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Abstract. This survey provides the reader with an overview of numerous results on p-permu-
tation modules and the closely related classes of endo-trivial, endo-permutation and endo-p-
permutation modules. These classes of modules play an important role in the representation
theory of finite groups. For example, they are important building blocks used to understand
and parametrise several kinds of categorical equivalences between blocks of finite group alge-
bras. For this reason, there has been, since the late 1990’s, much interest in classifying such
modules. The aim of this manuscript is to review classical results as well as all the major recent
advances in the area. The first part of this survey serves as an introduction to the topic for
non-experts in modular representation theory of finite groups, outlining proof ideas of the most
important results at the foundations of the theory. Simultaneously, the connections between the
aforementioned classes of modules are emphasised. In this respect, results, which are dispersed
in the literature, are brought together, and emphasis is put on common properties and the role
played by the p-permutation modules throughout the theory. Finally, in the last part of the
manuscript, lifting results from positive characteristic to characteristic zero are collected and
their proofs sketched.
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1. Introduction

The class of p-permutation modules is omnipresent in the modular representation theory of
finite groups. To begin with, going back to the origins of representation theory, the theory of
linear representations of finite groups investigates the structural connections between groups
and automorphism groups of vector spaces. One of its most basic instance comes from the con-
sideration of a group action on a finite set X, which is extended linearly to give a permutation
representation on X. Elementary examples are given by the natural representation of the sym-
metric group Sn or by the regular representation. Looking at representations of finite groups
as modules over the group algebra, then a permutation representation corresponds to a permu-
tation module, and, provided the base field has positive characteristic p, the indecomposable
summands of the permutation modules are called the p-permutation modules.

This class of modules plays an important role in modular representation of finite groups and
in the related block theory. For example, p-permutation modules are used to understand and
parametrise several kinds of categorical equivalences between p-blocks of finite groups such as
splendid Morita equivalences, basic equivalences, splendid Rickard equivalences, p-permutation
equivalences, or the recently introduced functorial equivalences. They are also central objects to
understand in the context of Alperin’s weight conjecture.

The class of p-permutation modules was studied by Conlon [Con68] and Scott [Sco73]. A
further fruitful approach through invariant bases, the Brauer morphism and G-algebras is due to
Puig; it appears in [Bro85] by Broué. Thévenaz [Thé95, §27] also provides a detailed introduction
to this theory in the language of G-algebras, and Linckelmann [Lin18a, Lin18b] has the most
up-to-date collection of results on the topic with detailed proofs mixing approaches.

There are several classes of modules which are closely related and which have intensively been
studied over the past 5 decades. To start with, an endo-permutation module over a p-group is
one whose endomorphism ring over the base field is a permutation module. This notion was
introduced in 1978 by Dade in [Dad78a, Dad78b] and studied by many authors until their clas-
sification was completed, a quarter of a century later, by Bouc in [Bou06]. However, the final
results are due to the combined efforts [Alp77, CT00, CT05, CT04, Bou04, Bou00, BM04] of
several authors in different combinations including Alperin, Bouc, Carlson, Dade Mazza and
Thévenaz. Crucial to this classification was the understanding of the class of endo-trivial mod-
ules, which are those (endo-permutation) modules, whose endomorphism ring is invertible in
the stable module category of the group algebra. From 2006 on, once the classification of the
endo-p-permutation had been completed, on the one hand, the focus was put on understanding
and classifying endo-trivial modules over arbitrary finite groups. A complete classification has
not been achieved yet, but many classes of finite groups could be treated, by many different
authors (including Bessenrodt, Carlson, Grodal, Hemmer, Koshitani, Lübeck, Malle, Mazza,
Nakano, Robinson, Thévenaz, and the author), using a variety of different methods, going from
rank varieties to homotopy theory, passing through character theory, on top of standard module
theory. On the other hand, endo-permuation modules can also be generalised to arbitrary finite
groups, however, the concept of an endo-p-permutation module, i.e. one whose endomorphism
ring is a p-permutation module, introduced by Urfer in [Urf06, Urf07] and developed by the
author in [Las12, Las13] turns out to be more relevant. All these classes of modules are also
important in block theory, as the p-permutation modules are.

Thévenaz has written a survey on endo-permutation modules [Thé07] and there are three
very good surveys describing the developments towards a classification of endo-trivial modules
since 2006: two brief surveys by Carlson [Car12, Car17] and a book by Mazza [Maz19]. Our
aim in this survey is therefore not to provide a detailed treatment, but an introduction to all of
these concepts for non-experts, emphasising their common properties and the way they interact.
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Moreover, we outline the proofs of the results presented, whenever it is possible to obtain them
using elementary arguments or the theory of vertices and sources, which may be thought of as
the art of juggling with induction and restriction.

In Section 3 and Section 4 we give a introduction to permutation modules and p-permutation
modules, outlining proof ideas of the most important results. Then, in Section 5 we review endo-
permutation modules, endo-trivial modules and endo-p-permutation modules, also introducing
a relative version of endo-trivial modules which has the advantage of encompassing all the latter
classes of modules, through a common concept. Finally, in Section 7, we will focus on relatively
recent lifting results from positive characteristic to characteristic zero, which are less well-known.
However, they are of great significance, as they allow for the use of ordinary character theory.

2. Notation and background material

2.1. General notation and conventions. Unless otherwise stated, throughout this manu-
script we adopt the following notation and conventions. All groups considered are assumed to
be finite, and all modules over group algebras are assumed to be finitely generated left modules.
We let p denote a positive prime number, G a finite group of order divisible by p, and P a finite
p-group. We denote by Sylp(G) the set of all Sylow p-subgroups of G. We let O be a complete
discrete valuation ring with field of fractions K and residue field k := O/J(O) of positive char-
acteristic p, where J(O) =: p is the unique maximal ideal of O. We assume that k is a splitting
field for G and its subgroups. At first we allow the case O = k. From Section 4 on, for simplicity,
we will assume that the triple (K,O, k) is a splitting p-modular system for G and its subgroups.
In order to state definitions or results, for which there is no difference between O and k, we let
R ∈ {O, k}.

If H is a subgroup of G, then we write H ≤ G, and if x ∈ G then we set xH := xHx−1 for the
conjugate of H by x. The trivial RG-module is the RG-module R on which all elements of G act
as the identity. Given an RG-module M , we let M∗ := HomR(M,R) be the R-dual of M , and we
write L |M if L is an RG-module isomorphic to a direct summand of M . Given an RG-module
M and a subgroup H ≤ G, then the conjugate xM of M by x ∈ H is the R[ xH]-module with
underlying R-module M and xH-action defined by ( xh) · m := hm for any h ∈ H,m ∈ M .
Given a subgroup H ≤ G, an RG-module M and an RH-module U , then ResGH(M) denotes the
restriction of M from G to H (i.e. ResGH(M) = M as an R-module and the given action of G

is restricted to an action of H) and IndGH(U) := RG ⊗RH U the induction of U from H to G.
Given a normal subgroup N �G and an R[G/N ]-module V , then InfGG/N (V ) is the inflation of

V from G/N to G, i.e. the action of g ∈ G on InfGG/N (V ) is defined to be the action of the left

coset gN on V . If M is an RG-module, then the first syzygy of M is by definition the kernel
of a projective cover of M and is denoted by Ω(M). If P is a p-group and Q ≤ P , then we
denote by ΩP/Q the relative syzygy operator with respect to Q, which by definition returns the
kernel of a Q-projective relative cover of the given module. We refer to [Thé85, Car96] for details
on this notion and to §2.4 for Q-projectivity. In particular ΩP/Q(R) is the kernel of a relative
Q-projective cover of the trivial module R and with this notation Ω = ΩP/{1}.

Finally, we recall that an RG-lattice is an RG-module which is free as an R-module. When
R = O, we denote by OG-lat the category of all OG-lattices of finite R-rank, and when R = k,
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then we denote by kG-mod the category of finite-dimensional kG-modules. Further standard no-
tation, used in this manuscript but not introduced here, is as in [Thé95, Web16, Lin18a, Lin18b].

2.2. Reduction modulo p and liftable modules. Reduction modulo p (sometimes simply
called reduction modulo p) is the functor

k ⊗O − : OG-lat −→ kG-mod

mapping an OG-lattice L to k ⊗O L ∼= L/pL and with standard action on morphisms via the
universal property of the tensor product. If L1, L2 are OG-lattices and ϕ ∈ HomOG(L1, L2) is a
morphism, then the reduction modulo p of ϕ is

ϕ̄ : L1/pL1 −→ L2/pL2, x+ pL1 7→ ϕ(x) + pL2 .

Notice that two non-isomorphic OG-lattices L1 and L2 may have isomorphic reductions mod-
ulo p. For example, given a p-group P , any two non-isomorphic OP -lattices L1 and L2 of
O-rank one are such that L1/pL1

∼= k ∼= L2/pL2. Clearly, reduction modulo p is always possible.
In contrast, it is not always possible to go the other way around. Thus, a kG-module M is said
to be liftable (to O or to OG) if there exists an OG-lattice L such that M ∼= L/pL.

2.3. The Brauer quotient. Let M be an OG-lattice. Given a subgroup H ≤ G denote by
MH the set of H-fixed points of M . Then, given subgroups S,Q ≤ G such that S ≤ Q ≤ G, the

relative trace map tQS is defined to be the map

tQS : MS −→MQ,m 7→
∑

x∈[Q/S]

xm

and the Brauer quotient of M with respect to Q is the k-vector space

M(Q) := MQ

/(∑
S<Q

tQS (MS) + pMQ

)
.

By definition Q acts trivially on MQ and the action of NG(Q) leaves
∑

S<Q t
Q
S (MS) and pMQ

invariant. Thus M(Q) is endowed with the structure of a kNG(Q)-module, but also with the
structure of a k[NG(Q)/Q]-module, and it is common to switch between the two point of views.
Notice that M({1}) = M/pM . Moreover, it is easy to see that M(Q) can be non-zero only if Q
is a p-subgroup of G. Indeed, if Q is properly contains a Sylow p-subgroup P of G, then |Q : P |
is invertible and it follows that else MQ occurs in the sum

∑
S<Q t

Q
S (MS). The canonical surjec-

tion brMQ : MQ 7→M(Q) is the Brauer homomorphism corresponding to the subgroup Q, and is

clearly a homomorphism of k[NG(Q)/Q]-modules. We refer the reader to [Thé95, §27] for details.

2.4. Vertices, sources, Green correspondence. Standard references for detailed expositions
of Green’s theory of vertices and sources are for example [CR81] or [Lin18a], and we recommend
[Web16, Chapter 11] to anyone starting to learn about modular representation theory.

Given a subgroup H ≤ G, an RG-lattice M is said to be relatively H-projective or simply H-
projective if M is a direct summand of kH-module induced from H to G, or equivalently if
M | IndGH ResGH(M) . A vertex of an indecomposable RG-lattice M is a subgroup Q ≤ G which
is minimal subject to the property that M is relatively Q-projective. The set of all vertices of
M is denoted by vtx(M). Given Q ∈ vtx(M), an RQ-source (or simply a source) of M is an
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RQ-lattice T such that M | IndGQ(T ). Essential properties of vertices and sources, to have in
mind in order to understand this text, are the following.

Properties 2.1

(a) The vertices of an indecomposable RG-lattice form a G-conjugacy class of p-subgroups
of G.

(b) For a fixed vertex Q of an indecomposable RG-lattice M , a source of M is defined up to
conjugacy by elements of NG(Q), and is a direct summand of ResGQ(M).

(c) The projective indecomposable RG-modules (henceforth the PIMs of RG) are precisely
the indecomposable RG-lattices with vertex {1}.

(d) The vertices of the trivial RG-lattice R are the Sylow p-subgroups. (See Lemma 4.4(b).)

(e) If Q ≤ G is a p-subgroup and H ≤ G a subgroup containing NG(Q), then the Green
correspondence with respect to (G,H;Q) (see [Lin18a, Theorem 5.2.1]) is the following
bijection: 

isomorphism classes
of indecomposable
RG-modules

with vertex Q

 ∼←→


isomorphism classes
of indecomposable
RH-modules
with vertex Q


M 7→ f(M)
g(N) ←[ N

where f(M) | ResGH(M) is the unique indecomposable summand with vertex Q and sim-

ilarly g(N) | IndGH(N) is the unique indecomposable summand with vertex Q. Moreover,
corresponding modules have a source in common.

(f) Let M be an indecomposable RG-lattice and let Q ≤ G be a p-subgroup. Then the
following assertions are equivalent:

(i) Q is a vertex of M ;

(ii) Q is a maximal p-subgroup of G with the property that (EndR(M))(Q) 6= 0.

Properties (a) to (e) are standard and to be found with a proof in any textbook on modular
representation theory, although the Green correspondence requires some work to be proved.
Property (f) requires Higman’s criterion and we refer to [Lin18a, Theorem 5.6.9].

Finally, we note that in this context, the central objects of study in this survey, the p-permutation
RG-modules, are described by the following definition. However, we will first treat them through
the more intuitive approach of permutation bases.

Definition 2.2

An indecomposable RG-module M is called a trivial source RG-module if there exists
Q ∈ vtx(M) such that the trivial RQ-module R is a source of M .

3. Permutation modules

We start with a short review of permutation RG-modules. In this view, we begin with the basic
definition of a permutation representation together with fundamental examples, at the founda-
tions of representation theory of finite groups.



A tour of p-permutation modules and related classes of modules 6

3.1. Permutation representations. Given a finite group G and a finite G-set X, that is,
a finite set X endowed with a left action G × X −→ X, (g, x) 7→ g · x, we may construct the
free R-module RX with basis X. More explicitly, extending the given action R-linearly yields
an R-representation

ρX : G −→ AutR(RX)
g 7→

(
ρX(g) : RX −→ RX,

∑
x∈X λxx 7→

∑
x∈X λx(g · x)

)
of G, called the permutation representation of G on X.

Two fundamental examples are the following.

(1) If G = Sn (n ∈ Z≥1) is the symmetric group on n letters and X = {1, 2, . . . , n}, then ρX is
the natural representation of Sn.

(2) If X = G and the left action of G on X is just multiplication in G, then ρX is the regular
representation of G.

3.2. Permutation modules. The RG-module RX corresponding to the R-representation ρX
of Subsection 3.1 is called the permutation RG-module on X. This leads to the following general
definition.

Definition 3.1

An arbitrary RG-module is called a permutation RG-module if it admits an R-basis X
which is invariant under the action of the group G.

It is clear that the basis X is then a finite G-set. Also, a permutation RG-lattice is R-free by
definition, hence an RG-lattice.

Example 3.2

(a) An induced module of the form IndGH(R) withH ≤ G is always a permutation RG-module.
Indeed, as

IndGH(R) = RG⊗RH R =
⊕

g∈[G/H]

g ⊗R

as R-lattice, it has an obvious G-invariant R-basis {g ⊗ 1R | g ∈ [G/H]} .

(b) The regular module RG = RG ⊗R R = IndG{1}(R) is clearly a permutation RG-module

on G; see also Example (2) in Subsection 3.1.

The following elementary observation shows that an arbitrary permutation RG-module is iso-
morphic to a direct sum of induced modules of the form IndGH(R) for various subgroups H ≤ G.
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Observation 3.3

If RX is a permutation RG-module on X, then a decomposition of X as a disjoint union
of G-orbits, say X =

⊔n
i=1Xi (n ∈ Z≥0) , yields a decomposition of RX as a direct sum of

RG-submodule as

RX =
n⊕
i=1

RXi ,

where each RXi is called a transitive permutation module. Furthermore, for each 1 ≤ i ≤ n,

RXi
∼= R[G/Hi] ∼= IndGHi

(R) ,

where Hi := StabG(xi), the stabiliser in G of some xi ∈ Xi.

Corollary 3.4

Up to isomorphism, there are only finitely many indecomposable permutation RG-modules.

Many standard operations on modules preserve permutation modules.

Properties 3.5

(a) The image of a permutation module under induction, restriction and inflation is again a
permutation module.

(b) The class of permutation RG-modules is closed under conjugation, finite direct sums,
taking of the R-dual and finite tensor products over R.

Proof: (a) Let H ≤ G. If RY is a permutation RH-module on Y , then the set

{g ⊗ y | g ∈ [G/H], y ∈ Y }
is G-invariant R-basis of IndGH(RY ). If RX is a permutation RG-module on X, then X is also an
H-invariant R-basis of ResGH(RX). Similarly for inflation, just take the same invariant R-basis.
(b) The claim about conjugation can be proved as in Example 3.2. If M1 and M2 are permutation
RG-modules on X1 and X2 respectively, then M1 ⊕M2 is a permutation module on X1 t X2

and M1⊗RM2 is a permutation module on {x1⊗x2 | x1 ∈ X1, x2 ∈ X2}. If M is a permutation
RG-module on X, then X∗ is a permutation module on the dual basis to X.

Lemma 3.6

If P is a p-group, then for any subgroup Q ≤ P , the permutation module IndPQ(R) is inde-
composable with vertex Q and RQ-source R.

Proof: To prove the indecomposability of IndPQ(R), we may assume that R = k. Indeed, if

IndPQ(O) decomposes, then so does k⊗O IndPQ(O) = IndPQ(k). Then, it suffices to prove that the

socle of IndPQ(k) is indecomposable. Now, as P is a p-group and k is a splitting field for G, up to

isomorphism, the only simple kP -module is the trivial module. Hence soc(IndPQ(k)) is a direct
sum of trivial submodules. This together with Frobenius reciprocity yields

dimk soc(IndPQ(k)) = dimk HomkP (k, IndPQ(k)) = dimk HomkQ(ResPQ(k), k)

= dimk HomkQ(k, k) = dimk k = 1 ,

which forces soc(IndPQ(k)) to be indecomposable. Next, as two induced modules IndPQ1
(R) and

IndPQ2
(R) are isomorphic if and only if the subgroups Q1 and Q2 of P are conjugate, clearly

Q ∈ vtx(IndPQ(R)) and R is a source by definition.
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As a result, we have parametrised the indecomposable permutation modules over p-groups.

Corollary 3.7

If P is a p-group, then the isomorphism classes of indecomposable permutation RP -modules
are parametrised by the P -conjugacy classes of subgroups of P .

4. p-permutation modules

4.1. Definition and characterisations. Coming back to Observation 3.3, we emphasise that
the transitive permutation modules need not be indecomposable in general, although it is the
case for p-groups. For instance, it is well-known that the PIMs of kG are the indecomposable
summands of the group algebra kG ∼= IndG{1}(k) and each of them occurs with multiplicity equal

to the dimension of its simple socle. Therefore, in general, it is necessary to investigate the
indecomposable direct summands of the (transitive) permutation RG-modules. The following
lemma is crucial to understand these summands.

Lemma 4.1

Let P ∈ Sylp(G). If L is an RG-module such that ResGP (L) is a permutation RP -module, then

ResGP (M) is also a permutation RP -module for any M | L.

Proof: By Observation 3.3 there exist n ∈ Z≥0 and subgroups Qi ≤ G (1 ≤ i ≤ n) such that

ResGP (L) ∼=
n⊕
i=1

IndPQi
(R) ,

where each IndPQi
(R) is indecomposable by Lemma 3.6. Thus, by the Krull–Schmidt theorem,

if M | L, then ResGP (M) is isomorphic to the direct sum of some of the summands in the
decomposition, hence is again a permutation RP -module.

This leads us to the following equivalent characterisations of the direct summands of the per-
mutation RG-modules

Proposition-Definition 4.2 (Characterisations of p-permutation modules)

Let M be an RG-module and let P ∈ Sylp(G). Then, the following conditions are equivalent:

(a) ResGQ(M) is a permutation RQ-module for each p-subgroup Q ≤ G;

(b) ResGP (M) is a permutation RP -module;

(c) M has an R-basis which is invariant under the action of P ;

(d) M is isomorphic to a direct summand of a permutation RG-module;

(e) M is isomorphic to a direct sum of trivial source RG-modules.

If M fulfils any of these equivalent conditions, then it is called a p-permutation RG-module.

At this point, we note that p-permutation RG-modules and trivial source RG-modules are essen-
tially two different pieces of terminology for the same concept. Some authors tend to favour the
use of the terminology p-permutation module to emphasise the existence of a P -invariant basis
and reserve the terminology trivial source module for an indecomposable module with a trivial
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source (as introduced above). Other authors tend to favour the use of the terminology trivial
source module to mean a direct sum of RG-modules with trivial sources, that is, our definition
of a p-permutation module.

Proof:
(a)⇔(b): It is obvious that (a) implies (b). For the sufficient condition, notice that ResGgP (M) ∼=
g(ResGP (M)) for each g ∈ G, and recall that any p-subgroup is contained in a conjugate of P by
the Sylow theorems. Thus, as by Properties 3.5 restriction and conjugation preserve permuta-
tion modules, requiring that ResGP (M) is a permutation RP -module implies that ResGQ(M) is a
permutation RQ-module for each p-subgroup Q ≤ G, because

(b)⇔(c): This is immediate from the definition of a permutation RP -module.

(b)⇒(e): If M satisfies (b), then by Lemma 4.1(a) we can assume that M is indecomposable. So
let Q ∈ vtx(M). Then M | IndGQ(ResGQ(M)) by Q-projectivity. Since ResGQ(M) is a permutation
RQ-module by assumption, again by Observation 3.3 there exist n ∈ Z≥1 and subgroups Ri ≤ Q
(1 ≤ i ≤ n) such that

ResGQ(M) ∼=
n⊕
i=1

IndQRi
(R) .

Inducing this module to G, we deduce that M , being indecomposable, is isomorphic to a direct
summand of IndGRi

(R) for some 1 ≤ i ≤ n. By the minimality of vertices it follows that Ri = Q
and that the trivial RQ-module R must be a source of M .

(e)⇒(d): If L is an indecomposable trivial source module, say with vertex Q ≤ G, then by
definition of a source L | IndGQ(R). This implies (d) as IndGQ(R) is a permutation RG-module
and any finite direct sum of permutation RG-modules is again a permutation RG-module.

(d)⇒(b): Assume that M | Z, where Z is a permutation RG-module. Then ResGP (M) | ResGP (Z),
where ResGP (Z) is again a permutation RP -module by Properties 3.5(a). Thus, it follows from
Lemma 4.1(a) that ResGP (M) is a permutation RP -module.

Properties 4.3

(a) Any direct summand of a p-permutation RG-module is a p-permutation RG-module.

(b) The image of a p-permutation module under induction, restriction, inflation, conjugation
and taking of the R-dual is a p-permutation module.

(c) Finite direct sums and tensor products over R of p-permutation RG-modules are p-
permutation RG-modules.

Proof: Assertion (a) follows immediately from the characterisation of p-permutation modules
in Proposition-Definition 4.2 and Lemma 4.1. Assertions (b) and (c) are straightforward conse-
quences of the same assertions for permutation modules (see Properties 3.5) and the character-
isation of p-permutation modules.

Example 4.4

(a) Projective RG-module are p-permutation RG-modules, since they are direct summands
of free RG-modules and RG = IndG{1}(R).

(b) The trivial RG-module R is a p-permutation module. Indeed, ResGQ(R) = R for any Q-
subgroup Q ≤ G, so R is a trivial source module.
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Furthermore, we claim that vtx(R) = Sylp(G). Indeed, if Q ∈ vtx(R) and P ∈ Sylp(G) is

such that Q ≤ P , then R | IndGQ(R) and so the Mackey formula yields

ResGP (R) | ResGP (IndGQ(R)) ∼=
⊕

x∈[P\G/Q]

IndPP∩ xQ(R)

where all summands IndPP∩ xQ(R) are indecomposable by Lemma 3.6.

(c) Lemma 3.6 shows that if G is a p-group, then any p-permutation module is in fact a
permutation module. Hence, the concept of a p-permutation is reduced to the concept of
a permutation module, and hence the former is not need for p-groups.

4.2. Green correspondence for p-permutation modules. The Green correspondence pro-
vides us with a theoretical classification of all indecomposable p-permutation modules, vertex
by vertex.

Lemma 4.5

LetM be an indecomposable p-permutationRG-module and letQ�G be a normal p-subgroup.
If Q is contained in a vertex of M , then Q acts trivially on M , that is, MQ = M .

Proof: Let S ∈ vtx(M) be such that Q ≤ S. Then M | IndGS (R) ∼= R(G/S) (the permutation
RG-module on G/S). Now, as Q�G, we have yxS = xS for all x ∈ G and for all y ∈ Q, proving
that Q acts trivially on IndGS (R), and hence on M .

Theorem 4.6 (Green Correspondence for p-permutation modules)

(a) If M is an indecomposable p-permutation RG-module with vertex Q ≤ G, then Q acts
trivially on the RNG(Q)-Green correspondent f(M) of M , and f(M) can be viewed as
an R[NG(Q)/Q]-module. As such, f(M) is indecomposable and projective.

(b) If N is a projective indecomposable R[NG(Q)/Q]-module, then Inf
NG(Q)
NG(Q)/Q(N) is an inde-

composable RNG(Q)-module with vertex Q and trivial source. Its RG-Green correspon-
dent is an indecomposable p-permutation RG-module.

(c) There are bijections
isomorphism classes
of indecomposable
p-permutation
RG-modules

with vertex Q

 ∼←→


isomorphism classes
of indecomposable
p-permutation

RNG(Q)-modules
with vertex Q

 ∼←→

{
isomorphism classes of

projective indecomposable
R[NG(Q)/Q]-modules

}
.

Proof: By Proposition-Definition 4.2 any indecomposable p-permutation module has a trivial
source. Thus Assertions (a) and (b) are immediate consequences of Lemma 4.5 and Proper-
ties 2.1(c),(e). The first bijection in Assertion (c) is then also given by Properties 2.1(e) applied
to kG-modules with a trivial source, whereas the second bijection follows from (a) and (b).

We emphasise that the characterisation of the indecomposable p-permutation RG-modules ob-
tained via the Green correspondence is theoretically very powerful, however, does not provide
us with a concrete description of such modules, because the first bijection in Assertion (c) above
is not constructive. In general, the question of describing the structure of the indecomposable
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p-permutation RG-modules remains a difficult question, even for small groups, or modules be-
longing to blocks with small defect groups. One of the main issues being that p-permutation
modules are determined by the source-algebra equivalence class of the block, but not by its
Morita equivalence class. As a matter of fact, the question is rather complex already for cyclic
blocks. A complete solution in this case can be found in [HL21].

Finally, we mention the following result of Okuyama’s showing that simple modules with a triv-
ial source have a simple Green correspondent.

Theorem 4.7 ([Oku81, Theorem 2.3])

Let T be a simple kG-module and let Q ∈ vtx(T ). Let f denote the Green correspondence with
respect to (G,NG(Q);Q). If T is a p-permutation kG-module, then the Green correspondent
f(T ) of T is a simple kNG(Q)-module, and (dimk(T ))p = |G : Q|p .

4.3. Weight modules and Alperin’s Weight Conjecture. If Q ≤ G is a p-subgroup and S
is a simple kNG(Q)-module with vertex Q, then the pair (Q,S) is called a weight of G with
respect to Q. In this case, Q is a weight subgroup, S is a weight kG-module and the kG-Green
correspondent g(S) of S is called a weight Green correspondent.

It is easy to see that any weight subgroup Q is p-radical subgroup, i.e. Q = Op(NG(Q)) is the
largest normal p-subgroup of NG(Q). Also conjugation induces an equivalence relation on the
set of all weights of G. Alperin originally stated his Weight Conjecture in [Alp87] as follows.

Conjecture 4.8 (Alperin’s Weight Conjecture)

The number of weights of G, considered up to conjugation, is equal to the number of isomor-
phism classes of simple kG-modules.

Weight modules are strongly related to p-permutation modules, as we see through the following
observations.

Remark 4.9

If (Q,S) is a weight of G, then S is simple and projective as a k[NG(Q)/Q]-module since
Q ∈ vtx(S). Conversely, the inflation from NG(Q)/Q to Q of a projective simple k[NG(Q)/Q]-
module is a weight module of G. Thus, in view of Theorem 4.6, it is is clear that weight
modules, as well as their kG-Green correspondents, are p-permutation modules.

Lemma 4.10 ([Alp87, Lemma 1])

Let P ∈ Sylp(G). If S is a weight kG-module, then its kG-Green correspondent g(S) is

isomorphic to an indecomposable direct summand of IndGP (k).

Proof: By the Burry–Carlson–Puig theorem, it is enough to prove that S | ResGNG(Q)(IndGP (k)),

which follows from the Mackey formula.

It follows that understanding the direct summands of a Sylow permutation module IndGP (k)
gives some control on the number of weights. For instance, this strategy was used by Cabanes
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in [Cab88] to prove Alperin’s Weight Conjecture for finite groups of Lie type in their defining
characteristic. More precisely, he proves that in this case the image under the Brauer morphism
of each indecomposable direct summand X of IndGP (k) with vertex Q, i.e. the Green correspon-
dent f(X) of X, is projective simple as a k[NG(Q)/Q]-module and hence a weight module.

In fact, the more general context in which the endomorphism algebra EndkG(IndGP (k)) is quasi-
Frobenius was further examined by Naehrig in [Nae10]. One of the main ideas is that under this
assumption,

|{weights of G}| ≤ |{indecomposable direct summands of IndGP (k)}/∼=|
= |{simple EndkG(IndGP (k))-modules}|
= |{simple kG-modules}|

where the last equality holds by [Nae10, Theorem 3.1(d)] due to Green. This implies that in
this special case Alperin’s Weight Conjecture is true if and only if each indecomposable direct
summand of IndGP (k) is a weight Green correspondent.

4.4. Approach via the Brauer quotient. A further fruitful approach to p-permutation mod-
ules through the Brauer morphism is due to Puig and appears in [Bro85] by Broué. As a matter
of fact, the Brauer construction applied to p-permutation modules is particularly well-behaved
and provides us with alternative characterisations of vertices, sources and Green correspondents
in this case.

Proposition 4.11

Let M be a p-permutation RG-module. Let Q ≤ G be a p-subgroup, let X be a Q-invariant
R-basis of M and XQ be the set of Q-fixed elements of X. Then the following assertions hold:

(a) the image brMQ (XQ) of XQ in M(Q) is a k-basis of M(Q) ;

(b) rkR(M) ≡ dimk(M(Q)) (mod p) ;

(c) if XQ = ∅, then M(Q) = {0};
(d) M(Q) is a p-permutation kNG(Q)-module on which Q acts trivially, i.e. a p-permutation

kNG(Q)/Q-module.

Proof: (a) Write [Q\X] for a set of representatives of Q-orbits in X, and for each x ∈ [Q\X] let

Qx be the stabiliser of x. Then a straightforward computation shows that {tQQx
(x) | x ∈ [Q\X]}

is an R-basis of MQ. Then, it is easy to check that when R = O we have∑
S<Q

tQS (MS) + pMQ =

( ⊕
x∈[Q\X]
Qx<Q

R · tQQx
(x)

)
⊕

( ⊕
x∈XQ

p · x

)
,

proving that M(Q) =
⊕

x∈XQ k · brMQ (x) as k-vector space.

(b) The set X \XQ consists of the Q-orbits of X which are not singletons. Thus, since Q is a
p-group, we have |X| ≡ |XQ| (mod p) and the claim follows from (a).
(c) The claim is also immediate from (a).
(d) Let P ∈ Sylp(NG(Q)) (which necessarily contains Q) and let Y be a P -invariant R-basis

of M . Then X is Q-invariant, so (a) applies. Now, as P normalises Q, certainly XQ is P -invariant.
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Thus the k-basis brMQ (XQ) given by (a) is invariant under the action of the Sylow p-subgroup

P/Q of NG(Q)/Q. The claim follows.

Proposition 4.12

Let M be an indecomposable p-permutation RG-module and let Q ≤ G be a p-subgroup.
Then the following assertions hold:

(a) M(Q) 6= {0} if and only if Q is contained in a vertex of M ;

(b) Q is a vertex of M if and only if Q is maximal with the property that M(Q) 6= {0}.

Proof: By Properties 2.1(f), the p-subgroup Q is contained in a vertex of M if and only if
(EndR(M))(Q) 6= {0}. Thus, Assertion (a) follows from the fact that

(EndR(M))(Q) ∼= Endk(M(Q))

(see [Lin18a, Proposition 5.6.11]). Assertion (b) follows from the maximality property in Prop-
erties 2.1(f).

Remark 4.13

In fact, a p-subgroup Q ≤ G is a vertex of an indecomposable p-permutation RG-module M
if and only if M(Q) 6= {0} and a projective k[NG(Q)/Q]-module. Furthermore, the Brauer
construction gives us an alternative way to understand the bijections of Theorem 4.6. More
precisely, the correspondence M 7→M(Q) induces a bijection

isomorphism classes
of indecomposable
p-permutation
RG-modules

with vertex Q

 ∼←→

{
isomorphism classes of

projective indecomposable
k[NG(Q)/Q]-modules

}
.

When working over the residue field k the Green correspondence for p-permutation modules has
the following nice characterisations in terms of the Brauer quotient.

Theorem 4.14 ([Bro85, (3.4)],[Lin18a, Proposition 5.8.7],[Thé95, (27.4)])

Let M be a p-permutation kG-module and let Q ≤ G be a p-subgroup. Then, there is an
isomorphism of kNG(Q)-modules

ResGNG(Q)(M) ∼= L1 ⊕ L2

such that the following properties hold:

(i) every indecomposable direct summand of L1 has a vertex containing Q, i.e. trivial action
of Q;

(ii) the vertices of the indecomposable direct summands of L2 do not contain Q; and

(iii) M(Q) ∼= L1(Q) ∼= L1 as kNG(Q)-modules and L2(Q) = {0}.
Moreover, if M is indecomposable and Q ∈ vtx(M), then M(Q) = L1 is indecomposable and
is the kNG(Q)-Green correspondent of M .

Proof: Since M is a p-permutation module, so are the indecomposable direct summands of
ResGNG(Q)(M) by Properties 4.3. Therefore, we may choose a decomposition of ResGNG(Q)(M)

into indecomposable direct summands and set L1 to be the direct sum of all such summands
with a vertex contained in Q and L2 to be the direct sum of the remaining summands. Now,
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Q acts trivially on all the summands of L1 by Lemma 4.5. By Proposition 4.12(a), L2(Q) = {0},
and so M(Q) ∼= L1(Q) = L1. Thus (i), (ii) and (ii) hold.
Next, assume that M is indecomposable. Then M has a trivial source by Proposition-Defin-
ition 4.2, and therefore so does its kNG(Q)-Green correspondent f(M). By the definition of the
Green correspondence,

ResGNG(Q)(M) = f(M)⊕X
where X is a direct sum of indecomposable kNG(Q)-modules having a vertex strictly contained
in Q. Hence X(Q) = 0 by Proposition 4.12, implying that

M(Q) = (ResGNG(Q)(M))(Q) ∼= f(M) .

It follows that the Brauer quotients can be used in order to determine the isomorphism type of
p-permutation kG-modules.

Proposition 4.15

Let M and N be projective-free p-permutation kG-modules. Then the following assertions
are equivalent:

(a) M ∼= N ;

(b) M(Q) ∼= N(Q) for every non-trivial p-subgroup Q ≤ G.

Proof: It is clear that if M ∼= N , then their Brauer quotients with respect to any non-trivial
p-subgroup Q ≤ G are isomorphic. In order to prove the sufficient condition, assume that (b)
holds. Clearly, by the Krull–Schmidt theorem, we may assume that M and N have no isomorphic
direct summands. Let Q ≤ G be a p-subgroup which is maximal subject to M(Q) 6= {0}. As
M is projective-free Q 6= {1}. Now, the maximality of Q implies that M and N have no
direct summands with a vertex strictly containing Q. Choosing a direct sum decomposition
M ∼=

⊕n
i=1Mi⊕Y , where eachMi has vertexQ and none of the indecomposable direct summands

of Y has vertex Q, then

M(Q) ∼=
n⊕
i=1

f(Mi)

by Theorem 4.14. Similarly for N . Hence, we conclude from (b) that M and N have an inde-
composable direct summand in common with vertex Q, which is a contradiction.

5. Endo-permutation, endo-trivial, endo-p-permutation modules

In this section we define and review several classes of RG-modules, which are closely related
to the the class of p-permutation modules, because their R-endomorphism ring is by definition
a p-permutation RG-module. These come in different flavours, depending on further restrictions
put on the latter p-permutation module.

We will see in Section 6 that all the OG-modules defined in this section are in fact automatically
OG-lattices, i.e. free as O-modules. For this reason, talking about lattices or about modules does
not make a difference here. Moreover, throughout this section, if not said otherwise, P denotes
a p-group and G denotes a finite group of order divisible by p. Moreover, in order to understand
the definitions below, we recall that the endomorphism algebra EndR(M) of an RG-module M is
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naturally endowed with the structure of an RG-module through the action of G by conjugation,
that is,

gϕ(m) := g · ϕ(g−1 ·m) ∀ g ∈ G,∀ϕ ∈ EndR(M) and ∀m ∈M .

Moreover, if M is an RG-lattice, then EndR(M) ∼= M∗ ⊗R M , where G acts diagonally on
M∗ ⊗RM .

5.1. Endo-permutation modules over p-groups. Endo-permutation modules were first in-
troduced and thoroughly studied by Dade in his celebrated two-part paper [Dad78a, Dad78b].
They play a crucial role in modular representation theory of finite groups. To give a few exam-
ples, they appear naturally as sources of simple modules for p-soluble groups (see [Thé95, §30]).
They appear in Puig’s characterisation of the source-algebra of nilpotent blocks in [Pui88], or in
Linckelmann’s classification of blocks with cyclic defect groups up to source-algebra equivalence
(see [Lin18b, Chapter 11]). They also appear in the theory of basic Morita equivalences and asso-
ciated Picard groups, currently under intensive investigation by several authors working towards
classifications of blocks up to Morita equivalence and the verification of Donovan’s conjecture
for various classes of small defect groups (see e.g. [BKL20, EL20] and the references therein).

Definition 5.1

An RP -module M is an endo-permutation RP -module if EndR(M) is a permutation RP -
module. Moreover, an endo-permutation RP -module is called capped if it has a direct sum-
mand with vertex P .

Dade proved in [Dad78b, Theorem 6.6.] that all endo-permutation modules can be described
from the knowledge of the indecomposable capped endo-permutation RP -modules. The charac-
terisation of p-permutation modules via the Brauer quotient we gave in Subsection 4.4 yields the
following characterisation of capped endo-permuation modules, essential throughout the theory.

Lemma 5.2

Let M be an endo-permutation RP -module. The following assertions are equivalent:

(a) M is capped;

(b) the Brauer quotient (EndR(M)) (P ) is non-zero;

(c) there exists a fixed point in a P -invariant R-basis of EndR(M);

(d) there exists a P -set Y such that EndR(M) ∼= R⊕RY as an RP -module.

Stability properties are the following.

Properties 5.3

(a) The class of endo-permutation RP -modules contains the permutation RP -modules.

(b) The class of (capped) endo-permutation RP -modules is closed under taking direct sum-
mands, R-duals, and finite tensor products over R.

(c) The restriction, the inflation, the conjugation and the tensor induction of a (capped)
endo-permutation module is again a (capped) endo-permutation module.

(d) For any n ∈ Z the relative syzygy module Ωn
P/Q(R) is an endo-permutation RP -module.

Note that the induction of an endo-permutation module is not necessarily an endo-permutation
module. Instead, the tensor induction is the correct operation to be used in this context.
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Proof: Assertion (a) is straightforward from Properties 3.5 as EndR(M) ∼= M∗⊗RM . Assertions
(b) and (c) are proved in [Thé95, §28], except for the claim about tensor induction follows from
[BT00, Lemma 2.1]. Assertion (d) is [Alp01a, Theorem 1 and Theorem 2].

A classification of the capped endo-permutation kP -modules was achieved through the work
of several authors in a long series of articles, starting with Dade’s initial two-part article
[Dad78a, Dad78b] in 1978 and ending with the work of Bouc [Bou06] in 2006, with crucial steps
achieved by Bouc and Thévenaz in [BT00] and by Carlson and Thévenaz in [CT00, CT05, CT04].
At this stage, we emphasise that Thévenaz has written a very detailed survey [Thé07] on the
classification of endo-permutation modules and its chronological developments. For this reason
we do not give proofs and simply refer the reader to [Thé07] for further details.

The initial idea that enabled this classification, introduced by Dade in [Dad78a, Dad78b], is the
fact that the class of capped endo-permutation RP -modules subject to a certain equivalence
relation can be endowed with the structure of an abelian group, known nowadays as the Dade
Group of P . The class of capped endo-permutation RP -modules is not closed under direct sums,
so the direct sum cannot be used as a group operation, but the tensor product over R can, as
we describe below.

Proposition-Definition 5.4 ([Dad78a])

(a) If M is a capped endo-permutation RP -module, then any two indecomposable direct
summands of M with vertex P are isomorphic. We write Cap(M) for the isomorphism
class of such an indecomposable summand and call it the cap of M .

(b) Two capped endo-permutation RP -modules M and N are called equivalent provided
Cap(M) ∼= Cap(N), or equivalently provided R | M ⊗R N∗. This defines an equivalence
relation on the class of capped endo-permutation RP -modules and the Dade group of P ,
denoted DR(P ), is the resulting set of equivalence classes, endowed with the structure of
an abelian group via the composition law

+ : DR(P )×DR(P ) −→ DR(P )
([M ], [N ]) 7→ [M ] + [N ] := [M ⊗R N ] .

The zero element is the class [R] of the trivial RP -module and the opposite of a class [M ]
is the class [M∗] of the R-dual.

In Subsection 5.2 we will summerize the main milestones of this classification, which comes down
to determining the structure of the Dade group. However, before we can proceed, we need to
introduce several important subgroups of the Dade group.

In fact, one of the starting points of the classification was the following theorem of Lluis Puig,
who, in the 1980’s, introduced the notion of a Dade P -algebra. The connection with endo-
permutation modules is the following. To start with, an RP -module M is an endo-permutation
RP -module if and only if EndR(M) is a permutation P -algebra, i.e. a P -algebra admitting a
P -invariant R-basis. A Dade P -algebra (over R) is defined to be an R-simple permutation P -
algebra A such that A(P ) 6= 0. Thus Lemma 5.2 yields: if M is a capped endo-permutation
RP -module, then EndR(M) is a Dade P -algebra. Conversely, any Dade P -algebra gives rise to
a capped endo-permutation RP -module, unique over R = k. A very clear exposition of these
facts is to be found in [Thé95, §28 to §30]. The approach via Dade P -algebras lead in particular
to the following fundamental result on the structure of the Dade group.
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Theorem 5.5 ([Pui90, Corollary 2.4])

The Dade group DR(P ) of P is finitely generated as an abelian group.

Notation 5.6

In view of the latter result, we may write Dtors
R (P ) ⊕ Dfree

k (P ), where the first summand
is the torsion part of DR(P ) and the second summand its free part. Moreover, in view of
Properties 5.3(d), we may consider the subgroup DΩ

R(P ) := 〈[Ωn
P/Q(R)] | Q < P 〉 of DR(P )

generated by the relative syzygy modules of the trivial module.

The subgroups Dtors
R (P ) and DΩ

R(P ) are essential building blocks for the determination of the
structure of the the Dade group. Yet, another important building block is given by the subgroup
of endo-trivial RP -modules, also introduced by Dade in [Dad78a, Dad78b]. In fact this notion
was introduced independently by Alperin in [Alp77], who called them invertible module, as they
are invertible in the stable module category.

Definition 5.7 ([Dad78a])

An RP -module M is called endo-trivial if there exists a projective RP -module F such that

EndR(M) ∼= R⊕ F
as an RP -module, or equivalently if M∗ ⊗RM ∼= R in the stable module category of RP .

Note that if such an isomorphism exists, then F is the kernel of the trace map

Tr : M∗ ⊗RM −→ R,ϕ⊗m 7→ ϕ(m) .

Moreover, we will often simply write EndR(M) ∼= R ⊕ (proj) instead of specifying a projective
module F .

The class of endo-trivial modules has less stability properties than the class of endo-permutation
modules. Clearly, the inflation of an endo-trivial RP -module is not an endo-trivial module, as
the inflation of a projective RP -module is not a projective module in general. However, the
following properties hold.

Properties 5.8

(a) The trivial module R is endo-trivial.

(b) If M and N are endo-trivial RP -modules, then so are the following RP -modules:

(i) M∗ ;

(ii) ResPQ(M) for any Q ≤ P ;

(iii) the tensor product M ⊗R N ;

(iv) Ωn(M) for any n ∈ Z .

(c) If M is an endo-trivial RP -module, then there exist an indecomposable endo-trivial
RP -module M0, unique up to isomorphism, and a projective RP -module X such that
M ∼= M0 ⊕X.

(d) Any endo-trivial RP -module is a capped endo-permutation RP -module. Furthermore,
Cap(M) = M0.
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Proof: Assertions (a), (b)(i)–(iii) are immediate from the definitions. Assertion (b)(iv) follows
from elementary properties of syzygy modules:

EndR(Ωn(M)) ∼= Ωn(M)∗ ⊗R Ωn(M)

∼= Ω0(M∗ ⊗M)⊕ (proj)

∼= Ω0(R⊕ (proj))⊕ (proj) ∼= R⊕ (proj) .

To obtain Assertion (c), observe that if we decompose M as M = M0 ⊕M1, then

R⊕ (proj) ∼= EndR(M) ∼= EndR(M0)⊕HomR(M0,M1)⊕HomR(M0,M1)∗ ⊕ EndR(M1)

asRG-modules and the claim follows from the Krull–Schmidt theorem, asR is non-projective and
can then only occur once as a direct summand of EndR(M0) or of EndR(M1), but not of both.
It is also clear from the definitions that any endo-trivial RP -module is an endo-permutation
module, and it is capped by the characterisation of the capped modules in Lemma 5.2.

These properties allow us to define a group structure on the class of endo-trivial RP -modules,
which can be identified with a subgroup of the Dade group.

Proposition-Definition 5.9 ([Dad78a])

(a) Two endo-trivial RP -modules M and N are called equivalent provided M0
∼= N0. This

defines an equivalence relation on the class of capped endo-entriovial RP -modules and
the group of endo-trivial RP -modules of P , denoted TR(P ), is the resulting set of
equivalence classes, endowed with the structure of an abelian group via the composition
law

+ : TR(P )× TR(P ) −→ TR(P )
([M ], [N ]) 7→ [M ] + [N ] := [M ⊗R N ] .

The zero element is the class [R] of the trivial RP -module and the opposite of a class [M ]
is the class [M∗] of the R-dual.

(b) There is a canonical injective group homomorphism

TR(P ) ↪→ DR(P ), [M ] 7→ [M ] .

Notice that the equivalence classes in DR(P ) are larger than in TR(P ) and the class of an endo-
trivial RP -module may contain modules that are not endo-trivial.

5.2. The structure of the Dade group of a p-group. The determination of the structure
of the Dade group and of the group of endo-trivial modules was essentially realised over R = k.
Their structure over R = O can then be deduced from the lifting results from k to O considered
in Section 7. We record below the main steps which lead to the final classification. To start with,
the abelian case was already understood by Dade when he started the theory.

Theorem 5.10 ([Dad78a, Dad78b])

If P is an abelian p-group, then Tk(P ) is cyclic generated by the class [Ω(k)] and

Dk(P ) =
⊕
Q<P

Tk(P/Q) ∼= Zr ⊕ (Z/2Z)c ,

where each T (P/Q) is identified with a subgroup of Dk(P ) via inflation, r is the number of
non-cyclic quotients P/Q, and c is the number of cyclic quotients of P/Q of order at least 3.
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The structure of the Dade group in finite and tame representation type plays a role in the final
classification. If P ∼= Cpn (n ≥ 1) is cyclic of order pn (in multiplicative notation), then the
structure of Dk(P ) is clear from Dade’s theorem above, namely

Dk(P ) ∼=

{
(Z/2Z)n if p is odd,

(Z/2Z)n−1 if p = 2.

When p = 2, there is a missing generator coming from the fact that Tk(C2) = {[k]} as Ω(k) ∼= k
in this case. If P is a dihedral, a semi-dihedral, or a generalised quaternion 2-group, then the
structure of Tk(P ) was obtained by Carlson and Thévenaz in [CT00, §5-§7]. In the same article,
they prove the following general result about the structure of Dk(P ) in these cases.

Lemma 5.11 ([CT00, Lemma 10.2])

Assume P is a cyclic p-group, or, provided p = 2, a dihedral, a semi-dihedral, or a generalised
quaternion 2-group . Then,

Dk(P ) = Tk(P )⊕Dk(P/Z)

where Z is the unique central subgroup of order p of P .

This led to the determination of Dk(P ) in tame representation type, using an induction argu-
ment, for which the starting point is the fact that Dk(C2×C2) = Tk(C2×C2) ∼= Z and generated
by [Ω(k)]. See [CT00, Theorem 10.3] for details.

The classification of all endo-trivial kP -modules, or equivalently the determination of the struc-
ture of Tk(P ) was the next main step. It is mainly due to Carlson and Thévenaz again in
[CT05, CT04]. In [CT05] they obtain the structure of the torsion part T tors

k (P ) of Tk(P ).

Theorem 5.12 ([CT05, Corollary 12.6 and Corollary 12.7])

(a) If P is neither cyclic, nor generalised quaternion, nor semi-dihedral, then

T tors
k (P ) = {[k]} .

(b) If all maximal elementary abelian p-subgroups of P have rank at least 3, then T (P ) ∼= Z
generated by [Ω(k)].

Therefore, it remains to consider the case in which P possesses elementary abelian p-subgroups
of rank 2.

Theorem 5.13 ([CT04, Theorem 7.1])

Assume P has at least one elementary abelian subgroup of rank 2 but is not semi-dihedral.
Let c be the number of P -conjugacy classes of maximal elementary abelian subgroups of P ,
and set r := c if the p-rank of P is 2 and r := c + 1 if the p-rank of P is at least 3. Then,
Tk(P ) ∼= Zr .

Another main step was the determination of the structure of the torsion part of Dk(P ) in odd
characteristic, obtained earlier by Bouc and Thévenaz.

Theorem 5.14 ([BT00, Theorem A])

If p is odd, then Dtors
k (P ) ∼= (Z/2Z)r, where r is the number of P -conjugacy classes of non-

trivial cyclic subgroups of P .
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Using the results of [CT04], Bouc and Mazza [BM04] determined the structure of the Dade
group of (almost) extra-special p-groups. Meanwhile, Bouc obtained crucial results on the ten-
sor induction of relative syzygy modules in [Bou00], and in [Bou04] he made connections with
between the dual Burnside ring and the Dade group explicit. He also developed the machinary
of biset functors, which, applied to the Dade group, lead to the final classification.

Theorem 5.15 ([Bou06, 7.7. Theorem and 8.4. Corollary])

Let P be a p-group. Then Dk(P ) = DΩ
k (P ) +Dtors

k (P ). More precisely, the following hold:

(i) Dk(P ) = DΩ
k (P ), provided p is odd; and

(ii) if p = 2, then Dk(P ) = DΩ
k (P ) + 2Dk(P ) where 2Dk(P ) = {[M ] ∈ Dk(P ) | 2[M ] = [k]}.

Notice that the situation in characteristic 2 is more complicated than in odd characteristic, as
there exist torsion endo-permutation kP -modules whose classes do not lie in DΩ

k (P ). These are
called exotic. For the precise description of these modules we refer the reader to [Bou06].

5.3. Endo-trivial modules over arbitrary finite groups. Endo-trivial modules over p-
groups served as building blocks for Bouc’s description of the Dade group and the classification
of endo-permutation modules. Directly after this classification was achieved people turned their
attention to endo-trivial modules over finite groups. Indeed, it is clear that Definition 5.7 does
not use the fact that the group is a p-group and makes sense for an arbitrary finite group.

Definition 5.16

An RG-module M is termed endo-trivial iff EndR(M) ∼= M∗ ⊗R M ∼= R ⊕ (proj) , where
(proj) denotes a projective RG-module.

There are many reasons for wanting to understand these modules. Equivalently, we could say
that an endo-trivial RG-module is an RG-module whose R-endomorphism ring is isomorphic
to the trivial module in the stable module category of RG. Moreover, tensoring over R with
an endo-trivial RG-module is a self-stable equivalence of Morita type, implying that this class
of modules can be identified with an important part of the Picard group of the stable module
category of RG. It was also proved by Bleher and Chinburg [BC00] that they are the modules
whose deformation rings are universal (as opposed to versal).

On top of Thévenaz’ survey [Thé07] on endo-permutation modules already mentioned, there
are three very good surveys describing the developments towards a classification of endo-trivial
modules since 2006: two brief surveys by Carlson [Car12, Car17] and a book by Mazza [Maz19],
to which we refer the reader for a detailed treatment of the subject. For this reason, below we
are only briefly going to describe stability properties and similarities of this class of modules
with the other classes we have studied that far.

Example 5.17

(a) The trivial module R and its syzygies Ωn(R) (n ∈ Z) are endo-trivial RG-modules, by
the same argument we gave in the proof of Properties 5.8(b)(iv).

(b) Any RG-module Z such that rkR(Z) = 1 is endo-trivial, as Z∗ ⊗R Z ∼= R. We write
XR(G) for the set of all isomorphism classes of rank one RG-modules. This is a group for
the tensor product ⊗R over R.
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Properties 5.18

Let M and N be endo-trivial RG-modules.

(a) We have rkR(M) ≡ ±1 (mod |G|p).
(b) The RG-modules M∗ and M ⊗k N are endo-trivial.

(c) If M is indecomposable, then the vertices of M are the Sylow p-subgroups of G.

(d) There is a direct sum decomposition M ∼= M0 ⊕ (proj) where M0 is the unique indecom-
posable direct summand of M which is endo-trivial.

(e) If P ∈ Sylp(G), then M is endo-trivial if and only if ResGP (M) is endo-trivial.

Proof: Assertions (b) to (e) will be proved in a more general context in Properties 5.38. Assertion
(a) follows from the fact that, by definition, rkR(EndR(M)) = rkR(M)2 ≡ 1 modulo the R-rank
of projective RG-module, which itself has R-rank divisible by |G|p.

As for p-groups, these properties lead to a group structure, which allows us to classify the endo-
trivial RG-modules in an easier way.

Proposition-Definition 5.19 ([CMN06])

Two endo-trivial RG-modules M and N are called equivalent provided M0
∼= N0. This

defines an equivalence relation on the class of endo-entriovial RG-modules and the group of
endo-trivial RG-modules of G, denoted TR(G), is the resulting set of equivalence classes,
endowed with the structure of an abelian group via the composition law

+ : TR(G)× TR(G) −→ TR(G)
([M ], [N ]) 7→ [M ] + [N ] := [M ⊗R N ] .

The zero element is the class [R] of the trivial RG-module and the opposite of a class [M ] is
the class [M∗] of the R-dual.

As we will see in Section 7 any endo-trivial kG-module is liftable to an endo-trivial OG-lattice.
This fact allows us to assume that R = k, without loosing essential information. In fact, all
articles concerned with classifications of endo-trivial modules assume that R = k. We sum up
here some of the main results in this direction.

To begin with, the group of endo-trivial modules is also finitely generated, and the rank of its
free part can be characterised in terms of the local structure of the group G.

Theorem 5.20 ([CMN06, Corollary 2.5, Theorem 3.1])

(a) The abelian group Tk(G) is finitely generated, and so we can write

Tk(G) = T tors
k (G)⊕ T free

k (G)

where T tors
k (G) is the torsion subgroup of Tk(G) and T free

k (G) is a torsion-free direct sum
complement of T tors

k (G) in Tk(G). In particular T tors
k (G) is finite.

(b) The rank of T free
k (G) is equal to the number of conjugacy classes of maximal elementary

abelian p-subgroups of rank 2 if G has p-rank 2, or this number plus one if G has p-rank
greater than 2.

(c) Assume the p-rank of G is greater than p if p is odd, or greater than 4 if p = 2. Then, the
rank of T free

k (G) is one and T free
k (G) is generated by the class of the syzygy module Ω(k).
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As a consequence, in general, the difficult problem is to understand the torsion part T tors
k (G) of

the group Tk(G). In this respect, the following characterisation through restriction to a Sylow
p-subgroup and its normaliser are essential. For a subgroup H ≤ G, we may always consider the
group homomorphism

resGH : Tk(G) −→ Tk(H), [M ] 7→ [ResGH(M)]

and when P ∈ Sylp(G), then we let K(G) := ker(resGP ) be its kernel. Clearly, in this way, we
obtain a chain of inclusions

Xk(G) ≤ K(G) ≤ T tors
k (G) ≤ Tk(G) .

It turns out that in many situations T tors
k (G) = Xk(G), or T tors

k (G) = K(G), but this is not the
general case and although recent work of Grodal [Gro23] using homotopy theory brought many
answers towards the structure of T tors

k (G) its structure is still an open question in general.

Theorem 5.21 ([CMN06, Proposition 2.6])

Let P ∈ Sylp(G) and let H ≤ G such that H ≥ NG(P ). Then the following assertions hold.

(a) The restriction homomorphism resGH : Tk(G) −→ Tk(H) is injective. More precisely, if M

is an indecomposable endo-trivial kG-module such that ResGH(M) ∼= L⊕ (proj) where L
is an indecomposable kH-module, then M is the kG-Green correspondent of L and L is
endo-trivial.

(b) If P is neither cyclic, nor generalised quaternion, nor semi-dihedral, then

T tors
k (NG(P )) = X(NG(P )) .

(c) If P is neither cyclic, nor generalised quaternion, nor semi-dihedral, then

T tors
k (G) = K(G) .

Remark 5.22

The theorem tells us that in most cases, determining the torsion part of Tk(G) comes down to
determining which Green correspondents of the one-dimensional kNG(P )-modules are endo-
trivial, or in other words, determining which indecomposable p-permutation kG-modules with
full vertex are endo-trivial.

This is in general a very hard question, and has generated a lot of work, by many different
authors. We collect below the most important classes of finite groups for which the structure of
Tk(G) has been fully determined.

• Finite groups of Lie type in their defining characteristic: Carlson–Mazza–Nakano in [CMN06].

• Groups with a normal Sylow p-subgroup: Mazza in [Maz07]

• Symmetric and alternating groups: Carlson–Mazza–Nakano in [CMN09] andCarlson-Hemmer–
Mazza–Nakano in [CHM10].

• p-soluble groups: Carlson–Mazza-Thévenaz in [CMT11].

• Groups with a cyclic Sylow p-subgroup: Mazza–Thévenaz in [MT07].

• Groups with a generalised quaternion Sylow 2-subgroup: Carlson–Mazza–Thévenaz in [CMT13].

• Sporadic groups and their covering groups: Lassueur–Malle–Schulte in [LMS16], Lassueur–
Malle in [LM15], Lassueur–Mazza in [LM15b] and Craven in [Cra21].

• Schur covering groups of the symmetric and alternating groups: Lassueur–Mazza in [LM15a].
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• Finite groups of Lie type in type A in non-defining characteristic: Carlson–Mazza–Nakano in
[CMN14, CMN16].

• A reduction to p′-central extensions: Lassueur–Thévenaz in [LT17].

• Groups with a Klein-four or dihedral Sylow 2-subgroup: Koshitani–Lassueur in [KL15, KL16].

• Groups with a semi-dihedral Sylow 2-subgroup: Carlson–Mazza–Thévenaz in [CMT13] and
Koshitani–Lassueur in [KL22].

• Finite groups of Lie type in non-defining characteristic, torsion-free part only: Carlson–Grodal–
Mazza–Nakano in [CGMN22].

5.4. Endo-p-permutation modules over arbitrary groups. Considering an arbitrary finite
group G, as seen in the previous subsections, the notion of a permutation module, which is good
over a p-group, must be replaced by the notion of a p-permutation module in order to obtain
similar behaviours and stability properties. Similarly, the notion of an endo-permutation module
has to be replaced by the notion of an endo-p-permutation module in order to obtain a group
structure similar to that of the Dade group of a p-group. Such modules were introduced by Urfer
in his doctoral thesis [Urf06] (in French) as described below. We refer to Urfer’s article [Urf07]
for a published version in English, unfortunately not as complete as his thesis. Urfer defines
endo-p-permutation modules over k, but the part of his work we present below holds over O as
well.

Definition 5.23 ([Urf07, Definition 1.1])

An RG-module M is an endo-p-permutation RG-module if its restriction to any p-subgroup
Q of G is an endo-permutation RQ-module.

Remark 5.24

(a) Clearly, an RG-module M is an endo-p-permutation module if and only if EndR(M) is a
p-permutation module. Indeed, this follows from the fact that

ResGQ(EndR(M)) ∼= EndR(ResGQ(M))

for any p-subgroup Q ≤ G and from the characterisation of p-permutation modules in
Proposition-Definition 4.2.

(b) We also see from (a) and Proposition-Definition 4.2 that, in fact, it suffices to require
that the restriction to a Sylow p-subgroup of G is an endo-permutation module.

(c) It is immediate from (a) that an RQ-source of an indecomposable endo-p-permutation
RG-module with vertex Q ≤ G is an endo-permutation RG-module.

To begin with, we see that all the classes of kG-modules we have studied so far are subclasses
of the the class of endo-p-permutation modules.

Example 5.25

(a) Any projective RG-module, any permutation RG-module, and more generally, any p-
permutation RG-module M is an endo-p-permutation RG-module. Indeed, this is clear
since EndR(M) ∼= M∗ ⊗RM and by Properties 4.3 the R-dual and the tensor product of
p-permutation RG-modules are again p-permutation RG-modules.
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(b) If P is a p-group, then an RP -module is an endo-p-permutation RP -module if and only
if it is an endo-permutation RP -module, as we have already observed in Example 4.4(c)
that any p-permutation RP -module is a permutation RP -module in this case.

(c) Any endo-trivial RG-module is an endo-p-permutation RG-module, as any projective
RG-module is a p-permutation RG-module.

Stability properties of the class of endo-p-permutation RG-modules are the following.

Properties 5.26

(a) The R-dual and any direct summand of an endo-p-permutation RG-module is an endo-
p-permutation RG-module.

(b) The tensor product over R of two endo-p-permutation RG-modules is an endo-p-permu-
tation RG-module.

(c) The image of an endo-p-permutation module under restriction, inflation, tensor-induction
and conjugation is again an endo-p-permutation module.

(d) If M and N are two indecomposable endo-p-permutation RG-modules with a common
vertex Q ≤ G, then M ⊗R N possesses a (not necessarily unique) indecomposable direct
summand (M ⊗R N)• which is an endo-p-permutation RG-module with vertex Q, and
all other indecomposable direct summands have a vertex contained in Q (possibly equal
to Q).

Notice that, in contrast, direct sums and standard induction do not preserve the class of endo-
p-permutation modules.

Proof: For the R-dual, direct summands, tensor products over R, and conjugation the claims
follow immediately from the equivalent characterisation of endo-p-permutation RG-modules in
Remark 5.24(a) and the stability properties of p-permutation RG-modules under these oper-
ations from Properties 4.3. For restriction, there is nothing to do, and for tensor induction,
restrict to p-subgroups, use Mackey’s formula and the facts that conjugation, restriction, tensor
induction and tensor product preserve endo-permutation modules. This proves Assertions (a),
(b), and (c). To prove Assertion (d) observe that as M and N are relatively Q-projective, so
is any direct summand of M ⊗R N . Moreover, as Q ∈ vtx(M) and Q ∈ vtx(N), ResGQ(M) and

ResGQ(N) are capped endo-permutation RQ-modules, and therefore so is

ResGQ(M)⊗R ResGQ(N) ∼= ResGQ(M ⊗R N) .

So, there is an indecomposable direct summand L |M ⊗R N such that

Cap(ResGQ(M ⊗R N)) | ResGQ(L) ,

proving that a vertex of L contains a conjugate of Q, and hence Q ∈ vtx(L), as required.

The main question that follows is of course, whether the class of endo-p-permutation modules
can be endowed with a good equivalence relation in order to define a group structure similar to
that of the Dade group of a p-group. There are in the literature two attempts to define such a
group structure, the first one by Urfer in his doctoral thesis [Urf06, Urf07] and the second one
by the author in [Las13], which we describe in the next subsection.
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Urfer’s construction is based on the following equivalence relation, generalising Dade’s original
approach to the definition of the Dade group in [Dad78a, Dad78b], and called compatibility.

Definition 5.27

Two endo-p-permutation RG-modules M and N are compatible if their direct sum M ⊕N
is an endo-p-permutation RG-module.

Observe that

EndR(M ⊕N) ∼= EndR(M)⊕ EndR(N)⊕HomR(M,N)⊕HomR(N,M)

and HomR(M,N) ∼= HomR(N,M)∗ as RG-modules. Therefore, it is clear that M and N are
compatible if and only if either HomR(M,N) or HomR(N,M) is a p-permutation RG-module.
In particular, it is clear that isomorphic endo-p-permutation RG-modules are compatible.

Remark 5.28

If H ≤ G, then the induction IndGH(M) of an endo-p-permutation RH-module to G is, in
general, not an endo-p-permutation RG-module. However, the compatibility relation yields
the following criterion: IndGH(M) is an endo-p-permutation RG-module if and only if the endo-
p-permutation R[xH ∩H]-modules ResHxH∩H(M) and Res

xH
xH∩H(xM) are compatible for every

x ∈ G. See [Urf07, Lemma 1.3].

This result leads us naturally to considering G-stable points of the Dade group. Indeed, as the
Dade group DR(−) is in fact a Mackey functor (over Z), we may consider its G-stable points.
(See [Thé90] for an introduction to Mackey functors). In other words, if Q ≤ G is a p-subgroup,
then an element d ∈ DR(Q) is called G-stable if

Res
xQ
xQ∩Q ◦cx(d) = ResQxQ∩Q(d)

for every x ∈ G, where cx is conjugation by x ∈ G. Then, DR(Q)G-st denotes the subgroup
consisting of the G-stable elements of DR(Q).

Theorem 5.29 ([Urf07, Theorem 1.5])

Let M be an indecomposable RG-module with vertex Q and RQ-source S. Then, M is an
endo-p-permutation module if and only if S is an endo-permutation RQ-module whose class
[S] in the Dade group DR(Q) belongs to DR(Q)G-st.

Proof: Assume first that M is an endo-p-permutation module. Then, by definition ResGQ(M) is
endo-permutation, and so is S as direct summand of the latter by Properties 5.26(a). Moreover,
as xM ∼= M for every x ∈ G, clearly [ResGQ(M)] ∈ DR(Q)G-st, but S = Cap(ResGQ(M)), hence

[S] = [ResGQ(M)]. Conversely, if S is an endo-permutation RQ-module such that [S] ∈ DR(Q)G-st,

then it follows from Remark 5.28 that IndGQ(S) is an endo-p-permutation RG-module, and hence
so is M as direct summand of the latter.

A first consequence of this theorem is the fact that for indecomposable modules with a common
vertex, compatibilitty is detected locally by the sources of the modules.

Proposition 5.30 ([Urf07, Proposition 1.6])

Two indecomposable endo-permutation RG-modules M and N with vertex Q ≤ G are com-
patible if and only if their RQ-sources are isomorphic.
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Proof: If M and N are compatible, then by definition M ⊕ N is an endo-p-permutation RG-
module and ResGQ(M⊕N) is an endo-permutation RQ-module. Now, let S and S′ be RQ-sources
of M and N respectively. Then

S ⊕ S′ | ResGQ(M)⊕ ResGQ(N) ∼= ResGQ(M ⊕N) ,

proving that S⊕S′ is a capped endo-permutation RQ-module. Thus, it follows from Proposition-
Definition 5.4(a) that S ∼= Cap(S ⊕ S′) ∼= S′. Conversely, if S ∼= S′, then M,N | IndGQ(S).

Moreover, [S] ∈ DR(Q)G-st by Theorem 5.29, and hence IndGQ(S) is an endo-p-permutation RG-

module by Remark 5.28. If M ∼= N , there is nothing to do, else M ⊕N | IndGQ(S) and the claim
follows from Properties 5.26(a).

With the notion of compatibility Urfer defined the following group structure, which has never
been given a name to.

Proposition-Definition 5.31 ([Urf06, Definition 2.15])

Let Q ≤ G be a p-subgroup. Then, compatibility is an equivalence relation on the class of
indecomposable endo-p-permutation RG-modules with vertex Q, and the resulting set DQ(G)
of equivalence classes endowed with the composition law

+ : DQ(G)×DQ(G) −→ DQ(G)
([M ], [N ]) 7→ [M ] + [N ] := [(M ⊗R N)•]

is an abelian group. The zero element is the class [R] of the trivial RG-module and the
opposite of a class [M ] is the class [M∗] of the R-dual.

Proof: The addition + is well-defined since the equivalence class [(M ⊗R N)•] does not depend
on the choice of the summand (M ⊗R N)• of M ⊗R N given by Properties 5.26(d). Indeed, if
(M⊗RN)∗ is another indecomposable direct summand ofM⊗RN with vertexQ, then (M⊗RN)•
and (M ⊗R N)∗ are compatible, because M ⊗R N is endo-p-permutation by Properties 5.26(b)
and therefore so is (M ⊗R N)• ⊕ (M ⊗R N)∗ by Properties 5.26(a). The remaining claims are
immediate.

The first observation to make is that this new group structure generalises the constructions of
the Dade group of a p-group to arbitrary finite groups.

Remark 5.32

(a) If P is a p-group, then DP (P ) ∼= DR(P ) via the map sending the equivalence class [M ]
of an indecomposable endo-permutation RP -module M to its class [M ] in DR(P ).

(b) As the proof above and Proposition 5.30 show, an equivalence class in DQ(G) may contain
several indecomposable endo-p-permutation modules, namely all indecomposable endo-p-
permutation modules with a common RQ-source.

Theorem 5.33 ([Urf06, Proposition 2.19])

If Q ≤ G is a p-subgroup, then DQ(G) ∼= DR(Q)G-st.

Proof: It is easy to verify that the map DQ(G) −→ DR(Q)G-st, [M ] 7→ [Cap(ResGQM)] is an

isomorphism, with inverse given by the map DR(Q)G-st −→ DQ(G), [S] 7→ [(IndGQ(S))•], where

(IndGQ(S))• is an indecomposable direct summand of IndGQ(S) having Q as a vertex.
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Finally, we emphasise that the group DQ(G) in fact classifies the sources of the indecomposable
endo-p-permutation RG-modules with vertex Q, but not such modules themselves. In the next
subsection, we show how to overcome this problem.

5.5. Relative endo-trivial modules and the generalised Dade group of a finite group.
Replacing projectivity by relative projectivity with respect to subgroups, or more generally with
respect to modules, we can define the relative endo-trivial modules. A detailed treatment of
relative projectivity with respect to modules can be found Carlson’s lecture notes [Car96] and
in the author’s work in [Las12, Las11, Las13]. We present below only the essential notions that
allow us to define relative endo-trivial modules. Although adaptation to O are possible, some of
the results we present below are specific to fields, hence we assume R = k.

Definition 5.34

Let V be a kG-module. Then, a kG-module M is termed relatively V -projective, or simply
V -projective, if there exists a kG-module N such that M | V ⊗k N .

It is easy to see that projectivity relative to V is equivalent to projectivity relative to V ∗ and it
is also equivalent to projectivity relative to V ∗ ⊗k V ∼= Endk(V ).

Example 5.35

(a) If H ≤ G, then a kG-module M is H-projective if and only if M is projective relative to
the induced kG-module V =: IndGH(k). Indeed, M is H-projective if and only if

M | IndGH(ResGH(M)) ∼= IndGH(k ⊗ ResGH(M)) ∼= IndGH(k)⊗M .

In other words, projectivity relative to modules generalises projectivity relative to sub-
groups.

(b) By Properties 2.1(c) ordinary projectivity is just {1}-projectivity in terms of projectivity
relative to subgroups. Thus, it is clear from (a), that ordinary projectivity can be thought
of as V -projectivity for V := IndG{1}(k) ∼= kG.

In addition, a projective kG-module is V -projective for any kG-module V . Indeed, if M is
projective, then there exists n ∈ N such that M | (kG)n. Thus, as V ⊗k kG ∼= (kG)dimk V ,
we have M | V ⊗k (kG)n.

Remark 5.36

A well-known result of Benson and Carlson (often called the Benson–Carlson Theorem)
[BC86, Theorem 2.1] states that if M and N are indecomposable kG-modules, then k |M⊗kN
if and only if N ∼= M∗ and p - dimkM . An easy consequence of this result (see [Las11, Propo-
sition 2.2.2]) is that the following three assertions are equivalent:

(a) the trivial kG-module k is V -projective;

(b) at least one of the indecomposable direct summands of V has k-dimension coprime to p ;

(c) any kG-module is V -projective.

We would like to avoid this situation, which is not interesting. Thus, we call a kG-module V
absolutely p-divisible provided p divides the k-dimension of all the indecomposable direct
summands of V .
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Considering kG-modules V which are absolutely p-divisible, we can naturally generalise the def-
inition of an endo-trivial module.

Definition 5.37 ([Las12, Definition 3.1.1])

Let V be an absolutely p-divisible kG-module. A kG-module M is termed endo-trivial
relative to the kG-module V or simply V -endo-trivial iff

Endk(M) ∼= M∗ ⊗kM ∼= k ⊕ (V -proj) ,

where (V -proj) denotes a V -projective kG-module.

Remark 5.36 tells us that the ordinary endo-trivial kG-modules, introduced in §5.1 and §5.3,
are V -endo-trivial modules for V := kG. In addition, by Remark 5.36, the assumption on the
absolute p-divisibility of V ensures that a V -endo-trivial kG-module is not V -projective, and
conversely.

Properties 5.38

Let V be an absolutely p-divisible kG-module. Let M and N be V -endo-trivial kG-modules.
Then, the following assertions hold.

(a) We have dimk(M)2 ≡ 1 (mod p), and if V = IndGQ(k) (i.e. if we consider projectivity

relative to the p-subgroup Q ≤ G), then dimk(M)2 ≡ 1 (mod |P : Q|) where P ∈ Sylp(G)
and P ≥ Q.

(b) The kG-modules M∗ and M ⊗k N are V -endo-trivial.

(c) If M is indecomposable, then the vertices of M are the Sylow p-subgroups of G. Moreover,
if (P, S) is a vertex-source pair for M , then S is a ResGP (V )-endo-trivial module, and S
occurs with multiplicity one as a direct summand of ResGP (M) .

(d) There is a direct sum decomposition M ∼= M0 ⊕ (V -proj) where M0 is the unique inde-
composable direct summand of M which is V -endo-trivial.

(e) If P ∈ Sylp(G), then M is V -endo-trivial if and only if ResGP (M) is ResGP (V )-endo-trivial.

Proof: (a) Because V is absolutely p-divisible, so is any V -projective kG-module. Hence, the
assumption that M∗ ⊗k M ∼= Endk(M) ∼= k ⊕ (V -proj) yields dimk(M)2 ≡ 1 (mod p). The
second claim follows from the fact that any Q-projective kG-module has dimension divisible by
|P : Q| (see [CR81, (19.26) Theorem]).
(b) The claim about the dual is immediate from the definition. For the second claim, by the
assumption, we have

(M ⊗k N)∗ ⊗k (M ⊗k N) ∼= (M∗ ⊗kM)⊗k (N∗ ⊗k N)

∼= (k ⊕ (V -proj))⊗k (k ⊕ (V -proj)) ∼= k ⊕ (V -proj) .

(c) It is clear that the vertices of M are the Sylow p-subgroups of G as dimk(M) is coprime to p
by (a). Moreover, we have

ResGP (M)∗ ⊗k ResGP (M) ∼= ResGP (M∗ ⊗kM) ∼= ResGP (k ⊕ (V -proj)) ∼= k ⊕ (ResGP (V )-proj) ,

thus, as S | ResGP (M), we have S ⊗k S∗ | k ⊕ (ResGP (V )-proj). The claim follows, because if
k were not a direct summand of S ⊗k S∗, then M would be V -projective and therefore not
V -endo-trivial.
(d) Assuming that M decomposes as M = M0 ⊕M1, then

k ⊕ (V -proj)) ∼= Endk(M) ∼= Endk(M0)⊕Homk(M0,M1)⊕Homk(M1,M0)⊕ Endk(M1) .
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As a result, the Krull–Schmidt theorem forces the trivial module k to be a direct summand of
either Endk(M0), or Endk(M1). Indeed, if it were not the case, k would be a direct summand of
Homk(M0,M1) or Homk(M1,M0). But the two latter modules being dual to each other, k ⊕ k
would be a direct summand of Endk(M), which is not possible as V is absolutely p-divisible.
Thus we may assume that Endk(M0) ∼= k ⊕ (V -proj) and Endk(M1) is V -projective, possibly
zero. It follows that M0 is V -endo-trivial and M1 is V -projective, and we can iterate this process
until M0 is indecomposable.
(e) The necessary condition is clear by (c). Conversely, as P ∈ Sylp(G), M is P -projective and

M | IndGP ◦ResGP (M) ∼= IndGP (k ⊕ (ResGP (V )-proj))

∼= IndGP (k)⊕ IndGP (ResGP (V )-proj) = IndGP (k)⊕ (V -proj) .

Moreover, M is V -projective-free by assumption, thus the Krull–Schmidt theorem yields that
M | IndGP (k). In consequence, P being a vertex of M , k is a source of M .

With these stability properties, we can now copy the procedure we have seen for endo-trivial
modules over p-groups in order to obtain a group structure from the class of V -endo-trivial mod-
ules, which generalises the group of endo-trivial kG-modules, based on the previous proposition.

Proposition-Definition 5.39 ([Las11, Proposition 3.5.1])

Let V be an absolutely p-divisible kG-module.

(a) The relation ∼V defined on the class of V -endo-entriovial kG-modules by setting

M ∼ N :⇔ M0
∼= N0

is an equivalence relation and we let TV (G) denote the resulting set of equivalence classes.

(b) The set TV (G) endowed with the composition law

+ : TV (G)× TV (G) −→ TV (G)
([M ], [N ]) 7→ [M ] + [N ] := [M ⊗k N ] .

is an abelian group, called the group of V -endo-trivial modules of G. The zero element
is the class [k] of the trivial kG-module and the opposite of a class [M ] is the class [M∗]
of the k-dual.

For further general properties of groups of V -endo-trivial kG-modules, we refer to [Las12, Las11].
Our aim here is to show how this construction can be used in order to define a group structure
similar to that of the Dade group of a p-group for an arbitrary finite group of order divisible
by p. In this view, we need to restrict our attention to endo-p-permutation modules, which are
the equivalent of the capped endo-permutation modules over p-groups, and which we are going
to regard as V -endo-trivial kG-modules for a well-chosen absolutely p-divisible kG-module V
defined below.

Notation 5.40

Given P ∈ Sylp(G), set FG := {Q � P} and V (FG) :=
⊕

Q∈FG
IndGQ(k).

Clearly, V (FG)-projectivity corresponds to projectivity relative to the family of all non maximal
p-subgroups of G and hence does not depend on the choice of the Sylow p-subgroup P . It is
therefore an absolutely p-divisible kG-module. With this notion we can come back to endo-p-
permutation kG-modules.
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Proposition-Definition 5.41 ([Las13, Proposition 5.2])

Let P ∈ Sylp(G). Let M be an endo-p-permutation kG-module. Then, M is called strongly
capped if it fulfils the following equivalent conditions:

(a) M is V (FG)-endo-trivial;

(b) ResGP (M) is V (FP )-endo-trivial;

(c) M has a unique indecomposable direct summand with vertex P , called the cap of M and
denoted Cap(M), and, in addition, if S is a kP -source for Cap(M), then the multiplicity
of S as a direct summand of ResGP (M) is one;

(d) Endk(M) ∼= k⊕N where N is a p-permutation kG-module, all of whose indecomposable
direct summands have a vertex strictly contained in P .

Proving the equivalence of the conditions (a) to (d) is not difficult, but requires a series of techni-
cal results on V -projectivity and V -endo-trivial modules, which we have not presented here. We
refer therefore to [Las13, Proposition 5.2] for a complete proof. However, we easily see that this
subclass of the class of endo-p-permutation kG-modules has all the good stability properties, we
may expect it to have.

Lemma 5.42

The class of strongly capped endo-p-permutation kG-modules is closed under taking k-duals,
tensor products over k and restrictions to a subgroup containing a Sylow p-subgroup.

Proof: By Properties 5.26(a) and Properties 5.38(b) taking duals and tensor products are stable
operations for both the classes of endo-p-permutation modules and of V (FG)-endo-trivial mod-
ules, therefore they are stable for strongly capped endo-p-permutation modules. Now, if H ≤ G
contains a Sylow p-subgroup of G, then the restriction to H of an endo-p-permutation module
is an endo-p-permutation module by Properties 5.26(c) and the restriction to H of a V (FG)-
endo-trivial module is a V (FH)-endo-trivial (see [Las13, Lemma 3.1]). Thus, the restriction to
H of a strongly capped endo-p-permutation module is strongly capped.

This leads us to the definition of a generalised Dade group of a finite group as follows.

Proposition-Definition 5.43

(a) The relation ∼ defined on the class of all strongly capped endo-p-permutation kG-modules
by setting

M ∼ N :⇔ Cap(M) ∼= Cap(N)

is an equivalence relation and we let Dk(G) denote the resulting set of equivalence classes.

(b) The set Dk(G) endowed with the composition law

+ : Dk(G)×Dk(G) −→ Dk(G)
([M ], [N ]) 7→ [M ] + [N ] := [M ⊗k N ] .

is an abelian group, called the generalised Dade group of G. The zero element is the
class [k] of the trivial kG-module and the opposite of a class [M ] is the class [M∗] of the
k-dual.

(c) The group Dk(G) can be identified with a subgroup of TV (FG)(G) through the natural
embedding

ı : Dk(G) −→ TV (FG)(G)
[M ] 7−→ [M ] .
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Proof: Assertion (a) is clear. Lemma 5.42 and the uniqueness of the caps ensure that the assign-
ment

([M ], [N ]) 7−→ [M ⊗k N ]

is a well-defined composition law for Dk(G). Moreover, the map ı is well-defined as ∼ is the
restriction to the class of strongly capped endo-p-permutation of the equivalence relation∼V (FG) .
It is a group homomorphism because the addition is induced by ⊗k on both sides. It is injective
because ker(ı) = {[k]}. Indeed, if ı([M ]) = [k], then M ∼V (FG) k which is equivalent to M ∼ k
because both M and k are strongly capped endo-p-permutation modules, proving (b) and (c).

Notice that any ordinary endo-trivial module is strongly capped, and in particular, so is any
one-dimensional kG-module. Therefore, up to identifications, the groups Tk(G) and Xk(G) can
also be viewed as subgroups of Dk(G) and we have a series of subgroup inclusions

Xk(G) ≤ Tk(G) ≤ Dk(G) ≤ TV (FG)(G) .

Remark 5.44

If G is a p-group, then certainly the generalised Dade group we have constructed above is
isomorphic to the Dade group of G as defined in Proposition-Definition 5.4. In this case, a
strongly capped endo-permutation kP -module is simply a capped endo-permutation such that
its cap has multiplicity one. So certainly, this definition can be made over R = O and we
obtain a generalised Dade group DO(P ).

The structure of the generalised Dade group can be linked to Urfer’s characterisation of the
indecomposable endo-p-permutation modules with full vertex through the G-stable points of the
Dade group of a Sylow p-subgroup via the short exact sequence given by the following theorem.

Theorem 5.45 ([Las13, Theorem 7.3])

Let P ∈ Sylp(G). Write X := Xk(NG(P )) for the group of one-dimensional kNG(P )-modules
and let Γ(X) be the subgroup of Dk(G) consisting of the classes of the kG-Green correspon-
dents of the modules in X. Then, restriction from G to P yields a short exact sequence

0 Γ(X) Dk(G) Dk(P )G-st 0
ResGP

of abelian groups.

Since Γ(X) ∼= X is finite and the Dade Group Dk(P ) is finitely generated, so is the generalised
Dade group.

Corollary 5.46 ([Las13, Corollary 7.3])

The generalised Dade group Dk(G) of a finite group G is finitely generated.

We refer to [Las12, Las13] for computations of the structure the generalised Dade group in some
concrete examples; for instance groups with a cyclic Sylow p-subgroup, groups with a Klein-four
Sylow 2-subgroup, p-nilpotent groups, or GL3(p) in its defining characteristic.

Finally, we note that as in the case of p-groups, the subgroup DΩ
k (G) of Dk(G) generated by

all the relative syzygy modules with respect to subfamilies of FG plays an important role in
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the structure of the generalised Dade group. For example, [Las13, Corollary 12.8] tells us that
when p is odd and the normaliser NG(P ) of a Sylow p-subgroup of G controls fusion in G, then

D(G) = DΩ
k (G) + Γ(X) .

6. OG-modules which are necessarily OG-lattices

In §3, §4, and §5 we allowed ourselves to talk about OG-modules, when we actually meant OG-
lattices. We now explain why this is not an issue. Permutation OG-modules are clearly O-free
by definition, and so are p-permutation OG-modules. We prove below that endo-p-permutation
OG-modules are also necessarily free when regarded as O-modules, that is, OG-lattices. In par-
ticular, so are endo-trivial and endo-permutation OG-modules.

Proposition 6.1

If M is an OG-module such that EndO(M) is free when regarded as an O-module, then so
is M when regarded as an O-module.

Proof: Since O is a discrete valuation ring, it is in particular a principal ideal domain. Thus, by
the structure theorem for finitely generated modules over principal ideal domains, the module M ,
regraded as an O-module, admits a direct sum decomposition of the form

M ∼=
r⊕
i=1

( si⊕
ji=1

O/pni

)
⊕ (O-free summands),

where r is a non-negative integer and si, ni (1 ≤ i ≤ r) are positive integers. Now, we claim that
if the torsion part of M is not trivial, then neither is the torsion part of EndO(M). Indeed, for
every 1 ≤ i ≤ r we have that

EndO(O/pni) ∼= O/pni

as O-module, therefore the O-linear endomorphisms of M have the form

EndO(M) ∼=
r⊕
i=1

( si⊕
ji=1

EndO
(
O/pni

))
⊕ X ∼=

r⊕
i=1

( si⊕
ji=1

O/pni

)
⊕ X

(as O-module) for some O-module X. Since EndO(M) is assumed to be O-free, this forces M
to be O-free as well.

Corollary 6.2

Any endo-p-permutation OG-module is free when regarded as an O-module. In particular, so
is any endo-trivial or any endo-permutation OG-module.

Proof: If M is an endo-p-permutation OG-module, then by definition EndO(M) is a p-per-
mutation OG-module, hence O-free and the claim follows from Proposition 6.1. Endo-trivial
and endo-permutation OG-modules are endo-p-permutation modules. The claim follows.
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7. Lifting from positive characteristic to characteristic zero

We now turn to lifting results. It turns out that most of the classes of kG-modules, which
we have introduced so far in this survey consist of modules which are liftable to characteristic
zero. Being liftable is a rather rare property and proving liftability of modules defined by a
common property is in general a difficult task. It is the reason why the results presented in this
section were obtained one-by-one over a long period of time. We present them with their proofs,
provided the approach involved do not go beyond the methods and techniques introduced so far.

In fact, amongst finitely generated kG-modules very few classes of modules are known to be
liftable to OG-lattices. The Fong–Swan theorem (see e.g. [Dor71, Theorem 72.1]) asserts that
all simple modules of p-soluble groups are liftable, and Hiß [His85, His87] studies groups whose
brauer-characters are liftable and gives a converse to Fong–Swan theorem result. It is also well-
known that projective kG-modules lift to projective OG-modules in a unique way. Scott proved
that this remarkable property can be generalised to p-permutation kG-modules, and, in turn,
the latter implies that several other related classes of modules introduced in Section 5 are liftable.

7.1. Lifting p-permutation kG-modules. The lifting of p-permutation modules is due to
Scott, who proved that the k-endomorphism ring of a transitive permutation kG-module is
liftable.

Theorem 7.1 ([Sco73, Proposition 1])

(a) If L1 and L2 are p-permutation OG-lattices, then the natural homomorphism

HomOG(L1, L2) −→ HomkG(L1/pL1, L2/pL2), ϕ 7→ ϕ̄

induced by reduction modulo p is surjective.

(b) If L is an indecomposable p-permutation OG-lattice with vertex Q, then L/pL is an
indecomposable p-permutation kG-module with vertex Q.

(c) Every p-permutation kG-module lifts to a p-permutation OG-lattice, unique up to iso-
morphism.

Proof: (a) By the characterisation of p-permutation kG-modules in Proposition-Definition 4.2 it
is enough to prove that statement (a) holds for transitive permutation OG-lattices. So assume
L1 = IndGQ1

(O) and L2 = IndGQ2
(O) for some p-subgroups Q1, Q2 ≤ G. Applying Frobenius’

reciprocity twice and Mackey’s formula we obtain

HomOG(L1, L2) ∼= HomOQ2(ResGQ2
IndGQ1

(O),O)

∼=
⊕

x∈[Q2\G/Q1]

HomOQ2(IndQ2

Q2∩xQ1
(O),O)

∼=
⊕

x∈[Q2\G/Q1]

HomO(Q2∩xQ1)(O,O) ∼=
⊕

x∈[Q2\G/Q1]

O .

Hence the O-rank of HomOG(L1, L2) is |Q2\G/Q1|. The same argument with k instead of O,
shows that the k-dimension of HomkG(L1/pL1, L2/pL2) is also |Q2\G/Q1| and surjectivity fol-

lows.
(b) As L is indecomposable, EndOG(L) is a local ring. By (a), EndkG(L/pL) is isomorphic to
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a quotient of EndOG(L), hence also local (see e.g. [Lin18a, Corollary 4.4.5]), and thus L/pL is
indecomposable. Now, by Higman’s criterion, there exists ϕ ∈ EndOQ(L) such that IdL = trGQ(ϕ)

and Q is minimal with this property. Hence IdL/pL = trGQ(ϕ̄) and thus Q contains a vertex of

L/pL. On the other hand, using the fact that L has a trivial source by Proposition-Definition 4.2,
certainly O | ResGQ(L), implying that k | ResGQ(L/pL). As k has vertex Q, we obtain that Q is
contained in a vertex of L/pL, proving (b).

(c) Again by the characterisation of p-permutation OG-lattices in Proposition-Definition 4.2, it
suffices to prove that the claim holds for an indecomposable p-permutation kG-module. So, let
M be an indecomposable kG-module with vertex Q and trivial source. Then, M | IndGQ(k) and

there exists an idempotent ι ∈ EndkG(IndGQ(k)) such that M = ι(IndGQ(k)), which is unique up
to conjugacy (see e.g. [Lin18a, Corollary 4.6.10]). Now, by (a) the canonical map

EndOG(IndGQ(O)) � EndkG(IndGQ(k))

is surjective. Therefore, by the lifting theorem for idempotents, there exists an idempotent
π ∈ EndOG(IndGQ(O)), unique up to conjugacy, such that ι is the reduction modulo p of π.

Then L := π(IndGQ(O)) is a direct summand of IndGQ(O) such that L/pL ∼= M , unique up to
isomorphism, which is indecomposable with vertex Q by part (b).

This leads to the following character-theoretic characterisations of p-permutations modules.

Lemma 7.2 ([Sco73, Theorem 5], [Lan81, Lemma 2 and Corollary 1], [Lan83, Lemma 12.6])

Let M̂ be an indecomposable p-permutation OG-lattice, let M := M̂/pM̂ be its reduction

modulo p, and let χ
M̂

be the character afforded by K ⊗O M̂ . Then the following assertions
hold.

(a) If Q ≤ G is a p-subgroup, then dimk(soc(ResGQ(M))) = 〈χ
M̂
, 1Q〉Q .

(b) If x ∈ G is a p-element, then χ
M̂

(x) is equal to the multiplicity of the trivial module as

a direct summand of ResG〈x〉(M). In particular χ
M̂

(x) is a non-negative integer.

(c) If x ∈ G is a p-element, then χ
M̂

(x) 6= 0 if and only if x belongs to a vertex of M .

Proof: (a) Let S ≤ G be a vertex of M . Then M | IndGS (k) and by Mackey’s formula and
Lemma 3.6 any indecomposable direct summand of ResGQ(M) is of the form

IndQQ∩gS ResGQ∩gS(k) = IndQQ∩gS(k)

for some g ∈ G. Moreover,

dimk(soc(IndQQ∩gS(k))) = 1 = 〈IndQQ∩gS(1Q∩gS), 1Q〉Q

where IndQQ∩gS(1Q∩gS) is the character afforded by IndQQ∩gS(O). Summing over the direct sum-

mands of ResGQ(M) yields the claim.

(b) Letting Q := 〈x〉 in the proof of (a), we obtain

IndQQ∩gS(1Q∩gS)(x) =

{
1 if Q ∩ gS = Q ,

0 otherwise

and the claim follows.

(c) Because S ∈ vtx(M), we have 〈x〉∩gS = 〈x〉 for some g ∈ G if and only if x ∈ gS, as required.
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7.2. Lifting endo-permutation kP -modules. The question whether endo-permutation over
p-groups form a class of liftable modules was open for a long time. As we will see in the next
subsection, Alperin proved in 2001 that the subclass endo-trivial modules is, however, the result
for endo-permutation modules was only obtained in 2006 by Bouc as a consequence of their
classification.

The first observation to make is as above that the reduction modulo p of endo-permutation
OP -modules is extremely well-behaved.

Lemma 7.3

Let L be an endo-permutation OP -module and consider L/pL its reduction modulo p. Then,
the following assertions hold:

(a) L/pL is an endo-permutation kP -module;

(b) L is indecomposable if and only if L/pL is;

(c) if L is indecomposable, then L and L/pL have the same vertices;

(d) reduction modulo p induces a well-defined group homomorphism

πp : DO(P ) Dk(P ), [L] 7→ [L/pL] .

Proof: See Lemma 7.16 for a more general version of Assertions (a)–(c). Assertion (d) is imme-
diate from the definition of the Dade group and (a)–(c).

Theorem 7.4 ([Bou06, Corollary 8.5])

If P is a p-group, then the following assertions hold:

(a) the group homomorphism πp : DO(P ) Dk(P ) is surjective;

(b) any endo-permutation kP -module lifts to an endo-permutation kG-module.

The idea of the proof is essentially that it suffices to prove that the generators of the Dade group
Dk(P ) are liftable modules.

Proof: (Sketch.) Any relative syzygy module ΩP/Q(k) lifts to a relative syzygy module over O. In
characteristic 2, when P is generalised quaternion, then straightforward calculations show that

any indecomposable capped endo-permutation whose class lies in Dk(P )tors
ex is liftable as well

by straightforward calculations. Thus, it follows from Theorem 5.15 that any element of Dk(P )
is liftable, proving (a). Since any endo-permutation kP -module can be described in terms of the
indecomposable capped ones, (b) follows.

Going further, it is easy to describe the kernel of πp, and we aim to prove that πp is in fact a
split morphism.

Lemma 7.5

The kernel of πp : DO(P ) Dk(P ) is isomorphic to the group XO(P ) of rank one OP -
lattices.
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Proof: If L is an indecomposable endo-permutation OP -module with [L] ∈ ker(πp), then clearly
dimk(L/pL) = 1, hence rkO(L) = 1. If, conversely, rkO(L) = 1, then the one-dimensional kP -
module L/pL must be trivial since there are no non-trivial pn-th roots of unity in k. Therefore
[L] ∈ ker(πp).

Next, we explain why studying the Dade group of G over k is equivalent to Puig’s approach
via the Dade group of Dade P -algebras, but not over O. We already explained in §5.1, that the
endomorphism algebra EndR(M) of an endo-permutation RP -module M is naturally endowed
with the structure of a so-called Dade P -algebra (i.e. an O-simple permutation P -algebra whose
Brauer quotient with respect to P is non-zero). Furthermore, there exists also a version of the

Dade group, denoted by Dalg
R (P ), obtained by defining an equivalence relation on the class of

all Dade P -algebras rather than capped endo-permutation RP -lattices, where multiplication is
given by the tensor product over R. We refer to [Thé95, §28-29] for this construction. This
induces a canonical homomorphism

dR : DR(P ) −→ Dalg
R (P ) , [M ] 7→ [EndR(M)] ,

which is surjective by [Thé95, Proposition 28.12]. The identity element of Dalg
R (P ) being the class

of the trivial P -algebra R, it follows that the kernel of dR is isomorphic to XR(P ) when R = O,
whereas it is trivial when R = k. Now, reduction modulo p also induces a group homomorphism

πalgp : Dalg
O (P ) −→ Dalg

k (P ) , [A] 7→ [A/pA] .

Because EndO(M)/pEndO(M) ∼= Endk(M/pM) for any OP -lattice, it follows that we have a
commutative diagram with exact rows and columns:

XO(P ) 1

XO(P ) DO(P ) Dalg
O (P )

1 Dk(P ) Dalg
k (P )

dO

πp πalg
p

∼=
dk

The injectivity of πalgp follows from the commutativity of the bottom-right square because

ker(πalgp dO) = ker(dkπp) = ker(πp) = X(P )

and its image under dO yields ker(πalgp ) = dO(X(P )) = {1}. The surjectivity of πp implies that

πalgp is also surjective, hence an isomorphism, implying that

Dk(P ) ∼= Dalg
k (P ) ∼= Dalg

O (P ) .

Also, finding a group-theoretic section of πp is equivalent to finding a group-theoretic section
of dO.

In odd characteristic, the explicit construction of such a group-theoretic section for dO is due to
Puig and can be found in print in [Thé95, Remark 29.6]. Below, we translate this construction
from Dade P -algebras to endo-permutation modules. In characteristic 2 the question of the ex-
istence of such a section was open for a long time and eventually proved in [LT19], relying on
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Bouc’s classification of endo-permutation kP -modules.

Warning: For the remainder of this subsection we need to identify the Dade group DR(P ) with
the generalised Dade group of P over R, what we are allowed to do by Remark 5.44. So the ele-
ments of the classes in DR(P ) are not just capped endo-permutation RP -modules, but strongly
capped endo-permutation RP -modules. This is one of the key arguments used in [LT19] which
makes the construction of a section in characteristic 2 possible.

Theorem 7.6 ([LT19, Theorem 1.1])

(a) The group homomorphism πp : DO(P )→ Dk(P ) has a group-theoretic section.

(b) There is a group isomorphism DO(P ) ∼= XO(P )×Dk(P ).

We prove this theorem in several steps.

Proof of Theorem 7.6(b): By Lemma 7.5, ker(πp) ∼= XO(P ), hence it follows from Assertion (a)
that DO(P ) ∼= X(P )×Dk(P ). �

To prove Assertion (a), we need to consider determinants. Recall that given an OP -lattice L,
we may consider the composition of the underlying representation of P with the determinant
homomorphism det : GL(L) −→ O×. This is a linear character of P and is called the determi-
nant of L. If the determinant of L is the trivial character, then we say that L is an OP -lattice
of determinant 1. It is immediate that the O-dual L∗ of an OP -lattice L of determinant 1 also
has determinant 1 as the action of g ∈ P on ϕ ∈ L∗ is given by (g·ϕ)(x) = ϕ(g−1x) for all x ∈ L,
and hence det(g, L∗) = det(g−1, L) = det(g, L)−1. Similarly, the tensor product L⊗O N of two
OP -lattices L and N of determinant 1 also has determinant 1 since the determinant of a tensor
product satisfies the well-known property det(g, L⊗ON) = det(g, L)rkON ·det(g,N)rkOL for any
g ∈ P .

Now, amongst the lifts of a strongly capped endo-permutation kP -module M , there always ex-
ists one which has determinant 1 (see e.g. [Thé95, Lemma 28.1]), on the one hand because we
assume that k is large enough, and on the other hand because dimk(M) is prime to p as M is
strongly capped (and not just capped!). This lift of determinant 1 is unique, up to isomorphism,
and will be written ΦM . It follows from the remarks above that Φ∗M

∼= ΦM∗ , and if N is another
strongly capped endo-permutation kP -module, then ΦM⊗kN

∼= ΦM ⊗O ΦN . The construction
of a section for πp in odd characteristic then relies on the following crucial properties which fail
when p = 2.

Lemma 7.7

Let p be an odd prime. Then the following assertions hold:

(a) any permutation OP -lattice has determinant 1; and

(b) if [L] ∈ DO(P ) is such that L is indecomposable and has determinant 1, then any element
of the class [L] has determinant 1.

Proof: Let L := OX be a permutation OP -lattice with O-basis X permuted under the action
of P . Then, for any g ∈ P , the permutation action of g on X decomposes as a product of cycles
of odd length, because the order of g is odd. Any such cycle is an even permutation, so the
determinant of the action of g on L is 1, proving (a).



A tour of p-permutation modules and related classes of modules 38

Next, let [L] ∈ DO(P ) be such that L is indecomposable and has determinant 1. By the
definition of the generalised Dade group, an arbitrary element of the class [L] has the form
L⊗OOX where OX is a strongly capped permutation OP -lattice. Since OX has determinant 1
by (a), so does the tensor product L⊗O OX and the claim follows.

Then, to obtain Theorem 7.6(a) when p ≥ 3, it suffices to prove the following Lemma.

Lemma 7.8

Suppose that p is an odd prime. Then the map

σp : Dk(P ) −→ DO(P ) , [M ]→ [ΦM ]

is a well-defined group homomorphism which is a section for πp.

Proof: First, we claim that if M1 and M2 are two strongly capped endo-permutation kP -modules
and N := Cap(M1⊗kM2), then Cap(ΦM1 ⊗O ΦM2) = ΦN . Indeed, on the one hand ΦM1⊗kM2

∼=
ΦM1 ⊗O ΦM2 and on the other hand by definition of the generalised Dade group there exists a
strongly capped permutation kG-module kX such that M1⊗kM2 = N⊗kkX and so ΦM1⊗kM2

∼=
ΦN ⊗O ΦkX = ΦN ⊗O OX by Lemma 7.7 as we assume that p is odd, proving that ΦN is the
cap of ΦM1 ⊗O ΦM2 .

Now, it follows from the claim that if M is a strongly capped endo-permutation module, then
[ΦM ] = [ΦCap(M)], proving that σp is well-defined, and it is clear that it is a group homomorphism
again because having determinant 1 is preserved by the tensor product over O. Finally, it is
straightforward that πp ◦ σp is the identity on Dk(P ).

Let us now turn to characteristic 2.

Observation 7.9

Lemma 7.8 fails when p = 2 in general. It is clear that a (strongly capped) permutation kP -
module always lifts in a unique way to a (strongly capped) permutation OP -lattice. However,
we emphasise that this lift may be different from the lift of determinant 1. It follows that two
strongly capped endo-permutation OP -modules in the same class in DO(P ) need not have
the same determinant, and so the map σp is not well-defined when p = 2. Moreover, it should
be noted that for P = C2n , there are two natural lifts for Ω(k). One of them is Ω(O), but it
does not have determinant 1 in this case. Indeed, if P = 〈g〉 we obtain from the short exact
sequence 0→ Ω(O)→ OP → O → 0 that

det(g,Ω(O)) det(g,O) = det(g,OP ) = −1

since the action by permutation of g on P is given by a cycle of even length, hence an odd
permutation, and it follows that det(g,Ω(O)) = −1 as det(g,O) = 1. The other one is ΦΩ(k),

which turns out to be isomorphic to O− ⊗O Ω(O), where O− denotes the one-dimensional
module with the generator of C2n acting by −1.

Proof of Theorem 7.6(a) when p = 2. When p = 2 it follows from Bouc’s precise classification of
endo-permutation modules in [Bou06, Section 8] that the structure of the Dade group is

Dk(P ) ∼= (Z/2Z)a × (Z/4Z)b × Zc

for some non-negative integers a, b, c. Now, choose a generator for each factor Z/2Z, Z/4Z,
or Z. We claim that the class of each of these generator can be lifted to an element of DO(P )
of the same order. First, let [M ] ∈ Dk(P ) be an element of order 2. Then M ∼= M∗ and so
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ΦM
∼= ΦM∗

∼= Φ∗M . Hence [ΦM ] = [ΦM ]−1 in DO(P ), proving that [ΦM ] has order 2. Second, let
[M ] ∈ Dk(P ) be an element of order 4. Then, setting N := M ⊗k M , [N ] has order 2 and so
[ΦN ] has order 2 in DO(P ) by the previous argument. Therefore,

[ΦM ]4 = [(ΦM )⊗4] = [ΦM⊗4 ] = [ΦN⊗2 ] = [ΦN ⊗O ΦN ] = [ΦN ]2 = [O] ,

proving that [ΦM ] has order 4 in DO(P ). Finally, if [M ] ∈ Dk(P ) is an element of infinite order,
then [ΦM ] also has infinite order. This procedure for the generators obviously extends to a group
homomorphism Dk(P )→ DO(P ) which is a group-theoretic section for πp. �

7.3. Lifting endo-trivial kG-modules. It was proved by Alperin in 2001 that endo-trivial
modules over p-groups are liftable. The corresponding result for arbitrary groups was obtained
in 2016, as described below.

Lemma 7.10

Let L be an OG-module. Then, L is endo-trivial if and only if L/pL is an endo-trivial kG-
module.

Proof: The necessary condition is clear. Indeed, if L is endo-trivial, then EndO(L) ∼= O ⊕ X,
where X is a projective OG-module. Therefore,

Endk(L/pL) ∼= EndO(L)/pEndO(L) ∼= k ⊕X/pX
where X/pX is a projective kG-module by Theorem 7.1(b). Conversely, assume that L/pL is
endo-trivial, i.e. (L/pL)∗ ⊗k L/pL ∼= k ⊕ Y for some projective kG-module Y , and the rkOL =
dimk L/pL is coprime to p. It follows that L∗ ⊗O L ∼= O ⊕ X for some OG-lattice X and
the Krull–Schmidt theorem yields X/pX ∼= Y , proving that X is projective, and hence L is
endo-trivial.

Theorem 7.11 ([Alp01b, Theorem])

If P is a p-group, then any endo-trivial kP -module lifts to an endo-trivial OP -lattice.

Alperin’s proof is based on the key fact that the image of a representation of a p-group lies in
the special linear group. We state below a slightly more general version of this result and its proof.

Theorem 7.12 ([LMS16, Proposition 2.4])

Let M be an endo-trivial kG-module of dimension n and let ρ : G → GLn(k) be a matrix
representation corresponding to M . If the image of ρ lies in SLn(k), then V lifts to an endo-
trivial OG-module.

Proof: For each m ≥ 1, let SLn(O,m) be the normal subgroup of SLn(O) consisting of the
elements of SLn(O) congruent to the identity matrix In modulo pm. Then

SLn(O, 1) ⊇ SLn(O, 2) ⊇ SLn(O, 3) ⊇ · · ·
is a central series of SLn(O) such that for each m ≥ 1,

SLn(O,m)/SLn(O,m+ 1) ∼= sln(k)

as GLn(k)-modules, where sln(k) := ker(Tr) is the kernel of the trace operator Tr : Mn(k) −→ k,
endowed with the structure of a kGLn(k)-module via the conjugation action of GLn(k). Now,
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as M is endo-trivial, n ≡ ±1 (mod p). Thus, the trace map Tr : Mn(k) ∼= Endk(M) −→ k splits
as a kG-homomorphism and

Endk(M) ∼= k ⊕ sln(k)

implying that sln(k) is projective, when regarded as a kG-module via ρ.
Next, taking a pull-back X2 of ρ and the homomorphism induced by reduction modulo p from

SLn(O)/SLn(O, 2) → SLn(k), which has kernel SLn(O, 1)/SLn(O, 2) ∼= sln(k), yields a group
extension

1→ sln(k)→ X2 → G→ 1 .

This extension splits because Hr(G, sln(k)) = ExtrkG(k, sln(k)) = 0 for each r ≥ 1 as sln(k) is an
injective kG-module. As a consequence, ρ lifts to a homomorphism ρ2 : G→ SLn(O)/SLn(O, 2).
Inductively, for every m > 2, we can construct a homomorphism ρm : G→ SLn(O)/SLn(O,m)
lifting ρm−1 : G→ SLn(O)/SLn(O,m− 1). Finally,

SLn(O) ∼= lim←−
m≥2

SLn(O)/SLn(O,m) ,

so that the universal property of the projective limit yields the desired group homomorphism

ρ̃ : G −→ SLn(O) lifting ρ. Moreover, if M̂ is an OG-module lifting M , it is endo-trivial by
Lemma 7.10. The claim follows.

This allows us to extend Alperin’s result to finite groups in general.

Theorem 7.13 ([LMS16, Theorem 1.3])

Let G be a finite group. Then, any endo-trivial kG-module lifts to an endo-trivial OG-module.

Proof: Let M be an endo-trivial kG-module, say of dimension n, and let ρ : G → GLn(k) be
a matrix representation corresponding to M . To start with, we may assume that ρ is faithful.
Indeed, if ρ̄ : G/ ker(ρ) −→ GLn(k) denotes the induced representation and ρ̄ is liftable to
ρ̄O : G/ ker(ρ) −→ GLn(O), then we have a commutative diagram

G G/ ker(ρ) GLn(O)

GLn(k)

ρ

q ρ̄O

ρ̄
mod p

where q is the quotient homomorphism. So, ρ̄O ◦ q lifts ρ. Therefore, we may assume that
G ≤ GLn(k). Now, set G1 := GC with

C := {aIn | an = det(g) for some g ∈ G}
and G0 := G1 ∩ SLn(k). So, the situation is as follows:

GLn(k)

G1

G G0

p′p′

Clearly, G1 is a central product of G with C, and of G0 with C. As G ≤ G1 has p′-index the
embedding G1 ≤ GLn(k) defines an endo-trivial module, and in turn restricting from G1 to G0

the embedding G0 ≤ SLn(k) defines an endo-trivial kG0-module as G0 ≤ G1 has p′-index, too.
The latter kG0-module lifts to an endo-trivial OG0-module by Theorem 7.12, and denoting the
corresponding representation by ψ we have ψ(G0) ≤ SLn(O).
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Now, reduction modulo p induces a bijection between the group of p′-roots of unity in O and
the group of roots of unity in k, sending ψ(G0) ∩ Z(SLn(O)) onto G0 ∩ Z(SLn(k)). The inverse
defines a lift of C into {aIn | a ∈ O×} ≤ GLn(O), which agrees with ψ on G0 ∩ Z(SLn(k)) and
which we also denote by ψ. Then G1 = G0C ∼= ψ(G0)ψ(C) ≤ GLn(O) is a faithful representation
of G1 which lifts G1 ≤ GLn(k). Again, as |G1 : G| and |G1 : G0| are prime to p, this defines an
endo-trivial OG-module lifting the initial representation of G.

This lifting result opened the door to a fruitful approach to the theory of endo-trivial modules
through ordinary character theory, based on the following results.

Proposition 7.14 ([LMS16, Corollary 2.3])

Let M be a kG-module which is liftable to an OG-lattice L such that K ⊗O L affords the
character χ . If M is endo-trivial, then |χ(g)| = 1 for all p-singular elements g ∈ G.

Proof: Since M is endo-trivial, M ⊗kM∗ ∼= Endk(M) ∼= k ⊕ (proj). It follows that

χ · χ̄ = 1G + Φ

where 1G denotes the trivial character and Φ is the character of K ⊗O Z with Z the lift to O of
a projective kG-module. Thus, the claim follows from the fact that Φ(g) = 0 for all p-singular
elements g ∈ G.

Due to publication delays the following result, characterising endo-trivial modules which are at
the same time p-permutation modules, appeared earlier than the previous one, although it is a
consequence.

Theorem 7.15 ([LM15, Theorem 2.2])

Let M be an indecomposable p-permutation kG-module, let M̂ be its lift to a p-permutation

OG-lattice and let χ
M̂

be the character afforded by K ⊗O M̂ . Then, M is endo-trivial if and

only if χ
M̂

(x) = 1 for each non-trivial p-element x ∈ G.

Proof: Since M is a p-permutation module, we know from Lemma 7.2(b) that χ
M̂

(x) is a non-

negative integer for each p-element x ∈ G. First, assuming that M is endo-trivial, by Proposi-
tion 7.14 this forces χ

M̂
(x) = 1 for each non-trivial p-element x ∈ G.

Conversely, assume that χ
M̂

(x) = 1 for each non-trivial p-element x ∈ G. Notice that we may

also assume that dimk(M) > 1, as any one-dimensional kG-module is endo-trivial. Now, as
dimk(M) ≡ χ

M̂
(x) = 1 (mod p) for any non-trivial p-element x ∈ G (see e.g. [JL93, Corol-

lary 22.27]), k | M ⊗k M∗ with multiplicity one by [BC86, Thm. 2.1]. Moreover, as M is a
p-permutation module, so is M∗ ⊗kM by Properties 4.3, and we may decompose

M∗ ⊗kM ∼= k ⊕N1 ⊕ . . .⊕Nr ,

where N1, . . . , Nr (r ∈ Z≥1) are non-trivial indecomposable p-permutation kG-modules. At the
level of characters we have

χ̄
M̂
· χ

M̂
= 1G + χ

N̂1
+ · · ·+ χ

N̂r

and it follows immediately that χ
N̂i

(x) = 0 for each 1 ≤ i ≤ r. Hence, vtx(Ni) = {{1}} for each

1 ≤ i ≤ r by Lemma 7.2(c). In other words, Ni is projective for each 1 ≤ i ≤ r, proving that M
is endo-trivial.
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The aforementioned results led to a classification of the simple endo-trivial modules for the finite
quasi-simple groups based on ordinary character theory in [LMS16, LM15, LM16, LM17], par-
tially involving computer algebra methods and computation with GAP4, CHEVIE, or MAGMA.
Character-theoretical arguments were also used to determine the structure of the group Tk(G)
of endo-trivial modules, and in particular of its torsion subgroup T tors

k (G), for certain finite
quasi-simple groups of Lie type in [LM15], for the sporadic groups and their covering groups in
[LM15b], for the Schur covers of the alternating and symmetric groups in [LM15a], or four some
groups with dihedral or semi-dihedral Sylow 2-subgroups in [KL15, KL16, KL22].

7.4. Lifting endo-p-permutation kG-modules. The question whether endo-p-permutation
kG-modules also form a class of liftable modules is natural. It was already raised by Urfer in his
PhD thesis, but only answered 12 years later in [LT18], again exploiting strongly capped endo-
p-permutation modules and the generalised Dade group of a finite group rather than Urfer’s
original approach. The proof we give below also provides us with an alternative proof for the
liftability of endo-trivial modules over arbitrary finite groups, provided it is known that endo-
trivial modules over p-groups are liftable.

We start by showing that the reduction modulo p of endo-p-permutation OG-modules is ex-
tremely well-behaved.

Lemma 7.16

Let L be an endo-p-permutation OG-module and consider L/pL its reduction modulo p. Then,
the following assertions hold:

(a) L/pL is an endo-p-permutation kP -module;

(b) if A := EndO(L), then the natural homomorphism k⊗O AG −→ (k⊗O A)G is an isomor-
phism of k-algebras;

(c) L is indecomposable if and only if L/pL is;

(d) if L is indecomposable, then L and L/pL have the same vertices.

Proof: (a) Let P ∈ Sylp(G). If X is an O-basis of EndO(L) ∼= L∗ ⊗O L which is P -invariant,
then so is its image in Endk(L/pL) ∼= (L/pL)∗ ⊗k (L/pL), proving (a).
(b) Observe that it follows from Theorem 7.1(a), that the canonical map k ⊗O UG −→ (k ⊗O U)G

is a kG-isomorphism for any p-permutation kG-module U . (See also [LT18, Lemma 3.1].) There-
fore, writing A =

⊕m
i=1 Ui as a direct sum of indecomposable p-permutation OG-modules, we

obtain that the canonical homomorphism

k ⊗O AG ∼=
m⊕
i=1

k ⊗O UGi −→
m⊕
i=1

(k ⊗O Ui)G ∼= (k ⊗O A)G

is an isomorphism of k-algebras.
(c) It is clear that L/pL is decomposable if L is, hence it remains to prove the necessary con-
dition. Setting A := EndO(L) as in (b), it is enough to prove that EndkG(L/pL) = (k ⊗O A)G

is a local algebra. Write ψ : AG −→ AG/pAG for the canonical homomorphism given by reduc-
tion modulo p. By Nakayama’s Lemma pAG ⊆ J(AG), so that any maximal left ideal of AG
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contains pAG. Therefore

ψ−1(J(AG/pAG)) = ψ−1

 ⋂
m∈Maxl(AG/pAG)

m

 =
⋂

a∈Maxl(AG)

a⊇pAG

a = J(AG) ,

where Maxl denotes the set of maximal left ideals of the considered ring. Thus ψ induces an
isomorphism AG/J(AG) ∼= (k ⊗O AG)/J(k ⊗O AG). Now, by (b), k ⊗O AG ∼= (k ⊗O A)G as
k-algebras, thus

EndkG(L/pL)/J(EndkG(L/pL)) ∼= (k ⊗O A)G/J((k ⊗O A)G) ∼= AG/J(AG) .

This is a skew-field, as required, since we assume that L is indecomposable. Hence L/pL is also
indecomposable.
(d) Let Q ∈ vtx(L). Consider a decomposition of EndO(L) into indecomposable summands

EndO(L) ∼= L⊗O L∗ ∼= U1 ⊕ · · · ⊕ Un .
Then there is also a decomposition

Endk(L/pL) ∼= k ⊗O EndO(L) ∼= U1/pU1 ⊕ · · · ⊕ Un/pUn .
As L is an endo-p-permutation OG-module, Ui is a p-permutation module for each 1 ≤ i ≤ n.
Thus, by Scott’s theorem (Theorem 7.1), for each 1 ≤ i ≤ n, the module Ui/pUi is indecompos-
able and the vertices of Ui and Ui/pUi are the same. Now, by Properties 5.26(d), each Ui as a
vertex contained in Q and one of them has vertex Q. Therefore Ui/pUi has a vertex contained
in Q for each 1 ≤ i ≤ n and one of them has vertex Q, and it follows that Q ∈ vtx(L/pL).

Theorem 7.17 ([LT18, Theorem 4.2])

Let M be an indecomposable endo-p-permutation kG-module and let Q ∈ vtx(M). Then,

there exists an indecomposable endo-p-permutation OG-module M̂ with vertex Q such that

M̂/pM̂ ∼= M .

Proof: Let S be a kQ-source of M . By Theorem 5.29, S is a capped endo-permutation kQ-module
such that [S] ∈ Dk(Q)G-st. Then [LT18, Lemma 4.1] shows that there exists an endo-permutation

OQ-module Ŝ lifting S such that [Ŝ] ∈ DO(P )G-st. Moreover, IndGQ(Ŝ) is an endo-p-permutation

OG-lattice by Remark 5.28 (also true over O). Now, consider a decomposition of IndGQ(Ŝ) into
indecomposable summands

IndGQ(Ŝ) = L1 ⊕ · · · ⊕ Ls (s ∈ Z>0) .

By Properties 5.26, each Li (1 ≤ i ≤ s) is an endo-p-permutation OG-module. Then, by
Lemma 7.16,

IndGQ(S) ∼= IndGQ(Ŝ)/p IndGQ(Ŝ) ∼= L1/pL1 ⊕ · · · ⊕ Ls/pLs
is a decomposition of IndGQ(S) into indecomposable summands which preserves the vertices of
the indecomposable summands. Because S is a source of M , there exists an index 1 ≤ i ≤ s

such that M ∼= Li/pLi, poving that M̂ := Li lifts M . The claim about the vertices is clear by
the previous Lemma.
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7.5. Lifting fusion stable endo-permutation kG-modules and Brauer-friendly kG-
modules. Finally, we mention two lifting results, of the same flavour as the ones presented
above, concerning two further classes of modules strongly linked to endo-permutation modules
and involving certain stability conditions with respect to a group or to a block fusion system.
(For the definition of a fusion system we refer to the book [AKO11] by Aschbacher–Kessar–
Oliver devoted to this topic.) The first one by Kessar and Linckelmann is concerned with fusion
stable endo-permutation kG-modules. To understand the statement of this theorem, we need
to give the definition of the Dade group of a fusion system on a finite p-group introduced by
Linckelmann and Mazza in [LM09].

Let P be a finite p-group and F be a saturated fusion system on P . If Q ≤ P is a subgroup,
ϕ ∈ HomF (Q,P ) and M is an RP -module, denote by Resϕ(M) the RQ-module which is equal to
M as an R-lattice and with u ∈ Q acting on m ∈M as ϕ(u)·m . Then, the class [V ] ∈ DR(P ) of a
capped endo-permutation RP -module V is called F-stable if the endo-permutation RQ-modules
Resϕ(V ) and ResPQ(V ) have isomorphic caps, for any subgroup Q ≤ P and any morphism
ϕ ∈ HomF (Q,P ). The Dade group of F can then be defined as the following subgroup of the
Dade group of P :

DR(P,F) := {[V ] ∈ DR(P ) | [V ] is F-stable},
and it is easily verified that the reduction modulo p of an F-stable element of DO(P ) is an F-
stable element of Dk(P ). In other words, the surjective homomorphism πp : DO(P ) Dk(P )
restricts to a group homomorphism

πp : DO(P,F) Dk(P,F) .

Theorem 7.18 ([KL18, Lemma 8.4])

Let P be a finite p-group and let F be a saturated fusion system on P . Then the group
homomorphism

πp : DO(P,F) Dk(P,F)

is surjective.

Assuming that G and H are two finite groups and k is a splitting field for G ×H, Kessar and
Linckelmann used Theorem 7.18 in order to prove that a Morita equivalence (resp. a stable
equivalence of Morita type) between two blocks of kG and kH induced by an indecomposable
(kG, kH)-bimodule M with endo-permutation source V can be lifted to a Morita equivalence
(resp. a stable equivalence of Morita type) between the corresponding blocks of OG and OH
induced by an (OG,OH)-bimodule L with endo-permutation source W such that k ⊗O L ∼= M
and k ⊗O W ∼= V . See [KL18, Theorem 1.13].

Finally we come to the liftability of Brauer-friendly kG-modules. Brauer-friendly RG-modules
were introduced by Biland in his doctoral thesis, also in French. See [Bil14] for a published ver-
sion in English. We do not define these modules formally in this manuscript, as their definition is
rather technical and goes beyond the methods and objects we have introduced so far. However,
we note that any indecomposable Brauer-friendly RG-module has an endo-permutation source
which is subject to a certain stability condition with respect to the fusion system of the block
of RG containing the module, in the spirit of the F-stability introduced above. Brauer-friendly
RG-modules are not necessarily G-stable and provide us with natural examples of RG-modules
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with endo-permutation source which are not endo-p-permutation modules.

Remark 7.19

Watanabe [Wat20, Theorem 4.1] proves that an indecomposable Brauer-friendly kG-module
lying in a block of kG lifts to a Brauer-friendly OG-module belonging to the corresponding
block of OG, provided the fusion system of the block is saturated.

8. Glossary

To finish with, we summarise the different classes of modules and group structures introduced
in this survey. We recall that p is a prime number, G denotes a finite group of order divisible
by p, P a p-group and R ∈ {O, k}.

Modules:

• A permutation RG-module is an RG-module admitting an R-basis which is (globally) in-
variant under the action of the group G.
See Definition 3.1.

• A p-permutation RG-module is an RG-module admitting an R-basis which is (globally)
invariant under the action of a Sylow p-subgroup of G.
See Proposition-Definition 4.2.

• An endo-permutation RP -module is an RP -module M such that EndR(M) is a permutation
RP -module.
See Definition 5.1.

• A capped endo-permutation RP -module is an endo-permutation RP -module admitting an
indecomposable direct summand with vertex P .
See Definition 5.1.

• An endo-trivial RG-module is an RG-module M such that EndR(M) ∼= R ⊕X as an RG-
module and where X is a projective RG-module.
See Definition 5.7 and Definition 5.16.

• An endo-trivial kG-module relative to a kG-module V (which is absolutely p-divisible) is a
kG-module M such that Endk(M) ∼= k ⊕X as a kG-module and where X is a kG-module
which is projective relatively to V .
See Definition 5.37.

• An endo-p-permutation RG-module is an RG-module whose restriction to any p-subgroup Q
of G is an endo-permutation RQ-module.
See Definition 5.23.

• A strongly capped endo-p-permutation kG-module is an endo-p-permutation kG-module
which is also endo-trivial relatively to the kG-module V (F(G)) :=

⊕
Q IndGQ(k) where the

sum runs through the proper p-subgroups of G.
See Proposition-Definition 5.41.
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Group structures:

• DR(P ) denotes the Dade group of the p-group P over R.
See Proposition-Definition 5.4.

• Dk(G) denotes the generalised Dade group of the arbitrary finite group G over the field k.
See Proposition-Definition 5.43.

• DQ(G) denotes the group of compatibility classes endo-p-permutation RG-modules with
vertex Q.
See Proposition-Definition 5.31.

• TR(G) denotes the group of endo-trivial modules of the group G over R.
See Proposition-Definition 5.19.

• Dtors
R (P ) denotes the torsion subgroup of DR(P ) and Dfree

R (P ) denotes the torsion-free part
of DR(P ).
See Notation 5.6.

• T tors
k (G) denotes the torsion subgroup of Tk(G) and T free

k (G) denotes the torsion-free part
of Tk(G).
See Theorem 5.21.

• XR(G) denotes the group of RG-modules with R-rank equal to 1.
See Example 5.3(b).

• K(G) denotes the kernel of the restriction homomorphism resGP : Tk(G) −→ Tk(P ) where
P ∈ Sylp(G).
See Theorem 5.21.

• TV (G) denotes the group of V -endo-trivial kG-modules, where V is an absolutely p-divisible
kG-module.
See Proposition-Definition 5.39.
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