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Scrgey Niki tin 

Abstract: In this paper noises and disturbances are treated as distributions of some general class. 
The problem of sensitivity minimization is considered. A design procedure for the construction 
of Luenberger observers which estimate the state of a system with a given rate of accuracy has 
been proposed. The design procedure is applied to identify the first derivatives of an oscillating 
signal. The constraintes on a noise aud on a sampling which are necessary to estimate the 
derivatives to a given accuracy have been obtained. 



1 Introduction 

State observers play an important. role in the control theory. They are applied both to 
output-stabilization of a control system [1,5,9] and to sate-identification [11,13]. Various 
practical applications of Luenbergcr observers inspired an interest in the investigation 
of sensitivity and robustness of the observers with respect to sets of noises and/or 
disturbances. There are many literature devoted to the problem in question (see,e.g., 
[2,3,6,8,10,12,15-201 and review [8]). 

All these papers can be roughly divided into two big groups. The first group consists 
of the articles in which authors use stochastic properties of noises, e.g., their covariance 
matrixes. The second group is composed by the papers in which the noises are treated 
as unknown elements of a space of functions. Our work can be certainly placed in the 
second group. 

In the classical book [ll] tl re observer sensitivity minimization problem has been reduced 
with the help of quadratic optimization methods to the solving of Riccati equation. In 
the book a covariance matris of noise has been supposed to bee given. The robustness 
of th’s method with respect to pa.rametric disturbances has been considered in [4]. 

Later more universal approach based on H”- and L”- norm sensitivity minimization 
has been proposed [7,8,20]. In the approach noises are supposed to be in the convex 
subset defined by / 

where W(;4) is a weight function cha.ra.cterizing a set of disturbances, Ca($) is the fourier 
image of ,a mapping modelling noise. ] T/v(s) ] is supposed to be decreasing as I s ]+ 00 
and ] W(s) ]> 6 for ] Y ] sufficiently large, where e is a naturc.1 number and C is a 
positive real number. The sensitivity is characterized by a linear operator which H” 
-norm has to be done as small as possible. In the work [14] the robustness with respect 
to disturbances from Lz -ball has been concerned. 

In this paper we shall minimize observer sensitivity with respect to a. class of distri- 
butions. Noises will be treated as distributions of a sufficiently large class given. For 
example, a noise can be of the form 

N 

c 
iw, 1 

a,+ , 
j=l 

where aj E C, wj E R (j = 1, * . . , N) and minj ] tij 11 St with fi being a known positive 
real number. 

The paper is organized as follows: In Section 2 we state the problem. In Section 3 
we calculate estimates of sensitivity. In Section 3 we consider e- observability problem. 
Section 4 contains simulations results. 
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2 Problem statement 

Consider the system S : 

. (1) 

lj =< c..r > +Ay(t), 
. 

where y E R is an output signal; c. s E R” are n-dimensional real vectors and 

A E R”“” is a real matris with 11 columns and IZ rows. 

W(t), AYW is a distribution from the set ?J?‘( AZ:, 0) x %(AY, R), where 

!JY(AY:,R) = R(AE,Q) x . . . x Y2(AE,n) 

and ZR(AE, Q) consists of all distributions 9, such that the function 

with 

is analytic on C- = {X E C ; ReX < 0) for every t E R fixed and 

(2. b) 

for all (t , z) E R x C. C and R. denote the fields of complex and real numbers, respectively. 

Suppose 
rank { c. .4-c, . . . , (,4*)“-‘c} = n 

with A* being the conjugated operator for .4. Then for the system C one can design 
Luenberger‘s observer 

? 
2(t) = .42(t) + e * (< c, z(i) > -y), (3) 

1 where k’ E R”. 

The goal of this paper is to give necessary and sufficient conditions on YZ, AZ, 52, e > 0 
under which there exists e E R.“, such that 

where 11 z II*=< z, z > . 
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We will develop also a numerical l~roce~lure for the calculation of 2 E K,, where 

Ii, = {z E c’” ; z = rq,r E R,}, 

. 
qj # qi for i # J and 

q E RC”_ = {z E C” ; Rezi < 0 (i = 1.2 ,..., n), Xi(z) ER (j =l,..., n)}, 

. 
where XJ( ~)y=i are the elementary symmetric polinomials in the n variables,i.e., 

SI(-)=~_i.S?(_)=-C-i;,....,S,(r)=(-l)”+’ii*j 

i=l l<J j=l 

and tl . . . . . 3, is denoted by ny=, z,. In the ot.her words, the problem is to construct 
15’ E R” which minimizes the sensitivity of the system E with respect to disturbances 
from P(A2.R) x ?l?(AJ:Q). 

3 Estimates of sensitivity 

Sensitivity of the system S with respect to a set of disturbances D is defined as follows. 

Definition 1. Let D be a. slllxet in ?R”( AZ, 0) x %(AY, S2).Then sensitivity SE(A) of 
the system C with respect to D is defined by 

s;c A) = sup iilll 11 Jrn La-‘) 
($.4y)ED’--‘>5 --cu 

Md + J’AY(WT 11, (4) 

where A = .4 + !cCT and &genva.lues X = {Xi}:=‘=, of A are supposed to be in RC?. 

Since rank{ c, .4cT, . . . , A”-‘c’) = n the system C has the form 

.i = J,s + (151 + T?)(t), 

(5) 

9 = .TI + 4/(t) 

under the linear coordinate transformation 

k 

xk+l =< c,Ak= > -cak < &4”+2 > k=O,l,...,n-1 (6) 
j=l 

where z and x are the old and the new coordinates, respectively. A” = & ajA”-“, Jn 
is Jordan n x n matrix, such that 

J*,t, = 0. Jnek = ek-l for k>l, 
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l 

ek = {b:‘)li’=, wit11 b; = 1 and 6; = 0 for j # k. 

Under the coordinate transformation .c = Tz the Lyenberger‘s observe,- (3) has the form 

5(t) = J,,.?(t) + ai-, + (0 -  4(Q) -  !#n 

where entries of the vector CL are the elementary symmetric polynomials, i.e., 

01 = S,(X), 02 = &(A),. . . ,cKy, = S,‘(X), 

where X E RC! is the vector with entries being eigenvalues of A + tkT. 

Consider t hc following mat ris 

Then the next Lemma gives us t.he exl)ression of 11 E R” a.s a linear combination of the 
eigenvectors of the opera.tor J,. + oP, . where Pl is the orthogonal projection Plz = ~1 
for all 5 E R,,. 

Lemma. Let X = {Xi}~=, be tl w eigenvalues of J, + aP1 and Xi # Xj for i # j. Then 
every v E R” admits the represent,ation 

I/ = $ fl< ;‘Qti i.Jcjy 
3#1 i- f 

where(J,+oPl)<j=Xj<jforj=1,3....,,z. 

Proof.’ The eigcnvector t; of the operator Jn + aPl is of the form 

(i = (I.7 Xi - 01. X;Z - o,X, - 02,. . . , An-’ - CrlX1 - s.. - Q,-1). 

Every u E R” admits the representation v = & &it;, where 

det(*) denotes the determinant of a matrix (*), (tl,. . . ,[,,) is the matrix with columns 

c l,**.r &,. It is,easy to see that 

deb((l,. . . v(n) = n(xi - Aj)* 

i>j 

Taking the vector C = ( Cl, . . . . (;” ) defined by 

j-l 

Cl = VI 7 <J =Uj+CCliUj-i (j=2,.*.,n) (8). 

i=l 
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we obtain 

tlef( <, , . . . ,[;-,.J/.&+ I..... (,,)=(-I)“-’ n (Xk-X&b 

k>m,k#i 

where qn is the n-th entry of the vcctol 

1-I 

‘1 = n(l- xjJi) fJ (I - X,Ji)c, (9) 
J=l J=i+l 

where I is the identity matrix. If follows fromy (S),(9) that 

and the proof is coniplctctl. 

Now losing the Lemma we will calculate the estinmtes for Ss(X). 

Theorem 1 Let (TV, Ay) E ?J?( AS, 0) x %( AY, fi) and Xk # xj for /C # j, where 
T : R” + R” is defined in (4.6) and {Xl}~=, are the eigenvalues of J,, + oP1, where PI is 
the orthogonal projeckm P,.r = .I* , for 41 .r E R”. Then SE(X) satisfies the inequality 

with 
& $3 = {(d, r) E c”+‘: II \ II< AY, I b’j II AE (j = 1, . . . ,n)}, 

where 

r = (($9, y) E Cnx(n+‘); 1 */j I< Al’, 1 vjk I< AZ (j = 1,. . . ,n ; k = 1,. . . ,n)}. 

Proof. The integral in(4) is equa.1 to 

{e”W)} * (9(t) + e&/(t)), 

where O(t) is the step function 

O(f)=0 for t<o, 

e(r) = 1 for t 2 0, 
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27 * ~0 is t.he con4ution of the functions 17 and IL! ,i.e., 

Due to F( 1’ * w ) = FL’ . FLU n-e ha\-c 

‘s’ 
. 

{e”‘O(t)} *(Q(t) + (‘A!/(t)) = & 1(x+ i/~)-~(F(\k) +U’(Ay))e-‘%p. 
1 -x, 

Hence according to t,he Lemma we obtain 

where 

x F( Qk) 
t3Jk = 

( A, + ill 1 
fi J 

e-iwf 
- Ic ( A, + ip ) ’ 

d/l (j,k = 1,. . . g-l). 

Thus (p, 7) E r, where l? is defined in the conditions of this theorem. 

Now estimating the norm in (4) and ta.king; into account (lo), we obtain the upper 
e&mate of sensitivity Ss( X). 

It rema.ins to cakulatc the low castima.t,e of S;(X). Notice that a distribution peiWt E 
!J?(AE. G!) for all ~3 E R,$ E C, MK% that 1 ,!3 I 5 AIE and ( w 1 > R. Let (\k,Ay) = 
wnf , leinf), i.e., \k, = $,c”” (j - 1,. . . ,v), Ay = xei*‘, where 1 x 1 < AY, I pj I< 
AZ (j = l,...,rt). 

Evidently (BeIn’, \einf) E I%“( AX. Cl) x ??(A.r, Q) and a .er the substitution of the paire f 
(/3eiai , ,\e”‘) in (10) the resulted expression is 

n { e”B( t)} * (De”’ + C#‘) = p c < P + (a - u)X7Stj > T-lt. 

j=l &-+kj(Xj - xk)(Xj + in) " 

Therefore 

11 I!- II-’ V( A, AZ, Al--. Q) 5 sup lim II (exLe( t)) * (p + ex)eint II 5 SE(X), 
(J.\)EV I-= 

where Q is defined in the conditions of this thcorem.The proof is completed. 

Necessary and sufficient conditions for Sg( A) 5 E with E > 0 fixed follow from 
Theorem 1. Indeed, if D c %“(AZ, Q) x %(AY, Q) and (pe’**, xe’“‘) c D for some 
P E C”, x E C, G! E R.! then S;(X) 5 e yields 



. 

which is a necessary condition for e-- c~lxer\~al>ility. A sufficient condition for e- ob- 
servability follows from 

S;(X) 5 11 T-’ I( U( A, AE, AY, a), 

i.e., if U(X, AZ, AY,n) 5 fi, t.$en S;(X) 5 E. 

4 E-observability and uncertainty relations 

Here necessary and sa.fficient. conthtions for e-observability will be obtained. 

Definition 2. A system Z is said to be e-observable (wiht respect to disturbances from 
D) iff there existens X E RC; , such t,ha.t S:(X) 5 E. 

A simple sufficient condition for c-observability follows directly from Theorem 1. 

Proposition. For all X E RC’Y with XI; # X; for k # j and for all E > 0, AZ > 
0, AY > 0 one can fintl a posit.i\e real number H, such that for all R > H the 
inequality 

where D c $?‘(A C, Q) x !R( Al; St), holds. 

Thus noises of higher frequencies ( Q > > 1) whose absolute values are small in compear- 
ing with their frequencies, can be easily filtered by Luenberger’s observers. If 5! << 1 
or St = 0, than P’(AZ:, 0) x S(AY, $I) containes also noises of a low frequency. The 
noises of low frequencies give the largest contribution in observation errors. The follow- 
ing necessa.ry condition for r-observ;~l)ility does not depend on a noise frequency. 

Theorem 2 (uncertainty relations). Let 

D = !R”(Ar,, 0) x P’(AY, 0), AZ > AY ‘&) 
i=l 

and observer eigenvalues be Xk - rqk (k = 1, . . . , n), where q E RC”, fixed and qk # qj 
for k # i {a};=, b e coefficients of the characteristic polyonmial of the matrix A. 
Then it is necessary for e-observability that the following uncertainty’ relation hold: 

.1-i ’ 
I~jj(q)(‘-~l~j(q)I~of-~(AY)~ <IITII(I)*(“+nnn-‘) e j=l,...,n, (11) 

where 6j” = Oforj#nand6: = 1, 

bj = (AE)2 - ( AY7)’ n&oj)2 - sgn(Tj(q)vj(q))o,AY 
j=l 
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-...- 

’ 

, 
Proof. Let as take X1 = rqr,. , . , A,, = rqn. Then making use of Theorem 1, we obtain 
that e- observability yields 

Therefore 

n < p + /I.(0 - a), G(j > c (A;-" - a*y- k-l 

Ilm#jCxJ - ‘m )‘J 

- . . . - an-k) I 5 II T II ’ (12) 
J=l 

(k = l....,??) 

for all p E R”, ~1 E R., SUCK that ( p I 5 AX’, I 11 I 5 AY. Take I /- I= AY,pj = aj/J for 
j = 1, . . . , lb - 1 and 

n-l 

/J,( = (AS)* - (AI.*)* C(aj)‘. 
j=l 

The signes of p,, and p can be chosen so that ( 12) has the form 

$ 1 yi(q) 1 +rn-’ AE” I df) I 111 T II e (13) 

(; = l,...,?Z) 

The function of r in the left hand said of (13) has the minimum equal to 

Hence the uncertainty relations (11) are necessary for (13). This completes the proof. 

. 

Since R’ > s2 implies gi( AZ. 12’) c R( AZ, Q), Theorem 2 qives us a necessary condition 
for e - differentiability of a signal dist,urbed by a noise of any frequency. 

The uncertaint relations ( 11) have simpler form whenever 

ai = 0, < c,--Lit/j >= 0 for all i = l,..., n - 1. 

Under these conditions Lycnberger’s observer is a differentiator of the signal y(t) 



. 

and measured with error Ag( t ). Tlllls e-observability in this case means e-differentiability 
and E-observer is called e-diffcrentiator. 

The next corollary of Thcorc~n 2 cliv(‘s us a necessary condition for e-differentiability. 

Corollary. Let y(t) be a (1) + l)-diff’crcntiable function of time satisfying the inequality 
(14). Suppose further y(t) is meas~~tl wit.11 an error Ay(t) such that max: 1 Ay(t) 1 5 
AY, where AY is a positive real nun~l~r qivcn. Then for e-differentiability of order n 
of the signal y( f ) it is necessary that uncertainty relations 

hold, where Q E R.C’: and the flmctions Tj(q), pi(q) (j = 1,. . . ,n) are defined in 
Theorem 2. 

Proof. f-clifferent~iability of older 11 of the signal y(t) is reduced to E -observability of a 
state of the system 

.i = J,, .l’ + t:, , 

(15) 

y = xl + Ay, 

where J,, is Jordan ma.trix and tit1 = 0 for j = 1, . . . , n - 1. Now the application of the 
uncertainty rela..tions ( 11) complct es the proof. 

The uncertainty rela.tions (11) are simple to apply. However, they do not give any rec- 
ommenda.tion how to design an observer. Moreover they are far from sufficient cindi tions 
when a higher frequency noise is under consideration. 

In order to obtain e-observability sufkient conditions depending both on AZ, AY and 
on frequency Q we will use the incqua,lity 

S;(X) 5 11 T-’ 11 L’(X,AE, AY,R) 

from Theorem 1. 

Proposition. If 

then C is e-observable. 

This proporition can be successively applied only to systems in low dimensions. Diffi- 
culties connected with the calculattion of the infinum make the application impossible 
to higher dimensional systems. 

Here we will solve simpler problem, i.e., we calculate a value of r 1 0, such that a 
function being an upper bound for U( rq, A C, AY, St) reaches minimum at P. Thereby 

10 



we will obtaiu c-observa.bility sufficient conditions. The value of r > 0 can be numerically 
calculated as follows. 

Procedure (choice of r) 

Step 1. Let Xi = r(1i (i = 1.. . . . H), 1’ > 0. (1 E RC”_ and qi # Q& for j # k (j, k = 
1 Y--*1 n). Then k-th entry of the vcctoi 

has the form 

The mapl>ing dk,r(pj$~,) is linear wit.11 respect to pj and rj. Calculate the functions 

k 

I “‘I./ ’ iR I,,&, 

h,,r(A~,AE’)rp (k = 1,2,. . . ,n), 

where 

Then we obtain 

Step 2. Calculate minimum of the function TV(r) for r > 0. Then the point r* > 0, 
such that W(r*) = min,,a IV(r) is the number which we are looking for. 

The next theorem contains sufficient condition for the existencs of r* > 0. 

Theorem 3. Let q E RC1 a.nd qJ # yk for j # k. Suppose further 

Then r- > 0 being calculated in Step 2 exists. 

Proof. If the conditions are met, then IV(r) has the pole of order (n - 1) in the origin 
and the pole of order n at infinity. Therefore one can find 0 < r* < 00, such that 
i-n&e W(r) = TV(F). 
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Corollary. Let all conditions of Theorem 3 be met and r* > 0 be number obtained in 
Step 2 of the procedure. Then \I,‘( I,‘) < f yiclcls E - observability of C. 

The proposed numerical procedluct tlocs not give us optimal Luenberger’s observer. 
However we can design an observer solving the problem of e - observability for E > W(r’). 
The value of I&‘( Y ) depends on Al -, AS, $2, q E R.C”_ and can decrease after 
variations of (I E RCL. The problcn~ of an optimal choice for q is beyond the scope of 
this work. 

Finishing this section we not,ice that the choice of r* > 0 can be improved after having 
used an asymptotic of ri( rq. AZ=, A1.L 0) either for Sz + CCI (high frequency noise ) or 
for R -+ 0 (low frequency noise). 

5 Examples (identification of oscillators ) 

Here the results obtained ala-c will Ix illust.rated by examples. 

Example 1. Let 1.1s estimate the l)recision of a calculation of the first three derivatives 
of the signal s(t) by mei\rls of the differentia.tor (3) with the information y(t) = z([i] + h) 
available, where .r( t) is governed by the differentia.l equation 

($)*x(t) = -Ld*.lqq UER (16) 

and [$ d enot.es max, < -Jll: t1 E 2). z = {0,&l, f2,. . .}. 

We assume tha.t it is known that &j2 and ( .I( 0) , $x( t)jl,e) satisfy the inequalities 

1 ci.’ - 1 15 0.1, 

( $r(O) - 1)’ + (r(0) - 1)2 < 0.1. 

Applying the differentia.tor (3): we can estimate the derivatives 

with an error bounded by f > 0. \Vc will investigate the relation between E > 0 and 
h > 0. 
The system (16) has the first integral, i.e., 

(La(t))* + (-&(t))* = (w - z(o))* + ($s(o))*. 

Hence 



. 

and taking into account 

we obtain Al’ = 1.77 . 11. Ml entrks of tlw disturbance $(t) equal to zero except the 
last one satisfying 

1 r:‘.l I< (1 - ~9)“ j .7(t) 1 . 

Therefore making use of the first integd a.nd taking intq account (17), we have AZ = 
0.182. If the eigenvalues of the diffcrentiator are chosen to be Xj = r . gj (j = 

19% 3,4), ‘I1 = 02, q3 = q., ant1 fj] = -+ + if, q3 = - lS + i-$, then the 
uncertainty relations from Corollary of Thcprem 2 give us the r fol owing relation be- 
tween h and f. 

lr 5 iiiin{~.iZ 9 f, 9.01 . lo-” . ,‘+3.3.42 . c2, 1.02 . 10e3 * c4}. 

This inequa.lity is a ncccss;~r~- coutlitiou for E - clifferentiability of z(t) measured in 
discrete moments of time {to + jlr}‘J’&. 

Example 2. Consider the problem of E - observability of the state (z(t), &z(t)) of the 
sys tern 

($)‘.r(f) = -5x(t) + Aul, 

y(f)‘= J.(t) + Ayr, 

where (Acrl, ALL,) E !R( AZ. (1) x .%( AI-, 0). \J :c will look for Luenberger’s observer having 
the form 

f, = z2 + cl,(z, - y), 

52 = -5z, + a.2( z, - y). 

The parameters al, ~1~ E R arc the functions of the desired eigenvalues {Xi}Ql 
which are supposed to be of the form 

A, = rq, i = 1,2, 

where r is a real positive mmlbcr to be calculated. Following Step 1 of the procedure 
(i.e., choice of t‘ ) we obtain 

W(r) = ( 
AZ + 5A2’ 

+ Ak’ . r) . -a 1+r (. 1 1 

r fi Jm+J$T@+ 

If AZ = 100,12 = 200, AY = 0.1, t.hen IV(r) reaches the minimum at the point r* = 7.77 
and W(r’) = O.S5. Thus ha.ving taken t.he eigenvalues X1 = r*( --$ + -&), X2 = & 
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we obtain f cy 0.85. For computer silu~datiorls we take Au, = AZ - sin(nt), Ayt = 
AY * cos( Qt) and using the discrete scl~cmc 

.r(j + 1) = 2. x(j) -.r(j - 1) -5..r(j).h2+AEsin(0-jh).h2 

for the nlotlclling of 3’(t) and the clic.sretc scheme 

y(j) = x(j) + Al”~cos(R~j s h), 

z,(j) = ;,(j - 1) + 11 ’ z2(j - 1) + cxl . (zl(i - 1) - y(j - 1)) * h, 

=2(j) = =2Cj - 1) - 5. ,-,(; - 1) . II + a2( z,(j - 1) - g(j - 1)). h 

for the clifferentiator we obtaiu t.llc’ rc~dt,s of simulations shown on Fig.1. It remaines 
to notice that. A = 0.005 aid .j = 1,. . . . S50. 
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Fig.(l.a). The trajectory of the system without 
disturbances. The initial conditions x(0)=2, dx/dt=O. 
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Fig.(l.b). The same trajectory as on Fig.(l.a) but under 
the disturbance 100 sin(200t) . 
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Fig.(l.c). The dynamic of the observation process. 


