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Topological necessary conditions of
smooth stabilization in the large:
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Abstract: Several topological necessary conditions of smooth stabilization in the large have been
obtained. In particular. if a smooth single - input nonlinear system is smoothly stabilizable in the
large at some point of a connected component of equilibria set, then the connected component
is to be an unknoted, unbounded curve.
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1 Introduction

Consider the system Xy:

z = f(z,u),

where £ € R*. u € R™ and RYis used for (-dimensional Euclidean space. f(z,u)is a
complete C'™ vector field on R" for every v € R™ fixed.

The set

£71(0) = {(x,u) € R™™ ; f(x,u) = 0}

is called an equilibria set of the control system.

A system I/ is said to be smoothly stabilizable at (7=, u*) € f~*(0) in the large, iff there

exists a ('™ function « = u(x). such that u(z*) = uv* and  z* is an asymptotically
stable in the large singular point of the closed loop system

i = fla,u(z)),

i.e.. r” is stable and

lim e/r =2 Vz eR"
l—+
where ¢!/ is the flow generated by the vector field f(x,u(z)).

The smooth stabilizability problemi has been considered in many papers (for the list
of references sce. e.g.. [7]). Necessary conditions for local smooth stabilization have
been obtained in [ 1. 2], and for smooth stabilization in the large in [ 5 ]. This paper
represents a continuation of a line of work started in [5].

2 Some facts about degree of function

This section is devoted to recalling some facts about the degree of continuous functions.
For additional details on the degree of continuous functions, see (3, 4, 6]. We start with
some notations.

(i) . =(r1.....00) €ER"; |x|*)=<x,x>, where < z,y >= Y, ,ziy; Vz,y€R"

(ii) D is a bounded, open subset of R". Given D C R", its closure is written D, its
interior IntD, its boundary 9D.
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(iii) Given a real positive number r and y € R", B.(y) is the closed ball centre y,
radius r :
B.(y)={z€RY |x—yl|<r}.

(iv) C(D) is the linear space of continuous functions from D into R™ with the norm

I fll=sup| f(z)].
reD

CY( _D) is the space of functions having continuous first order partial derivatives
in D; the norm on C'(D) is

| 0
I fli=sup| flz) 1+ sup |=o—f(z)],
rebD x_]

reD 17,<n
where
d 1%, d T
a—ljf(l)—(a—rjfl(l% ajfn(x)) ,

Ff ( ) is the partial derivative of the i—th entry of the function f : D —R", T

indicates transpose; 2= f(r) is the Jacobian matrix and det(a—xf(x)) is the Jacobian
determinant of f at .

(v) Let M. N be smooth manifolds of dimension n. Then C* - mappingy: M — N
is called diffeomorphism iff ¢ is homeomorphism and ¥~! is also C* - mapping.

Now we define the degree of © when function ¢ € C'(D) and

- 0
Vr€op(p)={re€D: olz)=p} det(z-4(z))#0,
i.e., p is not critical value of ¢ on D.

Definition 2.1. Suppose ¢ € CY(D). p€#(OD) and p is not critical value of ¢ on D.
Define the degree of o at p relative to D to be d(¢, D,p), where

dlo.D.p)y= Y sign.[det(%q&(:c))].

reo~(p)
If ¢ € C(D), then the degree of ¢ can be defined as the degree of a sufficiently good C!
approximation of ¢ (for details, see [4]).

Definition 2.2. Suppose that ¢ € _(D) and p€¢(dD). Define d(¢,D,p) to be
d(y, D, p), where ¢ is any function in C'(D) satisfying

| o(x) — v(x) |< p(p,#(8D)) Yz € D,



where p(2.0(9D)) = inf eqapy |+ —y | -

Recall that if X and Y™ are topological spaces, two continuous functions f and g are
said to be homotopic (f ~ ¢) if there is a continuous function (homotopy) ‘

H: [0,1]]xX — Y
such that
H(0,x)= f(x), H(l,z)=g(z) (z € X).
We will need the following properties of degree.

Theorem 2.1 (1) If H(t.x) = h(x) is a homotopy and p€h(OD) for 0 <t < 1,
then d(h,.D.p) is independent of t € [0, 1].

2) If ¢ smooth feedback u = u(x stabilizes the system Sy at p € D C R™ in the
) f P
lu,rg(:. then

d(f(u),D,0) = (-1)",
where f(u) denotes f(r,u(xr)): R*™ — R™

(8) Suppose o € C(D). If d(o.D.p) is defined and non-zero, then there is ¢ € D such
that o(q) = p.

In the definitions 2.1. 2.2 D can be replaced by a smooth, oriented manifold M of
dimension n. dimnM = n (details of this and related material may be found in [3 , 6 ]).

Given ¢ € C'Y(M). o:M — R", p€e(dM), d(¢,M,p) denotes the degree of ¢ at
p relative to AL

An immersion ¢ : M — R x R™ which maps M homeomorphically into its image
(M) € R" x R with topology induced by R% x RJ' is called regular embedding.
iz M — RY 1,; M — R™ are used to denote P; oz and P, o1, respectively, where
P., P, are the projections : P.(r,u) =z, P,(z,u)=u.

Lemma 2.1 Suppose f : R" x R™ — R" is a smooth function and

rank{ga-;f(.r,u),%f(.l‘,lt)}=71 V(z,u) € f7Y(0).

Suppose further w 1s a bounded connected component of f~1(0). If u = v(z) : R — RY
18 a smooth function such that

FFHO N {(rou) € R x RM: u=v(x)} =wN{(x,u) € R x RTu = v(x)},

then
d((f,P, —voP;),Bgr(0),0) =0

where R > 0 such that « C IntBgr(0).



Proof. Consider the function

o[ Hew)
Q(l’u)_(u—-v(:v))

If w C IntBr(0). then 0€o(OBR(0)) and d((f, P, — v o P.), Br(0),0) is defined.
The set
V = o([Br(0) N {f7'(0) \ w}] U 8BR(0))
is compact and 0€V. Thus making use of Sard’s theorem ( see, e.g., (3] ), for any
€ > 0 we can choose so a point p € R? x R™ that p is not critical value of ¢ on

Bpr(0),| pI< s. P.(p)is not critical value off r,u) and p is in the connected component
of the set (R! x R™)\ \" containing zero.

For any ¢ > 0 ouce can find a positive number & such that

F7H(B:0))N Bu(0) C U Bs(x).

ref=1(0)NBR(0)

Let us choose = > 0. & > 0 such that

{(e.u) € Bp(0); Ju—-rv(r)|<e}n] U Bs(z)] = 0,

r€(/ 1 (0)\w)nBR(0)

U Bs(x) C IntBg(0),

rew

{U Bste)} n{ U Bs(z)] = 0.

rEw re(f=1(0)\w)NBr(0)

. Then the property (1) (Theorem 2.1 ) implies

d(¢, Br(0),0) = d(¢, Br(0), p)

and according to the definition 2.1.

3
d(o.Bp(0).p) = z sign|det ( 31f(1r u) 'a—lzf(:ru) )],

v x I
(ru)€0=1(p) (z) m
where [, is the identity m x i -matrix.

Let
wy = [T Pe(p)) N [ Bs(z)]

TEW

and ¢ :w, — R x R™ be regular embedding z will be used to denote local coordinates
on w,. Due to

lanl\(aalj (r.u) ——f(l u))=n V(m,u)ef_l(P,_.(p))



one can choose local coordinates on w, so that

d(—t<(ﬁ"iﬁfi)oj( ) froi(z)

); (ad-z’-u(-))T )>0 Vz € wp.

Thus

olJ”[(lét ( '_‘_ﬁ:v(‘l“)) Juf;:l’u‘) )] = bzgn[det[( 3r—f—(:,’(‘:)) auf;iy U) ) x

(.Q-_f(.lr,u))7 ‘—'ix(z 3 g T
(e G ) = st o )4 o )l
.sign(dct[—éa—i“( ) — 50—('(.1') - —a—il.(:)]) Vz:€w, and z =1i,(2), u=1,(2).

= X z
It follows from
J d
qul.[-———f(z u), mf(.r,u)]:n V (z,u) € wy,

dw
that ‘

9 flec)) + 2 flaa( L fzu)T) £0 V(z,u) € w,.
Jdu Ou

9]
(let(af( £, u)(al

Hence we obtain
| d(o.Br(0),p) |=] d(iy — v o iz,wy Pulp)) | .

Since w, is a cowpact manifold without boundary and iu —voi,: w, — Riisa
continuous function oun w,. it implies (see , e.g., [3,6] ) — v 01izwp, Py(p)) =0. The
proof is completed.

3 Main results

3.1 Multi - input systems
We start with the following necessary condition of smooth stabilization in the large.

Theorem 3.1 Suppose f: R x R™ — R" is a smooth function and

lim . inf. < f(z,u), f(z,u) > >0. (1)

P4 —

Then the system T; is not smoothly stabilizable in the large at any point (z*,u*) €
f710).

Proof. It follows from (1) that there is a positive real number R, such that

F~Y0) C Int(Bgr(0)).

Hence

flew)#0 Ve eRT, |x|=R

6



and properties (1), (3) (Theorem 2.1 ) imply
d(f(z,u(x)). P:(Br(0)),0) = d(f(x,u) P:(Br(0)),0)=0,
where | i |= R and u = u(2) is any C* - function, while
d(f(x,u(x)), P-(Br(0)),0)

1is to be equal to (—1)" whenever u = u(z) is a smooth feedback stabilizing the system
in the large. Thus the system can not be smoothly stabilized in the large at any point
(z=,u”) € f71(0). The contention of the theorem is proved.

If f=1(0) is a regularly embedded submanifold of R? x R™, then Theorem 3.1 can be
replaced by the following stronger result.

Theorem 3.2 Supposc f: Ry x R — R" s a smooth function and

ranl.'{-é—;?;‘)"(.r,u)‘—a%f(.z',u)}:n Vi{z,u) € f‘](O).

If the system ) s smoothly stabilizable in the large at a point (z*,u*) € w, where w
i3 a connected component of f~1(0). then w is to be unbounded.

Proof. If « = v(r) is a smooth feedback stabilizing in the large the system ¥, at a
point (x*.«") € « and w is bounded. then there is Br(0) such that

w C IntBR(O)

and
d(f( l‘)s PJ(BR(O))aO) = (_l)n
Note that
RO N {(r ) ERY X R u=v(x)} =wn{(x,u) € R®xR™; u=v(x)}
and

| d(f{v). P(Br(0)),0) |=| d((f, Py —vo F;), Br(0),0) |.

Thus making use of Lemina 2.1 we obtain the contradiction which proves the theorem.
Example 3.1. Consider the system
ry = .r.f + .173 -1,

;l.?2 = u.

It is easy to see that all condition of Theorem 3.1 are met. Therefore the system is not
smoothly stabilizable in the large at any point of the equilibria set defined by z3+z2 = 1.
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3.2 Single-input systems
Consider the single - input system Sy

T = f(:l:, u)a
where u € R and f is defined above. If

-é%f(r,u)) =n v (z,u) € f71(0),

then the equilibria set of £ consists of regular curves:

= Ui,
i

1'(171k(50—f( rou),
X

where w; = {(vu, (7). ul(T))ir € R} and | Lo, (r) P + | uu(r) P#0forall 7 € R

and .

Definition 3.1. A parametrization

{(we(T) un (7)) reR}

of the curve «, C f710) will be called normal iff for any smooth feedback u = v(r)
stabilizing in the large the system £y at any point (z*, u*) € w; the following inequalities

hold:

®

Uy (r)=—ov(r,(r))>0 for 7>r71

and
uy (t)—v(a,(r)) <0 for 7<71%,

where 7% € R such that & (77) = 0%, u,,(77) =u".

Proposition. Let w C f71(0). the system S, be smoothly stabilizable in the large at
some point in w and :

—a—f(.l'.u)‘—a—f( T, u V (z,u) € f71(0).

or du” ))=n

ranh(

Then there 1s ¢« normal parametrization on w.

Proof. Assume there is a smooth feedback u = v(z) stabilizing in the large the system
Y at some point (2", u") € w. Then following the proof of Lemma 2.1 we conclude that

dlin = 00 .0.0) = sign(det{ o= L. u)( 5 f(2, 1) + o fl2,u) o e, W) (<1

and the righthand side does not depend on v(r). Therefore we can choose the parametriza-
tion so that

d(iy —voisw,0)=1.



That means (u (1) — v(x.(7))) - (r — ) > 0 whenever 7 # 7°. The proof is finished.

Using the normal parametrization we can formulate the foilowing necessary condition
of smooth stabilization in the large.

Theorem 3.3 Lct £ be u smooth system such that

t-ank(—aa‘—l_f(‘zr, u‘), a—au-f(.z', w))=n V (z,u) € f7(0)

and w C f~Y0) connected component with the normal parametrization {(z,(7),u (7)) €
R™ x Ru, T € R}. Then the system S, 1is not smoothly stabilizable in the large at a point
(z*,u") € w whencver cither w 1s bounded or there is a connected component w C f~1(0)
.mch that one can find pornts (£, uy), (I, ) € w such that

ryny=rn mn <1,

ru(T) = Iy 2T,
and
u(m) >,

u () < ty,

where 77 € R and « (77) = 2", u(77) = u".

Proof. If « is bounded. then the theorem follows from Theorem 3.2. According the
definition of normal parametrization

(u{1) —v(au(r)) - (r=77)>0 V7#1"

where u = v(r) is a smooth feedback stabilizing ¥, at (z*,u*) in the large. I the
inequalities (2) hold. then

v(x,(m)) > wy
o(2u(2)) < g

Since «& is a connected component of f~1(0) we obtain the existence of (Z*,4*) € & such
that

ut = v(z").
That means the closed loop system
r = f(zx,v(z))

has two different equilibria points: (2*,u*), (&*,4*). Therefore the feedback u = v(z)
can not stabilize the system £ in the large at the pomt (z",u*). The proof is completed.

In Theorem 3.3 it is possible also that @ = w. In this case we have the following
proposition.



Theorem 3.4 Suppose T, be a smooth system such that

0 a
rank(z—f(z,u), 3=f(z,u)) =n V (z,u) € f7(0)

and w C f~1(0) a connected component with the normal parametrization
w={(z.(7),u.(T)); T€ER}

Suppose further there are 1, 73 € R for which 1t is true that either ¥, < 7, < 7* or
To> 7 > 1" and

“'../( Tl) > uw(":l)v
u,(T2) < uu(T2),

where 7% € R and v (77) = 2", u,(7") = u". Then the system X, is not smoothly
stabilizable in the large at (0™ u™) € w.

Geometrically Theorem 3.4 together with Theorem 3.2 mean that if a system I, is
smoothly stabilizable in the large at every point of w C f7'(0), then w is to be an
unknoted. unbounded curve in R? x R,,.

Example 3.2. Counsider the system
. : 2 <
Ly = —(.1717—2)(1'1 -u2—1)—.7:2(:c1—u —1) u,

ro= —r;+x(x; — u® — l)u.

Using Theorem 3.3 we obtain that the system is not smoothly stabilizable in the large
at the point vy =2, v, =0. u=0.
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