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Abstract

The generally unsupervised nature of autoencoder models implies that the main training metric

is formulated as the error between input images and their corresponding reconstructions.

Different reconstruction loss variations and latent space regularization have been shown to

improve model performances depending on the tasks to solve and to induce new desirable

properties like disentanglement. Nevertheless, measuring the success in, or enforcing properties

by, the input pixel space is a challenging endeavor. In this work, we want to make more

efficient use of the available data and provide design choices to be considered in the recording

or generation of future datasets to implicitly induce desirable properties during training. To this

end, we propose a new sampling technique which matches semantically important parts of the

image while randomizing the other parts, leading to salient feature extraction and a neglection of

unimportant details. Further, we propose to recursively apply a previously trained autoencoder

model, which can then be interpreted as a dynamical system with desirable properties for

generalization and uncertainty estimation.

The proposed methods can be combined with any existing reconstruction loss. We give a

detailed analysis of the resulting properties on various datasets and show improvements on

several computer vision tasks: image and illumination normalization, invariances, synthetic to

real generalization, uncertainty estimation and improved classification accuracy by means of

simple classifiers in the latent space.

These investigations are adopted in the automotive application of vehicle interior rear seat

occupant classification. For the latter, we release a synthetic dataset with several fine-grained

extensions such that all the aforementioned topics can be investigated in isolation, or together,

in a single application environment. We provide quantitative evidence that machine learning,

and in particular deep learning methods cannot readily be used in industrial applications when

only a limited amount of variation is available for training. The latter can, however, often

be the case because of constraints enforced by the application to be considered and financial

limitations.
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Chapter 1

Introduction

The success of machine learning, and in particular deep learning based methods for solving a

large variety of tasks, has become apparent. The universal applicability of the aforementioned

methods in industry still goes along with a plethora of questions and challenges, particularly in

case of safety critical applications [187, 254, 28, 196, 97, 6]. Special care needs to be taken

to record datasets for industrial applications [243, 63, 17]. Tackling these challenges is often

time consuming and relies on considerable financial support, to the detriment of fast product

development. In general, the industrial actor wants to deploy reliable products while remaining

cost-efficient. This requires substantial progress in the development of both model-driven and

data-driven methods.

For the former, the generalization capacities and robustness of the statistical methods need

to be improved. For the latter, the data collection needs to be simplified and the available data

needs to be used more efficiently. This thesis scientifically investigates both approaches for

computer vision tasks, yielding valuable quantitative results and insights that readily extend

from the automotive application to a wide range of other topics.

The recordings of a multitude of sensors can be used to observe the surroundings of a

system of interest. Each individual type of sensor usually has its advantages and disadvantages

and the trade-offs to be made depend on the task to be solved and the requirements of the

system. Depth maps, recorded by stereo camera systems or time-of-flight (ToF) sensors, have

the advantage of neglecting most of the textures of the objects in the scene and providing the

distance of each pixel to the camera. However, stereo camera systems need not only to be

calibrated correctly (which can change over the lifetime of a deployed sensor) to work well,

but also more than a single camera is needed. ToF cameras need to be calibrated as well and

can be influenced by sunlight and multi-path, multi-reflected scattered light. The recordings of

a RADAR system provide additional information about the speed of the objects in the scene

by exploiting the Doppler effect. However, the resolution of the RADAR system is usually
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quite low and the recording can be affected by motion, e.g. if the vehicle is in motion [52].

Camera sensors are relatively cheap and reliable, provide high resolution images and more

visual details to be used by a machine learning model. Since we are adopting them in the

vehicle interior, bad weather conditions barely affect the recording - except for illumination

changes. Although more computing power is needed to process the image data, the potential

variety of tasks to be solved by camera sensors is large. It was decided to focus on images

recorded by a camera system because they are well understood, intuitive to work with and

robust against most exterior effects. Further, we restrict ourselves to single independent frames

instead of considering video data or multiple frames. This makes the task more challenging, but

we can focus on the fundamental questions presented later. Also, the incorporation of multiple

frames would make the system more sophisticated and hence more expensive.

Image data finds its use in many application areas of high industrial relevance, e.g. informa-

tion provided by images can be used to determine the pose of humans [240] or even animals

[164], segment the images [274], recognize activities [61], detect objects [281] or segment

each instance [26], detect anomalies [127], identify people [176], answer questions [261]

and generate novel images [88]. Many of these achievements require ground truth labellings

different from simple classification labels. This causes a large financial and time-consuming

overhead, since basically all the labelling needs to be done, or at least verified, manually. It

is clear that any additional labelling information can only be helpful for training statistical

methods, improve the performances or extend the functionalities if necessary. However, to keep

it simple, stupid (KISS), it was decided to refrain from using more informative labellings and

we focus on developing and improving solutions for the most basic approaches.

However, image based datasets and tasks have their downsides as well. Image based

classifiers can be susceptible to small changes in the image, i.e. adversarials [97], biased

towards shapes or textures [144], be sensitive to illumination [4] or overconfident about their

prediction [169]. It is hence paramount to robustify the classifier before deploying it to a system

[13, 221].

Due to the wide range of cutting-edge applications of image data, we argue that it is essential

to understand and develop the basics of deep learning methods. In this thesis, we focus on

analyzing and developing more reliable features to be used by a classifier to solve computer

vision problems. Each industrial application has its potential and challenges to be considered

during the data collection process, the software development phase and the training of machine

learning based methods. While all of the proposed methods will be evaluated in the vehicle

interior, we also take care to show their benefits on datasets commonly used by the research

community.
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1.1 Motivation

Autoencoder (AE), and closely related encoder-decoder models, have seen numerous successful

applications partially due to their bottleneck design, which is useful for feature reduction [272]

and compression [40], but also by providing beneficial properties, e.g. disentanglement [36].

The aforementioned desirable characteristics can either be achieved using dedicated priors in

the latent space, e.g. by a Gaussian prior [128], triplet loss [268], discretization [245], or by non

identical input-target pairs, e.g. in case of denoising and inpainting [266] or super-resolution

[273]. Further, autoencoder based solutions can be used to detect anomalies [7, 83]. It is

also common to pre-train autoencoder models on large datasets of general images to learn a

meaningful and generic feature extraction such that the resulting encoder can be fixed during

a second fine-tuning stage [186]. During the latter, an additional classifier head using the

extracted features as input can be trained on the dataset of the actual task to be solved [162].

Since we were referring to safety critical application in the previous section, we also want to

highlight that autoencoders have been shown to provide advantages and prove their usefulness

on medical applications [35, 82, 244, 46, 171, 234].

An important argument in favor of autoencoders is the accessibility of the resulting lower-

dimensional representation of the training and test data. It is hence possible to visualize the

learned data manifold and to test the representation for some desirable properties after training.

For example, one can test the latent space representation for disentanglement, sometimes

referred to as independence of the factors of variation, or for a meaningful interpolation in-

between two encoded input samples [184]. Most importantly, the representation and clusters of

the samples with respect to their target label can be assessed. Due to the bottleneck design, the

lower dimensional feature representation can become meaningful up to a point where it can

be used for image retrieval [226]. On many occasions the decoder part can be removed and

only the encoder together with the lower-dimensional representation are used for the task to be

solved, in particular in case of classification [162]. This reduces the model complexity for a

potential deployment. We also report arguments in favor of autoencoder models compared to

other generative models in Section 2.7.

Autoencoders have been proven to work well on many applications. Their model design

is intuitive and simple, can easily be extended, provide useful insights due to their lower-

dimensional latent space and yet provide interesting results on many tasks. Their elegance and

their mentioned properties were the main arguments to decide to focus the investigations of this

thesis on the deep learning model architecture of autoencoder models. Our main goal is to build

autoencoder models with some useful properties to achieve more reliable feature extraction,

which in turn can be used to improve classifier performance on computer vision tasks.
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1.2 Problem formulation and challenges

The problems and challenges considered in this thesis stem from the industrial application of

determining seat occupancy in the vehicle interior: for each seat position in a vehicle, the system

should detect whether it is empty or a child on a child seat, an infant in an infant seat or an adult

is sitting on it. At first glance, the overall complexity of this task seems manageable: as in any

machine learning based solution, the engineers would start with defining a test matrix, perform

a data recording campaign and train several statistical methods to compare the performances

against each other. While this heuristic works and provides good results, most of the challenges

become apparent once the system should be commercialized [155, 107, 110].

It is expected that certain guarantees about the reliability of the deployed system can be

formulated, e.g. reduce the likelihood of failures, identify failures and their causes when they

occur. However, the robustness and performance of such a system might be more difficult to

evaluate than anticipated. The system should be robust against new child seats appearing on

the market after the system has been deployed. Even for child seats observed in the training

process, the system should not be misled by everyday phenomena: what happens if the child

seat is rotated slightly or placed incorrectly in the car? Some parents might put toys on the child

seat to distract their children, put stickers on the seats to make them more easily recognizable

or put a sun-protection on it to protect their child. Further, how should a model behave when

more exotic sceneries occur, that have not been covered by the data recording campaign? Each

of us has placed animals and the most random objects inside a car, e.g. backpacks, furniture,

beverage, food, computers, clothes or plants. The passengers are moving inside the car, they can

be reading books, sleeping, playing on their smartphone or sitting in the most (un)comfortable

positions. The vehicle is moving and it is being used during day and nighttime, during all

seasons and weather conditions. It is hence paramount that a deployed system is also robust

against all environmental conditions. While this already sounds much harder than before, the

situation becomes even more complicated due to the windows inside a vehicle interior. Since

the camera is observing the seat positions, it is likely that its sensor will also perceive objects

outside the vehicle. Hence, the situation and objects, i.e. the overall scenery, which could

potentially mislead a classifier using the camera images as input, is even more diverse.

An example of the aforementioned problem is illustrated in Fig. 1.1. A pre-trained YOLO

[211] model was used to detect objects in an image from a vehicle interior. Although it detects

the passengers correctly, the model is also affected by objects inside the vehicle (a book)

and outside the vehicle (a car). While it does not constitute a problem for this particular

case, we want to use this example as an illustration that any classifier can potentially also be

mislead by the objects in the scene - either from the inside or the outside. We also provide an

example in Fig. 1.2 regarding the volatility of a pre-trained YOLO model’s detections for a
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Fig. 1.1 Detected objects inside a vehicle interior by a pre-trained YOLO model. The model

detects the people correctly, but it is also affected by objects inside the vehicle (book - which is

actually a box of a toy) and outside the vehicle (car).

scenery for which we artificially changed the illumination. The predictions are unstable, i.e. the

child is sometimes wrongly classified, the dimensions of the bounding boxes vary and objects

are detected which are not present in the image. A model needs to be robust against these

illumination changes, since they do not alter the semantics of the image. Moreover, changes in

the brightness and saturation can occur more dominantly in the field once a model is deployed.

All the aforementioned challenges are related to model robustness against situations happen-

ing inside the vehicle the model was trained on. This framework becomes even more difficult

once a model should work in an unknown vehicle interior. In case the images are recorded

inside a single vehicle, which is of course expected to test the feasibility of an idea, all of

the images show the same, or similar background. This hinders the transferability of a model

which observed images from this single vehicle interior only. However, machine learning based

models, and specifically neural networks trained in a single environment, often take into ac-

count non-relevant characteristics of the specific environmental conditions in an uncontrollable

manner [237]. This means in practice that the performance drops drastically in a new, unseen

vehicle interior. We will highlight this problem quantitatively in Section 5 and Section 6. Even

if we consider the same car model, the interior design can vary: the color and texture of the

seats can change, new or different features can be included or removed. When the rear bench

is turned down the vehicle interior looks different as well. This situation gets harder if we

want the model to be deployed to a completely different car model, potentially of a different
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Fig. 1.2 The prediction of a pre-trained YOLO model can be volatile for the same scenery under

changing illumination (achieved using transformations from Albumentations [32]). The child

is sometimes wrongly classified, the sizes of the bounding boxes vary and non-present objects

are detected. Ideally, a model should be robust in its prediction for the presented variations.
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manufacturer. Since evaluating the model robustness against all the aforementioned cases

is time-consuming and expensive, it would be desirable to minimize the number of vehicles

necessary to obtain a quasi-universal classifier applicable in any vehicle interior. Otherwise,

the above tests need to be repeated for each new vehicle interior resulting in a large financial

overhead. As we will show in this thesis, determining the number of vehicles and the type of

vehicles necessary for obtaining a quasi-universal classifier, and providing guarantees that the

classifier is indeed quasi-universally applicably, is a hard challenge to solve.

While the problems explained above seem narrowed down to a fixed application, we want

to highlight that the underlying questions are important for many machine learning applications,

especially since they can be broken down into fundamental questions and research directions:

synthetic to real generalization, robustness and invariances with respect to distributional shifts

(illumination, environment, new vehicle interiors, new objects of known classes), training

under a limited amount of variation and uncertainty estimation. One of the potential solutions

would be to augment the training data by including synthetic images for which the ground

truth labelling is basically readily available and the amount of images to generate can be

arbitrarily large. This is particularly interesting for dangerous or expensive edge cases. In

the best case, invariances could be learned on synthetic data and transferred to their real

counterparts. However, the incorporation of synthetic data is still challenging due to the gap

between synthetic and real distributions [280]. Next, the models trained for the vehicle interior

should become illumination invariant. This means they should work for all possible illumination

and environmental conditions such that the system’s reliability is increased. It is crucial to

improve the transferability to new vehicle interiors and generalization to new objects inside the

vehicle when only a limited amount of variation was observed during training. This is important

because it is not always possible to have a large amount and a diverse repository of objects and

vehicles at one’s disposal. However, since it is impossible to account for all potential variations

occurring during the lifetime of a deployed system, it would be advantageous to quantify the

model’s predictive uncertainty. This means that the model should assess by itself the reliability

of its prediction and whether the prediction can be trusted or not.

In general, the problems and challenges encourage the requirement for more reliable feature

extractions to be used by a classifier. The final goal is to train a model to become more

robust against distributional shifts of different origins. Overall, it is necessary to deepen our

understanding of fundamental properties of deep learning models. In this thesis, we would like

to propose novel training approaches for autoencoder models in order to advance the reduction

of the distributional shifts regarding the aforementioned challenges. We want to make use of

the available data more efficiently. We believe that the properties of autoencoder models, as

mentioned in the previous section, are good candidates to alleviate at least some of the problems
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described in this section. Further, we think that investigating and developing the fundamentals

is important as it improves our basic understanding of the models to be used, particularly for

safety critical applications. Hence, we will refrain from developing unnecessarily sophisticated

models. Instead, we try to remain as simple as possible and focus on intuitive design choices,

which are easier to interpret and understand, and hence to debug when it comes to failures.

According to Tambon et al. [233], a machine learning-based safety-critical system should

be robust, explainable and verifiable, provide uncertainty estimation and out-of-distribution

detection and potentially, in the future, fulfill the ISO 26262 standard, which has not yet been

defined for machine learning based solutions. With this thesis, our proposed model design

choices and investigations directly address model robustness, uncertainty estimation and out-

of-distribution detection. The lower dimensional latent space representation of autoencoder

models might improve explainability and verifiability, as well as the fulfillment of the ISO

26262 standard, but we neither investigated nor discussed these topics in this work.

1.3 Contributions

This thesis investigates novel strategies for training neural networks based on the autoencoder

model architecture with the focus on computer vision, and in particular on images of higher

visual complexity, as measured and compared in Section 2.2. We consider the challenges of

improving generalization, reducing the need for collecting real images and modeling uncertainty

in an autoencoder model’s prediction. We only consider classification tasks and focus on

improving basic autoencoder models which are particularly interesting due to their bottleneck

design. The new training methods presented in this work combine ideas of most of the

approaches presented in Section 1.1.

Since the investigated industrial application and the provided real images are proprietary,

the first achievement of the thesis was to develop a synthetic data generation pipeline in Blender

[41] imitating the industrial application [53]. To this end, several datasets focusing on different

challenges were generated and published to enable the reproducibility of the developed methods

and the corresponding results. SVIRO [53] consists of images of 10 different vehicle interiors

such that vehicle-to-vehicle generalization and robustness to novel class variations can be tested.

In SVIRO-Illumination [54] each scenery is rendered under 10 different illumination conditions,

which is difficult to realize with real images, so that invariances with respect to illumination

can be investigated. SVIRO-Uncertainty [59] provides the means to test uncertainty estimation

on several difficulty levels. In SVIRO-NoCar [58] the vehicle is removed and we show that this

induces invariances with respect to the vehicle interior and its background on synthetic data

which can then be transferred to real data to some extent. SVIRO-InterCar renders identical
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sceneries in different vehicle interiors. The different datasets are explained and compared

in Chapter 3. For most publications we released a dataset for the topic to be investigated,

proposed new methods to improve the performances and tested the methods against other

standard approaches using both the novel dataset and other commonly used research datasets.

The second contribution was an analysis on SVIRO, as reported in Chapter 6, to highlight

to the research community that the challenges from the vehicle interior introduce interesting

research questions [56]: if all training images are collected in the same vehicle interior, how

could we improve the transfer to a novel vehicle interior, without collecting new data? The

dominant and constant background makes this a challenging task. This can be re-formulated

as a more general challenge: how can we improve the transfer to a new environment when all

training images are recorded in an identical, but different environment? This is also the case

when the training images are recorded in a single room, or building, and the model needs to

be deployed to a different room, or building. We propose a first simple approach based on

denoising autoencoder models to improve the transferability.

One of the main contributions is the introduction of a novel training strategy entitled

"Partially Impossible Reconstruction Loss" (PIRL) of which we provide two variations. The

first variation of the PIRL is the weaker version, because it is tailored to the task to be solved

and it needs a controlled variation of the task specific unwanted features. The features we

want to become invariant against are varied and the features we assess as discriminative are

kept identical or similar. Hence, this sampling strategy preserves the semantics while varying

the unimportant features such that the model needs to focus on what remains constant. We

propose to select as target for each input image a variation of the latter: one can select the same

scene under different illumination and/or with different backgrounds. In this setting, it can be

used for illumination normalization [54], see Chapter 7, where identical scenes under different

environmental conditions are needed.

The first variation of the PIRL will lead to good results, particularly for normalization

and in case human poses need to be preserved. However, it can be challenging to apply it to

a lot of commonly recorded datasets, especially when the dataset to be considered does not

allow for a controlled variation of the unwanted features. To this end we introduce a second,

stronger variation of the PIRL [58, 57] which can readily be applied to most existing datasets.

Instead of sampling the same scene under a controlled variation, e.g. same scene under different

illumination, we propose to use as target image a different image of the same class as the

input. This approach implicitly uses label information in the input space, in contrast to the

triplet loss in the latent space [268], and leads to a better latent space representation. This loss

variation causes the model to learn invariances with respect to certain class variations that are
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not important for the task at hand, e.g. clothes, human poses, textures. While illumination can

still be removed with this approach, human poses will no longer be preserved.

We further show that the PIRL can be used to improve synthetic to real generalization

[58] - but not without some additional considerations. We show in Chapter 8 that it is not

sufficient to test generalization capacities and design choices for synthetic to real generalization

on less visually complex datasets, e.g. MPI3D [81]. We propose to use a fixed pre-trained

classification model as feature extractor together with an autoencoder model, where the latter is

being fine-tuned on the synthetic to real task to solve. Finally, this approach can be improved

by combining it with the PIRL: invariances, e.g. with respect to the background, can then be

learned on synthetic data and transferred to real data to some extent, especially when real data

can be integrated to reduce the synthetic gap. This improves the performances to generalize

from one real vehicle interior to another one significantly.

The methods are adopted to the industrial application to illustrate that our novel design

choices can improve the performance on a real application. Further, the methods are investigated

on commonly used academic datasets in Chapter 5 to show that the novel training strategies

are not limited to our particular application [54, 58, 57]. We show that the PIRL produces a

good latent space representation on par with the triplet loss. Notwithstanding this achievement,

the PIRL uses the label information in the input space and needs only two samples per batch

element, in contrast to the triplet loss, which uses the labels in the latent space and needs

three samples per batch element. Each experiment is combined with an ablation study to

highlight the effect of the different design choices. We show the benefits and downsides of

the PIRL and compare the performance against commonly used pre-trained and fine-tuned

convolutional neural networks (CNN). The features that can be considered important and

unimportant for the PIRL depend on the task to be solved: in case of image classification

the discriminative characteristics of the different classes are important while we might not

be interested in facial landmarks, human poses, illumination or backgrounds such that these

features can be considered as unimportant. Our proposed sampling strategy can easily be used

with any existing autoencoder model, reconstruction loss and sampling strategy.

Additionally, we show in Chapter 9 that the PIRL can also be used for uncertainty estimation

and out-of-distribution detection [57], where it outperforms MC Dropout [73] and an ensemble

of models [136]. This performance gain is highlighted exhaustively on several datasets. Since

the PIRL improves performances on a wide range of tasks and datasets, it can hence be

concluded that the PIRL leads to a more reliable feature extraction.

Lastly, we investigated a rarely used interpretation of autoencoder models [59] in Chapter

9: viewing the recursive application of a previously trained autoencoder model as a dynamical

system [204]. The latter consists of attractors and basins of attraction [230] and we show
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empirically that this can be used to generalize to test images. More importantly, we show that

this property can be extended by means of Monte Carlo (MC) dropout to obtain a family of

dynamical systems that provide good uncertainty estimations, particularly on datasets of higher

visual complexity. Samples close to the training distribution converge robustly to attractors

of the same class, or even to the same attractor, while exotic samples are unstable in their

convergence and converge to different attractors, potentially of different classes.

The benchmark and all the datasets generated for this thesis can be found on and down-

loaded from our website - https://sviro.kl.dfki.de/. The website was created for hosting the

datasets, reporting all results and provide information related to our investigations. The code

implementations for reproducing many results presented in this work are hosted on our Github

- https://github.com/SteveCruz account. A subset of our SVIRO dataset is also integrated in

DomainBed - https://github.com/facebookresearch/DomainBed.

1.4 Thesis outline

We start with Chapter 2 covering the preliminaries and background information necessary to

follow the topics discussed in this thesis. We mention related work, the tools used in this thesis

and provide a thorough introduction to autoencoder models.

Chapter 3 introduces the industrial application of occupant detection in the vehicle interior.

We explain the provided proprietary dataset and the data generation pipeline used to generate

the synthetic datasets. Further, we describe each of the different dataset extensions.

We detail most of our novel autoencoder training approaches in Chapter 4. The methods are

derived in a common framework such that they can easily be used as standalone or combined.

The remainder of the thesis follows these notations and expressions and the methods are

evaluated in the following chapters.

We provide first fundamental results and investigations for some of the previously presented

methods in Chapter 5. This should give the interested reader some guidelines to understand

the effect of the second variation of the PIRL on commonly used datasets. Further, we perform

a baseline evaluation on SVIRO and ORSS to highlight some of the challenges mentioned in

the introduction and to establish an understanding for the problem and application.

In Chapter 6 we investigate the problem of transferring the model from one vehicle to a

new unseen one. We show that this problem formulation is indeed difficult to solve and provide

a first simple approach where autoencoder models achieve results on par with commonly used

classification models.

https://sviro.kl.dfki.de/
https://github.com/SteveCruz
https://github.com/SteveCruz
https://github.com/facebookresearch/DomainBed
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Image and illumination normalization is discussed in Chapter 7. We explain the problem in

more detail and demonstrate that the first variation of the PIRL can be used to solve illumination

normalization in some cases. This is highlighted on several datasets.

We provide a step by step investigation of different design choices for the transferability

from synthetic to real images in Chapter 8. We start off with MPI3D and show that these

insights are not sufficient for more visually complex datasets. Further, we report results using

the first and second variation of the PIRL either together or without the extractor module. In

case real data can be used during training, we demonstrate that it can be combined with the

previous design choices to improve performance significantly: invariances can be learned on

the synthetic data while the synthetic gap is reduced by integrating the real images. We extend

our understanding by additional ablation studies using the multi-channel autoencoder approach

and show the potential benefits of the latter, also in comparison to the extractor approach.

In Chapter 9 we investigate uncertainty estimation and out-of-distribution detection on a

large variety of different datasets. We present that SVIRO-Uncertainty is indeed challenging

and that the different splits can be used to thoroughly assess a model’s reliability. We use the

second variation of the PIRL and the method based on attractors to show that both methods

yield good uncertainty and out-of-distribution estimations.

Finally, we conclude the thesis and provide questions, ideas and guidelines for future

investigations and research directions.
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This thesis contains additional results previously unpublished:

• A novel variation of the multi-channel autoencoder approach combining real and synthetic

images during training to learn removing the vehicle background of real images, see

Section 4.7,

• An investigation on background removal using the multi-channel autoencoder, the extrac-

tor module and/or the second variation of the PIRL, see Section 10,

• Additional ablation and basic studies to improve the understanding of the proposed model

designs, see Chapter 5,

• Results on combining the autoencoder attractor approach together with the second

variation of the PIRL, see Section 9.2.5,

• A novel extension for SVIRO called SVIRO-InterCar where each scenery is rendered in

different vehicle interiors, see Section 3.6.





Chapter 2

Preliminaries and related work

While the majority of the concepts presented in this thesis can be applied to a wide range of data

types, e.g. images, text, time series, we limit ourselves to formulations considering image data

only. Our input samples x are hence always of the size x ∈ R
C×H×W , where C is the number of

channels, H the height and W the width of the images. For ease of notation, the images are

often flattened such that x ∈ R
C·H·W , where xi is the ith coordinate and n = C ·H ·W ∈ N is

the dimension of x. We use both notations and representations interchangeably in this work.

Finally, while it is common to represent image pixel values in the range [0,255], we represent

image pixels to be in the range [0,1]. This is common practice when working with images in

deep learning and it also simplifies the reconstruction by autoencoder models since the neural

networks need to output values in a smaller range.

In this chapter, we provide an introduction to the topics discussed in this thesis and describe

the tools and the different datasets used. We introduce autoencoder models, several reconstruc-

tion losses and regularization techniques and provide evidence for the design choices made for

the rest of the thesis. Next, we present generative models not based on the autoencoder network

architecture and discuss why there are not suited for the problems investigated in this thesis.

Further, we present some relevant and related work to the topics analyzed later and explain

some of the challenges in more detail. Lastly, we introduce uncertainty estimation for machine

learning model’s predictions, dynamical systems and explain the evaluation metrics used to

assess a model’s performance. We assume that the reader is familiar with the basics of deep

learning and neural networks, their definition and training procedure and refer to Goodfellow

et al. [86] for a good overview and introduction into the latter. All experiments in this thesis

were conducted using PyTorch [190]. Models which were pre-trained on ImageNet [51] and

pre-defined were taken from torchvision [160].
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2.1 Datasets

We provide a short overview and explanation of the datasets used in this work. Samples from

the different datasets are shown in Fig. 2.1. Some of the datasets are plotted and used as

grayscale even though they are available as RGB.

2.1.1 Vehicle interior

Some previous works have been investigating occupant classification [69, 197], seat-belt

detection [16] or skeletal tracking [200] in the passenger compartment, but, as to best of our

knowledge, no dataset was made publicly available. Publicly available realistic datasets for

the vehicle interior are scarce. Some exceptions are the recently released AutoPOSE [222]

and DriveAHead [220] datasets for driver head orientation and position, Drive&Act [161] a

multi-modal benchmark for action recognition in automated vehicles and TICaM [123] for

activity recognition and person detection. However, all these datasets have in common that they

provide images for a single vehicle interior or from a single simulator.

Investigations regarding the tasks and challenges mentioned in Chapter 1 could also be

performed in a different framework, as long as they reproduce the same limitations. KITTI

[76] provides a wide range of different available annotations and benchmarks for vehicle

exterior applications. Closely related are the Cityscapes dataset [42] for different segmentation

tasks, ECP [27] for person detection in urban traffic scenes and JTA [67] for pedestrian pose

estimation and tracking. On the other hand, there is COCO [147], a widely used benchmark for

object detection, keypoint detection and panoptic and stuff segmentation as well as PASCAL

VOC [66]. Similarly, with Open Images [3], the largest unified dataset for image classification,

object detection and instance segmentation was released. Even though these datasets contribute

a wide range of images and corresponding annotations, their provided data has intrinsically

high background and intra-class variation due to their nature for the exterior application. These

datasets can be used to benchmark models for their performance and push the state-of-the-art in

specific tasks, as ImageNet [51] did for classification. It is, however, not possible to use these

datasets to test the generalization to new environments and unseen intra-class variations for

a larger range of tasks when only a limited amount of variability is available during training.

However, deep learning-based approaches capture too much relevance between the information

contained in the background and the task that the models are designed to solve [237]. In

particular, those datasets cannot be used to benchmark applications for the (vehicle) interior

regarding the challenges discussed in Chapter 1.

Hence, we decided to create SVIRO [53] and its extensions SVIRO-Illumination [54],

SVIRO-NoCar [58], SVIRO-Uncertainty [59] and SVIRO-InterCar. Although SVIRO is a
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synthetic dataset, it was designed specifically to test the transferability between different

vehicles across multiple tasks. Moreover, together with all its extensions including different

settings and splits, it provides a unified framework to investigate many topics and tasks together.

The applicability to real infrared [53, 55] and depth images [70] was shown, but we will address

this also later in this work. Further, we are using the proprietary ORSS dataset from IEE S.A.

to assess some of the design choices on real images from a real application. On the other

side, recent studies have shown the importance of synthetic data for the automotive industry

[180, 241, 39]. With our SVIRO dataset and benchmarks we provide the means to analyze

the generalization and reliability of machine learning-based approaches for different tasks

when only a limited number of variations is available during training. We thereby address

an important generalization issue on visually complex scenes, as defined in Section 2.2, on

the example of the car interior. The SVIRO dataset and its extension will be introduced and

discussed in more detail in Chapter 3.

2.1.2 Illumination

Recording identical, or similar, sceneries under different illumination or environmental con-

ditions is a challenging task. Large-scale datasets for identical sceneries under different

illumination conditions are currently scarce. The Deep Portrait Relighting Dataset [283] is

based on the CelebA-HQ [120] dataset and contains human faces under different illumination

conditions. However, the re-illumination has been added synthetically. We instead use the

Extended Yale Face Database B [78], which is a dataset of real human faces with real illumi-

nation changes. While cross-seasons correspondence datasets prepared according to Larsson

et al. [138] and based on RobotCar [158] and CMU Visual Localization [11] could be used for

our investigation, the correspondences are usually not exact enough to have an identical scene

under different conditions. Moreover, vehicles on the street which are dominantly visible, but

changing in-between recordings, induce a large difference in the images. Alternative datasets

such as St. Lucia Multiple Times of Day [79] and Nordland [183] suffer from similar problems.

These datasets stem from the image correspondence search and SLAM community. We adopt

the Webcam Clip Art [137] to include a dataset for the exterior environment with changing

seasons and day times. The latter contains webcam images of outdoor regions from different

places all over the world.

2.1.3 Synthetic to real

The annual VISDA challenge [192] hosts a benchmark for domain adaptation, including

synthetic to real generalization, for different tasks, but solutions to different tasks are not com-
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parable. Other common datasets for domain adaptation, e.g. Office-Home [250], DomainNet

[193] and Open MIC [130], focus on a single task as well. Hence, to assess the transferability

from synthetic to real images, we will consider training on MNIST [140] and applying the

resulting model on real images of digits [50]. Further, we adopt the MPI3D [81] dataset which

consists of objects under seven factors of variations being moved by a robotic arm. Each

scenery is recorded by a real camera and rendered synthetically either by a realistic renderer

or a simple (toy) renderer. This dataset allows to assess a more consistent analysis of the

transferability, because each scenery is available under three conditions - toy, realistic and real.

Moreover, since the environment is tractable and almost constant for all images, the setting and

its conditions can be considered as similar to the vehicle interior.

2.1.4 Uncertainty and out-of-distribution

For assessing model uncertainty and out-of-distribution detection, we use several commonly

used computer vision datasets for training. We then use the corresponding test data as in-

distribution sets Din: MNIST, Fashion-MNIST [264], SVHN [177] and German Traffic Sign

Recognition Dataset (GTSRB) [104]. The latter is an image classification dataset of photos

from traffic signs. It contains 43 classes, but we limit ourselves to use 10 classes1 only. This

way the basic analyses performed later on are more manageable. For out-of-distribution Dout

we use a subset of all Din not coming from the training distribution and the test datasets from

Omniglot [135], CIFAR10 [132], LSUN [270] (for which we use the train split) and Places365

[282]. These combinations of datasets are commonly used by the research community to

analyze out-of-distribution detection and uncertainty estimation [95, 96, 49, 159, 149].

2.2 Visual complexity for computer vision datasets

As claimed in the introduction, in this work we are investigating extensions and contributions

to autoencoder models, particularly for the case of visually more complex images from an

industrial application. Consequently, to show that the datasets we are considering in this work

are indeed visually more complex than other commonly used datasets, we adopt the same

strategy as proposed by Rahane and Subramanian [205]. The authors propose to compute the

mean Shannon Entropy and the mean grey level co-occurrence matrix over all the images to

assess a dataset’s complexity and compare datasets among each other. This should provide

evidence that one dataset is visually more complex than another. We use scikit-image [247] to

compute the mean Shannon Entropy and the mean grey level co-occurrence matrix and report

1We use the classes with labels 10 to 19, since the classes 0 to 8 are all speed limits
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(a) CIFAR10

(b) Fashion-MNIST

(c) GTSRB

(d) LSUN

(e) MNIST

(f) MPI3D

(g) Omniglot

(h) Places365

(i) Real fonts

(j) SVHN

(k) Webcam

(l) Yale

Fig. 2.1 Overview and samples for all non-vehicle datasets used in this thesis.
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Table 2.1 Overview of mean Shannon Entropy and mean grey level co-occurrence matrix for

several datasets. Larger value ↑ means visually more complex. We used grayscale images, even

when the dataset provides RGB images. Vehicle names in parentheses indicate which subset of

the dataset was used.

Dataset Shannon Entropy ↑ Grey level co-occurrence matrix ↑
GTSRB 6.078 9.580

ORSS (X5) 7.645 11.854

ORSS (Sharan) 7.304 11.422

SVIRO (Tesla) 7.087 11.180

SVIRO-Illumination (Cayenne) 6.464 10.403

SVIRO-Uncertainty 6.753 11.057

MNIST 2.608 3.513

Fashion-MNIST 4.116 6.110

SVHN 5.952 8.704

CIFAR10 5.935 8.755

the results for several datasets in Table 2.1. It can be observed that GTSRB and the vehicle

interior datasets have a higher visual complexity compared to datasets commonly used for basic

analyses. Consequently, we will start our first investigations in the next sections on GTSRB to

motivate some of the first decisions and design choices.

2.3 Autoencoders

An autoencoder (AE) [14] is a particular type of neural network (NN) which tries to replicate

its input x ∈ R
C×H×W . It consists of an encoder eφ : RC×H×W → R

dl and decoder module

dθ : Rdl →R
C×H×W both being neural networks with network parameters θ and φ respectively.

The encoder transforms, or encodes, the input x into z = eφ (x), while the decoder uses the

encoding z ∈ R
dl to reconstruct the input x̂ = dθ (z) ∈ R

C×H×W . A simplified visualization of

an autoencoder model is represented in Fig. 2.2. Autoencoder models f (·) = dθ (eφ (·)) are

trained similarly to standard neural networks, i.e. using (mini-)batches and (stochastic) gradient

descent to minimize a loss function. The training goal of an autoencoder model is to minimize

the reconstruction error

LR(x, f (x);θ ,φ) = LR(x,dθ (eφ (x));θ ,φ) = LR(x, x̂;θ ,φ) = r(x, x̂;θ ,φ) (2.1)

measuring the difference between the input image x and the autoencoder reconstruction x̂

according to some metric. In case of the mean squared error (MSE) Eq. (2.1) could be
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Encoder Latent space Decoder

Fig. 2.2 Simplified illustration of an autoencoder model with its encoder and decoder module.

The input image should be reconstructed by going through a bottleneck. The latter forms a

latent space which helps to focus on the salient features. Illustrated using PlotNeuralNet [91].

formulated as

LR(x, x̂;θ ,φ) =
1

n

n

∑
i=1

(xi− x̂i)
2. (2.2)

Without any additional constraint, the autoencoder model could potentially learn to approximate

the identity function. Hence, usually, the propagation through the encoder and decoder makes

use of a bottleneck structure such that the dimension of z, denoted as dl , is much smaller than

the one of x. Consequently, the representation z is a compressed representation of x and the

lower dimensional representation is often referred to as latent space. The aforementioned

bottleneck forces the autoencoder model to focus and prioritize on the salient features such

that the model manages to learn more useful properties. Hence, autoencoder models have seen

applications in dimensionality reduction and feature learning [272], but also in generative tasks

[23]. The layers of the autoencoder can either be fully connected or (transposed) convolutional

layers together with non-linear activation functions. Fully connected and convolutional layers

are usually combined with max-(un)pooling, batch-normalization and dropout, but other layers

are possible as well. It is common practice to use one or two fully connected layers before

and after the latent space, also when convolutional layers are used for the other layers. A

dense bottleneck allows to combine the features globally to find meaningful properties, while a

convolutional bottleneck would continue to look for spatially local features. Lastly, we want to

highlight that the reconstruction task can be considered as a regression task, where the neural
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network should predict a (continuous) value for each pixel in the image. This is one of the

reasons why it is preferable to consider pixel values in the range [0,1].

2.3.1 Classification

The autoencoder can be trained without adopting any classification task during training, i.e.

completely in an unsupervised way. However, we are interested in using the autoencoder

model as a feature extraction module and to perform a classification on a dedicated problem

afterwards. It is possible to attach a classification head, or an entire network, to the latent space

representation or the output of the autoencoder model respectively. Both approaches could

be trained end-to-end during the previously introduced unsupervised autoencoder training.

However, we will adopt a different strategy where we train a classifier on the latent space

representation after the autoencoder model finished training. After training the autoencoder

model in a first stage, we retrieve the latent space representation for all training samples in

the second stage. Then, in the third stage, we train a classifier on the training data latent

space representation, as illustrated in Fig 2.3. For the latter we use several classifiers in this

work: linear classifier, k-nearest neighbour (KNN) [111], support vector machine (SVM) [232],

random forest (RForest) [20] and a single hidden layer multi-layer perceptron (MLP) [86].

This means that the latent space representation needs to be in favour for training a classifier

in a second stage, i.e. the better the autoencoder model learned to learn discriminative and

meaningful features, the better a classifier should work on the latent space representation after

the autoencoder model has finished training. The goal of this thesis to extract reliable features

from the input images is hence assessed by the above heuristic: the autoencoder module

is trained independently from the classifier and the former will be responsible to generate

and provide features robust against distributional shifts. The quality and universality of the

extracted features, i.e. the success of our autoencoder model design, is then determined by the

classification accuracy of the classifier in the latent space of the test images.

2.4 Reconstruction losses

The main driving force in training an autoencoder is the reconstruction error measuring the

similarity between the target image and the autoencoder reconstruction. We will present

commonly used reconstruction losses in this section and conclude with a dedicated experimental

section comparing the effect of using different losses during training.
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Encoder Latent space Decoder

Classifier

Fig. 2.3 Simplified illustration of the same autoencoder model as in Fig. 2.2, but with a classifier

using the latent space representation as input. Illustrated using PlotNeuralNet [91].

2.4.1 Pixel-wise errors

One of the most used norms to measure the reconstruction error is the family of ℓp norms [103].

The latter measures the pixel-wise error between the reconstruction x̂ and the target image x

∥x− x̂∥p =

(

n

∑
i=1

|xi− x̂i|p
)

1
p

, (2.3)

for p≥ 1. In most cases the ℓ1 norm

∥x− x̂∥1 =
n

∑
i=1

|xi− x̂i| (2.4)

or the ℓ2 norm

∥x− x̂∥2 =

√

n

∑
i=1

(xi− x̂i)2 (2.5)

is used. Closely related to the latter is the mean squared error (MSE)

MSE(x, x̂) =
1

n

n

∑
i=1

(xi− x̂i)
2. (2.6)
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The ℓ2 norm and MSE are more sensitive to outliers, while the ℓ1 norm is less sensitive, but not

differentiable at 0. Regarding this issue, it is also possible to combine the advantages of both

the ℓ1 and MSE loss together by adopting the Huber loss [170]. The latter is less sensitive to

outliers due to the ℓ1 norm and improves smoothness around 0 due do the MSE error

Huber(x, x̂) =







1
2
(xi− x̂i)

2, if |xi− x̂i|< δ

δ (|xi− x̂i|− 1
2
δ ), otherwise

(2.7)

for some δ > 0. In case of binary images, e.g. MNIST, it can also make sense to use the binary

cross entropy (BCE) loss to measure the reconstruction error. In this case the pixel values

should either be 0 or 1 and the loss is computed by

BCE(x, x̂) =−1

n

n

∑
i=1

(xi log x̂i +(1− xi) log(1− x̂i)) . (2.8)

2.4.2 Structural similarity index measure (SSIM)

While in some experiments we will use the MSE and ℓ1 norm, in most cases we will use a more

advanced pixel-wise error metric: the structural similarity index measure (SSIM) [258]. The

latter uses patches a and b of size m×m and computes three comparisons between the patches

regarding the luminance l(·, ·), contrast c(·, ·) and structure s(·, ·)

l(a,b) =
2µaµb + c1

µ2
a +µ2

b + c1

(2.9)

c(a,b) =
2σaσb + c2

σ2
a +σ2

b + c2

(2.10)

s(a,b) =
σab + c3

σaσb + c3
, (2.11)

where µa and µb are the means, σa and σb the variances and σab the covariance of a and b

respectively. Variables c1 and c2 are small-valued constants to ensure numerical stability and

c3 = c2/2. The SSIM between both patches is then computed by

SSIM(a,b) = l(a,b)α · c(a,b)β · s(a,b)γ (2.12)
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In this work, we set α = β = γ = 1 such that the above formula can be reduced to

SSIM(a,b) =
2µaµb + c1

µ2
a +µ2

b + c1

2σaσb + c2

σ2
a +σ2

b + c2

σab + c3

σaσb + c3
(2.13)

=
2µaµb + c1

µ2
a +µ2

b + c1

2σaσb + c2

σ2
a +σ2

b + c2

2σab + c2

2σaσb + c2
(2.14)

=
(2µaµb + c1)(2σab + c2)

(µ2
a +µ2

b + c1)(σ2
a +σ2

b + c2)
. (2.15)

According to commonly applied settings [258], we set c1 = 0.012 and c2 = 0.032. To compute

the SSIM between a reconstruction x̂ and its target x, denoted as SSIM(x, x̂) one needs to slide

a window of size m×m over both images and compute the SSIM for each pair of patches at

each pixel location. The value of m can be chosen freely, but it can depend on the dataset used.

In this work, we chose m = 11. Since SSIM(a,b) ∈ [−1,1] and SSIM(a,b) = 1 if a and b are

exactly the same, one needs to use

1−SSIM(x, x̂), (2.16)

to define the loss function for training the autoencoder model. The benefit of adopting SSIM

over vanilla pixel-wise errors is the incorporation of the previously mentioned luminance,

contrast and structure over many patches. It has been shown in previous work that these

induce a perceptual loss such that autoencoders can be applied to more complex real-world

scenarios [21]. This can only hardly be achieved by pixel-wise errors, since each pixel is treated

(spatially) independently from all others. The SSIM loss can further be extended by adopting

the MS-SSIM loss [227], which advances the SSIM to incorporate patches of multiple scales,

but using the same metrics as SSIM. We mostly use the SSIM loss in this work, but there are

more powerful perceptual losses as introduced in the next section.

2.4.3 Perceptual loss

As briefly mentioned in the previous section, pixel-wise errors are easy to define and fast

to compute during training of deep learning models. However, pixel-wise errors have the

disadvantage that a lot of contextual information and semantics are being lost since each pixel

is being treated independently. While the SSIM loss solves some of these disadvantages, there

is still room for improvement in the case that the reconstruction needs to look as realistic as

possible.

In the age of deep learning, it has become common practice to train a high capacity model

on a large corpus of images, e.g. ImageNet. Since resulting models have seen a large variety
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of images and learned to extract more universal features, these models can be used to extract

meaningful features on novel images for downstream tasks [259]. Further, it has been shown

that these features can also be used to measure the distance between images, e.g. in case of

style transfer [114] or for image generation [64].

Instead of encouraging the autoencoder model to match each single pixel between target

and reconstruction, we want that the resulting reconstruction should have a similar feature

representation in the space of previously pre-trained models. To formalize this, let E f ix be a pre-

trained model, e.g. VGG-16 [225] pre-trained on ImageNet, whose parameters are being fixed.

We refer to E f ix being a feature extractor. For both, the target image x and the reconstruction x̂

we use E f ix to extract features for L layers, i.e. after each activation function, but it could also

be a single layer somewhere in the middle. Let σl(x) be the output of the activation after the lth

layer for the input x. In case of convolutional layers, the shape of the latter extracted features is

denoted as Cl×Hl×Wl . It is common practise to normalize the output of the activation σl(x)

along the channel dimension. The loss in the feature space of layer l is then computed by means

of the squared ℓ2 norm, but other metrics can be used as well, e.g. ℓ1 norm or cosine similarity.

The difference in the feature space can further be weighted channel-wise by dedicated vector

ωl ∈ RCl [276]. The perceptual loss (PC) [276] for layer l using the network E f ix can be

formulated as

PCl(x, x̂;E f ix) =
1

HlWl

∥ωl⊙ (σl(x)−σl(x̂))∥2
2 , (2.17)

where ⊙ is the element-wise multiplication. Finally, the perceptual loss is the sum of all layers

PC(x, x̂;E f ix) =
L

∑
l=1

PCl(x, x̂;E f ix) =
L

∑
l=1

1

HlWl

∥ωl⊙ (σl(x)−σl(x̂))∥2
2 . (2.18)

In case of the LPIPS loss [276], this approach is further extended by learning linear weights ω

on top of each channel.

While the reconstruction quality can be largely improved by using the perceptual loss based

on pre-trained networks, this does not necessarily transfer to a more beneficial latent space

representation for down-stream tasks: we will show this in our quantitative investigations in

Section 2.6.5. Further, using the perceptual loss slows down the training significantly: in our

case training took three times longer.

2.4.4 Qualitative comparison

We conclude this overview of reconstruction losses by training different convolutional au-

toencoder models using the different aforementioned reconstruction losses during training.

The models were trained for 1000 epochs using a 64-dimensional latent space, the AdamW
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[152] optimizer with a learning rate of 0.001 and a weight decay of 0.3. For computing the

perceptual loss we used the library provided by Zhang et al. [276] and for computing the SSIM

the library developed by Gongfan [84]. We trained the model on GTSRB, SVIRO-Uncertainty

and ORSS and evaluated the resulting models on the test images after training. The resulting

reconstructions are reported in Fig. 2.4 and Fig. 2.5.

This first small experiment highlights one of the differences between SVIRO and other

basic academic datasets. While GTSRB is visually already more complex than MNIST or

similar datasets, SVIRO makes the task even more difficult. One of the reasons is the higher

variability caused by human poses, the presence of child and infant seats and the smaller dataset

size with unbalanced classes. It can also be observed that the performance on SVIRO and

ORSS for different model design choices are similar: SSIM performs better than MSE and ℓ1

and the perceptual loss produces the most clear reconstructions.

Another question arises in this context: what does generalization mean for generative, and

in particular autoencoder models? Learning the identity function will not be a desirable result

for all tasks since it is questionable to assume that the extracted features might be meaningful in

that case. We can observe that the perceptual loss preserves the classes, but sometimes replaces

adults with different (training) adults of similar poses. We argue that the latter is the most

desirable scenario, since the test scene is being represented by a similar training scene. This

means that the latent space representation must be similar as well such that the model learned a

meaningful and beneficial feature extraction.

2.5 Regularized autoencoders

As mentioned in the previous section, the reconstruction loss, for which there are several

choices, is the most important criterion during the autoencoder training. Nevertheless, a benefit

of autoencoder models is the possibility of putting additional regularizations in the input space,

e.g. denoising autoencoder as in Section 2.5.1, and on the latent space, e.g. Gaussian prior in

case of variational autoencoders (VAE) as in Section 2.5.4. These additional regularizations

should help to learn more robust and universal features and potentially invariances with respect

to undesirable factors like noise. The different regularizations presented in this section can

either be used standalone or combined together. Moreover, they can be used in combination

with any of the aforementioned reconstruction losses.
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Fig. 2.4 Reconstruction results of GTSRB test images (first row) for autoencoder models being

trained with different reconstruction errors (following rows).

2.5.1 Denoising

One of the simpler autoencoder regularization methods is used by the denoising autoencoder

(DAE) [252, 82, 266]. In this training setting the autoencoder model receives as input a

corrupted version xε of x, where the corrupted version can be as simple as adding random

Gaussian noise to it, i.e. xε = x+ ε with ε ∼ N (0,Σ). Instead of reconstructing the new,

corrupted input image xε the reconstruction loss is computed against the clean input image x.

This can be formulated as

LR(x, f (xε);θ ,φ) = LR(x, f (x+ ε);θ ,φ). (2.19)

Consequently, the denoising autoencoder needs to learn how to clean the corrupted input image

instead of reconstructing the input identically. This leads to different, but more robust feature

extractions, particularly with respect to noise [266]. Notice that in this case the target image

and autoencoder input image are no longer the same image. This distinction is important,

especially because of the methods presented later in this work.
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(b) ORSS

Fig. 2.5 Reconstruction results of SVIRO (a) and ORSS (b) test images (first rows) for autoen-

coder models being trained with different reconstruction errors (following rows).
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2.5.2 Inpainting

Closely related to the denoising autoencoder is the training method based on inpainting.

Similarly as before, the training input image x is being corrupted, but instead of noise, larger

image areas (e.g. rectangles) are being removed or text can be placed on top of the image [266].

The autoencoder model should learn how to fill in the missing pixel values such that the image

looks semantically correct after the reconstruction. Similarly as for the denoising autoencoder,

this training strategy can lead to better generalization properties.

2.5.3 Metric losses and the triplet loss

Metric learning considers the task of learning a metric, i.e. a distance function, with respect

to a dedicated task and dataset. It can, for example, be helpful that the distances between

points in the latent space are separated according to the Euclidean distance such that the

nearest neighbour search is more meaningful. A metric in the latent space can be enforced by

dedicated losses measuring well-defined distances between samples, where the samples are

chosen according to a strategy. Some of the latent space losses which can be used to induce a

metric are the angular loss [256], contrastive loss [255] and n-pair loss [228]. We will compare

our method against one of the most used sampling strategy: the triplet loss [15].

While the denoising autoencoder method induces a regularization in the input pixel space,

the triplet loss induces a regularization in the latent space of autoencoder models. The former

can only implicitly influence the latent space representation of the training data, but the latter

explicitly forces certain latent space properties. In case the triplet loss is used during training,

the input x to the autoencoder model is being referred to as anchor and denoted by xa := x. For

each encoded input sample eφ (xa), two additional inputs are being sampled: the positive sample

xp being a different image of the same class and a negative sample xn being of a different class.

The feature used to discriminate between the positive sample xp and the negative sample xn is

the class label, since in this work we are exclusively interested in classification tasks. However,

the triplet loss can also be adapted to work with continuous variables, e.g. in case of geometric

distortions [43].

The goal of the triplet loss is to enforce a similar latent space representation for samples of

the same class by minimizing the distance between their latent space representations. Further,

samples of different classes should be pushed away in the latent space by maximizing the

distance between their latent space representations. The metric to measure the distance in the

latent space can be chosen freely, but we restrict ourselves to the squared ℓ2 norm in this work.
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The triplet loss can then be formulated by

LT (xa,xp,xn;θ) = max
(

0,α +
∥

∥eφ (xa)− eφ (xp)
∥

∥

2

2
−
∥

∥eφ (xa)− eφ (xn)
∥

∥

2

2

)

, (2.20)

where α is the margin between positive and negative pairs. We chose α = 0.2 in this work. It

has been shown that the choice of the distance metric can have a large influence on the data

manifold learned. For example, the use of the ℓ2 norm to measure the distance in the latent

space leads to a flatter, quasi Euclidean latent space [43, 172, 9].

There are several sampling strategies on how to select the positive and negative samples,

e.g. hard mining [279]. We select the positive and negative samples from the currently used

batch, either randomly or by considering them all. Further, we adopt the swap strategy [15]

where the positive-negative distance can be used instead of the anchor-negative distance, in

case that it violates the margin more. In all cases, the total loss to be optimized during training

becomes

L(xa,xp,xn;θ ,φ) = LR(x, f (x);θ ,φ)+LT (xa,xp,xn;θ). (2.21)

2.5.4 Variational autoencoder

The fundamental difference between the different autoencoder models presented thus far

and variational autoencoders (VAE) is that the latter introduces a probabilistic view on the

latent space representation and also the autoencoder process. For a complete introduction to

variational autoencoders we refer to Kingma and Welling [128], since it is out of scope for this

thesis to derive all properties in detail.

The true probability distribution of the training dataset is unknown. In the setting of varia-

tional autoencoder, this training distribution is approximated using a parametrized distribution

pθ with parameters θ . It is assumed that the training data is generated from an unknown

latent variable, i.e. the latent vector z, such that the generative process can be formulated

by a conditional distribution pθ (x |z) representing the decoder module. The latent variables

follow the prior distribution pθ (z), which is in this work considered to be a centred isotropic

multivariate Gaussian, as commonly used by the research community. The prior is hence equal

to pθ (z) =N (0, I). Further, the likelihood of a training sample x can be formulated as

pθ (x) =
∫

z
pθ (x,z) dz =

∫

z
pθ (x |z)pθ (z) dz, (2.22)

where pθ (x,z) is the joint distribution between x and z. The decoder pθ (x |z) is intractable

(or very expensive) to be computed for every possible z and hence approximated by a neural
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network. Using Bayes’ theorem, we can also re-formulate pθ (x) by

pθ (z |x) =
pθ (x |z)pθ (z)

pθ (x)
, (2.23)

where pθ (x) is usually intractable, i.e. impossible to compute. However, pθ (z |x) can be

approximated by the encoder module qφ (z |x) of the autoencoder. The probabilistic encoder

qφ (z |x) is thus approximating the true posterior pθ (z |x). The above Eq. (2.23) can be re-

arranged to

pθ (x) =
pθ (x |z)pθ (z)

pθ (z |x)
, (2.24)

out of which the data log-likelihood can be expressed2

log pθ (x) = log

[

Ez∼qφ (z |x)

(

pθ (x |z)pθ (z)

pθ (z |x)

)]

(2.25)

≥ Ez∼qφ (z |x) [log(pθ (x |z))]−KL
(

qφ (z |x)∥ pθ (z)
)

, (2.26)

where KL is the Kullback-Leibler divergence, the first term Ez [log(pθ (x |z))] is the recon-

struction error LR and the second term KL
(

qφ (z |x)∥ pθ (z)
)

the regularization LV in the latent

space to make the latent space distribution close to the prior distribution. The above inequality

is called the evidence lower bound (ELBO). The goal is to maximize the log-likelihood, i.e. the

left-hand side of the inequality, which is equivalent to maximizing the right-hand side of the

inequality. It is also common practice to minimize the the negative log-likelihood instead. The

regularization in the latent space to enforce the encoding to follow a Gaussian prior is

LV (x;θ ,φ) = KL
(

qφ (z |x)∥ pθ (z)
)

. (2.27)

For training the model, the above loss function is usually approximated using the reparameteri-

zation trick [128]. This makes it easier to calculate and optimize the regularizing loss in the

latent space, which can now be approximated by

LV (x;θ ,φ)≈−1

2

dl

∑
j=1

(

1+ log(σ2
j )−σ2

j −µ2
j

)

, (2.28)

where z = µ +σ ⊙ ε with ε ∼ N (0, I) and all being of dimension dl . The variables µ and

σ are the resulting encodings by eφ , which now needs to generate two values of size dl

instead of a single latent space vector z of size dl . This is usually achieved by using twice

2We are skipping some steps here, for all details see Kingma and Welling [128]
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the latent dimension and setting µ = [eφ (x)1, ...,eφ (x)dl/2] and σ = [eφ (x)dl/2+1, ...,eφ (x)dl
].

While usually the decoding is assumed to follow a Gaussian or Bernoulli distribution, we can

simply adopt any of the aforementioned reconstruction losses, such that the total loss becomes

L(x;θ ,φ) = LR(x, f (x);θ ,φ)+LV (x;θ ,φ). (2.29)

It is important to note that one needs to balance reconstruction loss and KL loss accordingly to

avoid favoring one part of the equation to be minimized. This balancing term depends on the

reconstruction loss used.

2.5.5 Disentanglement and scene decomposition

One possible desirable property for the latent space representation is the property that the

different dimensions are independent, i.e. each dimension of the latent space is responsible for

a different factor of variation (e.g. changing colors, the shape or the size of the object) with the

hope of inducing interpretability for the different factors of variations [163]. Recent advances

have shown that disentanglement in the latent space of autoencoders can lead to improved

performance on visual downstream tasks [248]. Further, it is believed that meaningful scene

decomposition [31, 65] will improve the transferability for many tasks, however, these methods

still do not work well for scenes of higher visual complexity and are currently limited to toy

datasets like CLEVR [115], Objects Room [31] or MPI3D. We will provide baseline results for

the transferability between vehicle interiors by our proposed autoencoder approaches. Hence,

future work can analyze the effect of disentanglement and scene decomposition with respect to

the transferability on a task with higher visual complexity than commonly used datasets.

2.5.6 β -VAE

Closely related to the variational autoencoder is the β -VAE model. The interpretation and

implementations are the same, except that an additional scaling factor is added to weight the

contribution of the Kullback-Leibler divergence

L(x;θ ,φ) = LR(x, f (x);θ ,φ)+βLV (x;θ ,φ). (2.30)

It has been shown that larger values for β > 1 favour disentangling factors of variation in the

latent space [99].
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2.5.7 FactorVAE

FactorVAE [126] tries to improve upon β -VAE by providing higher disentangling scores while

maintaining the same reconstruction quality. The authors reformulated the expectation of the

KL term in Eq. (2.27) by3

Ez

[

KL
(

qφ (z |x)∥ pθ (z)
)]

= I(x;z)+KL
(

qφ (z)∥ pθ (z)
)

, (2.31)

where I(x;z) is the mutual information between x and z. Optimizing for KL
(

qφ (z)∥ pθ (z)
)

causes qφ (z) to tend towards pθ (z). The latter induces the dimensions of z to become in-

dependent, which under some metrics can be considered as analogous to disentanglement.

However, optimizing for I(x;z) reduces the information about x stored in z, hence causing

worse reconstruction results. This means that higher values for β in case of β -VAE cause better

disentanglement, but worse reconstructions. Instead, according to the authors Kim and Mnih

[126], it is better to encourage independence directly by optimizing

Ez [log(pθ (x |z))]−KL
(

qφ (z |x)∥ pθ (z)
)

− γ KL

(

qφ (z)∥
dl

∏
i=1

qφ (zi)

)

, (2.32)

where TC(z) = KL
(

qφ (z)∥∏
dl

i=1 qφ (zi)
)

is intractable and called the total correlation. The

authors propose to approximate the latter by training a discriminator D to estimate whether a

sample comes from qφ (z) or ∏
dl

i=1 qφ (zi) allowing to reformulate the previous equation as

TC(z) = KL

(

qφ (z)∥
dl

∏
i=1

qφ (zi)

)

= Ez

[

log
qφ (z)

∏
dl

i=1 qφ (zi)

]

≈ Ez

[

log
D(z)

1−D(z)

]

. (2.33)

Hence, the final objective and total loss to be optimized is

L(x;θ ,φ) = LR(x, f (x);θ ,φ)+LV (x;θ ,φ)−Ez

[

log
D(z)

1−D(z)

]

. (2.34)

Since we skipped a lot of steps, we refer to Kim and Mnih [126] for all derivations and details.

2.5.8 Qualitative comparison

Similar to the section about the different reconstruction losses, we conclude this section with a

quantitative comparison of the presented regularization methods. The hyperparameters for the

experiments are the same as mentioned in Sec. 2.4.4. We fixed the reconstruction loss to MSE

3We are skipping some steps here, for all details see Kim and Mnih [126]
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Fig. 2.6 Reconstruction results of GTSRB test images (first row) for autoencoder models being

trained with different regularization methods (following rows).

for VAE based methods and used SSIM for all other methods. We use the package provided by

Musgrave et al. [175] for computing the triplet loss. The resulting test image reconstructions

are reported in Fig. 2.6, Fig. 2.7 and Fig. 2.8. It can be observed that the Gaussian prior has

a detrimental effect on generalization capacities, at least from a purely reconstructive and

semantic point of view. The latter issue has been addressed on visually simple datasets by

Burgess et al. [30] though. The preservation of the semantics in the reconstructions is not

being negatively influenced by the other regularizations. The triplet loss induces a smoother

reconstruction, but the people become blurry. The cause for this is that the triplet loss forces

images of the same class to be similarly represented in the latent space - independent of their

pose. Hence, people need to be approximated and details might be reduced. It can also happen

that the poses will be approximated by a generic pose, e.g. see results on SVIRO in Fig. 2.7.
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Fig. 2.7 Reconstruction results of SVIRO test images (first row) for autoencoder models being

trained with different regularization methods (following rows).
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Fig. 2.8 Reconstruction results of ORSS test images (first row) for autoencoder models being

trained with different regularization methods (following rows).
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2.6 Latent space visualization

The latent space is an important part of any autoencoder model. It is usually the bottleneck

part of the model with the smallest dimension across the network. Its goal should be to provide

a meaningful feature reduction of the input. Hence, it is important to investigate the latent

space after training. It is possible to verify the latent space for some desirable properties like

meaningful interpolation [184] or disentanglement [36]. The importance of the properties

depend on the dataset and the task to be solved. Visualizing the latent space of the training, test

and potentially out-of-distribution data can be informative in many cases. Although the latent

space is of a smaller dimension, it is usually still of dimension 8, 16, 64 or higher, depending

on the task to solve. Visualizing the latent space can hence not be achieved trivially, because

of the curse of dimensionality and the fact that distances behave counterintuitively in these

dimensions [251]. There are three commonly used methods to transform the data into a lower

dimensional representation. We will mention them shortly, but refer to other materials for

detailed explanations.

2.6.1 Principal component analysis (PCA)

The principal component analysis (PCA) [260] is a linear transformation inducing a change of

basis. The PCA computes the optimal basis in an iterative process, where optimal means that

the first dimension (first principal component) should account for most of the data variance and

the kth dimension (kth principal component) should account for the kth most variance of the

data. Since the PCA is a change of basis, the different new directions need to be orthogonal

to each other. To perform a dimensionality reduction, one can then select the k first principal

components, where k = 2 is usually used for visualization purposes.

2.6.2 t-distributed stochastic neighbour embedding (t-SNE)

When using t-distributed stochastic neighbour embedding (t-SNE) [246] it is important to read

the plots correctly, or to avoid concluding the wrong properties of the results: The size of the

clusters and the distance between the clusters is usually meaningless. That being said, the

belongship to a cluster means that the points are close to each other and are a good indication

that the model represented them as the same class. The resulting plot depends a lot on the

hyperparameter selection and the results are non-deterministic. The transformation is non-linear

and the 2-dimensional projection yields usually a good representation of the high dimensional

distribution, because t-SNE tries to preserve the local structure of the data.
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2.6.3 Uniform manifold approximation and projection (UMAP)

Similarly to t-SNE, when using uniform manifold approximation and projection (UMAP) [166]

we need to take care to not be lead to the wrong conclusions. The pitfalls are the same as for

t-SNE. The reason for this is that both methods are in many aspects similar. The main difference

between UMAP and t-SNE is the interpretation of the distances: t-SNE uses a Gaussian kernel

and UMAP a fuzzy graph. This allows UMAP to adopt some tricks to speed up the computation.

Also, UMAP seems to separate the different global clusters better one from another than t-SNE,

such that it could be claimed that the global structure is more meaningful for UMAP.

2.6.4 Remarks

Since each of the aforementioned projection methods has its advantages and disadvantages,

as well as their pitfalls, it can be informative to plot the projected latent space using all three

methods to form a conclusion.

An important personal note from many performed experiments is the following: while it

can be tempting to use a latent space of dimension 2 to ease visualization, the latter is usually

a bad choice. The 2-dimensional latent space seems to be a special case and it often leads

to detrimental performances. On many occasions, strange artefacts appeared which did not

hold for larger dimensions. For example, we experienced the appearance of tunnels between

the clusters of different classes which did not appear for higher dimensions. Its properties

could potentially be interesting and important for some tasks, but for the general use case we

would recommend to avoid using it. Many tasks have more than two degrees of freedom, or

independent generating factors, present at the same time. Thus a two dimensional latent-space

can be too restrictive. Finally, the higher the dimensionality, the easier the data is linearly

separable, a property used, for example, by the kernel trick [44].

2.6.5 Experimental results

In this section we want to visualize the latent space representation of the experiments from

Section 2.4.4 and Section 2.5.8. This should give a feeling for the different visualization

methods, but also how the different reconstruction losses and regularization methods affect

the latent space. We use the following Python libraries for the different visualization methods:

scikit-learn [191] for PCA, umap-learn [167] for UMAP and opentsne [199] for t-SNE. We use

the default hyperparameters for all three projection methods.
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We limit the results of this section to the GTSRB dataset, because we use the reduced

version of the dataset containing 10 classes only. SVIRO and ORSS have 64 classes, which

makes the visualization unnecessarily complex for this basic analysis.

We report results for the models from Section 2.4.4 in Fig. 2.9. It can be observed that the

best clustering across all three projection methods are achieved when SSIM and the perceptual

loss are used during training. It is interesting to see that the results for SSIM are on par with

the perceptual loss, even though the perceptual loss produces better reconstruction results and

uses a much more powerful evaluation metric, as reported in Section 2.4.4. Since also training

takes three times longer in the latter case, these arguments were in favour of focusing most of

the investigations in the thesis on using the SSIM reconstruction loss.

The results for the models from Section 2.5.8 are reported in Fig. 2.10. Here it becomes

obvious that the triplet loss largely influences the latent space representation due to its explicit

regularization in the latent space: the training and test samples are perfectly separated. This is

expected, at least for the training data, since the labels are used to define positive and negative

samples. A linear classifier in the latent space would hence perform better than for the other

latent spaces. Denoising and inpainting make the latent space a bit clearer while variational

autoencoder variations have a detrimental effect.

Overall, it can be concluded that the reconstruction losses and the regularization methods,

implicitly or explicitly, influence the latent space structure. These results should motivate the

investigations presented later in this work, where we try to induce more beneficial latent space

representations and invariances for several use cases.

To assess the above qualitative conclusions quantitatively, we trained a linear SVM in the

high dimensional latent space representation and test the classifier performance on the test data.

A linear classifier should achieve a better performance on a high dimensional data representation

if the data is better clustered. We report the results on GTSRB in Table 2.2: Similar to the

latent space visualization, it can be observed that the perceptual loss induces the best feature

separation in the latent space, followed by SSIM and then by ℓ1. As expected, due to the

explicit use of labels by the triplet loss, the latter performs best. Using denoising or inpainting

during training also improves more universal feature extractions. These conclusions are similar

to the observations we made previously on the visualizations of latent space projections.

Consequently, visualizing the latent space and evaluating classification accuracies after training

the autoencoder model go hand in hand and provide a good assessment about the quality of the

extracted features.



2.6 Latent space visualization 41
M

S
E

ℓ 1
S

S
IM

P
er

ce
p

tu
al

(a) PCA (b) t-SNE (c) UMAP

Fig. 2.9 Comparison of different projection methods (columns - PCA, t-SNE and UMAP)

on the latent spaces of autoencoder models trained with different reconstruction losses (rows

- MSE, ℓ1, SSIM and perceptual loss). The different colors represent the different classes.

Circles are training samples and crosses are test samples from the GTSRB dataset. SSIM and

the perceptual loss provide the best clustering across all three projection methods.
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(a) PCA (b) t-SNE (c) UMAP

Fig. 2.10 Comparison of different projection methods (columns - PCA, t-SNE and UMAP) on

the latent spaces of autoencoder models trained with different regularization methods (rows).

The different colors represent the different classes. Circles are training samples and crosses are

test samples from the GTSRB dataset.
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Table 2.2 Comparison of linear SVM classifier performances (in percentage) on the high

dimensional latent space representation. A higher accuracy indicates a better clustered and

separated representation.

Reconstruction loss Regularization method Accuracy

MSE - 84.82

ℓ1 - 89.78

SSIM - 94.83

Perceptual - 96.95

SSIM Triplet loss 98.50

SSIM Denoising 95.17

SSIM Inpainting 97.48

SSIM VAE 78.77

SSIM 2-VAE 71.23

2.7 Other generative models

This work focuses on autoencoder models, variations and novel contributions thereof. Nev-

ertheless, we could not present a work on autoencoder models without at least referring to

other methods. While vanilla autoencoder models can be considered as compression models,

variational autoencoders are considered to be generative models. That being said, we will limit

our comparison to other generative approaches. Other approaches worth mentioning, but not

considered in this thesis, are models based on compressed sensing [262], wavelets [118] or

recurrent neural networks [239].

2.7.1 Autoregressive models

Autoregressive models are explicit and tractable density models (in contrast to VAE, which are

not tractable) which try to predict the value of a next element based on the values of all previous

elements. Applications on image data, e.g. PixelCNN++ [217], try to model the likelihood of

a pixel value given the pixel values of all previous ones. This is a conditional process which

means that for an image x the model can be formulated as

p(x) = p(x1, ...,xn) = p(x1)
n

∏
i=2

p(xi |x1, ...,xi−1). (2.35)

A disadvantage of this approach is that the pixels need to be generated sequentially, since each

pixel needs the predicted pixel values of all the ones before. This causes the inference to be

slow, especially for larger images. Usually, a starting point and a sequence of pixels (i.e. an
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ordering) needs to be defined, e.g. start at the top left pixel and complete the image row by row

from left to right. Another inconvenience for our investigations is that there exists no latent

space for these models.

2.7.2 Generative adversarial networks

Probably the most prominent generative model architectures are the generative adversarial

networks (GAN) [85]. Compared to the other methods, GANs are implicit density estimators.

GANs consist of two networks: 1) the generator network Gφ is usually randomly initialized by

sampling from a predefined simple distribution, e.g. multivariate Gaussian distribution, and

generating then an image. The images are hence not generated from a specific distribution, i.e.

with less control, unlike the VAE. 2) The discriminator network Dθ , which receives real images

from the training distribution and images generated by the generator network as input. In both

cases φ and θ refer to the network parameters respectively. The discriminator tries to classify

whether the input is a real or generated image. The generator tries to fool the discriminator by

learning to generate synthetic images, which should progressively look more and more like

images from the training dataset. This training process is called a minimax loss and formulated

as

min
φ

max
θ

[

Ex logDθ (x)+Ez log(1−Dθ (Gφ (z)))
]

, (2.36)

where x is an image from the real training distribution and z is a sample from the simple

distribution used to generate a fake image. This loss can be interpreted as having two players,

the discriminator and the generator, which are competing against each other. Jointly training

both networks can be challenging and results often in unstable optimization procedures. Another

common problem of GANs is that they are susceptible for mode collapses, where the generator

would generate only the same, or a few images. The optimum is achieved on the Nash

equilibrium - a state where the discriminator can no longer distinguish between real and

generated images. Evaluating the model after training is more difficult than for autoencoder

models, since a successful training means that the generator can create images which would

potentially come from the training distribution. However, the latter can only hardly be measured.

One common approach is to compute Fréchet inception distance (FID) [98] between the training

data and generated images. That being said, a lot of research is being put into stabilizing and

improving the training of GANs. Notwithstanding these difficulties, GANs have proven to

produce impressive results on image generation, style transfer [121], image-to-image translation

[285] and also latent space retrieval [62]. GANs are particularly useful for multimedia, artistic

and entertainment systems where sporadic bad examples are not critical. However, for safety

critical and engineering applications the complicated training procedure can have detrimental
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effects. On the other side, autoencoder models are, at least in our opinion, a more elegant

solution with easier inference and the possibility to add meaningful regularization without

too much overhead. Using autoencoder models, one can either classify the latent space

representation or the reconstruction of the input image. This is not possible in vanilla GAN,

since the models do not try to compress the input image, but instead try to learn the training

distribution. It is hence easier to retrieve the lower dimensional latent space representation for

the training and test data using autoencoder models. Without learning to transfer an image from

a new vehicle interior to the training vehicle using style transfer, see Section 2.8.1 and 2.8.3, it

is not clear how GANs should generalize to new vehicle interiors. This is of course an open

question and interesting research direction which we decided not to follow in this thesis.

2.7.3 Normalizing flow models

Normalizing flow based generative models are also explicit density models which use a change-

of-variable to transform a complex distribution to a much simpler one (or vice-versa) using

invertible functions. In our case, the complex distribution is the one from the training data.

We want to learn a bijective mapping from the complex distribution to a simple one on which

sampling is much easier. Since the mapping is bijective, and also deterministic, we have that

x = fθ (z) and z = f−1
θ (x). (2.37)

This is similar to autoencoder models, with two differences: 1) the encoding and decoding is

bijective. 2) the latent space needs to have the same dimension as the input space. The latter

condition on f is necessary in order to use the change of variables formula, because otherwise

the determinant is not computable. This limitation is investigated by Kim et al. [125]. The

simple distribution can be chosen freely, e.g. a Gaussian distribution, and is considered to be

the prior distribution pz(z). Using Eq. (2.37) and the change of variables for probability density

functions formula one can derive

px(x) = pz(z)

∣

∣

∣

∣

det
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mx

∣
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∣

= pz( f−1
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. (2.38)

The normalizing flow model is trained by minimizing the negative log-likelihood,

− log px(x) =− log pz( f−1
θ (x))− log

∣
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. (2.39)
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In practise, instead of having a single complex function f , one can obtain a more complex

function by composing multiple (simple) invertible functions f = f1 ◦ f2 ◦ ...◦ fk. The different

fi can then be the layers of a neural network and the negative log-likelihood is re-written as

− log px0
(x0) =− log pxk

( f−1
θk

(xk−1))−
k−1

∑
i=1

log

∣

∣

∣

∣

∣

det
m f−1

θi
(xi−1)

mxi−1

∣

∣

∣

∣

∣

, (2.40)

where xk := z, x0 := x, xi = fθi
(xi−1) and xi = f−1

θi
(xi+1). Normalizing flows converge easier

than GANs and their training procedure is more stable. Since the latent spaces need to be of

the same size as the input space, i.e. no dimensionality reduction is happening. This can, but

does not need to, have detrimental or undesirable effects. Notice that f , or the fi, should be

easy to invert and we need to compute the determinant in order to train the model. An example

of a normalizing flow based method for image data is the Glow [129] model.

2.7.4 Qualitative comparison

We report qualitative results for the image generation by the methods introduced in this section

in Fig. 2.11. For autoregressive models we use the PixelCNN++, for GANs the DCGAN [202]

and for normalizing flows the Glow approach. We use the same hyperparameters as for the

autoencoder results presented earlier, i.e. we train for 1000 epochs and use a batch size of 64.

Only the optimizers and learning rates were adapted to work better for the different methods,

because, as mentioned earlier, convergence cannot always be achieved trivially.

When using PixelCNN++, we needed to reduce the dimension of the samples to be generated

to 32 by 32 pixels, because otherwise it would not fit the memory of the GPU. Further, as

mentioned before, generating samples takes a long time when using autoregressive models.

While the GAN training went smooth, it can be observed that the models sometimes produce

good results and sometimes noisy images, especially for the vehicle interior the blurry samples

are more frequent. The Glow method seems to work well, but no latent space is available and the

images contain less details. For all methods, we could only generate random images stemming

from the training distribution, since their model design does not allow any straightforward and

meaningful interaction with test samples4. Also, all of the models took significantly longer

to train than the autoencoder models. All in all, the results are not better compared to using

autoencoder models, while the latter has some additional advantage for the use-cases presented

in this thesis.

4We could take the first pixel of the test images to condition the PixelCNN++, but this is uninteresting, because

no semantically meaningful information of the test image is being considered.
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Fig. 2.11 Samples generated by PixelCNN++ (PCNN++), DCGAN and Glow. Samples were

generated randomly, since there is no way to condition the models equally.
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2.8 Challenges

A few of the challenges investigated in this thesis consider the transfer in-between different

vehicle interiors, from synthetic to real vehicle interiors, but also between different illumination

conditions. In the following we give a few definitions and provide an overview of existing

methods, and why they cannot be adopted to our use-case.

2.8.1 Domain shift

All of the aforementioned challenges can be considered as a shift in the domain between

the training distribution and the test distribution. Existing autoencoder-based methods try

to represent the information from multiple domains [8] or real-synthetic image-pairs [277]

identically in the latent space by enforcing some similarity constraints, e.g. the latent vectors

should be close together. However, these approaches often force networks to reconstruct

some (or all) of the images correctly in the decoder part. Forcing an autoencoder to represent

two images (e.g. same scenery, but different illumination) identically in the latent space, yet

simultaneously forcing it to reconstruct both input images correctly implies an impossibility:

The decoder cannot reconstruct two different images using the same latent space. Antelmi et al.

[8] adopted a different autoencoder for each domain, but, for example, as illumination changes

are continuous and not discrete, we cannot have a separate encoder or decoder for each possible

illumination.

Methods from domain adaptation [188, 212, 122] are commonly used to reduce the gap

between the target domain (e.g. the vehicle in which we want to use our model) and source

domain (e.g. the vehicle we trained on). However, these methods usually require (often even

labelled) images from the target distribution to work well. Zero-shot learning (ZSL) [263, 179],

and particularly generalized zero-shot learning (GZSL) [34, 263, 71], are the most extreme

cases of domain adaptation as they do not require labels for new test objects. Both setups

consider the generalization to new classes, but require some additional type of information, e.g.

word embeddings [179] or semantic descriptions [71]. However, we focus on the evaluation

of seen class instances in unknown environments and unknown class instances in known

and unknown environments. The main difference stems from the following constraint: the

adaptation of trained models to new class instances and environments should be avoided. For

example, models should be robust against new child seats appearing on the market after the

model was deployed, and models should not need to be adapted for each vehicle interior

variation.

Alternatively, it would be possible to transform images from an unknown vehicle back to

the known vehicle, e.g. by aligning both domains [148] or by using style transfer techniques
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[121, 242]. However, those techniques need images from the target distribution as well. Similar

to eyeglass removal achieved by GANs [208], we could use a GAN to change the vehicle

background, but this would need images from the target domain or image-pairs of what we

would expect to encounter. Domain generalization considers methods to generalize to new

domains without accessing images from the unknown domain during training [143, 284].

Nevertheless, these techniques use images from several domains during training in order to

generalize well to unknown domains. Furthermore, the aforementioned methods often combine

several datasets. To the best of our knowledge, SVIRO is the first dataset which allows to

investigate the generalization on the same tasks to a new, but similar, vehicle interior. Hence,

common domain shift problem formulations and proposed solutions could not consider the

challenge of generalizing to an unknown domain when learning from a single domain for

solving the same task.

2.8.2 Image and illumination normalization

Recent advances in portrait shadow manipulation [278] try to remove shadows cast by external

objects and to soften shadows cast by the facial features of the subjects. While the proposed

method can generalize to images taken in the wild, it has problems with detailed shadows and it

assumes that shadows either belong to foreign or facial features. Most importantly, it assumes

facial images as input and exploits the detection of facial landmarks and their symmetries to

remove the shadows. Other shadow removal methods [257, 201] are limited to simpler images.

The backgrounds and illumination are usually quite uniform and they contain a single connected

shadow. Moreover, the availability of shadow and shadow-free image pairs provides the means

of a well-defined ground truth. However, this is not possible for more complex scenes and

illumination conditions for which a ground truth is not available or even impossible to define.

Image relighting [231, 283] could potentially be used to change the illumination of an image to

some uniform illumination. However, as noted in [231, 278] relighting struggles with foreign or

harsh shadows. While it is possible to fit a face to a reference image [224], this option is limited

to facial images as well. Lastly, another common approach to retrieve illumination information

from an image stems from intrinsic image decomposition [75], which tries to decompose the

image into reflectance and shading. Similarly as before, generating the necessary ground truth

data cannot trivially be achieved and generalization needs to be enhanced. Also, it is common

to adopt temporal information to learn how to retrieve illumination [145] or include much

stronger priors using albedo and shading information during training [150]. However, the

models tend to depend on the semantics and environmental conditions of the training data [75].

While our proposed method also suffers from the latter, we believe that future work might be

able to benefit from a combination of both worlds.
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2.8.3 Synthetic to real generalization

There have been successful applications of reinforcement learning systems being trained in a

simulated environment and deployed to a real one, for example by combining real and synthetic

data during training [119, 209, 68, 22]. However, these approaches can take into account

temporal information and action-reaction causalities while in this work we use independent

frames only. A good overview on reinforcement learning-based simulation to real transferability

is provided by Zhao et al. [280]. Another line of research uses GANs to make synthetic images

look like real images or vice versa [101, 33]. This requires both synthetic and real images,

whereas we focus on training on synthetic images only. Part of methodologies presented in this

work are related to domain randomization [241], where the environment is being randomized,

but the authors deployed this to object detection and the resulting model needs to be fine-tuned

on real data. A similar idea of freezing the layers of a pre-trained model was investigated

for object detection [100], but neither with a dedicated sampling strategy nor in the context

of autoencoders. Another work focuses on localization and training on synthetic images

only [238], though the applicability is only tested on simple geometries. Recent advances

on synthetic to real image segmentation [38, 271, 189] on the VisDA [192] dataset show a

promising direction to overcome the gap between synthetic and real images. However, this

cannot straightforwardly be compared against the investigation in this work, particularly, since

we are focusing on autoencoder models and their generative nature. Others rely on the use of

real images during training for the minimization of the synthetic to real gap for autoencoders

[109, 277].

2.9 Uncertainty and out-of-distribution detection

In using any kind of classifier in their basic form to make a prediction, we force the latter to

output one of the known training classes no matter the input image. This could be sufficient if

you are working on a closed system in which you can guarantee that each input ever received

by the classifier is similar to the training distribution. However, in open world problems, and in

general in most engineering applications, particularly for the consumer market, it is impossible

to account for all variations potentially occurring in the environment the model will be deployed

to. This is particularly important in the case of safety critical applications. We cannot expect

from a binary classifier trained on dogs and cats to raise an error when suddenly an elephant is

received as input. Yet, the latter is exactly what we would want in practise. One of the open

challenges of machine learning is to reliably assess the certainty, or uncertainty, of the model’s

prediction. This is commonly rephrased to knowing that we don’t know [72].
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Usually two tightly related tasks are being investigated: error in prediction and out-of-

distribution (OOD) detection [29]. For the former the model should provide a high uncertainty

in case it makes an erroneous prediction, i.e. the model should self-assess its reliability. In the

latter the model should detect that an image is exotic, or from a completely different distribution

than the training distribution.

When working with uncertainty there are two types of uncertainties to consider: aleatoric

and epistemic uncertainty [124]. Aleatoric uncertainty describes uncertainty coming from the

randomness and variability of the considered experiment. No matter how much data collected

and which model is trained on it, uncertainty cannot be reduced up-to an inhered threshold:

in case of a (fair) coin flipping there will always be a random outcome. This uncertainty can

also be the result of noise in the observation, e.g. sensor noise. In general, aleatoric uncertainty

cannot be reduced up-to a threshold no matter how much data will be collected. Epistemic

uncertainty, on the other side, refers to uncertainty stemming from the model. This uncertainty

can, in principle, be reduced by collecting more data and/or by improving the model and its

training. This uncertainty is usually caused by lack of knowledge, i.e. the model should be able

to know provided that enough and the correct data is collected. When we talk about uncertainty

estimation in this work, we will always refer to epistemic uncertainty and we will try to improve

the model’s self assessment regarding the trustability of its predictions.

A lot of research [1] is focusing on estimating the uncertainty of a model’s prediction

regarding OOD or uncertainty estimation, both of which are tightly related. However, only a

few works consider the use of autoencoder models for assessing uncertainty: Autoencoders

can be combined with normalizing flow [25], refactor ideas from compressed sensing [89]

or use properties of Variational Autoencoders [207, 265]. More commonly, autoencoders

are used for non-image-based datasets [249, 267, 182]. Other deep learning approaches are

based on evidential learning [223, 5], Bayesian methods [156], Variational Bayes [24] or on

Hamiltonian Monte-Carlo [37]. Also non-deep-learning approaches have shown significant

success, but are less scalable, as for example Gaussian Processes (GP) [210] or approaches

based on support vector machines [178]. Gaussian processes are the golden standard for

assessing model uncertainty in classical machine learning (i.e. pre-deep learning). Scaling

these models to larger datasets and more complex data types, i.e. images, is one of their major

challenges and reasons why they are seldomly used for computer vision tasks. Since one of our

approaches borrows ideas from MC Dropout [73], we limit our comparison against the latter

and the commonly used deep learning golden standard of using an ensemble of trained models

[136, 253].
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2.9.1 Ensemble of models

To obtain an ensemble of models, several models, which do not need to have the same archi-

tecture, are being trained on the same task. Then for inference, all these models together are

used and each one is making a prediction for each input sample. Uncertainty is then assessed

on the overall consistency of their predictions: the more models of the ensemble predict the

same class the more certain the prediction is. One of the obvious down-sides of this approach

is the training of many models, deploying all models onto the hardware and using them all for

any prediction to make. Let’s consider M models trained on solving the same classification

task and the index set I = {1,2, ...,M}. The M models { fθi
}i∈I = { fθ1

, fθ2
, ..., fθM

} are then

interpreted as samples from the family of functions F all solving the same classification task:

fθi
∈ F for i ∈ I.

2.9.2 Monte Carlo dropout

The use of dropout during training and inferences, called Monte Carlo (MC) dropout, has been

introduced [73] to model uncertainty in neural networks without sacrificing complexity or test

accuracy for several machine learning tasks. For standard classification or regression models,

an individual binary mask is sampled for each layer (except the last layer) for each new training

and test sample. Consequently, neurons are dropped randomly such that during inference we

sample a function fφi
from a family, or distribution of functions F , i.e. fφi

∈ F . Uncertainty

and reliability can then be assessed by performing multiple runs for the same input sample x,

i.e. retrieve { fφi
(x)}i∈J for J = {1,2, · · · ,N} for some N ≥ 1.

2.9.3 Predictive distribution and uncertainty

For both introduced methods we can use the same approach to get the predictive distribution.

For an input sample x, the probability of x to be of class c by the ensemble of models { fθi
}i∈I

or the family of functions obtained by using MC Dropout { fφi
}i∈J , is then computed by

pc(x;θi) :=
1

m

M

∑
i=1

p(y = c |x;θi) (2.41)

pc(x;φi) :=
1

n

N

∑
i=1

p(y = c |x;φi) , (2.42)

where

[p(y = 1 |x;θi) , . . . , p(y =C |x;θi)] := Softmax( fθi
(x)) (2.43)
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[p(y = 1 |x;φi) , . . . , p(y =C |x;φi)] := Softmax( fφi
(x)), (2.44)

and C is the number of classes. A common metric to assess the uncertainty in the models predic-

tion is the normalized entropy [139] of the probability vectors p(x;θi)= [p1(x;θi), . . . , pC(x;θi)]

and p(x;φi) = [p1(x;φi), . . . , pC(x;φi)], computed by

H(p(x;θi)) =−
1

log(C)

C

∑
c=1

pc(x;θi) log(pc(x;θi)) (2.45)

H(p(x;φi)) =−
1

log(C)

C

∑
c=1

pc(x;φi) log(pc(x;φi)). (2.46)

Based on a user defined threshold and the value of the entropy for a sample x, the prediction on

the latter is then either rejected or accepted. We use the latter in our experiments to compute

the uncertainty of the prediction and decide based on its value whether a sample is rejected or

accepted for prediction or whether the sample is in- or out-of-distribution.

2.10 Dynamical systems

It might come to a surprise that the penultimate section of the preliminaries talks about

dynamical systems. A dynamical system is a system of differential equations describing the

evolution of a state over time, either continuously or discrete. Dynamical systems have a wide

range of applications, such as physics [168], chemistry [235] and engineering [131] in which

they are used to describe and understand natural and physical phenomena. An interesting, but

yet not well studied concept, is the interpretation that the recursive application of a trained

autoencoder model can be viewed as a dynamical system as well. Thus far, this has been

investigated in relation with associative memory for which Radhakrishnan et al. [204] provide a

good overview on the basic analysis of autoencoder models, associative memory and attractors.

In case of a discrete time system with a known initial state x0 a dynamical system is

formulated by iterated maps (or difference equation) for which the kth step is formulated as

xk+1 = f (xk), (2.47)

for k ∈ {0,1,2, . . . ,N} and some N > 0. This can then easily be associated with an autoencoder

model. Let fθ be an autoencoder model that finished training under the standard training

regime, i.e. minimizing the reconstruction loss LR between input x and target fθ (x) and

variations thereof. The above description of a dynamical system can then also be adopted to
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the autoencoder model by considering

xk+1 = fθ (xk), (2.48)

where x0 := x is a training or test sample and x1 := x̂ = fθ (x) the first reconstruction by the

autoencoder model. Denote by f k(x) k compositions of f applied to x, i.e.

f k(x) = ( f ◦ f ◦ · · · ◦ f )(x). (2.49)

Adopted to a previously trained autoencoder model fθ , this equation can be formulated as

f k
θ (x) = ( fθ ◦ fθ ◦ · · · ◦ fθ )(x). (2.50)

We then have that

xk = f k(x0). (2.51)

Consider an index set I = {1,2, . . . ,N} for some N ≥ 1 and define the sequence

{ f k(x)}k∈I = { f 1(x), f 2(x), ..., f N(x)}. (2.52)

We can then formulate a few terminologies frequently encountered with dynamical systems,

which are now also applicable to the setting of using a trained autoencoder model.

Definition (Fixed point [181]). A point x is a fixed point x∗ of f if f (x) = x. In case of an

autoencoder model fθ , we allow the equality to be weakened, i.e. fθ (x) = x+ ε ≈ x for some

small ε , because the reconstruction will never be perfect.

Definition (Attractor and basin of attraction [181]). A fixed point x∗ is an attractor of f if there

exists an open neighborhood O around x∗ such that for all x ∈ O the sequence { f k(x)}k∈I
converges to x∗ if k→ ∞. The set of all such points is called the basin of attraction of x∗ for f .

The above definitions and properties can all be applied to autoencoder models fθ . However,

to ensure that fθ has some fixed points and attractors for the training data distribution, it is

necessary to train the model for a large number of epochs and potentially reducing the number

of training samples per class. It is also beneficial to train the autoencoder model using the

denoising regularization, since the reconstruction will not be as clean as the input image. An

interesting occurring property of autoencoder models is then the capability to retrieve the initial

version of a disturbed training sample by the iterative application of a trained autoencoder

model [204]. We will show that this property can be used to generalize to test samples as

well, as long as they are close enough to the training distribution. In case the latter is violated,
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the sample might not be stable in its convergence, which will be exploited by design choices

presented later in this work.

We want to emphasize an important difference between dynamical systems from physics

and engineering and the ones defined by the recursive application of a trained autoencoder

model. The former is defined by observations and properties of the system engineers try to

model and understand. The latter defines the dynamical system to be considered not by laws

of nature, but by the hyperparameters of the autoencoder training process. This means that

we can potentially influence the behavior of the autoencoder recursion and its properties by

designing the training accordingly. This way it could become possible to create attractors and

their corresponding basins of attraction with more beneficial properties.

The recursive application of autoencoder models is not the only possibility to induce

associative memory. There are other types of models achieving this, e.g. discrete and continuous

Hopfield Networks [206, 133, 102] and Predictive Coding [218]. The former needs an energy

function to be defined, while the latter is biologically inspired. However, we focus on associative

memory achieved by the recursive application of autoencoder models only, because of their

elegant simplicity and analogy to dynamical systems, which has been investigated extensively

in mathematics and physics [230]. While a few works investigate properties of this model

design [112, 204, 203], only one [90] considers attractors for classification and uncertainty

estimation. However, the latter adopts this only for speech recognition with respect to noise

robustness and combines it with a hidden Markov model (HMM). We, on the contrary, apply

this methodology to computer vision and assess the robustness against novel classes and unseen

samples from either new datasets or the test distribution.

2.11 Evaluation metrics

After training the autoencoder model it is crucial to evaluate its performance on the task of

the problem to solve. This is necessary to validate which model variations have beneficial and

which have detrimental effects.

2.11.1 Accuracy

In most cases of this work, the model will be evaluated by simply computing the classification

accuracy of the classifier which uses the latent space as input. The classification accuracy is

the fraction of correctly predicted samples among all samples considered. This provides a

straightforward evaluation metric in case classification labels are accessible. However, there
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are also cases where other evaluations need to be considered, either because no classification

labels are available, or as an additional criterion.

2.11.2 Semantics

Since we are using autoencoder models, we do not only have the classification as an output

of our model, but we also have the reconstruction to our availability. Similar to training the

autoencoder model, we can use reconstruction losses to measure whether the semantics are

being preserved or not. To this end one can use the ℓ1 norm, SSIM, perceptual loss and also

the LPIPS norm on the reconstructions to compare model performances on test samples. More

importantly, one could, and should, use metrics which were not used during training to give

a more objective measure. It is important to notice that this particular research direction still

lacks a universal metric. Vision is a complex problem which cannot be described and assessed

by pixel accuracy. Although perceptual losses tighten the gap between human judgement and

neural networks, it is still an open research question as to how to describe image similarity in

the best possible way to capture all the semantics and human perception nuances.

2.11.3 AUROC, AUPR and FPRN

Classification accuracy can also be a misleading metric, especially in the case of uncertainty

estimation and out-of-distribution detection. This is particularly the case when either the

positive or negative samples are more likely than the others. In out-of-distribution detection

we try to distinguish between samples stemming from the same distribution as the training

data (positive) and samples stemming from other datasets (negative). In uncertainty estimation

we want to predict whether the classifier makes an error on each of its predictions. In both

cases, the models will predict a score assessing the likelihood that the input sample is OOD or

wrongly classified. Based on a pre-defined threshold the score then leads to a detection or not.

However, due to the latter threshold, some samples will wrongly be classified as negative or

positive. This leads to a trade-off between false negatives (FN) and false positives (FP) on which

our evaluation metrics will be based on. For these evaluations we adopt several commonly

used metrics [95, 96, 49, 159, 149]: Area Under the Receiver Operating Characteristic curve

(AUROC), Area Under the Precision-Recall curve (AUPR) and false positive rate at N% true

positive rate (FPRN). The first two are threshold independent metrics, since they evaluate the

model across many thresholds summarizing the performance. For each threshold, we compute

the number of false negatives (FN), false positives (FP), true negative (TN) and true positive
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(TP). The ROC curve plots the true positive rate (TPR)

TPR =
TP

TP+FN
(2.53)

against the false positive rate (FPR)

FPR =
FP

FP+TN
, (2.54)

from which the area under the curve is being computed. A perfect classifier would achieve an

AUROC of 100% while a random classifier would achieve an AUROC of 50%. Notice that

also a performance smaller than 50% can be possible. AUPR works similarly as AUROC, but

the PR plots the precision

Precision =
TP

TP+FP
(2.55)

against recall

Recall =
TP

TP+FN
. (2.56)

Finally, the FPRN is not threshold-independent and it operates on a pre-defined fixed threshold.

As the names suggests, we fix a threshold N and get the false positive rate corresponding to a

true positive rate of N. The three different metrics have their advantages and disadvantages,

which is why usually all three metrics are reported. For further details and interpretations of

the metrics we refer to [95, 96, 49, 159, 149].

2.12 Conclusion

The compact overview and background information of this chapter provides the necessary

machine learning context to follow the derivations and investigations for the rest of the thesis.

We introduced an overview of the datasets, model architectures and metrics used and established

a common framework to formulate the different autoencoder models therein. We described

several autoencoder reconstruction losses and regularization methods and reported experimental

results to support the design choices adopted in the rest of this thesis. Some of the challenges our

industrial application is facing were discussed, an overview of the related work was provided

and autoencoder models were compared against other generative models.





Chapter 3

Vehicle interior rear seat occupancy

detection

The questions investigated in this thesis stem from challenges of the industrial application of

detecting occupancy on the rear bench in the vehicle interior. While we will always evaluate our

contributions on datasets commonly used by the research community, we will also demonstrate

its successes on a real application. To this end, we will explain in this chapter the provided

proprietary dataset (but of course not all details can be provided) and describe the synthetic

data generation process to imitate the real application. Regarding the latter, we will present the

different objects and software used to reconstruct the real application in a synthetic environment

and explain our thought processes to justify our design choices. Lastly, the different extensions

to SVIRO will be introduced and their key features will be highlighted.

3.1 Optical Rear Seat Sensing (ORSS)

Information about the presence and location of the passengers inside a vehicle interior can

be used to help reduce injuries in case of an accident, e.g. by adjusting the strength of airbag

deployment [69, 197]. Seat occupancy detection can be used to remind the passengers to fasten

their seat-belts or to detect children forgotten in the car [52, 60]. For autonomous driving, it

will be of interest to understand the overall scenery in the car interior [200], e.g. for handover

situations [165]. To this end, IEE S.A. developed a camera-based solution for rear seat occupant

detection and classification referred to as Optical Rear Seat Sensing (ORSS).

The system consists of a 2D active near-infrared camera system. This means that the camera

system actively emits near-infrared light to illuminate the rear bench. This should help the
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(a) Camera setup (b) Close-up of camera system (c) Recorded image

Fig. 3.1 The active near-infrared camera system recording the rear bench is integrated into the

roof (a). A close-up (b) of the camera setup of the red frame in (a). An example of a recorded

image with lens distortion (c) contains a child on a child seat (left), an adult (middle) and an

infant seat with a sun-protection (right).

system to become less susceptible to illumination changes and to ensure operability during

night. The camera system is integrated into the roof, as illustrated in Fig. 3.1.

The recorded images need to undergo a few pre-processing steps to make them more

suitable for machine learning-based classifiers. The images need to be rectified, i.e. remove the

lens distortion, and a plateau histogram equalization [146] needs to be applied to enforce more

equal illumination conditions across all recorded images and daytimes.

In this work, we consider the task of identifying for each seat position (left, middle and

right) whether the seat is empty, an infant in an infant seat, a child on a child seat or an adult is

occupying it. IEE S.A. provided images from two vehicle interiors: Volkswagen Sharan (2860

training and 744 test images) and BMW X5 (2832 training and 770 test images). Example

images for the interior of the two vehicles are plotted in Fig 3.2.

On the one hand, one can split the image into three rectangles, one for each seat position,

and classify each rectangle independently from the others resulting in a four class machine

learning problem. On the other hand, one can also classify the whole image and, since for each

of the three seat positions there are four possible classes, classifying the whole image results in

43 = 64 classes. The benefit of the latter approach is the possibility to account for the whole

scenery such that people and objects leaning over the neighboring seat can be more efficiently

accounted for. The benefit of the former is the reduction in complexity and variability: only 4

classes need to be discriminated against.
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(a) Sharan

(b) X5

Fig. 3.2 Example images of recorded sceneries by the ORSS camera system for two vehicle

interiors: (a) Volkswagen Sharan and (b) BMW X5.

3.2 SVIRO

It was not possible to publish the ORSS dataset, because it is proprietary. Hence, we decided

to develop a synthetic image generation pipeline to imitate the real application. This way, the

results and design choices could be reproduced by the research community. Further, since no

similar dataset existed, and since the questions and challenges of the proposed application are

underrepresented in the research community, these new datasets also allow novel investigations.

Other advantages of the synthetic data generation pipeline are the free and versatile labels: they

are generated automatically by the simulation software. We will explain the data generation

process for SVIRO and its extensions in this chapter. Baseline results and basic investigations

are reported in Chapter 5. SVIRO is the base dataset and additional extensions were generated.

All the extensions follow the same framework, but each extension has its own characteristics

and tasks to be investigated on. All the datasets can be downloaded from our website -

https://sviro.kl.dfki.de.

https://sviro.kl.dfki.de/
https://sviro.kl.dfki.de/
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(a) Image of a real Maxi Cosi (b) Scanned Maxi Cosi - View 1 (c) Scanned Maxi Cosi - View 2

Fig. 3.3 Example of a real Maxi Cosi (a) which was scanned using the Artec Eva scanner. After

post-processing, the infant seats can be used as a 3D object inside the simulation software such

that, for example, the views can be changed (b) and (c). The scanned object has an ISOFIX

base attached to it and the handle was turned up, which is not the case for the real image.

3.2.1 Synthetic objects

We used the free and open source 3D computer graphics software Blender 2.79 [41] to construct

and render the synthetic 3D sceneries. We used realistic child safety seats or child restraint

systems (CRS) to which we simply refer to as child seats. For our dataset, we selected a

subset of available seats on the market and approved by the European New Car Assessment

Programme (Euro NCAP) and the National Highway Traffic Safety Administration (NHTSA),

from which we then created a 3D model so that it could be used in our simulation. The 3D

models were generated using depth cameras (Kinect v1) and precise structured light scanners

(Artec Eva). An example of a scanned infant seat can be found in Fig. 3.3.

One needs to define the reflection properties and visual colors for each 3D object in the

scene, so that its perception by the camera under simulated illumination conditions could be cal-

culated. For this, we used textures (Albedo, Normal and Roughness images) from Textures.com

[236] (with permission) for all the objects in the scene. The environmental background and

illumination were created by means of High Dynamic Range Images (HDRI) from HDRI

Haven [92]. The human models (adults, children and babies) and their clothing (additional

clothes were downloaded from the community assets [173]), were randomly generated by using

the open source 3D graphic software MakeHuman 1.2.0 [173]. The 3D models of the cars

were purchased from Hum3D [106] and everyday objects (e.g. backpacks, boxes, pillows) were

downloaded from Sketchfab [10].

3.2.2 Design choices

During the data generation process we tried to simulate the conditions of a realistic application.

We decided to partition the available human models, child seats and backgrounds such that
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one part is only used for the training images (for all the vehicles) and the other part is used for

the test images. For each of the ten different vehicle passenger compartments and available

child seats, we fixed the texture as if real images had been taken. Consequently, the machine

learning models need to generalize to previously unknown variations of humans, child seats

and environments. In this setting, we can train models in one or several car environment(s) and

test them on a different one. This is an advantage compared to common domain adaptation

datasets [194, 250, 193, 174, 229] which usually focus on the transfer from synthetic to real

images. Further, the photorealistic rendering and close-to-real models introduce a high visual

complexity which makes them more challenging than toy examples [31, 115]. The dataset

has an intrinsic dominant background and texture bias: all of the images are taken in a few

passenger compartments, but generalization to new, unseen, passenger compartments and child

seats should be achieved. This evaluation is currently not possible by state-of-the-art datasets

[42, 27, 67, 66, 76, 3, 147].

The human models were generated randomly using MakeHuman. Their facial expression

was selected to be neutral and identical. We defined a fixed set of poses for the humans

represented by unit quaternions. For every human in each scenery, two poses were selected

randomly and a spherical linear interpolation (Slerp) [47] was performed to get an intermediate

pose. For each scenery, we randomly selected what kind of object is placed at each position,

however, we avoided appearances of the same object for the same scenery. Child and infant

seats can be empty. This is one of the few differences between SVIRO and ORSS: ORSS only

uses occupied child and infant seats. We also decided to not allow children to be placed on

the rear seat without a child seat. Infant seats were randomly rotated by 180◦ along the z-axis

and an offset from the straight ahead orientation was randomly applied to all child seats. The

handle of the infant seat was selected to be up or down. Randomly selected environmental

backgrounds were rotated around the vehicle to simulate arbitrary illumination conditions. We

placed everyday objects onto the rear seat to make the scenery more versatile. All cameras have

the same intrinsic parameters [45] (focal length=3.4 mm, sensor width=8.5 mm, f-number= 2.5,

skew coefficient= 0, focal length in terms of pixels: αx = 514.4208, αy = 514.4208, principal

point: u0 = 640, v0 = 480), however, their pose is different in each car. Example sceneries for

training and test data can be found in Fig. 3.4. An overview of the 3D objects and backgrounds

are shown in Fig. 3.5 and Fig. 3.6.

We also generated a training dataset with randomly selected (partially unrealistic) textures

and backgrounds from a large pool of images. Examples for this variation of the dataset are

shown in Fig. 3.7. When trained on the latter, the increased variations improve the generalization

for classification and semantic segmentation on the test set and to new passenger compartments,

as shown in Section 5.2.1 and 5.2.2. Moreover, the difficulty can be gradually increased: one
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Fig. 3.4 Example sceneries from the ten vehicle interiors. Some images appear darker, which is

why (also in real applications) it is preferred to use an active near-infrared camera system.
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(a) Children

(b) Infants in infant seats

(c) Infant (first two) and child seats

(d) Everyday objects

Fig. 3.5 Representative selection of some of the assets used for our synthetic dataset. Some are

used for training, others for generating the test images.
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(a) Adults

(b) Environments

Fig. 3.6 Representative selection of some of the assets and environments used for our synthetic

dataset. Some are used for training, others for generating the test images.
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Fig. 3.7 Examples from the SVIRO X5 for randomized textures and environments.

a b c d e

f g h i j

Fig. 3.8 Comparison of the different vehicle interiors. a) BMW X5, b) Tesla Model 3, c)

Hyundai Tucson, d) Lexus GS F, e) Toyota Hilux, f) BMW i3, g) Mercedes A-Class, h) Renault

Zoe, i) VW Tiguan and j) Ford Escape. The geometry of the rear-seat, the windows, headrest

and car features differ between the cars and some have two seats instead of three.

can train on occupied child and infant seats only, train on infant seats with the handle down (or

up) only or removing everyday object completely from training.

3.2.3 Statistics

SVIRO consists of ten different vehicles: BMW X5, BMW i3, Hyundai Tucson, Tesla Model

3, Lexus GS F, Mercedes A-Class, Renault Zoe, VW Tiguan, Toyota Hilux and Ford Escape.

The number of windows varies, which causes different illumination conditions, and the i3 and

Zoe have only two rear seats instead of three. The different vehicle interiors are compared in

Fig. 3.8. We used the same people and child seats for the training set of each vehicle and the

remaining ones for the test sets. This results in two child seats and one infant seat per data

split. We did the same for the background: five were selected for the training and five different

ones for the test set. For the everyday objects, we used two bags, a card-box and a cup for the

training dataset and a different bag, a paper-bag, pillows and a box of bottles for the test set.

The number of people and the distribution of the gender, age and ethnicity for the training and
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Table 3.1 Number of people and distribution of gender, age and ethnicity for the training and

test datasets. The same people were used for the training and test set for all the vehicles,

respectively, and the same number of images were generated for each car.

Train Test

Adult Child Baby Adult Child Baby

African 5 2 1 2 1 1

Asian 5 2 1 2 2 1

Caucasian 4 2 1 4 1 1

Female 9 3 - 5 2 -

Male 5 3 - 3 2 -

Total 14 6 3 8 4 3

test set can be found in Table 3.1. The number of images generated for each vehicle and each

training and test set are identical: 2000 for each training and 500 for each test set. In total,

this results in 20000 training and 5000 test sceneries. The distribution of the different classes

across the vehicles and data splits is summarized in Table 3.2. The number and constellation of

appearances varies between the vehicles, because all the sceneries were generated randomly.

3.2.4 Rendering

The synthetic images were generated using Blender, its Python API and the Cycles renderer.

As many applications in the passenger compartment require an active near-infrared camera

system to work in the dark, we decided to imitate such a system by means of a simple approach:

We placed an active red lamp (R=100%, G=0%, B=0%) next to the camera inside of the car

illuminating the rear seat, but overlapping with the illumination from the HDR background

image. We then took the red channel only from the resulting rendered RGB image. We

will refer to these images as grayscale images. This is, however, not a physically accurate

simulation of a real active near-infrared camera system. The simulation of the latter is not

trivial, as the perception in the infrared domain not only depends on the object’s material

properties, but also on the wavelength which is used [198]. We argue that this is of minor

importance, because SVIRO is intended to investigate the general applicability of possible

machine learning methods. Our infrared imitation helps to become less dependent on the

environmental illumination. Hence, it facilitates the actual machine learning tasks: see Fig. 3.9

for a comparison between a standard RGB image and our grayscale image of a dark scenery,

where a lot of information would otherwise be lost. Moreover, we report in Section 5.2.6 the
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Table 3.2 Distribution of the different classes over the vehicles and data splits. As the images

were generated randomly, the distribution is different for each split and vehicle. We abbreviate

infant seat as IS and child seat as CS. The large difference in empty seats and everyday objects

is due to the two vehicles with only two rear seat positions.

Classes Empty IS CS Adult Object Empty IS Empty CS

Vehicle Train Test Train Test Train Test Train Test Train Test Train Test Train Test

A-Class 2134 614 457 126 611 121 884 191 755 179 486 124 673 145

Escape 2079 569 489 133 581 143 940 215 742 187 443 108 726 145

Hilux 2218 553 457 116 560 130 847 232 769 194 510 125 639 150

i3 884 180 372 117 496 98 919 223 442 129 363 113 524 140

GS F 2127 565 465 121 579 140 907 219 791 195 468 113 663 147

Model 3 2507 613 449 121 537 107 909 224 565 196 439 105 594 134

Tiguan 2196 592 458 112 645 128 944 227 650 180 461 112 646 149

Tucson 2202 565 458 103 608 139 900 231 658 204 481 119 693 139

X5 2400 610 371 109 569 100 892 234 767 195 418 124 583 128

Zoe 909 195 380 125 518 115 816 189 438 131 392 119 547 126

a b c

Fig. 3.9 Comparison between a standard RGB image and our simple approach to imitate an

active near-infrared camera system for a dark scenery. a) Standard RGB image in environmental

illumination. b) RGB image of the scenery illuminated by an active red light. c) Red channel

only of the RGB image of the illuminated scenery (used as infrared imitation).

evaluation of a model trained on SVIRO on real infrared images and show that it behaves

similarly on real data.

3.2.5 Ground truth

For each scenery we provide a set of images and ground truth data:

1. RGB image of the scenery without an active red lamp next to the camera, e.g. Fig. 3.4,

2. grayscale image (red channel only) of the rendered RGB image using an active red lamp

next to the camera, e.g. Fig. 3.10 (b),

3. instance segmentation map, where each object is color-coded depending on its position

and class, e.g. Fig. 3.10 (c),
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a b c d

Fig. 3.10 Example scenery of SVIRO together with some of the provided ground truth data.

Left seat: infant seat with an infant. Middle seat: empty. Right seat: adult passenger. a) RGB

image with keypoints for human pose estimation. b) Grayscale near-infrared imitation. c)

Position and class based instance segmentation. d) Depth map.

Fig. 3.11 One can split each image into three rectangles to use them for classification. The

rectangles should overlap slightly, because objects are not limited to their seat position.

4. bounding boxes for all the elements in the scenery,

5. keypoints for all the human poses in the scenery, e.g. Fig. 3.10 (a),

6. depth map of the scenery, e.g. Fig. 3.10 (d).

We also split the images (RGB, grayscale, depth) into three rectangles (one for each seat

position) with slight overlap between them. See Fig. 3.11 for an illustration. If a car has

only two seats, then we exclude the middle rectangle. Note that people can lean over to

the neighboring seat and objects from neighboring seats are overlapping to the neighboring

rectangle, which makes classification more difficult. It is, however, also possible to classify the

image as a whole. Both semantic segmentation and instance segmentation can be performed

using the provided segmentation masks. Children on a child seat, as well as babies in an infant

seat, are treated as two separate instances. We save the human poses by using keypoints, as

used by the COCO dataset [147], but our skeleton is defined using partially different joints.

The visibility of the keypoints are set to zero if the keypoint is outside the image, to one if it

is occluded by an object or neighboring human and set to two if it is visible or occluded by

the person itself. Keypoints are provided for the babies as well. For each scenery, we provide

a .json file containing the 2D pixel coordinates of the keypoints of all people together with
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Table 3.3 Definition of labels for the different tasks on SVIRO.

Classification Segmentation Object detection Keypoints

Empty 0 0 0 0

Infant in infant seat 1 - - 1

Child in child seat 2 - - 1

Adult 3 3 3 1

Everyday object 4 4 4 0

Empty infant seat 5 1 1 0

Empty child seat 6 2 2 0

the visibility flag, the bone names and their seat position. All the images are provided in .png

format. The depth maps are saved in millimeters and as 16-bit .png images. The bounding

boxes are given in the format [class, x1, y1, x2, y2], where (x1, y1) is the upper left corner and

(x2, y2) the lower right corner of the bounding box (coordinates start in the upper left image

corner). An overview of the labels for the different tasks is listed in Table 3.3. We did not

fasten the seat-belt for our models and let them un-attached in all our sceneries.

3.3 SVIRO-Illumination

Using a synthetic renderer and modelling software yields the possibility to generate images

which are difficult, expensive or even impossible to achieve for real images. One of these

additional benefits is the generation of exactly the same sceneries where only the illumination

changes. The availability of such images enables the design of novel model architectures, as

we will present later in this work. Based on the above presented framework used to generate

SVIRO, we created additional images for three new vehicle interiors: Porsche Cayenne, Skoda

Kodiaq and Hyundai Kona. For each vehicle, we randomly generated 250 training and 250 test

scenes where each scenery was rendered under 10 different illumination and environmental

conditions. We created two versions: one containing only people and a second one including

additionally occupied child and infant seats. We used 10 different exterior environments (HDR

images rotated randomly around the vehicles), 14 (or 8) human models, 6 (or 4) children and

3 babies respectively for the training and test split. The four infant and two child seats have

the same geometry for each split, but different textures are being used. Consequently, the

models need to generalize to new illumination conditions, humans and textures. There are four

possible classes for each seat position (empty, infant seat, child seat and adult) leading to a total

of 43 = 64 classes for the whole image. Examples are shown in Fig. 3.12. Differently from
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the SVIRO base set, this dataset does not have empty child and infant seats and no everyday

objects.

3.4 SVIRO-NoCar

Similar to the possibilities presented in the previous section, it is also possible to remove the

vehicle, i.e. we placed humans, child and infant seats as if they would be sitting in a vehicle

interior, but instead of a vehicle, the background was replaced by selecting randomly from a

pool of available HDR images. This way we can generate input-target pairs where both images

are of the same scene, but differ in the properties we want to become invariant to: the dominant

background. We created 2938 training and 2981 test sceneries where each scenery is rendered

with 10 different backgrounds out of a pool of 450 backgrounds. The background and the

corresponding illumination conditions were defined using the HDR images. As for SVIRO-

Illumination, there are four possible classes for each seat position (empty, infant seat, child

seat and adult) leading to a total of 43 = 64 classes for the whole image. We randomly created

172 adults and we used 6 child seats and 7 infant seats which were textured using randomly

one out of five textures. This dataset will help to overcome the problems for transferring

between different vehicle interiors, but it also helps to learn invariances to be transferred to real

images. For example, we noticed that a larger number of different human models increases the

transferability to real images. Examples are visualized in Fig. 3.13.

3.5 SVIRO-Uncertainty

Particularly important for safety critical applications is the possibility to provide uncertainties

together with the models’ predictions. Most of the readers of this thesis have probably put the

most random objects inside their vehicles (e.g. furniture and washing machine, instruments,

food and beverages, animals). It is hence paramount to somehow account for these random

events that a deployed system could be encountered with. Hence, we decided to create additional

images for the vehicle interior which could be used to assess a model’s reliability. As before,

for each of the 3 seat positions in the vehicle interior rear bench the model should classify

which object is occupying it, with empty being one possible choice. We created two training

datasets for the Volkswagen Sharan vehicle, a new synthetic vehicle not used before, using

adult passengers only (4384 sceneries and 8 classes) and one using adults, child seats and infant

seats (3515 samples and 64 classes). We created fine-grained test sets to asses the reliability on

several difficulty levels:
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(a) Cayenne

(b) Kodiaq

(c) Kona

Fig. 3.12 Example sceneries from SVIRO-Illumination. For each vehicle, one scenery under

ten different illumination and external environments is shown.
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Fig. 3.13 Examples of identical sceneries with different backgrounds from SVIRO-NoCar.
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Fig. 3.14 Examples of sceneries from SVIRO-Uncertainty containing everyday objects.

1. only unseen adults (2617 sceneries),

2. only unseen child and infant seats (490 sceneries),

3. unseen adults and unseen child and infant seats (896 sceneries),

4. unknown random everyday objects (e.g. dog, plants, bags, washing machine, instruments,

tv, skateboard, paintings - 1622 sceneries),

5. unseen adults and unknown everyday objects (1421 sceneries),

6. unseen adults, child and infant seats and unknown everyday objects (1676 sceneries).

Unseen means that the test set uses new and different adults, child and infant seats not encoun-

tered during training. Besides the uncertainty estimation within the same vehicle interior, one

can use images from unseen vehicle interiors from SVIRO (or any of the other extensions)

to further test the models reliability on the same task, but in novel environments, i.e. vehicle

interiors. One could also train on the SVIRO vehicles together with its everyday objects and

check whether the model can generalize to the fine-grained test sets mentioned above. Example

images are provided in Fig. 3.14.

3.6 SVIRO-InterCar

The last extension of SVIRO is being published with the release of this thesis. Similar to

SVIRO-Illumination we generated each scenery several times by varying one key feature.

While it was the illumination condition for SVIRO-Illumination, for SVIRO-InterCar we

changed the entire vehicle interior. This means that not only the vehicle interior looks different,

but also the perspective is adapted accordingly. Since each vehicle has different windows, this

also means that the illumination changes. We generated two versions: one with adult people
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Fig. 3.15 Examples of identical sceneries in different vehicle interiors from SVIRO-InterCar.
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only (1000 sceneries) and one with adults, infants in infant seats and children in child seats

(990 sceneries). We used the 8 vehicles from SVIRO with three seats and the Cayenne and

Kona from SVIRO-Illumination. We hope that this dataset might inspire some interesting

future design choices, investigations and research results. For example, would it be possible

to incorporate the extrinsic camera parameters to switch from a source vehicle to another

(unknown) target vehicle? Can in terms of disentanglement a dimension be used to change the

vehicle? Example images are shown in Fig. 3.15.

3.7 Conclusion

We presented the proprietary ORSS dataset for the vehicle interior and explained the correspond-

ing synthetic data generation process. SVIRO and its different extensions were introduced and

its key features and differences were explained. These different splits will be used throughout

this thesis to assess how the different challenges might affect the industrial application of

vehicle interior occupancy detection. This step was particularly important to provide a public

version of our investigated scenario such that the results and insights can be reproduced by the

research community and to contribute a novel interesting application for future research.

A basic analysis on SVIRO will be reported in Chapter 5 and a much more detailed analysis

for the transferability from vehicle-to-vehicle in Chapter 6. In order to investigate our novel

illumination normalization method, we will adopt SVIRO-Illumination in Chapter 7. For

synthetic to real generalization we will use SVIRO-NoCar in Chapter 8. Finally, SVIRO-

Uncertainty will be integrated in our uncertainty estimation and out-of-distribution detection

investigation in Chapter 9.





Chapter 4

Methods

We provide an overview of the novel methods proposed and used in this work. We start by

formulating a framework and common language, which will be used by the rest of this thesis.

We will then explain the different building blocks which are presented as standalone, but

which can also be combined. First, we will introduce our proposed "Partially Impossible

Reconstruction Losses" (PIRL) for autoencoder networks. The first variation of the PIRL

exploits the availability of identical sceneries under different conditions, e.g. illumination. We

will extend this approach by applying a triplet loss regularizer in the latent space to improve

generalization. This induces some useful properties such that more robust and reliable results

on unseen test samples can be achieved by adopting the nearest neighbor search. Next, we will

propose a second variation of the partially impossible reconstruction loss which can readily

be used with most existing datasets. The benefits and disadvantages with respect to the first

variation will be explained, but also highlighted later in this thesis. We will introduce the

extractor autoencoder model which uses a pre-trained model to extract features from the input

images and which will be helpful to generalize to real images when trained on synthetic

ones only. Further, we will explain the multi-channel autoencoder approach, which will be

helpful for the transfer from synthetic to real images when real images can be included during

training as well. We will show that it can be used to remove the background from real images:

the synthetic gap is reduced by including real images during training and the invariance is

learned on dedicated designed synthetic images. Then, we will explain the possibility to

model uncertainty using MC Dropout in case of autoencoder models. Finally, we introduce the

recursive application of previously trained autoencoder models and their attractors and how

they can be used to model uncertainty as well. The methods will be introduced using examples

from the SVIRO datasets and its extensions, as presented in Chapter 3, but they will also be

tested on other datasets later in this work.
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4.1 Framework

Consider Ns sceneries and Nv variations of the same scenery, e.g. same scenery under different

illuminations, with different backgrounds or under different data augmentation transforma-

tions. Most commonly used datasets will have Nv = 1 unless they are cleverly augmented

by transformations (i.e. preserving the important semantics) to adopt our proposed sampling

strategies. Let X = {X j
i | i ∈ {1, . . . ,Nv}, j ∈ {1, . . . ,Ns}} denote the training data, where

each X
j

i ∈ R
C×H×W is the ith variation of scene j. Hence, the dataset consists of a total of

|X |= Nv ·Ns images. Let X j = {X j
i | i ∈ {1, . . . ,Nv}} be the set of all variations i of scenery j

and Y = {Y j | j ∈ {1, . . . ,Ns}} be the corresponding target classes of the scenes of X . Notice

that the classes remain constant for the variations i of each scene j. This is important for

classification tasks and it needs to be adapted in case our sampling strategies are adopted for

other tasks, e.g. landmark detection. Using the above framework, the vanilla autoencoder cost

function presented in Eq. (2.1) is slightly modified

LR(X
j

i , f (X
j

i );θ ,φ) = LR(X
j

i ,dθ (eφ (X
j

i ));θ ,φ) = r(X
j

i , X̂
j

i ;θ ,φ), (4.1)

where f is the autoencoder model with eφ being the encoder with parameters θ and dθ

the decoder with parameters φ , X
j

i the input image and X̂
j

i the reconstruction and r the

reconstruction loss of choice.

4.2 First sampling strategy: Partial impossible

One of the main contributions of this thesis is the introduction of a novel sampling strategy

for which we provide two variations. Our proposed "Partially Impossible Reconstruction

Losses" (PIRL) can be applied to any autoencoder neural network architecture. Both variations

formulate a novel reconstruction loss based on the autoencoder reconstruction and a different

variation of the input image used as target.

The first variation of the PIRL is the weaker version, because it is tailored to the task to be

solved and it needs a controlled variation of the task specific unwanted features. For example,

we can select the same scene under different illumination conditions and/or with different

backgrounds. It is important that the features we want to become invariant against are being

varied and the features we assess as discriminative are being kept identical or similar. This also

means that the target of the image should not be changed (e.g. if flipping the images would

change the label). In this work, for sampling the individual elements of a batch, we randomly

select for each scene two images, one as input and the other one as target. This sampling

strategy preserves the semantics while varying the unimportant features such that the model
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Fig. 4.1 Variation I of the partially impossible reconstruction loss together with a sampling

example: input X
j

a and target X
j

b are images of the same scenery X j, but under different

illumination conditions.

needs to focus on what remains constant. More precisely, during training, the batches iterate

over the X j and for each X j we randomly select a,b ∈ {1,2, . . . ,Nv}, a ̸= b to get X
j

a ,X
j

b ∈ X j.

Finally, X
j

a is considered input to the autoencoder network and X
j

b is considered as the target

for the reconstruction loss. The aforementioned method is illustrated in Fig. 4.1. This leads to

the loss formulation:

LR,I(X
j

a ,X
j

b ;θ ,φ) = r
(

dθ (eφ (X
j

a )),X
j

b

)

, (4.2)

for a reconstruction loss r of choice. We refer to models using this variation of the PIRL by

prepending an I, i.e. we call it I-PIRL and the models using it, for example, I-AE.

4.3 Second sampling strategy: Partial impossible class in-

stance

The first variation of the PIRL will lead to a better removal of illumination, shadow and

environmental information and improve the accuracies by the classifier in the latent space,

particularly in case human poses need to be preserved. However, it can be challenging to apply

it to a lot of commonly recorded datasets, especially when the dataset to be considered does

not allow for a controlled variation of the unwanted features. To this end we introduced a

second, stronger variation of the previously introduced PIRL which can readily be applied to

most existing datasets. Instead of sampling the same scene under a controlled variation, e.g.

same scene under different illumination, we propose to use as target image a different image

of the same class as the input. This approach implicitly uses label information in the input

space, however, as we will show, this leads to a better latent space representation. This loss

variation causes the model to learn invariances with respect to certain class variations which are
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Fig. 4.2 Variation II of the partially impossible reconstruction loss together with a sampling

example: for the input X
j

a a new scenery Xk
b of the same class label is selected as target.

Input Target

(a) Vanilla: Eq. (4.1)

Input Target

(b) I-PIRL: Eq. (4.2)

Input Target

(c) II-PIRL: Eq. (4.3)

Fig. 4.3 Comparison of different input-target pairs for the different reconstruction losses.

not important for the task at hand, e.g. clothes, human poses, textures. While illumination can

still be removed with this approach, human poses will no longer be preserved. This sampling

variation is reflected in the reconstruction loss as follows:

LR,II(X
j

a ,X
k
b ;θ ,φ) = r

(

dθ (eφ (X
j

a )),X
k
b

)

, (4.3)

for random a,b ∈ {1,2, . . . ,Nv}, j ̸= k and Y j = Y k. We refer to this method as partially

impossible class instance sampling marked by prepending II when it is used, i.e. referring

to it as II-PIRL and the models using it as, for example, II-AE. This sampling variation is

visualized in Fig. 4.2. The first and second sampling variations are compared against the vanilla

autoencoder sampling in Fig. 4.3.

4.4 Structure in the latent space: Triplet loss and nearest

neighbour search

While the I-PIRL works well on the training data, generalizing to unseen test images can remain

a challenging task if no additional precautions are taken. For example, the illumination is still

removed from test samples, but the reconstruction of the objects of interest can be less stable. In
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case training data is limited, the autoencoder network is mostly used as a compression method

instead of a generative model. Consequently, generalizing to unseen variations with respect to

reconstruction quality cannot trivially be achieved. It turns out that a blurry reconstruction is

in fact a blurry version of the reconstruction of its nearest neighbor in the latent space (or a

combination of several nearest neighbors). Interestingly, in terms of classification accuracy, the

II-PIRL does not suffer from the generalization to test samples problem of the I-PIRL, probably

because of the implicit use of label information in the pixel space. However, on the other

side, the II-PIRL cannot conserve human poses in its reconstructions, not even on the training

images. Nevertheless, incorporating the triplet loss with II-PIRL does not have a detrimental

effect.

Consequently, instead of reconstructing the encoded test sample when the I-PIRL is used,

it is more beneficial to reconstruct its nearest neighbor. However, applying nearest neighbor

search in the latent space of a vanilla autoencoders or variational autoencoders will not provide

robust results. This is due to the fact that there is no guarantee that the learned latent space

representation follows an L2 metric [9]. As the nearest neighbor search is (usually) based on the

L2 norm, the latter will hence not always work reliably. To this end, and as stated in Eq. (2.20),

we incorporated a triplet loss in the latent space of the autoencoder model (TAE) instead. This

can lead to a better nearest neighbour retrieval. The triplet loss can be used with or without the

PIRL. In case of the former, using the same notations as before, the triplet loss is formulated

here as

LT (X
j

a,a,X
k
b,p,X

l
c,n;θ)

= max

(

0,α +
∥

∥

∥
eφ (X

j
a,a)− eφ (X

k
b,p)
∥

∥

∥

2

2
−
∥

∥

∥
eφ (X

j
a,a)− eφ (X

l
c,n)
∥

∥

∥

2

2

)

, (4.4)

for random a,b,c ∈ [0,Nv], j ̸= k ̸= l and Yj = Yk ̸= Yl . where X
j

a,a is the anchor using scenery

j, Xk
b,p is the positive sample using a different scenery k and X l

c,n is the negative sample using

another scenery l. An illustration for the triplet loss is given in Fig. 4.4 and for the nearest

neighbor inference in Fig. 4.5.

Our sampling strategies could easily be combined with other commonly used sampling

strategies, but in this work we limit ourselves to the triplet loss to induce a regularization and

structure in the latent space of autoencoder models. Notice that we take full advantage of the

triplet selection by choosing the triplets from the same batch such that the positive and negative

samples are reconstructed as well.
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Fig. 4.4 Illustration of the triplet loss when applied to SVIRO-Illumination. We chose the

positive sample to be of the same class as the anchor image (but from a different scenery) and

the negative sample to differ only on one seat (i.e. change only the class on a single seat w.r.t.

the anchor image). Notice the difference in illumination of the target image w.r.t. input image

in order to apply our proposed I-PIRL.

Fig. 4.5 During inference, we choose the nearest neighbor (red arrow) of the latent space vector

of the input image (blue cross) from all the training latent space vectors (grey crosses). This

can be used to reconstruct a clean image or as classification prediction using its label.
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Fig. 4.6 Impossible Instance Extractor Triplet Autoencoder (II-E-TAE) model architecture.

4.5 Model architecture: Extractor autoencoder

Additionally to the proposed variations of the PIRL, we will also highlight the benefit of

using a feature extractor in case of generalizing from synthetic to real images. This model

architecture can be combined with the PIRL or be used as a standalone design choice. We

propose to apply ideas from transfer learning and the perceptual loss, see Section 2.4.3, by

using a pre-trained classification model to extract more general features from the input images.

Instead of using the images itself, the extracted features are used as input. Our autoencoder

consists of a summarization module (average pooling and convolutional layers) which reduces

the number of convolutional filters. This is fed to a simple MLP encoder which is then decoded

by a transposed convolutional network. We refer to this model as extractor autoencoder (E-AE).

Let eφ be the encoder, dθ the decoder and E f ix be a pre-trained classification model, referred

to as extractor. For ease of notation, we define eEφ (·) := eφ (E f ix(·)). The model, using the

vanilla reconstruction loss, can be formulated for a single input sample as

LR(X
j

i , f (X
j

i );θ ,φ) = LR

(

X
j

i ,dθ (eφ (E f ix(X
j

i )));θ ,φ
)

(4.5)

= r
(

X
j

i ,dθ (eφ (E f ix(X
j

i )))
)

(4.6)

= r
(

X
j

i ,dθ (eEφ (X
j

i ))
)

. (4.7)

This loss can easily be combined with both PIRL variations and with the triplet loss. This

design choice combined with the II-PIRL is visualized in Fig. 4.6.

4.6 Model architecture: Uncertainty estimation

Instead of training the autoencoder model under a standard training regime, we train the model

using dropout and enable dropout during inference as well, i.e. using MC Dropout as introduced

in Section 2.9. Hence, we obtain different, but similar, autoencoder models for inference which

should behave similarly for training and test samples, but differently and not consistently for

novel feature variations in the input space. Let us formulate this intuition more precisely: Let
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x be an input sample and F be the family of functions consisting of the autoencoder models

learned by using dropout during training and enabling the latter during inference. We repeat

inference M times, sampling each time a new f j ∈ F for j ∈ J = {1,2, . . . ,M}. This results in

a predictive distribution { f j(x)} j∈J , i.e. M realizations with different dropout masks. Since

we are interested in the variation of the latent space representation, we refrain from using

dropout in the latent space. Finally, this approach can easily be extended using, for example,

the II-PIRL. We refer to the latter as MC-II-AE and the former as MC-AE. Particularly in the

case when the II-PIRL is used, uncertainty estimation and OOD detection can be significantly

improved.

4.7 Model architecture: Multi-channel

The multi-channel approach for autoencoder models (MuCh-AE) tries to exploit the availability

of real and synthetic image pairs during training [277] to reduce the synthetic gap and learn

more efficiently from synthetic data. Instead of a single decoder module, the MuCh-AE uses

two decoders - one for synthetic dθs
and one for real dθr

input images. There is, however, only

one encoder eφ which is used for all input images. For each synthetic input image X
j

i := X
j

i,s

being sampled, we randomly sample a real image X l
k,r being of the same class as X

j
i,s. Since the

datasets do not need to be of the same size and since the sampling is random, it can happen

that a same real image is sampled multiple times per epoch. The MuCh-AE encodes both input

samples using the same encoder eφ to get two latent vectors zr and zs. Next, the decoder for real

images dθr
reconstructs the encoding of X l

k,r and the one for synthetic images dθs
the one of X

j
i,s.

In summary, we have fr(X
l
k,r) = dθr

(eφ (X
l
k,r)) = dθr

(zr) and fs(X
j

i,s) = dθs
(eφ (X

j
i,s)) = dθs

(zs).

Formalizing the reconstruction error leads to

LR(X
j

i,s, fs(X
j

i,s),X
l
k,r, fr(X

l
k,r);θs,θr,φ) (4.8)

:= LR(X
j

i,s, fs(X
j

i,s);θs,φ)+LR(X
l
k,r, fr(X

l
k,r);θr,φ) (4.9)

= LR(X
j

i,s,dθs
(eφ (X

j
i,s)));θs,φ)+LR(X

l
k,r,dθr

(eφ (X
l
k,r)));θr,φ). (4.10)

However, related work [277] thus far reports that it is beneficial to balance both reconstructions

by adding a penalizing term leading to a total error of

LT (X
j

i,s, fs(X
j

i,s),X
l
k,r, fr(X

l
k,r);θs,θr,φ) (4.11)

= LR(X
j

i,s, fs(X
j

i,s);θs,φ)+LR(X
l
k,r, fr(X

l
k,r);θr,φ) (4.12)

+ γ
1

2

(

LR(X
j

i,s, fs(X
j

i,s);θs,φ)−LR(X
l
k,r, fr(X

l
k,r);θr,φ)

)2

, (4.13)
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with γ ≥ 0. The latter should ensure that both decoders achieve a more or less equal performance

such that not one decoder is favoured while neglecting the second one. However, in our

experiments we found that the balance term negatively influences the performance. Hence,

in this work we choose γ = 0. In practice, it is beneficial to choose a same target for both

reconstructions [277]. In our case, we decided to reconstruct synthetic images only, such that

the previous reconstruction losses become

LR(X
j

i,s, fs(X
j

i,s);θs,φ) and LR(X
l
k,r, fr(X

j
i,s);θr,φ). (4.14)

Due to the latter choice, we can exploit the availability of synthetic images with random

backgrounds such that invariances can be learned using both variations of the PIRL. We will

exploit this model design choice later in this work.

While related work has adopted this method successfully to roof classification of satellite

images and face-sketch recognition, our task is more challenging. In both aforementioned

applications, the method exploits the existence of one-to-one real-synthetic image pairs. How-

ever, in our case no such pairs exist since real and synthetic images have been generated

independently. This means that for each synthetic image for each epoch a new real image of

the same class is randomly selected. While this makes the application of the MuCh method

more challenging, we will show that combining it with the extractor and II-PIRL improves the

performance significantly. Further, when adopting the triplet loss with the MuCh, we made

sure to use the latent space representation of the synthetic and real data interchangeably. This

enforces a similar representation for both distributions and improves the performance.

4.8 Inference strategy: Attractor autoencoder

This method consists of the inference strategy of applying a previously trained autoencoder

model recursively to itself several times. However, in contrast to Radhakrishnan et al. [204]

where the authors trained the autoencoder model under a standard training regime, we train the

model using dropout and enabling dropout during inference as well, i.e. using MC Dropout as

presented in the previous section. This causes an interesting model feature: if we repeat the

recursive application of the trained autoencoder model several times for the same input sample

x, then each iteration uses a different function f j from the same distributions of functions

F . Hence, we obtain different, but similar, dynamical systems for inference which should

behave similarly for training and test samples, but differently and not consistently for novel

feature variations in the input space. Each iteration can hence potentially converge to a different

attractor, potentially of different classes. The latter is useful to detect inconsistencies and hence
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Fig. 4.7 Visualization of MCA-AE. For each of the M samples of autoencoder functions f j ∈ F
for j ∈ J = {1,2, · · · ,M}, the recursion is repeated N times. Coherence and inconsistencies

in the resulting latent space vectors z j for j ∈ J = {1,2, · · · ,M} is used to assess the model’s

reliability for the input image. Each z j is the encoding used to generate the nth reconstruction.

uncertainty: if the model converges to attractors of the same class we can assume a trustful

prediction, if it converges to attractors of different classes the convergence is unstable and

unreliable.

Let x be an input sample and F be the family of functions consisting of the autoencoder

models learned by using dropout during training and enabling the latter during inference. We

repeat the recursion M times, sampling each time a new f j for each recursion J = {1,2, · · · ,M}.
Up to this point, the method is identical to the one presented in the previous section. However,

for a fixed function f j, the latter is applied recursively k times to itself, i.e. f k(x) as in Eq. (2.49).

This results in a predictive distribution { f k
j (x)} j∈J , where k is the number of compositions

performed for each recursion. As a reminder, for a fixed f j the dropout mask is the same

for each recursive step i ∈ {1, . . . ,k}. The latter implies that the dropout mask needs to be

implemented manually such that it can be fixed for multiple inferences. Since we are adopting

this strategy for autoencoder models, we refrain from using a dropout in the latent space.

To perform a classification of the resulting iteratively reconstructed sample, we perform the

classification in the latent space of the kth iteration. This heuristic is summarized in Algorithm

1 and visualized in Fig. 4.7.
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Algorithm 1 MCA-AE algorithm

1: Train autoencoder model using dropout to get F
2: Enable dropout for inference

3: Define the number of recursions N

4: Train classifier g(·) in latent space after N recursions

5: Define the number of inferences per sample M

6: Define uncertainty threshold U

7: for each input sample x do

8: for j← 1 to M do

9: for k← 1 to N do

10: if k = 1 then

11: Sample a new dropout mask and keep it fixed

12: This gives you f j ∈ F , where f j(x) = d j(e j(x))
13: end if

14: z = e j(x) {encoding}

15: x = d j(z) {decoding}

16: end for

17: y j = g(z) {probability distribution of classification}

18: end for

19: p(y) = 1
M ∑

M
j=1 y j

20: H(p(y)) =− 1
log(C) ∑

C
c=1 pc(y) log(pc(y))

21: if H(p(y))≤U then

22: y = argmax(y j) {class prediction}

23: else

24: Reject sample

25: end if

26: end for
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Since our method is based on both aforementioned design choices, we call it Monte Carlo

Attractor Autoencoder (MCA-AE). For training samples to become attractors it is necessary

to train the autoencoders for a large number of epochs, i.e. we used 25000. A benefit of this

approach is that a lot of hyperparameters are defined for the inference process instead of the

training process. The number of recursions and the number of different runs is independent

from the training. The classifier can be chosen after the autoencoder model training and the

uncertainty threshold can also be fine-tuned.

4.9 Conclusion

We introduced several novel, or novel variations of existing, design choices, training approaches

as well as sampling and inference strategies for autoencoder models in a common framework.

The different approaches will be adopted in the upcoming chapters using the dataset splits

presented in Chapter 3, as well as other commonly used academic datasets. The I-PIRL will be

used for the illumination normalization presented in Chapter 7, but we will also highlight that

it has some beneficial effect for the transfer of synthetic to real images. The latter challenge,

together with the II-PIRL and the extractor module will be reported in Chapter 8. These

investigations will be corroborated by comparing them against the multi-channel autoencoder

approach, for which we also show that it can be used to remove the background from real

images. The II-PIRL will also be evaluated on illumination normalization, but its main

additional benefit is highlighted on commonly used academic datasets, as shown in Chapter 5,

and on uncertainty estimation and out-of-distribution detection, as shown in Chapter 9. Lastly,

the attractor autoencoder is going to be discussed exhaustively in Chapter 9 as well. Most of

the aforementioned methods can, and will be considered with and without the triplet loss.



Chapter 5

Basic analyses and baseline results

In the first part of this chapter, we start with a basic analysis on datasets commonly used by

the research community. This should build an entry point to get familiar with the second

variation of the newly introduced loss function from Chapter 4 and to understand its effect

on well known datasets and learning tasks, also in comparison to other methods. We trained

vanilla autoencoders (AE), autoencoders with the triplet loss (TAE) and autoencoders with the

II-PIRL (II-AE) on MNIST, Fashion-MNIST , CIFAR10 and GTSRB. We then compare the

test accuracy, reconstructions and latent space representations of the different models.

In the second part of this chapter, we present baseline results for training and evaluating on

SVIRO for different tasks. These results show that the investigated application in this work is

indeed challenging with interesting questions to be explored. Further, we show that training

on SVIRO and applying the resulting model on ORSS is possible, such that insights made on

SVIRO are transferable to the real application as well. Lastly, we report baseline results on the

test sets, but also for transferring in-between vehicles, on ORSS to highlight that the previously

mentioned challenges are indeed valid.

5.1 Commonly used datasets

For training on MNIST and Fashion-MNIST we used a latent space dimension of 16, while

for training on CIFAR10 and GTSRB we used a latent space dimension of 64. We treated

all datasets (even RGB ones) as grayscale images and all images were center-cropped and

resized to 64 by 64 pixels. We used a batch size of 64, trained our models for 1000 epochs

and did not perform any data augmentation. Classification is performed by means of a linear

SVM classifier in the latent space, which was trained after the autoencoder model finished

training. The latter gives hints about the quality and separability of the learned latent space

representation and hence feature extraction.
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Table 5.1 Mean and standard deviation test accuracy over 10 runs by a linear SVM classifier

trained in the latent space of different autoencoder models after the latter finished training.

Dataset II-AE (Ours) TAE AE

MNIST 99.3±0.1 99.1±0.1 93.2±0.5
Fashion-MNIST 91.9±0.2 90.7±0.3 78.9±0.3
CIFAR10 65.9±0.6 60.4±1.4 18.6±2.0
GTSRB 98.9±0.4 98.8±0.3 95.7±0.5

In Fig. 5.1 we compare the t-SNE projection of the training data latent space representation

for the different autoencoder models for different datasets. It can be observed that the II-PIRL

produces very clear clusters for the different classes. This is an interesting phenomenon, since

the label information is only used implicitly in the pixel space and not explicitly in the latent

space as done by the triplet loss. In order to assess the representation quality quantitatively,

we consider the test accuracy performance by a linear SVM classifier, when trained on the

aforementioned latent spaces. The results are reported in Table 5.1. The linear classifier can

exploit the latent space representation obtained by the II-PIRL at least as good as if the triplet

loss is used: the test accuracy is slightly better. Finally, to get an idea about the input-target

pairs used for training and the resulting reconstruction by the different methods, we report

in Fig. 5.2 reconstructions of the training data after the model finished training. It can be

observed that the II-AE removes all unnecessary background information (see GTSRB) and

learns a mean class representation. However, the model is not able to learn a meaningful class

representation for CIFAR10, due to its large intra-class variability. Nevertheless, as shown by

the latent space representation and quantitative results, the model can still learn a somewhat

meaningful separation in the latent space and achieve a better test accuracy compared to using

the triplet loss.

Lastly, we compared two properties in the latent space of the different autoencoder models:

nearest neighbor retrieval and interpolation between training samples. For the encoding of

several training input images, we searched in the latent space for the ten nearest neighbors and

decoded them. The results in Fig. 5.3 show that the neighbors are decoded identically in case

the II-PIRL is used. For the AE it can be observed that the nearest neighbors are not as robust

as for the other model variations: there are neighbors being of a different class in the second

and fourth columns. For the interpolation, we encoded two training input samples and decoded

each of the intermediate latent space representations. Let x1 and x2 bet two training samples

and z1 = eφ (x1) and z2 = eφ (x2) be their encodings. The linear interpolation is then defined by

zi = (1−αi)z1 +αiz2, (5.1)



5.1 Commonly used datasets 93
M

N
IS

T
F

as
h

io
n

C
IF

A
R

1
0

G
T

S
R

B

(a) AE (b) TAE (c) II-AE (Ours)

Fig. 5.1 Comparison of training latent space representations (t-SNE projection) by different

autoencoder models (AE, TAE and II-AE) for different datasets: MNIST (first row), Fashion-

MNIST (second row), CIFAR10 (third row) and GTSRB (fourth row). Different colors represent

different classes.
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Fig. 5.2 Comparison of the input (first rows), reconstruction (second rows) and target (third

rows) of the training data after the last epoch. The results are from different autoencoder models

(AE, TAE and II-AE) for different datasets: MNIST (first block), Fashion-MNIST (second

block), CIFAR10 (third block) and GTSRB (fourth block).
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for 0≤ αi ≤ 1. We chose αi ∈ {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} and reconstructed

each zi. The results are reported in Fig. 5.4. For II-PIRL, the background for each intermediate

value is being removed. This highlights the robustness of the background removal and image

normalization obtained by adopting the II-PIRL during training. Overall, the smoothness of the

transitioning between samples and the reconstruction quality is similar for all model designs.

Notice that we did not enforce any interpolation properties during training. Nevertheless, the

latter has been learned, to some extend, as a by-product of the autoencoder bottleneck structure

which should induce desirable properties in case a meaningful feature extraction is learned.

It is important and interesting to notice the following observation: The triplet loss needs

for each batch instance three samples - the input image, a positive and a negative sample. On

the other side, our PIRL only needs two samples per instance - the input image and a positive

sample. Although not having a negative sample at its disposal, using the II-PIRL causes better

results than using the triplet loss. Further, we believe that the II-PIRL can potentially be

improved by incorporating more information, and hence constraints or regularizations, in its

cost function formulation.

5.1.1 Conclusion

The baseline results presented in this section show that the II-PIRL is a beneficial design

choice for several commonly used research datasets. Not only do linear classifiers achieve

better classification results in the latent space compared to the triplet loss, but it also induces

well separated clusters. Our loss formulation causes the reconstructions to be smoother and

unimportant information, like background, is removed. The latter is even the case for all the

interpolation values between training samples. Although the reconstruction might not always be

as good, or even unrecognizable, this does neither have detrimental effects on the classification

performance nor on the clustering.

5.2 SVIRO

In the baseline evaluation presented in this section, we will show that SVIRO provides the

means to analyze the performance of common machine learning methods under new conditions.

We tested some widely used models and approaches for their robustness and reliability, when

trained on limited number of variations only. Specifically, we will show that state-of-the-art

models cannot generalize well to new environments and textures when trained under these

conditions. For this first evaluation, we limited ourselves to training on the X5 (three seats)

vehicle and testing on the Tucson (three seats) and i3 (two seats) vehicle. For all tasks, we
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Fig. 5.3 Reconstruction of the ten nearest neighbors (rows three to twelve) of the encoded

training input images (first row) together with the reconstructions of the encodings (second

row). Different autoencoder models are compared against each other. In case the II-PIRL is

used, all the neighbors are reconstructed equally. In case of the AE some of the neighbors are

of a different, wrong class.
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Fig. 5.4 Reconstructions of the interpolations (rows two to twelve) from the latent space

representation of the current training input (first row) and the training input of the next column

for a step size of 0.1. Different autoencoder models are compared against each other. It can

be observed that all intermediate values also remove all background information in case the

II-PIRL is used. The smoothness of the transition and the quality of the reconstruction are

similar across all model designs.
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considered two training data versions, for which we used the exact same hyperparameters: 1)

the standard X5 training data with fixed textures and backgrounds (F), 2) half of the standard

X5 training data was replaced by randomly textured X5 training data with random backgrounds

(F&R). The latter dataset and training design choice is supported by recent results by Li et al.

[144].

We used the grayscale images (infrared imitation) for all evaluations. For the deep learning-

based approaches, we used the pre-defined models implemented in PyTorch and torchvision.

For classification, we used pre-trained models on ImageNet. For semantic and instance

segmentation, object detection and keypoint detection, the models were pre-trained on COCO

train 2017. The pre-trained models were fine-tuned on the X5 only and then evaluated on the

test sets of all three cars. Using this approach, we could test the generalization capacities on two

difficulty levels. The training dataset was partitioned randomly according to a 75:25 split for

training and evaluation, where the latter was used to perform early stopping when fine-tuning

the models. As we considered our F&R dataset as data augmentation, the only additional data

augmentation performed was a random horizontal flip to increase the number of sceneries.

5.2.1 Classification

As introduced in Section 3.2.5, we used the rectangular grayscale images for classification with

seven different classes. One could decide to classify a seat with an everyday object (and an

empty infant/child seat) as empty as well. We trained a single classifier for the three seats,

but other setups are possible as well, e.g. train one classifier for each seat or one classifier

using the whole image as input, as reported later in this work. In the following, we will report

results on different deep learning models, as they are commonly used for visual classification

problems. These results will be compared against a traditional method using a support vector

machine (SVM) and handcrafted features. We will show that both methods suffer from the

same problems and including the randomized F&R dataset overall improves the results.

Convolutional neural networks

We used the ResNet [93], DenseNet [105], SqueezeNet V1.1 [108] and MobileNet V2 [219]

architectures and considered four different training approaches: 1) Training from scratch, 2)

only fine-tuning the last fully connected layer, 3) additionally fine-tuning the last residual

block, 4) allowing all weights to be trainable. We tried different combinations of weight

decay, weighted costs and imbalanced sampling and report results for the best models only.

In Table 5.2, we compare the results across the different models and training approaches and

against the SVM. The deep learning-based approaches have problems to generalize to the test



5.2 SVIRO 99

set, especially for new cars. The randomized backgrounds and textures help to improve the

accuracy on the same car, which gives hint that models trained on the (F) dataset mostly use

the texture as a classification criterion. However, the models can still not generalize well to

new vehicle interiors, probably because of the different interior structures, see Fig. 3.8.

HOG and SVM

For comparison, we also wanted to test at least one traditional machine learning-based approach

for the classification task. To this end, we computed the histogram of oriented gradients

(HOG) [87] features of all the training images, and their horizontally flipped versions for data

augmentation. These features were then used to train a SVM, using the one vs. rest [269]

approach and balanced class weights. We performed a grid search on different kernels (linear,

polynomial and radial basis) and their hyperparameters and used a 5-fold cross validation for

hyperparameter selection. We used scikit-learn for the training and scikit-image for the feature

generation. The results for the best hyperparameters are reported in Fig. 5.2. Overall, the

traditional approach has similar problems as the deep learning approach when the standard

X5 data is used, and can sometimes even generalize better. However, it cannot exploit the

additional information when random textures and backgrounds are included in the training.

5.2.2 Semantic segmentation

It could be beneficial to take spatial information into account to improve the transfer to new

instances and environments. Further, the model might consider overlapping objects from

neighboring seats more efficiently when the entire scene is used. To this end, we evaluated

semantic segmentation and considered the five classes as introduced in Section 3.2.5. The

model should separate the child from the child seat and the baby from the infant seat and classify

them as person. We fine-tuned all layers of a Fully Convolutional Network (FCN) [151] with a

ResNet-101 backbone and report the results in Fig. 5.3. As for the classification results of the

previous section, the model’s performance decreases drastically on the child and infant seats on

the test set for the same car and it performs even worse in previously unknown cars. Using the

F&R training data, the generalization performance largely increases, although the geometry of

the child seats of the test sets was never observed during training. It seems that the texture has

a larger influence on the performance of classification and semantic segmentation models than

the geometry. This observation seems to be in line with recent results by Geirhos et al. [77].

However, using SVIRO, we can additionally show that the model cannot perform as good on

new environments, even though the textures are randomized and the objects of the different test

sets are the same.
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Table 5.2 Comparison of classification accuracies (in percentage). We trained several models

from scratch or fine-tuned pre-trained models, where all the layers, the last block or the last

layer were trainable. Further, we trained a SVM using HOG features. We used the X5 training

data (F) or replaced half of it with the randomized data (F&R). After training, we retained

models with the best total accuracy on the X5 test data and evaluate them on the i3 and Tucson

test data. The models have difficulties to generalize to the test data and perform even worse in

unknown vehicles. Including the randomized data helps to generalize to unseen objects.

Scratch All layers Last layer Last block

F F&R F F&R F F&R F F&R

ResNet-18 69 78 75 88 70 73 76 88

DenseNet-121 64 77 81 85 69 78 77 92

SqueezeNet 67 45 80 85 62 69 73 83

MobileNet 66 72 82 88 64 74 71 86

HOG + SVM 69 70 - - - - - -

(a) X5

Scratch All layers Last layer Last block

F F&R F F&R F F&R F F&R

ResNet-18 31 34 44 58 50 60 42 64

DenseNet-121 32 43 50 60 51 71 43 76

SqueezeNet 37 28 50 54 45 63 48 65

MobileNet 36 31 57 70 47 61 40 71

HOG + SVM 41 52 - - - - - -

(b) i3

Scratch All layers Last layer Last block

F F&R F F&R F F&R F F&R

ResNet-18 20 31 31 46 44 55 34 47

DenseNet-121 14 32 39 75 35 48 50 60

SqueezeNet 22 44 32 44 28 33 46 37

MobileNet 21 43 48 71 32 44 33 51

HOG + SVM 35 53 - - - - - -

(c) Tucson
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Table 5.3 Mean intersection over union (IoU), in percent, for semantic segmentation for a

fine-tuned pre-trained FCN. (F) represents the model performance when trained on the X5

training dataset and (F&R) when we included the random X5 data. The models were evaluated

on the test dataset for the X5, Tucson and i3. Using the randomized version largely improves

the generalization capacities of the model, especially for identifying infant seats and child seats.

Background Infant seat Child seat Person Object Total

F F&R F F&R F F&R F F&R F F&R F F&R

X5 95.6 96.5 29.6 82.0 63.3 80.2 80.6 88.2 14.2 61.0 56.7 81.6

Tucson 82.1 88.5 16.5 77.9 55.9 74.5 68.0 79.2 5.2 15.3 45.6 67.1

i3 89.9 93.6 14.5 70.0 47.1 58.2 77.3 86.5 12.9 25.2 48.3 66.7

5.2.3 Object detection

We also wanted to evaluate an object detection based approach, as they are commonly used to

detect and classify objects in diverse surroundings. An object detection model might generalize

better to new environments than standard classification models. The reason for the latter is

that such models either first detect the objects of interest and then perform the classification

or perform detection and classification simultaneously. We considered the same classes as for

semantic segmentation. For this task, we used the Faster R-CNN [213] model architecture with

a ResNet-50 backbone and fine-tuned all layers of the model. We used the COCO evaluation

metrics and report the results in Table 5.4. Focusing on the primary challenge metric for

COCO, i.e. mean average precision (mAP) on intersection over union (IoU) 0.50:0.05:0.95, the

results are similar across the different test sets and are slightly improved when we included the

randomly textured X5 images (F&R). A difference is noticeable on the PASCAL VOC metric,

i.e. mAP on IoU 0.50, but in general the performance drop is not as drastic as for classification

and semantic segmentation. Overall, the object detection model seems to be better suited for

the transfer between different vehicles.

5.2.4 Instance segmentation

For instance segmentation, we used the same classes as for the semantic segmentation and used

the mask mAP COCO evaluation metrics. We fine-tuned the Mask R-CNN [94] model with a

ResNet-50 backbone and considered the same training approach as for object detection. The

results are summarized in Table 5.4. For this setting, including the randomly textured X5 data

improves the generalization and model performance across all IoU evaluations.
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Table 5.4 We report the average precision (AP), in percent, for different tasks and two different

training approaches: Standard X5 dataset (F) and the combination with randomized textures

(F&R). According to the COCO evaluation standard, the trained model is evaluated on the

different test sets of the different cars for different intersection over union (IoU) and object

keypoint similarities (OKS). Top rows: Object detection (mAP). Middle rows: Instance

segmentation (mask mAP). Bottom rows: Keypoint estimation (OKS). Columns: Different IoU

and OKS metric evaluations

X5 Tucson i3 Dataset

0.50:0.95 0.50 0.75 0.50:0.95 0.50 0.75 0.50:0.95 0.50 0.75

43.1 79.9 38.8 37.9 71.7 33.2 38.6 77.2 31.6 F

41.3 77.4 36.1 40.8 71.8 40.8 43.8 80.4 44.8 F&R

(a) Object detection

X5 Tucson i3 Dataset

0.50:0.95 0.50 0.75 0.50:0.95 0.50 0.75 0.50:0.95 0.50 0.75

32.6 59.0 32.5 22.0 49.2 15.7 27.5 51.0 27.0 F

44.9 73.5 49.1 34.3 64.3 31.0 46.9 74.6 52.2 F&R

(b) Instance segmentation

X5 Tucson i3 Dataset

0.50:0.95 0.50 0.75 0.50:0.95 0.50 0.75 0.50:0.95 0.50 0.75

36.0 84.7 12.3 30.6 81.7 5.8 37.9 86.7 17.8 F

35.9 84.7 11.0 31.3 83.4 5.5 37.0 86.9 18.1 F&R

(c) Keypoint detection
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5.2.5 Keypoints for human pose estimation

We retained only two classes for the keypoint estimation for human poses. Either we have a

person (infant in an infant seat, child on a child seat or an adult), or we treat it as background.

We considered a subset of 17 different keypoints, although more are available, e.g. finger

joints. We used the Keypoint R-CNN [94] with a ResNet-50 backbone and considered the same

training approach as for object detection. Again, we use the standard COCO evaluation metric

and report the average precision over different object keypoint similarities (OKS). Including

randomly textured images did not improve the results in contrast to Section 5.2.4.

5.2.6 Comparison with real images

We tested the transferability of a model trained on SVIRO to real infrared images and report

results for instance segmentation to illustrate this. We fine-tuned all layers of a pre-trained Mask

R-CNN model with a ResNet-50 backbone and considered the same classes as for semantic

segmentation. We combined the training images of the i3, Tucson and Model 3 and compare

results on synthetic and real images in the X5 in Fig. 5.5. We reproduced the real ORSS images

in Blender such that the performance can be compared qualitatively between similar real and

synthetic sceneries. Only bounding boxes and masks with a confidence of at least 0.5 are

plotted. The model performs similarly across real and synthetic images and sometimes fails

to detect objects. This is expected as the model has only seen a limited amount of variation.

However, the similar child seat is detected in the real images, but not in the synthetic ones. We

believe that investigations on SVIRO are transferable to real applications as the resulting model

behaves similarly on real and synthetic images. Additional realistic effects could be applied to

close the synthetic gap even further [142]. Since only class labels are available for ORSS, we

could not evaluate the model performance quantitatively.

In Fig. 5.6 we provide additional examples of the instance segmentation mask predictions.

Some of the infant seats (red) with sun-protection are classified as an everyday object (light

blue), however, this is understandable as we did not have any infant seats with sun-protection

in the training data. Nevertheless, as some of those infant seats with sun-protection are

classified correctly, we believe that this is in favor of our assumption that insights on SVIRO

are transferable to real images. As the model was trained on a very limited amount of variation,

some objects are not detected at all. We believe this will be improved once generalization on

SVIRO is enhanced as well.
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ORSS SVIRO

Fig. 5.5 We compare results for similar scenes from real active infrared images (first column)

in an X5 and reproduced the same sceneries in Blender (second column). The first row

compares real and synthetic images. The remaining rows compare instance segmentation mask

predictions. The model performs similarly on both setups and the similar child seat is detected

in the real images, but not in the synthetic ones.
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Fig. 5.6 Instance segmentation predictions on real images by a model fine-tuned on SVIRO.
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5.2.7 Conclusion

Our benchmark addresses real-world engineering obstacles regarding the robustness and gener-

alization of machine learning models. Using SVIRO and ORSS, we showed in our baseline

evaluation that traditional and deep learning approaches, although commonly used in practice,

drastically decrease in performance for solving the same task in a new vehicle interior when

trained in a setting with limited variations without taking additional precautions. Models

cannot generalize well to new intra-class variations, even in the car they were trained on. The

performance fluctuates a lot: a model with the same performance on the test set of the training

vehicle can have a very different behavior on unseen vehicles. Sometimes a model performs

equally well on two unseen vehicles, sometimes it performs significantly better on one of both,

and sometimes the best model on unseen vehicles is not the best one for the test set of the

training vehicle. Consequently, no reliability can be guaranteed and the presented approaches

do not fully grasp the underlying task, although the environment and the objects are similar.

Including randomized images increases the performance, but to be applicable in real-world

applications further improvements need to be investigated and developed. Hence, additional

investigations need to be performed to better understand the behavior of machine learning

models, which will be presented throughout the rest of this thesis.

5.3 ORSS

In this last section, we will provide some baseline results on ORSS to get a feeling for the test

accuracy and vehicle-to-vehicle transferability for different commonly used CNNs, but also for

some baseline autoencoder models.

Although these baseline results could probably be improved by a dedicated hyperparameter

search, we decided to use for the autoencoder models the same hyperparameters as for the

results presented in Section 5.1 and Chapter 2: the SSIM reconstruction loss, a batch size of 64,

a learning rate of 0.001 with a weight decay of 0.3 using the AdamW optimizer for 1000 epochs.

No augmentation but random horizontal flipping was applied to the training images. After

the autoencoder training, we trained support vector machines, nearest neighbour classifiers

or single hidden layer MLPs in the latent space using both the input images and their flipped

versions. The CNNs were either trained from scratch, or the last block or all the layers were

fine-tuned. We used a batch size of 64, a learning rate of 0.0001 and trained for 200 epochs.

The models were either trained on the Sharan or the X5 vehicle from the ORSS dataset. In

both cases, the resulting models were then evaluated on the test sets of both vehicles. This way

we obtain the performance on the test set in the same vehicle the model was trained on, but we

also get an assessment of its transferability to a novel vehicle interior.



5.3 ORSS 107

Table 5.5 Comparison of classification accuracies (in percentage) for different CNNs trained

under different training regimes: the models were trained from scratch, or all layers or the last

block only were fine-tuned. We also report results for several autoencoder variations for which

we train different classifiers in the latent space: support vector machine, nearest neighbour

(1-NN) and a single layer MLP. The models were either trained on the Sharan or the X5 vehicle

of the ORSS dataset and then evaluated on the test sets of both vehicles. The experiments were

repeated 10 times and the mean and standard deviation is reported. We highlight the best results

for the different training-test cases for both CNNs and autoencoders respectively in gray.

Trained on Sharan Trained on X5

Model Variation Sharan X5 Sharan X5

VGG-11 Scratch 78.4±2.0 4.9±1.5 13.3±1.8 66.2±3.9
VGG-11 Fine-tune 84.6±1.7 15.0±4.7 66.6±5.7 85.9±2.2
VGG-11 Last block 78.8±1.0 30.8±3.7 60.6±4.5 79.9±3.4

ResNet-50 Scratch 61.9±4.3 11.8±0.8 11.7±0.8 73.7±1.4
ResNet-50 Fine-tune 80.8±6.4 4.2±3.4 50.4±4.8 87.6±2.9
ResNet-50 Last block 66.3±5.2 20.0±2.4 52.8±2.1 81.1±2.0

DenseNet-121 Scratch 78.7±1.2 12.6±2.0 19.5±2.6 75.5±3.7
DenseNet-121 Fine-tune 79.5±10.0 22.5±5.9 53.2±7.1 88.3±2.5
DenseNet-121 Last block 62.9±2.8 16.0±1.9 47.2±2.5 70.0±2.0

AE SVM 45.8±14.1 5.1±2.2 12.4±2.1 31.9±5.4
TAE SVM 66.5±2.8 6.0±1.9 16.6±2.6 71.6±2.1
II-AE SVM 67.7±1.6 7.1±0.9 10.6±1.4 60.4±4.0

AE 1-NN 46.0±7.8 4.0±0.4 11.3±2.0 33.5±1.7
TAE 1-NN 69.8±2.3 7.3±1.2 17.7±2.3 80.8±2.1
II-AE 1-NN 65.9±2.4 8.0±1.6 9.6±1.3 64.2±2.4

AE MLP 40.5±4.7 5.0±1.3 10.0±2.6 32.2±3.0
TAE MLP 69.3±2.2 7.2±1.1 17.3±2.1 81.3±2.2
II-AE MLP 61.0±3.7 6.5±1.6 10.7±1.6 60.1±4.2
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The experiments were repeated for ten runs and the mean performance and its standard

deviations are reported in Table 5.5. The results show that obtaining a very high test performance

cannot trivially be achieved, but some CNN variations, as well as the TAE, do obtain an

acceptable classification accuracy. Further, the transfer to a novel vehicle does not work at

all and the performance decreases drastically. Under these circumstances, it would not be

possible to deploy a model trained in a single vehicle interior to a novel vehicle without further

adaptations. It can also be observed that some vehicles are more beneficial for training than

others: training on the X5 and evaluating on the Sharan results in a better performance than the

other way around.

Although the autoencoder models perform worse than the pre-trained CNNs, we want

to emphasize that the autoencoder models were not pre-trained on a large amount of data.

Comparing the autoencoders against CNNs trained from scratch, we can observe that the

former perform better. It is expected that the performance can be improved by dedicated

regularization for the autoencoder model, or when additional data is being integrated. Further,

these results provide evidence that using pre-trained CNNs is a beneficial design choice to

extract features which transfer better. Consequently, the combination with an autoencoder could

be beneficial, as proposed by the extractor autoencoder presented in Section 4.5. We hence

believed that autoencoders had promising prospects and we will show in the next chapters their

benefits when novel training strategies are being adopted.

5.3.1 Conclusion

Similarly to the results on SVIRO, we showed that the vehicle-to-vehicle transferability is

indeed challenging if no additional precautions are taken. Neither the deployment of commonly

used CNNs nor the one of autoencoders can be expected to work reliably in a novel vehicle

interior. Overall, we showed that the industrial application investigated in this thesis is indeed

challenging and that improvements are needed. We will hence present in the following chapters

further investigations to deepen our understanding of the tasks at hand and inspect our proposed

novel design choices to alleviate some of the challenges at least partially.



Chapter 6

Vehicle-to-vehicle generalization

Regarding the generalization of machine learning models between different car interiors, we

formulate the criterion of training in a single vehicle: without access to the target distribution

of the vehicle the model would be deployed to, neither with access to multiple vehicles during

training. This is in contrast to common domain shift problem formulations [195], which

consider the integration of multiple source domains, or the target domain during training.

In this chapter, we perform a detailed investigation on SVIRO and propose a first, simple

autoencoder-based approach as a baseline model to improve the transferability. These results

will highlight the usefulness of the autoencoder model design for our problem formulation and

motivate the design choices of the next chapters. The autoencoder is on par with commonly

used classification models when trained from scratch and sometimes outperforms models

pre-trained on a large amount of data. This is critical in case pre-trained models cannot be used

due to licensing constraints. Moreover, the autoencoder can transform images from unknown

vehicles into the vehicle it was trained on. These results are corroborated by an evaluation on

real infrared images from ORSS.

6.1 Introduction

The deployment of deep learning-based approaches in the automotive industry needs to be

corroborated by robustness and generalization guarantees, especially when the models’ predic-

tions would be used for safety critical applications, e.g. the adjustment of the strength of the

airbag deployment in case of an accident [69, 197]. In this chapter, we will highlight some of

the unique challenges for the vehicle interior regarding the robustness and generalization of

machine learning models and we will thoroughly extend the baseline results from the previous

chapter: we will report on a more elaborated investigation on classification models and develop
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a b c d

Fig. 6.1 Synthetic images from SVIRO. Left: infant seat with a baby, Right: child seat with a

child. Training on images from a single vehicle interior (a): How can we improve robustness on

same class instances, but to a new vehicle (b)? Can the model generalize to new class instances

in the vehicle it was trained on (c)? How can we improve generalization to new class instances

in a new vehicle (d)?

and evaluate a first approach on autoencoder models to motivate the choice of the latter for the

rest of the thesis.

Machine learning models trained in a single vehicle interior take non-relevant characteristics

of the background into account for their decision [237], because the training data contains

similar backgrounds for all images. Consequently, the performance drops drastically if models

trained in a single car interior are used in a different vehicle. Repeating the data recording and

annotation generation process for each new car model and automotive manufacturer implies

a time-consuming and costly development pipeline. Alternative sensor data (e.g. depth maps

computed by time-of-flight sensors and RADAR [52]) and the inclusion of data from different

vehicles (e.g. domain generalization) would improve the transferability. However, improving

the foundations of deep learning models is paramount for safety critical applications. As

illustrated in Fig. 6.1, we formulate the challenge of training in a single vehicle interior and

generalizing to unseen cars without using images from the target distribution or from multiple

vehicles. Even more difficult, the models’ generalization to new objects in new environments

should be examined as well. This can be considered as an extreme form of domain adaptation

[188] and is related to (generalized) zero-shot learning [263, 34]. We demonstrate that transfer

learning is not sufficient to ensure consistency between different vehicles for the aforementioned

challenging training conditions. Autoencoders with a classifier in the latent space achieve

accuracies on par with classification models. Moreover, the autoencoders can transform images

from unknown vehicles to the one they were trained on. We compare different reconstruction

cost functions for the training of autoencoders which lead to different behaviors for classification

and reconstruction transferability. We corroborate the inter-vehicle transformation by showing

that it works on real ORSS infrared images as well, even when trained on synthetic images. The

resulting advantages are two-fold: we need less data to achieve similar performances, which is

important when pre-trained models cannot be used due to licensing constraints. Further, as we
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a b c

Fig. 6.2 Image (a) from the SVIRO dataset is augmented using different random transformations

to form image (b). The latter is used as input to the autoencoder, which should learn to output

image (c), i.e. transform (b) back to (a).

will show later in this work, the inclusion of prior knowledge in the latent space of autoencoders

further improves the robustness and transferability.

6.2 Method

The autoencoder baseline method presented in this chapter is based on exploiting the disad-

vantage of our problem formulation to our advantage. As all the images from a single vehicle

interior contain similar backgrounds, an autoencoder should be able to learn to reconstruct

the vehicle interior robustly. If we augment the training images, then the autoencoder should

easily learn to clean the augmented images, because the clean backgrounds do not undergo a

high variability. Example images are shown in Fig. 6.2: we augment the training images (a)

to obtain a modified version (b) by changing colors and the perspective and adding random

noise. The autoencoder then reconstructs (c), which should be the initial clean version (a). This

can be considered as a more extreme version of de-noising and in-painting [266, 252], see

Section 2.5.1, and can be considered as a weak version of the PIRL. The autoencoder needs to

map different backgrounds and perspectives to similar latent space representations to correctly

reconstruct the background. Hence, a classifier using the latent space vector as input should

learn to neglect background information more easily than using the input image.

6.2.1 Architecture details

Our autoencoder network architecture is inspired by SegNet [12]: we keep track of the indices

from the max-pooling in the encoder part and use them for the max-unpooling in the decoder

part. The network architecture is illustrated in Fig. 6.3: All convolutional layers use 3× 3

kernels with a padding of 1 and a stride of 1. Each convolutional layer is followed by batch

normalization and a ReLU activation function. After each block of two convolutional layers

we apply a max-pooling (or max-unpooling) layer with a kernel size of 2×2 and a stride of 2
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Fig. 6.3 Our model consists of a simple autoencoder model with a classifier in the latent space.

We use four down-sample and four up-sample blocks: each consisting of two convolutional

layers. The number of filters and features are specified for each layer. Max-unpooling (blue)

uses the indices from the down-sampling counter-part (red). We use three independent softmax

layers for the classification. Illustrated using PlotNeuralNet [91].

and we double (or halve) the amount of filters. The four down-sampling blocks are followed

by two fully connected layers (+ intermediate ReLU) where the last one generates the latent

vector. The decoder is exactly the reverse of the encoder network with a final sigmoid function.

The latent vector is used as input for the decoder network and the classification network. The

latter consists of two fully connected layers (+ intermediate ReLU) where the last one outputs

three predictions: one for each seat position (left, middle and right). Hence, we need to apply

three independent softmax functions to the output of the last layer. This way, we implicitly

force the network to learn to use each classifier for a different seat position. Moreover, we can

use the whole image as input compared to using an individual image for each seat position.

Thus, passengers leaning over to the neighboring seat can be easier classified. Additionally,

the middle prediction can be dropped in case of a two-seated car, which is not possible if

you classify the image as a whole. This design choice is necessary for this chapter and its

investigated benchmarks in order to compare the models across all available cars, i.e. two- and

three-seated. Further, we will also report results for the same architecture with nearest neighbor

up-sampling instead of max-unpooling, i.e. without using skip connections. This will provide

some comparisons and insights such that we can motivate the selection of one of the two design

choices for the rest of the thesis.



6.3 Experiments and results 113

We define the cost function L(x, x̂;θ ,φ ,ω) as a combination of the reconstruction loss for

the whole image and the classification loss for each seat position:

L(x, x̂;θ ,φ ,ω) = r
(

x,dθ (eφ (x̂));θ ,φ
)

− γ
2

∑
i=0

pi(x) log
(

cωi
(eφ (x̂))

)

, (6.1)

where eφ is the encoder, dθ the decoder, cωi
the classifier for seat i where i corresponds to

the left, right and middle seat position, pi(x) is the true probability distribution for x for seat

i, and γ ≥ 0 is a hyperparameter to weight the classification loss. The reconstruction loss

r(·, ·,θ ,φ) is computed between the clean input image x (Fig. 6.2.a) and the reconstruction

dθ (eφ (x̂)) (Fig. 6.2.c) of the augmented image x̂ (Fig. 6.2.b). In this chapter, we consider for

the reconstruction loss the MSE, SSIM, MS-SSIM and the perceptual loss (PC).

6.3 Experiments and results

We will present a comparison between a representative selection of classification models. We

start by establishing a baseline regarding the transferability between different vehicle interiors

and their generalization to new class instances. These results will be compared against our

autoencoder approach for which we will conduct additional investigations to highlight some

of the advantages compared to classification models: the autoencoder is able to transform

sceneries from unknown vehicles back to the vehicle it was trained on. The latter is corroborated

by a qualitative and quantitative evaluation on real infrared images to show the applicability to

a real application, even when trained on synthetic data.

6.3.1 Training data

We limited our training on the eight vehicles with three seat positions, but the evaluation will

be performed on all ten vehicles such that the models also need to generalize to the two-seated

cars. For the latter, the model output for the middle seat will be discarded. Each vehicle

consists of a train (2500 images) and a test (500 images) split: SVIRO uses different objects

(but identical ones across the vehicles) for the train and test split to evaluate the generalization

to unknown vehicle interiors either using known or unknown class instances. When referring

in the following to training images from unknown vehicles, those images had not been used

during training, but they contain class instances of seen objects. We conducted our experiments

on the grayscale images (simplified infrared imitations) which helps to become less susceptible

to changing illumination.
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6.3.2 Training details

All models were trained using the following data augmentations: we applied a random horizon-

tal flip (labels need to be adopted as well) and randomly used transformations from the imgaug

library [116] (PerspectiveTransform, Emboss, Invert, SigmoidContrast, AllChannelsCLAHE

and AdditiveLaplaceNoise). The perspective transformation has the largest impact on improv-

ing the generalization between the vehicles. Images were center-cropped to 640x640 and then

resized to 128×128 for the autoencoder and 224×224 for the classification models to match

the pre-defined architectures and the resolution of the data used for pre-training. For the latter,

the grayscale images were repeated across the channel dimension to form a 3-channel image.

The training dataset was partitioned randomly according to an 80:20 split for training and

evaluation (the evaluation data was augmented for better transferability assessment), where the

latter was used to perform early stopping with respect to classification accuracy. The latter is

necessary to exclude overfitting, particularly because the dataset sizes are rather small. The

models were trained for 1000 epochs with a batch size of 64. The random seeds of all libraries

were fixed for all experiments. Even though the classes are imbalanced, we did not consider

a weighted loss or imbalanced sampling, because some models are capable of achieving a

good performance on the training objects in unknown vehicles. While we evaluated weighted

loss and imbalanced sampling in a pre-study, it did not have a significant impact on the model

performances. Since SVIRO contains seven classes, all the classification networks output 21

values which corresponds to three predictions: one for each seat position (left, middle and

right). The classification loss is computed by adding up three cross-entropy losses (one for

each seat position) as formulated in Eq. (6.1).

6.3.3 Representative classification models

We trained six classification models (DenseNet-121 [105], MobileNet V2 [219], ResNet-18

[93], ResNet-50 [93], SqueezeNet V1.1 [108] and VGG-16 [225]) as implemented and pre-

trained in torchvision from scratch or fine-tuned all layers. We replaced the last fully-connected

layer with an output similar to the autoencoder classification network explained in Section 6.2.

Fine-tuning the classification layer or last-block only behaves similarly as shown in the baseline

evaluation in Chapter 5. We used the Adam optimizer with a learning rate of 0.0001. While we

used weight decay for the autoencoder training, we decided not to use it for the classification

models because of the conducted hyperparameter search reported in Table 6.1.

The training images were augmented using the same transformations as for the autoencoder

approach. For each classification model and each training method (scratch and fine-tuned), we

trained an individual model on the training images of each vehicle and then evaluated it on the
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Table 6.1 We tested the hyperparameters used for the autoencoder training on the classification

models for a fair comparison between both models’ architectures. The classification models

were trained on the Tesla vehicle and evaluated on all training and test images of the nine

unknown vehicles. We tested the models when trained from scratch or when fine-tuning all

layers from a pre-trained one. There is no clear winner, but we decided not to use weight decay

as it performs slightly better.

Model Weight decay Approach Train Accuracy Test Accuracy

VGG-16

0
Scratch 78.3 50.6

Fine-tune 94.0 61.8

0.01
Scratch 82.5 47.0

Fine-tune 92.9 61.4

DenseNet-121

0
Scratch 76.2 47.3

Fine-tune 88.8 64.5

0.01
Scratch 62.8 42.7

Fine-tune 84.5 59.2

MobileNet

0
Scratch 76.7 49.4

Fine-tune 91.5 60.6

0.01
Scratch 79.8 50.8

Fine-tune 91.7 58.9

ResNet-50

0
Scratch 80.1 51.9

Fine-tune 88.0 57.4

0.01
Scratch 75.0 46.8

Fine-tune 84.2 51.9

ResNet-18

0
Scratch 75.4 47.8

Fine-tune 86.3 57.2

0.01
Scratch 80.4 52.9

Fine-tune 86.8 54.9

SqueezeNet

0
Scratch 69.6 46.1

Fine-tune 83.3 50.2

0.01
Scratch 71.3 45.3

Fine-tune 83.2 50.6
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training and test images of all the other nine unknown vehicles. The results are summarized

in Table 6.5 and Table 6.6. A performance comparison for models trained from scratch on

the Tesla vehicle and evaluated on the training images of all unknown vehicles is reported in

Table 6.2 and on the test images in Table 6.3. The models’ performances vary a lot across

the different vehicle interiors: higher accuracy performance on ImageNet does not guarantee

a better inter-vehicle transferability (e.g. DenseNet compared to MobileNet). Moreover, a

performance evaluation on one vehicle does not necessarily transfer to a similar performance on

other vehicles (e.g. ResNet-50 vs. MobileNet on the A-Class compared to most other vehicles).

Hence, it is difficult to assess in advance how well a model might perform in a new vehicle,

even if only class instances seen during training are considered. Moreover, evaluating a model’s

performance on a subset of vehicles does not guarantee a similar behavior in a different car.

Table 6.2 provides a comparison between training from scratch and fine-tuning classification

models against the autoencoder approach. The fine-tuned models achieve overall a higher

accuracy, however, the performance still fluctuates between different vehicle interiors. The

performance on the Tiguan is worse compared to all other vehicles, most likely because of the

unique pattern and color difference in the texture of the rear seats: e.g. see last row of Fig. 6.6.

6.3.4 Proposed autoencoder classification

We will present results on the autoencoder architecture introduced in Section 6.2 and compare

them against the models obtained in Section 6.3.3. All models use a latent space of dimension

64, the AdamW optimizer with a learning rate of 0.0001 and a weight decay of 0.01. We used

γ = 75 in Eq. (6.1) to weight the classification loss with respect to the MSE reconstruction loss

according to the conducted hyperparameter search in Table 6.4. All other reconstruction losses

used γ = 1.

We trained an individual autoencoder on each vehicle and for each reconstruction cost

function (MSE, SSIM, MS-SSIM and perceptual loss). If not stated otherwise, we used max-

unpooling for up-sampling. The different autoencoder models are compared in Table 6.2 against

the results of the classification models obtained in Section 6.3.3: the models were trained on

the Tesla vehicle and compared on the training images of the nine vehicles not seen during

training. Different reconstruction losses influence the transferability of the reconstruction

quality, but also the classification accuracy. The MS-SSIM cost function yielded the best

accuracy when trained on the augmented training images while the perceptual loss generated

the best reconstruction quality: see Section 6.3.7 for a visual comparison. Comparing the

mean performance across all vehicles, all the different autoencoder models outperform the

classification models trained from scratch and sometimes even exceed the performance of the

fine-tuned models pre-trained on a large amount of data. Autoencoders with nearest neighbor
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Table 6.2 Comparison of the accuracies (in percentage) across different vehicles. The clas-

sification models were trained from scratch (S) or fine-tuned (F) and the autoencoders with

and without (W) max-unpooling were trained from scratch only with different reconstruction

losses. The models were trained on the augmented training images of the Tesla vehicle and

tested on the training images of all vehicles not seen during training. Abbreviations: Dense is

DenseNet121, Mobile is MobileNet, Res-50 is ResNet-50, Res-18 is ResNet-18, Squeeze is

SqueezeNet and PC is perceptual loss. Best results without pre-training are highlighted for a

fairer comparison between autoencoder and classification model.

Trained on Tesla. Tested on vehicle:

A-Class Escape Hilux Lexus Tiguan Tucson X5 i3 Zoe Mean Std

VGG-16
F 93.6 93.6 92.5 95.3 78.8 98.6 96.5 99.1 98.2 94.0 5.8

S 73.0 88.8 69.9 87.2 59.4 89.7 83.4 80.8 72.9 78.3 9.6

Dense
F 81.3 90.2 91.4 93.4 83.2 86.4 96.7 99.4 77.4 88.8 6.9

S 65.1 86.2 63.7 71.1 69.5 84.8 84.1 91.0 70.2 76.2 9.7

Mobile
F 80.1 86.1 93.3 94.9 81.4 94.5 98.0 98.6 96.2 91.5 6.7

S 82.6 76.2 71.8 80.4 65.4 77.7 78.1 77.6 80.4 76.7 4.9

Res-50
F 76.0 89.0 84.8 91.1 79.2 93.5 98.0 96.8 83.5 88.0 7.2

S 75.8 81.8 75.8 72.8 63.3 86.0 89.8 89.3 86.6 80.1 8.4

Res-18
F 82.1 88.4 79.0 89.3 77.7 86.0 98.3 98.6 77.1 86.3 7.7

S 61.2 78.5 70.1 70.1 63.0 84.2 85.6 94.4 71.2 75.4 10.4

Squeeze
F 76.7 84.8 69.2 76.8 85.5 86.5 93.6 95.2 81.8 83.3 7.8

S 69.0 72.8 56.6 58.4 69.8 75.6 81.6 80.1 62.4 69.6 8.5

SSIM
78.4 85.5 82.5 76.0 70.9 93.5 90.2 87.2 87.1 83.5 6.8

W 81.6 86.0 85.9 85.0 65.7 92.0 88.7 90.0 91.5 85.1 7.6

MSSSIM
84.0 86.1 87.9 86.8 65.7 94.7 89.6 93.7 91.0 86.6 8.1

W 73.9 82.7 82.1 84.1 58.3 89.8 88.5 88.4 84.4 81.4 9.3

PC
80.8 86.8 82.3 87.0 63.1 92.9 84.5 94.2 90.8 84.7 8.8

W 81.1 80.7 83.9 82.5 61.1 91.3 83.4 90.3 89.6 82.7 8.5

MSE
78.8 86.4 82.0 80.6 60.0 92.5 84.6 93.9 92.4 83.5 9.8

W 81.7 81.3 78.1 83.3 61.1 93.0 81.8 88.8 91.6 82.3 8.9
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Table 6.3 Additional results for Table 6.2. Comparison of the accuracies (in percentage)

across the different vehicles for several classification models and autoencoders with different

reconstruction losses. The classification models were trained from scratch (S) or fine-tuned

(F) and the autoencoders with and without (W) max-unpooling were trained from scratch only.

The models were trained on the augmented training images of the Tesla vehicle and tested on

the test images (Table 6.2 reported results for training images) of all vehicles not seen during

training. The autoencoders outperform all classification models when trained from scratch.

Abbreviations: Dense is DenseNet121, Mobile is MobileNet, Res-50 is ResNet-50, Res-18 is

ResNet-18, Squeeze is SqueezeNet and PC is perceptual loss. Best results without pre-training

are highlighted for a fairer comparison between autoencoder and classification model.

Trained on Tesla. Tested on vehicle:

A-Class Escape Hilux Lexus Tiguan Tucson X5 i3 Zoe Mean Std

VGG-16
F 64.9 67.7 55.1 67.1 50.4 65.1 67.7 62.5 55.4 61.8 6.1

S 46.9 56.2 42.7 59.9 39.2 61.7 57.7 49.7 41.5 50.6 8.0

Dense
F 61.4 69.5 67.0 74.9 57.7 57.3 77.0 66.8 49.1 64.5 8.5

S 42.3 55.6 40.2 44.9 47.1 53.9 58.6 48.2 34.6 47.3 7.3

Mobile
F 54.8 57.8 62.2 68.4 54.4 58.8 72.1 63.4 53.2 60.6 6.2

S 55.1 48.1 49.9 55.2 46.0 53.1 53.9 40.5 43.1 49.4 5.1

Res-50
F 47.5 61.8 51.7 61.6 53.7 60.9 70.1 61.2 48.1 57.4 7.1

S 53.1 56.5 47.7 50.9 41.8 56.9 60.6 49.9 49.7 51.9 5.3

Res-18
F 54.6 68.8 50.3 64.9 50.6 55.3 70.9 59.8 39.5 57.2 9.4

S 39.5 56.9 43.4 46.0 38.0 54.3 60.3 54.8 37.2 47.8 8.4

Squeeze
F 47.3 55.1 40.7 47.1 56.5 51.6 62.0 54.1 37.3 50.2 7.4

S 47.0 51.0 37.3 42.7 50.9 49.1 59.3 45.5 32.0 46.1 7.6

SSIM
52.9 61.3 53.0 49.8 50.9 62.1 66.5 58.9 47.8 55.9 6.1

W 54.9 60.3 50.3 59.5 49.7 61.4 62.5 53.6 49.3 55.7 5.0

MSSSIM
60.1 63.9 56.8 60.5 49.8 65.0 63.0 56.5 46.2 58.0 6.1

W 50.4 59.9 54.3 61.2 48.5 60.7 63.1 53.7 47.8 55.5 5.5

PC
51.0 59.3 47.9 56.7 49.3 61.1 59.5 56.9 47.3 54.3 5.1

W 62.5 59.6 57.1 61.1 52.3 60.5 63.8 58.5 49.7 58.3 4.4

MSE
57.8 61.4 57.4 61.1 50.5 62.4 61.7 61.7 49.8 58.2 4.6

W 61.3 60.4 53.3 62.1 50.6 61.8 65.1 59.6 49.5 58.2 5.3
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Table 6.4 Comparison of different γ values to weight the classification loss accordingly with

the MSE reconstruction loss. The autoencoder was trained on the Tesla vehicle and evaluated

on the training and test images of all unknown vehicles. The effect of γ on the performance

does not seem to follow a regularity, but 75 seems to provide a good trade-off.

γ

1 25 50 75 (used) 100 125 150 175

Training Accuracy 61.6 76.7 77.9 83.5 82.8 82.5 83.6 82.7

Test Accuracy 47.2 55.2 51.2 58.2 54.8 55.5 55.8 58.1

up-sampling perform slightly better with respect to accuracy, but cannot compete with the

domain transformation presented in Section 6.3.7.

6.3.5 SVIRO benchmark results

The official SVIRO benchmark on the website reports results on the mean test classification

accuracy: a model should be trained in a single vehicle and the mean accuracy on the test

images across all nine vehicles not seen during training is taken as the score. Each of the

aforementioned models was trained individually on each vehicle and then evaluated on the

nine unknown vehicles: an overview of the performances is reported in Table 6.5. We report

the mean accuracy on training on the different vehicles and evaluating on all remaining nine

vehicles: Autoencoders perform better than training classification models from scratch, but no

method outperforms consistently.

6.3.6 Ablation study

Apart from comparing the autoencoder based approach against the classification models, we also

investigated the method itself in more details. We trained an individual MS-SSIM autoencoder

on each of the eight vehicles. In Fig. 6.4a, the resulting models are compared individually on

the training images of each of the nine vehicles not seen during training. The results on the test

images are reported in Fig. 6.4b. Depending on which vehicle the models were trained on, the

trend in their overall performance can be quite different and fluctuate a lot: some vehicles are

more advantageous while others lead to worse results. The fluctuation for the generalization to

unknown class instances in the vehicle the models were trained on (⋆) is smaller than for the

generalization between different vehicles. Although generalizing to new class instances is hard,

this gives a hint that the changing background has a large influence on the models’ robustness.

As we did not train on two-seated cars no data points are available for those.
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Table 6.5 Overview of the SVIRO leaderboard accuracies (in percentage). The models were

trained on different vehicles and then evaluated on the test images of all nine unknown vehicles.

Using the augmented images, the autoencoders with and without (W) max-unpooling and the

classification models were trained from scratch (S) or fine-tuned (F). Abbreviations: Dense is

DenseNet121, Mobile is MobileNet, Res-50 is ResNet-50, Res-18 is ResNet-18, Squeeze is

SqueezeNet and PC is perceptual loss. Best results without pre-training are highlighted for a

fairer comparison between autoencoder and classification model.

Trained on

A-Class Escape Hilux Lexus Tesla Tiguan Tucson X5 Mean Std

VGG-16
F 61.3 62.6 54.1 58.1 61.8 48.5 66.3 58.3 58.9 5.2

S 51.9 49.3 49.7 60.6 50.6 44.6 45.9 52.0 50.6 4.5

Dense
F 59.2 58.1 60.9 67.4 64.5 49.2 68.4 52.0 60.0 6.4

S 42.4 49.4 47.6 48.2 47.3 35.5 46.6 40.0 44.6 4.5

Mobile
F 51.8 47.9 58.3 57.0 60.6 45.5 53.0 51.2 53.2 4.9

S 46.5 50.9 45.1 53.6 49.4 44.7 47.9 47.4 48.2 2.8

Res-50
F 49.1 49.7 52.5 49.1 57.4 50.0 60.0 49.2 52.1 4.0

S 48.3 47.1 41.3 48.5 51.9 35.7 44.7 43.1 45.1 4.7

Res-18
F 56.6 52.3 56.2 59.5 57.2 51.2 58.7 42.4 54.3 5.2

S 47.6 49.4 45.6 52.8 47.8 40.9 49.9 46.8 47.6 3.3

Squeeze
F 55.0 51.1 54.5 56.4 50.2 53.4 51.4 45.7 52.2 3.2

S 52.4 48.8 48.4 51.2 46.1 43.4 50.6 39.2 47.5 4.1

SSIM
54.8 52.0 49.1 58.2 55.9 42.1 50.4 53.3 52.0 4.6

W 49.9 53.5 51.5 61.6 55.7 41.9 53.6 59.1 53.3 5.6

MSSSIM
49.8 47.2 47.8 58.4 58.0 41.2 53.8 50.0 50.8 5.4

W 51.6 53.7 48.5 57.6 55.5 43.2 52.1 52.0 51.8 4.1

PC
52.5 56.0 45.2 61.2 54.3 39.1 46.1 52.9 50.9 6.6

W 52.3 53.1 51.2 59.7 58.3 44.8 55.1 53.9 53.6 4.3

MSE
45.3 49.5 51.1 59.0 58.2 46.8 44.5 55.0 51.2 5.3

W 55.0 52.9 49.9 60.6 58.2 46.2 47.6 52.9 52.9 4.7
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Table 6.6 Additional results for Table 6.5. The models were trained on different vehicles and

then evaluated on the training images (Table 6.5 reported results for test images) of all nine

unknown vehicles. We compare the accuracy (in percentage) for different models presented in

this work. The autoencoders with and without (W) max-unpooling and the classification models

were trained from scratch (S) or fine-tuned (F). The main paper compared performances on the

test images. Abbreviations: Dense is DenseNet121, Mobile is MobileNet, Res-50 is ResNet-50,

Res-18 is ResNet-18, Squeeze is SqueezeNet and PC is perceptual loss. Best results without

pre-training are highlighted for a fairer comparison between autoencoder and classification

model.

Trained on vehicle

A-Class Escape Hilux Lexus Tesla Tiguan Tucson X5 Mean Std

VGG-16
F 86.0 90.7 86.8 92.2 94.0 75.4 97.0 83.5 88.2 6.4

S 76.3 80.5 82.4 89.5 78.3 66.9 78.5 82.5 79.4 6.0

DenseNet
F 85.5 86.6 94.0 93.9 88.8 75.8 93.6 81.2 87.4 6.2

S 65.6 76.2 70.6 77.4 76.2 53.1 76.0 64.5 70.0 7.9

Mobile
F 80.8 77.2 90.2 86.5 91.5 77.1 85.6 81.5 83.8 5.2

S 69.8 69.1 69.2 76.8 76.7 60.3 65.9 73.9 70.2 5.2

Res-50
F 82.9 78.6 80.7 80.4 88.0 74.1 89.4 81.4 81.9 4.6

S 70.9 71.3 63.2 74.0 80.1 51.6 68.8 72.6 69.1 8.0

Res-18
F 84.3 84.4 86.2 93.1 86.3 75.1 87.6 75.7 84.1 5.6

S 72.4 72.9 69.1 83.9 75.4 59.6 74.8 72.8 72.6 6.3

Squeeze
F 84.2 77.3 83.0 84.3 83.3 76.9 80.7 74.3 80.5 3.6

S 78.5 72.9 68.3 76.3 69.6 60.6 72.7 64.2 70.4 5.6

SSIM
76.2 70.5 72.0 82.6 83.5 59.7 73.5 80.0 74.8 7.3

W 68.3 71.4 72.4 85.2 85.1 56.5 76.4 86.4 75.2 9.6

MSSSIM
70.2 58.2 69.5 85.4 86.6 56.9 79.1 75.1 72.6 10.5

W 71.9 73.5 69.4 81.6 81.4 58.4 77.2 76.8 73.8 7.1

PC
78.6 77.5 66.1 86.3 84.7 55.9 69.7 77.8 74.6 9.5

W 72.3 74.6 71.9 85.9 82.7 60.2 77.3 78.5 75.4 7.3

MSE
68.1 70.0 72.0 81.5 83.5 63.8 69.2 77.1 73.2 6.4

W 75.1 71.5 68.8 86.7 82.3 59.4 68.7 76.0 73.6 8.0
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(a) Training images - unknown vehicles (b) Test images - unknown vehicles

Fig. 6.4 We trained an individual MS-SSIM autoencoder on each of the eight vehicles. The

models were evaluated on the training images (left) and the test images (right) of the nine

vehicles not seen during training. Different colors represent the vehicles each model was trained

on. The performances of each model across all unseen vehicles are connected by dotted lines

to ease the visualization. The performances on the test images of the vehicle the models were

trained on (⋆) are plotted as well.

In Fig. 6.5, we compare the confusion matrices from three unknown vehicles with similar

mean accuracy by the model trained on the Tesla vehicle: in the Escape the model performs

worse on adults and everyday objects and it misclassified many samples as empty while in the

Hilux more infant seats are misclassified as unoccupied. On the Lexus, the model performs

better on child seats, but more samples are wrongly predicted as people. Hence, a same model

can behave quite differently (even with similar mean accuracy) on different vehicles such that

no guarantees can be provided without additional precautions.

6.3.7 Vehicle domain transformation

An additional advantage of the autoencoder approach is the possibility to exploit the disad-

vantage of our training environment: since all images are from the same vehicle interior,

the sceneries will not undergo many changes (besides the objects on the seat). Hence, by

augmenting the training images and using the autoencoder as a denoiser, the model learns to

transform images back to the original environment. This leads to useful properties when images

from an unknown vehicle are used as input. In Fig. 6.6 we compare input images from six

unknown vehicles against their transformed versions computed by autoencoders from Table 6.2

trained with different cost functions on images from the Tesla. The same experiment is repeated

for autoencoder using nearest neighbor up-sampling in Table 6.7, but the results are blurrier

and less stable. The autoencoders are able to transform the input images to a scenery in the

vehicle the models were trained on by replacing the rear bench and adapting the perspective
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Fig. 6.5 Confusion matrices for the MS-SSIM autoencoder from Fig. 6.4 trained on the Tesla.

Evaluation was done on the training images from the Escape (left), Hilux (middle) and Lexus

(right). Although the model achieves a similar overall accuracy on all three vehicles, the

mis-classifications are quite different. Abbreviations used: CS = child seat, IS = infant seat and

E-* stands for empty.

accordingly. The different cost functions have an influence on the transferability and quality of

the transformations. Overall, SSIM and the perceptual loss perform best. The reconstruction

of the objects is not perfect, especially humans often appear blurrier, probably because of the

higher visual complexity and variability due to different poses. Notice that it is much harder

for the image from the Tiguan, because of the unique texture pattern. The reconstructions for

the objects need further investigations regarding the delivery of valid and robust features that

can be used from a classifier. In Fig. 6.8 we show several examples of the reconstruction of

the same sceneries by autoencoders trained on different vehicles using the perceptual loss. For

nearest neighbor up-sampling, the models have more trouble for the reconstruction in unseen

vehicles, because all the information goes through the latent space in contrast to the indices

when max-unpooling is used.

6.3.8 Applicability to real infrared images

We tested the transferability of the vehicle domain transformation presented in Section 6.3.7

on the real images from ORSS. Individual autoencoders were then trained on the real X5 and

Sharan vehicles and the synthetic Tesla images respectively. We used the same architecture

as presented in Section 6.2 and the perceptual loss for training. In Fig. 6.9, we report results

on the autoencoder transformations for images of the vehicle not used during training. The

backgrounds and rear seats from the Sharan are replaced by the ones from the X5 and vice versa.

Albeit the results are not as detailed as if trained on real images, the transfer from synthetic

to real images is possible and the background is replaced by the synthetic one. Additionally,

we trained individual classification models and autoencoders using several reconstruction cost
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Fig. 6.6 Autoencoders were trained on the Tesla using the de-noising approach. The first

column contains input training images from unknown vehicles. The other columns show the

corresponding transformations by the autoencoder for different cost functions: MSE, SSIM,

MS-SSIM and perceptual loss.
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Fig. 6.7 Reconstruction of the same examples as in Fig. 6.6 for autoencoders trained using the

nearest neighbor up-sampling instead of max-unpooling with indices. The first column contains

input training images from unknown vehicles. The other columns show the corresponding

transformations by the autoencoder for different cost functions used: MSE, SSIM, MS-SSIM

and perceptual loss. The model was trained on the Tesla vehicle. The results are blurrier and

less stable as for max-unpooling.
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Input Hilux Lexus Tiguan Tucson

Fig. 6.8 Reconstruction of the same sceneries (first column) by autoencoders trained on different

vehicles (remaining columns) using the perceptual loss during training.

functions in order to compare their generalization accuracy. The results are summarized in

Table 6.7 and they are similar as for the synthetic data: our autoencoder approach generalizes

better than classification models trained from scratch. Fine-tuned classification models usually

perform best, but we think that improvements on the autoencoder will further close the gap and

yield additional helpful properties. This highlights that design choices and insights made on

SVIRO are transferable to ORSS.

6.4 Discussion and limitations

The use of skip connections in the model design allows the model to skip the latent space

and hence bottleneck. This makes it easier for the model to replace the background, since the

model can learn to use the identity function for the objects and people on the seat. On the other

side, this means that the latent space representation will loose on importance once the classifier

in the latent space is not trained end-to-end anymore. This is problematic, since the latent

space is important for inspections and to induce regularizations. We compare the latent space

for different projection methods for models using skip connections either with or without a

classifier in the latent space in Fig. 6.10. It can be observed that the clusters are well separated

in case a classifier is used, but convoluted when the classifier is removed. Consequently, we
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Fig. 6.9 Individual models were trained on real images from an X5 (first row) and Sharan

(fourth row) and on synthetic images from the Tesla using the perceptual loss. The models

were then applied to real images from the vehicle not used during training. Recon-R are

reconstructions when trained on real images and Recon-S when trained on synthetic ones.
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Table 6.7 Classification models were trained from scratch (S) or fine-tuned (F) and autoen-

coders with and without (W) max-unpooling were trained using different reconstruction losses.

The models were trained on the augmented real images from the Sharan and X5 respectively

and evaluated [%] on the images from the vehicle not seen during training. Best results without

pre-training are highlighted for a fairer comparison between autoencoder and classification

model.

Tested on

Sharan X5 Mean

VGG-16
F 90.2 87.9 89.1

S 77.5 74.7 76.1

DenseNet-121
F 95.4 85.2 90.3

S 68.1 68.2 68.2

MobileNet
F 91.9 89.3 90.6

S 70.1 60.1 65.1

ResNet-50
F 91.2 93.0 92.1

S 65.6 66.8 66.2

ResNet-18
F 87.7 93.0 90.4

S 68.7 74.4 71.6

SqueezeNet
F 79.9 84.3 82.1

S 70.6 57.1 63.8

SSIM
84.9 76.2 80.6

W 75.3 81.7 78.5

MS-SSIM
76.8 82.1 79.4

W 78.3 78.1 78.2

PC
75.7 81.8 78.8

W 73.9 88.4 81.2

MSE
77.2 76.9 77.1

W 71.6 72.5 72.0
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Fig. 6.10 Latent space projection of training samples using different projection methods (rows).

The models using skip connections were either trained with a classifier (left) or without a

classifier (right) on the latent space. We only considered classes with empty seats (0) or adults

(3) to ease visualization by reducing the amount of classes to plot. It can be observed that using

a classifier induces well separated clusters. Removing the classifier makes the clusters much

more convoluted. Different colors represent different classes.
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decided to drop the model design of skip-connections and max-unpooling for the rest of the

thesis and stick to the normal decoder design choice. As the results in this section showed, the

performance does not suffer significantly in case the skip connections are dropped.

6.5 Conclusion

We introduced the challenge of training in a single vehicle interior and improving generalization

to unknown vehicles and class instances. Our results showed that commonly used classifiers do

not behave reliably across different vehicle interiors and our introduced autoencoder approach

outperforms classification models trained from scratch. This is important when pre-trained

models cannot be used for commercialized applications due to licensing constraints. Although

the applicability to real images has been shown, the generalization to new class instances needs

to be improved and the transfer to new vehicles needs to be robustified to be applicable to

safety critical applications. None of the investigated classification and autoencoder methods

can guarantee a similar behavior on potentially new vehicles, even when multiple vehicles are

available to test the models’ behaviors during the design process. The models’ predictions

should be accompanied with uncertainty estimations to quantify the model’s self-assessment

with respect to its capability to generalize to new vehicle interiors or new sceneries. The

approaches presented in next chapters will alleviate some of these challenges and point out the

benefit of considering a model design based on autoencoders.



Chapter 7

Image and illumination normalization

We showed in the previous chapter the challenge of transferring from one vehicle to another

and proposed a first baseline investigation and autoencoder approach as a starting point. Images

recorded during the lifetime of computer vision based systems undergo a wide range of

illumination and environmental conditions affecting the reliability of previously trained machine

learning models. Hence, even within a same vehicle, classification performance can degrade in

case the test images undergo a distributional shift like illumination or environmental changes.

Image normalization is hence a valuable pre-processing component to enhance the models’

robustness. To this end, we propose to use the first variation of the PIRL to average out all

the unimportant information in the input images (e.g. environmental features and illumination

changes) to focus on the reconstruction of the salient features (e.g. class instances). I-PIRL

exploits the availability of identical sceneries under different illumination and environmental

conditions by formulating a partially impossible reconstruction target: the input image will not

convey enough information to reconstruct the target in its entirety. We combine the triplet loss

as a regularizer in the latent space representation and a nearest neighbour search to improve

the generalization to unseen illuminations and class instances. We will propose in the next

chapter to learn invariances on synthetic data, which should then be transferred to their real

counterparts. This way, improvements of this chapter, combined with the ones from the next

chapter, can be used together to alleviate some of the challenges from the previous chapter to

robustify the overall system of occupant detection in the vehicle interior.

7.1 Introduction

Recording a sufficient amount of images to train and evaluate computer vision algorithms is

usually a time consuming and expensive challenge. This is aggravated when the acquisition

of images under various illumination and weather conditions needs to be considered as well.
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Notwithstanding the aforementioned data collection challenges, the performance of many ma-

chine learning algorithms suffers from changing illumination or environmental conditions, e.g.

SLAM [80], place recognition [183], localization and classification [157], semantic segmenta-

tion [4], 3D human pose estimation [214] and facial expression recognition [216]. Since it is

impracticable to wait for different weather conditions, day times and seasons to record images

under as many variations as possible, it would be beneficial to train machine learning models to

become invariant with respect to illumination and the exterior environment. Particularly for

safety critical applications, as is common in the automotive industry, it would be of interest to

reduce the amount of different illumination conditions necessary to guarantee reliable inference

of machine learning models. Improvements on the aforementioned invariances would reduce

the amount of mileage and images needed to be recorded and hence reduce the financial risk

and time investment while improving the overall robustness of the deployed system.

In this chapter, we aim to transform the input image by removing illumination and environ-

mental features instead of computing more robust and invariant feature descriptors like SIFT

[154] or enforcing illumination invariance in deep neural networks through data augmentation.

We achieve this by exploiting the availability of sceneries under different illumination and/or

environmental conditions. We will use the first variation of the partially impossible recon-

struction loss which enforces similarity in the latent space of autoencoder models implicitly,

in opposition to an explicit constraint [8, 277]. In contrast to shadow removal [257, 201] or

relighting [231, 278], our method removes all the illumination and environmental features

together. Our method is neither limited to a specific application where prior knowledge, e.g.

about faces [278, 224], needs to be included, nor does it need shadow and shadow-free image

pairs [257, 201] to define a ground truth target. Further, it preserves the human poses for train-

ing images, compared to the II-PIRL which approximates humans by a mean representation.

We highlight its applicability on multiple datasets and provide evidence for the usefulness of

collecting images under these more challenging conditions.

Our cost function formulation, according to Eq. (4.2), implies a partially impossible task to

solve. The input image X
j

a , i.e. variation a of scenery j, does not convey enough information

to perfectly reconstruct the same scene under different environmental conditions X
j

b in its

entirety. While X
j

a contains, usually, all the information of the objects in the scene, it does not

contain any information about the illumination or environmental condition of X
j

b . However,

both images are sufficiently close to each other such that the autoencoder model can learn

to focus on what is important, i.e. the salient features (e.g. people). Consequently, the only

possibility for the neural network to minimize the loss is to focus on the objects in the scene

which remain constant and neglect all the illumination and environment information. The latter

cannot be reconstructed, because the input images do not include information on how to handle
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it correctly. This implies that the neural network implicitly learns to focus the reconstruction on

people, objects and vehicle interior and to average out all the other information which changes

between the similar scenes, e.g. the illumination and environment. This can later be observed

in Fig. 7.2, Fig. 7.3 and Fig. 7.4 where we compare the reconstruction of similar sceneries after

training: all background information and illumination conditions have either been removed or

replaced by constant values. The encoder learns to remove the illumination information. The

decoder is light invariant and cannot produce different illuminations, since the information has

already been removed in the latent space representation.

Example of failures are plotted in Fig. 7.2 and Fig. 7.4: it can be observed, that the

application on test images can cause blurry reconstructions. Hence, our proposition to combine

I-PIRL with the triplet loss, which acts as a regularizer. Due to its definition, it will also induce

an L2 norm in the latent space. This effect is highlighted in Fig. 7.6, where we compare the five

nearest neighbors of the AE, VAE and TAE.

Our proposed method is not limited to having the same scenery under different illumination

conditions though. One could use different augmentation transformations on the same input

image X j to form X
j

a and X
j

b and hence create the images on the fly. Alternatively, one could

apply a reverse denoising approach where only X
j

b is augmented and X
j

a is the clean input

image. See Fig. 7.1 and Fig. 7.8 examples for both approaches. However, as shown on the

ORSS images, in this case it might be more beneficial to use the II-PIRL.

7.2 Experiments and results

We will present an analysis of the aforementioned properties, problems and improvements on

the SVIRO-Illumination dataset to highlight the benefit of our design choices. Further, we will

present results on two additional publicly available datasets, Yale and Webcam, to show the

applicability of our proposed cost function to other problem formulations as well.

7.2.1 Training details

We centre-cropped the images to the smallest image dimension and then resized it to a size of

224×224. We used a batch size of 16, trained our models for 1000 epochs and did not perform

any data augmentation. We used a latent space of dimension 16 and the Adam optimizer

with a learning rate of 0.0001. Image similarity between target image and reconstruction was

computed using SSIM [21]. The model uses the VGG-11 architecture [225] for the encoder

and reverses the layers together with nearest neighbour up-sampling for the decoder, i.e. the

model is similar to the one from Chapter 6 without skip connections.
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Fig. 7.1 One can augment the input and target images differently (a) or augment the target

images only (b), instead of using identical sceneries under different illumination conditions

for the input-target pairs. Our proposed cost function still provides valid reconstructions,

though the objects are blurrier in this case. This is expected, as augmentations are random

and a consistent representation is hence more difficult to obtain. Nevertheless, the images

are smoothed and averaged out, but the illumination invariance is not as good. We used the

following augmentations: Gaussian noise, random contrast change, invert image, emboss,

random hue and saturation change and random brightness change [32].
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7.2.2 Extended Yale Face Database B

The Extended Yale Face Database B contains images of 28 human subjects under nine poses. For

each pose and human subject, the same image was recorded under 64 illumination conditions.

We considered the full-size image version, used 25 human subjects for training and three for

testing. We removed some of the extreme dark (no face visible) illumination conditions. For

the triplet sampling we chose as a positive sample an image with the same head pose and for the

negative sample an image with a different head pose. We report qualitative results in Fig. 7.2.

The model is able to remove illumination and shadows from the training images, but the vanilla

reconstruction on test samples can be blurry. We were not using the center-cropped images,

which made the task more complicated, because the head is not at the same position for each

human subject. Nevertheless, the model is able to provide a nearest neighbour with a similar

head pose and position.

7.2.3 Webcam Clip Art

The Webcam Clip Art dataset consists of images from 54 webcams from places all over

the world. The images are recorded continuously such that a same scenery is available for

different day times, seasons and weather conditions. We randomly selected 100 sceneries

for each region. For the triplet sampling, we chose as positive sample an image from the

same location and for the negative sample an image from a different location. Each landscape

and building arrangement undergoes unique shadow, illumination and reflection properties.

The generalization to unknown places under unknown illumination conditions is thus too

demanding to be deduced from a single input image. Hence, we report results in Fig. 7.3 on

training samples only. The model removes the illumination variations and shadows from the

images. Moreover, rivers, oceans and skies as well as beaches are smoothed out. Most of the

people and cars are removed and replaced by the background of the scenery. The features of

the salient objects are preserved when their position remains constant in each image, e.g. see

Fig. 7.3 for vehicles being removed if not contained in each image.

7.2.4 SVIRO-Illumination

For the triplet loss sampling, we chose the positive sample to be of the same class as the anchor

image (but from a different scenery) and the negative sample to differ only on one seat (i.e.

change only the class on a single seat w.r.t. the anchor image). Images of three empty seats do

not contain any information which could mislead the network, so to make it more challenging,

we did not use them as negative samples. After training, the autoencoder learned to remove
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Fig. 7.2 Extended Yale Face Database B. Illumination is removed from the training samples

(first row) to form the reconstruction (second row). The test samples (third row) cannot always

be reconstructed reliably (fourth row). Reconstructing the nearest neighbour (NN - fifth row)

preserves the head pose and position and removes the illumination.
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Fig. 7.3 Examples for the Webcam Clip Art dataset. The autoencoder removes the environmental

features from the images (first row) to form the output images (second row). Vehicles and

people are removed from the scenery and skies, rivers and beaches are smoothed out.

all the illumination and environmental information from the training images. See Fig. 7.4

for an example on how images from the same scenery, but under different illumination, are

transformed. Sometimes, test samples are not reconstructed reliably. However, due to the triplet

loss and nearest neighbour search, we can preserve the correct classes and reconstruct a clean

image. The reconstruction from the test image latent vector produces a blurry person, which is

usually a combination of several nearest neighbors.

We want to emphasize that the model is not learning to focus the reconstruction to a single

training image for each scenery. In Fig. 7.5 we searched for the closest and furthest (w.r.t.

SSIM) input images of the selected scenery w.r.t to the reconstruction of the first input image.

Moreover, we selected the reconstruction of all input images which is furthest away from

the first one to get an idea about the variability of the reconstructions inside a single scenery.

While the reconstructions are stable for all images of a scenery, it can be observed that the

reconstructions are far, w.r.t. SSIM, from all training images. Hence, the model did not learn

to focus the reconstruction to a single training sample, but instead learned to remove all the

unimportant information from the input image. Finally, the texture of the salient objects is

uniformly lit and smoothed out.

We compared the classification accuracy of our proposed method together with the nearest

neighbour search against vanilla classification models when the same training data is being

used. This way, we can quantitatively estimate the reliability of our proposed method against

commonly used models. To this end, we trained baseline classification models (ResNet-50 [93],

VGG-11 [225] and MobileNet V2 [219]) as pre-defined in torchvision on SVIRO-Illumination.

For each epoch, we randomly selected one variation X
j

i for each scenery X j. The classification

models were either trained for 1000 epochs or we performed early stopping with a 80:20 split

on the training data.
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Fig. 7.4 The autoencoder model transforms the input images of a same scenery (first row) into

a cleaned version (second row) by removing all illumination and environment information

(see the background through the window). The test image (third row) cannot be reconstructed

perfectly (fourth row). Choosing the nearest neighbour in the latent space and reconstructing

the latter leads to a class preserving reconstruction (fifth row).

First recon Max recon Closest Furthest

Fig. 7.5 Reconstruction of the first image of a scenery (first recon) is compared against the

furthest reconstruction of all images of that scenery (max recon). First recon is also used

to determine the closest and furthest images of the scenery. The model does not learn to

reconstruct a training sample.
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Fig. 7.6 Comparison of the reconstructions of the five nearest neighbors (rows 3 to 7) for

different autoencoder latent spaces (a), (b) and (c). The reconstruction (second row) of the test

sample (first row) is also reported. The I-TAE is by far the most reliable and consistent one

across all five neighbors. Notice how the class changes across neighbors for I-AE and I-VAE.
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Table 7.1 Mean accuracy and variance over five repeated training runs on each of the three

vehicle interiors. Classification models were trained from scratch or fine-tuned and pre-trained,

used early stopping with 80:20 split or no early stopping. I-PIRL improves the vanilla version

and with the nearest neighbour search outperforms all other models.

Vehicle

Model Pre-trained Early stopping Cayenne Kodiaq Kona

MobileNet ✓ 62.9±3.1 71.8±4.3 73.0±0.8
VGG11 ✓ 64.4±35.0 74.0±19.0 75.5±5.7
ResNet50 ✓ 72.3±3.7 77.9±35.0 76.6±9.9

MobileNet 72.7±3.8 77.0±4.1 77.4±2.2
VGG11 74.1±5.8 71.2±14.0 78.4±2.6
ResNet50 76.2±18.0 83.1±1.1 82.0±3.2

MobileNet ✓ 85.8±2.0 90.6±1.2 88.6±0.6
VGG11 ✓ 90.5±2.0 90.3±1.2 89.2±0.9
ResNet50 ✓ 87.9±2.0 89.7±6.1 88.5±1.0

AE 74.1±0.7 80.1±1.8 73.3±0.9
VAE 73.4±1.3 79.5±0.6 73.0±0.9
TAE 90.8±0.3 91.7±0.2 89.9±0.6

I-AE (Ours) 86.8±0.3 86.7±1.5 86.7±0.9
I-VAE (Ours) 81.4±0.5 86.6±0.9 85.9±0.8
I-TAE (Ours) 92.4±1.5 93.5±0.9 93.0±0.3

We further fine-tuned pre-trained models for 1000 epochs. The triplet-based autoencoder

model is being trained exactly as before. During inference, we take the label of the nearest

training sample as the classification prediction. Each setup was repeated five times with five

different (but the same ones across all setups) seeds. Moreover, the experiments are repeated

for all three vehicle interiors. The mean classification accuracy over all five runs together

with the variance is reported in Table 7.1. Our proposed method significantly outperforms

vanilla classification models trained from scratch and the models’ performances undergo a

much smaller variance. Moreover, our proposed method outperforms fine-tuned pre-trained

classification models, despite the advantage of the pre-training of these models. Additionally,

we trained the autoencoder models using the vanilla reconstruction error between input and

reconstruction, but using the nearest neighbour search as a prediction. Again, including our

proposed reconstruction loss improves the models’ performance significantly.

For visualization purposes, we trained an autoencoder, variational autoencoder and triplet

autoencoder on the SVIRO-Illumination dataset with people and empty seats only. Similarly as
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before, we chose a latent space dimension of 16. After training, we computed the latent space

representation for all training samples, computed the first two principal components and the

t-SNE projection and plotted the resulting projections in Fig. 7.7. The triplet-based autoencoder

model separates and clusters the classes best. Both the I-AE and I-VAE contain wrong classes

inside other clusters. The test data latent space representation is plotted as well. It is important

to note that the comparison between I-AE, I-VAE and I-TAE is not entirely fair, because the

latter implicitly uses labels during the positive and negative sample selection. Nevertheless, for

the problem formulations at hand, it is beneficial to collect the classification labels considering

the additional advantage of the induced L2 norm in the latent space and improved classification

accuracy.

7.2.5 ORSS

Although neither the training nor the test set of the ORSS dataset allows for a rigorous

investigation of the illumination normalization, we still wanted to report some qualitative

results. To this end, we trained several model variations on the training images of the X5

and applied the resulting models to the test images. Since no multiple variations per scene

are available, we adopted the method of augmenting both input and target image differently.

Additionally, we used the second variation of the PIRL to verify whether illumination can

be removed as well. The results are reported in Fig. 7.8. Illumination is removed best when

II-PIRL is used during training, however, the reconstructions are blurrier. This can be helpful

in case the data does not allow the I-PIRL to be used. The training variations using different

augmentations for input and target pairs did not improve normalization compared to the II-PIRL,

but the reconstructions are less blurrier. Overall, it can be concluded that the II-PIRL is still a

good choice to be adopted in case the I-PIRL cannot be used.

7.3 Discussion and limitations

The I-PIRL works well for image normalization on the training data, which can be sufficient for

some applications, e.g. when a fixed dataset is available on which some post-processing needs

to be done only. Since the generalization to test images can be achieved by a nearest neighbour

search, the latter will only be useful for a subset of machine learning tasks. Our method

preserves the classes for a given problem formulation, which will be fine for classification and

object detection. Our method can preserve head poses to some extend, e.g. Fig. 7.2, when it

is dominantly present in the images. Our approach will likely not preserve complex human

poses, e.g. Fig. 7.4, or detailed facial landmarks, because the body poses and key features
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(a) I-AE (b) I-VAE (c) I-TAE

Fig. 7.7 Different autoencoders were trained with a latent dimension of 16. We report the first

two principal components (PCA) and the t-SNE projection. The training and test distribution

were computed and projected together. We plot the training distribution only ■ (first and

third row - test points are made invisible) and the training distribution ■ together with the test

distribution + (second and fourth row) to ease visualization. Different colors represent different

classes. The projection of the I-TAE provides a good separation with almost no wrong test

samples.
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(a) Input images from the X5 ORSS vehicle
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Fig. 7.8 Reconstructions of test images (Recon - first rows) and their nearest neighbour

reconstructions (NN - second rows) for different model and training variations.
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are not necessarily preserved by the nearest neighbour search. Future work should try to

incorporate constraints such that the poses and landmarks of test samples are preserved as

well. This is currently not working with our approach, since we only cluster images of the

same class together, without differentiating between different poses. Hence the model learns to

approximate the poses, i.e. by averaging them out, such that in most cases a single pose per

class is learned.

In practise, it will be challenging to record identical sceneries under different illumination

conditions. However, as the Extended Yale Face Database B [78] and Webcam Clip Art

[137] dataset have shown, it is also feasible. Since we have highlighted the benefit of the

acquisition of said datasets, the investment of recording under similar conditions in practise

can be worthwhile for some applications. We believe that future work will develop possibilities

to facilitate the data acquisition process. Moreover, the possibility to incorporate images taken

for the same scene, but in less perfect conditions, should be explored, e.g. Fig. 7.1. Last but

not least, as the results on ORSS showed, in the latter case it might be more beneficial to use

the II-PIRL instead: the results will then be blurrier, but the normalization is reduced more

efficiently. Although successful, I-PIRL would be a better choice, in case poses need to be

preserved and the dataset allows for its applicability.

7.4 Conclusion

Our results show the benefit of recording identical sceneries under different illumination and

environmental conditions such that unwanted features can be removed by a partially impossible

reconstruction loss function: without the need for a ground truth target image. Our method

works well for classification and post-processing tasks due to an enhanced nearest neighbour

search induced by a triplet loss regularization in the latent space of an autoencoder model. We

demonstrated the universal applicability of our proposed method, as long as the correct data,

i.e. same scenery under different conditions, is available, on three different tasks and datasets.

Moreover, our proposed method improves classification accuracy significantly compared to

standard autoencoder and classification models, even when the latter was a fine-tuned pre-

trained model.



Chapter 8

Synthetic to real generalization

Learning on synthetic data and transferring the resulting properties to their real counterparts is

an important challenge for reducing costs and increasing safety in applications using machine

learning. In this chapter, we focus on latent space representations that are invariant to inductive

biases caused by the domain shift between simulated and real images showing the same scenario.

We train on synthetic images only, present approaches to increase generalizability and improve

the preservation of the semantics to real datasets of increasing visual complexity. We show

that pre-trained feature extractors (e.g. VGG) can be sufficient for generalization on images

of lower complexity, but additional improvements are required for visually more complex

scenes. To this end, we demonstrate that the second variation of the PIRL leads to an improved

salient feature extraction and a neglection of unimportant parts for the reconstruction and

classification. This helps the generalization to real data and we further show that our approach

outperforms fine-tuned classification models. Lastly, we show that combining real and synthetic

images during training improves the generalization between real vehicle interiors significantly.

Invariances are learned on synthetic data, in case they are modeled correctly, while the synthetic

gap is reduced due to the integration of real images.

8.1 Introduction

The generation of synthetic data constitutes a cost efficient way for acquiring machine learning

training data together with exact and free annotations. Notwithstanding this obvious advantage,

bridging the gap between synthetic and real data remains an open challenge, in particular

for camera-based applications. Learning from synthetic data is an important tool in robotics:

for example, to train a quadrupedal robot on synthetic data by incorporating proprioceptive

feedback [141], to train a robot hand to solve real Rubik’s cubes by learning the model in

a simulation only [2] or by translating the real world input data into synthetic data for a
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reinforcement learning agent [275] and to make the robot feel at home. In view of safety critical

applications, synthetic data can provide the means to reduce costs related to acquiring samples

for edge cases, or which are difficult to obtain since they are too dangerous, e.g. accidents. We

focus on learning invariances empirically on synthetic data, which should transfer to real data,

opposed to constructing invariances as in equivariant neural networks [215].

We investigate the case of single independent images for which consistency between frames

and physical interactions cannot be taken advantage of. The latter is commonly used by

reinforcement learning methods [141]. We focus on training on synthetic data only, assess to

what extend we can generalize to real images and we highlight which design choices improve

the autoencoder models performance with respect to accuracy and reconstruction quality. To

this end, we first develop a method using features of pre-trained classifiers and show that we

achieve better results on MPI3D to generalize from synthetic (toy or realistic) to real images

compared to autoencoder, variational autoencoder (VAE), β -VAE and FactorVAE. Although

successful, we highlight that insights and design choices on a simple dataset do not necessarily

transfer to real applications of higher visual complexity. To improve generalization, we propose

to combine the latter design choice with the second variation of the PIRL. We extensively

show that the second variation is the driving force for the improved generalization capacities.

Additionally, we induce structure in the latent space by a triplet loss regularization. While

we start off with MPI3D, we evaluate and justify the benefits of the different design choices

on SVIRO. The latter and similar industrial applications suffer from the limited availability

and variability of training data. A successful transfer from synthetic to real data would avoid

the necessity of collecting real data for each vehicle interior: the invariances could be learned

and improved on synthetic data only. Especially regarding the latter case, we show on ORSS

that combining real and synthetic data can lead to an improved transferability towards a novel,

real vehicle interior. To this end, we performed an ablation study using different synthetic

datasets and compared the extractor autoencoder against the multi-channel autoencoder, both

of which have their advantages and disadvantages. The extractor autoencoder achieves higher

classification accuracies, but the multi-channel autoencoder removes the background on real

images more efficiently, which could potentially be exploited by down-stream tasks.

8.2 Experiments and results

This section is organized in observations, formulated as subsections, which are built on one

another and contain results highlighting the improvements. This provides explanations for

the design choices leading to our final model architecture and cost function formulations.

Improvements regarding the transfer to real images when only being trained on synthetic
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images are assessed qualitatively based on reconstruction quality and latent space structure and

quantitatively on classification accuracy.

We perform a baseline evaluation on MPI3D, which provides simple and realistic renderings

and real counterparts, see Section 8.2.2 for more details. We reduced the dataset to contain only

large objects, since even for humans the small objects cannot always be distinguished reliably.

For a higher visual complexity, we use as synthetic images the SVIRO dataset and its extensions.

TICaM is used to evaluate the performance on a real, publicly available dataset of a similar

application, but we also report results on ORSS later in this chapter. The design choices made

on MPI3D and the available synthetic images are not sufficient to obtain a good transferability

to real images from the vehicle interior. We introduce step by step modifications to the

autoencoder architecture, leading to steady quantitative and qualitative improvements. MPI3D

and the vehicle interior share interesting properties: they have almost identical backgrounds

and the environment is more tractable than many computer vision datasets. The transfer from

SVIRO to TICaM is further complicated by new unseen attributes, e.g. steering wheel, since

in TICaM the authors recorded images for the front while SVIRO contains images for the

rear seat. An additional ablation study shows that the second variation of PIRL is the driving

force for the improved generalization capacity. Finally, to be in line with common benchmark

datasets, we show that our design choices also improve the transfer from training on MNIST to

generalizing to real images of digits.

8.2.1 Training details

We used the same hyperparameters for all training experiments and for all autoencoder and

classification models respectively. We used the AdamW optimizer with a learning rate of

0.0001 and weight decay of 0.00001. We used a batch size of 64 and the only augmentation

performed was a random horizontal flip for the classification task. All models were trained for

100 epochs on MPI3D and 250 epochs for the other datasets. We used a latent space dimension

of 64 for all models trained on the vehicle interior and a latent space dimension of 10 for the

MPI3D dataset. In case of a triplet loss, we used the swap parameter of PyTorch to make

the negative mining more challenging [15]. As a positive sample, we selected an image of a

different scenery of the same class, i.e. the same objects are at the same seat position. For the

negative sample we selected a scenery which differs in a single seat position and we did not

allow sceneries with empty seats only. In case the II-PIRL was used, the target images for the

positive and negative samples are chosen to be partially impossible as well.

Both the extractor autoencoder and the classification models used the same layer for

extracting the features from the pre-trained models. In both cases and for all pre-trained models

we used layer level −3 in our implementation: those features were used to fine-tune the rest of
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the pre-trained classification model or to train from scratch our added autoencoder layers. In all

cases, we interpolated the input images to be of size 224×224 and copied the single grayscale

image channel twice along the channel dimension.

8.2.2 MPI3D

MPI3D consists of three dataset variations: 1) real images recorded on a mechanical platform,

2) realistic rendering of the same scenes as in 1) and 3) simplified (toy) renderings of the same

scenes as in 1). The sceneries show a robotic arm moving 3D objects under seven factors of

variation: 1) six different shapes, 2) six colors, 3) two sizes (although we consider the large

size only), 4) with three different colors for the background circle, 5) from three different

camera heights, 6) for forty different positions for the x-axis and 7) forty positions for the

y-axis. Since the images were recorded in a controlled setting, it was possible to replicate

each scenery in the simulation software. For the latter, the rendering was either chosen to

be realistic and hence close to the real recordings, or simplified and hence an abstraction of

reality. This enables detailed investigations for representation learning across simulated and

real environments. Since the sceneries are the same across the three different levels of realism,

the dataset allows to compare rigorously whether a model trained on one dataset variation can

transfer to a different level of realism for exactly the same scenes. Hence, the dataset provides

a good starting point to test the transfer from synthetic to real images. Example images and

comparisons of the same scenes across the three dataset variations are reported in Fig 8.1a.

Autoencoders struggle on real images when trained on synthetic images

In the first, albeit naïve experiment we assumed that due to the bottleneck of autoencoders,

the latter should generalize to some extent to real images when trained on synthetic ones.

We trained convolutional autoencoders on the toy and realistic MPI3D images, respectively,

and evaluated the resulting models on the real recordings. The first row of Fig. 8.1b shows

the reconstruction of real images when trained on the realistic synthetic images: the model

preserves some of the semantics. The model fails to perform senseful reconstructions when

trained on toy images, see Fig. 8.1c.

Autoencoders overfit to the synthetic distribution

A consequence of the results of the previous section is the assumption that the autoencoder

overfits to the synthetic distribution and takes into consideration some artefacts (e.g. rendering

noise). We followed the idea of the MPI3D authors Gondal et al. [81] and trained variational
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(a) Realistic and toy are splits of synthetic datasets used for training, respectively. Real are real images

of the same scenes used as input after training and used for evaluating the synthetic to real transfer.
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(c) Reconstruction of real data when being trained on toy data.

Fig. 8.1 Reconstruction of unseen real data for different autoencoders: Autoencoder (AE), β

Variational Autoencoder (β -VAE), FactorVAE (F-VAE), Extractor Autoencoder (E-AE).
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autoencoder (VAE), β -VAE and FactorVAE on the same data as before using the BCE recon-

struction loss. The results in the second (β -VAE with β = 8) and third (FactorVAE with γ = 50)

row of Fig. 8.1b show that the models reconstruct real images better and more of the semantics

are preserved. If trained on toy renderings, the representation gap is too large, causing the

reconstruction of the real images still to be bad: see Fig. 8.1c. This is in line with the results

from Gondal et al. [81].

More general input features improve reconstructions

A small gap between the synthetic and real distribution can potentially be closed by a dedicated

data augmentation approach to avoid overfitting to synthetic artefacts. Nevertheless, an abstrac-

tion from toy to real images cannot be achieved by means of simple data transformations or

model constraints (e.g. denoising autoencoder). To this end we propose to use a pre-trained

feature extractor as presented in Section 4.5 and as defined by Eq. (4.7). We used the VGG-11

model pre-trained on ImageNet as the extractor if not stated otherwise.

The results from the fourth row of Fig. 8.1b and Fig. 8.1c, respectively, show that the

proposed modifications enable the model to generalize to real images when trained on synthetic

ones. Much more of the semantics are preserved even when the model was only trained on

toy images. Our method produces semantically more correct and less noisy reconstructions

compared to the VAE and FactorVAE baseline results. Additional qualitative improvements

are highlighted by visualizing the latent space: both the 10-dimensional training (synthetic)

and test (real) data latent spaces are projected together into a 2-dimensional representation

using t-SNE. In Fig. 8.2 (first row) we can observe that VAE and FactorVAE improve the

representation of real and synthetic images in the same region in the latent space, however, only

partially, indicating a different representation for real and synthetic images. When using E-AE,

real and synthetic images are represented more similarly in the latent space and the clusters are

completely overlapping. Even when trained on the toy dataset, the latent space representation for

synthetic and real images produced by E-AE overlaps partially as visualized in Fig. 8.2 (second

row). We report in Table 8.1 a quantitative evaluation between the reconstructions of the real

images against their synthetic training counterparts across all dataset images for different norms.

We also compute the error between the real input images and their reconstruction to measure

whether the semantics are being preserved: in all cases E-AE performs best. Reconstructions of

training data are reported in Fig 8.3. The latter shows that all models perform similarly well on

the training data, hence the training was successful, but our proposed design choices generalize

best to the real images.
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Table 8.1 We report the L1, SSIM and LPIPS norm between the reconstructions of the real

images (which are unknown) and themselves (Real), or between the corresponding synthetic

(Synth.) training images. For the latter we abbreviate realistic (R) or toy (T). We report the

mean of the norms across the entire dataset: for SSIM larger ↑ and for the others smaller ↓ is

better. E-AE performs best across all evaluations.

L1 ↓ SSIM ↑ LPIPS ↓
Model Variant Synth. Real Synth. Real Synth. Real

T AE SSIM 932 1763 0.56 0.42 0.35 0.40

T VAE BCE 659 1497 0.50 0.33 0.34 0.42

T β -VAE BCE, β = 4 710 1542 0.53 0.38 0.31 0.44

T β -VAE BCE, β = 8 406 1321 0.71 0.48 0.26 0.37

T FactorVAE BCE, γ = 10 521 1288 0.66 0.45 0.26 0.39

T FactorVAE BCE, γ = 50 430 1295 0.71 0.51 0.22 0.35

T E-AE (Ours) SSIM 177 1165 0.90 0.58 0.10 0.28

R AE SSIM 568 1133 0.83 0.62 0.20 0.24

R VAE BCE 482 890 0.74 0.61 0.20 0.23

R β -VAE BCE, β = 4 372 833 0.81 0.64 0.18 0.20

R β -VAE BCE, β = 8 384 854 0.79 0.64 0.19 0.21

R FactorVAE BCE, γ = 10 218 734 0.88 0.68 0.15 0.19

R FactorVAE BCE, γ = 50 391 830 0.78 0.64 0.16 0.18

R E-AE (Ours) SSIM 251 841 0.92 0.70 0.08 0.14
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Fig. 8.2 t-SNE projection of the 10 dimensional latent space representation by different autoen-

coders when trained on the realistic (first row) or toy (second row) training (blue circle) images.

The resulting representation for real (orange cross) images is plotted as well. The extractor

approach is the only method clustering synthetic and real images together when trained on

realistic renderings. When trained on toy images, our extractor approach performs still best

although the synthetic-real distributions are not as overlapped as if trained on realistic images.

8.2.3 SVIRO to TICaM

We only used the grayscale training images from the SVIRO dataset. We considered everyday

objects as background and removed all images containing empty child and infant seats. For

the classification evaluation we used all the images from all the different vehicles, but we used

training images only. Occupancy classification is performed on the entire image such that all

three seats need to be classified simultaneously.

For TICaM, we used all training and test images and also flipped the images for the

classification evaluation. This was done, because otherwise the class variability is quite low

and there is a strong bias towards people sitting on the right driver seat. Moreover, the steering

wheel would always be placed at the same right position. We also needed to perform some

pre-processing to make the real TICaM images compatible with the synthetic images. First, we

adapted the labels to be in accordance with the ones from SVIRO reported in Table 3.3: we

extracted the labels for the left and right seat from the filename. The file name is split at the

character _ after which the third (right seat) and ninth (left seat) part is responsible for the class

definition. If the latter was a 0 or contained an o, we kept it as a 0. If it contained a p, it was

changed into a 3. We changed the value to 2 if it was one of the child seats s03, s13, s04, s14
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(b) Reconstruction of training data when being trained on toy data.

Fig. 8.3 Reconstruction of realistic and toy training data for different autoencoders: AE, β -VAE,

FactorVAE (F-VAE) and Extractor Autoencoder (E-AE). All models perform equally well on

the training data, yet our approach generalizes best to real images.
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or the variation g00 for the child seats s01, s11, s02, s12. In all other cases, it was transformed

to a 1, i.e. for the child seats s05, s15, s06, s16 and variations g01, g11, g10 for s01, s11, s02,

s12. Second, the illumination of the images was normalized using a histogram equalization.

After that the images were cropped at height position 120 with height 300 and left position 106

with width 300. Finally, the images were resized to 128 pixels.

It works for visually simple images - More is needed on more complex data

Since the method introduced in the previous section achieved good results, even when being

trained on toy images, we wanted to apply it to images of higher visual complexity, e.g. a

vehicle interior. We trained the same model architecture, but with a 64-dimensional latent

space, on images from the Tesla vehicle from SVIRO and the Kodiaq vehicle from SVIRO-

Illumination, respectively, and evaluated the model on the real TICaM images. Examples of the

resulting model’s reconstructions are plotted in Fig. 8.4 (b). In both cases only blurry human

models are reconstructed, which is similar to the mode collapse in the first row of Fig. 8.1c.

We concluded that more robust features are needed.

PIRL helps generalization

As defined in Eq. (4.2) the first variation of the PIRL has proven to work well for image nor-

malization [54]. We hypothesized that the same approach could lead to a better generalization

to real vehicle interiors. We applied this strategy to variations of the same scene under different

illumination conditions, but realized that the learned invariances are not suitable for the transfer

between synthetic and real. An example is provided in Fig. 8.4 (c) where we trained on the

Kodiaq images from SVIRO-Illumination.

We concluded that, for learning more general features by applying the PIRL, we needed

input-target pairs where both images are of the same scene, but differ in the properties we

want to become invariant to: the dominant background. To this end we created and used

SVIRO-NoCar, as presented in Section 3.4. During training, we randomly select two images

per scene and use one as input and the other as target, i.e. as defined in Eq. (4.2). When applied

to real images, see Fig. 8.4 (e), the model preserves the semantics better of the real images: the

model starts to reconstruct child seats and not people only, anymore. We also trained a model

without the PIRL to show that the success is not due to the design choice of the dataset: in

Fig. 8.4 (d) the model performs worse.

Finally, we extended this idea further with our second PIRL formulation: instead of taking

the same scene with a different background as target image, we randomly selected a different

scene of the same class, e.g. if a person is sitting at the left seat position, we would take
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Fig. 8.4 Reconstruction results of unseen real data a) from the TICaM dataset: b) E-AE Trained

on Tesla SVIRO, c) E-AE Trained on Kodiaq SVIRO-Illumination , d) I-E-AE Trained on

Kodiaq SVIRO-Illumination , e) E-AE, f) I-E-AE, g) II-E-AE, h) E-TAE, i) I-E-TAE, j) II-E-

TAE. Examples e)-j) are all trained on SVIRO-NoCar. A red (wrong) or green (correct) box

highlights whether the semantics are preserved by the reconstruction.
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another image with a person on the left seat, potentially a different person with a different pose.

This approach is formulated in Eq. (4.3). While this leads to a blurrier object reconstruction,

which is expected because the autoencoder needs to learn an average class representation, the

classes are preserved more robustly and the reconstructions look better than before, see Fig. 8.4

(f). Moreover, this additional randomization improves classification accuracy as discussed in

Section 8.2.3 and in Section 8.3.

Structure in the latent space helps generalization

The final improvement is based on the assumption that structure in the latent space should help

the model performance. Class labels are included by formulating a triplet loss regularization

to the latent space representation as defined by Eq. (4.4): images of the same class should be

mapped closely together and images of different classes should be pushed away. The triplet loss

induces a more meaningful L2-norm in the latent space [54] such that a k-nearest neighbour

(KNN) classifier can be used in the next section. As the results of Fig. 8.4 (g) show, these

final improvements, together with the previous changes, yield the semantically most correct

reconstructions. The triplet loss without the PIRL is not sufficient and in Section 8.3 we show

that the II-PIRL is the driving force for the improved performance.

KNN with triplet loss outperforms classification models

We investigated whether the qualitative improvements also transfer to a quantitative improve-

ment. We took the most basic approach: we combined the E-TAE with a k-nearest neighbour

classifier in the latent space and used SVIRO-NoCar for training. We retrieve the latent space

vectors for all flipped training images as well and used only a single image per scene (i.e.

not all 10 variations). According to a common rule of thumb, we choose k =
√

N = 115,

where N is the size of the training data together with its flipped version [113]. The model

should classify occupancy (empty, infant, child or adult) for each seat position and we used

the same hyperparameters for all methods and variations thereof. We froze the same layers

of the pre-trained models for fine-tuning the later layers in case of classification models or to

train our autoencoder using it as an extractor. We evaluated the model performance after each

epoch on the real TICaM images (normal and flipped images of the training and test splits)

for both the autoencoder and the corresponding classification model. This provides a measure

on the best possible result for each method, but is of course not a valid approach for model

selection. We report in Fig. 8.5 the training results for seeds 1 to 10 and summarize the training

performance by plotting the mean and standard deviation per epoch per method. Our approach

converges more robustly and consistently to a better mean accuracy. For each experiment,
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(a) ResNet-50 (b) VGG-11 (c) DenseNet-121

Fig. 8.5 Comparison of the training performance distribution for each epoch over 250 epochs.

II-E-TAE (green) is compared against training the corresponding extractor from scratch (blue)

or fine-tuning (orange) the layers after the features used by the extractor in our autoencoder

approach. Our approach converges much faster to a better accuracy with a smaller standard

deviation.

we retrieve the best accuracy across all epochs and compute the mean, standard deviation

and maximum of these values across all runs: these statistics are reported in Table 8.2. The

model weights corresponding to the epochs selected by the previous heuristics were applied

on the SVIRO dataset to verify whether the learned representations are universally applicable

to other vehicle interiors. For SVIRO, we used the training images and excluded all images

containing empty child seats or empty infant seats and treated everyday objects as background.

The results show that our E-AE significantly outperforms the classification models across three

different pre-trained models and across all datasets. A consistent improvement for the different

modifications is achieved: I-E-TAE outperforms E-TAE and II-E-TAE outperforms I-E-TAE.

8.2.4 MNIST to real digits

The improvements reported in this chapter are not limited to the application in the vehicle

interior. To this end, we trained models using the same design choices on MNIST [140] and

evaluate the generalization onto real digits [50] in Fig. 8.6 and Table 8.3: the quantitative and

qualitative results show that the different design choices induce similar improvements as for the

vehicle interior. The autoencoder models were trained for 20 epochs using a latent dimension

of 64 and MSE reconstruction loss.

8.2.5 SVIRO to ORSS

Since the design choices developed in the previous sections improved the performances on

MNIST and TICaM, we also wanted to evaluate it on the ORSS images. To this end we trained

the models exactly as in the previous section on SVIRO-NoCar and evaluated it after 250

epochs on the Sharan images from the ORSS dataset. All hyperparameters are identical to the

investigation on TICaM and we used the ResNet-50 backbone as extractor, since it was the best
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Table 8.2 For each experiment, the best accuracy on real TICaM images across all epochs is

taken and the mean, standard deviation and maximum of those values across all 10 runs is

reported. The model weights achieving maximum performance per run on TICaM are evaluated

on SVIRO. Our approach outperforms the classification models significantly.

TICaM SVIRO

Model Variant Mean Max Mean Max

VGG-11 Scratch 58.5±4.0 64.6 65.6±5.4 72.7

ResNet-50 Scratch 53.3±3.5 60.4 56.4±2.6 59.3

DenseNet-121 Scratch 56.3±5.5 62.1 68.8±2.4 74.9

VGG-11 Pre-trained 75.5±1.5 78.0 78.7±2.9 84.0

ResNet-50 Pre-trained 78.1±1.7 80.4 83.5±2.7 88.1

DenseNet-121 Pre-trained 72.2±4.2 77.4 85.0±2.3 88.0

VGG-11 E-TAE (Ours) 76.7±2.3 81.5 78.6±2.6 82.3

ResNet-50 E-TAE (Ours) 83.8±1.3 86.0 85.8±2.4 89.1

DenseNet-121 E-TAE (Ours) 78.5±2.4 81.8 86.7±1.3 88.2

VGG-11 I-E-TAE (Ours) 79.7±2.1 82.2 80.9±4.0 85.6

ResNet-50 I-E-TAE (Ours) 83.5±1.3 85.6 89.2±1.0 90.3

DenseNet-121 I-E-TAE (Ours) 77.2±1.7 79.3 90.4±1.3 92.1

VGG-11 II-E-TAE (Ours) 81.0±0.6 82.0 79.1±3.9 84.8

ResNet-50 II-E-TAE (Ours) 83.7±0.5 84.5 93.0±0.8 94.1

DenseNet-121 II-E-TAE (Ours) 79.3±1.3 81.5 89.9±1.8 92.3

Table 8.3 Different model architecture variations were trained on MNIST. Then different

classifiers were trained on the latent space representation of the training data and evaluated on

real images of digits.

Model KNN Random Forest SVM

AE 15.7 12.5 11.6

TAE 11.1 11.6 8.4

II-AE (Ours) 27.8 20.2 23.6

II-TAE (Ours) 21.8 17.9 23.9

E-AE (Ours) 27.3 23.1 26.5

E-TAE (Ours) 26.1 19.1 23.3

II-E-AE (Ours) 65. 61.9 65.6

II-E-TAE (Ours) 64.1 63.7 63.7
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Fig. 8.6 Reconstruction of real input images of digits by models trained on MNIST. Similar to

the vehicle interior, the II-PIRL provides the best class preserving reconstructions.

performing one in the previous section. The results are presented in Table 8.4. Out of the box,

the design choices of the previous section do have a positive effect on the transferability. This

highlights once again that investigations and insights made on SVIRO, and here combined with

TICaM, provide good directions for the real industrial application. However, the performance

is, unfortunately, still far from satisfactory, which is why we performed a more detailed ablation

study by incorporating real data as well.

Including real images

Learning from synthetic data only and generalizing to real images is a hard task, particularly if

invariances and the robustness to be learned require an extensive and expensive collection of

real images. However, usually at least some real data is available during training, otherwise the

transferability can not be evaluated. In our use-case the framework is special: we could use real

data from one vehicle interior, combine it with synthetic data and hope for a good performance

on real images from a different vehicle interior. In that setting, it would be desirable to learn

invariances, e.g. with respect to the background and vehicle interior, by the synthetic data and

learn to close the gap between synthetic and real images by using the real images from one

vehicle interior only. This way one could reduce the necessity of collecting real images for each

new vehicle interior. It is possible to combine synthetic and real images naively by shuffling

them together or to use the multi-channel autoencoder approach, as presented in Section 4.7.
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Table 8.4 Ablation study for different training dataset combinations and autoencoder model

designs. We report results for extractor autoencoders (E-AE) and multi-channel autoencoder

(MuCh) model variations. The mean accuracy and standard deviation on the previously unseen

Sharan vehicle from ORSS over 10 runs is reported. We also report results when the child seat

class is excluded (No CS). Incorporating SVIRO-NoCar (SVIRO-NC) always leads to better

results than using SVIRO-Uncertainty (SVIRO-U).

Sharan Sharan - No CS

Model SVIRO-NC SVIRO-U ORSS 1-NN MLP 1-NN MLP

E-AE ✓ 4.8±0.9 7.4±1.6 6.9±1.5 12.6±3.4
E-TAE ✓ 37.2±3.2 38.3±2.8 67.6±6.1 69.9±4.2
I-E-AE ✓ 38.8±1.4 40.7±1.9 68.0±2.6 67.2±3.8
I-E-TAE ✓ 36.7±1.1 39.9±1.4 66.2±3.4 69.9±2.2

E-AE ✓ 13.7±2.4 16.0±1.6 18.9±4.3 13.5±4.9
E-TAE ✓ 72.4±3.0 72.1±3.9 83.3±4.8 82.1±6.1
I-E-AE ✓ 40.8±7.0 50.2±7.1 48.2±8.5 59.0±7.5
I-E-TAE ✓ 74.7±5.7 75.7±5.8 88.2±4.4 88.9±3.6

E-AE ✓ ✓ 13.0±1.6 18.1±3.9 21.1±4.5 18.6±7.2
E-TAE ✓ ✓ 62.7±5.3 66.2±5.6 80.5±2.6 85.3±3.3
I-E-AE ✓ ✓ 30.2±8.0 41.6±9.1 55.2±14.4 61.5±12.1
I-E-TAE ✓ ✓ 69.4±4.1 73.8±4.0 82.9±3.3 90.5±3.0

E-AE ✓ ✓ 4.0±0.7 11.5±2.3 6.2±1.2 12.5±2.4
E-TAE ✓ ✓ 75.0±2.4 75.8±2.5 93.0±1.5 93.9±1.1
I-E-AE ✓ ✓ 35.6±9.4 64.4±7.6 53.9±14.4 84.6±10.4
I-E-TAE ✓ ✓ 75.2±3.4 76.1±3.4 94.4±1.5 94.8±1.4

MuCh ✓ ✓ 12.0±1.4 11.7±0.8 13.0±2.8 11.9±1.5
T-MuCh ✓ ✓ 13.1±1.3 12.3±1.1 21.2±3.9 23.3±5.2
I-MuCh ✓ ✓ 10.5±0.9 10.7±1.1 21.1±3.0 21.6±2.5
I-T-MuCh ✓ ✓ 13.0±1.3 12.1±1.4 23.0±3.3 27.2±4.2

MuCh ✓ ✓ 4.6±0.7 8.9±1.5 6.7±0.9 10.2±2.5
T-MuCh ✓ ✓ 28.0±1.8 29.0±1.7 47.7±2.8 49.3±3.0
I-MuCh ✓ ✓ 20.1±2.4 26.0±2.6 31.7±3.3 40.2±3.6
I-T-MuCh ✓ ✓ 29.1±3.3 29.4±3.2 49.4±5.4 49.7±4.8

E-MuCh ✓ ✓ 21.7±3.2 24.1±4.2 35.3±5.8 36.0±6.7
E-T-MuCh ✓ ✓ 65.3±3.6 67.3±4.2 81.3±4.0 86.5±3.4
I-E-MuCh ✓ ✓ 36.0±11.3 36.5±11.7 59.0±16.4 66.8±12.0
I-E-T-MuCh ✓ ✓ 67.3±4.1 69.4±4.0 86.2±2.8 91.0±2.1

E-MuCh ✓ ✓ 9.6±1.6 16.8±2.9 9.9±2.3 17.0±4.0
E-T-MuCh ✓ ✓ 73.9±3.4 75.0±3.3 89.4±1.0 90.7±1.0
I-E-MuCh ✓ ✓ 66.7±2.6 70.5±2.4 88.9±1.4 89.3±1.8
I-E-T-MuCh ✓ ✓ 72.8±3.0 74.1±3.4 90.1±1.8 90.8±1.6
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The latter can also be combined with the extractor and II-PIRL design choices. In the following

we will report results for both cases.

Shuffling real and synthetic images

In this first approach, we re-used the same extractor model architecture as in Section 8.2.5, but

we shuffled the real images from the X5 of ORSS together with SVIRO-NoCar or SVIRO-

Uncertainty. For the latter case, we combined all the different training and test splits of

SVIRO-Uncertainty without everyday objects and used them for training. Lastly, as a baseline

result, we also trained the same model using real images only. We use exactly the same

hyperparameters as for the extractor autoencoder approach from the previous sections. This

way we can easily compare the performances across the different design choices.

We trained a nearest neighbor (1-KNN) and single hidden layer MLP classifier in the latent

space being of the same dimension. The latter is trained after the autoencoder model has

finished training and it uses both the training data and the corresponding flipped versions for

the synthetic and real images. The models are then evaluated on the Sharan images from ORSS

and reported in Table 8.4. The results indicate a few interesting observations. The design

choice of SVIRO-NoCar indeed induces, at least partially, invariances with respect to the

vehicle background. This becomes particularly obvious by comparing against the results when

SVIRO-Uncertainty is used instead. Hence, a correctly designed synthetic dataset can improve

important properties when applied on real images. The latter becomes even more apparent in

case the child seat class is left out - we will discuss this important point in Section 8.2.6. The

results indicate that the extractor autoencoder model, when combined with a correctly designed

synthetic dataset, can improve the transferability to a new vehicle interior. Nevertheless, we

wanted to compare this approach against a model architecture dedicated to combine both real

and synthetic images during training.

Multi-channel autoencoder

Many methods combining real and synthetic images expect real-synthetic pairs being close

to one another. However, in our case, we randomly sample for each epoch a real image of

the same class for each synthetic image. Moreover, except for the class, nothing else needs

to match, e.g. the poses can be different. While this is much more challenging, since for each

epoch we see a different real image for each synthetic image, it is not always possible to have

matching real-synthetic image pairs. Our approach requires a less demanding synthetic-real

correspondence and yet still performs well. It is also possible to fix a real-synthetic image pair

and use it for the entire training process, however, this had a detrimental effect for our use case.
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The model architecture and the training details are the same as before: we only define the

decoder twice, one for the real images and one for the synthetic ones. The models were trained

by combining the X5 images from ORSS with the SVIRO-NoCar or the SVIRO-Uncertainty

images. For each synthetic image being sampled, we select a real image being of the same

class. Both the reconstruction of the synthetic and real input image are compared against a

same synthetic image. The latter target depends on the design choice, e.g. it can be the same

as the input image or a new one in case of II-PIRL. In case the triplet loss is used, we use the

latent space representation for real and synthetic images interchangeably. The latter design

choice enforces both distributions to be represented closer and more similarly. For each model

design choice, the experiment is repeated for 10 runs. The results of our exhaustive ablation

study are reported in Table 8.4. As the results show, the multi-channel autoencoder combined

with the extractor and the II-PIRL improves the performance up to a point where it is similar

to the vanilla extractor autoencoder model. This shows that our previously defined extractor

autoencoder model can already exploit the availability of real and synthetic images sufficiently

well.

The multi-channel autoencoder allows for different choices to be considered as the target

image for the reconstruction loss. As a reminder, we use a single encoder for encoding both

synthetic and real images and we use two decoders, one for the synthetic and one for the real

input images. While it would be possible to force both decoders to reconstruct real images

only, or to reconstruct real and synthetic images respectively, this has a detrimental effect,

as highlighted by the reconstructions later on. The reason for the latter is the fact that the

autoencoder could then learn to represent the real and synthetic image slightly differently in

the latent space and exploit this effect during the reconstruction. Particularly in the case where

the II-PIRL is used to learn invariances using the synthetic images, it is more beneficial to

use both times the synthetic images as target. This is illustrated in Fig. 8.7: we compare the

reconstruction performance in case different target distributions were used during training.

If the extractor multi-channel autoencoder with the II-PIRL and triplet loss is used during

training (II-E-T-MuCh), then the background is only removed in case real and synthetic images

were reconstructed to synthetic images only. The availability of synthetic data with changing

backgrounds can then be exploited best by the II-PIRL.

ResNet-50 CNN classifier

Lastly, we evaluated the performance of vanilla ResNet-50 CNN classification models in

case real and synthetic images can be shuffled together for training. We either trained the

whole network from scratch or we fine-tuned the last block when pre-trained on ImageNet.

Fine-tuning all layers did not improve the performance, as reported already several times in
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(a) Input images from the Sharan ORSS vehicle

(b) Reconstruction to real and synthetic respectively

(c) Reconstruction to real only

(d) Reconstruction to synthetic only

Fig. 8.7 Reconstruction of real input images from the Sharan vehicle from the ORSS dataset

for the extractor multi-channel autoencoder when the II-PIRL and triplet loss is used during

training (II-E-T-MuCh). We compare the reconstruction performance when different target

distributions were used during training. The background is only removed if real and synthetic

images were reconstructed to synthetic images only. The availability of synthetic data with

changing backgrounds can then be exploited best in case the II-PIRL is used.
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Table 8.5 Ablation study for different training dataset combinations and training approaches.

We fine-tuned the last block or trained all layers from scratch of ResNet-50 models. The mean

accuracy and standard deviation on the previously unseen Sharan vehicle from ORSS over

10 runs is reported. We also report results when the child seat class is excluded (No CS).

Combining a real vehicle and SVIRO-NoCar yields the best results.

Variation SVIRO-NoCar SVIRO-Uncertainty ORSS Sharan Sharan - No CS

Scratch ✓ 15.3±3.3 30.0±6.4
Scratch ✓ 15.0±1.6 17.2±3.3
Scratch ✓ ✓ 13.0±1.5 18.2±1.1
Scratch ✓ ✓ 35.3±7.2 53.1±7.3

Fine-tune ✓ 42.5±2.6 61.0±5.8
Fine-tune ✓ 57.2±2.2 74.6±2.1
Fine-tune ✓ ✓ 64.8±3.9 84.6±6.2
Fine-tune ✓ ✓ 81.5±2.2 94.3±1.7

this thesis. The training data was the same as for the autoencoder models and the training

hyperparameters for the CNNs are the same as well. The results are reported in Table 8.5. It

can be observed that the ResNet-50 model performs slightly better than the extractor models

from the previous section, except when the child seat class is left out.

Reconstruction results

In addition to the quantitative improvements, we also want to report interesting insights

regarding the reconstruction performance of the previously discussed methods. We report

reconstruction results for the real Sharan images from the ORSS dataset in Fig. 8.8, Fig. 8.9,

Fig. 8.10 and Fig. 8.11.

The perceptual loss can be used to achieve better reconstruction results, but the overall

conclusion is the same, independently of which reconstruction loss was used. The classification

accuracy for the multi-channel autoencoder either using the extractor or not was performing

worse, compared to the extractor autoencoder model. However, the reconstruction results by

the multi-channel autoencoder approach highlight a different advantage of the latter design

choice. All the extractor autoencoder models, except when synthetic images only are used for

training, do not remove the vehicle background entirely when images from the Sharan images

are used as input.

Although the classification performance is good, the model did not learn to remove the

background. The extractor autoencoder model can use two regions in the latent space, one for

the synthetic images and one for the real images. Hence, the model does not need to learn to

remove undesired features from the real images. In contrast, in the multi-channel autoencoder
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(a) Input images from the Sharan ORSS vehicle

(b) II-E-TAE SVIRO-NoCar

(c) II-E-TAE ORSS

(d) II-E-TAE ORSS and SVIRO-Uncertainty

(e) II-E-TAE ORSS and SVIRO-NoCar

Fig. 8.8 Reconstruction of real input images from the unseen Sharan vehicle from the ORSS

dataset for different autoencoder model architectures using the SSIM for the reconstruction

error, the II-PIRL, the triplet loss and different training dataset variations. We abbreviate

extractor (E) and autoencoder (AE).
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(a) Input images from the Sharan ORSS vehicle

(b) II-T-MuCh ORSS and SVIRO-Uncertainty

(c) II-T-MuCh ORSS and SVIRO-NoCar

(d) II-E-T-MuCh ORSS and SVIRO-Uncertainty

(e) II-E-T-MuCh ORSS and SVIRO-NoCar

Fig. 8.9 Reconstruction of real input images from the unseen Sharan vehicle from the ORSS

dataset for different autoencoder model architectures using the SSIM for the reconstruction

error, the II-PIRL, the triplet loss and different training dataset variations. We abbreviate

extractor (E) and multi-channel (MuCh) autoencoder.
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(a) Input images from the Sharan ORSS vehicle

(b) II-E-TAE SVIRO-NoCar

(c) II-E-TAE ORSS

(d) II-E-TAE ORSS and SVIRO-Uncertainty

(e) II-E-TAE ORSS and SVIRO-NoCar

Fig. 8.10 Reconstruction of real input images from the unseen Sharan vehicle from the ORSS

dataset for different autoencoder model architectures using the perceptual loss for the recon-

struction error, the II-PIRL (II), the triplet loss (T) and different training dataset variations. We

abbreviate extractor (E) and autoencoder (AE).
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(a) Input images from the Sharan ORSS vehicle

(b) II-T-MuCh ORSS and SVIRO-Uncertainty

(c) II-T-MuCh ORSS and SVIRO-NoCar

(d) II-E-T-MuCh ORSS and SVIRO-Uncertainty

(e) II-E-T-MuCh ORSS and SVIRO-NoCar

Fig. 8.11 Reconstruction of real input images from the unseen Sharan vehicle from the ORSS

dataset for different autoencoder model architectures using the perceptual loss for the recon-

struction error, the II-PIRL (II), the triplet loss (T) and different training dataset variations. We

abbreviate extractor (E) and multi-channel (MuCh) autoencoder.
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(a) II-E-TAE (b) II-E-T-MuCh

Fig. 8.12 Comparison of the t-SNE latent space projection between II-E-TAE and II-E-T-MuCh.

The synthetic training images (blue) and real training images (orange) are clustered together

in case of the II-E-T-MuCh, but both distributions are much more separated for the II-E-TAE.

Properties like background removal are hence more likely to be adopted for real images in case

they are learned on synthetic images when the multi-channel autoencoder is used.

approach, we forced the model to reconstruct both real and synthetic images using synthetic

images as target. Further, we force the model to represent real and synthetic images similarly

in the latent space by a dedicated triplet loss. This difference becomes apparent in the latent

space projections reported in Fig. 8.12. Since the latter design choice was combined with the

II-PIRL, the model needed to learn to remove the background also for real images. Properties

like background removal are hence more likely to be adopted for real images in case they are

learned on synthetic images when the multi-channel autoencoder is used. Regarding the latter

property, the availability of the synthetic data could, however, not be exploited as efficiently

in case we constrained the model to reconstruct real images only or real and synthetic images

respectively. This was previously discussed and compared in Fig. 8.7. The multi-channel

autoencoder approach using the SVIRO-NoCar images removes the background entirely for

real images. Although the classification performance is slightly worse, this model design

might still be useful for downstream tasks or design choices to be investigated in future work.

Regarding the latter, we report an interesting observation in Chapter 10 which allows to remove

the background.
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8.2.6 The importance of synthetic data generation design choices

A very important point needs to be mentioned regarding the children in the child seats class, i.e.

the class with label 2. We report results when the class is left out from the test set in Table 8.4

and Table 8.5. It can be observed that the performance increases significantly in case the class

is left out. The reason for this is a miss-alignment between real and synthetic images. Most of

the children on the child seats will be classified as adults by the model when synthetic images

are included during training. The reason for this is two-fold: on the one hand side, there is a

large difference between the synthetic and real class characteristics. In the synthetic images the

child seat is dominantly visible and the children are rather small in comparison to the seat. On

the real images, the child seat is quite often barely visible and the children appear much larger

- sometimes they are close to the size of adults. This is not represented well in the synthetic

images, because it is challenging to avoid intersections between children and child seats if

the children become to large. This should be addressed in future work. On the other side, the

labeling on the real images is not consistent. There are child seat variations, e.g. boosters,

which are classified as 3, i.e. as an adult. While this decision was done internally at IEE S.A. ,

it aggravates the aforementioned problems between synthetic and real miss-alignments. In both

cases, we believe that an improved version of the synthetic data would also solve the problem

with respect to the children on child seats. Overall, it can be observed that our introduced

model and data design choices improve the performances. Since the final performance using

the II-PIRL and the extractor are above 90% when children in child seats are neglected, we

argue that the success on child seats is only a matter of improving the synthetic data generation

process.

8.3 Discussion and limitations

We want to highlight that most of the contribution to the success of our introduced model

variations when no real images are included during training stems from the II variation of

the PIRL. To this end we trained several types of classifiers in the latent space of different

autoencoder model variations and report the results in Table 8.6. The II variation of the

PIRL largely improves the classification accuracy compared to the I variation. Moreover, the

performance is better compared to the triplet loss variation which uses the label information

explicitly as a latent space constraints, compared to the implicit use by the II-PIRL.

The II variation of the PIRL implicitly assumes that the classes are uni-modal, i.e. objects

of the same class should be mapped onto a similar point in the latent space. This characteristic

can either improve generalization or have a detrimental effect on the performance depending

on the task to be solved. It is clear that the reconstruction is far from perfect and hence it
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Table 8.6 For each of the 10 experimental runs per method after 250 epochs (i.e. not the best

model weights per training were selected) and using the VGG-11 extractor we trained different

classifiers in the latent space: k-nearest neighbour (KNN), random forest (RForest) and support

vector machine with a linear kernel (SVM). The results show that most of the contribution

to the synthetic to real generalization on TICaM is due to the II variation of the PIRL cost

function.

TICaM SVIRO

Variant KNN RForest SVM KNN RForest SVM

E-AE 17.1±6.7 24.2±4.1 40.6±8.5 38.7±2.9 58.2±2.0 72.9±2.3
I-E-AE 18.2±7.3 42.4±6.5 50.1±3.7 61.0±3.5 72.2±2.5 73.8±2.3

II-E-AE 73.2±3.9 68.8±5.7 66.9±6.7 83.7±1.9 79.8±2.7 81.4±2.2
E-TAE 69.2±3.4 66.4±4.0 68.7±2.2 76.2±2.3 71.2±2.5 75.3±2.5

might not be suitable for some applications. Under its current form there is no guarantee that,

for example, facial landmarks or poses would be preserved. Nevertheless, we believe that

extensions of our proposed loss, for example based on constraints (e.g. preservation of poses)

could be an interesting direction for future work. It can be observed that our model is not

perfect and sometimes struggles: in case an object (e.g. backpack) is located on the seat and

for more complex human poses (e.g. people turning over). However, we believe that these

problems are related to the training data: a more versatile synthetic dataset would probably

improve the model performance on more challenging real images. This is also in line with the

remarks from Section 8.3.

Finally, we want to highlight that the vehicle-to-vehicle generalization challenge can

potentially be solved by the methods presented in this chapter. Invariances with respect to

background and illumination can be learned from synthetic data. It is, however, paramount

that the synthetic data generation is performed with care such that it aligns correctly with the

real data class distribution and definitions. Afterwards, there is basically no limit regarding

the amount of randomness and the number of sceneries which can be generated and achieved.

Some amount of real data is required to close the synthetic to real gap though.

8.4 Conclusion

We introduced an autoencoder model which uses a pre-trained classification model as a feature

extractor. Our results showed that the our novel model design choices produce superior

reconstructions for synthetic to real generalization compared to vanilla autoencoder models,

common variations thereof or FactorVAE. However, we highlighted that design choices made
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on simple datasets do not necessarily transfer to visually more complex tasks. We performed a

step-by-step investigation of additional model changes and showcased the improvements of

each change. Our proposed autoencoder model outperforms consistently and more robustly

all classification model counterparts. If real data can be incorporated during training, it is

possible to tighten the gap between synthetic and real images using the extractor approach.

The invariances are then learned from the synthetic data while the transfer to real images is

improved by the integration of real images.



Chapter 9

Uncertainty estimation and

out-of-distribution detection

The reliability assessment of a machine learning model’s prediction is an important feature for

the deployment in safety critical applications. Not only can it be used to detect novel sceneries,

either as out-of-distribution or anomaly sample, but it also helps to determine deficiencies

in the training data distribution. A lot of promising research directions have either proposed

traditional methods like Gaussian processes or extended deep learning-based approaches, for

example, by interpreting them from a Bayesian point of view. In this chapter we propose two

novel approaches for uncertainty estimation based on autoencoder models. The first one uses

the second variation of the PIRL: we show that it can also be used for uncertainty estimation

where its performance exceeds MC Dropout and an ensemble of models. The second one uses

the recursive application of a previously trained autoencoder model. This can be interpreted as

a dynamical system storing training examples as attractors. While input images close to known

samples will converge to the same or similar attractor, input samples containing unknown

features are unstable and converge to different training samples by potentially removing or

changing characteristic features. The use of dropout during training and inference leads to a

family of similar dynamical systems, each one being robust on samples close to the training

distribution, but unstable on samples further away from the training distribution. Either the

model reliably removes these features or the resulting instability can be exploited to detect

problematic input samples.

In the previous chapters we developed, analyzed and proposed methods to alleviate the

challenges of this thesis - at least to some extend. It is, however, utopian to expect a system,

and a method, to work for all possible circumstances. To this end, this penultimate chapter

investigates and proposes methods to identify those edge cases and endows an autoencoder

approach with an uncertainty measure.
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9.1 Introduction

Assessing the reliability of machine learning models’ predictions is an important challenge

for the deployment and applicability of statistical methods, particularly in the case of safety

critical applications. This additional information allows the possibility to detect novel and

exotic sceneries during the lifetime of a deployed model on which the model’s predictions

trustability can be determined. This knowledge also gives hints whether the collected training

data needs to be extended or modified, e.g. in the case of active learning [74] and continuous

learning [117]. Recent activities investigated the possibility for estimating the uncertainty in

the case of deep learning-based methods [48, 134, 153, 5]. Monte Carlo (MC) dropout, i.e.

using dropout during training and enabling the latter during inference for multiple runs, has

been shown to produce good uncertainty quantification [73] on several tasks while limiting the

additional overhead during training and inference.

It has been shown that recursive applications of autoencoder models, which are trained

under the standard training regime, can be viewed as a dynamical system [204]. From a

mathematical and physical point of view [230] the analysis of fixed points and attractors and

their basins of attraction are important tools to analyze and understand dynamical systems and

their behavior. This iterative process can further be viewed as associative memory [204] to

retrieve perturbed training samples, but the models need to be trained long enough to ensure

that the training samples become fixed points and attractors. To the best of our knowledge, the

recursive application of autoencoder models and their attractors have not been investigated in

view of generalization capacities and uncertainty estimation.

As explained in Section 4.8, we extend the recursive application of autoencoder models,

thus dynamical systems and attractors, in view of generalization capacities. We combine this

strategy with MC Dropout and we exploit characteristics of both design choices to determine

whether new input samples are close or far from the training distribution by analyzing the

behavior of multiple inferences, see Fig. 9.2 for an example. In the latter, the test sample is

converging to a similar attractor, while the out-of-distribution sample converges to different

attractors of different classes. We show that uncertainty estimation is improved compared to

vanilla MC Dropout and deep ensemble models across three metrics and in view of the entropy

distribution. Our ablation study shows that the recursive application is key to the success of our

approach. Our analysis is performed on several commonly used OOD dataset combinations

as well as on SVIRO-Uncertainty. While introduced independently in this work, the method

based on the recursive application of autoencoder models (MCA-AE) and the one using the

second variation of the PIRL (MC-II-AE) can also be used together.
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9.2 Experiments and results

We evaluated our methods on two scenarios: First, we want to assess the predictive uncertainty

where the model should provide a high uncertainty in case it wrongly classifies a test sample.

This is made more difficult in the case of the vehicle interior: unseen new objects should

be classified as empty seats, i.e. the model should only identify known classes and neglect

everything else. For example, if a bag is placed on the rear-bench, the model should classify it

as an empty seat, since no airbag needs to be deployed in case of an accident. Our results will

show that this is a challenging task. Second, the model should differentiate between in- and

out-of-distribution samples. In the case, for example, of training on MNIST and evaluating on

Fashion-MNIST, the model cannot perform a correct prediction and it should detect the OOD

as such. This is also the case when images from a new vehicle interior are provided as input to

the model. If a model can reliably work on a new vehicle interior, there should not be a high

uncertainty and vice versa. Again, our results will underline the challenge of this task.

For our investigations, we combined several commonly used datasets forDin (in-distribution)

and Dout (out-of-distribution), as introduced in Section 2.1.4. We used approximately the same

number of samples from Din and Dout by sampling each class uniformly. In addition to these

commonly used datasets, we use SVIRO-Uncertainty, which enables several analyses as high-

lighted in Section 3.5. An overview of the number of classes and samples used for each dataset

is provided in Table 9.1.

9.2.1 Training and evaluation details

We compare our method against MC Dropout and an ensemble of models using the same

architecture as the autoencoder encoder part, but with an additional classification head. We

trained our MCA-AE models for 25000 epochs to make sure training samples become attractors,

but fewer epochs might produce good results as well. We did not perform an ablation study

with respect to the number of epochs needed. Further, we did not check whether the training

samples are truly fixed point and attractors because of the computational overhead: This could

be done by computing the largest eigenvalue of the Jacobian matrix for each training sample

and checking whether it is greater than 1. The autoencoder model was trained as a denoiser, see

Section 2.5.1, using blur, random noise, brightness and contrast to augment the images. This

facilitates and robustifies the recursive autoencoder application, since the reconstructions will

never be perfect. Consequently, to have a fair benchmark, MC Dropout and ensemble models

used the same augmented images during training. The latter were trained for 1000 epochs. All

methods used Adam, a learning rate of 0.0001 and a batch size of 64. For training on MNIST

and Fashion-MNIST we used a latent space of 10, while for all others we used a latent space of
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Table 9.1 Overview of the number of classes and samples for OOD or uncertainty estimation

for the different datasets used.

Dataset Classes Din and Dout Uncertainty

MNIST 10 2500 10000

Fashion 10 2500 26032

SVHN 10 2500 10000

GTSRB 10 2006 3208

CIFAR10 10 2500 -

Omniglot 660 2636 -

LSUN 10 2500 -

Places365 365 2555 -

SVIRO-U Adults (A) 7 1337 2617

SVIRO-U Seats (S) 8 - 490

SVIRO-U Objects (O) 8 - 1622

SVIRO-U A,S 26 - 896

SVIRO-U A,O 7 - 1421

SVIRO-U A,S,O 30 - 1676

SVIRO Tesla 21 - 2000

64. We used SSIM for computing the reconstruction loss. We used 250 samples per class for

training and treat all datasets (even RGB ones) as grayscale images. The latter design choice

induces mostly balanced datasets and hence balanced dataset combinations. All images were

centre-cropped and resized to 64 by 64 pixels. We used a dropout rate of 0.33 for all methods,

because the results are slightly worse for MCA-AE and MC Dropout in case of a 0.1 dropout

rate.

For MCA-AE and MC Dropout we used 20 inferences and we used an ensemble of 10

models to assess uncertainty and the OOD estimation. We used 2 recursions for MCA-AE,

but this value depends on the dataset used and it might be subject to a hyperparameter search.

In our case, the models converged fast for test samples and slow for OOD samples, see for

example Fig. 9.2. Hence, iterating more often did not provide a meaningful improvement w.r.t.

the metrics mentioned in Section 2.11. We fixed the seeds for all experiments and we repeated

each training for 10 runs for MCA-AE and MC Dropout and for 100 runs to get the ensembles

of models, such that we can report mean and standard deviation.

9.2.2 Uncertainty estimation and out-of-distribution detection

We report the summary of our results for uncertainty estimation and OOD detection in Tables

9.2, 9.3 and 9.4. An interesting observation is the result that our approach performs significantly



9.2 Experiments and results 177

better when the visual complexity is increased (GTSRB, SVIRO), while the performance of

MC Dropout and ensemble of models decreases on those setups. On the other side, on

visually much simpler datasets (MNIST, Fashion-MNIST, SVHN) the performance of MC

Dropout and ensemble of models performs best. There seems to be a correlation between the

performance on uncertainty estimation in case of mis-classifications and out-of-distribution

detection on unknown images. Another interesting observation is that our approach can much

better provide estimations in the unseen Tesla vehicle from SVIRO. It can be observed that

the different SVIRO-Uncertainty splits undergo a large performance gap between all methods.

This underlines the difficulty of the dataset and the necessity of the different fine grained splits.

We also kept track of all normalized entropies, see Eq. (2.45), used for determining the

threshold for all Din and Dout . We computed the histograms of the entropies for each dataset

and report results for MCA-AE, MC Dropout and an ensemble of models in Fig. 9.1 when

trained on GTSRB. The results show that the entropy distribution between Din and several Dout

are best separated by our approach. The distributions of the different Dout are more similar

then for the other models. To quantify this, we computed the sum of the Wasserstein distances

between Din and all Dout (TD, larger is better, because we want them to be different) separately

and the sum of the distances between Dout CIFAR10 and all other Dout (OD, smaller is better,

because we want them to be similar). We then computed the mean and standard deviation

across 10 runs. The results in Table 9.5 for MCA-AE, MC Dropout and an ensemble of models

show that our method separates best uncertainty between Din and Dout , and all Dout are most

similar between each other. This investigations shows that the different Dout datasets and

their uncertainty are treated similarly by our approach, because the distances between the

distributions are small. Further, the separation between Din and Dout is also performed best by

our approach, since the distances between the Din and Dout distributions are the largest.

9.2.3 Ablation study

While the results of the previous section have shown that the MCA-AE yields good uncertainty

and OOD estimations, we want to highlight that the performance is improved due to the

recursive application of the previously trained autoencoder model. To this end we provide some

additional results where we compare the performance if no recursion is applied. We repeat the

evaluation from the previous section and report the performance in Table 9.6. By comparing

the results against Tables 9.2, 9.3 and 9.4, it becomes apparent that the recursive application

significantly improves uncertainty and OOD estimation.

We also provide examples for several recursive steps and their reconstructions. In Fig 9.2

we report the reconstructions after 1, 2, 3 and 4 iterative steps together with the input image.
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Table 9.2 AUROC performance comparison (in percentage, larger is better). We repeated the

experiments 10 times and report the mean and standard deviation. If Din =Dout , the result on

the test set of Din only is reported.

Din→Dout MCA-AE (Ours) MC Dropout Ensemble of 10 models

MNIST→MNIST 79.9±1.6 90.1±0.6 85.8±1.4
MNIST→CIFAR10 88.2±2.3 91.2±1.3 91.5±1.1
MNIST→Fashion 74.5±3.2 90.0±1.6 89.5±1.1
MNIST→Omniglot 64.4±5.0 93.4±2.8 95.5±1.0
MNIST→SVHN 92.2±2.0 94.2±1.7 94.9±0.9

Fashion→Fashion 81.0±1.0 82.5±0.4 81.7±0.7
Fashion→CIFAR10 93.9±1.8 88.7±1.9 91.6±0.9
Fashion→MNIST 87.8±4.0 85.4±1.8 90.2±0.5
Fashion→Omniglot 86.8±3.8 93.6±2.0 97.9±0.4
Fashion→SVHN 93.7±2.0 90.8±1.0 94.8±0.5

SVHN→SVHN 77.6±0.8 84.0±0.6 83.7±0.5
SVHN→CIFAR10 77.5±1.2 74.9±0.9 77.6±0.7
SVHN→GTSRB 75.4±2.2 74.0±1.1 75.3±0.7
SVHN→LSUN 78.4±0.9 77.0±0.7 79.2±0.7
SVHN→Places365 78.5±0.8 77.1±0.6 79.2±0.5

GTSRB→GTSRB 85.1±0.9 89.3±2.4 84.6±1.7
GTSRB→CIFAR10 91.4±0.6 81.2±0.9 76.3±0.5
GTSRB→LSUN 93.0±0.7 83.4±0.8 77.7±0.8
GTSRB→Places365 92.3±0.7 82.8±0.7 77.5±0.6
GTSRB→SVHN 91.3±0.7 85.6±1.5 79.4±0.6

SVIRO-U→CIFAR10 95.4±0.6 74.6±3.5 77.7±1.5
SVIRO-U→GTSRB 95.8±1.0 69.9±2.7 74.7±2.5
SVIRO-U→LSUN 94.8±0.5 67.6±2.0 72.0±1.1
SVIRO-U→Places365 95.4±0.5 73.2±2.6 77.4±1.0
SVIRO-U→SVHN 92.4±1.6 81.0±3.4 81.0±1.3

SVIRO-U→Adults (A) 87.8±1.3 95.2±1.7 91.1±1.9
SVIRO-U→Seats (S) 54.0±7.5 17.5±13.1 28.1±6.8
SVIRO-U→Objects (O) 68.9±3.1 64.7±3.2 57.4±2.3
SVIRO-U→A,S 58.8±2.6 36.3±2.3 39.5±1.7
SVIRO-U→A,O 78.8±1.5 70.1±1.6 71.1±0.7
SVIRO-U→A,S,O 62.2±2.0 42.1±2.7 45.8±1.9
SVIRO-U→Tesla (OOD) 88.6±2.0 52.1±2.9 28.6±28.6
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Table 9.3 AUPR performance comparison (in percentage, larger is better). We repeated the

experiments 10 times and report the mean and standard deviation. If Din =Dout , the result on

the test set of Din only is reported.

Din→Dout MCA-AE (Ours) MC Dropout Ensemble of 10 models

MNIST→MNIST 94.9±0.5 99.6±0.1 99.0±0.1
MNIST→CIFAR10 87.4±2.2 92.2±1.1 92.4±0.9
MNIST→Fashion 72.7±3.3 91.1±1.3 90.6±0.9
MNIST→Omniglot 70.4±5.7 94.2±2.5 96.0±0.8
MNIST→SVHN 91.3±1.5 94.9±1.4 95.4±0.7

Fashion→Fashion 94.4±0.3 96.4±0.1 96.4±0.1
Fashion→CIFAR10 95.8±1.1 89.6±1.8 92.1±0.8
Fashion→MNIST 88.2±3.4 86.7±1.5 90.6±0.5
Fashion→Omniglot 91.2±2.5 94.1±1.8 98.1±0.3
Fashion→SVHN 95.6±1.3 91.7±0.9 95.1±0.4

SVHN→SVHN 80.8±1.0 93.1±0.4 92.9±0.3
SVHN→CIFAR10 80.4±1.1 78.0±0.8 80.5±0.6
SVHN→GTSRB 80.5±1.9 80.1±1.0 81.2±0.7
SVHN→LSUN 81.5±0.8 79.8±0.7 81.9±0.7
SVHN→Places365 81.0±0.7 79.4±0.6 81.5±0.4

GTSRB→GTSRB 95.6±0.5 98.8±0.3 97.4±0.3
GTSRB→CIFAR10 90.3±0.8 81.4±0.9 77.7±0.5
GTSRB→LSUN 92.2±0.7 83.3±0.7 78.7±0.6
GTSRB→Places365 91.3±0.7 82.4±0.6 78.2±0.6
GTSRB→SVHN 90.7±0.8 85.5±1.5 80.3±0.5

SVIRO-U→CIFAR10 93.3±1.0 73.6±2.0 75.0±1.1
SVIRO-U→GTSRB 94.9±1.1 74.2±1.2 76.2±1.5
SVIRO-U→LSUN 92.7±0.7 70.1±1.0 71.6±0.6
SVIRO-U→Places365 93.3±0.7 72.5±1.3 74.5±0.7
SVIRO-U→SVHN 88.6±2.3 77.8±2.4 77.3±1.1

SVIRO-U→Adults (A) 99.1±0.3 99.9±0.1 99.8±0.1
SVIRO-U→Seats (S) 8.9±4.2 0.4±0.2 2.6±1.6
SVIRO-U→Objects (O) 83.7±2.4 85.3±3.3 80.6±1.4
SVIRO-U→A,S 48.6±6.4 16.5±2.8 23.6±1.8
SVIRO-U→A,O 93.0±0.5 93.5±0.9 92.3±0.6
SVIRO-U→A,S,O 56.4±4.7 18.6±2.7 33.0±1.7
SVIRO-U→Tesla (OOD) 97.4±0.5 90.9±0.5 45.8±45.8
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Table 9.4 FPR95 % performance comparison (in percentage, smaller is better). We repeated the

experiments 10 times and report the mean and standard deviation. If Din =Dout , the result on

the test set of Din only is reported.

Din→Dout MCA-AE (Ours) MC Dropout Ensemble of 10 models

MNIST→MNIST 74.2±4.8 28.0±2.4 41.5±3.0
MNIST→CIFAR10 44.1±8.3 39.8±5.1 34.0±4.7
MNIST→Fashion 72.3±4.4 40.5±5.9 37.0±3.2
MNIST→Omniglot 99.4±0.7 35.4±12.2 22.0±6.0
MNIST→SVHN 28.2±12.4 30.5±9.4 22.4±5.1

Fashion→Fashion 80.2±2.4 64.4±4.3 64.7±2.2
Fashion→CIFAR10 47.0±20.0 45.7±5.8 34.3±3.1
Fashion→MNIST 48.7±15.6 53.5±5.1 35.7±2.4
Fashion→Omniglot 87.3±9.7 32.6±10.1 9.3±2.3
Fashion→SVHN 48.9±17.1 40.7±3.6 23.0±2.6

SVHN→SVHN 79.5±2.1 69.3±2.4 68.7±2.0
SVHN→CIFAR10 83.6±3.0 85.8±1.8 83.3±1.4
SVHN→GTSRB 80.7±5.4 84.9±2.9 84.0±3.0
SVHN→LSUN 82.7±4.8 81.9±2.1 80.1±1.9
SVHN→Places365 82.6±3.7 80.9±2.5 79.5±1.9

GTSRB→GTSRB 69.3±3.3 50.9±6.0 62.1±3.2
GTSRB→CIFAR10 42.0±3.3 69.5±3.7 83.4±1.3
GTSRB→LSUN 36.5±4.4 65.3±3.9 81.3±1.6
GTSRB→Places365 38.8±3.4 65.1±3.6 80.6±1.7
GTSRB→SVHN 44.5±3.7 60.7±5.1 80.1±1.7

SVIRO-U→CIFAR10 26.9±3.4 60.4±7.2 57.1±3.2
SVIRO-U→GTSRB 25.1±6.9 68.8±4.7 63.8±1.3
SVIRO-U→LSUN 31.5±2.7 72.3±4.2 64.4±2.3
SVIRO-U→Places365 27.3±2.8 63.5±6.8 57.0±2.5
SVIRO-U→SVHN 40.1±7.6 49.5±8.9 51.6±4.1

SVIRO-U→Adults (A) 62.9±3.9 8.9±3.1 28.8±8.8
SVIRO-U→Seats (S) 88.8±10.8 95.7±5.1 98.0±2.5
SVIRO-U→Objects (O) 84.1±5.5 85.3±4.6 86.5±3.3
SVIRO-U→A,S 93.2±1.1 97.4±1.4 96.9±1.1
SVIRO-U→A,O 76.1±3.4 77.4±2.8 77.8±2.4
SVIRO-U→A,S,O 88.7±3.1 96.4±0.9 95.5±0.9
SVIRO-U→Tesla (OOD) 58.0±6.1 94.1±3.7 44.4±44.4
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(a) MC Dropout (b) Ensemble of 10 models

(c) MCA-AE (Ours)

Fig. 9.1 Comparison of entropy histograms between Din (GTSRB, filled bars with blue)

and several Dout (not filled bars and coloured according to dataset used) for different model

architectures (a), (b) and (c) . MCA-AE provides the best separation between Din and Dout

across the entire datasets. Moreover, the different Dout have a more similar distribution as

compared to MC Dropout or an ensemble of models, which we also evaluate quantitatively.

Notice the non-linear scale on the y-axis to ease visualization for smaller values.

Table 9.5 We calculated the sum of the Wasserstein distances between Din and all Dout (TD,

larger is better) separately and the sum of the distances between Dout CIFAR10 and all other

Dout (OD, smaller is better) for different methods over 10 runs. We report the mean and

standard deviation.

MCA-AE (Ours) MC Dropout Ensemble of 10 models

OD ↓ 0.049±0.007 0.080±0.016 0.050±0.007

TD ↑ 1.551±0.044 0.854±0.028 0.686±0.017
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Table 9.6 OOD and uncertainty estimation when no recursion is applied. In most cases the

results are worse compared to 2 recursions - see Tables 9.2, 9.3 and 9.4. In case they are better,

we mark the result in grey.

Din→Dout AUROC ↑ AUPR ↑ FPR95 % ↓
MNIST→MNIST 73.5±1.6 91.3±0.8 82.6±2.7
MNIST→ CIFAR10 80.4±3.9 77.8±4.5 58.9±8.6
MNIST→ Fashion 61.5±5.8 59.3±5.4 82.7±4.2
MNIST→ Omniglot 32.6±10.5 44.0±6.5 99.9±0.1
MNIST→ SVHN 87.2±3.4 83.3±4.9 38.8±15.5

Fashion→ Fashion 77.2±0.9 91.6±0.5 82.0±1.7
Fashion→ CIFAR10 88.2±5.0 89.6±6.2 63.0±15.9
Fashion→MNIST 88.2±3.3 89.3±3.0 55.7±8.9
Fashion→ Omniglot 60.9±25.4 71.3±19.5 98.5±2.8
Fashion→ SVHN 87.2±6.7 88.2±8.8 61.0±11.6

SVHN→ SVHN 67.2±1.2 54.6±2.3 87.9±2.1
SVHN→ CIFAR10 56.0±1.0 57.2±1.1 94.8±0.9
SVHN→ GTSRB 53.6±3.0 60.4±2.7 94.9±1.9
SVHN→ LSUN 57.5±1.7 59.2±1.7 94.4±1.4
SVHN→ Places365 57.9±1.3 58.6±1.4 93.9±1.5

GTSRB→ GTSRB 85.7±1.3 95.9±0.6 67.3±2.9
GTSRB→ CIFAR10 82.2±2.3 81.0±2.5 69.9±6.5
GTSRB→ LSUN 83.2±2.2 82.0±2.3 68.6±6.1
GTSRB→ Places365 82.8±2.1 81.3±2.3 68.2±5.9
GTSRB→ SVHN 79.8±2.8 78.7±3.1 76.4±5.5

SVIRO-U→ CIFAR10 73.4±2.8 60.9±3.3 76.4±4.7
SVIRO-U→ GTSRB 70.5±7.8 63.6±7.2 82.4±6.6
SVIRO-U→ LSUN 70.8±2.7 58.2±2.6 81.2±3.6
SVIRO-U→ Places365 73.5±2.9 60.4±3.2 76.4±4.5
SVIRO-U→ SVHN 79.9±3.5 66.7±5.7 59.8±4.6

SVIRO-U→ Adults (A) 86.7±2.2 98.6±0.5 66.6±8.8
SVIRO-U→ Seats (S) 19.5±13.1 1.2±1.0 74.6±37.6
SVIRO-U→ Objects (O) 58.6±4.9 56.6±6.2 88.2±6.2
SVIRO-U→ A,S 43.4±2.9 11.0±2.0 95.1±2.3
SVIRO-U→ A,O 65.9±1.8 75.1±1.6 88.5±1.4
SVIRO-U→ A,S,O 48.4±3.2 16.9±2.1 91.6±2.4
SVIRO-U→ Tesla (OOD) 54.2±10.8 86.2±4.1 94.8±3.7
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Input Iter 1 Iter 2 Iter 3 Iter 4

(a) Din: Fashion

Input Iter 1 Iter 2 Iter 3 Iter 4

(b) Din: MNIST

Input Iter 1 Iter 2 Iter 3 Iter 4

(c) Din: SVHN

Input Iter 1 Iter 2 Iter 3 Iter 4

(d) Din: GTSRB

Input Iter 1 Iter 2 Iter 3 Iter 4

(e) Din: SVIRO-U

Fig. 9.2 Multiple recursive reconstructions (rows - from left to right) of identical samples

(first column) from Din and Dout by our novel MCA-AE model. Notice the evolution in the

reconstruction results over each iterative step for the OOD samples. Din converge more robustly

compared to Dout reconstructions.

We repeat this for models trained on different Din and show that Dout reconstructions converge

over time (and much slower) to training samples. We hence believe that considering the

trajectory of the latent space representation over several steps can be an additional appropriate

indicator whether an input sample is in- or out-of-distribution. It becomes also visible that the

reconstruction converges robustly to similar classes for Din samples, but to different classes for

Dout .

9.2.4 II-PIRL

In this section, we compare the MC Dropout approach on different autoencoder model archi-

tectures without the recursive application used in the previous section. We compare vanilla

autoencoders (MC-AE) against triplet autoencoders (MC-TAE) and autoencoder using the

II-PIRL (MC-II-AE). Further, in this section we do not perform a data augmentation since none

of the models is trained in a denoising approach, mainly because no recursion is necessary.

This means that the results from this section cannot be compared one-to-one with the ones from

the previous section, but instead it provides a more fundamental baseline. Both methods are

compared under fair conditions in Section 9.2.5 though. Additionally, we use the training set

with adults and child seats from SVIRO-Uncertainty, such that we can report results for the

second training split as well in this work. Besides that, all training details and hyperparameters

are the same as in the previous section.

The AUROC results in Table 9.7 show that the autoencoder model using the II-PIRL always

performs better than the vanilla MC-AE or when a triplet loss is used. Notwithstanding this

achievement, it can also be observed that the MC-II-AE usually significantly outperforms MC
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Dropout and an ensemble of models. While the ensemble of models outperforms our method

only thrice, it is worth noting that our approach only uses a single model while the ensemble

uses 10 models.

We also compare the reconstructions of the different methods on OOD images when trained

on GTSRB in Fig. 9.3. It can be observed that the reconstructions by MC-II-AE are the most

clear and diverse in case of OOD input images.

Finally, as in the previous section, we also kept track of all normalized entropies for all Din

and Dout . We computed the histograms of the entropies for each dataset and each method and

report results in Fig. 9.4 when trained on GTSRB. The results show that the entropy distribution

between Din and several Dout are best separated when the II-PIRL is used. The distributions

of the different Dout are more similar in case an ensemble of models is used though. We

computed the sum of the Wasserstein distances between Din and all Dout (TD, larger is better,

because we want them to be different) separately and the sum of the distances between Dout

CIFAR10 and all other Dout (OD, smaller is better, because we want them to be similar). We

then computed the mean and standard deviation across the 10 runs. The results for MC-AE,

MC-TAE, MC-II-AE, MC Dropout and an ensemble of 10 models show that our method best

separates uncertainty between Din and Dout . This is, however, not the case for the similarity

between all Dout . In the latter case, an ensemble of models causes the Dout to be most similar

between each other.

9.2.5 Attractors vs. II-PIRL

In the previous sections, we presented two novel approaches to assess uncertainty estimation

and out-of-distribution detection using autoencoders. As part of an ablation study and to have

a valid comparison between both methods, we want in this section to compare autoencoder

attractors and autoencoders using the II-PIRL against each other, but also to combine them.

It is important to note that the combination of the II-PIRL with the attractor approach does

not make sense from the point of view of a fixed point - at least not for training samples. By

definition of the II-PIRL, a fixed point property cannot be expected since the target image is

not the same as the input image. Although the fixed point property is violated for training

samples, there can still be other fixed points and attractors. These attractors will not be original

training samples, but they will rather be versions of training samples for which the unimportant

information has been normalized. This does not constitute a problem because we know from

other results presented in this thesis, that the resulting properties, when the PIRL is used, are

beneficial for the classification task.

The experiments for our ablation study were conducted on GTSRB. We re-used the same

models from the experiments in Section 9.2.2 and Section 9.2.4. The models were trained
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Table 9.7 Comparison of AUROC (in percentage, larger is better) of our method against MC

Dropout and an ensemble of models as well as vanilla and triplet autoencoders. We repeated

the experiments for 10 runs and report the mean and standard deviation. If Din =Dout , then we

report the result on the test set of Din only. Best results are highlighted in grey.

Din→Dout MC-II-AE (Ours) MC-TAE MC-AE MC Dropout Ensemble

MNIST→MNIST 93.6±0.4 93.3±1.0 84.9±0.8 90.2±0.8 81.0±1.6
MNIST→ CIFAR10 99.1±0.8 97.5±1.1 81.0±5.1 91.8±1.8 91.9±1.8
MNIST→ Fashion 97.3±0.7 95.0±1.1 77.2±6.1 88.5±2.4 82.6±2.5
MNIST→ Omniglot 99.4±0.4 97.6±0.7 82.6±9.0 93.2±4.0 95.8±2.3
MNIST→ SVHN 99.1±1.1 98.1±1.0 81.5±7.1 94.9±1.9 94.2±1.6

Fashion→ Fashion 86.2±0.5 85.8±0.8 83.5±0.8 82.1±0.4 79.8±0.8
Fashion→ CIFAR10 96.6±1.3 91.7±1.9 91.2±3.2 88.6±1.2 91.0±1.0
Fashion→MNIST 91.5±1.7 87.2±2.3 76.4±6.4 83.2±2.0 88.4±0.8
Fashion→ Omniglot 97.7±1.2 89.0±3.0 77.7±8.7 91.7±2.4 96.9±0.9
Fashion→ SVHN 95.7±2.5 90.5±2.7 92.1±3.4 90.0±1.1 93.6±1.1

GTSRB→ GTSRB 94.6±0.9 93.4±0.8 87.9±1.6 85.7±1.2 83.2±0.9
GTSRB→ CIFAR10 92.6±3.3 80.7±1.8 75.4±2.5 79.0±0.8 69.2±1.0
GTSRB→ LSUN 93.9±3.5 81.2±1.9 76.6±2.3 80.3±0.6 68.3±0.8
GTSRB→ Places365 93.6±3.6 82.0±1.7 76.2±2.1 79.4±0.5 68.7±0.8
GTSRB→ SVHN 92.8±3.0 83.6±2.4 76.1±3.7 82.8±1.2 72.7±0.7

SVIRO-U→ CIFAR10 87.2±7.2 71.5±21.8 78.5±4.9 70.8±10.6 83.8±2.2
SVIRO-U→ GTSRB 74.5±9.4 68.1±18.4 82.5±4.8 76.6±6.2 87.0±1.9
SVIRO-U→ LSUN 84.4±8.2 71.0±21.2 77.5±4.4 74.0±8.5 82.7±1.8
SVIRO-U→ Places365 85.7±7.8 71.2±21.4 79.4±3.8 75.3±7.4 83.7±1.5
SVIRO-U→ SVHN 92.7±4.9 72.4±22.6 79.0±4.8 66.2±13.0 84.4±3.0

SVIRO-U→ Adults (A) 97.6±0.8 48.7±48.7 88.4±1.1 91.9±0.8 87.3±0.7
SVIRO-U→ Seats (S) 93.3±2.8 46.4±46.4 74.9±2.1 89.7±4.2 89.0±2.8
SVIRO-U→ Objects (O) 75.5±4.2 39.5±39.6 73.4±1.6 73.7±2.5 73.4±4.5
SVIRO-U→ A,S 92.4±2.0 45.7±45.7 75.0±1.7 87.8±1.7 79.0±1.7
SVIRO-U→ A,O 81.8±2.3 66.2±16.2 76.4±1.0 80.5±1.9 81.8±0.8
SVIRO-U→ A,S,O 77.1±2.6 37.9±37.9 69.6±1.2 75.3±1.9 77.8±1.3
SVIRO-U→ Tesla (OOD) 79.0±11.8 65.3±16.5 72.7±4.8 81.3±3.8 80.3±2.2

Table 9.8 We calculated the sum of the Wasserstein distances between Din and all Dout (TD,

larger is better) separately and the sum of the distances between Dout CIFAR10 and all other

Dout (OD, smaller is better) over 10 runs. We report the mean and standard deviation.

MC-II-AE (Ours) MC-TAE MC-AE MC Dropout Ensemble

OD ↓ 0.082±0.026 0.086±0.025 0.041±0.014 0.047±0.014 0.030±0.004

TD ↑ 1.916±0.332 1.261±0.124 0.782±0.112 0.749±0.014 0.436±0.020
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Fig. 9.3 Comparison of OOD images (first rows) with the corresponding reconstructions

(second rows) for several inferences (columns) when dropout is enabled. The results are for

different autoencoder models for different datasets: CIFAR10 (first block), LSUN (second

block), Places365 (third block) and SVHN (fourth block).



9.2 Experiments and results 187

(a) MC Dropout (b) Ensemble

(c) MC-AE (d) MC-TAE

(e) MC-II-AE (Ours)

Fig. 9.4 Comparison of entropy histograms between Din (GTSRB, filled bars with blue) and

several Dout (not filled bars and coloured according to dataset used) for different methods.

MCA-II-AE provides the best separation between Din and Dout . The different Dout have

the most similar distribution in case of an ensemble of models, which we also evaluated

quantitatively. Notice the non-linear scale on the y-axis to ease visualization for smaller values.
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with and without augmenting the training images, with and without the II-PIRL and either for

1000 or 25000 epochs. This enables us to assess the effect of the different hyperparameters.

The training for each hyperparameter combination is repeated for 10 runs and the results are

reported in Table 9.9 in case an MLP and in Table 9.10 in case a linear SVM was used to

perform the classification in the latent space. For MCA model variations we report results when

three iteration were used. We want to remind that MCA-II-AE with no iteration is MC-II-AE

and MCA-AE with no iteration is MC-AE. Further, we also report results in case the dropout

mask is variable for each iterative step, in comparison to a fixed dropout mask for the entire

iteration. An ablation study over several number of iterations is reported in Table 9.11.

Several interesting observations can be made. In general, using an MLP is more robust and

leads to better performances compared to using a linear SVM classifier, which is expected,

because of the higher approximation properties of the MLP. In case the II-PIRL is used during

training, augmenting the images and training the model as a denoiser does not improve the

performance. However, on the other side, for the MCA-AE approach denoising the images

does have a significant positive impact. In all cases, fixing or varying the dropout mask for each

iterative step did not lead to a significant difference. Training the models for 25000 epochs

instead of 1000 epochs always leads to a better AUROC. Using the II-PIRL improves the

results, either combining it with MCA or not. In case the II-PIRL is used, adopting a single

iteration is sufficient to obtain the best result. In general, iterating for more than three steps

does not contribute to a better uncertainty and OOD assessment.

Lastly, reconstruction results for the model variations investigated in this section are reported

in Fig. 9.5 in case of denoising and in Fig. 9.6 when no augmentation was performed during

training. It can be observed that using augmented images during training leads to a more

versatile reconstruction in case of an OOD sample. If no II-PIRL is used, then the denoising

approach leads to visually clearer reconstructions. In general though, using the II-PIRL, training

the model for 25000 epochs and iterating several times leads to the best qualitative uncertainty

assessment, as supported by the quantitative results. In most cases, the limit images become

clear after a few steps only, i.e. three steps. This is also supported by the quantitative ablation

study over several iterative steps.

9.3 Discussion and limitations

From a mathematical point of view dynamical systems are defined by natural phenomena or

mechanical systems one wants to investigate and understand. Hence, designing or influencing

the dynamical system of interest is usually not a possibility. An interesting observation is that

the latter phenomenon is not necessarily the case for the recursive application of a trained
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Table 9.9 AUROC (in percentage) by single hidden layer MLP classifiers trained in the latent

space of different autoencoder models. We used three iterations for the MCA models. The

dropout mask for each iteration is either fixed (F) or variable (V). The models were trained for

1000 or 25000 epochs and some were trained as denoising autoencoders. The models were

trained on GTSRB and assessed on the latter’s test set for uncertainty estimation and on the

Dout for OOD detection. Mean and standard deviation over 10 runs are reported.

GTSRB→
Model Epochs Denoising Mask GTSRB CIFAR10 LSUN Places365 SVHN

MCA-AE 1000 F 83.9±0.7 83.0±1.0 85.7±1.3 84.5±1.3 82.2±1.6
MCA-AE 1000 ✓ F 85.7±1.0 85.4±1.4 87.6±1.4 86.8±1.3 84.9±2.1
MCA-AE 25000 F 83.1±0.8 87.9±1.8 91.6±1.3 90.4±1.2 85.3±3.0
MCA-AE 25000 ✓ F 85.2±1.6 91.3±0.7 92.8±0.8 92.2±0.9 90.3±1.0

MCA-AE 1000 V 83.4±1.3 82.7±0.9 85.7±1.3 84.5±1.3 81.2±1.5
MCA-AE 1000 ✓ V 85.5±0.9 85.7±1.6 87.8±1.4 86.9±1.5 84.9±2.2
MCA-AE 25000 V 83.1±0.8 87.7±1.8 92.0±1.4 90.6±1.4 84.3±3.1
MCA-AE 25000 ✓ V 85.1±1.3 91.8±0.8 93.2±0.8 92.6±0.8 90.7±0.9

MC-II-AE 1000 - 94.0±1.5 93.3±2.4 94.8±2.4 94.4±2.5 93.2±2.2
MC-II-AE 1000 ✓ - 90.3±7.1 90.6±2.1 92.9±1.9 92.3±1.9 91.9±2.0
MC-II-AE 25000 - 97.6±0.5 95.4±3.0 95.6±3.2 95.4±3.4 96.0±2.5
MC-II-AE 25000 ✓ - 96.8±0.5 94.0±1.3 95.2±1.0 94.9±1.0 93.7±1.4

MCA-II-AE 1000 F 92.1±3.2 89.3±1.7 91.7±1.7 91.0±2.0 89.3±1.4
MCA-II-AE 1000 ✓ F 91.9±2.7 87.4±3.5 89.9±3.5 89.4±3.5 87.8±4.7
MCA-II-AE 25000 F 96.0±3.3 95.4±3.3 96.6±3.1 96.6±3.2 93.8±4.6
MCA-II-AE 25000 ✓ F 96.1±1.5 94.6±1.8 95.7±1.5 95.6±1.8 93.3±2.3

MCA-II-AE 1000 V 91.5±3.8 89.1±1.8 91.5±1.8 90.9±2.1 89.1±1.4
MCA-II-AE 1000 ✓ V 92.0±2.8 87.2±3.4 89.7±3.4 89.2±3.4 87.7±4.6
MCA-II-AE 25000 V 96.1±3.6 95.3±3.4 96.6±3.2 96.5±3.3 93.6±4.8
MCA-II-AE 25000 ✓ V 96.0±1.2 94.5±1.9 95.7±1.7 95.6±1.8 93.3±2.4
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Table 9.10 AUROC (in percentage) by linear classifiers trained in the latent space of different

autoencoder models. We used three iterations for the MCA models. The dropout mask for each

iteration is either fixed (F) or variable (V). The models were trained for 1000 or 25000 epochs

and some were trained as denoising autoencoders. The models were trained on GTSRB and

assessed on the latter’s test set for uncertainty estimation and on the Dout for OOD detection.

Mean and standard deviation over 10 runs are reported.

GTSRB→
Model Epochs Denoising Mask GTSRB CIFAR10 LSUN Places365 SVHN

MCA-AE 1000 F 80.5±1.5 77.4±2.8 79.5±2.9 78.8±2.9 75.8±3.7
MCA-AE 1000 ✓ F 82.5±1.6 81.6±1.8 83.7±1.9 83.1±2.0 80.7±2.4
MCA-AE 25000 F 80.0±1.5 86.1±2.1 89.2±2.1 88.1±2.0 83.5±3.7
MCA-AE 25000 ✓ F 82.5±1.1 88.3±1.4 90.0±1.3 89.3±1.3 86.9±1.4

MCA-AE 1000 V 79.0±1.6 77.4±2.8 79.7±2.7 79.1±3.0 75.8±3.3
MCA-AE 1000 ✓ V 81.8±2.0 82.4±1.7 84.5±1.7 83.9±1.8 80.8±2.5
MCA-AE 25000 V 79.7±1.2 85.7±2.1 88.8±2.0 87.7±2.0 82.8±3.7
MCA-AE 25000 ✓ V 82.0±1.6 88.3±1.5 90.0±1.5 89.4±1.5 86.7±1.2

MC-II-AE 1000 - 66.3±16.3 58.5±17.7 54.9±21.1 56.9±19.1 56.8±16.2
MC-II-AE 1000 ✓ - 88.3±4.6 82.6±5.7 83.9±6.1 83.4±6.2 82.2±5.7
MC-II-AE 25000 - 95.4±4.4 96.5±1.4 97.1±1.0 97.1±1.2 96.4±1.6
MC-II-AE 25000 ✓ - 87.1±6.8 83.8±7.2 83.3±9.2 82.9±8.8 83.3±8.4

MCA-II-AE 1000 F 91.2±4.3 88.9±1.7 91.3±1.9 90.9±2.0 88.9±1.6
MCA-II-AE 1000 ✓ F 92.2±2.6 86.8±4.8 89.4±4.8 88.8±4.9 87.3±6.2
MCA-II-AE 25000 F 97.0±1.9 94.8±4.5 96.0±4.5 95.9±4.6 93.3±5.5
MCA-II-AE 25000 ✓ F 96.4±0.9 94.5±1.6 95.6±1.5 95.5±1.6 93.2±2.0

MCA-II-AE 1000 V 90.9±3.9 88.7±1.7 91.4±2.0 90.7±2.0 88.6±1.6
MCA-II-AE 1000 ✓ V 91.6±2.8 86.6±4.8 89.1±4.8 88.6±4.8 87.1±6.1
MCA-II-AE 25000 V 96.5±1.8 94.6±4.7 95.8±4.7 95.7±4.7 93.2±5.8
MCA-II-AE 25000 ✓ V 96.2±1.2 94.5±1.6 95.7±1.5 95.5±1.5 93.2±2.0
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Table 9.11 Comparison of AUROC (in percentage) for different numbers of iterations for

MCA-AE and MCA-II-AE. The results are in case the MLP classifier is used in the latent space.

The models are the same as in Table 9.9. The AUROCs over all the different Dout (GTSRB,

CIFAR10, LSUN, Places365, SVHN) are averaged to get a unique number.

Number of iterations

Model Epochs Denoising Mask 2 3 4 5 6

MCA-AE 1000 F 81.0±1.7 83.8±1.3 83.9±1.8 83.7±2.0 83.2±1.6
MCA-AE 1000 ✓ F 84.6±1.4 86.2±1.5 86.6±1.2 85.8±1.3 85.6±1.5
MCA-AE 25000 F 88.1±2.1 88.8±1.8 89.1±2.2 88.9±1.9 88.6±1.8
MCA-AE 25000 ✓ F 90.7±1.1 91.7±0.9 91.5±1.0 91.4±0.8 91.1±0.9

MCA-AE 1000 V 80.9±1.7 83.5±1.2 83.9±1.9 83.9±2.0 84.3±2.0
MCA-AE 1000 ✓ V 84.7±1.5 86.3±1.7 87.3±1.4 86.9±1.4 87.1±1.7
MCA-AE 25000 V 88.1±2.1 88.7±1.9 88.3±2.5 87.4±2.3 86.4±2.5
MCA-AE 25000 ✓ V 90.9±1.1 92.1±0.8 92.0±0.9 91.9±0.8 91.7±1.0

MCA-II-AE 1000 F 91.4±2.0 90.3±1.7 90.1±1.8 90.1±1.8 90.2±1.8
MCA-II-AE 1000 ✓ F 90.9±1.3 88.6±3.8 88.2±5.1 88.1±5.4 88.2±5.3
MCA-II-AE 25000 F 97.4±0.6 95.6±3.5 94.9±4.9 94.9±4.9 94.9±4.8
MCA-II-AE 25000 ✓ F 95.6±0.7 94.8±1.9 94.7±2.1 94.8±2.0 94.7±2.1

MCA-II-AE 1000 V 91.2±2.0 90.1±1.8 89.9±1.9 89.9±1.9 90.0±1.9
MCA-II-AE 1000 ✓ V 90.8±1.3 88.4±3.7 88.0±5.3 87.9±5.6 88.0±5.4
MCA-II-AE 25000 V 97.4±0.6 95.5±3.7 94.8±5.0 94.7±5.1 94.8±5.0
MCA-II-AE 25000 ✓ V 95.6±0.7 94.8±1.9 94.7±2.2 94.7±2.1 94.7±2.2
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Dropout mask fixed
Input Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 Iter 8 Iter 9 Iter 10

(a) 1000 epochs and II-PIRL

Dropout mask variable
Input Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 Iter 8 Iter 9 Iter 10

(b) 1000 epochs and II-PIRL

(c) 25000 epochs (d) 25000 epochs

(e) 25000 epochs and II-PIRL (f) 25000 epochs and II-PIRL

Fig. 9.5 Ten iterative reconstructions (second to eleventh columns) of a CIFAR10 sample (first

columns) when trained on GTSRB. The iterative reconstruction of the same input sample is

repeated seven times (rows). Left: the dropout mask is fixed for each entire iteration. Right: a

new dropout mask is sampled for each step. The MCA-AE models were either trained using

II-PIRL or not, for 1000 or 25000 epochs. The models were trained using augmented images

and the denoising method. Using only one iteration is equal to MC-II-AE.
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Dropout mask fixed
Input Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 Iter 8 Iter 9 Iter 10

(a) 1000 epochs and II-PIRL

Dropout mask variable
Input Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 Iter 8 Iter 9 Iter 10

(b) 1000 epochs and II-PIRL

(c) 25000 epochs (d) 25000 epochs

(e) 25000 epochs and II-PIRL (f) 25000 epochs and II-PIRL

Fig. 9.6 Ten iterative reconstructions (second to eleventh columns) of a CIFAR10 sample (first

columns) when trained on GTSRB. The iterative reconstruction of the same input sample is

repeated seven times (rows). Left: the dropout mask is fixed for each entire iteration. Right: a

new dropout mask is sampled for each step. The MCA-AE models were either trained using

II-PIRL or not, for 1000 or 25000 epochs. The models were trained using the clean input

images, i.e. without denoising. Using only one iteration is equal to MC-II-AE.
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autoencoder model which is then interpreted as a dynamical system. Since we train the

autoencoder in a first step, the resulting dynamical behavior and its attractors can be influenced

by our previously defined autoencoder training procedure. We believe that it is an interesting

direction for future work to analyze this interrelationship. The effect of the number of epochs

needed to obtain good results should be further investigated. The basins of attraction can be

studied after the autoencoder model is trained, such that potentially this information could be

used to further improve robustness, interpretability and uncertainty estimation and provide

guarantees. We believe that the trajectory of the latent space representation over several

iterations can give hints about the model robustness. It could be assessed whether an input

and/or model can be considered as good, or known, if the convergence is occurring in the first N

iterations, where N would need to be fine-tuned as well. It would also be interesting to consider

the distance and evolution of the latent space representations to their nearest attractors and

to assess how often the nearest attractors change. Finally, the advantages and disadvantages

between fixing and sampling a new dropout mask for each iterative step should be investigated

in more detail. Especially the mathematical interpretation of sampling a new dropout mask for

each step cannot trivially be assessed.

As our results show, the II-PIRL can improve OOD and uncertainty estimation compared

to other autoencoder variations. Additionally, our approach can also outperform commonly

used uncertainty estimation approaches for deep learning models. II-PIRL can easily be

adopted to commonly used datasets and combined with other approaches to further improve the

performance. Training the models for a large number of epochs, as we did for MCA, improves

the performance up to a point where it outperforms using MCA only.

Training the autoencoder as a denoiser or using the II-PIRL during training violates the

fixed point property. However, as we showed, fixed points and attractors do still exist and

the iterative reconstruction of an input sample does converge. We did not check this property

numerically by computing the eigenvalue of the Jacobian matrix of the network function w.r.t.

the input sample, but our experimental results support our assumption. The second variation of

the PIRL changes the basins of attractions and potentially reduces the number of attractors of

the considered dynamical system. It would hence be interesting to explore the similarities and

dissimilarities between the II-PIRL and MCA. Does it make sense to assume that the sample

generated by the II-PIRL is actually already a special type of attractor, because the information

has been normalized and a single iteration is sufficient to obtain good results? Last but not

least, would it make sense to combine the recursive application of autoencoder models with

skip connections to see how would this influence the recursive application?
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9.4 Conclusion

Our results on several datasets show that the recursive application of autoencoder models,

viewed as dynamical systems, together with a MC Dropout approach provides good uncertainty

and out-of-distributions estimations. Our model design choices improve the performance,

particularly for computer vision datasets of higher visual complexity. Our ablation study

highlights that the success is mainly due to the recursion and the entropy histograms underline

the improved separability compared to MC Dropout and an ensemble of models. We believe

that our introduced method is an interesting research direction for future work and we provide

a baseline and several ideas to be investigated.

Notwithstanding this achievement, it can be observed that the II-PIRL provides good

uncertainty estimations when combined with MC Dropout as well. If trained sufficiently

long, it can even outperform MCA on GTSRB. Although impressive, we believe that future

developments of MCA can further improve uncertainty estimation. Particularly due to its

analogy to dynamical systems, properties of the recursion in the latent space and combinations

with II-PIRL can and should be considered.





Chapter 10

Background removal

In Section 8.2.5 we reported that the multi-channel autoencoder approach combined with

the extractor performed only slightly worse with respect to accuracy compared to standard

autoencoders utilizing the extractor module. We observed that the multi-channel extractor

approach was the only one removing the vehicle interior for real images reliably, but only in case

both decoders were constrained to reconstruct synthetic images only. We made the suggestion

that one of the potential downstream application could be the removal of the background.

To this end we developed a heuristic to remove the background automatically and we

re-used the models trained with the perceptual loss utilized to report the results in Section

8.2.5. It can be observed in Fig. 8.11 that the background is quite uniform due to the use of the

II-PIRL. We will exploit this observation in Algorithm 2, which proposes a method to remove

the background.

Algorithm 2 Background removal

1: Train autoencoder f with II-PIRL using a dataset allowing to remove the background

2: for each input sample x do

3: Perform a reconstruction using the autoencoder model f to get the output x̂

4: Apply a median blur to x̂ using a kernel size of 7

5: Use Otsu’s method to obtain a binary mask m from x̂

6: Invert the mask m to get m̄

7: Find contours in m̄

8: Draw contours in m̄ and fill them to get ˆ̄m

9: Invert the mask ˆ̄m to get m̂

10: Use the processed mask m̂ to mask the input x and/or reconstruction x̂

11: end for

Each input sample is first reconstructed by the previously trained autoencoder model. The

resulting reconstruction should hence have a background which is averaged out. This property
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is being exploited by the next steps. To reduce image complexity, we next apply a median

blur to the image. This will further smooth out the background, but also the objects on the

seat. We will then use an image thresholding method to binarize the image into foreground

and background. To this end we adopted Otsu’s method [185] - an automatic threshold free

approach separating the pixels into two classes. Of course other thresholding methods could

be used as well. The resulting mask is then cleaned by filling in potential holes: we find the

contours in the image and then fill them with zero. This final mask can then be used to mask

the input image and/or the reconstruction to get the objects on the seat or the background.

Examples using the multi-channel autoencoder approach are shown in Fig. 10.1 and using

the extractor autoencoder in Fig 10.2. Of course the method is not working perfectly, but as

can be observed, most of the background is removed such that the foreground objects only

are highlighted. Our results also show that the extractor autoencoder performs worse than

the multi-channel autoencoders. The proposed approach helps to identify which objects are

being reconstructed and what is unimportant, e.g. belonging to the background. It can be

observed that some objects are being missed by our approach, even though they appear in the

reconstruction. This can probably be improved by more sophisticated thresholding approaches,

potentially by means of a neural network dedicated and trained to solve this specific task. Since

this approach allows us to retrieve which objects are being reconstructed on novel test images,

it could potentially be used to assess the model’s reliability and quality for the proposed input

sample. For example, we can now assess which regions in the input and output should be

compared against.

We adopted this approach to the transfer from synthetic to real sceneries and on a novel

vehicle, but this idea could also be applied to a whole range of other tasks and training settings.

It is, however, paramount to use, at least for our application, the II-PIRL and the SVIRO-

NoCar dataset in order to remove the background reliably. We need the vehicle to be removed,

i.e. smoothed out or normalized, such that the presented heuristic can work. The method

presented in this section is of course only a first basic approach and we believe that additional

improvements are required and possible. Further, we believe that more interesting ideas could

be developed by combining the PIRL with some downstream processes.
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(a) Input images from the unseen Sharan ORSS vehicle
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(b) Multi-channel autoencoder trained on X5 ORSS and SVIRO-NoCar
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(c) Extractor multi-channel autoencoder trained on X5 ORSS and SVIRO-NoCar

Fig. 10.1 Results for the background removal heuristic presented in Algorithm 2. The recon-

structions (first rows) of the input images (a) is used to compute a binary mask (second rows)

used to mask the input (third rows). All multi-channel autoencoders used the triplet loss and

II-PIRL during training.
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(a) Input images from the unseen Sharan ORSS vehicle
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(b) Extractor autoencoder trained on X5 Sharan and SVIRO-NoCar
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(c) Extractor autoencoder trained on SVIRO-NoCar

Fig. 10.2 Results for the background removal heuristic presented in Algorithm 2. The recon-

structions (first rows) of the input images (a) is used to compute a binary mask (second rows)

used to mask the input (third rows). All extractor autoencoders used the triplet loss and II-PIRL

during training.



Chapter 11

Concluding remarks

In this thesis, we investigated several fundamental questions stemming from industry, but with

repercussions on many machine learning applications. We tried to break down the problems

into fundamental questions and research directions: invariances with respect to illumination

and background, the transfer from synthetic to real sceneries, uncertainty estimation and,

in general, the extraction of reliable features for downstream computer vision classification

tasks. We created and released several synthetic datasets for the vehicle interior to imitate the

automotive application of vehicle interior occupant detection. With our SVIRO dataset and

its extensions, we provide a common framework to investigate the aforementioned topics in a

single environment. Each extension focuses on a specific task, but since all datasets are situated

in the same framework, it was shown that the different problem formulations can be studied

either in isolation or combined.

We focused our investigations and model design choices on autoencoder models, because

of their elegancy of compressing information by their bottleneck design and simplicity to

incorporate different regularization constraints either in the input or the latent space. A lower

dimensional representation of the task and input can be useful for safety critical applications,

because the overall complexity is reduced. We proposed several improvements to alleviate

some of the aforementioned problems and provide evidence that the resulting insights transfer

to other datasets commonly used by the research community as well.

The results of an exhaustive ablation study on several computer vision tasks and datasets

show that autoencoders using both of our proposed partially impossible reconstructions losses

have a beneficial effect on the model performance. We discuss the benefits and downsides of

both loss variations and show that they produce good latent space representations on par with

the triplet loss. Our novel loss variations also induce interesting reconstruction phenomena:

most of the unimportant information is removed or smoothed out. This can potentially be

exploited by downstream tasks. Our proposed sampling strategies can easily be combined with
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any existing autoencoder model, reconstruction loss and potential latent space regularization.

Overall, a partially impossible reconstruction loss seems beneficial to learn more general and

reliable features on a wide range of tasks.

The first, weaker variation of the PIRL exploits the availability of certain dataset character-

istics: if for each scenery several variations regarding the invariances to be learned are available,

e.g. same scenery under different illumination conditions, then the unwanted features can be

removed reliably without affecting human poses. The second, stronger variation only uses

label information: for each input image, a target image of the same class is sampled randomly.

This induces robust feature extraction, allowing for higher classification accuracies. The latter

design choice can also be used to improve the transfer from synthetic to real images and to

provide more reliable uncertainty estimations. However, human poses cannot be preserved

under its current form.

In order to learn more general features, we proposed to use pre-trained convolutional

neural networks to extract features from the input images, which are then used as input by the

autoencoder model. This improves synthetic to real generalization, particularly if combined

with the second variation of the partially impossible reconstruction loss and the triplet loss.

Further, in case real images can be used during training, we showed that the synthetic gap

can be reduced by incorporating the real images and invariances can be learned by dedicated

designed synthetic images. It is hence possible to improve a model’s invariances with respect

to the car environment and transfer more efficiently to novel real vehicle interiors.

We showed that the recursive application of a previously trained autoencoder model can

be viewed as a dynamical system when trained long enough. Combining this model design

with Monte Carlo dropout results in a family of similar, but different dynamical systems.

Using fixed point and attractor properties, each of the resulting dynamical systems should

behave similarly for training and test samples, but differently and not consistently for inputs

far away from the training distribution. This improves uncertainty and out-of-distribution

detection while maintaining a good generalization performance on test samples. Moreover, we

discussed that this design choice opens many directions for future work. Notwithstanding this

achievement, we provide evidence that the second variation of the PIRL can outperform the

recursive application of autoencoder models either as standalone or when combined with the

latter.

Finally, we believe that the results presented in this work show that autoencoders are

a promising and versatile deep learning architecture, also for safety critical applications.

Autoencoders can be regularized by many different techniques, during training or during

inference. We hope that this thesis motivates further research in the direction of autoencoder
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models, because we believe that there are many more improvements to be made and benefits to

be discovered.

11.1 Future work

During the experiments performed for this thesis, many potential questions were left out. We

want to inspire future research by mentioning some of the possible topics to be investigated.

The second variation of the partially impossible reconstruction loss implicitly assumes that

the classes are unimodal, i.e. objects of the same class should be mapped onto a similar point

in the latent space. This characteristic can either improve generalization or have a detrimental

effect on the performance depending on the task to be solved. Under its current form there is

no guarantee that, for example, facial landmarks or poses would be preserved. We only ask

the model to match the classification labels such that input and target images might contain

humans of different poses. This means that the model is hence expected to represent humans

of different poses similarly in the latent space. It makes then sense for the model to learn a

mean pose approximation such that the reconstruction cannot be expected to preserve the poses

anymore. However, we believe that extensions of our proposed loss, for example based on

incorporating constraints (preservation of poses and landmarks by sampling images of similar

poses) could be an interesting direction for future work. This would also help to reduce the

blurriness of the reconstructions, since currently we do not punish bad poses. An analogy of

this phenomenon can be observed in the MNIST experiments: since we only ask the classes to

be the same, the model learns to approximate each digit by a mean digit. However, instead of

simply sampling the same class, one could additionally constraint the sampling to use digits of

the same style.

Another interesting direction for future research would be the investigation of resulting

properties when the partially impossible reconstruction loss is used during training. It would

be interesting to see whether the partially impossible reconstruction loss implicitly forces the

learned training data manifold in the latent space to follow some beneficial properties, e.g.

Euclidean space or disentanglement. This could be combined with and compared against other

sampling strategies as to better understand the advantages and disadvantages.

Regarding the recursive application of a trained autoencoder model, it would be of large

interest to investigate how the attractors and the basins of attraction are influenced by different

training and model hyperparameters. Further, since iterating with dropout means that the latent

space will be different at each step, the evolution, or trajectory, of the latent space representation

over the different recursive steps can also give hints about the model robustness and uncertainty

for a given input sample. Thus far, we have not exploited the latent space information across
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different recursive steps and a first simple approach could use a classifier taking the latent

space representations across multiple steps as input. It could also be interesting to analyze

in more details the behavior of the dynamical system when each recursive iteration samples

a new function, i.e. instead of fixing the dropout mask, each recursive step uses a different

mask. While this can trivially be conducted experimentally, and result in a similar AUROC

performance, the mathematical interpretation is not clear at all. Since the function changes

for each iterative step, the recursive application can no longer trivially be considered as a

dynamical system. Hence, it is not clear how fixed points, attractors and basins of attractions

should be defined anymore, because their properties might no longer hold.

Another possibility would be to exploit the definition of a fixed point. This property should

be satisfied for samples close to the training data, but it should be violated for large deviations

from the training distribution. One could try to formulate and enforce divergence in case of

novel variations and convergence for samples close to the training distribution. We further

believe that it should be examined to what extend and under which additional conditions the

Banach fixed-point theorem can be applied to our setting. Would it be possible to induce a

complete metric space using the triplet loss or regularizations based on the Lipschitz continuity,

and what would be the benefit of the latter? Lastly, it could be investigated whether the

inspection of the basins of attraction can yield information about the model and the dataset,

and hence provide some sort of explainability for the subsequent classification.
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