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Introduction

In this thesis, we are concerned with the long-term behavior of solutions to stochastic differential
equations on ℝ𝑑 with a variable degenerate diffusion matrix. As a starting point, consider the
motion of a single particle in ℝ𝑑 and denote its position and velocity at any given time 𝑡 by
𝑋𝑡 and 𝑉𝑡 , respectively. Then the evolution of the particle is described by the following Itô
stochastic differential equation

d𝑋𝑡 = 𝑉𝑡 d𝑡

d𝑉𝑡 = −𝜁𝑉𝑡 d𝑡 − ∇Φ(𝑋𝑡) d𝑡 +

√
2𝜁
𝛽

d𝐵𝑡 ,
(0.1)

where (𝐵𝑡)𝑡≥0 is a standard Brownian motion, 𝜁 is the friction coefficient, −∇Φ is an outer force
field given by a potential Φ acting on the particle depending on its position, and 𝛽 = 1

𝑘𝑇 , with 𝑇
denoting the temperature of the system and 𝑘 being the Boltzmann constant. This is known as
the Langevin equation, and has been studied in this form analytically in [Con11], which serves
as a reference for this thesis in terms of how to obtain solutions to the considered equations.
The approach consists of applying the Itô formula to obtain the corresponding Kolmogorov
backwards operator, proving that said operator generates a semigroup of contractions on an
appropriate 𝐿𝑝-space, and then using potential theoretic tools similar to the theory of Dirichlet
forms to obtain an associated stochastic process, which is shown to solve the Langevin equation.

It is easy enough to modify the above equation such that the diffusion depends on a constant
positive-definite symmetricℝ𝑑×𝑑-matrix instead of a real constant. The main change we consider
here, however, is when said matrix is not constant, but instead depends on the velocity 𝑉𝑡 . In
order to be able to apply the semigroup approach as described above, an additional drift term
has to be introduced. In particular, the modified equation has the form

d𝑋𝑡 = 𝑉𝑡 d𝑡

d𝑉𝑡 = −Σ(𝑉𝑡)𝑉𝑡 d𝑡 − ∇Φ(𝑋𝑡) d𝑡 +
𝑑
∑
𝑖,𝑗=1

𝜕𝑗𝑎𝑖𝑗 (𝑉𝑡) d𝑡 +
√
2𝜎(𝑉𝑡) d𝐵𝑡 ,

(0.2)

where 𝑎𝑖𝑗 denotes the entry of Σ at position 𝑖𝑗 , and 𝜎 denotes the square root of Σ, i.e. Σ = 𝜎𝜎𝑇 .
In the case of a constant Σ, we can interpret this as a stochastic perturbation of a damped
Hamiltonian system: Define 𝐻(𝑥, 𝑣) ..= 1

2 |𝑣|
2 + Φ(𝑥), then (0.2) can be written as

d𝑋𝑡 = ∇𝑣𝐻(𝑋𝑡 , 𝑉𝑡) d𝑡

d𝑉𝑡 = −∇𝑥 (𝐻(𝑋𝑡 , 𝑉𝑡)) d𝑡 − Σ(𝑉𝑡)∇𝑣𝐻(𝑋𝑡 , 𝑉𝑡) d𝑡 +
√
2𝜎(𝑉𝑡) d𝐵𝑡 .

(0.3)
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Introduction

We canmake this even more general without substantially changing the structure of the resulting
operator in the following way: First, we can replace 1

2 |𝑣|
2 in the definition of 𝐻(𝑥, 𝑣) by Ψ(𝑣)

for some suitably differentiable Ψ ∶ ℝ𝑑 → ℝ. Additionally, we can give up the physical
interpretation as position and velocity, and instead just consider a two-component process
(𝑋𝑡 , 𝑌𝑡)𝑡≥0. Since in that case, the dimensions need not match, we let 𝑋𝑡 be in ℝ𝑑1 and 𝑌𝑡 be in
ℝ𝑑2 for possibly different 𝑑1, 𝑑2 ∈ ℕ. To transform between the two spaces, we introduce a
constant real matrix 𝑄 ∈ ℝ𝑑1×𝑑2 with transpose 𝑄∗. The resulting generalized equation is of the
form

d𝑋𝑡 = 𝑄∇Ψ(𝑌𝑡) d𝑡

d𝑌𝑡 = −Σ(𝑌𝑡)∇Ψ(𝑌𝑡) d𝑡 − 𝑄∗∇Φ(𝑋𝑡) d𝑡 +
𝑑2
∑
𝑖,𝑗=1

𝜕𝑗𝑎𝑖𝑗 (𝑌𝑡) d𝑡 +
√
2𝜎(𝑌𝑡) d𝐵𝑡 ,

(0.4)

and is the main focus of this thesis. As mentioned above, we treat it analytically by applying the
Itô formula to obtain a second-order differential operator 𝐿. For sufficiently smooth functions
𝑓 on ℝ𝑑1 × ℝ𝑑2 , for example 𝑓 ∈ 𝐶∞

𝑐 (ℝ𝑑1 × ℝ𝑑2), the space of compactly supported smooth
real-valued functions, 𝐿𝑓 is given by

𝐿𝑓 (𝑥, 𝑦) ..= tr[Σ(𝑦)𝐇𝑦 𝑓 (𝑥, 𝑦)] − ⟨Σ(𝑦)∇Ψ(𝑦), ∇𝑦𝑓 (𝑥, 𝑦)⟩ +
𝑑2
∑
𝑖,𝑗=1

𝜕𝑗𝑎𝑖𝑗 (𝑦)𝜕𝑦𝑖𝑓 (𝑥, 𝑦)

+ ⟨𝑄∇Ψ(𝑦), ∇𝑥𝑓 (𝑥, 𝑦)⟩ − ⟨𝑄∗∇Φ(𝑥), ∇𝑦𝑓 (𝑥, 𝑦)⟩.

(0.5)

Here, 𝑥 denotes the first component in ℝ𝑑1 , 𝑦 refers to the second component in ℝ𝑑2 , ⟨⋅, ⋅⟩
denotes the Euclidean inner product on ℝ𝑑 , and the differential operators ∇𝑥 , ∇𝑦 and 𝐇𝑦 are
to be understood as the gradients in the first and second component, respectively, as well as
the Hessian in the second component. We refer to solutions of (0.4) as generalized Langevin
dynamics, as opposed to the special case of the second-order SDE (0.2), the solutions of which
we call Langevin dynamics. The same naming convention will be used for the corresponding
differential operators 𝐿 as well.

Essential m-dissipativity

One major result of this thesis is that under relatively weak assumptions on Σ, Φ and Ψ, the
operator (𝐿, 𝐶∞

𝑐 (ℝ𝑑1 ×ℝ𝑑2)) is essentially m-dissipative on 𝐿2(𝜇), where the measure 𝜇 is defined
as e−Φ(𝑥)−Ψ(𝑦) d(𝑥, 𝑦). This means that it is closable and its closure (𝐿, 𝐷(𝐿)) generates a strongly
continuous contraction semigroup of linear operators on 𝐿2(𝜇). In other words, 𝐶∞

𝑐 (ℝ𝑑1 × ℝ𝑑2)
is a core for the generator (𝐿, 𝐷(𝐿)).

While often just stated as an assumption in literature, it usually requires a substantial amount
of work to prove that a given subspace is indeed a generator core, even if it is known that some
closed extension of the operator generates a strongly continuous semigroup. The approach
we use is based on a perturbation argument, as it has been used for Langevin operators in
[Con11]. First, essential self-adjointness is shown for the symmetric second-order differential
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operator on ℝ𝑑2 induced by the first line of (0.5), which is lifted to an operator on the entire
space. Then the remaining terms are added as perturbations, where the 𝐿2-space has to be
temporarily transformed in order to be able to consider each term separately as a dissipative
operator. The main challenge there is that one of the terms includes a derivative along the first
component, which is absent in the symmetric operator, thereby making the resulting operator
non-sectorial. This is solved using a complete orthonormal family decomposing the Hilbert
space into a countable family of subspaces, on which perturbation is possible. However, we
require boundedness of the derivatives of both Φ and Σ for this approach to work, and relax
these assumptions at the end via an involved approximation argument.

We can then reduce analytical treatment of the semigroup to considerations of the operator 𝐿
on the deduced core, where one has the concrete representation from (0.5). In particular, we
gain long-term convergence rate estimates for the semigroup via hypocoercivity methods.

Hypocoercivity

The concept of hypocoercivity was developed by Villany as a method to derive concrete rates
for the convergence of degenerate dissipative operators to an equilibrium state. The systematic
study of this method is collected in [Vil06] and was further developed by Dolbeault, Mouhot and
Schmeiser in [DMS15] (inspired by an approach used by Hérau in [Hér05]) into the framework
used in this thesis. This was further formalized including domain issues by Grothaus and
Stilgenbauer in [GS14; GS16], the latter of which serves as a reference for the application of said
framework to Langevin equations as considered above. The main idea is to split the generator
into a symmetric and an antisymmetric part, and to introduce an orthogonal projection into
the kernel of the symmetric part, which decomposes the considered Hilbert space into two
subspaces. Then, under the assumption that each operator part has a spectral gap at least in
the corresponding subspace, and that there is a suitably nice auxiliary operator such that the
composition with any of the operators results in a bounded operator, the time derivative of an
energy functional can be relatively bounded by the functional itself, resulting in convergence of
the semigroup by Gronwall’s Lemma. In the context of differential operators, the spectral gap
condition usually requires a Poincaré inequality to hold for each measure 𝜇𝑖, where 𝜇 = 𝜇1 ⊗ 𝜇2.
While sufficient conditions for this are known, it still restricts the possible choices for potentials.
In [GW19], Grothaus and Wang therefore developed a weaker version of the above method,
which instead relies on weak Poincaré inequalities, which have been proven in [RW01] to hold
under very weak assumptions. In consequence, the resulting convergence is in general no longer
exponential, but concrete rates can still be computed explicitly.

The hypocoercivity method described above has been recently applied to compute convergence
rate of Langevin dynamics on abstract smooth manifolds ([GM20]) and on infinite-dimensional
Hilbert spaces in [EG21]. The findings in this thesis have been partially published by the
author in [BG22] and [BG21]. Other approaches to derive exponential convergence include
hypercontractivity as in [Wan17], where the semigroup is proven to be contractive as a mapping
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Introduction

from 𝐿2 to 𝐿4, or directly using Lyapunov functions, as seen in [Wu01] or [HM17; BGH21] and the
references therein. However, while for example [Wu01] theoretically allows for variable diffusion
coefficients, exponential convergence for generalized Langevin dynamics with multiplicative
noise as described by the equation (0.4) seems to be new independently of the method used.
We emphasize again that in order to apply the hypocoercivity framework as we do here, it is
absolutely necessary to have knowledge of a suitable generator core which admits a concrete
representation of the operator 𝐿. So essential m-dissipativity of 𝐿 is not only a separate new
result, but instrumental for the estimation of the convergence rate.

The connection between the semigroup considered and solutions to the stochastic differential
equation is given via generalized Dirichlet forms as developed by Stannat in [Sta99], which
shows existence of a Markov process such that its transition semigroup coincides with the given
contraction semigroup. This association is a special case of the more abstract result gained by
Beznea, Boboc and Röckner in [BBR06] using potential theoretic methods. The resulting process
is then identified as a weak solution by first proving that it solves the martingale problem
corresponding to 𝐿, and then characterizing the martingales via their quadratic covariation
processes. The necessary properties of the process can be inferred from the generalized Dirichlet
form structure, using results by Trutnau, as seen in [Tru00] and [Tru03].

Infinite-dimensional Langevin dynamics with multiplicative noise

In the final part of this thesis, we study hypocoercivity for semigroups generated by operators
similar to the definition (0.5), but for functions that are defined on a product 𝑊 = 𝑈 × 𝑉 of
two infinite-dimensional separable Hilbert spaces instead of ℝ𝑑 . While the existence of an
orthonormal basis allows for componentwise consideration, the first challenge is presented by
the lack of a Lebesgue measure on 𝑈 and 𝑉 . Instead, Gaussian measures with corresponding
covariance operators 𝑄1 and 𝑄2 are used as reference measures, which means that even the
“potential-less” base case already includes gradient terms as an antisymmetric part of the
operator. Consequently, that remains the only case we consider, as we focus instead on including
suitably non-trivial variable second-order coefficients. As a motivation, we present the infinite-
dimensional stochastic differential equation

d𝑋𝑡 = 𝐾21𝑄−1
2 𝑌𝑡 d𝑡

d𝑌𝑡 =
∞
∑
𝑖=1

𝜕𝑖𝐾22(𝑌𝑡)𝑒𝑖 − 𝐾22(𝑌𝑡)𝑄−1
2 𝑌𝑡 d𝑡 − 𝐾12𝑄−1

1 𝑋𝑡 d𝑡 +
√
2𝐾22(𝑌𝑡) d𝐵𝑡

(0.6)

for (𝑋𝑡 , 𝑌𝑡)𝑡≥0 on 𝑊 , where 𝐾12 ∶ 𝑈 → 𝑉 is a bounded linear operator with 𝐾21 = 𝐾∗
12,

𝐾22 ∶ 𝑉 → L(𝑉 ) is the Fréchet-differentiable operator-valued second-order coefficient map,
(𝑒𝑖)𝑖∈ℕ is an orthonormal basis of 𝑉 consisting of eigenvalues of 𝑄2, and (𝐵𝑡)𝑡≥0 is a cylindrical
Brownian motion. In a finite-dimensional setting, this would be a special case of (0.4), and
so we introduce assumptions on 𝐾22 and 𝐾12 that allow us to reduce the question of essential
m-dissipativity to finite-dimensional subspaces, where we can make use of our previous results.
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We then prove hypocoercivity of the generated semigroup by combining the method which
we use in Section 4.2 with the hypocoercivity proof from [EG21], which we can apply to the
symmetric part without change. For this, we introduce further conditions to make sure that 𝐾22
and 𝐾12 are well-behaved relative to 𝑄−1

2 and 𝑄−1
1 . Finally, we are able to prove the existence of

an associated Hunt process (𝑋𝑡 , 𝑌𝑡) on𝑊 , for which
√
2𝐾22(𝑌𝑡) d𝐵𝑡 is well-defined as a stochastic

integral with respect to a cylindrical Brownian motion derived from 𝑌𝑡 , and that provides a weak
solution to the equation (0.6), at least when evaluated componentwisely. Finally, we present a
concrete example that satisfies all required conditions, to show that they are feasibly verifiable
and not unreasonable to assume.

Structure of the thesis

The structure is as follows: First, we introduce some necessary functional analytic and prob-
abilistic background in Chapter 2. This includes the theory of operator semigroups and their
generators, useful tools like smooth cutoff functions, as well as some condensed background on
generalized Dirichlet forms and how they can be used to connect sub-Markovian semigroups
with associated stochastic processes. No new results are stated, with the exception of Section 1.6,
which at least does not seem to be well-known. In Chapter 3, we give a brief overview of
the strong and weak hypocoercivity methods applied later, along with some comparisons and
sufficient conditions to verify in practice. Again, no substantially new results are obtained, and
we only include it to keep the thesis moderately self-contained. Chapter 4 sees us proving the
aforementioned result on essential m-dissipativity for the operator 𝐿 as defined in (0.5) on the
space 𝐿2(𝜇). We first provide a useful essential self-adjointness result for symmetric operators
resulting from a gradient form, then we use a perturbation argument as seen in [Con11] and
[Non20] to extend essential m-dissipativity progressively to the entire operator. Once the core
property of smooth compactly supported functions has been shown, we can apply the two
hypocoercivity methods discussed earlier to the semigroup generated by 𝐿. This happens in
Chapter 5, where we impose additional assumptions on the occurring coefficients depending on
the framework used, and give concrete convergence rate estimates based on those assumptions.
We also discuss how this can be applied to solutions of second-order partial differential equations,
as well as to weak solutions of stochastic differential equations of the form seen in (0.4). In the
final Chapter, we extend the previous results to infinite-dimensional state spaces.

Notation

Although most notation used should be fairly standard, we give a brief overview here. Let
ℕ = {1, 2, … } denote the set of natural numbers and ℝ, ℂ be the sets of real and complex
numbers. For elements 𝑥, 𝑦 of ℝ𝑑 , we write ⟨𝑥, 𝑦⟩ and |𝑥| for the Euclidean inner product and
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Introduction

norm, respectively. For a matrix 𝐴 ∈ ℝ𝑑1×𝑑2 , |𝐴| denotes the Frobenius norm of 𝐴, which is
consistent with the Euclidean vector norm.

Let 𝐸 ⊆ ℝ𝑑 and 𝑘 ∈ ℕ, then 𝐶𝑘(𝐸), 𝐶𝑘𝑏 (𝐸) and 𝐶
𝑘
𝑐 (𝐸) denote the spaces of 𝑘-times continuously

differentiable functions from 𝐸 to ℝ, the subset of those functions which are bounded with
bounded derivatives, and the subset of those functions with compact support, respectively. For
1 ≤ 𝑖, 𝑗 ≤ 𝑑 and a suitably differentiable 𝑓 ∶ 𝐸 → ℝ, the notation 𝜕𝑖𝑓 denotes the partial
derivatives of 𝑓 in the 𝑖-th component, 𝜕𝑖𝑗𝑓 = 𝜕𝑖𝜕𝑗𝑓 and 𝜕2𝑖 𝑓 = 𝜕𝑖𝑖𝑓 . The symbols ∇𝑓 and
𝐇𝑓 are used to denote the gradient and the Hessian of 𝑓 . Higher order partial derivatives are
sometimes abbreviated by a multi-index notation, i.e. 𝜕𝛼𝑓 = 𝜕𝛼𝑖𝑖 …𝜕𝛼𝑑𝑑 𝑓 for 𝛼 ∈ ℕ𝑑 . For such a
multi-index 𝛼, we write |𝛼| ..= ∑𝑑

𝑖=1 |𝛼𝑖|, 𝛼! ..= ∏𝑑
𝑖=1 𝛼𝑖! with corresponding binomial coefficient

definition, and use the partial order 𝛼 ≤ 𝛽 iff 𝛼𝑖 ≤ 𝛽𝑖 for each 1 ≤ 𝑖 ≤ 𝑑.

If 𝐸 = 𝐸1×𝐸2, then we sometimes stress that fact by writing 𝑓 (𝑥, 𝑦) ..= 𝑓 (𝑧) for each 𝑧 = (𝑥, 𝑦) ∈
𝐸. In that case, all derivatives gain an additional index referring to the specific component,
e.g. 𝜕𝑦𝑖 for the partial derivative in the component 𝑦𝑖 of (𝑥, 𝑦), as well as ∇𝑥 , ∇𝑦 , 𝐇𝑦 , etc. If 𝑆1,
𝑆2 are function spaces over 𝐸1 and 𝐸2, then each pair 𝑓1 ∈ 𝑆1, 𝑓2 ∈ 𝑆2 admits a tensor product
𝑓 ..= 𝑓1 ⊗ 𝑓2 ∶ 𝐸 → ℝ defined by 𝑓 (𝑥, 𝑦) ..= 𝑓1(𝑥)𝑓2(𝑦). We call such an 𝑓 a pure tensor and
denote the space of all finite linear combinations of pure tensors by 𝑆1 ⊗ 𝑆2.

For a topological space 𝐸, let B(𝐸) denote the Borel-𝜎-algebra on 𝐸. If 𝑆 is a function space
over 𝐸, 𝜎(𝑆) denotes the 𝜎-algebra generated by pre-images of open sets in ℝ under functions
from 𝑆. Let (𝐸,F , 𝜇) be a measure space, then 𝐿𝑝(𝐸; 𝜇) for 1 ≤ 𝑝 ≤ ∞ denotes the space of
equivalence classes of F − B(ℝ)-measurable functions such that ∫𝐸 |𝑓 |

𝑝 d𝜇 < ∞ (or such that 𝑓
is 𝜇-almost everywhere bounded if 𝑝 = ∞) under the equivalence relation of coincidence 𝜇-a.e.
These spaces are equipped with the norms ‖ ⋅ ‖𝐿𝑝 defined by ‖𝑓 ‖𝑝𝐿𝑝 = ∫𝐸 |𝑓 |

𝑝 d𝜇 for 1 ≤ 𝑝 < ∞
and ‖𝑓 ‖𝐿∞ = ess sup |𝑓 | for 𝑝 = ∞, where the essential supremum is to be understood with
respect to 𝜇. If 𝑓 ∶ 𝐸 → ℝ is 𝜇-integrable, then we sometimes write 𝜇(𝑓 ) for ∫𝐸 𝑓 d𝜇.
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1 Functional analytic and probabilistic
background

1.1 Linear operators on Hilbert spaces

We collect some basic facts about linear operators on Hilbert spaces that we need during the
elaborations on the abstract hypocoercivity method below. While everything here is standard,
we include it for the sake of completeness.

Let 𝐻 be an arbitrary Hilbert space and (𝑇 , 𝐷(𝑇 )) be a linear operator on 𝐻 .

Definition 1.1.1.

(i) Let 𝐻 be another Hilbert space and let 𝐿 ∈ L(𝐻; 𝐻). Then the unique operator 𝐿∗ ∈
L(𝐻; 𝐻) such that

(𝑥, 𝐿∗𝑦)𝐻 = (𝐿𝑥, 𝑦)𝐻 for all 𝑥 ∈ 𝐻, 𝑦 ∈ 𝐻

is called the (Hilbert space-)adjoint operator to 𝐿.

(ii) Let (𝑇 , 𝐷(𝑇 )) be densely defined. Then the operator (𝑇 ∗, 𝐷(𝑇 ∗)) on 𝐻 defined by

𝐷(𝑇 ∗) ..= {𝑦 ∈ 𝐻 ∣ ∃𝑧𝑦 ∈ 𝐻 ∶ (𝑇 𝑥, 𝑦)𝐻 = (𝑥, 𝑧𝑦)𝐻 for all 𝑥 ∈ 𝐷(𝑇 )}
𝑇 ∗𝑦 ..= 𝑧𝑦 for all 𝑦 ∈ 𝐷(𝑇 ∗)

is called the adjoint operator of (𝑇 , 𝐷(𝑇 )).

Lemma 1.1.2. Let (𝑇 , 𝐷(𝑇 )) be a densely defined linear operator on a Hilbert space 𝐻 and let 𝐿 be
a bounded linear operator with domain 𝐻 .

(i) The adjoint operator (𝑇 ∗, 𝐷(𝑇 ∗)) exists and is closed. If 𝐷(𝑇 ∗) is dense in 𝐻 , then (𝑇 , 𝐷(𝑇 ))
is closable and for the closure (𝑇 , 𝐷(𝑇 )) it holds 𝑇 = 𝑇 ∗∗.

(ii) 𝐿∗ is bounded and ‖𝐿∗‖ = ‖𝐿‖.

(iii) If (𝑇 , 𝐷(𝑇 )) is closed, then 𝐷(𝑇 ∗) is automatically dense in 𝐻 . Consequently by (i), 𝑇 = 𝑇 ∗∗.

(iv) Let (𝑇 , 𝐷(𝑇 )) be closed. Then the operator 𝑇𝐿 with domain

𝐷(𝑇𝐿) = {𝑓 ∈ 𝐻 ∣ 𝐿𝑓 ∈ 𝐷(𝑇 )}

is also closed.
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1 Functional analytic and probabilistic background

(v) 𝐿𝑇 with domain 𝐷(𝑇 ) is not necessarily closed, however

(𝐿𝑇 )∗ = 𝑇 ∗𝐿∗.
Proof:

(i) See [RS81, Theorem VIII.1].

(ii) Follows directly from definition: Let 𝑥 ∈ 𝐻 , then

‖𝐿∗𝑥‖2𝐻 = (𝐿𝐿∗𝑥, 𝑥)𝐻 ≤ ‖𝐿‖L(𝐻)‖𝐿∗𝑥‖𝐻 ‖𝑥‖𝐻 ,

hence ‖𝐿∗𝑥‖𝐻 ≤ ‖𝐿‖L(𝐻)‖𝑥‖𝐻 .

(iii) See again [RS81, Theorem VIII.1].

(iv) Follows directly from continuity of 𝐿 and closedness of 𝑇 .

(v) Note that𝐷(𝑇 ∗𝐿∗) is defined as in point (iv). Then the statement is clear since (𝐿𝑇 𝑥, 𝑦)𝐻 =
(𝑇𝑥, 𝐿∗𝑦)𝐻 for all 𝑥 ∈ 𝐷(𝑇 ) = 𝐷(𝐿𝑇 ) and 𝑦 ∈ 𝐻 . □

Proposition 1.1.3. Let (𝑇 , 𝐷(𝑇 )) be densely defined and either symmetric or antisymmetric. Then
(𝑇 , 𝐷(𝑇 )) is closable.
Proof:
Let (𝑥𝑛)𝑛∈ℕ be a sequence in𝐻 such that 𝑥𝑛 → 0 and 𝑇 𝑥𝑛 → 𝑦 for some 𝑦 ∈ 𝐻 . If 𝑇 is symmetric,
then

(𝑦, 𝑧)𝐻 = lim
𝑛→∞

(𝑇 𝑥𝑛, 𝑧)𝐻 = lim
𝑛→∞

(𝑥𝑛, 𝑇 𝑧)𝐻 = 0

for all 𝑧 ∈ 𝐷(𝑇 ), which is dense in 𝐻 . This implies 𝑦 = 0, so 𝑇 is closable. The antisymmetric
case follows analogously. □

Lemma 1.1.4. Let (𝑇 , 𝐷(𝑇 )) be symmetric or antisymmetric and let 𝑃 ∶ 𝐻 → 𝐻 be an orthogonal
projection with 𝑃(𝐷) ⊆ 𝐷(𝑇 ) for some dense subspace 𝐷 ⊆ 𝐷(𝑇 ) of 𝐻 . Then

(i) 𝐷(𝑇 ) ⊆ 𝐷((𝑇 𝑃)∗) with (𝑇 𝑃)∗ = 𝑃𝑇 on 𝐷 for symmetric 𝑇 and (𝑇 𝑃)∗ = −𝑃𝑇 on 𝐷(𝑇 ) for
antisymmetric 𝑇 ,

(ii) 𝑃(𝑇 𝑃)∗ = (𝑇𝑃)∗ on 𝐷((𝑇𝑃)∗).
Proof:
See [GS14, Lemma 2.2]. □

1.2 Operator semigroups and their generators

Here we give an overview of the theory of one-parameter operator semigroups. The contents
here are standard and can be found for example in [EN00, Chapters II, III] or [Paz83, Chapters 1,
3], the latter of which is to be assumed as reference unless stated otherwise.

Throughout this section, let𝑋 be a Banach space over𝕂 ∈ {ℝ, ℂ} and let𝑋 ′ denote its topological
dual space.
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1.2 Operator semigroups and their generators

1.2.1 Basics on operator semigroups

Definition 1.2.1. A family (𝑇𝑡)𝑡≥0 in L(𝑋) satisfying the conditions

(S1) 𝑇0 = 𝐼 ,

(S2) 𝑇𝑠+𝑡 = 𝑇𝑠𝑇𝑡 for 𝑠, 𝑡 ≥ 0 and

(S3) 𝑇𝑡𝑥 → 𝑥 in 𝑋 as 𝑡 → 0 for all 𝑥 ∈ 𝑋

is called a strongly continuous semigroup (𝐶0𝑆) of bounded linear operators on 𝑋 .

If additionally ‖𝑇𝑡‖ ≤ 1 for all 𝑡 ≥ 0, then it is called a strongly continuous contraction semigroup
(sccs).

The time-derivative at zero of such a semigroup is of great importance and defined as follows:

Definition 1.2.2. Let (𝑇𝑡)𝑡≥0 be a 𝐶0𝑆 on 𝑋 . The operator

𝐿𝑥 ..= lim
𝑡→0

𝑇𝑡𝑥 − 𝑥
𝑡

, 𝑓 ∈ 𝐷(𝐿) (1.2.1)

with corresponding domain

𝐷(𝐿) ..= {𝑥 ∈ 𝑋 ∣ the limit (1.2.1) exists in 𝑋}

is called the generator of (𝑇𝑡)𝑡≥0, which in turn is said to be generated by (𝐿, 𝐷(𝐿)).

Remark 1.2.3. Let (𝑇𝑡)𝑡≥0 be a 𝐶0𝑆 with generator (𝐿, 𝐷(𝐿)). Then

(i) 𝑇𝑡𝑥 ∈ 𝐷(𝐿) for all 𝑥 ∈ 𝐷(𝐿) and

d𝑇𝑡𝑥
d𝑡

= 𝐿𝑇𝑡𝑥 = 𝑇𝑡𝐿𝑥.

(ii) For all 𝑥 ∈ 𝐷(𝐿) and 𝑠, 𝑡 ≥ 0, it holds that

𝑇𝑡𝑥 − 𝑇𝑠𝑥 = ∫
𝑡

𝑠
𝑇𝑢𝐿𝑥 d𝑢 = ∫

𝑡

𝑠
𝐿𝑇𝑢𝑥 d𝑢.

(iii) (𝐿, 𝐷(𝐿)) is closed and densely defined.

(iv) Let (𝑆𝑡)𝑡≥0 be a 𝐶0𝑆 which is also generated by (𝐿, 𝐷(𝐿)). Then 𝑇𝑡 = 𝑆𝑡 for all 𝑡 ≥ 0. In
particular, 𝐶0-semigroups are characterized by their generators.

Theorem 1.2.4. Let (𝑇𝑡)𝑡≥0 be a 𝐶0-semigroup on a Hilbert space 𝐻 with generator (𝐿, 𝐷(𝐿)).
Then (𝑇 ∗𝑡 )𝑡≥0 is a 𝐶0-semigroup generated by the adjoint (𝐿∗, 𝐷(𝐿∗)) of (𝐿, 𝐷(𝐿)) and satisfies
‖𝑇 ∗𝑡 ‖ = ‖𝑇𝑡‖ for all 𝑡 ≥ 0.
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1 Functional analytic and probabilistic background

𝐶0-semigroups are often used to provide solutions to the following problem:

Definition 1.2.5. Given a closed operator (𝐿, 𝐷(𝐿)) on 𝑋 and some 𝑥0 ∈ 𝑋 . Then the abstract
Cauchy problem corresponding to (𝐿, 𝐷(𝐿))with initial condition 𝑥0 consists of finding a function
𝑢 ∶ [0,∞) → 𝑋 satisfying

𝑢(0) = 𝑥0 and
d
d𝑡
𝑢(𝑡) = 𝐿𝑢(𝑡) for all 𝑡 ≥ 0. (1.2.2)

A continuously differentiable function 𝑢 is called a classical solution, if 𝑢(𝑡) ∈ 𝐷(𝐿) for all 𝑡 > 0
and (1.2.2) holds in the strong sense.

A continuous function 𝑢 is called a mild solution, if

∫
𝑡

0
𝑢(𝑠) d𝑠 ∈ 𝐷(𝐿) and 𝐿 ∫

𝑡

0
𝑢(𝑠) d𝑠 = 𝑢(𝑡) − 𝑥0.

Clearly every classical solution is also a mild solution. The connection to 𝐶0-semigroups is
given by the following equivalence.

Theorem 1.2.6. Let (𝐿, 𝐷(𝐿)) be a closed operator on the Banach space 𝑋 . Then the following are
equivalent:

(i) For all 𝑥 ∈ 𝑋 , there is a unique mild solution to the abstract Cauchy problem associated
with (𝐿, 𝐷(𝐿)) with initial condition 𝑥 ,

(ii) The resolvent set of (𝐿, 𝐷(𝐿)) is nonempty and for all 𝑥 ∈ 𝐷(𝐿), there is a unique classical
solution to the abstract Cauchy problem associated with (𝐿, 𝐷(𝐿)) with initial condition 𝑥 ,

(iii) (𝐿, 𝐷(𝐿)) generates a 𝐶0𝑆 (𝑇𝑡)𝑡≥0 on 𝑋 .

In that case, the solution is given by 𝑢(𝑡) = 𝑇𝑡𝑥 .

Proof:
See [Are+01, Theorem 3.1.12]. □

Thus, it is an important question whether a given closed linear operator generates a 𝐶0-
semigroup. Since we only consider sccs in our applications later, we will focus on results
for that special case, although analogous statements for general 𝐶0-semigroups exist as well.
The characterization of generators is given by the following famous theorem:

Theorem 1.2.7 (Hille-Yosida). A linear operator (𝐿, 𝐷(𝐿)) on 𝑋 is the generator of an sccs (𝑇𝑡)𝑡≥0
on 𝑋 if and only if

(i) (𝐿, 𝐷(𝐿)) is closed,

(ii) (𝐿, 𝐷(𝐿)) is densely defined, i.e. 𝐷(𝐿) is dense in 𝑋 , and

(iii) (0, ∞) ⊆ 𝜌(𝐿) and ‖𝜆(𝜆𝐼 − 𝐿)−1‖L(𝑋) ≤ 1 for all 𝜆 > 0.
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1.2 Operator semigroups and their generators

In that case, for any 𝜆 > 0, 𝑥 ∈ 𝑋 , we obtain the following representation of the inverse operators:

(𝜆𝐼 − 𝐿)−1𝑥 = ∫
∞

0
e−𝜆𝑠𝑇𝑠𝑥 d𝑠.

Remark 1.2.8. Note that from point (iii), it already follows that (𝐿, 𝐷(𝐿)) is closed due to the
closed graph theorem. So we could leave (i) out of the equivalence without changing the result.

Now we introduce a third object after the generator and the semigroup, which will later be the
main connection between semigroup theory and stochastic processes associated by generalized
Dirichlet forms. The following are taken from the first chapter of [MR92], which is recommended
as reading material on Dirichlet forms.

Definition 1.2.9. A family (𝐺𝛼)𝛼>0 of bounded linear operators on 𝑋 is called a strongly contin-
uous contraction resolvent (sccr), if

(i) lim𝛼→∞ 𝛼𝐺𝛼𝑥 = 𝑥 for all 𝑥 ∈ 𝐻 .

(ii) ‖𝛼𝐺𝛼‖L(𝐻) ≤ 1 for all 𝛼 > 0.

(iii) 𝐺𝛼 − 𝐺𝛽 = (𝛽 − 𝛼)𝐺𝛼𝐺𝛽 for all 𝛼, 𝛽 > 0.

Lemma 1.2.10. Let (𝐺𝛼)𝛼>0 be an sccr on 𝐻 , then there is exactly one linear operator (𝐿, 𝐷(𝐿))
such that (0, ∞) ⊆ 𝜌(𝐿) and 𝐺𝛼 = (𝛼𝐼 −𝐿)−1 for all 𝛼 > 0. This operator is closed, densely defined,
and is called the generator of (𝐺𝛼)𝛼>0.

On the other hand, let (𝐿, 𝐷(𝐿)) be a densely defined operator with (0, ∞) ⊆ 𝜌(𝐿) and set 𝐺𝛼 ..=
(𝛼𝐼 − 𝐿)−1 for each 𝛼 > 0. If ‖𝛼𝐺𝛼‖L(𝐻) ≤ 1 for all 𝛼 > 0, then (𝐺𝛼)𝛼>0 is an sccr.

Proof:
See [MR92, Proposition 1.5, Proposition 1.3]. □

Immediately from this Lemma and Theorem 1.2.7, we get

Corollary 1.2.11. A densely defined linear operator (𝐿, 𝐷(𝐿)) on 𝐻 generates an sccs (𝑇𝑡)𝑡≥0 on 𝐻
if and only if it generates an sccr (𝐺𝛼)𝛼>0 on 𝐻 , and in that case it holds that 𝐺𝛼 = ∫ ∞

0 e−𝛼𝑠𝑇𝑠 d𝑠.

1.2.2 (Essential) m-dissipativity

In practice, we rarely use Hille-Yosida to prove that a concrete operator (𝐿, 𝐷(𝐿)) generates an
sccs. Instead, the approach developed by Lumer and Phillips is used, which uses the notions of
(maximal) dissipativity.

Definition 1.2.12. Let 𝑥 ∈ 𝑋 . Then its duality set 𝐹(𝑥) is defined by

𝐹(𝑥) ..= {𝑥′ ∈ 𝑋 ′ ∣ 𝑥′(𝑥) = ‖𝑥‖2 = ‖𝑥′‖2} ⊆ 𝑋 ′.
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1 Functional analytic and probabilistic background

Note that this set is nonempty by the Hahn-Banach theorem.

Definition 1.2.13. A linear operator (𝐿, 𝐷(𝐿)) is called dissipative if for each 𝑥 ∈ 𝐷(𝐿), there is
some element 𝑥′ ∈ 𝐹(𝑥) such that Re(𝑥′(𝐿𝑥)) ≤ 0.

Remark 1.2.14. Let 𝑋 be a Hilbert space with inner product (⋅, ⋅)𝑋 .

(i) A linear operator (𝐿, 𝐷(𝐿)) is dissipative if and only if Re((𝐿𝑥, 𝑥)𝑋 ) ≤ 0 for all 𝑥 ∈ 𝐷(𝐿).
In particular, sums of dissipative operators with the same domain are again dissipative.

(ii) Let (𝐴, 𝐷(𝐴)) be antisymmetric. Then

Re((𝐴𝑥, 𝑥)𝑋 ) = Re(−(𝑥, 𝐴𝑥)𝑋 ) = −Re((𝐴𝑥, 𝑥)𝑋 ) = −Re((𝐴𝑥, 𝑥)𝑋 ),

hence Re((𝐴𝑥, 𝑥)𝑋 ) = 0 and (𝐴, 𝐷(𝐴)) is dissipative.

(iii) Let (𝑆, 𝐷(𝑆)) be symmetric and negative semi-definite. Then

Re((𝑆𝑥, 𝑥)𝑋 ) = (𝑆𝑥, 𝑥)𝑋 ≤ 0

and therefore (𝑆, 𝐷(𝑆)) is dissipative.

A useful characterization of dissipativity is given by

Theorem 1.2.15. A linear operator (𝐿, 𝐷(𝐿)) is dissipative iff

‖(𝜆𝐼 − 𝐿)𝑥‖ ≥ 𝜆‖𝑥‖ for all 𝑥 ∈ 𝐷(𝐿), 𝜆 > 0.

We collect some useful properties of dissipative operators:

Lemma 1.2.16. Let (𝐿, 𝐷(𝐿)) be a dissipative linear operator on the Banach space 𝑋 .

(i) If (𝐿, 𝐷(𝐿)) is densely defined, then it is closable and the closure (𝐿, 𝐷(𝐿)) is again dissipative.
Moreover,R(𝜆𝐼 − 𝐿) = R(𝜆𝐼 − 𝐿) for all 𝜆 > 0.

(ii) If R(𝜆0𝐼 − 𝐿) = 𝑋 for some 𝜆0 > 0, then (𝐿, 𝐷(𝐿)) does not possess a proper dissipative
extension. Moreover, (0, ∞) ∈ 𝜌(𝐿) and ‖(𝜆𝐼 − 𝐿)−1‖L(𝑋) ≤ 𝜆−1 for all 𝜆 > 0. In particular,
(𝐿, 𝐷(𝐿)) is closed and R(𝜆𝐼 − 𝐿) = 𝑋 for all 𝜆 > 0.

(iii) If 𝑋 is reflexive and R(𝐼 −𝐿) = 𝑋 , then 𝐷(𝐿) is dense in 𝑋 , i.e. (𝐿, 𝐷(𝐿)) is densely defined.

This motivates the following definitions:

Definition 1.2.17. Let (𝐿, 𝐷(𝐿)) be a densely defined linear operator on 𝑋 .

(i) (𝐿, 𝐷(𝐿)) is called m-dissipative, if it is dissipative and R(𝜆𝐼 − 𝐿) = 𝑋 for one (hence all)
𝜆 > 0.
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1.2 Operator semigroups and their generators

(ii) (𝐿, 𝐷(𝐿)) is called essentially m-dissipative, if it is dissipative andR(𝜆𝐼 − 𝐿) is dense in 𝑋
for one (hence all) 𝜆 > 0.

Remark 1.2.18. The above Lemma yields the following observations:

(i) An essentially m-dissipative operator is closable and its closure is m-dissipative. This
explains why that property carries over to all 𝜆 > 0.

(ii) Anm-dissipative operator is dissipative andmaximal with that property. As a consequence,
any dissipative extension of an essentially m-dissipative operator is again essentially m-
dissipative.

With these concepts defined, we can give an alternate characterization for generators of sccs:

Theorem 1.2.19 (Lumer-Phillips). Let (𝐿, 𝐷(𝐿)) be a linear operator on the Banach space 𝑋 . Then
it is the generator of an sccs on 𝑋 if and only if it is densely defined and m-dissipative. In that case,
it follows that Re(𝑥′(𝐿𝑥)) ≤ 0 for all 𝑥 ∈ 𝐷(𝐿) and all 𝑥′ ∈ 𝐹(𝑥).

As an immediate consequence, we gain the primary tool to find generators of sccs:

Corollary 1.2.20. Let (𝐿, 𝐷(𝐿)) be an essentially m-dissipative operator on 𝑋 , then its closure
generates an sccs on 𝑋 .

1.2.3 Perturbation theory

Often enough, it is rather inconvenient to check essential m-dissipativity of a given operator by
hand. Instead, one may find that the operator is in a way “close enough” to a different one, for
which such a property is already known. This motivates the following perturbation arguments,
which give sufficient conditions for the perturbed operator to retain essential m-dissipativity.
For the sake of convenience, we only consider operators on a Hilbert space 𝐻 here.

Definition 1.2.21. Let (𝐴, 𝐷(𝐴)) and (𝐵, 𝐷(𝐵)) be linear operators on 𝐻 . Then 𝐵 is said to
be 𝐴-bounded if 𝐷(𝐴) ⊆ 𝐷(𝐵) and there exist constants 𝑎, 𝑏 ∈ (0,∞) such that

‖𝐵𝑓 ‖𝐻 ≤ 𝑎‖𝐴𝑓 ‖𝐻 + 𝑏‖𝑓 ‖𝐻 (1.2.3)

holds for all 𝑓 ∈ 𝐷(𝐴). The number inf{𝑎 ∈ ℝ ∣ (1.2.3) holds for some 𝑏 ∈ (0,∞)} is called
the 𝐴-bound of 𝐵.

Theorem 1.2.22. Let 𝐷 ⊆ 𝐻 be a dense linear subspace. Let (𝐴, 𝐷) be an essentially m-dissipative
linear operator on 𝐻 and let (𝐵, 𝐷) be dissipative and 𝐴-bounded with 𝐴-bound strictly less than 1.
Then (𝐴 + 𝐵, 𝐷) is essentially m-dissipative and its closure is given by (𝐴 + 𝐵, 𝐷(𝐴)).
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Proof:
Let (𝐴, 𝐷(𝐴)) and (𝐵, 𝐷(𝐵)) denote the closures of (𝐴, 𝐷) and (𝐵, 𝐷), respectively. Due to (1.2.3),
it follows that 𝐷(𝐵) ⊇ 𝐷(𝐴), (𝐵, 𝐷(𝐵)) is (𝐴, 𝐷(𝐴))-bounded with relative bound strictly less
than 1, and (𝐴, 𝐷(𝐴)) is m-dissipative. By [Paz83, Corollary 3.3], (𝐴 + 𝐵, 𝐷(𝐴)) is m-dissipative
and in particular a closed extension of (𝐴 + 𝐵, 𝐷). Let 𝑥 ∈ 𝐷(𝐴), then there is a sequence
(𝑥𝑛)𝑛∈ℕ in 𝐷 such that 𝑥𝑛 → 𝑥 , 𝐴𝑥𝑛 → 𝐴𝑥 and 𝐵𝑥𝑛 → 𝐵𝑥 in 𝐻 due to (1.2.3), as 𝑛 → ∞. So
(𝐴 + 𝐵, 𝐷(𝐴)) is indeed the closure of (𝐴 + 𝐵, 𝐷). □

Although we don’t need it in the following, the proof of the above theorem shows that under
stronger restrictions, the dense range condition of a perturbed operator can be satisfied even if
the perturbation isn’t dissipative itself:

Lemma 1.2.23. Let 𝐷 ⊆ 𝐻 be a dense linear subspace and let (𝐴, 𝐷) be essentially m-dissipative.
Assume that (𝐵, 𝐷) is closable and 𝐴-bounded with some relative bound 𝑎 < 1

2 and 𝑏 ∈ (0,∞).
Then (𝐴 + 𝐵, 𝐷) is closable with closure (𝐴 + 𝐵, 𝐷(𝐴)), which has a resolvent set which includes
(𝜆0, ∞), where 𝜆0 ..= 𝑏

1−2𝑎 . In particular, (𝜆𝐼 − (𝐴 + 𝐵))(𝐷) is dense in 𝐻 for all 𝜆 ∈ (𝜆0, ∞).

Proof:
Denote by (𝐴, 𝐷(𝐴)) and (𝐵, 𝐷(𝐵)) the closures of (𝐴, 𝐷) and (𝐵, 𝐷), respectively. As above,
(𝐴, 𝐷(𝐴)) is m-dissipative, 𝐷(𝐴) ⊆ 𝐷(𝐵), and (1.2.3) holds for 𝑎 < 1

2 and 𝑏 ∈ (0,∞) for all
𝑥 ∈ 𝐷(𝐴).

First, we show that (𝐴+𝐵, 𝐷(𝐴)) is closed: Let (𝑥𝑛)𝑛∈ℕ be a sequence in 𝐷(𝐴) such that 𝑥𝑛 → 𝑥
and (𝐴 + 𝐵)𝑥𝑛 → 𝑦 for some 𝑥, 𝑦 ∈ 𝐻 as 𝑛 → ∞. For 𝑛, 𝑚 ∈ ℕ, we have

‖𝐴𝑥𝑛 − 𝐴𝑥𝑚‖𝐻 ≤ ‖(𝐴 + 𝐵)(𝑥𝑛 − 𝑥𝑚)‖𝐻 + ‖𝐵(𝑥𝑛 − 𝑥𝑚)‖𝐻

≤ ‖(𝐴 + 𝐵)(𝑥𝑛 − 𝑥𝑚)‖𝐻 +
1
2
‖𝐴𝑥𝑛 − 𝐴𝑥𝑚‖𝐻 + 𝑏‖𝑥𝑛 − 𝑥𝑚‖𝐻 ,

so
‖𝐴𝑥𝑛 − 𝐴𝑥𝑚‖𝐻 ≤ 2‖(𝐴 + 𝐵)(𝑥𝑛 − 𝑥𝑚)‖𝐻 + 2𝑏‖𝑥𝑛 − 𝑥𝑚‖𝐻 .

Since the right hand side describes a Cauchy sequence, 𝐴𝑥𝑛 converges to some limit 𝑦𝐴, so
𝑥 ∈ 𝐷(𝐴) by closedness of (𝐴, 𝐷(𝐴)), hence (𝐴 + 𝐵, 𝐷(𝐴)) is closed. As in the proof of
Theorem 1.2.22, it follows that it is the closure of (𝐴 + 𝐵, 𝐷).

For any 𝜆0 < 𝜆 ∈ ℝ, it holds that (𝜆𝐼 − 𝐴)(𝐷(𝐴)) = 𝐻 by m-dissipativity of (𝐴, 𝐷(𝐴)), which
implies

(𝜆𝐼 − (𝐴 + 𝐵))(𝐷(𝐴)) = (𝐼 − 𝐵(𝜆𝐼 − 𝐴)−1)(𝜆𝐼 − 𝐴)(𝐷(𝐴)) = (𝐼 − 𝐵(𝜆𝐼 − 𝐴)−1)(𝐻).

For any 𝑥 ∈ 𝐻 , (𝜆𝐼 − 𝐴)−1𝑥 is in 𝐷(𝐴), so that we can use (1.2.3) to obtain

‖𝐵(𝜆𝐼 − 𝐴)−1𝑥‖𝐻 ≤ 𝑎‖𝐴(𝜆𝐼 − 𝐴)−1𝑥‖𝐻 + 𝑏‖(𝜆𝐼 − 𝐴)−1𝑥‖𝐻
≤ 𝑎 (‖𝑥‖𝐻 + 𝜆‖(𝜆𝐼 − 𝐴)−1𝑥‖𝐻) + 𝑏‖(𝜆𝐼 − 𝐴)−1𝑥‖𝐻

≤ (2𝑎 +
𝑏
𝜆)

‖𝑥‖𝐻 ,
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where the last inequality is due to Theorem 1.2.15. Therefore, 𝐵(𝜆𝐼 −𝐴)−1 is a bounded operator
and by definition of 𝜆, we have ‖𝐵(𝜆𝐼 −𝐴)−1‖L(𝐻) < 1. This means that the inverse of 𝐼 −𝐵(𝜆𝐼 −
𝐴)−1 exists by the Neumann series, so that

(𝜆𝐼 − (𝐴 + 𝐵))(𝐷(𝐴)) = (𝐼 − 𝐵(𝜆𝐼 − 𝐴)−1)(𝐻) = 𝐻.

Hence 𝜆 ∈ 𝜌(𝐴 + 𝐵) since (𝐴 + 𝐵, 𝐷(𝐴)) is closed, and the claim follows. □

This result can be useful if the space changes during perturbation, so that the added operator
isn’t dissipative at the time of perturbation. As long as the final operator is dissipative in the final
space considered, and one can transfer denseness in one space to the last one, this is sufficient
to ensure essential m-dissipativity of the end result.

A useful criterion for verifying 𝐴-boundedness is given by:

Lemma 1.2.24. Let 𝐷 ⊆ 𝐻 be a dense linear subspace, (𝐴, 𝐷) be an essentially m-dissipative
operator, and (𝐵, 𝐷) be dissipative on 𝐻 . Assume that there exist constants 𝑐, 𝑑 ∈ (0, ∞) such that

‖𝐵𝑥‖2𝐻 ≤ 𝑐(𝐴𝑥, 𝑥)𝐻 + 𝑑‖𝑥‖2𝐻

holds for all 𝑥 ∈ 𝐷. Then 𝐵 is 𝐴-bounded with 𝐴-bound 0.

Proof:
Let 𝜀 > 0 be arbitrary and 𝑥 ∈ 𝐻 . Then by Cauchy-Bunyakovsky-Schwarz and the Young
inequality,

(𝐴𝑥, 𝑥)𝐻 ≤ ‖𝐴𝑥‖𝐻 ‖𝑥‖𝐻 = (𝜀‖𝐴𝑥‖𝐻 )( 1𝜀 ‖𝑥‖𝐻 ) ≤
𝜀2

2
‖𝐴𝑥‖2𝐻 +

1
2𝜀2

‖𝑥‖2𝐻 ,

which implies

‖𝐵𝑥‖2𝐻 ≤
𝑐𝜀2

2
‖𝐴𝑥‖2𝐻 + (𝑑 +

𝑐
2𝜀2)

‖𝑥‖2𝐻 ≤ (𝜀
√
𝑐
2
‖𝐴𝑥‖𝐻 +

√
𝑑 +

𝑐
2𝜀2

‖𝑥‖𝐻)

2

.

Taking the square root of both sides proves the claim, since 𝜀 can be chosen arbitrarily small.□

We also require the following generalization of the perturbation method:

Lemma 1.2.25. Let 𝐷 ⊆ 𝐻 be a dense linear subspace, (𝐴, 𝐷) be an essentially m-dissipative
operator, and (𝐵, 𝐷) be dissipative on 𝐻 . Assume that there exists a complete orthogonal family
(𝑃𝑛)𝑛∈ℕ, i.e. each 𝑃𝑛 is an orthogonal projection, 𝑃𝑛𝑃𝑚 = 0 for all 𝑛 ≠ 𝑚 and ∑𝑛∈ℕ 𝑃𝑛 = 𝐼 strongly,
such that

𝑃𝑛(𝐷) ⊆ 𝐷, 𝑃𝑛𝐴 = 𝐴𝑃𝑛, and 𝑃𝑛𝐵 = 𝐵𝑃𝑛

for all 𝑛 ∈ ℕ. Set 𝐴𝑛 ..= 𝐴𝑃𝑛, 𝐵𝑛 ..= 𝐵𝑃𝑛, both with domain 𝐷𝑛
..= 𝑃𝑛(𝐷), as operators on 𝑃𝑛(𝐻).

Assume that each 𝐵𝑛 is𝐴𝑛-bounded with𝐴𝑛-bound strictly less than 1. Then (𝐴+𝐵, 𝐷) is essentially
m-dissipative.
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Proof:
See [CG08, Lemma 3] □

Finally, we include the complexified setting, since one of the perturbation steps later on will
require complex operators instead of real ones. Luckily, essential m-dissipativity carries over in
both directions, as seen in the following.

Definition 1.2.26. Let (𝐿, 𝐷(𝐿)) be a linear operator on the real Hilbert space 𝐻 . Then the
complexification 𝐻ℂ of 𝐻 is defined by

𝐻ℂ
..= {[𝑥, 𝑦] ∣ 𝑥, 𝑦 ∈ 𝐻} = 𝐻 × 𝐻,

and is equipped with the following operations:

[𝑥, 𝑦] + [𝑣, 𝑤] ..= [𝑥 + 𝑣, 𝑦 + 𝑤],
(𝑎 + i𝑏)[𝑥, 𝑦] ..= [𝑎𝑥 − 𝑏𝑦, 𝑎𝑦 + 𝑏𝑥],

([𝑥, 𝑦], [𝑣, 𝑤])𝐻ℂ
..= (𝑥, 𝑣)𝐻 + (𝑦, 𝑤)𝐻 − i(𝑥, 𝑤)𝐻 + i(𝑦, 𝑣)𝐻

for all 𝑎, 𝑏 ∈ ℝ, 𝑥, 𝑦, 𝑣, 𝑤 ∈ 𝐻 . Then 𝐻ℂ is a complex Hilbert space with norm ‖[𝑥, 𝑦]‖2𝐻ℂ
=

‖𝑥‖2𝐻 + ‖𝑦‖2𝐻 . The complexification 𝐿ℂ of 𝐿 is given by

𝐿ℂ[𝑥, 𝑦] ..= [𝐿𝑥, 𝐿𝑦] for all [𝑥, 𝑦] ∈ 𝐷(𝐿ℂ) ..= 𝐷(𝐿) × 𝐷(𝐿).

By definition, we quickly see the following:

Lemma 1.2.27. Let (𝐿, 𝐷(𝐿)) be a linear operator on the real Hilbert space 𝐻 .

(i) (𝐿, 𝐷(𝐿)) is dissipative iff (𝐿ℂ, 𝐷(𝐿ℂ)) is dissipative.

(ii) (𝐿, 𝐷(𝐿)) is essentially m-dissipative iff (𝐿ℂ, 𝐷(𝐿ℂ)) is dissipative.

(iii) (𝐿, 𝐷(𝐿)) is closable if and only if (𝐿ℂ, 𝐷(𝐿ℂ)) is closable, in which case ((𝐿)ℂ, 𝐷((𝐿)ℂ)) =
(𝐿ℂ, 𝐷(𝐿ℂ)).

In practice, this means that we can switch to a complexified setting if needed within a proof
for essential m-dissipativity. In particular, we can allow perturbation of a real essentially
m-dissipative operator by a complex dissipative operator which is relatively bounded by the
complexification of the first one. At the end of such a perturbation process, we can reduce the
final operator back to the real setting, as long as it is a complexification of a real operator.
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1.3 Sub-Markovian semigroups and generalized Dirichlet forms

1.3.1 Semigroups on 𝐿2-spaces

Throughout this section, let (𝐸,F , 𝜇) be a probability space. We consider 𝐶0-semigroups and
their generators on the space 𝐿2(𝐸; 𝜇). Most statements here hold more generally for 𝐿𝑝-spaces
of 𝜎-finite measures, for which we refer to [Con11, Chapter 1].

Definition 1.3.1. Let (𝐿, 𝐷) be a linear operator on 𝐿2(𝐸; 𝜇). If

∫
𝐸
𝐿𝑓 d𝜇 ≤ 0 or ∫

𝐸
𝐿𝑓 d𝜇 = 0 for all 𝑓 ∈ 𝐷,

then 𝜇 is said to be a subinvariant or invariant measure for (𝐿, 𝐷), respectively.

Definition 1.3.2. Let (𝑇𝑡)𝑡≥0 be a 𝐶0-semigroup on 𝐿2(𝐸; 𝜇).

(i) If

∫
𝐸
𝑇𝑡𝑓 d𝜇 = ∫

𝐸
𝑓 d𝜇 for all 𝑓 ∈ 𝐿2(𝐸; 𝜇)

holds for all 𝑡 ≥ 0, then 𝜇 is said to be invariant for (𝑇𝑡)𝑡≥0.

(ii) If 𝑇𝑡1 = 1 holds for all 𝑡 ≥ 0, then (𝑇𝑡)𝑡≥0 is said to be conservative.

The connection between these concepts is given by

Lemma 1.3.3.

(i) A𝐶0-semigroup (𝑇𝑡)𝑡≥0 on 𝐿2(𝐸; 𝜇) is conservative if and only if the adjoint semigroup (𝑇 ∗𝑡 )𝑡≥0
is 𝜇-invariant.

(ii) A 𝐶0-semigroup (𝑇𝑡)𝑡≥0 with generator (𝐿, 𝐷(𝐿)) is conservative iff 1 ∈ 𝐷(𝐿) with 𝐿1 = 0.

(iii) A 𝐶0-semigroup (𝑇𝑡)𝑡≥0 with generator (𝐿, 𝐷(𝐿)) is 𝜇-invariant if (𝐿, C) is 𝜇-invariant for
a core C.

Proof:
(i) Let 𝜇 be invariant for (𝑇 ∗𝑡 )𝑡≥0 and let 𝑡 ≥ 0. Then

∫
𝐸
𝑓 d𝜇 = ∫

𝐸
𝑇 ∗𝑡 𝑓 d𝜇 = ∫

𝐸
𝑓 𝑇𝑡1 d𝜇

for all 𝑓 ∈ 𝐿2(𝐸; 𝜇), which implies 𝑇𝑡1 = 1. The other direction follows similarly.

(ii) This is clear by Remark 1.2.3 (ii).
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(iii) Let 𝜇 be invariant for (𝐿, C), then it is also invariant for (𝐿, 𝐷(𝐿)). Fix some 𝑡 ≥ 0. Using
Remark 1.2.3 (i) and difference quotients, we obtain

d
d𝑡 ∫𝐸

𝑇𝑡𝑓 d𝜇 = ∫
𝐸
𝐿𝑇𝑡𝑓 d𝜇 = 0

for all 𝑓 ∈ 𝐷(𝐿), hence

∫
𝐸
𝑇𝑡𝑓 d𝜇 = ∫

𝐸
𝑓 d𝜇 for all 𝑓 ∈ 𝐷(𝐿).

By Remark 1.2.3 (iii), 𝐷(𝐿) is dense in 𝐿2(𝐸; 𝜇) and we obtain invariance of 𝜇 for (𝑇𝑡)𝑡≥0.
The other direction is clear. □

Next we introduce some concepts which are important in the context of associated stochastic
processes. For this, we assume (𝑇𝑡)𝑡≥0 to be an sccs.

Definition 1.3.4.

(i) A linear operator 𝐴 ∈ L(𝐿2(𝐸; 𝜇)) is called sub-Markovian, if 0 ≤ 𝐴𝑓 ≤ 1 for all 𝑓 ∈
𝐿2(𝐸; 𝜇) with 0 ≤ 𝑓 ≤ 1.

(ii) A contraction semigroup (𝑇𝑡)𝑡≥0 is called sub-Markovian, if 𝑇𝑡 is sub-Markovian for each
𝑡 ≥ 0.

(iii) A contraction resolvent (𝐺𝛼)𝛼>0 is called sub-Markovian, if 𝛼𝐺𝛼 is sub-Markovian for all
𝛼 > 0.

(iv) A closed densely defined linear operator (𝐿, 𝐷(𝐿)) is said to be a Dirichlet operator, if

∫
𝐸
𝐿𝑓 ((𝑓 − 1)+) d𝜇 ≤ 0 for all 𝑓 ∈ 𝐷(𝐿).

The following Lemma is due to [MR92, p. I.4.3]:

Lemma 1.3.5. Let (𝐿, 𝐷(𝐿)) be the generator of an sccs (𝑇𝑡)𝑡≥0 and an sccr (𝐺𝛼)𝛼>0. Then the
following are equivalent:

(i) (𝐺𝛼)𝛼>0 is sub-Markovian.

(ii) (𝑇𝑡)𝑡≥0 is sub-Markovian.

(iii) (𝐿, 𝐷(𝐿)) is a Dirichlet operator.

For sub-Markovian sccs, we can show conservativity more directly:

Lemma 1.3.6.

(i) If (𝑇𝑡)𝑡≥0 is sub-Markovian, then so is (𝑇 ∗𝑡 )𝑡≥0.
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(ii) Let (𝑇𝑡)𝑡≥0 be a sub-Markovian sccs. Then conservativity and 𝜇-invariance are equivalent.
Proof:

(i) Since ‖𝑇𝑡𝑓 ‖𝐿1(𝐸;𝜇) ≤ ‖𝑇𝑡𝑓 ‖𝐿2(𝐸;𝜇) for all 𝑓 ∈ 𝐿2(𝐸; 𝜇), the semigroup (𝑇𝑡)𝑡≥0 is also 𝐿1-
contractive. Then for 0 ≤ 𝑓 ≤ 1 and all 0 ≤ 𝑔 ∈ 𝐿2(𝐸; 𝜇), we get

0 ≤ ∫
𝐸
𝑇 ∗𝑡 𝑓 𝑔 d𝜇 = ∫

𝐸
𝑓 𝑇𝑡𝑔 d𝜇 ≤ ‖𝑓 ‖∞‖𝑇𝑡𝑔‖𝐿1(𝐸;𝜇) ≤ ∫

𝐸
𝑔 d𝜇.

This implies 0 ≤ 𝑇 ∗𝑡 𝑓 ≤ 1, so (𝑇 ∗𝑡 )𝑡≥0 is sub-Markovian.

(ii) Due to Lemma 1.3.3 (i), we only have to show that conservativity of (𝑇𝑡)𝑡≥0 and (𝑇 ∗𝑡 )𝑡≥0
are equivalent. Let therefore 𝑇𝑡1 = 1 for all 𝑡 ≥ 0. Then

∫
𝐸
(1 − 𝑇 ∗𝑡 1) d𝜇 = ∫

𝐸
1 d𝜇 − ∫

𝐸
1𝑇𝑡1 d𝜇 = ∫

𝐸
(1 − 𝑇𝑡1) d𝜇 = 0,

so 𝑇 ∗𝑡 1 = 1 𝜇-a.e. since (1 − 𝑇 ∗𝑡 1) ≥ 0 due to part (i). □

Now we introduce an interesting class of operators that are more easily verifiable.

Definition 1.3.7. Let (𝐿, 𝐷) be a densely defined linear operator on 𝐿2(𝐸; 𝜇). The Carré du champ
operator of 𝐿 is the bilinear operator Γ ∶ 𝐷 × 𝐷 → 𝐿(𝐸; 𝜇) given by

Γ(𝑢, 𝑣) ..= 1
2 (𝐿(𝑢𝑣) − 𝑢𝐿(𝑣) − 𝑣𝐿(𝑢)) for 𝑢, 𝑣 ∈ 𝐷.

Here 𝐿(𝐸; 𝜇) refers to the space of all 𝜇-classes of functions on 𝐸.

(𝐿, 𝐷) is called an abstract diffusion operator, iff it satisfies the following:

(i) For any𝑚 ∈ ℕ, 𝑢1, … , 𝑢𝑚 ∈ 𝐷 and 𝜑 ∈ 𝐶∞(ℝ𝑚)with 𝜑(0) = 0, it holds that 𝜑(𝑢1, … , 𝑢𝑚) ∈
𝐷 and

𝐿𝜑(𝑢1, … , 𝑢𝑚) =
𝑚
∑
𝑘=1

𝜕𝜑
𝜕𝑥𝑘

(𝑢1, … , 𝑢𝑚)𝐿(𝑢𝑘) +
𝑚
∑
𝑘,𝓁=1

𝜕2𝜑
𝜕𝑥𝓁𝜕𝑥𝑘

(𝑢1, … , 𝑢𝑚)Γ(𝑢𝑘 , 𝑢𝓁).

(ii) Γ(𝑢, 𝑢) ≥ 0 for all 𝑢 ∈ 𝐷.

We fix some 𝛼 ≥ 0 and assume the following:

Assumption (SI). For all 𝑓 ∈ 𝐷 with 𝑓 ≥ 0 𝜇-a.e., both 𝑓 and 𝐿𝑓 are in 𝐿1(𝐸; 𝜇) and 𝜇 is
sub-invariant for (𝐿 − 𝛼𝐼 , 𝐷), i.e.

∫
𝐸
𝐿𝑓 d𝜇 ≤ 𝛼 ∫

𝐸
𝑓 d𝜇.

Then we obtain the following result to find Dirichlet operators, which can be found in [Ebe99,
Lemma 1.9].

Lemma 1.3.8. Let (SI) hold and assume that the closure (𝐿, 𝐷(𝐿)) of the abstract diffusion operator
(𝐿, 𝐷) generates an sccs (𝑇𝑡)𝑡≥0. Then (𝑇𝑡)𝑡≥0 is sub-Markovian, so in particular (𝐿, 𝐷(𝐿)) is a
Dirichlet operator.
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1 Functional analytic and probabilistic background

1.3.2 Generalized Dirichlet forms and associated Markov processes

Throughout this section, let 𝐸 be a topological Hausdorff space such that its Borel-𝜎-algebra
𝜎(𝐸) is generated by the continuous real-valued functions on 𝐸. Let further 𝜇 be a probability
measure on (𝐸,B(𝐸)) such that 𝐻 ..= 𝐿2(𝐸; 𝜇) is a real separable Hilbert space.

Definition 1.3.9. Let (A, 𝐷(A)) be a densely defined positive semidefinite bilinear form, i.e.
𝐷(A) ⊆ 𝐻 is a dense linear subspace and A is a bilinear map with A(𝑢, 𝑢) ≥ 0 for all 𝑢 ∈ 𝐷(A).
The symmetric part (Ã, 𝐷(A)) of (A, 𝐷(A)) is given by

Ã(𝑢, 𝑣) ..=
1
2
(A(𝑢, 𝑣) +A(𝑣, 𝑢)),

and the antisymmetric part (Ǎ, 𝐷(A)) is given by

Ǎ(𝑢, 𝑣) ..=
1
2
(A(𝑢, 𝑣) −A(𝑣, 𝑢)).

Further set (A𝛼 , 𝐷(A)) for 𝛼 > 0 as

A𝛼(𝑢, 𝑣) ..= A(𝑢, 𝑣) + 𝛼(𝑢, 𝑣),

and define (Ã𝛼 , 𝐷(A)) analogously.

(Ã, 𝐷(A)) is called a symmetric closed form, if (𝐷(A), Ã1) is a Hilbert space. (A, 𝐷(A)) is called
a coercive closed form, if (Ã, 𝐷(A)) is a symmetric closed form and the following weak sector
condition holds:

Assumption (WSC). There exists a so-called continuity constant 𝐾 > 0 such that

|A1(𝑢, 𝑣)| ≤ 𝐾A1(𝑢, 𝑢)
1
2A1(𝑣, 𝑣)

1
2

for all 𝑢, 𝑣 ∈ 𝐷(A).

Note that a symmetric closed form satisfies (WSC) with 𝐾 = 1 due to the Cauchy-Bunyakovsky-
Schwarz inequality. SinceA(𝑢, 𝑢) = Ã(𝑢, 𝑢) for all 𝑢 ∈ 𝐷(A), the weak sector condition implies
that A is a continuous bilinear form on the Hilbert space (𝐷(A), Ã1), which we will naturally
consider when referring to the Hilbert space 𝐷(A).

Definition 1.3.10. Let (A, 𝐷(A)) be a coercive closed form. Define the linear operator (𝐿, 𝐷(𝐿))
via

𝐷(𝐿) ..= {𝑢 ∈ 𝐷(A) ∣ ∃ 𝐿𝑢 ∈ 𝐻 ∶ (−𝐿𝑢, 𝑣)𝐻 = A(𝑢, 𝑣) for all 𝑣 ∈ 𝐷(A)} .

Then (𝐿, 𝐷(𝐿)) is negative semidefinite, closed and generates an sccs (𝑇𝑡)𝑡≥0 as well as an sccr
(𝐺𝛼)𝛼>0 on 𝐻 (see [MR92, Section I.2]). It is called the generator of (A, 𝐷(A)), and all four
objects (𝐿, 𝐷(𝐿)), (𝑇𝑡)𝑡≥0, (𝐺𝛼)𝛼>0 and (A, 𝐷(A)) are associated with each other.
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1.3 Sub-Markovian semigroups and generalized Dirichlet forms

Definition 1.3.11. A coercive closed form (A, 𝐷(A)) on 𝐻 is called a semi-Dirichlet form, if

𝑢 ∈ 𝐷(A) ⟹ 𝑢+ ∧ 1 ∈ 𝐷(A) and A(𝑢 + (𝑢+ ∧ 1), 𝑢 − (𝑢+ ∧ 1)) ≥ 0. (1.3.1)

If additionally
A(𝑢 − (𝑢+ ∧ 1), 𝑢 + (𝑢+ ∧ 1)) ≥ 0 for all 𝑢 ∈ 𝐷(A), (1.3.2)

then (A, 𝐷(A)) is called a Dirichlet form.

Theorem 1.3.12. Let (A, 𝐷(A)) be a coercive closed form on 𝐻 with associated infinitesimal
generator (𝐿, 𝐷(𝐿)), sccs (𝑇𝑡)𝑡≥0 and sccr (𝐺𝛼)𝛼>0. Then the following are equivalent:

(i) (A, 𝐷(A)) is a semi-Dirichlet form.

(ii) (𝐺𝛼)𝛼>0 is sub-Markovian.

(iii) (𝑇𝑡)𝑡≥0 is sub-Markovian.

(iv) (𝐿, 𝐷(𝐿)) is a Dirichlet operator.

Proof:
See [MR92, Theorem I.4.4] together with Lemma 1.3.8. □

The theory of Dirichlet forms provides an associated Markov process, so that important prop-
erties of the process can be verified analytically for the Dirichlet form. This correspondence
between probabilistic and analytic concepts has proven very successful, and has been summa-
rized in the book [MR92]. However, it is not suitable for our applications, since we do not satisfy
the weak sector condition, due to the degenerate nature of the symmetric part of the bilinear
form associated with our Dirichlet operator. Instead, we turn to the theory of generalized
Dirichlet forms, as developed and summarized in [Sta99]. Since the complete definition of
such forms would take too much space, we only consider the special case that we use later in
applications, and refer to the mentioned book for intermediary definitions and proofs.

Theorem 1.3.13. Let (𝐿, 𝐷(𝐿)) be a Dirichlet operator that generates an sccs (𝑇𝑡)𝑡≥0 on 𝐻 and
set A = 0 with 𝐷(A) = 𝐻 . Then the bilinear form E associated with (A, 𝐷(A)) and (Λ, 𝐷(Λ)) as
described in [Sta99, Definition 2.9] is a generalized Dirichlet form which is given by

E(𝑢, 𝑣) =

{
−(𝐿𝑢, 𝑣) if 𝑢 ∈ 𝐷(𝐿), 𝑣 ∈ 𝐻
−(𝑢, 𝐿∗𝑣) if 𝑢 ∈ 𝐻, 𝑣 ∈ 𝐷(𝐿∗)

.

Moreover, the 𝐶0-resolvents (𝐺𝛼)𝛼>0 and (𝐺∗
𝛼)𝛼>0 of contractions on 𝐻 associated to the bilinear

form E as defined in [Sta99, Section I.3] correspond exactly to the resolvents generated by (𝐿, 𝐷(𝐿))
and (𝐿∗, 𝐷(𝐿∗)), respectively.

Proof:
See [Sta99, Section I.4, Example 4.9 (ii)]. □
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Now we introduce a few more definitions related to generalized Dirichlet forms, in order to
formulate the main theorem that yields an associated Markov process. In particular, we define
what exactly we refer to as a Markov process within this thesis. We fix some Dirichlet operator
(𝐿, 𝐷(𝐿)) generating an sccs (𝑇𝑡)𝑡≥0 and an sccr (𝐺𝛼)𝛼>0 on 𝐻 and the associated generalized
Dirichlet form E as obtained from Theorem 1.3.13.

Definition 1.3.14. Let 𝛼 > 0. An element 𝑢 ∈ 𝐻 is called 𝛼-excessive if 𝛽𝐺𝛽+𝛼𝑢 ≤ 𝑢 for all 𝛽 ≥ 0.
The set of all 𝛼-excessive elements is denoted by P𝛼 .

Definition 1.3.15. For an element ℎ ∈ 𝐻 let Lℎ
..= {𝑣 ∈ 𝐻 ∶ 𝑣 ≥ ℎ} and 𝛽ℎ ∶ 𝐻 → 𝐻 be defined

by 𝛽ℎ(𝑣) ..= (𝑣 − ℎ)−.

For ℎ ∈ 𝐻 and 𝛼 > 0, let ℎ𝛼 be the unique element of 𝐷(𝐿) such that

E1(ℎ𝛼 , 𝑣) = 𝛼(𝛽ℎ(ℎ𝛼), 𝑣)𝐻 for all 𝑣 ∈ 𝐻.

Let ℎ satisfy Lℎ ∩ 𝐷(𝐿) ≠ ∅. An element 𝑒ℎ ∈ Lℎ ∩ P1 is called a 1-reduced function of ℎ, if

(i) lim𝛼→∞ ℎ𝛼 = 𝑒ℎ in 𝐻 ,

(ii) 𝑒ℎ ≤ 𝑢 for all 𝑢 ∈ Lℎ ∩ P1,

(iii) E1(𝑒ℎ, 𝑣) ≥ ‖𝑒ℎ‖2𝐻 for all 𝑣 ∈ Lℎ ∩ 𝐷(𝐿∗).

Remark 1.3.16. The existence and uniqueness of ℎ𝛼 follows from [Sta99, Prop. III.1.6], and
existence of 1-reduced functions is shown in [Sta99, Proposition III.1.7].

Definition 1.3.17. For an open subset 𝑈 ⊆ 𝐸 and an element 𝑓 ∈ 𝐻 which satisfiesL1𝑈 𝑓 ∩𝐷(𝐿) ≠
∅, we define 𝑓𝑈 ..= 𝑒1𝑈 𝑓 as the 1-reduced function of 1𝑈 𝑓 .

Definition 1.3.18.

(i) An increasing sequence (𝐹𝑛)𝑛∈ℕ of closed subsets of 𝐸 is called an E-nest, if for every
element 𝑢 ∈ 𝐷(𝐿) ∩ P1, it holds that lim𝑛→∞ 𝑢𝐸⧵𝐹𝑛 = 0 in 𝐻 .

(ii) An E-nest (𝐹𝑛)𝑛∈ℕ is called regular, if for all 𝑛 ∈ ℕ, 𝑈 ⊆ 𝐸 open, it holds that 𝜇(𝑈 ∩𝐹𝑛) = 0
implies 𝑈 ⊆ 𝐸 ⧵ 𝐹𝑛.

(iii) A subset 𝑁 ⊆ 𝐸 is called E-exceptional, if there is an E-nest (𝐹𝑛)𝑛∈ℕ such that 𝑁 ⊆
⋂𝑛∈ℕ 𝐸 ⧵ 𝐹𝑛.

(iv) A property which is satisfied for all points outside some E-exceptional set is said to
hold E-quasi everywhere.

(v) A function 𝑓 defined outside of some E-exceptional set𝑁 ⊆ 𝐸 is called E-quasi-continuous,
if there is some E-nest (𝐹𝑛)𝑛∈ℕ such that⋃𝑛∈ℕ 𝐹𝑛 ⊆ 𝐸 ⧵ 𝑁 and 𝑓 |𝐹𝑛 is continuous for all
𝑛 ∈ ℕ.
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1.3 Sub-Markovian semigroups and generalized Dirichlet forms

(vi) A sequence (𝑓𝑛)𝑛∈ℕ of E-quasi-everywhere defined real-valued functions is said to con-
verge E-quasi-uniformly to some E-quasi-everywhere defined real-valued function 𝑓 , if
there is some E-nest (𝐹𝑘)𝑘∈ℕ such that 𝑓𝑘 , 𝑓 are defined on ⋃𝑘∈ℕ 𝐹𝑘 and 𝑓𝑘 converges
uniformly to 𝑓 on each 𝐹𝑘 .

Proposition 1.3.19. Let 0 < 𝜑 ∈ 𝐻 be arbitrary and ℎ ..= 𝐺1𝜑. Then the map Cap𝜑 from the
subsets of 𝐸 to ℝ defined by

Cap𝜑(𝑈 ) ..= (ℎ𝑈 , 𝜑)𝐻 for open 𝑈 ⊆ 𝐸,

Cap𝜑(𝐴) ..= inf
𝐴⊆𝑈open

Cap𝜑(𝑈 ) for arbitrary 𝐴 ⊆ 𝐸,

is a Choquet capacity, i.e.

(i) Cap𝜑(⋃𝑛∈ℕ 𝐴𝑛) = sup𝑛∈ℕ Cap𝜑(𝐴𝑛) for any increasing sequence of arbitrary subsets 𝐴𝑛
of 𝐸.

(ii) Cap𝜑(⋂𝑛∈ℕ 𝐾𝑛) = inf𝑛∈ℕ Cap𝜑(𝐾𝑛) for any decreasing sequence of compact subsets 𝐾𝑛
of 𝐸.

(iii) Cap𝜑(⋃𝑛∈ℕ 𝐴𝑛) ≤ ∑𝑛∈ℕ Cap𝜑(𝐴𝑛) for any sequence of arbitrary subsets 𝐴𝑛 of 𝐸.

Moreover, it characterizes E-nests in the sense that any increasing sequence (𝐹𝑛)𝑛∈ℕ of closed subsets
of 𝐸 is an E-nest if and only if lim𝑛→∞ Cap𝜑(𝐹 𝑐𝑛) = 0.

Proof:
This is shown in [Sta99, Propositions 2.8, 2.10]. □

Lemma 1.3.20. Let (𝑁𝑘)𝑘∈ℕ be a sequence of E-exceptional sets. Then 𝑁 ..= ⋃𝑘∈ℕ 𝑁𝑘 is also E-
exceptional.

Proof:
For each 𝑁𝑘 , there is some E-nest (𝐹 𝑘𝑛 )𝑛∈ℕ such that 𝑁𝑘 ⊆ 𝐸 ⧵ 𝐹 𝑘𝑛 for all 𝑛 ∈ ℕ. Due to
Proposition 1.3.19, for each 𝑛, 𝑘 ∈ ℕ, there is some𝑚(𝑛, 𝑘) ∈ ℕ such that Cap𝜑((𝐹 𝑘𝑚(𝑛,𝑘))

𝑐) ≤ 1
𝑛2𝑘 .

Now set 𝐹∞𝑛 ..= ⋂𝑘∈ℕ 𝐹 𝑘𝑚(𝑛,𝑘) for each 𝑛 ∈ ℕ. Clearly the 𝐹∞𝑛 are closed and form an increasing
sequence. Since

Cap𝜑((𝐹
∞
𝑛 )

𝑐) = Cap𝜑(⋃
𝑘∈ℕ

(𝐹 𝑘𝑚(𝑛,𝑘))
𝑐) ≤ ∑

𝑘∈ℕ
Cap𝜑((𝐹

𝑘
𝑚(𝑛,𝑘))

𝑐) =
1
𝑛
,

the sequence (𝐹∞𝑛 )𝑛∈ℕ is an E-nest due to Proposition 1.3.19. Since clearly 𝑁 ⊆ 𝐸 ⧵ 𝐹∞𝑛 for all
𝑛 ∈ ℕ by construction, this shows that 𝑁 is E-exceptional. □

The following is due to [Sta99, Corollary 3.8]:
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Lemma 1.3.21. Let (𝑢𝑛)𝑛∈ℕ be a sequence in 𝐷(𝐿) such that each 𝑢𝑛 has an E-quasi-continuous 𝜇-
version 𝑢̃𝑛. Assume that 𝑢𝑛 → 𝑢 in 𝐷(𝐿) for some 𝑢 ∈ 𝐷(𝐿). Then 𝑢 has an E-quasi-continuous
𝜇-version 𝑢̃ and there is a subsequence (𝑢𝑛𝑘)𝑘∈ℕ such that 𝑢̃𝑛𝑘 → 𝑢̃ E-quasi-uniformly.

Instead of verifying the definition of E-nests by hand, we rely on the following useful criterion,
which is due to [Sta99, Remark III.2.11]:

Proposition 1.3.22. Let (𝐹𝑛)𝑛∈ℕ be an increasing sequence of closed sets such that

𝐷 ..= {𝑢 ∈ 𝐷(𝐿) ∣ 𝑢 = 0 𝜇-a.e. on 𝐸 ⧵ 𝐹𝑛 for some 𝑛 ∈ ℕ}

is dense in𝐷(𝐿), i.e. with respect to the graph norm induced by (𝐿, 𝐷(𝐿)). Then (𝐹𝑛)𝑛∈ℕ is an E-nest.

Definition 1.3.23. The generalized Dirichlet form E is called quasi-regular, if

(i) There exists an E-nest consisting of compact sets.

(ii) There is a dense subset of 𝐷 ⊆ 𝐷(𝐿) such that each 𝑓 ∈ 𝐷 has an E-quasi-continuous
𝜇-version.

(iii) There is a sequence (𝑢𝑛)𝑛∈ℕ in𝐷(𝐿) such that for each 𝑛 ∈ ℕ, 𝑢𝑛 has a E-quasi-continuous
𝜇-version 𝑢̃𝑛, and that {𝑢̃𝑛 ∶ 𝑛 ∈ ℕ} separates the points of 𝐸 ⧵ 𝑁 for some E-exceptional
set 𝑁 ⊆ 𝐸.

Proposition 1.3.24. Let E be quasi-regular. Then each 𝑓 ∈ 𝐷(𝐿) has an E-quasi-continuous 𝜇-
version.

Proof:
This follows directly from Lemma 1.3.21 and (ii) in the definition of quasi-regularity. □

Now we have defined all the necessary concepts to state the theorem giving the association to a
Markov process. First, we specify how such a process is to be understood in this context.

Definition 1.3.25. The tuple 𝐌 = (Ω,M, (M𝑡)𝑡≥0, (𝑋𝑡)𝑡≥0, (𝑃𝑥)𝑥∈𝐸Δ) is called a time homoge-
neous Markov process with state space 𝐸, life time 𝜁 and corresponding filtration (M𝑡)𝑡≥0
if

(M1) 𝑋𝑡 ∶ Ω → 𝐸Δ is M𝑡 − B(𝐸Δ)-measurable for all 𝑡 ≥ 0 and 𝑋𝑡(𝜔) = Δ if and only if
𝑡 ≥ 𝜁 (𝜔) for all 𝜔 ∈ Ω.

(M2) For all 𝑡 ≥ 0 there is a map 𝜃𝑡 ∶ Ω → Ω such that 𝑋𝑠 ◦ 𝜃𝑡 = 𝑋𝑠+𝑡 for all 𝑠 ≥ 0.

(M3) (𝑃𝑥)𝑥∈𝐸Δ , 𝜉) is a family of probability measures on (Ω,M) such that 𝑥 ↦ 𝑃𝑥(𝐵) is B(𝐸Δ)∗-
measurable for all 𝐵 ∈ F and B(𝐸Δ)-measurable for all 𝐵 ∈ 𝜎(𝑋𝑡 ∶ 𝑡 ≥ 0). Furthermore,
it holds that 𝑃Δ(𝑋0 = Δ) = 1.

(M4) For all 𝐴 ∈ B(𝐸Δ), 𝑠, 𝑡 ≥ 0, and 𝑥 ∈ 𝐸Δ, it holds that

𝑃𝑥(𝑋𝑡+𝑠 ∈ 𝐴 ∣ M𝑡) = 𝑃𝑋𝑡 (𝑋𝑠 ∈ 𝐴) 𝑃𝑥-a.s.
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Here B(𝐸Δ)∗ ..= ⋂𝜈∈P(𝐸Δ) B(𝐸𝛿)
𝜈 is the 𝜎-algebra of universally measurable sets, where P(𝐸Δ)

denotes the set of all probability measures on 𝐸Δ and B(𝐸𝛿)𝜈 is the 𝜈-completion of B(𝐸𝛿).

For a measure 𝜇 on (𝐸Δ,B(𝐸Δ)), we define the measure 𝑃𝜇 via 𝑃𝜇(𝐴) ..= ∫𝐸Δ 𝑃𝑥(𝐴) 𝜇(d𝑥) for all
𝐴 ∈ F .

Definition 1.3.26. A Markov process𝐌 = (Ω,M, (M𝑡)𝑡≥0, (𝑋𝑡)𝑡≥0, (𝑃𝑥)𝑥∈𝐸Δ) with life time 𝜁 is
called a right process if

(M5) 𝑃𝑥(𝑋0 = 𝑥) = 1 for all 𝑥 ∈ 𝐸Δ.

(M6) The map 𝑡 ↦ 𝑋𝑡(𝜔) is right-continuous on [0, ∞) for all 𝜔 ∈ Ω.

(M7) The filtration (M𝑡)𝑡≥0 is right-continuous. Moreover, for any probability measure 𝜇 on
(𝐸Δ,B(𝐸𝛿)) and any (M𝑡)𝑡≥0-stopping time 𝜏, it holds that

𝑃𝜇(𝑋𝜏+𝑠 ∈ 𝐴 ∣ M𝜏) = 𝑃𝑋𝜏 (𝑋𝑠 ∈ 𝐴) 𝑃𝜇-a.s.

for all 𝐴 ∈ B(𝐸Δ) and 𝑠 ≥ 0.

As in [Con11, Definition 2.2.3], we only consider right processes with

M𝑡 = F𝑡
..= ⋃

𝜈∈P(𝐸Δ)
(F0

𝑡 )
𝑃𝜈 |F0∞

and
M = F ..= ⋂

𝜈∈P(𝐸Δ)
(F0

∞)
𝑃𝜈 |F0∞

from now on, whereF0
𝑡

..= 𝜎(𝑋𝑠 ∶ 𝑠 ∈ [0, 𝑡]), since that change of filtration retains all properties
of an existing right process.

Definition 1.3.27. For a subset 𝐴 ∈ B(𝐸Δ) of 𝐸, let 𝜎𝐴 ..= inf{𝑡 > 0 ∶ 𝑋𝑡 ∈ 𝐴} be the first hitting
time with respect to𝐌.

Definition 1.3.28. Let𝐌 = (Ω,F , (F𝑡)𝑡≥0, (𝑋𝑡)𝑡≥0, (𝑃𝑥)𝑥∈𝐸Δ) be a right process with life time 𝜁
and let 𝜇 be a finite measure on (𝐸Δ,B(𝐸Δ)).

(i) 𝐌 is called 𝜇-tight, if there is some increasing sequence (𝐾𝑛)𝑛∈ℕ of compact metrizable
sets in 𝐸 such that

𝑃𝜇 ( lim𝑛→∞
𝜎𝐸⧵𝐾𝑛 < 𝜁) = 0.

(ii) 𝐌 is called 𝜇-special standard, if

(M8) 𝑋𝑡− ..= lim𝑠↑𝑡 𝑋𝑠 exists in 𝐸 for all 𝑡 ∈ (0, 𝜁 ) 𝑃𝜇-a.s.

(M9) lim𝑛→∞ 𝑋𝜏𝑛 = 𝑋𝜏 𝑃𝜇-a.s. on {𝜏 < 𝜁 } and 𝑋𝜏 is ⋁𝑛∈ℕ F𝑃𝜇
𝜏𝑛 -measurable for every

increasing sequence (𝜏𝑛)𝑛∈ℕ of (F𝑃𝜇
𝑡 )𝑡≥0-stopping times with limit 𝜏.
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(iii) 𝐌 is called special standard, if it is 𝜇-special standard for all probability measures 𝜇 on
(𝐸Δ,B(𝐸Δ)).

(iv) 𝐌 is called a Hunt process, if (M8) and (M9) hold with 𝜁 replaced by ∞ and 𝐸 replaced by
𝐸Δ.

Definition 1.3.29. Let𝐌 be a right process and define the families (𝑝𝑡)𝑡≥0 and (𝑅𝛼)𝛼>0 via

𝑝𝑡𝑓 (𝑥) ..= E𝑥[𝑓 (𝑋𝑡)] and 𝑅𝛼𝑓 (𝑥) ..= ∫
∞

0
e−𝛼𝑡𝑝𝑡𝑓 (𝑥) d𝑡

for all 𝑥 ∈ 𝐸 and 𝑓 ∈ B𝑏(𝐸), where E𝑥 denotes the expectation with respect to 𝑃𝑥 , and B𝑏(𝐸)
denotes the set of bounded Borel-measurable real-valued functions on 𝐸. Then (𝑝𝑡)𝑡≥0 and
(𝑅𝛼)𝛼>0 are called the transition semigroup and resolvent of𝐌, respectively.

𝐌 is called associated with E , if 𝑅𝛼𝑓 is a 𝜇-version of 𝐺𝛼𝑓 for all 𝛼 > 0 and 𝑓 ∈ B𝑏(𝐸) ∩ 𝐻 . 𝐌 is
called properly associated with E in the resolvent sense, if additionally 𝑅𝛼𝑓 is E-quasi-continuous
for all 𝛼 > 0 and 𝑓 ∈ B𝑏(𝐸) ∩ 𝐻 .

Remark 1.3.30. For a right process𝐌, the transition semigroup is a sub-Markovian semigroup
of kernels on (𝐸,B(𝐸)) (cf [MR92, Section II.4]) and the resolvent is a sub-Markovian resolvent of
kernels. If𝐌 is properly associated with E in the resolvent sense, then 𝑅𝛼𝑓 is a E-q.c. 𝜇-version
of 𝐺𝛼𝑓 for all 𝛼 > 0 and even all 𝑓 ∈ 𝐻 . Moreover, it holds that 𝑝𝑡𝑓 is a 𝜇-version of 𝑇𝑡𝑓 for all
𝑓 ∈ 𝐻 . This resembles [MR92, Exercises IV.2.9, IV.2.7] and can be seen for example in [CG05,
Lemma 3.38]. Note that as seen in [Sta99, Example IV.1.5], we do not obtain E-quasi-continuity
of 𝑝𝑡𝑓 in general.

Finally, we state the theorem for existence of associated Markov processes:

Theorem 1.3.31. Let E be a quasi-regular generalized Dirichlet form associated with A = 0 and a
Dirichlet operator (𝐿, 𝐷(𝐿)) generating an sccs (𝑇𝑡)𝑡≥0 on 𝐻 . Let further Y ⊆ 𝐷(𝐿) ∩ 𝐿∞(𝐸; 𝜇) be
a core for (𝐿, 𝐷(𝐿)) which is an algebra, i.e. closed under multiplication. Then there exists a 𝜇-tight
special standard process 𝐌 which is properly associated in the resolvent sense with E .

Proof:
This is a special case of [Sta99, Theorem 2.2]. □

Lemma 1.3.32. Let E be properly associated in the resolvent sense with a 𝜇-tight special standard
process 𝐌. If for every open subset 𝑈 ⊆ 𝐸, there exists an increasing sequence (𝑢𝑛)𝑛∈ℕ of non-
negative continuous elements of 𝐷(𝐿) such that

(i) supp(𝑢𝑛) ⊆ 𝑈 for all 𝑛 ∈ ℕ, sup𝑛∈ℕ 𝑢𝑛 ≤ 1𝑈 and sup𝑛∈ℕ 𝑢𝑛 > 0 on 𝑈 .

(ii) 𝐿𝑢𝑛 = 0 𝜇-a.e. on 𝐸 ⧵ supp(𝑢𝑛) for all 𝑛 ∈ ℕ.
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1.3 Sub-Markovian semigroups and generalized Dirichlet forms

Then it holds that
𝑃𝑥 (𝑡 ↦ 𝑋𝑡 is continuous on [0, 𝜁 )) = 1

for E-quasi all 𝑥 ∈ 𝐸.

Proof:
This is a special case of [Tru03, Theorem 3.3]. □

Remark 1.3.33. Let E be quasi-regular, properly associated to some 𝜇-tight special standard
process 𝐌, and let a property 𝜌 hold for (𝑋𝑡)𝑡≥0 𝑃𝑥-a.s. for E-quasi all 𝑥 ∈ 𝐸, i.e. for all
𝑥 ∈ 𝐸 ⧵ 𝑁 with 𝑁 being E-exceptional. Due to the definition of exceptional sets, there is some
exceptional 𝑁2 ∈ B(𝐸) such that 𝑁2 ⊇ 𝑁 . Then, by restriction and trivial extension as in
[MR92, Chapter IV.3], we can obtain a modified 𝜇-tight special standard process𝐌′ which is
also properly associated in the resolvent sense with E such that 𝜌 holds for (𝑋 ′

𝑡 )𝑡≥0 𝑃 ′𝑥-a.s. for
all 𝑥 ∈ 𝐸.

1.3.3 Sub-Markovian semigroups and associated probability measures on path
spaces

In this section, we consider probability measures ℙ on the space 𝐷([0,∞); 𝐸Δ) of càdlàg paths
on the state space 𝐸. Again, there are no new results here, as we mainly wish to collate useful
results from [Con11] in the special case of our 𝐿2-setting with respect to a probability measure
𝜇. We refer to Section 2.1 of the named source for more general and detailed results on general
𝐿𝑝-spaces, as well as to [EK86] for more details on path spaces. We summarize the setting and
some notation in the following:

Definition 1.3.34. Let 𝐸 be a Polish space such that B(𝐸) is generated by the continuous real-
valued functions on 𝐸, and let 𝐸Δ be 𝐸 with the cemetery Δ adjoined, where every function on
𝐸 is extended trivially to 𝐸Δ. Let 𝜇 be a probability measure on (𝐸,B(𝐸)). By 𝐷([0,∞); 𝐸Δ), we
denote the space of càdlàg paths on 𝐸Δ, i.e. the set of all maps [0, ∞) ∋ 𝑡 ↦ 𝑍𝑡 ∈ 𝐸Δ which are
right-continuous and have finite left limits for each 𝑡 > 0. Let 𝐷([0,∞); 𝐸Δ) be equipped with
the Skorokhod topology (see [EK86, Chapter 3.5]), so that it is a Polish space, and denote the
corresponding Borel-𝜎-algebra by B𝐷. Then the space of continuous paths 𝐶([0,∞), 𝐸Δ) is a
closed and hence measurable subset of 𝐷([0,∞); 𝐸Δ), with the induced topology corresponding
to uniform convergence on compact sets (see [EK86, Problem 3.11.25]), and corresponding
Borel-𝜎-algebra denoted by B𝐶 . Moreover, the sets 𝐷([0,∞); 𝐸) and 𝐶([0,∞); 𝐸) are measurable
subsets of 𝐷([0,∞); 𝐸Δ) and 𝐶([0,∞); 𝐸Δ), respectively.

We call a probability measure ℙ on (𝐷([0, ∞); 𝐸Δ),B𝐷) or another path space a probability law,
if the set Z of Zombie paths is a subset of a ℙ-null set, i.e. ℙ-a.s. 𝑍𝑡 = Δ for any 𝑡 ≥ 0 implies
𝑍𝑠 = Δ for all 𝑠 ≥ 0. In particular, this is the case if ℙ is the image measure of a probability
measure 𝑃 on (Ω,F) under a measurable mapping 𝜙 such that 𝜙(Ω) ∩ Z = ∅, see [Con11,
Remark 2.1.2]. Here and later within this section, (𝑍𝑠)𝑠≥0 refers to a generic path from the path
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space considered and 𝑍𝑡 refers to the projection 𝜋𝑡((𝑍𝑠)𝑠≥0) of the path to its state at time 𝑡 ≥ 0.
In particular, we use this notation for the expectation 𝔼, such that 𝔼[𝑓 (𝑍𝑡)] refers to

∫
𝐷([0,∞);𝐸Δ)

𝑓 (𝜋𝑡((𝑍𝑠)𝑠≥0)) ℙ(d(𝑍𝑠)𝑠≥0).

For a probability law ℙ, we define its initial distribution to be the image measure of ℙ under the
random variable 𝑍0. The life-time 𝜁 ∶ 𝐷([0,∞); 𝐸Δ) → [0,∞] is defined by 𝜁 ..= inf{𝑡 ≥ 0 ∶
𝑍𝑡 = Δ}.

Definition 1.3.35. Let ℙ be a probability law on𝐷([0,∞); 𝐸Δ)with initial distribution ℎ𝜇, where
0 ≤ ℎ ∈ 𝐿2(𝐸; 𝜇) is a probability density with respect to 𝜇. Let (𝑇𝑡)𝑡≥0 be a sub-Markovian sccs
on 𝐿2(𝐸; 𝜇), then it is said to be associated with ℙ if for all non-negative 𝑓1, … , 𝑓𝑘 ∈ 𝐿∞(𝐸; 𝜇),
0 ≤ 𝑡1, < ⋯ < 𝑡𝑘 < ∞, 𝑘 ∈ ℕ, it holds that

𝔼
[
∏
1≤𝑖≤𝑘

𝑓𝑖(𝑍𝑡𝑖)]
= (ℎ, 𝑇𝑡1(𝑓1𝑇𝑡2−𝑡1(𝑓2…𝑇𝑡𝑘−1−𝑡𝑘−2(𝑓𝑘−1𝑇𝑡𝑘−𝑡𝑘−1𝑓𝑘))))𝐻 (1.3.3)

In order to make this concept relevant for consideration, we state the following Lemma which
connects it to Markov processes associated with semigroups as in the previous section.

Lemma 1.3.36. Let 𝐌 be a 𝜇-special standard process associated with a sub-Markovian sccs (𝑇𝑡)𝑡≥0
as in Remark 1.3.30, and let ℎ ∈ 𝐿2(𝐸; 𝜇) be a non-negative probability density with respect to 𝜇.
Define the measure 𝑃ℎ𝜇 on (Ω,F) as in Definition 1.3.25 and let ℙℎ𝜇 be the image measure of 𝑃ℎ𝜇
under the map Ω ∶ 𝜔 ↦ (𝑋𝑡(𝜔))𝑡≥0 ∈ 𝐷([0,∞); 𝐸Δ). Then ℙℎ𝜇 is associated with (𝑇𝑡)𝑡≥0 as in
Definition 1.3.35.

Proof:
Consider Ω𝐷

..= {𝜔 ∈ Ω ∶ (𝑋𝑡(𝜔))𝑡≥0 ∈ 𝐷([0,∞); 𝐸Δ) and the map

Ω𝐷 ∶ 𝜔 ↦ (𝑋𝑡(𝜔))𝑡≥0 ∈ 𝐷([0,∞); 𝐸Δ),

which we denote by (𝑋̃𝑡)𝑡≥0 after extending it to Ω via

(𝑋̃𝑡)𝑡≥0(𝜔) ..= (𝑥0)𝑡≥0 for some 𝑥0 ∈ 𝐸Δ.

Due to property (M8), theΩ𝐷 is the complement of a 𝑃𝜇-null set and therefore (𝑋̃𝑡)𝑡≥0 isF𝑃ℎ𝜇−B𝐷-
measurable, since B𝐷 is generated by the projection maps 𝜋𝑠 ∶ (𝑍𝑡)𝑡≥0 ↦ 𝑍𝑠 . Therefore, we
may define ℙℎ𝜇 as the image measure of 𝑃ℎ𝜇 under (𝑋̃𝑡)𝑡≥0. Now let 𝑘 ∈ ℕ, 𝑓1, … , 𝑓𝑘 ∈ 𝐿∞(𝐸; 𝜇)
be non-negative and 0 ≤ 𝑡1 < … 𝑡𝑘 < ∞. Then for any 𝑥 ∈ 𝐸, it holds that

E𝑥 [
∏
1≤𝑖≤𝑘

𝑓𝑖(𝑋𝑡𝑖)]
= 𝑝𝑡1(𝑓1𝑝𝑡2−𝑡1(𝑓2…𝑝𝑡𝑘−𝑡𝑘−1𝑓𝑘))(𝑥). (1.3.4)
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This can be seen since due to the tower property of conditional expectation together with the
Markov property (M4),

E𝑥[𝑓1(𝑋𝑡1)𝑓2(𝑋𝑡2)] = E𝑥 [ E𝑥[𝑓1(𝑋𝑡1)𝑓2(𝑋𝑡2)|F𝑡1]] = E𝑥 [𝑓1(𝑋𝑡1) E𝑥[𝑓2(𝑋𝑡2)|F𝑡1]]

= E𝑥 [𝑓1(𝑋𝑡1) E𝑋𝑡1 [𝑓2(𝑋𝑡2−𝑡1)]] = E𝑥[𝑓1(𝑋𝑡1)𝑝𝑡2−𝑡1𝑓2(𝑋𝑡1)]

= 𝑝𝑡1(𝑓1𝑝𝑡2−𝑡1𝑓2)(𝑥).

Since the right hand side of (1.3.4) is a 𝜇-version of 𝑇𝑡1(𝑓1𝑇𝑡2−𝑡1(𝑓2…𝑇𝑡𝑘−𝑡𝑘−1𝑓𝑘)), integration with
respect to ℎ𝜇 yields (1.3.3), since

𝔼ℎ𝜇 [
∏
1≤𝑖≤𝑘

𝑓𝑖(𝑍𝑡𝑖)]
= Eℎ𝜇 [

∏
1≤𝑖≤𝑘

𝑓𝑖(𝑋̃𝑡𝑖)]
= Eℎ𝜇 [

∏
1≤𝑖≤𝑘

𝑓𝑖(𝑋𝑡𝑖)] □

Definition 1.3.37. Let ℙ be a probability law on 𝐷([0,∞); 𝐸Δ) and let (𝐿, 𝐷) be a linear operator
on 𝐿2(𝐸; 𝜇). Then ℙ is said to solve the Martingale problem for (𝐿, 𝐷), if

(i) For every 𝑓 ∈ 𝐷 and 𝑡 ≥ 0 it holds ∫ 𝑡
0 |𝐿𝑓 (𝑍𝑠)| d𝑠 < ∞ ℙ-a.s. and the random variables

𝑓 (𝑍𝑡) and ∫
𝑡

0 𝐿𝑓 (𝑍𝑠) d𝑠 on 𝐷([0,∞); 𝐸Δ) are ℙ-a.s. well-defined, i.e. independent of the
chosen 𝜇-version of 𝑓 and 𝐿𝑓 .

(ii) For all 𝑓 ∈ 𝐷 and 𝑡 ≥ 0, the random variable𝑀 [𝑓 ],𝐿
𝑡 defined by

𝑀 [𝑓 ],𝐿
𝑡

..= 𝑓 (𝑍𝑡) − 𝑓 (𝑍0) − ∫
𝑡

0
𝐿𝑓 (𝑍𝑠) d𝑠

is ℙ-integrable and the corresponding process (𝑀 [𝑓 ],𝐿
𝑡 )𝑡≥0 is an (F0

𝑡 )𝑡≥0-martingale.

Here F0
𝑡

..= 𝜎{𝑍𝑠 ∶ 𝑠 ∈ [0, 𝑡]} and can be replaced by F0
𝑡,+

..= ⋂𝑠>𝑡 F0
𝑠 and its ℙ-completion

when 𝑓 is continuous, see [Con11, Remark 2.1.7].

Lemma 1.3.38. Let ℙ be a probability law on 𝐷([0,∞); 𝐸Δ) with initial distribution ℎ𝜇 for some
non-negative probability density ℎ ∈ 𝐿2(𝐸; 𝜇). Assume that ℙ is associated to some sub-Markovian
sccs (𝑇𝑡)𝑡≥0 with generator (𝐿, 𝐷(𝐿)). Then ℙ solves the martingale problem for (𝐿, 𝐷(𝐿)). Moreover,
if 𝑓 ∈ 𝐷(𝐿) with 𝑓 2 ∈ 𝐷(𝐿) and 𝐿𝑓 ∈ 𝐿4(𝐸; 𝜇), then

𝑁 [𝑓 ],𝐿
𝑡

..= (𝑀 [𝑓 ],𝐿
𝑡 )2 − ∫

𝑡

0
𝐿(𝑓 2)(𝑍𝑠) − (2𝑓 𝐿𝑓 )(𝑍𝑠) d𝑠, 𝑡 ≥ 0,

also defines an (F0
𝑡 )𝑡≥0-martingale.

Proof:
See [Con11, Lemma 2.1.8]. □
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Lemma 1.3.39. Let (𝐿, C) be an abstract diffusion operator on 𝐻 as defined in Definition 1.3.7.
Assume further that C consists of bounded continuous functions, and that (𝐿, C) has an extension
which generates a sub-Markovian sccs (𝑇𝑡)𝑡≥0 for which 𝜇 is invariant. Let ℙ be a probability law on
𝐷([0,∞); 𝐸Δ) associated with (𝑇𝑡)𝑡≥0 with initial distribution 𝜇, then (𝑓 (𝑍𝑡))𝑡≥0 is ℙ-a.s. continuous
for every 𝑓 ∈ C.

If there is a countable subset C̃ ⊆ C that separates the points of 𝐸, then (𝑍𝑡)𝑡≥0 is ℙ-a.s. continuous
on [0, 𝜁 ), and if 𝐸 is locally compact, it holds that ℙ(𝐶([0, ∞); 𝐸Δ)) = 1.

Proof:
This is a special case of [Con11, Lemma 2.1.10, Corollary 2.1.11]. □

We now state some more properties of probability laws on path spaces which can be verified
by their associated sub-Markovian semigroups. As in the source [Con11], we only consider
continuous paths from now on.

Definition 1.3.40. Let ℙ be a probability law on 𝐶([0,∞), 𝐸Δ) with initial distribution 𝜇.

(i) ℙ is said to be conservative, if 𝜁 = ∞ holds ℙ-a.s.

(ii) ℙ is said to have invariant measure 𝜇 if ℙ ◦ 𝑍−1
𝑡 = 𝜇 for all 𝑡 ≥ 0.

Lemma 1.3.41. Let ℙ be a probability law on 𝐶([0,∞), 𝐸Δ) with initial distribution 𝜇, which is
associated with a sub-Markovian sccs (𝑇𝑡)𝑡≥0 on 𝐿2(𝐸; 𝜇). Then

(i) ℙ is conservative if and only if (𝑇𝑡)𝑡≥0 is conservative.

(ii) 𝜇 is invariant for ℙ if and only if 𝜇 is invariant for (𝑇𝑡)𝑡≥0.

Definition 1.3.42. Let ℙ be a probability law on 𝐶([0,∞), 𝐸Δ) with invariant measure 𝜇. For
any 𝐴 ∈ B𝐶 and 𝑡 ≥ 0, define

𝜑𝑡𝐴 ..= {(𝑍𝑠)𝑠≥0 ∣ (𝑍𝑡+𝑠)𝑠≥0 ∈ 𝐴}.

(i) ℙ is said to be ergodic, if for 𝐴1, 𝐴2 ∈ B𝐶 , it holds that

lim
𝑡→∞

1
𝑡 ∫

𝑡

0
ℙ(𝜑𝑡𝐴1 ∩ 𝐴2) = ℙ(𝐴1)ℙ(𝐴2).

(ii) ℙ is said to be weakly mixing, if there is some set 𝐼 ⊆ [0, ∞) with relative measure 1, that
is

lim
𝑇→∞

1
𝑇 ∫

𝑇

0
1𝐼 (𝑡) d𝑡 = 1,

such that for any 𝐴1, 𝐴2 in B𝐶 , it holds that

ℙ(𝜑𝑡𝐴1 ∩ 𝐴2) → ℙ(𝐴1)ℙ(𝐴2) as 𝑡 → ∞, 𝑡 ∈ 𝐼 .

ℙ is said to be strongly mixing, if 𝐼 = [0,∞).
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Clearly, strong mixing implies weak mixing, which in turn implies ergodicity.

Lemma 1.3.43. Let ℙ be a probability law on 𝐶([0,∞), 𝐸Δ) with invariant measure 𝜇, which is
associated with a sub-Markovian sccs (𝑇𝑡)𝑡≥0 on 𝐿2(𝐸; 𝜇). Then ℙ is weakly mixing if and only if
for all 𝑓 , 𝑔 ∈ 𝐿∞(𝐸; 𝜇), there is some set 𝐼 ⊆ [0, ∞) of relative measure 1 such that

(𝑔, 𝑇𝑡𝑓 )𝐿2(𝐸;𝜇) → 𝜇(𝑓 )𝜇(𝑔) as 𝑡 → ∞, 𝑡 ∈ 𝐼 .

Proof:
See [Con11, Remark 2.1.13], where the the statement is proved with 𝑓 , 𝑔 ∈ 𝐿∞(𝐸; 𝜇) replaced
by 𝑓 , 𝑔 ∈ 𝐿2(𝐸; 𝜇). Since in our case, all bounded functions are in 𝐿2(𝐸; 𝜇) and the proof only
uses indicator functions and 𝑇𝑡 applied to indicator functions, which are all bounded due to the
sub-Markov property of (𝑇𝑡)𝑡≥0, our formulation is valid. □

1.4 Mollifiers and cutoffs

Definition 1.4.1. Let 𝜑 ∈ 𝐿1(ℝ𝑑) and 𝑓 ∈ 𝐿𝑝(ℝ𝑑) with 𝑝 ∈ [1,∞]. Then the convolution of 𝜑
with 𝑓 is defined as

(𝜑 ∗ 𝑓 )(𝑥) ..= ∫
ℝ𝑑
𝜑(𝑥 − 𝑦)𝑓 (𝑦) d𝑦 ∫

ℝ𝑑
𝜑(𝑦)𝑓 (𝑥 − 𝑦) d𝑦

and is an element of 𝐿𝑝(ℝ𝑑) with

‖𝜑 ∗ 𝑓 ‖𝐿𝑝 ≤ ‖𝜑‖𝐿1‖𝑓 ‖𝐿𝑝 .

Lemma 1.4.2. Let the same assumptions hold as above.

(i) Let 𝜑 ∈ 𝐶𝑘𝑐 (ℝ𝑑) for some 𝑘 ∈ ℕ, then 𝜑 ∗ 𝑓 ∈ 𝐶𝑘(ℝ𝑑) with 𝜕𝑠(𝜑 ∗ 𝑓 ) = (𝜕𝑠𝜑) ∗ 𝑓 for
all |𝑠| ≤ 𝑘.

(ii) It holds that
supp(𝜑 ∗ 𝑓 ) ⊆ {𝑥 + 𝑦 ∣ 𝑥 ∈ supp(𝜑), 𝑦 ∈ supp(𝑓 )},

so in particular 𝜑 ∗ 𝑓 ∈ 𝐶∞
𝑐 (ℝ𝑑) if 𝜑 ∈ 𝐶∞

𝑐 (ℝ𝑑) and 𝑓 has compact support.

This also works in a way for weak derivatives, which we prove here since finding a reference
proved difficult:

Lemma 1.4.3. Let 𝜑 ∈ 𝐿1(ℝ𝑑), 1 ≤ 𝑝 ≤ ∞ and 𝑚 ∈ ℕ. Then, for each 𝑓 ∈ 𝐻𝑚,𝑝(ℝ𝑑), the
convolution 𝜑 ∗ 𝑓 is in 𝐻𝑚,𝑝(ℝ𝑑) as well, and it holds that 𝜕𝑠(𝜑 ∗ 𝑓 ) = 𝜑 ∗ 𝜕𝑠𝑓 for all |𝑠| ≤ 𝑚,
where 𝜕𝑠 denotes the weak derivative in both cases.

If 𝜑 ∈ 𝐶𝑘(ℝ𝑑), then the weak derivative 𝜕𝑠(𝜑 ∗ 𝑓 ) coincides with the strong derivative 𝜕𝑠(𝜑 ∗
𝑓 ) = (𝜕𝑠𝜑) ∗ 𝑓 for all |𝑠| ≤ min{𝑚, 𝑘}.
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1 Functional analytic and probabilistic background

Proof:
First, let 𝑝 ∈ [1, 𝑝) and 𝑓 ∈ 𝐻𝑚,𝑝(ℝ𝑑). For each |𝑠| ≤ 𝑚, the convolutions 𝜑 ∗ 𝜕𝑠𝑓 are well-
defined as elements of 𝐿𝑝(ℝ𝑑). We can approximate by a sequence (𝑓𝑛)𝑛∈ℕ in 𝐶∞

𝑐 (ℝ𝑑) with
respect to the 𝐻𝑚,𝑝-norm. In particular, each 𝑓𝑛 ∈ 𝐿1(ℝ𝑑), so that 𝜑 ∗ 𝑓𝑛 = 𝑓𝑛 ∗ 𝜑. Then the
previous Lemma yields

𝜕𝑠(𝑓𝑛 ∗ 𝜑) = (𝜕𝑠𝑓𝑛) ∗ 𝜑 = 𝜑 ∗ 𝜕𝑠𝑓𝑛.

Since
‖𝜑 ∗ 𝜕𝑠𝑓 − 𝜑 ∗ 𝜕𝑠𝑓𝑛‖𝐿𝑝 = ‖𝜑 ∗ (𝜕𝑠𝑓 − 𝜕𝑠𝑓𝑛)‖𝐿𝑝 ≤ ‖𝜑‖𝐿1‖𝜕𝑠𝑓 − 𝜕𝑠𝑓𝑛‖𝐿𝑝 → 0

as 𝑛 → ∞, it follows that 𝜕𝑠(𝑓𝑛 ∗ 𝜑) converges to 𝜑 ∗ 𝜕𝑠𝑓 in 𝐿𝑝(ℝ𝑑) for each |𝑠| ≤ 𝑚, which
implies 𝜑 ∗ 𝑓 ∈ 𝐻𝑚,𝑝(ℝ𝑑) with 𝜕𝑠(𝜑 ∗ 𝑓 ) = 𝜑 ∗ 𝜕𝑠𝑓 for all |𝑠| ≤ 𝑚.

Now consider 𝑝 = ∞ and let 𝑓 ∈ 𝐻𝑚,∞(ℝ𝑑) for some 𝑚 ∈ ℕ. Let further 𝑔 ∈ 𝐶∞
𝑐 (ℝ𝑑). Then

application of Fubini-Tonelli and the definition of weak differentiability yields

∫
ℝ𝑑
𝜕𝑠𝑔(𝑥)(𝜑 ∗ 𝑓 )(𝑥) d𝑥 = ∫

ℝ𝑑
𝜕𝑠𝑔(𝑥) ∫

ℝ𝑑
𝜑(𝑥 − 𝑦)𝑓 (𝑦) d𝑦 d𝑥

= ∫
ℝ𝑑
𝜑(𝑦) ∫

ℝ𝑑
𝜕𝑠𝑔(𝑥)𝑓 (𝑥 − 𝑦) d𝑥 d𝑦

= (−1)|𝑠| ∫
ℝ𝑑
𝜑(𝑦) ∫

ℝ𝑑
𝑔(𝑥)𝜕𝑠𝑓 (𝑥 − 𝑦) d𝑥 d𝑦

= (−1)|𝑠| ∫
ℝ𝑑
𝑔(𝑥)(𝜑 ∗ 𝜕𝑠𝑓 )(𝑥) d𝑥

for all |𝑠| ≤ 𝑚, so indeed 𝜑 ∗ 𝑓 ∈ 𝐻𝑚,∞(ℝ𝑑) with 𝜕𝑠(𝜑 ∗ 𝑓 ) = 𝜑 ∗ 𝜕𝑠𝑓 .

The last statement is immediate, since strong derivatives always coincide with weak ones if they
exist. □

There is one special class of functions for which convolutions are useful:

Definition 1.4.4. A sequence (𝜑𝑛)𝑛∈ℕ in 𝐿1(ℝ𝑑) is said to be an approximate identity or Dirac
sequence, if 𝜑𝑛 ≥ 0 and ‖𝜑𝑛‖𝐿1 = 1 for all 𝑛 ∈ ℕ and

lim
𝑛→∞∫

ℝ𝑑⧵𝐵𝑟 (0)
𝜑𝑛(𝑥) d𝑥 = 0 for all 𝑟 > 0.

Remark 1.4.5. Define 𝜑 ∈ 𝐶∞
𝑐 (ℝ𝑑) via

𝜑(𝑥) ..=

{
exp(−

1
1−(2|𝑥|)2) for |𝑥| < 1

2 ,

0 else,

and set 𝜑 ..= ‖𝜑‖−1𝐿1 𝜑. For each 𝜀 > 0 and 𝑥 ∈ ℝ𝑑 , set 𝜑𝜀(𝑥) ..= 𝜀−𝑑𝜑( 𝑥𝜀 ). Then 𝜑𝜀 ≥ 0, ‖𝜑𝜀‖𝐿1 = 1
and

lim
𝜀→0 ∫ℝ𝑑⧵𝐵𝑟 (0)

𝜑𝜀(𝑥) d𝑥 = lim
𝜀→0 ∫ℝ𝑑⧵𝐵 𝑟

𝜀
(0)
𝜑(𝑥) d𝑥 = 0 for all 𝑟 > 0.
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1.4 Mollifiers and cutoffs

Moreover, since supp(𝜑) ⊆ 𝐵1(0), we get supp(𝜑𝜀) ⊆ 𝐵𝜀(0). Such a sequence is called standard
approximate identity, and 𝜑 is called a mollifier.

A useful application of such convolutions are the cutoff functions:

Lemma 1.4.6. Let Ω ⊆ ℝ𝑑 be open and 𝐾 ⊆ Ω be compact. Then, for all 𝛿 ∈ (0,∞) with
𝐵𝛿(𝐾) ⊆ Ω, there is a smooth cutoff function 𝜂 ∈ 𝐶∞

𝑐 (Ω) for 𝐾 with

0 ≤ 𝜂 ≤ 1, 𝜂 ≡ 1 on 𝐾, |𝜕𝑠𝜂| ≤ 𝐶𝑑,𝑠𝛿−|𝑠| for all 𝑠 ∈ ℕ𝑑 ,

where 𝐶𝑑,𝑠 is independent of 𝛿 and 𝐾 .

Indeed, if (𝜑𝜀)𝜀>0 is a standard approximate identity, then 𝜂 ..= 𝜑 𝛿
4
∗ 1𝐵 𝛿

2
(𝐾) has all required

properties.

Lemma 1.4.7. Let 𝑈 ⊆ ℝ𝑑 be open. Then there is a sequence (𝑓𝑛)𝑛∈ℕ in 𝐶∞
𝑐 (ℝ𝑑) such that 0 ≤

𝑓𝑛 ↑ 1𝑈 as 𝑛 → ∞.

Proof:
Define the closed sets 𝐴𝑛 ..= {𝑥 ∈ ℝ𝑑 ∶ 𝑑(𝑥, 𝑈 𝑐) ≥ 1

𝑛 } and 𝐾𝑛
..= 𝐴𝑛 ∩ 𝐵𝑛(0) for each 𝑛 ∈ ℕ, as

well as the interior 𝑈𝑛 of 𝐾𝑛. Then (𝐾𝑛)𝑛∈ℕ is an exhausting sequence of 𝑈 consisting of compact
sets. Choose 𝜀𝑛 such that 𝐵𝜀𝑛(𝐾𝑛) ⊆ 𝑈𝑛+1. Then due to Lemma 1.4.6, there exist 𝑓𝑛 ∈ 𝐶∞

𝑐 (𝑈𝑛+1)
such that 0 ≤ 𝑓𝑛 ≤ 1 and 𝑓𝑛 ≡ 1 on 𝐾𝑛. Since 𝑓𝑛 has support in 𝑈𝑛+1 ⊆ 𝐾𝑛+1, the sequence
(𝑓𝑛)𝑛∈ℕ is non-negative and increasing. Let 𝑥 ∈ 𝑈 with ‖𝑥‖ ≤ 𝑚 ∈ ℕ, then there is some 𝑛 ∈ ℕ
such that 𝑥 ∈ 𝐴𝑛, hence 𝑥 ∈ 𝐾𝑛∨𝑚, so (𝑓𝑛)𝑛∈ℕ converges from below to 1𝑈 . □

In the sequel, we often require an exhausting sequence for ℝ𝑑 with nice properties, which we
now obtain as an application:

Remark 1.4.8. In the setting of the above Lemma, let Ω = ℝ𝑑 , choose 𝐾𝑛 ..= 𝐵𝑛(0) and 𝛿𝑛 ..= 𝑛
for each 𝑛 ∈ ℕ. This results in a sequence (𝜂𝑛)𝑛∈ℕ in 𝐶∞

𝑐 (ℝ𝑑) which satisfies 0 ≤ 𝜂𝑛 ≤ 1, 𝜂𝑛 ≡ 1
on 𝐵𝑛(0), 𝜕𝑠𝜂𝑛 ≡ 0 on 𝐵𝑛(0) for all 𝑠 ∈ ℕ𝑑 , and |𝜕𝑠𝜂𝑛| ≤ 1

𝑛𝑀𝑠 for all 𝑛 ∈ ℕ, where𝑀𝑠 ∈ (0,∞) is
a constant depending only on 𝑠.

Another nice application of convolutions with approximate identities results in the following
construction:

Lemma 1.4.9. Let 0 < 𝛿 < 𝜀 and let [𝑎, 𝑏] be a real interval. Then there exists a smooth function
ℎ ∈ 𝐶∞(ℝ) with the following properties:

(i) ℎ(𝑟) = 𝑟 for all 𝑟 ∈ [𝑎, 𝑏],

(ii) ℎ(𝑟) = 𝑎 − 𝛿 for all 𝑟 ∈ (−∞, 𝑎 − 𝜀],

(iii) ℎ(𝑟) = 𝑏 + 𝛿 for all 𝑟 ∈ [𝑏 + 𝜀,∞),
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1 Functional analytic and probabilistic background

(iv) 0 ≤ ℎ′ ≤ 1.

Proof:
First, we define a function ℎ̃ ∈ 𝐶0(ℝ) via

ℎ̃(𝑟) ..=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑎 − 𝛿 for 𝑟 ≤ 𝑎 − 𝛿,
𝑟 for 𝑟 ∈ [𝑎 − 𝛿, 𝑏 + 𝛿],
𝑏 + 𝛿 for 𝑟 ≥ 𝑏 + 𝛿.

Then ℎ̃ is Lipschitz-continuous with constant 1, and has a weak derivative ℎ̃′ ∈ 𝐿∞(ℝ) which
satisfies ℎ̃′(𝑟) = 1 on (𝑎, 𝑏) and ℎ̃′(𝑟) = 0 on ℝ ⧵ [𝑎, 𝑏]. Let (𝜑𝜀)𝜀>0 be a standard approximate
identity, let 𝛾 ..= 𝜀−𝛿

2 and define ℎ ..= 𝜑𝛾 ∗ ℎ̃ ∈ 𝐶∞(ℝ). Then clearly ℎ satisfies (ii) and (iii). Since
𝜑𝛾 is an even function, we obtain for 𝑟 ∈ [𝑎, 𝑏] that

𝑟 − ℎ(𝑟) = ∫
ℝ
𝜑𝛾(𝑟 − 𝑦)(𝑟 − 𝑦) d𝑦 = ∫

𝛾

−𝛾
𝜑𝛾(𝑧)𝑧 d𝑧 = 0,

so property (i) also holds. Finally, (iv) is also fulfilled, since due to Lemma 1.4.3,

0 ≤ ∫
ℝ
ℎ̃′(𝑥 − 𝑦)𝜑𝛾(𝑦) d𝑦 = (𝜑𝛾 ∗ ℎ̃′)(𝑥) = (𝜑𝛾 ∗ ℎ̃)′(𝑥)

and
|(𝜑𝛾 ∗ ℎ̃′)(𝑥)| ≤ ‖𝜑𝛾 ∗ ℎ̃′‖𝐿∞ ≤ ‖𝜑𝛾 ‖𝐿1‖ℎ̃′‖𝐿∞ ≤ 1

for all 𝑥 ∈ ℝ. □

1.5 Separability

Here we prove separability of the space of compactly supported 𝑘 times continuously dif-
ferentiable functions on ℝ𝑑 , since we require this fact later, see Proposition 4.3.2. Although
well-known, the author was not able to find a satisfactory reference, so we include the proof
here.

Lemma 1.5.1. Let 𝑑, 𝑘 ∈ ℕ. Then the space 𝐶𝑘𝑐 (ℝ𝑑) equipped with the usual norm is separable.

Proof:
Set 𝐾𝑛 ..= 𝐵𝑛(0) for all 𝑛 ∈ ℕ. Due to the Stone-Weierstraß theorem, the space (𝐶0(𝐾𝑛; ℝ), ‖ ⋅ ‖sup)
is separable for any 𝑛 ∈ ℕ. Now set

𝐶0
𝑐,𝑛(ℝ

𝑑) ..= {𝑓 ∈ 𝐶0
𝑐 (ℝ

𝑑) ∶ supp(𝑓 ) ⊆ 𝐵𝑛(0)},

again equipped with the supremum norm, which we can consider as a subspace of 𝐶0(𝐾𝑛; ℝ).
Since subsets of separable metric spaces are again separable wrt. the induced metric, we obtain
that the countable union 𝐶0

𝑐 (ℝ𝑑) = ⋃𝑛∈ℕ 𝐶0
𝑐,𝑛(ℝ𝑑) is also separable.
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1.6 Weighted Sobolev spaces

Let 𝑚(𝑘) denote the amount of multi-indices 𝛼 ∈ ℕ𝑑 with |𝛼| ≤ 𝑘. Consider the product space
𝐶0,𝑚(𝑘)
𝑐 (ℝ𝑑) ..=×𝑖∈{1,…,𝑚(𝑘)} 𝐶0

𝑐 (ℝ𝑑) with the corresponding product topology, which is generated
by the norm ‖ ⋅ ‖∞,𝑚(𝑘) given by

‖(𝑓1, … , 𝑓𝑚(𝑘))‖∞,𝑚(𝑘) ..= max{‖𝑓𝑖‖sup ∣ 𝑖 ∈ {1, … , 𝑚(𝑘)}}.

As a finite product of separable spaces, 𝐶0,𝑚(𝑘)
𝑐 (ℝ𝑑) is separable, and since its norm is equivalent to

‖ ⋅ ‖𝑘 defined via ‖(𝑓1, … , 𝑓𝑚(𝑘))‖𝑘 ..= ∑𝑖∈{1,…,𝑚(𝑘)} ‖𝑓𝑖‖sup, that property transfers to (𝐶0,𝑚(𝑘)
𝑐 (ℝ𝑑), ‖ ⋅

‖𝑘).

Finally, consider 𝐶𝑘𝑐 (ℝ𝑑) with its norm ‖𝑓 ‖𝐶𝑘 = ∑|𝛼|≤𝑘 ‖𝜕𝛼𝑓 ‖sup. Clearly, we can embed 𝐶𝑘𝑐 (ℝ𝑑)
isometrically into (𝐶0,𝑚(𝑘)

𝑐 (ℝ𝑑), ‖ ⋅ ‖𝑘), so that we can consider it as a subspace of a separable
metric space, making it separable as well. □

The proof implies the following:

Corollary 1.5.2. Let 𝑑, 𝑘 ∈ ℕ. Then there is a dense sequence (𝑓𝑛)𝑛∈ℕ in 𝐶𝑘𝑐 (ℝ𝑑) such that for
every 𝑓 ∈ 𝐶𝑘𝑐 (ℝ𝑑), there is a subsequence (𝑓𝑘)𝑘∈ℕ such that the supports of all 𝑓𝑛𝑘 and 𝑓 are
contained in some compact set 𝐾 ⊆ ℝ𝑑 .

1.6 Weighted Sobolev spaces

Here we consider 𝐿𝑝-spaces and more generally Sobolev spaces with respect to a weighted
Lebesgue measure, where the weight function has the form e−𝑉 .

Let 𝑉 ∈ 𝐶0(ℝ𝑑) and define the measure 𝜇 ..= e−𝑉 (𝑥) d𝑥 on (ℝ𝑑 ,B(ℝ𝑑)). We assume the measure
𝜇 to be finite, and for simplicity, to be a probability measure.

Definition 1.6.1. For 𝑚 ∈ ℕ, 𝑝 ∈ [1,∞) and Ω ⊆ ℝ𝑑 open, we define the weighted Sobolev space

𝑊𝑚,𝑝(Ω; 𝜇) ..=
{
𝑓 ∈ 𝐻𝑚,1

loc (ℝ
𝑑) ∣ 𝜕𝑠𝑓 ∈ 𝐿𝑝(Ω; 𝜇) for all |𝑠| ≤ 𝑚

}

with corresponding norm

‖𝑓 ‖𝑊𝑚,𝑝(Ω;𝜇)
..=

(
∑
|𝑠|≤𝑚

‖𝜕𝑠𝑓 ‖𝑝𝐿𝑝(Ω;𝜇))

1
𝑝

.

For notational convenience, we set 𝑊𝑚,𝑝(𝜇) ..= 𝑊𝑚,𝑝(ℝ𝑑 ; 𝜇).

Remark 1.6.2. Since 𝑉 and therefore e−𝑉 is locally bounded, 𝜇 is locally equivalent to the
Lebesgue measure. In particular, 𝑊𝑚,𝑝

loc (𝜇) = 𝐻𝑚,𝑝
loc (ℝ

𝑑) and therefore 𝑊𝑚,𝑝
𝑐 (𝜇) = 𝐻𝑚,𝑝

𝑐 (ℝ𝑑),
which denotes functions with compact support.
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1 Functional analytic and probabilistic background

Theorem 1.6.3. The space 𝐶∞
𝑐 (ℝ𝑑) of smooth compactly supported functions is dense in 𝑊𝑚,𝑝(𝜇)

for all 𝑚 ∈ ℕ, 𝑝 ∈ [1,∞). In particular, with the classical naming conventions, it follows that
𝑊 = 𝐻 , i.e. 𝑊𝑚,𝑝(𝜇) = 𝐻𝑚,𝑝(𝜇).

We prove this in a similar way as the well-known result that 𝐶∞
𝑐 (ℝ𝑑) is dense in 𝐻𝑚,𝑝(ℝ𝑑), by

approximation with compactly supported functions.

Proof:
Let 𝑓 ∈ 𝑊𝑚,𝑝(𝜇). Choose (𝜂𝑛)𝑛∈ℕ as in Remark 1.4.8. Then there is some constant𝑀 < ∞ such
that |𝜕𝑠𝜂𝑛| ≤ 𝑀( 1𝑛)

|𝑠| ≤ 𝑀 for all |𝑠| ≤ 𝑚. Define 𝑓𝑛 ..= 𝜂𝑛 ⋅ 𝑓 ∈ 𝑊𝑚,𝑝
𝑐 (𝜇) = 𝐻𝑚,𝑝

𝑐 (ℝ𝑑), then we
obtain

|𝜕𝑠𝑓𝑛| ≤ 𝑀∑
𝑟≤𝑠 (

𝑠
𝑟)

|𝜕𝑟𝑓 |,

so in particular there is some constant 𝐶 < ∞ such that ‖𝑓𝑛‖𝑊𝑚,𝑝(Ω;𝜇) ≤ 𝐶‖𝑓 ‖𝑊𝑚,𝑝(Ω;𝜇) for all
𝑛 ∈ ℕ and Ω ⊆ ℝ𝑑 open. Set Ω𝑛

..= ℝ𝑑 ⧵ 𝐵𝑛(0), then

‖𝑓 − 𝑓𝑛‖𝑊𝑚,𝑝(𝜇) = ‖(𝑓 − 𝑓𝑛)‖𝑊𝑚,𝑝(Ω𝑛;𝜇) ≤ (𝐶 + 1)‖𝑓 ‖𝑊𝑚,𝑝(Ω𝑛;𝜇) (1.6.1)

Now let 𝜀 > 0. Then we can choose 𝑁0 ∈ ℕ such that ‖𝑓 ‖𝑊𝑚,𝑝(Ω𝑁0 ;𝜇) ≤
𝜀

2(𝐶+1) . Since 𝑓𝑁0 ∈
𝐻𝑚,𝑝
𝑐 (ℝ𝑑), there is a sequence (𝜑𝑘)𝑘∈ℕ in 𝐶∞

𝑐 (ℝ𝑑) such that ‖𝑓𝑁0 − 𝜑𝑘‖𝐻𝑚,𝑝 → 0 as 𝑘 → ∞.
Without loss of generality, we assume that supp(𝑓𝑁0), supp(𝜑𝑘) ⊆ 𝑈 ⊆ 𝐾 for some open 𝑈 and
compact 𝐾 ⊆ ℝ𝑑 . Due to local equivalence, there is some constant 𝐶𝐾 < ∞ such that

‖𝑓𝑁0 − 𝜑𝑘‖𝑊𝑚,𝑝(𝜇) = ‖𝑓𝑁0 − 𝜑𝑘‖𝑊𝑚,𝑝(𝑈 ;𝜇) ≤ 𝐶𝐾 ‖𝑓𝑁0 − 𝜑𝑘‖𝐻𝑚,𝑝(ℝ𝑑). (1.6.2)

Choose 𝑘0 ∈ ℕ such that ‖𝑓𝑁0 − 𝜑𝑘0‖𝐻𝑚,𝑝 ≤ 𝜀
2𝐶𝐾 , then combining (1.6.1) and (1.6.2) yields

‖𝑓 − 𝜑𝑘0‖𝑊𝑚,𝑝(𝜇) ≤ 𝜀, so the denseness result follows. □

Due to this result, we refer to these Sobolev spaces by 𝐻𝑚,𝑝(𝜇) in the following. We now state
an integrability result for derivatives of 𝑉 , provided we satisfy the following condition:

Assumption (A1). 𝑉 is in 𝐶1(ℝ𝑑) ∩ 𝐻 2,∞
loc (ℝ

𝑑) and there are constants 𝐾 < ∞ and 𝛼 ∈ [1, 2)
such that

|∇2𝑉 (𝑥)| ≤ 𝐾(1 + |∇𝑉 (𝑥)|𝛼) 𝜇-a.e.,

where ∇2𝑉 denotes the Hessian matrix of 𝑉 .

Theorem 1.6.4. Let 𝑉 satisfy (A1) and let 𝑘 ∈ ℕ. Then there is some constant 𝐶𝑘 < ∞ such that
for all 𝑔 ∈ 𝐻 1,2𝑘(𝜇), the following inequality holds:

∫
ℝ𝑑

|∇𝑉 |2𝑘𝑔2𝑘e−𝑉 d𝑥 ≤ 𝐶𝑘 (∫ℝ𝑑
𝑔2𝑘e−𝑉 d𝑥 + ∫

ℝ𝑑
|∇𝑔|2𝑘e−𝑉 d𝑥) . (1.6.3)

This is a generalization of [Vil06, Lemma A.24], which proves the case where 𝛼 = 1 and 𝑘 = 1.
In order to facilitate the proof, we first show the following intermediate estimate:
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Lemma 1.6.5. Let 𝑉 satisfy (A1) and let 𝑘 ∈ ℕ, 𝑖 ∈ {1, … , 𝑑}. Then there is some constant
𝑀 ∈ (0,∞) such that

∫
ℝ𝑑
(𝜕𝑖𝑉 )2𝑘𝑔2𝑘 d𝜇 ≤ 𝑀 (∫ℝ𝑑

𝑔2𝑘 d𝜇 + ∫
ℝ𝑑
(𝜕𝑖𝑔)2𝑘 d𝜇 + ∫

ℝ𝑑
|∇𝑉 |𝑘𝛼𝑔2𝑘 d𝜇)

holds for all 𝑔 ∈ 𝐶∞
𝑐 (ℝ𝑑).

Proof:
Let 𝑔 ∈ 𝐶∞

𝑐 (ℝ𝑑), 𝑘 ∈ ℕ and 1 ≤ 𝑖 ≤ 𝑑. Then integration by parts yields

∫
ℝ𝑑
(𝜕𝑖𝑉 )2𝑘𝑔2𝑘 d𝜇 = −∫

ℝ𝑑
(𝜕𝑖𝑉 )2𝑘−1(𝑥)𝑔2𝑘(𝑥)𝜕𝑖(e−𝑉 (𝑥)) d𝑥

= ∫
ℝ𝑑
(2𝑘𝑔2𝑘−1𝜕𝑖𝑔(𝜕𝑖𝑉 )2𝑘−1 + (2𝑘 − 1)𝑔2𝑘(𝜕𝑖𝑉 )2𝑘−2𝜕2𝑖 𝑉 ) e

−𝑉 d𝑥.
(1.6.4)

Let 𝐶 ∈ (0,∞) be arbitrary, then due to the Hölder and Young inequalities for 𝑝 = 2𝑘
2𝑘−1 and

𝑞 = 2𝑘, we obtain the following estimate for the first summand:

∫
ℝ𝑑
(2𝑘𝑔2𝑘−1𝜕𝑖𝑔(𝜕𝑖𝑉 )2𝑘−1 d𝜇 ≤ 2𝑘

1
𝐶
‖𝑔2𝑘−1(𝜕𝑖𝑉 )2𝑘−1‖𝐿𝑝 ⋅ 𝐶‖𝜕𝑖𝑔‖𝐿𝑞

≤ 2𝑘 (
1

𝑝𝐶𝑝
‖𝑔2𝑘−1(𝜕𝑖𝑉 )2𝑘−1‖

𝑝
𝐿𝑝 +

𝐶𝑞

𝑞
‖𝜕𝑖𝑔‖

𝑞
𝐿𝑞)

= (2𝑘 − 1)
1
𝐶𝑝 ∫

ℝ𝑑
𝑔2𝑘(𝜕𝑖𝑉 )2𝑘 d𝜇 + 𝐶𝑞 ∫

ℝ𝑑
(𝜕𝑖𝑔)2𝑘 d𝜇,

(1.6.5)

where 𝐿𝑝 denotes 𝐿𝑝(𝜇). For the second summand, note that due to (A1) we have |𝜕2𝑖 𝑉 | ≤
𝐾(1 + |∇𝑉 |𝛼). This implies that

(2𝑘 − 1) ∫
ℝ𝑑
𝑔2𝑘(𝜕𝑖𝑉 )2𝑘−2𝜕2𝑖 𝑉 d𝜇 ≤ 𝐾(2𝑘 − 1) ∫

ℝ𝑑
𝑔2𝑘(𝜕𝑖𝑉 )2𝑘−2 d𝜇

+ 𝐾(2𝑘 − 1) ∫
ℝ𝑑
𝑔2𝑘(𝜕𝑖𝑉 )2𝑘−2|∇𝑉 |𝛼 d𝜇.

(1.6.6)

Using the same technique as before for 𝑝′ = 2𝑘
2𝑘−2 and 𝑞

′ = 𝑘, we get

∫
ℝ𝑑
𝑔2𝑘(𝜕𝑖𝑉 )2𝑘−2 d𝜇 ≤

1
𝐶
‖𝑔2𝑘−2(𝜕𝑖𝑉 )2𝑘−2‖𝐿𝑝′ ⋅ 𝐶‖𝑔

2‖𝐿𝑞′

≤
1

𝑝′𝐶𝑝′
‖𝑔2𝑘−2(𝜕𝑖𝑉 )2𝑘−2‖

𝑝′

𝐿𝑝′
+
𝐶𝑞′

𝑞′
‖𝑔2‖𝑞

′

𝐿𝑞′

=
1

𝑝′𝐶𝑝′ ∫ℝ𝑑
𝑔2𝑘(𝜕𝑖𝑉 )2𝑘 d𝜇 +

𝐶𝑞′

𝑞′ ∫
ℝ𝑑
𝑔2𝑘 d𝜇

(1.6.7)
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as well as

∫
ℝ𝑑
𝑔2𝑘(𝜕𝑖𝑉 )2𝑘−2|∇𝑉 |𝛼 d𝜇 ≤

1
𝐶
‖𝑔2𝑘−2(𝜕𝑖𝑉 )2𝑘−2‖𝐿𝑝′ ⋅ 𝐶‖𝑔

2|∇𝑉 |𝛼‖𝐿𝑞′

≤
1

𝑝′𝐶𝑝′
‖𝑔2𝑘−2(𝜕𝑖𝑉 )2𝑘−2‖

𝑝′

𝐿𝑝′
+
𝐶𝑞′

𝑞′
‖𝑔2|∇𝑉 |𝛼‖𝑞

′

𝐿𝑞′

=
1

𝑝′𝐶𝑝′ ∫ℝ𝑑
𝑔2𝑘(𝜕𝑖𝑉 )2𝑘 d𝜇 +

𝐶𝑞′

𝑞′ ∫
ℝ𝑑
𝑔2𝑘 |∇𝑉 |𝑘𝛼 d𝜇.

(1.6.8)

Note that for 𝑘 = 1, these steps are not required, so 𝑝′ is well-defined. Choosing 𝐶 large enough
such that 2𝑘−1

𝐶𝑝 ,
𝐾(2𝑘−1)
𝑝′𝐶𝑝′

≤ 1
6 , we obtain

∫
ℝ𝑑
(𝜕𝑖𝑉 )2𝑘𝑔2𝑘 d𝜇 ≤

1
2 ∫ℝ𝑑

(𝜕𝑖𝑉 )2𝑘𝑔2𝑘 d𝜇 + 𝐶𝑞 ∫
ℝ𝑑
(𝜕𝑖𝑔)2𝑘 d𝜇

+
𝐾(2𝑘 − 1)𝐶𝑞′

𝑞′ ∫
ℝ𝑑
𝑔2𝑘 d𝜇 +

𝐾(2𝑘 − 1)𝐶𝑞′

𝑞′ ∫
ℝ𝑑
𝑔2𝑘 |∇𝑉 |𝑘𝛼 d𝜇

by combining the inequalities in eqs. (1.6.5) to (1.6.8) with the original integration by parts result.
By subtracting the first summand from both sides, we obtain the desired claim for

𝑀 ..= max
{
2𝐶𝑞 ,

2𝐾(2𝑘 − 1)𝐶𝑞′

𝑞′

}
.

□

Proof (of Theorem 1.6.4):
First, we assume 𝑔 ∈ 𝐶∞

𝑐 (ℝ𝑑). Since

|∇𝑉 |2𝑘 =
(

𝑑
∑
𝑖=1

(𝜕𝑖𝑉 )2)

𝑘

≤ 𝑑𝑘−1
𝑑
∑
𝑖=1

(𝜕𝑖𝑉 )2𝑘 ,

we have

∫
ℝ𝑑

|∇𝑉 |2𝑘𝑔2𝑘 d𝜇 ≤ 𝑑𝑘−1
𝑑
∑
𝑖=1

∫
ℝ𝑑
(𝜕𝑖𝑉 )2𝑘𝑔2𝑘 d𝜇

≤ 𝑑𝑘𝑀 (∫ℝ𝑑
𝑔2𝑘 d𝜇 + ∫

ℝ𝑑
|∇𝑔|2𝑘 d𝜇 + ∫

ℝ𝑑
|∇𝑉 |𝑘𝛼𝑔2𝑘 d𝜇)

(1.6.9)

for some 𝑀 ∈ (0,∞) due to Lemma 1.6.5 (wlog we assume 𝑀 ≥ 1). The last summand can be
estimated by

∫
ℝ𝑑

|∇𝑉 |𝑘𝛼𝑔2𝑘 d𝜇 = ∫
ℝ𝑑

|𝑔|𝑘 |∇𝑉 |𝑘 |𝑔|𝑘 |∇𝑉 |(𝛼−1)𝑘 d𝜇

≤
1
𝐶
‖𝑔𝑘 |∇𝑉 |𝑘‖𝐿2(𝜇) ⋅ 𝐶‖𝑔𝑘 |∇𝑉 |(𝛼−1)𝑘‖𝐿2(𝜇)

≤
1

2𝐶2 ∫ℝ𝑑
𝑔2𝑘 |∇𝑉 |2𝑘 d𝜇 +

𝐶2

2 ∫
ℝ𝑑
𝑔2𝑘 |∇𝑉 |2𝑘(𝛼−1) d𝜇,

(1.6.10)
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where 𝐶 ∈ (0,∞) is arbitrary. Plugging (1.6.10) into (1.6.9) and choosing 𝐶 =
√
𝑑𝑘𝑀 , we can

subtract half the left side from both sides and obtain

∫
ℝ𝑑

|∇𝑉 |2𝑘𝑔2𝑘 d𝜇 ≤ 2𝑑𝑘𝑀 (∫ℝ𝑑
𝑔2𝑘 d𝜇 + ∫

ℝ𝑑
|∇𝑔|2𝑘 d𝜇)

+ 𝑑2𝑘𝑀2
∫
ℝ𝑑
𝑔2𝑘 |∇𝑉 |2𝑘(𝛼−1) d𝜇.

(1.6.11)

If 𝛼 = 1, then |∇𝑉 |2𝑘(𝛼−1) = 1 and the desired inequality (1.6.3) holds for 𝐶𝑘 = 3(𝑑2𝑘𝑀2).

If 0 < 2(𝛼 − 1) ≤ 1, then |∇𝑉 |2𝑘(𝛼−1) ≤ 1 + |∇𝑉 |𝑘 , and therefore

𝑑2𝑘𝑀2
∫
ℝ𝑑
𝑔2𝑘 |∇𝑉 |2𝑘(𝛼−1) d𝜇 ≤ 𝑑2𝑘𝑀2

∫
ℝ𝑑
𝑔2𝑘 d𝜇 + 𝑑2𝑘𝑀2

∫
ℝ𝑑

|𝑔|𝑘 |∇𝑉 |𝑘 |𝑔|𝑘 d𝜇

with

𝑑2𝑘𝑀2
∫
ℝ𝑑

|𝑔|𝑘 |∇𝑉 |𝑘 |𝑔|𝑘 d𝜇 ≤ 𝑑2𝑘𝑀2
(

1
2𝐷2 ∫ℝ𝑑

𝑔2𝑘 |∇𝑉 |2𝑘 d𝜇 +
𝐷2

2 ∫
ℝ𝑑

|𝑔|2𝑘 d𝜇) ,

where we can choose 𝐷 = 𝑑𝑘𝑀 . Then (1.6.11) implies (1.6.3) for 𝐶𝑘 = 5𝑑4𝑘𝑀4.

In the remaining case that 2(𝛼 − 1) ∈ (1, 2), we obtain instead

∫
ℝ𝑑
𝑔2𝑘 |∇𝑉 |2𝑘(𝛼−1) d𝜇 = ∫

ℝ𝑑
|𝑔|𝑘 |∇𝑉 |𝑘 |𝑔|𝑘 |∇𝑉 |𝑘(2(𝛼−1)−1) d𝜇

≤
1

2𝐷2 ∫ℝ𝑑
𝑔2𝑘 |∇𝑉 |2𝑘 d𝜇 +

𝐷2

2 ∫
ℝ𝑑
𝑔2𝑘 |∇𝑉 |2𝑘(2(𝛼−1)−1) d𝜇,

where we again choose 𝐷 = 𝑑𝑘𝑀 . Using this in (1.6.11) and repeating this procedure iteratively
provides us with estimates of the form

∫
ℝ𝑑

|∇𝑉 |2𝑘𝑔2𝑘 d𝜇 ≤ 2𝑚𝑑𝑘𝑀 (∫ℝ𝑑
𝑔2𝑘 d𝜇 + ∫

ℝ𝑑
|∇𝑔|2𝑘 d𝜇)

+ (𝑑𝑘𝑀)2
𝑚

∫
ℝ𝑑
𝑔2𝑘 |∇𝑉 |𝑘𝛾𝑚(𝛼) d𝜇.

where 𝛾𝑚(𝛼) = 2𝑚(𝛼 − 2) + 2. Since there is some 𝜀 > 0 such that 𝛼 = 2 − 𝜀, we can write
𝛾𝑚(𝛼) = 2 − 2𝑚𝜀, so there is some 𝑚0 ∈ ℕ such that 0 < 𝛾𝑚0(𝛼) ≤ 1. Then estimate (1.6.3)
follows as above for the case 0 < 2(𝛼 − 1) ≤ 1. Thus the claim holds for all 𝑔 ∈ 𝐶∞

𝑐 (ℝ𝑑).

Now it remains to generalize the statement to all 𝑔 ∈ 𝐻 1,2𝑘(𝜇). Let 𝑔 be such a function. Then
due to Theorem 1.6.3, there is a sequence (𝑔𝑛)𝑛∈ℕ in 𝐶∞

𝑐 (ℝ𝑑) such that 𝑔𝑛 → 𝑔 in 𝐻 1,2𝑘(𝜇)-norm
as 𝑛 → ∞. Each 𝑔𝑛 satisfies (1.6.3) and since

∫
ℝ𝑑
𝑓 2𝑘 d𝜇 + ∫

ℝ𝑑
|∇𝑓 |2𝑘 d𝜇 ≤ 𝑑𝑘−1

(∫
ℝ𝑑
𝑓 2𝑘 d𝜇 +

𝑑
∑
𝑖=1

∫
ℝ𝑑
𝜕𝑖𝑓 2𝑘 d𝜇)

= 𝑑𝑘−1‖𝑓 ‖2𝑘𝐻 1,2𝑘(𝜇)
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and

‖𝑓 ‖2𝑘𝐻 1,2𝑘(𝜇) = ∫
ℝ𝑑
𝑓 2𝑘 d𝜇 +

𝑑
∑
𝑖=1

∫
ℝ𝑑
𝜕𝑖𝑓 2𝑘 d𝜇 ≤ 𝑑 (∫ℝ𝑑

𝑓 2𝑘 d𝜇 + ∫
ℝ𝑑

|∇𝑓 |2𝑘 d𝜇)

for all 𝑓 ∈ 𝐻 1,2𝑘(𝜇), the right hand side of (1.6.3) converges to

𝐶𝑘 (∫ℝ𝑑
𝑔2𝑘e−𝑉 d𝑥 + ∫

ℝ𝑑
|∇𝑔|2𝑘e−𝑉 d𝑥)

as 𝑛 → ∞. For a subsequence (𝑔𝑛𝓁)𝓁∈ℕ, we get that |∇𝑉 |2𝑘𝑔2𝑘𝑛𝓁 converges 𝜇-almost everywhere to
|∇𝑉 |2𝑘𝑔2𝑘 , so Fatou’s Lemma yields the desired claim. □

Remark 1.6.6. Since 𝜇 is a finite measure, applying Theorem 1.6.4 to 𝑔 ≡ 1 shows that |∇𝑉 | ∈
𝐿𝑝(𝜇) for any 𝑝 ∈ [1,∞). Moreover, due to (A1), the same holds for |∇2𝑉 |.
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Here we introduce the abstract hypocoercivity frameworks which we later apply to concrete
generators. First, we give some data conditions, i.e. properties of the underlying space and
compatibility with the considered operators. Then we present the hypocoercivity method
developed by Dolbeault, Mouhot and Schmeiser ([DMS09]), in the rigorous form elaborated by
Grothaus and Stilgenbauer ([GS14]) including domain issues. Afterwards, we give the necessary
assumptions and the convergence result of the weak hypocoercivity method, which was worked
out by Grothaus andWang ([GW19]) by reworking the proof and assuming weaker lower bounds
for the operators. In practice, these are verified by assuming weak Poincaré inequalities of the
type seen in [RW01].

In order to compare these methods to each other, we refer to the original hypocoercivity as
strong hypocoercivity, and rearrange the individual assumptions so that they can be matched
more easily to their counterparts. In particular, we refrain from imposing a setting of 𝐿2-spaces
with invariant measure, since we can modify the considered space later in our application so that
the proofs in [GS14] can be applied regardless. For a more detailed explanation, see Remark 2.4.1.

2.1 Data conditions

Let 𝐻 be a separable Hilbert space with inner product (⋅, ⋅)𝐻 and induced norm ‖ ⋅ ‖𝐻 , which
has an orthogonal decomposition 𝐻 = 𝐻1 ⊕ 𝐻2 with corresponding orthogonal projections
𝑃 ∶ 𝐻 → 𝐻1, (𝐼 − 𝑃) ∶ 𝐻 → 𝐻2. Let further (𝐿, 𝐷(𝐿)) be a densely defined linear operator that
generates a strongly continuous contraction semigroup (𝑇𝑡)𝑡≥0 on 𝐻 . We assume the following
structure on 𝐿:

Assumption (D1). 𝐿 = 𝑆 − 𝐴 on D, where 𝑆 is symmetric, 𝐴 is antisymmetric, and D ⊆ 𝐷(𝐿)
is a core for (𝐿, 𝐷(𝐿)).

As seen by Proposition 1.1.3, both (𝑆,D) and (𝐴,D) are closable, and we denote their closures
by (𝑆, 𝐷(𝑆)) and (𝐴, 𝐷(𝐴)), respectively. These two operators are linked to the decomposition
of 𝐻 in the following way:

Assumption (D2). 𝐻1 ⊆ 𝐷(𝑆) and 𝑆 ≡ 0 on 𝐻1.
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Assumption (D3). 𝑃(D) ⊆ 𝐷(𝐴), 𝐴𝑃(D) ⊆ 𝐷((𝐴𝑃)∗) and 𝑃𝐴𝑃 ≡ 0 on D. Here (𝐴𝑃)∗ is the
adjoint of the densely defined closed operator (𝐴𝑃, 𝐷(𝐴𝑃)) with

𝐷(𝐴𝑃) = {𝑥 ∈ 𝐻 ∣ 𝑃𝑥 ∈ 𝐷(𝐴)}.

Remark 2.1.1.

(i) Assume (D2), then 𝑆𝑃 = 0 and (𝐼 −𝑃)(D) ⊆ 𝐷(𝑆), sinceD ⊆ 𝐷(𝑆). Similarly, (𝐼 −𝑃)(D) ⊆
𝐷(𝐴) if (D3) holds.

(ii) In (D3), the first assumption impliesD ⊆ 𝐷(𝐴𝑃). Let (𝑥𝑛)𝑛∈ℕ be a sequence in𝐷(𝐴𝑃) such
that 𝑥𝑛 → 𝑥 and 𝐴𝑃𝑥𝑛 → 𝑦 for some 𝑥, 𝑦 ∈ 𝐻 . Then 𝑃𝑥𝑛 → 𝑃𝑥 and 𝑃𝑥𝑛 ∈ 𝐷(𝐴) for all
𝑛 ∈ ℕ, so closedness of (𝐴, 𝐷(𝐴)) implies 𝑃𝑥 ∈ 𝐷(𝐴) with 𝐴𝑃𝑥 = 𝑦. Hence (𝐴𝑃, 𝐷(𝐴𝑃))
is indeed densely defined and closed, so that (𝐴𝑃)∗ is well-defined. Furthermore, it holds
that (𝐴𝑃)∗ = −𝑃𝐴 on D, hence on 𝐷(𝐴).

Definition 2.1.2. We define the operator (𝐺, 𝐷(𝐺)) by

𝐺 ..= −(𝐴𝑃)∗𝐴𝑃, 𝐷(𝐺) ..= {𝑥 ∈ 𝐷(𝐴𝑃) ∣ 𝐴𝑃𝑥 ∈ 𝐷((𝐴𝑃)∗)}.

Remark 2.1.3. Due to vonNeumann’s theorem ([Ped89, Theorem 5.1.9]), (𝐺, 𝐷(𝐺)) is self-adjoint
and 𝐼 − 𝐺 ∶ 𝐷(𝐺) → 𝐻 is bijective with bounded inverse. Since 𝐺 is dissipative, it generates an
sccs on 𝐻 , which we denote by (e𝑡𝐺)𝑡≥0.

Note that due to (D3), we have D ⊆ 𝐷(𝐺). If additionally, 𝐴𝑃(D) ⊆ 𝐷(𝐴), then 𝐺 = 𝑃𝐴2𝑃 on
D.

This allows us to define the following operator, which is bounded with operator norm less than
1 due again to [Ped89, Theorem 5.1.9]:

Definition 2.1.4. Define the operator (𝐵, 𝐷(𝐵)) as

𝐵 ..= (𝐼 − 𝐺)−1(𝐴𝑃)∗, 𝐷(𝐵) ..= 𝐷((𝐴𝑃)∗).

Due to boundedness, it extends uniquely to a bounded operator 𝐵 ∶ 𝐻 → 𝐻 .

For 0 ≤ 𝜀 < 1, the modified energy functional 𝐻𝜀 is then defined as

𝐻𝜀[𝑥] ..=
1
2
‖𝑥‖2𝐻 + 𝜀(𝐵𝑥, 𝑥)𝐻 for 𝑥 ∈ 𝐻,

and satisfies
1 − 𝜀
2

‖𝑥‖2 ≤ 𝐻𝜀[𝑥] ≤
1 + 𝜀
2

‖𝑥‖2 for all 𝑥 ∈ 𝐻 (2.1.1)

due to (D3) and [GS14, Lemma 2.4].

Both following hypocoercivity methods provide sufficient conditions such that d
d𝑡𝐻𝜀[𝑇𝑡𝑥] can be

bounded by a term depending only on𝐻𝜀[𝑇𝑡𝑥] in the strong setting, or additionally depending on
𝑓 via a carefully chosen functional in the weak setting, where 𝑥 ∈ D. This extends to 𝑥 ∈ 𝐷(𝐿),
and Gronwall’s Lemma yields a convergence rate estimate for (𝑇𝑡𝑥)𝑡≥0 for all such 𝑥 . Depending
on the setting, this can then be further extended to a larger subspace of 𝐻 .

42



2.2 Strong hypocoercivity

2.2 Strong hypocoercivity

Additionally to the above stated data conditions, assume the following:

Assumption (H1). Boundedness of auxiliary operators: The operators (𝐵𝑆,D) and (𝐵𝐴(𝐼 −𝑃),D)
are bounded and there exist constants 𝑐1, 𝑐2 < ∞ such that

‖𝐵𝑆𝑥‖ ≤ 𝑐1‖(𝐼 − 𝑃)𝑥‖ and ‖𝐵𝐴(𝐼 − 𝑃)𝑥‖ ≤ 𝑐2‖(𝐼 − 𝑃)𝑥‖

hold for all 𝑥 ∈ D.

Assumption (H2). Microscopic coercivity: There exists some Λ𝑚 > 0 such that

−(𝑆𝑥, 𝑥)𝐻 ≥ Λ𝑚‖(𝐼 − 𝑃)𝑥‖2 for all 𝑥 ∈ D.

Assumption (H3). Macroscopic coercivity: There is some Λ𝑀 > 0 such that

‖𝐴𝑃𝑥‖2 ≥ Λ𝑀 ‖𝑃𝑥‖2 for all 𝑥 ∈ 𝐷(𝐺). (2.2.1)

Then the following hypocoercivity theorem follows, compare also [GS16, Theorem 2.2]:

Theorem 2.2.1. Assume that (D1)–(D3) and (H1)–(H3) hold. Then there exist strictly positive
constants 𝜅1, 𝜅2 < ∞ which are explicitly computable in terms of Λ𝑚, Λ𝑀 , 𝑐1 and 𝑐2 such that for
all 𝑥 ∈ 𝐻 we have

‖𝑇𝑡𝑥‖𝐻 ≤ 𝜅1e−𝜅2𝑡‖𝑥‖𝐻 for all 𝑡 ≥ 0.

More specifically, for 𝛿 > 0, 𝜀 ∈ (0, 1) and 0 < 𝜅 < ∞ satisfying

𝜅‖𝑇𝑡𝑥‖2 ≤ (Λ𝑚 − 𝜀(1 + 𝑐1 + 𝑐2) (1 +
1
2𝛿))‖(𝐼 − 𝑃)𝑇𝑡𝑥‖2

+𝜀 (
Λ𝑀

1 + Λ𝑀
− (1 + 𝑐1 + 𝑐2)

𝛿
2)

‖𝑃𝑇𝑡𝑥‖2
(2.2.2)

for all 𝑥 ∈ 𝐷(𝐿), 𝑡 ≥ 0, the constants 𝜅1 and 𝜅2 can be given as

𝜅1 =
√
1 + 𝜀
1 − 𝜀

, 𝜅2 =
𝜅

1 + 𝜀
.

Remark 2.2.2. The estimate (2.2.2) can always be satisfied: First, choose 𝛿 > 0 such that

Λ𝑀
1 + Λ𝑀

− (1 + 𝑐1 + 𝑐2)
𝛿
2
> 0.

Then, choose 𝜀 > 0 small enough such that

Λ𝑚 − 𝜀(1 + 𝑐1 + 𝑐2) (1 +
1
2𝛿)

> 0

as well. Since ‖𝑇𝑡𝑥‖2 = ‖(𝐼 − 𝑃)𝑇𝑡𝑥‖2 + ‖𝑃𝑇𝑡𝑥‖2, 𝜅 can be chosen as

min
{

Λ𝑀
1 + Λ𝑀

− (1 + 𝑐1 + 𝑐2)
𝛿
2
, Λ𝑚 − 𝜀(1 + 𝑐1 + 𝑐2) (1 +

1
2𝛿)

}
.
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2.3 Weak hypocoercivity

Additionally to the data conditions (D1)–(D3), assume the following:

Assumption (WH1). There is a constant 𝑁 < ∞ such that

(𝐵𝑆(𝐼 − 𝑃)𝑥, 𝑃𝑥)𝐻 ≤
𝑁
2
‖(𝐼 − 𝑃)𝑥‖𝐻 ‖𝑃𝑥‖𝐻 and

−(𝐵𝐴(𝐼 − 𝑃)𝑥, 𝑃𝑥)𝐻 ≤
𝑁
2
‖(𝐼 − 𝑃)𝑥‖𝐻 ‖𝑃𝑥‖𝐻 for all 𝑥 ∈ D.

Assumption (WH2). There is a functional Θ ∶ 𝐻 → [0,∞] with the following properties:

(i) The set {𝑥 ∈ 𝐻 ∶ Θ(𝑥) < ∞} is dense in 𝐻 .

(ii) Θ(𝑃𝑥) ≤ Θ(𝑥) for all 𝑥 ∈ 𝐻 .

(iii) Θ(𝑇𝑡𝑥) ≤ Θ(𝑥) for all 𝑥 ∈ 𝐻 , 𝑡 ≥ 0.

(iv) Θ(e𝑡𝐺𝑥) ≤ Θ(𝑥) for all 𝑥 ∈ 𝐻 , 𝑡 ≥ 0, where (e𝑡𝐺)𝑡≥0 denotes the 𝐶0-semigroup generated
by (𝐺, 𝐷(𝐺)).

Assumption (WH3). For any 𝑥 ∈ 𝐷(𝐿) there is some sequence (𝑥𝑛)𝑛∈ℕ in D such that 𝑥𝑛 → 𝑥
in 𝐻 and

lim sup
𝑛→∞

(−𝐿𝑥𝑛, 𝑥𝑛)𝐻 ≤ (−𝐿𝑥, 𝑥)𝐻 , lim sup
𝑛→∞

(Θ𝑥𝑛) ≤ Θ(𝑥)

as 𝑛 → ∞.

Assumption (WH4). There exist decreasing functions 𝛼𝑖 ∶ (0,∞) → [1,∞), 𝑖 = 1, 2, such that

‖𝑃𝑥‖2 ≤ 𝛼1(𝑟)‖𝐴𝑃𝑥‖2 + 𝑟Θ(𝑃𝑥), 𝑟 > 0, 𝑥 ∈ 𝐷(𝐴𝑃) (2.3.1)

and
‖(𝐼 − 𝑃)𝑥‖2 ≤ 𝛼2(𝑟)(−𝑆𝑥, 𝑥)𝐻 + 𝑟Θ(𝑥), 𝑟 > 0, 𝑥 ∈ D. (2.3.2)

This allows us to state the main weak hypocoercivity result:

Theorem 2.3.1. Let (D1)–(D3) and (WH1)–(WH4) be satisfied. Then there exist constants 𝑐1, 𝑐2 >
0 such that

‖𝑇𝑡𝑥‖2 ≤ 𝜉(𝑡)(‖𝑥‖2 + Θ(𝑥)), 𝑡 ≥ 0, 𝑥 ∈ 𝐷(𝐿) (2.3.3)

holds for

𝜉(𝑡) ..= 𝑐1 inf
{
𝑟 > 0 ∶ 𝑐2𝑡 ≥ 𝛼1(𝑟)2𝛼2(

𝑟
𝛼1(𝑟)2)

log(
1
𝑟 )

}
, (2.3.4)

which goes to 0 as 𝑡 → ∞.
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2.4 Remarks and sufficient conditions

2.4 Remarks and sufficient conditions

Remark 2.4.1 (Difference to cited sources).

(i) In the original source [GS14], the hypocoercivity conditions were named to stay consistent
with the corresponding conditions in [DMS09], and the data conditions were added to
ensure well-definedness by considering domain issues. Since we only repeat the results
for application later, we take the liberty to rearrange and rename the conditions in favor
of a clearer structure. The same applies to the weak hypocoercivity conditions.

(ii) Moreover, in [GS14], it was assumed that 𝐻 is an 𝐿2-space with respect to a probability
measure which is invariant for (𝐿, 𝐷(𝐿)), and that (𝑇𝑡)𝑡≥0 is conservative. In return, a
second projection 𝑃𝑆 is defined via 𝑃𝑆𝑓 = 𝑃𝑓 + (𝑓 , 1)𝐻 , which is used instead of 𝑃 in
(H2). Furthermore, the right hand sides of the inequalities in (H1) allow either projection
each, independently. The proofs carry over to our assumptions without change, and our
formulation corresponds to the generality in which the results in [GW19] were stated.

Since the conditions (H2) and (H3) are verified in practice by assuming Poincaré inequali-
ties, the projection 𝑃𝑆 appears to be a more natural choice. However, in our applications,
we restrict ourselves to subspaces of 𝐿2-spaces where each element 𝑓 satisfies (𝑓 , 1)𝐻 = 0,
so that both projections coincide. The convergence result is then lifted to the entire space
afterwards.

Remark 2.4.2 (Comparison).

(i) Condition (H1) is stronger than (WH1). However, since 𝑆𝑥 = 𝑆(𝐼 − 𝑃)𝑥 for all 𝑥 ∈ 𝐻 ,
[GS14, Remark 2.17] shows that Theorem 2.2.1 holds under (WH1) as well. In applications,
we verify (H1) in any case.

(ii) If the 𝛼𝑖 are constant in (WH4), then (H2) and (H3) are satisfied. In that case, Theorem 2.3.1
also yields exponential convergence, since then

𝜉(𝑡) = exp(−
𝑐2
𝛼1𝛼2

𝑡) .

(iii) In our applications, (H2) and (H3) are verified by assuming Poincaré inequalities, which
translates to additional assumptions on the Lebesgue-density of the considered probability
measure. In contrast, (WH4) only requires the validity of weak Poincaré inequalities,
which do not require additional assumptions.

If (𝐺,D) is already essentially self-adjoint, then we can reduce some of the above conditions to
more easily verifiable ones, which is shown in the two following Lemmas, the first of which
corresponds to [GS14, Corollary 2.13].

Lemma 2.4.3. If D is a core for (𝐺, 𝐷(𝐺)), then (H3) is satisfied if (2.2.1) holds for all 𝑥 ∈ D.
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2 Abstract hypocoercivity frameworks

Lemma 2.4.4. Let D be a core for (𝐺, 𝐷(𝐺)). Let (𝑇 , 𝐷(𝑇 )) be a linear operator with D ⊆ 𝐷(𝑇 )
and assume 𝐴𝑃(D) ⊆ 𝐷(𝑇 ∗). Then

(𝐼 − 𝐺)(D) ⊆ 𝐷((𝐵𝑇 )∗) with (𝐵𝑇 )∗(𝐼 − 𝐺)𝑥 = 𝑇 ∗𝐴𝑃𝑥, 𝑥 ∈ D.

If there exists some 𝐶 < ∞ such that

‖(𝐵𝑇 )∗𝑦‖ ≤ 𝐶‖𝑦‖ for all 𝑦 = (𝐼 − 𝐺)𝑥, 𝑥 ∈ D, (2.4.1)

then (𝐵𝑇 , 𝐷(𝑇 )) is bounded and its closure (𝐵𝑇 ) is a continuous operator on 𝐻 with ‖𝐵𝑇 ‖ =
‖(𝐵𝑇 )∗‖ ≤ 𝐶.

In particular, if (𝑆, 𝐷(𝑆)) and (𝐴, 𝐷(𝐴)) satisfy these assumptions with constant 𝐶𝑆 and 𝐶𝐴,
respectively, then (H1) is satisfied with 𝑐1 = 𝐶𝑆 , 𝑐2 = 𝐶𝐴, and (WH1) is satisfied with 𝑁 =
1
2 max{𝐶𝑆 , 𝐶𝐴}.

Proof:
Let 𝑧 ∈ 𝐷((𝐴𝑃)∗) and 𝑥 ∈ D. Set 𝑦 = (𝐼 −𝐺)𝑥 . By the representation of 𝐵 on𝐷((𝐴𝑃)∗) together
with self-adjointness of (𝐼 − 𝐺)−1 and D ⊆ 𝐷(𝐴𝑃), we get

(𝑧, 𝐵∗𝑦)𝐻 = (𝐵𝑧, (𝐼 − 𝐺)𝑥)𝐻 = ((𝐴𝑃)∗𝑧, 𝑥)𝐻 = (𝑧, 𝐴𝑃𝑥)𝐻 .

Since 𝐷(𝐴𝑃) is dense in 𝐻 , this implies 𝐵∗𝑦 = 𝐴𝑃𝑥 ∈ 𝐷(𝑇 ∗). By Lemma 1.1.2 (v), we obtain
(𝐵𝑇 )∗𝑦 = 𝑇 ∗𝐵∗𝑦 = 𝑇 ∗𝐴𝑃𝑥 .

By essential self-adjointness and hence essential m-dissipativity of 𝐺, (𝐼 − 𝐺)(D) is dense in 𝐻 .
Therefore by (2.4.1), the closed operator ((𝐵𝑇 )∗, 𝐷((𝐵𝑇 )∗)) is a bounded operator with domain𝐻 .
Since (𝐵𝑇 , 𝐷(𝑇 )) is densely defined, by Lemma 1.1.2 (i) and (ii), it is closable with 𝐵𝑇 = (𝐵𝑇 )∗∗,
which is a bounded operator on 𝐻 with the stated norm.

The last part follows immediately since 𝑆𝑥 = 𝑆(𝐼 − 𝑃)𝑥 for all 𝑥 ∈ D. □
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3 Essential m-dissipativity for generalized
Langevin operators

3.1 Introduction

In this chapter, we concern ourselves with showing essential m-dissipativity for a class of second-
order differential operators on an 𝐿2-space, where they are defined on a set C of compactly
supported smooth functions. These operators are of the form 𝐿 = 𝑆 −𝐴, where 𝑆 is a symmetric
negative-semidefinite and𝐴 is an antisymmetric operator, and are associated in a natural way via
integration by parts to a bilinear gradient form. This structure already guarantees the existence
of a maximally dissipative extension of (𝐿, C)which generates a strongly continuous contraction
semigroup on the appropriate Hilbert space. However, it is still important to show that C is
suitably large to form a core of this generator, so that we may reduce the analytic treatment of
the operator to that set. In particular, both Hypocoercivity frameworks presented above require
sufficient knowledge of such a core.

The notations introduced in this part will be used for the remainder of the section without
further mention. Let 𝑑1, 𝑑2 ∈ ℕ and set the state space as 𝐸 = ℝ𝑑1+𝑑2 with corresponding
Borel-𝜎-algebra F = B(ℝ𝑑1+𝑑2). For a measurable function 𝑉 ∶ ℝ𝑑𝑖 → ℝ, denote by 𝑍(𝑉 ) the
integral ∫ℝ𝑑𝑖 e

−𝑉 (𝑥) d𝑥 . In the following, the first 𝑑1 components of 𝐸 will be written as 𝑥 , the
latter 𝑑2 components as 𝑦. We denote the standard Euclidean inner product of two elements
𝑢, 𝑣 ∈ ℝ𝑑𝑖 by ⟨𝑢, 𝑣⟩. By ∇𝑥𝑓 and ∇𝑦𝑓 , we denote the gradient with respect to the first and second
variable of a sufficiently differentiable function 𝑓 ∶ 𝐸 → ℝ, respectively. Analogously, we define
the Hessian matrices 𝐻𝑥𝑓 and 𝐻𝑦𝑓 .

The approach here will be as follows: First we introduce the general shape of differential
operators considered, along with the corresponding invariant measures that will fix the 𝐿2-
Hilbert space on which the generated semigroups shall act. Note that later on (see Section 4.3.1),
we will transform this setting into the corresponding Fokker-Planck formulation, which might be
more familiar to the reader. Secondly, we specify a set of conditions on the first and second order
coefficients that we require to obtain our result. Then, we prove essential self-adjointness of the
symmetric part (𝑆, C) with Lipschitz-continuous coefficients, and use perturbation theory to
obtain essential m-dissipativity of the entire operator (𝐿, C), albeit still with Lipschitz coefficients.
Lastly, we use the dense range condition together with approximation by Lipschitz coefficients
to obtain the result in full generality.
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3 Essential m-dissipativity for generalized Langevin operators

3.2 The differential operators

We now introduce the differential operators 𝑆, 𝐴 and 𝐿 as mentioned above.

Definition 3.2.1. Let Σ = (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑑2 be a variable symmetric matrix with 𝑎𝑖𝑗 ∶ ℝ𝑑2 → ℝ being
locally weakly differentiable. Let further Φ ∶ ℝ𝑑1 → ℝ and Ψ ∶ ℝ𝑑2 → ℝ also be locally weakly
differentiable, and 𝑄 be a real 𝑑1 × 𝑑2-matrix with transpose 𝑄∗.

We consider operators of the form

𝑆𝑓 = tr[Σ𝐻𝑦𝑓 ] +
𝑑2
∑
𝑖=1

𝑏𝑖𝜕𝑦𝑖𝑓 =
𝑑2
∑
𝑖,𝑗=1

𝑎𝑖𝑗𝜕𝑦𝑗𝜕𝑦𝑖𝑓 +
𝑑2
∑
𝑖=1

𝑏𝑖𝜕𝑦𝑖𝑓 , (3.2.1)

where 𝑏𝑖(𝑦) =
𝑑2
∑
𝑗=1

(𝜕𝑗𝑎𝑖𝑗 (𝑦) − 𝑎𝑖𝑗 (𝑦)𝜕𝑗Ψ(𝑦)), (3.2.2)

𝐴𝑓 = 𝑄∗∇Φ ⋅ ∇𝑦𝑓 − 𝑄∇Ψ ⋅ ∇𝑥𝑓 , (3.2.3)
𝐿𝑓 = (𝑆 − 𝐴)𝑓 , (3.2.4)

𝐿̂𝑓 = (𝑆 + 𝐴)𝑓 , for 𝑓 ∈ C, (3.2.5)

where we set C ..= 𝐶∞
𝑐 (ℝ𝑑1) ⊗ 𝐶∞

𝑐 (ℝ𝑑2) as the tensor product space of smooth compactly
supported functions on ℝ𝑑1 and ℝ𝑑2 .

First, we specify the potentials Φ and Ψ:

Assumption (Φ1). The potential Φ ∶ ℝ𝑑1 → ℝ is assumed to be bounded from below and locally
Lipschitz-continuous.

Assumption (Ψ1). The potential Ψ is a measurable, locally bounded function and satisfies
𝑍(Ψ) < ∞.

This allows the introduction of the following measures:

Definition 3.2.2. Denote by 𝜇1 and 𝜇2 themeasure e−Φ(𝑥) d𝑥 on (ℝ𝑑1 ,B(ℝ𝑑1)) and the probability
measure 𝑍(Ψ)−1e−Ψ(𝑦) d𝑦 on (ℝ𝑑2 ,B(ℝ𝑑2)), respectively.

Further define the product measure 𝜇 = 𝜇1 ⊗ 𝜇2 on (𝐸,F) and set 𝑋 ..= 𝐿2(𝐸; 𝜇), where 𝐸 is the
state space ℝ𝑑1+𝑑2 and F the Borel-𝜎-algebra B(𝐸).

To ensure well-definedness of the operators on 𝑋 , we further assume

Assumption (Ψ2). It holds that Ψ ∈ 𝐻 1,1
loc (ℝ

𝑑2) as well as 𝜕𝑗Ψ ∈ 𝐿2loc(ℝ
𝑑2) for 1 ≤ 𝑗 ≤ 𝑑2.

We also assume the following about Σ = (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑑 with 𝑎𝑖𝑗 ∶ ℝ𝑑2 → ℝ:
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3.2 The differential operators

Assumption (Σ1). Σ is symmetric and uniformly strictly elliptic, i.e. there is some 0 < 𝑐Σ < ∞
such that

⟨𝑣, Σ(𝑦)𝑣⟩ ≥ 𝑐−1Σ ⋅ |𝑣|2 for all 𝑣 ∈ ℝ𝑑2 and 𝜇2-almost all 𝑦 ∈ ℝ𝑑2 .

Assumption (Σ2). For each 1 ≤ 𝑖, 𝑗 ≤ 𝑑2, 𝑎𝑖𝑗 is bounded and locally Lipschitz-continuous.

Remark 3.2.3. We remark the following to explain how the above considerations yield well-
definedness of all terms:

(i) Due to local boundedness of Φ and Ψ, the measures 𝜇1 and 𝜇2 are locally equivalent to
the Lebesgue measures on ℝ𝑑1 and ℝ𝑑2 , respectively. Therefore, the notation 𝐻 𝑛,𝑝

loc (ℝ
𝑑𝑖)

does not depend on the specific measure used.

(ii) Since locally Lipschitz functions are locally absolutely continuous, they are almost every-
where differentiable such that the gradient coincides almost everywhere with the weak
derivative and is bounded. In particular, the above assumptions imply that Φ ∈ 𝐻 1,∞

loc (ℝ
𝑑1)

and 𝑎𝑖𝑗 ∈ 𝐻 1,∞
loc (ℝ

𝑑2) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑑2.

Proposition 3.2.4. For 𝑓 , 𝑔 ∈ C, it holds that

(𝑆𝑓 , 𝑔)𝑋 = −∫
𝐸
⟨∇𝑦𝑓 , Σ∇𝑦𝑔⟩ d𝜇 and (𝐴𝑓 , 𝑔)𝑋 = ∫

𝐸
⟨∇𝑦𝑓 , 𝑄∗∇𝑥𝑔⟩ − ⟨∇𝑥𝑓 , 𝑄∇𝑦𝑔⟩ d𝜇.

In particular, (𝑆, C) is symmetric negative-semidefinite, (𝐴, C) is antisymmetric, and (𝐿, C), (𝐿̂, C)
are dissipative and induce a gradient form via

(𝐿𝑓 , 𝑔)𝑋 = −∫
𝐸⟨

∇𝑓 ,(
0 −𝑄
𝑄∗ Σ )∇𝑔⟩ d𝜇,

(𝐿̂𝑓 , 𝑔)𝑋 = −∫
𝐸⟨

∇𝑓 ,(
0 𝑄

−𝑄∗ Σ)∇𝑔⟩ d𝜇, for 𝑓 ∈ C.
(3.2.6)

Proof:
Let 𝑓 , 𝑔 ∈ C. Then integration by parts yields

∫
𝐸
𝑎𝑖𝑗 (𝜕𝑦𝑗𝜕𝑦𝑖𝑓 )𝑔 e

−Φ−Ψ d(𝑥, 𝑦) = −∫
𝐸
𝜕𝑦𝑖𝑓 ((𝜕𝑗𝑎𝑖𝑗 − 𝑎𝑖𝑗𝜕𝑗Ψ)𝑔 + 𝑎𝑖𝑗𝜕𝑦𝑗𝑔) e

−Φ−Ψ d(𝑥, 𝑦)

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑑2, which implies

(𝑆𝑓 , 𝑔)𝑋 = −
𝑑2
∑
𝑖,𝑗=1

𝑍(Ψ)−1 ∫
𝐸
𝑎𝑖𝑗 (𝜕𝑦𝑖𝑓 )(𝜕𝑦𝑗𝑔)e

−Φ−Ψ d(𝑥, 𝑦)

= −∫
𝐸
⟨∇𝑦𝑓 , Σ∇𝑦𝑔⟩ d𝜇.

In particular, using the property (𝚺1), we obtain

(𝑆𝑓 , 𝑓 )𝑋 = −∫
𝐸
⟨∇𝑦𝑓 , Σ∇𝑦𝑓 ⟩ d𝜇 ≤ −𝑐−1Σ ‖∇𝑦𝑓 ‖2𝑋 ≤ 0,
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3 Essential m-dissipativity for generalized Langevin operators

so (𝑆, C) is indeed symmetric negative-semidefinite. Using the fact that 𝜕𝑥𝑖e−Φ−Ψ = 𝜕𝑖Φ e−Φ−Ψ,
another set of integration by parts gives

∫
𝐸
𝑄𝑖𝑗 (𝜕𝑦𝑗 𝑓 )𝑔(𝜕𝑖Φ) e

−Φ−Ψ d(𝑥, 𝑦) = −∫
𝐸
𝑄𝑖𝑗 ((𝜕𝑥𝑖𝜕𝑦𝑗 𝑓 )𝑔 + 𝜕𝑦𝑗 𝑓 𝜕𝑥𝑖𝑔) e

−Φ−Ψ d(𝑥, 𝑦)

and

∫
𝐸
−𝑄𝑖𝑗 (𝜕𝑥𝑖𝑓 )𝑔(𝜕𝑗Ψ) e

−Φ−Ψ d(𝑥, 𝑦) = ∫
𝐸
𝑄𝑖𝑗 ((𝜕𝑦𝑗𝜕𝑥𝑖𝑓 )𝑔 + 𝜕𝑥𝑖𝑓 𝜕𝑦𝑗𝑔) e

−Φ−Ψ d(𝑥, 𝑦).

for all 1 ≤ 𝑖 ≤ 𝑑1, 1 ≤ 𝑗 ≤ 𝑑2. Adding these equalities yields after summation over 𝑖 and 𝑗 :

(𝐴𝑓 , 𝑔)𝑋 = 𝑍(Ψ)−1 ∫
𝐸
(⟨𝑄∗∇Φ, ∇𝑦𝑓 ⟩ − ⟨𝑄∇Ψ, ∇𝑥𝑓 ⟩)𝑔 e−Φ−Ψ d(𝑥, 𝑦)

= ∫
𝐸
⟨∇𝑦𝑓 , 𝑄∗∇𝑥𝑔⟩ − ⟨∇𝑥𝑓 , 𝑄∇𝑦𝑔⟩ d𝜇.

In particular,

(𝐴𝑓 , 𝑓 )𝑋 = ∫
𝐸
⟨𝑄∇𝑦𝑓 , ∇𝑥𝑓 ⟩ − ⟨∇𝑥𝑓 , 𝑄∇𝑦𝑓 ⟩ d𝜇 = 0,

hence (𝐴, C) is antisymmetric. By Remark 1.2.14, both 𝑆 and 𝐴 as well as their sum 𝐿̂ and
difference 𝐿 are dissipative operators with domain C, with the representation (3.2.6) following
directly from the above calculations. □

By Lemma 1.2.16 (i), all four operators are closable, and we denote their closures respectively by
(𝑆, 𝐷(𝑆)), (𝐴, 𝐷(𝐴)), (𝐿, 𝐷(𝐿)) and (𝐿̂, 𝐷(𝐿̂)).

3.3 Preliminary results for symmetric operators

We first prove essential self-adjointness, equivalently essential m-dissipativity, for a wide class
of symmetric differential operators on 𝐿2-spaces. This is essentially a combination of two results
by Bogachev, Krylov, and Röckner, namely [BKR01, Corollary 2.10] and [BKR97, Theorem 7],
however, the combined statement does not seem to be well known and might hold interest as
the basis for similar m-dissipativity proofs. We use the slightly more general statement from
[BGS13, Theorem 5.1] in order to relax the assumptions.

Theorem 3.3.1. Let 𝑑 ≥ 2 and consider 𝐻 = 𝐿2(ℝ𝑑 , 𝜇) where 𝜇 = 𝜌 d𝑥 , 𝜌 = 𝜑2 for some
𝜑 ∈ 𝐻 1,2

loc (ℝ
𝑑) such that 1

𝜌 ∈ 𝐿∞loc(ℝ
𝑑). Let 𝐴 = (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑑 ∶ ℝ𝑑 → ℝ𝑑×𝑑 be symmetric and

locally strictly elliptic with 𝑎𝑖𝑗 ∈ 𝐿∞(ℝ𝑑) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑑. Assume there is some 𝑝 > 𝑑 such
that 𝑎𝑖𝑗 ∈ 𝐻

1,𝑝
loc (ℝ

𝑑) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑑 and that |∇𝜌| ∈ 𝐿𝑝loc(ℝ
𝑑). Consider the bilinear form (𝐵, 𝐷)

given by 𝐷 = 𝐶∞
𝑐 (ℝ𝑑) and

𝐵(𝑓 , 𝑔) ..= (∇𝑓 , 𝐴∇𝑔)𝐻 = ∫
ℝ𝑑
(∇𝑓 (𝑥), 𝐴(𝑥)∇𝑔(𝑥))euc 𝜌(𝑥) d𝑥, 𝑓 , 𝑔 ∈ 𝐷.
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Define further the linear operator (𝑆, 𝐷) via

𝑆𝑓 ..=
𝑑
∑
𝑖,𝑗=1

𝑎𝑖𝑗𝜕𝑗𝜕𝑖𝑓 +
𝑑
∑
𝑖=1

𝑏𝑖𝜕𝑖𝑓 , 𝑓 ∈ 𝐷,

where 𝑏𝑖 = ∑𝑑
𝑗=1(𝜕𝑗𝑎𝑖𝑗+𝑎𝑖𝑗

𝜕𝑗𝜌
𝜌 ) ∈ 𝐿𝑝loc(ℝ

𝑑), so that 𝐵(𝑓 , 𝑔) = (−𝑆𝑓 , 𝑔)𝐻 . Then (𝑆, 𝐷) is essentially
self-adjoint on 𝐻 .

Proof:
Analogously to the proof of [BKR97, Theorem 7], it can be shown that 𝜌 is continuous, hence
locally bounded. Assume that there is some 𝑔 ∈ 𝐻 such that

∫
ℝ𝑑
(𝑆 − 𝐼)𝑓 (𝑥) ⋅ 𝑔(𝑥) ⋅ 𝜌(𝑥) d𝑥 = 0 for all 𝑓 ∈ 𝐷. (3.3.1)

Define the locally finite signed Borel measure 𝜈 via 𝜈 = 𝑔𝜌 d𝑥 , which is then absolutely
continuous with respect to the Lebesgue measure. By definition it holds that

∫
ℝ𝑑 (

𝑑
∑
𝑖,𝑗=1

𝑎𝑖𝑗𝜕𝑗𝜕𝑖𝑓 +
𝑑
∑
𝑖=1

𝑏𝑖𝜕𝑖𝑓 − 𝑓
)

d𝜈 = 0 for all 𝑓 ∈ 𝐷,

so by [BGS13, Theorem 5.1], the density 𝑔 ⋅ 𝜌 of 𝜈 is in 𝐻 1,𝑝
loc (ℝ

𝑑) and locally Hölder continuous,
hence locally bounded. This implies 𝑔 = 𝑔𝜌 ⋅ 1

𝜌 ∈ 𝐿𝑝loc(ℝ
𝑑) ∩ 𝐿∞loc(ℝ

𝑑) and ∇𝑔 = ∇(𝑔𝜌) ⋅ 1
𝜌 −

(𝑔𝜌)∇𝜌𝜌2 ∈ 𝐿𝑝loc(ℝ
𝑑). Hence 𝑔 ∈ 𝐻 1,𝑝

loc (ℝ
𝑑), is locally bounded, and 𝑔 ⋅𝑏𝑖 ∈ 𝐿

𝑝
loc(ℝ

𝑑) for all 1 ≤ 𝑖 ≤ 𝑑.
Therefore, we can apply integration by parts to (3.3.1) and get for every 𝑓 ∈ 𝐷:

0 = −
𝑑
∑
𝑖,𝑗=1

(𝑎𝑖𝑗𝜕𝑖𝑓 , 𝜕𝑗𝑔)𝐻 −
𝑑
∑
𝑖=1

(𝜕𝑖𝑓 , 𝑏𝑖𝑔)𝐻 +
𝑑
∑
𝑖=1

(𝜕𝑖𝑓 , 𝑏𝑖𝑔)𝐻 − (𝑓 , 𝑔)𝐻

= −∫
ℝ𝑑
(∇𝑓 , 𝐴∇𝑔)euc d𝜇 − (𝑓 , 𝑔)𝐻 .

(3.3.2)

Note that this equation can then be extended to all 𝑓 ∈ 𝐻 1,2(ℝ𝑑) with compact support, since
𝑝 > 2 by definition. Now let 𝜓 ∈ 𝐶∞

𝑐 (ℝ𝑑) and set 𝜂 = 𝜓𝑔 ∈ 𝐻 1,2(ℝ𝑑), which has compact
support. The same then holds for 𝑓 ..= 𝜓𝜂 ∈ 𝐻 1,2(ℝ𝑑). Elementary application of the product
rule yields

(∇𝜂, 𝐴∇(𝜓𝑔))euc = (∇𝑓 , 𝐴∇𝑔)euc − 𝜂(∇𝜓, 𝐴∇𝑔)euc + 𝑔(∇𝜂, 𝐴∇𝜓)euc. (3.3.3)

From now on, for 𝑎, 𝑏 ∶ ℝ𝑑 → ℝ𝑑 , let (𝑎, 𝑏) always denote the evaluation of the Euclidean inner
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product (𝑎, 𝑏)euc. By using (3.3.3) and applying (3.3.2) to 𝑓 , we get

∫
ℝ𝑑
(∇(𝜓𝑔), 𝐴∇(𝜓𝑔)) d𝜇 + ∫

ℝ𝑑
(𝜓𝑔)2 d𝜇 = ∫

ℝ𝑑
(∇𝜂, 𝐴∇(𝜓𝑔)) d𝜇 + ∫

ℝ𝑑
𝜂𝜓𝑔 d𝜇

= ∫
ℝ𝑑
(∇𝑓 , 𝐴∇𝑔) d𝜇 − ∫

ℝ𝑑
𝜂(∇𝜓, 𝐴∇𝑔) d𝜇 + ∫

ℝ𝑑
𝑔(∇𝜂, 𝐴∇𝜓) d𝜇 + ∫

ℝ𝑑
𝑓 𝑔 d𝜇

= −∫
ℝ𝑑
𝜓𝑔(∇𝜓, 𝐴∇𝑔) d𝜇 + ∫

ℝ𝑑
𝑔(∇(𝜓𝑔), 𝐴∇𝜓) d𝜇

= ∫
ℝ𝑑
𝑔2(∇𝜓, 𝐴∇𝜓) d𝜇,

where the last step follows from the product rule and symmetry of 𝐴. Since 𝐴 is locally strictly
elliptic, there is some 𝑐 > 0 such that

0 ≤ ∫
ℝ𝑑
𝑐(∇(𝜓𝑔), ∇(𝜓𝑔)) d𝜇 ≤ ∫

ℝ𝑑
(∇(𝜓𝑔), 𝐴∇(𝜓𝑔)) d𝜇

and therefore it follows that

∫
ℝ𝑑
(𝜓𝑔)2 d𝜇 ≤ ∫

ℝ𝑑
𝑔2(∇𝜓, 𝐴∇𝜓) d𝜇. (3.3.4)

Let (𝜂𝑛)𝑛∈ℕ be as in Remark 1.4.8. Then (3.3.4) holds for all 𝜓 = 𝜂𝑛. By dominated convergence,
the left part converges to ‖𝑔‖2𝐻 as 𝑛 → ∞. The integrand of the right hand side term is dominated
by 𝑑2𝐶2𝑀 ⋅ 𝑔2 ∈ 𝐿1(𝜇), where 𝐶 corresponds to max|𝑠|=1𝑀𝑠 from Remark 1.4.8 and 𝑀 ..=
max1≤𝑖,𝑗≤𝑑 ‖𝑎𝑖𝑗 ‖∞. By definition of the 𝜂𝑛, that integrand converges pointwisely to zero as
𝑛 → ∞, so again by dominated convergence it follows that 𝑔 = 0 in 𝐻 .

This implies that (𝑆 − 𝐼)(𝐷) is dense in 𝐻 and therefore that (𝑆, 𝐷) is essentially self-adjoint.□

Remark 3.3.2. The above theorem also holds for 𝑑 = 1, as long as 𝑝 ≥ 2. Indeed, continuity
of 𝜌 follows from similar regularity estimates, see [BKR97, Remark 2]. The proof of [BGS13,
Theorem 5.1] mirrors the proof of [BKR01, Theorem 2.8], where 𝑑 ≥ 2 is used to apply [BKR01,
Theorem 2.7]. However, in the cases where it is applied, this distinction is not necessary (since
𝑝′ < 𝑞 always holds). Finally, the extension of (3.3.2) requires 𝑝 ≥ 2.

3.4 Essential m-dissipativity for Lipschitz coefficients and
potential

Throughout this section, we assume (𝚽1), (𝚿1)–(𝚿2) and (𝚺1)–(𝚺2) to be satisfied.

Additionally, we require the following restrictions:
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Assumption (Ψ3). It holds that Ψ ∈ 𝐻 2,1
loc (ℝ

𝑑2 ; 𝜇2) and there are constants 𝐾 < ∞ and 𝛼 ∈ [1, 2)
such that

|∇2Ψ| ≤ 𝐾(1 + |∇Ψ|𝛼),

where ∇2Ψ denotes the Hessian matrix of Ψ.

Assumption (Σ3). There are constants 0 ≤ 𝑀 < ∞, 0 ≤ 𝛽 < 1 such that for all 1 ≤ 𝑖, 𝑗 , 𝑘 ≤ 𝑑2

|𝜕𝑘𝑎𝑖𝑗 (𝑦)| ≤ 𝑀(1𝐵1(0)(𝑦) + |𝑦|𝛽) for 𝜇2-almost all 𝑦 ∈ ℝ𝑑2 .

For notational simplicity, we define the following constants:

Definition 3.4.1. Let Σ satisfy (𝚺2). Then we set

𝑀Σ
..= max{‖𝑎𝑖𝑗 ‖∞ ∶ 1 ≤ 𝑖, 𝑗 ≤ 𝑑2} and

𝐵Σ ..= max{|𝜕𝑗𝑎𝑖𝑗 (𝑦)| ∶ 𝑦 ∈ 𝐵1(0), 1 ≤ 𝑖, 𝑗 ≤ 𝑑2}.

If Σ additionally satisfies (𝚺3), then we define

𝑁Σ
..=

√
𝑀2

Σ + 𝐵2Σ + 𝑑2𝑀2.

Remark 3.4.2. Using Sobolev embedding and interpolation theory, it can be shown that all three
assumptions on Ψ together imply that Ψ is continuously differentiable and that ∇Ψ is locally
Lipschitz-continuous. The proof is analogous to the proof of [Con11, Lemma A6.2]. In particular,
this means that all coefficients appearing in the definition of the operator 𝐿 are locally bounded.

Moreover, due to Remark 1.6.6, both |∇Ψ| and |∇2Ψ| are in⋂1≤𝑝<∞ 𝐿𝑝(𝜇2).

This allows us to formulate

Proposition 3.4.3. The equality (3.2.6) also holds for all 𝑓 ∈ C, 𝑔 ∈ 𝐻 1,2
loc (𝐸). In particular, this

applies to 𝑔 ≡ 1, which yields ∫𝐸 𝐿𝑓 d𝜇 = 0 for all 𝑓 ∈ C, so that 𝜇 is an invariant measure
for (𝐿, C), see Definition 1.3.1.

Proof:
Let 𝑓 ∈ C, 𝑔 ∈ 𝐻 1,2

loc (𝐸). Then there is some 𝑚 ∈ ℕ such that supp(𝑓 ) ⊆ 𝐵𝑚(0). Let 𝜑𝑚 ∶ 𝐸 → ℝ
be a cutoff function as defined in Remark 1.4.8 and set 𝑔̃ ..= 𝜑𝑚 ⋅ 𝑔 . Then 𝑔̃ ∈ 𝐻 1,2(𝐸; d(𝑥, 𝑦))
and can be approximated in Sobolev norm by functions 𝑔𝑛 ∈ 𝐶∞

𝑐 (𝐸). Due to Remark 3.4.2, the
expression 𝐿𝑓 ⋅ e−Φ−Ψ is bounded and therefore

(𝐿𝑓 , 𝑔𝑛)𝑋 = 𝑍(Ψ)−1 ∫
𝐸
(𝐿𝑓 ⋅ e−Φ−Ψ)𝑔 d(𝑥, 𝑦) → (𝐿𝑓 , 𝑔̃)𝑋 = (𝐿𝑓 , 𝑔)𝑋

as 𝑛 → ∞ via Hölder inequality. A similar argument for the right hand side yields

−∫
𝐸⟨

∇𝑓 ,(
0 −𝑄
𝑄∗ Σ )∇𝑔𝑛⟩ d𝜇 → ∫

𝐸⟨
∇𝑓 ,(

0 −𝑄
𝑄∗ Σ )∇𝑔⟩ d𝜇

as 𝑛 → ∞, which proves the claim. □
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Under the assumptions so far, we obtain the following essential m-dissipativity result:

Lemma 3.4.4. The differential operator (𝑆, 𝐶∞
𝑐 (ℝ𝑑2)), where

𝑆𝑓 =
𝑑
∑
𝑖,𝑗=1

𝑎𝑖𝑗𝜕𝑗𝜕𝑖𝑓 +
𝑑
∑
𝑖=1

𝑑
∑
𝑗=1

(𝜕𝑗𝑎𝑖𝑗 − 𝑎𝑖𝑗𝜕𝑗Ψ)𝜕𝑖𝑓 for 𝑓 ∈ 𝐶∞
𝑐 (ℝ

𝑑2),

is essentially self-adjoint on 𝐿2(ℝ𝑑2 , 𝜇2).

Proof:
We apply Theorem 3.3.1 with 𝐴 = Σ and 𝜌 = e−Ψ to show essential self-adjointness. We show
that the assumptions there are satisfied for 𝑝 = ∞: Due to (𝚿1), the function eΨ = 1

𝜌 is locally
bounded. Remark 3.4.2 further yields that ∇Ψ is continuous and therefore |∇𝜌| = |∇Ψe−Ψ| is
locally bounded. The conditions on 𝐴 are satisfied due to (𝚺1) and (𝚺2).

This now directly implies the following:

Corollary 3.4.5. The operator (𝑆, C) as in (3.2.1) is essentially self-adjoint, hence essentially m-
dissipative on 𝑋 .

Proof:
Let 𝑔 = 𝑔1 ⊗ 𝑔2 ∈ C be a pure tensor. Then by Lemma 3.4.4, there is a sequence (𝑓𝑛)𝑛∈ℕ in
𝐶∞
𝑐 (ℝ𝑑2) such that (𝐼 − 𝑆)𝑓𝑛 → 𝑔2 in 𝐿2(ℝ𝑑2 , 𝜇2) as 𝑛 → ∞. Define 𝑓𝑛 ∈ C for each 𝑛 ∈ ℕ as

𝑓𝑛 ..= 𝑔1 ⊗ 𝑓𝑛. Then

‖(𝐼 − 𝑆)𝑓𝑛 − 𝑔‖𝑋 = ‖𝑔1 ⊗ ((𝐼 − 𝑆)𝑓𝑛 − 𝑔2)‖𝑋 = ‖𝑔1‖𝐿2(𝜇1) ⋅ ‖(𝐼 − 𝑆)𝑓𝑛 − 𝑔2‖𝐿2(𝜇2),

which converges to zero as 𝑛 → ∞. By taking linear combinations, this shows that (𝐼 − 𝑆)(C)
is dense in C wrt. the 𝑋 -norm. Since C is dense in 𝑋 , (𝑆, C) is essentially m-dissipative and its
closure (𝑆, 𝐷(𝑆)) generates a strongly continuous contraction semigroup. □

Since 𝑆 is dissipative on 𝐷0
..= 𝐿2𝑐 (𝜇1) ⊗ 𝐶∞

𝑐 (ℝ𝑑2) ⊇ C, the operator (𝑆, 𝐷0) is essentially
m-dissipative as well. We introduce the unitary transformations

𝑈 ∶ 𝐻 → 𝐿2(𝐸, d(𝑥, 𝑦)), 𝑓 ↦
√
𝑍(Ψ)−1 e−

1
2 (Φ+Ψ) and (3.4.1)

𝑈Ψ ∶ 𝐿2(𝜇2) → 𝐿2(ℝ𝑑2 , d𝑦), 𝑓 ↦
√
𝑍(Ψ)−1 e−

1
2Ψ (3.4.2)

as well as the subspace 𝐷1
..= 𝐿2𝑐 (ℝ𝑑1 , d𝑥) ⊗ 𝑈Ψ𝐶∞

𝑐 (ℝ𝑑2) of 𝐿2(𝐸, d(𝑥, 𝑦)). Note that due to (𝚽1),
e−Φ is strictly positive and locally bounded, which implies that 𝐿2𝑐 (ℝ𝑑1 , d𝑥) and 𝐿2𝑐 (𝜇1) coincide.
Hence we obtain 𝐷1 = 𝑈𝐷0 and essential m-dissipativity of (𝐿0, 𝐷1), where 𝐿0 = 𝑈𝑆𝑈−1. For
𝑓 ∈ 𝐷1, we obtain the representation

𝐿0𝑓 =
𝑑
∑
𝑖,𝑗=1

𝑎𝑖𝑗𝜕𝑦𝑗𝜕𝑦𝑖𝑓 −
1
4
(∇Ψ, Σ∇Ψ)𝑓 +

1
2

𝑑2
∑
𝑖,𝑗=1

𝑎𝑖𝑗𝜕𝑗𝜕𝑖Ψ𝑓 +
𝑑
∑
𝑖,𝑗=1

𝜕𝑗𝑎𝑖𝑗 ( 12𝜕𝑖Ψ𝑓 + 𝜕𝑦𝑖𝑓 ),
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3.4 Essential m-dissipativity for Lipschitz coefficients and potential

where the differential operators ∇, 𝜕𝑗 and 𝜕𝑖 are understood in the distributional sense.

For the next step, we have to move over to the complexified setting, where ((𝐿0)ℂ, 𝐷1 × 𝐷1) is
still essentially m-dissipative by Lemma 1.2.27. Then we can perturb that complexified operator
by the multiplication operator (𝐴1, 𝐷1 × 𝐷1) given by

𝐴1[𝑓 , 𝑔](𝑥, 𝑦) ..= i[⟨𝑄∇Ψ, 𝑥⟩𝑓 (𝑥, 𝑦), ⟨𝑄∇Ψ, 𝑥⟩𝑔(𝑥, 𝑦)] for all 𝑓 , 𝑔 ∈ 𝐷1.

Clearly (𝐴1, 𝐷1×𝐷1) is well-defined in 𝐿2ℂ(𝐸, d(𝑥, 𝑦)) and dissipative. For the sake of convenience,
we omit the complexified notation from now on, since Lemma 1.2.27 allows us to retain any
m-dissipativity result obtained by perturbation also for the real case, as long as the operator at
the end of the perturbation process is a complexification of a real operator.

Proposition 3.4.6. The operator (𝐿1, 𝐷1) defined by 𝐿1 ..= 𝐿0 + 𝐴1 is essentially m-dissipative
on 𝐿2(𝐸, d(𝑥, 𝑦)).
Proof:
We apply the perturbation argument Lemma 1.2.25. To this end, we introduce the complete
orthogonal family of projections 𝑃𝑛 defined via 𝑃𝑛𝑓 ..= 𝜉𝑛𝑓 , where 𝜉𝑛 is given by 𝜉𝑛(𝑥, 𝑦) =
1[𝑛−1,𝑛)(|𝑥|). Each 𝑃𝑛 leaves 𝐷1 invariant and commutes with both 𝐿0 and 𝐴1. We have to show
that each 𝑃𝑛𝐴1 is 𝑃𝑛𝐿0-bounded with relative bound zero. Let 𝑓 ∈ 𝑃𝑛𝐷1. Then it holds that

‖i⟨𝑄∇Ψ, 𝑥⟩𝑓 ‖2𝐿2 ≤ 𝑛2|𝑄|22 ∫
𝐸
|∇Ψ|2𝑓 2 d(𝑥, 𝑦).

Hence, it is enough to show that there are finite constants 𝑎, 𝑏 such that

∫
𝐸
|∇Ψ|2𝑓 2 d(𝑥, 𝑦) ≤ 𝑎(𝐿0𝑓 , 𝑓 ) + 𝑏‖𝑓 ‖𝐿2 for all 𝑓 ∈ 𝐷1. (3.4.3)

We get

∫
𝐸
|∇Ψ|2𝑓 2 d(𝑥, 𝑦) ≤ 4𝑐Σ ∫

𝐸

1
4
⟨∇Ψ, Σ∇Ψ⟩𝑓 2 d(𝑥, 𝑦)

≤ 4𝑐Σ(∫𝐸
1
4
⟨∇Ψ, Σ∇Ψ⟩𝑓 2 d(𝑥, 𝑦) + ∫

𝐸
⟨∇𝑦𝑓 , Σ∇𝑦𝑓 ⟩ d(𝑥, 𝑦))

= 4𝑐Σ(
(−𝐿0𝑓 , 𝑓 )𝐿2 + ∫

𝐸

1
2

𝑑2
∑
𝑖,𝑗=1

(𝑎𝑖𝑗𝜕𝑗𝜕𝑖Ψ + 𝜕𝑗𝑎𝑖𝑗𝜕𝑖Ψ)𝑓 2 d(𝑥, 𝑦))

Let 𝑅1 ..= 4𝑐Σ and recall that due to (𝚺3) with 𝛽 = 0, it holds that |𝜕𝑗𝑎𝑖𝑗 | ≤ 2𝑀 . Using the Hölder
and Young inequalities for 𝑝 = 𝑞 = 2, it follows that

𝑅1
2

|||||
∫
𝐸

𝑑2
∑
𝑖,𝑗=1

𝜕𝑗𝑎𝑖𝑗𝜕𝑖Ψ𝑓 2 d(𝑥, 𝑦)
|||||
≤
𝑅1
2

𝑑2
∑
𝑖=1

‖‖‖‖‖(

𝑑2
∑
𝑗=1

𝜕𝑗𝑎𝑖𝑗)
𝑓 𝑅1/2

1

‖‖‖‖‖𝐿2
⋅ ‖𝑅−1/2

1 𝜕𝑖Ψ𝑓 ‖𝐿2

≤
1
4

𝑑2
∑
𝑖=1

∫
𝐸(

𝑅2
1(

𝑑2
∑
𝑗=1

𝜕𝑗𝑎𝑖𝑗)

2

+ (𝜕𝑖Ψ)2)
𝑓 2 d(𝑥, 𝑦)

≤ 16𝑐2Σ𝑀
2𝑑32‖𝑓 ‖

2
𝐿2 +

1
4 ∫𝐸

|∇Ψ|2𝑓 2 d(𝑥, 𝑦).
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3 Essential m-dissipativity for generalized Langevin operators

Now recall (𝚿3) and set 𝑅2 ..= 8𝑐Σ𝑀Σ𝐾 ; then again with Hölder and Young, but for 𝑝 = 2
𝛼 ,

𝑞 = 2
2−𝛼 , we get

𝑅1
2

|||||
∫
𝐸

𝑑2
∑
𝑖,𝑗=1

𝑎𝑖𝑗𝜕𝑗𝜕𝑖Ψ𝑓 2 d(𝑥, 𝑦)
|||||
≤
𝑅1
2 ∫

𝐸
|Σ|2 ⋅ |∇2Ψ|2𝑓 2 d(𝑥, 𝑦)

≤ 2𝑐Σ𝑀Σ𝐾 ∫
𝐸
(1 + |∇Ψ|𝛼)𝑅− 𝛼

2
2 𝑓 𝛼𝑅

𝛼
2
2 𝑓

2−𝛼 d(𝑥, 𝑦)

≤
𝑅2
4 (‖𝑓 ‖

2
𝐿2 + ‖|∇Ψ|𝛼𝑅− 𝛼

2
2 𝑓 𝛼‖

𝐿
2
𝛼
⋅ ‖𝑅

𝛼
2
2 𝑓

2−𝛼‖
𝐿

2
2−𝛼 )

≤
𝑅2
4
‖𝑓 ‖2𝐿2 +

𝛼𝑅2
8𝑅2

‖|∇Ψ|𝑓 ‖2𝐿2 +
(2 − 𝛼)𝑅

2
2−𝛼
2

8
‖𝑓 ‖2𝐿2

≤
(
𝑅2
4

+
𝑅

2
2−𝛼
2
8 )

‖𝑓 ‖2𝐿2 +
1
4 ∫𝐸

|∇Ψ|2𝑓 2 d(𝑥, 𝑦).

Combining these three inequalities yields (3.4.3) with

𝑎 = −8𝑐Σ and 𝑏 = 2𝑅2
1𝑀

2𝑑32 +
𝑅2
2

+
𝑅

2
2−𝛼
2
4

. □

Since 𝐶∞
𝑐 (ℝ𝑑1) ⊗ 𝑈Ψ𝐶∞

𝑐 (ℝ𝑑2) is dense in 𝐷1 wrt. the graph norm of 𝐿1, we obtain essential
m-dissipativity of (𝐿1, 𝐶∞

𝑐 (ℝ𝑑1) ⊗ 𝑈Ψ𝐶∞
𝑐 (ℝ𝑑2)) and therefore also of its dissipative extension

(𝐿1, 𝐷2) with 𝐷2
..= S(ℝ𝑑1) ⊗ 𝑈Ψ𝐶∞

𝑐 (ℝ𝑑2)), where S(ℝ𝑑1) denotes the set of smooth functions
of rapid decrease on ℝ𝑑1 . Applying Fourier transform in the 𝑥-component leaves 𝐷2 invariant
and shows that (𝐿2, 𝐷2) is essentially m-dissipative, where 𝐿2𝑓 = 𝐿0𝑓 + ⟨𝑄∇Ψ, ∇𝑥𝑓 ⟩. At this
point, 𝐿2 is clearly a complexified real operator again, since the imaginary factor does not occur
anymore, and we can therefore move back to the real setting.

Now we add the part depending on the potential Φ.

Proposition 3.4.7. Let Σ satisfy (𝚺3) with 𝛽 = 0 and let Φ be Lipschitz-continuous. Then the
operator (𝐿′, 𝐷2) with 𝐿′𝑓 = 𝐿2𝑓 − ⟨𝑄∗∇Φ, ∇𝑦𝑓 ⟩ is essentially m-dissipative on 𝐿2(𝐸, d(𝑥, 𝑦)).

Proof:
It holds due to antisymmetry of ⟨𝑄∇Ψ, ∇𝑥⟩ that

‖⟨𝑄∗∇Φ, ∇𝑦𝑓 ⟩‖2𝐿2 ≤ ‖|𝑄∗∇Φ|‖2∞𝑐Σ((∇𝑦𝑓 , Σ∇𝑦𝑓 )𝐿2

+ (
⟨∇Ψ, Σ∇Ψ⟩

4
𝑓 − ⟨𝑄∇Ψ, ∇𝑥𝑓 ⟩, 𝑓 )𝐿2)

,

which analogously to the proof of Proposition 3.4.6 again implies that the antisymmetric, hence
dissipative operator (∇Φ∇𝑦 , 𝐷2) is 𝐿2-bounded with bound zero. This shows the claim. □
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3.5 Essential m-dissipativity for locally Lipschitz coefficients

Now that the perturbation process is completed on 𝐿2(𝐸; d(𝑥, 𝑦)), we transform the resulting
operator back into an operator on 𝑋 . This yields:

Theorem 3.4.8. Let Σ satisfy (𝚺3) with 𝛽 = 0 and Φ be Lipschitz-continuous. Then (𝐿, C) is
essentially m-dissipative on 𝐻 .

Proof:
Denote by 𝐻 1,∞

𝑐 (ℝ𝑑1) the space of functions in 𝐻 1,∞(ℝ𝑑1 , d𝑥) with compact support and set
𝐷′ ..= 𝐻 1,∞

𝑐 (ℝ𝑑1) ⊗ 𝑈Ψ𝐶∞
𝑐 (ℝ𝑑2). As (𝐿′, 𝐷′) is dissipative and its closure extends (𝐿′, 𝐷2), it

is itself essentially m-dissipative. The unitary transformation 𝑈 as defined in (3.4.1) satisfies
𝑈−1𝐷′ = 𝐷3

..= 𝐻 1,∞
𝑐 (ℝ𝑑1) ⊗ 𝐶∞

𝑐 (ℝ𝑑2), and explicit calculation shows that 𝑈−1𝐿′𝑈 = 𝐿 on 𝐷3.
Using again the fact that unitary transformations preserve essential m-dissipativity, this means
that (𝐿, 𝐷3) is essentially m-dissipative. It remains to approximate the first component: Let
𝑓 = 𝑔 ⊗ ℎ ∈ 𝐷3 be a pure tensor. Since 𝑔 ∈ 𝐻 1,∞

𝑐 (ℝ𝑑1) ⊆ 𝐻 1,2(ℝ𝑑1 , d𝑥), there is a sequence
(𝑔𝑛)𝑛∈ℕ in 𝐶∞

𝑐 (ℝ𝑑1) such that 𝑔𝑛 → 𝑔 in 𝐻 1,2(ℝ𝑑1 , d𝑥). Setting 𝑓𝑛 ..= 𝑔𝑛 ⊗ ℎ, we obtain

‖𝑓 − 𝑓𝑛‖2𝑋 = 𝑍(Φ)−1𝑍(Ψ)−1(∫ℝ𝑑2
ℎ(𝑦)2 e−Ψ(𝑦) d𝑦)∫

ℝ𝑑1
(𝑔(𝑥) − 𝑔𝑛(𝑥))2e−Φ(𝑥) d𝑥.

Since e−Φ is bounded due to (𝚽1), it follows that 𝑓𝑛 → 𝑓 in 𝑋 . Furthermore, we have the
representation

𝐿(𝑓 − 𝑓𝑛) = (𝑔 − 𝑔𝑛) ⊗ (tr[Σ∇2ℎ] +
𝑑2
∑
𝑖=1

𝑏𝑖𝜕𝑖ℎ)

−
𝑑2
∑
𝑗=1

(𝑄∗∇Φ)𝑗 (𝑔 − 𝑔𝑛) ⊗ 𝜕𝑗ℎ +
𝑑1
∑
𝑖=1

𝜕𝑖(𝑔 − 𝑔𝑛) ⊗ (𝑄∇Ψ)𝑖ℎ.

The first part vanishes in 𝑋 as 𝑛 → ∞ with the same argument as before, and the last part
also vanishes since ∇(𝑔 − 𝑔𝑛) → 0 in 𝑋 and (𝑄∇Ψ)𝑖 ∈ 𝐿2𝑐 (ℝ𝑑2) for all 1 ≤ 𝑖 ≤ 𝑑1. Since ∇Φ is
bounded as Φ is Lipschitz-continuous, we also obtain

‖‖‖‖‖

𝑑2
∑
𝑗=1

(𝑄∗∇Φ)𝑗 (𝑔 − 𝑔𝑛) ⊗ 𝜕𝑗ℎ
‖‖‖‖‖𝑋

→ 0

as 𝑛 → ∞. This together shows that 𝑓 can be approximated in 𝐿-graph norm by functions from
C, which implies essential m-dissipativity of (𝐿, C). □

3.5 Essential m-dissipativity for locally Lipschitz coefficients

The goal of this section is to extend the previous result Theorem 3.4.8 to amore general coefficient
matrix Σ as well as only locally Lipschitz-continuous potential Φ. In our approach, we find that
relaxing assumptions on one of these objects will force slightly more restrictive conditions on
the other up to some boundary cases as a trade-off of sorts. This relationship between Σ and Φ
together with the necessary assumptions on Ψ is summarized in the following condition:
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3 Essential m-dissipativity for generalized Langevin operators

Assumption (C). Let (𝚿1)–(𝚿3) be fulfilled, and let Σ satisfy conditions (𝚺1)–(𝚺3) with con-
stants 𝑀 ∈ [0,∞), 𝛽 ∈ [0, 1). Let Φ satisfy (𝚽1). If 𝛽 > 0, assume additionally the existence of
constants 𝑁 < ∞ and 𝛾 ∈ (0, 1𝛽 ) such that

|∇Φ(𝑥)| ≤ 𝑁(1 + |𝑥|𝛾) for 𝜇1-almost all 𝑥 ∈ ℝ𝑑1 .

Under these assumptions, we end up with the following result, which we prove afterwards by
approximation through Lipschitz-continuous coefficients:

Theorem 3.5.1. Let condition (C) be fulfilled. Then the linear operator (𝐿, C) as defined in Defini-
tion 3.2.1 is essentially m-dissipative on 𝑋 .

Note that this is a strict generalization of Theorem 3.4.8, since Lipschitz-continuity of Φ implies
that |∇Φ| is bounded and 𝛾 = 1 is always admissible independently of the value of 𝛽.

From now on, we will assume condition (C) to be satisfied. For the proof, we first need to
find appropriate approximations for Σ and Φ. Without loss of generality, we assume Φ ≥ 0
(otherwise simply consider Φ̃ ..= Φ + 𝑎, where 𝑎 ≤ Φ(𝑥) for all 𝑥 ∈ ℝ𝑑1 ).

Definition 3.5.2. For 𝑛 ∈ ℕ we define Σ𝑛 via

Σ𝑛 = (𝑎𝑖𝑗 ,𝑛)1≤𝑖,𝑗≤𝑑2 , 𝑎𝑖𝑗 ,𝑛(𝑦) ..= 𝑎𝑖𝑗 ((
𝑛
|𝑦|

∧ 1) 𝑦) .

For each𝑚 ∈ ℕ choose some 𝜂𝑚 ∈ 𝐶∞
𝑐 (ℝ𝑑1) such that 𝜂 = 1 on the ball 𝐵𝑚(0) and set Φ𝑚 = 𝜂𝑚Φ.

Then set 𝜇1,𝑚 ..= e−Φ𝑚 d𝑥 , 𝑋𝑚 ..= 𝐿2(𝐸, 𝜇1,𝑚 ⊗ 𝜇2) and define the linear operator (𝐿𝑛,𝑚, C) on 𝑋𝑚
via

𝐿𝑛,𝑚𝑓 = tr[Σ𝑛𝐻𝑦𝑓 ] +
𝑑
∑
𝑖=1

𝑑
∑
𝑗=1

(𝜕𝑗𝑎𝑖𝑗 ,𝑛 − 𝑎𝑖𝑗 ,𝑛𝜕𝑗Ψ)𝜕𝑦𝑖𝑓 + ⟨𝑄∇Ψ, ∇𝑥𝑓 ⟩ − ⟨𝑄∗∇Φ𝑚, ∇𝑦𝑓 ⟩.

For these modifications, we obtain

Lemma 3.5.3. Let 𝑛, 𝑚 ∈ ℕ. Then Σ𝑛 satisfies (𝚺1)–(𝚺3) with constants 𝛽𝑛 = 0 and 𝑀𝑛 =
(
√
𝑑2 + 1)𝑀𝑛𝛽 . Φ𝑚 fulfills (𝚽1) and is Lipschitz-continuous. In particular, the operator (𝐿𝑛,𝑚, C) is

essentiallym-dissipative on𝑋𝑚, coincides with (𝐿, C) on𝐵𝑚(0)×𝐵𝑛(0), and it holds that ‖⋅‖𝑋 ≤ ‖⋅‖𝑋𝑚 .

Proof:
By definition, Σ𝑛 coincides with Σ on 𝐵𝑛(0), while for 𝑦 ∉ 𝐵𝑛(0), the value is constant on the
ray starting at 0 and passing through 𝑦, i.e. Σ𝑛(𝑦) = Σ( 𝑦|𝑦|). Clearly, this implies that Σ𝑛 is
symmetric with bounded continuous coefficients and uniformly strictly elliptic with 𝑐Σ𝑛 = 𝑐Σ.
For 𝑦 ∈ 𝐵𝑛(0), (𝚺3) implies |𝜕𝑘𝑎𝑖𝑗 ,𝑛| ≤ 2𝑀𝑛𝛽 for all 1 ≤ 𝑘 ≤ 𝑑2. For 𝑦 ∈ ℝ𝑑2 ⧵ 𝐵𝑛(0), the chain
rule suggests

|𝜕𝑘𝑎𝑖𝑗 ,𝑛| =
|||||
𝜕𝑘𝑎𝑖𝑗 (

𝑛𝑦
|𝑦|)

−
𝑑2
∑
𝓁=1

𝜕𝓁𝑎𝑖𝑗 (
𝑛𝑦
|𝑦|)

𝑛𝑦𝑘𝑦𝓁
|𝑦|3

|||||
≤ (

√
𝑑2 + 1)𝑀𝑛𝛽 .
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Hence, Σ𝑛 satisfies (𝚺3) with 𝛽𝑛 = 0 and 𝑀𝑛
..= (

√
𝑑2 + 1)𝑀𝑛𝛽 , which means the 𝑎𝑖𝑗 are

Lipschitz-continuous.

Clearly 0 ≤ Φ𝑚 ≤ Φ and 𝜕𝑖Φ𝑚 = 𝜕𝑖𝜂𝑚Φ + 𝜂𝑚𝜕𝑖Φ is bounded for all 1 ≤ 𝑖 ≤ 𝑑1 since Φ is locally
Lipschitz and 𝜂𝑚 is smooth with compact support. Moreover, e−Φ ≤ e−Φ𝑚 implies ‖ ⋅ ‖𝑋 ≤ ‖ ⋅ ‖𝑋𝑚 .
Now by Theorem 3.4.8, (𝐿𝑛,𝑚, C) is essentially m-dissipative on 𝑋𝑚, and since Σ𝑛 = Σ on 𝐵𝑛(0)
and Φ𝑚 = Φ on 𝐵𝑚(0), it holds that 𝐿𝑛,𝑚𝑓 = 𝐿𝑓 for all 𝑓 ∈ C on 𝐵𝑚(0) × 𝐵𝑛(0). □

Next we show that certain occurring terms can be relatively bounded in 𝑋𝑚 by (𝐼 − 𝐿𝑛,𝑚), where
the bound is independent from the choice of 𝑛 and 𝑚. This allows us to use dissipativity to
perform the necessary estimates to verify the dense range condition for (𝐿, C) on 𝑋 .

Lemma 3.5.4. There is a constant 𝐷1 < ∞ such that for all 𝑛, 𝑚 ∈ ℕ and Σ𝑛, Φ𝑚 as defined above,
the following holds for all 𝑓 ∈ C and 1 ≤ 𝑗 ≤ 𝑑2:

‖𝜕𝑗Ψ𝑓 ‖𝑋𝑚 ≤ 𝐷1𝑛𝛽‖(𝐼 − 𝐿𝑛,𝑚)𝑓 ‖𝑋𝑚 ,

‖𝜕𝑦𝑗 𝑓 ‖𝑋𝑚 ≤ 𝐷1𝑛𝛽‖(𝐼 − 𝐿𝑛,𝑚)𝑓 ‖𝑋𝑚 .

Proof:
Define the unitary transformations 𝑈𝑚 ∶ 𝑋𝑚 → 𝐿2(𝐸, d(𝑥, 𝑣)) analogously to (3.4.1), as well as
the operator 𝐿′𝑛,𝑚 = 𝑈𝑚𝐿𝑛,𝑚𝑈−1

𝑚 , and let 𝑓 ∈ 𝑈𝑚C = 𝐶∞
𝑐 (ℝ𝑑1) ⊗ 𝑈Ψ𝐶∞

𝑐 (ℝ𝑑2). Then

𝐿′𝑛,𝑚𝑓 =
𝑑
∑
𝑖,𝑗=1

𝑎𝑖𝑗 ,𝑛𝜕𝑦𝑗𝜕𝑦𝑖𝑓 −
1
4
(∇Ψ, Σ𝑛∇Ψ)𝑓 +

1
2

𝑑2
∑
𝑖,𝑗=1

𝑎𝑖𝑗 ,𝑛𝜕𝑗𝜕𝑖Ψ𝑓

+
𝑑
∑
𝑖,𝑗=1

𝜕𝑗𝑎𝑖𝑗 ,𝑛( 12𝜕𝑖Ψ𝑓 + 𝜕𝑦𝑖𝑓 ) − ⟨𝑄∇Ψ, ∇𝑥𝑓 ⟩ + ⟨𝑄∗∇Φ𝑚, ∇𝑦𝑓 ⟩.

Analogously to the proof of Proposition 3.4.6 and due to antisymmetry of ⟨𝑄∇Ψ, ∇𝑥⟩ and
⟨𝑄∗∇Φ𝑚, ∇𝑦⟩ on 𝐿2(d(𝑥, 𝑦)), it holds that

‖𝜕𝑗Ψ𝑈−1
𝑚 𝑓 ‖2𝑋𝑚 = ‖𝜕𝑗Ψ𝑓 ‖2𝐿2(d(𝑥,𝑣)) ≤ 4𝑐Σ ∫

𝐸

1
4
⟨∇Ψ, Σ𝑛∇Ψ⟩𝑓 2 + ⟨∇𝑦𝑓 , Σ𝑛∇𝑦𝑓 ⟩ d(𝑥, 𝑣)

≤ 𝑎(−𝐿′𝑛,𝑚𝑓 , 𝑓 )𝐿2 + 𝑏𝑛‖𝑓 ‖2𝐿2 ,
(3.5.1)

where 𝑎 = −8𝑐Σ and

𝑏𝑛 = 2𝑅2
1(𝑀𝑛)2𝑑32 +

𝑅2
2

+
𝑅

2
2−𝛼
2
4

≤ 8𝑅2
1𝑀

2𝑛2𝛽𝑑42 +
𝑅2
2

+
𝑅

2
2−𝛼
2
4

.

Since by the Hölder and Young inequalities, together with dissipativity of (𝐿′𝑛,𝑚, 𝑈𝑚C), it holds
that

(−𝐿′𝑛,𝑚𝑓 , 𝑓 )𝐿2 + ‖𝑓 ‖2𝐿2 = ((𝐼 − 𝐿′𝑛,𝑚)𝑓 , 𝑓 )𝐿2 ≤
1
4 (

‖(𝐼 − 𝐿′𝑛,𝑚)𝑓 ‖𝐿2 + ‖𝑓 ‖𝐿2)
2

≤
1
4 (

2‖(𝐼 − 𝐿′𝑛,𝑚)𝑓 ‖𝐿2)
2 = ‖(𝐼 − 𝐿′𝑛,𝑚)𝑓 ‖

2
𝐿2 ,
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3 Essential m-dissipativity for generalized Langevin operators

the estimate (3.5.1) implies the existence of some 𝐷1 < ∞ such that

‖𝜕𝑗Ψ𝑈−1
𝑚 𝑓 ‖𝑋𝑚 ≤ 𝐷1𝑛𝛽‖(𝐼 − 𝐿′𝑛,𝑚)𝑓 ‖𝐿2 = 𝐷1𝑛𝛽‖(𝐼 − 𝐿𝑛,𝑚)𝑈−1

𝑚 𝑓 ‖𝑋𝑚 .

For the second part, note that 𝜕𝑦𝑗𝑈−1
𝑚 𝑓 = 𝑈−1

𝑚 𝜕𝑦𝑗 𝑓 + 1
2𝜕𝑗Ψ𝑈

−1
𝑚 𝑓 and that

‖𝑈−1
𝑚 𝜕𝑦𝑗 𝑓 ‖

2
𝑋𝑚 = (𝜕𝑦𝑗 𝑓 , 𝜕𝑦𝑗 𝑓 )

2
𝐿2 ≤ 𝑐Σ ∫

𝐸
⟨∇𝑦𝑓 , Σ𝑛∇𝑦𝑓 ⟩ +

1
4
⟨∇Ψ, Σ𝑛∇Ψ⟩𝑓 2 d(𝑥, 𝑦)

≤
1
4 (

𝑎(−𝐿′𝑛,𝑚𝑓 , 𝑓 )𝐿2 + 𝑏𝑛‖𝑓 ‖2𝐿2) ≤
1
4
𝐷2
1𝑛

2𝛽‖(𝐼 − 𝐿𝑛,𝑚)𝑈−1
𝑚 𝑓 ‖2𝑋𝑚 . □

Finally we verify essential m-dissipativity of (𝐿, C) on 𝑋 by checking the dense range condition.
More specifically, we show that every pure tensor 𝑔 ∈ C can be approximated in 𝑋 via (𝐼 − 𝐿)𝑓𝑛,
where 𝑓𝑛 ∈ C for all 𝑛 ∈ ℕ. This then easily extends to the entirety of C via linear combinations,
and therefore proves that (𝐼 − 𝐿, C) has dense range in 𝑋 , since C is dense in 𝑋 . Since (𝐿, C) is
dissipative, it is thereby essentially m-dissipative.

In order to prove this approximation result, we introduce cutoff functions tailored to our
coefficients and the specific tensor 𝑔 that we wish to approximate:

Definition 3.5.5. Assume condition (C) and let 𝑔 ∈ C be a pure tensor. Denote the support of 𝑔
by 𝐾𝑥 ×𝐾𝑦 , where 𝐾𝑥 and 𝐾𝑦 are compact sets in ℝ𝑑1 and ℝ𝑑2 , respectively. Fix some 𝛼 satisfying
𝛽 < 𝛼 < 1

𝛾 . For any 𝛿 > 0, we define 𝛿𝑥 ..= 𝛿𝛼 and 𝛿𝑦 = 𝛿.

By Lemma 1.4.6, for each 𝛿 > 0, define smooth cutoff functions 𝜙𝛿 ∈ 𝐶∞
𝑐 (ℝ𝑑1), 𝜓𝛿 ∈ 𝐶∞

𝑐 (ℝ𝑑2)
with 0 ≤ 𝜙𝛿 , 𝜓𝛿 ≤ 1, supp(𝜙𝛿) ⊆ 𝐵𝛿𝑥 (𝐾𝑥), supp(𝜓𝛿) ⊆ 𝐵𝛿𝑦 (𝐾𝑦), 𝜙𝛿 = 1 on 𝐾𝑥 and 𝜓𝛿 = 1 on
𝐾𝑦 , which satisfy

‖𝜕𝑠𝜙𝛿‖∞ ≤ 𝐶𝜙𝛿−|𝑠|𝑥 and ‖𝜕𝑤𝜓𝛿‖∞ ≤ 𝐶𝜓𝛿−|𝑠|𝑦

for all multi-indices 𝑠 ∈ ℕ𝑑1 , 𝑤 ∈ ℕ𝑑2 with |𝑠|, |𝑤| ≤ 2. The constants 𝐶𝜙, 𝐶𝜓 are independent of
𝛿.

Further define 𝜒𝛿 ∈ C via
𝜒𝛿(𝑥, 𝑦) ..= 𝜙𝛿(𝑥)𝜓𝛿(𝑦).

Finally, for any 𝑓 ∈ C, set 𝑓𝛿 ∈ C as 𝑓𝛿 ..= 𝜒𝛿𝑓 .

Without loss of generality, we consider 𝛿 and hence 𝛿𝛼 sufficiently large such that supp(𝜙𝛿) ⊆
𝐵2𝛿𝛼 (0), supp(𝜓𝛿) ⊆ 𝐵2𝛿(0) and that there are 𝑛, 𝑚 ∈ ℕ that satisfy

supp(𝜙𝛿) × supp(𝜓𝛿) ⊆ 𝐵𝑚(0) × 𝐵𝑛(0) ⊆ 𝐵2𝛿𝛼 (0) × 𝐵2𝛿(0). (3.5.2)

The following then holds:
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3.5 Essential m-dissipativity for locally Lipschitz coefficients

Lemma 3.5.6. Let 𝑔 ∈ 𝐶∞
𝑐 (ℝ𝑑) ⊗ 𝐶∞

𝑐 (ℝ𝑑) and 𝜙, 𝜓 as above. Then there is a constant 𝐷2 < ∞
and a function 𝜌 ∶ ℝ → ℝ satisfying 𝜌(𝑠) → 0 as 𝑠 → ∞, such that for any 𝛿, 𝑛 and 𝑚 satisfying
(3.5.2),

‖(𝐼 − 𝐿)𝑓𝛿 − 𝑔‖𝑋 ≤ ‖(𝐼 − 𝐿𝑛,𝑚)𝑓 − 𝑔‖𝑋𝑚 + 𝐷2 ⋅ 𝜌(𝛿)‖(𝐼 − 𝐿𝑛,𝑚)𝑓 ‖𝑋𝑚

holds for all 𝑓 ∈ C.

Proof:
By the product rule,

‖(𝐼 − 𝐿)𝑓𝛿 − 𝑔‖𝑋 ≤ ‖𝜒𝛿((𝐼 − 𝐿)𝑓 − 𝑔)‖𝑋 +
𝑑2
∑
𝑖,𝑗=1

‖𝜙𝛿(𝑥)𝑎𝑖𝑗 (𝑦)𝜕𝑗𝜕𝑖𝜓𝛿(𝑦)𝑓 ‖𝑋

+ 2
𝑑2
∑
𝑖,𝑗=1

‖𝜙𝛿(𝑥)𝑎𝑖𝑗 (𝑦)𝜕𝑖𝜓𝛿(𝑦)𝜕𝑦𝑗 𝑓 ‖𝑋 +
𝑑2
∑
𝑖,𝑗=1

‖𝜙𝛿(𝑥)𝜕𝑗𝑎𝑖𝑗 (𝑦)𝜕𝑖𝜓𝛿(𝑦)𝑓 ‖𝑋

+
𝑑2
∑
𝑖,𝑗=1

‖𝜙𝛿(𝑥)𝑎𝑖𝑗 (𝑦)𝜕𝑗Ψ(𝑦)𝜕𝑖𝜓𝛿(𝑦)𝑓 ‖𝑋

+
𝑑1
∑
𝑖=1

𝑑2
∑
𝑗=1

‖𝑄𝑖𝑗𝜕𝑖𝜙𝛿(𝑥)𝜕𝑗Ψ(𝑦)𝜓𝛿(𝑦)𝑓 ‖𝑋

+
𝑑1
∑
𝑖=1

𝑑2
∑
𝑗=1

‖𝑄𝑖𝑗𝜕𝑖Φ(𝑥)𝜙𝛿(𝑥)𝜕𝑖𝜓𝛿(𝑦)𝑓 ‖𝑋 .

Due to the choice of 𝑛 and 𝑚, every ‖ ⋅ ‖𝑋 on the right hand side can be replaced with ‖ ⋅ ‖𝑋𝑚 , 𝑎𝑖𝑗
by 𝑎𝑖𝑗 ,𝑛, and Φ by Φ𝑚, hence 𝐿 by 𝐿𝑛,𝑚.

Using this, we now give estimates for each summand of the right hand side, in their order of
appearance:

(1) ‖𝜒𝛿((𝐼 − 𝐿)𝑓 − 𝑔)‖𝑋 ≤ ‖(𝐼 − 𝐿𝑛,𝑚)𝑓 − 𝑔‖𝑋𝑚 ,

(2) ‖𝜙𝛿(𝑥)𝑎𝑖𝑗 (𝑦)𝜕𝑗𝜕𝑖𝜓𝛿(𝑦)𝑓 ‖𝑋𝑚 ≤ 𝑀Σ𝐶𝜓𝛿−2‖𝑓 ‖𝑋𝑚 ,

(3) ‖𝜙𝛿(𝑥)𝑎𝑖𝑗 (𝑦)𝜕𝑖𝜓𝛿(𝑦)𝜕𝑦𝑗 𝑓 ‖𝑋𝑚 ≤ 𝑀Σ𝐶𝜓𝛿−1‖𝜕𝑦𝑗 𝑓 ‖𝑋𝑚 ,

(4) ‖𝜙𝛿(𝑥)𝜕𝑗𝑎𝑖𝑗 ,𝑛(𝑦)𝜕𝑖𝜓𝛿(𝑦)𝑓 ‖𝑋𝑚 ≤ max{𝐵Σ, 2
√
𝑑2𝑀 ⋅ (2𝛿)𝛽∨0}𝐶𝜓𝛿−1‖𝑓 ‖𝑋𝑚 ,

(5) ‖𝜙𝛿(𝑥)𝑎𝑖𝑗 (𝑦)𝜕𝑗Ψ(𝑦)𝜕𝑖𝜓𝛿(𝑦)𝑓 ‖𝑋𝑚 ≤ 𝑀Σ𝐶𝜓𝛿−1‖𝜕𝑗Ψ(𝑦)𝑓 ‖𝑋𝑚 ,

(6) ‖𝑄𝑖𝑗𝜕𝑖𝜙𝛿(𝑥)𝜕𝑗Ψ(𝑦)𝜓𝛿(𝑦)𝑓 ‖𝑋𝑚 ≤ |𝑄𝑖𝑗 |𝐶𝜙𝛿−𝛼‖𝜕𝑗Ψ(𝑦)𝑓 ‖𝑋𝑚 ,

(7) ‖𝑄𝑖𝑗𝜕𝑖Φ(𝑥)𝜙𝛿(𝑥)𝜕𝑖𝜓𝛿(𝑦)𝑓 ‖𝑋𝑚 ≤ |𝑄𝑖𝑗 |𝑁 (1 + (2𝛿𝛼)𝛾)𝐶𝜓𝛿−1‖𝑓 ‖𝑋𝑚 ,

where the last inequality is due to |𝜕𝑖Φ(𝑥)| ≤ 𝑁(1 + |𝑥|𝛾) for all 𝑥 ∈ ℝ𝑑 and the support of the
cutoff as in (3.5.2).
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Note that due to dissipativity of (𝐿𝑛,𝑚, C) on𝑋𝑚, ‖𝑓 ‖𝑋𝑚 ≤ ‖(𝐼 −𝐿𝑛,𝑚)𝑓 ‖𝑋𝑚 holds. By application of
Lemma 3.5.4, the terms ‖𝜕𝑦𝑗 𝑓 ‖𝑋𝑚 and ‖𝜕𝑗Ψ𝑓 ‖𝑋𝑚 can also be bounded by a factor of ‖(𝐼 −𝐿𝑛,𝑚)𝑓 ‖𝑋𝑚 .
Together, this shows the existence of 𝐷2 independent of 𝑛, 𝑚, such that

‖(𝐼 − 𝐿)𝑓𝛿 − 𝑔‖𝑋 ≤ ‖(𝐼 − 𝐿𝑛,𝑚)𝑓 − 𝑔‖𝑋𝑚 + 𝐷2 ⋅ 𝜌(𝛿)‖(𝐼 − 𝐿𝑛,𝑚)𝑓 ‖𝑋𝑚

where
𝜌(𝛿) ..= 𝛿−2 + 2 ⋅ 2𝛽𝛿𝛽−1 + 2𝛽∨0𝛿(𝛽∨0)−1 + 2𝛽𝛿𝛽−𝛼 + 𝛿−1 + 2𝛾𝛿𝛼𝛾−1.

Clearly 𝜌(𝛿) → 0 as 𝛿 → ∞ due to 𝛽 < 1 and the definition of 𝛼. □

Finally, we are able to prove Theorem 3.5.1 completely as stated:

Proof (of Theorem 3.5.1):
Fix some pure tensor 0 ≠ 𝑔 ∈ C. We show that for each 𝜀 > 0, we can find some 𝑓𝛿 ∈ C such that

‖(𝐼 − 𝐿)𝑓𝛿 − 𝑔‖𝑋 < 𝜀.

Choose 𝛿 > 0 large enough such that 𝜌(𝛿) < 𝜀
4𝐷2‖𝑔‖𝑋 (where 𝜌, 𝐷2 are provided by Lemma 3.5.6),

and that there exist 𝑛, 𝑚 satisfying (3.5.2), which we fix.

Due to Theorem 3.4.8, there is an 𝑓 ∈ C such that ‖(𝐼 − 𝐿𝑛,𝑚)𝑓 − 𝑔‖𝑋𝑚 < min{ 𝜀2 , ‖𝑔‖𝑋 }. For this
𝑓 and the chosen 𝛿, define 𝑓𝛿 as in Definition 3.5.5. Note that due to the choice of the cutoffs, it
holds that ‖𝑔‖𝑋 = ‖𝑔‖𝑋𝑚 , therefore application of Lemma 3.5.6 yields

‖(𝐼 − 𝐿)𝑓𝛿 − 𝑔‖𝑋 ≤ ‖(𝐼 − 𝐿𝑛,𝑚)𝑓 − 𝑔‖𝑋𝑚 + 𝐷2𝜌(𝛿)‖(𝐼 − 𝐿𝑛,𝑚)𝑓 ‖𝑋𝑚
<
𝜀
2
+

𝜀
4‖𝑔‖𝑋

(‖(𝐼 − 𝐿𝑛,𝑚)𝑓 − 𝑔‖𝑋𝑚 + ‖𝑔‖𝑋𝑚)

<
𝜀
2
+
2𝜀‖𝑔‖𝑋
4‖𝑔‖𝑋

= 𝜀.

Since C is dense in 𝑋 , this proves that the dissipative operator (𝐿, C) has dense range on 𝑋 and
is therefore essentially m-dissipative. □

Corollary 3.5.7. Let (C) hold. Then (𝐿, C) is essentially m-dissipative on𝑋 and its closure (𝐿, 𝐷(𝐿))
generates the adjoint semigroup (𝑇 ∗𝑡 )𝑡≥0 of (𝑇𝑡)𝑡≥0.

Proof:
The first statement is immediate since we obtain 𝐿 from 𝐿 by considering −𝑄 instead of 𝑄.
By definition, it holds that (𝐿𝑓 , 𝑓 )𝑋 = (𝑓 , 𝐿𝑔)𝑋 for all 𝑓 , 𝑔 ∈ C, and since C is dense in 𝐷(𝐿)
with respect to 𝐿-graph norm, the same holds for all 𝑓 ∈ 𝐷(𝐿), 𝑔 ∈ C. This means that on
C, 𝐿 coincides with the adjoint operator (𝐿∗, 𝐷(𝐿∗)) of (𝐿, 𝐷(𝐿)), which generates the adjoint
semigroup (𝑇 ∗𝑡 )𝑡≥0 and is therefore m-dissipative. We therefore obtain that (𝐿∗, 𝐷(𝐿∗)) is the
closure of (𝐿, C). □
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3.6 Properties of the associated semigroup

In this section, we consider the semigroup generated by (𝐿, 𝐷(𝐿)) in the special case that 𝜇1 is
also a probability measure, so that 𝑋 becomes a probability space. First, we show that (𝐿, C) is
an abstract diffusion operator on 𝑋 (see Definition 1.3.7):

Lemma 3.6.1. Let (C) be satisfied. Then (𝐿, C) is an abstract diffusion operator on 𝑋 .

Proof:
First, we have to compute the Carré du champ operator Γ. Since for 𝑢, 𝑣 ∈ C,

𝐿(𝑢𝑣) =
𝑑2
∑
𝑖,𝑗=1

𝑎𝑖𝑗 (𝑢𝜕𝑦𝑗𝜕𝑦𝑖𝑣 + 𝜕𝑦𝑗𝑢𝜕𝑦𝑖𝑣 + 𝜕𝑦𝑗 𝑣𝜕𝑦𝑖𝑢 + 𝑣𝜕𝑦𝑗𝜕𝑦𝑖𝑢)

+
𝑑2
∑
𝑖=1

𝑏𝑖(𝑢𝜕𝑦𝑖𝑣 + 𝑣𝜕𝑦𝑖𝑢) + ⟨𝑄∇Ψ, 𝑢∇𝑥𝑣 + 𝑣∇𝑥𝑢⟩ − ⟨𝑄∗∇Φ, 𝑢∇𝑦𝑣 + 𝑣∇𝑦𝑢⟩,

it is clear that
Γ(𝑢, 𝑣) = ⟨∇𝑦𝑢, Σ∇𝑦𝑣⟩ for 𝑢, 𝑣 ∈ C.

Due to positive definiteness of Σ, this implies the second condition in Definition 1.3.7. Now let
𝑚 ∈ ℕ, 𝑢1, … , 𝑢𝑚 ∈ C and 𝜑 ∈ 𝐶∞(ℝ𝑚) with 𝜑(0) = 0. We set 𝑔 ..= 𝜑 ◦ (𝑢1, … , 𝑢𝑚) ∶ 𝐸 → ℝ and
𝐾 ..= ⋃𝑘=1,…,𝑚 supp(𝑢𝑘). Then 𝑢𝑘 = 0 on 𝐾 𝑐 for all 𝑘 = 1,… ,𝑚 and therefore 𝑔 = 0 on 𝐾 𝑐 , so
𝑔 ∈ C. The chain rule implies

𝜕𝑦𝑖𝑔 =
𝑚
∑
𝑘=1

𝜕𝑘𝜑(𝑢1, … , 𝑢𝑚)
𝜕𝑢𝑘
𝜕𝑦𝑖

and

𝜕𝑦𝑗𝜕𝑦𝑖𝑔 =
𝑚
∑
𝑘,𝓁=1

𝜕𝓁𝜕𝑘𝜑(𝑢1, … , 𝑢𝑚)
𝜕𝑢𝓁
𝜕𝑦𝑗

𝜕𝑢𝑘
𝜕𝑦𝑖

+
𝑚
∑
𝑘=1

𝜕𝑘𝜑(𝑢1, … , 𝑢𝑚)
𝜕2𝑢𝑘
𝜕𝑦𝑗𝜕𝑦𝑖

,

which yields

𝐿𝑔 =
𝑚
∑
𝑘=1

𝜕𝑘𝜑(𝑢1, … , 𝑢𝑚)𝐿(𝑢𝑘) +
𝑚
∑
𝑘,𝓁=1

𝜕𝓁𝜕𝑘𝜑(𝑢1, … , 𝑢𝑚)
𝑑2
∑
𝑖,𝑗=1

𝑎𝑖𝑗
𝜕𝑢𝓁
𝜕𝑦𝑗

𝜕𝑢𝑘
𝜕𝑦𝑖

=
𝑚
∑
𝑘=1

𝜕𝑘𝜑(𝑢1, … , 𝑢𝑚)𝐿(𝑢𝑘) +
𝑚
∑
𝑘,𝓁=1

𝜕𝓁𝜕𝑘𝜑(𝑢1, … , 𝑢𝑚)⟨∇𝑦𝑢𝑘 , Σ∇𝑦𝑢𝓁⟩.

This shows that (𝐿, C) is indeed an abstract diffusion operator on 𝑋 . □

We now immediately obtain the following:

Theorem 3.6.2. Let (C) hold and 𝜇 be a probability measure on 𝐸. Then the semigroup (𝑇𝑡)𝑡≥0
generated by the closure (𝐿, 𝐷(𝐿)) of (𝐿, C) is contractive, sub-Markovian, 𝜇-invariant and conser-
vative.
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3 Essential m-dissipativity for generalized Langevin operators

Proof:
Lumer-Phillips (Theorem 1.2.19) implies that (𝐿, 𝐷(𝐿)) generates an sccs (𝑇𝑡)𝑡≥0 on 𝑋 . Since
𝜇 is an invariant measure for (𝐿, C) (see Proposition 3.4.3), Lemma 1.3.3 (iii) implies that it is
invariant for (𝑇𝑡)𝑡≥0. Due to Lemma 3.6.1, we can therefore apply Lemma 1.3.8 to show the
sub-Markov property. By the same argument, (𝑇 ∗𝑡 )𝑡≥0 is also 𝜇-invariant, so by Lemma 1.3.3 (i)
we obtain conservativity of (𝑇𝑡)𝑡≥0. □
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4 Hypocoercivity for degenerate diffusion
semigroups

We now embed the differential operator 𝐿 as defined in Definition 3.2.1 and its associated semi-
group into the abstract hypocoercivity framework. Recall the setting defined in Definition 3.2.2.
We assume the following throughout the remaining considerations:

Assumption (H). Condition (C) holds and 𝜇1 is a probability measure. Moreover, 𝑄𝑄∗ is an
invertible 𝑑1 × 𝑑1-matrix.

Then (𝐿, C) is essentially m-dissipative and we can use the results from Section 3.6.

Definition 4.0.1. We define

𝐻 ..= {𝑓 ∈ 𝐿2(𝐸; 𝜇) ∶ 𝜇(𝑓 ) = 0} ⊆ 𝑋,
𝐻1

..= {𝑓 ∈ 𝐻 ∶ 𝑓 (𝑥, 𝑦) does not depend on 𝑦},
𝐻2

..= 𝐻⟂
1 ,

𝑃𝑓 ..= ∫
ℝ𝑑2

𝑓 (𝑥, 𝑦) 𝜇2(d𝑦) for all 𝑓 ∈ 𝐻, and

D ..= {𝑓 ∈ 𝐶∞(𝐸) ∶ ∇𝑓 has compact support, 𝜇(𝑓 ) = 0} ⊆ 𝐻.

𝐻 is a separable Hilbert space which inherits its inner product and norm from 𝑋 . We may
consider any 𝑓 ∈ 𝐻1 as an element of 𝐿2(𝜇1) with 𝜇1(𝑓 ) = 0.

We have the following properties:

Lemma 4.0.2.

(i) 𝑃 ∶ 𝐻 → 𝐻1 is an orthogonal projection with range 𝐻1.

(ii) Each 𝑓 ∈ D can be expressed as 𝑔 − 𝜇(𝑔) for some 𝑔 ∈ 𝐶∞
𝑐 (𝐸).

(iii) D is dense in 𝐻 and 𝑃(D) ⊆ D.

(iv) (𝐿,D) is well-defined and essentially m-dissipative on 𝐻 .
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4 Hypocoercivity for degenerate diffusion semigroups

Proof:
(i) It is clear that 𝑃2 = 𝑃 , and Jensen’s inequality implies

‖𝑃𝑓 ‖2 = ∫
𝐸 (∫ℝ𝑑2

𝑓 (𝑥, 𝑦) 𝜇2(d𝑦))

2

d𝜇 ≤ ∫
𝐸
∫
ℝ𝑑2

𝑓 (𝑥, 𝑦)2 𝜇2(d𝑦) d𝜇 = ‖𝑓 ‖2

for all 𝑓 ∈ 𝐻 , so 𝑃 is an orthogonal projection and therefore so is 𝐼 −𝑃 . ClearlyR(𝑃) ⊆ 𝐻1,
and for all 𝑓 ∈ 𝐻1, 𝑔 ∈ 𝐻 we get

(𝑓 , (𝐼 − 𝑃)𝑔)𝐻 = ∫
ℝ𝑑1

𝑓 (𝑥)(∫ℝ𝑑2
𝑔(𝑥, 𝑦) − 𝑃𝑔(𝑥) 𝜇2(d𝑦)) 𝜇1(d𝑥) = 0,

which implies R(𝐼 − 𝑃) ⊆ 𝐻2 and thereforeR(𝑃) = 𝐻1.

(ii) Let 𝑓 ∈ D. Since ∇𝑓 has compact support, 𝑓 is constant outside of a compact set with
value 𝑐 ∈ ℝ. Set 𝑔 ..= 𝑓 − 𝑐, then 𝑔 ∈ 𝐶∞

𝑐 (𝐸) and 𝜇(𝑔) = 𝜇(𝑓 ) − 𝑐 = −𝑐, which means
𝑓 = 𝑔 − 𝜇(𝑔).

(iii) Let ℎ ∈ 𝐻 , then there is a sequence (𝑔𝑛)𝑛∈ℕ in C such that 𝑔𝑛 → ℎ in𝑋 . Set 𝑓𝑛 ..= 𝑔𝑛−𝜇(𝑔𝑛),
then 𝑓𝑛 ∈ D and ‖ℎ − 𝑓𝑛‖𝐻 ≤ ‖ℎ − 𝑔𝑛‖𝑋 + |𝜇(𝑔𝑛)| for each 𝑛 ∈ ℕ. Since

|𝜇(𝑔𝑛)| = |𝜇(𝑔𝑛) − 𝜇(ℎ)| ≤ ‖𝑔𝑛 − ℎ‖𝐿1(𝜇) ≤ ‖𝑔𝑛 − ℎ‖𝑋 ,

(𝑓𝑛)𝑛∈ℕ converges to ℎ in 𝐻 as 𝑛 → ∞.

Now let 𝑓 ∈ D. Since integration preserves smoothness, 𝑃𝑓 ∈ 𝐶∞(𝐸), and clearly
𝜇(𝑃𝑓 ) = 0. Since 𝑓 is constant outside of a compact set, the same holds for 𝑃𝑓 , which
implies that ∇𝑃𝑓 has compact support.

(iv) Approximation by cutoff functions as in Remark 1.4.8 shows that 1 is in the domain of
(𝐿, 𝐷(𝐿)), (𝑆, 𝐷(𝑆)) and (𝐴, 𝐷(𝐴)), and that all three operators act trivially on constants.
For 𝑓 ∈ D, point (ii) then shows 𝐿𝑓 = 𝐿𝑔 , and the same holds for 𝑆 and 𝐴, which shows
dissipativity of these operators on D. Moreover, as in Proposition 3.4.3, it follows that
𝜇(𝑆𝑓 ) = (𝑓 , 𝑆1)𝑋 = (𝑓 , 0)𝑋 = 0 as well as 𝜇(𝐴𝑓 ) = (𝐴𝑓 , 1)𝑋 = (𝑓 , 𝐴1) = 0, and thus
𝜇(𝐿𝑓 ) = 0, so (𝐿,D) is indeed an operator on 𝐻 .

Let ℎ ∈ 𝐻 ⊆ 𝑋 . Then due to Theorem 3.5.1, there is a sequence (𝑔𝑛)𝑛∈ℕ in C such that
(𝐼 − 𝐿)𝑔𝑛 → ℎ in 𝑋 as 𝑛 → ∞. Define 𝑓𝑛 ..= 𝑔 − 𝜇(𝑔), then 𝑓𝑛 ∈ D for all 𝑛 ∈ ℕ and

(𝐼 − 𝐿)𝑓𝑛 = 𝑔𝑛 − 𝜇(𝑔𝑛) − 𝐿𝑔𝑛 → ℎ − 𝜇(ℎ) = ℎ as 𝑛 → ∞.

This proves essential m-dissipativity of (𝐿,D) on 𝐻 . □

Definition 4.0.3. From now on, we define the operators (𝐿, 𝐷(𝐿)), (𝑆, 𝐷(𝑆)) as well as (𝐴, 𝐷(𝐴))
on 𝐻 as the closures of (𝐿,D), (𝑆,D) and (𝐴,D), respectively. If we need to distinguish them
from their counterparts on 𝑋 , we denote them with superscript 𝐻 , e.g. (𝐿𝐻 , 𝐷(𝐿𝐻 )).

For any 𝑓 ∈ 𝐻 , we write 𝑓𝑃 for 𝑃𝑓 considered as an element of 𝐿2(𝜇1).
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Now we are in the setting described in the start of Section 2.1, and we immediately obtain that
(D1) is satisfied. Also, we get the following without additional constraints:

Proposition 4.0.4. Condition (D2) is satisfied.

Proof:
Let 𝑓 ∈ 𝐻 , then 𝑓𝑃 ∈ 𝐿2(𝜇1)with 𝜇1(𝑓𝑃 ) = 0. As in the proof of Lemma 4.0.2, there is a sequence
(ℎ𝑛)𝑛∈ℕ in 𝐶∞(ℝ𝑑1) with ℎ𝑛 → 𝑓𝑃 in 𝐿2(𝜇1) such that ∇ℎ𝑛 has compact support and 𝜇1(ℎ𝑛) = 0
for all 𝑛 ∈ ℕ.

Define 𝑔𝑛 ∈ D by 𝑔𝑛(𝑥, 𝑦) ..= ℎ𝑛(𝑥) for all (𝑥, 𝑦) ∈ 𝐸. Then 𝑆𝑔𝑛 = 0 for all 𝑛 ∈ ℕ and 𝑔𝑛 → 𝑃𝑓
in 𝐻 as 𝑛 → ∞. Since (𝑆, 𝐷(𝑆)) is closed, this proves 𝑃𝑓 ∈ 𝐷(𝑆) with 𝑆𝑃𝑓 = 0. □

Proposition 4.0.5. Condition (D3) is satisfied. Moreover, even 𝐴𝑃(D) ⊆ 𝐷(𝐴) and therefore
(𝐴𝑃)∗𝐴𝑃 = −𝑃𝐴2𝑃 on D.

Proof:
Let 𝑓 ∈ D, then 𝑃𝑓 ⊆ D ⊆ 𝐷(𝐴) due to Lemma 4.0.2 (iii). Since 𝑃𝑓 only depends on the first
component, we get

𝐴𝑃𝑓 (𝑥, 𝑦) = −⟨𝑄∇Ψ(𝑦), ∇𝑥(𝑃𝑓 )(𝑥)⟩ = −
𝑑1
∑
𝑖=1

𝑑2
∑
𝑗=1

𝑄𝑖𝑗𝜕𝑗Ψ(𝑦)𝜕𝑥𝑖(𝑃𝑓 )(𝑥). (4.0.1)

Fix 𝑖 and 𝑗 . Since 𝜕𝑥𝑖(𝑃𝑓 ) has compact support, we can apply integration by parts to obtain

𝑃(𝜕𝑗Ψ𝜕𝑥𝑖(𝑃𝑓 ))(𝑥) = ∫
ℝ𝑑2

𝜕𝑗Ψ𝜕𝑥𝑖(𝑃𝑓 )(𝑥) d𝜇2 = −∫
ℝ𝑑2

𝜕𝑥𝑖(𝑃𝑓 )(𝑥)𝜕𝑗 (e
−Ψ(𝑦)) d𝑦

= ∫
ℝ𝑑2

𝜕𝑦𝑗𝜕𝑥𝑖(𝑃𝑓 )(𝑥) d𝜇2 = 0

for all 𝑥 ∈ ℝ𝑑1 , which together with (4.0.1) shows 𝑃𝐴𝑃 ≡ 0 on D.

Set ℎ = 𝜕𝑥𝑖(𝑃𝑓 ) ⊗ 𝜕𝑗Ψ ∈ 𝐻 . Due to Remark 3.4.2, 𝜕𝑗Ψ is in 𝐻 1,4(ℝ𝑑2 ; 𝜇2). Therefore, due to
Theorem 1.6.3, there is a sequence (𝜑𝑛)𝑛∈ℕ in 𝐶∞

𝑐 (ℝ𝑑2)which converges to 𝜕𝑗Ψ in𝐻 1,4(𝜇2)-norm.
The same holds for the sequence (𝜑𝑛 −𝜇2(𝜑𝑛))𝑛∈ℕ, since 𝜇2(𝜑𝑛) converges to 𝜇2(𝜕𝑗Ψ) = 0. Now
define

𝑔𝑛(𝑥, 𝑦) ..= (𝜑𝑛(𝑦) − 𝜇2(𝜑𝑛)) ⋅ 𝜕𝑥𝑖(𝑃𝑓 )(𝑥) for each 𝑛 ∈ ℕ,

then (𝑔𝑛)𝑛∈ℕ is a sequence in D and approximates ℎ in 𝐻 . Moreover, we can apply 𝐴 to get

𝐴𝑔𝑛 = ⟨𝑄∗∇𝑥Φ, ∇𝑦(𝜑𝑛)𝜕𝑥𝑖(𝑃𝑓 )⟩ − ⟨𝑄∇𝑦Ψ, (𝜑𝑛 − 𝜇2(𝜑𝑛))∇𝑥(𝜕𝑥𝑖(𝑃𝑓 ))⟩.

Let 𝑘 ∈ {1, … , 𝑑2}. By construction, 𝜕𝑦𝑘𝜑𝑛 converges to 𝜕𝑘𝜕𝑗Ψ in 𝐿4(𝜇2), hence also in 𝐿2(𝜇2).
Since 𝜕𝑘Ψ is in 𝐿4(𝜇2) and (𝜑𝑛−𝜇2(𝜑𝑛)) converges to 𝜕𝑗Ψ in 𝐿4(𝜇2), we obtain that𝐴𝑔𝑛 converges
in 𝐻 to

⟨𝑄∗∇𝑥Φ, ∇𝑦(𝜕𝑗Ψ)𝜕𝑥𝑖(𝑃𝑓 )⟩ − ⟨𝑄∇𝑦Ψ, (𝜕𝑗Ψ)∇𝑥(𝜕𝑥𝑖(𝑃𝑓 ))⟩.
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4 Hypocoercivity for degenerate diffusion semigroups

Note that this expression is well-defined, since ∇𝑥Φ is locally bounded and 𝜕𝑥𝑖(𝑃𝑓 ) has compact
support on ℝ𝑑1 .

Since (𝐴, 𝐷(𝐴)) is closed, this shows that ℎ ∈ 𝐷(𝐴), which implies 𝐴𝑃𝑓 ∈ 𝐷(𝐴) due to (4.0.1).
Since 𝐴 is antisymmetric, Lemma 1.1.4 implies 𝐴𝑃𝑓 ∈ 𝐷((𝐴𝑃)∗) with (𝐴𝑃)∗𝐴𝑃𝑓 = −𝑃𝐴2𝑃𝑓 .□

So far, no new assumptions had to be made to ensure compliance with either hypocoercivity
framework. This changes now that we have verified all required data conditions. As seen in the
above proof, the general case can get quite technical, so we split the remaining work into two
parts. In the first part, we fix a popular choice for Ψ, which greatly simplifies many expressions
and leads to strong hypocoercivity. In the second part, we keep the setting as general as possible,
and prove weak hypocoercivity.

To finish this preliminary part, we introduce a final condition on Φ which is require in either
case:

Assumption (Φ3). We assume that Φ ∈ 𝐶2(ℝ𝑑1) and that there is a constant 𝐶 < ∞ such that

|∇2Φ(𝑥)| ≤ 𝐶(1 + |∇Φ(𝑥)|) for all 𝑥 ∈ ℝ𝑑1 .

Remark 4.0.6. Note that if (𝚽3) holds, then Remark 1.6.6 implies that both |∇Φ| and |∇2Φ| are in
𝐿2(𝜇1).

4.1 Weak hypocoercivity for generalized Langevin dynamics
with multiplicative noise

While we don’t assume that Ψ is the standard Gaussian measure, we still require a bit more
structure:

Assumption (Ψ4). There is some 𝜓 ∈ 𝐶2(ℝ) such that Ψ(𝑦) = 𝜓(|𝑦|2).

Remark 4.1.1. If Ψ(𝑦) = 𝜓(|Λ𝑦 − 𝑎|2) for some invertible Λ ∈ ℝ𝑑2×𝑑2 and 𝑎 ∈ ℝ𝑑2 , then we
can use transformations to modify Ψ to suffice (𝚿4). Indeed, we consider the new potential
Ψ(𝑦) ..= Ψ(Λ−1(𝑦 + 𝑎)) = 𝜓(|𝑦|2), with 𝜇2 and 𝜇 defined accordingly. Let 𝐽 ∶ 𝐿2(𝜇) → 𝐿2(𝜇) be
given by 𝐽 𝑓 (𝑥, 𝑦) ..=

√
| det(Λ)|

−1
𝑓 (𝑥, Λ−1(𝑦 + 𝑎)). Then 𝐽 is a unitary transformation which

leavesD invariant, and we define the operator (𝐿,D) by 𝐿 ..= 𝐽𝐿𝐽−1. This operator has the same
structure as 𝐿, except with 𝑄 = 𝑄Λ∗ and Σ(𝑦) = ΛΣ(Λ−1(𝑦 + 𝑎))Λ∗. So wlog we can assume
that already Ψ(𝑦) = 𝜓(|𝑦|2).

We can now summarize the results for the antisymmetric part 𝐴 proved in [GW19]:
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4.1 Weak hypocoercivity for generalized Langevin dynamics with multiplicative noise

Lemma 4.1.2. If (𝚽3) and (𝚿4) are satisfied, then (𝐺,D) ..= (𝑃𝐴2𝑃,D), which is given for all
𝑓 ∈ D by

𝐺𝑓 =
𝜇2(|∇Ψ|2)

𝑑2

𝑑1
∑
𝑖,𝑗=1

(𝑄𝑄∗)𝑖𝑗 (𝜕𝑥𝑗𝜕𝑥𝑖 − 𝜕𝑥𝑗Φ𝜕𝑥𝑖)𝑃𝑓 ,

is essentially self-adjoint and its closure (𝐺, 𝐷(𝐺)) generates a sub-Markovian strongly continuous
semigroup on 𝐻 . Moreover, there is a constant 𝑐𝐴 only depending on the choice of Φ and Ψ such
that

‖(𝐵𝐴)∗𝑔‖𝐻 ≤ 𝑐𝐴‖𝑔‖𝐻 for all 𝑔 ∈ (𝐼 − 𝐺)D.

This allows us to use Lemma 2.4.4 to prove (WH1). Indeed, the inequality for the antisymmetric
part follows immediately from the previous Lemma, so it remains to show the first inequality.
For this, we introduce the final assumption on Ψ:

Assumption (Ψ5). Ψ is three times weakly differentiable and for any 1 ≤ 𝑖, 𝑗 , 𝑘 ≤ 𝑑2, it holds
that 𝜕𝑖𝜕𝑗𝜕𝑘Ψ ∈ 𝐿2(𝜇2).

Note that in light of Remark 3.4.2, this holds in particular if the third order partial derivatives
are dominated by a multiple of (1 + |∇2Ψ|𝛽) for any 0 < 𝛽 < ∞. We also need to assume some
additional integrability on ∇Σ:

Assumption (Σ4). There is some 1 < 𝑝Σ ≤ ∞ such that |∇Σ| ∈ 𝐿2𝑝Σ(𝜇2).

Lemma 4.1.3. Let (𝚿4), (𝚿5) and (𝚺4) be satisfied. Then the operator 𝑇 ∶ D → 𝐿2(𝜇) with

𝑇 𝑓 (𝑥, 𝑦) ..=
𝑑1
∑
𝑖=1

𝑤𝑖(𝑦) ⋅ (𝜕𝑥𝑖𝑃𝑓 )(𝑥) for 𝑤𝑖 ∶ ℝ𝑑2 → ℝ defined by

𝑤𝑖 ..=
𝑑2
∑
𝑗 ,𝑘,𝓁=1

𝑄𝑖𝑗 (𝜕𝑘𝑎𝑘𝓁(𝜕𝓁𝜕𝑗Ψ) + 𝑎𝑘𝓁(𝜕𝑘𝜕𝓁𝜕𝑗Ψ) − 𝑎𝑘𝓁(𝜕𝓁𝜕𝑗Ψ)(𝜕𝑘Ψ))

is well-defined and there is some 𝑅 < ∞ such that ‖𝑇 𝑓 ‖2𝐿2(𝜇) ≤ 𝑅‖∇𝑓𝑃 ‖2𝐿2(𝜇1) for all 𝑓 ∈ D.

Proof:
Let 𝑓 ∈ D. Since

|𝑇 𝑓 | ≤
𝑑1
∑
𝑖=1

|𝑤𝑖| ⋅ |(𝜕𝑥𝑖𝑃𝑓 )| ≤ (

𝑑1
∑
𝑖=1

|𝑤𝑖|2)

1
2

⋅
(

𝑑1
∑
𝑖=1

|𝜕𝑥𝑖(𝑃𝑓 )|
2

)

1
2

,

it follows that

‖𝑇 𝑓 ‖2𝐿2(𝜇) ≤ ∫
ℝ𝑑2

𝑑1
∑
𝑖=1

|𝑤𝑖|2 d𝜇2 ⋅ ∫
ℝ𝑑1

𝑑1
∑
𝑖=1

|𝜕𝑥𝑖(𝑃𝑓 )|
2 d𝜇1 =

𝑑1
∑
𝑖=1

‖𝑤𝑖‖2𝐿2(𝜇2)‖∇𝑓𝑃 ‖
2
𝐿2(𝜇1)

69



4 Hypocoercivity for degenerate diffusion semigroups

For each 1 ≤ 𝑖 ≤ 𝑑1, we get

‖𝑤𝑖‖𝐿2(𝜇2) ≤ |𝑄|
𝑑2
∑
𝑗 ,𝑘,𝓁=1

‖𝜕𝑘𝑎𝑘𝓁(𝜕𝓁𝜕𝑗Ψ)‖𝐿2 + ‖𝑎𝑘𝓁(𝜕𝑘𝜕𝓁𝜕𝑗Ψ)‖𝐿2 + ‖𝑎𝑘𝓁(𝜕𝓁𝜕𝑗Ψ)(𝜕𝑘Ψ)‖𝐿2 .

Let 1 ≤ 𝑞Σ < ∞ be such that 1
𝑝Σ +

1
𝑞Σ = 1. Due to Remark 3.4.2, we have |∇2Ψ| ∈ 𝐿2𝑞Σ(𝜇2). Then

by (𝚺4), it holds that

‖𝜕𝑘𝑎𝑘𝓁(𝜕𝓁𝜕𝑗Ψ)‖𝐿2 ≤ ‖(𝜕𝑘𝑎𝑘𝓁)2‖𝐿𝑝Σ ‖(𝜕𝓁𝜕𝑗Ψ)2‖𝐿𝑞Σ < ∞.

Boundedness of Σ together with (𝚿5) yields

‖𝑎𝑘𝓁(𝜕𝑘𝜕𝓁𝜕𝑗Ψ)‖𝐿2 ≤ 𝑀Σ‖𝜕𝑘𝜕𝓁𝜕𝑗Ψ‖𝐿2 < ∞,

and by (𝚿3) and again Remark 3.4.2, we also get

‖𝑎𝑘𝓁(𝜕𝓁𝜕𝑗Ψ)(𝜕𝑘Ψ)‖𝐿2 ≤ 𝐾𝑀Σ (‖𝜕𝑘Ψ‖𝐿2 + ‖|∇Ψ|1+𝛼‖𝐿2) < ∞.

This shows that each 𝑤𝑖 is in 𝐿2(𝜇2) and therefore 𝑅 ..= ∑𝑑1
𝑖=1 ‖𝑤𝑖‖2𝐿2(𝜇2) < ∞. □

Proposition 4.1.4. Let (𝚿4), (𝚿5) and (𝚺4) be satisfied. Then 𝐴𝑃(D) ⊆ 𝐷(𝑆∗) and 𝑆∗𝐴𝑃𝑓 = 𝑇 𝑓
for all 𝑓 ∈ D.

Proof:
Let 𝑓 ∈ D. We have to show that 𝑇 𝑓 ∈ 𝐻 and (𝑆ℎ, 𝐴𝑃𝑓 )𝐻 = (ℎ, 𝑇 𝑓 )𝐻 for all ℎ ∈ 𝐷(𝑆). Fix one
such ℎ, then by definition of (𝑆, 𝐷(𝑆)) there is a sequence (ℎ𝑛)𝑛∈ℕ in D such that ℎ𝑛 → ℎ and
𝑆ℎ𝑛 → 𝑆ℎ in 𝐻 . For each 𝑛 ∈ ℕ, Proposition 3.2.4 generalized as in Proposition 3.4.3 yields

(𝑆ℎ𝑛, 𝐴𝑃𝑓 )𝐻 = (𝑆ℎ𝑛, −𝑄∇Ψ ⋅ ∇(𝑃𝑓 ))𝐻 = 𝜇(⟨∇𝑦ℎ𝑛, Σ∇𝑦(𝑄∇Ψ ⋅ ∇𝑥(𝑃𝑓 ))⟩)

=
𝑑1
∑
𝑖=1

𝑑2
∑
𝑗 ,𝑘,𝓁=1

∫
𝐸
𝜕𝑦𝑘ℎ𝑛(𝑥, 𝑦)𝑎𝑘𝓁(𝑦)𝑄𝑖𝑗𝜕𝓁𝜕𝑗Ψ(𝑦)𝜕𝑥𝑖(𝑃𝑓 )(𝑥) d𝜇.

Now integration by parts in the coordinate 𝑦𝑘 for each 𝑘 ∈ {1, … , 𝑑2} gives

(𝑆ℎ𝑛, 𝐴𝑃𝑓 )𝐻 = (ℎ𝑛, 𝑇 𝑓 )𝐿2(𝜇).

Letting 𝑛 → ∞, we obtain (𝑆ℎ, 𝐴𝑃𝑓 )𝐻 = (ℎ, 𝑇 𝑓 )𝐿2(𝜇). In particular, this holds for ℎ ≡ 1, which
implies

𝜇(𝑇 𝑓 ) = (1, 𝑇 𝑓 )𝐿2(𝜇) = (𝑆1, 𝐴𝑃𝑓 ) = 0.

So 𝑇 𝑓 ∈ 𝐻 and the claim follows. □

Finally, we are able to verify (WH1):

Proposition 4.1.5. Let (𝚽3), (𝚿4), (𝚿5) and (𝚺4) hold. Then (WH1) is satisfied.
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Proof:
Due to Lemma 4.1.2, D is a core for (𝐺, 𝐷(𝐺)) = (−(𝐴𝑃)∗𝐴𝑃, 𝐷((𝐴𝑃)∗𝐴𝑃)). Proposition 4.0.5
shows 𝐴𝑃(D) ⊆ 𝐷(𝐴) ⊆ 𝐷(𝐴∗), and Proposition 4.1.4 proves 𝐴𝑃(D) ⊆ 𝐷(𝑆∗). Therefore, we
can apply Lemma 2.4.4 to both (𝐴, 𝐷(𝐴)) and (𝑆, 𝐷(𝑆)), and obtain boundedness of 𝐵𝐴 with
‖𝐵𝐴‖ ≤ 𝑐𝐴 due to Lemma 4.1.2.

Let 𝑓 ∈ D, then it follows that (𝐵𝑆)∗(𝐼 − 𝐺)𝑓 = 𝑆∗𝐴𝑃𝑓 = 𝑇 𝑓 and

‖𝑇 𝑓 ‖2𝐻 ≤ 𝑅‖∇𝑓𝑃 ‖2𝐿2(𝜇1) =
𝑑2𝑅

𝜇2(|∇Ψ|2)
𝜇2(|∇Ψ|2)

𝑑2
‖(𝑄𝑄∗)−1𝑄𝑄∗∇𝑓𝑃 ‖2𝐿2(𝜇1)

≤
𝑑2𝑅|(𝑄𝑄∗)−1𝑄|2

𝜇2(|∇Ψ|2)
𝜇2(|∇Ψ|2)

𝑑2
‖𝑄∗∇𝑓𝑃 ‖2𝐿2(𝜇1). □

Further, since via integration by parts and Lemma 4.1.2

‖𝑄∗∇𝑓𝑃 ‖2𝐿2(𝜇1) = −∫
ℝ𝑑1

𝑑1
∑
𝑖,𝑗=1

(𝑄𝑄∗)𝑖𝑗 𝑓𝑃 (𝜕𝑗𝜕𝑖𝑓𝑃 − 𝜕𝑗Φ𝜕𝑖𝑓𝑃 ) d𝜇1

= −∫
ℝ𝑑1+𝑑2

𝑑1
∑
𝑖,𝑗=1

(𝑄𝑄∗)𝑖𝑗 𝑃𝑓 (𝜕𝑥𝑗𝜕𝑥𝑖𝑃𝑓 − 𝜕𝑗Φ𝜕𝑥𝑖𝑃𝑓 ) d𝜇

= −
𝑑2

𝜇2(|∇Ψ|2) ∫𝐸
𝑃𝑓 ⋅ 𝐺𝑓 d𝜇,

we obtain for 𝑔 ..= (𝐼 − 𝐺)𝑓 due to dissipativity of (𝐺,D) that

‖(𝐵𝑆)∗𝑔‖2𝐻 = ‖𝑇 𝑓 ‖2𝐻 ≤
𝑑2𝑅|(𝑄𝑄∗)−1𝑄|2

𝜇2(|∇Ψ|2) ∫
𝐸
𝑃𝑓 (−𝐺)𝑓 d𝜇

≤
𝑑2𝑅|(𝑄𝑄∗)−1𝑄|2

𝜇2(|∇Ψ|2)
‖𝑃𝑓 ‖𝐻 (‖(𝐼 − 𝐺)𝑓 ‖𝐻 + ‖𝑓 ‖𝐻 )

≤
2𝑑2𝑅|(𝑄𝑄∗)−1𝑄|2

𝜇2(|∇Ψ|2)
‖(𝐼 − 𝐺)𝑓 ‖2𝐻 =

2𝑑2𝑅|(𝑄𝑄∗)−1𝑄|2

𝜇2(|∇Ψ|2)
‖𝑔‖2𝐻 .

Using the second part of Lemma 2.4.4, this shows that (𝐵𝑆, 𝐷(𝑆)) is bounded and hence (WH1)
is fulfilled.

Definition 4.1.6. Let the functional Θ ∶ 𝐻 → [0,∞] be defined by

Θ𝑓 ..= ‖𝑓 ‖2osc = (ess sup(𝑓 ) − ess inf(𝑓 ))2

for all 𝑓 ∈ 𝐻 .

Proposition 4.1.7. The functional Θ satisfies Condition (WH2).
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Proof:
Since any bounded function 𝑓 fulfills Θ𝑓 < ∞, the set {𝑓 ∈ 𝐻 ∣ Θ(𝑓 ) < ∞} is clearly dense in
𝐻 . Moreover, we have

ess inf(𝑓 ) = ∫
ℝ𝑑2

ess inf(𝑓 ) 𝜇2(d𝑦) ≤ ess inf (∫ℝ𝑑2
𝑓 (𝑥, 𝑦) 𝜇2(d𝑦)) = ess inf(𝑃𝑓 )

≤ ess sup(𝑃𝑓 ) = ess sup(∫ℝ𝑑2
𝑓 (𝑥, 𝑦) 𝜇2(d𝑦)) ≤ ess sup(𝑓 ),

so Θ(𝑃𝑓 ) ≤ Θ(𝑓 ) for all 𝑓 ∈ 𝐻 .

Let 𝑓 ∈ 𝐻 . If 𝑓 is not bounded, then Θ(𝑓 ) = ∞ and the remaining inequalities are trivial. So
let 𝑓 be bounded with 𝑙𝑓 ..= ess inf(𝑓 ), 𝑢𝑓 ..= ess sup(𝑓 ). If 𝑙𝑓 = 𝑢𝑓 , then 𝑓 is constant and so
are 𝑇𝑡𝑓 and e𝑡𝐺𝑓 due to conservativity, which can be seen for (e𝑡𝐺)𝑡≥0 since 1 ∈ D ⊆ 𝐷(𝐺) and
𝐺1 = 0, compare Lemma 1.3.3, and for (𝑇𝑡)𝑡≥0 due to Theorem 3.6.2.

So we assume 𝑙𝑓 < 𝑢𝑓 and define 𝑔 ..= 1
𝑢𝑓 −𝑙𝑓

(𝑓 − 𝑙𝑓 ). Then ess inf(𝑔) = 0, ess sup(𝑔) = 1 and
therefore Θ(𝑔) = 1. Moreover, conservativity and sub-Markov property of (𝑇𝑡)𝑡≥0 implies

Θ(𝑇𝑡𝑓 ) = Θ((𝑢𝑓 − 𝑙𝑓 )𝑇𝑡𝑔 + 𝑙𝑓 ) = (𝑢𝑓 − 𝑙𝑓 )2Θ(𝑇𝑡𝑔) ≤ (𝑢𝑓 − 𝑙𝑓 )2 = Θ(𝑓 )

for all 𝑡 ≥ 0, and the same holds for the semigroup generated by (𝐺, 𝐷(𝐺)). □

Proposition 4.1.8. Θ also satisfies Condition (WH3).

Proof:
We use the same construction as in [GW19]: Fix some 𝑓 ∈ 𝐷(𝐿) and set 𝛾1 ..= ess inf 𝑓 ,
𝛾2 ..= ess sup 𝑓 . Let (𝑔𝑛)𝑛∈ℕ be a sequence inD such that 𝑔𝑛 → 𝑓 and 𝐿𝑔𝑛 → 𝐿𝑓 in 𝐻 as 𝑛 → ∞.
Then set 𝑓𝑛 ..= ℎ𝑛 ◦ 𝑔𝑛, where ℎ𝑛 ∈ 𝐶∞(ℝ) satisfies 0 ≤ ℎ′𝑛 ≤ 1 and

ℎ𝑛(𝑟) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑟 for 𝑟 ∈ [𝛾1, 𝛾2]
𝛾1 − 1

2𝑛 for 𝑟 ≤ 𝛾1 − 1
𝑛

𝛾2 + 1
2𝑛 for 𝑟 ≥ 𝛾2 + 1

𝑛

,

which is possible due to Lemma 1.4.9.

Then 𝑓𝑛 → 𝑓 in 𝐻 as 𝑛 → ∞, lim sup𝑛→∞ ‖𝑓𝑛‖osc ≤ ‖𝑓 ‖osc, and

lim sup
𝑛→∞

(−𝐿𝑓𝑛, 𝑓𝑛) = lim sup
𝑛→∞

𝜇(⟨∇𝑦𝑓𝑛, Σ∇𝑦𝑓𝑛⟩) = lim sup
𝑛→∞

𝜇((ℎ′𝑛(𝑔𝑛))
2⟨∇𝑦𝑔𝑛, Σ∇𝑦𝑔𝑛⟩)

≤ lim sup
𝑛→∞

𝜇(⟨∇𝑦𝑔𝑛, Σ∇𝑦𝑔𝑛⟩) = lim sup
𝑛→∞

(−𝐿𝑔𝑛, 𝑔𝑛) = (−𝐿𝑓 , 𝑓 ).
□

Finally, it remains to show the weak Poincaré inequalities are satisfied. For this, we use [RW01,
Theorem 3.1], which for our purposes states that, given a probability measure 𝜇𝑉 = e𝑉 d𝑥 on ℝ𝑑
with locally bounded 𝑉 , there exists a decreasing function 𝛼 ∶ (0,∞) → (0,∞) such that

𝜇𝑉 (𝑓 2) − (𝜇𝑉 (𝑓 ))2 ≤ 𝛼(𝑟)𝜇𝑉 (|∇𝑓 |2) + 𝑟‖𝑓 ‖2osc, 𝑟 > 0, 𝑓 ∈ 𝐶1
𝑏(ℝ

𝑑). (4.1.1)
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Without loss of generality, we may assume that 𝛼 ≥ 1, which facilitates some estimates regarding
the convergence rate later. This allows us to verify the last necessary assumption:

Proposition 4.1.9. Let (𝚽3), (𝚿4) and (𝚿5) be fulfilled. Then Condition (WH4) is satisfied.

Proof:
The proof of [GW19, Theorem 1.1], under the assumptions given, implies that there is some
constant 0 < 𝑐 < ∞ such that 𝑓𝑃 ∈ 𝐻 1,2(𝜇1) with 𝜇1(|∇𝑥(𝑓𝑃 )|2) ≤ 𝑐‖𝐴𝑃𝑓 ‖2 for all 𝑓 ∈ 𝐷(𝐴𝑃).
Inequality (4.1.1) for 𝑉 = Φ shows the existence of some decreasing 𝛼Φ ∶ (0,∞) → [1,∞) such
that

‖𝑃𝑓 ‖2𝐻 = 𝜇1(𝑓 2𝑃 ) ≤ 𝑐𝛼Φ(𝑟)‖𝐴𝑃𝑓 ‖2𝐻 + 𝑟Θ(𝑃𝑓 )

for all 𝑓 ∈ 𝐷(𝐴𝑃). This proves the first inequality in (WH4) for 𝛼1 = 𝑐𝛼Φ, and we can assume
that 𝛼1 ≥ 𝛼Φ.

That proof also gives a procedure to verify the second inequality: Let 𝑓 ∈ D and 𝑥 ∈ ℝ𝑑1 ,
set 𝑓𝑥 ..= 𝑓 (𝑥, ⋅) − 𝑃𝑓 (𝑥) ∈ 𝐶∞(ℝ𝑑2). Then ∇𝑓𝑥 has compact support, so that 𝑓𝑥 is bounded;
𝜇2(𝑓𝑥) = 0 and ‖𝑓𝑥 ‖osc ≤ ‖𝑓 ‖osc. Therefore, (4.1.1) is applicable and yields the existence of a
decreasing function 𝛼Ψ such that

𝜇2(𝑓 2𝑥 ) ≤ 𝛼Ψ(𝑟)𝜇2(|∇𝑦𝑓 (𝑥, ⋅)|2) + 𝑟‖𝑓𝑥 ‖2osc
≤ 𝑐Σ𝛼Ψ(𝑟)𝜇2(⟨∇𝑦𝑓 (𝑥, ⋅), Σ∇𝑦𝑓 (𝑥, ⋅)⟩) + 𝑟‖𝑓 ‖2osc

for all 𝑟 > 0, 𝑓 ∈ D and 𝑥 ∈ ℝ𝑑1 . Integrating that expression wrt. 𝜇1 gives

‖(𝐼 − 𝑃)𝑓 ‖2𝐻 = ∫
ℝ𝑑1

𝜇2(𝑓 2𝑥 ) 𝜇1(d𝑥) ≤ 𝑐Σ𝛼Ψ(𝑟) ∫
𝐸
⟨∇𝑦𝑓 , Σ∇𝑦𝑓 ⟩ 𝜇(d(𝑥, 𝑦)) + 𝑟‖𝑓 ‖2osc

= 𝑐Σ𝛼Ψ(𝑟)(−𝑆𝑓 , 𝑓 )𝐻 + 𝑟Θ(𝑓 )

for all 𝑓 ∈ D, 𝑟 > 0, so the second inequality in (WH4) is satisfied with 𝛼2 ..= 𝑐Σ𝛼Ψ, and again
we may assume 𝛼2 ≥ 𝛼Ψ without loss of generality. □

Now that we have found sufficient assumptions in order for the weak hypocoercivity conditions
to hold, we are ready to state the final result:

Theorem 4.1.10. Recall the setting as defined in Definition 3.2.2 and Definition 3.2.1. Let 𝑄𝑄∗ be
invertible and let Σ satisfy (𝚺1)–(𝚺4).

Let Φ ∈ 𝐶2(ℝ𝑑1) be bounded from below with 𝜇1 being a probability measure, and let there be a
constant 𝐶 < ∞ such that

|∇2Φ| ≤ 𝐶(1 + |∇Φ|).

If 𝛽 from (𝚺3) is strictly positive, let further 𝑁 < ∞, 0 ≤ 𝛾 < 1
𝛽 such that |∇Φ(𝑥)| ≤ 𝑁(1 + |𝑥|𝛾).

Let 𝜓 ∈ 𝐶3([0, ∞)), 𝐾 < ∞, 1 ≤ 𝛼 < 2, such that

Ψ(𝑦) = 𝜓(|𝑦|2), 𝑍(Ψ) < ∞, and |∇2Ψ| ≤ 𝐾(1 + |∇Ψ|𝛼).
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Assume further that 𝜕𝑖𝜕𝑗𝜕𝑘Ψ ∈ 𝐿2(𝜇2) for all 1 ≤ 𝑖, 𝑗 , 𝑘 ≤ 𝑑2.

Then there exist decreasing functions 𝛼Φ, 𝛼Ψ ∶ (0,∞) → [1,∞) and constants 0 < 𝑐1, 𝑐2 < ∞ such
that

𝜇1(𝑓 2) − 𝜇1(𝑓 )2 ≤ 𝛼Φ(𝑟)𝜇1(|∇𝑥𝑓 |2) + 𝑟‖𝑓 ‖2osc, 𝑟 > 0, 𝑓 ∈ 𝐶1
𝑏(ℝ

𝑑1),

𝜇2(𝑓 2) − 𝜇2(𝑓 )2 ≤ 𝛼Ψ(𝑟)𝜇2(|∇𝑦𝑓 |2) + 𝑟‖𝑓 ‖2osc, 𝑟 > 0, 𝑓 ∈ 𝐶1
𝑏(ℝ

𝑑2),

and
𝜇((𝑇𝑡𝑓 )2) − 𝜇(𝑇𝑡𝑓 )2 ≤ 𝜉(𝑡)‖𝑓 ‖2osc, for all 𝑡 ≥ 0, 𝑓 ∈ 𝐿∞(𝜇), (4.1.2)

where (𝑇𝑡)𝑡≥0 is the sccs generated by the closure (𝐿, 𝐷(𝐿)) of (𝐿, C)) on 𝑋 and

𝜉(𝑡) ..= 𝑐1 inf
{
𝑟 > 0 ∶ 𝑐2𝑡 ≥ 𝛼Φ(𝑟)2𝛼Ψ(

𝑟
𝛼Φ(𝑟)2)

log(
1
𝑟 )

}
. (4.1.3)

Proof:
It is easy to see that the assumptions here imply (H) as well as (𝚺4), (𝚽3), (𝚿4) and (𝚿5). Then
Theorem 3.5.1 applies to show that (𝐿, 𝐷(𝐿)) is essentially m-dissipative on 𝑋 , and we obtain all
the results from Theorem 3.6.2 for the generated semigroup (𝑇𝑡)𝑡≥0 on 𝑋 .

Now we restrict our considerations to the subspace 𝐻 ⊆ 𝑋 . Due to Lemma 4.0.2, the closure
(𝐿𝐻 , 𝐷(𝐿𝐻 )) of (𝐿,D) on 𝐻 is m-dissipative and generates an sccs (𝑇𝐻𝑡 )𝑡≥0 on 𝐻 . Then all
data conditions (D1)–(D3) are satisfied, and Propositions 4.1.5 and 4.1.7 to 4.1.9 show that
Theorem 2.3.1 is applicable. This yields the estimate

‖𝑇𝐻𝑡 𝑓 ‖
2 ≤ 𝜉(𝑡)(‖𝑓 ‖2𝐻 + Θ(𝑓 )), 𝑡 ≥ 0, 𝑓 ∈ 𝐷(𝐿𝐻 ), (4.1.4)

where

𝜉(𝑡) ..= 𝑐1 inf
{
𝑟 > 0 ∶ 𝑐2𝑡 ≥ 𝛼1(𝑟)2𝛼2(

𝑟
𝛼1(𝑟)2)

log(
1
𝑟 )

}
, (4.1.5)

for some constants 𝑐1, 𝑐2 ∈ (0,∞) and 𝛼1, 𝛼2 as in the proof of Proposition 4.1.9. That proof also
provided the decreasing functions 𝛼Φ and 𝛼Ψ as required for the claim.

Due to 𝜇-invariance of (𝑇𝑡)𝑡≥0, the restriction of (𝑇𝑡)𝑡≥0 to 𝐻 is an sccs on 𝐻 , and its generator
coincides with (𝐿𝐻 , 𝐷(𝐿𝐻 )) on D, so 𝑇𝑡 |𝐻 = 𝑇𝐻𝑡 for all 𝑡 ≥ 0. Moreover, conservativity of (𝑇𝑡)𝑡≥0
further shows

𝜇(𝑇𝑡𝑓 ) = 𝜇(𝑓 ) = 𝜇(𝑓 )𝑇𝑡(1) = 𝑇𝑡(𝜇(𝑓 )),

hence

𝜇((𝑇𝑡𝑓 )2) − 𝜇(𝑇𝑡𝑓 )2 = 𝜇 ((𝑇𝑡𝑓 )2 − 2𝑇𝑡𝑓 𝑇𝑡(𝜇(𝑓 )) + (𝑇𝑡𝜇(𝑓 ))2) = 𝜇((𝑇𝐻𝑡 (𝑓 − 𝜇(𝑓 )))2).

Let 𝑓 ∈ 𝐷(𝐿). Since 𝑓 − 𝜇(𝑓 ) ∈ 𝐷(𝐿) ∩ 𝐻 , a simple approximation argument shows 𝑓 − 𝜇(𝑓 ) ∈
𝐷(𝐿𝐻 ), so (4.1.4) together with

‖𝑓 − 𝜇(𝑓 )‖2𝐻 = 𝜇((𝑓 − 𝜇(𝑓 ))2) ≤ ‖𝑓 − 𝜇(𝑓 )‖2𝐿∞ ≤ ‖𝑓 ‖2osc = Θ(𝑓 )
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implies
𝜇((𝑇𝑡𝑓 )2) − 𝜇(𝑇𝑡𝑓 )2 ≤ 𝜉(𝑡)‖𝑓 ‖2osc, 𝑡 ≥ 0, 𝑓 ∈ 𝐷(𝐿). (4.1.6)

Let 𝑓 ∈ 𝐿∞(𝜇) ⊆ 𝐿2(𝜇). Then as in the proof of Proposition 4.1.8, we can find a sequence (𝑓𝑛)𝑛∈ℕ
in C ⊆ 𝐷(𝐿) such that 𝑓𝑛 → 𝑓 in 𝑋 and lim sup𝑛→∞ ‖𝑓𝑛‖osc ≤ ‖𝑓 ‖osc. This shows that (4.1.6)
extends to all 𝑓 ∈ 𝐿∞(𝜇).

Finally, define

𝜉(𝑡) ..= 𝑐1 inf
{
𝑟 > 0 ∶ 𝑐2𝑡 ≥ 𝛼Φ(𝑟)2𝛼Ψ(

𝑟
𝛼Φ(𝑟)2)

log(
1
𝑟 )

}
. (4.1.7)

Let 𝑟 > 0 satisfy the inequality in (4.1.5). If 𝑟 ≥ 1, then log(𝑟−1) ≤ 0 and 𝑟 clearly satisfies the
inequality in (4.1.7), so we assume 𝑟 < 1. Since we assumed 𝛼1 = 𝑐𝛼Φ and 𝛼2 = 𝑐Σ𝛼Ψ with
𝑐, 𝑐Σ ≥ 1, we get 𝛼1 ≥ 𝛼Φ, 𝛼2 ≥ 𝛼Ψ and

𝑟
𝛼1(𝑟)2

≤
𝑟

𝛼Φ(𝑟)2
, hence 𝛼Ψ(

𝑟
𝛼1(𝑟)2)

≥ 𝛼Ψ(
𝑟

𝛼Φ(𝑟)2)
,

since 𝛼Ψ is decreasing. So 𝑟 satisfies the inequality in (4.1.7), which shows that 𝜉(𝑡) ≤ 𝜉(𝑡), so
the claim is proven. □

Concrete examples of possible potentials

Here we give some examples for combinations of potentials Φ and Ψ along with the resulting
convergence rate. The examples are taken from [GW19], where they were chosen since corre-
sponding weak Poincaré inequalities were shown in [RW01]. We use the following notation for
all occurring choices:

Definition 4.1.11. Let 𝜑 and 𝜓 be real-valued function on ℝ𝑑1 and ℝ𝑑2 , respectively. We write
Φ ∼ 𝜑, if there is some ℎ1 ∈ 𝐶2

𝑏(ℝ
𝑑1) such that Φ = 𝜑 + ℎ1. On the other hand, we write

Ψ ∼ 𝜓 if there is some ℎ2 ∈ 𝐶3
𝑏(ℝ

𝑑2) with Ψ = 𝜓 + ℎ2, where it is assumed that there is some
𝜂 ∈ 𝐶3([0, ∞)) with ℎ2(𝑦) = 𝜂(|𝑦|2).

This relation is explained by the following:

Lemma 4.1.12. Let 𝜑 satisfy (𝚽1)–(𝚽3), as well as the inequality from (C). If Φ ∼ 𝜑, then the
same holds for Φ. Similarly, if 𝜓 satisfies (𝚿1)–(𝚿5), then so does Ψ in the case that Ψ ∼ 𝜓.

Proof:
We only prove the second statement, as the rest follows analogously. Let 𝜓 be as stated, and let
ℎ2 ∈ 𝐶3

𝑏(ℝ
𝑑2) with Ψ = 𝜓 + ℎ2. Let 𝑀ℎ denote the bound of ℎ2 and all its derivatives. We show

each of the required conditions:
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(Ψ1) Clearly Ψ is measurable and locally bounded, and it holds that

∫
ℝ𝑑2

e−𝜓(𝑦)−ℎ2(|𝑦|) d𝑦 ≤ e𝑀ℎ ∫
ℝ𝑑2

e−𝜓(𝑦) d𝑦,

so that 𝑍(Ψ) < ∞.

(Ψ2) Since all derivatives of ℎ2 are bounded, they are locally 𝐿𝑝-integrable for any 1 ≤ 𝑝 ≤ ∞.

(Ψ3) Due to the previous point, we only need to show the inequality. It holds that

|∇2Ψ| ≤ 𝑀ℎ + |∇2𝜓| ≤ 𝑀ℎ + 𝐾(1 + |∇𝜓|𝛼) ≤ 𝑀ℎ + 𝐾(1 + |∇Ψ|𝛼 + 𝑀𝛼
ℎ ),

which implies the existence of a suitable constant 𝐾Φ such that 𝜓 satisfies (𝚿3).

(Ψ4) This is clear due to definition of ℎ2.

(Ψ5) This is also immediate, since ℎ2 is three times continuously differentiable with bounded
derivatives, and by using the same kind of estimate as in point (Ψ1). □

Now we introduce the considered example functions, along with their weak Poincaré inequali-
ties. The next Lemma follows from the proof of [RW01, Example 1.4] and is stated in [GW19,
Lemma 3.3]:

Lemma 4.1.13. Let 𝜇𝑉 ..= e−𝑉 d𝑥 be a probability measure on ℝ𝑑 . Then there exists a decreasing
𝛼𝑉 ∶ (0,∞) → (0,∞) such that the weak Poincaré inequality (4.1.1) holds. In particular, 𝛼𝑉 can be
specified for the following examples:

(i) If 𝑉 ∼ 𝑘|𝑥|𝛿 or 𝑉 ∼ 𝑘(1 + |𝑥|2)
𝛿
2 for some 𝑘, 𝛿 ∈ (0,∞), then

𝛼𝑉 (𝑟) = 𝑐 (log(1 + 𝑟−1))
4(1−𝛿)+

𝛿

for some constant 𝑐 ∈ (0, ∞) is a valid choice.

(ii) If 𝑉 ∼ 𝑑+𝑝
2 log(1 + |𝑥|2) for some 𝑝 ∈ (0,∞), then

𝛼𝑉 (𝑟) = 𝑐𝑟−𝜃(𝑝)

for some constant 𝑐 ∈ (0, ∞) is a valid choice, where

𝜃(𝑝) ..= min(
𝑑 + 𝑝 + 2

𝑝
,

4𝑝 + 4 + 2𝑑
(𝑝2 − 4 − 2𝑑 − 2𝑝)+)

.

(iii) If 𝑉 ∼ 𝑑
2 log(1 + |𝑥|2) + 𝑝 log(log(e + |𝑥|2)) for some 𝑝 ∈ (1,∞), then

𝛼𝑉 (𝑟) = 𝑐1e𝑐2𝑟
− 1
𝑝−1

for some constants 𝑐1, 𝑐2 ∈ (0,∞) is a valid choice.
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Here it doesn’t matter which definition of ∼ is used.

Lemma 4.1.14. Let 𝑉 and 𝜇𝑉 be any of the options in Lemma 4.1.13. Then both Φ = 𝑉 and Ψ = 𝑉
satisfy all requirements from Theorem 4.1.10, at least if (𝚺3) holds for 𝛽 = 0.

Proof:
By definition, the measure 𝜇𝑉 is a probability measure, and clearly 𝑉 is locally bounded, bounded
from below, and in 𝐶3(ℝ𝑑) for any choice. In order to verify (𝚿3) and (𝚽3), we need to compute
the gradient and the Hessian. We only do this for the first choice, as it only requires tedious
calculations. So consider 𝑔(𝑥) ..= 𝑘(1 + |𝑥|2)

𝛿
2 for 𝑘, 𝛿 ∈ (0,∞). We obtain ∇𝑔(𝑥) = 𝑘𝛿𝑥(1 +

|𝑥|2)
𝛿
2−1, so |∇𝑔(𝑥)|2 = 𝑘2𝛿2|𝑥|2(1 + |𝑥|2)𝛿−2. In particular, the inequality for Φ from (C) holds

for 𝑔 with 𝛾 = 𝛿 − 1. For the second derivatives, we get

𝜕𝑗𝜕𝑖𝑔(𝑥) = 2𝑘𝛿( 𝛿2 − 1)𝑥𝑖𝑥𝑗 (1 + |𝑥|2)
𝛿
2−2 + 𝛿𝑖𝑗𝑘𝛿(1 + |𝑥|2)

𝛿
2−1

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑑. This implies

|∇2𝑔(𝑥)|2 = 𝑘2𝛿2 (4( 𝛿2 − 1)2(1 + |𝑥|2)𝛿−4|𝑥|4 + 4( 𝛿2 − 1)(1 + |𝑥|2)𝛿−3|𝑥|2

+ 𝑑(1 + |𝑥|2)𝛿−2) .

It is clear that for |𝑥| ≥ 1, this expression can be bounded by a multiple of |∇𝑔(𝑥)|2, so the
inequality from (A1) holds for 𝑔 . By Lemma 4.1.12, all these properties of 𝑔 carry over to 𝑉 ,
where we can also apply Remark 1.6.6 to verify (𝚿5) for 𝑉 , since the third derivatives can also
be relatively bounded by |∇𝑉 |. To summarize, all requirements for Theorem 4.1.10 are met, as
long as (𝚺3) holds for some 𝛽 < 1

(𝛿−1)+ .

For the other two choices of 𝑉 , the same can be verified by analogous calculations, and since in
those cases |∇𝑉 | is even bounded, we don’t need to assume any restriction on 𝛽. □

This means that the examples studied in [GW19, Example 1.1] also fit our assumptions, and
we can therefore carry over the convergence rates that were given in that reference. However,
we note that we are able to choose Ψ ∼ 𝑉 instead of Ψ = 𝑉 for such a function 𝑉 , since our
assumption (𝚿5) is easier to check in this context than the assumption

sup
𝑟≥0

||||
𝜓′(𝑟) + 2𝑟𝜓′′(𝑟) −

2𝑟𝜓′′′(𝑟) + (𝑑2 + 2)𝜓′′(𝑟)
𝜓′(𝑟)

||||
< ∞

which was required in the given reference, where 𝜓 is to be understood as in (𝚿4). For illustration
purposes, we include two of the considered cases here and give the concrete convergence rate,
but since we don’t add anything new here, we skip the remainder of the cases.

(i) Let Φ ∼ 𝑘(1 + |𝑥|2)𝛿/2 and Ψ ∼ 𝜅(1 + |𝑦|2)𝜀/2, where 𝑘, 𝜅, 𝛿, 𝜀 ∈ (0, ∞) are constant. Then,
(4.1.2) holds with

𝜉(𝑡) = exp(−𝑐2𝑡𝜔(𝛿,𝜀)), where 𝜔(𝛿, 𝜀) =
𝛿𝜀

𝛿𝜀 + 8𝜀(1 − 𝛿)+ + 4𝛿(1 − 𝜀)+
,
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for some constants 0 < 𝑐1, 𝑐2 < ∞. In particular, if 𝛿, 𝜀 ≥ 1, then the decay rate is
exponential.

(ii) Let 𝑑 ..= 𝑑1 = 𝑑2, Φ ∼ 𝑞+𝑑
2 log(1 + |𝑥|2) for some 𝑞 > 0 and Ψ ∼ 𝑝+𝑑

2 log(1 + |𝑦|2) for some
𝑝 > 0. Then, (4.1.2) holds with

𝜉(𝑡) = 𝑐2(1 + 𝑡)−𝜔(𝑝,𝑞)(log(e + 𝑡))𝜔(𝑝,𝑞), where

𝜔(𝑝, 𝑞) =
1

2𝜃(𝑞) + 𝜃(𝑝) + 2𝜃(𝑞)𝜃(𝑝)
and

𝜃(𝑟) = min(
𝑑 + 𝑟 + 2

𝑟
,

4𝑟 + 4 + 2𝑑
(𝑟2 − 4 − 2𝑑 − 2𝑟)+)

.

for some constants 0 < 𝑐1, 𝑐2 < ∞.

4.2 Strong hypocoercivity for Langevin dynamics with
multiplicative noise

In this part we apply the strong hypocoercivity framework as described in Section 2.2. While we
can reuse some considerations from the weak case above, we require more assumptions on the
potentials. Motivated by the application to the Langevin equation (4.3.5), we fix Ψ(𝑦) = 1

2 |𝑦|
2

and otherwise assume the conditions (H) and (𝚽3). This immediately implies the following
result:

Proposition 4.2.1. Ψ defined by Ψ(𝑦) ..= 1
2 |𝑦|

2 satisfies all conditions (𝚿1)–(𝚿5). Moreover
𝜇2(|∇Ψ|2) = 𝑑2.

Proof:
Clearly Ψ ∈ 𝐶∞(ℝ𝑑2) with 𝜕𝑘Ψ(𝑦) = 𝑦𝑘 , 𝜕𝑗𝜕𝑘Ψ(𝑦) = 𝛿𝑘𝑗 and therefore 𝜕𝑖𝜕𝑗𝜕𝑘Ψ(𝑦) = 0 for
all 1 ≤ 𝑖, 𝑗 , 𝑘 ≤ 𝑑2. It is well-known that 1

2𝜋 e
−Ψ(𝑦) is the probability density function for the

standard normal distribution on ℝ𝑑2 , so 𝑍(Ψ) = 2𝜋. This implies all wanted conditions.

Moreover, integration by parts yields

𝜇2(|∇Ψ|2) = 𝑍(Ψ)−1 ∫
ℝ𝑑2

|𝑦|2e−
1
2 |𝑦|

2
d𝑦 = 𝑍(Ψ)−1

𝑑2
∑
𝑖=1

(−1) ∫
ℝ𝑑2

𝑦𝜕𝑖 (e
− 1

2 |𝑦|
2

) d𝑦

= 𝑍(Ψ)−1
𝑑2
∑
𝑖=1

∫
ℝ𝑑2

e−
1
2 |𝑦|

2
d𝑦 = 𝑑2𝑍(Ψ)−1𝑍(Ψ) = 𝑑2.

□

Proposition 4.2.2. Σ satisfies (𝚺4) for all 𝑝Σ ≥ 1.
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Proof:
The Hölder-inequality implies

‖|∇Σ|‖2𝑝𝐿2𝑝(𝜇2) = ∫
ℝ𝑑2 (

𝑑2
∑
𝑖,𝑗 ,𝑘=1

|𝜕𝑘𝑎𝑖𝑗 (𝑦)|2)

𝑝

d𝜇2

≤ (𝑑32)
𝑝−1

𝑑2
∑
𝑖,𝑗 ,𝑘=1

∫
ℝ𝑑2

|𝜕𝑘𝑎𝑖𝑗 (𝑦)|2𝑝 d𝜇2

for all 𝑝 ∈ ℕ. Due to (𝚺3), we know that |𝜕𝑘𝑎𝑖𝑗 (𝑦)| ≤ 𝑀(1+ |𝑦|) = 𝑀(1+ |∇Ψ|), so |𝜕𝑘𝑎𝑖𝑗 | ≤ 2𝑀
on 𝐵1(0) and |𝜕𝑘𝑎𝑖𝑗 | ≤ 2𝑀|𝑦| on ℝ𝑑2 ⧵ 𝐵1(0) for all 𝑖, 𝑗 , 𝑘 ∈ {1, … , 𝑑2}. This means

∫
ℝ𝑑2

|𝜕𝑘𝑎𝑖𝑗 (𝑦)|2𝑝 d𝜇2 ≤ ∫
ℝ𝑑2

(2𝑀)2𝑝 d𝜇2 + ∫
ℝ𝑑2

(2𝑀)2𝑝 |𝑦|2𝑝 d𝜇2

Iterating the integration by parts as above, we can see that 𝜇2(|𝑦|2𝑝) < ∞ for any 𝑝 ∈ ℕ. □

This shows that we can apply all results obtained by the weak hypocoercivity method for our
setting. In particular, as a consequence of Lemma 4.1.2, we obtain

Corollary 4.2.3. The operator (𝐺,D) ..= (𝑃𝐴2𝑃,D), which is given for all 𝑓 ∈ D by

𝐺𝑓 (𝑥, 𝑦) =
𝑑1
∑
𝑖,𝑗=1

(𝑄𝑄∗)𝑖𝑗 (𝜕𝑥𝑗𝜕𝑥𝑖 − 𝜕𝑗Φ(𝑥)𝜕𝑥𝑖)𝑃𝑓 (𝑥, 𝑦),

is essentially self-adjoint and its closure generates a sub-Markovian sccs (e𝑡𝐺)𝑡≥0 on 𝐻 . Moreover,
there is a constant 𝑐Φ depending only on the choice of Φ such that

‖𝐵𝐴(𝐼 − 𝑃)𝑓 ‖𝐻 ≤ 𝑐𝜙‖(𝐼 − 𝑃)𝑓 ‖𝐻 for all 𝑓 ∈ D.

However, we would like to specify the convergence rate in more detail than before. Recall the
constants set in Definition 3.4.1. Then we get

Lemma 4.2.4. For all 𝑘, 𝑗 ∈ {1, … , 𝑑2}, it holds that

‖𝜕𝑘𝑎𝑗𝑘 − 𝑎𝑗𝑘𝑦𝑘‖𝐿2(𝜇2) ≤ 𝑁Σ.

Let the operator (𝑇 ,D) be defined as in Lemma 4.1.3. Then 𝑤𝑖 = ∑𝑑2
𝑗 ,𝑘=1 𝑄𝑖𝑗 (𝜕𝑘𝑎𝑗𝑘 − 𝑎𝑗𝑘𝑦𝑘) and 𝑅

can be chosen as (𝑑2)4|𝑄|2𝑁 2
Σ

Proof:
Due to integration by parts, it holds that

∫
ℝ𝑑2

𝑎2𝑗𝑘𝑦
2
𝑘 d𝜇2 = ∫

ℝ𝑑2
𝑎2𝑗𝑘 + 2𝑎𝑗𝑘𝑦𝑘𝜕𝑘𝑎𝑗𝑘 d𝜇2.
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Hence we obtain

∫
ℝ𝑑2

(𝜕𝑘𝑎𝑗𝑘 − 𝑎𝑗𝑘𝑦𝑘)2 d𝜇2 = ∫
ℝ𝑑2

(𝜕𝑘𝑎𝑗𝑘)2 + 𝑎2𝑗𝑘 d𝜇2

≤ ∫
𝐵1(0)

(𝜕𝑘𝑎𝑗𝑘)2 d𝜇2 + ∫
ℝ𝑑2⧵𝐵1(0)

(𝜕𝑘𝑎𝑗𝑘)2 d𝜇2 + 𝑀2
Σ

≤ 𝐵2Σ + ∫
ℝ𝑑2⧵𝐵1(0)

(𝑀|𝑦|𝛽)2 d𝜇2 + 𝑀2
Σ

≤ 𝐵2Σ + 𝑀2
Σ +

𝑑2
∑
𝑘=1

𝑀2
∫
ℝ𝑑2

𝑦2𝑘 d𝜇2

= 𝐵2Σ + 𝑀2
Σ + 𝑑2𝑀2 = 𝑁 2

Σ .

The representation of the 𝑤𝑖 follows directly since Σ is symmetric, and as in Lemma 4.1.3 we
have

𝑅 ..=
𝑑1
∑
𝑖=1

‖𝑤𝑖‖2𝐿2(𝜇2) ≤ 𝑑22
𝑑1
∑
𝑖=1

𝑑2
∑
𝑗 ,𝑘=1

‖𝑄𝑖𝑗 (𝜕𝑘𝑎𝑗𝑘 − 𝑎𝑗𝑘𝑦𝑘)‖2𝐿2(𝜇2) ≤ 𝑑32
𝑑1
∑
𝑖=1

𝑑2
∑
𝑗=1

|𝑄𝑖𝑗 |2𝑁 2
Σ

= 𝑑32 |𝑄|
2𝑁 2

Σ . □

Proposition 4.2.5. Condition (H1) is satisfied with 𝑐1 =
√
2𝑑32𝑁Σ|𝑄| ⋅ |(𝑄𝑄∗)−1𝑄| and 𝑐2 = 𝑐Φ.

Proof:
The statement for 𝑐2 follows directly from Corollary 4.2.3, and the one for 𝑐1 results by plugging
Proposition 4.2.1 and Lemma 4.2.4 into the proof of Proposition 4.1.5. □

It remains to verify microscopic and macroscopic coercivity. This is done via classical Poincaré
inequalities for the measures 𝜇1 and 𝜇2. Since we don’t know enough about Φ, we have to
introduce a new assumption.

Assumption (Φ4). The probability measure 𝜇1 on ℝ𝑑1 satisfies a Poincaré inequality of the form

ΛΦ‖𝑓 ‖2𝐿2(𝜇1) ≤ ∫
ℝ𝑑1

|∇𝑓 |2 d𝜇1 for all 𝑓 ∈ D,

where ΛΦ ∈ (0,∞).

A sufficient condition for (𝚽4) to hold is given by the following:

Theorem 4.2.6. Let 𝑉 ∈ 𝐶2(ℝ𝑑) be bounded from below, 𝜇𝑉 ..= e−𝑉 (𝑥) d𝑥 be a probability measure,
and let one of the following assumptions hold:

(i) There exist 𝛼 > 0 and 𝑅 ≥ 0 such that

⟨𝑥, ∇𝑉 (𝑥)⟩ ≥ 𝛼|𝑥| for all |𝑥| ≥ 𝑅.
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(ii) There exist 𝑎 ∈ (0, 1), 𝑐 > 0 and 𝑅 ≥ 0 such that

𝑎|∇𝑉 (𝑥)|2 − Δ𝑉 (𝑥) ≥ 𝑐 for all |𝑥| ≥ 𝑅.

Then there is some 𝐶𝑃 ∈ (0,∞) such that 𝜇𝑉 satisfies the Poincaré inequality

Var𝜇𝑉 (𝑓 ) ..= ∫
ℝ𝑑
(𝑓 − 𝜇𝑉 (𝑓 ))2 d𝜇𝑉 ≤ 𝐶𝑃 ∫

ℝ𝑑
|∇𝑓 |2 d𝜇𝑉 (4.2.1)

for all 𝑓 ∈ 𝐶∞(ℝ𝑑). In particular, this holds for convex 𝑉 .

Proof:
See [Bak+08, Corollary 1.4]. □

Remark 4.2.7. Note that due to Theorem 1.6.3, this Poincaré inequality extends to all 𝑓 ∈
𝐻 1,2(𝜇𝑉 ).

Now we can verify the last two hypocoercivity conditions:

Proposition 4.2.8. Condition (H3) holds for Λ𝑀 ..= ΛΦ|(𝑄𝑄∗)−1𝑄|−2 and (H2) is satisfied for
Λ𝑚 ..= 𝑐−1Σ .

Proof:
Due to [Bec89], the probability measure 𝜇2 fulfills (4.2.1) with 𝐶𝑃 = 1. Let 𝑓 ∈ D and set
𝑓𝑥 ..= 𝑓 (𝑥, ⋅) − 𝑃𝑓 (𝑥) for any 𝑥 ∈ ℝ𝑑1 . Clearly 𝑓𝑥 ∈ 𝐶∞(ℝ𝑑2) with ∇𝑦𝑓𝑥 = ∇𝑦𝑓 (𝑥, ⋅) and
𝜇2(𝑓𝑥) = 0 for all 𝑥 ∈ ℝ𝑑1 .

−(𝑆𝑓 , 𝑓 )𝐻 = ∫
𝐸
⟨∇𝑦𝑓 , Σ∇𝑦𝑓 ⟩ d𝜇 ≥ 𝑐−1Σ ∫

𝐸
|∇𝑦𝑓 |2 d𝜇

= 𝑐−1Σ ∫
ℝ𝑑1

∫
ℝ𝑑2

|∇𝑦𝑓𝑥 |2 d𝜇2 d𝜇1 ≥ 𝑐−1Σ ∫
ℝ𝑑1

Var𝜇2(𝑓𝑥) 𝜇1(d𝑥)

= 𝑐−1Σ ∫
ℝ𝑑1

∫
ℝ𝑑2

𝑓 2𝑥 d𝜇2 𝜇1(d𝑥) = 𝑐−1Σ ‖(𝐼 − 𝑃)𝑓 ‖2𝐻

for all 𝑓 ∈ D, so (H2) is indeed satisfied.

Let 𝑓 ∈ D. Then, as in (4.0.1), we get 𝐴𝑃𝑓 = −⟨𝑄𝑦, ∇𝑥𝑓𝑃 ⟩ and therefore

‖𝐴𝑃𝑓 ‖2𝐻 =
𝑑1
∑
𝑖,𝑘=1

𝑑2
∑
𝑘,𝓁=1

∫
ℝ𝑑1

𝜕𝑖(𝑓𝑃 )𝜕𝑘(𝑓𝑃 ) d𝜇1 ∫
ℝ𝑑2

(𝑄𝑖𝑗𝑦𝑗 )(𝑄𝑘𝓁𝑦𝓁) d𝜇2.

Integration by parts shows

∫
ℝ𝑑2

(𝑄𝑖𝑗𝑦𝑗 )(𝑄𝑘𝓁𝑦𝓁) d𝜇2 = 𝑄𝑖𝑗𝑄𝑘𝓁𝛿𝑗𝓁,
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so we obtain

‖𝐴𝑃𝑓 ‖2𝐻 =
𝑑1
∑
𝑖,𝑘=1

(𝑄𝑄∗)𝑖𝑘 ∫
ℝ𝑑1

𝜕𝑖(𝑓𝑃 )𝜕𝑘(𝑓𝑃 ) d𝜇1 = ∫
ℝ𝑑1

|𝑄∗∇(𝑓𝑃 )|2 d𝜇1.

Assumption (𝚽4) together with invertibility of 𝑄𝑄∗ now implies

ΛΦ‖𝑓𝑃 ‖2𝐿2(𝜇1) ≤ ‖∇𝑥𝑓𝑃 ‖2𝐿2(𝜇1) = ‖(𝑄𝑄∗)−1𝑄𝑄∗∇𝑥𝑓𝑃 ‖2𝐿2(𝜇1)
≤ |(𝑄𝑄∗)−1𝑄|2‖𝑄∗∇𝑥𝑓𝑃 ‖2𝐿2(𝜇1) = |(𝑄𝑄∗)−1𝑄|2‖𝐴𝑃𝑓 ‖2𝐻 .

Since ‖𝐴𝑃𝑓 ‖2𝐻 = ((𝐴𝑃)∗𝐴𝑃𝑓 , 𝑓 )𝐻 = (−𝐺𝑓 , 𝑓 )𝐻 and D is a core for (𝐺, 𝐷(𝐺)) by Lemma 4.1.2,
this inequality extends to all 𝑓 ∈ 𝐷(𝐺). □

Corollary 4.2.9. In the case that 𝑑1 = 𝑑2 =.. 𝑑 and 𝑄 = 𝐼 , we satisfy (H1) with 𝑐1 =
√
2𝑑3𝑁Σ and

(H3) with Λ𝑀 = ΛΦ.

Proof:
The latter follows from the proof of Proposition 4.2.8, since |∇𝑥𝑓𝑃 | = |𝑄∗∇𝑥𝑓𝑃 |.

For the other part, note that in the proof of Lemma 4.2.4, we get ‖𝑤𝑖‖2𝐿2(𝜇2) ≤ 𝑑2𝑁 2
Σ , and hence

𝑅 ≤ 𝑑3𝑁 2
Σ . In the proof of Proposition 4.1.5, we use again |∇𝑥𝑓𝑃 | = |𝑄∗∇𝑥𝑓𝑃 | and Proposition 4.2.1

to obtain ‖(𝐵𝑆)∗𝑔‖2𝐻 ≤ 2𝑅‖𝑔‖2𝐻 . Application of the second part of Lemma 2.4.4 then yields
𝑐1 =

√
2𝑅 =

√
2𝑑3𝑁Σ as wanted. □

Now that all necessary conditions are verified with concrete estimates for each required constant,
we can state our strong hypocoercivity result for the case where the second component measure
is standard Gaussian:

Theorem 4.2.10. Recall the setting as defined in Definition 3.2.2 and Definition 3.2.1. Let 𝑄𝑄∗ be
invertible, Ψ(𝑦) ..= 1

2 |𝑦|
2 and let Σ satisfy (𝚺1)–(𝚺3).

Let Φ ∈ 𝐶2(ℝ𝑑1) be bounded from below with 𝜇1 being a probability measure, and let there be
constants 𝐶, ΛΦ ∈ (0,∞) such that

|∇2Φ| ≤ 𝐶(1 + |∇Φ|) and ΛΦ‖𝑓 − 𝜇1(𝑓 )‖2𝐿2(𝜇1) ≤ ‖∇𝑓 ‖2𝐿2(𝜇1)

for all 𝑓 ∈ 𝐶∞
𝑐 (ℝ𝑑1). If 𝛽 from (𝚺3) is strictly positive, let further 𝑁 < ∞, 0 ≤ 𝛾 < 1

𝛽 such
that |∇Φ(𝑥)| ≤ 𝑁(1 + |𝑥|𝛾).

Define 𝑁Σ as in Definition 3.4.1 and let (𝑇𝑡)𝑡≥0 be the sccs generated by the closure (𝐿, 𝐷(𝐿))
of (𝐿, C) on 𝑋 .

Then it holds that for each 𝜃1 ∈ (1,∞), there is some 𝜃2 ∈ (0,∞) such that

‖𝑇𝑡𝑓 − 𝜇(𝑓 )‖𝑋 ≤ 𝜃1e−𝜃2𝑡 ‖𝑓 − 𝜇(𝑓 )‖𝑋
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for all 𝑓 ∈ 𝑋 and all 𝑡 ≥ 0. In particular, 𝜃2 can be specified as

𝜃2 =
𝜃1 − 1
𝜃1

𝑐−1Σ
𝑛1 + 𝑛2𝑁Σ + 𝑛3𝑁 2

Σ
,

and the coefficients 𝑛𝑖 ∈ (0,∞) only depend on the choice of Φ and 𝑄.

Proof:
Under the given assumptions, we can apply Theorem 3.5.1 due to Proposition 4.2.1, which shows
that (𝐿, C) is essentially m-dissipative, so that its closure (𝐿, 𝐷(𝐿)) generates an sccs (𝑇𝑡)𝑡≥0 on
𝑋 . Since 𝜇 is a probability measure, we also obtain the properties from Theorem 3.6.2.

As in the proof of Theorem 4.1.10, the closure (𝐿𝐻 , 𝐷(𝐿𝐻 )) of (𝐿,D) generates an sccs (𝑇𝐻𝑡 )𝑡≥0 on
𝐻 which coincides with (𝑇𝑡)𝑡≥0 on𝐻 . By Propositions 4.2.5 and 4.2.8, we can apply Theorem 2.2.1,
which yields the existence of constants 𝜅1, 𝜅2 ∈ (0,∞) such that

‖𝑇𝐻𝑡 𝑓 ‖𝐻 ≤ 𝜅1e−𝜅2𝑡‖𝑓 ‖𝐻 for all 𝑡 ≥ 0, 𝑓 ∈ 𝐻,

which immediately generalizes to

‖𝑇𝑡𝑓 − 𝜇(𝑓 )‖𝑋 ≤ 𝜅1e−𝜅2𝑡‖𝑓 − 𝜇(𝑓 )‖𝑋 for all 𝑡 ≥ 0, 𝑓 ∈ 𝑋,

by conservativity of (𝑇𝑡)𝑡≥0.

It remains to prove the convergence rate estimate, which follows the idea in Remark 2.2.2
and uses the same technique as the analogue proof in [GS16]. Note that in the context of that
Theorem, the mentioned Propositions give us the following constants:

𝑐1 = 𝑐𝑄𝑁Σ with 𝑐𝑄 ..=
√
2𝑑32 |𝑄| ⋅ |(𝑄𝑄

∗)−1𝑄|,
𝑐2 = 𝑐Φ,
Λ𝑚 = 𝑐−1Σ and
Λ𝑀 = Λ𝑄(Φ) ..= ΛΦ|(𝑄𝑄∗)−1𝑄|−2.

In Equation (2.2.2), set

𝛿 ..=
Λ𝑀

1 + Λ𝑀

1
1 + 𝑐1 + 𝑐2

=
Λ𝑄(Φ)

1 + Λ𝑄(Φ)
1

1 + 𝑐𝑄𝑁Σ + 𝑐Φ
.

Then the coefficients on the right hand side can be written as 𝑐−1Σ − 𝜀𝑟𝑄,Φ(𝑁Σ) and 𝜀𝑠𝑄,Φ respec-
tively, where

𝑟𝑄,Φ(𝑁Σ) ..= (1 + 𝑐Φ + 𝑐𝑄𝑁Σ) (1 +
1 + Λ𝑄(Φ)
2Λ𝑄(Φ)

(1 + 𝑐Φ + 𝑐𝑄𝑁Σ)) ,

𝑠𝑄,Φ ..=
1
2
⋅

Λ𝑄(Φ)
1 + Λ𝑄(Φ)

,
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and 𝜀 = 𝜀Φ(Σ) ∈ (0, 1) still needs to be determined. Write 𝑟𝑄,Φ(𝑁Σ) + 𝑠𝑄,Φ as the polynomial

𝑟𝑄,Φ(𝑁Σ) + 𝑠𝑄,Φ = 𝑎1 + 𝑎2𝑁Σ + 𝑎3𝑁 2
Σ ,

where all 𝑎𝑖 ∈ (0,∞), 𝑖 = 1, … , 3 depend only on 𝑄 and Φ. Then define

𝜀𝑄,Φ(𝑁Σ) ..=
𝑁Σ

𝑟𝑄,Φ(𝑁Σ) + 𝑠𝑄,Φ
=

𝑁Σ

𝑎1 + 𝑎2𝑁Σ + 𝑎3𝑁 2
Σ
.

Some rough estimates show 𝜀Φ(𝑁Σ) ∈ (0, 1). Now let 𝑣 > 0 be arbitrary and set

𝜀 ..=
𝑣

1 + 𝑣
𝑐−1Σ
𝑁Σ

𝜀𝑄,Φ(𝑁Σ) ∈ (0, 1).

This holds since 𝑐−1Σ ≤ 𝑀Σ ≤ 𝑁Σ, which follows from (𝚺1) for some unit vector. Then 𝜀𝑟𝑄,Φ(𝑁Σ)+
𝜀𝑠𝑄,Φ = 𝑣

1+𝑣 𝑐
−1
Σ < 𝑐−1Σ , hence we get the estimate

𝑐−1Σ − 𝜀𝑟𝑄,Φ(𝑁Σ) > 𝜀𝑠𝑄,Φ =
𝑣

1 + 𝑣
2𝑐Σ

𝑛1 + 𝑛2𝑁Σ + 𝑛3𝑁 2
Σ
=.. 𝜅,

where all 𝑛𝑖 ∈ (0,∞) depend on 𝑄 and Φ, and are given by

𝑛𝑖 ..=
2
𝑠𝑄,Φ

𝑎𝑖, for each 𝑖 = 1, … , 3.

This means that 𝜅 is smaller than both coefficients in (2.2.2), so that this inequality holds as
seen in Remark 2.2.2. The convergence rate coefficients 𝜅1, 𝜅2 are then given by the second part
of Theorem 2.2.1 as

𝜅1 =
√
1 + 𝜀
1 − 𝜀

=

√
1 + 𝑣 + 𝑐−1Σ

𝑁Σ
𝜀𝑄,Φ(𝑁Σ)𝑣

1 + 𝑣 − 𝑐−1Σ
𝑁Σ
𝜀𝑄,Φ(𝑁Σ)𝑣

≤
√
1 + 2𝑣 + 𝑣2 = 1 + 𝑣 and

𝜅2 =
𝜅

1 + 𝜀
>

1
2
𝜅

Hence, by choosing 𝜃1 = 1+𝑣 and 𝜃2 = 1
2𝜅 = 𝜃1−1

𝜃1
𝑐−1Σ

𝑛1+𝑛2𝑁Σ+𝑛3𝑁 2
Σ
, the rate of convergence claimed

in the theorem is shown. □

4.3 Application to partial differential equations and stochastic
differential equations

The aim of this section is to apply the previously obtained convergence rate results for operator
semigroups generated by Kolmogorov operators to solutions of different differential equations.
We do this in order of immediacy, so we start with the Cauchy problem associated to the
generator, move on to a different formulation as a Fokker-Planck equation in gradient form,
and finish with stochastic differential equations. The latter then motivate the terms “stochastic
Hamiltonian systems” and “Langevin dynamics” in the titles of Section 4.1 and Section 4.2,
respectively.
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4.3.1 Second-order partial differential equations

Assume the context of Theorem 3.5.1. We consider the following partial differential equation for
𝑢 ∶ [0,∞) → 𝑋 :

𝑢(0) = 𝑢0

d
d𝑡
𝑢(𝑡) = tr[Σ𝐇𝑦 𝑢(𝑡)] − ⟨Σ∇Ψ, ∇𝑦𝑢(𝑡)⟩ +

𝑑2
∑
𝑖=1

𝑑2
∑
𝑗=1

𝜕𝑗𝑎𝑖𝑗𝜕𝑦𝑖𝑢(𝑡)

+ ⟨𝑄∇Ψ, ∇𝑥𝑢(𝑡)⟩ − ⟨𝑄∗∇Φ, ∇𝑦𝑢(𝑡)⟩.

(4.3.1)

Due to Theorem 1.2.6, the semigroup (𝑇𝑡)𝑡≥0 on 𝑋 generated by (𝐿, 𝐷(𝐿)) solves this Cauchy
problem in the sense that 𝑢(𝑡) ..= 𝑇𝑡𝑢0 is the unique mild solution for all 𝑢0 ∈ 𝑋 and the unique
classical solution for 𝑢0 ∈ 𝐷(𝐿).

If Ψ(𝑦) = 1
2 |𝑦|

2 and 𝑄, Σ as well as Φ satisfy the conditions assumed in Theorem 4.2.10, then we
obtain directly that the solution 𝑢 to (4.3.1) with initial condition 𝑢0 converges to the integral of
𝑢0 under 𝜇 with the given convergence rate.

Similarly, if 𝑢0 is bounded and 𝑄, Σ, Φ and Ψ satisfy the assumptions of Theorem 4.1.10, then we
also get convergence for the solution of (4.3.1) to 𝜇(𝑢0) with the convergence rate described,
depending on the functions given by the weak Poincaré inequalities.

Now consider the following partial differential equation in divergence form:

𝑢(0) = 𝑢0

d
d𝑡
𝑢(𝑡) =

𝑑2
∑
𝑖,𝑗=1

𝜕𝑦𝑖(𝑎𝑖𝑗𝜕𝑦𝑗𝑢(𝑡) + 𝑎𝑖𝑗𝜕𝑗Ψ𝑢(𝑡)) − ⟨𝑄∇Ψ, ∇𝑥𝑢(𝑡)⟩ + ⟨𝑄∗∇Φ, ∇𝑦𝑢(𝑡)⟩.
(4.3.2)

It is easy to see that on C, the right hand side term corresponds to the formal adjoint 𝐿 of
(𝐿, 𝐷(𝐿)) on 𝐿2(ℝ𝑑1+𝑑2 , d(𝑥, 𝑦)) applied to 𝑢(𝑡). This means that (4.3.2) describes the Fokker-
Planck equation corresponding to the Kolmogorov backwards equation associated with 𝐿. We
define the Hilbert space

𝑌 ..= 𝐿2(ℝ𝑑1+𝑑2 ; 𝜈), where 𝜈 = 𝑍(Ψ)−1 exp(Φ(𝑥) + Ψ(𝑦)) d(𝑥, 𝑦).

Then the mapping 𝑇 defined by

𝑇 ∶ 𝑌 → 𝑋, 𝑇 𝑓 = 𝜌−1𝑓 with 𝜌(𝑥, 𝑦) ..= e−(Φ(𝑥)+Ψ(𝑦)),

is a unitary transformation between 𝑌 and 𝑋 . Moreover, for 𝑓 ∈ C, we see that 𝐿𝑓 = 𝑇−1𝐿∗𝑇 𝑓 ,
where (𝐿∗, 𝐷(𝐿∗)) is the adjoint of (𝐿, 𝐷(𝐿)) on 𝑋 . As seen in Corollary 3.5.7, (𝐿∗, C) results
from (𝐿, C) by using −𝑄 instead of 𝑄, and is therefore essentially m-dissipative on 𝑋 , which
implies the same for its dissipative extension (𝐿∗, 𝐶2

𝑐 (𝐸)). In both hypocoercivity methods, we
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assume that the potentials are at least 𝐶2, so 𝐶2
𝑐 (𝐸) is a 𝑇 -invariant domain. This means that

(𝐿, 𝐶2
𝑐 (𝐸)) is essentially m-dissipative and generates the sccs (𝑇𝑡)𝑡≥0 = (𝑇−1𝑇 ∗𝑡 𝑇 )𝑡≥0 on 𝑌 .

Let Ψ(𝑦) = 1
2 |𝑦|

2 and let 𝑄, Σ, Φ satisfy the assumptions of Theorem 4.2.10. Fix some 𝑢0 ∈ 𝑌
and set 𝑢(𝑡) ..= 𝑇𝑡𝑢0, which is the unique mild or classical solution of (4.3.2). We get

‖𝑢(𝑡) − 𝜈(𝑢0𝜌)𝜌‖𝑌 = ‖𝑇−1𝑇 ∗𝑡 𝑇 𝑢0 − 𝜈(𝑢0𝜌)𝑇−1(1)‖𝑌 = ‖𝑇 ∗𝑡 𝑇 𝑢0 − 𝜇(𝑇𝑢0)‖𝑋
≤ 𝜃1e−𝜃2𝑡‖𝑇 𝑢0 − 𝜇(𝑇𝑢0)‖𝑋 = 𝜃1e−𝜃2𝑡‖𝑢0 − 𝜈(𝑢0𝜌)𝜌‖𝑌

for all 𝑡 ≥ 0, 𝜃1 ∈ (1,∞) and 𝜃2 chosen accordingly. This shows that the solution to (4.3.2)
converges to a multiple of the stationary solution 𝜌 with rate 𝜃1e−𝜃2𝑡 . Stationary solution
here means that 𝑢(𝑡) = 𝜌 solves (4.3.2) with initial condition 𝑢0 = 𝜌, which follows from
conservativity of (𝑇 ∗𝑡 )𝑡≥0.

Analogously to the first Cauchy problem, we can also apply Theorem 4.1.10 under its assumptions
to obtain

‖𝑢(𝑡) − 𝜈(𝑢0𝜌)𝜌‖2𝑌 ≤ 𝜉(𝑡)
‖‖‖‖
𝑢0
𝜌
‖‖‖‖

2

osc

for all 𝑡 ≥ 0 and all 𝑢0 ∈ 𝑌 such that 𝑇 𝑢0 is bounded.

4.3.2 Generalized stochastic Hamiltonian systems

Consider the operator (𝐿, 𝐷(𝐿)) as in Definition 3.2.1 and assume (H). Due to Theorem 3.6.2,
(𝐿, 𝐷(𝐿)) is a Dirichlet operator, so we can apply Theorem 1.3.13 to obtain the associated
generalized Dirichlet form E on 𝑋 .

Proposition 4.3.1. There is a special standard Hunt process 𝐌 as in Definition 1.3.28, where 𝐌 =
(Ω,F , (F𝑡)𝑡≥0, (𝑋𝑡 , 𝑌𝑡)𝑡≥0, (𝑃(𝑥,𝑦))(𝑥,𝑦)∈𝐸), which is properly associated in the resolvent sense with E .
Moreover,𝐌 has continuous paths and infinite life time 𝑃(𝑥,𝑦)-a.s. for all (𝑥, 𝑦) ∈ 𝐸.

Proof:
In order to assure the existence of an associated right process, we need to find an E-nest first.
Consider the core C of (𝐿, 𝐷(𝐿)) consisting of smooth functions with compact support, and set
𝐹𝑛 ..= 𝐵𝑛(0), which is compact since 𝐸 is finite-dimensional. Clearly each 𝑓 ∈ C satisfies 𝑓 = 0
outside of some 𝐹𝑛, so by Proposition 1.3.22 the sequence (𝐹𝑛)𝑛∈ℕ is an E-nest of compact sets.

With this, we are left with one property left to show so that E is quasi-regular, as defined
in Definition 1.3.23. Since 𝐶2

𝑐 (𝐸) is separable (see Lemma 1.5.1) and separates the points of 𝐸,
property (iii) of Definition 1.3.23 is fulfilled since 𝐶2

𝑐 (𝐸) is a subset of 𝐷(𝐿), as (𝐿, 𝐶2
𝑐 (𝐸)) is a

well-defined dissipative extension of (𝐿, C). Furthermore, C is an algebra of bounded functions,
so we can apply Theorem 1.3.31, which yields the existence of a 𝜇-tight special standard process
𝐌 which is properly associated in the resolvent sense with E .

Due to being a differential operator without constant part, it holds that 𝐿𝑓 = 0 on 𝐸 ⧵ supp(𝑓 )
for all 𝑓 ∈ C. Moreover, due to Lemma 1.4.7, for each open 𝑈 ⊆ 𝐸 there is a sequence (𝑓𝑛)𝑛∈ℕ in
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C such that 0 ≤ 𝑓𝑛 ↑ 1𝑈 . Therefore, Lemma 1.3.32 shows that𝐌 has 𝑃(𝑥,𝑦)-a.s. continuous paths
up to the life time 𝜁 for E-quasi all (𝑥, 𝑦) ∈ 𝐸.

Since (𝑇𝑡)𝑡≥0 is conservative as seen in Theorem 3.6.2, we have that 𝑇𝑡1 = 1 for all 𝑡 ≥ 0
and therefore 𝐺11 = 1. Due to proper association with 𝐌, this implies that 𝑅11 = 1 E-quasi
everywhere, where (𝑅𝛼)𝛼>0 is the resolvent of𝐌, since 𝑅11 is quasi-continuous. Since

𝑅11(𝑥, 𝑦) = E(𝑥,𝑦) [∫
∞

0
e−𝑡1(𝑋𝑡 , 𝑌𝑡) d𝑡] ,

this shows that 𝜁 = ∞ 𝑃(𝑥,𝑦)-a.s. for E-quasi all (𝑥, 𝑦) ∈ 𝐸. Due to Remark 1.3.33, we may assume
that𝐌 has continuous paths and infinite life time 𝑃(𝑥,𝑦)-a.s. for all (𝑥, 𝑦) ∈ 𝐸, which also implies
that it is a Hunt process, and that we do not need to adjoin the cemetery Δ to the state space.□

Proposition 4.3.2. Fix locally bounded 𝜇-versions of Σ, Φ and Ψ. For E-quasi-all (𝑥, 𝑦) ∈ 𝐸, 𝑃(𝑥,𝑦)
solves the martingale problem for (𝐿, 𝐶2

𝑐 (𝐸)) in the sense that

𝑀 [𝑓 ],𝐿
𝑡

..= 𝑓 ((𝑋𝑡 , 𝑌𝑡)) − 𝑓 ((𝑋0, 𝑌0)) − ∫
𝑡

0
𝐿𝑓 ((𝑋𝑠 , 𝑌𝑠)) d𝑠 (4.3.3)

is an (F𝑡)𝑡≥0-martingale with respect to 𝑃(𝑥,𝑦) for all 𝑓 ∈ 𝐶2
𝑐 (𝐸).

Proof:
First, for any 𝑓 ∈ 𝐷(𝐿)with quasi-continuous 𝜇-version 𝑓 (which exists due to Proposition 1.3.24),

𝑀 [𝑓 ],𝐿
𝑡 is an (F𝑡)𝑡≥0-martingale with respect to 𝑃(𝑥,𝑦) for E-quasi all (𝑥, 𝑦) ∈ 𝐸, where the

exceptional set depends on 𝑓 . This follows as in [CG08, Theorem 3 (iii)] via the Fukushima
decomposition, see [Tru00, Theorem 4.5]. Let (𝑓𝑛)𝑛∈ℕ be a countable dense subset of 𝐶2

𝑐 (𝐸),
such that for any 𝑓 ∈ 𝐶2

𝑐 (𝐸), there is a subsequence (𝑓𝑘)𝑘∈ℕ which converges to 𝑓 in 𝐶2-norm
and such that the supports of 𝑓𝑛𝑘 , 𝑘 ∈ ℕ and 𝑓 are included in one compact set 𝐾 ⊆ 𝐸, see
Corollary 1.5.2. Due to Lemma 1.3.20, the martingale property is satisfied wrt. 𝑃(𝑥,𝑦) for all
𝑓𝑛 simultaneously, for E-quasi-all (𝑥, 𝑦) ∈ 𝐸. Let 𝑓 ∈ 𝐶2

𝑐 (𝐸) be arbitrary, then there is some
subsequence (𝑓𝑘)𝑘∈ℕ such that 𝑓𝑛𝑘 → 𝑓 and 𝐿𝑓𝑛𝑘 → 𝐿𝑓 uniformly on 𝐸 as 𝑘 → ∞. The claim
then follows as in [CG08, Corollary 1]. □

The first part of this proof implies the following, see also [CG08, Theorem 3 (iv)].

Corollary 4.3.3. Let 0 ≤ ℎ ∈ 𝐿2(𝐸; 𝜇) be a probability density with respect to 𝜇, for example ℎ ≡ 1,
and define 𝑃ℎ𝜇 as in Definition 1.3.25. Then 𝑃ℎ𝜇 solves the martingale problem for (𝐿, 𝐷(𝐿)) in the

sense that 𝑀 [𝑓 ],𝐿
𝑡 as in (4.3.3) is an (F𝑡)𝑡≥0-martingale with respect to 𝑃ℎ𝜇 for all 𝑓 ∈ 𝐷(𝐿).

Proposition 4.3.4. The process (𝑋𝑡 , 𝑌𝑡)𝑡≥0 with initial distribution 𝑃𝜇 is a weak solution of the Itô
stochastic differential equation

d𝑋𝑡 = 𝑄∇Ψ(𝑌𝑡) d𝑡

d𝑌𝑡 =
√
2𝜎(𝑌𝑡)d𝐵𝑡 − (𝑄∗∇Φ(𝑋𝑡) − 𝑏(𝑌𝑡)) d𝑡,

(4.3.4)

which is the original SDE (0.4) that motivated the definition of 𝐿.
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Proof:
Using cutoffs as in Remark 1.4.8 and stopping times like 𝜎𝐸⧵𝐵𝑛(0)), see Definition 1.3.27, it follows

that𝑀 [𝑓 ],𝐿
𝑡 is a continuous local martingale for all 𝑓 ∈ 𝐶2(𝐸), where 𝐿𝑓 is interpreted pointwisely.

By setting 𝑓 (𝑥, 𝑦) ..= 𝑧𝑖 and 𝑓 (𝑥, 𝑦) ..= 𝑧𝑖𝑧𝑗 , where 𝑧𝑖 is either 𝑥𝑖 or 𝑦𝑖, we get the following:

(i) 𝑓 (𝑥, 𝑦) = 𝑥𝑖 implies 𝑋 𝑖
𝑡 − 𝑋 𝑖

0 − ∫ 𝑡
0 (𝑄∇Ψ(𝑌𝑠))𝑖 d𝑠 is a local martingale, denoted by𝑀𝑥𝑖

𝑡 .

(ii) If 𝑓 (𝑥, 𝑦) = 𝑥𝑖𝑥𝑗 , then 𝐿𝑓 = 0, and hence [𝑀𝑥𝑖 , 𝑀𝑥𝑗 ]𝑡 = 0, as in the proof of [KS98,
Proposition 5.4.6]. Together with (i), this means 𝑋 𝑖

𝑡 − 𝑋 𝑖
0 = ∫ 𝑡

0 (𝑄∇Ψ(𝑌𝑠))𝑖 d𝑠.

(iii) 𝑓 (𝑥, 𝑦) = 𝑦𝑖 implies 𝑌 𝑖𝑡 −𝑌 𝑖0 −∫ 𝑡
0 𝑏𝑖(𝑌𝑠) d𝑠 + ∫ 𝑡

0 (𝑄
∗∇Φ(𝑋𝑠))𝑖 d𝑠 is a local martingale, which

we call𝑀𝑦𝑖
𝑡 .

(iv) If 𝑓 (𝑥, 𝑦) = 𝑦𝑖𝑦𝑗 , then again as in the proof of [KS98, Proposition 5.4.6], we obtain that
[𝑀𝑦𝑖 , 𝑀𝑦𝑗 ]𝑡 = 2 ∫ 𝑡

0 𝑎𝑖𝑗 (𝑌𝑠) d𝑠.

As already mentioned in (ii), we get d𝑋𝑡 = 𝑄∇Ψ(𝑌𝑡)d𝑡. Define 𝑀
𝑦
𝑡

..= (𝑀𝑦1
𝑡 , … ,𝑀𝑦𝑑2

𝑡 ), 𝑏(𝑦) ..=
(𝑏1(𝑦), … , 𝑏𝑑2(𝑦)) and let 𝜎(𝑦) be the positive square root ofΣ(𝑦), which is invertible everywhere
since Σ is. Set 𝐵𝑡 ..= 1√

2 ∫
𝑡

0 𝜎−1(𝑌𝑠)d𝑀
𝑦
𝑠 , which is a continuous local martingale since 𝜎−1 is

locally bounded due to uniform strict ellipticity of Σ. Then

d𝑌𝑡 = d𝑀𝑦
𝑡 + 𝑏(𝑌𝑡)d𝑡 − 𝑄∗∇Φ(𝑋𝑡)d𝑡 =

√
2𝜎(𝑌𝑡)d𝐵𝑡 + 𝑏(𝑌𝑡)d𝑡 − 𝑄∗∇Φ(𝑋𝑡)d𝑡.

By basic properties of the Itô integral (e.g. [KS98, 3.(2.19)]), we see that

[𝐵𝑖, 𝐵𝑗 ]𝑡 =
1
2 ∫

𝑡

0

𝑑2
∑
𝑘,𝓁=1

𝜎−1𝑖𝑘 𝜎
−1
𝑗𝓁 (𝑌𝑠) d[𝑀

𝑦𝑘 , 𝑀𝑦𝓁]𝑠 = ∫
𝑡

0

𝑑2
∑
𝑘,𝓁=1

𝜎−1𝑖𝑘 𝜎
−1
𝑗𝓁 𝑎𝑘𝓁(𝑌𝑠) d𝑠

= ∫
𝑡

0

𝑑2
∑
𝑘,𝓁=1

𝜎−1𝑖𝑘 𝑎𝑘𝓁(𝜎
−1)∗𝓁𝑗 (𝑌𝑠) d𝑠 = ∫

𝑡

0
(𝜎−1Σ(𝜎−1)∗)𝑖𝑗 (𝑌𝑠) d𝑠

= 𝛿𝑖𝑗 𝑡,

so (𝐵𝑡)𝑡≥0 is a Brownian motion on ℝ𝑑2 due to Lévy’s characterization, which completes the
proof. □

Remark 4.3.5. Alternatively, we can find aweak solution to (4.3.4) by considering the probability
law ℙℎ𝜇 on 𝐷([0,∞), 𝐸Δ) induced by 𝑃ℎ𝜇 as in Lemma 1.3.36. By Lemma 1.3.39 and Lemma 1.3.41,
it holds that ℙℎ𝜇(𝐶([0, ∞), 𝐸)) = 1, so that we can consider ℙℎ𝜇 as a measure on the space
of continuous paths with infinite life time. Application of Lemma 1.3.38 and identifying the
quadratic covariations of 𝑀 [𝑓 ],𝐿

𝑡 via 𝑁 [𝑓 ],𝐿
𝑡 for cutoffs of 𝑓 (𝑥, 𝑦) = 𝑧𝑖 as above, it follows

analogously that the canonical coordinate process (𝑍𝑡)𝑡≥0 of ℙ is a weak solution to (4.3.4).

Now assume the setting of Theorem 4.1.10. Then as a result, we obtain for the transition
semigroup (𝑝𝑡)𝑡≥0 of𝐌, that

Var𝜇(𝑝𝑡𝑓 ) = 𝜇((𝑝𝑡𝑓 )2) − (𝜇(𝑝𝑡𝑓 ))2 ≤ 𝜉(𝑡)‖𝑓 ‖2osc for all 𝑡 ≥ 0, 𝑓 ∈ 𝐿∞(𝜇),
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with 𝜉 given by the above theorem, since 𝑝𝑡𝑓 is a 𝜇-version of 𝑇𝑡𝑓 for all 𝑓 ∈ 𝐿∞(𝜇) due to
Remark 1.3.30. Moreover, the measure ℙ𝜇 is strongly mixing, hence ergodic, due to Lemma 1.3.43.

Similarly, under the assumptions of Theorem 4.2.10, for any 𝜃1 ∈ (1,∞) , one can choose 𝜃2 as
stated to get

Var𝜇(𝑝𝑡𝑓 ) = ‖𝑝𝑡𝑓 − 𝜇(𝑝𝑡𝑓 )‖2𝐻 = ‖𝑝𝑡𝑓 − 𝜇(𝑓 )‖2𝐻 ≤ 𝜃21e
−2𝜃2𝑡‖𝑓 − 𝜇(𝑓 )‖2𝐻

for all 𝑡 ≥ 0 and 𝑓 ∈ 𝐻 , which again yields strong mixing for ℙ𝜇. In the special case 𝑑 ..= 𝑑1 = 𝑑2
and 𝑄 = 𝐼 , the stochastic differential equation (4.3.4) reduces to

d𝑋𝑡 = 𝑌𝑡 d𝑡

d𝑌𝑡 =
√
2𝜎(𝑌𝑡)d𝐵𝑡 − (

∇Φ(𝑋𝑡) + Σ(𝑌𝑡)𝑌𝑡 −
𝑑
∑
𝑖,𝑗=1

𝜕𝑗𝑎𝑖𝑗 (𝑌𝑡))
d𝑡,

(4.3.5)

which in the case of constant Σ describes a Langevin equation with diffusion coefficient Σ. This
justifies our title of Section 4.2, since the dependence of Σ on 𝑌𝑡 introduces multiplicative noise.
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5 Langevin dynamics with multiplicative
noise on infinite-dimensional Hilbert
spaces

In this final chapter, we extend the essential m-dissipativity and hypocoercivity results gained
earlier to infinite-dimensional Hilbert spaces. Due to the lack of a Lebesgue measure, we use a
non-degenerate Gaussian measure as reference measure, which already is a probability measure.
This corresponds to the case where in the definition of 𝐿 in Definition 3.2.1, the potentials are
both chosen to be Gaussian. For existence and properties of such Gaussian measures, we refer to
[Pra06, Chapter 1]. While we can carry over many of the assumptions worked out to ensure the
existence of a sensible generator core and to satisfy the hypocoercivity conditions, we have to
be careful in how to choose the infinite-dimensional analogues. For example, we cannot assume
the second-order coefficients to be uniformly strictly elliptic as in (𝚺1), since we require them
to be of trace class, which implies that the sequence of eigenvalues converge to 0 due to the
spectral theorem.

5.1 Preliminaries

Let 𝑋 be a real separable Hilbert space with inner product (⋅, ⋅)𝑋 , B(𝑋) be the corresponding
Borel-𝜎-algebra, and let 𝜇 be a centered non-degenerate Gaussian measure on (𝑋,B(𝑋)). We
denote the set of all linear bounded operators on 𝑋 by L(𝑋), the subset of positive semi-definite
symmetric operators by L+(𝑋), and the set of operators additionally being of trace class by
L+
1 (𝑋). The set of Hilbert-Schmidt operators on 𝑋 is denoted by L2(𝑋).

The covariance operator corresponding to 𝜇 is denoted by 𝑄 and is an element of L+
1 (𝑋), which

is injective and hence positive-definite since 𝜇 is non-degenerate. Since it is symmetric and of
trace class, there is a complete orthonormal system 𝐵𝑋 = (𝑒𝑛)𝑛∈ℕ in𝑋 consisting of eigenvectors
of 𝑄 to the positive eigenvalues (𝜆𝑛)𝑛∈ℕ, which we can assume to be decreasing to zero. Due
to positivity of 𝑄, there exists an inverse operator defined on 𝑄(𝑋) that satisfies 𝑄−1𝑒𝑘 = 1

𝜆𝑘
𝑒𝑘

and therefore a square root 𝑄− 1
2 defined on span{𝑒𝑘 ∶ 𝑘 ∈ ℕ} characterized by 𝑄− 1

2 𝑒𝑘 = 1√
𝜆𝑘
𝑒𝑘 .

Definition 5.1.1. For each 𝑛 ∈ ℕ, define 𝑋𝑛 ..= span{𝑒1, … , 𝑒𝑛} and denote the orthogonal
projection from 𝑋 to 𝑋𝑛 by 𝑃𝑛, with the corresponding coordinate map 𝑝𝑛 ∶ 𝑋 → ℝ𝑛. This
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means

𝑃𝑛(𝑥) ..=
𝑛
∑
𝑘=1

(𝑥, 𝑒𝑘)𝑋 𝑒𝑘 and 𝑝𝑛(𝑥) ..= ((𝑥, 𝑒1)𝑋 , … , (𝑥, 𝑒𝑛)𝑋 )

for all 𝑥 ∈ 𝑋 .

Let 𝐶∞
𝑏 (ℝ

𝑛) denote the space of bounded smooth real-valued functions on ℝ𝑛 with bounded
derivatives and let 𝜇𝑛 be the image measure of 𝜇 under 𝑝𝑛, for each 𝑛 ∈ ℕ. Then define

F𝐶∞
𝑏 (𝐵𝑋 , 𝑛) ..= {𝑓 ∶ 𝑋 → ℝ ∣ 𝑓 (𝑥) = 𝜑(𝑝𝑛(𝑥)) for some 𝜑 ∈ 𝐶∞

𝑏 (ℝ
𝑛)}, (5.1.1)

F𝐶∞
𝑏 (𝐵𝑋 ) ..= ⋃

𝑛∈ℕ
F𝐶∞

𝑏 (𝑋, 𝑛), (5.1.2)

𝐿2𝑛(𝑋, 𝜇) ..= {𝑓 ∶ 𝑋 → ℝ ∣ 𝑓 = 𝑔 ◦ 𝑝𝑛 for some 𝑔 ∈ 𝐿2(ℝ𝑛, 𝜇𝑛)}. (5.1.3)

In order to deal with 𝐿2𝑛(𝑋, 𝜇) in a practical way, we need to accurately know the measure 𝜇𝑛.
[Pra06, Corollary 1.19] yields the following characterization:

Lemma 5.1.2. Let 𝑛 ∈ ℕ, and 𝑥1, … , 𝑥𝑛 ∈ 𝑋 . The image measure 𝜈𝑛 of 𝜇 under the map

𝑋 ∋ 𝑥 ↦ ((𝑥, 𝑥1)𝑋 , … , (𝑥, 𝑥𝑛)𝑋 ) ∈ ℝ𝑛

is the centered 𝑛-dimensional Gaussian measure with covariance matrix

𝑄𝜈𝑛 ..= ((𝑄𝑥𝑖, 𝑥𝑗 )𝑋 )1≤𝑖,𝑗≤𝑛.

In particular, the covariance matrix of 𝜇𝑛 is just diag(𝜆1, … , 𝜆𝑛).

This directly implies the following:

Corollary 5.1.3. For any 𝑥1, 𝑥2 ∈ 𝑋 , it holds that

∫
𝑋
(𝑥, 𝑥1)𝑋 (𝑥, 𝑥2)𝑋 𝜇(d𝑥) = (𝑄𝑥1, 𝑥2)𝑋 .

This also implies that ‖𝑥‖2𝑋 and therefore ‖𝑥‖𝑋 is 𝜇-integrable, since

∫
𝑋
‖𝑥‖2𝑋 d𝜇 = ∫

𝑋
∑
𝑛∈ℕ

(𝑥, 𝑒𝑛)2𝑋 d𝜇 = ∑
𝑛∈ℕ

(𝑄𝑒𝑛, 𝑒𝑛)𝑋 = ∑
𝑛∈ℕ

𝜆𝑛 < ∞

due to monotone convergence and the fact that 𝑄 is trace class.

We require the following:

Lemma 5.1.4. F𝐶∞
𝑏 (𝐵𝑋 ) is dense in 𝐿

2(𝑋, 𝜇) and F𝐶∞
𝑏 (𝐵𝑋 , 𝑛) is dense in 𝐿

2
𝑛(𝑋, 𝜇) for all 𝑛 ∈ ℕ.

Proof:
See [PL14, Lemma 2.2]. □
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Definition 5.1.5. Let 𝑓 ∶ 𝑋 → ℝ be Fréchet-differentiable, then we denote its derivative
at point 𝑥 by 𝐷𝑓 (𝑥) ∈ 𝑋 ′, where 𝑋 ′ denotes the topological dual space of 𝑋 . If 𝑓 is twice
Fréchet-differentiable, then its second order Fréchet derivative at point 𝑥 is denoted by𝐷2𝑓 (𝑥) ∈
L(𝑋; 𝑋 ′). By identifying 𝑋 with its dual via the Riesz isomorphism, we can interpret 𝐷𝑓 (𝑥)
as an element of 𝑋 and 𝐷2𝑓 (𝑥) as an element of L(𝑋). Then, for 𝑖, 𝑗 ∈ ℕ, we denote the
partial derivative in direction 𝑒𝑖 at point 𝑥 by 𝜕𝑖𝑓 (𝑥) = (𝐷𝑓 (𝑥), 𝑒𝑖), and the second order
partial derivative in directions 𝑒𝑖 and 𝑒𝑗 by 𝜕𝑖𝑗𝑓 (𝑥) = 𝜕𝑗𝑖𝑓 (𝑥) = (𝐷2𝑓 (𝑥)𝑒𝑖, 𝑒𝑗 ), since 𝐷2𝑓 (𝑥) is
symmetric, see for example [Die69, (8.12.2)].

Remark 5.1.6. By definition, it holds that 𝐷𝑓 (𝑥) = ∑𝑛∈ℕ 𝜕𝑖𝑓 (𝑥)𝑒𝑖 for all Fréchet-differentiable
𝑓 ∶ 𝑋 → ℝ. If 𝑓 = 𝜑 ◦ 𝑝𝑛 for some 𝑛 ∈ ℕ, 𝜑 ∈ 𝐶∞

𝑏 (ℝ
𝑛), then the chain rule implies

𝐷𝑓 (𝑥) = ∑𝑛
𝑖=1 𝜕𝑖𝜑(𝑝𝑛(𝑥))𝑒𝑖 ∈ 𝑋𝑛 for all 𝑥 ∈ 𝑋 .

With that notation, the following integration by parts formula follows, as seen by using
Lemma 5.1.2 and the classical integration by parts formula:

Lemma 5.1.7. Let 𝑓 , 𝑔 ∈ F𝐶1
𝑏(𝐵𝑋 ), which is defined analogously to F𝐶∞

𝑏 (𝐵𝑋 ). Then

∫
𝑋
𝜕𝑖𝑓 𝑔 d𝜇 = −∫

𝑋
𝑓 𝜕𝑖𝑔 d𝜇 + ∫

𝑋
(𝑥, 𝑄−1𝑒𝑖)𝑋 𝑓 (𝑥)𝑔(𝑥) 𝜇(d𝑥). (5.1.4)

As can be seen for example in [AFP19, Proposition 4.5], the following Poincaré inequality holds:

Lemma 5.1.8. Let 𝜆1 denote the largest eigenvalue of 𝑄, then

∫
𝑋
(𝑄𝐷𝑓 , 𝐷𝑓 )𝑋 d𝜇 ≥ 𝜆1 ∫

𝑋
(𝑓 − 𝜇(𝑓 ))2 d𝜇

holds for all 𝑓 ∈ F𝐶∞
𝑏 (𝐵𝑋 ).

5.2 Setting and Operators

Now let 𝑈 and 𝑉 be Hilbert spaces like 𝑋 with inner products (⋅, ⋅)𝑈 and (⋅, ⋅)𝑉 and Gaussian
measures 𝜇1, 𝜇2 respectively. Let 𝑄𝑖 denote the covariance operators of 𝜇𝑖, and let 𝐵𝑈 = (𝑑𝑛)𝑛∈ℕ
and 𝐵𝑉 = (𝑒𝑛)𝑛∈ℕ be the induced orthonormal bases of 𝑈 and 𝑉 , respectively. The respective
projections to induced subspaces are denoted by 𝑃𝑈𝑛 , 𝑝𝑈𝑛 , 𝑃𝑉𝑛 and 𝑝𝑉𝑛 .

Definition 5.2.1. Define the real separable Hilbert space𝑊 = 𝑈 ×𝑉 with the canonically defined
inner product (⋅, ⋅)𝑊 , Borel-𝜎-algebra B(𝑊 ) = B(𝑈 ) ⊗ B(𝑉 ) and product measure 𝜇 ..= 𝜇1 ⊗ 𝜇2.
Due to [Pra06, Theorem 1.12], 𝜇 is a centered Gaussian measure with covariance 𝑄 defined by
𝑄(𝑢, 𝑣) = (𝑄1𝑢, 𝑄2𝑣).

Set
𝐵𝑊 ..= {(𝑑𝑛, 0) ∣ 𝑛 ∈ ℕ} ∪ {(0, 𝑒𝑛) ∣ 𝑛 ∈ ℕ} ⊆ 𝑊 .
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as well as

F𝐶∞
𝑏 (𝐵𝑊 , 𝑛) ..= {𝑓 ∶ 𝑊 → ℝ ∣ 𝑓 (𝑢, 𝑣) = 𝜑(𝑝𝑈𝑛 (𝑢), 𝑝

𝑉
𝑛 (𝑣)) for some 𝜑 ∈ 𝐶∞

𝑏 (ℝ
𝑛 × ℝ𝑛)},

and define F𝐶∞
𝑏 (𝐵𝑊 ), 𝐿

2
𝑛(𝑊 , 𝜇) analogously, where 𝜇𝑛 ..= 𝜇𝑛1 ⊗ 𝜇𝑛2 , with 𝜇𝑖 being centered

Gaussian measures on ℝ𝑛 with covariance matrices 𝑄𝑖,𝑛.

Note that F𝐶∞
𝑏 (𝐵𝑊 , 𝑛) defined this way coincides with the definition in Definition 5.1.1 for

𝑋 = 𝑊 by trivially extending 𝜑. In particular, we can use the result of Lemma 5.1.4 for 𝑋 = 𝑊 .

Definition 5.2.2. For sufficiently differentiable 𝑓 ∶ 𝑊 → ℝ and all 𝑤 = (𝑢, 𝑣) ∈ 𝑊 , set

𝐷1𝑓 (𝑤) ..= ∑
𝑛∈ℕ

(𝐷𝑓 (𝑤), (𝑑𝑛, 0))𝑊 (𝑑𝑛, 0) ∈ 𝑈 ,

𝐷2𝑓 (𝑤) ..= ∑
𝑛∈ℕ

(𝐷𝑓 (𝑤), (0, 𝑒𝑛))𝑊 (0, 𝑒𝑛) ∈ 𝑉 ,

𝜕𝑖,1𝑓 (𝑤) ..= (𝐷1𝑓 (𝑤), 𝑑𝑖)𝑈
𝜕𝑖,2𝑓 (𝑤) ..= (𝐷2𝑓 (𝑤), 𝑒𝑖)𝑉 .

The second order derivatives and partial derivatives are named analogously.

Now that all necessary derivatives are defined, we can define differential operators onF𝐶∞
𝑏 (𝐵𝑊 )

analogously to Definition 3.2.1.

Definition 5.2.3. Let 𝐾12 ∈ L(𝑈 ; 𝑉 ) be a bounded linear operator from 𝑈 to 𝑉 and set 𝐾21 =
𝐾∗
12 ∈ L(𝑉 ; 𝑈 ). Further assume the invariance properties 𝐾12(𝑈𝑛) ⊆ 𝑉𝑛 and 𝐾21(𝑉𝑛) ⊆ 𝑈𝑛 for all

𝑛 ∈ ℕ.

Let the map 𝐾22 ∶ 𝑉 → L+(𝑉 ) be Fréchet-differentiable with 𝐷𝐾22(𝑣) ∈ L(𝑉 ;L(𝑉 )) and partial
derivatives 𝜕𝑖𝐾22(𝑣) = (𝐷𝐾22(𝑣))(𝑒𝑖) ∈ L(𝑉 ) for each 𝑣 ∈ 𝑉 . Assume that for each 𝑣 ∈ 𝑉 , it
holds that 𝐾22(𝑣)(𝑉𝑛) ⊆ 𝑉𝑛 for all 𝑛 ∈ ℕ.

Moreover, assume there is a strictly increasing sequence (𝑚𝑘)𝑘∈ℕ in ℕ such that for each
𝑛 ≤ 𝑚𝑘 , it holds that 𝐾22(𝑣)|𝑉𝑛 = 𝐾22,𝑚𝑘(𝑃𝑉𝑚𝑘

(𝑣))|𝑉𝑛 for all 𝑣 ∈ 𝑉 , where 𝐾22,𝑚𝑘 ∶ 𝑉𝑚𝑘 → L+(𝑉𝑚𝑘)
is bounded and continuously Fréchet-differentiable. Assume that for each 𝑘 ∈ ℕ, there is a
constant𝑀𝑘 ∈ (0,∞) such that

sup
𝑣∈𝑉𝑚𝑘

‖𝐾22,𝑚𝑘(𝑣)‖L(𝑉𝑚𝑘 ) ≤ 𝑀𝑘 and

‖𝜕𝑖𝐾22,𝑚𝑘(𝑣)‖L(𝑉𝑚𝑘 ) ≤ 𝑀𝑘(1 + ‖𝑣‖𝑉𝑚𝑘 ) for all 𝑣 ∈ 𝑉𝑚𝑘 , 1 ≤ 𝑖 ≤ 𝑚𝑘 ,

and set 𝑚𝐾 (𝑛) ..= min𝑘∈ℕ{𝑚𝑘 ∶ 𝑚𝑘 ≥ 𝑛}.
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Then the differential operators (𝑆,F𝐶∞
𝑏 (𝐵𝑊 )) and (𝐴,F𝐶

∞
𝑏 (𝐵𝑊 )) on 𝐻 ..= 𝐿2(𝑊 , 𝜇) are defined

by
𝑆𝑓 (𝑢, 𝑣) ..= tr [𝐾22(𝑣) ◦ 𝐷2

2𝑓 (𝑢, 𝑣)] + ∑
𝑖,𝑗∈ℕ

(𝜕𝑗𝐾22(𝑣)𝑒𝑖, 𝑒𝑗 )𝑉 𝜕𝑖,2𝑓 (𝑢, 𝑣)

− (𝑣, 𝑄−1
2 𝐾22(𝑣)𝐷2𝑓 (𝑢, 𝑣))𝑉

and
𝐴𝑓 (𝑢, 𝑣) ..= (𝑢, 𝑄−1

1 𝐾21𝐷2𝑓 (𝑢, 𝑣))𝑈 − (𝑣, 𝑄−1
2 𝐾12𝐷1𝑓 (𝑢, 𝑣))𝑉 ,

respectively, for all (𝑢, 𝑣) ∈ 𝑊 . Finally, (𝐿,F𝐶∞
𝑏 (𝐵𝑊 )) is defined via 𝐿 ..= 𝑆 − 𝐴.

Remark 5.2.4. The invariance assumptions made on 𝐾12, 𝐾21 and 𝐾22 ensure that 𝑆 and 𝐴 are
well-defined on F𝐶∞

𝑏 (𝐵𝑊 ) and still yield finitely based functions. Indeed, let 𝑓 ∈ F𝐶∞
𝑏 (𝐵𝑊 , 𝑛)

for some 𝑛 ∈ ℕ with corresponding 𝜑 ∈ 𝐶∞
𝑏 (ℝ

𝑛 × ℝ𝑛). By trivially extending 𝜑 if necessary,
we can assume 𝑚𝐾 (𝑛) = 𝑛. Note that 𝑄−1

1 𝐾21𝐷2𝑓 (𝑢, 𝑣) ∈ 𝑈𝑛, 𝑄−1
2 𝐾12𝐷1𝑓 (𝑢, 𝑣) ∈ 𝑉𝑛, and

𝑄−1
2 𝐾22(𝑣)𝐷2𝑓 (𝑢, 𝑣) ∈ 𝑉𝑛 for all (𝑢, 𝑣) ∈ 𝑊 . Therefore, these maps are bounded in (𝑢, 𝑣) due to

uniform boundedness of 𝐾22,𝑛 and the fact that all derivatives of 𝑓 are bounded. Together with
the observation that all sums appearing in the definition of 𝑆 are finite, as well as Corollary 5.1.3,
it follows that 𝑆𝑓 (𝑢, 𝑣) = 𝑆𝑓 (𝑃𝑈𝑛 𝑢, 𝑃𝑉𝑛 𝑣) and 𝐴𝑓 (𝑢, 𝑣) = 𝐴𝑓 (𝑃𝑈𝑛 𝑢, 𝑃𝑉𝑛 ) as well as 𝑆𝑓 , 𝐴𝑓 ∈ 𝐻 .

Lemma 5.2.5. On 𝐻 = 𝐿2(𝑊 ; 𝜇), the operator (𝑆,F𝐶∞
𝑏 (𝐵𝑊 )) is symmetric and negative semi-

definite; (𝐴,F𝐶∞
𝑏 (𝐵𝑊 )) is antisymmetric, and therefore (𝐿,F𝐶∞

𝑏 (𝐵𝑊 )) is dissipative. For 𝑓 , 𝑔 ∈
F𝐶∞

𝑏 (𝐵𝑊 ), we have the representation

(𝐿𝑓 , 𝑔)𝐻 = −∫
𝑊
(𝐷2𝑓 , 𝐾22𝐷2𝑔)𝑉 − (𝐷1𝑓 , 𝐾21𝐷2𝑔)𝑈 + (𝐷2𝑓 , 𝐾12𝐷1𝑔)𝑉 d𝜇.

Proof:
Let 𝑓 , 𝑔 ∈ F𝐶∞

𝑏 (𝐵𝑊 ). As in Remark 5.2.4, we can assume 𝑓 , 𝑔 ∈ F𝐶∞
𝑏 (𝐵𝑊 , 𝑛) for some 𝑛 ∈ ℕ

with 𝑚𝐾 (𝑛) = 𝑛. For any (𝑢, 𝑣) ∈ 𝑊 , it holds that

𝑄−1
1 𝐾21𝐷2𝑓 (𝑢, 𝑣) =

𝑛
∑
𝑘=1

𝜕𝑘,2𝑓 (𝑢, 𝑣)𝑄−1
1 𝐾21𝑒𝑘 =

𝑛
∑
𝑘,𝓁=1

𝜕𝑘,2𝑓 (𝑢, 𝑣)(𝐾21𝑒𝑘 , 𝑑𝓁)𝑄−1
1 𝑑𝓁.

Using Lemma 5.1.7, we obtain

∫
𝑊
(𝑢, 𝑄−1

1 𝑑𝓁)𝑈𝜕𝑘𝑓 (𝑢, 𝑣)𝑔(𝑢, 𝑣)𝜇(d(𝑢, 𝑣)) = ∫
𝑊
(𝑔𝜕𝓁,1𝜕𝑘,2𝑓 + 𝜕𝑘,2𝑓 𝜕𝓁,1𝑔)d𝜇,

which shows that

((𝑢, 𝑄−1
1 𝐾21𝐷2𝑓 )𝑈 , 𝑔)𝐻 = ∫

𝑊
(𝐾21𝐷2𝑓 , 𝐷1𝑔)𝑈 d𝜇 +

𝑛
∑
𝑘,𝓁=1

(𝐾21𝑒𝑘 , 𝑑𝓁)𝑈 (𝑔, 𝜕𝓁,1𝜕𝑘,2𝑓 )𝐻 .

Similarly, it holds that

((𝑣, 𝑄−1
2 𝐾12𝐷1𝑓 )𝑉 , 𝑔)𝐻 = ∫

𝑊
(𝐾12𝐷1𝑓 , 𝐷2𝑔)𝑉 d𝜇 +

𝑛
∑
𝑘,𝓁=1

(𝐾12𝑑𝓁, 𝑒𝑘)𝑉 (𝑔, 𝜕𝑘,2𝜕𝓁,1𝑓 )𝐻 .
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Using 𝐾∗
12 = 𝐾21, this implies that

(𝐴𝑓 , 𝑔)𝐻 = ∫
𝑊
(𝐷2𝑓 , 𝐾12𝐷1𝑔)𝑉 − (𝐷1𝑓 , 𝐾21𝐷2𝑔)𝑈 d𝜇,

so in particular (𝐴𝑓 , 𝑓 )𝐻 = 0. Now consider the operator 𝑆. As before, we have

𝑄−1
2 𝐾22(𝑣)𝐷2𝑓 (𝑢, 𝑣) =

𝑛
∑
𝑖=1

𝜕𝑖,2𝑓 (𝑢, 𝑣)𝑄−1
2 𝐾22(𝑣)𝑒𝑖

=
𝑛
∑
𝑖,𝑗=1

𝜕𝑖,2𝑓 (𝑢, 𝑣)(𝐾22(𝑣)𝑒𝑖, 𝑒𝑗 )𝑉𝑄−1
2 𝑒𝑗

for all (𝑢, 𝑣) ∈ 𝑊 . Due to the assumptions on 𝐾22, the maps

(𝑢, 𝑣) ↦ 𝜕𝑖,2𝑓 (𝑢, 𝑣)(𝐾22(𝑣)𝑒𝑖, 𝑒𝑗 )𝑉

are elements of F𝐶1
𝑏(𝐵𝑊 , 𝑛) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, see Remark 5.2.4. Therefore, integration by

parts is possible and yields

∫
𝑊
(𝑣, 𝑄−1

2 𝑒𝑗 )𝜕𝑖,2𝑓 (𝐾22𝑒𝑖, 𝑒𝑗 )𝑉 𝑔 d𝜇 = ∫
𝑊
𝜕𝑗 ,2𝜕𝑖,2𝑓 (𝐾22𝑒𝑖, 𝑒𝑗 )𝑉 𝑔 d𝜇

+ ∫
𝑊
𝜕𝑖,2𝑓 (𝜕𝑗𝐾22𝑒𝑖, 𝑒𝑗 )𝑉 𝑔 d𝜇

+ ∫
𝑊
𝜕𝑖,2𝑓 (𝐾22𝑒𝑖, 𝑒𝑗 )𝑉 𝜕𝑗 ,2𝑔 d𝜇

Summing up over 𝑖 and 𝑗 , we get

𝑛
∑
𝑖,𝑗=1

∫
𝑊
𝜕𝑖,2𝑓 (𝐾22𝑒𝑖, 𝑒𝑗 )𝑉 𝜕𝑗 ,2𝑔 d𝜇 = ∫

𝑊
(𝐾22𝐷2𝑓 , 𝐷2𝑔)𝑉 d𝜇 = ∫

𝑊
(𝐷2𝑓 , 𝐾22𝐷2𝑔)𝑉 d𝜇

and
𝑛
∑
𝑖,𝑗=1

∫
𝑊
𝜕𝑗 ,2𝜕𝑖,2𝑓 (𝐾22𝑒𝑖, 𝑒𝑗 )𝑉 𝑔 d𝜇 =

𝑛
∑
𝑖=1

∫
𝑊
(𝐾22𝑒𝑖, (𝐷2

2𝑓 )(𝑒𝑖))𝑉 𝑔 d𝜇

= ∫
𝑊
tr [𝐾22𝐷2

2𝑓 ] 𝑔 d𝜇

due to pointwise symmetry of 𝐾22. Therefore, we indeed get

(𝑆𝑓 , 𝑔)𝐻 = −
𝑛
∑
𝑖,𝑗=1

∫
𝑊
𝜕𝑖,2𝑓 (𝐾22𝑒𝑖, 𝑒𝑗 )𝑉 𝜕𝑗 ,2𝑔 d𝜇 = −∫

𝑊
(𝐷2𝑓 , 𝐾22𝐷2𝑔)𝑉 d𝜇,

which shows that 𝑆 is symmetric and negative semi-definite since 𝐾22 is positive semi-definite.
By Remark 1.2.14, all three operators are dissipative with domain F𝐶∞

𝑏 (𝐵𝑊 ). □
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5.3 Essential m-dissipativity

Now we prove that the operator (𝐿,F𝐶∞
𝑏 (𝐵𝑊 )) on 𝐻 is essentially m-dissipative. Since dissipa-

tivity was shown in Lemma 5.2.5, it remains to show that (𝐼 − 𝐿)(F𝐶∞
𝑏 (𝐵𝑊 )) is dense in 𝐻 , see

Definition 1.2.17. Since F𝐶∞
𝑏 (𝐵𝑊 ) is dense in 𝐻 , it suffices to approximate all such functions by

𝐼 −𝐿. The main idea here is to fix a finite dimension based on the target function, and to interpret
𝐿 as an operator on the finite-dimensional subspace, which is possible due to Remark 5.2.4. Then
we use our finite-dimensional m-dissipativity result from Theorem 3.5.1.

Definition 5.3.1. Fix 𝑛 ∈ ℕ such that 𝑚𝐾 (𝑛) = 𝑛. Then we define

𝐾12,𝑛
..= ((𝐾12𝑑𝑖, 𝑒𝑗 )𝑉 )𝑖𝑗 , 𝐾21,𝑛

..= (𝐾12,𝑛)∗ and

Σ𝑛(𝑦) ..=
((

𝐾22,𝑛(

𝑛
∑
𝑘=1

𝑦𝑘𝑒𝑘)
𝑒𝑖, 𝑒𝑗)

𝑉
)
𝑖𝑗

for all 𝑦 ∈ ℝ𝑛.

Moreover, define the operators 𝑆𝑛, 𝐴𝑛 and 𝐿𝑛 on 𝐻𝑛
..= 𝐿2(𝜇𝑛) as in Definition 3.2.1 for Σ = Σ𝑛,

Φ(𝑥) = 1
2⟨𝑥, 𝑄

−1
1,𝑛𝑥⟩, Ψ(𝑦) = 1

2⟨𝑦, 𝑄
−1
2,𝑛𝑦⟩, and 𝑄 = 𝐾21,𝑛, but with the domain 𝐶∞

𝑏 (ℝ
𝑛 × ℝ𝑛).

Lemma 5.3.2. Let 𝑓 ∈ F𝐶∞
𝑏 (𝐵𝑊 , 𝑛) for some 𝑛 ∈ ℕwith𝑚𝐾 (𝑛) = 𝑛, with 𝑓 (𝑢, 𝑣) = 𝜑(𝑝𝑈𝑛 𝑢, 𝑝𝑉𝑛 𝑣)

for 𝜑 ∈ 𝐶∞
𝑏 (ℝ

𝑛 × ℝ𝑛). Then 𝑆𝑓 (𝑢, 𝑣) = 𝑆𝑛𝜑(𝑝𝑈𝑛 𝑢, 𝑝𝑉𝑛 𝑣), and analogue statements hold for 𝐴 and 𝐿.

Proof:
Follows directly from Remark 5.2.4 together with ∇Φ(𝑥) = 𝑄−1

1,𝑛𝑥 and ∇Ψ(𝑦) = 𝑄−1
2,𝑛𝑦. □

Next, we fix some assumptions on 𝐾22 such that they imply sufficient conditions on each Σ𝑛 to
ensure that the dense range condition can be verified. In particular, we need infinite-dimensional
analogues to (𝚺1)–(𝚺3).

Assumption (K1). Assume that there is some positive-definite 𝐾 0
22 ∈ L+(𝑉 ) which leaves each

𝑉𝑛 invariant, such that

(𝑣, 𝐾22(𝑦)𝑣)𝑉 ≥ (𝑣, 𝐾 0
22𝑣)𝑉 for all 𝑣, 𝑦 ∈ 𝑉 .

Assumption (K2). Let (𝑚𝑘)𝑘∈ℕ be the sequence from the definition of 𝐾22 in Definition 5.2.3
and, for each 𝑛 ∈ ℕ, let 𝑘(𝑛) be the 𝑘 such that𝑚𝑘(𝑛) = 𝑚𝐾 (𝑛). Assume that there are sequences
(𝛽𝑘)𝑘∈ℕ in [0, 1) and (𝑁𝑘)𝑘∈ℕ in ℝ such that, for all 𝑛 ∈ ℕ,

|(𝜕𝑖𝐾22,𝑚𝐾 (𝑛)(𝑣)𝑒𝑛, 𝑒𝑗 )𝑉 | ≤ 𝑁𝑘(𝑛)(1 + ‖𝑣‖𝛽𝑘(𝑛)𝑉𝑚𝐾 (𝑛)
)

for all 𝑣 ∈ 𝑉𝑚𝑘 , 1 ≤ 𝑖 ≤ 𝑚𝐾 (𝑛) and 1 ≤ 𝑗 ≤ 𝑛.

For 𝑛 ∈ ℕ, set 𝑁𝐾 (𝑛) ..= 2max{𝑁𝑘(𝑗) ∶ 1 ≤ 𝑗 ≤ 𝑛} and 𝛽𝐾 (𝑛) ..= max{𝛽𝑘(𝑛) ∶ 1 ≤ 𝑗 ≤ 𝑛}.

Lemma 5.3.3. Let 𝑛 ∈ ℕ with 𝑚𝐾 (𝑛) = 𝑛 and define Σ𝑛 as in Definition 5.3.1. If 𝐾22 satisfies (K1)
and (K2), then Σ𝑛 satisfies (𝚺1)–(𝚺3).
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Proof:
Set Σ0𝑛 ∈ ℝ𝑛×𝑛 analogously to Σ𝑛 for 𝐾 0

22,𝑛. Since 𝐾 0
22 is positive-definite, all eigenvalues 𝜆01, … , 𝜆0𝑛

of Σ0𝑛 are positive, and we define 𝑐𝑛 ..= min𝑖∈{1,…,𝑛} 𝜆𝑖 > 0. For any 𝑦 ∈ ℝ𝑛, set 𝑦̃ ..= ∑𝑛
𝑖=1 𝑦𝑖𝑒𝑖 ∈ 𝑉𝑛.

Then
⟨𝑦, Σ𝑛(𝑣)𝑦⟩ = (𝑦̃, 𝐾22,𝑛(𝑣̃)𝑦̃)𝑉 ≥ (𝑦̃, 𝐾 0

22,𝑛𝑦̃)𝑉 = ⟨𝑦, Σ0𝑛𝑦⟩ ≥ 𝑐𝑛|𝑦|2

for all 𝑦, 𝑣 ∈ ℝ𝑛. Hence, (𝚺1) holds with 𝑐Σ𝑛 ..= 𝑐−1𝑛 . Due to definition of 𝐾22, we already have
that all entries of Σ𝑛 are bounded and continuously differentiable, hence in particular locally
Lipschitz. Moreover, let 𝑎𝑖𝑗 ,𝑛 denote the entry of Σ𝑛 at position (𝑖, 𝑗), where we may assume that
𝑗 ≤ 𝑖, and let 𝑘 ∈ {1, … , 𝑛}. Then

|𝜕𝑘𝑎𝑖𝑗 ,𝑛(𝑦)| = |𝜕𝑘(𝐾22,𝑛(𝑦̃)𝑒𝑖, 𝑒𝑗 )𝑉 | = |(𝜕𝑘𝐾22,𝑛(𝑦̃)𝑒𝑖, 𝑒𝑗 )𝑉 | ≤ 𝑁𝑘(𝑖)(1 + ‖𝑦̃‖𝛽𝑛𝑉𝑛)

≤ 2𝑁𝑘(𝑖)(1 + ‖𝑦̃‖𝛽
𝐾 (𝑛)
𝑉𝑛 ) ≤ 𝑁𝐾 (𝑛)(1 + ‖𝑦̃‖𝛽

𝐾 (𝑛)
𝑉𝑛 )

by (K2), so Σ𝑛 satisfies (𝚺3) with constants𝑀 = 𝑁𝐾 (𝑛) and 𝛽 = 𝛽𝐾 (𝑛). □

Remark 5.3.4. From the invariance properties of 𝐾12, 𝐾21 and 𝐾22 in Definition 5.2.3, it follows
quickly that they are all diagonal in the sense that 𝐾12𝑑𝑖 = 𝛼𝑖𝑒𝑖 for some real 𝛼𝑖 and 𝐾22(𝑣)𝑒𝑖 =
𝜆22,𝑖(𝑣)𝑒𝑖 for some non-negative continuously differentiable 𝜆22,𝑖 ∶ 𝑉 → ℝ. We haven’t used that
fact concretely so far, since it seems natural to allow at least “block-diagonal” operators with
bounded block size, such that they agree with the blocks induced by the sequence (𝑚𝑘)𝑘∈ℕ. How-
ever, this makes some assumptions now and later harder to verify, so we keep the assumptions
in this form. In that case, (K1) just means that each 𝜆22,𝑖 is bounded from below by a positive
constant 𝜆0𝑖 ∈ ℝ, and (K2) reduces to |𝜕𝑖𝜆22,𝑛(𝑣)| = |𝜕𝑖𝜆22,𝑛(𝑃𝑉𝑚𝐾 (𝑛)𝑣)| ≤ 𝑁𝑘(𝑛)(1 + ‖𝑃𝑉𝑚𝐾 (𝑛)𝑣‖

𝛽𝑘(𝑛)
𝑉 )

for all 1 ≤ 𝑖 ≤ 𝑚𝐾 (𝑛) and 𝑛 ∈ ℕ.

Proposition 5.3.5. Let 𝑛 ∈ ℕ such that 𝑚𝐾 (𝑛) = 𝑛 and let 𝐾22 satisfy (K1) and (K2). Then
(𝐿𝑛, 𝐶∞

𝑏 (ℝ
𝑛 × ℝ𝑛)) is essentially m-dissipative on 𝐿2(ℝ𝑛 × ℝ𝑛, 𝜇𝑛).

Proof:
We use Theorem 3.5.1, so we have to verify condition (C). Due to Lemma 5.3.3, the conditions
on Σ𝑛 are satisfied. By definition of Φ and Ψ, it follows that ∇Φ(𝑥) = 𝑄−1

1,𝑛𝑥 , ∇Ψ(𝑦) = 𝑄−1
2,𝑛

and ∇2Φ(𝑥) = 0 = ∇2Ψ(𝑦) for all 𝑥, 𝑦 ∈ ℝ𝑛. In particular, (𝚿1)–(𝚿3) and (𝚽1) are satisfied.
Moreover, for any 𝑥 ∈ ℝ𝑛, it holds that

|∇Φ(𝑥)|2 =
𝑛
∑
𝑖=1

1
𝜆21,𝑖

𝑥2𝑖 ≤
1
𝜆21,𝑛

|𝑥|2,

since 𝑄1,𝑛 = diag(𝜆1,1, … , 𝜆1,𝑛), where (𝜆1,𝑖)𝑖∈ℕ is the decreasing sequence of eigenvalues of
𝑄1. Therefore, Φ satisfies the last condition of (C) for 𝑁 = 𝜆−11,𝑛 and 𝛾 = 1 < (𝛽𝐾 (𝑛))−1. As a
result of Theorem 3.5.1, it follows that (𝐿𝑛, 𝐶∞

𝑐 (ℝ𝑛 × ℝ𝑛)) is essentially m-dissipative on 𝐿2(𝜇𝑛).
Since 𝐶∞

𝑏 (ℝ
𝑛 × ℝ𝑛) extends that domain, and (𝐿𝑛, 𝐶∞

𝑏 (ℝ
𝑛 × ℝ𝑛)) is dissipative on 𝐿2(𝜇𝑛) due to

Lemma 5.2.5, the claim follows. □
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Now finally, we are able to prove the central result of this section:

Theorem 5.3.6. Let 𝐾22 satisfy (K1) and (K2). Then (𝐿,F𝐶∞
𝑏 (𝐵𝑊 )) is essentially m-dissipative

on 𝐻 = 𝐿2(𝜇).

Proof:
As mentioned above, we only need to show that (𝐼 − 𝐿)(F𝐶∞

𝑏 (𝐵𝑊 )) is dense in 𝐻 , since
Lemma 5.2.5 provides dissipativity of (𝐿,F𝐶∞

𝑏 (𝐵𝑊 )). Let 𝑔 ∈ F𝐶∞
𝑏 (𝐵𝑊 ), then there is some

𝑛 ∈ ℕ such that 𝑔 ∈ F𝐶∞
𝑏 (𝐵𝑊 , 𝑛). As before, we extend 𝑔 trivially to F𝐶∞

𝑏 (𝐵𝑊 , 𝑚
𝐾 (𝑛)), so that

we can assume 𝑛 = 𝑚𝐾 (𝑛). Let 𝜑𝑔 ∈ 𝐶∞
𝑏 (ℝ

𝑛 × ℝ𝑛) be such that 𝑔(𝑢, 𝑣) = 𝜑(𝑝𝑈𝑛 𝑢, 𝑝𝑉𝑛 𝑣) for all
(𝑢, 𝑣) ∈ 𝑊 and let 𝜀 > 0. Then

‖(𝐼 − 𝐿)𝑓 − 𝑔‖2𝐿2(𝜇) = ∫
𝑊
((𝐼 − 𝐿)𝑓 (𝑃𝑈𝑛 𝑢, 𝑃

𝑉
𝑛 𝑣) − 𝑔(𝑃𝑈𝑛 𝑢, 𝑃

𝑉
𝑛 𝑣))

2 𝜇(d(𝑢, 𝑣))

= ∫
ℝ𝑛×ℝ𝑛

((𝐼 − 𝐿𝑛)𝜑𝑓 (𝑥, 𝑦) − 𝜑𝑔(𝑥, 𝑦))
2 𝜇𝑛(d(𝑥, 𝑦))

= ‖‖(𝐼 − 𝐿𝑛)𝜑𝑓 − 𝜑𝑔 ‖‖
2
𝐿2(𝜇𝑛)

for all 𝑓 ∈ F𝐶∞
𝑏 (𝐵𝑊 , 𝑛) with corresponding 𝜑𝑓 ∈ 𝐶∞

𝑏 (ℝ
𝑛 × ℝ𝑛). Due to Proposition 5.3.5, there

is some ℎ ∈ 𝐶∞
𝑏 (ℝ

𝑛 × ℝ𝑛) such that ‖(𝐼 − 𝐿𝑛)ℎ − 𝜑𝑔 ‖𝐿2(𝜇𝑛) < 𝜀. Setting 𝑓ℎ(𝑢, 𝑣) ..= ℎ(𝑝𝑈𝑛 𝑢, 𝑝𝑉𝑛 𝑣)
yields 𝑓ℎ ∈ F𝐶∞

𝑏 (𝐵𝑊 , 𝑛) with ‖(𝐼 −𝐿)𝑓ℎ−𝑔‖𝐿2(𝜇) < 𝜀. Since F𝐶∞
𝑏 (𝐵𝑊 ) is dense in 𝐻 , this proves

that (𝐼 − 𝐿)(F𝐶∞
𝑏 (𝐵𝑊 )) is dense in 𝐻 . □

5.4 Hypocoercivity

Throughout the remainder of this chapter, we assume (K1) and (K2) unless specifically stated
otherwise. In that case, the operator (𝐿,F𝐶∞

𝑏 (𝐵𝑊 )) as defined in Definition 5.2.3 is dissipative
and therefore closable on 𝐻 = 𝐿2(𝜇) (see Lemma 1.2.16), and its closure (𝐿, 𝐷(𝐿)) generates an
sccs (𝑇𝑡)𝑡≥0 on 𝐻 by Theorem 5.3.6.

As in Chapter 4, we restrict the setting to the Hilbert space 𝐻 0 ..= {𝑓 ∈ 𝐻 ∶ 𝜇(𝑓 ) = 0} and
operator domain D ..= F𝐶∞

𝑏 (𝐵𝑊 ) ∩ 𝐻
0.

Proposition 5.4.1. The operator (𝐿,D) is essentially m-dissipative on 𝐻 0 and its closure, denoted
by (𝐿0, 𝐷(𝐿0)), generates a sub-Markovian sccs (𝑇 0𝑡 )𝑡≥0 on 𝐻 0.

Proof:
Similar to the proof of Lemma 3.6.1, it can be shown that (𝐿,F𝐶∞

𝑏 (𝐵𝑊 )) is an abstract diffusion
operator, which implies that it is a Dirichlet operator and that (𝑇𝑡)𝑡≥0 is sub-Markovian. Due
to Lemma 1.3.3, (𝑇𝑡)𝑡≥0 is conservative and 𝜇-invariant, since 1 ∈ F𝐶∞

𝑏 (𝐵𝑊 ) and 𝐿1 = 0 by
Lemma 5.2.5. The latter further implies that 𝐿𝑓 ∈ 𝐻 0 for all F𝐶∞

𝑏 (𝐵𝑊 ). All this together means
that (𝐿,D) and the restriction (𝑇 0𝑡 )𝑡≥0 of (𝑇𝑡)𝑡≥0 to 𝐻 0 are well-defined as operators on 𝐻 0.
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Dissipativity of (𝐿,D) is inherited from (𝐿,F𝐶∞
𝑏 (𝐵𝑊 )), and the dense range condition can be

verified as follows: Let 𝑓 ∈ 𝐻 0, then there is a sequence (𝑓𝑛)𝑛∈ℕ in 𝐻 such that (𝐼 − 𝐿)𝑓𝑛 → 𝑓 in
𝐻 . In particular, 𝜇(𝑓𝑛) → 𝜇(𝑓 ) = 0, so by setting 𝑔𝑛 ..= 𝑓𝑛 − 𝜇(𝑓𝑛), it follows that (𝐼 − 𝐿)𝑔𝑛 → 𝑓
since 𝐿 acts trivially on constants. Since 𝑔𝑛 ∈ D for all 𝑛 ∈ ℕ, it follows that (𝐿,D) is essentially
m-dissipative. As in the proof of Theorem 4.1.10, its closure (𝐿0, 𝐷(𝐿0)) is the generator of
(𝑇 0𝑡 )𝑡≥0, which is sub-Markovian since (𝑇𝑡)𝑡≥0 is. □

Definition 5.4.2. Let 𝐻 0 = 𝐻 0
1 ⊕ 𝐻 0

2 , where 𝐻 0
1 is provided by the orthogonal projection

𝑃 ∶ 𝐻 0 → 𝐻 0
1 , 𝑓 ↦ 𝑃𝑓 ..= ∫

𝑊
𝑓 (𝑢, 𝑣) 𝜇2(d𝑣).

For any 𝑓 ∈ 𝐻 , we can interpret 𝑃𝑓 as an element of 𝐿2(𝜇1), in which case we denote it by 𝑓𝑃 .
Further let (𝑆0, 𝐷(𝑆0)) and (𝐴0, 𝐷(𝐴0)) be the closures in 𝐻 0 of (𝑆,D) and (𝐴,D), respectively.

Since we want to use the results from [EG21], we also define the following operators analogously
to the cited source:

Definition 5.4.3. The operators (𝐶, 𝐷(𝐶)) and (𝑄−1
1 𝐶, 𝐷(𝑄−1

1 𝐶)) on 𝐻 0 are defined by

𝐶 ..= 𝐾21𝑄−1
2 𝐾12, 𝐷(𝐶) ..= {𝑢 ∈ 𝑈 ∣ 𝐾12𝑢 ∈ 𝐷(𝑄−1

2 )}
𝑄−1
1 𝐶 ..= 𝑄−1

1 𝐾21𝑄−1
2 𝐾12, 𝐷(𝑄−1

1 𝐶) ..= {𝑢 ∈ 𝐷(𝐶) ∣ 𝐶𝑢 ∈ 𝐷(𝑄−1
1 )},

respectively. In particular, F𝐶∞
𝑏 (𝐵𝑈 ) is a subset of the domain of both operators.

For all 𝑓 ∈ F𝐶∞
𝑏 (𝐵𝑈 ), define 𝑁𝑓 (𝑢) ..= tr[𝐶𝐷2𝑓 (𝑢)] − (𝑢, 𝑄−1

1 𝐶𝐷𝑓 (𝑢))𝑈 for all 𝑢 ∈ 𝑈 .

In order to gain useful properties of 𝑁 , we need the following:

Assumption (K3). The operator 𝐾21𝐾12 = 𝐾∗
12𝐾12 is positive-definite on 𝑈 .

We collect a few properties of the newly defined operators:

Proposition 5.4.4. Let (𝐶, 𝐷(𝐶)) and (𝑄−1
1 𝐶, 𝐷(𝑄−1

1 𝐶)) be defined as above. Then:

(i) (𝐶, 𝐷(𝐶)) is symmetric and positive semi-definite on 𝑈 .

(ii) (𝐶, 𝐷(𝐶)) leaves 𝑈𝑛 invariant for each 𝑛 ∈ ℕ.

(iii) If (K3) holds, then the operator (𝑁 ,F𝐶∞
𝑏 (𝐵𝑈 )) is essentially self-adjoint on 𝐿2(𝑈 ; 𝜇1).

Proof:
(i) Let 𝑢1, 𝑢2 ∈ 𝐷(𝐶). Then

(𝐶𝑢1, 𝑢2)𝑈 = (𝑄−1
2 𝐾12𝑢1, 𝐾12𝑢2)𝑉 = (𝐾12𝑢1, 𝑄−1

2 𝐾12𝑢2)𝑉 = (𝑢1, 𝐶𝑢2)

due to symmetry of 𝑄−1
2 and definition of 𝐾21. Since 𝑄−1

2 is positive-definite, positive
semi-definiteness of 𝐶 follows immediately.
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(ii) Since 𝐾12 maps 𝑈𝑛 to 𝑉𝑛, 𝐾21 maps 𝑉𝑛 to 𝑈𝑛, and 𝑄−1
2 leaves 𝑉𝑛 invariant, the claim follows

directly.

(iii) This can be proven analogously to Theorem 5.3.6, since the matrices in ℝ𝑛×𝑛 induced by
𝐶 are constant with positive eigenvalues, which allows usage of Theorem 3.3.1 by point
(i). Even though 𝑁 might be unbounded, it is well-defined on F𝐶∞

𝑏 (𝐵𝑈 ) within 𝐿
2(𝑈 ; 𝜇1),

and dissipativity is implied by the integration by parts formula from Lemma 5.1.7. □

As a consequence, we gain the following estimates, see [EG21, Theorem 2]:

Lemma 5.4.5. Let (K3) be satisfied, then

∫
𝑈
(𝐶𝐷𝑓 , 𝐷𝑓 )𝑈 d𝜇1 ≤ ∫

𝑈
((𝐼 − 𝑁)𝑓 )2 d𝜇1 and (5.4.1)

∫
𝑈
(𝑄−1

1 𝐶𝐷𝑓 , 𝐶𝐷𝑓 )𝑈 d𝜇1 ≤ 4∫
𝑈
((𝐼 − 𝑁)𝑓 )2 d𝜇1 (5.4.2)

for all 𝑓 ∈ F𝐶∞
𝑏 (𝐵𝑈 ).

The following is now a collection of results from [EG21]:

Proposition 5.4.6. Let (K3) be satisfied. Then:

(i) 𝐻 0
1 ⊆ 𝐷(𝑆0) with 𝑆0 ◦ 𝑃 = 0.

(ii) 𝑃(D) ⊆ 𝐷(𝐴0) and 𝐴0𝑃𝑓 (𝑢, 𝑣) = (−𝑣, 𝑄−1
2 𝐾12𝐷1(𝑃𝑓 )(𝑢, 𝑣)) for all 𝑓 ∈ D, (𝑢, 𝑣) ∈ 𝑊 .

(iii) 𝑃𝐴0𝑃𝑓 = 0 for all 𝑓 ∈ D.

(iv) 𝐴0𝑃(D) ⊆ 𝐷(𝐴0) with

𝐴2
0𝑃𝑓 = ∑

𝑖,𝑗∈ℕ
(𝑣, 𝑄−1

2 𝐾12𝑑𝑖)𝑉 (𝑣, 𝑄−1
2 𝐾12𝑑𝑗 )𝜕1,𝑖𝑗 (𝑃𝑓 ) − (𝑢, 𝑄−1

1 𝐶𝐷1(𝑃𝑓 ))𝑈

for all 𝑓 ∈ D.

(v) 𝐺𝑓 ..= 𝑃𝐴2
0𝑃𝑓 = tr[𝐶𝐷2

1𝑓𝑃 ] − (𝑢, 𝑄−1
1 𝐶𝐷1𝑓𝑃 )𝑈 for all 𝑓 ∈ D, and (𝐺,D) is essentially

m-dissipative on 𝐻 0.

In particular, the data conditions (D1)–(D3) are satisfied, and D is a core for the operator (𝐺, 𝐷(𝐺))
as defined in Definition 2.1.2.

Proof:
(i) Let 𝑓 ∈ 𝐻 0. Then there is a sequence (𝑓𝑛)𝑛∈ℕ in F𝐶∞

𝑏 (𝐵𝑊 ) such that 𝑓𝑛 → 𝑓 , therefore
𝑓𝑛 − 𝜇(𝑓𝑛) → 𝑓 in 𝐻 0. For each 𝑛 ∈ ℕ, 𝑓𝑛 − 𝜇(𝑓𝑛) is in D, and clearly 𝑃(𝑓𝑛 − 𝜇(𝑓𝑛)) ∈ D
as well. Since D ⊆ 𝐷(𝑆0) and 𝑆0𝑃(𝑓𝑛 − 𝜇(𝑓𝑛)) = 0 for all 𝑛 ∈ ℕ, we can use that
𝑃(𝑓𝑛 − 𝜇(𝑓𝑛)) → 𝑃𝑓 to obtain that 𝑃𝑓 ∈ 𝐷(𝑆0) with 𝑆0𝑃𝑓 = 0, since (𝑆0, 𝐷(𝑆0)) is closed.

(ii) see [EG21, Lemma 6 (i)].
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(iii) see [EG21, Lemma 7].

(iv) see [EG21, Lemma 6 (ii)].

(v) see [EG21, Lemma 6 (iii), Proposition 3]. □

In particular, we can define the bounded operator 𝐵 on 𝐻 0 as in Definition 2.1.4, which acts as
(𝐼 − 𝐺)−1(𝐴0𝑃∗) on 𝐷(𝐴0𝑃∗). Now we can start verifying the hypocoercivity conditions, where
we start with boundedness of the auxiliary operators 𝐵𝐴0(𝐼 − 𝑃) and 𝐵𝑆0. For the first part, we
directly obtain from [EG21, Proposition 6]:

Proposition 5.4.7. The operator (𝐵𝐴0(𝐼 − 𝑃),D) is bounded, so that the second inequality in (H1)
holds with 𝑐2 = 8.

Now we introduce two new assumptions, which combine with (K3) to yield boundedness of
𝐵𝑆0.

Assumption (K4). Recall (K1) and let 𝐾 𝑣
22 ∶ 𝑉 → L+(𝑉 ) be such that 𝐾22(𝑣) = 𝐾 0

22 +𝐾 𝑣
22(𝑣) for

each 𝑣 ∈ 𝑉 . Further, let the following hold:

(i) There is some 𝐶0
22 ∈ (0,∞) such that ‖𝑄− 1

2
2 𝐾 0

22𝑄
− 1

2
2 ‖L(𝑉 ) ≤ 𝐶0

22.

(ii) There exists some 𝐶𝑣22 ∈ (0,∞) fulfilling

‖𝑄−1
2 𝐾 𝑣

22(𝑣)𝑄
− 1

2
2 ‖L(𝑉 ) ≤ 𝐶𝑣22

for all 𝑣 ∈ 𝑉 .

In particular, this implies that

‖𝑄− 1
2

2 𝐾22(𝑣)𝑄
− 1

2
2 ‖L(𝑉 ) ≤ 𝐶22 ..= 𝐶0

22 +
√
𝜆2,1𝐶𝑣22

for all 𝑣 ∈ 𝑉 , where 𝜆2,1 denotes the largest eigenvalue of 𝑄2.

Assumption (K5). Let (𝜆2,𝑛)𝑛∈ℕ denote the sequence of eigenvalues of 𝑄2, and recall the as-
sumptions on 𝜕𝑖𝐾22 from (K2). Assume that the sequence (𝛼22𝑛 )𝑛∈ℕ with 𝛼22𝑛 ..= 𝑁𝐾 (𝑛)(𝜆2,𝑛)−

1
2

is an element of 𝓁2(ℝ), and set𝑀22
..= ‖(𝛼22𝑛 )𝑛∈ℕ‖𝓁2 .

Proposition 5.4.8. Let (K3), (K4) and (K5) hold. Then (𝐵𝑆0,D) is a bounded operator on 𝐻 0, and
the first inequality in (H1) is satisfied for

𝑐1 ..= 𝐶0
22 + 𝐶𝑣22

√
tr[𝑄2] + 𝑀22

√
8(1 + tr[𝑄2]).
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Proof:
We prove this analogously to Proposition 4.1.5. So let 𝑓 ∈ D and ℎ ∈ 𝐷(𝑆0) be arbitrary. Then
by definition of 𝐷(𝑆0), there is a sequence (ℎ𝑛)𝑛∈ℕ in D such that ℎ𝑛 → ℎ and 𝑆0ℎ𝑛 → 𝑆0ℎ in
𝐻 0 as 𝑛 → ∞. Fix some 𝑛 ∈ ℕ, then

(𝑆0ℎ𝑛, 𝐴0𝑃𝑓 )𝐻 0 = ∫
𝑊
(𝐷2ℎ𝑛(𝑢, 𝑣), 𝐾22(𝑣)𝐷2𝐴0𝑃𝑓 (𝑢, 𝑣))𝑉 𝜇(d(𝑢, 𝑣))

= −∫
𝑈
∫
𝑉
(𝐷2ℎ𝑛(𝑢, 𝑣), 𝐾22(𝑣)𝑄−1

2 𝐾12𝐷1𝑓𝑃 (𝑢))𝑉 𝜇(d(𝑢, 𝑣))

= −∑
𝑘∈ℕ

∫
𝑈
∫
𝑉
𝜕2,𝑘ℎ𝑛(𝑢, 𝑣)(𝐾22(𝑣)𝑒𝑘 , 𝑄−1

2 𝐾12𝐷1𝑓𝑃 (𝑢))𝑉 𝜇(d(𝑢, 𝑣)).

(5.4.3)

Here, the first equality follows from the representation of 𝑆 in Lemma 5.2.5, the second equality
follows from Proposition 5.4.6 (ii), and the last line is due to symmetry of 𝐾22(𝑣) for any 𝑣 ∈ 𝑉 .
Note that the sum there is finite due to invariance properties of𝐾22 and𝐾12. Applying integration
by parts (see Lemma 5.1.7), we obtain

(𝑆0ℎ𝑛, 𝐴0𝑃𝑓 )𝐻 0 = ∑
𝑘∈ℕ

∫
𝑈
∫
𝑉
ℎ𝑛(𝜕𝑘𝐾22(𝑣)𝑒𝑘 , 𝑄−1

2 𝐾12𝐷1𝑓𝑃 (𝑢))𝑉 d𝜇

− ∑
𝑘∈ℕ

∫
𝑈
∫
𝑉
(𝑣, 𝑄−1

2 𝑒𝑘)𝑉ℎ𝑛(𝑒𝑘 , 𝐾22(𝑣)𝑄−1
2 𝐾12𝐷1𝑓𝑃 (𝑢))𝑉 d𝜇

= (ℎ𝑛, 𝑇 𝑓 )𝐻 ,

where 𝑇 ∶ D → 𝐻 is defined by

𝑇 𝑓 ..= ∑
𝑘∈ℕ

(𝜕𝑘𝐾22(𝑣)𝑒𝑘 , 𝑄−1
2 𝐾12𝐷1𝑓𝑃 (𝑢))𝑉 − (𝑣, 𝑄−1

2 𝐾22(𝑣)𝑄−1
2 𝐾12𝐷1𝑓𝑃 (𝑢))𝑉

Note that 𝑇 𝑓 is indeed in 𝐻 , since all appearing sums are finite and ‖𝑣‖𝑉 ∈ 𝐿2(𝜇2), together
with the properties of 𝐾22. Moreover, since 1 ∈ F𝐶∞

𝑏 (𝐵𝑊 ), it follows analogously to (5.4.3)
that 𝜇(𝑇 𝑓 ) = (1, 𝑇 𝑓 )𝐻 = (𝑆1, 𝐴0𝑃𝑓 )𝐻 = 0, so 𝑇 𝑓 ∈ 𝐻 0. Now letting 𝑛 → ∞, we see that
𝐴0𝑃𝑓 ∈ 𝐷(𝑆∗0) with 𝑆∗0𝐴0𝑃𝑓 = 𝑇 𝑓 .

This means that we are able to apply Lemma 2.4.4, so we set 𝑔 ..= (𝐼 − 𝐺)𝑓 . We need to show
that there is some 𝐶 < ∞ such that

‖(𝐵𝑆0)∗𝑔‖𝐻 = ‖𝑆∗0𝐴0𝑃𝑓 ‖𝐻 = ‖𝑇 𝑓 ‖𝐻 ≤ 𝐶‖𝑔‖𝐻 (5.4.4)

holds for any choice of 𝑓 .
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Due to Corollary 5.1.3 and (K4), we have that

‖(𝑣, 𝑄−1
2 𝐾 0

22𝑄
−1
2 𝐾12𝐷1𝑓𝑃 )𝑉 ‖2𝐻 = ∫

𝑈
(𝐾 0

22𝑄
−1
2 𝐾12𝐷1𝑓𝑃 (𝑢), 𝑄−1

2 𝐾 0
22𝑄

−1
2 𝐾12𝐷1𝑓𝑃 (𝑢))𝑉 𝜇1(d𝑢)

= ∫
𝑈
((𝑄− 1

2
2 𝐾 0

22𝑄
− 1

2
2 )2𝑄− 1

2
2 𝐾12𝐷1𝑓𝑃 , 𝑄

− 1
2

2 𝐾12𝐷1𝑓𝑃 )𝑉 d𝜇1

≤ (𝐶0
22)

2
∫
𝑈
(𝐶𝐷1𝑓𝑃 , 𝐷1𝑓𝑃 )𝑉 d𝜇1 ≤ (𝐶0

22)
2
∫
𝑈
((𝐼 − 𝑁)𝑓𝑃 )2 d𝜇1

= (𝐶0
22)

2
∫
𝑈 (∫𝑉

(𝐼 − 𝐺)𝑓 d𝜇2)

2

d𝜇1 ≤ (𝐶0
22)

2‖𝑔‖2𝐻 ,

where we applied the estimate from (5.4.1). On the other hand,

‖(𝑣, 𝑄−1
2 𝐾 𝑣

22(𝑣)𝑄
−1
2 𝐾12𝐷1𝑓𝑃 (𝑢))𝑉 ‖2𝐻 ≤ ∫

𝑊
‖𝑣‖2𝑉 ‖(𝑄

−1
2 𝐾 𝑣

22(𝑣)𝑄
− 1

2
2 )𝑄− 1

2
2 𝐾12𝐷1𝑓𝑃 (𝑢)‖2𝑉 d𝜇

≤ ∫
𝑊
‖𝑣‖2𝑉 (𝐶

𝑣
22)

2 ‖𝑄− 1
2

2 𝐾12𝐷1𝑓𝑃 (𝑢)‖2𝑉 d𝜇

= (𝐶𝑣22)
2
∫
𝑉
‖𝑣‖2𝑉 d𝜇2 ∫

𝑈
(𝐶𝐷1𝑓𝑃 , 𝐷1𝑓𝑃 )𝑉 d𝜇1

≤ (𝐶𝑣22)
2 tr[𝑄2] ‖𝑔‖2𝐻 ,

(5.4.5)

again by (K4), Corollary 5.1.3, and (5.4.1).

This shows that the second summand of 𝑇 𝑓 can be bounded relatively to 𝑔 .

For the first summand, note that we can find some 𝛼(𝑘)22 (𝑣) ∈ (0, ∞) such that

𝑄− 1
2

2 𝜕𝑘𝐾22(𝑣)𝑒𝑘 = 𝛼(𝑘)22 (𝑣)𝑒𝑘

for all 𝑘 ∈ ℕ. Then

(𝜕𝑘𝐾22(𝑣)𝑒𝑘 , 𝑄−1
2 𝐾12𝐷1𝑓𝑃 (𝑢))𝑉 = 𝛼(𝑘)22 (𝑣)(𝑒𝑘 , 𝑄

− 1
2

2 𝐾12𝐷1𝑓𝑃 (𝑢))𝑉 ,

so since 𝛼(𝑘)22 (𝑣) ≤ 𝛼22𝑘 (1 + ‖𝑣‖𝛽𝐾 (𝑘)) ≤ 2𝛼22𝑘 (1 + ‖𝑣‖) by (K5), it follows that

(
∑
𝑘∈ℕ

(𝜕𝑘𝐾22(𝑣)𝑒𝑘 , 𝑄−1
2 𝐾12𝐷1𝑓𝑃 (𝑢))𝑉)

2

≤ 4𝑀2
22(1 + ‖𝑣‖)2 ∑

𝑘∈ℕ
(𝑒𝑘 , 𝑄

− 1
2

2 𝐾12𝐷1𝑓𝑃 (𝑢))2𝑉 .

Note that the right hand side factorizes into the 𝑢- and 𝑣-dependent components, so integration
over 𝜇 yields a product of integrals with respect to 𝜇1 and 𝜇2.

Since (1 + ‖𝑣‖)2 ≤ 2(1 + ‖𝑣‖2), we obtain

∫
𝑊 (

∑
𝑘∈ℕ

(𝜕𝑘𝐾22(𝑣)𝑒𝑘 , 𝑄−1
2 𝐾12𝐷1𝑓𝑃 (𝑢))𝑉)

2

d𝜇

≤ 8𝑀2
22(1 + tr[𝑄2]) ∫

𝑈
‖𝑄− 1

2
2 𝐾12𝐷1𝑓𝑃 ‖2𝑉 d𝜇1.
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As in (5.4.5), this shows that the first summand of 𝑇 𝑓 can also be bounded relative to 𝑔 . Overall,
we can see

‖𝑇 𝑓 ‖𝐻 ≤ (𝐶
0
22 + 𝐶𝑣22

√
tr[𝑄2] + 𝑀22

√
8(1 + tr[𝑄2])) ‖𝑔‖𝐻 .

This means that (5.4.4) holds for 𝐶 = 𝑐1 as claimed, and Lemma 2.4.4 proves that 𝑐1 is indeed an
upper bound for the operator 𝐵𝑆0. □

Remark 5.4.9. In the proof, we have always used (𝐶𝐷1𝑓𝑝, 𝐷1𝑓𝑝)𝑈 as a bounding term, in order
to apply the first inequality from Lemma 5.4.5. It seems clear that by involving eigenvalues of
𝑄1 into the assumptions (K4) and (K5), we can leverage all the invariance properties across
finite-dimensional subspaces to instead use (𝑄−1

1 𝐶𝐷𝑓𝑃 , 𝐶𝐷𝑓𝑃 )𝑈 as a bound. In either case, the
aforementioned Lemma enables us to the bound all terms relatively to 𝑔 . However, since this
would make 𝐾22 also dependent of 𝑄1, it doesn’t feel natural to assume, and would introduce
more confusing notation, hence we skip it here.

Now that the first hypocoercivity condition is proven, we are left to show (H2) and (H3). For
this, we assume modified Poincaré inequalities based on 𝐾22 and 𝐾12.

Assumption (K6). Assume that there is some 𝑐𝑆 ∈ (0,∞) such that

∫
𝑉
(𝐾22(𝑣)𝐷2𝑓 , 𝐷2𝑓 )𝑉 d𝜇2 ≥ 𝑐𝑆 ∫

𝑉
(𝑓 − 𝜇2(𝑓 ))2 d𝜇2

for all 𝑓 ∈ F𝐶∞
𝑏 (𝐵𝑉 ).

Assumption (K7). Assume that there is some 𝑐𝐴 ∈ (0,∞) such that

∫
𝑈
(𝑄−1

2 𝐾12𝐷1𝑓 , 𝐾12𝐷1𝑓 )𝑉 d𝜇1 ≥ 𝑐𝐴 ∫
𝑈
(𝑓 − 𝜇1(𝑓 ))2 d𝜇1

for all 𝑓 ∈ F𝐶∞
𝑏 (𝐵𝑈 ).

Remark 5.4.10.

(i) Recall 𝐾 0
22 from (K1), and let 𝜆2,𝑖 denote the 𝑖-th eigenvalue of𝑄2. Then due to Lemma 5.1.8,

we have

∫
𝑉
(𝑄2𝐷2𝑓 , 𝐷2𝑓 )𝑉 d𝜇2 ≥ 𝜆2,1 ∫

𝑉
(𝑓 − 𝜇2(𝑓 ))2 d𝜇2

for all 𝑓 ∈ F𝐶∞
𝑏 (𝐵𝑉 ). So if there is some 𝜔22 ∈ (0,∞) such that 𝜆0𝑘 ≥ 𝜔22𝜆2,𝑘 for each

𝑘 ∈ ℕ, where 𝜆0𝑘 denotes the eigenvalue of 𝐾
0
22 to the eigenvector 𝑒𝑘 , then (K6) holds with

𝑐𝑆 =
𝜆2,1
𝜔22

.

(ii) Similarly, if there is some 𝜔12 ∈ (0,∞) such that 𝜆212,𝑘 ≥ 𝜔12𝜆1,𝑘𝜆2,𝑘 for all 𝑘 ∈ ℕ, where
𝜆12,𝑘 denotes the singular value of 𝐾12 to 𝑑𝑘 , i.e. 𝐾12𝑑𝑘 = 𝜆12,𝑘𝑒𝑘 , then (K7) holds with
𝑐𝐴 = 𝜆1,1

𝜔12
.
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(iii) In the case of (i), together with (K4), we can see that in the sense of eigenvalues, 𝐾22
is “equivalent” to 𝑄2. This is not surprising, since in the case 𝐾22(𝑣) = 𝑄2 for all 𝑣 ∈ 𝑉 ,
the symmetric operator 𝑆 interpreted on 𝐿2(𝜇2) is the well-known Ornstein-Uhlenbeck
operator from Malliavin calculus, for which hypercontractivity results are known, see for
example [LP20] for an overview. As can be seen in [Wan17], hypercontractivity of the
semigroup yields exponential convergence to the equilibrium measure.

Under these conditions, we can easily verify macroscopic and microscopic coercivity:

Proposition 5.4.11. Let (K6) hold. Then 𝑆0 satisfies (H2) with Λ𝑚 = 𝑐𝑆 .

Proof:
Let 𝑓 ∈ D and set 𝑓𝑢 ..= 𝑓 (𝑢, ⋅) − 𝑃𝑓 (𝑢) ∈ F𝐶∞

𝑏 (𝐵𝑉 ) for any 𝑢 ∈ 𝑈 . Then 𝜇2(𝑓𝑢) = 0 and
𝐷2𝑓𝑢(𝑣) = 𝐷2𝑓 (𝑢, 𝑣) for all 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 . By (K6) and Lemma 5.2.5, it then holds that

𝑐𝑆‖(𝐼 − 𝑃)𝑓 ‖2𝐻 = 𝑐𝑆 ∫
𝑈
∫
𝑉
𝑓 2𝑢 d𝜇2 d𝜇1 ≤ ∫

𝑈
∫
𝑉
(𝐾22(𝑣)𝐷2𝑓𝑢, 𝐷2𝑓𝑢)𝑉 d𝜇2 d𝜇1

= ∫
𝑊
(𝐾22𝐷2𝑓 , 𝐷2𝑓 )𝑉 d𝜇. = −(𝑆0𝑓 , 𝑓 )𝐻 0

□

Proposition 5.4.12. Let (K7) hold. Then 𝐴0 satisfies (H3) with Λ𝑀 = 𝑐𝐴.

Proof:
Let 𝑓 ∈ D, then 𝑓𝑃 ∈ F𝐶∞

𝑏 (𝐵𝑈 ) with 𝜇1(𝑓𝑃 ) = 0. By using (K7), then Corollary 5.1.3, and finally
Proposition 5.4.6 (ii), it follows that

𝑐𝐴‖𝑃𝑓 ‖2𝐻 = 𝑐𝐴 ∫
𝑈
𝑓 2𝑃 d𝜇1 ≤ ∫

𝑈
(𝑄−1

2 𝐾12𝐷1𝑓𝑃 , 𝐾12𝐷1𝑓𝑃 )𝑉 d𝜇1

= ∫
𝑈
∫
𝑉
(𝑣, 𝑄−1

2 𝐾12𝐷1𝑓𝑃 )2𝑉 d𝜇2 d𝜇1 = ‖𝐴0𝑃𝑓 ‖2𝐻 0 . □

The main result of this section is now immediate:

Theorem 5.4.13. Let the conditions (K1)–(K7) hold. Then the semigroup (𝑇𝑡)𝑡≥0 on 𝐻 = 𝐿2(𝜇)
generated by the closure (𝐿, 𝐷(𝐿)) of (𝐿,F𝐶∞

𝑏 (𝐵𝑊 )) is hypocoercive in the sense that for each
𝜃1 ∈ (1,∞), there is some 𝜃2 ∈ (0,∞), which can be explicitly computed from 𝑐𝑆 , 𝑐𝐴, and the
bounds 𝑀22 and 𝐶22, such that

‖𝑇𝑡𝑓 − 𝜇(𝑓 )‖𝐻 ≤ 𝜃1e−𝜃2𝑡 ‖𝑓 − 𝜇(𝑓 )‖𝐻

for all 𝑓 ∈ 𝐻 and all 𝑡 ≥ 0.

Proof:
Follows as in the proof of Theorem 4.2.10 from Theorem 2.2.1. □
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5.5 The associated stochastic process

As in the finite-dimensional case, we want to find an associated stochastic process by using
generalized Dirichlet forms. However, in order to prove quasi-regularity of the form, we need an
E-nest of compact sets. In ℝ𝑑 , we used the ascending sequence of closed balls around the origin
with radius 𝑛 ∈ ℕ, the analogue of which are not compact in 𝑊 by Heine-Borel. So we instead
consider the weak topology T on 𝑊 , i.e. the topology corresponding to weak convergence.
The Banach-Alaoglu theorem then implies that 𝐵𝑛(0) ⊆ (𝑊 , ‖ ⋅ ‖𝑊 ) are compact with respect
to T . We need to make sure that this change in topology still satisfies the restrictions on the
considered spaces to apply Theorem 1.3.31.

Definition 5.5.1. Let T denote theweak topology on𝑊 . ThenB(𝑊T ) denotes the corresponding
Borel-𝜎-algebra and the space of continuous functions from (𝑊 , T ) to ℝ is denoted by 𝐶T (𝑊 ).

Lemma 5.5.2. The topological space (𝑊 , T ) is a Lusin space, and in particular Hausdorff. Moreover,
B(𝑊 ) = B(𝑊T ) = 𝜎(𝐶T (𝑊 )), and 𝑓 ∈ 𝐶T (𝑊 ) implies 𝑓 ∈ 𝐶0(𝑊 ). In particular, 𝐻 =
𝐿2(𝑊 ,B(𝑊 ), 𝜇) = 𝐿2(𝑊 ,B(𝑊T ), 𝜇) is separable.

Proof:
Let 𝑤, 𝑧 ∈ 𝑊 be distinct points, then (𝑤, 𝑣)𝑊 ≠ (𝑧, 𝑣)𝑊 for 𝑣 = 𝑤 − 𝑧. Let 𝑈𝑤, 𝑈𝑧 be open
neighborhoods of (𝑤, 𝑣) and (𝑧, 𝑣) inℝ that separate these points. Clearly themap (⋅, 𝑣) ∶ 𝑊 → ℝ
is continuous with respect to T , so the pre-images of 𝑈𝑤 and 𝑈𝑧 are open in T and disjoint, so
(𝑊 , T ) is Hausdorff.

Let 𝐼 ∶ (𝑊 , ‖ ⋅ ‖𝑊 ) → (𝑊 , T ) denote the identity map. Since a norm-convergent sequence in 𝑊
is also weakly convergent, we get that 𝐼 is continuous, so (𝑊 , T ) is the image of a Polish space
under a continuous map, hence Lusin.

Clearly the weak topology is a weaker (smaller) topology than the original one, since every
weakly closed set is also strongly closed. This then implies B(𝑊T ) ⊆ B(𝑊 ). For the other
direction, we note that as above, the closed 𝜀-balls are weakly closed sets, and therefore in
B(𝑊T ). Since then 𝐵𝜀(𝑤) = ⋃𝑛∈ℕ 𝐵𝜀− 1

𝑛
(𝑤) ∈ B(𝑊T ), we get B(𝑊T ) ⊇ B(𝑊 ) since B(𝑊 ) is

generated by the open 𝜀-balls, as (𝑊 , ‖ ⋅ ‖𝑊 ) is separable.

Clearly B(𝑊 ) = 𝜎(𝐶0(𝑊 )), since the norm is continuous. Since T is weaker than the standard
topology, the notion of continuity for real-valued functions is stronger, so that 𝜎(𝐶T (𝑊 )) ⊆
B(𝑊 ). Since the maps (⋅, 𝑤𝑖)𝑊 are continuous with respect to T for all 𝑤𝑖 ∈ 𝐵𝑊 , the same holds
for the compositions

𝑁𝑛(𝑤) = 𝑁𝑛(𝑢, 𝑣) ..=
𝑛
∑
𝑖=1

(𝑢, 𝑑𝑖)2𝑈 +
𝑛
∑
𝑖=1

(𝑣, 𝑒𝑖)2𝑉 = ‖(𝑃𝑈𝑛 𝑢, 𝑃
𝑉
𝑛 𝑣)‖

2
𝑊 for 𝑤 = (𝑢, 𝑣) ∈ 𝑊

for all 𝑛 ∈ ℕ. This implies that for any 𝑤 ∈ 𝑊 , 𝜀 > 0 and 𝑛 ∈ ℕ, the set

𝐵𝜀,𝑛(𝑤) ..= {𝑧 = (𝑢, 𝑣) ∈ 𝑊 ∣ ‖(𝑃𝑈𝑛 𝑢, 𝑃
𝑉
𝑛 𝑣)‖

2
𝑊 < 𝜀}
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5 Langevin dynamics with multiplicative noise on infinite-dimensional Hilbert spaces

is in T , which shows that

𝐵𝜀(𝑤) ..= ⋂
𝑛∈ℕ

𝐵𝜀,𝑛(𝑤) ∈ B(𝑊 ) for all 𝑤 ∈ 𝑊 , 𝜀 > 0.

One can observe that 𝐵𝜀(𝑤) ⊆ 𝐵𝜀(𝑤) ⊆ 𝐵𝜀(𝑤) for any 𝜀 > 0, 𝑤 ∈ 𝑊 , which therefore finally
yields

𝐵𝜀(𝑤) = ⋃
𝑛∈ℕ

𝐵𝜀− 1
𝑛
(𝑤) ⊆ B(𝑊 ) for all 𝜀 > 0, 𝑤 ∈ 𝑊 ,

which proves the claim as above. Lastly, separability of 𝐻 follows from denseness of F𝐶∞
𝑏 (𝐵𝑊 ),

since that implies denseness of F𝐶∞
𝑐 (𝐵𝑊 ), so that Lemma 1.5.1 can be applied to F𝐶∞

𝑐 (𝐵𝑊 , 𝑛)
for each 𝑛 ∈ ℕ. □

This means that we are in the appropriate setting of Section 1.3.2 while still being able to use
the results obtained earlier about the operator (𝐿,F𝐶∞

𝑏 (𝐵𝑊 )) and the semigroup (𝑇𝑡)𝑡≥0 on 𝐻
generated by its closure (𝐿, 𝐷(𝐿)). We only need to pay attention to the topology whenever we
refer to continuity of functions defined on 𝑊 .

Remark 5.5.3. Due to the proof of Proposition 5.4.1, we know that (𝐿, 𝐷(𝐿)) is a Dirichlet
operator, so that E as defined in Theorem 1.3.13 yields a generalized Dirichlet form on 𝐻 . Since
the generator core F𝐶∞

𝑏 (𝐵𝑊 ) consists of finitely based continuous bounded functions, which
are in particular T -continuous, we can see that F𝐶∞

𝑏 (𝐵𝑊 ) satisfies the conditions on Y in
Theorem 1.3.31 as well as those on 𝐷 in Definition 1.3.23 (ii). For point (iii) of quasi-regularity,
we can use the fact that 𝐶∞

𝑐 (ℝ𝑛 × ℝ𝑛) is separable with respect to the supremum norm for
each 𝑛 ∈ ℕ, so there is a countable subset 𝐴𝑛 that separates the points of ℝ𝑛 × ℝ𝑛. The set
𝐴𝑛 ◦ (𝑝𝑈𝑛 , 𝑝𝑉𝑛 ) of elements from 𝐴𝑛 composed with the projections then separates points of 𝑊𝑛.
Taking the union over all 𝑛 ∈ ℕ, we end up with a countable set inF𝐶∞

𝑐 (𝐵𝑊 ) ⊆ 𝐷(𝐿) consisting
of T -continuous functions that separates points of 𝑊 .

Therefore, all that remains to show quasi-regularity of E is to prove that 𝐹𝑛 ..= 𝐵𝑛(0) defines an
E-nest. For this, we employ the strategy used in [EG21, Lemma 3], and consequently assume
the following:

Assumption (K8). There is a function 𝜌 ∈ 𝐿1(𝑊 ; 𝜇) such that for each 𝑛 ∈ ℕ, 𝜌𝑛 defined via
𝜌𝑛(𝑢, 𝑣) ..= 𝜌(𝑃𝑈𝑛 𝑢, 𝑃𝑉𝑛 𝑣) is also in 𝐿1(𝐸; 𝜇) and converges to 𝜌 there as 𝑛 → ∞, and such that

(𝑃𝑈𝑛 𝑢, 𝑄
−1
1 𝐾21𝑃𝑉𝑛 𝑣)𝑈 − (𝑄−1

2 𝐾12𝑃𝑈𝑛 𝑢, 𝑃
𝑉
𝑛 𝑣)𝑉 ≤ 𝜌𝑛(𝑢, 𝑣)

for all 𝑛 ∈ ℕ and (𝑢, 𝑣) ∈ 𝑊 .

Remark 5.5.4. In the special case that 𝑈 = 𝑉 and 𝑄1 = 𝑄2, this is satisfied for 𝜌 = 0. Otherwise,
the invariance properties of 𝐾12 imply that

(𝑃𝑈𝑛 𝑢, 𝑄
−1
1 𝐾21𝑃𝑉𝑛 𝑣)𝑈 − (𝑄−1

2 𝐾12𝑃𝑈𝑛 𝑢, 𝑃
𝑉
𝑛 𝑣)𝑉 = (𝑃𝑈𝑛 𝑢, (𝑄

−1
1 𝐾21 − 𝐾21𝑄−1

2 )𝑃𝑉𝑛 𝑣)𝑈 .
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In the notation of Remark 5.4.10, if 𝜆12,𝑘(𝜆−11,𝑘 − 𝜆−12,𝑘) is bounded by a uniform constant 𝐶 for all
𝑘 ∈ ℕ, then 𝜌 = 𝐶

2 ‖ ⋅ ‖
2
𝑊 satisfies (K8). This holds in particular if 𝜆12,𝑘 ≤ 𝐶

2 min{𝜆1,𝑘 , 𝜆2,𝑘} for all
𝑘 ∈ ℕ.

Proposition 5.5.5. Let (K1)–(K8) hold. Then the generalized Dirichlet form E is quasi-regular and
there is a 𝜇-tight special standard process 𝐌 on (𝑊 , T ) which is properly associated with E in the
resolvent sense.

Proof:
Let 𝐹𝑛 ..= {𝑤 ∈ 𝑊 ∶ ‖𝑤‖𝑊 ≤ 𝑛} for each 𝑛 ∈ ℕ. We have to prove that (𝐹𝑛)𝑛∈ℕ is an E-nest.
For notation purposes, we write 𝑁(𝑢, 𝑣) ..= ‖(𝑢, 𝑣)‖2𝑊 and 𝑁𝑛(𝑢, 𝑣) = 𝑁(𝑃𝑈𝑛 𝑢, 𝑃𝑉𝑛 𝑣) for 𝑛 ∈ ℕ.
Moreover, we only consider those 𝑛 ∈ ℕ that satisfy 𝑛 = 𝑚𝐾 (𝑛), which provide an increasing
sequence. Using a sequence of cutoff functions as in Remark 1.4.8, we see that 𝑁𝑛 ∈ 𝐷(𝐿) with

1
2
𝐿𝑁𝑛(𝑢, 𝑣) = tr[𝐾22,𝑛(𝑃𝑉𝑛 𝑣)] +

𝑛
∑
𝑗=1

(𝜕𝑗𝐾22(𝑣)𝑒𝑗 , 𝑃𝑉𝑛 𝑣)𝑉 − (𝑃𝑉𝑛 𝑣, 𝑄
−1
2 𝐾22(𝑣)𝑃𝑉𝑛 𝑣)𝑉

− (𝑃𝑈𝑛 𝑢, 𝑄
−1
1 𝐾21𝑃𝑉𝑛 𝑣)𝑈 + (𝑃𝑉𝑛 𝑣, 𝑄

−1
2 𝐾12𝑃𝑈𝑛 𝑢)𝑉

≥
𝑛
∑
𝑗=1

(𝜕𝑗𝐾22(𝑣)𝑒𝑗 , 𝑃𝑉𝑛 𝑣)𝑉 − (𝑃𝑉𝑛 𝑣, 𝑄
−1
2 𝐾22(𝑣)𝑃𝑉𝑛 𝑣)𝑉 − 𝜌𝑛(𝑢, 𝑣)

By (K4), it follows that
|(𝑃𝑉𝑛 𝑣, 𝑄

−1
2 𝐾22(𝑣)𝑃𝑉𝑛 𝑣)𝑉 | ≤ 𝐶22‖𝑃𝑉𝑛 𝑣‖

2
𝑉 ,

and since 𝜕𝑗𝐾22(𝑣)𝑒𝑗 = 𝛼𝑗 (𝑃𝑉𝑛 𝑣)𝑒𝑗 for some suitable 𝛼𝑗 (𝑃𝑉𝑛 𝑣) and all 1 ≤ 𝑗 ≤ 𝑛, (K5) implies that

|||||

𝑛
∑
𝑗=1

(𝜕𝑗𝐾22(𝑣)𝑒𝑗 , 𝑃𝑉𝑛 𝑣)𝑉
|||||
≤

𝑛
∑
𝑗=1

|𝛼𝑗 (𝑃𝑉𝑛 𝑣)||(𝑒𝑗 , 𝑃
𝑉
𝑛 𝑣)𝑉 |

≤

√
𝑛
∑
𝑗=1

|𝛼𝑗 (𝑃𝑉𝑛 𝑣)|2
√

𝑛
∑
𝑗=1

(𝑒𝑗 , 𝑃𝑉𝑛 𝑣)2𝑉

≤ 2(1 + ‖𝑃𝑉𝑛 𝑣‖𝑉 )‖𝑃
𝑉
𝑛 𝑣‖𝑉

√
𝑛
∑
𝑗=1

𝑁𝐾 (𝑗)2

≤ 2
√
𝜆2,1𝑀22(1 + ‖𝑃𝑉𝑛 𝑣‖𝑉 )

2

≤ 4
√
𝜆2,1𝑀22(1 + ‖𝑃𝑉𝑛 𝑣‖

2
𝑉 ),

where 𝜆2,1 denotes the first (and largest) eigenvalue of 𝑄2. While being a crude bound, this
means that, when setting

𝑔(𝑢, 𝑣) ..= 𝑁(𝑢, 𝑣) + 2𝜌(𝑢, 𝑣) + 8
√
𝜆2,1𝑀22(1 + ‖𝑣‖2𝑉 ) + 2𝐶22‖𝑣‖2𝑉 ,

and defining 𝑔𝑛(𝑢, 𝑣) as 𝑔(𝑃𝑈𝑛 𝑢, 𝑃𝑉𝑛 𝑣), we get

(𝐼 − 𝐿)𝑁𝑛(𝑢, 𝑣) ≤ 𝑔𝑛(𝑢, 𝑣) (5.5.1)
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for all (𝑢, 𝑣) ∈ 𝑊 and 𝑛 ∈ ℕ with 𝑛 = 𝑚𝐾 (𝑛). Clearly 𝑔 ∈ 𝐿1(𝜇) and 𝑔𝑛 converges to 𝑔 in 𝐿1(𝜇).
As seen in [Con11, Lemma 1.3.11], since 𝜇 is a probability measure, the operator (𝐿, 𝐷(𝐿)) is
essentially m-dissipative in 𝐿1(𝜇) and generates a sub-Markovian sccs (𝑇 1𝑡 )𝑡≥0 on 𝐿1(𝜇) with
corresponding sub-Markovian resolvent (𝐺1

𝛼)𝛼>0, which coincides with the 𝐿2-resolvent (𝐺𝛼)𝛼>0
on 𝐿2(𝜇). Applying this resolvent to both sides of (5.5.1), we obtain 𝑁𝑛(𝑢, 𝑣) ≤ 𝐺1

1𝑔𝑛(𝑢, 𝑣), and
by convergence as 𝑛 → ∞, we see that 𝑁(𝑢, 𝑣) ≤ 𝐺1

1𝑔(𝑢, 𝑣) for all (𝑢, 𝑣) ∈ 𝑊 .

As in the proof of [BBR06, Proposition 5.5], this implies that

𝛼𝐺𝛼+1𝑔
1
2 = 𝛼𝐺1

𝛼+1𝑔
1
2 ≤ 𝑔

1
2 for all 𝛼 > 0,

so that 𝑔̃ ..= 𝑔
1
2 is a 1-excessive function in 𝐻 as defined in Definition 1.3.14, which dominates 𝑁 .

In particular, for any 𝑛 ∈ ℕ, we see that 1𝐹 𝑐𝑛 ≤
1
𝑛𝑁 ≤ 1

𝑛 𝑔̃ .

In the context of Proposition 1.3.19, choose 𝜑 ≡ 1 ∈ 𝐻 and therefore ℎ = 𝐺1𝜑 = 1. For any open
set 𝑈 , it follows that ℎ𝑈 = 𝑒1𝑈 . Then for the corresponding capacity, we get

Cap𝜑(𝐹
𝑐
𝑛) = (ℎ𝐹 𝑐𝑛 , 𝜑)𝐻 ≤

1
𝑛
(𝑔̃, 1)𝐻 for all 𝑛 ∈ ℕ,

since 𝑒1𝑈 ≤ 1
𝑛 𝑔̃ by definition of the 1-reduced function. Clearly, this means that Cap𝜑(𝐹 𝑐𝑛) → 0 as

𝑛 → ∞, so that (𝐹𝑛)𝑛∈ℕ is an E-nest of T -compact sets by the last statement of Proposition 1.3.19.

This together with Remark 5.5.3 shows that all requirements to apply Theorem 1.3.31 are satisfied,
which yields the associated process as claimed. □

Next, we verify some properties of the paths.

Proposition 5.5.6. Let 𝐌 = (Ω,F , (F𝑡)𝑡≥0, (𝑋𝑡 , 𝑌𝑡)𝑡≥0, (𝑃𝑤)𝑤∈𝑊Δ) be the process obtained by
Proposition 5.5.5 with corresponding life time 𝜁 . As in Definition 1.3.25, we set 𝑃𝜇 ..= ∫𝑊Δ

𝑃𝑤 𝜇(d𝑤).
Then (𝑋𝑡 , 𝑌𝑡)𝑡≥0 has infinite life time and weakly continuous paths 𝑃𝜇-a.s. In particular, (𝑋𝑡 , 𝑌𝑡)𝑡≥0
is a 𝜇-invariant Hunt process.

Proof:
Let ℙ𝜇 be the probability law on 𝐷([0,∞);𝑊Δ) obtained as the image measure under the orbit
maps from the process, as seen in Lemma 1.3.36. Then ℙ𝜇 is associated with the semigroup
(𝑇𝑡)𝑡≥0 in the sense of Definition 1.3.35. By Lemma 1.3.39, it follows that the coordinate process
(𝑍𝑡)𝑡≥0 has ℙ𝜇-almost surely T -continuous paths up to its life time. Since (𝑇𝑡)𝑡≥0 is conservative
and 𝜇-invariant, the same holds for ℙ𝜇 via Lemma 1.3.41. Since ℙ𝜇 describes the distribution of
paths of (𝑋𝑡 , 𝑌𝑡)𝑡≥0 with initial distribution 𝑃𝜇, the claim follows. □

Remark 5.5.7. As a direct consequence of Lemma 1.3.38 (see also [BBR06, Proposition 1.4]), we
see that for any 𝑓 ∈ 𝐷(𝐿),

𝑀 [𝑓 ],𝐿
𝑡

..= 𝑓 (𝑋𝑡 , 𝑌𝑡) − 𝑓 (𝑋0, 𝑌0) − ∫
𝑡

0
𝐿𝑓 (𝑋𝑠 , 𝑌𝑠) d𝑠

110



5.5 The associated stochastic process

is 𝑃𝜇-integrable and describes an (F𝑡)𝑡≥0-martingale. Moreover, if 𝑓 2 ∈ 𝐷(𝐿) with 𝐿𝑓 ∈ 𝐿4(𝜇),
then

𝑁 [𝑓 ],𝐿
𝑡

..= (𝑀 [𝑓 ],𝐿
𝑡 )2 − ∫

𝑡

0
𝐿(𝑓 2)(𝑋𝑠 , 𝑌𝑠) − (2𝑓 𝐿𝑓 )(𝑋𝑠 , 𝑌𝑠) d𝑠, 𝑡 ≥ 0,

describes a martingale as well.

We use the following functions to evaluate our process:

Lemma 5.5.8. For any 𝑖 ∈ ℕ, define 𝑓𝑖, 𝑔𝑖 via

𝑊 ∋ (𝑢, 𝑣) ↦ 𝑓𝑖(𝑢, 𝑣) ..= (𝑢, 𝑑𝑖)𝑈 ∈ ℝ,
𝑊 ∋ (𝑢, 𝑣) ↦ 𝑔𝑖(𝑢, 𝑣) ..= (𝑣, 𝑒𝑖)𝑉 ∈ ℝ.

Then 𝑓𝑖, 𝑔𝑖, 𝑓 2𝑖 , 𝑔2𝑖 are in 𝐷(𝐿), 𝐿(𝑓 2𝑖 ), 𝐿(𝑔2𝑖 ) ∈ 𝐿4(𝜇) and we have that

𝐿𝑓𝑖(𝑢, 𝑣) = (𝑣, 𝑄−1
2 𝐾12𝑑𝑖),

𝐿(𝑓 2𝑖 )(𝑢, 𝑣) = 2𝑓𝑖(𝑢, 𝑣)𝐿𝑓𝑖(𝑢, 𝑣),
𝐿𝑔𝑖(𝑢, 𝑣) = (𝜕𝑖𝐾22(𝑣)𝑒𝑖, 𝑒𝑖)𝑉 − (𝑣, 𝑄−1

2 𝐾22(𝑣)𝑒𝑖)𝑉 − (𝑢, 𝑄−1
1 𝐾21𝑒𝑖)𝑈 ,

𝐿(𝑔𝑖𝑔𝑗 )(𝑢, 𝑣) = 2𝛿𝑖𝑗 (𝑒𝑖, 𝐾22(𝑣)𝑒𝑖)𝑉 + 𝑔𝑖(𝑢, 𝑣)𝐿𝑔𝑖(𝑢, 𝑣) + 𝑔𝑗𝐿𝑔𝑖(𝑢, 𝑣)

for all (𝑢, 𝑣) ∈ 𝑊 .

Proof:
This follows by using a sequence of cutoff functions for each 𝑓𝑖 or 𝑔𝑖, and using that since
(𝑣, 𝑄−1

2 𝐾22𝑒𝑖) ≤ 𝐶22(𝑣, 𝑒𝑖), all occurring coefficients are bounded, and we can integrate in the
respective finite-dimensional spaces over 𝜇𝑖, where the identities are in any 𝐿𝑝 . □

We summarize the implications of the above in the following:

Proposition 5.5.9. Let (K1)–(K8) hold. Then the process (𝑋𝑡 , 𝑌𝑡)𝑡≥0 associated with E solves the
martingale problem for (𝐿, 𝐷(𝐿)). Moreover, for any 𝑖 ∈ ℕ, we have that the real-valued processes
(𝑋 𝑖

𝑡 )𝑡≥ and (𝑌 𝑖𝑡 )𝑡≥0 defined by 𝑋 𝑖
𝑡 = (𝑋𝑡 , 𝑑𝑖)𝑈 and 𝑌 𝑖𝑡 = (𝑌𝑡 , 𝑒𝑖)𝑉 have continuous paths 𝑃𝜇-almost

surely and satisfy

𝑋 𝑖
𝑡 − 𝑋 𝑖

0 = ∫
𝑡

0
(𝑌𝑠 , 𝑄−1

2 𝐾12𝑑𝑖)𝑉 d𝑠 and

𝑌 𝑖𝑡 − 𝑌 𝑖0 = ∫
𝑡

0
(𝜕𝑖𝐾22(𝑌𝑠)𝑒𝑖, 𝑒𝑖)𝑉 − (𝑌𝑠 , 𝑄−1

2 𝐾22(𝑌𝑠)𝑒𝑖)𝑉 − (𝑋𝑠 , 𝑄−1
1 𝐾21𝑒𝑖)𝑈 d𝑠 + 𝑀 [𝑔𝑖],𝐿

𝑡

(5.5.2)

with (𝑀 [𝑔𝑖],𝐿
𝑡 )𝑡≥0 being a continuous martingale such that for 𝑖, 𝑗 ∈ ℕ, we have

[𝑀 [𝑔𝑖],𝐿, 𝑀 [𝑔𝑗 ],𝐿]𝑡 = 2𝛿𝑖𝑗 (𝑒𝑖, 𝐾22(𝑌𝑡)𝑒𝑖)𝑉 .

111



5 Langevin dynamics with multiplicative noise on infinite-dimensional Hilbert spaces

Proof:
The statement about the martingale problem was already mentioned in Remark 5.5.7. From
Proposition 5.5.6, we know that (𝑋𝑡 , 𝑌𝑡)𝑡≥0 has 𝑃𝜇-a.s. weakly continuous paths, which implies
continuity of the coordinate processes (𝑋 𝑖

𝑡 )𝑡≥0 and (𝑌 𝑖𝑡 )𝑡≥0 as defined.

With the definitions from Lemma 5.5.8, we see that 𝑋 𝑖
𝑡 = 𝑓𝑖(𝑋𝑡 , 𝑌𝑡) and 𝑌 𝑖𝑡 = 𝑔𝑖(𝑋𝑡 , 𝑌𝑡). From the

statement of the Lemma itself, we see that

𝑀 [𝑓𝑖],𝐿
𝑡 = 𝑋 𝑖

𝑡 − 𝑋 𝑖
0 − ∫

𝑡

0
(𝑌𝑠 , 𝑄−1

2 𝐾12𝑑𝑖) d𝑠

and 𝑁 [𝑓𝑖],𝐿
𝑡 = (𝑀 [𝑓𝑖],𝐿

𝑡 )2, which implies [𝑀 [𝑓𝑖],𝐿]𝑡 = 0, hence 𝑀 [𝑓𝑖],𝐿
𝑡 = 0. This proves the first

line in (5.5.2). The second line follows analogously, and the representation of the quadratic
covariations follows by evaluating 1

2(𝑁
[𝑔𝑖+𝑔𝑗 ],𝐿
𝑡 − 𝑁 [𝑔𝑖],𝐿

𝑡 − 𝑁 [𝑔𝑗 ],𝐿
𝑡 ). Note that in the definition of

𝑀 [𝑔𝑖],𝐿
𝑡 , it holds that all terms featuring 𝐾22(𝑌𝑠) can be replaced with 𝐾22(𝑃𝑉𝑛 𝑌𝑠), where 𝑛 = 𝑚𝐾 (𝑖),

which ensures continuity of the martingales. □

Next, we want to prove that the process is also a weak solution in some sense of an infinite-
dimensional stochastic differential equation. For this, we need to construct a suitable cylindrical
Brownian motion on 𝑉 , such that we can express the process described by𝑀𝑉

𝑡
..= ∑𝑖∈ℕ𝑀 [𝑔𝑖],𝐿

𝑡 𝑒𝑖
as a stochastic integral of

√
𝐾22 similarly to Proposition 4.3.4.

Lemma 5.5.10. For each 𝑘 ∈ ℕ, define the real-valued stochastic process 𝛽(𝑘) via

𝛽(𝑘)𝑡
..=

1√
2 ∫

𝑡

0
𝜆−

1
2

22,𝑘(𝑌𝑠) d𝑀
[𝑔𝑘],𝐿
𝑠 .

Then (𝛽(𝑘))𝑘∈ℕ is an independent sequence of one-dimensional Brownian motions.

Proof:
Let 𝑘 ∈ ℕ and choose 𝑛 ≥ 𝑘 such that 𝑛 = 𝑚𝐾 (𝑛). We set 𝑀 (𝑛)

𝑡
..= (𝑀 [𝑔1],𝐿

𝑡 , … ,𝑀 [𝑔𝑛],𝐿
𝑡 ) and

Σ(𝑛)𝑡 ..= diag(𝜆−
1
2

22,1(𝑃𝑉𝑛 𝑌𝑠), … , 𝜆−
1
2

22,𝑛(𝑃𝑉𝑛 𝑌𝑠)). As in the proof of Proposition 4.3.4, it follows that

𝐵(𝑛)𝑡
..= ∫

𝑡

0
Σ(𝑛)𝑠 d𝑀 (𝑛)

𝑠

is an 𝑛-dimensional Brownian motion, since (𝐾22𝑒𝑖, 𝑒𝑖)𝑉 = 𝜆22,𝑖 for all 𝑖 ∈ ℕ. Clearly, the 𝑘-th
component of 𝐵(𝑛)𝑡 is just 𝛽(𝑘)𝑡 , independently of 𝑛. In particular, {𝛽(1), … , 𝛽(𝑛)} is independent
for any 𝑛 ∈ ℕ. □

Now we fix some 𝑇 ∈ (0,∞) and define the process (𝐵𝑡)𝑡∈[0,𝑇 ] on 𝑉 via

𝐵𝑡 ..=
∞
∑
𝑘=1

𝛽(𝑘)𝑡 𝑒𝑘 , 𝑡 ∈ [0, 𝑇 ].
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5.5 The associated stochastic process

This is a cylindrical Brownian motion on 𝑉 as defined in [PR07, Proposition 2.5.2], as can be
seen by choosing 𝐽 ∶ 𝑉 → 𝑉 , 𝐽 ..= 𝑄

1
2
2 , since then

𝐵𝑄2
𝑡

..=
∞
∑
𝑘=1

𝛽(𝑘)𝑡 𝐽 𝑒𝑘

defines a 𝑄2-Wiener process on 𝑉 .

Definition 5.5.11. Set 𝑉0 ..= 𝑄
1
2
2 𝑉 and equip it with the inner product

(𝑎, 𝑏)𝑉0 ..= (𝑄− 1
2

2 𝑎, 𝑄− 1
2

2 𝑏)𝑉 for all 𝑎, 𝑏 ∈ 𝑉0,

which makes 𝑉0 a separable Hilbert space with orthonormal basis (𝑄
1
2
2 𝑒𝑖)𝑖∈ℕ. Define L0

2
..=

L2(𝑉0; 𝑉 ) as the Hilbert space of Hilbert-Schmidt operators from 𝑉0 to 𝑉 . Further let

A𝑇
..= 𝜎{𝑌 ∶ [0, 𝑇 ] × Ω → ℝ ∣ 𝑌 is left-continuous and (F𝑡)𝑡∈[0,𝑇 ]-adapted.}

If a process 𝑋 ∶ [0, 𝑇 ] × Ω → L0
2 is A𝑇 -B(L0

2)-measurable, it is called predictable.

Lemma 5.5.12. The process
√
𝐾22(𝑌𝑡)𝐽−1, 𝑡 ∈ [0, 𝑇 ], is L0

2-valued and predictable.

Proof:
For each 𝑣 ∈ 𝑉 , we have

∑
𝑖∈ℕ

(
√
𝐾22(𝑣)𝐽−1𝑄

1
2
2 𝑒𝑖,

√
𝐾22(𝑣)𝐽−1𝑄

1
2
2 𝑒𝑖)𝑉 ≤ 𝐶22 tr[𝑄2]

due to (K4), which implies that
√
𝐾22(𝑣)𝐽−1 ∈ L2(𝑉0; 𝑉 ) for any 𝑣 ∈ 𝑉 . Moreover,

𝐴𝑖 ..= (
√
𝐾22(𝑌𝑡)𝐽−1𝑄

1
2
2 𝑒𝑖,

√
𝐾22(𝑌𝑡)𝐽−1𝑄

1
2
2 𝑒𝑖)𝑉 = (𝐾22(𝑃𝑉𝑚𝐾 (𝑖)𝑌𝑡)𝑒𝑖, 𝑒𝑖)𝑉

is continuous and (F𝑡)𝑡∈[0,𝑇 ]-adapted for any 𝑖 ∈ ℕ. Fix some 𝜀 > 0 and set

𝐵 ..= {(𝑡, 𝜔) ∈ [0, 𝑇 ] × Ω ∣ ‖
√
𝐾22(𝑌𝑡(𝜔))𝐽−1‖L0

2
≤ 𝜀},

as well as 𝐵𝑘 ..= {∑𝑘
𝑖=1 𝐴𝑖 ≤ 𝜀} ∈ A𝑇 for each 𝑘 ∈ ℕ. Then 𝐵 = ⋂𝑘∈ℕ 𝐵𝑘 ∈ A𝑇 as well. It is

easily seen that similarly, all pre-images of closed 𝜀-balls in L0
2 under

√
𝐾22(𝑌⋅)𝐽−1 are in A𝑇 , so

that the process is indeed predictable, since L0
2 is separable. □

By [PR07, Section 2.3], this means that
√
𝐾22(𝑌𝑡)𝐽−1 is integrable with respect to the 𝑄2-Wiener

process (𝐵𝑄2
𝑡 )𝑡∈[0,𝑇 ], which implies that

√
𝐾22(𝑌𝑡) is integrable with respect to (𝐵𝑡)𝑡∈[0,𝑇 ] with

𝐼 (
√
𝐾22(𝑌𝑡)) ..= ∫

𝑡

0

√
𝐾22(𝑌𝑠) d𝐵𝑠 ..= ∫

𝑡

0

√
𝐾22(𝑌𝑠)𝐽−1 d𝐵𝑄2

𝑠
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for all 𝑡 ∈ [0, 𝑇 ]. By applying [PR07, Lemma 2.4.1] for the operators 𝑝𝑖 ∶ 𝑉 → ℝ, 𝑝𝑖(𝑣) ..= (𝑣, 𝑒𝑖)𝑉 ,
we see that

√
2(𝐼 (

√
𝐾22(𝑌𝑡)), 𝑒𝑖)𝑉 =

√
2∫

𝑡

0
(
√
𝐾22(𝑌𝑠)𝐽−1⋅, 𝑒𝑖)𝑉 d𝐵𝑄2

𝑠 =
√
2∫

𝑡

0
𝜆

1
2
22,𝑖(𝑌𝑠) d𝛽

(𝑖)
𝑠

due to the invariance properties of 𝐾22(𝑣) for any 𝑣 ∈ 𝑉 , which evaluates to𝑀 [𝑔𝑖],𝐿
𝑡 by definition

of 𝛽(𝑖). Together, we obtain

𝑀𝑉
𝑡

..= ∑
𝑖∈ℕ

𝑀 [𝑔𝑖],𝐿
𝑡 𝑒𝑖 = ∫

𝑡

0

√
𝐾22(𝑌𝑠) d𝐵𝑠 . (5.5.3)

As a result, we get the following:

Proposition 5.5.13. Let (K1)–(K8) hold and consider the following Itô stochastic differential equa-
tion for (𝑋𝑡 , 𝑌𝑡)𝑡≥0 on 𝑊 :

d𝑋𝑡 = 𝐾21𝑄−1
2 𝑌𝑡 d𝑡

d𝑌𝑡 =
∞
∑
𝑖=1

𝜕𝑖𝐾22(𝑌𝑡)𝑒𝑖 − 𝐾22(𝑌𝑡)𝑄−1
2 𝑌𝑡 d𝑡 − 𝐾12𝑄−1

1 𝑋𝑡 d𝑡 +
√
2𝐾22(𝑌𝑡) d𝐵𝑡 ,

(5.5.4)

where (𝐵𝑡)𝑡≥0 is a cylindrical Brownian motion on 𝑉 .

Then the process (𝑋𝑡 , 𝑌𝑡)𝑡≥0 on (Ω,F , 𝑃𝜇) associated with E is a weak solution of (5.5.4) in the
sense that there is a cylindrical Brownian motion (𝐵𝑡)𝑡≥0 on 𝑉 such that (5.5.4) holds in each
component, i.e. evaluated by any (⋅, (𝑑𝑖, 0))𝑊 or (⋅, (0, 𝑒𝑖))𝑊 for 𝑖 ∈ ℕ. Moreover, the transition
semigroup (𝑝𝑡)𝑡≥0 of (𝑋𝑡 , 𝑌𝑡)𝑡≥0 is hypocoercive with the rate computed in Theorem 5.4.13, which
shows exponential convergence of the weak solution to the equilibrium described by the invariant
measure 𝜇.
Proof:
The componentwise statement follows from Proposition 5.5.9 since for example

(𝑋𝑡 , 𝑑𝑖) − (𝑋0, 𝑑𝑖) = 𝑋 𝑖
𝑡 − 𝑋 𝑖

0 = ∫
𝑡

0
(𝑌𝑠 , 𝑄−1

2 𝐾12𝑑𝑖)𝑉 d𝑠 = ∫
𝑡

0
(𝐾21𝑄−1

2 𝑌𝑠 , 𝑑𝑖)𝑈 d𝑠,

together with the representation of𝑀 [𝑔𝑖],𝐿
𝑡 as (𝑀𝑉

𝑡 , 𝑒𝑖) = (∫ 𝑡
0

√
𝐾22(𝑌𝑠) d𝐵𝑠 , 𝑒𝑖)𝑉 from Equation

(5.5.3). By association, (𝑝𝑡)𝑡≥0 is a 𝜇-version of (𝑇𝑡)𝑡≥0, and therefore also satisfies the estimate
from Theorem 5.4.13. □

Corollary 5.5.14. The componentwise statement above can be extended in the following way: It
holds 𝑃𝜇-a.s. for any 𝑡 ∈ [0, ∞), 𝜗 ∈ 𝐷(𝑄−1

2 𝐾12) and 𝜃 ∈ 𝐷(𝑄−1
1 𝐾21) that

(𝑋𝑡 , 𝜗) = (𝑋0, 𝜗) + ∫
[0,𝑡]

(𝑌𝑠 , 𝑄−1
2 𝐾12𝜗) d𝑠,

(𝑌𝑡 , 𝜃) = (𝑌0, 𝜃) + ∫
[0,𝑡](

∞
∑
𝑖=1

𝜕𝑖𝐾22(𝑌𝑠)𝑒𝑖, 𝜃)
− (𝑌𝑠 , 𝑄−1

2 𝐾22𝜃) − (𝑋𝑠 , 𝑄−1
1 𝐾21𝜃) d𝑠

+ (
√
2𝐾22(𝑌𝑡)𝐵𝑡 , 𝜃).
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5.6 A short example

The proof follows analogously to the corresponding proof of [EG21, Theorem 5], since all occurring
terms are well-defined due to (K4) and (K5). Note that in particular, we need not assume that
𝜃 ∈ 𝐷(𝑄−1

2 𝐾22(𝑣)), since ‖𝑄−1
2 𝐾22(𝑣)‖L(𝑉 ) ≤ 𝐶22 for all 𝑣 ∈ 𝑉 .

5.6 A short example

Here we give a quick example for a specific choice of 𝑈 = 𝑉 , 𝑄1 = 𝑄2, 𝐾12 and 𝐾22, such that all
conditions (K1)–(K8) are satisfied, so that all previously obtained results can be applied. This
specific choice is motivated by the example used in [EG21].

Let 𝑈 = 𝑉 = 𝑋 ..= 𝐿2((0, 1); ℝ; d𝑥) and consider the negative Dirichlet Laplacian −Δ on 𝑋 ,
which is defined by

𝐷(Δ) ..= 𝐻 1,2
0 ((0, 1)) ∩ 𝐻 2,2((0, 1)), −Δ𝑓 ..= −𝑓 ′′ for all 𝑓 ∈ 𝐷(Δ).

Then we choose 𝑄1 = 𝑄2
..= (−Δ)−1 with the corresponding orthonormal eigenvectors 𝑑𝑘 =

𝑒𝑘 ..=
√
2 sin(𝜋𝑘⋅) to the eigenvalues 𝜆1,𝑘 = 𝜆2,𝑘 = 1

𝑘2𝜋2 . Evidently, 𝑄1 and 𝑄2 are symmetric and
of trace class, so that there exist corresponding Gaussian measures 𝜇1 and 𝜇2 on (𝑈 ,B(𝑈 )) and
(𝑉 ,B(𝑉 )), respectively.

Now we choose 𝐾22 by specifying its eigenvalue functions 𝜆22,𝑘 ∶ 𝑉 → ℝ. Let 𝑐0, 𝑐𝑣 ∈ (0,∞) be
constant. For each 𝑘 ∈ ℕ, let 𝛽𝑘 ∈ (0, 1), 𝜑𝑘 ∈ 𝐶1

𝑏(ℝ; [0, ∞)) and 𝜓𝑘 ∈ 𝐶1
𝑏(ℝ

𝑘; [0, ∞)), and define

𝜆22,𝑘(𝑣) ..= 𝑐0𝜆2,𝑘 + 𝛾𝑘 (𝜑𝑘(𝜆
− 1

2
2,𝑘 |𝑝

𝑉
𝑘 𝑣|

𝛽𝑘+1) + 𝜓𝑘(𝜆
− 1

2
2,𝑘 𝑝

𝑉
𝑘 𝑣)) ,

where

𝛾𝑘 ..=
𝑐𝑣𝜆

3
2
2,𝑘

‖𝜑𝑘‖𝐶1 + ‖𝜓𝑘‖𝐶1
.

Then we see clearly that 𝑐0𝜆2,𝑘 ≤ 𝜆22,𝑘(𝑣) = 𝜆22,𝑘(𝑃𝑉𝑘 𝑣) ≤ (𝑐0 +
√
𝜆2,1𝑐𝑣)𝜆2,𝑘 for all 𝑘 ∈ ℕ, 𝑣 ∈ 𝑉 .

Moreover, for 𝑖 > 𝑘, we have 𝜕𝑖𝜆22,𝑘(𝑣) = 0, and for 1 ≤ 𝑖 ≤ 𝑘, it holds for all 𝑣 ∈ 𝑉 that

|𝜕𝑖𝜆22,𝑘(𝑣)| = 𝜆−
1
2

2,𝑘 𝛾𝑘
|||𝜑

′
𝑘(𝜆

− 1
2

2,𝑘 |𝑝
𝑉
𝑘 𝑣|

𝛽𝑘+1)(𝛽𝑘 + 1)|𝑝𝑉𝑘 𝑣|
𝛽𝑘−1(𝑣, 𝑒𝑖) + 𝜕𝑖𝜓(𝜆

− 1
2

2,𝑘𝑝
𝑉
𝑘 𝑣)

|||
≤ 𝜆−

1
2

2,𝑘 (𝛽𝑘 + 1)𝛾𝑘(‖𝜑′𝑘‖𝐶0 + ‖𝜓𝑘‖𝐶1)(1 + |𝑝𝑉𝑘 𝑣|
𝛽𝑘)

≤ 2𝑐𝑣𝜆2,𝑘(1 + ‖𝑃𝑉𝑘 𝑣‖
𝛽𝑘
𝑉 ).

Now we simply set 𝐾22(𝑣)𝑒𝑖 ..= 𝜆22,𝑘(𝑣)𝑒𝑖, which describes a symmetric positive-definite bounded
linear operator on 𝑉 as required for Definition 5.2.3. Moreover, (K1) holds for 𝐾 0

22 = 𝑐0𝑄2, (K2)
is satisfied for 𝑚𝑘(𝑛) = 𝑛 and 𝑁𝑘 ..= 𝑐𝑣𝜆2,𝑘 , (K4) holds for 𝐶0

22 = 𝑐0 and 𝐶𝑣22 = 𝑐𝑣 , and in (K5) we
get 𝛼22𝑛 ≤ 𝑐𝑣𝜆

1
2
2,𝑛, which describes an 𝓁2-sequence since 𝑄2 is of trace class. Finally, the estimate

in Remark 5.4.10 holds for 𝜔22 = 𝑐−10 , which implies that (K6) is satisfied for 𝑐𝑆 ..= 𝑐0𝜆2,1. Finally,
we note that at least for the choices 𝐾12 = 𝐼 or 𝐾12 = 𝑄2 = 𝑄1, the remaining assumptions are
satisfied. Indeed, (K3) is obvious, (K7) follows from Remark 5.4.10 (ii) since 𝜆1,𝑘 decreases to
zero, and (K8) holds for 𝜌 = 0 due to Remark 5.5.4.
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5 Langevin dynamics with multiplicative noise on infinite-dimensional Hilbert spaces

5.7 Outlook

While the result attained in this chapter is overall well-rounded, there are still some unsatisfactory
assumptions that were made, as well as potential for generalization.

We start with the statement on essential m-dissipativity: The proof provided above seems
more like a first step as opposed to a fully generalized argument, as we simply use the finite-
dimensional result from Theorem 3.5.1 without having to modify or approximate the operator.
This is due in one part to the invariance properties of 𝐾22(𝑣) and 𝐾12 for any 𝑣 ∈ 𝑉 but also due
to the other invariance, namely the dependence of 𝐾22 only on 𝑃𝑉𝑛 𝑣 when considered on 𝑉𝑛, at
least for 𝑛 = 𝑚𝐾 (𝑛). It seems plausible that this could be generalized at least to depending in a
“very small way” on the remaining components as well. As long as the resulting operator 𝐿 is
dissipative, the dense range condition could be verified via approximation of finitely-dependent
operators 𝐿𝑛. Since the difference (𝐿 − 𝐿𝑛)𝑓 would be estimated by scaled-down second-order
partial derivatives of 𝑓 , we would need a way to estimate those by (𝐼 − 𝐿𝑛)𝑓 again, in order to
choose the appropriate 𝑛 only depending on the finitely-based function 𝑔 wewish to approximate.
In the finite-dimensional case, this was done via Lemma 3.5.4, which allowed the approximating
operators to be chosen a priori for each 𝑔 . A promising approach seems to be to use the 𝐿𝑝-
regularity estimates provided in the recent paper [Bra+13], which provide relative bounds of 𝜕𝑖𝑗𝑓
by 𝐿𝑛𝑓 depending, in particular, on the dimension. If we make the assumption that the influence
of higher-dimensional components is bounded by a suitably small factor of this relative bound,
then at least the second-order terms could be controlled a priori. However, the derivatives of
𝐾22 would also have to be treated, and in order to formulate adequate conditions, it would be
helpful to provide concrete estimates of the relative bounds, which seems even harder noting
the erratum appended to [Bra+13].

Another way to generalize the operator would be to include an additional potential Φ ∶ 𝑈 → ℝ,
which changes the measure 𝜇1 by introducing a density e−Φ. This was treated for constant
𝐾22 in [EG21], where 𝐿2-regularity estimates (see Theorem 2 of the mentioned reference) were
instrumental for retaining essential m-dissipativity. These regularity estimates do not hold in
our case, as the derivatives of 𝐾22 add terms which are not easily bounded by the remaining
ones. However, in the finite-dimensional setting, similar regularity estimates are proven and
used in [DG01, Proposition 4.2], so there might be potential for a clever Hölder-Young argument.

Finally, as mentioned in Remark 5.3.4, most statements should still be valid when assuming
a “block-diagonal” structure for 𝐾12 and 𝐾22(𝑣), as long as the block size is bounded. While
it would certainly be interesting to consider coefficients without such invariance properties,
most arguments regarding well-definedness and boundedness of occurring sums, as well as the
construction of the cylindrical Brownian motion, would have to change fundamentally.
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