Thel.

FORSCHUNG - AUSBILDUNG - WEITERBILDUNG Bericht Nr. 78

TOPOLOGICAL NECESSARY CONDITIONS OF SMOOTH STABILIZATION IN THE LARGE

Sergey Nikitin

UNIVERSITÄT KAISERSLAUTERN Fachbereich Mathematik Arbeitsgruppe Technomathematik Postfach 3049 W-6750 Kaiserslautern

Oktober 1992

Topological necessary conditions of smooth stabilization in the large¹

Sergey Nikitin

Abstract: Several topological necessary conditions of smooth stabilization in the large have been obtained. In particular, if a smooth single - input nonlinear system is smoothly stabilizable in the large at some point of a connected component of equilibria set, then the connected component is to be an unknoted, unbounded curve.

Keywords: Nonlinear systems; asymptotic stabilization; feedback control; degree of continuous function; knot.

¹Based on a part of work supported by Alexander von Humboldt Foundation

1 Introduction

Consider the system Σ_f :

$$\dot{x} = f(x, u),$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ and \mathbb{R}^ℓ is used for ℓ -dimensional Euclidean space. f(x, u) is a complete C^{∞} vector field on \mathbb{R}^n for every $u \in \mathbb{R}^m$ fixed.

The set

$$f^{-1}(0) = \{(x, u) \in \mathbb{R}^{n+m} ; f(x, u) = 0\}$$

is called an equilibria set of the control system.

A system Σ_f is said to be *smoothly stabilizable* at $(x^*, u^*) \in f^{-1}(0)$ in the large, iff there exists a C^{∞} function u = u(x), such that $u(x^*) = u^*$ and x^* is an asymptotically stable in the large singular point of the closed loop system

$$\dot{x} = f(x, u(x)),$$

i.e., x^* is stable and

$$\lim_{t \to +\infty} e^{tf} x = x^* \quad \forall \ x \in \mathbf{R}^{\mathbf{n}}$$

where e^{tf} is the flow generated by the vector field f(x, u(x)).

The smooth stabilizability problem has been considered in many papers (for the list of references see, e.g., [7]). Necessary conditions for local smooth stabilization have been obtained in [1, 2], and for smooth stabilization in the large in [5]. This paper represents a continuation of a line of work started in [5].

2 Some facts about degree of function

This section is devoted to recalling some facts about the degree of continuous functions. For additional details on the degree of continuous functions, see [3, 4, 6]. We start with some notations.

- (i) $x = (x_1, ..., x_n) \in \mathbb{R}^n$; $|x|^2 = \langle x, x \rangle$, where $\langle x, y \rangle = \sum_{i=1}^n x_i y_i \quad \forall x, y \in \mathbb{R}^n$.
- (ii) D is a bounded, open subset of \mathbb{R}^n . Given $D \subset \mathbb{R}^n$, its closure is written \overline{D} , its interior IntD, its boundary ∂D .

(iii) Given a real positive number r and $y \in \mathbb{R}^n$, $B_r(y)$ is the closed ball centre y, radius r:

$$B_r(y) = \{x \in \mathbf{R}^n; \mid x - y \mid \leq r \}.$$

(iv) $C(\bar{D})$ is the linear space of continuous functions from \bar{D} into \mathbb{R}^n with the norm

$$|| f || = \sup_{x \in D} |f(x)|.$$

 $C^1(\bar{D})$ is the space of functions having continuous first order partial derivatives in \bar{D} ; the norm on $C^1(\bar{D})$ is

$$|| f ||_1 = \sup_{x \in D} | f(x) | + \sup_{x \in D} | \frac{\partial}{\partial x_j} f(x) |,$$

where

$$\frac{\partial}{\partial x_j} f(x) = \left(\frac{\partial}{\partial x_j} f_1(x), \dots, \frac{\partial}{\partial x_j} f_n(x)\right)^T,$$

 $\frac{\partial}{\partial x_j} f_i(x)$ is the partial derivative of the i-th entry of the function $f: \bar{D} \to \mathbb{R}^n$, T indicates transpose; $\frac{\partial}{\partial x} f(x)$ is the Jacobian matrix and $\det(\frac{\partial}{\partial x} f(x))$ is the Jacobian determinant of f at x.

(v) Let M, N be smooth manifolds of dimension n. Then C^{∞} - mapping $\psi : M \to N$ is called diffeomorphism iff ψ is homeomorphism and ψ^{-1} is also C^{∞} - mapping.

Now we define the degree of ϕ when function $\phi \in C^1(\bar{D})$ and

$$\forall x \in \phi_{\bar{D}}^{-1}(p) = \{x \in \bar{D}; \ \phi(x) = p\} \ \det(\frac{\partial}{\partial x}\phi(x)) \neq 0,$$

i.e., p is not critical value of ϕ on D.

Definition 2.1. Suppose $\phi \in C^1(\bar{D})$, $p \in \phi(\partial D)$ and p is not critical value of ϕ on D. Define the degree of ϕ at p relative to D to be $d(\phi, D, p)$, where

$$d(\phi, D, p) = \sum_{x \in \phi^{-1}(p)} sign[det(\frac{\partial}{\partial x}\phi(x))].$$

If $\phi \in C(\bar{D})$, then the degree of ϕ can be defined as the degree of a sufficiently good C^1 approximation of ϕ (for details, see [4]).

Definition 2.2. Suppose that $\phi \in C(\bar{D})$ and $p \in \phi(\partial D)$. Define $d(\phi, D, p)$ to be $d(\psi, D, p)$, where ψ is any function in $C^1(\bar{D})$ satisfying

$$|\phi(x) - \psi(x)| < \rho(p, \phi(\partial D)) \quad \forall x \in \bar{D},$$

where $\rho(x, \phi(\partial D)) = \inf_{y \in \phi(\partial D)} |x - y|$.

Recall that if X and Y are topological spaces, two continuous functions f and g are said to be homotopic ($f \sim g$) if there is a continuous function (homotopy)

$$H: [0,1] \times X \rightarrow Y$$

such that

$$H(0,x) = f(x), \quad H(1,x) = g(x) \quad (x \in X).$$

We will need the following properties of degree.

Theorem 2.1 (1) If $H(t,x) \equiv h_t(x)$ is a homotopy and $p \in h_t(\partial D)$ for $0 \le t \le 1$, then $d(h_t, D, p)$ is independent of $t \in [0, 1]$.

(2) If a smooth feedback u = u(x) stabilizes the system Σ_f at $p \in D \subset \mathbb{R}^n$ in the large, then

$$d(f(u), D, 0) = (-1)^n,$$

where f(u) denotes f(x, u(x)): $\mathbb{R}^n \to \mathbb{R}^n$.

(3) Suppose $\phi \in C(D)$. If $d(\phi, D, p)$ is defined and non-zero, then there is $q \in D$ such that $\phi(q) = p$.

In the definitions 2.1, 2.2 D can be replaced by a smooth, oriented manifold M of dimension n, dim M = n (details of this and related material may be found in [3, 6]). Given $\phi \in C^1(M)$, $\phi: M \to \mathbb{R}^n$, $p \in \phi(\partial M)$, $d(\phi, M, p)$ denotes the degree of ϕ at p relative to M.

An immersion $i: M \to \mathbb{R}^n_x \times \mathbb{R}^m_u$ which maps M homeomorphically into its image $i(M) \subset \mathbb{R}^n_x \times \mathbb{R}^m_u$ with topology induced by $\mathbb{R}^n_x \times \mathbb{R}^m_u$ is called regular embedding. $i_x: M \to \mathbb{R}^n_x$, i_u ; $M \to \mathbb{R}^m_u$ are used to denote $P_x \circ i$ and $P_u \circ i$, respectively, where P_x , P_u are the projections: $P_x(x,u) = x$, $P_u(x,u) = u$.

Lemma 2.1 Suppose $f: \mathbb{R}^n_x \times \mathbb{R}^m_u \rightarrow \mathbb{R}^n$ is a smooth function and

$$rank\left\{\frac{\partial}{\partial x}f(x,u),\frac{\partial}{\partial u}f(x,u)\right\}=n \quad \forall (x,u) \in f^{-1}(0).$$

Suppose further ω is a bounded connected component of $f^{-1}(0)$. If $u = v(x) : \mathbb{R}^n_x \to \mathbb{R}^m_u$ is a smooth function such that

$$f^{-1}(0) \cap \{(x, u) \in \mathbf{R}^{\mathbf{n}}_{x} \times \mathbf{R}^{\mathbf{m}}_{u} : u = \mathbf{v}(\mathbf{x})\} = \omega \cap \{(\mathbf{x}, \mathbf{u}) \in \mathbf{R}^{\mathbf{n}}_{x} \times \mathbf{R}^{\mathbf{m}}_{u}; \mathbf{u} = \mathbf{v}(\mathbf{x})\},$$

then

$$d((f,P_u-v\circ P_x),B_R(0),0)=0$$

where R > 0 such that $\omega \subset IntB_R(0)$.

Proof. Consider the function

$$\phi(x,u) = \left(\begin{array}{c} f(x,u) \\ u - v(x) \end{array}\right)$$

If $\omega \subset IntB_R(0)$, then $0 \in \phi(\partial B_R(0))$ and $d((f, P_u - v \circ P_x), B_R(0), 0)$ is defined. The set

$$V = \phi([B_R(0) \cap \{f^{-1}(0) \setminus \omega\}] \cup \partial B_R(0))$$

is compact and $0 \in V$. Thus making use of Sard's theorem (see, e.g., [3]), for any $\varepsilon > 0$ we can choose so a point $p \in \mathbb{R}^n_x \times \mathbb{R}^m_u$, that p is not critical value of ϕ on $B_R(0), |p| < \varepsilon$. $P_r(p)$ is not critical value of f(x, u) and p is in the connected component of the set $(\mathbb{R}^n_x \times \mathbb{R}^n_u) \setminus V$ containing zero.

For any $\delta > 0$ one can find a positive number ε such that

$$f^{-1}(B_{\varepsilon}(0)) \cap B_R(0) \subseteq \bigcup_{x \in f^{-1}(0) \cap B_R(0)} B_{\delta}(x).$$

Let us choose $\varepsilon > 0$, $\delta > 0$ such that

$$\{(x,u)\in B_R(0); \mid u-v(x)\mid <\varepsilon\}\cap [\bigcup_{x\in (f^{-1}(0)\setminus \omega)\cap B_R(0)}B_\delta(x)]=\emptyset,$$

$$\bigcup_{x\in\omega}B_{\delta}(x)\subset IntB_{R}(0),$$

$$\{\bigcup_{x\in\omega}B_{\delta}(x)\}\cap[\bigcup_{x\in(f^{-1}(0)\setminus\omega)\cap B_{R}(0)}B_{\delta}(x)]=\emptyset.$$

Then the property (1) (Theorem 2.1) implies

$$d(\phi, B_R(0), 0) = d(\phi, B_R(0), p)$$

and according to the definition 2.1.

$$d(\phi, B_R(0), p) = \sum_{(x,u)\in\phi^{-1}(p)} sign[det \begin{pmatrix} \frac{\partial}{\partial x} f(x,u) & \frac{\partial}{\partial u} f(x,u) \\ -\frac{\partial}{\partial x} v(x) & I_m \end{pmatrix}],$$

where I_m is the identity $m \times m$ -matrix.

Let

$$\omega_p = f^{-1}(P_x(p)) \cap [\bigcup_{x \in \omega} B_{\delta}(x)]$$

and $i: \omega_p \to \mathbb{R}^n_x \times \mathbb{R}^m_u$ be regular embedding z will be used to denote local coordinates on ω_p . Due to

$$rank(\frac{\partial}{\partial x}f(x,u),\frac{\partial}{\partial u}f(x,u)) = n \quad \forall (x,u) \in f^{-1}(P_x(p))$$

one can choose local coordinates on ω_p so that

$$\det\left(\begin{array}{cc} (\frac{\partial}{\partial x}f) \circ i(z) & (\frac{\partial}{\partial u}f) \circ i(z) \\ (\frac{\partial}{\partial z}i_x(z))^T & (\frac{\partial}{\partial z}i_u(z))^T \end{array}\right) > 0 \quad \forall z \in \omega_p.$$

Thus

$$\begin{aligned} sign[\det\left(\begin{array}{cc} \frac{\partial}{\partial x}f(x,u) & \frac{\partial}{\partial u}f(x,u) \\ -\frac{\partial}{\partial x}v(x) & I_{m} \end{array}\right)] &= sign[\det\left[\left(\begin{array}{cc} \frac{\partial}{\partial x}f(x,u) & \frac{\partial}{\partial u}f(x,u) \\ -\frac{\partial}{\partial x}v(x) & I_{m} \end{array}\right) \times \\ &\left(\begin{array}{cc} (\frac{\partial}{\partial x}f(x,u))^{T} & \frac{\partial}{\partial z}i_{x}(z) \\ (\frac{\partial}{\partial u}f(x,u))^{T} & \frac{\partial}{\partial z}i_{u}(z) \end{array}\right)] &= sign[\det(\frac{\partial}{\partial x}f(x,u)(\frac{\partial}{\partial x}f(x,u))^{T} + \frac{\partial}{\partial u}f(x,u)(\frac{\partial}{\partial u}f(x,u))^{T})] \times \\ &sign(\det[\frac{\partial}{\partial z}i_{u}(z) - \frac{\partial}{\partial x}v(x) \cdot \frac{\partial}{\partial z}i_{x}(z)]) \quad \forall \ z \in \omega_{p} \ \text{ and } \ x = i_{x}(z), \ u = i_{u}(z). \end{aligned}$$

It follows from

$$rank[\frac{\partial}{\partial x}f(x,u), \frac{\partial}{\partial u}f(x,u)] = n \quad \forall \ (x,u) \in \omega_p,$$

that

$$\det(\frac{\partial}{\partial x}f(x,u)(\frac{\partial}{\partial x}f(x,u))^T + \frac{\partial}{\partial u}f(x,u)(\frac{\partial}{\partial u}f(x,u))^T) \neq 0 \quad \forall (x,u) \in \omega_p.$$

Hence we obtain

$$\mid d(\phi, B_R(0), \rho) \mid = \mid d(i_u - v \circ i_x, \omega_p, P_u(p)) \mid .$$

Since ω_p is a compact manifold without boundary and $i_u - v \circ i_x$: $\omega_p \to \mathbb{R}_u^m$ is a continuous function on ω_p , it implies (see , e.g., [3,6]) $d(i_u - v \circ i_x, \omega_p, P_u(p)) = 0$. The proof is completed.

3 Main results

3.1 Multi - input systems

We start with the following necessary condition of smooth stabilization in the large.

Theorem 3.1 Suppose $f: R_x^n \times R_u^m \rightarrow R^n$ is a smooth function and

$$\lim_{|x|^2 + |u|^2 \to \infty} \quad \text{inf } 1 < f(x, u), f(x, u) > 0.$$
 (1)

Then the system Σ_f is not smoothly stabilizable in the large at any point $(x^*, u^*) \in f^{-1}(0)$.

Proof. It follows from (1) that there is a positive real number R, such that

$$f^{-1}(0) \subset Int(B_R(0)).$$

Hence

$$f(x, u) \neq 0 \quad \forall u \in \mathbf{R}_{\mathbf{u}}^{\mathbf{m}}, \mid \mathbf{x} \mid = \mathbf{R}$$

and properties (1), (3) (Theorem 2.1) imply

$$d(f(x,u(x)), P_x(B_R(0)), 0) = d(f(x,\bar{u}), P_x(B_R(0)), 0) = 0,$$

where $|\bar{u}| = R$ and u = u(x) is any C^{∞} - function, while

$$d(f(x,u(x)),P_x(B_R(0)),0)$$

is to be equal to $(-1)^n$ whenever u = u(x) is a smooth feedback stabilizing the system in the large. Thus the system can not be smoothly stabilized in the large at any point $(x^*, u^*) \in f^{-1}(0)$. The contention of the theorem is proved.

If $f^{-1}(0)$ is a regularly embedded submanifold of $R_x^n \times R_u^m$, then Theorem 3.1 can be replaced by the following stronger result.

Theorem 3.2 Suppose $f: R_x^n \times R_u^m \rightarrow R^n$ is a smooth function and

$$rank\left\{\frac{\partial}{\partial x}f(x,u),\frac{\partial}{\partial u}f(x,u)\right\} = n \quad \forall (x,u) \in f^{-1}(0).$$

If the system Σ_f is smoothly stabilizable in the large at a point $(x^*, u^*) \in \omega$, where ω is a connected component of $f^{-1}(0)$, then ω is to be unbounded.

Proof. If u = v(x) is a smooth feedback stabilizing in the large the system Σ_f at a point $(x^*, u^*) \in \omega$ and ω is bounded, then there is $B_R(0)$ such that

$$\omega \subset IntB_{R}(0)$$

and

$$d(f(v), P_x(B_R(0)), 0) = (-1)^n.$$

Note that

$$f^{-1}(0) \cap \{(x, u) \in \mathbf{R}_{\mathbf{x}}^{\mathbf{n}} \times \mathbf{R}_{\mathbf{u}}^{\mathbf{m}} \; ; \; \mathbf{u} = \mathbf{v}(\mathbf{x})\} = \omega \cap \{(\mathbf{x}, \mathbf{u}) \in \mathbf{R}_{\mathbf{x}}^{\mathbf{n}} \times \mathbf{R}_{\mathbf{u}}^{\mathbf{m}} \; ; \; \mathbf{u} = \mathbf{v}(\mathbf{x})\}$$

and

$$|d(f(v), P_r(B_R(0)), 0)| = |d((f, P_u - v \circ P_x), B_R(0), 0)|.$$

Thus making use of Lemma 2.1 we obtain the contradiction which proves the theorem.

Example 3.1. Consider the system

$$\dot{x}_1 = x_1^2 + x_2^2 - 1,$$

$$\dot{x}_2 = u$$
.

It is easy to see that all condition of Theorem 3.1 are met. Therefore the system is not smoothly stabilizable in the large at any point of the equilibria set defined by $x_1^2 + x_2^2 = 1$.

3.2 Single-input systems

Consider the single - input system Σ_f

$$\dot{x} = f(x, u),$$

where $u \in \mathbb{R}$ and f is defined above. If

$$rank(\frac{\partial}{\partial x}f(x,u),\frac{\partial}{\partial u}f(x,u)) = n \quad \forall \ (x,u) \in f^{-1}(0),$$

then the equilibria set of Σ_f consists of regular curves:

$$f^{-1}(0)=\bigcup_{i}\omega_{i},$$

where $\omega_i = \{(x_{\omega_i}(\tau), u_{\omega_i}(\tau)) : \tau \in \mathbb{R}\}$ and $|\frac{d}{d\tau}x_{\omega_i}(\tau)|^2 + |\frac{d}{d\tau}u_{\omega_i}(\tau)|^2 \neq 0$ for all $\tau \in \mathbb{R}$ and i.

Definition 3.1. A parametrization

$$\{(x_{\omega_i}(\tau), u_{\omega_i}(\tau)); \tau \in \mathbf{R}\}$$

of the curve $\omega_i \subset f^{-1}(0)$ will be called normal iff for any smooth feedback u = v(x) stabilizing in the large the system Σ_f at any point $(x^*, u^*) \in \omega_i$ the following inequalities hold:

$$u_{\omega_i}(\tau) - v(x_{\omega_i}(\tau)) > 0$$
 for $\tau > \tau^*$

and

$$u_{\omega_i}(\tau) - v(x_{\omega_i}(\tau)) < 0 \quad \text{for} \quad \tau < \tau^*,$$

where $\tau^* \in \mathbb{R}$ such that $x_{\omega_i}(\tau^*) = x^*$, $u_{\omega_i}(\tau^*) = u^*$.

Proposition. Let $\omega \subset f^{-1}(0)$, the system Σ_f be smoothly stabilizable in the large at some point in ω and

$$rank(\frac{\partial}{\partial x}f(x,u), \frac{\partial}{\partial u}f(x,u)) = n \quad \forall \ (x,u) \in f^{-1}(0).$$

Then there is a normal parametrization on ω .

Proof. Assume there is a smooth feedback u = v(x) stabilizing in the large the system Σ_f at some point $(x^*, u^*) \in \omega$. Then following the proof of Lemma 2.1 we conclude that

$$d(i_u - v \circ i_x, \omega, 0) = sign(d\epsilon t \left[\frac{\partial}{\partial x} f(x, u) \left(\frac{\partial}{\partial x} f(x, u) \right)^T + \frac{\partial}{\partial u} f(x, u) \left(\frac{\partial}{\partial u} f(x, u) \right)^T \right]) \cdot (-1)^n.$$

and the righthand side does not depend on v(x). Therefore we can choose the parametrization so that

$$d(i_u - v \circ i_x, \omega, 0) = 1.$$

That means $(u_{\omega}(\tau) - v(x_{\omega}(\tau))) \cdot (\tau - \tau^*) > 0$ whenever $\tau \neq \tau^*$. The proof is finished.

Using the normal parametrization we can formulate the following necessary condition of smooth stabilization in the large.

Theorem 3.3 Let Σ_f be a smooth system such that

$$rank(\frac{\partial}{\partial x}f(x,u),\frac{\partial}{\partial u}f(x,u)) = n \quad \forall \ (x,u) \in f^{-1}(0)$$

and $\omega \subset f^{-1}(0)$ connected component with the normal parametrization $\{(x_{\omega}(\tau), u_{\omega}(\tau)) \in \mathbb{R}^n_{\mathbf{x}} \times \mathbb{R}_u; \ \tau \in \mathbb{R}\}$. Then the system Σ_f is not smoothly stabilizable in the large at a point $(x^*, u^*) \in \omega$ whenever either ω is bounded or there is a connected component $\tilde{\omega} \subset f^{-1}(0)$ such that one can find points $(\tilde{x}_2, \tilde{u}_2), \ (\tilde{x}_1, \tilde{u}_1) \in \tilde{\omega}$ such that

$$x_{\omega}(\tau_1) = \tilde{x}_1 \qquad \tau_1 \le \tau^*,$$

$$x_{\omega}(\tau_2) = \tilde{x}_2 \qquad \tau_2 \ge \tau^*.$$

and

$$u_{\omega}(\tau_1) > \tilde{u}_1, \tag{2}$$

$$u_{\omega}(\tau_2) < \tilde{u}_2,$$

where $\tau^* \in \mathbb{R}$ and $x_{\nu}(\tau^*) = x^*, \quad u_{\nu}(\tau^*) = u^*.$

Proof. If ω is bounded, then the theorem follows from Theorem 3.2. According the definition of normal parametrization

$$(u_{\omega}(\tau) - v(x_{\omega}(\tau))) \cdot (\tau - \tau^*) > 0 \quad \forall \tau \neq \tau^*$$

where u = v(x) is a smooth feedback stabilizing Σ_f at (x^*, u^*) in the large. If the inequalities (2) hold, then

$$v(x_{\omega}(\tau_1)) > \tilde{u}_1$$
$$v(x_{\omega}(\tau_2)) < \tilde{u}_2.$$

Since $\tilde{\omega}$ is a connected component of $f^{-1}(0)$ we obtain the existence of $(\tilde{x}^*, \tilde{u}^*) \in \tilde{\omega}$ such that

$$\tilde{u}^* = v(\tilde{x}^*).$$

That means the closed loop system

$$\dot{x} = f(x, v(x))$$

has two different equilibria points: (x^*, u^*) , $(\tilde{x}^*, \tilde{u}^*)$. Therefore the feedback u = v(x) can not stabilize the system Σ_f in the large at the point (x^*, u^*) . The proof is completed.

In Theorem 3.3 it is possible also that $\tilde{\omega} = \omega$. In this case we have the following proposition.

Theorem 3.4 Suppose Σ_f be a smooth system such that

$$rank(\frac{\partial}{\partial x}f(x,u),\frac{\partial}{\partial u}f(x,u)) = n \quad \forall \ (x,u) \in f^{-1}(0)$$

and $\omega \subset f^{-1}(0)$ a connected component with the normal parametrization

$$\omega = \{(x_{\omega}(\tau), u_{\omega}(\tau)); \quad \tau \in \mathbf{R}\}.$$

Suppose further there are τ_1 , $\tau_2 \in \mathbb{R}$ for which it is true that either $\tilde{\tau}_1 < \tilde{\tau}_2 \leq \tau^*$ or $\tilde{\tau}_2 > \tilde{\tau}_1 \geq \tau^*$ and

$$x_{\omega}(\tau_1) = x_{\omega}(\tilde{\tau}_1) \quad \tau_1 \leq \tau^*,$$

$$x_{\omega}(\tau_2) = x_{\omega}(\tilde{\tau}_2) \quad \tau_2 \geq \tau^*,$$

$$u_{\omega}(\tau_1) > u_{\omega}(\tilde{\tau}_1),$$

$$u_{\omega}(\tau_2) < u_{\omega}(\tilde{\tau}_2),$$

where $\tau^* \in \mathbb{R}$ and $x_{\omega}(\tau^*) = x^*$, $u_{\omega}(\tau^*) = u^*$. Then the system Σ_f is not smoothly stabilizable in the large at $(x^*, u^*) \in \omega$.

Geometrically Theorem 3.4 together with Theorem 3.2 mean that if a system Σ_f is smoothly stabilizable in the large at every point of $\omega \subset f^{-1}(0)$, then ω is to be an unknoted, unbounded curve in $\mathbb{R}^n_x \times \mathbb{R}_u$.

Example 3.2. Consider the system

$$\dot{x}_1 = -(x_1 - 2)(x_1 - u^2 - 1) - x_2(x_1 - u^2 - 1)^2 u,$$

$$\dot{x}_2 = -x_2 + x_1(x_1 - u^2 - 1)u.$$

Using Theorem 3.3 we obtain that the system is not smoothly stabilizable in the large at the point $x_1 = 2$, $x_2 = 0$, u = 0.

Acknowledgements

The author would like to thank prof. Hector Sussmann and prof. Eduardo Sontag for fruitful discussion.

References

[1] R.W. Brockett, Asymptotic stability and feedback stabilization, in: R.W.Brockett, R.S.Milman and H.J.Sussmann, Eds., *Differentical Geometric Control Theory* (Birkhauser, Basel - Boston, 1983).

- [2] J.-M. Coron, A necessary condition for feedback stabilization, Systems Control Lett. 14 (1990) 227-232.
- [3] B.A. Dubrovin, A.T. Fomenko, S.P. Novikov, Modern Geometry-Methods and Applications, Part II. The Geometry and Topology of Manifolds (Springer-Verlag, Berlin, 1985).
- [4] N.G. Lloyd, Degree theory (Cambridge Univ., 1978).
- [5] S. Nikitin, Stabilizability of nonlinear systems, Forschungs Bericht Nr. 68, Fachbereich Mathematik, Univ. Kaiserslautern (1992).
- [6] L.S. Pontriagin, Smooth manifolds and their applications in homotopy theory, Amer. Math. Soc. Translations, Ser.2, 11 (1959) 1-114.
- [7] E.D. Sontag, Feedback stabilization of nonlinear systems, Symposium MTNS 89, vol. II (1990), 61 81.