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Abstwct: Severa. topological necessary conditions of smooth stabilization in the large have been 
obtained. 111 particular. if a smooth single - input nonlinear system is smoothly stabilizable in the 
large at some point of a connected component of equilibria set, then the connected component 
is to be an unknoted, unbounded curve. 
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1 Introduction 

Consider the system Cf: 

ii = f( 2, u), 

where x E R”. LI E R”’ am1 R’ is used for C-dimensional Euclidean space. f( z, u) is a 
complete c”” vcactor field on R” for every u E Rm fixed. 

The set 

f-‘(o) = {(.I, u) E R”+m ; f(x, u) = 6) 

is called au equilibria set of t,he cont.rol system. 

A system S, is said to be .umoothZy L~tabilizable at (.T*, u-j E f-‘(O) in the large, iff there 
exists a C”” functiou II = U(J). such that u( s*) = u* and 5* is an asymptotically 
stable in tlic lnr~c siiigular l)oiut of the c1oseJ loop system 

.i = f(.r,u(x)), 

i.e., .r* is stable and 

lim et’ r = 2* t--+,x * VXER” 

where e” is the flow generatccl by the vector field f( s, u(r)). 

The smooth st;~biliznl~ility problem has been considered in many papers (for the list 
of references ~(‘0. e.g.. [‘i-l ). 1 ~ccc~ssary conditions for local smooth stabilization have 
been obtaiuctl in [ 11 21. and for smoot,h stabilization in the large in [ 5 1. This paper 
represents a coutiuuatiou of a line of work started in [5]. 

2 Some facts about degree of function 

This section is devoted t,o recalling some facts about the degree of continuous functions. 
For additional details on the degree of continuous functions, see (3, 4, 61. We start with 
some notations. 

(i) .r = (x1 . . . . , .r,,) E R” ; ) x I*=< x,x >, where < I, ZJ >= Czl x;yi V X,Y E R”. 

(ii) D is a bounded. open subset of Rn. Given D C R”, its closure is written 0, its 
interior IntD, its bounda.ry LlD. 



(iii) Given a real positive number r and y E R”, B,(y) is the closed ball centre y, 
radius r : 

B,(y) = {x E R”; 1 x - y 15 r }. 

(iv) C(D) is tl re 1 inear space of continuous functions from D into R” with the norm 

C’(D) is the space of functions having continuous first order partial derivatives 
in 0; the norm on C’(D) is 

II f Ill= ;y; I f(4 I + SUP 
ZED I<,J<TI - - 

I -&,,,, I, 

$f[(:i*) is tllc partial derivative of the i-th entry of the function f : D + R”, T 

indicates transpose; $-J(z) is tl le J acobian matrix and det( gf(r)) is the Jacobian 
detc~rininant. of f’ at x. 

(v) Let ,\I. .Y b e smooth manifolds of dimension rz. Then C” - mapping 1c, : A4 + N 
is called tliffeonlorphism iff $ is homeomorphism and I+!J-~ is also C” - mapping. 

Now we define the degree of 0 when function q5 E C’(D) and 

i.e., 11 is not critical value of q~ on D. 

Defillitioll 2.1. Suppose Q E C’(D), pfq5(aII) and p is not critical value of 4 on D. 
Define the degree of o at p relative to D to be d(+,D,p), where 

tl(0.D.p) = 1 
eo-‘(P) 

sisn.[drt($#J(x))]. 

If r$ E C( D ) , then t hc degree of 4 can be defined as the degree of a sufhciently good C’ 
approximation of o (for details, see [4]). 

Deflllitioll 2.2. Suppose that q E C(D) and pfb(80). Define d(d, D,p) to be 
d($, D, 11). where v is any function in C’( 0) satisfying 

1 o(x) - L’(X) (< p(p, 4(m)) v x E 0, 
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where p( .r. Q( 8D) ) = infycd,(aD) ( .r - Y 1 . 

Recall that if S and 1- are topological spaces, two continuous functions f and g are 
said to be homotopic (f - y) if there is a continuous function (homotopy) 

H : [OJ] x ,Y + I’- 

such that 
H(O,s) = f(x), H(l,z) = g(x) (x E X). 

We will need the following properties of degree. 

Theorem 2.1 (1) If H(t,.r) zz hl(.r) is a homotopy and p<h@D) for 0 5 t 5 1, 
then (l( h,. D. 1)) i.s idependent oft E [0, 11. 

(2) If u w~ooth feedbeck 11. = II( .r) stabilizes the system S, at p E D c R” in the 
1ariJr:. thC71 

4fWJW) = (-l)“, 

where f(u) dcrrotcs f (x, u(s)) : R” t R”. 

(S) Suppose o E c’( 0). If tl( Q. D. p) is defined and non-zero. then there is q E D such 
thut o( (1) = 1’. 

In the Miiliitiou5 2.1 . 3.3 D can be icplaccd by a smooth, oriented manifold A4 of 
dimension I 1. t/i/,,-\1 = II (details o’f this and related material may be found in [3 , 6 1). 

Given Q E c”(-\I). o : .\I + R”, pCp( ai), d( 4, h/i, p) denotes the degree of q5 at 
p relative to 211. 

An immersion i : 11 -+ R:,’ x RE which maps M homeomorphically into its image 
i(M) c Rl,l x R;’ with topology induced by Ri x c is called regular embedding. 
z, : Al + R!$ i,,; XI -+ R; are used to denote P, o i and P,, o i, respectively, where 
Pz, P, are the projections : Px(.r, u) = s, PU(x,u) = u. 

. 
Lemma 2.1 .Suyyose f : Ry x R:’ ---f R” is a smooth function and 

a d l’d’{-f(l’,U), ,,f(.r,u)} = 12 as v (x;u) E f-‘(o). 

Suppose further CL! is (I bounded connected component off-‘(O). Ifu = v(x) : Rt + w 
is a smooth filnc tion such that 

f-‘(O) I-I {(Lu) E R; x R::’ : u = v(s)} = w n {(x,u) E R; x R$u = v(x)}, 

then 
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Proof. Consider the funct.ion 

If w c I,lfB,g( 0). the11 Oco( 8Bn( 0)) and d( (f, P, - TV o P,), BR(O), 0) is defined. 

The set 

is compact am1 OCb’. Thus making use of Sard’s theorem ( see, e.g., [3] ), for any 
E > 0 we can choose so a point p E RF x c, that p is not critical value of $J on 
BR(O), I P I< 5. c4 1 1 is not critical value of f(~, U) and p is in the connected component 
of the set (RF x R::‘) \ \’ containing zero. 

For any 0 > 0 o11(~ WH fintl :I positi\-(3 ulunlxr 5 such t,hat 

.f-‘uL(oH n B/l(O) c_ u B,j( x). 
i-c/-l(0)nBR(o) 

Let us c11005~~ E > 0. h > 0 such that 

{(.I., rt) E B/,(O); ) u - v(x) I< z} n [ u &(4] = 0, 
4P (0)\4n~do) 

u B,,(x) C h&(O), 
XEAJ 

{ u Bd .I* ) 1 n I u B&r)] = 0. 
JEJ 1.E(f-‘w\w)nBRiO) 

. Then the prop(*rty (1) (Theorem 2.1 ) implies 

d( @, BR( 0)~ 0) = cl(d, BR(O), d 

and according t.o the definition 2.1. 

where I,,, is tlic* idciitit\m ItI X )tI -matrix. 

Let 
*2p = f-‘(wa f-l ru &WI XEW 

and i : G?~ ---$ Rt x R:’ be regular embedding z will be used to denote local coordinates 
on w,,. Due to 
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one can choose 104 coordinates on ic?,, so that 

Thus 

dcf( g/(.1*. 11 )( Ef( .r. ll)y- + ;/ix, u)( ;f(x,N, # 0 V(X,PL) E wp. 

Hence WC ol)tnin 
1 tl(o.l3~(0),p) I=/ d(i, - 0 0 ix,+,Pu(p)) I . 

Since dP is ;t collqx~vt nl:lllifol(l \vit,hollt Ixmndary and iu - u o i, : wP ---t R,” is a 
contin flm(.tion oii L,‘. it iniplies (see , e.g., [3,6] ) d(iu - v o i,, wpr PU(p)) = 0. The 
proof is coillplvtcxl. 

3 Main results 

3.1 Multi - input systems 

We start with the following necessxy conclition of smooth stabilization in the large. 

Theorem 3.1 S,r~pyo.se f : Ry x Rz --t R” iu a smooth junction and 

lim 
142+I42 - ‘5x2. inf. < f(x,u),f(x,~) > > 0. (1) 

Then the s.ystem S/ is not smoothly stabilizable in the large at any point (x*,u*) E 

f-W 

Proof. It follow from (1) that t,here is a. positive real number R, such that 

j'-l( 0) c Ir?.t( BR(O)). 

Hence 
f(.r. 11) # 0 vu E Rf:, I x I= R 
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and properties ( 1 ), ( 3) (Theorem 2.1 ) imply 

d(f(X, l~(.~)).Pz(BR(O)),O) = d(f(x,G) ?@R(o)),o) = 0, 

. 
where 1 (I I= R and u = u( .r) is any C” - function, while 

. 
is to be equal to ( -1)” whenever II = u(x) is a smooth feedback stabilizing the system 
in the large. Tl ms the systcam cau not be smoothly stabilized in the large at any point 
(z*,u-) E f-‘(O). Thc~ contcutiou of the theorem is proved. 

If f-‘( 0) is a r(~glilarly c~~lxxlclccl submanifold of R: x Rr, then Theorem 3.1 can be 
replacc~d 1,). tl1c: f(Jll(J\YillK stlu1gcT l.csult. 

Theorem 3,.2 S.upyos~ .f : RE x Rr t R” i,~ a smooth function and 

If the .3ystm r, is sv~ootl~~k~ stubilizuble in the large at a point (x8, u’) E w, where w 
is a connected component of f-‘(O). then CL: is to be ,unbounded. 

Proof. If (I = t*(x) is a smooth feedback stabilizing in the large the system C, at a 
point (x’, (I-) E *i* xitl cc: is bounded. then there is BR(O) such that 

d c h?t&(o) 

and 

Note t,ha.t 

cl(.t’( 1’)~ pr(~R(o)), 0) = (-1)“. 

f-‘( 0) n { (.t-. tr ) E RI,’ x R::’ ; u = v(s)} = w n {(x, u) E R.; x Rr ; u = v(x)} 

and 
1 d(f(~‘).P,.(~R(O)),O) /=I d((f,Pu -v”pz),BR(0),O) 1. 

Thus making use of Lemma 2.1 we obtain the contradiction which proves the theorem. 

. Example 3.1. Consider the system 

It is easy to see that. all condition of Theorem 3.1 are met. Therefore the system is not 
smoothly stabilizable iu the large at any point of the equilibria set defined by x:+x% = 1. 
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3.2 Single-input systems 

Consider the single - input system 2, 

.i = f(z,u), 
. 

. 

where u E R and f is &fined abo\-e. If 

then tile cYlllilil)l’iil scat of Sj consists of regular curves: 

.r’(O 1 = UWL, 
1 

wllcrc~ ci, = {(,/.,,(r).l/,,(~)):r E R} illl<l 
and i. 

Definition 3.1. -1 l)al.;lilletl.iz~ttioll 

of tlw Clll’VC’ I’, C .f-‘( 0) n-ill lx ~dctl nornd iff for any smooth feedback u = V(X) 
stal~ilizilig in t11cJ large tlicl systcni Yj at any point (.r*, ~1~) E wi the following inequalities 
hold: 

(I&J, ( i-1 - r(.r,,(r)) > 0 for T > T* 

and 
ll,, ( T) - u(x~,(T)) < 0 for 7 < T*, 

where T= E R SUC-11 tlli\t A.&.,( T=) = A.*, l/Jr*) = IL*. 

Proposition. Lr:r! d C j-‘(O). the a:ystem Yj be smoothly stabilitable in the large at 
some point in ci u71.d 

. Then there iu u ~OTTILU~ pumvLetrization on w. 

Proof. -Assume thcrc is a. smooth feedback u = V(X) stabilizing in the large the system 
Cf at sonic point (.r-, u=) E 4. Then following the proof of Lemma 2.1 we conclude that 

and the righthand sitlc does not depend on o(s). Therefore we can choose the parametriza- 
tion so that 

d(iu - u 0 ir,w,O) = 1. 
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That means ((L,(T) - I’( .r,( r))) . (T - T*) > 0 whenever T # ?. The proof is finished. 

Using the normal l>aramctrization we can formulate the fuilowing necessary condition 
of smooth st abiliz:r t ion in the large. 

Theorem 3.3 Let X:/ be u smooth system such that 

und w c j’-‘(O) connected component ,with the normal parametrization { (xW( r), uw( r)) E 
R; x R,; T E R}. Then the .sy.qtem 2, is not smoothly stabilizable in the large at a point 
(X8, (I=) E d ~whenwer cither YL? is bounded or there is a connected component Lz) C f-‘(o) 

Proof. If &s is bountlctl. thc>n the theorem follows from Theorem 3.2. According the 
definition of normal I)i\ri\lllCtrizatioll 

(U,(T)-L’(S,(T)))*(T-T*)>O t/T#T* 

where ZL = F(J) is a smooth feedback stabilizing 2, at (x*, u*) in the large. If the 
inequalities (3) hold. t,hcn 

Since 
that 

* That 

12 is a c.oiiiit~ctcd component. of f-‘(O) we obtain the existence of (5*, ii’) E LZI such 

li’ = I@*). 

means the closed loop system 

s = f(x,v(x)) 
, 

has two different equilibria points: (xx, ZL*), (.?*, ii’). Therefore the feedback u = V(X) 
can not st;lbilize the systcni 2, in the large at the point (x’, ,u*). The proof is completed. 

In Theorc>nl 3.3 it is lxx+sible also t,hat iL1 = w. In this case we have the following 
proposition. 
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Theorem 3.4 Suypuae 5, be u smooth system such that 

rank( $f(.r, u ), Ef(z, u)) = n v (5,4 E f-‘(o) 

and w c f-‘(O) a connected component ,with the normal parametrization 

w = {(.u,(T),u,(T)); T E R}. 

Suppose further there ure rl, rz E R for zuhich it is true that either f-1 < ?z 5 r* or 

72 > f1 > T- and 
.I-,( Tl ) = .I-,( iI) TI 5 T*, 

A*&,( 7-Z) = J,( ?2) T2 > T*, 

u Tl) > b(C), 

h(T2) < %(f22), 

where T= E R und .L.,( T=) = .I’=, u,(T~) = u’. Then the system c, is not smoothly 
stabilizublc in the IILY~C ut ( .I.~, 11~) E cz. 

Geonwtricdl\- Thc~orc~~~~ 3.1 tcqqther \vith Theorem 3.2 mesa that if a system C, is 
sn~oot.hly stal~iliml~k iu thcx largc~ at. c\-cry point of J C f-‘(O), then w is to be an 
unknotetl. ~1nl~o~u1&~1 (YIYVC’ in n!j x R,. 

Example 3.2. Consider the system 

i-1 = -(x1 - ‘2)(x, - u2 - 1) - x2(x1 - 212 - q=u, 

.p2 = -.1’2 + 3.&q - u2 - 1)x 

Using: Theorem 3.3 IIT obtain that the system is not smoothly stabilizable in the large 
at the point x1 = 3. x2 = 0, (I = 0. 
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