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Sensitivity of Luenberger observers,
e - observability and uncertainty relations.

‘Sergey Nikitin

Abstract: In this paper noises and disturbances are treated as distributions of some general class.
The problem of sensitivity minimization is considered. A design procedure for the constraction
of Luenberger observers which estimate the state of a system with a given rate of accuracy has
been proposed. The design procedure is applied to identify the first derivatives of an oscillating
signal. The constraintes on a noise and on a sampling which are necessary to estimate the
derivatives to a given accuracy have been obtained.



1 | Introduction

State observers play an important role in the control theory. They are applied both to
output-stabilization of a control system [1,5,9] and to sate-identification [11,13]. Various
practical applications of Luenberger observers inspired an interest in the investigation
of sensitivity and robustness of the observers with respect to sets of noises and/or
disturbances. There are many literature devoted to the problem in question (see,e.g.,
(2,3,6,8,10,12,15-20] and review [8]).

All these papers can be roughly divided into two big groups. The first group consists
of the articles in which authors use stochastic properties of noises, e.g., their covariance
matrixes. The second group is composed by the papers in which the noises are treated
as unknown elements of a space of functions. Our work can be certainly placed in the
second group. ’

In the classical book [11] the observer sensitivity minimization problem has been reduced
with the help of quadratic optimization methods to the solving of Riccati equation. In
the book a covariance matrix of noise has been supposed to bee given. The robustness
of th's method with respect to parametric disturbances has been considered in [4].

Later more universal approach based on H*- and L®- norm sensitivity minimization
has been proposed {7,8,20]. In the approach noises are supposed to be in the convex
subset defined by ] (

/ | d(is) |* - | W(ig) |? d < 1.,

_—

where W (i) is a weight function characterizing a set of disturbances, d(¢¢) is the fourier
image of a mapping modelling noise. | W(s) | is supposed to be decreasing as | s |— oo
and | W(s) |> I—sQIT for | s | sufficiently large, where £ is a nature]l number and C is a
positive real number. The sensitivity is characterized by a linear operator which H*
-norm has to be done as small as possible. In the work [14] the rovustness with respect
to disturbances from L, -ball has been concerned.

In this paper we shall minimize observer sensitivity with respect to a class of distri-
butions. Noises will be treated as distributions of a sufficiently large class given. For
example, a noise can be of the form

N

twyt
> a, e
J=1

where a; € C,w; € R(j =1, -+, N) and min, | w; |>  with Q being a known positive
real number.

The paper is organized as follows: In Section 2 we state the problem. In Section 3
we calculate estimates of sensitivity. In Section 3 we consider e- observability problem.
Section 4 contains simulations results. '



2 Problem statement

Consider the system T :
= Ar + ¥(t),
(1)
y =< c.x>+Ay(t),
where y € R is an output signal; ¢.r € R" are n-dimensional real vectors and
<ecr>= ic;x,-,
i=1

A € R™"*" is a real matrix with n columns and n rows.

(¥(t), Ay(t)) is a distribution from the set R*(AZ, Q) x R(AY,2), where

R™(AT.Q) = R(AT, Q) x ... x R(AT,Q)

n

and R(AX, Q) consists of all distributions ¢, such that the function

F
®,(t,2) = \/ﬁ/_ (“:)(2’:) mint gy, (2.)
with -
Flg)ip) = == | _e*p(t)dt,

 \Vr
is analyticon C_ = {A € C; ReA < 0} for every t € R fixed and

AT

_— (2.5
|z + 2 25)

l Q\D(tvz) 1S

for all (t,z) € RxC. C and R denote the fields of complex and real numbers, respectively.

Suppose
rank{c.A%c,...,(4A")" ¢} =n

with A* being the conjugated operator for 4. Then for the system ¥ one can design
Luenberger‘s observer

Ht) = Az(t) + 0 (< ¢, 2(t) > —y), (3)

where ¢ € R".

The goal of this paper is to give necessary and sufficient conditions on £,AX,Q,e > 0
under which there exists £ € R", such that

Im [ (1) - 2(t) 1< &,

where || 2 ||?=< 2,z > .



We will develop also a numerical procedure for the calculation of £ € Ky, where
Kyg={z€C"; z=rq,r € Ry},

4 # qi for i # ; and

 gERC ={z€C"; Rezi <0 (i=12,...,n), X(z)€R (=1,...,0)},

where X;(z)7_

, are the elementary symmetric polinomials in the n variables,i.e.,

Xy(z)= Z:,-.Xg(:) = - Z:,-::]. o Xa(z) = (1) H z;
i=1

=1 1<)

and z) - ... 2, is denoted by [T}, z,. In the other words, the problem is to construct

¢ € R" which minimizes the sensitivity of the system ¥ with respect to disturbances
from R*(AT. Q) x R(AY. Q).

3 Estimates of sensitivity

Sensitivity of the system © with respect to a set of disturbances D is defined as follows.

Definition 1. Let D be a subset in R* (AT, Q) x R(AY,Q).Then sensitivity S5(A) of
the system ¥ with respect to D is defined by

SSA) = sup Tm | [ e’ (p(r) + eay(r))dr |, (4)

(v.Ay)eD = -0
where A = 4 + ¢c7 and eigenvalues A = {\;}", of A are supposed to be in RC".
Since rank{c, Ac”,..., A" 'cT} = n the system T has the form
r = J,x + axy + TY(t),
(5)

y = + Ay(t)

under the linear coordinate transformation

k
Trpr =<, A2 > =Y ap <Az > k=0,1,...,n-1 (6)

j=t
where z and z are the old and the new coordinates, respectively. A™ = 3°%_, a;A~, U,

is Jordan n x n matrix, such that

Juey =0, Juep =epy for k>1,



e = {8¥)'_, with o =1 and &5 =0 for j#k.
Under the coordinate transformation & = Tz the Lyenberger‘s observer (3) has the form
Z(t) = Jui(t) + afi(t) + (o — a)(zi(t) — y(2)),
where entries of the vector a are the clementary symmetric polynomials, i.e.,
a; = X (M) ay = Xo(A),. .. a0 = X,(A),

where A € RC" is the vector with entries being eigenvalues of 4 + ect.

Consider the following matrix

Gpoy Gpoy ayp 1
Gpey Qpey ... 10
3 = : : .
aj 1 ... 00
1 0 ... 00

Then the next Lemma gives us the expression of ¥ € R" as a linear combination of the
eigenvectors of the operator .J,. + a P,. where P, is the orthogonal projection Pz = 1,
for all z € R,,. ‘

Lemma. Let A = {);}, be the eigenvalues of J, + aP; and X; # A; for ¢ # j. Then
every v € R" admits the representation

where (J, + aP )€ = A€ for j=1,2.... ,n.

Proof. The eigenvector &; of the operator J, + o P, is of the form
f,‘ = {1,/\,‘ - al./\? - 01/\,‘ — Q2,... ,/\:-1—1 - 01/\1 — ... = an_]}.
Every v € R" admits the representation v = 3., w;;, where

i = dCt(éls-- -agi—lsuaéi'#'lﬂ""&n)
) d€t(€1,. . ,En)

det(*) denotes the determinant of a matrix (x), (&,...,€,) is the matrix with columns
&1,...,&n. It is'easy to see that

det(£r,-. . 6n) = [T = Ay)-

i>j

Taking the vector ( = ((1,....(,) defined by

(7).

1=1

¢ = wy, CJ=VJ'+Z_:0'iVj—i J=2,...,n) (8).

=1

)

melnelslee
.'Q!G-‘Mun-



(33

we obtain

det(Ey,. . Eimiorbpre &) = (=1)""" T (A = Am)ms

k>m k#£¢
where 7, 1s the n-th entry of the vector

=1 n
n=[1T-XJ7) T (I-X\J;), (9)
=1 J=i+1
where [ 1s the identity matrix. If follows fromy (8),(9) that

<v, 3 >
H,;e.-(/\,- - )‘J‘)

W =
and the proof is completed.

Now nusing the Lemma we will calculate the estimates for S5()).

Theorem 1 Let (Ty,Ay) € R*(AZ, Q) x R(AY,Q) and A\, # A; for k # j, where
T : R"™ — R" is defined in (4.6) and {\,;}%, are the eigenvalues of J, + aP,, where P, is
the orthogonal projection Pyo = vy for all ¥ € R™. Then S§()) satisfies the inequality

[T~ VIALAT.AY.Q) < Sp(A) || T | U(A, AS, AY,Q),

where (J, + aP); = A& for j =1.2,....n.

i 5 < B+ x(a—a),SE >
V(A A AY Q) = sup | -
(Bn)€p | j=1 Hk#j(’\i = Ae)(A; +1)

& |l

with
- p={(B.\)€C™ I\ ISAY, |5|<AT (j=1,...,n)},
. < 9; t+yila—a), S > |
UAAZ,AY, Q) = sup —& |,
(m)ler | JZ=:| Mewi (A = M) | A+ | “
where

I'={(p,7) € C™M*D | 4 IS AY, |pp|SAT (j=1,...,n; k=1,...,n)}.
Proof. The integral in(4) is equal to
{e8()} * (T(t) + eAy(2)),
where 6(t) is the step function
0(t)=0 for t<O,

8(t)y=1 for t>0,

6



v * w is the convolution of the functions v and w ..e.,

N

vk ow = / o(t — Tyw(r)dr

o
Due to F(v * w) = Fv - Fw we have
1

ox

{e™8(t)} * (T(t) + (Ay(t)) = (A +ip) " (F() + EF(Ay))e™dp.

(\/

Hence according to the Lemma we obtain

3 "<t yla=a) 6 >
gt (Ay(t)) =3 ST i 2 p-ig, 10
where 5 Q] Ay)
+ —in .
1= : / /\ + 1/1)6 ‘td:u (J =1, ,TL),
/\ +I§2 \I’ ) —t .
Vik = | l/ 5y +‘;“) “du (j,k=1,...,n).

Thus (p,v) € T, where T is defme(l in the conditions of this theorem.

- Now estimating the norm in (4) and taking into account (10), we obtain the upper
estimate of sensitivity S5()).

It remains to calculate the low estimate of S5(A). Notice that a distribution Bet €
RAT Q) forall w e R, € C,such that | 3| < AL and |w | > . Let (¥,Ay) =
(Be, e M) e, U = 3¢ (j=1...., n), Ay = xe'®, where | x| < AY, |5 |<
AY (J=1.....n).

Evidently (3e%, ) € R"(AT. Q) x R(Ar, Q) and afier the substitution of the paire
(Be', x ) in (10) the resulted expression is

< ﬂ"'(a_a)Xv(\\’Ej >

eAto Beth+C elﬂt) eiQt !
RAUAR R & ey = 300 + 1)

T-'¢;.

Therefore

| T Il"l V((AAT, AY.Q) < (;u)p hm | (e‘“ﬂ(t * (B + €)()e"m I € Sg(/\),
\ Gp

where p is defined in the conditions of this theorem.The proof is completed.

Necessary and sufficient conditions for S5(A) < € with e > 0 fixed follow from
Theorem 1. Indeed, if D C R*(AZ,9Q) x R(AY, Q) and (B, xe'*) C D for some
BeC", xeC, QeR,then SH(A) < eyields '

V(A AS,AY,Q) <|| Tl -

7



which is a necessary condition for e— observability. A sufficient condition for e~ ob-
servability follows from

Sp(A) < TV U(A AL, AY,Q),

ie,if UM AZ,AY,Q) < ”T‘_,”, then S5(A) < e.

4 e-observability and uncertainty relations

Here necessary and safficient. conditions for e-observability will be obtained.

Definition 2. A system T is said to be e-observable (wiht respect to disturbances from
D) iff there existens A € RC" , such that S5(A) < e

A simple sufficient condition for e-observability follows directly from Theorem 1.

Proposition. For all A € RC" with Ay # A\, for k # j and for all e > 0,AY >
0, AY > 0 one can find a positive real number H, such that for all @ > H the
inequality

S,SJ(/\) < e,

where D C R*(AL, Q) x R(AY, ), holds.

Thus noises of higher frequencies (2 >> 1) whose absolute values are small in compear-
~ ing with their frequencies, can be easily filtered by Luenberger’s observers. If @ << 1
or @ = 0, than R*(AT,Q) x R(AY, Q) containes also noises of a low frequency. The
noises of low frequencies give the largest contribution in observation errors. The follow-
ing necessary condition for e-observability does not depend on a noise frequency.

Theorem 2 (uncertainty relations). Let

D = R"(AZ,0) x R*(AY,0), AT > AY,lZ(a,?)
i=1

and observer eigenvalues be A\, = r¢. (k = 1,...,n), where ¢ € RC" fixed and ¢i # ¢,
for £ # j, {ar}i-, be coeflicients of the characteristic polyonmial of the matrix A.
Then it is necessary for e-observability that the following uncertainty relation hold:

1 ,';(o';-‘+n—j)"5-'

1 75(a) 1'% 9(a) |¥ o) " (AY)Y < || T ()

where 67 = Ofor j #n and 6} = 1,

e j=1,...,n, (11)

n-1

0; = (ALY — (AY) D (a;)’ — sgn(vi(q)wi(g))anAY

=



n

AT AN L —an;
v(q) = Z £ 5 :

o malle(a—q) ]
n <a,‘3£k>(/\'f—’—a,/\"'j'1—...—a -;) L
wilq) = P : B = 1y..e,n).
k=1 r qk nu;ék(qk - QV)
Proof. Let as take A\; = rqq,.... A, = rq,. Then making use of Theorem 1, we obtain

that e— observability yields
VMLAS.AY,0) < || T |l e
Therefore

n

Z <p+pla—a), 3 >
=1 Hmgi(A = Am)A,

(A —a AR = — ) [ ST e (12)

(A=1,...,n)

for all p € R*, p € R, such that | p | < AT, | u | £ AY. Take | . |= AY,p; = a;jp for
7=1,...,n—1and

n-1
Pn = \j(AS)? — (AY)? ) (a;)%
=1
The signes of p, and g can be chosen so that (12) has the form
g ne—- -
S 1@ [ +7AY [pdg) [SHT e (13)

(r=1,...,n)
The function of r in the left hand said of (13) has the minimum equal to
n
(6 + (n = 1))~% - (§)*

Hence the uncertainty relations (11) are necessary for (13). This completes the proof.

(AY)"(0;) 7% | oi(a) 7] 7iq) "%

Since ' > 2 implies R(AT. Q') C R(AZ,N), Theorem 2 gives us a necessary condition
for € - differentiability of a signal disturbed by a noise of any frequency.

The uncertaint relations (11) have simpler form whenever
a; =0, <cA¢y>=0foralli=1,...,n—1.
Under these conditions Lyenberger’s observer is a differentiator of the signal y(t)

drtly(t
max | y(t)

: i | S AF (14)



and measured with error Ay(t). Thus e-observability in this case means e-differentiability:
and e-observer is called e-differentiator.

The next corollary of Theorem 2 qives us a necessary condition for e-differentiability.

Corollary. Let y(t) be a (1 + 1)-differentiable function of time satisfying the inequality
(14). Suppose further y(1) is measured with an error Ay(t) such that max, | Ay(t) | £
AY, where AY is a positive real number given. Then for e-differentiability of order n
of the signal y(t) it is necessary that uncertainty relations

) — N-%
Cat(n=J)7" 2o (=1,....n)

| %5(q) I'77] 2,(q) [F (AS)=H(AY)* <

n

hold, where ¢ € RC" and the functions ¥;(q), ;(¢) (j = 1,...,n) are defined in
Theorem 2.

Proof. e-differentiability of oider n of the signal y(t) is reduced to € -observability of a
state of the system

ro= -]wl' + 4,
(15)
y =, + Ay,

where J, is Jordan matrix and v;; = 0 for j = 1,...,n — 1. Now the application of the
uncertainty relations (11) completes the proof.

The uncertainty relations (11) are simple to apply. However, they do not give any rec-
ommendation how to design an observer. Moreover they are far from sufficient cinditions
when a higher frequency noise is under consideration.

In order to obtain e-observability sufficient conditions depending both on AL, AY and
on frequency 2 we will use the incquality

SH(A) <|I TV || V(A AT, AY,Q)
from Theorem 1.

Proposition. If

: M AT o ._L__

then X is e-observable.

This proporition can be successively applied only to systems in low dimensions. Diffi-
culties connected with the calculation of the infinum make the application impossible
to higher dimensional systems.

Here we will solve simpler problem, i.e., we calculate a value of r > 0, such that a
function being an upper bound for U(rq, AT, AY, Q) reaches minimum at r. Thereby

10



we will obtain e-observability sufficient conditions. The value of r > 0 can be numerically
calculated as follows.

Procedure (choice of r)

Step 1. Let A\, =rq; (¢ =1..... n), r>0. g€ RC" and ¢; #qx for j #k (4, k =
1,...,n). Then k-th entry of the vector

~ <, +7v,(a —a). 3 >
J=1 i (A = A) | A + Q|

€

has the form

k

Z:|,q i | Z Chjulw)s i)t (k=1,2a.--.,n).
J

u=—(n-~k}

The mapping wWiju(®5,7,) 15 linear with respect to ; and 7;. Calculate the functions

A (r) = —_— . b Yk v = 2--" ’
W(r) erq_,+i9| Y by AT AY ) (k=1,2, | n)

where
b AT AY) = max | whlein ) |

I’.)JISA).' l*r:’_]u|< AS (,u=1,'2,...,n).

Then we obtain :
U(rg. AT.AY. Q) < W(r),
where W(r) =37, Wi(r).

Step 2. Calculate minimum of the function W(r) for r > 0. Then the point r* > 0,
such that W(r*) = min, o IV(r) is the number which we are looking for.

The next theorem contains sufficient condition for the existencs of r* > 0.

Theorem 3. Let ¢ € RC® and ¢; # ¢« for j # k. Suppose further

nyn bll—n
J ]
{leﬁlﬂl{z q;+tQI}¢

Then r* > 0 being calculated in Step 2 exists.
Proof. If the conditions are met, then W(r) has the pole of order (n — 1) in the origin

and the pole of order n at infinity. Therefore one can find 0 < r* < oo, such that
min,so W(r) = W(r*).

11



Corollary. Let all conditions of Theoremm 3 be met and r* > 0 be number obtained in
Step 2 of the procedure. Then W(r®) < € yields € - observability of .

The proposed numerical procedure does not give us optimal Luenberger’s observer.
However we can design an observer solving the problem of € - observability for e > W(r*).
The value of W(r") depends on AY, AX, €, ¢ € RC" and can decrease after
variations of ¢ € RC". The problem of an optimal choice for ¢ is beyond the scope of
this work.

Finishing this section we notice that the choice of r* > 0 can be improved after having
used an asymptotic of U/(rq, AZ,AY. Q) either for @ — oo (high frequency noise ) or
for 2 — 0 (low frequency noise).

5 Examples (identification of oscillators )

Here the results obtained above will he illustrated by examples.

Example 1. Let us estimate the precision of a calculation of the first three derivatives
of the signal 2(t) by means of the differentiator (3) with the information y(t) = z([]- k)
available, where z(t) is governed by the differential equation

d
dt

and [;] denotes max, .« {n: n€Z}. Z={0,£1,%2,...}.

(—=)x(t) = —w?2(t) w€ER (16)
We assume that it is known that «? and (x(0), g;x(t)l,___o) satisfy the inequalities
|w!~11<0.1,
(17)
d 2 2
(52(0) = 1) +(2(0) - 1)* < 0.1
Applying the differentiator (3), we can estimate the derivatives

d
{('JZ)J:B(t) ?‘:1

with an error bounded by ¢ > 0. \We will investigate the relation between € > 0 and
h > 0.

The system (16) has the first integral, i.e.,

(@a(t) + (ZHO) = (- 2(0)) + (2O

Hence

d d
() < \/«J(a-(O))2 +(5=(0))?

12



and taking into account
d
max | Ay, |[< max | —zx(t) | -h
t t dt

we obtain AY = 1.77 - h. All entries of the disturbance ¥(t) equal to zero except the
last one satisfying
leg I (L=w) f2() ]

Therefore making use of the first integral and taking into account (17), we have AY =

0.182. If the eigenvalues of the differentiator are chosen to be A\j = r - q_, (g =
2,3,4), ¢ = ¢, ¢ =¢ and g = -3+ iz’ gz = , then the
uncertamt3 relations from Corollary of Thepxem 2 give us the folr wing relatlon be-

tween h and e.
h < min{4.75 - €.9.01- 107" ¢'¥3.3.42. ¢%,1.02- 1073 - €4},

This inequality is a necessary condition for € - differentiability of x(t) measured in
discrete moments of time {t, + jIi}7L,.

Example 2. Consider the problem of € - observability of the state (z(t), $z(t)) of the
system

—)22(t) = =5x(t) + Aoy,

y(t) = x(t) + Ay,

where (Ao, Ay,) € R(AT. Q) x R(AY, ). We will look for Luenberger’s observer having
the form

G =n4a(n—y),
2= =51+ axz —y)
The parameters a;, a; € R are the functions of the desired eigenvalues {\;}%,

which are supposed to be of the form

/\,‘ = rq, 1= 1,2,

N = q2 . (1|=——\/——+\/—
where r is a real positive number to be calculated. Following Step 1 of the procedure

(i.e., choice of r ) we obtain

A
W(r) = (_Z"'TE’_AL AY -7)- 1 +

r 1
\/“T(ET;)‘* FEr@-mn

If AY =100, = 200, AY = 0.1, then W(r) reaches the minimum at the ppint rt =717
and W(r*) = 0.85. Thus having taken the cigenvalues A, = r‘(—715 + ji), A2 = A\

13



we obtain ¢ ~ 0.85. For computer simulations we take Ao, = AY -sin(Qt), Ay =
AY - cos(t) and using the discrete scheme

1) =2-2() = =1)=5-2(j) - h* + AZsin(Q - jh)- h?

for the modelling of 2(¢) and the dicsrete scheme

y(J)=a(J)+ AY -cos(-J - h),

a) =20 -D+h-n)j-)+a - (21(j=-1)—y(y —1))-h,
() =20-1)=-53-50-1)-h4+a(n(j-1)—y(G-1))-h

for the differentiator we obtain the results of simulations shown on Fig.1. It remaines

to notice that h = 0.005 and j = 1..... 850.
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Fig.(l.a). The trajectory of the system without
disturbances. The initial conditions x(0)=2, dx/dt=0.
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Fig.(1.b). The same trajectory as on Fig.(1.a) but under
the disturbance 100 sin(200t) .
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Fig.{1l.c). The dynamic of the observation process.



