
slots, whereas fine-tuning using entire training data gives coverage of
97.74%.

We start by first checking if each slot value vi is present in the
T5’s output. This is possible either using the verbatim match of the
slot value or a soft match based on a script by Dušek, Howcroft, and
Rieser [44] that finds missing slots using regular expressions. We in-
sert a phrase ṽi if the slot value vi is absent in the output sentence. We
design phrase ṽi such that it contains some supporting prepositions
along with the original slot value. For example, we insert the phrase
ṽi = “in riverside area” if slot “area[riverside]” is not present in
the output. For Boolean slots, like “familyFriendly[yes/no]” in the
E2E dataset, we design phrase as either “not family friendly” or
“family friendly”. One must note that the design of these phrases
does not require much human labor as we have atmost ten phrases
for each dataset. Also, most of these phrases involve copying the slot
value. Table 4.1 and Table 4.2 presents the complete list of our phrases
for both E2E and WikiBio datasets.

We determine the most appropriate position to insert the missing
slot. We select the candidate with the highest T5 probability P(y|T),
as finetuned by Equation 4.1, shown in Figure 4.1, after the enumer-
ation of all possible positions within a sentence. We greedily repeatproject infeasible

solution to feasible
set

this process for all the missing slots that we want to insert. We insert
all the slots for the E2E dataset. However, for WikiBio, we select the
desired slots by statistics as the task doesn’t require the presence of
all slots in the output sentence. We can consider our approach opti-
mization towards

maximize P(y|T), subject to vi ∈ y, ∀i (4.3)
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Algorithm 1 Search and Learn [74]

Input: Small parallel data Dp= {(T(m), y(m))}Mm=1

Small unlabeled data Du = {T(n))}Nn=1

Pre-trained language model T5

Output: Few-shot learned data-to-text model
� First-stage fine-tuning T5

for (T, y) ∈ Dp in each epoch do
Fine-tune T5 by minimizing − logP(y|T)

� Search to improve semantic coverage
D̃p = ∅
for Tu ∈ Du do

ŷsearch = T5(Tu) � search to be performed
for missing slot (s, v) ∈ Tu that v /∈ ŷsearch do

Update ŷsearch by inserting v with templates into the most ap-
propriate position

D̃p = D̃p ∪ {(Tu, ŷsearch)}

� Second-stage fine-tuning T5

for (T, y) ∈ Dp ∪ D̃p in each epoch do
Fine-tune T5 by minimizing − logP(y|T)

Return: Second-stage fine-tuned T5

In other words, we start from an infeasible solution, an output vio-
lating the constraint, and project the solution into the feasible set by
greedily satisfying each constraint.

The recent development of search-based unsupervised text gener-
ation, such as simulated annealing for paraphrasing [107] and hill-
climbing for summarization [153], inspires our search approach. How-
ever, in contrast to these approaches that search for a generic sentence
maximizing a heuristically defined objective, our search is devoted
to projecting an infeasible solution to the feasible set. Furthermore, using search for

revision, not
generation

our approach differs significantly from template-based text genera-
tion systems [92, 166], as we use rules only for revision rather than
defining rules for output generation.

The generated sentences at this step are often inflexible and disflu-
ent text. Therefore, we design a learning component that learns from
these search results to smooth out disfluent text.

4.4.3 Second-Stage Fine-tuning T5

As discussed in Section 4.4.2, the search approach aims to achieve
complete coverage of input slots in the generated text. However, it
has significant drawbacks like the disfluent generated text due to
fixed templates and low inference efficiency when evaluating mul-
tiple candidate outputs for a given data example. Therefore, we per-
form second-stage finetuning of T5, inspired by Li et al. [97] to over-
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come these drawbacks. This way, we learn from search results ob-search generates
disfluent sentences
with high semantic

coverage

tained from the last step. As discussed in Section 4.3, we assume the
availability of a small unlabeled corpus Du that only contains input
tables. In practice, Du is inexpensive to obtain and can even be syn-
thesized by recombining the table slots and values in Dp.search increases

inference complexity We use T5 to generate candidate output for a given input table
T(i)
u ∈ Du and perform a search to ensure that the candidate output

has high semantic coverage. We treat this search result as pseudo-
groundtruth and denote it as ŷ(i)

search. This way, we create a pseudo-
parallel corpus D̃p = {(T(i)

u , ŷ(i)
search) : T(i)

u ∈ Du}. We mix this pseudo-search-and-learn
generates fluent text

with high semantic
coverage

parallel corpus with our original parallel corpus and use this com-
bined dataset (Dp∪ D̃p) to finetune T5. We use the same cross-entropy
loss as Equation 4.2 to finetune T5. We summarize over training algo-
rithm in Algorithm 1.
We use the second-stage finetune T5 for inference on the test set.
The second-stage T5 model is finetuned with the search results. We
achieve better inference efficiency than the search approach as we
do not perform the search during inference. Our approach leveragesuse second-stage

finetune T5 for
inference

the power of pre-trained language models and generates more fluent
sentences than the search itself. In contrast to the first-stage finetuned
model, T5 explicitly learns from the pseudo-ground truth with high
semantic coverage. Our experimental results show the effectiveness of
our approach in which S&L achieves near-perfect semantic coverage
on the E2E dataset.

4.5 experiments

4.5.1 Experiment I: E2E Dataset

Dataset We use E2E1 [131], a crowd-sourced dataset for data-to-text
generation, for evaluating our approach. It is from the restaurant do-
main. It contains more than 50K table–text pairs, and the input for
each data example contains 3–8 slots. We follow the standard train/-
val/test split.

Implementation Details We use the T5-small model. There are six
layers in the encoder and the decoder. We trained the model using
the AdamW optimizer [110]. We use a learning rate of 3e-4 and pass
64 examples in one batch.

Evaluation For E2E, we used the standard evaluation scripts that
are released along with the E2E dataset by [131]. The script computes
BLEU [133], NIST [38], METEOR [94], CIDEr [174], and ROUGE-L
[102] scores. We have explained each of these metrics in Section 2.2.4.1
of Chapter 2.

1 http://www.macs.hw.ac.uk/InteractionLab/E2E/

http://www.macs.hw.ac.uk/InteractionLab/E2E/
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Recently, Dhingra et al. [36] proposed a set of PARENT (including
precision, recall, and the F-score) metrics against both the input data
and ground truth reference. They observe that BLEU scores do not
correlate well with human satisfaction for the data-to-text generation,
and PARENT scores highly correlate with human judgment. Consid-
ering this evidence, we consider PARENT as the principal metric. We
have used the word-overlap version PARENT-W in our work.

Furthermore, we estimate the fluency of the generated text using
GPT-2 perplexity (without fine-tuning). We have also computed av-
erage sentence length (AvgLen) for reference. We also calculated the
fraction of input slots that appear verbatim in the output, called se-
mantic coverage ratio or Hard Coverage. Although hard coverage
seems strict, it gives a good approximation because most slots con-
tain only one or a few words, and some are proper nouns that should
not change.

We also computed slot error rate [SER, 44] which is specifically de-
signed for the E2E dataset. Based on manually created regular expres-
sions, SER checks if all E2E slot values are present, absent, incorrect,
or are missing in the generated text, as represented by Equation 4.4:

SER =
#added + #missing + #wrong value

#slots
(4.4)

here #added denotes the number of additional slots that were not
in the table, #missing denotes the number of missing slots that were
originally present in the table, #wrongvalue denotes the number of
slots with incorrect slot values, and #slots denotes the number of total
slots.

Since SER accounts for soft matching, we have used 1 − SER as
a measure for Soft Coverage. At last, we have conducted a human
evaluation on a randomly selected subset of test examples for E2E.
The human evaluation results for the coverage percentage (Table 4.5)
are close to the automatic metrics.

Results In our few-shot setting, we consider 1% of parallel exam-
ples (Dp) and other 4% examples (Du) with only input tables. As
shown in Table 4.3, we have two “upper bound” performances ob-
tained by fine-tuning T5 with 100% examples (Line 4) and 5% exam-
ples (Line 5). We have shown results of the previous state-of-the-art
models like TGEN [131], SLUG [75], and the SR1 model [159] to mo-
tivate our setup where T5 (Line 4) achieves similar scores to these
models.

We started few-shot learning by fine-tuning T5 on a small parallel
training data. This fine-tuning led to poor performances in all metrics,
as shown in Lines 4–6 of Table 4.3. More importantly, we observe a slot coverage drops

in few-shot settingsignificant reduction in the hard and soft coverage scores, dropping
quickly from more than 97% to around 84.19%.
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To handle this drop, we investigate if we can use the small unla-
beled dataset Du to boost this performance. We experimented with
the standard strategy for semi-supervised machine learning known as
self-training [200], a method for distant supervision. In this compet-
ing method, we first fine-tune T5 using the small parallel corpus Dp.
Furthermore, we use the trained T5 model to predict the outputs for
unlabeled tables in Du. We treat these inferred sentences as pseudo-
ground-truth and use them for further fine-tuning. Line 7 shows the no improvements

from distant
supervision

result of this approach, and we find that the strategy doesn’t help the
performance (Lines 6–7).

Line 8 and Line 9 of Table 4.3 presents two variants of our S&L
approach. The first variant (Line 8) uses a verbatim match to deter-
mine missing slots, and the second variant (Line 9) uses SER to deter- s&l solving low

semantic coveragemine missing slots. Both these variants achieve higher performance
than other few-shot models in most metrics. Specifically, our model
achieves 98–99% coverage of input slots, thus solving the problem of
low semantic coverage.

Table 4.3 shows high perplexity (PPL) scores which indicates that
the model generates less fluent sentences2. However, we notice that
our sentences are longer and contain more input slots. These slots
are often precise information like restaurant name as a proper noun
for the E2E dataset, thus explaining the higher values of PPL. In gen-
eral, all the models lie in the same ballpark of fluency. Our human
evaluation study further analyzes fluency.

In comparison to T5 trained with four times more parallel data
(Line 5), our approach achieves comparable results (Lines 8 and 9)
in several metrics, such as Meteor and CIDEr. We observe that our s&l achieve highest

parent & coverage
scores

approach outperforms Line 5 with a reasonable margin for PARENT
metrics, the ones specifically designed for the data-to-text generation.
It is worth noting that our approach achieves close PARENT and cov-
erage scores to the fully supervised setting (Line 4).

4.5.2 Experiment II: WikiBio Dataset

Dataset We use the humans domain of WikiBio dataset3 [95] to fur-
ther evaluate our approach. There are 700K English biographies from
Wikipedia, where each biography is associated with a tabular infobox.
The article’s first sentence is treated as a reference for each biography.

In our few-shot setting, we followed one of the settings in [24] and
used 100 parallel examples as the training set Dp. Following our as-

2 Some works like Chen et al. [20] use a trained model to evaluate the human-written
references’ PPL. Although it provides small PPL values, the model does not directly
evaluate the generated text. Therefore, we used a third-party pre-trained language
model, namely, GPT-2, to evaluate the PPL of our generated text. In contrast to Li
et al. [97] we did not finetune GPT-2 on our corpus. We use PPL as a measure of
how fluent the generated text is as general English.

3 https://github.com/DavidGrangier/wikipedia-biography-dataset

https://github.com/DavidGrangier/wikipedia-biography-dataset
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sumption, we included another 400 examples of unlabeled input ta-
bles as Du. For comparison with [24], we did not use Du; instead,
we synthesized 400 examples by recombining the table slots in Dp.
We performed this recombination for fair comparison as it did not
include any new data. We validated our approach on 1000 examples
and evaluated it on the standard test split.

Implementation Details To set a fair comparison with prior work
for few-shot data-to-text generation [24]4, we use the T5-base model,
which consists of a 12-layer Transformer encoder and decoder. We use
a batch size of 20 due to GPU memory constraints. We accumulate
gradients for three steps, which results in an actual batch size of 60.
We adopted other details from Experiment I.

We use a different strategy to add missing slots in WikiBio due
to the nature of this dataset. Unlike E2E, WikiBio contains more ex-
tended input tables. The reference is generally the first sentence of
the WiKi article; therefore, not all input table slots are present in the
reference sentence. Consequently, our algorithm inserts a subset ofselection of missing

slots using
co-occurrence

statistics

input slots. We determine this subset by co-occurrence statistics on
the few-shot training dataset. As a heuristic, we select slots that occur
in at least 10% tables of the dataset and are present in at least 10%
output references.

Evaluation Metrics Similar to Chen et al. [24], we have also in-
cluded BLEU scores for evaluating our generated sentences. How-
ever, from the evidence provided by [36], we still consider PARENT-
W scores as the principal metric in our study. We study the hard
version for semantic coverage since there is no soft version for the
WikiBio dataset. Also, from our E2E experiments, we show that hard
and soft coverages are generally close to each other. We also compute
the coverage against the reference as WikiBio does not aim to cover
every input slot.

Results We show our experimental results in Table 4.4. We repli-
cated the model by Chen et al. [24] as they did not report the PAR-
ENT metrics for their fine-tuned GPT-2 model. Line 1–2 clearly shows
that we achieved similar BLEU scores as Chen et al. [24], thus indi-
cating the fairness of our replication. We improve the T5 model by
2–3 points in terms of PARENT Recall and F1 (Lines 3, 6–7) by using
400 unlabeled tables. The results indicate the effectiveness of our ap-
proach both in generating high-quality sentences for the data-to-textour approach

generating fluent
and high coverage

sentences

task and higher coverage of input slots (reflected by high PARENT
scores). Our coverage score further confirms this claim. The lower
PPL values indicate that our approach generates fluent sentences5.
Line 9 shows another variant that determines missing slots by thresh-
olding the cosine similarity of embeddings. The generic approach of

4 Chen et al. [24] uses a 12-layer GPT-2 model
5 WikiBio corpus is more complex, with sentences containing quite a few proper

nouns, such as the person names. Therefore, we observe higher PPL for WikiBio
sentences than E2E
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Model Coverage Fluency Overall Quality

T5 w/ self-train 81.66% 2.88±0.32 2.1±0.34

T5 w/ S&L 99.58% 2.75±0.43 2.81±0.39

p-value 6.08e-24 0.00664 3.84e-22

Table 4.5: Human evaluation results on E2E. The p-values are given by two-
sided Wilcoxon paired test. It only shows whether our annotated
subset has collected enough evidence for drawing a conclusion or
not, instead of how different two models are. We show the stan-
dard deviation, which roughly estimates if the gap is relatively
large or not.

cosine similarity is different from SER (SER is specifically engineered
for E2E) and does not work well compared to our verbatim matching,
thus confirming the simplicity and effectiveness of our approach in
alleviating the low semantic coverage problem.

In comparison to the Chen et al. [24] which is the state-of-the-art
few-shot learning, we use 400 extra tables. Therefore, to set a fair
comparison by not using any additional data, we synthesized 400

tables by recombining the input table slots. Line 5 and Line 2 of Ta-
ble 4.4 suggest that our approach improves the previous state-of-the-
art model in all metrics even without an unlabeled corpus. Compar-our approach

improves the
previous sota

ing Line 5 with Line 7, we observe that the recombination of table
slots does not perform well as using additional unlabeled tables. A
plausible reason is that new tables train T5 with more slot values,
which is especially useful for few-shot data-to-text generation, where
we only have a few hundred examples in few-shot settings. Hence, the
recombination of table slots does not serve this goal. Future research
can aim to address effective data augmentation for the data-to-text
generation.

4.6 detailed analysis

We also perform a detailed analysis of the E2E dataset and its stan-
dard variant (Line 8, Table 4.3).

Human Evaluation In addition to automatic metrics, we also con-
ducted a human evaluation to support our findings. We obtained the
T5 self-train and T5 S&L outputs and selected a random subset of 50

examples. We computed the statistical significance to demonstrate the
usefulness of this small subset to conclude. We employ three annota-
tors to evaluate each table–text pair on three criteria, namely fluency,
coverage, and overall quality. Fluency measures if the sentence is nat-
ural, clear, and grammatically correct. We ask annotators to provide
each sentence a score of 1 to 3, where a score of 3 is assigned if the
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Model PARENT(P/R/F1) InfTime RelTime PPL

S&L 66.97/63.63/64.29 78.05 1x 160.40

SearchInf. 65.71/60.17/61.67 113.4 1.45x 234.19

Table 4.6: Search and learning vs. search for inference. Inference time (in
seconds) and Relative time were obtained by predicting the test
set on a single V100 GPU.

sentence is fluent, natural, and grammatically correct. A mostly flu-
ent sentence with minor errors gets a score of 2, and a score of 1 human evaluation

setupmeans that the sentence is not fluent and has multiple grammatical
errors. Coverage divides the number of input table slots present in
the text by the total number of input slots. Finally, we ask annotators
to assign an overall quality to each sentence with a score of 3 (good
quality), 2 (average quality), and 1 (poor quality). We conducted our
human evaluation in a strict blind fashion, i.e., the annotators did not
know the model of a generated sentence, and examples were shuffled
randomly. Table 4.5 shows the results of the human evaluation.

We observe that the human-annotated coverage ratio is similar to
automatic counting presented in Table 4.3. Compared to a fine-tuned
T5 with self-training, our S&L approach achieved near-perfect seman-
tic coverage. Annotators did not observe any false information in both s&l achieving

near-perfect
semantic coverage

models. The results for fluency are slightly low for S&L compared to
T5 self-training. However, the difference is one-third of a standard de-
viation, which is somewhat small compared with our improvements
in other aspects. We observe that S&L has a higher overall quality
than the competing method by more than two standard deviations,
thus showing the effectiveness of our approach. Our human evalua-
tion study is generally consistent with our automatic evaluation.

Search and learning vs. Search for inference We also perform an
analysis to compare the search and learning (S&L) and search ap-
proach. In other words, we compare our approach with performing
a search for inference on the test set. We present the results for this
analysis in Table 4.6. We observe high performance for S&L in terms
of all metrics. Specifically, the PPL values for S&L are considerably
smaller than the search for inference. These small PPL values indicate
the effectiveness of second-stage fine-tuning to learn from the search
results for higher semantic coverage and smooth out the search noise
to yield better sentences. Additionally, S&L has a better inference ef-
ficiency. Despite using the V100 GPU device and our batch imple-
mentation, the search for inference takes 45% more time than S&L in
inference.

Case Study Figure 4.2 presents a case study where we have seven
ground-truth references for a given data example. We have intro-
duced two references to illustrate the existence of missing slots even
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Slot Value
Name The Phoenix
Eat type Restaurant
Food Indian
PriceRange £ 20-25
Customer
Rating High

Area Riverside

Near Crowne
plaza hotel

Family
Friendly No

Input table Reference 1: the phoenix is a restaurant that also serves indian food priced between £20-25, located near 
crowne plaza hotel on the riverside. it’s customer rating is high, and the establishment is kids friendly. 
(All slots are present)

Reference 2: the phoenix, located near crowne plaza hotel on the riverside, is a restaurant that also serves 
indian food. it is kids friendly and food is priced between £20-25. (Missing slot: customer rating)

T5 few-shot fine-tuned: the phoenix is a restaurant that serves indian food in the price range of £20-25. it 
is near crowne plaza hotel. it has a high customer rating. (Missing slots: riverside, family friendly)

T5 self-train: the phoenix is a restaurant that serves indian food in the price range of £20-25. it is near 
crowne plaza hotel. (Missing slots: high, riverside, family friendly)

T5 search for inference: the phoenix is a restaurant that serves indian food in the price range of £20-25. it 
is near crowne plaza high customer rating in riverside area not family friendly hotel.  (All slots are 
present, but the sentence is not fluent)

T5 S&L: in riverside area the phoenix is a restaurant that serves indian food in the price range of £20-25. it 
is near crowne plaza hotel. it has a high customer rating and is not family-friendly. (All slots are present)

Figure 4.2: A case study of few-shot data-to-text generation on the E2E
dataset [74].

in the reference. We observe that T5 (fine-tuned with few-shot Dp

or further self-trained with Du) yields fluent sentences and does not
generate false information as addressed by Gong et al. [54]. However,
it faces the problem of low semantic coverage, i.e., a few table slots
are absent in the T5’s output. We can achieve perfect slot coverage
by performing a search for inference. Still, its decreases fluency like
“it is near crowne plaza high customer rating in riverside area not family
friendly hotel”. At last, our S&L approach generates a fluent sentence
with high semantic coverage.

4.7 summary

We started this chapter to answer our motivating question:

Can we minimize semantic information loss when training NLG

systems with minimal training data?

We introduced a scenario of few-shot learning for an NLG task
called data-to-text generation. We observe that in a few-shot setting,
data-to-text systems face the problem of low semantic coverage, i.e.,
important input table slots are missing the generated text. We pro-
posed a search and learn algorithm that overcomes this problem and
closes the gap between few-shot and fully supervised learning. Our
approach uses the pre-trained language model to fill the missing slots
and improve semantic coverage. We used the search results to fine-
tune our model further, which smooths out search noise and pro-
duces fluent text. We tested our algorithm on two datasets and pre-
sented an extensive evaluation using multiple automatic metrics. We
also introduced a detailed analysis of the E2E dataset to show the
effectiveness of our approach, which generates fluent sentences with
high semantic coverage and is efficient in terms of time efficiency.
The proposed method achieves high performance on both E2E and
WikiBio datasets. Specifically, we cover 98.35% of input slots on E2E,
which largely alleviates the low coverage problem.
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Chapter 3 and Chapter 4 present approaches where we use entire
training datasets and, depending on the availability of unlabeled data,
we either augment it using data augmentation or weak supervision.
The use of entire training data is justified when the training examples
are scarce, but one must pick the most informative examples during
the availability of enormous amounts of training examples. It will
allow us to train the models with minimum compute resources and
considerably reduce the training times. In the next chapter, we will
delve into this scenario, where we will design a diagnostic tool that
selects the most informative training examples for training the model
while ensuring minimal or no accuracy losses.





5
D ATA S E L E C T I O N

In the last two chapters, we discussed the method of data generation
to overcome performance drops due to the limited training examples.
We used the entire training data in both scenarios because of the small
data size. However, during the availability of enormous amounts of
training examples, one must consider if all the training examples are
helpful or not. The selection of training subset will allow us to train
the models with minimum compute resources and considerably re-
duce the training times.

This chapter focuses on selecting the smallest subset of training
data that contains the most informative training examples. We aim to
use this subset for model training without degrading model perfor-
mance on the downstream task. We study the problem of VQA, which
is an image-conditioned NLU task. As explained in Section 2.3.1, we
chose VQA due to its broad adoption in the research community and
its complexity emerging from integrating two different modalities.
We propose a simple diagnostic tool, called EaSe, for VQA that quan-
tifies the difficulty of an image,question example. Our diagnostic
leverages the pattern of answers given by multiple human annotators
for a given question. In particular, EaSe considers two aspects of the
answers: their entropy and their semantic content. We prove the va-
lidity of EaSe to identify examples that are easy/hard for SOTA VQA
models. We use EaSe to select increasingly difficult subsets of data,
which we use to train/finetune our VQA models. We hypothesize that
the difficult examples are also more informative during training. We
show the effectiveness of our approach in both cases: (1) we observe
that models struggle with the most difficult examples selected by
EaSe; (2) training/finetuning of VQA models with only a small frac-
tion of the most challenging examples makes these models achieve
very high results, which are comparable to the results when models
are trained/finetuned with the whole training data. Most importantly,
we use readily available information in any VQA dataset for comput-
ing EaSe scores. We experiment on two open-source datasets and
show the effectiveness of our diagnostic tool that selects the smallest
training subset to recover a significant portion of model accuracy.

The proposed method and results have been published in NAACL
2021 [73]. The rest of the chapter is organized as follows. Section 5.1
explains the problem definition. We explain our approach and the publication and

chapter structurecomponents of EaSe in Section 5.2. Section 5.3 explains the models
and datasets that we used in this work. We explain complete proof-
of-concept analysis in Section 5.4. We discuss experiments and results
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in Section 5.5 and Section 5.6. Section 5.7 discusses a complete analy-
sis of EaSe. We provide an analysis of correlation between the EaSe

scores and confidence scores provided by human annotators along
with their answers. It shows that the notion of difficulty captured by
EaSe is in line with that by human speakers. Finally, we conclude this
chapter with a summary in Section 5.8.

5.1 problem definition

VQA [7] is a classification task that requires models to understand
both visual and language modalities for the successful answer predic-
tion. Despite massive training data and recent pre-training strategies
[22, 111, 170], the challenging task of VQA still struggles to close the
gap with oracle performance. There are substantial training examples
in VQA datasets, like 440k training examples in one of the widely used
VQA 2.0 dataset. These tremendous amounts of training examples
raise the question:

Is “all you need is more training data” always true?

We aim to address this question for the task of VQA.
VQA datasets like VQA 2.0 [56], VizWiz [59] consists N answers by

N human annotators for each ⟨image,question⟩ pair. During train-
ing a VQA model, we usually use the most frequently chosen answer
as the ground-truth answer for the model. At the time of inference,
the model’s prediction (answer with the highest probability) is eval-
uated against the pattern of N ground-truth answers. The standardeach

⟨image,question⟩
pair with ten

answers

VQA metric [7], represented by Equation 5.1, considers the model’s
prediction as perfectly correct if it matches a frequent answer in the
pattern and less accurate if it matches an underrepresented answer.

acc = min

(
humans that said answer

3
, 1

)
(5.1)

The metric suggests that there can be a different pattern of answers
for various ⟨image,question⟩ pairs, depending on the features of
the question, the image, or both. Figure 5.1 shows an example from
the VQA dataset in which the annotators did not converge on one
answer for either of the two questions. However, the answers to thealready available

answer pattern question at the top are semantically similar (e.g., plaid, plaid and floral,
etc.) while for the bottom question, all the answers are very different
(e.g., road, sweden). Considering the availability of these responses,
we ask ourselves if we can use this answer pattern to identify the
most informative examples for training a VQA model. Therefore, our
motivating question becomes:
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Q: What is the pattern of the 
little girl's dress?
GT: plaid: 4, checks and 
flowers: 1, checkered with 
flowers: 1, polka dots, 
squares, plaid: 1, squares 
and flowers: 1, flowers: 1, 
plaid and floral: 1
EaSe: 1.0

Q: Where is this?
GT: road: 4, outside: 2, 
pakistan: 1, outdoors: 1, 
sidewalk: 1, sweden: 1
EaSe: 0.30

Figure 5.1: One image from VQA 2.0 with two questions and the answers
by ten annotators. Frequency of each unique answer (e.g., plaid :

4) and EaSe values of the examples (the higher, the easier) are
reported [73].

Can we use already available inter-annotator agreement to select
smallest and most informative training examples?

which we aim to answer in the following sections.
We design a diagnostic tool for VQA, called EaSe, that is based

on answers provided to a given question. We propose Entropy and
Semantic content as the two main features of the answer pattern.
These features are informative of the degree of difficulty of an ex-
ample. Specifically, we suppose that the more scattered answer pat-
terns are the ones with high difficulty (Figure 5.1, down). Unless
some or all of those answers are semantically similar like the top
⟨question,answer⟩ in Figure 5.1.

5.2 approach

Data selection is an important approach that aims toward efficient
and cost-effective ML. Some works maximize submodular proxy func-
tions to select diverse training examples [12, 109, 185]. In contrast,
others choose corsets which is a weighted subset of training examples related work for data

selection[79, 80, 113, 127]. Unlike the corset selection, which depends strongly
on the model and training loss and does not explicitly control the
validation set error, Durga et al. [43] is another work that considers
validation constraints for data selection.

Inspired by the usefulness of data selection approaches for design-
ing data constrained systems, we leverage the already available inter-
annotator agreements for data selection in this work. Related works
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have investigated these inter-annotator agreements like Gurari and
Grauman [58] predicts the agreement between annotators, [191] pre-
dicts the distribution of answers for a given ⟨image,question⟩ pair.
Terao et al. [172] analyze the difficulty of visual questions based on
the behavior of multiple different VQA models. However, to the best of
our knowledge, we are the first to leverage the inter-annotator agree-
ment to design a diagnostic tool for data selection.

For each VQA example, an ⟨image,question⟩ pair, we aim to quan-
tify their difficulty. In other words, we aim to quantify how challeng-
ing an example is for a model to provide the correct answer. We pro-two aspects of ease:

entropy and
semantics

pose that we can use the (readily available) characteristics of the an-
swer pattern provided by annotators to quantify the difficulty of the
example and devise a diagnostic tool that builds on this assumption.
We focus on two aspects of the answer pattern. First is its Entropy
where we check how scattered an answer pattern is in terms of the
number of unique answer strings. The second aspect is its Semantics
which checks the similarity or dissimilarity of the answers in the pat-
tern with respect to their overall semantic representation. We call our
diagnostic tool EaSe and we explain its components in the following
sections.

entropy (e) We consider all the answers for a given example and
use Equation 5.2, similar to Yang, Grauman, and Gurari [191], to
measure the entropy of an answer pattern.

E(pf) =
−1

η

M∑
k=1

pk ∗ log(pk) (5.2)

entropy captures the
nature of

distribution
Here, pf represents the distribution of the M unique answers based
on their frequency. η represents the highest possible Entropy value1.
We use η to normalize E in [0, 1]. The highly scattered distributions
get high E values (close to 1). The highly consistent distributions like
the ones when all annotators agree on the same answer get low values
of E (close to 0).

semantics (se) Entropy considers the frequency of unique an-
swer strings in a given pattern. It treats all the answer strings differ-
ently, i.e., doesn’t take into account whether the answer strings are
semantically similar or not. However, semantics play an important
role in deciding the easiness or difficulty of an example. All annota-
tors answering semantically different answers reveal inconsistencies
among annotators. This inconsistency indicates the difficulty of an ex-
ample. On the other hand, semantically similar answers are a proxy
for the example’s easiness, though these answers have different sur-
face realization (e.g., a couple vs. a pair).semantics considers

semantics of answers
to design new

distribution

1 the maximum Entropy value is 2.302 in our data.
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We use pre-trained word embeddings [124] for designing Se. We
re-organize the answer pattern by aggregating semantically similar
answers and their corresponding frequencies. We summarize all the
steps as follows.

• For each answer in the pattern, we average its word embeddings
to compute its representation, similar to Chao, Hu, and Sha [18].

• We build an average representation of all the unique answers
and call it a centroid. The centroid encodes the overall semantics
in the pattern.

• We compute the pairwise cosine similarity (cos) between each
unique answer in the pattern and the centroid. We clamp the
negative values to 0 such that the similarity values are in [0, 1].

• Finally, we group all the answers whose cos with the centroid
embedding is greater than a certain threshold. The threshold τ

is set dynamically. To adapt to the features of each data point,
we compute τ at the datum-level. It is defined by:

τ = cos (max, centroid) − ε (5.3)

Here, ε is a small positive number, close to 0. We use ε = 0.0001 in our
experiments. The answer with the maximum frequency in the pattern
is called max. We use the lowest τ if more than one max is present. At
last, we obtain a new distribution such that all the answers that are
semantically consistent with the centroid are combined, and we add
their frequencies.

ease diagnostic We represent the new distribution of answers
after applying Se as pse. Once pse is obtained, we compute EaSe

using Equation 5.4.

EaSe(pse) = 1− E(pse) (5.4)

ease values
increasing with ease
of a example

Here, the second term quantifies the Entropy of pse (as in Equa-
tion 5.2), and the first term makes the value of EaSe increase with
the easiness of an example. We get a single value of EaSe in [0, 1] that
quantifies the ease of a VQA example.

5.3 models and dataset

We use two models and two datasets to experiment with our ap-
proach. The first VQA model, called BUTD [6] uses a GRU to en-
code input questions and attends to the image ROI features that en-
able region-based attention for answer generation. The second model,
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Figure 5.2: Distribution of examples in the validation splits of VQA 2.0 and
VizWiz, against number of unique answers. E.g., in 33% exam-
ples in VQA 2.0, all annotators gave the same answer [73].

called LXMERT [170], is a Transformer-based architecture that is pre-
trained on several vision & language tasks. We have used the default
parameters as set in the original implementation. We trained BUTD

and have fine-tuned LXMERT and have evaluated on the datasets de-
scribed below.

We experiment with two VQA datasets, namely VQA 2.0 [56] and
VizWiz [59]. The datasets differ from each other, like object-centered
images in VQA 2.0 vs. everyday-life images in VizWiz. Also, the type
and purpose of their questions vary; questions in VQA 2.0 are writ-
ten & crowdsourced, while VizWiz questions are spoken and goal-experimenting with

two completely
different datasets

oriented. These differences motivate our selection for using them to
see the applicability of our diagnostic tool in two completely differ-
ent settings. These models and datasets are explained in detail in
Section 2.3.3 and Section 2.3.2 of Chapter 2.

We perform a preliminary analysis of the answers to the questions
present in the validation split. Each ⟨image,question⟩, is coupled
with 10 answers provided by 10 human annotators. We use these an-
notations to observe the human agreement for each training example.
Figure 5.2 shows the distribution of examples against the number
of unique answers for both VQA 2.0 and VizWiz datasets. It clearly
shows that for VQA 2.0, 33% of the questions have the same answer
from all annotators. However, the percentage drops significantly for
VizWiz, where only 3% of the questions have the same answer from
all annotators. We use this disagreement to represent the difficulty of
these datasets, where more disagreement points to more challenging
examples. We refer the reader to work by Jolly et al. [72] for more
details on data distribution for VQA datasets.

5.4 proof-of-concept analysis

We test our hypothesis by computing the EaSe values for each exam-
ple in the training and validation partitions of both datasets. Based
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Method Split VQA 2.0 VizWiz

Train Validation Train Validation

EaSe
TH 40522 19805 3201 522

(9%) (9%) (16%) (16%)

BH 189281 92606 10443 1646

(43%) (43%) (52%) (52%)

E 213954 101943 6356 1005

(48%) (48%) (32%) (32%)

Entropy
TH 108457 53230 11903 1897

(25%) (25%) (60%) (60%)

BH 187287 90896 7337 1165

(42%) (42%) (36%) (37%)

E 148013 70228 760 111

(33%) (33%) (4%) (3%)

Total 443757 214354 20000 3173

(100%) (100%) (100%) (100%)

Table 5.1: Top: Number of examples in the TH, BH, and E splits of VQA 2.0
and VizWiz based on EaSe. Bottom: number of examples based
on Entropy. In brackets: percentage in the corresponding Train/-
Validation partition.

on their EaSe value, we assign each example into three splits. The top
row of Table 5.1 shows the number of examples per split. We define
these splits as easy (E) with values for EaSe = 1.0, bottom-hard (BH)
with values as 0.5 <= EaSe < 1.0, and top-hard (TH) with values of
EaSe < 0.5. We test our models on each of these splits.

For the correctness of our hypothesis, we assume that models should
struggle with the more challenging (harder) splits selected by EaSe.
We show the performance of all models, BUTD, LXMERT, and LXMERT-
S, in Table 5.2. LXMERT-S represents a version of LXMERT, trained from
scratch on the task. We observe that all the models achieve low perfor- sota models struggle

with the hardest
split selected by ease

mance on the hard splits (TH), and the accuracy values are halved in
comparison to the entire (all) data. However, high values of LXMERT
show that pre-training is beneficial where the pre-trained version out-
performs the non-pretrained (LXMERT-S) in both datasets and all
splits, with a margin of 8 points on the complete data.

We also run the same analysis using Entropy (specifically, 1−Entro-
py) for showing the comparison with EaSe, as shown in the bottom
row of Table 5.1. We use Equation 5.2 to compute Entropy over the
original answer distribution and subtract this result from 1. We use
the same criteria as EaSe (Section 5.4) to divide examples into TH, BH,
and E splits. We observe that the two methods give rise to very dif- completely different

distributions for ease
and entropy

ferent data distributions. As we can see, Entropy assigns much more
cases (25%) than EaSe (9%) to the TH split in the training partition of
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Dataset / Split BUTD LXMERT LXMERT-S

VQA 2.0

all 63.43 71.48 63.18

TH 29.82 36.56 30.52

BH 63.97 71.26 64.06

E 69.47 78.46 68.73

VizWiz

all 50.35 53.75 45.79

TH 29.48 31.84 26.61

BH 49.08 52.82 44.38

E 63.27 66.65 58.08

Table 5.2: Accuracy by BUTD, LXMERT, and LXMERT-S on the entire validation
set (all) of VQA 2.0 and VizWiz and the three splits defined by
EaSe. For all models in both datasets, accuracy consistently in-
creases from TH to E.

Dataset/Split BUTD LXMERT LXMERT-S

VQA 2.0
TH 34.73 42.2 34.89

BH 71.31 78.66 71.22

E 74.98 84.38 74.21

VizWiz
TH 44.40 46.79 41.48

BH 59.25 64.02 53.31

E 52.25 64.86 40.54

Table 5.3: Accuracy by BUTD, LXMERT, and LXMERT-S on three validation
splits of VQA 2.0 and VizWiz. The splits are obtained via Entropy.

VQA 2.0. Further, Entropy assigns a few examples to the Easy split
(33% Entropy vs. 48% EaSe) for training partition of VQA 2.0.

The comparison provides two important insights. Firstly, it con-
firms the crucial role of our semantic component in determining the
EaSe scores. Secondly, we observe that for the three splits defined bycrucial role of

semantics in
determining ease

scores

Entropy, the results obtained by the three models follow a less clear
pattern compared to the ones obtained by EaSe. We present these
results in Table 5.3. Here, both BUTD and LXMERT-S achieve higher
results in BH in comparison to E for the VizWiz dataset. It indicates
that Entropy is not as effective as our tool to measure the difficulty of
an example.

Finally, we also performed an experiment that tests model perfor-
mances on splits of the same size as that of EaSe’s TH, BH, and E but
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Dataset/Split BUTD LXMERT LXMERT-S

VQA 2.0
TH 63.42 71.56 63.10

BH 63.45 71.43 63.16

E 63.35 71.46 63.17

VizWiz
TH 50.31 53.59 45.79

BH 49.88 53.31 45.97

E 50.26 53.77 46.18

Table 5.4: Accuracy by BUTD, LXMERT, and LXMERT-S on three random splits
of validation data of VQA 2.0 and VizWiz. The random splits are
of same size as that of TH, BH, and E as mentioned in Section 5.4.

including random examples. Table 5.4 shows the results where all the
splits have almost the same accuracy. Unlike our proposed diagnostic
EaSe, which selects the most difficult subset (TH), which is hard for other methods do not

show any patternall models, we don’t observe any such pattern in the random split
selection. In other words, we regard no difference in performance
between the three splits. We performed the sampling 10 times and
reported the averaged results.

The proof-of-concept analysis provides insights into the limitations
of current SOTA models, including extensively pre-trained LXMERT, to
perform well on the hard splits deemed by EaSe. The analysis sug-
gests that our diagnostic tool genuinely selects the most challenging
examples of a dataset. ease determines the

most challenging
training examples

Motivated by the promising results by EaSe to select the small-
est & most challenging subset, we then ask ourselves, can we make
our models robust by training with these hard examples? Our intuition is
that challenging examples could be more informative during training
compared to the easy examples. We test our hypothesis in the follow-
ing sections, where we use the splits defined by EaSe to train models
in a HardFirst (HF) approach.

5.5 experiments

As the name suggests, we train models incrementally in a hard first
approach. We start by only using TH examples, then adding BH exam-
ples, and finally using all training examples (TH+BH+E). We initial-
ize the weights for the first stage randomly, and for each incremental
stage, we load the model weights from previous stages. For VQA 2.0,
we have 9.13% (TH) examples for first stage, 51.79% for second stage
(TH+BH), and 100% (all) for third stage. The percentages for VizWiz
are 16%, 68.22%, and 100% for the respective stages. We hypothe-
size that harder splits, with low EaSe scores, possess rich multimodal
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Model TD VQA 2.0 VizWiz

all TH BH E all TH BH E

BUTD TH(R)* 50.14 20.46 53.34 53.0 42.75 24.91 40.57 55.58

BUTD TH 44.13 26.1 51.3 41.13 42.46 25.1 39.69 56.02

BUTD TH+BH 56.6 29.73 61.2 57.64 48.58 29.58 47.57 60.1

BUTD TH+BH+E 61.43 29.61 62.81 66.36 50.12 29.56 48.95 62.73

LXMERT TH(R)* 69.61 34.76 69.44 76.55 46.42 26.03 45.78 58.06

LXMERT TH 67.24 35.64 67.58 73.02 46.65 26.13 45.79 58.73

LXMERT TH+BH 69.85 37.05 70.63 75.52 51.65 30.29 50.07 65.36

LXMERT TH+BH+E 70.57 35.51 70.26 77.65 53.40 32.82 52.26 65.97

Table 5.5: Accuracy on each split of VQA 2.0 and VizWiz obtained by grad-
ually training models first on TH, then adding BH and finally
adding E examples. TD refers to type of training data used for
training. TH(R) refers to the setting in which we use a split ran-
domly sampled from the training data with the same size of TH.
*The random sampling was performed 10 times; as such, the re-
ported accuracy is the average over 10 accuracy values.

information, which could be informative during a model’s learning.
We also evaluate models in the TH(R) condition for fair comparisons.
Here, we train/finetune models with a random subset of training
data that has the same size as that of TH. We repeat the sampling 10

times and report the average accuracy results.

5.6 result discussion

Table 5.5 shows our experimental results. We observe that the exper-
iments support our hypothesis. Here, in comparison to the model
trained on whole data Table 5.2, the BUTD model obtains 90% of all
validation accuracy using only 52% of training data (TH+BH) for the
VQA 2.0 dataset. The results are more pronounced in VizWiz, where
68% of the total data (TH+BH) leads to comparable performance as
the one obtained with the whole training data. We observe similar re-
sults for LXMERT as LXMERT achieved 97% of validation accuracy with
68% of training data in VizWiz. For VQA 2.0, LXMERT achieves 98% of
validation accuracy using only 52% of training data.models recover

significant accuracy
gains using half the

size of original
training data

In comparison to the TH(R) condition, we observe that models
trained/finetuned with the TH split achieve higher results in the TH
split of validation sets for both datasets. It confirms that TH exam-
ples are valuable in dealing with challenging cases. Furthermore, we
observe that during the evaluation of the entire data (all), the models
perform similar to TH(R) for VizWiz and slightly worse than TH(R)
for VQA 2.0. However, the results are not surprising as during sam-
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Figure 5.3: Average EaSe scores against binned confidence scores in VQA
2.0. Closed/open brackets indicate that values are included/not-
included in the bin [73].

pling form VizWiz 68% cases are either BH or TH, and therefore it will
likely produce a more similar distribution to that of TH. Nevertheless,
there are 48% of E cases in VQA 2.0, thus leading to a sampling of
more similar distribution to that of E. Due to the same proportions
in the validation set of VQA 2.0, training/finetuning with the easier
cases will have a positive impact on E, thus driving the performance
on all. These results indicate that the hard examples by EaSe are more
informative than the easier ones and help models to obtain compara-
ble performance with significantly less training data.

5.7 analysis of ease

5.7.1 EaSe vs. Confidence Scores

We use the confidence scores provided by the annotators along with
their answers to test whether EaSe correlates with human intuition
of difficulty while answering a question. The confidence scores evalu-
ate whether the annotators are confident while providing an answer,
and the values are yes, maybe, no. We map these values as yes, maybe,
no to 1, 0.5, and 0, respectively, and compute the average confidence
score for each example. We compute Spearman’s correlation between high correlation

between ease and
human intuition of
difficulty

confidence scores and EaSe scores, and find substantial positive cor-
relation in both training (ρ = 0.49) and validation (ρ = 0.48) sets.
Figure 5.3 shows the trend in VQA 2.0 dataset, where we have higher
confidence scores corresponding to increasingly high EaSe values. We
observe a similar trend for VizWiz, Figure 5.4, which shows that EaSe
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Figure 5.4: Average EaSe scores per confidence scores provided by annota-
tors for both splits of VizWiz. Open/close brackets indicate that
values are not/ included [73].

correlates with human intuition of having difficultly which answering
a question.

5.7.2 EaSE vs. Question Types

In this analysis, we study the question types present in the hard splits
selected by EaSe. Our intuition is that EaSe must contain question
types that are challenging for VQA models like wh- and count ques-
tions. Figure 5.5 and Figure 5.6 shows the results of this analysis. We
observe a high proportion of count (Number) and wh- (Other) ques-
tions in the hardest split as compared to the other splits of VQA 2.0.
We observe a similar pattern for VizWiz in Figure 5.6, where there areease selects difficult

question type for its
hard split

a higher number of Other question types in the hardest split selected
by EaSe. Furthermore, there are very few Unanswerable questions
in top-hard split which show an interesting property of EaSe that
doesn’t consider the usual notion of associating Unanswerable ques-
tions with hard rather; it looks at human agreement/disagreement to
determine the difficulty.

5.8 summary

We started this chapter to answer our motivating questions:

Is “all you need is more training data” always true?
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Figure 5.5: Percentage of examples per question type in VQA 2.0-train for
each of the three splits used in the HF training regime. Other
contains all wh- questions, Number count questions, Yes/No polar
questions.

Figure 5.6: Number of examples per question-type in VizWiz-train for each
of the three splits used in HF training regime. Here, Other be-
longs to reasoning questions (why, which, where), Number to
counting questions, and Yes/No to polar questions.
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Can we use already available inter-annotator agreement to select
smallest and most informative training examples?

We presented a diagnostic tool for data selection that allows the
training of VQA models with limited training examples without fac-
ing any accuracy degradations. This way, selecting the most informa-
tive subset of training data will allow us to train the models with
minimum compute resources and will considerably reduce the train-
ing times. We studied the problem of VQA and leveraged the already
available inter-annotator agreements to select the most informative
training examples. Our tool, called EaSe, is based on the entropy
and semantic similarity of answers provided by human annotators
for each training example. We presented a proof-of-concept analysis
that shows the effectiveness of EaSe in selecting the most challenging
split of data which is difficult for the SOTA models. We experimented
with two datasets and used two VQA models. We showed that for both
datasets, both VQA models recover a significant portion of validation
accuracy by using the hard splits (selected by EaSe) during training.

This completes the third part of our thesis, where we presented the
role of data in handling data constraints. We discussed approaches
to generate synthetic data and select a subset of training data for ef-
ficient model training. It’s worth noting that these approaches can
extend and generate only task-specific training data. However, as
mentioned in Section 2.4, one may face problems like different dis-
tribution for training and test splits, where the above approaches are
not applicable. In the next part, we will investigate the method of ex-
ploiting latent representations and show how we can leverage them
for the scenarios mentioned above. We will continue our study on the
same VQA 2.0 dataset. We will understand the relationship between
two question types and highlight the possibility of designing future
datasets with limited costs, i.e., enabling a data-constrained VQA.
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6
F E AT U R E S PA C E L E A R N I N G

This chapter presents the proposed methods to investigate the feature
embedding space to handle data constraints. We study the widely
used VQA 2.0 [56] dataset for our analysis. VQA 2.0 contains two
question types, namely, yes/no (polar) and non yes/no (non-polar).
We conduct an empirical study to understand the feature space of
these two question types for VQA models. We observe that 38% of the
questions have two answers (“yes” and “no”) while the remaining
62% questions belong to 3127 answers. Such an over-representation
of polar questions raises an important question Are there any sources
of bias emerging from the over-representation of polar questions? In our ex-
periments, we addressed this question and measured the confound-
ing factors when VQA models are trained using both question types.
We also performed an experiment called cross-polarity evaluation to
analyze the alignment of polar and non-polar feature spaces. Our
results of exploring the intermediate feature space of visual-text em-
beddings show that the feature space of polar questions encodes suf-
ficient structure to answer many non-polar questions. The results in-
dicate that the two feature spaces are strongly aligned, hence the ex-
pression P ≈ NP. Therefore, in a data-constraint setting, one can use
polar questions, which are easier to annotate via crowd-sourcing, for
building future VQA datasets.

The methods and models presented in this chapter have been pub-
lished in ICPR 2020 [71]. We discuss problem definition in Section 6.1.
Section 6.2 explains our method. Section 6.3 explains the competing publication and

chapter structuremethods. We summarize results and a detailed discussion in Sec-
tion 6.4 and Section 6.5. Finally we conclude this chapter with a sum-
mary in Section 6.6.

6.1 problem definition

As discussed in Chapter 5, Visual Question Answering [7] is a clas-
sification task that requires machine learning models to jointly learn
from image and textual modalities for a successful answer prediction.
Since the release of VQA by Antol et al. [7], VQA models were seen
to employ dataset biases instead of understanding images or ques-
tions. For, e.g., a VQA model for questions starting with “what sport...”
usually gave “tennis” as an answer since the answer was seen more of-
ten in training data for VQA 1.0 [7]. These uneven data distributions
lead to the introduction of large VQA datasets [56], new metrics [77],
regularizers [3] or re-balanced partitions for existing datasets [3, 4].

79
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Figure 6.1: Distribution of polar (P) and non-polar (NP) examples in VQA
2.0 [71].

We analyze a different source of bias that emerges from joint train-
ing of two question types where one type is significantly dominant in
the training data. VQA datasets like COCO-QA, VQA 1.0, or VQA 2.0
contain two question types, which we call polar and non-polar. Here,
polar questions have an answer, “yes or no”, and non-polar questions
are those whose answers are other than “yes or no” (counting, wh-
questions, etc.). Figure 6.1 shows the distribution of these questions
in one of the widely used VQA datasets. We observe that polar ques-
tions comprise 38% of the total questions, thus leading “yes or no” to
appear for 19% of the time. On the other hand, each remaining 3127

answers appears 0.02% time.
VQA models are trained jointly, treating each unique answer inde-

pendently, despite this class imbalance. The SOTA models don’t men-
tion any balancing techniques like class regularization or mini-batch
resampling [103]. The imbalance can lead to significant performance
issues, like models allocating more capacity to answer polar questions
due to their over appearance during training. Therefore, we focus onunderstand

over-representation
of polar questions

measuring the impact (positive or negative) stemming from the over-
representation of polar questions in VQA datasets. We study if there
are any confounding factors between polar and non-polar questions
when projected into a common feature space? Our motivating ques-
tion then becomes:

Can we exploit feature embedding space to overcome dataset
constraints?

which we aim to answer in following sections. We perform a se-
ries of experiments on a high-performance VQA classifier. In our anal-
ysis of data distribution changes, we observe considerable overlap
between features from polar and non-polar questions. The overlap
favors the overall optimization objective such that we can use polar
features to answer non-polar questions (and vice-versa).
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6.2 methods

Researchers have investigated polar/non-polar questions in VQA, like
Zhang et al. [197] highlighted the importance of balanced polar ques-
tions i.e., same number of questions with“yes” and “no” as an answer.
On the other hand, Suhr et al. [167] released a polar-only dataset to
estimate the understanding of logic reasoning by the VQA system. In
contrast to our study, all these works have studied the effects of imbal-
ance within the polar space in isolation, thus disregarding the interac-
tions between polar and non-polar questions in a joint feature space.
Teney et al. [171] presented good practices for training models using
VQA 2.0 in which they ensured a balance between examples with
“yes” and “no” answers. Still, there is no consideration of the balance
between polar and non-polar questions. Agrawal et al. [3] showed an
explicit separation of polar and non-polar questions for the GVQA
model. They processed these two question types separately and used
the polar questions to verify for the contained non-polar concepts. previous work

regarding
polar/non-polar
questions

As discussed in Chapter 1, human annotators are employed for
data collection, and since polar questions are more accessible to ob-
tain than the non-polar ones, datasets end up with a distribution of
question types heavily skewed towards polar questions. Synthetically
generated datasets like CLEVR [68] balance such over-representation
with a more uniform distribution along with different answer types.
However, both natural and synthetic datasets have entirely dismissed
the use of polar questions to alleviate such over-representation is-
sues [201] and have attained more complex questions [86]. In this
work, we study the influence of polar questions on the non-polar
counterparts during their joint training, a conventional regime for
modern VQA models.

We used VQA 2.0 dataset for all experiments. As mentioned in
Chapter 2, VQA 2.0 contains 443757 training examples and 214354

for validation. Like related work, we use the training data for train-
ing and report our accuracy on the validation data. VQA 2.0 is one
of the largest non-synthetic corpora for VQA, containing polar and
non-polar questions. We use this dataset because of its property of
having a uniform distribution between questions with “yes” and “no”
as ground-truth. Also, it has an adjusted distribution of non-polar
questions w.r.t./ VQA 1.0. We split VQA 2.0 into two disjoint sets
that contain polar and non-polar questions. It enables us to assess the
upper bound of a VQA model when the model uses only one or the
other question type. experimental setup

We use the well-known BUTD model [6] for our experiments. Fig-
ure 6.2 represents the architecture of our model. There are three
modules; an image embedding, a text embedding, and a joint clas-
sification module. Both image and text embeddings are projected
to a 512-dimensional space to model joint visual-text space and are
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Figure 6.2: Overview of the VQA model used throughout this paper. This
is an re-implementation from the winning entry of the 2017 VQA

challenge. It is composed by two main modules: a textual-visual
joint embedding (base VQA model denoted as ΦΩ) and a shal-
low 2-layer classifier (denoted as fΩ) Jolly et al. [71].

fused through an element-wise product. The fused or joint embed-
ding passes through a sequence of fully connected layers such that
we normalize the output by a softmax operation.

We use separate names for different parts of this VQA model in this
work. We call the first part of the network, up until the point-wise
multiplication of the 512-dimensional projection of multimodal space,
as the base VQA network and denote it as Φ. The second part, com-
prising two fully connected layers and the output layer, is referred to
as the classifier and is denoted as f. We refer the prediction by the
network as ŷ = f(Φ(x)). We use ΦP and fP to refer to corresponding
modules when only polar questions are used for training the model.
Similarly, ΦNP and fNP refer to modules that use only non-polar ex-
amples for training. We also trained our model using both polar and
non-polar examples for completeness and refer to the corresponding
modules as ΦΩ and fΩ.

6.3 competing methods

We performed three main experiments summarized in the following
sections.

6.3.1 Baseline

We train the entire VQA model on the complete dataset for our base-
line. We did not make any considerations regarding polar and non-
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Figure 6.3: Outline of the baseline experiment: The full VQA model is trained
on the full VQA 2.0 training set. Accuracy is reported on the full
validation set Ω, on the polar questions in the validation set P
and on the non-polar counterparts NP [71].

Figure 6.4: Unbiased Upper Bound experiment: two copies of the same ar-
chitecture for the baseline is used. One copy is trained only on
polar questions and the second copy is trained only on non-polar
questions. Accuracy for both is reported independently [71].

polar questions. Similar to the original work [6], we use training exam-
ples whose answers appear at least eight times in the entire dataset.
This way, there is an answer space of 3129 answer classes, two of
which are “yes” and “no” (polar answer space). We did not perform
any pre-training using the Visual Genome dataset and used 36 re-
gions of interest for image embedding. We use RELUs as the activa-
tion function and train the model using Adamax [82] optimizer. We training model using

entire training datause a learning rate of 2× 10−3 on the complete training set and re-
port the standard VQA accuracy for the entire validation split of VQA
2.0. We also report accuracy for the polar and non-polar subsets of
the validation data, where the corresponding subsets contain only
polar or non-polar questions. Figure 6.3 represents our baseline. Our
baseline serves as a reference to quantify the impact of polar and
non-polar questions when both are used to train the VQA model. In
the following experiments, we will study the impact of each of these
types separately.
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6.3.2 Unbiased Upper Bound

The experiment aims to obtain an empirical upper bound of the model
such that the issue of over-representation does not play any role. We
train two separate versions of the same model from scratch; the first
is trained using only non-polar questions, and the second uses only
polar questions for training. We use fNP ◦ΦNP and fP ◦ΦP to refer
to these two models. We report the corresponding VQA accuracy for
both of these models in Figure 6.4. Here, fNP ◦ΦNP is evaluated on the
non-polar ones and fP ◦ΦP on the polar questions of the validation
set.training model

separately using
polar and non-polar

examples

The experiment allows us to compare the capacity of the same VQA

model with the one used as the baseline when it deals with only one
kind of questions. In the current training scenario using either po-
lar or non-polar questions, the network uses 100% of its capacity to
extract the necessary semantics for the corresponding question type.
There is no burden of modeling features to distinguish polar and non-
polar questions. Therefore, the current setting avoids any bias arising
from the imbalance of polar and non-polar questions. Hence, we ex-
pect both variants accuracy to be higher than their corresponding val-
ues for the baseline experiment. However, if small or no deviations
arise w.r.t. the baseline, we can conclude that there is no adverse ef-
fect on the baseline VQA due to confounding factors between polar
and non-polar questions.

6.3.3 Cross-Polarity Evaluation

The above experiment studies the potential confounding factors be-
tween polar and non-polar examples. In this experiment, we study
the overlap of the distribution of polar questions with non-polar ones.
We perform an experiment using transfer learning as the feature pro-
jections from ΦP and ΦNP share the same dimensional space. Fig-
ure 6.5 shows the experiment outline. We use ΦP and ΦNP, from the
previous experiment, as fixed pre-trained feature extractors. We traintraining

polar/non-polar
classifier using

features from
pre-trained

non-polar/polar
feature extractors

two new classifiers that use features from the fixed feature extractor
module. Firstly, we train a new polar classifier fP that uses features
from the fixed pre-trained non-polar module ΦNP. Similarly, we train
a new non-polar classifier fNP that uses features from ΦP. For fairness,
we use the same architecture for fP and fNP as that of the previous
unbiased upper bound experiments.

Cross-polarity evaluation allows us to understand the descriptive-
ness of the feature space of polar questions to answer the non-polar
ones and vice-versa. Theoretically, it is possible at a semantic level
since we can use polar structure to ask non-polar questions. E.g., a po-
lar question “Are the bird’s tail feathers white?” represents a non-polar
question “What color are the bird’s tail feathers?” with answer “white”.
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Figure 6.5: Cross-Polarity evaluation: a) We project polar inputs xP using
a pre-trained base network ΦNP, which has only seen non-
polar samples during its training, into non-polar feature space
ΦNP(xP) and train a shallow polar classifier fP(ΦNP(xP)) on this
representation. b) Vice-versa. Intuitively, the experiment mea-
sures the extent by which non-polar questions can be answered
based on features extracted from a polar space and vice versa
[71].

Considering the large space of non-polar concepts that covers more
than 3000 classes, it is intuitively expected that ΦNP represents a rich
enough structure that can be condensed and reused to answer polar
questions, which are only two classes. However, the usage of polar
questions to yield a rich embedding space to answer a wide spectrum
of non-polar concepts is unexpected.

6.4 results

Table 6.1 presents the results of our experiments, explained in Sec-
tion 6.3. In the columns from left to right, we show the experiment
name, the subset (P: Polar; NP: Non-polar; Ω: All) of the set of train-
ing examples used to train the corresponding module of the whole
VQA ensemble (Φ or f). We show validation set accuracy and individ-
ual accuracy for polar and non-polar validation subsets. We assume
Φ to be pre-trained and fixed for the cross-polarity experiments and
train from scratch the corresponding f. We observe that the accuracy
for the upper bound experiment is almost within the range of the
baseline. Here, for a system trained on non-polar questions, the up-
per bound results increase 0.2 pp. On the other hand, a drop of 0.8 pp no confounding

factors between polar
and non-polar
examples

is observed for training with polar questions. When we use them to-
gether for training, these fluctuations between the upper bound and
the baseline are negligible, indicating no confounding factors between
polar and non-polar examples. We see that polar questions are rarely
confused with any non-polar choice (Table 6.2). Further, non-polar
questions are also not mistaken for any of the two polar answers. We
present an in-depth analysis in Section 6.5.

We observe a slightly different behavior in the cross-polarity exper-
iments. The results for using a polar classifier fP based on non-polar
features from ΦNP are almost as high as using ΦP. There is an accu-
racy difference of 3.8 pp between cross-polar model fP ◦ΦNP and the



86 feature space learning

Task Model Input Accuracy

Φ f x

Random Choice – – P 0.5

– – NP 0.0003

Ω Ω

Ω 0.624

Baseline P 0.804

NP 0.514

Upper bound P P P 0.796

NP NP NP 0.516

Cross-Polarity NP P P 0.758

P NP NP 0.287

Table 6.1: Summary of experimental results. The second column indicates
the data used to train each of the VQA modules Φ and f. The
column “Input” indicates the data used during evaluation of the
ensemble f(Φ(x)), and the column “Accuracy” reports the corre-
sponding single-model VQA accuracy [7] from the validation set.

polar upper bound fP ◦ΦP. Considering both results to be higher than
75% accuracy, we find this difference low, especially when compared
to the random selection probability, which lies at 50%. On the other
hand, the use of polar-only feature space to classify non-polar ques-
tions (fNP ◦ΦP) shows an accuracy of 28.7%. The result is lower than
the upper bound fNP ◦ΦNP by −22.9 pp. However, it is still notable
above the random chance of 0.03%. We discuss them further in the
following section.

6.5 discussion

We analyze the results from our experiments and their implications,
in this section, in the context of joint space shared by polar and non-
polar features.

Firstly, we analyze the results of baseline experiments against their
corresponding empirical upper bound for both polar and non-polar
features. The results are indistinguishable, indicating that the model
can simultaneously cope with both question types (trained with non-
polar and overrepresented polar examples together) without compro-
mising its performance. Therefore, there are no measurable confound-
ing factors (i.e., source of bias) when we simultaneously use polar
and non-polar questions. There are two possible scenarios to under-
stand better the distribution of polar and non-polar questions in the
joint feature space ΦΩ. First, each distribution occupies a different
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Predicted Answer

P NP

True Answer
P 37.59 0.11

NP 0.77 61.53

Table 6.2: Confusion matrix of predictions for the baseline model, grouped
by polarity (all numbers in percent). Polar predictions are rarely
confused by any of the non-polar alternatives and vice versa.

(disjoint) sub-region of the feature space. Or there is an overlap be-
tween two feature spaces, i.e., they model (at least partially) the same
semantic concepts. We identify the verification of which of the two
conjectures is valid in our following analysis of the remaining experi-
ments.

Our second observation comes from the first cross-polarity exper-
iment. We train a polar classifier, a classifier on polar questions, by
first projecting them to a feature manifold of non-polar concepts. We
then measure the possibility of answering polar questions using the
feature space of non-polar concepts. Since non-polar questions cover
the vast complexity of topics1, the scenario becomes intuitively sim-
ple. Also, we increase the chance level of the classification problem
from 1

3127 to 1
2 by reducing the number of classes from 3127 to 2,

which makes this problem relatively easy. Hence, there is no surprise non-polar feature
space answers most
polar questions

in the observed result. The minor performance drops show that we
can use non-polar feature space representation to answer most po-
lar questions. The occurrence of the non-polar concept (e.g., “green”
or “bicycle”) in the polar question embedding makes answering polar
questions relatively straightforward, which is achievable even by a
simple classifier.

Our third and the most interesting observation comes from the
other direction of cross-polarity experiments. We trained a non-polar
classifier, a classifier on non-polar questions that uses polar feature
space. Since we are now going up from 2 to 3127 classes, our prob-
lem has become quite challenging. Also, it is unclear how much we
can use the polar feature space to express the intricacies of non-polar
questions. Therefore, the non-polar classifier based on features from a
polar embedding space is expected to perform poorly. As mentioned
in Table 6.1, the reported accuracy for this setup is 28.7%, which is
lower than the upper bound of 51.6% but is significantly higher than
the random chance of 1

3127 . The behavior suggests that we can answer polar feature space
answers non-polar
questions

a notable subset of non-polar questions with high accuracy based on
the feature space of polar questions. Does it then raise a question:
How can we find the subset of non-polar questions that can be answered

1 We have 3127 answer classes in our experiments that represents non-polar concepts.
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Figure 6.6: Polar questions can be used to answer non-polar questions with
high accuracy as long as the polar questions relate to an existing
non-polar concept. Given the image in the center, a polar ques-
tion (right) and a non-polar question (left) can be asked about a
common non-polar concept, namely “glass” [71].

using the polar feature space? which we will answer in the following
sections.

Furthermore, the cross-polarity experiments show that polar fea-
ture space covers non-polar questions with numeric answers (we ob-
serve high accuracy of fNP ◦ΦP for numeric labels such as “0”, “1”
and “2”). Therefore, we theorize that a general alignment exists be-
tween polar questions about non-polar concepts and the correspond-
ing non-polar questions.

6.5.1 Polar Questions About Non-Polar Concepts

Figure 6.6 shows an example where both the non-polar question
“What is the woman holding?” and the polar question “Is the woman
holding a glass?” refer to the same semantic concept, namely “glass”.
For detailed analysis, we count polar questions that talk about each
of the non-polar concepts, and we focus on the non-polar concepts
that frequently appear in polar questions. We call these non-polar
concepts/answers “well-covered” answers. We refer to non-polar ex-
amples as XNP,t and check the occurrence of their answers in polar
questions between t0 and t1 times. Here, t = [t0, t1] is a discrete in-
terval 0 ⩽ t0 ⩽ t1 ⩽ T ; T is the maximum amount of occurrences that
a non-polar answer is found among polar questions.

We select the polar questions in which any of the 3127 non-polar
answers occur textually using the regular expression to populate the
subset XNP,t. The regular expression looks for exact matches of the
NP expression as long as it is surrounded by non-alphabetic charac-
ters, including BOL and EOL. Following, we count the number of
polar questions that match each non-polar answer with replacement
and sort them in descending order w.r.t the number of occurrences).
Figure 6.7 shows the resulting histogram. The x-axis represents the
3127 non-polar answers, and the y-axis represents the number of po-
lar questions that match the non-polar answer. We observe that 73.9%
of non-polar concepts are matched by at least one polar question,
26.1% are matched in at least 30 polar questions (per non-polar con-
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Figure 6.7: Histogram of non-polar concepts (labels) that occur between t0
and t1 times in polar questions [71].

Task Model Input Accuracy

Φ f t

Cross-Polarity P NP [30, 67] 0.214

P NP [68, 99] 0.317

P NP [100, T ] 0.408

Table 6.3: Accuracy of the cross-polarity model fNP ◦ΦP only over non-polar
classes which occur within polar questions between t = [t0, t1]
times i.e., XNP,t.

cept), and only 11.3% non-polar concepts are matched in at least 100

polar questions.
We test the model fNP ◦ΦP, used in the last experiment (explained

in Section 6.3.3), w.r.t. sets of non-polar examples that are increas-
ingly well-covered by polar examples. Specifically, we test on XNP,t

for t = [30, 67], [68, 99] and [100, T ]. Table 6.3 shows the results of this
experiment where results for well-covered non-polar concepts (40.8%
for t = [100, T ]) are considerably higher than those from the cross-
polarity experiment defined in Section 6.4, where we achieve 28.7% accuracy increases

from 28.7% to
40.8%

accuracy for evaluating all non-polar classes. It clearly shows that
the VQA model exhibits a positive correlation between the accuracy
of non-polar classes and the number of polar questions that mention
those classes. Furthermore, the results are substantially closer to the
upper bound accuracy (Section 6.3.2) for non-polar questions. Instead
of the original difference of 22.9p.p., it is only 9.8p.p. below. On the
other hand, non-polar questions with a lower number of matching po-
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lar examples show lower accuracy than the cross-polarity experiment.
The results indicate that we can answer non-polar questions using a
feature space based on polar examples. The caveat is that the set of
polar questions used to train the VQA model should convey enough
semantics about the corresponding non-polar questions.

In the light of the results, a logical argument is that modeling non-
polar questions with polar feature space depends on polar questions
that deal with the corresponding non-polar concepts. Therefore, we
conclude that polar feature space can carry an equivalent semantic
value as the non-polar feature space, hence P ≈ NP.

6.6 summary

We started this chapter with our motivating question:

Can we exploit feature embedding space to overcome dataset
constraints?

We studied the over-representation of polar questions in VQA datasets
and its relationship with non-polar questions for the widely used
VQA 2.0 dataset. Our experiments observe that the over-representation
of polar questions does not introduce any biases during joint training
of these two question types. We conducted a cross-polarity evaluation
to study the relationship between polar and non-polar feature space.
We observed a clear correlation between the distribution of polar and
non-polar feature embeddings. We showed that we could use polar
questions to answer non-polar questions; if polar questions used for
training refer to the semantic concepts being considered in the non-
polar questions. Our findings conclude that polar features (P) and
non-polar features (NP) provide a rich semantic structure; thus, the
expression P ≈ NP refers to this alignment. The usefulness of a fea-
ture space based on polar samples for answering non-polar questions
is surprising and potentially ground-breaking because it can change
the way of compiling future datasets. Considering the reduced costs
of collecting polar questions (in comparison to non-polar ones), one
can use polar questions to augment future datasets, thus enabling the
designing of VQA systems in a data-constrained setting.

This chapter presents insights from the feature space of two ques-
tion types within the same dataset. Following our study on exploiting
latent embedding space, we will explore another scenario where VQA

models are seen to struggle on question rephrasings at test time, i.e.,
face the problem of distribution shift. As discussed in Section 2.4,
we can use transfer learning to handle such scenarios. We will delve
deep into this scenario and show how transfer learning reduces data
dependence.
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T R A N S F E R L E A R N I N G

The last chapter studied a high alignment between feature spaces
of two question types in VQA datasets and showed the possibility
of designing future VQA datasets in a data-constrained setting. This
chapter continues our study of exploiting latent embedding space to
handle data constraints. We examine the problem of lexical robust-
ness in VQA systems. We study the widely used VQA 2.0 dataset sim-
ilar to the last chapters. We observe that state-of-the-art VQA models
fail to perform well on rephrasings of a question, which raise impor-
tant questions like Are these models robust towards linguistic variations?
Do we need to optimize architecture or the datasets? We answer these
questions by analyzing VQA models in the space of paraphrasing. We
explored the role of language and cross-modal pre-training to inves-
tigate the robustness of VQA models towards lexical variations. We
performed experiments that show that pre-trained language encoders
generate efficient representations of question rephrasings, leading to
a better understanding of VQA models. Further, we conducted an
empirical study that determines the role of pre-trained language en-
coders in improving lexical robustness.

The methods and results presented in this chapter have been pub-
lished in Findings of EMNLP [70]. We discuss the problem definition
in Section 7.1. Section 7.2 discusses the building blocks of our experi-
ments in this study. We discuss the dataset and experimental setup in publication and

chapter structureSection 7.3. Section 7.4 provides detailed result analysis of our experi-
ments. At last, we present a discussion in Section 7.5 and summarize
our chapter in Section 7.6.

7.1 problem definition

As discussed in previous chapters, Visual Question Answering is an
image-conditioned question answering task. There has been signifi-
cant progress in VQA since the introduction of the VQA challenge1.
The release of new model architectures and training techniques aims
to close the gap between model and oracle accuracy on benchmark-
ing datasets like VQA 2.0 [56]. The majority of models introduce se-
mantically rich visual features [6], multi-modal fusion techniques [49,
195], and efficient attention schemes [112, 192] to obtain higher per-
formances on VQA.

However, during the deployment of these models into real-world
scenarios, the models should be robust to linguistic variations that

1 https://visualqa.org/challenge.html
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Figure 7.1: Example from VQA-Rephrasings dataset [157]. The answers are
obtained using Pythia [67] where green text refers to correct an-
swer and red text refers to wrong answer [70].

originate from real user interactions. Recently, Shah et al. [157] showedvqa models are
sensitive to lexical

variations
the limitation of state-of-the-art VQA models [67, 81] to be sensitive to
the lexical variations, which results in significant performance drops
on test datasets when questions are replaced with their rephrasings.
Figure 7.1 shows the drops in confidence scores for the VQA model
when the original question is replaced with its rephrasing at test time.

Because of the limitation of current datasets that expose VQA mod-
els to a small subset of the language distribution, it disables the
model’s ability to generalize at test times. A plausible solution to
make these systems robust to lexical variations is to collect larger
datasets that account for these rephrasings. However, as explained in
Chapter 1, data collection is expensive and time-consuming. There-
fore, we focus on leveraging learning from pre-trained models and
analyze the possibility of using them to make lexically robust VQA

systems without collecting any training data. This learning comes
under the umbrella of transfer learning, a method introduced in Sec-
tion 2.4, that reduces the need for labeled target data by transforming
models and learned representations. Our motivating question then
becomes:

Upto what extend transfer learning reduce data dependence in case
of data distribution shifts?

which we aim to answer in the following sections. We present an
empirical study showing the role of large pre-trained Transformer-
based language models in inducing similar feature embeddings for
the rephrasings by strongly emphasizing on keywords. Our results
establish that replacing a language encoder with a pre-trained model
makes VQA models lexically robust. We show that pre-training is es-
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sential for achieving lexical robustness even with complex Transformer-
based VQA architectures.

7.2 methods

Shah et al. [157] presented a model-agnostic cyclic consistency ap-
proach that generates question rephrasings on the fly during training
to make VQA models robust to lexical variations. Their best-reported previous work on

making vqa robust
to rephrasings

model achieves 56.59% VQA accuracy of question rephrasings. All the
models used in the experiments by Shah et al. [157] incorporate an
RNN-based language encoder. Although RNNs have shown great suc-
cess in NLP but due to their recurrence behavior, they face the prob-
lem of long computing times and fail to learn from the long-range
dependencies. Transformers overcome this problem by using atten-
tion to model dependencies between multiple words of a sequence.
Transformer models [173] have led to immense improvements in the
whole NLP task spectrum [178]. The core of Transformer architecture
is multi-headed self-attention that encodes the relationship of every
word with its neighboring words in several different representational
subspaces, thus making these representations robust to linguistic vari-
ations.

As discussed in Section 7.1, the limitation of current datasets points
to collecting larger datasets that account for these linguistic variations.
The expense involved in data collection led to the emergence of pre-
training approaches that have obtained massive success in deep learn-
ing. Pre-trained models like ULMFiT [64], GPT [141], BERT [35] have leverage pre-training

to handle data
constraints

improved performance on various NLP tasks [144, 178] for which
very limited training data is available. In the space of multi-modal
learning, various models have introduced ([22, 111, 170]) cross-modal
pre-training methods to alleviate this problem in VQA.

In this work, we study the impact of using pre-trained methods to
make VQA models lexically robust. We explain the building blocks of
our experiments in this study.

Sentence-BERT (SBERT) [145]2 is a BERT based language encoder
that generates semantically rich embeddings. It uses siamese and
triplet networks [152] to finetune BERT [35]. BERT is a pre-trained
Transformer encoder trained on large amounts of monolingual data.
Sentence-BERT (SBERT) obtains state-of-the-art results on common se-
mantic textual similarity and transfer learning tasks.

BUTD by Anderson et al. [6] is a well know VQA model that uses GRU

to encode input questions and uses them to attend image RoI features.
It enables region-based attention to generate an answer. Many other
VQA architectures like Pythia [67], and BAN [81] have BUTD as their
base architecture.

2 https://github.com/UKPLab/sentence-transformers
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LXMERT by Tan and Bansal [170] is a vision-language cross-modality
pre-training network. In contrast to single modality pre-training in
BERT, LXMERT focuses on vision-language pre-training. This multi-
modal pre-training helps to understand better visual contents, lan-
guage semantics, and their relationships. There are three Transformer
encoders: an object relationship encoder, a language encoder, and
a cross-modality encoder. They are pre-trained using five different
vision-language tasks3 We used LXMERT as a placeholder for Trans-
former based VQA architectures to investigate if a model architecture
plays any role in improving the robustness of lexical variations.

7.3 experimental setup

7.3.1 Dataset

We used the training split of the VQA 2.0 dataset to train our models
and evaluate the performance against the VQA-Rephrasings (VQA-R)
dataset. VQA-R by Shah et al. [157] contains 40,504 image-question
pairs randomly sampled from the validation split of VQA 2.0. For
each question, Shah et al. [157] collected three rephrasings using hu-
man annotators, which amount to 121,512 pairs. The authors ensured
that rephrasings were syntactically correct and semantically aligned
with the original questions during data collection. We call the original
split ORI in our experiments, and rephrasings split as REP.

7.3.2 Implementation Details

We used the BUTD architecture and trained it using Adamax [82]. Sim-
ilar to experiments in previous chapters, we used 36 RoI per image
to obtain visual features. We trained the model using entire training
data with an initial learning rate of 2 x 10−3. We used ReLU acti-
vation units and reported the standard validation accuracy [7] for
each split of the VQA-Rephrasings dataset. Since BUTD contains a
GRU for encoding questions, we replaced GRU with SBERT to use a
pre-trained Transformer-based language encoder for questions. We
call this BUTD+SBERT in our experiments. The question embeddings
from SBERT are passed through a fully-connected (FC) layer, which
is then combined with image embeddings to produce a multi-modal
representation of the question-image pair. The size of SBERT embed-
dings and FC layer is 768 and 512.

For LXMERT, we trained three variants. For the first variant, we ran-
domly initialized all parameters. We initialized only the language en-
coder with BERT weights for our second variant. Finally, we initialize
all parameters except the VQA task head with the pre-trained LXMERT

3 Please refer to Section Section 2.3.2 of Chapter 2 for more details.
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Figure 7.2: Dataset statistics about the number of questions (in percentage)
with varying lengths for three subsets of VQA namely training
and validation data of VQA2.0, and VQA-Rephrasings.

weights4 for the third variant. We perform these experiments to see
the impact of pre-training at different stages towards making lexical
robust VQA systems. For the fairness of results on VQA-R, we don’t
use any part of the validation split of VQA 2.0 during training or
finetuning. We use the default hyperparameters set as in the original
implementation. The first, second, and third variants converged at
17 (30 hours), 10 (18 hours), and 4 epochs (8 hours), respectively, on
Nvidia V100 GPU.

7.4 result analysis

7.4.1 Syntactic Variation causes Data Distribution Shift

Machine learning models generally perform well when training and
testing distributions are similar. In the case of test samples drawn
from a different distribution than training, ML models suffer from
generalization issues, i.e., fail to perform well at test times. However,
Agrawal, Batra, and Parikh [2] and Wang et al. [180] showed the lim-
itation of these models to be misled by contextual heuristics in the
training data instead of learning underlying generalizations. A simi-
lar trend in NLI was also observed where McCoy, Pavlick, and Linzen
[118] found that SOTA language models like BERT also adopted under-
lying heuristics, thus failing to generalize for test samples. Figure 7.2 generalization

problems when
training and testing
distributions differ

shows the distribution of question lengths of VQA 2.0-train, VQA 2.0-

4 https://github.com/airsplay/lxmert
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Model VQA-Rephrasings

ORI REP

OA NUM Y/N O RG OA NUM Y/N O RG

BUTD 63.13 41.53 81.27 54.98 - 54.27 33.08 75.73 43.52 -

BUTD+SBERT 62.50 40.22 81.46 53.91 -0.99 57.21 35.91 77.46 47.40 +5.42

LXMERT (a) 63.86 43.38 81.86 55.54 - 54.79 33.86 75.73 44.36 -

LXMERT (b) 64.86 44.32 83.22 56.28 +1.56 58.21 39.25 78.8 47.55 +6.24

LXMERT (c) 73.61 55.88 88.56 66.9 +15.26 66.27 50.63 83.32 57.42 +20.95

Table 7.1: VQA Accuracy results on both splits of VQA-R. OA refers to over-
all accuracy. NUM, Y/N and O refers to accuracies for number,
yes/no and other answer class. RG refers to relative gain. RG for
BUTD+SBERT and LXMERT (c) (and LXMERT (b)) are computed
w.r.t BUTD and LXMERT (a) respectively.

val, and VQA-R. We observe that the training and validation split of
VQA 2.0 have similar distributions, while the distribution of VQA-R
is different. Table 7.1 shows that BUTD performs better on ORI than
REP for VQA-R. It is because the language encoder of BUTD that uses
VQA 2.0-train for training has a similar distribution as that of ORI.
Therefore, a shift in the lexical distribution of REP contributes to this
artifact.

7.4.2 Pre-trained Language Encoders generate Lexically Robust Represen-
tations

The two splits of VQA-R, REP, and ORI, contain the same semantic
information. Due to the poor representation of input questions by
GRU, we observe significant performance drops for REP. One can al-
leviate this problem by using a better language encoder. Therefore,
considering the robustness of SBERT to lexical variations, we replace
the GRU with SBERT in BUTD. SBERT will efficiently extract the overall
semantics. Table 7.1 shows the results of our approach BUTD+SBERT,
where relative to BUTD, our approach improves the accuracy of REP
by 5.41%. It also performs slightly better than BAN+CC, which is
the reported SOTA model of Shah et al. [157]. It is worth noting that
BUTD has a relatively simpler architecture than BAN, and we don’t
train any auxiliary component like the question generation module
in CC. However, for ORI, whose distribution is similar to VQA 2.0-
train, BUTD+SBERT obtains comparable performance. Compared to
generalized embeddings from SBERT, which never interact with VQA

language data, GRU is trained on the training data of VQA 2.0, which
generates semantically rich question embeddings for ORI. A similar
trend was observed by Tan and Bansal [170] in VQA 2.0-dev accura-
cies when they used BERT as a language encoder. Considering that
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Figure 7.3: Distribution of cosine similarity of ORG-REP tuples, where each
tuple comprises of 1 original sentence and its 3 rephrasings. We
calculate the average cosine similarity of rephrasings with its
original sentence.

SBERT doesn’t directly improve VQA models, we ask ourselves What
are the underlying factors that allow SBERT to improve the REP accuracy? pre-trained language

encoder is robust to
lexical variations

We answer the above question by generating the SBERT & GRU em-
beddings for the original question and its three rephrases. We calcu-
late the average cosine similarities of the paraphrases with their origi-
nal counterpart. Figure 7.3 shows distribution of cosine similarity. We
observe that SBERT moves the embeddings of rephrases in its represen-
tational vector space significantly closer to the original question. On
the other hand, due to its lexical sensitivity, GRU fails to extract the
underlying common semantics. The average cosine similarity of ORG-
REP tuple for SBERT and GRU is 91% and 60%, respectively. Hence, we
conclude that the pre-trained language encoder drives the major ac-
curacy gains for REP, making our approach model-agnostic.

7.4.3 Pre-trained Language Encoders latch on Keywords

Keywords play an essential role in a sentence as they carry fundamen-
tal semantics. Since rephrases or paraphrases are semantically simi-
lar sentences with lexical variations, they share common keywords
to control their semantics. A lexically robust encoder must latch on
these keywords to generate semantically rich vector representations.
We build an ordered sequence of keywords S1 extracted from a com-
plete sentence S2 in our experiments. We use rake-nltk to extract key-
words. We use a language encoder to encode both S1 and S2 and
measure the cosine similarity of the pair. We hypothesize that a lexi- pre-trained language

encoders latch on
keywords
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Figure 7.4: Distribution of cosine similarity of sentence S1 and S2. S1 is a
question from VQA-Rephrasing dataset and S2 is an ordered se-
quence of keywords obtained from S1.

cally robust language encoder generates similar representations of S1
and S2 in a vector space. The average cosine similarity over the whole
VQA-R dataset for SBERT and GRU is 0.85 and 0.64, respectively. Fig-
ure 7.4 shows the distribution of cosine similarity of S1 and S2 over
whole VQA-R. SBERT’s ability to stress on keywords allows it to cir-
cumvent syntactic deviations in paraphrases and embed them closer
in the vector space.

7.4.4 Transformers are Good but Pre-training makes them Great

In contrast to single modal pre-training, LXMERT is conditioned on
both vision & language modality; therefore, it generates better multi-
modal representations. It is justified by the results in Table 7.1 where
LXMERT (c) achieves SOTA results on both ORI and REP. Since multiple
questions are associated with a single image, cross-modal attention
helps obtain efficient language representations, making VQA models
robust toward question rephrasings. However, the high performance
of LXMERT (c) raises an important question Are the gains coming from
pre-training or LXMERT architecture?cross-modal

pre-training achieves
SOTA results on rep

split

We answer this question with our first variant, LXMERT (a), where
LXMERT (a) achieves similar performance to BUTD on REP split. It
shows that even a complex cross-modal architecture is insufficient for
designing lexically robust VQA systems. Nevertheless, in our second
version, where we train LXMERT initialized with BERT weights, we
observe relative gains of 1.56% in ORI and 6.24% in REP. At last, fine-
tuning LXMERT with pre-trained language, vision, and cross-modality
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encoders boosts the performance in REP to 20.95% relative to LXMERT

(a).
In contrast to single modal pre-training like BERT, that only cap-

tures intra-modal relationships, VL pre-training like LXMERT-(c) learns
cross-modality relationships. Cross-modal attention aligns entities acr-
oss input modalities. Therefore, it induces semantically rich and ro-
bust joint representations, outperforming BERT only initialization.
These results validate that pre-training is crucial for obtaining lexi-
cal robustness, even for highly complex architectures.

7.5 discussion

Pre-trained language models like BERT are trained on large and di-
verse datasets. Therefore, it is generally hypothesized that such mod-
els are robust to lexical variations. Our results show that pre-trained
language encoders like SBERT improve the performance of REP split
by 5.42% relative to a GRU encoder; it still underperforms by 9.37%
relative to ORI questions which are semantically similar. A similar
trend was observed for task-specific multimodal pre-training. We ob-
serve that LXMERT (c) struggles to close the relative performance gap
of about 10% between ORI and REP. We leave this study as future
work and show the effectiveness of pre-training in making models
lexically robust in this study.

7.6 summary

We started this chapter with our motivating question:

Upto what extend transfer learning reduce data dependence in case
of data distribution shifts?

We studied the problem of making VQA models robust to lexical
variations. We analyze the newly released VQA-Rephrasings dataset
containing two splits, namely ORI and REP. The distribution shifts
between ORI and REP lead to poor performance on REP which in-
cludes rephrasings of questions in the ORI split. We showed the role
of single modal and multi-modal pre-training in making lexically ro-
bust VQA models. We conducted experiments using SBERT and BUTD

model and showed that pre-trained language encoders produce se-
mantically similar embeddings for multiple rephrases of a sentence
by latching on keywords. They make VQA models robust to lexical
variations. We presented an extensive study of training three variants
of LXMERT, a Transformer-based model, and showed that pre-training
is crucial for obtaining lexical robustness, even for highly complex ar-
chitectures. At last, we obtain SOTA results on the VQA-Rephrasings
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dataset using cross-modal pre-training with Transformer-based VQA

architectures.



Part V

C O N C L U S I O N A N D F U T U R E W O R K
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C O N C L U S I O N

The rise of DL has embraced the development of many real-world ap-
plications that aim to steer the progress of the human race and make
their life easy. Among multiple applications like translation systems
and summarization tools, personal digital assistants are a successful
application where users rely on these assistants to carry out various
daily tasks. NLP tasks like NLG and NLU are core components for build-
ing these personal assistants, and their advancements directly trans-
late into accuracy improvements. However, the NLU and NLG systems we need training

datasets for
designing better nlp
systems

are trained using tremendous amounts of training examples like any
other DL model. These training examples enable a model’s learning
and allow them to generalize well at test times. Nevertheless, we need
to employ human annotators for data collection, making this process
expensive in terms of time, money, and effort. This strong dependence
of DL applications on data collection seems to be a bottleneck, thus,
limiting its use to mere big corporations. Therefore, we began this collection of training

data is an expensive
process

thesis with the motivating question:

Can we develop general methods to build data-constrained
NLP systems?

In other words,

Can we develop NLU and NLG systems with limited labeled
data?

A data-constrained setting is when we have minimal training ex-
amples. As mentioned in Section 2.4, some standard methods, e.g.,
data augmentation, minimal supervision, data selection and transfer
learning are used to address a data-constrained setting. In this thesis,
we investigated the role of these methods in overcoming performance
drops emerging from limited training examples.

For the first part, we presented a data augmentation (Chapter 3)
approach. Data augmentation is the most straightforward approach
when only limited parallel examples are available. We studied a sce-
nario of adding a new feature for a task-oriented dialogue agent, for
which we have minimal training data. The limited training data de-
grades the agent’s performance on intent classification and slot label-
ing downstream tasks. Avoiding the expensive way of data collection generating

high-quality
synthetic data from
limited parallel data

for the problem handling, we proposed the interpretation-to-text para-
phrase generation model. Our model is independent of any parallel
data and uses existing training data for bootstrapping new features.
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This way, we improved the accuracy of downstream tasks in a data-
constrained setting. We showed our approach’s usefulness by exper-
imenting on a public dataset in English and a commercial dialogue
system with real-life data in the German language.

Following our study of limited training data, we explored few-shot
data-to-text generation in Chapter 4. We observed that tabular data
summarization faces a low semantic coverage problem in a few-shot
setting. In other words, important table values are absent in the gen-improving distant

supervision with
unsupervised nlg

algorithm to
minimize semantic

information loss

erated sentence. To overcome this, we use a small unlabeled dataset
and employ distant supervision to generate sentence outputs for
these unlabeled tables and use these samples for training. However,
the low semantic coverage problem persists. Therefore, we proposed
an unsupervised algorithm that exploits pre-trained language mod-
els to fill the missing slots and improve semantic coverage. Our al-
gorithm, also called search-and-learn, employs a two-stage finetuned
model that learns from search results to produce fluent text and im-
proves inference efficiency significantly. We tested our approach on
two open-source data-to-text datasets. We showed the effectiveness
of our approach, which recovers a majority of missing input table
slots on these datasets. Primarily, we cover 98.35% of input slots on
E2E, largely alleviating the low coverage problem and closing the gap
between few-shot and fully supervised learning.

The above approaches use entire training data to generate more ex-
amples or perform distant supervision. One can use whole training
data when the number of examples is scarce. But, we need to pick the
most informative examples while many examples are available. This
selection of the most informative subset of training data will allow
us to train the models with minimum compute resources and consid-
erably reduce the training times. We studied the known problem of
VQA systems and present a data selection method for VQA systems
(Chapter 5). We designed a diagnostic tool called EaSe that selects
the most informative training examples by quantifying the difficulty
of an image,question example. Our tool leveraged the pattern of an-use already available

inter-annotator
agreement to choose

the smallest and
most informative

training subset

swers given by multiple human annotators for a given question. In
particular, EaSe considers two aspects of the answers: their entropy
and their semantic content. We used the readily available information
in any VQA dataset for computing EaSe scores. Our experiments on
two open-source datasets showed the effectiveness of our diagnostic,
where we recovered a significant portion of model accuracy by using
the smallest training subset.

The above approaches were applicable only for generating and ex-
tending task-specific datasets. However, in real-world scenarios, one
can encounter distribution shifts where all the above methods don’t
apply. To handle such systems, we investigated the modeling part and
showed how exploiting latent representations could control data con-
straints. We studied the over-representation of polar questions in VQA
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datasets and its relationship with non-polar questions for the widely
used VQA 2.0 dataset in Chapter 6. We analyzed the feature em- exploiting feature

embedding space to
handle data
constraints

bedding of these two question types. We performed a cross-polarity
evaluation to examine the alignment of polar and non-polar feature
spaces. Our results of exploring the feature space of visual-text em-
bedding show that we could use polar questions to answer non-polar
questions; if polar questions used for training refer to the seman-
tic concepts being considered in the non-polar questions. Therefore,
one can easily use available polar questions to augment future VQA

datasets to enable better systems in a data-constrained setting.
Following our study of exploiting latent representations, we inves-

tigated the use of transfer learning to make VQA models lexically
robust (Chapter 7). Like the last chapters, we analyzed the widely
used VQA 2.0 dataset and observed the limitation of state-of-the-art
VQA models to perform well on question rephrasings at test times.
We avoided the plausible solution of collecting larger datasets that ac- transfer learning to

handle
data-constraints

count for these rephrasings. We showed that large pre-trained Trans-
former based language models induce similar feature embeddings for
the rephrasings by strongly emphasizing on keywords. Our results
showed that replacing the language encoder with a pre-trained model
makes VQA models lexically robust. We achieved SOTA results on
the VQA-Rephrasings dataset by combining crossmodal pre-training
with Transformer based VQA architectures.

To summarize, we have achieved the following goals we set in
Chapter 1 to answer our research question.

• Methods for automatic data generation and selection: We show-
ed the effectiveness of using deep learning models for generat-
ing high-quality synthetic data for bootstrapping new features
with limited training data. We presented an unsupervised algo-
rithm that minimizes semantic information loss in a few-shot
setting for data-to-text systems. In addition to data generation
methods, we also proposed a data selection tool that selects the
smallest and most informative training examples.

• Exploiting latent embedding space to handle data constraints:
We showed high alignment between polar and non-polar ques-
tions for VQA datasets and presented the possibility of design-
ing future VQA datasets in a data-constrained setting. We showed
the effectiveness of replacing the language encoder with a pre-
trained model to make lexically robust VQA systems bypassing
the data collection requirement.
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This chapter concludes our work by listing some promising future
directions. Our data generation/selection methods and exploiting la-
tent embedding space have shown promising results in designing
NLG and NLU systems in a data-constrained setting. However, there
are some future directions one can take for further improvements.

Our data augmentation approach showed improvements in the down-
stream tasks with minimal seed training data. However, finding para-
phrases that hold properties of being novel, diverse, and semantically
preserved is challenging due to two different models with hyper-
parameters and the sampling parameters. Finding an efficient way efficient

hyper-parameter
tuning

of choosing these parameters will benefit the model. Furthermore,
future experiments should study the optimal number of paraphrases
that needs to be added for a new feature and what is the performance
of slot shuffling across various domains.

We use slot recombination for generating new unlabeled tables in
our few-shot data-to-text generation. We observed that the recombin-
ing table slots did not give a good performance as compared to the
original unlabeled tables. We hypothesize that since new tables in- better slot

recombinationtroduce more slot values, it is helpful for few-shot data-to-text gen-
eration, where only a few hundred parallel examples are available.
However, further experiments need to be designed to find better re-
combinations that could overcome this limitation.

In our study of data selection, our proposed tool EaSe studies vi-
sual question answering. It quantifies the difficulty of a VQA example
based on its pattern of answers. We recovered a significant portion of
accuracy after training VQA models on the smallest and most infor-
mative subset selected by EaSe. Further experiments need to be de- combine model

predictionsigned to combine model prediction for difficulty estimation in EaSe.
We would also like to apply EaSe on other NLP applications where
more than one human annotations are available.

We analyzed the influence of polar and non-polar questions on
each other while using them jointly to train VQA systems. Our results
indicated we could solve the problem of VQA for non-polar questions
using polar questions, as long as polar questions cover relevant non-
polar topics. We intend to study the empirical extent to which this
phenomenon holds. Our study highlighted the possibility of design-
ing VQA datasets in cost-efficient ways by collecting more polar ques-
tions. We want to explore automated methods using NLP tools to con- automatic polar

question generationvert non-polar questions into polar ones. We are interested in measur-
ing how we can use polar examples to model several non-polar con-
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cepts in a joint visual-text space. Therefore, we can explicitly impose
an arbitrary number of concepts in the joint feature space while keep-
ing a fixed 2-dimensional classification objective. The training regime
resembles the conditions of Generative Adversarial Networks (GAN).
It could open the possibility of learning new classes over time, which
has potential applications in continuous learning.

At last, to make VQA models robust to lexical variations, we ex-
plored the role of pre-trained language encoders. We showed that en-
coders like SBERT produce semantically similar embeddings for mul-
tiple rephrasings by latching on keywords. We observe SOTA results
on the VQA-Rephrasings dataset. However, despite extensive cross-close gaps between

ORI and REP modal pretraining, the gap between ORI and REP is not reduced. It
would be interesting to investigate factors that prevent closing the ac-
curacy gap. Furthermore, future experiments can study reasons behind
more accuracy gains for some classes like numbers than the others.



B I B L I O G R A P H Y

[1] Oliver Adams, Adam Makarucha, Graham Neubig, Steven Bird,
and Trevor Cohn. “Cross-Lingual Word Embeddings for Low-
Resource Language Modeling.” In: Proceedings of the 15th Con-
ference of the European Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers. Valencia, Spain: Association
for Computational Linguistics, Apr. 2017, pp. 937–947. url:
https://aclanthology.org/E17-1088.

[2] Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. “Analyz-
ing the Behavior of Visual Question Answering Models.” In:
Proceedings of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing (2016). doi: 10.18653/v1/d16-1203.
url: http://dx.doi.org/10.18653/v1/D16-1203.

[3] Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Anirud-
dha Kembhavi. “Don’t just assume; look and answer: Over-
coming priors for visual question answering.” In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2018.

[4] Aishwarya Agrawal, Aniruddha Kembhavi, Dhruv Batra, and
Devi Parikh. “C-vqa: A compositional split of the visual ques-
tion answering (vqa) v1. 0 dataset.” In: arXiv preprint arXiv:1704.08243
(2017).

[5] Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Ste-
fan Westberg, Paheding Sidike, Mst Shamima Nasrin, Brian
C Van Esesn, Abdul A S Awwal, and Vijayan K Asari. “The
history began from alexnet: A comprehensive survey on deep
learning approaches.” In: arXiv preprint arXiv:1803.01164 (2018).

[6] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney,
Mark Johnson, Stephen Gould, and Lei Zhang. “Bottom-up
and top-down attention for image captioning and visual ques-
tion answering.” In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2018, pp. 6077–6086.

[7] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell,
Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. “Vqa: Vi-
sual question answering.” In: Proceedings of the IEEE interna-
tional conference on computer vision. 2015, pp. 2425–2433.

[8] Pepa Atanasova, Jakob Grue Simonsen, Christina Lioma, and
Isabelle Augenstein. “Generating Fact Checking Explanations.”
In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. 2020, pp. 7352–7364.

109

https://aclanthology.org/E17-1088
https://doi.org/10.18653/v1/d16-1203
http://dx.doi.org/10.18653/v1/D16-1203


110 bibliography

[9] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann,
Richard Cyganiak, and Zachary Ives. “Dbpedia: A nucleus
for a web of open data.” In: The semantic web. Springer, 2007,
pp. 722–735.

[10] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer
normalization.” In: arXiv preprint arXiv:1607.06450 (2016).

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neu-
ral machine translation by jointly learning to align and trans-
late.” In: arXiv preprint arXiv:1409.0473 (2014).

[12] Ramakrishna Bairi, Rishabh Iyer, Ganesh Ramakrishnan, and
Jeff Bilmes. “Summarization of multi-document topic hierar-
chies using submodular mixtures.” In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). 2015, pp. 553–563.

[13] Emily Bender. “The BenderRule: On Naming the Languages
We Study and Why It Matters.” In: The Gradient (2019).

[14] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. “A neu-
ral probabilistic language model.” In: Advances in Neural Infor-
mation Processing Systems 13 (2000).

[15] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, et al. “Language mod-
els are few-shot learners.” In: Advances in neural information
processing systems 33 (2020), pp. 1877–1901.

[16] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. “End-to-
end object detection with transformers.” In: European confer-
ence on computer vision. Springer. 2020, pp. 213–229.

[17] Alessandra Cervone, Chandra Khatri, Rahul Goel, Behnam
Hedayatnia, Anu Venkatesh, Dilek Hakkani-Tur, and Raefer
Gabriel. “Natural Language Generation at Scale: A Case Study
for Open Domain Question Answering.” In: Proceedings of the
12th International Conference on Natural Language Generation. 2019,
pp. 453–462.

[18] Wei-Lun Chao, Hexiang Hu, and Fei Sha. “Being Negative
but Constructively: Lessons Learnt from Creating Better Vi-
sual Question Answering Datasets.” In: Proceedings of the 2018
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers). 2018, pp. 431–441.



bibliography 111

[19] Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. “A
survey on dialogue systems: Recent advances and new fron-
tiers.” In: Acm Sigkdd Explorations Newsletter 19.2 (2017), pp. 25–
35.

[20] Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and William
Yang Wang. “Logical natural language generation from open-
domain tables.” In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. July 2020, pp. 7929–
7942. doi: 10.18653/v1/2020.acl- main.708. url: https:
//www.aclweb.org/anthology/2020.acl-main.708.

[21] Xie Chen, Yu Wu, Zhenghao Wang, Shujie Liu, and Jinyu Li.
“Developing real-time streaming transformer transducer for
speech recognition on large-scale dataset.” In: ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE. 2021, pp. 5904–5908.

[22] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal
Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. “UNITER: Uni-
versal image-text representation learning.” In: European Confer-
ence on Computer Vision. Springer. 2020, pp. 104–120.

[23] Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu, and
William Yang Wang. “Few-Shot NLG with Pre-Trained Lan-
guage Model.” In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. 2020, pp. 183–190.

[24] Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu, and
William Yang Wang. “Few-shot NLG with pre-trained language
model.” In: Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics. July 2020, pp. 183–190. doi:
10.18653/v1/2020.acl-main.18. url: https://www.aclweb.
org/anthology/2020.acl-main.18.

[25] Kashyap Chitta, José M Álvarez, Elmar Haussmann, and Clé-
ment Farabet. “Training data subset search with ensemble ac-
tive learning.” In: IEEE Transactions on Intelligent Transportation
Systems (2021).

[26] Eunah Cho, He Xie, and William M. Campbell. “Paraphrase
Generation for Semi-Supervised Learning in NLU.” In: Pro-
ceedings of the Workshop on Methods for Optimizing and Evalu-
ating NLG. Minneapolis, Minnesota, 2019, pp. 45–54. doi: 10.
18653/v1/W19-2306. url: https://www.aclweb.org/anthology/
W19-2306.

[27] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Ben-
gio. “Learning phrase representations using RNN encoder-decoder
for statistical machine translation.” In: arXiv preprint arXiv:1406.1078
(2014).

https://doi.org/10.18653/v1/2020.acl-main.708
https://www.aclweb.org/anthology/2020.acl-main.708
https://www.aclweb.org/anthology/2020.acl-main.708
https://doi.org/10.18653/v1/2020.acl-main.18
https://www.aclweb.org/anthology/2020.acl-main.18
https://www.aclweb.org/anthology/2020.acl-main.18
https://doi.org/10.18653/v1/W19-2306
https://doi.org/10.18653/v1/W19-2306
https://www.aclweb.org/anthology/W19-2306
https://www.aclweb.org/anthology/W19-2306


112 bibliography

[28] James Clarke and Mirella Lapata. “Discourse constraints for
document compression.” In: Computational Linguistics 36.3 (2010),
pp. 411–441.

[29] Ronan Collobert and Jason Weston. “A unified architecture
for natural language processing: Deep neural networks with
multitask learning.” In: Proceedings of the 25th international con-
ference on Machine learning. 2008, pp. 160–167.

[30] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen,
Koray Kavukcuoglu, and Pavel Kuksa. “Natural language pro-
cessing (almost) from scratch.” In: Journal of machine learning
research 12.ARTICLE (2011), pp. 2493–2537.

[31] Corinna Cortes and Vladimir Vapnik. “Support-vector networks.”
In: Machine learning 20.3 (1995), pp. 273–297.

[32] Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexan-
dre Caulier, David Leroy, Clément Doumouro, Thibault Gis-
selbrecht, Francesco Caltagirone, Thibaut Lavril, et al. “Snips
voice platform: an embedded spoken language understand-
ing system for private-by-design voice interfaces.” In: arXiv
preprint arXiv:1805.10190 (2018).

[33] David R Cox. “The regression analysis of binary sequences.”
In: Journal of the Royal Statistical Society: Series B (Methodological)
20.2 (1958), pp. 215–232.

[34] Xiang Dai and Heike Adel. “An Analysis of Simple Data Aug-
mentation for Named Entity Recognition.” In: Proceedings of
the 28th International Conference on Computational Linguistics. Barcelona,
Spain (Online): International Committee on Computational Lin-
guistics, Dec. 2020, pp. 3861–3867. doi: 10.18653/v1/2020.
coling- main.343. url: https://aclanthology.org/2020.
coling-main.343.

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding.” In: arXiv preprint arXiv:1810.04805 (2018).

[36] Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-Wei
Chang, Dipanjan Das, and William Cohen. “Handling diver-
gent reference texts when evaluating table-to-text generation.”
In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. 2019, pp. 4884–4895. url: https://
www.aclweb.org/anthology/P19-1483.

[37] Quynh Do and Judith Gaspers. “Cross-lingual Transfer Learn-
ing with Data Selection for Large-Scale Spoken Language Un-
derstanding.” In: Proceedings of the 2019 Conference on EMNLP
and the 9th IJCNLP. Hong Kong, China, 2019, pp. 1455–1460.
doi: 10.18653/v1/D19-1153. url: https://www.aclweb.org/
anthology/D19-1153.

https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/2020.coling-main.343
https://aclanthology.org/2020.coling-main.343
https://aclanthology.org/2020.coling-main.343
https://www.aclweb.org/anthology/P19-1483
https://www.aclweb.org/anthology/P19-1483
https://doi.org/10.18653/v1/D19-1153
https://www.aclweb.org/anthology/D19-1153
https://www.aclweb.org/anthology/D19-1153


bibliography 113

[38] George Doddington. “Automatic evaluation of machine trans-
lation quality using n-gram co-occurrence statistics.” In: Pro-
ceedings of the Second International Conference on Human Lan-
guage Technology Research. 2002, pp. 138–145. url: https://
dl.acm.org/doi/10.5555/1289189.1289273.

[39] Linhao Dong, Shuang Xu, and Bo Xu. “Speech-transformer: a
no-recurrence sequence-to-sequence model for speech recogni-
tion.” In: 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE. 2018, pp. 5884–5888.

[40] Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and Jackie Chi
Kit Cheung. “EditNTS: An neural programmer-interpreter model
for sentence simplification through explicit editing.” In: Pro-
ceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics. 2019, pp. 3393–3402. url: https://www.
aclweb.org/anthology/P19-1331.

[41] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa De-
hghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et
al. “An image is worth 16x16 words: Transformers for image
recognition at scale.” In: arXiv preprint arXiv:2010.11929 (2020).

[42] Jiaju Du, Fanchao Qi, and Maosong Sun. “Using BERT for
word sense disambiguation.” In: arXiv preprint arXiv:1909.08358
(2019).

[43] S Durga, Rishabh Iyer, Ganesh Ramakrishnan, and Abir De.
“Training Data Subset Selection for Regression with Controlled
Generalization Error.” In: International Conference on Machine
Learning. PMLR. 2021, pp. 9202–9212.
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[45] Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. “Eval-
uating the state-of-the-art of End-to-End Natural Language
Generation: The E2E NLG challenge.” In: Computer Speech &
Language 59 (2020), pp. 123–156. issn: 0885-2308. doi: https:
//doi.org/10.1016/j.csl.2019.06.009.

[46] Jeffrey L Elman. “Finding structure in time.” In: Cognitive sci-
ence 14.2 (1990), pp. 179–211.

[47] Roger Evans, Paul Piwek, and Lynne Cahill. “What is NLG?”
In: Proceedings of the International Natural Language Generation
Conference. 2002, pp. 144–151.

https://dl.acm.org/doi/10.5555/1289189.1289273
https://dl.acm.org/doi/10.5555/1289189.1289273
https://www.aclweb.org/anthology/P19-1331
https://www.aclweb.org/anthology/P19-1331
https://aclanthology.org/W19-8652
https://aclanthology.org/W19-8652
https://doi.org/https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/https://doi.org/10.1016/j.csl.2019.06.009


114 bibliography

[48] Markus Freitag and Scott Roy. “Unsupervised Natural Lan-
guage Generation with Denoising Autoencoders.” In: Proceed-
ings of the 2018 Conference on EMNLP. Brussels, Belgium, 2018,
pp. 3922–3929. doi: 10.18653/v1/D18-1426. url: https://www.
aclweb.org/anthology/D18-1426.

[49] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach,
Trevor Darrell, and Marcus Rohrbach. “Multimodal Compact
Bilinear Pooling for Visual Question Answering and Visual
Grounding.” In: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (2016). doi: 10.18653/
v1/d16-1044. url: http://dx.doi.org/10.18653/v1/D16-
1044.

[50] Hagen Fürstenau and Mirella Lapata. “Semi-Supervised Se-
mantic Role Labeling.” In: Proceedings of the 12th Conference
of the EACL. Athens, Greece, 2009, pp. 220–228. url: https:
//www.aclweb.org/anthology/E09-1026.

[51] Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura
Perez-Beltrachini. “Creating training corpora for nlg micro-
planning.” In: 55th annual meeting of the Association for Com-
putational Linguistics (ACL). 2017.

[52] Judith Gaspers, Penny Karanasou, and Rajen Chatterjee. “Se-
lecting Machine-Translated Data for Quick Bootstrapping of
a Natural Language Understanding System.” In: Proceedings
of the 2018 Conference of the NAACL-HLT. New Orleans, USA,
2018, pp. 137–144. doi: 10.18653/v1/N18-3017. url: https:
//www.aclweb.org/anthology/N18-3017.

[53] Efstratios Gavves, Thomas Mensink, Tatiana Tommasi, Cees
GM Snoek, and Tinne Tuytelaars. “Active transfer learning
with zero-shot priors: Reusing past datasets for future tasks.”
In: Proceedings of the IEEE International Conference on Computer
Vision. 2015, pp. 2731–2739.

[54] Heng Gong, Yawei Sun, Xiaocheng Feng, Bing Qin, Wei Bi,
Xiaojiang Liu, and Ting Liu. “TableGPT: Few-shot table-to-
text generation with table structure reconstruction and content
matching.” In: Proceedings of the 28th International Conference
on Computational Linguistics. 2020, pp. 1978–1988. url: https:
//www.aclweb.org/anthology/2020.coling-main.179.pdf.

[55] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. MIT press, 2016.

[56] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra,
and Devi Parikh. “Making the v in vqa matter: Elevating the
role of image understanding in visual question answering.” In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 6904–6913.

https://doi.org/10.18653/v1/D18-1426
https://www.aclweb.org/anthology/D18-1426
https://www.aclweb.org/anthology/D18-1426
https://doi.org/10.18653/v1/d16-1044
https://doi.org/10.18653/v1/d16-1044
http://dx.doi.org/10.18653/v1/D16-1044
http://dx.doi.org/10.18653/v1/D16-1044
https://www.aclweb.org/anthology/E09-1026
https://www.aclweb.org/anthology/E09-1026
https://doi.org/10.18653/v1/N18-3017
https://www.aclweb.org/anthology/N18-3017
https://www.aclweb.org/anthology/N18-3017
https://www.aclweb.org/anthology/2020.coling-main.179.pdf
https://www.aclweb.org/anthology/2020.coling-main.179.pdf


bibliography 115

[57] Ankush Gupta, Arvind Agarwal, Prawaan Singh, and Piyush
Rai. “A Deep Generative Framework for Paraphrase Genera-
tion.” In: Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence. 2018, pp. 5149–5156.

[58] Danna Gurari and Kristen Grauman. “CrowdVerge: Predict-
ing if people will agree on the answer to a visual question.”
In: Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. 2017, pp. 3511–3522.

[59] Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin,
Kristen Grauman, Jiebo Luo, and Jeffrey P Bigham. “Vizwiz
grand challenge: Answering visual questions from blind peo-
ple.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, pp. 3608–3617.

[60] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
“Deep residual learning for image recognition.” In: Proceedings
of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[61] Michael A. Hedderich, Lukas Lange, Heike Adel, Jannik Ströt-
gen, and Dietrich Klakow. “A Survey on Recent Approaches
for Natural Language Processing in Low-Resource Scenarios.”
In: Proceedings of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Lan-
guage Technologies. Online: Association for Computational Lin-
guistics, June 2021, pp. 2545–2568. doi: 10.18653/v1/2021.
naacl - main . 201. url: https : / / aclanthology . org / 2021 .

naacl-main.201.

[62] Sepp Hochreiter. “Untersuchungen zu dynamischen neuronalen
Netzen.” In: Diploma, Technische Universität München 91.1 (1991).

[63] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term
memory.” In: Neural computation 9.8 (1997), pp. 1735–1780.

[64] Jeremy Howard and Sebastian Ruder. “Universal language
model fine-tuning for text classification.” In: arXiv preprint arXiv:1801.06146
(2018).

[65] Baotian Hu, Zhaopeng Tu, Zhengdong Lu, Hang Li, and Qing-
cai Chen. “Context-Dependent Translation Selection Using Con-
volutional Neural Network.” In: Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers). 2015, pp. 536–541.

[66] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor
Darrell. “Caffe: Convolutional architecture for fast feature em-
bedding.” In: Proceedings of the 22nd ACM international confer-
ence on Multimedia. 2014, pp. 675–678.

https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.naacl-main.201
https://aclanthology.org/2021.naacl-main.201
https://aclanthology.org/2021.naacl-main.201


116 bibliography

[67] Yu Jiang, Vivek Natarajan, Xinlei Chen, Marcus Rohrbach, Dhruv
Batra, and Devi Parikh. “Pythia v0. 1: the winning entry to the
vqa challenge 2018.” In: arXiv preprint arXiv:1807.09956 (2018).

[68] Justin Johnson, Bharath Hariharan, Laurens van der Maaten,
Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. “Clevr: A
diagnostic dataset for compositional language and elementary
visual reasoning.” In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2017.

[69] Shailza Jolly, Tobias Falke, Caglar Tirkaz, and Daniil Sorokin.
“Data-efficient paraphrase generation to bootstrap intent clas-
sification and slot labeling for new features in task-oriented
dialog systems.” In: Proceedings of the 28th International Confer-
ence on Computational Linguistics: Industry Track. 2020, pp. 10–
20.

[70] Shailza Jolly and Shubham Kapoor. “Can Pre-training help
VQA with Lexical Variations?” In: Findings of the Association for
Computational Linguistics: EMNLP 2020. 2020, pp. 2863–2868.

[71] Shailza Jolly, Sebastian Palacio, Joachim Folz, Federico Raue,
Jorn Hees, and Andreas Dengel. “P≈NP, at least in Visual
Question Answering.” In: 2020 25th International Conference on
Pattern Recognition (ICPR). IEEE Computer Society. 2021, pp. 2748–
2754.

[72] Shailza Jolly, Sandro Pezzelle, Tassilo Klein, Andreas Dengel,
and Moin Nabi. “The wisdom of masses: majority, subjectivity,
and semantic similarity in the evaluation of VQA.” In: arXiv
preprint arXiv:1809.04344 (2018).

[73] Shailza Jolly, Sandro Pezzelle, and Moin Nabi. “EaSe: A Diag-
nostic Tool for VQA Based on Answer Diversity.” In: Proceed-
ings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies. 2021, pp. 2407–2414.

[74] Shailza Jolly, Zi Xuan Zhang, Andreas Dengel, and Lili Mou.
“Search and Learn: Improving Semantic Coverage for Data-to-
Text Generation.” In: Proceedings of the 36th AAAI Conference on
Artificial Intelligence. 2022.

[75] Juraj Juraska, Panagiotis Karagiannis, Kevin Bowden, and Mar-
ilyn Walker. “A deep ensemble model with slot alignment for
sequence-to-sequence natural language generation.” In: Pro-
ceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). June 2018, pp. 152–162.
doi: 10.18653/v1/N18-1014. url: https://www.aclweb.org/
anthology/N18-1014.

https://doi.org/10.18653/v1/N18-1014
https://www.aclweb.org/anthology/N18-1014
https://www.aclweb.org/anthology/N18-1014


bibliography 117

[76] Kushal Kafle and Christopher Kanan. “An analysis of visual
question answering algorithms.” In: Computer Vision (ICCV),
2017 IEEE International Conference on. IEEE. 2017, pp. 1983–
1991.

[77] Kushal Kafle and Christopher Kanan. “An analysis of visual
question answering algorithms.” In: Proceedings of the IEEE In-
ternational Conference on Computer Vision. 2017.

[78] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. “A
Convolutional Neural Network for Modelling Sentences.” In:
Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). 2014, pp. 655–665.

[79] Vishal Kaushal, Rishabh Iyer, Suraj Kothawade, Rohan Ma-
hadev, Khoshrav Doctor, and Ganesh Ramakrishnan. “Learn-
ing from less data: A unified data subset selection and active
learning framework for computer vision.” In: 2019 IEEE Win-
ter Conference on Applications of Computer Vision (WACV). IEEE.
2019, pp. 1289–1299.

[80] Krishnateja Killamsetty, S Durga, Ganesh Ramakrishnan, Abir
De, and Rishabh Iyer. “Grad-match: Gradient matching based
data subset selection for efficient deep model training.” In: In-
ternational Conference on Machine Learning. PMLR. 2021, pp. 5464–
5474.

[81] Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang. “Bilinear
attention networks.” In: Advances in Neural Information Process-
ing Systems. 2018, pp. 1564–1574.

[82] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for
Stochastic Optimization.” In: International Conference on Learn-
ing Representations. Ed. by Yoshua Bengio and Yann LeCun.
2015.

[83] R. Koncel-Kedziorski, Hannaneh Hajishirzi, and Ali Farhadi.
“Multi-resolution language grounding with weak supervision.”
In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing. Oct. 2014, pp. 386–396. doi: 10.
3115/v1/D14-1043. url: https://www.aclweb.org/anthology/
D14-1043.

[84] Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin Choi,
and Luke Zettlemoyer. “Neural AMR: Sequence-to-Sequence
Models for Parsing and Generation.” In: Proceedings of the 55th
Annual Meeting of the ACL. Vancouver, Canada, 2017, pp. 146–
157. doi: 10.18653/v1/P17-1014. url: https://www.aclweb.
org/anthology/P17-1014.

https://doi.org/10.3115/v1/D14-1043
https://doi.org/10.3115/v1/D14-1043
https://www.aclweb.org/anthology/D14-1043
https://www.aclweb.org/anthology/D14-1043
https://doi.org/10.18653/v1/P17-1014
https://www.aclweb.org/anthology/P17-1014
https://www.aclweb.org/anthology/P17-1014


118 bibliography

[85] Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. “In-
troducing geometry in active learning for image segmenta-
tion.” In: Proceedings of the IEEE International Conference on Com-
puter Vision. 2015, pp. 2974–2982.

[86] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji
Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-
Jia Li, David A Shamma, et al. “Visual genome: Connecting
language and vision using crowdsourced dense image annota-
tions.” In: International journal of computer vision 123.1 (2017).

[87] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
genet classification with deep convolutional neural networks.”
In: Advances in neural information processing systems 25 (2012).

[88] Karen Kukich. “Design of a knowledge-based report genera-
tor.” In: 21st Annual Meeting of the Association for Computational
Linguistics. 1983, pp. 145–150.

[89] Dhruv Kumar, Lili Mou, Lukasz Golab, and Olga Vechtomova.
“Iterative edit-based unsupervised sentence simplification.” In:
Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics. 2020, pp. 7918–7928.

[90] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian,
Kazuya Kawakami, and Chris Dyer. “Neural Architectures for
Named Entity Recognition.” In: Proceedings of the 2016 Confer-
ence of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. 2016, pp. 260–
270.

[91] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin
Gimpel, Piyush Sharma, and Radu Soricut. “Albert: A lite bert
for self-supervised learning of language representations.” In:
arXiv preprint arXiv:1909.11942 (2019).

[92] Irene Langkilde and Kevin Knight. “Generation that exploits
corpus-based statistical knowledge.” In: Proceedings of the 36th
Annual Meeting of the Association for Computational Linguistics
and 17th International Conference on Computational Linguistics,
Volume 1. Aug. 1998, pp. 704–710. url: https://www.aclweb.
org/anthology/P98-1116.

[93] Agata Lapedriza, Hamed Pirsiavash, Zoya Bylinskii, and An-
tonio Torralba. “Are all training examples equally valuable?”
In: arXiv preprint arXiv:1311.6510 (2013).

[94] Alon Lavie and Abhaya Agarwal. “METEOR: An automatic
metric for MT evaluation with high levels of correlation with
human judgments.” In: Proceedings of the Second Workshop on
Statistical Machine Translation. June 2007, pp. 228–231. url: https:
//www.aclweb.org/anthology/W07-0734.

https://www.aclweb.org/anthology/P98-1116
https://www.aclweb.org/anthology/P98-1116
https://www.aclweb.org/anthology/W07-0734
https://www.aclweb.org/anthology/W07-0734


bibliography 119

[95] Rémi Lebret, David Grangier, and Michael Auli. “Neural text
generation from structured data with application to the biogra-
phy domain.” In: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Nov. 2016, pp. 1203–
1213. doi: 10.18653/v1/D16-1128. url: https://www.aclweb.
org/anthology/D16-1128.

[96] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-
jad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov,
and Luke Zettlemoyer. “BART: Denoising Sequence-to-Sequence
Pre-training for Natural Language Generation, Translation, and
Comprehension.” In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. 2020, pp. 7871–
7880.

[97] Jingjing Li, Zichao Li, Lili Mou, Xin Jiang, Michael R Lyu, and
Irwin King. “Unsupervised text generation by learning from
search.” In: Advances in Neural Information Processing Systems.
2020. url: https : / / papers . nips . cc / paper / 2020 / file /

7a677bb4477ae2dd371add568dd19e23-Paper.pdf.

[98] Juncen Li, Robin Jia, He He, and Percy Liang. “Delete, retrieve,
generate: A simple approach to sentiment and style transfer.”
In: Proceedings of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers). 2018, pp. 1865–1874.
url: https://www.aclweb.org/anthology/N18-1169.

[99] Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li. “Paraphrase
Generation with Deep Reinforcement Learning.” In: Proceed-
ings of the 2018 Conference on EMNLP. Brussels, Belgium, 2018,
pp. 3865–3878. doi: 10.18653/v1/D18-1421. url: https://www.
aclweb.org/anthology/D18-1421.

[100] Zichao Li, Xin Jiang, Lifeng Shang, and Qun Liu. “Decompos-
able Neural Paraphrase Generation.” In: Proceedings of the 57th
Annual Meeting of the ACL. Florence, Italy, 2019, pp. 3403–3414.
doi: 10.18653/v1/P19-1332. url: https://www.aclweb.org/
anthology/P19-1332.

[101] Percy Liang, Michael Jordan, and Dan Klein. “Learning seman-
tic correspondences with less supervision.” In: Proceedings of
the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing
of the AFNLP. Aug. 2009, pp. 91–99. url: https://www.aclweb.
org/anthology/P09-1011.

[102] Chin-Yew Lin. “ROUGE: A package for automatic evaluation
of summaries.” In: Text Summarization Branches Out. July 2004,
pp. 74–81. url: https://www.aclweb.org/anthology/W04-
1013.

https://doi.org/10.18653/v1/D16-1128
https://www.aclweb.org/anthology/D16-1128
https://www.aclweb.org/anthology/D16-1128
https://papers.nips.cc/paper/2020/file/7a677bb4477ae2dd371add568dd19e23-Paper.pdf
https://papers.nips.cc/paper/2020/file/7a677bb4477ae2dd371add568dd19e23-Paper.pdf
https://www.aclweb.org/anthology/N18-1169
https://doi.org/10.18653/v1/D18-1421
https://www.aclweb.org/anthology/D18-1421
https://www.aclweb.org/anthology/D18-1421
https://doi.org/10.18653/v1/P19-1332
https://www.aclweb.org/anthology/P19-1332
https://www.aclweb.org/anthology/P19-1332
https://www.aclweb.org/anthology/P09-1011
https://www.aclweb.org/anthology/P09-1011
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013


120 bibliography

[103] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. “Focal loss for dense object detection.” In: Pro-
ceedings of the IEEE International Conference on Computer Vision.
2017.

[104] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. “Recurrent
neural network for text classification with multi-task learn-
ing.” In: Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence. 2016, pp. 2873–2879.

[105] Tianyu Liu, Fuli Luo, Qiaolin Xia, Shuming Ma, Baobao Chang,
and Zhifang Sui. “Hierarchical encoder with auxiliary super-
vision for neural table-to-text generation: Learning better rep-
resentation for tables.” In: Proceedings of the AAAI Conference
on Artificial Intelligence. 2019, pp. 6786–6793. url: https://ojs.
aaai.org/index.php/AAAI/article/view/4653.

[106] Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhi-
fang Sui. “Table-to-text generation by structure-aware seq2seq
learning.” In: Thirty-Second AAAI Conference on Artificial Intelli-
gence. 2018.

[107] Xianggen Liu, Lili Mou, Fandong Meng, Hao Zhou, Jie Zhou,
and Sen Song. “Unsupervised paraphrasing by simulated an-
nealing.” In: Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics. July 2020, pp. 302–312. doi:
10.18653/v1/2020.acl-main.28. url: https://www.aclweb.
org/anthology/2020.acl-main.28.

[108] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi,
Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and
Veselin Stoyanov. “Roberta: A robustly optimized bert pretrain-
ing approach.” In: arXiv preprint arXiv:1907.11692 (2019).

[109] Yuzong Liu, Rishabh Iyer, Katrin Kirchhoff, and Jeff Bilmes.
“SVitchboard II and FiSVer I: High-quality limited-complexity
corpora of conversational English speech.” In: Sixteenth Annual
Conference of the International Speech Communication Association.
2015.

[110] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay
regularization.” In: International Conference on Learning Repre-
sentations. 2018. url: https://openreview.net/forum?id=
Bkg6RiCqY7.

[111] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. “ViL-
BERT: Pretraining Task-Agnostic Visiolinguistic Representations
for Vision-and-Language Tasks.” In: Advances in Neural Infor-
mation Processing Systems 32. Ed. by H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Cur-
ran Associates, Inc., 2019, pp. 13–23. url: http : / / papers .

nips.cc/paper/8297-vilbert-pretraining-task-agnostic-

https://ojs.aaai.org/index.php/AAAI/article/view/4653
https://ojs.aaai.org/index.php/AAAI/article/view/4653
https://doi.org/10.18653/v1/2020.acl-main.28
https://www.aclweb.org/anthology/2020.acl-main.28
https://www.aclweb.org/anthology/2020.acl-main.28
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://papers.nips.cc/paper/8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks.pdf
http://papers.nips.cc/paper/8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks.pdf
http://papers.nips.cc/paper/8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks.pdf
http://papers.nips.cc/paper/8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks.pdf


bibliography 121

visiolinguistic-representations-for-vision-and-language-

tasks.pdf.

[112] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. “Hi-
erarchical question-image co-attention for visual question an-
swering.” In: Advances in neural information processing systems
29 (2016).

[113] Mario Lucic, Matthew Faulkner, Andreas Krause, and Dan
Feldman. “Training gaussian mixture models at scale via core-
sets.” In: The Journal of Machine Learning Research 18.1 (2017),
pp. 5885–5909.

[114] Shuming Ma, Pengcheng Yang, Tianyu Liu, Peng Li, Jie Zhou,
and Xu Sun. “Key Fact as Pivot: A Two-Stage Model for Low
Resource Table-to-Text Generation.” In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, July
2019, pp. 2047–2057. doi: 10.18653/v1/P19-1197. url: https:
//aclanthology.org/P19-1197.

[115] Nikolaos Malandrakis, Minmin Shen, Anuj Goyal, Shuyang
Gao, Abhishek Sethi, and Angeliki Metallinou. “Controlled
Text Generation for Data Augmentation in Intelligent Artificial
Agents.” In: Proceedings of the 3rd Workshop on Neural Generation
and Translation. Hong Kong, 2019, pp. 90–98. doi: 10.18653/
v1/D19-5609. url: https://www.aclweb.org/anthology/D19-
5609.

[116] Mateusz Malinowski and Mario Fritz. “A multi-world approach
to question answering about real-world scenes based on uncer-
tain input.” In: Advances in neural information processing systems.
2014, pp. 1682–1690.

[117] Mateusz Malinowski and Mario Fritz. “Towards a visual tur-
ing challenge.” In: arXiv preprint arXiv:1410.8027 (2014).

[118] Tom McCoy, Ellie Pavlick, and Tal Linzen. “Right for the Wrong
Reasons: Diagnosing Syntactic Heuristics in Natural Language
Inference.” In: Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics, July 2019, pp. 3428–3448. doi:
10.18653/v1/P19- 1334. url: https://www.aclweb.org/
anthology/P19-1334.

[119] Warren S McCulloch and Walter Pitts. “A logical calculus of
the ideas immanent in nervous activity.” In: The bulletin of
mathematical biophysics 5.4 (1943), pp. 115–133.

[120] David D McDonald. “Issues in the choice of a source for nat-
ural language generation.” In: Computational Linguistics 19.1
(1993), pp. 191–197.

http://papers.nips.cc/paper/8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks.pdf
http://papers.nips.cc/paper/8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks.pdf
http://papers.nips.cc/paper/8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks.pdf
http://papers.nips.cc/paper/8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks.pdf
http://papers.nips.cc/paper/8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks.pdf
https://doi.org/10.18653/v1/P19-1197
https://aclanthology.org/P19-1197
https://aclanthology.org/P19-1197
https://doi.org/10.18653/v1/D19-5609
https://doi.org/10.18653/v1/D19-5609
https://www.aclweb.org/anthology/D19-5609
https://www.aclweb.org/anthology/D19-5609
https://doi.org/10.18653/v1/P19-1334
https://www.aclweb.org/anthology/P19-1334
https://www.aclweb.org/anthology/P19-1334


122 bibliography

[121] Kathleen McKeown. Text Generation. Cambridge University Press,
1992. url: https://www.cambridge.org/ca/academic/subjects/
languages-linguistics/computational-linguistics/text-

generation?format=PB&isbn=9780521438025.

[122] Hongyuan Mei, Mohit Bansal, and Matthew R Walter. “What
to talk about and how? Selective Generation using LSTMs
with Coarse-to-Fine Alignment.” In: Proceedings of the 2016 Con-
ference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies. 2016, pp. 720–
730.

[123] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. “Distributed representations of words and phrases
and their compositionality.” In: Advances in neural information
processing systems 26 (2013).

[124] Tomáš Mikolov, Édouard Grave, Piotr Bojanowski, Christian
Puhrsch, and Armand Joulin. “Advances in Pre-Training Dis-
tributed Word Representations.” In: Proceedings of the Eleventh
International Conference on Language Resources and Evaluation
(LREC 2018). 2018.

[125] Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. “Dis-
tant supervision for relation extraction without labeled data.”
In: Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP. Suntec, Singapore: Associa-
tion for Computational Linguistics, Aug. 2009, pp. 1003–1011.
url: https://aclanthology.org/P09-1113.

[126] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and
Joel T Dudley. “Deep learning for healthcare: review, opportu-
nities and challenges.” In: Briefings in bioinformatics 19.6 (2018),
pp. 1236–1246.

[127] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. “Core-
sets for data-efficient training of machine learning models.”
In: International Conference on Machine Learning. PMLR. 2020,
pp. 6950–6960.

[128] Manish Munikar, Sushil Shakya, and Aakash Shrestha. “Fine-
grained sentiment classification using bert.” In: 2019 Artificial
Intelligence for Transforming Business and Society (AITB). Vol. 1.
IEEE. 2019, pp. 1–5.

[129] Deepak Muralidharan et al. “Leveraging User Engagement
Signals For Entity Labeling in a Virtual Assistant.” In: arXiv
1909.09143 (2019).

https://www.cambridge.org/ca/academic/subjects/languages-linguistics/computational-linguistics/text-generation?format=PB&isbn=9780521438025
https://www.cambridge.org/ca/academic/subjects/languages-linguistics/computational-linguistics/text-generation?format=PB&isbn=9780521438025
https://www.cambridge.org/ca/academic/subjects/languages-linguistics/computational-linguistics/text-generation?format=PB&isbn=9780521438025
https://aclanthology.org/P09-1113


bibliography 123

[130] Kuniaki Noda, Yuki Yamaguchi, Kazuhiro Nakadai, Hiroshi
G Okuno, and Tetsuya Ogata. “Audio-visual speech recogni-
tion using deep learning.” In: Applied Intelligence 42.4 (2015),
pp. 722–737.
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