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Abstract

This thesis deals with the simulation of large insurance portfolios. On the one hand,
we need to model the contracts’ development and the insured collective’s structure and
dynamics. On the other hand, an important task is the forward projection of the given
balance sheet. Questions that are interesting in this context, such as the question of the
default probability up to a certain time or the question of whether interest rate promises
can be kept in the long term, cannot be answered analytically without strong simplifica-
tions. Reasons for this are high dependencies between the insurer’s assets and liabilities,
interactions between existing and new contracts due to claims on a collective reserve,
potential policy features such as a guaranteed interest rate, and individual surrender op-
tions of the insured. As a consequence, we need numerical calculations, and especially the
volatile financial markets require stochastic simulations. Despite the fact that advances in
technology with increasing computing capacities allow for faster computations, a contract-
specific simulation of all policies is often an impossible task. This is due to the size and
heterogeneity of insurance portfolios, long time horizons, and the number of necessary
Monte Carlo simulations. Instead, suitable approximation techniques are required.

In this thesis, we therefore develop compression methods, where the insured collec-
tive is grouped into cohorts based on selected contract-related criteria and then only an
enormously reduced number of representative contracts needs to be simulated. We also
show how to efficiently integrate new contracts into the existing insurance portfolio. Our
grouping schemes are flexible, can be applied to any insurance portfolio, and maintain
the existing structure of the insured collective. Furthermore, we investigate the efficiency
of the compression methods and their quality in approximating the real life insurance
portfolio.

For the simulation of the insurance business, we introduce a stochastic asset-liability
management (ALM) model. Starting with an initial insurance portfolio, our aim is the
forward projection of a given balance sheet structure. We investigate conditions for a long-
term stability or stationarity corresponding to the idea of a solid and healthy insurance
company. Furthermore, a main result is the proof that our model satisfies the fundamental
balance sheet equation at the end of every period, which is in line with the principle of
double-entry bookkeeping. We analyze several strategies for investing in the capital market
and for financing the due obligations. Motivated by observed weaknesses, we develop new,
more sophisticated strategies. In extensive simulation studies, we illustrate the short-
and long-term behavior of our ALM model and show impacts of different business forms,
the predicted new business, and possible capital market crashes on the profitability and
stability of a life insurer.
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Zusammenfassung

In dieser Dissertation beschäftigen wir uns mit der Simulation von großen Lebensver-
sicherungsbeständen. Hierzu müssen zum einen die betrachteten Verträge, die Struk-
tur des Bestandes sowie Zu- und Abgänge modelliert werden. Zum anderen besteht
eine wichtige Aufgabe darin, die gegebene Versicherungsbilanz zeitlich fortzuschreiben.
In diesem Zusammenhang interessante Fragestellungen, wie die Frage nach der Höhe
der Insolvenzwahrscheinlichkeit bis zu einem bestimmten Zeitpunkt oder die Frage, ob
Zinsversprechen langfristig eingehalten werden können, lassen sich ohne grobe Verein-
fachungen analytisch nicht beantworten. Gründe hierfür sind starke Abhängigkeiten zwis-
chen Verbindlichkeiten und Vermögenspositionen des Versicherers, Interdependenzen zwis-
chen Alt- und Neubestand über Ansprüche auf eine gemeinsame Reserve, bestimmte Ver-
tragscharakteristiken wie eine garantierte Mindestverzinsung und individuelle Kündigungs-
rechte seitens der Versicherungsnehmer. Aus diesem Grund sind numerische Berechnun-
gen und angesichts schwankender Finanzmärkte stochastische Simulationen unabdingbar.
Eine vertragsgenaue Simulation mit akzeptabler Laufzeit ist jedoch aufgrund der Größe
von Versicherungsbeständen, den langen Betrachtungszeiträumen von teilweise mehreren
Jahrzehnten und der Anzahl der notwendigen (Monte-Carlo-) Simulationen selbst bei
fortschreitender Technik mit wachsenden Rechenkapazitäten und Geschwindigkeiten mod-
erner Computer eine oft unmögliche Herausforderung. Stattdessen benötigt man approx-
imierende Simulationsmethoden.

In dieser Arbeit entwickeln wir daher ein Verfahren zur Bestandsverdichtung, bei dem
aufgrund gewählter Gruppierungsmerkmale das Versicherungskollektiv in Kohorten einge-
teilt und dann lediglich eine enorm verringerte Anzahl repräsentativer Verträge simuliert
werden muss. Zudem zeigen wir, wie neue Verträge in bestehende Kohorten integriert wer-
den können, wodurch Effizienz auch bei laufendem Neugeschäft gewährleistet ist. Das Ver-
fahren ist sehr flexibel, lässt sich auf jeden Versicherungsbestand anwenden und behält die
gegebene Struktur des Bestandes bei. Ferner betrachten wir verschiedene Möglichkeiten
zur Erzeugung der Kohorten und überprüfen die Approximationsgenauigkeit anhand ge-
eigneter Gütekriterien.

Für die Simulation des gesamten Versicherungsgeschäfts führen wir ein stochastisches
Bilanzstrukturmodell ein. Ziel ist die Projektion der gegebenen Bilanzstruktur über den
gesamten Betrachtungszeitraum. Wir untersuchen Kriterien für eine langfristige Stabilität,
entsprechend der Vorstellung eines soliden und gesunden Versicherungsunternehmens.
Ferner ist eines der Hauptresultate der Beweis, dass unser Modell die fundamentale Bi-
lanzgleichung am Ende jeder Periode erfüllt. Dies steht im Einklang mit dem Prinzip
der doppelten Buchführung. Wir analysieren mehrere Strategien zur Kapitalanlage und
zur Finanzierung fälliger Verbindlichkeiten und nehmen beobachtete Schwächen als An-
lass, neue Strategien zu entwickeln. Eine Vielzahl an Simulationsstudien illustriert das
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kurz- und langfristige Verhalten unseres Bilanzstrukturmodells und zeigt Auswirkungen
von verschiedenen Geschäftsmodellen, des prognostizierten Neugeschäfts und möglicher
Börsencrashs auf die Rentabilität und Stabilität eines Lebensversicherers.
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für die moralische Unterstützung und die kontinuierliche Motivation. Sie fand stets die
richtigen Worte.

xv





1. Introduction

Insurance companies take risks on behalf of their policyholders in exchange for premium
payments. Since they provide consumers and businesses with protection against negative
events, insurers make a substantial contribution to economic growth, see Gründl et al. [31].
Furthermore, as financial intermediaries and large holders of government and corporate
bonds, they play an important role for the stability of the whole financial system. Indeed,
if insurance companies face large liquidity risks and are threatened by insolvency, they
might be forced to sell assets to a large extent. This could possibly imply a decline in
the concerned asset prices. In addition, they could withdraw their capital from banks
and other financial institutions and thus transmit the stress to other parts of the financial
system, see Deutsche Bundesbank [20].

A necessary principle for insurance to work is the pooling and sharing of risks faced by
individual agents in a large collective. The building of such a large insurance portfolio
requires that potential policyholders have confidence in the insurer. More specifically, the
insured person must be able to rely on the insurance company meeting its due obliga-
tions at any time. In this context, life insurers play a special role since a life insurance
contract may financially protect entire livelihoods, especially if there is only one family
breadwinner. Moreover, as long-term agreements with contract periods of several decades
in some cases, life insurance policies contrast with other types of insurance contracts and
impose additional requirements on the company’s financial strength such that interest rate
promises can be kept in the long term.

In recent years, however, several life insurers decided to sell parts of their insurance
portfolios to run-off companies, i.e. to firms that are specialized in the processing of existing
contracts without issuing new policies.1 In such cases, the contracts remain in force and
the corresponding regulating authorities ensure that contractually guaranteed benefits are
met. Nevertheless, the sales attracted a lot of attention and were often viewed critically
in public reporting and by consumer protectors.2 Reasons for these measures, which
have certainly led to a loss of confidence among some policyholders, may have been the
ongoing period of low, and in some cases even negative, interest rates on the one side and
simultaneous high obligations from existing contracts on the other side. This combination
makes it difficult to obtain sufficient returns on the managed funds, see Kok et al. [42], and
is one of the challenges today’s life insurers face. Against this background, a successful
asset-liability management (ALM) seems to become more important. The application

1One of the largest sales was made by the Generali Group in 2019. Over 3.8 million life insurance
policies were sold to the run-off company Viridium Holding, see the news release by Viridium Holding,
30 April 2019. URL: www.viridium-gruppe.com.

2See, e.g., the news release by the German Association of the Insured (Bund der Versicherten, BdV),
28 September 2017. URL: www.bundderversicherten.de.
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1. Introduction

of stochastic simulations can support managerial decisions by illustrating the long-term
effects of potential measures.

Essentially, ALM can be seen as the goal-driven coordination of assets and liabilities
of a balance sheet, see Wagner [55]. For life insurers this means that the investments in
the capital market need to be reconciled with the obligations induced by the insurance
products such that claims can be met when they are due. An ALM model typically
combines several sub-models describing both the evolution of assets and liabilities and
different external environments affecting the insurance business (e.g. the dynamics of the
capital market, the interest rate environment, and the policyholders’ behavior).

A lot of work has been already done within the wide-spread field of asset-liability man-
agement. In particular, stochastic ALM-modeling has become quite popular, see e.g. Bauer
et al. [3], Grosen and Jørgensen [29], Hieber et al. [34], and Zaglauer and Bauer [57] and
the references therein. Further ALM models are introduced in, e.g., Bohnert and Gatzert
[9], Bohnert et al. [10], Burkhart et al. [13, 14], Fernández et al. [25], Gerstner et al. [27],
Kling et al. [40, 41], and Kok et al. [42]. A more extensive overview of ALM models in
the existing literature is provided in Section 3.1.2 below, where we also discuss some of
the assumptions made.

In this thesis, we develop a general ALM model for the efficient simulation of large
insurance portfolios and the preparation of the balance sheet. In the Master’s thesis Diehl
[22], we have already introduced a basic ALM model with a similar structure. However, the
new model developed in this work is much more sophisticated and realistic, and therefore
might be of greater practical relevance. At the end of this introduction, we go into more
detail by elaborating on the substantial differences between the two models and by pointing
out some of the new contributions.

We consider a life insurer that manages a large, heterogeneous insurance portfolio con-
sisting of participating contracts. The holders of such policies are, in addition to the
contractually guaranteed benefits, entitled to variable bonus payments which allow them
to participate in the obtained surpluses. Bodie et al. [7] distinguish between defined
contribution and defined benefit type of insurance products. In our case, the contracts
represent hybrids of both types. Indeed, the benefit payments result from the accumulated
contributions, but due to premium guarantees, interest rate promises, and entitlements to
allocated surpluses, the policies may not be fully funded. Early termination of contracts is
possible due to surrender options and mortality. For the latter, we use detailed life tables
providing a realistic development of death probabilities. The insurance portfolio’s hetero-
geneity is reflected by different maturities and premiums of the policies and by a wide
range of biometric parameters regarding the insured collective. Starting with an initial
insurance portfolio, our aim is the forward projection of a given balance sheet structure
and the investigation of conditions for a long-term stability or stationarity.

Despite the fact that advances in technology with increasing computing capacities allow
for faster computations, a contract-specific simulation of all policies is often an impossible
task. Indeed, according to Goffard and Guerrault [28], many life insurers face run time
problems. Reasons for this are the size and heterogeneity of insurance portfolios, long
time horizons, and the number of necessary Monte Carlo simulations. Instead, suitable

2



approximation techniques or improved Monte Carlo methods are required. Krah et al.
[45], e.g., use the least-squares Monte Carlo method for the calculation of the solvency
capital requirement (SCR) under Solvency II. For this, they need only a small number
of simulations, but have to further process the output. In the recommendations of the
German Association of Actuaries, an exemplary procedure for the compression of an in-
surance portfolio is presented, which is based on solving a restricted minimization problem
for chosen target figures, cf. Deutsche Aktuarvereinigung [19]. This approach is related
to cluster-based compression methods like the K-means clustering proposed by Seehafer
et al. [51]. Kiermayer and Weiß [39] present a framework for the grouping of an insurance
portfolio using neural networks.

In this thesis, we explicitly address the well-known run time problem and investigate
impacting factors. We illustrate that the introduced model suffers from unacceptable
run times, partly even for single simulation runs, if we perform naive contract-specific
simulations. This shows that, in particular if considering an ongoing insurance business,
where the existing insurance portfolio is permanently augmented by new policies, we need
flexible, approximating simulation methods, which we provide in this thesis. We develop
different methods for the compression and the simulation of a given large insurance port-
folio and investigate their quality and efficiency. Since our grouping schemes are flexible
and universally applicable to any insurance portfolio, they might be relevant for practical
applications. The initial number of cohorts and the number of policyholders within these
depend on both the size and the heterogeneity of the given insured collective. We also
show how to efficiently integrate new contracts into the existing insurance portfolio. At
the same time, our model provides the flexibility to consider different scenarios regarding
the development of the new business and can thus be used to simulate different business
forms of a life insurance company.

The general goal of the thesis is always the simulation of large insurance portfolios and
the investigation of factors potentially disturbing the stability of the corresponding bal-
ance sheets. We focus on the modeling and motivate the chosen models and approaches
by observations from real data. Regarding the legislation, we orient ourselves towards Eu-
ropean and in particular to German law, e.g. by considering a lagged participation process
for the surpluses, but we do not focus on the stringent adaption to all regulations or the
incorporation of local accounting rules. We aim at a balance between tractability and tak-
ing into account relevant legal requirements in order to get meaningful simulation results
on the long-term stability. The purpose of the extensive simulation studies is also the
development of guidelines and recommendations, e.g. regarding the applied compression
and simulation method. The remainder of the thesis is structured as follows.

Chapter 2 deals with the simulation of large insurance portfolios. Here, we provide
a general setting for modeling the structure and the dynamics of life insurance portfo-
lios using flexible probability distribution families. In this chapter, we propose different
approaches for the efficient simulation of a given large insurance portfolio. The idea is
always to group the insured collective into cohorts according to biometric, contract-related
criteria and to simulate only representative contracts, which form a compressed insurance
portfolio. Each of these procedures can be seen as an approximation of the real insurance

3



1. Introduction

portfolio by a representative, less heterogeneous portfolio of the same size where the primal
general structure is maintained. To investigate the approximation quality, we introduce
different measures and methods.

In Chapter 3, we motivate and describe the general framework of our basic ALM model
and introduce its various, interacting parts. The interest rate environment is modeled
by simulating the instantaneous risk-free interest rate. For this, we use the prominent
Vasiček short rate model that allows for negative interest rates. For the controlling of
the life insurance business, we introduce a management model, where decisions regarding
the taken risks and the aimed profitability are made. More specifically, the management
decides about the surplus participation process, the asset allocation, and the methods for
financing the due obligations. Furthermore, we put emphasis on the making of the balance
sheet. We do not assume that the sum of all liabilities automatically equals the sum of
all assets in contrast to many models in the literature. Instead, we explicitly prove that
the fundamental balance sheet equation is fulfilled at the end of every period, which is the
main result of this chapter, see Theorem 3.7.3.

In Chapter 4, we perform extensive simulation studies to investigate the efficiency of
the compression methods and their quality in approximating the real (uncompressed) life
insurance portfolio. We then choose one method and illustrate our basic ALM model for
two prominent investment strategies. We consider alternative patterns of new contract
arrivals and allow for fixed and random capital market crashes. These extensions aim
at both, obtaining insights on the robustness of the applied management strategies and
investigating conditions for the stability or stationarity of the components of the balance
sheets.

Chapter 5 builds up on Chapter 3. Here, we present several refinements, alternative
modeling approaches, and further applications of the general ALM model. Motivated by
the observation that the two introduced investment strategies are not well oriented to the
obligations induced by the (compressed) insured collective, we develop more sophisticated
strategies for investing in the capital market and for financing the periodic disbursements.
Taking into account the interactions between assets and liabilities, the new strategies aim
at increasing the profitability and the security of the life insurance business. Furthermore,
we prove that the fundamental balance sheet equation in the refined ALM model holds at
all times, too.

Chapter 6 corresponds to the second part of the simulation studies. In the presence
of transaction costs, we investigate the performance and robustness of the new strategies
using several numbers for illustration. In addition, we investigate the effects of further re-
finements and alternative modeling approaches of components of the general ALM model,
which includes the modeling of the capital market, the used method for the annual interest
rate declaration, and the strategy for the use of surpluses.

Chapter 7 provides our conclusions.
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Differentiation from the Master’s thesis

We close this introduction by elaborating on the substantial differences between the models
developed in this work and the one introduced in the Master’s thesis Diehl [22]. For
convenience, the latter is called the old model.

The capital market is modeled identically in the old model and in the basic new model.
However, motivated by observed stylized facts, we extend the latter by considering a
stochastic volatility model for the stock price dynamics. In the simulation studies, we
expand our capital market model by allowing for crashes in the stock and bond markets,
which lead to extreme liquidity shocks and thus threaten the insurer’s financial health.
This setting covers the extension to corporate bond investments and provides the ability to
investigate the stability of the components of the balance sheet for different asset-liability
approaches and the robustness of the applied investment strategies. Like the capital
market, the balance sheet is also modeled more realistically in the new model. The total
amount of assets is now allocated to bonds with different times to maturity, stocks, and
a cash position. Furthermore, we add a new balance sheet position, liabilities to banks,
providing the opportunity to account for liabilities of all kinds, e.g. for short-positions of
bonds. Regarding the asset allocation, we introduce a minimum and a maximum amount
for the stock positions. While the former could be a management target, potentially
leading to higher returns on the managed funds, a maximum amount for stock positions
is in line with the principle of prudent business practice prescribed by the regulating
authorities. We develop more evolved strategies for investing in the capital market and
for financing the due obligations. In particular, some of the strategies allow for selling
bonds before maturity which was excluded in the strategies considered in the Master’s
thesis Diehl [22]. For this, we develop an algorithm for the successive sale of bonds to
reduce a defined gap in funds while taking into account a safety amount that should
be kept for future disbursements. The introduced strategies are investigated in terms of
chances and risks in the presence of transaction costs. Regarding the bonus declaration, we
introduce a method where the interest rate declaration is directly linked to the obtained
returns and still accounts for the current amount of (free) reserves. The method can
potentially decrease the probability of default. The new model is in line with the principle
of double-entry bookkeeping as required in accounting, too. For this, we provide new
proofs that the fundamental balance sheet equation is fulfilled at all times.

In addition to the presented ALM model, all parts regarding the simulation of life
insurance portfolios are new. In the Master’s thesis Diehl [22], we assumed that the
insurance portfolio was already represented by a (reduced) number of model points, each
consisting of a predefined number of policyholders. We indicated possible criteria for the
generation of cohorts, but a compression of life insurance portfolios did not take place.
An ongoing insurance business was modeled by assuming that a predefined number of
model points emerge in every period, where each cohort consisted of a random number
of policyholders. The new cohorts were added to the existing insurance portfolio. In
the simulation studies of the Master’s thesis Diehl [22], we found that this method is
not efficient as its run time depends over-proportionally on the number of considered
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1. Introduction

periods. As a consequence, we were only able to consider the case where two cohorts of
new customers emerge per period and we needed to restrict to much smaller insurance
portfolios. More specifically, the simulated insurance portfolio consisted of 500 cohorts
each comprising 100 policies. In contrast, the standard size of the insurance portfolios
considered in this work is 500, 000 and even larger portfolios that consist of 10,000,000
policies are simulated.
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2. Large Insurance Portfolios

This chapter deals with the simulation of existing large insurance portfolios. The modeling
approaches are motivated by observations from real data presented in Section 2.1. A gen-
eral simulation framework and suitable probability distribution families allowing for high
flexibility are introduced in Section 2.2. Here, we also introduce a measure to quantify the
distance between two (empirical) probability distributions. The following section (Sec-
tion 2.3), is about the structure and the dynamics of life insurance portfolios. On the one
hand, the simulation should be realistic to get reliable results. For this, we need to consider
large, heterogeneous insurance portfolios containing policies with different characteristics
and policyholders with individual biometric properties and behavior. Furthermore, the
dynamic development of an existing insurance portfolio over time needs to be modeled.
On the other hand, one needs efficient simulations with tolerable computer running times.
Apart from the size and the heterogeneity of the insurance portfolio, and the fact that we
need many simulations,1 there exists another factor having a negative influence on the ef-
ficiency, namely the considered time horizon. Since life insurance contracts typically have
long maturities (often several decades), it is important to look at larger time horizons, too.
This is in addition to the short-term considerations prescribed by regulating authorities.2

Therefore, approximation techniques are required. In Section 2.4, we propose different
approaches for the efficient generation of compressed insurance portfolios and the incor-
poration of new contracts allowing for efficient simulations over large time horizons. Here,
we also introduce measures to investigate the quality of the compression methods.

2.1. Observations from real life insurance portfolios

For the following observations, we consider Allianz Life being currently the largest life
insurer in Germany.3 The data is taken from the corresponding annual business reports
in the years 2008−2021.4

1As a rule of thumb, Monte Carlo requires at least 10,000 simulated paths per parameter set.
2E.g. under Solvency II, capital requirements are calculated on a one-year basis taking the 99.5% value-

at-risk of own funds as risk measure, see Wagner [55]. Different mathematical interpretations of the
corresponding solvency capital requirement (SCR) are compared by Christiansen and Niemeyer [15]
who also generalize the SCR definition to future points in time.

3According to the statistics regarding direct insurers provided by the German Federal Financial Supervi-
sory Authority (BaFin), the market share in 2019 was 29.22%, see Bundesanstalt für Finanzdienstleis-
tungsaufsicht [12].

4For the last nine years, the annual reports are available at www.allianz.de.
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Figure 2.1.: Dynamics of the insurance portfolio of Allianz Life (Germany) in the years
from 2008 to 2021. Top: insurance portfolio size. Middle and bottom: total
increment and decrement and differentiated decrement during the year relative
to the initial insurance portfolio size.

Figure 2.1 shows the dynamics of the insurance portfolio within the considered time
horizon. From the upper part, we observe a stable development followed by a decent
growth. We consider the increments (new business) and decrements (withdrawal) relative
to the initial insurance portfolio size at the end of the year 2007 or the beginning of the
year 2008. At that time, it consisted of 10,338,178 contracts. The relative number of
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2.2. Preliminaries

new customers per year is between 5.5% and 8.5% corresponding to 1.35% and 2.06% per
period if we have a quarterly discretization. We also see that the total withdrawals tend to
decrease. A more differentiated consideration of the withdrawals can be found at the lower
part of the figure. While the withdrawals due to expiry of policies (survival) and early
cancellations (surrender) tend to decrease, the decrements due to death remain stable and
increase within the last years (over 28% from 2014 to 2020). However, withdrawals due to
death are still significantly smaller compared to the other two causes. Here, withdrawal due
to surrender also includes the cases where the policyholders decide to set their contracts
exempted from contributions. Further, withdrawal due to death also includes the cases of
invalidity.

In summary, the development of all considered quantities in Figure 2.1 seems to be quite
stable, which is due to the large market share of Allianz Life. Indeed, in our simulation
studies, another important scenario (in addition to the run-off case motivated in the intro-
duction) will be an ongoing insurance business with stationary new business. For smaller
life insurance companies, such stationarity assumptions might not be justified since more
dynamic developments can be expected. Therefore, we will also consider alternative new
business scenarios.

2.2. Preliminaries

In this section, we introduce some probability distributions and mathematical concepts
which we need to develop our model.

2.2.1. The four-parameter beta distribution

Modeling different scenarios regarding the age structure in the initial insurance portfolio
or the future number of new contracts requires flexible distribution families. One suitable
choice is given by the beta distribution introduced in the following definition.

Definition 2.2.1 (Beta distribution). A random variable X is said to be beta distributed
with parameters α, β ∈ R>0 if it has the probability density function

fX(x) = 1{x∈[0,1]}
xα−1(1− x)β−1

B(α, β)
,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) =

∫ 1
0 t

α−1(1−t)β−1dt is the beta function and Γ(x) =
∫∞

0 tx−1e−tdt

the gamma function. We write X ∼ Beta (α, β).

The expectation and the variance of a beta distributed random variable X with param-
eters α, β are given by

E [X] =
α

α + β

9



2. Large Insurance Portfolios

and

Var (X) =
αβ

(α + β)2(α + β + 1)
.

The flexibility of the beta distribution is illustrated in Figure 2.2. Some of the parameter
pairs will be used in later simulation studies.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

2

4

6

8
(α, β) = (1, 1)

(α, β) = (2, 2)

(α, β) = (2, 5)

(α, β) = (2, 20)

(α, β) = (5, 2)

(α, β) = (20, 2)

Figure 2.2.: Illustration of the probability density function of the beta distribution for
different parameter specifications. For α = β = 1, we get the uniform distri-
bution on the interval [0, 1].

In applications, one often needs beta distributed random variables with support on
an interval [a, b] with a < b, i.e., we like to vary the location and the scale of the beta
distribution. This can be done by introducing two more parameters a and b representing
the minimum and maximum values. Then, the linear transformation

Y = a+ (b− a)X (2.2.1)

with X ∼ Beta (α, β) yields a random variable Y following the so-called four-parameter
beta distribution.

Definition 2.2.2 (Four-parameter beta distribution). A random variable Y is said to be
beta distributed with four parameters α, β, a, b, with α, β ∈ R>0, a, b ∈ R, a < b, if it has
the probability density function

fY (y) = 1{y∈[a,b]}
(y − a)α−1(b− y)β−1

B(α, β)(b− a)α+β−1
.

We write Y ∼ Beta (α, β, a, b).

The expectation and the variance of a four-parameter beta distributed random vari-
able Y with parameters α, β, a, b can be calculated directly from the representation in (2.2.1)

10



2.2. Preliminaries

yielding

E [Y ] = a+ (b− a)
α

α+ β

and

Var (Y ) = (b− a)2 αβ

(α+ β)2(α+ β + 1)
.

2.2.2. The truncated normal distribution

Due to the central limit theorem, the normal distribution N
(
µ, σ2

)
with mean µ and

variance σ2 can be used as an approximating distribution in many applications. However,
in some applications one needs a bounded support. More concretely, in this thesis we
have limits regarding the policyholders’ entry and exit ages. Therefore, we introduce the
following conditional distribution with support on a predefined interval [a, b] with a < b.

Definition 2.2.3 (Truncated normal distribution). A random variable X is said to follow
a truncated normal distribution with parameters µ, σ2, a, b with µ, a, b ∈ R, a < µ < b,
σ ∈ R>0, if it has the probability density function

fX(x) = 1{x∈[a,b]}
1

σ

ϕ
(x−µ

σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

) ,
where ϕ and Φ are the density and the cumulative distribution function of the standard
normal distribution N (0, 1), respectively. We write X ∼ T N

(
µ, σ2, a, b

)
.

The expectation and the variance of a T N
(
µ, σ2, a, b

)
-distributed random variable X

are given by

E [X] = µ− σ
ϕ
(
b−µ
σ

)
− ϕ

(a−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)
and

Var (X) = σ2

1−
b−µ
σ ϕ

(
b−µ
σ

)
− a−µ

σ ϕ
(a−µ

σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

) −

ϕ
(
b−µ
σ

)
− ϕ

(a−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)
2
 ,

see, e.g. Johnson et al. [37].

Sampling from a truncated normal distribution T N
(
µ, σ2, a, b

)
can be reduced to sam-

pling from a normal distribution N
(
µ, σ2

)
by generating normally distributed random

numbers and re-sampling those lying outside the limits until all samples lie within the
interval [a, b].
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Figure 2.3.: Probability density functions of N (73, 25) and T N (73, 25, 65, 80).

Figure 2.3 shows the densities of a normal distribution and its corresponding truncated
version with support on [65, 80]. The chosen parameters correspond to a simulation of
exit ages of policyholders having policies where the minimum and the maximum exit age
is set to be 65 and 80, respectively.

2.2.3. The total variation distance

An important part in this thesis consists of applying different methods for the simulation
of large insurance portfolios. For this, we would like to investigate the approximation
quality for which we need a measure to quantify the distance between two probability
distributions. A prominent method is based on the total variation distance introduced in
the following.

Let (Ω,A) be a measurable space and P,Q two probability measures thereon. The total
variation distance dTV (P,Q) between P and Q is defined by

dTV (P,Q) = supA∈A |P (A)−Q(A)| .

It can be interpreted as the largest possible difference between the probabilities of an
event assigned by P and Q. If Ω is discrete, i.e. finite or infinite countable, we obtain the
identity

dTV (P,Q) =
1

2

∑
ω∈Ω

|P (ω)−Q(ω)| . (2.2.2)

Similarly, if P and Q have densities f and g and Ω = R, we have

dTV (P,Q) =
1

2

∫
R
|f(x)− g(x)| dx. (2.2.3)

Assume we draw a sample X1, . . . , XN from PX , i.e. X1, . . . , XN are independent and
identically distributed with X1 ∼ PX . According to Devroye and Gyorfi [21], the standard
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2.2. Preliminaries

empirical probability measure (empirical distribution) PXN is defined by

PXN (A) =
1

N

N∑
n=1

1{Xn∈A}

for A ∈ A. Given another sample Y1, . . . , YN drawn from P Y , we are interested in measur-
ing the distance between the empirical distributions PXN and P YN . In the discrete case, we
can directly use the definition in equation (2.2.2) with P = PXN and Q = P YN . However, if
PX and P Y are continuous, which is the typical case in many applications, this is no longer
possible since Ω is not countable in that case. To deal with this issue, we proceed as follows.
First, the samples’ support [min {X1, . . . , XN , Y1, . . . , YN} ,max {X1, . . . , XN , Y1, . . . , YN}]
is divided into J = J(dTV ) intervals I1, . . . , IJ of the same length. Then, we compute the
total variation distance between the two empirical measures PXN and P YN on the basis of
the J chosen intervals by

dTV
(
PXN , P

Y
N ; J

)
=

1

2

J∑
j=1

∣∣PXN (Ij)− P YN (Ij)
∣∣ . (2.2.4)

Thus, we reduced the continuous setting to a discrete one.5

0 50 100 150 200
0

0.1

0.2

0.3

Simulation run

J = 5 J = 10 J = 50 J = 250 J = 500

0 50 100 150 200
0

0.1

0.2

0.3

Simulation run

Figure 2.4.: Total variation distance for different numbers J = J(dTV ) of intervals. For
each of the independent simulation runs, we generated N = 10, 000 samples
from PX and P Y . Left: samples drawn from the same normal distribution
PX = P Y = N (4, 16). Right: samples drawn from PX = N (4, 16) and
P Y = N (6, 16).

Note that the total variation distance computed by the introduced method may heavily
depend on the number J of chosen intervals. This is illustrated on the left-hand side
in Figure 2.4, where both samples are drawn from the same distribution. For a fixed

5Alternatively, one could estimate the functional form of the corresponding densities and apply (2.2.3).
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2. Large Insurance Portfolios

simulation run, an increase in J yields larger values for dTV . Indeed, we can always obtain
the two extreme cases dTV

(
PXN , P

Y
N ; J

)
= 0 and dTV

(
PXN , P

Y
N ; J

)
= 1 by choosing J = 1

and J large enough such that no interval Ij contains samples from both distributions,
respectively. Looking at the right-hand side in Figure 2.4, we see that the dependence
on J is smaller the more the sample distributions differ. Nevertheless, whenever applying
this method, one should state the chosen J since stating the total variation distance
alone may not be informative at all. In general, following this method, we always have
dTV ∈ [0, 1]. In our applications,6 we will always choose J = J(dTV ) = 50.

2.3. Modeling the structure and the dynamics of life insurance
portfolios

In this section, we describe the characteristics of a given life insurance portfolio and its
development over time. In addition to the considered product type, the biometric param-
eters together with the policyholders’ behavior play an important role. Under biometric
parameters, we understand in this thesis not only the gender or the age of the insured but
also the probabilities for death and surrender.

We denote the considered time horizon throughout this thesis by [0, T ], where T is the
number of years to consider and 0 represents the actual time. In the following chapters,
we use an equidistant time discretization of that interval, i.e.

0 = t0 < t1 < · · · < tK = T (2.3.1)

with tk = k∆t, k = 0, . . . ,K, and a constant period length ∆t = T
K = tk − tk−1. As a

consequence, the considered time horizon consists of K periods, and inventory figures like
previously signed contracts are linked to past times t−k < 0. Typically, we use a finer
discretization than by calendar years.

2.3.1. Modeling the structure of life insurance portfolios

The initial number of policyholders in the insurance portfolio is denoted by δ0. Throughout
this thesis, we assume that each contract belongs to one insured person indicated by i.
The auxiliary term real emphasizes that the corresponding quantity belongs to an actual,
real policyholder or contract. In contrast, later we will consider representative customers
or policies (indicated by m) to generate approximating, compressed insurance portfolios,
cf. Section 2.4.

We characterize the existing insurance portfolio at time t0 by the policyholders’

� gender greal,i,

� age when signing the contract xreal,i,

6For example, in Section 4.2 we will investigate the quality of approximating a certain distribution, in
which case smaller values for dTV are preferable.
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� age at maximum contract term xreal,i,

� current age xreal,i
0 ∈

(
xreal,i, xreal,i

)
,

� current premium payment P real,i
0 ,

� current contract value V real,i
0 .

In practice, the listed characteristics are given and determine a snapshot of the insur-
ance portfolio’s structure. However, it is reasonable to also work with simulated data
since the structure changes over time due to aging of the insured collective, withdrawals,
new business, or simply by the development of the contracts. For the gender greal,i, one
can use the Bernoulli distribution with e.g. 0 for males and 1 for females. The entry and
exit ages xreal,i and xreal,i can be modeled by truncated normal distributions, where the
supports’ boundaries could coincide with corresponding minimum and maximum ages. In
order to simulate different age structures in the initial insurance portfolio, one can use the
four-parameter beta distribution with minimum and maximum parameters xreal,i and xreal,i

for modeling the current age xreal,i
0 . This includes the case xreal,i

0 ∼ U
(
xreal,i, xreal,i

)
. Re-

garding the premium payments, we use the uniform distribution on an interval defined by
a minimum and a maximum premium. The exact distributional assumptions are provided
in the simulation studies below, cf. Tables 4.1 and 4.2 in Section 4.1.

From the stated characteristics, we derive further needed quantities like the year of
birth yreal,i, the elapsed, remaining, and total contract duration in periods creal,i

0 , dreal,i
0 ,

and ereal,i
0 , given by:

yreal,i =
⌊
Y − xreal,i

0

⌋
,

creal,i
0 =

⌊
∆t−1

(
xreal,i

0 − xreal,i
)⌋
, (2.3.2)

dreal,i
0 =

⌈
∆t−1

(
xreal,i − xreal,i

0

)⌉
,

ereal,i
0 = creal,i

0 + dreal,i
0 .

Here, Y denotes the current calendar year and the ages are assumed to be (positive) real

numbers. Depending on the considered product type, the contract value V real,i
0 might be

divided into a guaranteed part Areal,i
0 and a bonus part Breal,i

0 , i.e.

V real,i
0 = Areal,i

0 +Breal,i
0 . (2.3.3)

The account values Areal,i
0 , Breal,i

0 , and V real,i
0 are related to the corresponding reserves and

represent claims of the policyholders against the insurance company becoming due in the
future. In Section 3.6, we derive representations for exemplary insurance products.
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2. Large Insurance Portfolios

2.3.2. Modeling the dynamics of life insurance portfolios

One way to model the dynamics of a life insurance portfolio is to directly simulate a
stochastic process δ = (δk)k=1,...,K , where the random number δk denotes the amount of
policies in force at time tk. This approach aggregates withdrawals from and increments of
the insurance portfolio. In order to investigate the influence of different scenarios regarding
the new business and the development of withdrawals on the stability of the life insurer’s
balance sheets, we model decrements and increments separately. In particular, we can then
distinguish between effects resulting from a decline in new business and those resulting
from rising mortality or surrender rates.

Decrement of the insurance portfolio

In this thesis, withdrawals from the existing insurance portfolio can be caused by expiring
contracts, premature death of the insured, and early cancellations (surrender). We assume
that decrements always occur at the end of each period k. While the maturity date of the
policies are known in advance, mortality and individual surrender options constitute differ-
ent grades of uncertainty. To model these, there are traditionally two different approaches:
a deterministic approach, where the basis could be life tables and deterministic surrender
rates, and a stochastic approach, where mortality models and stochastic surrender rates
are used.

Decrement of the insurance portfolio: mortality

The life table approach corresponds to the classic method in life insurance. It takes ac-
tual, observed mortality into account, where adjustments are possible to consider different
scenarios regarding the demographic development. Even more flexibility is provided by
(stochastic) mortality models, but they require an appropriate calibration to justify their
application.

In this thesis, death of policyholders is modeled using life tables that contain annual
death probabilities and which are updated from time to time. More specifically, we use the
cohort life tables for Germany provided by the Federal Office of Statistics.7 The contained
annual death probabilities q = q (x, g, y) depend on the age x, on the gender g, and on the

year of birth y. Death probabilities qreal,i
k for time period [tk−1, tk] are given by

qreal,i
k = 1−

(
1− q

(
min

{⌊
xreal,i
k−1

⌋
, xmax

}
, greal,i, yreal,i

))∆t
, (2.3.4)

where xmax denotes the maximum age in the life table8 and xreal,i
k−1 the age of the insured

at time tk−1. The above transformation is implied by setting
(

1− qreal,i
k

) 1
∆t

= 1− q, i.e.

7We use the cohort life table Variant 1, which is based on a trend in the development of mortality since
2011, see Statistisches Buntdesamt [53]. More details on the derivation of the death probabilities can
be found in Statistisches Bundesamt [52].

8In our case, we have xmax = 100.
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2.3. Modeling the structure and the dynamics of life insurance portfolios

by assuming a constant force of mortality throughout the year.

Remark 2.3.1 (Alternative periodic death probabilities). Alternatively, one could put a
higher death intensity on early periods of a year9 or just define

qk = ∆t · q
(

min
{⌊
xreal,i
k−1

⌋
, xmax

}
, greal,i, yreal,i

)
.

One can show with the Bernoulli inequality that the latter generates smaller periodic death
probabilities if ∆t ∈ (0, 1). However, except for large annual death probabilities q, e.g.

q >> 0.05, the differences qreal,i
k − qk are rather small as illustrated in Figure 2.5.
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Figure 2.5.: Difference between the periodic death probabilities qreal,i
k and qk depending

on the annual death probabilities q for different ∆t ∈ (0, 1).

Decrement of the insurance portfolio: surrender

The life insurance contracts considered in this thesis are equipped with surrender options,
i.e. the policyholders can actively terminate their contracts before maturity.10 In that
case, the insured person receives the cash surrender value, i.e. the contract value reduced
by a surrender fee.

There are two hypotheses trying to explain what causes exercise of surrender options.
Following the emergency fund hypothesis, policyholders cancel their contracts if they need
money (the emergency fund) during times of financial distress or if they are unable to
pay the premiums anymore. An indicator for this hypothesis would be rising surrender
rates during economic recessions, where unemployment rates increase. Evidence for this
hypothesis is provided in Outreville [50]. The interest rate hypothesis claims that surren-
der rates depend on the market interest rates since these can be seen as a representative
of opportunity costs for owning a life insurance contract, see Milhaud et al. [49]. Thus,

9In the literature, this method is known as the Balducci’s assumption, cf. Gerber [26].
10In Germany, for example, this right is required by the Insurance Contract Law VVG in §168.
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higher interest rates would yield higher surrender rates since policyholders could cancel
their life insurance to benefit from more attractive investment possibilities. Evidence for
this hypothesis is provided in Kuo et al. [47]. An interest rate-driven approach for the
simulation of surrender rates including macroeconomic control variables is also applied
in Kubitza et al. [46]. However, statistical methodologies globally fail at giving accurate
individual surrender predictions since the policyholders’ behavior is complex, not always
rational, and depend heterogeneously on many factors, see Barsotti et al. [2]. This moti-
vates to model the cancellation rates directly, e.g. as a random variable as done by Biagini
et al. [4].

In this thesis, we follow such a direct approach, too. We model the contracts’ surrender
options by introducing probabilities ureal,i

k of the insured terminating their contracts in
period k. Different modeling approaches can easily be adopted depending on the life
insurer’s business form and the applied simulation method. This includes deterministic
and stochastic surrender rates. Considering a single policy, it is reasonable to assume
that the probability increases in the first periods of the contract time due to growing
uncertainties. Since terminating a contract is linked with paying cancellation fees, the
surrender probabilities can be expected to decrease after reaching a maximum around the
run time’s midterm. According to our approximating simulation method for an ongoing
insurance business with new business that we will develop in Section 2.4, new contracts are
sorted into existing cohorts. Thus, we have an averaging of policies including newly signed
ones to form the updated cohort throughout the simulation. This balances the effects of
individual contracts and makes it reasonable to assume the same surrender probability in
each period. If not stated otherwise, we therefore model the surrender probability using
an exponential distribution with parameter u, namely

ureal,i
k = 1{

dreal,ik >0
} · (1− e−u∆t

)
. (2.3.5)

The indicator function 1{} ensures that surrender is only possible if the insurance policy

is still in force in the following period, i.e. if the actual remaining contract duration dreal,i
k

is positive.

Increment of the insurance portfolio: new business

Providing and selling new contracts is essential for life insurers writing long-term insurance
business. Without new business, i.e. in the case of a run-off, we cannot expect to obtain
any kind of stationarity or stability in the development of the balance sheets. Furthermore,
new premiums might finance existing contracts with high guarantees signed at earlier times
through investments in the same reference portfolio.

We model new business by assuming that there arrives a random number δnew
k of new

customers in every period k, independent of other periods. The policies are signed at the
beginning of a period. In the later simulation studies, we assume

δnew
k ∼ Poi (Λk) ,
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2.4. Compression of life insurance portfolios and simulation

where Λk is a random variable itself. More specifically, Λk is assumed to follow a four-
parameter beta distribution with two period-depending shape parameters αk and βk and
two location parameters Λmin

k and Λmax
k representing the minimum and maximum values,

i.e.

Λk ∼ Beta
(
αk, βk,Λ

min
k ,Λmax

k

)
.

The last two parameters may be chosen as fractions of the initial insurance portfolio
size δ0. Different new business scenarios can be considered by specifying the shape pa-
rameters correspondingly. We elaborate on this in Section 4.4, where we provide detailed
parameterizations and investigate for ongoing insurance business the impact of varying
patterns of new contract arrivals on the stability of the life insurer’s balance sheets. In
particular, the considered scenarios include the case where a sudden increase (decrease)
in the demand of life insurance leads to a positive (negative) shock on the future number
of new customers. Note that investigations are not limited to the new business scenarios
considered in this thesis. Due to the high flexibility of our model, the analysis can be easily
adopted to further scenarios, e.g., to a deferred run-off or to regime-switching scenarios
based on Markov chains.

2.4. Compression of life insurance portfolios and simulation

In this section, we develop different methods for the compression and the simulation of
a given large insurance portfolio. The idea is always to group similar contracts together
in so-called model points or cohorts. We then only simulate one exemplary contract per
model point over time. Those simulated contracts, whose characteristics are averaged
values, belong to representative policyholders. It is then assumed that all contracts within
a model point coincide with the exemplary one. In particular, they all expire at the same
time. The procedure can be seen as an approximation of the real insurance portfolio
with many individual contracts by another one of the same size but with less individual
contracts.

Seehafer et al. [51] propose a cluster-based compression method, where the insurance
portfolio is divided into a predefined number of clusters and then a K-means algorithm
is applied to improve their location. The corresponding centers then form a compressed
insurance portfolio. A K-means algorithm is also used by Goffard and Guerrault [28]. Typ-
ical drawbacks are the fact that one has to choose K in advance and the algorithm’s run
time. Furthermore, Kiermayer and Weiß [39] criticize the absence of an active control of
the involved risk features and the implicitly assumed linear dependence. Accordingly, they
present a grouping method using neural networks, thereby capturing non-linear dependen-
cies. Numerical investigations for term life insurance contracts and defined contribution
plans within a run-off scenario indicate that their approach is superior compared to K-
means clustering. Both, K- means clustering and methods using neural networks, are not
directly applicable to an ongoing insurance business with new business. Indeed, repeat-
ing the procedure in every time step where new customers arrive would not be efficient.
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Neural networks are known to potentially out-perform classic approaches in detecting and
re-creating structures in a given data set like an insurance portfolio. However, a poor
performance is possible if the given structure substantially changes in the future and ex-
ternal events occur that cannot be predicted by historical developments. Examples for the
latter are crashes in the capital market or extreme new business scenarios. Furthermore,
neural networks only yield pointwise forecasts, i.e. information regarding the prediction
uncertainty is missing. In contrast, Monte Carlo-based simulation methods always provide
these information through the corresponding quantiles.

The concepts developed in this thesis are universally applicable to any insurance portfo-
lio and any business form of a life insurance company. In particular, efficiency is maintained
also in the case of an ongoing insurance business with new business. The stochastic simula-
tion of the latter, including different scenarios regarding the expected development of new
contract arrivals, incorporates uncertainty in addition to the risks implied by the capital
market and individual policyholder behavior. Our simulation methods allow us to quan-
tify these uncertainties. In the following sections, we describe the grouping procedures in
more detail.

2.4.1. A general compression and simulation method

The characteristics of the initial insurance portfolio are as described in Section 2.3.1,
with δ0 denoting the initial number of policyholders. In our model, the ages correspond to
(positive) real numbers. The generation of cohorts requires a selection of grouping criteria.
In the following, the insured collective is divided into M0 non-empty cohorts due to the
three grouping criteria

1. gender greal,i,

2. integer current age
⌊
xreal,i

0

⌋
∈ N, and

3. integer exit age
⌊
xreal,i

⌋
∈ N.

Note that the signing age xreal,i is not a grouping criterion and the real policies within a
model point can have different contract periods. Indeed, the actual signing age xreal,i is
only needed to calculate the elapsed contract period creal,i

0 , see equation (2.3.2), and thus
for the calculation of the initial contract value.

20



2.4. Compression of life insurance portfolios and simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

800

1,000

1,200

1,400

Size of initial insurance portfolio

N
u

m
b

er
of

co
h

or
ts

Figure 2.6.: Number of generated model points depending on the size of the initial insur-
ance portfolio (of which each is simulated separately).

The number M0 of generated cohorts depends on both the size and the heterogeneity of
the initial insurance portfolio as illustrated in Figure 2.6. Here, each insurance portfolio is
simulated separately based on the distributional assumptions of the biometric parameters
described in Table 4.1. Due to the compression, the number of individual, different con-
tracts is reduced enormously. The smallest insurance portfolio consists of 10, 000 policies
and is divided into 844 model points corresponding to a reduction of approximately 92%.
The number of model points increases slower for large insurance portfolios and is bounded
from above due to age limits. The dependence on the heterogeneity can be seen from the
non-monotonic growth. In particular, two different insurance portfolios of the same size
do not necessarily lead to the same number of model points.

After the grouping, we assign numbers and randomly select11 a representative policy-
holder from each cohort m ∈ {1, . . . ,M0} denoting its

� gender by gm,

� its current age by xm0 ∈ R+, and

� its exit age by xm ∈ R+.

By this, we also take fractions of the year into account. We can define a surjective function
π0 : {1, . . . , δ0} → {1, . . . ,M0} such that π0(i) = m if policyholder i is sorted into cohortm.
Each model point m ∈ {1, . . . ,M0} contains δm0 policies, with

δm0 = |{i : π0(i) = m}| .

The initial size of the insurance portfolio δ0 can thus be written as δ0 =
∑M0

m=1 δ
m
0 .

11Here, we use the uniform distribution for the random selection.
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The remaining contract characteristics are determined by arithmetic means, i.e., we
have:

Pm0 =
1

δm0

∑
i:π0(i)=m

P real,i
0 , (2.4.1)

Am0 =
1

δm0

∑
i:π0(i)=m

Areal,i
0 , (2.4.2)

Bm
0 =

1

δm0

∑
i:π0(i)=m

Breal,i
0 , (2.4.3)

V m
0 =

1

δm0

∑
i:π0(i)=m

V real,i
0 . (2.4.4)

Equation (2.3.3) implies that the value V m
0 of the representative contract can be decom-

posed into

V m
0 = Am0 +Bm

0 .

Due to the dependence on the distribution of biometric parameters the cohorts’ sizes
can differ substantially, see Figure 2.7.

100 200 300 400 500 600
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2,000

Cohort index m
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Cohort index m

δm 0

Figure 2.7.: Right: male policyholders distributed over the model points generated for an
exemplary insurance portfolio of size δ0 = 500, 000. Left: excerpt of those
cohorts m with current age bxm0 c = 33.

On the right-hand side of Figure 2.7, we show the distribution of male policyholders12

over the cohorts generated for an exemplary insurance portfolio of size δ0 = 500, 000.
Here, the numbering of the cohorts reflects the corresponding age criteria in ascending
order such that, for example, all 33-year-old, male policyholders with exit ages from 55

12The distribution of the female policyholders over the remaining cohorts is similar.
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2.4. Compression of life insurance portfolios and simulation

to 70 are located in cohorts 179 to 194 (blue excerpt). Note that the appearance of the
shown distribution depends on the specific way of numbering the cohorts. On average,
there are 383 policyholders per model point.

The development of the cohorts

After describing the cohorts and their initial state at the beginning of the simulation,
we now present the subsequent development. More specifically, recursive representations
of the size of the insurance portfolio δk, the number of cohorts Mk, and the number
of policyholders in the individual cohorts δmk are derived for all periods k = 1, . . . ,K.
In Figure 2.8, we illustrate the events related to a cohort m ∈ {1, . . . ,Mk} within the
period [tk−1, tk].

tk−1 tk

Mk−1

δk−1

δmk−1

Madd
k−1

δnew
k−1

δnew,m
k−1

δq,mk
δu,mk
δend,mk

Mk

δk
δmk

Period k

Figure 2.8.: Representation of period k regarding the insured collective.

The updated current age at time tk and the remaining contract period are described
recursively, i.e.

xmk = xmk−1 +∆t

and

dmk = dmk−1 − 1, (2.4.5)

with

dm0 =

⌈
xm − xm0

∆t

⌉
∈ N.

The updated current ages are needed for the periodic death probabilities, compare equa-
tion (2.3.4).

At the beginning of period k, i.e. at time tk−1, a random number of new customers δnew
k−1

signs up. Their age structure is generated based on suitable distributions as done for the
existing insurance portfolio. At first, the collective of new customers is divided into Nk−1

cohorts based on the established criteria related with arithmetic means of the other char-
acteristics. To avoid an uncontrolled increase in the number of cohorts, we proceed as
follows. If the grouping criteria of a new cohort n ∈ {1, . . . , Nk−1} coincide with those of
one of the existing cohorts m ∈ {1, . . . ,Mk−1}, i.e.
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1. gnew,n = gm,

2. bxnew,nc =
[
xmk−1

]
, and

3. bxnew,nc = bxmc,

the new and existing cohort can be merged. Here, [xmk ] is defined by

[xmk ] =

{ [
xmk−1

]
+ 1, if k ≡ 0

(
mod 1

∆t

)[
xmk−1

]
, else

(2.4.6)

for k ≥ 1 and [xm0 ] := bxm0 c ensuring that there exists at most one cohort m that can be
merged with the new cohort n. In case of merging, we denote the number of additional
customers in this cohort m by δnew,m

k−1 and adjust the premium payment and the account
values according to the weighted average, i.e. after merging the new cohort n into existing
cohort m, we get

Pm(k−1)+ =
1

δmk−1 + δnew,m
k−1

(
δmk−1P

m
k−1 + δnew,m

k−1 Pnew,nk−1

)
,

Am(k−1)+ =
δmk−1

δmk−1 + δnew,m
k−1

Amk−1 + Pm(k−1)+ , (2.4.7)

Bm
(k−1)+ =

δmk−1

δmk−1 + δnew,m
k−1

Bm
k−1, (2.4.8)

and

V m
(k−1)+ = Am(k−1)+ +Bm

(k−1)+ . (2.4.9)

Those cohorts who could not be merged augment the set of existing model points by Madd
k−1.

Remark 2.4.1 (Efficiency of the simulation method). Note that once a cohort number is
assigned to a real policyholder or contract, it remains fixed, i.e. πk+1(i) = m if πk(i) = m.
This property is important as it forms the basis for efficient simulations of life insurers
with new business. Indeed, a new compression of the whole insurance portfolio at later
times tk, k ≥ 1, is not required. Instead, only new customers need to be grouped in
cohorts and then merged into existing ones if possible. By (2.4.6), we ensure that there is
at most one cohort in which new policies are potentially merged into. Alternatively, one
could update the current age every period implying that there might be a new cohort and
several existing ones that share the same grouping criteria. In that case, we would merge
all involved cohorts together.

At the end of period k, starting with the size of the cohort δmk−1 + δnew,m
k−1 and taking

the survival probability 1 − qmk , the surrender probability umk , which is assumed to be
independent of the survival probability, and the remaining contract period dmk into account,
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2.4. Compression of life insurance portfolios and simulation

the number of policyholders in model point m at time tk which remain in the insured
collective is given by

δmk = 1{dmk >0} · (1− u
m
k ) (1− qmk )

(
δmk−1 + δnew,m

k−1

)
. (2.4.10)

Note that we only consider policyholders who have survived the period for the surrender
option. Therefore, the numbers of deaths and cancellations in model point m amount to

δq,mk = qmk · (δmk−1 + δnew,m
k−1 ) and δu,mk = umk · (1− qmk )(δmk−1 + δnew,m

k−1 ).

Finally the new number of model points and the size of the insured collective are

Mk = Mk−1 +Madd
k−1 and δk =

Mk∑
m=1

δmk .

Remark 2.4.2 (Handling of empty cohorts). Empty cohorts can be deleted during a
simulation and the numeration of the cohorts adjusted. Especially in the case of an ongoing
insurance business with new business, this is an important step to maintain efficiency for
large time horizons by avoiding a permanent increase in the number of cohorts. However,
for a better readability, this step is not included in our notation.

2.4.2. Variants of the compression and simulation method

In this section, we develop alternative grouping and simulation methods of insurance
portfolios. So far, two policyholders are assigned to the same cohort if they have the same
gender, integer current age, and integer exit age. The same procedure applies to new
contracts, and then new and existing cohorts are merged if possible. We transfer that
idea and present in the following a more general framework for criteria-based compression
methods.

For this, we introduce the following notation. For b1, b2 ∈ N≥1 let Pb1,b2 denote the
method of simulating the compressed portfolio obtained by grouping those policyholders
of the same gender into the same cohort whose current age and exit ages lie within intervals
of a length b1 and b2, respectively. The method from the last section can then be denoted
by P1,1 and is thus a special case of the general class of compression and simulation
methods presented in this section. The method of simulating the uncompressed insurance
portfolio is denoted by P0,0 and corresponds to a naive contract-specific simulation. In
the following, we describe the compression and simulation methods in more detail.

For given b1, b2 ∈ N≥1 and minimum entry and exit ages xmin and xmin, we construct
intervals

Il =
[
xmin + (l − 1)b1, x

min + lb1
)
,

Il =
[
xmin + (l − 1)b2, x

min + lb2
)
,

for l = 1, 2, . . . , until an interval Il and Il contains the maximum entry and exit age xmax
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and xmax, respectively. As before, we need to transform the real-valued ages of the indi-
vidual policyholders into ages that are suitable for the grouping and merging procedure.
While in Section 2.4.1 we took the integer values, here the transformed ages are defined
by the lower boundaries of the intervals that contain the corresponding real ages. For

example, the transformed current age
[
xreal,i

0

]
is given by[

xreal,i
0

]
:= xmin + (l − 1)b1

if xreal,i
0 lies in interval Il.

Any two policyholders are then assigned to the same cohort if they have the same gender,
transformed current, and transformed exit age, thereby dividing the insured collective
into M0 cohorts. As before, after the grouping, we assign numbers and randomly select
a representative policyholder from each cohort m ∈ {1, . . . ,Mk}, denoting its gender,
current age, and exit age correspondingly. The remaining contract characteristics are,
analogously to before, determined by arithmetic means. The merging of new and existing
cohorts is done as before, where the transformed current ages must be updated according to
equation (2.4.6) to ensure that there is at most one existing cohort that can be merged with
a new one. As a consequence, Remark 2.4.1 also applies to the general compression and
simulation methods, and choosing b1, b2 > 1 further increases the degree of compression,
thereby potentially also the efficiency. Note that the transformed ages are only needed
for the grouping and merging procedure, but for the death probabilities we still use the
real-valued ages of the representative policyholders.

2.4.3. Efficiency and approximation quality

Regarding the quality of a compression method, we find two competing goals. On the one
hand, we would like to have a large efficiency, i.e. the compression method itself should be
easily applicable and simulating the compressed insurance portfolio should require a much
smaller computing time in comparison with simulating the original (uncompressed) one.
On the other hand, from a good simulation method we expect a certain performance, i.e.
the approximation of the real insurance portfolio and its development should be accurate.

In this section, we therefore introduce instruments to investigate the quality of the
compression and simulation methods. After having constructed a suitable model for the
development of a given portfolio of insurance contracts and the corresponding balance
sheets in Chapter 3, we will use these to measure the efficiency and the goodness of
approximation for different business forms of a life insurance company. This will help us
to derive corresponding recommendations as to which simulation methods can be used for
which purposes (cf. Section 4.2).

Efficiency

The extent of a compression can be measured by the compression ratio CR0 describing the
ratio of original data size to the compressed data size, see Wang et al. [56]. In our setting,
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where the compressed insurance portfolio has the same size as the uncompressed one, the
compressed data size corresponds to the number of those representative contracts that are
actually modeled, and thus to the number of cohorts M0 = M0

(
Pb1,b2

)
depending on the

applied compression and simulation method Pb1,b2 . Therefore, we define the compression
ratio by

CR0 =
δ0

M0
.

An efficient compression would lead to a smaller number of model points M0 and thus to
a larger compression ratio CR0. In this thesis, we use an alternative measure to describe
the extent of a compression, namely the compression factor CF0. It is defined via the
inverse compression ratio, i.e. here by

CF0 = CR−1
0 =

M0

δ0

.

Smaller values for CF0 are associated with a more efficient compression method. In the
case of an ongoing insurance business, new contracts may increase the number of cohorts.
Therefore, we need to look at its development, too. At time tk, k ≥ 1, the compression
factor is defined by

CFk =
M sim
k

δk
, (2.4.11)

where M sim
k = M sim

k

(
Pb1,b2

)
denotes the number of non-empty cohorts that are actually

modeled according to Pb1,b2 . δk is the size of the uncompressed insurance portfolio if we
apply P0,0. We have M sim

0 = M0, M sim
k ≤ Mk, and typically M sim

k < Mk for k ≥ 1
since Mk also accounts for empty cohorts which are deleted during the simulation, cf.
Remark 2.4.2. For run-off scenarios, looking at CFk is not necessary since the number of
non-empty cohorts M sim

k decreases with the size of the insurance portfolio.

Remark 2.4.3 (Run time). To compare the efficiency of different simulation methods,
one could also directly measure the required run times. Indeed, it is also important to
(pre-)estimate the run time required for a Monte Carlo simulation. However, here we
need to be careful. In contrast to the compression ratio or compression factor, the run
times heavily depend on the available computer equipment and the instantaneous CPU
utilization. Therefore, different simulation methods should always be applied on the same
computer under the same conditions. Only then it is reasonable to compare different run
times.

Approximation quality

In order to measure the approximation quality, we need to simulate both the compressed
and the uncompressed insurance portfolio, which will be done in Section 4.2. As a compres-
sion and simulation method, we choose Pb1,b2 for given b1, b2. Regarding the uncompressed
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insurance portfolio, we apply the contract-specific simulation P0,0. For a selected quan-
tity of interest, the sample distributions at a certain time point obtained by corresponding
Monte Carlo simulations can be compared by the total variation distance as described
in Section 2.2.3. In the following, we describe more criteria reflecting the approximation
quality.

Let Xk be a quantity of interest at time tk. For now, this could be the total value of the

insurer’s assets, the equity, or the obtained surplus. We denote by X
0,0,(n)
k and X

b1,b2,(n)
k

the n-th simulated value of Xk applying P0,0 and Pb1,b2 , respectively. Note that n refers
to the n-th Monte Carlo path determining the new business scenario and the dynamics of
the capital market. Thereby, we allow for a pathwise comparison between P0,0 and Pb1,b2
and can thus investigate the direct impact of the chosen compression and simulation
method. The average approximation error at a certain time point tk can be obtained by

the arithmetic mean of the distances between X
0,0,(n)
k and X

b1,b2,(n)
k , n = 1, . . . , N . The

distances can be measured on the basis of different p-norms. In this thesis, we consider as
absolute error measures the mean squared error (MSE) and the mean absolute error (MAE)
defined by

MSE =
1

N

N∑
n=1

(
X

0,0,(n)
k −Xb1,b2,(n)

k

)2

and

MAE =
1

N

N∑
n=1

∣∣∣X0,0,(n)
k −Xb1,b2,(n)

k

∣∣∣ ,
respectively. For positive quantities of interest Xk, we may also consider relative error
measures, e.g. the mean squared percentage error (MSPE) and the mean absolute per-
centage error (MAPE) defined by

MSPE =
1

N

N∑
n=1

(
X

0,0,(n)
k −Xb1,b2,(n)

k

)2

X
0,0,(n)
k

and

MAPE =
1

N

N∑
n=1

∣∣∣X0,0,(n)
k −Xb1,b2,(n)

k

∣∣∣
X

0,0,(n)
k

,

respectively. The average approximation error per period is an additional number for
illustration and can be derived from the above error measures by averaging over all periods.
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For example, the average mean squared error (AMSE) is defined by

AMSE =
1

K + 1

K∑
k=0

MSE,

and AMAE, AMSPE, and AMAPE analogously.

As a graphical visualization, we will plot the average development of Xk according
to P0,0 and Pb1,b2 in the same window, i.e. we plot

1

N

N∑
n=1

X
0,0,(n)
k and

1

N

N∑
n=1

X
b1,b2,(n)
k (2.4.12)

for k = 0, . . . ,K.

To investigate the robustness of the compression and simulation methods, we look at
the worst-case approximation corresponding to that simulation path n∗ = n∗

(
Pb1,b2

)
∈

{1, . . . , N} for which a chosen error measure is maximal. Again, different error measures
can be constructed depending on the chosen norm. Here, we use the sum of absolute errors
as an error measure so that n∗ is given by

n∗ = argmax

{
K∑
k=0

∣∣∣Xb1,b2,(n)
k −X0,0,(n)

k

∣∣∣ : n ∈ {1, . . . , N}

}
. (2.4.13)

All the above methods and error measures to investigate the approximation quality will
be applied in Section 4.2 after having built a corresponding ALM model in Chapter 3.

We close this section by investigating the quality of the compression methods with
respect to the characteristics of a given insured collective P0,0. The simulation of the
initial insurance portfolio is based on the distributional assumptions of the biometric
parameters described in Table 4.2 with δ0 = 10, 000 signed contracts at time t0, including
new policies from the first period.
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Figure 2.9.: Distribution of selected characteristics of the initial insurance portfolio P0,0

consisting of δ0 = 10, 000 policies. The dashed lines correspond to the sample
medians.

Some of the insurance portfolio’s characteristics are illustrated in Figure 2.9, where we
show the distributions of

� the current ages xreal,i
0 ,

� the elapsed contract durations
⌊
xreal,i

0 − xreal,i
⌋
,

� the remaining contract durations
⌈
xreal,i − xreal,i

0

⌉
, and

� the contract values V real,i
0 .

The premium sizes are uniformly distributed on [50, 500]. The corresponding sample
median is 276.05.
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Figure 2.10.: Illustration of the uncompressed insurance portfolio regarding the grouping
criteria. Each point corresponds to a contract, here characterized by the
policyholder’s current age xreal,i

0 , exit age xreal,i, and gender greal,i.

Figure 2.10 illustrates the initial insurance portfolio with respect to the policyholders’
current age xreal,i

0 , exit age xreal,i, and gender greal,i ∈ {0, 1}. Each point corresponds to an
individual contract. Regarding the policyholders’ ages, we have the constraints xreal,i ∈
[15, 65], xreal,i ∈ [65, 80], and xreal,i

0 ∈
[
xreal,i, xreal,i

]
.

In the following, the given initial insurance portfolio P0,0 is compressed applying differ-
ent methods Pb1,b2 . Here, we consider

(b1, b2) ∈ {(1, 1), (2, 2), (5, 5), (1, 10), (10, 1), (10, 10)} .

In Figure 2.11, we illustrate the obtained compressed insurance portfolios Pb1,b2 . Each
point corresponds to the representative contract from a cohort m ∈ {1, . . . ,M0}. The
number of contracts that needs to be simulated is substantially decreased, from δ0 =
10, 000 to e.g. M0 = 1, 339 and M0 = 26 if we apply P1,1 and P10,10 corresponding to a
reduction of 86.61% and 99.74%, respectively. At the same time, the existing structure is
maintained.
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Figure 2.11.: Illustration of the insurance portfolio from Figure 2.10 if applying different
compression methods Pb1,b2 . Each point corresponds to the representative
contract from a cohort m ∈ {1, . . . ,M0}, here characterized by the repre-
sentative’s current age xm0 , exit age xm, and gender gm. Top-left: P1,1,
M0 = 1, 339. Top-right: P2,2, M0 = 406. Middle-left: P5,5, M0 = 69.
Middle-right: P1,10, M0 = 225. Bottom-left: P10,1, M0 = 176. Bottom-
right: P10,10, M0 = 26.

In the following, we measure the quality of the compression methods regarding a char-
acteristic X in terms of the root mean squared error (RMSE). It is defined by

RMSE =

√√√√ 1

δ0

δ0∑
i=1

(
Xreal,i −Xπ0(i)

)2
,
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where π0 denotes the surjective function from Section 2.4.1 with π0(i) = m if policyholder i
is sorted into cohort m according to a compression method Pb1,b2 . Recall that it is assumed
that all contracts within a model point coincide with the exemplary one, i.e. we have
Xreal,i = Xm for all i with π0(i) = m.

X P1,1 P2,2 P5,5 P1,10 P10,1 P10,10

Premium size P real,i
0 84.71 105.68 120.88 111.41 114.15 124.26

Entry age xreal,i 4.11 4.97 5.42 5.13 5.27 5.57

Current age xreal,i
0 0.09 0.23 0.74 0.22 0.69 2.13

Exit age xreal,i 0.04 0.12 0.78 0.50 0.15 1.58
Remaining contract period 0.11 0.26 1.09 0.74 0.67 2.70

Contract value V real,i
0 6659 7579 8015 7664 8341 8821

Table 2.1.: RMSE of selected characteristics of the insurance portfolio for different com-
pression methods Pb1,b2 .

Table 2.1 summarizes the results for several characteristics. Clearly, the method P1,1

performs best. We can also see that the approximation error is much smaller for the
grouping criteria. Nevertheless, also for the remaining characteristics, the RMSE is small
compared to the corresponding (sample) medians.

Note that for all grouping schemes Pb1,b2 , there is no approximation error regarding the
aggregated premium payments and contract values at time t0, i.e. we have

M0∑
m=1

δm0 · Pm0 =

δ0∑
i=1

P real,i
0

and

M0∑
m=1

δm0 · V m
0 =

δ0∑
i=1

V real,i
0 .

Throughout the simulation, i.e. at times tk with k ≥ 1, this will not be the case as we will
see in Section 4.2.
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3. A General ALM Model

In this chapter, we introduce a general asset-liability management (ALM) model which
will also be the basis for many simulation studies later. In Section 3.1, we give a short in-
troduction to the wide-spread field of asset-liability management and discuss ALM models
applied in the existing literature. The structure of our ALM model is displayed in Sec-
tion 3.2, where we also describe relevant risk drivers we take into account. The model
consists of different, interacting parts which can be characterized as internal and exter-
nal sub-models. An example for the latter is the applied capital market model which we
introduce in Section 3.3. Sections 3.5, 3.6, and 3.7 correspond to the internal models,
where the (management of the) life insurance company decides over the applied strategies
for investing in the capital market and for financing the due obligations, over the use of
surpluses, over the product design, and, to a certain extent, over the rules of accounting
for preparing the balance sheet introduced in Section 3.4. In this context, modeling the
structure and the dynamics of life insurance portfolios (cf. Chapter 2) would correspond
to an external sub-model.

Regarding the notation, we use an upper index m referring to a quantity of model
point m. For example in Section 3.6, Pm0 denotes the premium size of the representative
of cohort m for the first period. However, our model can also be applied to uncompressed
insurance portfolios, for which the individual premium size of policyholder i ∈ {1, . . . , δ0}
for the first period could then be denoted by P real,i

0 as done in Section 2.3.1.
Some parts of this chapter are already published in Diehl et al. [23], where we developed

and illustrated a reduced version of the following ALM model. In addition to the con-
sideration of more general capital market models and the development of an alternative
financing strategy, another substantial extension is the incorporation of a minimum stock
share that might be part of the management’s targets. Accordingly, many quantities are
now defined differently and corresponding main results required new proofs. In this re-
gard, the model presented in Diehl et al. [23] can be seen as a special case of the general
ALM model introduced in this chapter.

3.1. ALM and ALM modeling

3.1.1. Introduction

Following the definition of Wagner [55], asset-liability management (ALM) can be seen as
the goal-driven coordination of assets and liabilities of a balance sheet. The investments
in the capital market need to be reconciled with the obligations induced by the insurance
products such that claims can be met when they are due. An important goal consists of
managing the financial stability by controlling the taken risk positions. Based on that,

35
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a second goal is the managing of the profitability by optimizing the taken risks and the
resulting returns. The controlled risk-return positions involve levels of the contracts, the
investments, and the whole management of the insurance company.

While the importance of a successful ALM is similar for both, banks and insurance
companies, the requirements and the implementations differ as their business models and
risk profiles do, cf. Insurance Europe [35]. Since the core activity of insurers is risk pooling
and risk transfer, the insurer is exposed to risks depending on both assets and liabilities and
the way they interact. Indeed, there are strong interactions between assets and liabilities
of a life insurer’s balance sheet. For example, the size of the guaranteed interest rate and
the applied surplus participation scheme impose requirements on the risk-return profiles of
the investments in the capital market. On the other hand, the financing and profitability
of the signed contracts depend on the development of the capital market and the applied
investment strategies. In this thesis, we elaborate on these interactions. An important task
will be the derivation of robust and well-performing investment and financing strategies
which take into account the obligations induced by the insured collective.

An appropriate ALM will result in an insurer controlling its assets and liabilities in such a
way that e.g. the default probability for a certain period of time stays below a predefined
threshold, see Gründl et al. [31]. Here, the application of stochastic simulations can
support managerial decisions by illustrating the long-term effects of potential measures.
This requires the development of suitable (ALM) models.

3.1.2. Literature overview

In the following, we give a short overview of the work that has been already done within
the wide-spread field of asset-liability management and stochastic ALM-modeling. We
also point out some of the typical assumptions.

Many papers focus on the valuation of insurance contracts, see e.g. Bauer et al. [3],
Grosen and Jørgensen [29], Hieber et al. [34], or Zaglauer and Bauer [57] and the references
therein. Conditions for fair prices are derived by calculating discounted expectations of
the final benefit payments under a risk-neutral measure Q. For doing so, one typically
needs strong simplifications. Examples are the consideration of single insurance contracts
or one cohort of identical policies, the restriction to one lump-sum premium payment at
the contract’s inception, and the negligence of surrender.

Further ALM models are introduced in, e.g., Bohnert and Gatzert [9], Bohnert et al.
[10], Burkhart et al. [13, 14], Fernández et al. [25], Gerstner et al. [27], Kling et al. [40, 41],
and Kok et al. [42]. Most of them restrict to run-off companies, i.e. to firms that are spe-
cialized in the processing of existing contracts without issuing new policies. Exceptions
are Kling et al. [40, 41], looking at a life insurer in a ”steady state” where a constant frac-
tion of the liabilities is paid out as benefit payments every year. However, they consider
neither mortality nor surrender effects, justifying this by the assumption that new business
roughly compensates for withdrawals and surrender thus does not influence the amount
of assets and liabilities. This appears to be a rather strong assumption, as individual con-
tract characteristics, biometric parameters, and the policyholders’ behavior are not taken
into account. Another exception is Burkhart et al. [13] who analyze the impact of new
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business on the liabilities within a risk-neutral setting. Their insurance portfolio consists
of different cohorts of identical policies. However, it is rather homogeneous than hetero-
geneous as each cohort represents all contracts concluded within a specific year. Such
a grouping scheme disregards the diverse nature of an insured collective. Hieber et al.
[34] emphasize the importance of the heterogeneity aspect within life insurance portfolios.
Indeed, the assumption of a single contract or cohort structure neglects the fact that the
joint management of different contracts leads to interactions between existing and newly
signed policies, e.g., due to management rules, claims on the same bonus reserve, or indi-
vidual surrender options. Gerstner et al. [27] present a quite general ALM model where
a run-off company manages the processing of a heterogeneous insurance portfolio repre-
sented by a (reduced) number of model points. It is not shown how these are generated
but the authors sketch possible grouping criteria. For their numerical investigations, they
simulate the needed data for the 500 cohorts each consisting of 100 identical policies.

3.2. Introduction of our ALM model

As stated by Albrecher et al. [1], it is crucial to address the imperfectness of an introduced
ALM model and its sensitivity. Like for any mathematical model, it requires the right
balance between simplicity and accuracy of the applied models. In this work, we aim at a
balance between tractability and taking into account relevant legal requirements in order
to get meaningful simulation results on the long-term stability of the insurance business.
Before presenting the overall structure of our ALM model, we shortly describe risk drivers
we found relevant for an appropriate ALM model. We also state how these are taken into
account in this thesis.

3.2.1. Considered risk factors

Insurance companies take risks on behalf of their policyholders in exchange for premium
payments, and can thus be seen as liability-driven financial intermediaries, see Albrecher
et al. [1]. Accordingly, insurers are mainly exposed to actuarial risk, market risk, and
the risk of mismatch between assets and liabilities, see Insurance Europe [35]. The latter
is especially critical for life insurers writing long-term business. We take that risk into
account by developing investment and financing strategies that are better orientated to the
obligations induced by the insurance contracts than other prominent strategies. Indeed,
Albrecher et al. [1] find that the liability structure is the benchmark for a successful asset-
liability management. In the following, we address the other two main risk factors.

Actuarial risk

The actuarial risk contains the threat of the insurer’s technical ruin resulting from the
combination of predetermined premiums and the inherent randomness regarding the fu-
ture obligations, see Wagner [55]. It can be divided into the underwriting risk, which
represents the uncertainty of the total claim amount, and the timing risk, which reflects
the uncertainty regarding the time at which benefits are due. In this thesis, we estimate
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the default probability representing a measure for the overall risk and investigate impact-
ing factors. We follow different approaches to reduce the life insurer’s risk exposure and
to increase the profitability. Even though the benefit payments of the policies considered
in this thesis result from the accumulated contributions, they are random and not fully
funded. Reasons for this are premium guarantees, interest rate promises, and entitlements
to the allocated surpluses. Furthermore, by not restricting to run-off companies but con-
sidering ongoing insurance business with different new business scenarios, we increase the
uncertainty of the future obligations and thus attach greater value to the underwriting
risk. As parts of the actuarial risk, further included risk drivers are the mortality, the
longevity, and the surrender risk described in the following. These biometric risks are also
considered by Christiansen et al. [16] in a Solvency II framework.

Actuarial risk: mortality and longevity

Mortality is a natural reason for an early termination of the insurance contract. Depending
on the insurance type and the specific policy design, early death of a substantial number
of policyholders may threaten the insurers liquidity and expected profitability. As already
written in Section 2.3.2, we take mortality into account. In addition, the model’s flexibility
allows for incorporating mortality shocks and the application of stochastic mortality mod-
els. These approaches cover the modeling of longevity, i.e. the risk that a substantial part
of the insured collective lives much longer than expected. The latter is especially critical
for insurance products with a (life-long) pension phase. Such policies are not considered
here, but could easily be incorporated.

Actuarial risk: surrender

As already indicated in Section 2.3.2, the life insurance contracts considered in this thesis
are equipped with surrender options. If exercised, the insured person receives the cash
surrender value, i.e. the contract value reduced by a surrender fee. Depending on the
specific contract features and the current situation of the capital market, cancellations
may lead to the insurer earning money, e.g. due to surrender fees or since policyholders
renounce to (parts of) the surplus participation. Nevertheless, cancellations trigger unex-
pected cash flows and can thus also negatively impact the insurer’s profit and asset-liability
management. To meet the due surrender benefit payments, the insurer might be forced
to borrow money at potential higher costs or to sell assets at bad times. Especially the
event of mass cancellations can cause severe liquidity strains and thus may threaten the
stability or even the solvency of the life insurance business. Empirical evidence for such
insurance runs in the past regarding the U.S. and South Korean life insurance markets are
provided in Kubitza et al. [46]. Actual concerns can be found in the latest review of the
stability of the German financial system, see Deutsche Bundesbank [20]. Furthermore, the
surrender risk is also a risk factor in the stress tests developed by the European Insurance
and Occupational Pension Authority (EIOPA). Milhaud and Dutang [48] even state that,
nowadays, the surrender risk is one of the most important risk factors life insurers need
to consider.
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Remark 3.2.1 (Exemption of premium payments). Another prominent contract feature
related to surrender options is exemption of premium payments. Here, policyholders
decide to stop paying premiums but the contract remains active in a frozen state with
reduced entitlements (due to missing premium payments). In the future, the policyholder
might also cancel her decision and restart paying premiums. Surrendering and stopping
premium payments both belong to the behavioral risk but the consequences of the former
are more severe. Therefore, in the model developed in this thesis, we focus on surrender
options. The extension of incorporating exemption of premium payments as an additional
contract feature is straightforward.

Market risk

Under market risk we understand the risk of price changes which lead to the insurer making
losses from the investments. We take the market risk into account by choosing stochas-
tic models for the simulation of the capital market. In addition, we apply a stochastic
volatility model for the stock price dynamics and we allow for crashes in the stock and
bond markets. The latter covers the default risk for asset holdings which is an important
risk factor according to Deutsche Bundesbank [20] and which potentially arises from an
increased search for yield by accepting higher risks. A substantial part of the market risk
is the interest rate risk.

Market risk: interest rate risk

As long-term investors, life insurers are especially vulnerable to changes in interest rates.
In times of low interest rates, it is difficult for them to obtain sufficient returns on the
managed funds in order to meet obligations resulting from (the partly high) guarantees
promised to the insured. Rising interest rates would therefore ease pressures in the long
term and improve solvency ratios, see Deutsche Bundesbank [20]. However, a very sharp
rise in interest rates could impose liquidity risks for life insurers in the short term, since the
market value of their assets could decease substantially. As a result, capital requirements
might not be fulfilled anymore. Furthermore, according to the interest rate hypothesis
(see the discussion in Section 2.3.2), surrender rates are positively correlated with interest
rates. A sudden increase of interest rates could therefore significantly raise surrender rates,
potentially yielding to insurance runs in the most extreme case, cf. Kubitza et al. [46]. In
the simulation studies, we consider different scenarios regarding the future development
of interest rates and measure their impact on the default probability and the surplus
participation.

3.2.2. Structure of our ALM model

The model consists of different, interacting parts introduced and illustrated in Figure 3.1.
The modular framework enables the realization of alternative modeling approaches or the
adaption to different insurance products. In this work, we especially consider different
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investment and financing strategies, alternative patterns of new contract arrivals, and
varying capital market models where we also allow for crashes.

Capital market model

· Stock prices

· Bond prices

Management model

· Asset allocation

· Interest rate declaration

· Financing strategy

Balance sheet model

· Projection of assets

· Projection of liabilities

· Profit and loss account

Liability model

· Biometrics

· Policies

· New business

Figure 3.1.: Overall structure of the ALM model.

The capital market is modeled by short rate and stock price processes and the insurer’s
financial assets are presented in simplified form by stocks and bonds. On the counter-
part, we have liabilities formed by the insurance contracts comprising existing and new
business. In particular, our model is not confined to run-off companies. The management
model describes the insurance company’s decisions regarding the declaration of the bonus
payments and of the interest rate for the next year, the asset allocation, and the applied
methods to finance the periodic disbursements consisting of due obligations and expiring
credits. The arrows in Figure 3.1 illustrate the corresponding dependencies. For example,
the obtained surpluses, which are calculated within the profit and loss account, have an
impact on the future interest rate declaration and thus on the development of the policy-
holders’ contracts. To give another example, the new business has a substantial influence
on the balance sheet’s structure and is necessary for the objective of a long-term stability.

3.3. Capital market model

This section deals with the simulation of the capital market providing investment oppor-
tunities for the strategies developed in Section 3.5.1. We first introduce a basic capital

40



3.3. Capital market model

market model, where stock prices follow a geometric Brownian motion as in the Black-
Scholes model. However, since life insurance products are typically long-term agreements
and contract periods of 50 years or more are possible, the assumption of a constant inter-
est rate is not reasonable. Instead, the instantaneous risk-free interest rate, also referred
to as short rate, needs to be modeled by a (correlated) stochastic process. Motivated by
empirical observations of financial markets, we then introduce more sophisticated capital
market models. In particular, we consider a stochastic volatility model for stock prices
and allow for crashes in the bond and stock markets in our simulation studies.

Since we want to model the actual development of the capital market, all stochastic
processes are simulated under the physical measure P .

3.3.1. Basis capital market model

For life insurers, the two most important markets to invest in are the bond and the stock
markets. Especially for long running contracts like pension products, bond investments are
dominant, see Korn and Wagner [44]. A special class of bonds are zero-coupon bonds. For
the following definitions and the formula for pricing zero-coupon bonds, we refer to Brigo
and Mercurio [11].

Definition 3.3.1 (Zero-coupon bond). A zero-coupon bond with maturity T is a contract
that guarantees its holder the payment of one unit of money at time T . Before maturity
there are no intermediate payments. The price at time t is denoted by p (t, T ).

We say the bond is in default if the issuer cannot fulfill the obligation. If not stated
otherwise, we consider default-free zero-coupon bonds and just call them bonds. By no-
arbitrage arguments, we have p (T, T ) = 1. For t < T , the time-t-price p (t, T ) is a random
variable depending on the short rate r(t) defined in the following.

Definition 3.3.2 (Short rate). Let t ≤ S < T .

1. The time-t-forward rate F (t, S, T ) on [S, T ] is given by

exp {F (t, S, T ) (T − S)} =
p (t, S)

p (t, T )
.

2. The time-t-instantaneous forward rate for investment at T is

f (t, T ) = lim
∆t↓0

F (t, T, T +∆t)

and r (t) = f (t, t) the short rate.

Assuming the existence of a risk-neutral measure Q, the time-t price p (t, T ) of a zero-
coupon bond with maturity T is given by the conditional expectation of the final payoff
p (T, T ) = 1 under that measure, i.e.

p (t, T ) = EQ
[

exp

{
−
∫ T

t
r(s)ds

}∣∣∣∣F (t)

]
,
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where F (t) models the information up to time t. In order to compute the conditional
expectation, we need to choose a model for the dynamics of r characterizing the distribu-

tion of exp
{
−
∫ T
t r(s)ds

}
. Here, we choose the Vasiček model introduced in Vasicek [54],

where the short rate dynamics are given by

dr(t) = (b− ar(t)) dt+ σrdWr (t) , (3.3.1)

for constants b ∈ R, a > 0, σr > 0, and a Brownian motion Wr under the real-world
measure P . The stochastic process solving (3.3.1) is an Ornstein-Uhlenbeck process. With
Itô’s product rule, we get

d
(
eatr(t)

)
= eatdr(t) + r(t)deat

= eat (bdt− ar(t)dt+ σrdWr (t) + ar(t)dt) ,

implying

eatr(t) = r(0) +

∫ t

0
beaudu+

∫ t

0
eauσrdWr (u)

and thus

r(t) =
b

a
+

(
r(0)− b

a

)
e−at + σr

∫ t

0
e−a(t−u)dWr (u) .

For s ≤ t, we can rewrite the last equation to

r(t) =
b

a
+

(
r(s)− b

a

)
e−a(t−s) + σr

∫ t

s
e−a(t−u)dWr (u) . (3.3.2)

Therefore, the short rate r(t), conditioned on F (s), s ≤ t, is normally distributed satisfy-
ing

E [r(t)| F (s)] =
b

a
+

(
r(s)− b

a

)
e−a(t−s) (3.3.3)

and

Var (r(t)| F (s)) = σ2
rE

[(∫ t

s
e−a(t−u)dWr (u)

)2
∣∣∣∣∣F (s)

]

= σ2
rE
[∫ t

s
e−2a(t−u)du

∣∣∣∣F (s)

]
=
σ2
r

2a

(
1− e−2a(t−s)

)
,

where we used the Itô isometry for calculating the conditional variance. Since the short
rate is normally distributed, the Vasiček model allows for negative interest rates. In
the current period of very low interest rates, this can be seen as an advantage. From
equation (3.3.3), we conclude that the short rate is mean reverting with a reflecting the
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pace of the mean reversion and b
a representing the long-term mean. In the Vasiček model,

bond prices can be computed according to

p (t, T ) = exp {A(t, T )−B(t, T )r(t)} ,

for deterministic functions

B(t, T ) =
1

ã

(
1− e−ã(T−t)

)
A(t, T ) = (B (t, T )− (T − t))

(
b̃

ã
− σ2

r

2ã2

)
− σ2

r

4ã
B(t, T )2.

Here, ã and b̃ are the short rate parameters under the equivalent martingale measure Q
defined by choosing a specific functional form of the market price of interest rate risk
process λ (t) which characterizes the Radon-Nikodym density

dQ

dP

∣∣∣∣
F(t)

= exp

{
−1

2

∫ t

0
(λ (s))2 ds−

∫ t

0
λ (s) dWr (s)

}
.

By the Girsanov theorem, WQ
r (t) = Wr (t) +

∫ t
0 λ (s) ds is then a standard Brownian

motion under Q. There is no answer to the question on how to choose the specific func-
tional form of λ (t) in general. However, choosing λ (t) to be any affine transformation of
the short rate r(t) leads to a stochastic differential equation for the short rate under Q
with the same structure as (3.3.1). In particular, r(t) is normally distributed and has the
mean-reversion property also under Q. Brigo and Mercurio [11] and Kok et al. [42] follow
a proportional approach. In this work, we choose

λ (t) = λ0.

The parameters of the short rate under Q are then given by b̃ = b − λ0σr and ã = a.
Therefore, the mean-reversion speed is maintained which motivates our choice. Note that
the short rate’s volatility is not affected by the change of measure.

Stock prices s(t) follow a geometric Brownian motion,

ds(t) = s(t) (µsdt+ σsdWs(t)) , (3.3.4)

with drift µs ∈ R, volatility σs > 0, and Ws(t) = ρWr (t) +
√

1− ρ2Z(t) for a Brownian
motion Z independent of Wr. Thus, Ws(t) and Wr (t) have correlation ρ. The stochastic
differential equation has the well-known solution

s(t) = s(0)exp

{(
µs −

1

2
σ2
s

)
t+ σsWs(t)

}
. (3.3.5)

As a consequence, stock prices are log-normally distributed. In other terms, the logarith-

mic returns ln
(
s(t)
s(s)

)
, s < t, are normally distributed.
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Note that s could be a stock market index or the value of a whole stock portfolio. For
simplicity, we just speak of one stock in the following.

Simulation of the basic capital market model

Since we know the exact solutions of the stochastic differential equations for the short
rate and stock price dynamics, we simulate the short rate and the stock prices directly
by equations (3.3.2) and (3.3.5). For this, we apply the Euler-Maruyama method using
the discretization of time (2.3.1) introduced in the previous chapter. Writing rk = r(tk),
sk = s(tk), the applied recursions are given by

rk =
b

a
+

(
rk−1 −

b

a

)
e−a∆t + σr

√
1− e−2a∆t

2a∆t
∆kWr,

sk = sk−1exp

{(
µs −

1

2
σ2
s

)
∆t+ σs∆kWs

}
,

with ∆kWs = ρ∆kWr +
√

1− ρ2∆kZ and independent ∆kWr,∆kZ ∼ N (0, ∆t). The
values at times t 6= tk are obtained by corresponding linear interpolations.

3.3.2. More general capital market models

In the Black-Scholes model, stock prices follow a geometric Brownian motion as in our
basic capital market model. An essential drawback of this modeling approach is the
assumption of a constant volatility which is not consistent with observed market values of
traded options. To see this, one can compute the implied volatility, i.e. the volatility which
would be needed to obtain observed market prices of European call options with different
maturities and strikes according to the Black-Scholes formula established by Black and
Scholes [6]. If stock prices would follow the Black-Scholes model, the implied volatility
would be constant over different strikes. But often it is not (smile effect). Empirical
studies strongly contradict the assumption of a constant volatility, see e.g. Dumas et al.
[24] or Desmettre et al. [18]. Furthermore, observed characteristics of financial time series,
which are known as stylized facts, are not consistent with the assumption of normally
distributed log-returns of stock prices. Typically, negative news have a stronger influence
on the volatility than positive ones which is called the leverage effect. Thus, changes in
the price and volatility are most often negative correlated. In contrast to the symmetric
normal distribution, observed logarithmic returns are often asymmetric distributed. As a
consequence, the skewness being defined by

γ(X) =
E
[
(X − E [X])3

]
(Var (X))3/2

,
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3.3. Capital market model

is non-zero. For a normally distributed random variable X, we have γ(X) = 0. Moreover,
historical log-returns tend to have a leptokurtic distribution, i.e. the kurtosis defined by

κ(X) =
E
[
(X − E [X])4

]
Var(X)2

,

is larger than 3 which would be the value if X is normally distributed. This means,
empirical returns have larger tails and more probability mass in the center.

In Figure 3.2, we display the daily closing prices sk of the German stock index (DAX)
from January 2017 to December 2021. The corresponding qq plot of the K = 1, 262 daily
log-returns

Rk = ln

(
sk
sk−1

)
, k = 1, . . . ,K,

on the right indicates a leptokurtic distribution. If the log-returns would follow a normal
distribution, the blue crosses would lie (approximately) on the red-dashed line.
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Figure 3.2.: Performance of DAX between January 2017 and December 2021 (left) and the
corresponding qq plot of the daily log-returns (right).

The sample skewness γ̂K and the sample kurtosis κ̂K are defined by

γ̂K =
1

V̂ar
3/2

1

K

K∑
k=1

(
Rk − R̄K

)3
and κ̂K =

1

V̂ar
2

1

K

K∑
k=1

(
Rk − R̄K

)4
,

where

R̄K =
1

K

K∑
k=1

Rk and V̂ar =
1

K − 1

K∑
k=1

(
Rk − R̄K

)2
denote the sample mean and sample variance, respectively. For the above 5-year time
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3. A General ALM Model

horizon, we have γ̂K = −1.0 and κ̂K = 21.3. For a time horizon of January 1988 to
December 2021, we compute an estimated value of −0.3 for the skewness and 9.8 for the
kurtosis.

In the following, we introduce a popular stochastic volatility stock market model which
respects the above stylized facts, see Heston [33], Desmettre et al. [18], or Desmettre and
Korn [17].

Heston model

In the Heston model (cf. Heston [33]), the stock price and variance processes are given by
the coupled system of stochastic differential equations

ds(t) = s(t)
(
µsdt+

√
ν(t)dWs(t)

)
, s(0) = s0, (3.3.6)

dν(t) = κ (θ − ν(t)) dt+ σν
√
ν(t)dWν(t), ν(0) = ν0, (3.3.7)

with Corr (Ws(t),Wν(t)) = ρsν . In this representation, µs is the drift of the stock prices,
κ the pace of the reversion to the long-term mean θ > 0 of the variance, and σν > 0 its
volatility.

Remark 3.3.3 (Properties of the Heston model). The process ν(t) solving equation (3.3.7)
is a Cox-Ingersoll-Ross process being non-negative almost surely and having a non-central
Chi-Squared distribution. It is strictly positive if the Feller condition

2κθ ≥ σ2
ν

is satisfied. The variance process has the mean reversion property and the leverage effect
is reflected by the correlation between the two driving Brownian motions which is typically
negative. Sometimes we even have ρsν ≈ −1.

Simulation of the Heston model

For the simulation of the Heston model, we discretize (3.3.7) and the stochastic differential
equation of the log-stock price X(t) = ln(s(t)) obtained by Itô’s formula:

dX(t) =

(
µs −

1

2
ν(t)

)
dt+

√
ν(t)dWs(t).

By this, we reduce the discretization error and stock prices are then given by s(t) = eX(t).
While the continuous-time process ν(t) is always non-negative under the Feller condition,
yet simulated approximating paths can get negative. In that case, the root expressions
become complex and useless for the following iterations. Desmettre et al. [18] apply
different methods dealing with this issue in the context of pricing an European call option.
In this thesis, we use the reflection principle, i.e. we use the absolute value of the variance
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3.3. Capital market model

terms in the recursions:

Xk = Xk−1 +

(
µs −

1

2
|νk−1|

)
∆t+

√
|νk−1|∆kWs,

νk = |νk−1|+ κ (θ − |νk−1|)∆t+ σν
√
|νk−1|∆kWν ,

with ∆kWν = ρsν∆kWs+
√

1− ρ2
sν∆kZν and independent ∆kWs,∆kZν ∼ N (0, ∆t). The

stock price sk at time tk is then given by sk = exp {Xk}.
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Figure 3.3.: Simulated stock prices (left) and volatility (right) in the Heston model and
the Black-Scholes model. Parameters: T = 50, ∆t = 1

12 , s0 = 100, µs = 0.05,
σs = 0.2, ν0 = 0.04, κ = 2, θ = 0.04, σν = 0.2, and ρsν = −0.9.

Figure 3.3 displays simulated stock prices in the Black-Scholes and in the Heston model
(left-hand side) and the corresponding volatility (right-hand side), where we used the
same parameters and the same sequence of generated random numbers for simulating the
Brownian motion Ws. Therefore, a direct comparison is possible. In the Heston model,
the volatility oscillates around the long-term mean

√
θ =
√

0.04 which coincides with the
constant volatility σs = 0.2 in the Black-Scholes model.

Model Sample skewness Sample kurtosis

Black-Scholes 0.0 (0.1) 3.0 (0.1)
Heston 0.1 (0.1) 4.4 (1.0)

Table 3.1.: Estimated mean and standard deviation (in brackets) of the sample skewness
and the sample kurtosis in the Black-Scholes and in the Heston model. The
estimations are based on N = 10, 000 simulated paths of stock prices.
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Figure 3.4.: QQ plots of log-returns of a simulated path of stock prices in the Black-Scholes
model (left) and in the Heston model (right). Parameters: T = 5, ∆t = 1

252 ,
s0 = 100, µs = 0.05, σs = 0.2, ν0 = 0.04, κ = 0.5, θ = 0.04, σν = 0.2, and
ρsν = −0.9.

Figure 3.4 shows the qq plots of the log-returns of simulated stock prices in the Black-
Scholes model (left-hand side) and in the Heston model (right-hand side). Due to the
normally distributed log-returns in the Black-Scholes model, the empirical quantiles ap-
proximately coincide with the quantiles of a normal distribution. In contrast, the right-
hand side looks similar to the qq plot of the daily DAX returns in Figure 3.2, which
indicates that the Heston model allows for a leptokurtic distribution of log-returns. This
is also indicated in Table 3.1, where we estimate the mean and the standard deviation of
the sample skewness and the sample kurtosis in the considered stock price models with
the same parameters on the basis of N = 10, 000 simulated paths.

Remark 3.3.4 (Crashes in the capital market). Looking again at the DAX performance
in Figure 3.2, we see another important characteristic missing in the capital market models
so far. Due to the COVID-19 pandemic, the DAX lost over 34% within just four weeks.
Such extreme events are referred to as crashes and will be considered in later simulation
studies, where we investigate the robustness of the introduced investment strategies in the
presence of crashes in both stock and bond markets. This approach covers the extension
to corporate bond investments.

Remark 3.3.5 (Alternative short rate models). As done for modeling the stock price,
we could also apply any other short rate model due to the flexibility of our model. For
example, the Cox–Ingersoll–Ross model, where short rates have dynamics as the variance
in the Heston model in (3.3.7), also generates short rates with the mean-reversion property
but does not allow for negative interest rates, see Brigo and Mercurio [11]. The Hull-White
model extends the Vasiček model by allowing for non-constant parameters but the short
rate is not mean-reverting anymore.
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3.4. Balance sheet

3.4. Balance sheet

We now turn to the internal components of our ALM model. We use the established
discretization scheme, see (2.3.1), dividing the simulation period into K periods [tk−1, tk],
k = 1, . . . ,K, of equal length ∆t.

Legal regulations require insurance companies to draw up a comparison between assets
and liabilities, e.g., for the purpose of determining the available own funds.1 This is done
by preparing a balance sheet, which requires a cash flow statement and a profit and loss
account in addition to evaluating all asset and liability positions. In this thesis, the balance
sheet as displayed in Table 3.2 for time tk forms the reference for the simulation of the
asset-liability management.

Assets Liabilities

Bonds Cbk Equity Qk
Stocks Csk Free reserve Fk
Cash Cck Actuarial reserve Ak

Bonus reserve Bk
Liabilities to banks Lk

Total Ck Total Ck

Table 3.2.: Considered balance sheet at time tk.

The total capital Ck of the assets is allocated to bonds of different times to maturity,
stocks, and a cash position with market values Cbk, C

s
k, and Cck, respectively. On the

opposite side of the balance sheet the liabilities comprise the equity Qk, the free reserve Fk,
the technical reserve Vk consisting of the actuarial reserve and the bonus reserve,

Vk = Ak +Bk, (3.4.1)

and the liabilities to banks Lk. The actuarial reserve Ak represents the obligations towards
the policyholders arising from the guarantees embedded in the life insurance contracts. Its
development over time is independent of the capital market’s variations. Surpluses that
have been credited to individual contracts become part of the guarantees and are accounted
for by the bonus reserve Bk. In contrast, policyholders are not entitled to unappropriated
and unallocated surpluses being registered in the free reserve. As the free reserve is not
assigned to individual insured, it can be used to cover future losses under strict conditions.2

Therefore, in addition to the shareholders’ equities, it is part of the own funds Fk + Qk
according to Solvency II. Finally, the insurance company can take loans which must be
registered as liabilities to banks. Explicit representations for all balance sheet positions
are derived in Section 3.7.

1In Germany, e.g., this is prescribed by the Insurance Supervision Law VAG in §74.
2In Germany, e.g., this possibility is permitted by the Insurance Supervision Law VAG in §140, and

requires the approval of the corresponding regulating authorities.
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Remark 3.4.1 (Choice of the period length). In practice, the balance sheet is prepared
annually implying ∆t = 1. By law, an insurance company must have appropriate methods
to detect a potential deterioration in its financial condition.3 In order to detect earlier how
potential measures could negatively impact the insurer’s financial strength, we typically
choose smaller values for the period length, e.g. ∆t = 1

12 or ∆t = 3
12 .

Remark 3.4.2 (Fundamental balance sheet equation). At the end of an accounting year,
the sum of all liabilities needs to equal the sum of all assets. Due to the complexity of
bookkeeping, simplified approaches to handle that fundamental balance sheet equation
are applied in the literature. They are often associated with the principle of single-entry
bookkeeping. By defining the equity (sometimes also called the reserve or buffer account)
residually by the difference between assets (left side of the balance sheet) and liabilities
(remaining accounts on the right side), the balance sheet equation is automatically fulfilled.
In comparison, we aim at providing an even balance sheet model without assuming that
this relationship holds by default. We explicitly prove that the fundamental balance sheet
equation is fulfilled at the end of every period. This is in line with the principle of double-
entry bookkeeping as required in accounting.

3.5. Management model

In our ALM model, the management of the life insurance company decides about the asset
allocation, the surplus participation process, and the strategy of financing the periodic
disbursements. The two former management tasks are typically taken into account in the
corresponding literature (e.g. in most of the cited papers in Section 3.1.2) by specifying
the investment strategy and the applied surplus participation scheme. However, to the
best of our knowledge, there is less importance attached to the other part, i.e. it is often
not clear what measures are taken by the management to meet the due obligations and
in which order. In this thesis, we put more emphasis on this issue and introduce several
strategies to finance the periodic disbursements.

Let us now fix a period k ∈ {1, . . . ,K}, i.e. we consider the time interval [tk−1, tk].

3.5.1. Asset allocation

Life insurers are financial intermediaries that invest the obtained premium revenues in
the capital market. The investments must be in conformity with the principle of prudent
business such that the taken risk positions can be controlled and due obligations can be
met. We take this requirement into account by introducing a maximum stock ratio πs,max

k

for the upcoming period and by prohibiting short-selling of stocks.4 The value πs,max
k might

be determined and prescribed by the corresponding regulating authorities and typically

3For European insurers, the corresponding requirements are provided by Solvency II. For German insurers,
e.g., this is additionally prescribed by VAG, §132.

4For German life insurers, e.g., the requirement additionally means that the use of financial derivatives
is only permitted if they contribute to reducing risks, see VAG §124.
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3.5. Management model

depends on the country and the specific insurance product, and might be adjusted over
time.

Due to the cash flows from the insurance business (new premium payments, benefit
payments, credit repayments) and the price changes of the financial products (stocks,
bonds), the management regularly needs to adjust the asset allocation. Such decisions are
made at the beginning of a period, i.e. at time tk−1. Throughout the interval (tk−1, tk),
there are no changes nor adjustments possible implying a constant number of held assets
until the period’s end tk. The reallocation depends on the chosen investment strategy, and
requires the calculation of the tied up capital CBk−1 and the position of liquid funds CLk−1.
At the beginning of the period, the calculation steps follow a strict order:

1. derivation of the updated value of the life insurer’s total assets C(k−1)+ ,

2. calculation of the value of the tied up capital CBk−1,

3. computation of the liquid funds CLk−1, and

4. reallocation of the assets according to the chosen investment strategy (IS).

We add a ’+’ to the time index to highlight that a quantity’s value is being updated at
a given time point. For example, the total capital at time tk−1 is denoted by Ck−1 and
corresponds to the sum of the balance sheet prepared at the end of period k − 1. New
premiums obtained at the beginning of period k are part of the updated capital C(k−1)+

but not of Ck−1. However, as indicated in Figure 3.5, only single prices for bonds and
stocks are quoted at each time point ti.

tk−1 tk

Csk−1

Cbk−1

Cck−1

CBk−1

CLk−1

ϕs(k−1)+

ϕbk−1

Csk
Cbk
Cck

Period k

sk, p (tk, tk−1 + τ)sk−1, p (tk−1, tk−1 + τ)

Figure 3.5.: Representation of period k regarding the asset allocation.

Here, ϕs(k−1)+ and ϕbk−1 denote the new numbers of stocks held and bonds with dura-
tion τ purchased at time tk−1. These quantities are determined by the chosen investment
strategy.

The starting point is the previous balance sheet with the life insurer’s total assets Ck−1

consisting of a cash position Cck−1, stocks Csk−1, and bonds Cbk−1 with different times to
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3. A General ALM Model

maturity, i.e.

Ck−1 = Cck−1 + Csk−1 + Cbk−1.

On the accounting date, the life insurance company holds

ϕsk−1 =
Csk−1

sk−1

stocks corresponding to a stock ratio

πsk−1 =
Csk−1

Ck−1
.

Depending on the applied strategy for financing the periodic disbursements introduced in
Section 3.5.3, πsk−1 may exceed πs,max

k . This can especially be the case if funds are first
taken from expired bonds. The updated capital C(k−1)+ is given by

C(k−1)+ = Ck−1 − ξs,l(k−1)+
+
(
Pk−1 − L+

k−1

)+
, (3.5.1)

where ξs,l
(k−1)+

denotes the amount of stocks sold at the beginning of period k and L+
k−1 the

bridging loan according to the applied financing strategy. Both quantities are specified in
Section 3.5.3. The premium Pk−1 is in fact aggregated taking all cohorts, including the
new ones, into account. This leads to

Pk−1 =

Mk∑
m=1

1{dmk−1>0}
(
δmk−1 + δnew,m

k−1

)
· Pm(k−1)+ (3.5.2)

with Mk = Mk−1 +Madd
k−1. Regarding the bond investments, we assume that the maturity

falls on a period’s end implying τ
∆t ∈ N and, in this chapter, that bonds are held until ma-

turity.5 Furthermore, the management strives to keep a minimum share πs,min
k−1 ∈ [0, πs,max

k ]

of the stocks. As a consequence, the tied up capital CBk−1 comprises all previously pur-

chased bonds having positive remaining residual terms, i.e. Cbk−1, and parts of Csk−1.
Taking into account the maximum stock ratio πs,max

k for the upcoming period, we get

CBk−1 = Cbk−1 + πs,min
k−1 Csk−1 −

(
πs,min
k−1 Csk−1 − π

s,max
k C(k−1)+

)+

= Cbk−1 + min
{
πs,min
k−1 Csk−1, π

s,max
k C(k−1)+

}
representing the part of the total capital which is not available for new investments. Here,

5The latter assumption is relaxed in Chapter 5, where we develop investment strategies explicitly allowing
for prior selling of held bonds.
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we used that for any x, y ∈ R it holds

x− (x− y)+ = min {x, y} .

The cash flows are summarized in a position of liquid funds CLk−1 forming the basis of
the investment strategies. It is determined by premium income, liquid assets, and the
previous demand for credits L+

k−1, i.e.,

CLk−1 =
(

1− πs,min
k−1

)
Csk−1 − ξ

s,l
(k−1)+

+ Cck−1 +
(
Pk−1 − L+

k−1

)+
+
(
πs,min
k−1 Csk−1 − π

s,max
k C(k−1)+

)+
.

The last term reflects the potential liquidation of those parts of πs,min
k−1 Csk−1 that exceed

the maximum stock amount induced by πs,max
k . The updated capital C(k−1)+ can now be

written as

C(k−1)+ = CLk−1 + CBk−1.

As all funds of the life insurance company, including the cash Cck−1, are completely invested
in the capital market, C(k−1)+ comprises only stocks and bonds with different times to
maturity after the reallocation, i.e. we then have

C(k−1)+ = Cs(k−1)+ + Cb(k−1)+ ,

where Cs(k−1)+ represents the management’s target for the stock position taking the avail-

able liquid funds and the maximum stock ratio into account. Cb(k−1)+ consists of Cbk−1 and
newly purchased bonds with duration τ , i.e.

Cb(k−1)+ = Cbk−1 + ϕbk−1p (tk−1, tk−1 + τ) ,

where

ϕbk−1 =
CLk−1 −

(
Cs(k−1)+ −min

{
πs,min
k−1 Csk−1, π

s,max
k C(k−1)+

})
p (tk−1, tk−1 + τ)

.

After the reallocation, the life insurer holds

ϕs(k−1)+ =
Cs(k−1)+

sk−1
(3.5.3)

stocks corresponding to a stock ratio

πs(k−1)+ =
Cs(k−1)+

C(k−1)+
, (3.5.4)
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which respects the maximum stock ratio πs,max
k , i.e. we always have πs(k−1)+ ≤ π

s,max
k .

We close this section by introducing two prominent investment strategies we will apply
in the later simulation studies. In Diehl et al. [23], we used these strategies with πs,min

k = 0
for all k.

CM strategy (constant mix)

The life insurance company intends to have a fixed share πs,tar
k ∈ [πs,min

k−1 , πs,max
k ] of its

capital for period k invested in stocks. The adjusted stock position can be written as

Cs(k−1)+ = min
{
CLk−1 + πs,min

k−1 Csk−1, π
s,tar
k C(k−1)+

}
.

This strategy has a simple structure and is often used in the corresponding literature, e.g.
in Burkhart et al. [14], Fernández et al. [25], and Gerstner et al. [27].

CPPI strategy (constant proportion portfolio insurance)

The amount of funds invested in stocks Cs(k−1)+ is linked to the current value of the own
funds consisting of equity Qk−1 and free reserve Fk−1. The idea is that the insurer can
accept a higher risk in case of sufficiently large buffers. Here, the free reserve Fk−1 is
taken into account since it contributes to the insurer’s financial buffer, see Section 3.4.
The strategy is characterized by a constant multiplier λCPPI

k .6 The money invested in
stocks can be represented as

Cs(k−1)+ = min
{

min
{
CLk−1, λ

CPPI
k · (Qk−1 + Fk−1)+}+ πs,min

k−1 Csk−1, π
s,max
k C(k−1)+

}
.

The positive part of the own funds ensures that no short-selling of stocks occurs. A CPPI
strategy is also considered in Bohnert et al. [10] and, in the context of dynamic hybrid
products, in Bohnert [8] and Hambardzumyan and Korn [32].

3.5.2. Interest rate declaration

Insurance companies are obliged to run their businesses carefully, which is why a number of
protection features are incorporated in practice. For example, prolonged life tables reduce
the longevity risk for the insurance company or the investments in the financial market
must be carried out cautiously. All of this usually leads to the insurance company making
surpluses which belong to the policyholders and are distributed to the insured collective.
In several European countries, particularly in Germany, for this a lagged participation
process is applied, where surpluses are first accumulated in a collective reserve and are
then allocated to the individual contracts in subsequent years, see e.g. Burkhart et al.
[13, 14]. Such a procedure is typically used for participating life insurance contracts7 and

6In practice, we typically have λCPPI
k > 1.

7In contrast, unit-linked policies make use of the process of individual saving, see Bohnert et al. [10].
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can yield a stable surplus participation by smoothing potentially high-volatile obtained
market returns.

In the presented model, the collective surpluses are first accounted by the free re-
serve Fk−1. They are later distributed to the individual policies depending on the type of
insurance contract. This is done by declaring an annual interest rate

îk =

{
max

{̂
iG, ω · (γk−1 − γ)

}
, if k ≡ 1

(
mod 1

∆t

)
îk−1, else

(3.5.5)

at the beginning of the year, i.e. at times tk−1 with k ≡ 1
(
mod 1

∆t

)
. Here, a guaranteed

interest rate îG is taken into account, which might be a feature of the insurance contract.8

The distribution ratio ω is controlled by the management and weights the deviation be-
tween the current reserve rate

γk−1 =
Fk−1

Fk−1 + Vk−1

(3.5.6)

and an target value γ ∈ [0, 1], which is kept as buffer against future losses. The interest rate
declaration is binding for the whole year and thus constitutes a year-by-year or cliquet-
style guarantee. Large values of îk are preferable from a policyholders’ point of view
and might increase the life insurer’s competitiveness, but they are also associated with a
greater strain on the free reserve and thus may threaten the future solvency.

If surpluses are credited to the policyholders’ accounts every period, the annual interest
rates îk and îG are transformed according to

ik =
(

1 + îk

)∆t
− 1 (3.5.7)

and

iG =
(

1 + îG

)∆t
− 1 (3.5.8)

to those for each period k.

Remark 3.5.1 (Alternative interest rate declaration). The above procedure is mainly
based on the current reserve rate γk−1. Alternatively, we could link the declared interest
rate directly to the obtained portfolio return Rk−1 from the last period.9 To ensure a
reasonable reduction of the free reserve Fk, we include a reserve rate-depending adjustment
term iadjust

k if γk−1 is outside a specified interval [γmin
k−1, γ

max
k−1 ] that contains the target

8In practice, existing insurance portfolios typically consist of contracts equipped with varying guaranteed
interest rates. In 2017, e.g., the technical interest rates used to compute the reserves of Allianz Life
(Germany) ranged from 0.0% to 4.0%, see Hieber et al. [34]. An extension to such a setting is possible.
Alternatively, one could divide the insurance portfolio into sub-portfolios corresponding to different
product lines associated with varying guarantees as done by Goffard and Guerrault [28].

9At time t0, we may obtain R−1 by prior simulations.
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value γ. According to that alternative method, the annual declared interest rate is

îk =

{
max

{̂
iG, ω ·Rk−1 + iadjust

k

}
, if k ≡ 1

(
mod 1

∆t

)
îk−1, else ,

(3.5.9)

where

iadjust
k =


−
(
γmin
k−1 − γk−1

)
, if γk−1 < γmin

k−1(
γk−1 − γmax

k−1

)
, if γk−1 > γmax

k−1

0, else .

If not stated otherwise, the annual interest rate is declared according to (3.5.5) throughout
this thesis.

3.5.3. Financing of the disbursements

In addition to the asset allocation, the use of surpluses, and the interest rate declaration,
another important task of the management of a life insurance company is to ensure suf-
ficient liquidity such that obligations can be met when they are due, i.e. the life insurer
needs to be able to create the payments promised to its customers at all times. However,
uncertainty regarding the size of the total claim amount and the time at which benefit
payments are due on the one side and the fact that a substantial part of the capital is
tied up on the other side, can lead to a situation where the amount of available cash is
not sufficient. In that case, the management needs to choose a priority order of potential
measures that are taken to increase the liquidity and to create the promised payments.
We call the exact procedure of such measures a financing strategy (FS). In this chapter,
we consider the following potential measures:10

� take funds from expired bonds,

� sell stocks,

� raise short-term credits,

� take funds from premium income, and

� raise long-term credits.

The short-term credit is a bridging loan, e.g. an over-night credit, from the end of period k
to the beginning of period k+ 1 and represents the demand for credits at time tk. Due to
the short maturity, it is assumed that no interests need to be paid. Note that premium
revenues Pk at time tk are assigned to the following period k + 1. As a result, they are
not initially used to cover the benefits. By this assumption, we respect the fact that, in

10In Chapter 5, we additionally consider the possibility of selling held bonds.

56
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practice, the end of a period does not coincide with the beginning of the following one.11

Thus, new premiums of period k+1 are not available to pay the benefits due at the end of
period k, but they can be used to repay the bridging loan at the beginning of period k+1.
If the bridging loan cannot be repaid completely, the life insurer decides to raise a long-
term credit with a fixed duration and variable interest rate. This can be interpreted as
emitting or short-selling of bonds.

As written in the previous section, the management strives to keep a minimum stock
share πs,min

k ∈ [0, πs,max
k+1 ] implying that stocks are only sold from the remaining part(

1− πs,min
k

)
ϕs(k−1)+sk to increase the required liquidity. In the case πs,min

k = 0, the

management might sell all stocks, while πs,min
k = 1 leads to the insurer selling no stocks

at all.12 In practice, there might be even more constraints that the management needs to
take into account.

According to the priority order, the life insurer makes full use of a measure before
applying another one. As indicated in Figure 3.6, stocks can be sold at the end of period k
or at the beginning of the next one. The corresponding market values of sold stocks
are denoted by ξs,lk and ξs,l

k+
, respectively. Especially in the presence of transaction costs,

it might be more attractive to borrow money via the bridging loan than to sell stock
shares. In contrast, the other measures can either be taken only before or only after the
preparation of the balance sheet at time tk.

tk−1 tk

Cb−k
ξs,lk
L+
k

Pk
ξs,l
k+

Lnew
k ϕlk

Period k

sk, p (tk, tk + τ)

Figure 3.6.: Measures for financing the disbursements Dk assigned to the corresponding
periods.

We always assume that funds are first taken from expired bonds Cb−k as this measure can
be realized most easily and without costs. All bonds with duration τ that were purchased

11The corresponding time distance, however, is small which motivates our assumption of single asset prices
at each time point ti, see Figures 3.5 and 3.6.

12In any case, stocks might be sold during the asset reallocation at the beginning of the following period
due to the maximum stock ratio πs,max

k+1 .
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at time tk− τ
∆t

are expiring, i.e. we have

Cb−k = ϕbk− τ
∆t
p (tk, tk) = ϕbk− τ

∆t

with p
(
tk, tk− τ

∆t
+ τ
)

= p (tk, tk) = 1. Taking a bridging loan L+
k is always the last

measure before preparing the balance sheet at time tk. At the beginning of period k + 1,
the life insurer can use the premium income, sell stocks, and raise a long-term credit Lnew

k

by emitting ϕlk bonds with duration τ , i.e.

ϕlk =
Lnew
k

p (tk, tk + τ)
. (3.5.10)

The exact representations of the involved quantities (ξs,lk , L+
k , ξs,l

k+
, and Lnew

k ) depend on
the chosen strategy for financing the disbursements Dk consisting of benefit payments Bk
and expiring (long-term) credits L−k , i.e.

Dk = Bk + L−k (3.5.11)

with

L−k = ϕlk− τ
∆t
p (tk, tk) = ϕlk− τ

∆t
. (3.5.12)

In the following, we present two examples.

Financing strategy 1 (FS 1)

This method was also used in Diehl et al. [23] but with πs,min
k = 0. Following this method,

the order of the individual measures are:

1. take funds from expired bonds Cb−k ,

2. sell stocks ξs,lk ,

3. raise short-term credits L+
k ,

4. take funds from premium income Pk, and

5. raise long-term credits Lnew
k .

As already indicated, funds are first taken from expired bonds Cb−k . It is possible that
these payouts do not cover the disbursements Dk, in which case the life insurer sells stocks
in the amount of

ξs,lk = min

{(
Dk − Cb−k

)+
,
(

1− πs,min
k

)
ϕs(k−1)+sk

}
.
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If these two measures are not sufficient to meet the due obligations, there remains a
demand for credits L+

k in the amount of

L+
k =

((
Dk − Cb−k

)+
−
(

1− πs,min
k

)
ϕs(k−1)+sk

)+

=
(
Dk − Cb−k −

(
1− πs,min

k

)
ϕs(k−1)+sk

)+
,

which is satisfied by raising a short-term credit. At the beginning of period k+1, premium
income Pk is used to repay the bridging loan, but no stocks are sold, i.e. we have ξs,l

k+
= 0.

The long-term credits to enter newly thus amount to

Lnew
k =

(
L+
k − Pk

)+
.

Financing strategy 2 (FS 2)

Note that for the first method it is possible that stocks are sold at the end of period k and
directly repurchased at the beginning of the following period at the same price sk. Such
a procedure might not be desirable if there exist transaction costs for buying and selling.
Therefore, we introduce the following method.

1. take funds from expired bonds Cb−k ,

2. raise short-term credits L+
k ,

3. take funds from premium income Pk,

4. sell stocks ξs,l
k+

, and

5. raise long-term credits Lnew
k .

Again, we first take funds from expired bonds Cb−k . However, now we directly raise a
short-term credit L+

k in the amount of

L+
k =

(
Dk − Cb−k

)+

if necessary instead of selling stocks, i.e. we have ξs,lk = 0. At the beginning of the
following period, premium income Pk is used to repay the bridging loan, and only if this
is not sufficient, the life insurer sells stocks worth

ξs,l
k+

= min
{(
L+
k − Pk

)+
,
(

1− πs,min
k

)
Csk

}
.

As a result, the amount of sold stocks due to financing the periodic disbursements is
potentially much smaller compared to applying the first method. Finally, the credits to
enter newly amount to

Lnew
k =

(
L+
k − Pk −

(
1− πs,min

k

)
Csk

)+
.

59
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Note that the amount of raised long-term credits coincide applying both methods, that is,
we can write

Lnew
k =

(
L+
k − Pk

)+ − ξs,l
k+

(3.5.13)

for both strategies. However, the amount of raised short-term credits and correspondingly
the balance sheet position ”liabilities to banks” may substantially differ.

3.6. Liability model

The insurance company’s liabilities consist of the commitments entered into by the conclu-
sion of insurance contracts of different types. The biometric parameters and the behavior
of the insured was already described in Section 2.3. In addition, the policies heavily depend
on the structural characteristics. The benefit spectrum of an insurance product specifies
the potential sizes of the benefit payments to the individual policyholder in different sce-
narios, e.g. at maturity or in case of prior death, see Kahlenberg [38]. In this section, we
generally introduce the guaranteed and the bonus part of the benefit spectrum covering
both, participating and non-participating contracts. We conclude the section by deriving
explicit representations of the policyholders’ accounts for a prominent class of insurance
contracts.

3.6.1. The benefit spectrum

In contrast to premiums which are typically paid in advance, i.e. at the beginning of a
period [tk−1, tk], benefits due in that period are paid out at time tk. As indicated at
the beginning of Chapter 3 regarding the notation, we assume that we apply one of the
methods developed in Section 2.4 for the compression and the simulation of the insurance
portfolio. As a result, the cash flows are associated with the representative contracts
of the individual cohorts. The benefit spectrum of an insurance product can thus be
characterized by listing the premium and benefit payments for all cohorts m ∈ {1, . . . ,Mk}
and all periods k ∈ {1, . . . ,K}.

The total amount of due benefits Bk introduced in the last section, can be decomposed
into

Bk = Ek + Tk + Sk, (3.6.1)

where the survival, death, and surrender benefit payments Ek, Tk, and Sk are calculated
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by

Ek =

Mk∑
m=1

(1− umk ) (1− qmk )
(
δmk−1 + δnew,m

k−1

)
Emk , (3.6.2)

Tk =

Mk∑
m=1

qmk
(
δmk−1 + δnew,m

k−1

)
Tmk , (3.6.3)

Sk =

Mk∑
m=1

umk (1− qmk )
(
δmk−1 + δnew,m

k−1

)
Smk . (3.6.4)

Here, qmk and umk are the death and surrender probabilities introduced in Section 2.3.2
for period k which are associated with the representative of cohort m. Emk , Tmk , and Smk
correspond to the payments of a single policyholder of model point m at time tk and are
determined by the specific insurance contract via the benefit spectrum. For participating
contracts, these payments can each be divided into a guaranteed and a bonus part denoted
by a superscript G and B, respectively. We can then write

Emk = EG,mk + EB,mk ,

Tmk = TG,mk + TB,mk ,

Smk = SG,mk + SB,mk ,

whereby equations (3.6.2), (3.6.3), and (3.6.4) can be written as

Ek = EGk + EBk ,

Tk = TGk + TBk , (3.6.5)

Sk = SGk + SBk ,

with, e.g.,

EGk =

Mk∑
m=1

(1− umk ) (1− qmk )
(
δmk−1 + δnew,m

k−1

)
EG,mk , (3.6.6)

TGk =

Mk∑
m=1

qmk
(
δmk−1 + δnew,m

k−1

)
TG,mk , (3.6.7)

SGk =

Mk∑
m=1

umk (1− qmk )
(
δmk−1 + δnew,m

k−1

)
SG,mk (3.6.8)

representing the aggregated guaranteed survival, death, and surrender benefit payments
due at time tk.

The introduced general framework regarding the benefit spectrum covers many types of
life insurance products. For example, a pure term-life insurance without surrender options
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3. A General ALM Model

can be considered by choosing umk = 0 and Smk = Emk = 0 for all m and all k implying
Sk = Ek = 0. In the following, we introduce a prominent type of participating contracts
incorporating all parts of the above benefit spectrum.

3.6.2. Development of the policyholders’ accounts

As this thesis aims at presenting the fundamental relations in simulating the asset-liability
management, we assume that the insurance portfolio consists of one contract type, namely
a classic endowment insurance. It is equipped with a guaranteed interest rate for the in-
vested premiums, a surrender option, and time-depending death benefits. Moreover, we
consider a lump-sum benefit payment and not a pension phase. The policyholders are,
in addition to the contractually guaranteed benefits, entitled to variable bonus payments
which allow them to participate in the obtained surpluses. Once surpluses are allocated
to the policyholders, i.e. credited to the corresponding accounts, they become part of
the guarantees and are then periodically at least compounded with the guaranteed inter-
est rate. The benefit payments are determined by the actual value of the policyholders’
accounts consisting of both accumulated and compounded contributions and bonus pay-
ments. These account values represent the individual policyholders’ entitlements and are
not fully funded. Indeed, as described in Sections 3.5.1 and 3.5.3, the insurer’s assets
are completely invested in the capital market and it is possible that assets need to be
liquidated or loans must be raised to finance the due benefit payments.

In our model, the benefit spectrum of the classic endowment insurance can be repre-
sented as

Emk = EG,mk + EB,mk = 1{dmk =0}V
m
k ,

Tmk = TG,mk + TB,mk = 1{dmk ≥0}V
m
k ,

Smk = SG,mk + SB,mk = 1{dmk >0}ϑV
m
k

with the contract value V m
k and the parameter ϑ ∈ [0, 1] being the so-called surrender

factor. As introduced in Section 2.4, the remaining contract period of the policies in
cohort m at time tk is denoted by dmk . The guaranteed and variable parts of the benefit
spectrum are related to the actuarial accountAmk and the bonus accountBm

k being specified
to be

EG,mk = 1{dmk =0}A
m
k and EB,mk = 1{dmk =0}B

m
k ,

TG,mk = 1{dmk ≥0}A
m
k and TB,mk = 1{dmk ≥0}B

m
k , (3.6.9)

SG,mk = 1{dmk >0}ϑA
m
k and SB,mk = 1{dmk >0}ϑB

m
k .

Therefore, the value V m
k of the total account of model point m at time tk is composed

by the actuarial account Amk and the bonus account Bm
k reflecting the assured guaranteed

part and the variable bonus part of the entitlements, respectively.
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The actuarial account includes all premium payments periodically compounded with the
guaranteed interest rate iG from equation (3.5.8). The bonus account covers the excess of
periodically compounding the total account with the transformed declared interest rate ik
from equation (3.5.7) surpassing the actuarial account. Therefore, in the uncompressed

insurance portfolio, the actuarial account’s value Areal,j
0 of policyholder j ∈ {1, . . . , δ0} at

time t0 equals

Areal,j
0 =

creal,j0∑
k=1

(1 + iG)k P real,j
−k ,

where creal,j
0 is the elapsed contract term in periods from equation (2.3.2). In the case of

constant premiums, i.e. if we have P real,j
k = P real,j for all k, we get the closed-form

Areal,j
0 =

 P real,j (1 + iG) (1+iG)c
real,j
0 −1
iG

, if iG 6= 0

P real,jcreal,j
0 , else.

Regarding the bonus account, Breal,j
0 equals the amount of past surpluses that have been

credited to policyholder j, periodically compounded up to time t0.

According to the applied grouping procedure, the representative’s account values Am0
and Bm

0 correspond to the arithmetic means of the real contracts grouped into cohort
m ∈ {1, . . . ,M0}, see equation (2.4.2). As the new business potentially changes the size
of the cohorts, the representative accounts must be adjusted as described in Section 2.4.1.
Furthermore, the policyholders’ accounts for the classic endowment insurance are updated
at the end of every period [tk−1, tk]. Then the value of all actuarial and bonus accounts
in model point m ∈ {1, . . . ,Mk} at times tk with k ≥ 1 equal

Amk = (1 + iG)Am(k−1)+ (3.6.10)

and

Bm
k = (1 + ik)B

m
(k−1)+ + (ik − iG)Am(k−1)+ , (3.6.11)

whereAm(k−1)+ andBm
(k−1)+ are the adjusted values specified in equations (2.4.7) and (2.4.8).

Combining these two accounts yields the contract value

V m
k = Amk +Bm

k = (1 + ik)V
m

(k−1)+

with V m
(k−1)+ from equation (2.4.9). In the following Section 3.7, the representative ac-

counts are linked to the corresponding reserves of the balance sheet.
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3.7. Balance sheet model

After having introduced the relevant components, we now describe the modeling of the
balance sheet. This comprises the development of the assets and the projection of the
liabilities introduced in Table 3.2. The starting point of the later simulations is always
a given balance sheet at time t0. The development over time depends on a variety of
factors including the considered product type, the applied strategies for investing in the
capital market and financing the due obligations, the used surplus participation scheme,
and biometric parameters of the insured collective. Further external impacts are the
developments of the capital market and the new business. In the following, we derive
explicit representations of all balance sheet positions. As a main result, we prove that the
fundamental balance sheet equation holds at all times.

3.7.1. Projection of the assets

The balance sheet summarizes the business performance at the end of each period [tk−1, tk]
meaning that the values of the capital positions for cash Cck, stocks Csk, and bonds Cbk at
time tk are calculated. For this, the following business steps occur:

1. reevaluation of the assets,

2. financing the disbursements according to the chosen strategy FS, and

3. preparation of the balance sheet.

The actual value of the assets is given by the prices sk and p (tk, ti + τ). The bonds were
purchased at times ti. The number ϕs(k−1)+ of held stocks is given by equation (3.5.3) and
depends on the chosen investment strategy regarding the asset allocation, see Section 3.5.1.

According to the assumption from Section 3.5.3 that funds are first taken from expired
bonds Cb−k , the position of cash Cck equals

Cck =
(
Cb−k −Dk

)+
(3.7.1)

with the disbursements Dk from equation (3.5.11). The stock position Csk can be generally
represented by

Csk = ϕs(k−1)+sk −
(
Dk − Cb−k

)+
+ L+

k

= ϕs(k−1)+sk − ξ
s,l
k ,

where the precise amount ξs,lk of sold stocks and the demand for credits L+
k are determined

by the chosen strategy for financing the disbursements. Note that applying strategy FS 2
from Section 3.5.3 yields ξs,lk = 0. Finally, Cbk comprises all previously purchased bonds
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having positive remaining residual terms, i.e.

Cbk =
k−1∑

i=k− τ
∆t

+1

ϕbip (tk, ti + τ) .

Recall that τ
∆t ∈ N since we assume that the maturity falls on a period’s end. Furthermore,

as bonds are held until maturity in this chapter, the number ϕbi of bonds with duration τ
purchased at time ti remains constant.

The total capital Ck is defined by the sum of all assets, i.e. by

Ck = Cbk + Csk + Cck. (3.7.2)

3.7.2. Projection of the liabilities

Turning to the balance sheet’s liabilities, we first describe the evolution of the actuarial re-
serve Ak, the bonus reserve Bk, and the technical reserve Vk = Ak+Bk. The policyholders’
accounts Amk , Bm

k , and V m
k are linked to these reserves via

Ak =

Mk∑
m=1

δmk A
m
k , (3.7.3)

Bk =

Mk∑
m=1

δmk B
m
k , (3.7.4)

Vk =

Mk∑
m=1

δmk V
m
k , (3.7.5)

where δmk denotes the size of cohort m at time tk from equation (2.4.10) in Section 2.4.
The following proposition shows the relation to the previous balance sheet at time tk−1.

Proposition 3.7.1 (Recursive schemes of the reserves). Consider the endowment insur-
ance with surrender factor ϑ > 0 from Section 3.6.2. Then, it holds for all k = 1, . . . ,K:

(i) Ak = (1 + iG)
(
Ak−1 + Pk−1

)
−
(
EGk + TGk + 1

ϑS
G
k

)
,

(ii) Bk = (1 + ik)Bk−1 + (ik − iG)
(
Ak−1 + Pk−1

)
−
(
EBk + TBk + 1

ϑS
B
k

)
,

(iii) Vk = (1 + ik)
(
Vk−1 + Pk−1

)
−
(
Ek + Tk + 1

ϑSk
)
.

Proof. To prove the first statement (i), we use the definitions (3.7.3) and (2.4.10) of Ak
and δmk and the equation 1{dmk >0} = 1{dmk ≥0} − 1{dmk =0}, yielding

Ak =

Mk∑
m=1

(
1{dmk ≥0} − 1{dmk =0}

)
(1− umk ) (1− qmk )

(
δmk−1 + δnew,m

k−1

)
Amk .
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Writing

Ak =

Mk∑
m=1

1{dmk ≥0} ·
(
δmk−1 + δnew,m

k−1

)
Amk

−
Mk∑
m=1

1{dmk ≥0}q
m
k

(
δmk−1 + δnew,m

k−1

)
Amk

−
Mk∑
m=1

1{dmk ≥0}u
m
k (1− qmk )

(
δmk−1 + δnew,m

k−1

)
Amk

−
Mk∑
m=1

1{dmk =0} · (1− u
m
k ) (1− qmk )

(
δmk−1 + δnew,m

k−1

)
Amk

we can use the specified guaranteed parts of the benefit spectrum of the endowment
insurance (3.6.9) and equations (3.6.6), (3.6.7), and (3.6.8) to obtain

Ak =

Mk∑
m=1

1{dmk ≥0} ·
(
δmk−1 + δnew,m

k−1

)
Amk − TGk −

1

ϑ
SGk − EGk .

Note that 1{dmk ≥0}u
m
k = 1{dmk >0}u

m
k due to the definition of umk , compare (2.3.5). Inserting

the representation (3.6.10) of Amk , using equations (3.5.2) and (3.7.3) for Pmk−1 and Ak−1

and taking into account that 1{dmk ≥0} = 1{dmk−1>0} due to (2.4.5) leads to statement (i).

Note that Amk−1 = 0 for all new cohorts from period k, i.e. for all m ∈ {Mk−1 + 1, . . . ,Mk},
since the account values represent the policyholders’ entitlements, and benefits are only
paid at the end of a period, i.e. for new customers from period k at earliest at time tk.

To prove the second statement, we derive

Bk =

Mk∑
m=1

1{dmk ≥0} ·
(
δmk−1 + δnew,m

k−1

)
Bm
k − EBk − TBk −

1

ϑ
SBk

in the same manner as above using now the specified bonus parts of the benefit spectrum.
Continuing with the same argumentation and inserting the representation (3.6.11) of Bm

k

leads to statement (ii).

For the last statement, we add equations (i) and (ii) to get

Ak +Bk = (1 + ik)
(
Ak−1 + Pk−1 +Bk−1

)
−
(
Ek + Tk +

1

ϑ
Sk

)
,

where we used the decompositions in (3.6.5) of the aggregated benefit payments into
guaranteed and bonus parts. The definition of the technical reserve in (3.4.1) shows
(iii).
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As described in Section 3.5.3, the life insurer can raise short-term and long-term credits.
While the former represent bridging loans (over-night credits) without interest rate pay-
ments, the latter are equipped with a fixed duration τ and a variable interest rate and can
thus be interpreted as emitting of bonds. Therefore, the balance sheet position liabilities
to banks Lk consists of the bridging loan L+

k at time tk and long-term credits that have
not been repaid yet, i.e.

Lk = L+
k +

k−1∑
i=k− τ

∆t
+1

ϕlip (tk, ti + τ) , (3.7.6)

where ϕli is the number of bonds emitted at time ti defined by equation (3.5.10).
The last two positions, the free reserve Fk and the equity Qk, depend on the generated

surplus Gk. This arises at time tk from the investments in the financial market and
in practice also from conservative estimates for interest rates, death probabilities, and
expenses used for the calculation of premiums.13 In our model, the total surplus Gk is
divided into an interest and a surrender component, i.e.

Gk = GIk +GSk . (3.7.7)

The interest surplus GIk is given by the difference between the total capital market return
on the one side and the total interests deposited in the policyholders’ accounts and the
credits on the other side, namely

GIk = ϕs(k−1)+∆sk +
k−1∑

i=k− τ
∆t

ϕbi∆pk,i − ik
(
Vk−1 + Pk−1

)
−

k−1∑
i=k− τ

∆t

ϕli∆pk,i, (3.7.8)

with ∆sk = sk − sk−1 and ∆pk,i = p (tk, ti + τ) − p (tk−1, ti + τ). The surrender surplus
for the classic endowment insurance is given by

GSk =

(
1

ϑ
− 1

)
Sk (3.7.9)

and is non-negative for the surrender factor ϑ ∈ (0, 1]. Here, Sk are the aggregated
surrender benefit payments from equation (3.6.4) and 1

ϑSk corresponds to the reduction
of the technical reserve due to cancellations, see Proposition 3.7.1 (iii).

The surpluses are distributed between the insured collective and the shareholders. Due
to legal requirements, most of a positive raw surplus belongs to the insured collective while
shareholders participate to a small extent through dividend payments. In the presented
allocation, a fixed portion αGk is deposited in the free reserve Fk and the remaining amount
is credited to the equity Qk. The parameter α ∈ [0, 1] is referred to as participation

13Indeed, reporting standards for insurers require a surplus decomposition regarding both contributions of
individual policyholders and different risk sources. This is typically a non-trivial task and may become
technically challenging. Jetses and Christiansen [36], e.g., propose an axiomatic approach that leads to
the so-called infinitesimal sequential updating decomposition principle.
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rate.14 More difficult and controversial is the question of how losses should be shared
between shareholders and policyholders since there are hardly any generally applicable
legal regulations in this regard, see Burkhart et al. [14]. In Chapter 5, we elaborate on
this issue and discuss potential fair splits. For now we assume that the free reserve fully
absorbs losses Gk < 0 while the withdrawals are limited to the available funds, i.e. we
have

Fk = (Fk−1 + min {αGk, Gk})+ . (3.7.10)

If the free reserve does not suffice, i.e. |Gk| > Fk−1, the shareholders absorb the remaining
loss Fk−1 +Gk. As a result, the equity Qk can be represented as

Qk = Qk−1 + min
{

((1− α)Gk)
+ , Fk−1 +Gk

}
. (3.7.11)

Remark 3.7.2. By construction, surpluses are completely allocated every period, i.e. we
have for all k = 1, . . . ,K:

Fk +Qk = Fk−1 +Qk−1 +Gk.

Indeed, the latter equation will be needed to prove that the fundamental balance sheet
equation is respected at any time, see Theorem 3.7.3.

3.7.3. The fundamental balance sheet equation

As we finished the development of our model, we now present the central theorem showing
that the balance sheet equation is fulfilled at each point in time tk = k∆t. That is the
business activities lead to equal sums of assets and the liabilities as displayed in Table 3.2.

Theorem 3.7.3 (Verification of the model). Consider the endowment insurance with
surrender factor ϑ > 0 and suppose that the sum of all assets equals the sum of all liabilities
at the start of the simulation, i.e., C0 = A0 +B0 + F0 +Q0 + L0. Then, the fundamental
balance sheet equation is fulfilled at any time, i.e. it holds

Ck = Ak +Bk + Fk +Qk + Lk

for all k = 0, . . . ,K.

Proof. We prove the statement by induction over k. By assumption, the equality holds at
time t0. As induction hypothesis, we assume that the equality

Ck−1 = Ak−1 +Bk−1 + Fk−1 +Qk−1 + Lk−1

holds for all times ti with i ≤ k − 1 < K. For the induction step, we first decompose the

14Under German legislation, a typical value would be α ∈ [0.9, 1] meaning that at least 90% of the risk
surplus has to be credited to the policyholders’ accounts, see Wagner [55].

68



3.7. Balance sheet model

total capital Ck into

Ck = Cbk + Csk + Cck.

Taking price changes from period k, the demand for credits L+
k , and the disbursements Dk

at time tk into account, the latter equation is linked to the stock and bond part after the
reallocation of assets at time tk−1 via

Ck = Cb(k−1)+ + Cs(k−1)+ + ϕs(k−1)+∆sk +
k−1∑

i=k− τ
∆t

ϕbi∆pk,i + L+
k −Dk.

Using

Dk = Bk + L−k ,

Bk = Ek + Tk + Sk,

C(k−1)+ = Cb(k−1)+ + Cs(k−1)+ ,

and plugging in the representation of C(k−1)+ from equation (3.5.1), we get

Ck = Ck−1 − ξs,l(k−1)+
+
(
Pk−1 − L+

k−1

)+
+ ϕs(k−1)+∆sk +

k−1∑
i=k− τ

∆t

ϕbi∆pk,i

+ L+
k − Ek − Tk − Sk − L

−
k .

According to the specific representation of the surplus Gk from equations (3.7.7), (3.7.8),
and (3.7.9), we can write

Ck = Ck−1 − ξs,l(k−1)+
+
(
Pk−1 − L+

k−1

)+
+Gk + ik

(
Vk−1 + Pk−1

)
− 1

ϑ
Sk

+
k−1∑

i=k− τ
∆t

ϕli∆pk,i + L+
k − Ek − Tk − L

−
k .

Using the recursive scheme of the technical reserve Vk from Proposition 3.7.1 (iii) and the
induction hypothesis, we get

Ck = Ak−1 +Bk−1 + Fk−1 +Qk−1 + Lk−1 − ξs,l(k−1)+
+
(
Pk−1 − L+

k−1

)+
+Gk + Vk

−
(
Vk−1 + Pk−1

)
+

k−1∑
i=k− τ

∆t

ϕli∆pk,i + L+
k − L

−
k .

The relation between own funds and surplus in Remark 3.7.2 and Vk−1 = Ak−1 + Bk−1
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imply

Ck = Fk +Qk + Lk−1 − ξs,l(k−1)+
+
(
Pk−1 − L+

k−1

)+
+ Vk − Pk−1

+

k−1∑
i=k− τ

∆t

ϕli∆pk,i + L+
k − L

−
k .

Using equation (3.7.6) for Lk−1 and observing the equality

Lnew
k−1 =

(
Pk−1 − L+

k−1

)+ − ξs,l
(k−1)+

− Pk−1 + L+
k−1

for both financing strategies, see also equation (3.5.13), we can write

Ck = Fk +Qk + Vk + Lnew
k−1 +

k−2∑
i=k− τ

∆t

ϕlip (tk−1, ti + τ) +
k−1∑

i=k− τ
∆t

ϕli∆pk,i + L+
k − L

−
k .

Since

Lnew
k−1 = ϕlk−1p (tk−1, tk−1 + τ) ,

L−k = ϕlk− τ
∆t
p
(
tk, tk− τ

∆t
+ τ
)
,

∆pk,i = p (tk, ti + τ)− p (tk−1, ti + τ) ,

the latter equation becomes

Ck = Fk +Qk + Vk +
k−1∑

i=k− τ
∆t

+1

ϕlip (tk, ti + τ) + L+
k

= Ak +Bk + Fk +Qk + Lk

which completes the proof.
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4. Simulation Studies: Part I

In this chapter, we perform several simulation studies to illustrate our ALM model. To
this end, we consider a classic endowment insurance equipped with the specifications from
Section 3.6.2. The survival, death, and surrender benefit payments are given by (3.6.9).
If not stated otherwise, we consider a life insurance company providing new business.
Furthermore, we use the basic capital market model from Section 3.3.1 and apply financing
strategy FS1 from Section 3.5.3.

After the initialization and the parameter specification in Section 4.1, we investigate
in Section 4.2 the performance of some of the introduced compression and simulation
methods regarding efficiency and approximation quality. A lot of the existing literature
mainly focuses on run-off scenarios, see the literature overview in 3.1.2. In Section 4.3, we
therefore compare in our ALM model the impact of the incorporation of stationary new
business with the corresponding run-off scenario. The effects of non-stationary contract
arrivals on the balance sheet structure is studied in Section 4.4. It follows a comparison
study of CM and CPPI strategies in Section 4.5, where we take into account both the life
insurer’s and the policyholders’ point of view. Finally, we perform a sensitivity analysis
to investigate the influence of selected parameters, see Section 4.6. Some of the results in
this chapter are already published in Diehl et al. [23].

4.1. Initialization and parameter specification

Initialization

We start with the liability side of the balance sheet. The initial values of actuarial, bonus,
and technical reserve, A0, B0, and V0, are calculated according to equations (3.7.3), (3.7.4),
and (3.7.5). The initial values of the respective policyholders’ accounts, Am0 , Bm

0 , and V m
0 ,

and the initial premium Pm0 are determined by the arithmetic means of the actual contracts
belonging to one cohort, see equations (2.4.2), (2.4.3), (2.4.4), and (2.4.1). Likewise, the
initial number of model points M0, the sizes of the cohorts δm0 , and the representatives’
characteristics (e.g. the premium size Pmk ) depend on the applied method for compressing
and simulating the insurance portfolio, thereby on the distribution of the actual biometric
parameters, see Section 2.4.

Equation (3.5.6) implies for given initial reserve rate γ0 ∈ [0, 1) the value of the free
reserve F0 by

F0 =
γ0V0

1− γ0
.
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4. Simulation Studies: Part I

Similarly, the amount of equity Q0 is determined by the initial fraction ψ0 ∈ [0, 1) of own
funds F0 +Q0,

ψ0 =
F0 +Q0

A0 +B0 + F0 +Q0 + L0
,

through

Q0 =
(ψ0 − γ0)V0

(1− ψ0) (1− γ0)
+

ψ0L0

1− ψ0

for given initial liabilities to banks L0 and V0 = A0 + B0. The choice ψ0 ≥ γ0 ensures
non-negative initial equity. Respecting the fundamental balance sheet equation at time t0
yields total assets

C0 = A0 +B0 +Q0 + F0 + L0.

The initial values Cs0 and Cc0 of the stock and cash position are specified by initial frac-
tions πs0 and πc0 of C0, i.e.,

Cs0 = πs0C0,

Cc0 = πc0C0,

with πs0 + πc0 ≤ 1. Regarding the bond part

Cb0 = (1− πs0 − πc0)C0,

we assume a uniform allocation, i.e. the numbers ϕb1− τ
∆t
, . . . , ϕb−1 of bonds purchased at

past times t1− τ
∆t
, . . . , t−1 coincide with

ϕb−1 =
Cb0∑−1

i=1− τ
∆t
p (t0, ti + τ)

.

Parameter specification

In the following, we specify two exemplary parameter configurations used for the numerical
investigations in this thesis, while modifications are made in some places to consider
different scenarios regarding the insurer’s business form, the interest rate environment,
and to allow for possible capital market crashes.

Tables 4.1 and 4.2 refer to the calendar years 2021 and 2022, respectively. The annual
guaranteed interest rate for the endowment insurance is set to the maximum technical
interest rate for German insurers which was reduced by the German Federal Ministry
of Finance from 0.9% in 2021 to 0.25% in 2022. Furthermore, a few other parameters
are changed, e.g. the minimum stock ratio and the distribution parameters of the ages.
Regarding the initial balance sheet, there is no liquidity gap at the beginning of the first
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4.1. Initialization and parameter specification

period, i.e. L+
0 = L0 = 0, and the initial amount of cash equals the average excessive value

of expiring bonds obtained by prior simulations yielding πc0 = 6.03%.

Parameter Description Value

General setting and balance sheet
Y Current calendar year 2021
T Time horizon 50 years
∆t Period length 0.25 years
γ0 Initial reserve rate 10%
ψ0 Initial fraction of own funds 12%
πs0 Initial ratio of stocks 10%
πc0 Initial ratio of cash 6.03%
L+

0 Initial bridging credit 0
L0 Initial value of liabilities to banks 0
πs,max
k Maximum stock ratio 35%

Capital market model
a Mean-reversion speed of the short rate process 0.5
b
a Long-term mean of the short rate process 0.7%
λ0 Market price of interest rate risk parameter 2%
σr Volatility of the short rate process 3%
r0 Initial value of the short rate process 0.5%
µs Drift of the stock price process 4%
σs Volatility of the stock price process 20%
s0 Initial value of the stock price process 100
ρ Correlation between short rate and stock −10%

Management model

πs,min
k Minimum stock ratio 0%

πs,tar
k Target stock ratio in the CM strategy 10%
λCPPI
k Multiplier in the CPPI strategy 2
τ Maturity of bonds 3 years

îG Annual guaranteed interest rate 0.9%
γ Target reserve rate 10%
ω Distribution ratio 0.3
α Participation rate 0.9
ϑ Surrender factor 0.9

Structure and dynamics of insurance portfolio
greal,i Gender ∼ B (0.5)
xreal,i Entry age ∼ T N (36, 36, 15, 55)
xreal,i Exit age ∼ T N (62, 5, 55, 70)

xreal,i
0 Current age ∼ U

(
xreal,i, xreal,i

)
u Surrender probability parameter 3%

P real,i
0 Constant, periodic premium payments ∼ U (50, 500)

Breal,i
0 Initial value of the bonus account 0

δ0 Initial size of the insurance portfolio 500,000
δnew
k Number of new customers in period k ∼ Poi (Λk)

Λk Poisson parameter in δnew
k ∼ Beta (αk, βk, 0.5% · δ0, 2.2% · δ0)

Table 4.1.: Exemplary scenario for calendar year 2021.
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Parameter Description Value

General setting and balance sheet
Y Current calendar year 2022
T Time horizon 50 years
∆t Period length 0.25 years
γ0 Initial reserve rate 10%
ψ0 Initial fraction of own funds 12%
πs0 Initial ratio of stocks 10%
πc0 Initial ratio of cash 6.03%
L+

0 Initial bridging credit 0
L0 Initial value of liabilities to banks 0
πs,max
k Maximum stock ratio 35%

Capital market model
a Mean-reversion speed of the short rate process 0.5
b/a Long-term mean of the short rate process 0.7%
λ0 Market price of interest rate risk parameter 2%
σr Volatility of the short rate process 3%
r0 Initial value of the short rate process 0.1%
µs Drift of the stock price process 4%
σs Volatility of the stock price process 20%
s0 Initial value of the stock price process 100
ρ Correlation between short rate and stock −10%

Management model

πs,min
k Minimum stock ratio 5%

πs,tar
k Target stock ratio in the CM strategy 10%
λCPPI
k Multiplier in the CPPI strategy 2
τ Maturity of bonds 5 years

îG Annual guaranteed interest rate 0.25%
γ Target reserve rate 10%
ω Distribution ratio 0.3
α Participation rate 0.9
ϑ Surrender factor 0.9

Structure and dynamics of insurance portfolio
greal,i Gender ∼ B (0.5)
xreal,i Entry age ∼ T N (38, 64, 15, 65)
xreal,i Exit age ∼ T N (73, 25, 65, 80)

xreal,i
0 Current age ∼ U

(
xreal,i, xreal,i

)
u Surrender probability parameter 3%

P real,i
0 Constant, periodic premium payments ∼ U (50, 500)

Breal,i
0 Initial value of the bonus account 0

δ0 Initial size of the insurance portfolio 500,000
δnew
k Number of new customers in period k ∼ Poi (Λk)

Λk Poisson parameter in δnew
k ∼ Beta (αk, βk, 0.5% · δ0, 2.2% · δ0)

Table 4.2.: Exemplary scenario for calendar year 2022.

Genders, entry ages, exit ages, and premium payments are assumed to be indepen-
dent, while current ages are assumed to be conditionally independent. As motivated in
Chapter 2, we use the four-parameter beta distribution for the average number Λk of new
customers per period k. Alternative new business scenarios can be considered by choosing
different shape parameters αk and βk, while the remaining two parameters represent the
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4.2. Compression and simulation methods: efficiency and approximation quality

minimum and maximum amount of newly issued contracts per period. Their values are
inspired from the observations from real life insurance portfolios, see Section 2.1.

The parameters within the capital market model represent a low interest rate environ-
ment. We assume that the two Brownian motions driving the short rate and the stock
prices have a negative correlation ρ. This implies that bond prices and stocks are assumed
to be positively correlated as there is an inverse relationship between bond prices and
interest rates. The assumption is consistent with the rationale that rising bond yields
(i.e. decreasing bond prices) might cause investors to move out of stocks into bonds. The
decreasing demand in stocks then leads to falling stock prices.

4.2. Compression and simulation methods: efficiency and
approximation quality

In this section, we perform several simulation studies to investigate the performance
of some of the compression and simulation methods Pb1,b2 introduced in Sections 2.4.1
and 2.4.2. We analyze their efficiency and quality in approximating the development of
the uncompressed insurance portfolio and the corresponding balance sheets. For this, we
use methods and error measures derived in Section 2.4.3, which requires to perform naive
contract-specific simulations, i.e. we need to apply P0,0, too.

If not stated otherwise, the input parameters and the distributional assumptions are
taken from Table 4.2, except for the minimum stock ratio and the maturity of newly
purchased bonds which are set to πs,min

k = 0 and τ = 3, respectively. Regarding the new
business, we choose (αk, βk) = (1, 1) yielding Λk ∼ U (0.5% · δ0, 2.2% · δ0).

4.2.1. Efficiency: run time and impacting factors

Before performing the simulation studies, where each Monte Carlo simulation will consist
of N = 10, 000 simulated paths, we investigate the dependence of the required run time
for a single simulation run on the size δ0 of the initial insurance portfolio (thus also
on the number δnew

k of new customers in each period) and on the number of considered
periods K. Since K = T

∆t , increasing the time horizon while maintaining the period
length is equivalent to decreasing ∆t correspondingly while keeping T constant. Note
that the run times were obtained by the built-in stopwatch timer functions tic and toc

in Matlab on the same computer under the same conditions (e.g. same instantaneous
CPU utilization). Furthermore, for a good comparability of the run times required by
the different simulation methods, the initial (uncompressed) insurance portfolio and the
corresponding balance sheet are fixed. We want to emphasize that the only purpose in
displaying the required run times lies in the comparison of the applied simulation methods.
A single value of a run time without a comparative number is not very meaningful since
it depends on the available computer equipment.
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4. Simulation Studies: Part I

Impacting factor: the size of the insurance portfolio

We begin with investigating the dependence of the run time on the size δ0 of the initial
insurance portfolio with a fixed time horizon T = 50 years and ∆t = 0.25 yielding a total
number of K = 200 considered periods.

In the case of a run-off scenario without new business, the contract-specific simula-
tion P0,0 requires 3.8 seconds per path, i.e. 633 minutes for a Monte Carlo simulation
with N = 10, 000 simulated paths if the initial insurance portfolio consists of δ0 = 500, 000
policies. Instead, the approximating simulation method P1,1 only requires 0.01 seconds
per path or 1.7 minutes for a Monte Carlo simulation, corresponding to a run time reduc-
tion of 99.7%. Simulating insurance portfolios obtained by coarser simulation methods,
i.e. Pb1,b2 with max {b1, b2} > 1, are even faster.

In the case of an ongoing insurance business with new customer arrivals in every pe-
riod k, k ∈ {1, . . . ,K}, the required run times are much higher even for smaller insurance
portfolios as displayed in Table 4.3.

δ0 Run time [s] P0,0 Run time [s] P1,1

10,000 8.5 1.2
50,000 33 2.8
100,000 63 3.8
250,000 157 5.0
500,000 300 6.1
1,000,000 600 (estimated) 7.3
10,000,000 6000 (estimated) 16.0

Table 4.3.: Average required run times in seconds for simulating a single Monte Carlo path
applying P0,0 and P1,1 for insurance portfolios of different sizes δ0 in the case of
an ongoing insurance business. The number of considered periods is K = 200.

The contract-specific simulation P0,0 requires now 300 seconds per path, i.e. 833 hours
for a Monte Carlo simulation if the initial insurance portfolio consists of δ0 = 500, 000
policies. The average run time of P1,1 is 6.1 and thus nearly 50 times smaller.1 We also
see that the dependence on δ0 is stronger if we apply P0,0, i.e. here the run time is more
exposed to the size of the insurance portfolio.

1If we fix a path of new customers, the required run time is only 0.02 seconds per path even for δ0 =
10, 000, 000, i.e. about three minutes for a Monte Carlo simulation. A contract-specific simulation is
eight times slower for δ0 = 500, 000 and may cause memory problems for larger insurance portfolios.
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Figure 4.1.: Average required run times in seconds for simulating a single Monte Carlo
path applying different simulation methods Pb1,b2 for insurance portfolios of
different sizes δ0 in the case of an ongoing insurance business. The number of
considered periods is K = 200.

If we apply coarser simulation methods, we may even increase the time saving as il-
lustrated in Figure 4.1, where the corresponding run times are plotted against the sizes
of the initial insurance portfolios. However, the additional amount of saved time gets
smaller so that the run times of P2,10, P5,5, and P10,10 are nearly the same. Note that
for P1,1, we obtain the transformed ages for grouping by the corresponding integer values,
see Section 2.4.1. This is faster than following the procedure described in Section 2.4.2 for
b1 = b2 = 1 and yields the same compressed insurance portfolio. As a consequence, the run
time of P1,1 may be smaller than for coarser simulation methods, here P2,1. In most cases,
less additional run time is required for larger δ0. This is due to the fact that the number
of generated cohorts increases slower for large insurance portfolios and is bounded from
above due to logical constraints regarding the ages, as already observed in Figure 2.6 in
Section 2.4.1. More importantly, new policies are merged into existing cohorts if possible.

Impacting factor: the number of considered periods

Next we investigate the dependence of the run time on the number K of considered periods.
Here, we fix a time horizon of T = 50 years and vary the period length ∆t. The initial
insurance portfolio consists of δ0 = 250, 000 policies.

In the case of a run-off scenario, P0,0 requires 5.4 seconds per path, i.e. 900 minutes
for a Monte Carlo simulation with N = 10, 000 simulated paths if we choose a monthly
discretization ∆t = 1/12 yielding K = 600 considered periods. The method P1,1 only
requires 0.03 seconds per path or 5 minutes for a Monte Carlo simulation, correspond-
ing to a reduction of 99.6%. Again, simulating insurance portfolios obtained by coarser
simulation methods, i.e. Pb1,b2 with max {b1, b2} > 1, are even faster.

In the case of an ongoing insurance business with new business, the required run times
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are much higher as displayed in Table 4.4.

K Run time [s] P0,0 Run time [s] P1,1

50 4.8 1.0
100 24 2.1
200 157 5.0
600 12,296 19.5
1,200 650,000 (estimated) 46.5

Table 4.4.: Average required run times in seconds for simulating a single Monte Carlo path
applying P0,0 and P1,1 for different numbers K of considered periods in the
case of an ongoing insurance business. The initial size of the insurance portfolio
is δ0 = 250, 000.

Even more, the run time of the contract-specific simulation explodes indicating an enor-
mous dependence on the amount of considered periods. More precisely, P0,0 requires now
12, 296 seconds per path, i.e. over 34, 000 hours for a Monte Carlo simulation if we have
K = 600. The required run time of P1,1 is 19.5 seconds and thus more than 99.8% smaller.
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Figure 4.2.: Average required run times in seconds for simulating a single Monte Carlo
path applying different simulation methods Pb1,b2 for different numbers K of
considered periods in the case of an ongoing insurance business. The initial
size of the insurance portfolio is δ0 = 250, 000.

As before, if we apply coarser simulation methods, the time saving may even be larger
as illustrated in Figure 4.2, where the corresponding run times are plotted against the
number K of considered periods. In contrast to Figure 4.1, where the required run time
increases slower for large insurance portfolios, we now observe a proportional or even an
over-proportional dependence. The additional amount of saved time gets smaller so that
the run times of P2,10, P5,5, and P10,10 are nearly the same for the considered cases.
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4.2. Compression and simulation methods: efficiency and approximation quality

Development of the efficiency during the simulation

We close this section by elaborating on the development of the efficiency during the simu-
lation. For this, we use the compression factor CFk motivated in Section 2.4.3 and defined
by equation (2.4.11). It reflects the proportion of the simulated (non-empty) cohorts M sim

k

to the actual size δk of the insurance portfolio according to P0,0, so that smaller values
are associated with a more efficient compression and simulation method. In contrast to
run times, the compression factor is an efficiency measure that is independent of the ca-
pability of computers. Note that it is not necessary to consider the run-off-case since here
the number of non-empty cohorts decreases with the insurance portfolio size.
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Figure 4.3.: Compression factors applying different simulation methods Pb1,b2 in the case of
an ongoing insurance business. The number of considered periods is K = 100
and the size of the insurance portfolio δ0 = 10, 000.

Figure 4.3 displays the development of the compression factors CFk applying different
methods Pb1,b2 . We see that P1,1 has the worst efficiency which is due to the large number
of generated cohorts. However, its efficiency remains stable throughout the simulation.
This is not the case for e.g. P10,1 being very efficient in the short term but then the
efficiency gets substantially worse. In the long term, it even has the same efficiency
as P1,1. More generally, we observe that all methods Pb1,b2 with b1 > 1 suffer from a
decline in efficiency throughout the simulation. This can be explained by the annually
adjustment of the current ages of existing policyholders and the fact that the transformed
ages of representative new customers are of the form xmin+lb1 for a l ≥ 0, cf. Section 2.4.2.
Therefore, a merging of new cohorts and existing ones is not possible during the first b1−1
years implying that M sim

k increases (much) stronger than δk. After b1 years, new cohorts
can be merged again implying a slower increase in the cohorts and, eventually, a stationary
development. Furthermore, we observe that the efficiency of a simulation method Pb1,b2
with b1 > 1 converges against the efficiency of P1,b2 . Since the exit ages remain constant,
the methods P1,b2 maintain their efficiencies throughout the simulation.
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4.2.2. Approximation quality

In the following, we study the approximation quality of our developed simulation meth-
ods Pb1,b2 for

(b1, b2) ∈ {(1, 1), (2, 2), (5, 5), (1, 10), (10, 1), (10, 10)} (4.2.1)

in the case of a run-off and in the case of an ongoing insurance business with new busi-
ness. Clearly, we need to restrict to smaller insurance portfolios and time horizons in
order to be able to perform the required Monte Carlo simulations with an acceptable run
time for P0,0, too. Therefore, we consider the given (uncompressed) insurance portfolio
from Section 2.4.3 consisting of δ0 = 10, 000 policies. The corresponding balance sheet is
prepared according to the assumptions at the beginning of Section 4.2.

Each of the compression and simulation methods Pb1,b2 with b1, b2 from (4.2.1) is applied
N = 10, 000 times. To investigate the direct impact of Pb1,b2 , in each run we use the same
new business scenario and dynamics of the capital market, i.e. the n-th Monte Carlo path
for P0,0 and Pb1,b2 is based on the same generated random numbers, respectively. Thereby,
we allow for a pathwise comparison between compressed and uncompressed simulation
methods.

For selected quantities of interest Xk, we plot the average development according to P0,0

and Pb1,b2 as a graphical visualization of the approximation quality, see equation (2.4.12)
in Section 2.4.3. The robustness of the simulation methods is investigated by considering
the worst-case approximation reflected by the Monte Carlo path n∗ = n∗

(
Pb1,b2

)
defined

by equation (2.4.13). The sample distributions at given time points tk are compared
using the total variation distance introduced in Section 2.2.3 by equation (2.2.4) with
J = 50 intervals. We also look at the developments of the (estimated) cumulative default
probabilities PDk,

PDk = P ({Qj < 0 for some j ∈ {0, . . . , k}}) , (4.2.2)

according to P0,0 and Pb1,b2 . For the investigations of the approximation quality, we also
use the error measures AMSE AMAE, AMSPE, and AMAPE representing the average
approximation error per period k, cf. Section 2.4.3.

For additional results, we refer to Appendix A.1.

Approximation quality in the case of a run-off

We first investigate the approximation quality in the case of a run-off scenario. Due to
the absence of new customer arrivals, i.e. δnew

k = 0 for all k, we can consider larger time
horizons. We choose T = 65 with ∆t = 0.25 yielding a total number of K = 260 considered
periods.
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Figure 4.4.: Average development of the capital Ck according to P0,0 and Pb1,b2 in the
case of a run-off.

The average development of the capital Ck according to P0,0 and Pb1,b2 is displayed
in Figure 4.4. In the case of P1,1 and P2,2, we barely see any differences compared
to P0,0. Also the coarser compression methods perform well but P10,10 does not provide
very accurate approximations at most times. In all cases, the final average capital CK
approximately coincides with the one obtained by P0,0.

The respective approximation quality regarding the insurance portfolio size δk, the death
and surrender benefit payments Tk and Sk, the liabilities to banks Lk, and the declared

interest rate îk is similar, see the corresponding figures in Appendix A.1.
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Figure 4.5.: Worst-case approximation paths n∗ of the capital Ck in the case of a run-off.

The robustness of the simulation methods regarding the approximation of the capital Ck
is investigated in Figure 4.5, where we show the paths n∗ = n∗

(
Pb1,b2

)
corresponding

to the worst-case approximations. The simulation method P1,1 still yields very good
approximations at all times. P2,2 performs much worse in the long term contrasting the
observations in the average-case in Figure 4.4, where the approximation in the long term
was better than in the short term. Also P5,5, P10,1, and P10,10 perform much worse
in the long term. Surprisingly, P1,10 yields very accurate approximations and is partly
outperforming P2,2.
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Figure 4.6.: Total variation distances of the sample distributions of the capital Ck ac-
cording to P0,0 and Pb1,b2 in the case of a run-off. The number of intervals
in (2.2.4) is J = 50.

Figure 4.6 shows to which extent the sample distributions of the capital Ck according
to P0,0 is affected by the compression and simulation methods Pb1,b2 . In the case of P1,1

and P2,2, we observe small values of the total variation distances indicating that the
corresponding distributions did not change much. The other methods have a stronger
influence, especially P10,10.
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Figure 4.7.: Total variation distances of the sample distributions of the equityQk according
to P0,0 and Pb1,b2 in the case of a run-off. The number of intervals in (2.2.4)
is J = 50.

The total variation distances of the sample distributions of the equity Qk according
to P0,0 and Pb1,b2 is displayed in Figure 4.7. Again, in the case of P1,1 and P2,2, we observe
the smallest values in general. It is interesting that in all cases, the values are much smaller
than in Figure 4.6. This shows that the sample distributions of the equity according to P0,0

is much less affected by the simulation methods Pb1,b2 than the distributions of the capital.
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Figure 4.8.: Development of the default probability according to P0,0 and Pb1,b2 in the
case of a run-off.

Figure 4.8 shows the estimated default probabilities according to P0,0 and Pb1,b2 . In
the case of P1,1 and P2,2, we obtain nearly the same estimations, but also the other
methods yield quite accurate approximations. Indeed, we could have presumed this from
the observations in Figure 4.7 that the distribution of the equity under P0,0 is not much
affected by the compression and simulation methods. It is interesting that both P5,5

and P1,10 underestimate the default probability at all times. This is not desirable and we
would rather prefer an overestimation as we have for P10,1 and, in the long term, for P10,10.

To conclude the investigations in the run-off-case, we estimate the average approxima-

tion error per period of several quantities of interest Xk. Here, we consider additionally
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the actuarial reserve Ak, the bonus reserve Bk, the free reserve Fk, and the surplus Gk.

The results are summarized in Table 4.5.

Xk P1,1 P2,2 P5,5 P1,10 P10,1 P10,10

δk 192.1 1.0·103 1.4·104 7.4·103 5.7·103 8.6·104

7.2 16.6 69.4 49.8 42.5 177.5

Ck 4.5·1011 2.7·1012 2.7·1013 1.4·1013 1.8·1013 2.0·1014

4.7·105 1.2·106 3.7·106 2.5·106 3.0·106 1.1·107

Ak 2.9·1011 1.5·1012 2.0·1013 1.0·1013 1.1·1013 1.1·1014

2.9·105 6.7·105 2.7·106 1.9·106 1.9·106 6.5·106

Bk 1.7·1010 8.9·1010 9.8·1011 3.0·1011 4.4·1011 4.4·1012

8.1·104 1.8·105 6.0·105 3.1·105 3.8·105 1.2·106

Fk 3.7·1010 2.3·1011 9.8·1011 2.8·1011 6.0·1011 3.7·1012

1.4·105 3.3·105 7.1·105 3.8·105 5.6·105 1.4·106

Qk 1.4·1010 8.2·1010 4.8·1011 1.7·1011 2.8·1011 2.2·1012

6.3·104 1.5·105 4.3·105 2.9·105 3.9·105 8.0·105

Lk 2.2·1010 4.3·1011 1.7·1012 7.7·1010 1.5·1012 2.1·1014

2.4·104 1.5·105 4.5·105 5.2·104 3.7·105 9.8·106

Gk 1.8·109 1.1·1010 5.0·1010 1.3·1010 2.3·1010 1.9·1011

2.5·104 6.6·104 1.4·105 6.9·104 9.9·104 2.8·105

Ek 3.0·1011 9.1·1011 4.7·1012 2.0·1012 2.6·1012 1.5·1013

3.2·105 5.7·105 1.4·106 8.6·105 9.6·105 1.7·106

Tk 1.0·107 5.1·107 5.7·108 2.8·108 2.0·108 1.9·109

1.8·103 4.4·103 1.5·104 1.1·104 8.7·103 2.7·104

Sk 1.6·107 8.5·107 1.1·109 5.5·108 6.1·108 6.0·109

2.4·103 5.6·103 2.2·104 1.5·104 1.5·104 5.0·104

îk 0.0043 0.0144 0.0300 0.0080 0.0213 0.1010
0.0518 0.1505 0.3241 0.1297 0.2372 0.8814

Table 4.5.: Approximation quality for different quantities of interest Xk in terms of AMSE
(upper rows) and AMAE (lower rows) applying different simulation meth-
ods Pb1,b2 in the case of a run-off. For Xk = îk, we use the corresponding
relative error measures AMSPE (upper row) and AMAPE (lower row).

Comparing all these numbers, we find the following priority order with respect to the
average approximation quality:

P1,1 � P2,2 < P1,10 < P10,1 � P5,5 � P10,10.

Indeed, for all considered quantities, P1,1 yields the smallest average approximation error
per period, P5,5 the second largest, and P10,10 the largest. For the remaining methods,
there is no strict priority order possible but we see corresponding tendencies. For example,
P2,2 is mostly in the second place but regarding the liabilities to banks Lk and the declared
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interest rate îk, P1,10 performs better. Regarding the insurance portfolio size δk and the
death benefit payments Tk, P1,10 performs worse than P10,1. The priority orders of the
preferences according to the error measures AMSE and AMAE coincide in all cases.

Approximation quality in the case of an ongoing insurance business

Now we investigate the approximation quality in the case of an ongoing insurance business
with new customer arrivals. The time horizon is T = 25 with ∆t = 0.25 yielding a total
number of K = 100 considered periods.
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Figure 4.9.: Average development of the capital Ck according to P0,0 and Pb1,b2 in the
case of an ongoing insurance business.
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The average development of the capital Ck according to P0,0 and Pb1,b2 is shown in
Figure 4.9. The respective approximation quality is comparable with the one in the run-
off-case. P1,1 and P2,2 perform very well and also the coarser simulation methods mostly
yield satisfying results. However, the approximation provided by P10,10 is quite inaccurate
at most times.

As we can see in the corresponding figures in Appendix A.1, the last observations also
hold for the insurance portfolio size δk, the death and surrender benefit payments Tk
and Sk, and the declared interest rate îk.
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Figure 4.10.: Worst-case approximation paths n∗ of the capital Ck in the case of an ongoing
insurance business.

In Figure 4.10, we illustrate the robustness of the simulation methods regarding the
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approximation of the capital Ck. In contrast to the run-off-case, where the worst-case ap-
proximation applying P2,2, P5,5, and P10,1 is much worse in the long term, now all methods
maintain their good performance. Again, especially P1,1 yields very good approximations
at all times.
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Figure 4.11.: Total variation distances of the sample distributions of the capital Ck ac-
cording to P0,0 and Pb1,b2 in the case of an ongoing insurance business. The
number of intervals in (2.2.4) is J = 50.

Figure 4.11 displays the total variation distances regarding the capital Ck according to
the simulation methods. They are each of a similar size as in the run-off-case or even
smaller and tend to decrease in the long term. This shows that despite the uncertainty
induced by the new business, the sample distributions of Ck according to P0,0 are well
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approximated by the simulation methods.
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Figure 4.12.: Average development of the survival benefit payments Ek according to P0,0

and Pb1,b2 in the case of an ongoing insurance business.

The performance of approximating the survival payments Ek is not satisfying as we can
conclude from Figure 4.12. Only P1,1 yields quite accurate approximations. Especially
in the case of P10,10, we obtain a very poor performance. There are many times where
no survival payments are paid at all while at others we observe large peaks. This can be
explained by the small number of generated cohorts that contain accordingly many policies
expiring all at the same time. Indeed, according to P10,10, the insured collective consisting
of δ0 = 10, 000 policies is grouped into 26 cohorts, cf. Figure 2.11 in Section 2.4.3, and
from Figure 4.3 we can conclude that this number does not increase a lot.
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Xk P1,1 P2,2 P5,5 P1,10 P10,1 P10,10

δk 521.6 2.8·103 5.4·104 3.0·104 1.3·104 2.2·105

17.2 39.2 184.5 145.0 87.7 382.4

Ck 8.6·1011 4.3·1012 7.0·1013 3.9·1013 3.1·1013 2.9·1014

7.1·105 1.6·106 6.7·106 5.2·106 4.3·106 1.4·107

Ak 7.3·1011 3.7·1012 5.8·1013 3.2·1013 2.5·1013 2.5·1014

6.4·105 1.4·106 6.2·106 4.8·106 3.8·106 1.3·107

Bk 1.6·1010 6.7·1010 7.6·1011 2.9·1011 2.4·1011 3.0·1012

8.2·104 1.7·105 5.3·105 3.2·105 3.0·105 1.1·106

Fk 2.2·1010 9.4·1010 6.4·1011 3.8·1011 5.4·1011 3.7·1012

1.1·105 2.2·105 5.9·105 4.6·105 5.4·105 1.4·106

Qk 6.0·109 2.8·1010 1.6·1011 7.5·1010 1.2·1011 8.3·1011

3.4·104 7.0·104 1.9·105 1.5·105 2.2·105 4.3·105

Lk 0 0 1.8·105 0 0 9.9·1011

0 0 0.4 0 0 1.6·105

Gk 1.6·109 7.5·109 5.3·1010 2.2·1010 2.6·1010 2.7·1011

2.6·104 5.5·104 1.6·105 1.0·105 1.1·105 3.3·105

Ek 7.1·1011 2.0·1012 1.1·1013 4.8·1012 5.8·1012 3.6·1013

6.4·105 1.1·106 2.7·106 1.8·106 1.9·106 3.5·106

Tk 2.4·107 1.3·108 1.1·109 5.4·108 3.9·108 4.2·109

3.7·103 9.2·103 2.6·104 1.9·104 1.5·104 5.0·104

Sk 3.8·107 1.9·108 3.0·109 1.6·109 1.2·109 1.3·1010

4.7·103 1.0·104 4.5·104 3.4·104 2.6·104 9.1·104

îk 5.5·10−6 2.2·10−5 1.7·10−4 6.9·10−5 6.7·10−5 7.7·10−4

0.0137 0.0273 0.0822 0.0512 0.0498 0.1761

Table 4.6.: Approximation quality for different quantities of interest Xk in terms of AMSE
(upper rows) and AMAE (lower rows) applying different simulation meth-
ods Pb1,b2 in the case of an ongoing insurance business. For Xk = îk, we use
the corresponding relative error measures AMSPE (upper row) and AMAPE
(lower row).

Table 4.6 summarizes the estimated average approximation error per period of several
quantities of interest Xk in the case of an ongoing insurance business with new business.2

The size orders are comparable with the corresponding ones in the run-off-scenario (Ta-
ble 4.5). Also the priority order with respect to the average approximation quality is
nearly the same:

P1,1 � P2,2 � P10,1 < P1,10 < P5,5 � P10,10.

Remarkable is that now P10,1 mostly performs better than P1,10 with exceptions for the
free reserve Fk, the equity Qk, the surplus Gk, and the survival benefit payments Ek. For

2According to P0,0, there is no demand for credits in any considered scenario.
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all considered quantities, P2,2 yields the second smallest average approximation error per
period.

Except for the equity Qk, the priority orders of the preferences according to the error
measures AMSE and AMAE coincide. Indeed, according to the latter, P5,5 performs
better than P10,1 in approximating Qk.

4.2.3. Summary of the observations and recommendations

We complete this section by summarizing some of the observations from the last two
sections with the purpose of developing corresponding guidelines.

Section 4.2.1 showed that simulating all policies is not a practicable method. In par-
ticular in the case of an ongoing insurance business with new customer arrivals in every
period, the required run time for simulating a large, uncompressed insurance portfolio
explodes if we consider large time horizons with many periods. Furthermore, depending
on the available computer equipment, memory problems may occur. This indicates that
approximating simulation methods are not optional but necessary. In the following, we
propose priority orders for the considered simulation methods regarding different perfor-
mance criteria.

Efficiency criterion 1: run time

Regarding the run time, we observed a dependence on the size of the insurance portfolio
and a particularly strong one on the number of considered periods. Keeping in mind that
we need to generate at least 10,000 paths per Monte Carlo simulation for each considered
scenario and parameter specification, even small differences in the pathwise run time may
significantly impact the total time exposure. Regarding the simulation methods Pb1,b2
with b1, b2 from equation (4.2.1), we thus find the following strict priority order:

P10,10 � P5,5 � P1,10 � P10,1 � P2,2 � P1,1.

Efficiency criterion 2a: compression factor (for smaller T )

Looking at the compression factor in Figure 4.3, we saw that there are substantial differ-
ences regarding the development of the methods’ efficiencies throughout the simulation.
For those methods Pb1,b2 with b1 > 1, we observed a (partly very strong) decline in effi-
ciency, while the ones of P1,b2 remained stable from the beginning. Yet for smaller time
horizons T , we would prefer Pb1,b2 with b1 > 1 over P1,b2 :

P10,10 � P5,5 < P1,10 � P10,1 � P2,2 � P1,1.

Efficiency criterion 2b: compression factor (for larger T )

Due to the convergence towards the efficiencies of P1,b2 , we are indifferent between Pb1,b2
and P1,b2 after a certain amount of time (e.g. after 10 and 25 years for b2 = 10 and b2 = 1,

92



4.2. Compression and simulation methods: efficiency and approximation quality

respectively) yielding the following priority order for larger values of T :

P10,10 ∼ P1,10 � P5,5 � P2,2 � P10,1 ∼ P1,1.

Approximation quality

In Section 4.2.2, we observed that the less efficient strategies tend to perform better. In
all cases, P1,1 provided the best approximation and P10,10 mostly the worst.

Approximation quality in case of run-off

Regarding the group of quantities of interest considered in Table 4.5, we found the following
priority order in the case of a run-off:

P1,1 � P2,2 < P1,10 < P10,1 � P5,5 � P10,10.

However, we saw in the previous figures that the approximation quality may differ sig-
nificantly among single quantities of interests. In particular, P1,10 outperformed P2,2

regarding the worst-case approximation of the capital Ck in the long term, cf. Figure 4.5.

Approximation quality in case of ongoing insurance business

In the case of an ongoing insurance business, we saw that the approximation quality
remains stable throughout the simulations. Regarding the group of quantities of interest
considered in Table 4.6, we found the following priority order:

P1,1 � P2,2 � P10,1 < P1,10 < P5,5 � P10,10.

Note that the primary purpose of Table 4.6 is the comparison of the corresponding simula-
tion methods. In order to decide if a single value reflects an accurate approximation or not,
we can relate it to the average value of Xk per period. For example, the obtained AMAE
for Ck corresponds to 0.3% and 6.9% of the average capital per period according to P1,1

and P10,10, respectively.

Approximation quality regarding default probability

All simulation methods performed very well in approximating the estimated default prob-
ability in both considered business forms. Based on the assumption that we would rather
like to overestimate the default probability instead of underestimating it, we propose the
following priority order:

P1,1 ∼ P2,2 � P10,1 � P10,10 < P1,10 ∼ P5,5.
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Conclusion and method selection

In this section, we sketched how to proceed in choosing the appropriate compression and
simulation method. As in many cases, the choice breaks down in selecting an efficient
method associated with a tolerable error level that depends on the specific application.
From a practitioner’s point of view, the capability of computers may constrain the class
of applicable simulation methods. If not stated otherwise, we apply the compression and
simulation method P1,1 for the remainder of this thesis.

4.3. Run-off and ongoing insurance business

In this section, we compare a run-off scenario with an ongoing business where in addi-
tion new customers arrive in course of time. Among others, we analyze the effects of
incorporating stationary new business on the development and structure of the future
balance sheets. For the nearly stationary setting, we choose (αk, βk) = (1, 1) yield-
ing Λk ∼ U (0.5% · δ0, 2.2% · δ0). We perform a Monte Carlo simulation consisting of
N = 10, 000 paths. With the objective of a good comparability of both settings, we start
with the same balance sheet and insurance portfolio. Moreover, surrender probabilities are
modeled homogeneously by equation (2.3.5). If not stated otherwise, the input parameters
and the distributional assumptions are taken from Table 4.1.
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Figure 4.13.: Development of the size of the insurance portfolio. Left: run-off, right: on-
going insurance business.

Figure 4.13 displays the size of the insurance portfolio in course of time. In the run-
off-case, it is falling monotonously and after 30 years, there only remains about 1% of the
contracts. In the ongoing-business-case, it first decreases and then becomes stable. The
development in both cases heavily depends on the distribution of the biometric param-
eters of the insured collective. The deterministic decrement results from our approach
of modeling mortality and cancellation, whereas the random numbers of new customers
induce uncertainty in the ongoing insurance business-case. This, and the independence
of the random capital market’s variations also explain the development of the actuarial

94



4.3. Run-off and ongoing insurance business

reserve in Figure 4.14.
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Figure 4.14.: Median of (aggregated) balance sheet positions with corresponding 5-95%
quantiles. Top to bottom: capital, actuarial reserve, bonus reserve, own
funds, liabilities to banks. Left: run-off, right: ongoing insurance business.
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4. Simulation Studies: Part I

In Figure 4.14, we show the development of the (aggregated) balance sheet positions.
The corresponding 5-95% quantiles are illustrated by colored areas. Only during the first
years, the developments in both cases look similar. Then, the effect of including new
business becomes clearly visible. While capital Ck and actuarial reserve Ak continue to
decrease in the run-off scenario, they become more and more stable in the case of an
ongoing business. The bonus reserve Bk is built up in the first years and then reduces
(on the left) or becomes stable (on the right). Looking at the size of the quantile distance
illustrated by the width of the colored areas, the uncertainty regarding own funds Fk+Qk
increases in the case of an ongoing business, while it reduces from year 10 onwards in the
other case. Demand for credits can only be observed in the long term in the case of a
run-off. But even there, the median equals zero at all times.
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Figure 4.15.: Expected balance sheet structure. Top: run-off, bottom: ongoing insurance
business. Left: assets, right: liabilities.

In Figure 4.15, we illustrate the expected structure of the balance sheet in the case of
a run-off and an ongoing business with stationary new business. In particular, the graphs
visualize the fulfillment of the fundamental balance sheet equation.
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Figure 4.16.: Declared interest rate îk. Left: run-off, right: ongoing insurance business.

In Figure 4.16, we see the annually declared interest rate îk. On both sides, only the
guaranteed rate îG = 0.9% is paid in the worst-5% average case. Let us now focus on the
run-off scenario for a moment. On average and in the best-5% average case, the interest
rate increases in course of time, and especially fast after 22 years. This is caused by the
stronger decrement of the technical reserve Vk compared to the free reserve Fk yielding
constantly increasing reserve rates γk and thus higher interest rates, cf. equation (3.5.5).
After 33 years, when there are only less than 0.5% of the initial policyholders left, the
interest rates get unrealistically large.3 Note that in other studies sometimes an upper
bound is put on the declared interest rate, e.g. 10% in Gerstner et al. [27], which we do not
do here. Looking at the right-hand side, we see that here the declared interest rate becomes
stable. Already after six years, there are no adjustments larger than 0.3 percentage points.
In the medium and long term, the policyholders can expect 1.3% on average and 3.8% in
the best-5% average case.

4.4. Ongoing business with alternative new business scenarios

Now we investigate for ongoing insurance business the effect of non-stationary new busi-
ness. For this, we specify four alternative patterns of new contract arrivals and study the
effects on the expected balance sheet structure. The case of a stationary new business is
set as a benchmark (Scenario 0). Scenarios 1 and 2 correspond to a gradually expand-
ing and a decreasing new business. Positive and negative shocks on the expected future
number of new customers are considered in the last two scenarios. The chosen shape
parameters of the beta distribution for modeling the new contract arrivals are displayed
in Table 4.7 at the end of this section. If not stated otherwise, the input parameters and
the distributional assumptions are taken from Table 4.1.

3After 48 years, when there are no longer any contracts in the insurance portfolio, we would observe
interest rates of 27%, 26%, and 16% in the considered average cases.
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4. Simulation Studies: Part I

The corresponding new business scenarios and the resulting size of the insurance port-
folios are illustrated in Figure 4.17 where, e.g., the first row reflects the scenario of a
stationary new business (NBS 0) and the last row reflects the scenario with a negative
shock on the expected future number of new customers after 25 years (NBS 4).
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Figure 4.17.: New business scenarios NBS 0 (top) to NBS 4 (bottom). Left: number of
new customers per period (expected number in red, one path in green), right:
corresponding path of the insurance portfolio size.
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Figure 4.18.: Expected balance sheet structure for NBS 0 (top) to NBS 4 (bottom). Left:
assets, right: liabilities.

The expected balance sheet structures within the considered scenarios are shown in
Figure 4.18. We can clearly see the dependence on the development of the future new
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business. However, one can also observe stability on average regarding the target of a
constant stock portion according to the CM strategy and the amount of equity or the
reserves. Even in the extreme scenarios NBS 3 and NBS 4, the bonus reserve, the free
reserve, and the equity remain stable which is in line with the life insurer’s objectives
of a smooth surplus participation and the preservation of enough own funds for future
uncertainties.

NBS Shape parameters αk and βk
0 (αk, βk) = (1, 1) for k = 1, . . . ,K
1 (α1, β1) = (2, 20), (αK , βK) = (20, 2), and for k = 0, . . . ,K − 2:

αk+1 = α1 + (αK − α1) k
K−1 , βk+1 = β1 − (β1 − βK) k

K−1

2 (α1, β1) = (20, 2), (αK , βK) = (2, 20), and for k = 0, . . . ,K − 2:
αk+1 = α1 − (α1 − αK) k

K−1 , βk+1 = β1 + (βK − β1) k
K−1

3 (αk, βk) = (2, 20) for k = 1, . . . , K2 and
(αk, βk) = (20, 2) for k = K

2 + 1, . . . ,K

4 (αk, βk) = (20, 2) for k = 1, . . . , K2 and
(αk, βk) = (2, 20) for k = K

2 + 1, . . . ,K

Table 4.7.: Parameterization of the considered new business scenarios (NBS).

4.5. CM and CPPI strategies

In the following, we compare the two investment strategies from Section 3.5.1 in the case
of an ongoing insurance business with stationary new business. They essentially differ in
terms of the capital invested in stocks. In order to analyze the specific characteristics and
behavior of these strategies, we first consider a single simulation path for each strategy
based on the same sequence of generated random numbers and perform Monte Carlo
simulations later. If not stated otherwise, the input parameters and the distributional
assumptions are taken from Table 4.1.

4.5.1. Performance within a crash-free capital market

Figure 4.19 shows the path of the stock prices in this exemplary scenario and the resulting
reached stock ratios over time. Before the investment, i.e. at the end of the previous period,
they can be larger than the maximum or target value, since funds needed for financing the
disbursements are firstly taken from expired bonds, see Section 3.5.3. After the investment,
however, this is not possible. Following the CPPI strategy, the amount of funds invested
in stocks is implicitly linked to the actual stock prices via the free reserve and equity.
They contain the generated surpluses depending partly on the past stock prices. This
characteristic can be observed in Figure 4.19: during the first years, the stock initially
performed well and then decreased substantially. As a result, the stock ratio increased to
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4.5. CM and CPPI strategies

over 30% and then dropped to zero around 3 years. At all times, increasing or decreasing
stock ratios are traceable to corresponding variations of the stock prices. Note that the
described dependence would be even more visible if we had no or a higher maximum stock
ratio (here 35%). In the CM-case, we observe a completely different development. After
the reallocation of assets, the stock ratio equals almost always the target value of 10%.
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Figure 4.19.: Reached stock ratio before (dotted) and after the reallocation of assets. The
left scale is only for the stock prices.

As we can see in Figure 4.20, the differences between the two strategies are also re-
flected by the amount of bought bonds due to investment and the value of sold stocks
due to payment of benefits and repayment of credits. The CPPI strategy yields a volatile
development for both positions. There are many points in time where no bonds are bought
at all, while at others we see large purchases. As a result, the life insurer often needs to
sell stocks, since the amount of expired bonds does not suffice. For example, after six
years we observe the first large peak which is due to the fact that no bonds were bought at
time tk = 3. Instead, at this time the life insurer takes loans by short-selling or emitting
bonds, here illustrated by a negative amount of bought bonds. The reason why no stocks
were sold after three years (although no bonds were bought at time t0 = 0) is that the
stock ratio was 0, see Figure 4.19. In the CM-case, the amount of bought bonds is always
non-negative and the development seems to be quite balanced over time. As a conse-
quence, selling of stocks due to financing of disbursements is less frequent. The periodic
pattern in the value of bought bonds in both cases can be explained by the assumption
that liquid funds are first invested in stocks for each strategy, while the remaining part is
used to buy bonds having a fixed duration of τ years (here τ = 3) and which are held until
maturity. More generally, the investments are determined by a variety of factors, includ-
ing the chosen strategy, the development of prices, but also the disbursements depending
partly on the distribution of biometric parameters within the insurance portfolio.
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Figure 4.20.: Amount of bought bonds due to investment strategy and value of sold stocks
due to financing strategy. Left: CM, right: CPPI.

We complete this section by measuring the performance of the CM and CPPI strategy
in terms of different criteria reflecting both the life insurer’s and the policyholders’ point
of view.

Criterion CM CPPI

CK · 109 8.41 (1.39) 9.12 (3.39)
(FK +QK) · 109 1.46 (1.15) 1.71 (2.54)
LK · 107 0 (0) 3.59 (10.19)
PDK in % 29.75 53.30
BK · 108 2.59 (3.32) 6.88 (10.04)

îK in % 1.27 (0.73) 1.76 (1.68)
BK · 107 13.84 (0.83) 14.99 (2.62)

Table 4.8.: Estimated default probability and arithmetic means together with sample stan-
dard deviations (in brackets) of different criteria applying the CM and CPPI
strategy. The estimations are based on N = 10, 000 simulated paths.

In more detail, these are the total value of assets CK , the amount of own funds FK+QK ,
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4.5. CM and CPPI strategies

the liabilities to banks LK , the default probability PDK , the bonus reserve BK , the de-

clared interest rate îK , and the aggregated benefit payments BK at the end of the con-
sidered time horizon, i.e. at time tK . Based on N = 10, 000 simulated paths, we calculate
the corresponding arithmetic means together with the sample standard deviations and
estimate the cumulative default probability PDK . The results are shown in Table 4.8. We
observe that for the considered parameter set, the CPPI strategy yields on average larger
amounts of capital CK , own funds FK + QK , bonus reserves BK , and a higher declared

interest rate îK . At the same time, the default probability PDK is much larger and there
is an increased demand for credit liabilities LK . From the corresponding sample standard
deviations we conclude that the insurance business tends to be more stable if we apply
the CM strategy.

4.5.2. Performance within a capital market with crashes

In this section, we investigate the robustness of the considered investment strategies. We
consider again an ongoing business with stationary new business. In contrast to the section
before, we now allow for crashes in the stock and bond markets.4 First, we assume a setting
with a single crash either in the stock markets or in the bond markets at a fixed time and
of a fixed crash size. More specifically, the time of occurrence and the intensity of the
crash are chosen in advance and then N = 10, 000 realizations of the capital market are
generated. This can be seen as a worst-case approach. Indeed, fixed crash sizes can be
interpreted as stochastic crash sizes attaining a predefined upper bound. The life insurer
has no prior knowledge about the time and the size of the fixed crash. Later, we expand
our considerations to more general crash scenarios.

In the case of a stock market crash
(
tC, zC

)s
=
(
tC,s, zC,s

)
the stock prices decrease

instantly by a factor zC,s at time tC,s. Regarding bond market crashes one needs to take
correlations between different bonds into account, in addition to the time and the size of
crashes. Since we want to investigate robustness of the investment strategies and stability
of the balance sheets even in extreme scenarios, we assume a perfect correlation implying
that a bond market crash affects all held bonds to the same extent. At crash time tC,b, a
fraction zC,b of all held bonds defaults completely.5 Correspondingly, the number of held
bonds with different times to maturity is decreased instantly. Therefore, the bond market

crash
(
tC, zC

)b
=
(
tC,b, zC,b

)
also leads to liquidity shocks in the following periods.

Figure 4.21 displays five realizations of the stock price process and its expected devel-
opment illustrating a crash of size zC,s = 0.4 after 25 years.

4Here, we assume that crashes are caused by exogenous factors. Alternatively, bond market crashes could
be caused by (instantly) rising interest rates.

5At this time point, this is equivalent to assume that the prices of all held bonds decrease instantly by
the same factor zC,b.
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Figure 4.21.: Five realizations of the stock price process and its expected development in
the case of a stock market crash

(
tC, zC

)s
= (25, 0.4)s.
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Figure 4.22.: Expected balance sheet positions in the case of a stock market
crash

(
tC, zC

)s
= (25, 0.4)s (top) and in the case of a bond market

crash
(
tC, zC

)b
= (25, 0.1)b (bottom). The right scale on the right-hand

side is only for the liabilities to banks. Left: CM, right: CPPI.
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4.5. CM and CPPI strategies

The averages of the development of the (aggregated) balance sheet positions for the two
investment strategies in this scenario are shown in the first row of Figure 4.22. The liabil-
ities to banks equal zero in the CM-case at all times, in contrast to the CPPI-case where
it increases. Especially after the stock market crash we observe larger values about 108.
The actuarial reserve is not effected due to its independence from the capital market’s
variations while free reserve and equity suffer a lot. It is striking that the overall exposure
seems to be higher using the CPPI strategy. Indeed, the equity was about 10% higher
than in the CM-case shortly before the crash but then decreased tremendously. In the
end, we observe 0.5 · 109 and 0.3 · 109 in the CM- and in the CPPI-case, respectively. The
second row of Figure 4.22 shows the influence of a bond market crash of size zC,b = 0.1
after 25 years. Now the crash is also clearly visible in the CM-case and the overall expo-
sure seems to be of comparable size in both cases. At the end, the bonus reserve in the
CPPI-case is even three times larger than in the CM-case.
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Figure 4.23.: Declared interest rate îk in the case of a stock market crash
(
tC, zC

)s
=

(25, 0.4)s (top) and in the case of a bond market crash
(
tC, zC

)b
= (25, 0.1)b

(bottom). Left: CM, right: CPPI.

The latter observations are also reflected in Figure 4.23 visualizing the impact of the
stock market crash (first row) and the impact of the bond market crash (second row)
on the annual declared interest rate. In the first case and applying the CPPI strategy,
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it is approximately reduced by half while applying the CM strategy, it is adjusted by
1.2 percentage points (pp) in the best-5% average case and 0.4pp in the average case
corresponding to a reduction of less than 30%. In the case of a bond market crash, the
declared interest rate suffers more applying the CM strategy: in the best-5% average case,
we observe a reduction of 2.5pp (over 60%) compared to 1.5pp (20%) if applying the CPPI
strategy. However, in the average case the relative change is similar for both strategies.

Now we investigate the robustness of the strategies in more detail by considering varying
crash scenarios

(
tC, zC

)·
regarding the stock and bond markets and measuring their impact

on the performance within the corresponding crash-free capital market. More specifically,
on the basis of N = 10, 000 simulated paths, we average over all simulations and all periods
to get the average change per period as a number for illustration. As before, we select
different criteria reflecting both the life insurer’s and the policyholders’ point of view. In
more detail, these are the own funds Fk + Qk, the liabilities to banks Lk, the declared
interest rate îk, and the benefit payments Bk. The influence is measured in terms of
absolute changes if non-positive values are possible, otherwise in terms of relative changes
(in %) or in percentage points (pp). The results are shown in Table 4.9, where we also
display the impact on the 50-year default probability PDK .(

tC, zC
)·

∆ (Fk +Qk) · 108 ∆Lk ∆PDK in pp ∆îk in pp ∆Bk in %

(1, 0.1)s −0.5/− 1.7 0/1.1 · 107 2.25/5.09 −0.02/− 0.10 −0.25/− 1.02
(1, 0.1)b −6.2/− 6.8 0/9.4 · 107 44.26/23.74 −0.15/− 0.32 −1.63/− 3.22
(1, 0.4)s −2.2/− 9.1 0/1.3 · 108 11.83/31.97 −0.08/− 0.43 −0.91/− 4.22
(1, 0.4)b −32.9/− 32.0 6.6 · 103/8.0 · 108 68.67/46.45 −0.37/− 0.85 −3.49/− 7.48

(25, 0.1)s −0.2/− 0.6 0/4.9 · 105 1.30/1.99 −0.01/− 0.05 −0.14/− 0.47
(25, 0.1)b −2.5/− 2.6 0/1.1 · 107 16.69/7.83 −0.10/− 0.12 −0.95/− 1.08
(25, 0.4)s −1.0/− 3.1 0/4.0 · 106 5.71/12.22 −0.05/− 0.19 −0.52/− 1.71
(25, 0.4)b −12.9/− 12.1 2.2 · 101/4.1 · 107 68.67/33.07 −0.19/− 0.36 −1.52/− 2.86

(45, 0.1)s −0.1/− 0.2 0/8.4 · 104 0.70/0.75 −0.01/− 0.02 −0.02/− 0.05
(45, 0.1)b −0.8/− 0.7 0/1.7 · 106 10.59/5.45 −0.03/− 0.04 −0.08/− 0.09
(45, 0.4)s −0.3/− 0.9 0/9.9 · 105 3.20/7.29 −0.02/− 0.06 −0.05/− 0.16
(45, 0.4)b −3.2/− 2.9 0/6.7 · 106 68.66/25.89 −0.04/− 0.08 −0.09/− 0.19

Table 4.9.: Absolute or relative changes due to a predefined crash regarding the stock mar-

kets
(
tC, zC

)s
and the bond markets

(
tC, zC

)b
applying the CM/CPPI strategy.

Clearly, the changes are larger for greater crash-intensities and since we averaged over
all periods, they are smaller if the crash occurs at later time points. In the case of stock
market crashes, applying the CM strategy there is no demand for credits in any considered
scenario and the performance is always much less affected than that in the CPPI-case.
Regarding bond market crashes, the differences between the strategies are much smaller.
Even more, the default probability and partly the own funds are now more affected when
applying the CM strategy. It is striking that in the considered scenarios bond market
crashes have a larger impact on the performance than stock market crashes. This is due
to the fact that most funds are invested in bonds, see Figure 4.19.

We complete this section by expanding our investigations to more general settings. In
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4.5. CM and CPPI strategies

contrast to before, we consider random crash times and sizes regarding both the stock and
bond markets. In particular, we now allow for several crashes within the considered time
horizon but we do not assume that there always has to be a crash.

The independent waiting times W1,W2, . . . for the crashes are modeled by an exponen-
tial distribution with parameter 1

T such that the l-th crash time is given by

tCl =
l∑

j=1

Wj , W1,W2, . . . iid, W1 ∼ Exp

(
1

T

)
.

This approach leads to an average amount of one crash within the considered time hori-
zon T , but also allows for crash-free scenarios and several crashes. The independent crash
sizes zC

l are modeled by a beta distribution with parameters 2 and 6, i.e.

zC
l ∼ Beta (2, 6) .

Hence, the expected value of the crash size is 0.25 as in the deterministic crash scenarios.
We perform several Monte Carlo simulations consisting each of N = 10, 000 simulated
paths and calculate the established criteria. We consider crashes only in stock markets,
only in bonds markets, independent crashes in both markets, and coupled crashes in
both markets where the crashes of independent sizes occur in both markets at the same
(random) time. Table 4.10 summarizes the results.

Crashes in ∆ (Fk +Qk) · 108 ∆Lk ∆PDK in pp ∆îk in pp ∆Bk in %

Stocks −0.7/− 2.0 0/10.0 · 106 4.08/7.47 −0.03/− 0.11 −0.29/− 1.01
Bonds −7.9/− 8.0 6.8 · 105/8.5 · 107 34.49/17.76 −0.12/− 0.22 −1.02/− 1.85
Both −8.4/− 9.6 4.1 · 105/9.5 · 107 36.16/21.97 −0.13/− 0.30 −1.20/− 2.57
Both at once −8.7/− 10.0 2.2 · 105/1.1 · 108 37.50/23.12 −0.12/− 0.28 −1.09/− 2.26

Table 4.10.: Absolute or relative changes due to random crashes in markets of stocks,
bonds, and both applying the CM/CPPI strategy. The last row means that
both, stock and bond markets, crash at the same (random) time.

We see that the observations made so far manifest themselves again. The CM strategy
(with a target stock ratio of πs,tar = 10%) is more robust against possible stock market
crashes and, to a smaller extent, for most criteria also against possible bond market
crashes. In the CM-case, the latter leads to much higher default probabilities compared
to a crash-free scenario but they are still smaller than in the CPPI-case. Furthermore,
significant amounts of liabilities to banks are now also observed in the CM-case.

From the last two sections we can conclude that for the considered parameter set and
scenarios, the CPPI strategy yields on average larger bonus reserves, free reserves, and
declared interest rates. At the same time, it leads to a higher default probability and in
most cases to a greater exposure against possible capital market crashes.
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4.6. Sensitivity analysis

The capital market’s true parameters are, in general, not known but have to be estimated
on the basis of historical data. However, estimations are always associated with a certain
degree of uncertainty. In the following, we study this issue using the long-term mean b

a of
the short rate process as a key parameter. We specify three different scenarios. In one case,
it equals the guaranteed interest rate îG = 0.9%. In the other cases, it is 0.4 percentage
points above or below the guaranteed rate. If not stated otherwise, all other initial values
remain the same, cf. Table 4.1. Here, we consider again a life insurer with stationary new
business applying the CM strategy for investments. The corresponding probabilities and
expectations are each estimated on the basis of N = 10, 000 simulations.
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Figure 4.24.: Development of the default probability within the three scenarios. The
dashed lines correspond to λ0 = 0.

In Figure 4.24, we show the development of the default probabilities PDk, i.e. the
probabilities of the events {Qj < 0 for some j ∈ {0, . . . , k}}. Within the first years, they
are (almost) zero for all scenarios due to the initial amount of own funds F0 +Q0. From
year 5 onwards, we observe significant differences getting larger as time goes on. The
default probability increases as the long-term mean decreases (slightly). This indicates a
high sensitivity with respect to the long-term mean of the short rate, which is characteristic
for life insurers writing long-term insurance business. It is also noticeable that the influence
is non-symmetric. The probability of default is more affected by negative deviations than
by positive ones. The dashed lines correspond to the results if the market price of interest
rate risk parameter λ0 is zero, i.e. if the real world coincides with the risk-neutral world
(P = Q). In that case, we obtain larger bond prices and thus increased asset values which
reduce the risk and thus lead to smaller default probabilities compared to λ0 = 2%.

An important objective could be to keep the default probability within a certain time
horizon, say during the next 10 years, under a predefined threshold, say 5%. As illustrated
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in Figure 4.25, this can be achieved by increasing the initial fraction ψ0 of own funds.6

Note that we ensured a non-negative value of initial equity by reducing the reserve rate γ0

correspondingly. As expected, the probabilities decrease if the own funds increase, espe-
cially fast for smaller values of ψ0. Here, a default probability equal to the threshold of 5%
requires initial fractions of approximately 9.9%, 11.3%, and 13.2% if the long-term mean
is 1.3%, 0.9%, or 0.5%, respectively. In the case λ0 = 0, we need less own funds to obtain
the same default probability.

8% 9% 10% 11% 12% 13% 14% 15%
0%

5%

10%

15%

20%

25%

Inition fraction own funds

b/a = 0.5% b/a = 0.9% b/a = 1.3% 5%-threshold

Figure 4.25.: Development of the 10-year default probability depending on own funds
within the three scenarios. The dashed lines correspond to λ0 = 0.

The declared interest rates îk on average are displayed in the upper part of Figure 4.26.
During the first year, only the guaranteed rate îG = 0.9% is paid. Then, interest rates
increase before they become stable. Significant differences between the three scenarios are
observable from year 5 on. In contrast to the default probabilities, these do not increase
steadily with time but remain approximately constant. In addition, now the positive
deviations in the long-term mean have a (slightly) stronger influence. In the medium
and long term, the average values are 1.2%, 1.5%, and 1.9% if b

a equals 0.5%, 0.9%,
and 1.3%. A complementary benchmark, additionally to the declared interest rate, could
be the probability that only the guaranteed interest rate îG will be paid as illustrated in
the lower part of Figure 4.26. The probabilities decrease during the first years and then
become quite stable. As expected, larger values for the long-term mean result in lower
probabilities that the declared interest rate equals the guaranteed rate. As before, the
differences between the scenarios remain approximately constant over time. In the case
λ0 = 0, we obtain similar results.

6In practice, a typical drawback would be higher costs of equity.
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75%
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Figure 4.26.: Average declared interest rate (top) and probability that only the guaranteed
interest rate is paid (bottom) within the three scenarios. The dotted lines
correspond to λ0 = 0.

We complete this chapter by investigating more the obtained high sensitivity, here ex-
emplary for the market price of interest rate risk parameter λ0. The long-term mean b

a

of the short rate process is assumed to coincide with the guaranteed interest rate îG, i.e.
b
a = 0.9%. The long-term mean under the risk-neutral measure Q is b̃

ã with b̃ = b− λ0σr
and ã = a, cf. Section 3.3.1.

Figure 4.27 displays the arithmetic means of several quantities of interest at the end
of the considered time horizon for different values of λ0. We see that both profitability
and security of the life insurance business decrease as the market price of interest rate
risk parameter increases. We observe that the dependence is particularly strong for the
default probability PDK , while the aggregated benefit payments BK are less affected.
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îK

−10% −5% 0% 5% 10%
0%

10%

20%

30%

40%

λ0

PDK

−10% −5% 0% 5% 10%
0

0.5

1

1.5
·108

λ0

BK

Figure 4.27.: Quantities of interest depending on the market price of interest rate risk
parameter λ0.
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5. Further Applications of the General ALM
Model: Refinements and New Strategies

This chapter builds up on Chapter 3. We present several refinements, alternative modeling
approaches, and further applications of the general ALM model emphasizing its flexibility
and universal applicability. In Section 5.1, we derive new investment strategies that aim
at meeting requirements on the asset allocation induced by the insurer’s liabilities. In
Section 5.2, we develop new strategies for financing the periodic disbursements. In partic-
ular, we allow for selling bonds before maturity, thereby relaxing the assumptions made in
Section 3.5.1. For this, we develop an algorithm for the successive sale of bonds to reduce
a defined gap in funds while taking into account a safety amount that should be kept for
future obligations, see Section 5.3. In Section 5.4, we prove that the refined ALM model
respects the fundamental balance sheet equation, and provide an alternative strategy for
the use of surpluses in Section 5.5.

5.1. Development of new investment strategies

In this section, we motivate and develop new investment strategies that take into account
dependencies between the life insurer’s assets and liabilities. For this, we introduce a quan-
tity that represents the required capital needed for new bond investments, the coverage
fund.

5.1.1. Motivation and coverage funds

In Section 3.5.1 we specified the asset allocation by introducing two prominent investment
strategies: the CM and the CPPI strategy. Both are characterized by the management’s
target for the stock position, while the remaining liquid capital is invested in bonds with
a fixed duration.

In simulation studies, we observed a periodic pattern and pronounced peaks in the
amount of bought bonds for both strategies within a pathwise consideration.1 That char-
acteristic behavior results from the assumption that bonds are held until maturity and
from the strong dependence of the asset allocation on the periodic obligations. A substan-
tial part of the disbursements consists of survival benefit payments, whose guaranteed part
is independent of the random capital market’s variations. Therefore, the dependencies are
still visible on average as we can see in Figure 5.1. For the corresponding simulations, we

1See Figure 4.20 in Section 4.5.1.
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used the parameters from Table 4.1 with a minimum stock ratio πs,min
k = 10%. Further-

more, we considered a life insurer with stationary new business applying the CM strategy
for investments.2

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
·109

Time in years

Bought bonds due to IS Disbursements

Figure 5.1.: Illustration of the dependence of the bond strategy on the disbursements. The
red (black) dashed line represents the first time where a high (low) amount
of disbursements led to a low (high) value of bought bonds. It also marks
the beginning of the shown series of local minimums (maximums) of bought
bonds.

The large amount of approximately 0.3 · 109 of due disbursements after 0.5 years sets
the beginning of the series of local minimums in the amount of bought bonds illustrated
by the red points in Figure 5.1. Likewise, the comparatively large purchase of bonds at
time tk = 3.75, being the start of the series of local maximums in the amount of bought
bonds (the black points), is a direct consequence of the small amount of disbursements
due at this time.

The last figure further illustrates that the structure of the insurance portfolio heavily
affects the asset allocation. The assumption that bonds are held until maturity reinforces
the observed behavior of the amount of bought bonds. More evolved investment strategies
should take into account the future disbursements by reconciling the bond investments
accordingly. Ideally, payouts of the expired bonds should be sufficient to meet the due
obligations. In the following, we thus introduce the concept of coverage funds that forms
the basis of the investment strategies which we develop later.

As newly purchased bonds are assumed to have duration τ , the coverage fund CFk−1

at time tk−1 admits the following, general representation:

CFk−1 = E
[
Dk−1+ τ

∆t
| Fk−1

]
p (tk−1, tk−1 + τ) . (5.1.1)

2Applying the CPPI strategy, the observed periodic pattern would be even more pronounced.
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The conditional expectation describes the estimated disbursements Dk−1+ τ
∆t

at time
tk−1+ τ

∆t
, given the available information Fk−1 up to time tk−1.

Remark 5.1.1 (Estimation of the future disbursements). As we can see in equation (5.1.1),
the main component of the coverage fund is the conditional expectation of the future dis-
bursements. Its exact calculation is not possible since that would require knowledge about
the true distributions of the involved quantities and about the future new business. Nev-
ertheless, in some cases, quite accurate approximations are possible, e.g. if there are no
mass cancellations nor other extreme events. More details are provided in Section 6.2.4.

5.1.2. Coverage fund strategies

As before, the asset reallocation at the beginning of period k requires the calculation of
the tied up capital CBk−1 and the position of liquid funds CLk−1. For this, we proceed
analogously to Section 3.5.1. However, we introduce additional quantities and adjust the
notation at some places. This is due to the new setting, where we e.g. now explicitly allow
for prior selling of held bonds.

Starting with the previous balance sheet with the life insurer’s total assets Ck−1 at
time tk−1, the updated capital C(k−1)+ is given by

C(k−1)+ = Ck−1 − ξb,l(k−1)+
− ξs,l

(k−1)+
+
(
Pk−1 − L+

k−1

)+
. (5.1.2)

The new quantity ξb,l
(k−1)+

denotes the aggregated amount of sold bonds at the beginning

of period k according to the applied financing strategy and is specified in Section 5.3.2.

The tied up capital CBk−1 and the position of liquid funds CLk−1 are given by

CBk−1 = Cbk−1 − ξ
b,l
(k−1)+

+ min
{
πs,min
k−1 Csk−1, π

s,max
k C(k−1)+

}
and

CLk−1 =
(

1− πs,min
k−1

)
Csk−1 − ξ

s,l
(k−1)+

+ Cck−1 +
(
Pk−1 − L+

k−1

)+
+
(
πs,min
k−1 Csk−1 − π

s,max
k C(k−1)+

)+
,

so that the updated capital C(k−1)+ can still be written as

C(k−1)+ = CLk−1 + CBk−1.

After the reallocation, C(k−1)+ comprises only stocks and bonds with different times to
maturity, i.e. we then have

C(k−1)+ = Cs(k−1)+ + Cb(k−1)+ ,
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as in Section 3.5.1. However, the updated value Cb(k−1)+ of the bond portfolio now is

Cb(k−1)+ = Cbk−1 − ξ
b,l
(k−1)+

− ξb−k−1 + ϕb
(
t(k−1)+ ; tk−1 + τ

)
p (tk−1, tk−1 + τ) ,

where ξb−k−1 corresponds to the aggregated amount of sold bonds according to the applied
investment strategy and is specified in Section 5.3.1. The number of held stocks and the
stock ratio after the reallocation of assets is given as before by equations (3.5.3) and (3.5.4).

In the following, we introduce three coverage fund-based investment strategies, partic-
ularly specifying the number ϕb

(
t(k−1)+ ; tk−1 + τ

)
of newly purchased bonds with dura-

tion τ and the updated stock position Cs(k−1)+ .

SCF strategy (strict coverage fund)

The fulfillment of the coverage fund has a high priority in the sense that the management
even sells stocks to invest more in bonds if needed. Taking into account the minimum and
maximum stock ratio, the money invested in stocks is given by

Cs(k−1)+ = min
{(
CLk−1 − CFk−1

)+
+ πs,min

k−1 Csk−1, π
s,max
k C(k−1)+

}
.

RCF strategy (relaxed coverage fund)

Here, the goal of a sufficient large coverage fund has a smaller priority compared to the
SCF strategy. More specifically, bond investments no longer justify selling of stocks.3

Instead, only cash is used to buy new bonds. The adjusted stock position can be written
as

Cs(k−1)+ = min
{

max
{
CLk−1 − CFk−1, C

s
k−1 − ξ

s,l
(k−1)+

}
, πs,max
k C(k−1)+

}
.

Applying the SCF or the RCF strategy, the number of newly purchased bonds with
duration τ is given by

ϕb
(
t(k−1)+ ; tk−1 + τ

)
=
CLk−1 −

(
Cs(k−1)+ −min

{
πs,min
k−1 Csk−1, π

s,max
k C(k−1)+

})
p (tk−1, tk−1 + τ)

.

Furthermore, no bonds are sold, i.e. we have ξb−k−1 = 0.

DCF strategy (dynamic coverage fund)

The motivation of the DCF strategy is the assumption that it might be more desirable to
sell excessive bonds instead of stocks to increase the liquid funds for new bond investments.
In order to have excessive bonds, we need to build up some kind of buffer at times where
there is a lot of available cash. For this, we introduce the coverage fund multiplier λCF

k−1 ≥ 1.

3Nevertheless, stocks may be sold according to the financing strategy or due to the maximum stock ratio.
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According to the DCF strategy, the money invested in stocks can be represented as

Cs(k−1)+ = min
{

max
{
CLk−1 − λCF

k−1CFk−1, C
s
k−1 − ξ

s,l
(k−1)+

}
, πs,max
k C(k−1)+

}
,

which is the same structure as in the RCF strategy. If the available cash does not suffice
for a bond investment of volume CFk−1, there exists a coverage fund gap CF gap

k−1:

CF gap
k−1 =

(
CFk−1 −

(
CLk−1 −

(
Cs(k−1)+ −min

{
πs,min
k−1 Csk−1, π

s,max
k C(k−1)+

})))+
.

By selling bonds, the insurer now tries to reduce that gap. The exact procedure is described
in Section 5.3.1, where we derive an algorithm for the iterative sale of excessive bonds.
Here, we also specify the excess and the aggregated amount ξb−k−1 of sold bonds. The
latter corresponds to additional cash that is fully used to increase the number of newly
purchased bonds with duration τ :

ϕb
(
t(k−1)+ ; tk−1 + τ

)
=
CLk−1 −

(
Cs(k−1)+ −min

{
πs,min
k−1 Csk−1, π

s,max
k C(k−1)+

})
+ ξb−k−1

p (tk−1, tk−1 + τ)
.

5.2. Development of new financing strategies

In this section, we develop two more strategies for financing the periodic obligations.
Compared to Section 3.5.3, we now additionally allow for selling held bonds. Therefore,
the new strategies can be seen as extensions of FS 1 and FS 2. All other measures and
the associated assumptions from Section 3.5.3 remain unchanged. For completeness, we
list the available measures:

� take funds from expired bonds,

� sell bonds,

� sell stocks,

� raise short-term credits,

� take funds from premium income, and

� raise long-term credits.

According to the new notation, the amount of expired bonds at the end of period k is

Cb−k = ϕb
(
tk; tk− τ

∆t
+ τ
)
p (tk, tk) = ϕb (tk; tk) .

As before, assets can be sold at the end of period k or at the beginning of the next one.
The corresponding aggregated market values of sold bonds are denoted by ξb,lk and ξb,l

k+
,

respectively, and are specified in Section 5.3.2. As selling bonds before maturity was
excluded in Section 3.5.3, we have ξb,lk = ξb,l

k+
= 0 for financing strategies FS 1 and FS 2.
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Financing strategy 3 (FS 3)

We again assume that the life insurer prefers selling excessive bonds instead of stocks
yielding the following priority order:

1. take funds from expired bonds Cb−k ,

2. sell bonds ξb,lk ,

3. sell stocks ξs,lk ,

4. raise short-term credits L+
k ,

5. take funds from premium income Pk, and

6. raise long-term credits Lnew
k .

At first, funds are taken from expired bonds Cb−k . If these payouts are not sufficient, there
exists a demand for cash Cc+k given by

Cc+k =
(
Dk − Cb−k

)+
.

To reduce that demand for cash, the life insurer first sells excessive bonds and then stocks
in the amounts of ξb,lk and ξs,lk , respectively. The bridging loan can thus be written as

L+
k = Cc+k − ξ

b,l
k − ξ

s,l
k ,

where

ξs,lk = min
{
Cc+k − ξ

b,l
k ,
(

1− πs,min
k

)
ϕs(k−1)+sk

}
.

At the beginning of period k + 1 premium income Pk is used to repay the bridging loan

but no assets are sold, i.e. we have ξb,l
k+

= ξs,l
k+

= 0. The long-term credits to enter newly
thus amount to

Lnew
k =

(
L+
k − Pk

)+
.

Financing strategy 4 (FS 4)

The motivation for the following strategy is the same as for FS 2, i.e. we aim to reduce
the amount of traded assets. The order of the individual measures are:

1. take funds from expired bonds Cb−k ,

2. raise short-term credits L+
k ,

3. take funds from premium income Pk,
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4. sell bonds ξb,l
k+

,

5. sell stocks ξs,l
k+

, and

6. raise long-term credits Lnew
k .

If funds from expired bonds Cb−k do not suffice, we directly raise a short-term credit instead

of selling assets, i.e. we have ξb,lk = ξs,lk = 0. The bridging loan is given by

L+
k =

(
Dk − Cb−k

)+
,

and premium income Pk is used for its repayment at the beginning of the following period.
If this is not sufficient, there remains a demand for cash:

Cc+k =
(
L+
k − Pk

)+
.

As before, the life insurer first sells excessive bonds and then stocks. Accordingly, the
long-term credits to enter newly can be represented as

Lnew
k = Cc+k − ξ

b,l
k+
− ξs,l

k+
,

where

ξs,l
k+

= min
{
Cc+k − ξ

b,l
k+
,
(

1− πs,min
k

)
Csk

}
is the market value of sold stocks.

5.3. Selling of excessive bonds and transaction costs

In this section, we describe the procedure of selling bonds in more detail. Naturally, for
this there are many strategies possible since the life insurer holds bonds with different
times to maturity. The algorithms developed in this thesis are motivated by the concept
of coverage funds, too. More specifically, we only sell excessive bonds whose later payouts
are probably not needed to finance the due obligations. This is in line with the permanent
assumption that funds are first taken from expired bonds. The priority order for selling
bonds is then determined by the corresponding numbers of excessive bonds with different
times to maturity.

According to the strategies introduced in this thesis, selling of excessive bonds can be
triggered by a positive coverage fund gap and by a positive demand for cash. While the
former is associated with the DCF investment strategy at the beginning of a period, the
latter is associated with the financing strategy either at the end of a period (FS 3) or at
the beginning of a period before the asset reallocation (FS 4). In all cases, the liquidations
intend to raise cash in order to reduce a certain gap in funds, and the respective excess is
obtained by comparing the actual held number of bonds with a certain time to maturity
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with the expected disbursements at that time.4 Nevertheless, due to different notations,
we distinguish in the following between bond sales due to investment strategies and due to
financing strategies. Let us now fix a period k, i.e. we consider the time interval [tk−1, tk].

5.3.1. Selling of excessive bonds due to investment strategies

According to the DCF investment strategy, bonds are sold to reduce the coverage fund
gap CF gap

k−1. The number of bonds with maturity at time tk, tk+1, . . . , tk−2+ τ
∆t

held at the

end of period [tk−2, tk−1] is ϕb (tk−1; ti + τ), for i = k − τ
∆t , k −

τ
∆t + 1, . . . , k − 2. The

bonds were purchased at times ti. The corresponding excessive number can be calculated
by

ϕb,excess
(
t(k−1)+ ; ti + τ

)
=
(
ϕb (tk−1; ti + τ)− ϕb,l

(
t(k−1)+ ; ti + τ

)
− E

[
Di+ τ

∆t
| Fk−1

])+
,

where ϕb,l
(
t(k−1)+ ; ti + τ

)
corresponds to the number of sold bonds according to the chosen

financing strategy. The life insurer now successively sells excessive bonds until there is no
coverage fund gap or no excess anymore. The corresponding order is given by sorting the
numbers ϕb,excess

(
t(k−1)+ ; ti + τ

)
in descending order. The exact procedure is described

in Algorithm 1.

The actual number of held bonds with maturity at time ti + τ , i = k − τ
∆t , . . . , k − 2,

after potential sales due to the applied financing and investment strategy is

ϕb
(
t(k−1)+ ; ti + τ

)
= ϕb (tk−1; ti + τ)− ϕb,l

(
t(k−1)+ ; ti + τ

)
− ϕb−

(
t(k−1)+ ; ti + τ

)
,

where ϕb,l
(
t(k−1)+ ; ti + τ

)
and ϕb−

(
t(k−1)+ ; ti + τ

)
are determined in Section 5.3.2 and by

Algorithm 1, respectively.

4Note that the actual market value of the bonds is irrelevant here. Important is only the number of held
bonds since they all pay one unit of money at maturity, respectively.
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Algorithm 1 Sale of excessive bonds due to investment strategies (here: DCF)

1: Set η ← 0, iη ← ∅, CF gap,(η)
k−1 ← CF gap

k−1.

2: while max
{
ϕb,excess

(
t(k−1)+ ; ti + τ

)
: i ∈

{
k − τ

∆t , . . . , k − 2
}
\ {i0, . . . , iη}

}
> 0 and

CF
gap,(η)
k−1 > 0 do

3: Update number of iteration: η ← η + 1

4: Find index iη associated with the largest excess:

iη ← argmax
{
ϕb,excess

(
t(k−1)+ ; ti + τ

)
: i ∈

{
k − τ

∆t
, . . . , k − 2

}
\ {i0, . . . , iη−1}

}
5: Sell ϕb−

(
t(k−1)+ ; tiη + τ

)
excessive bonds with maturity date tiη + τ :

ϕb−
(
t(k−1)+ ; tiη + τ

)
= min

{
CF

gap,(η−1)
k−1

p
(
tk−1, tiη + τ

) , ϕb,excess
(
t(k−1)+ ; tiη + τ

)}

6: Update remaining coverage fund gap:

CF
gap,(η)
k−1 ← CF

gap,(η−1)
k−1 − ϕb−

(
t(k−1)+ ; tiη + τ

)
p
(
tk−1, tiη + τ

)
7: end while

8: Set ηmax ← η.

9: for i ∈
{
k − τ

∆t , . . . , k − 2
}
\ {i0, . . . , iηmax} do

10: ϕb−
(
t(k−1)+ ; ti + τ

)
= 0

11: end for

12: Calculate aggregated amount of sold bonds:

ξb−k−1 =

k−2∑
i=k− τ

∆t

ϕb−
(
t(k−1)+ ; ti + τ

)
p (tk−1, ti + τ)

5.3.2. Selling of excessive bonds due to financing strategies

Analogously to the previous section, we now describe the procedure of selling excessive
bonds to reduce the cash demand Cc+k at time tk. The number of bonds with maturity
at time tk+1, tk+2, . . . , tk−1+ τ

∆t
held after the reallocation of assets at the beginning of

period [tk−1, tk] is ϕb
(
t(k−1)+ ; ti + τ

)
, for i = k − τ

∆t + 1, k − τ
∆t , . . . , k − 1. Throughout

the interval (tk−1, tk), there are no changes nor adjustments possible implying that the
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corresponding excessive number at time tk is given by

ϕb,excess (tk; ti + τ) =
(
ϕb
(
t(k−1)+ ; ti + τ

)
− E

[
Di+ τ

∆t
| Fk

])+
.

As before, the life insurer now successively sells excessive bonds until there is no demand
for cash or no excess anymore. The corresponding order is again given by sorting the
numbers ϕb,excess (tk; ti + τ) in descending order. The exact procedure is described in
Algorithm 2.

Algorithm 2 Sale of excessive bonds due to financing strategies (here: FS 3)

1: Set η ← 0, iη ← ∅, Cc+,(η)
k ← Cc+k .

2: while max
{
ϕb,excess (tk; ti + τ) : i ∈

{
k − τ

∆t + 1, . . . , k − 1
}
\ {i0, . . . , iη}

}
> 0 and

C
c+,(η)
k > 0 do

3: Update number of iteration: η ← η + 1

4: Find index iη associated with the largest excess:

iη ← argmax
{
ϕb,excess (tk; ti + τ) : i ∈

{
k − τ

∆t
+ 1, . . . , k − 1

}
\ {i0, . . . , iη−1}

}
5: Sell ϕb,l

(
tk; tiη + τ

)
excessive bonds with maturity date tiη + τ :

ϕb,l
(
tk; tiη + τ

)
= min

{
C
c+,(η−1)
k

p
(
tk, tiη + τ

) , ϕb,excess
(
tk; tiη + τ

)}

6: Update remaining demand for cash:

C
c+,(η)
k ← C

c+,(η−1)
k − ϕb,l

(
tk; tiη + τ

)
p
(
tk, tiη + τ

)
7: end while

8: Set ηmax ← η

9: for i ∈
{
k − τ

∆t + 1, . . . , k − 1
}
\ {i0, . . . , iηmax} do

10: ϕb,l (tk; ti + τ) = 0

11: end for

12: Calculate aggregated amount of sold bonds:

ξb,lk =
k−1∑

i=k− τ
∆t

+1

ϕb,l (tk; ti + τ) p (tk, ti + τ)
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5.3. Selling of excessive bonds and transaction costs

The actual number of held bonds with maturity at time ti+ τ , i = k− τ
∆t + 1, . . . , k−1,

after potential sales due to the applied financing strategy is

ϕb (tk; ti + τ) = ϕb
(
t(k−1)+ ; ti + τ

)
− ϕb,l (tk; ti + τ) , (5.3.1)

where ϕb,l (tk; ti + τ) is determined by Algorithm 2. For financing strategy FS 4, where

bonds are sold at the beginning of a period, we substitute ϕb,l (tk; ti + τ) and ξb,lk by

ϕb,l (tk+ ; ti + τ) and ξb,l
k+

, respectively, to obtain the corresponding number and aggregated
amount of sold bonds at the beginning of period [tk, tk+1].

5.3.3. Transaction costs

The performance of the new developed investment and financing strategies will later be
investigated in the presence of transaction costs. More specifically, we consider propor-
tional transaction costs that depend on the volume of traded assets. As only single prices
for bonds and stocks are quoted at each time point tk, we aggregate ξb,lk and ξb,l

k+
as well

as ξs,lk and ξs,l
k+

, respectively.
In the following, we list the amount of traded assets at time tk, where we also differentiate

between assets that are bought or sold due to the investment strategy (IS) or due to the
financing strategy (FS):

� emitted bonds with duration τ due to FS: ξlk = ϕlkp (tk, tk + τ) ,

� sold stocks due to FS: ξs,lk + ξs,l
k+

,

� aggregated amount of sold bonds due to FS: ξb,lk + ξb,l
k+

,

� bought bonds with duration τ due to IS: ξb+k = ϕb (tk+ ; tk + τ) p (tk, tk + τ),

� aggregated amount of sold bonds due to IS: ξb−k ,

� bought stocks due to IS: ξs+k =
(
Csk+ −

(
Csk − ξ

s,l
k+

))+
, and

� sold stocks due to IS: ξs−k =
((
Csk − ξ

s,l
k+

)
− Csk+

)+
.

The proportional transaction costs are characterized by corresponding cost factors cb

and cs for bonds and stocks. Furthermore, we assume equal costs for buying and selling
of assets. At time tk, the total amount Ccost

k of transaction costs can be calculated by

Ccost
k = csCs,traded

k + cbCb,traded
k , (5.3.2)

where the traded volumes Cs,traded
k and Cb,traded

k of stocks and bonds are given by

Cs,traded
k = ξs,lk + ξs,l

k+
+ ξs+k + ξs−k
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and

Cb,traded
k = ξlk + ξb,lk + ξb,l

k+
+ ξb+k + ξb−k .

5.4. Balance sheet equation in the refined ALM model

In this section, we prove that also in the refined ALM model, where we allow for selling
bonds before maturity, the fundamental balance sheet equation holds at all times. Most
of the components of the balance sheet are defined as before in Section 3.7. However, due
to the new setting and the adjusted notation, we obtain slightly different representations
at some places. If not stated otherwise, the assumptions from Section 3.7, e.g. the order
of the business steps, remain unchanged.

According to the new financing strategies, funds are still first taken from expired
bonds Cb−k implying that the position of cash Cck is defined as before by equation (3.7.1).
The stock position Csk can now be generally represented by

Csk = ϕs(k−1)+sk −
(
Dk − Cb−k

)+
+ ξb,lk + L+

k

= ϕs(k−1)+sk − ξ
s,l
k ,

where the precise aggregated amount ξb,lk of sold bonds, the value ξs,lk of sold stocks, and
the demand for credits L+

k are determined by the chosen financing strategy. Note that for

strategies FS 2 and FS 4, we have ξs,lk = 0 since assets are only sold at the beginning of

a period. Among the strategies introduced in this thesis, ξb,lk > 0 is only possible if we
apply financing strategy FS 3. The bond part Cbk is given by

Cbk =
k−1∑

i=k− τ
∆t

+1

ϕb (tk; ti + τ) p (tk, ti + τ)

with ϕb (tk; ti + τ) from equation (5.3.1).

The total value Ck of the life insurer’s assets and all liability positions from the right
side of the balance sheet are defined as before, see equation (3.7.2) and the corresponding
equations in Section 3.7.2, respectively.

According to the adjusted notation of the number of held bonds, the total surplus Gk
for the classic endowment insurance can be written as

Gk = ϕs(k−1)+∆sk +

k−1∑
i=k− τ

∆t

ϕb (tk; ti + τ)∆pk,i − ik
(
Vk−1 + Pk−1

)
(5.4.1)

−
k−1∑

i=k− τ
∆t

ϕli∆pk,i +

(
1

ϑ
− 1

)
Sk.
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5.4. Balance sheet equation in the refined ALM model

The following theorem shows that also in our new setting, the life insurer’s business
activities lead to equal sums of assets and the liabilities as displayed in Table 3.2.

Theorem 5.4.1 (Verification of the refined model). Consider the endowment insurance
with surrender factor ϑ > 0 and suppose that the sum of all assets equals the sum of all
liabilities at the start of the simulation, i.e., C0 = A0 + B0 + F0 + Q0 + L0. Then, the
fundamental balance sheet equation is fulfilled at any time, i.e. it holds

Ck = Ak +Bk + Fk +Qk + Lk

for all k = 0, . . . ,K.

Proof. We prove the statement by induction over k. By assumption, the equality holds at
time t0. As induction hypothesis, we assume that the equality

Ck−1 = Ak−1 +Bk−1 + Fk−1 +Qk−1 + Lk−1

holds for all times ti with i ≤ k − 1 < K. For the induction step, we first decompose the
total capital Ck into

Ck = Cbk + Csk + Cck.

Taking price changes from period k, the demand for credits L+
k , and the disbursements Dk

at time tk into account, the latter equation is linked to the stock and bond part after the
reallocation of assets at time tk−1 via

Ck = Cb(k−1)+ + Cs(k−1)+ + ϕs(k−1)+∆sk +

k−1∑
i=k− τ

∆t

ϕb (tk; ti + τ)∆pk,i + L+
k −Dk.

Using

Dk = Bk + L−k ,

Bk = Ek + Tk + Sk,

C(k−1)+ = Cb(k−1)+ + Cs(k−1)+ ,

and plugging in the representation of C(k−1)+ from equation (5.1.2), we get

Ck = Ck−1 − ξb,l(k−1)+
− ξs,l

(k−1)+
+
(
Pk−1 − L+

k−1

)+
+ ϕs(k−1)+∆sk

+

k−1∑
i=k− τ

∆t

ϕb (tk; ti + τ)∆pk,i + L+
k − Ek − Tk − Sk − L

−
k .

According to the specific representation of the surplus Gk from equation (5.4.1), we can
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write

Ck = Ck−1 − ξb,l(k−1)+
− ξs,l

(k−1)+
+
(
Pk−1 − L+

k−1

)+
+Gk + ik

(
Vk−1 + Pk−1

)
− 1

ϑ
Sk

+

k−1∑
i=k− τ

∆t

ϕli∆pk,i + L+
k − Ek − Tk − L

−
k .

Using the recursive scheme of the technical reserve Vk from Proposition 3.7.1 (iii) and the
induction hypothesis, we get

Ck = Ak−1 +Bk−1 + Fk−1 +Qk−1 + Lk−1 − ξb,l(k−1)+
− ξs,l

(k−1)+
+
(
Pk−1 − L+

k−1

)+
+Gk

+ Vk −
(
Vk−1 + Pk−1

)
+

k−1∑
i=k− τ

∆t

ϕli∆pk,i + L+
k − L

−
k .

The relation between own funds and surplus in Remark 3.7.2 and Vk−1 = Ak−1 + Bk−1

imply

Ck = Fk +Qk + Lk−1 − ξb,l(k−1)+
− ξs,l

(k−1)+
+
(
Pk−1 − L+

k−1

)+
+ Vk − Pk−1

+

k−1∑
i=k− τ

∆t

ϕli∆pk,i + L+
k − L

−
k .

Using equation (3.7.6) for Lk−1 and observing the equality

Lnew
k−1 =

(
Pk−1 − L+

k−1

)+ − ξb,l
(k−1)+

− ξs,l
(k−1)+

− Pk−1 + L+
k−1

for both financing strategies, see also equation (3.5.13), we can write

Ck = Fk +Qk + Vk + Lnew
k−1 +

k−2∑
i=k− τ

∆t

ϕlip (tk−1, ti + τ) +

k−1∑
i=k− τ

∆t

ϕli∆pk,i + L+
k − L

−
k .

Since

Lnew
k−1 = ϕlk−1p (tk−1, tk−1 + τ) ,

L−k = ϕlk− τ
∆t
p
(
tk, tk− τ

∆t
+ τ
)
,

∆pk,i = p (tk, ti + τ)− p (tk−1, ti + τ) ,
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the latter equation becomes

Ck = Fk +Qk + Vk +
k−1∑

i=k− τ
∆t

+1

ϕlip (tk, ti + τ) + L+
k

= Ak +Bk + Fk +Qk + Lk

which completes the proof.

5.5. Alternative strategy for the use of surpluses

We complete this chapter by proposing an alternative modeling approach of the man-
agement decisions regarding the use of surpluses. Thereby, we further demonstrate the
flexibility of our general ALM model.

In Section 3.4, we introduced the balance sheet position ”free reserve” that represents
the aggregated amount of unappropriated and unallocated surpluses. As these funds are
not assigned to individual insured, they can be used to cover future losses under strict
conditions. In Section 3.7.2, we thus assumed that the free reserve Fk−1 fully absorbs
losses Gk < 0 while the withdrawals are limited to the available funds. If these are not
sufficient, the shareholders absorb the remaining loss. In any case, a fixed portion αGk of
a positive surplus Gk > 0 is deposited in the free reserve Fk−1 and the remaining amount
is credited to the equity Qk−1. According to that procedure, we obtained the representa-
tions (3.7.10) and (3.7.11) of the free reserve Fk−1 and the equity Qk−1, respectively.

In the following, we introduce an alternative strategy for the use of surpluses and the
resulting risk sharing between policyholders and shareholders. In contrast to the method
from Section 3.7.2, the allocation of surpluses now depends on whether the equity is
negative or positive.5 Furthermore, we aim at deriving a procedure for the splitting
of losses that adequately reflects the past surplus allocation. This is motivated by our
assumption that even if approval for withdrawals from the free reserve to cover losses is
taken for granted, it is questionable if regulators would allow the life insurer to only use
funds from Fk−1.6 However, as pointed out by Burkhart et al. [14], there are hardly any
generally applicable legal regulations in this regard since each case has to be considered
individually.

We denote by GFk and GQk the portions of the surplus that are credited to (Gk ≥ 0) or
absorbed by (Gk < 0) the free reserve Fk−1 and the equity Qk−1, respectively, such that

GFk +GQk = Gk.

5The event of a negative equity is considered as technical ruin and formed also the basis for defining the
default probability, see equation (4.2.2). In such cases, we do not stop our simulations implying that
the equity can get positive again. For comparison, the free reserve is always non-negative. In practice,
a possible restriction in the case of a technical ruin could be that the life insurer is not allowed to sell
new contracts, which we do not consider in this thesis.

6In practice, it is likely that other options like the realization of unrealized gains need to be checked
before using funds from the free reserve.
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In particular, we always ensure that surpluses are still completely allocated every period,
i.e. distributed between Fk−1 and Qk−1. Therefore, new proofs regarding the fulfillment
of the balance sheet equation are not required.

The alternative strategy for the use of surpluses is specified in the following, where we
distinguish different cases.

Case 1: Gk ≥ 0 and Qk−1 ≥ 0

In this case, we proceed as in Section 3.7.2, i.e. a fixed portion

GFk = αGk

is deposited in the free reserve Fk−1 and the remaining amount

GQk = (1− α)Gk

is credited to the equity Qk−1.

Case 2: Gk ≥ 0 and Qk−1 < 0

If the equity is negative, the positive surplus is completely used to repay the liabilities to
the shareholders. Only the surpassing part (Gk − |Qk−1|)+ is allocated between the free
reserve and the equity as in Case 1. Accordingly, we have

GFk = α (Gk − |Qk−1|)+

and

GQk = Gk −GFk .

Case 3: Gk < 0 and Qk−1 ≥ 0

If the equity is non-negative, losses Gk < 0 are shared between policyholders and share-
holders in the same proportion as positive surpluses were allocated in the last τG years.
This yields

GFk =

∑k−1

i=k− τG
∆t

(
GFi
)+

∑k−1

i=k− τG
∆t

(Gi)
+
Gk

and

GQk = Gk −GFk .
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5.5. Alternative strategy for the use of surpluses

Case 4: Gk < 0 and Qk−1 < 0

Here, we assume that a larger amount of equity has a higher priority than a potential fair
risk sharing as in Case 3. Therefore, the free reserve fully absorbs losses Gk < 0 while the
withdrawals are limited to the available funds as in Section 3.7.2. Correspondingly, we
obtain

GFk = max {Gk,−Fk−1}

and

GQk = Gk −GFk .

In any case, the free reserve Fk and the equity Qk can be represented as

Fk = Fk−1 +GFk and Qk = Qk−1 +GQk ,

respectively.
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6. Simulation Studies: Part II

In this chapter, we perform several simulation studies to illustrate the refinements and the
alternative modeling approaches from Chapter 5. We consider again a classic endowment
insurance equipped with the specifications from Section 3.6.2. If not stated otherwise, we
use the basic capital market model from Section 3.3.1.

In Section 6.1, we provide an extensive comparison study of all introduced investment
and financing strategies for different new business scenarios. The performance is investi-
gated taking into account both the life insurer’s and the policyholders’ point of view in the
presence of transaction costs. Further applications of the general and the refined ALM
model are illustrated in Section 6.2. This includes the modeling of the capital market,
the used method for the annual interest rate declaration, and the strategy for the use of
surpluses.

6.1. Performance of the investment and financing strategies

In this section, we investigate the performance of all investment and financing strategies
developed in this thesis. For the sake of clarity, they are summarized in Table 6.1 together
with their corresponding main characteristics.

For each pair (IS,FS) of investment and financing strategies, we simulate the resulting
ALM model N = 10, 000 times. To investigate the direct impact of the strategies, we
each use the same dynamics of the capital market, i.e. the n-th Monte Carlo path for
the pairs (IS,FS) with corresponding IS and FS is based on the same generated random
numbers, respectively. Thereby, we allow for a pathwise comparison. The input parame-
ters and the distributional assumptions are taken from Table 4.1, except for the minimum
stock ratio which is set to πs,min

k = 10%. Regarding the new business, we consider four
different scenarios.
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IS Section Main characteristics

CM 3.5.1 The target is a constant stock ratio.
CPPI 3.5.1 The stock investments are linked to the amount of own funds.
SCF 5.1.2 The bond investments are linked to the expected amount of disburse-

ments. The corresponding coverage fund has a high priority, i.e.
stocks are sold if necessary.

RCF 5.1.2 Same as for SCF but the corresponding coverage fund has a lower
priority, i.e. no assets are sold.

DCF 5.1.2 Same as for RCF but the bond investments are increased such that
excessive bonds can be sold if necessary.

FS Section Main characteristics

FS 1 3.5.3 If payouts from expired bonds are not sufficient, stocks are sold before
raising a credit and preparing the balance sheet.

FS 2 3.5.3 If payouts from expired bonds are not sufficient, a credit is directly
raised before preparing the balance sheet. Stocks may be sold at the
beginning of the following period.

FS 3 5.2 Same as for FS 1 but, in addition, excessive bonds are sold if necessary
before selling stocks.

FS 4 5.2 Same as for FS 2 but, in addition, excessive bonds are sold if necessary
before selling stocks.

Table 6.1.: Overview of the investment and financing strategies developed in this thesis.
The last column only describes the respective main characteristics, while details
can be found in the corresponding sections.

Table 6.2 displays the chosen shape parameters of the beta distribution for modeling
the new contract arrivals. The corresponding new business scenarios and the resulting size
of the insurance portfolios are illustrated in Figure 6.1 where, e.g., the first row reflects
the scenario with a negative shock on the expected future number of new customers after
25 years (NBS 1) and the last row reflects the scenario of a stationary new business
(NBS 4).

NBS Shape parameters αk and βk
1 (αk, βk) = (20, 2) for k = 1, . . . , K2 and

(αk, βk) = (2, 5) for k = K
2 + 1, . . . ,K

2 (α1, β1) = (2, 5), (αK , βK) = (5, 2), and for k = 0, . . . ,K − 2:
αk+1 = α1 + (αK − α1) k

K−1 , βk+1 = β1 − (β1 − βK) k
K−1

3 (α1, β1) = (20, 2), (αK , βK) = (2, 5), and for k = 0, . . . ,K − 2:
αk+1 = α1 − (α1 − αK) k

K−1 , βk+1 = β1 + (βK − β1) k
K−1

4 (αk, βk) = (1, 1) for k = 1, . . . ,K

Table 6.2.: Parameterization of the considered new business scenarios (NBS).
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Figure 6.1.: NBS 1 (top) to NBS 4 (bottom). Left: number of new customers per period
(expected number in red, one path in green), right: corresponding path of the
insurance portfolio size.

We assume that the life insurer has no prior knowledge about the future new business
and thus assumes a stationary development. This motivates the choice of a constant

value for E
[
Dk−1+ τ

∆t
| Fk−1

]
, k = 1, . . . ,K, in the general representation (5.1.1). In this

section, we thus choose the following form of the coverage fund CFk−1:

CFk−1 = 4 · 108 · p (tk−1, tk−1 + τ) . (6.1.1)

The specific value of E
[
Dk−1+ τ

∆t
| Fk−1

]
is derived from prior simulations1 and taking

into account a certain safety loading. As coverage fund multiplier we use λCF
k−1 = 1.5.

1See Figure 5.1 in Section 5.1.1.
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The development of new investment strategies in Section 5.1 was motivated by the
observed periodic pattern with pronounced peaks in the amount of bought bonds if we
apply the CM or the CPPI strategy. This characteristic can be seen as a weakness since
it reflects the fact that both investment strategies are not well oriented to the obligations
induced by the insured collective. In the following, we thus examine how the bond and
stock investments differ if we apply the other investment strategies. Here, we consider the
scenario of a stationary new business (NBS 4) and use financing strategy FS 1 as we did
in the CM-case in Figure 5.1. The results for the remaining new business scenarios are
shown in Appendix A.2.
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Figure 6.2.: Amount of bought bonds applying different investment strategies and financ-
ing strategy FS 1 in the case of a stationary new business (NBS 4).

Figure 6.2 shows the average amount of bought bonds if we apply different investment
strategies. Compared to the CM-case, the CPPI strategy yields a development that is
more volatile in the first 20 years but less volatile in the long term.2 The coverage fund-
based strategies yield even less volatile developments and, except for the RCF strategy,
there is no longer a periodic pattern with pronounced peaks. Especially if we apply the
SCF strategy, the average bond investments are quite smooth from year 12 onwards.

2Note that for the path considered in the upper part of Figure 4.20, the development in the CPPI-case
was more volatile in the whole time horizon.
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Figure 6.3.: Amount of bought bonds applying different investment strategies and financ-
ing strategy FS 4 in the case of a stationary new business (NBS 4).

Figure 6.3 illustrates the respective average amounts of bought bonds if we apply fi-
nancing strategy FS 4, where we additionally allow for selling excessive bonds. Compared
to Figure 6.2, we barely see any differences. This indicates that, in contrast to the invest-
ment strategies, the considered financing strategies do not significantly impact the bond
investments.
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Figure 6.4.: Stock ratio after reallocation of assets applying different investment strategies
and financing strategy FS 1 in the case of a stationary new business (NBS 4).

In Figure 6.4, we show the average reached stock ratios after the reallocation of assets
if we apply different investment strategies. In the CPPI-case, we clearly see a periodic
pattern since bonds are held until maturity according to financing strategy FS 1. If we
apply the DCF strategy, the stock ratio increases gradually (after one year it is 10.5%)
and then becomes stable around 22% in the long term. In contrast, the average stock
ratios increase much stronger in the first year to over 26%, 23%, and 16% if we apply the
CPPI, the SCF, and the RCF strategy, respectively. In the CPPI-case the stock ratio then
gradually decreases while in the RCF-case it further increases and becomes stable around
29% from year 10 onwards. If we apply the SCF strategy, the stock ratio even increases to
over 34% in the second year. Eventually, it gradually decreases to 22% in year 28 before
it increases again to 29%. In the CM-case, the stock ratio equals almost always the target
value of 10%.
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Figure 6.5.: Stock ratio after reallocation of assets applying different investment strategies
and financing strategy FS 4 in the case of a stationary new business (NBS 4).

Figure 6.5 displays the respective average stock ratio after the reallocation of assets if we
apply financing strategy FS 4. Compared to Figure 6.4, we now obtain a much smoother
development in the CPPI-case. This results from selling excessive bonds at the beginning
of a period. In the other cases, the effect is less visible.

As in Section 4.5, we now measure the strategies’ performances in terms of different
criteria reflecting both the life insurer’s and the policyholders’ point of view. However, in
this section we use modified criteria and include additional ones like, for example, the av-
erage ratio of transaction costs per period. In the following, we describe the corresponding
criteria in more detail.

Criterion 1: default probability

The cumulative default probability is defined in equation (4.2.2) in Section 4.2.2 and
represents an established measure for the risk of the life insurance business. Here, we look
at the 5-year and 50-year default probability PD 5

∆t
and PDK , respectively.

Criterion 2: declared interest rate

Also, the annual declared interest rate îk from equation (3.5.5) in Section 3.5.2 was already
used in various simulation studies. In contrast to before, we now consider the average
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interest rate within the intervals (0, 5] and (5, 50]. Thereby, we differentiate between
short- (or medium) and long-term developments.

Criterion 3: reserve rate

Recall that the reserve rate γk describes the ratio of the free reserve Fk and the total
reserves Fk + Vk and forms the basis of the annual interest rate declaration, see equa-
tions (3.5.5) and (3.5.6) in Section 3.5.2. As buffer against future losses, we introduced a
target value γ. For the first sub-criterion, we estimate for each period k the probability
that the objective γk ≥ γ is achieved. We then average over all periods to get the corre-
sponding average probability as a number for illustration. As a second sub-criterion, we
take the average reserve rate per period.

Criterion 4: own funds

Analogously to the previous criterion, we now consider the average probability that the
fraction of own funds ψk with

ψk =
Fk +Qk
Ck

is greater than or equal a target value ψ that might be prescribed by regulating authori-
ties.3 As a second sub-criterion, we take the average fraction of own funds per period.

Criterion 5: transaction costs

The performance of the strategies is also measured in terms of transaction costs. In the
following simulation studies, we calculate the proportional transaction costs Ccost

k at time k
by equation (5.3.2) with

cb =
0.1

1000
and cs =

3

1000
,

and display the relative transaction costs
Ccost
k
Ck

. More specifically, we average over all
simulations and all periods to get the average ratio of transaction costs as a number for
illustration.

Criterion 6: liabilities to banks

The last criterion is the average ratio Lk
Ck

of credit liabilities Lk and total assets Ck. As
before, we average over all simulations and all periods to get the average ratio of liabilities
to banks as a number for illustration.

3Here, we set ψ = 10%.
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6.1. Performance of the investment and financing strategies

The results of the comparison study are shown in the following tables, one for each new
business scenario. For every (sub-) criterion, we display in bold the best value and those
values that deviate by less than 5% from the best value.

IS PD 5
∆t
, PDK îk [0, 5), [5, 50) γk ≥ γ, γk ψk ≥ ψ,ψk

Ccost
k
Ck

Lk
Ck

CM 0.46, 35.74 1.01, 1.32 51.80, 10.20 74.94, 14.54 0.03 0.00
0.46, 35.74 1.01, 1.32 51.80, 10.20 74.92, 14.53 0.03 0.07
0.46, 35.66 1.01, 1.32 51.80, 10.20 74.94, 14.54 0.03 0.00
0.46, 35.72 1.01, 1.32 51.81, 10.20 74.93, 14.53 0.03 0.06

CPPI 5.96, 60.06 1.34, 1.81 43.19, 10.48 56.54, 12.50 0.07 0.79
5.94, 60.05 1.34, 1.81 43.21, 10.48 56.41, 12.44 0.06 1.17
6.19, 60.47 1.35, 1.82 43.18, 10.50 56.35, 12.36 0.06 0.00
6.02, 60.15 1.35, 1.81 43.16, 10.48 56.31, 12.30 0.06 0.40

SCF 16.71, 65.21 1.32, 2.08 55.93, 12.63 65.65, 12.83 0.05 0.00
16.71, 65.21 1.32, 2.08 55.93, 12.63 65.65, 12.83 0.05 0.00
16.71, 65.21 1.32, 2.08 55.93, 12.63 65.65, 12.83 0.05 0.00
16.71, 65.21 1.32, 2.08 55.93, 12.63 65.65, 12.83 0.05 0.00

RCF 5.44, 60.14 1.17, 2.00 54.65,12.29 67.88, 14.50 0.02 0.00
5.44, 60.27 1.17, 2.00 54.77, 12.32 67.89, 14.50 0.02 0.04
5.44, 60.21 1.17, 2.00 54.74, 12.31 67.90, 14.50 0.02 0.00
5.44, 60.27 1.17, 2.00 54.80, 12.32 67.90, 14.50 0.02 0.04

DCF 0.22, 48.58 1.04, 1.72 50.64, 11.18 70.77, 15.06 0.01 0.00
0.22, 48.58 1.04, 1.72 50.64, 11.18 70.77, 15.06 0.01 0.00
0.22, 48.58 1.04, 1.72 50.64, 11.18 70.77, 15.06 0.01 0.00
0.22, 48.58 1.04, 1.72 50.64, 11.18 70.77, 15.06 0.01 0.00

Table 6.3.: Performance of the strategies in NBS 1. For each investment strategy IS, the
four rows correspond to the four financing strategies FS. The transaction costs

ratios
Ccost
k
Ck

are denoted in per mil and all other criteria in percentage terms.

The performance of the strategies in the new business scenario with a negative shock
on the expected future number of new customers after 25 years (NBS 1) are shown in
Table 6.3. We see that there are substantial differences among the investment strategies
but, except for the liabilities to banks, no or marginal differences among the financing
strategies. Furthermore, for each investment strategy we can find a (sub-) criterion where
it performs the best. Regarding CM and CPPI strategies, the results are in line with the
observations from Section 4.5.4

4Note that here we consider the fraction instead of the total amount of own funds.
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IS PD 5
∆t
, PDK îk [0, 5), [5, 50) γk ≥ γ, γk ψk ≥ ψ,ψk

Ccost
k
Ck

Lk
Ck

CM 0.46, 37.03 1.01, 1.29 50.56, 9.98 74.35, 14.22 0.03 0.00
0.46, 37.03 1.01, 1.29 50.56, 9.98 74.34, 14.22 0.03 0.04
0.46, 37.00 1.01, 1.29 50.57, 9.98 74.36, 14.23 0.03 0.00
0.46, 37.04 1.01, 1.29 50.57, 9.98 74.34, 14.22 0.03 0.04

CPPI 5.96, 60.89 1.34, 1.77 42.45, 10.29 56.14, 12.40 0.07 0.43
5.94, 60.93 1.34, 1.77 42.46, 10.29 56.02, 12.34 0.06 0.78
6.19, 61.30 1.35, 1.78 42.45, 10.31 55.95, 12.35 0.06 0.00
6.02, 60.93 1.34, 1.78 42.43, 10.29 55.91, 12.29 0.06 0.37

SCF 16.71, 66.62 1.32, 2.05 55.78, 12.52 65.44, 13.04 0.05 0.00
16.71, 66.62 1.32, 2.05 55.78, 12.52 65.44, 13.04 0.05 0.00
16.71, 66.62 1.32, 2.05 55.78, 12.52 65.44, 13.04 0.05 0.00
16.71, 66.62 1.32, 2.05 55.78, 12.52 65.44, 13.04 0.05 0.00

RCF 5.45, 61.25 1.17, 1.95 53.96, 12.08 67.55, 14.42 0.02 0.00
5.45, 61.32 1.17, 1.95 54.05, 12.10 67.57, 14.42 0.02 0.02
5.45, 61.29 1.17, 1.95 53.98, 12.09 67.56, 14.42 0.02 0.00
5.45, 61.32 1.17, 1.95 54.05, 12.10 67.57, 14.42 0.02 0.02

DCF 0.22, 49.91 1.04, 1.67 49.67, 10.93 70.27, 14.81 0.01 0.00
0.22, 49.91 1.04, 1.67 49.67, 10.93 70.26, 14.81 0.01 0.00
0.22, 49.91 1.04, 1.67 49.67, 10.93 70.26, 14.81 0.01 0.00
0.22, 49.91 1.04, 1.67 49.67, 10.93 70.26, 14.81 0.01 0.00

Table 6.4.: Performance of the strategies in NBS 2. For each investment strategy IS, the
four rows correspond to the four financing strategies FS. The transaction costs

ratios
Ccost
k
Ck

are denoted in per mil and all other criteria in percentage terms.

The performance of the strategies in the case of a gradually decreasing new business
(NBS 2) is displayed in Table 6.4. Compared to NBS 1, they perform worse such that, for
example, the average reserve rate γk per period is now smaller than the target value γ if we
apply the CM strategy. Nevertheless, the best values for each (sub-) criterion correspond
to the same strategies as in NBS 1.
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6.1. Performance of the investment and financing strategies

IS PD 5
∆t
, PDK îk [0, 5), [5, 50) γk ≥ γ, γk ψk ≥ ψ,ψk

Ccost
k
Ck

Lk
Ck

CM 0.39, 27.76 1.02, 1.38 54.52, 10.61 80.84, 16.48 0.03 0.00
0.39, 27.76 1.02, 1.38 54.52, 10.61 80.82, 16.47 0.03 0.07
0.39, 27.79 1.02, 1.38 54.53, 10.61 80.84, 16.48 0.03 0.00
0.39, 27.75 1.02, 1.39 54.53, 10.61 80.83, 16.47 0.03 0.07

CPPI 5.63, 53.64 1.36, 1.93 46.10, 11.13 61.45, 14.77 0.07 0.85
5.63, 53.75 1.36, 1.93 46.11, 11.13 61.32, 14.69 0.06 1.27
5.93, 54.46 1.36, 1.95 46.07, 11.15 61.18, 14.64 0.06 0.00
5.75, 54.04 1.36, 1.94 46.06, 11.14 61.19, 14.58 0.06 0.40

SCF 15.92, 56.74 1.33, 1.92 49.44, 11.50 65.69, 14.42 0.04 0.00
15.92, 56.74 1.33, 1.92 49.44, 11.50 65.69, 14.42 0.04 0.00
15.92, 56.74 1.33, 1.92 49.44, 11.50 65.69, 14.42 0.04 0.00
15.92, 56.74 1.33, 1.92 49.44, 11.50 65.69, 14.42 0.04 0.00

RCF 4.75, 51.44 1.18, 2.04 54.93, 12.43 72.00, 16.65 0.02 0.00
4.75, 52.14 1.18, 2.05 55.36, 12.51 72.04, 16.64 0.02 0.07
4.75, 51.53 1.18, 2.04 55.06, 12.45 72.05, 16.65 0.02 0.00
4.75, 52.17 1.18, 2.05 55.37, 12.51 72.05, 16.64 0.02 0.07

DCF 0.21, 37.55 1.05, 1.75 52.64, 11.44 76.84, 17.13 0.01 0.00
0.21, 37.54 1.05, 1.75 52.67, 11.44 76.85, 17.13 0.01 0.00
0.21, 37.54 1.05, 1.75 52.65, 11.44 76.84, 17.13 0.01 0.00
0.21, 37.54 1.05, 1.75 52.67, 11.44 76.85, 17.13 0.01 0.00

Table 6.5.: Performance of the strategies in NBS 3. For each investment strategy IS, the
four rows correspond to the four financing strategies FS. The transaction costs

ratios
Ccost
k
Ck

are denoted in per mil and all other criteria in percentage terms.

The performance of the strategies in the scenario of a gradually expanding new business
(NBS 3) is displayed in Table 6.5. Nearly all strategies perform now better than in the
scenarios above, especially regarding the long-term default probability. An exception is
here the SCF strategy performing much worse according to the reserve rate criteria and
the interest rate declaration in the long term.
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IS PD 5
∆t
, PDK îk [0, 5), [5, 50) γk ≥ γ, γk ψk ≥ ψ,ψk

Ccost
k
Ck

Lk
Ck

CM 0.40, 29.59 1.02, 1.36 53.73, 10.48 79.37, 15.94 0.03 0.00
0.40, 29.59 1.02, 1.36 53.73, 10.48 79.35, 15.93 0.03 0.07
0.40, 29.61 1.02, 1.36 53.73, 10.48 79.37, 15.94 0.03 0.00
0.40, 29.59 1.02, 1.36 53.73, 10.48 79.36, 15.93 0.03 0.06

CPPI 5.73, 55.34 1.35, 1.89 45.24, 10.93 60.12, 14.14 0.07 0.74
5.73, 55.38 1.35, 1.89 45.26, 10.94 60.00, 14.07 0.06 1.15
6.02, 56.00 1.36, 1.91 45.24, 10.96 59.91, 14.03 0.06 0.00
5.87, 55.73 1.36, 1.90 45.24, 10.94 59.88, 13.98 0.06 0.40

SCF 16.17, 60.07 1.33, 1.98 51.16, 11.83 64.88, 14.05 0.04 0.00
16.17, 60.07 1.33, 1.98 51.16, 11.83 64.88, 14.05 0.04 0.00
16.17, 60.07 1.33, 1.98 51.16, 11.83 64.88, 14.05 0.04 0.00
16.17, 60.07 1.33, 1.98 51.16, 11.83 64.88, 14.05 0.04 0.00

RCF 4.96, 53.81 1.18, 2.02 54.73, 12.35 70.84, 16.07 0.02 0.00
4.96, 54.15 1.18, 2.03 55.07, 12.42 70.89, 16.07 0.02 0.06
4.96, 53.83 1.18, 2.02 54.83, 12.37 70.88, 16.08 0.02 0.00
4.96, 54.16 1.18, 2.03 55.08, 12.42 70.89, 16.07 0.02 0.06

DCF 0.22, 39.74 1.04, 1.72 51.86, 11.29 75.36, 16.54 0.01 0.00
0.22, 39.74 1.04, 1.72 51.88, 11.30 75.37, 16.55 0.01 0.00
0.22, 39.74 1.04, 1.72 51.86, 11.29 75.36, 16.54 0.01 0.00
0.22, 39.74 1.04, 1.72 51.88, 11.30 75.37, 16.55 0.01 0.00

Table 6.6.: Performance of the strategies in NBS 4. For each investment strategy IS, the
four rows correspond to the four financing strategies FS. The transaction costs

ratios
Ccost
k
Ck

are denoted in per mil and all other criteria in percentage terms.

Finally, the performance of the strategies in the scenario of a stationary new business
(NBS 4) is displayed in Table 6.6 and is similar to NBS 3 for the most part. However, we
observe now a much larger default probability if we apply the SCF strategy.

6.1.1. Summary of the observations

In the following, we summarize our observations and derive recommendations regarding
the applied investment and financing strategy.

The comparison study shows that there is no strategy (pair) that performs best regarding
all criteria in any of the considered new business scenarios. Indeed, if we are indifferent
regarding the relevance of the considered (sub-) criteria, the respective performances are
quite balanced. This is further illustrated in Table 6.7, where we added up the criteria
(sub-criteria in brackets) associated with the best performance for each investment strategy
and each new business scenario.5

5For each investment strategy we chose the best-performing financing strategy, respectively.
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6.2. Further applications of the refined ALM model

IS NBS 1 NBS 2 NBS 3 NBS 4 Sum

CM 3 (4) 3 (4) 4 (5) 4 (5) 14 (18)
CPPI 2 (2) 2 (2) 2 (3) 2 (2) 8 (9)
SCF 3 (5) 3 (5) 2 (2) 3 (4) 11 (16)
RCF 4 (5) 4 (5) 4 (5) 4 (5) 16 (20)
DCF 4 (4) 4 (4) 5 (6) 4 (4) 17 (18)

Table 6.7.: Sum of the criteria (sub-criteria in brackets) being associated with the best
performance for each investment strategy and each NBS. In total, there are
6 criteria (10 sub-criteria). The last column aggregates the performance over
all new business scenarios.

The smallest long-term default probability is obtained if we apply the CM strategy.
However, in the short-term, the DCF strategy performs better. In the first five years, the
highest declared interest rates on average are obtained if we apply the CPPI strategy. In
the long term, SCF and RCF often perform better, the former especially in the scenarios
with decreasing new business (NBS 1 and NBS 2). The average reserve ratio per period is
significantly smaller if we apply the CM strategy, especially compared to the application
of CF strategies. Regarding the average ratios of own funds and transaction costs per
period, the DCF strategy outperforms all other strategies.

In all considered new business scenarios, the financing strategy has no significant influ-
ence if we apply the SCF or the DCF strategy. If we apply the CM or the RCF strategy,
financing strategy FS 1 and FS 3 perform better than the other two, and if we apply the
CPPI strategy, financing strategy FS 3 performs best. Therefore, if one is not sure which
investment strategy to use or if a switching between investment strategies throughout the
simulation is planned, financing strategy FS 3 can be recommended.

6.2. Further applications of the refined ALM model

The following simulation studies illustrate the effects of further refinements and alternative
modeling approaches of components of the general ALM model from Chapter 3. This
includes the modeling of the capital market, the used method for the annual interest rate
declaration, and the strategy for the use of surpluses. In each case, we select a basic
setting and measure the impact on several quantities of interest. We use some of the
established criteria from Section 6.1 and, additionally, the periodic surplus Gk. Similar
to Section 4.5.2, we average over all simulations and all periods to get the average change
per period as a number for illustration.

For each Monte Carlo simulation we simulate N = 10, 000 paths. With the objective
of a good comparability in the respective settings, we start with the same balance sheet
and insurance portfolio. If not stated otherwise, the input parameters and the distribu-
tional assumptions are taken from Table 4.2. According to the obtained performances
and the derived recommendations in Section 6.1.1, we use strategies DCF and FS 3 for
investing and financing, respectively. The form of the coverage fund CFk−1 is given by
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equation (6.1.1) and the corresponding multiplier is λCF
k−1 = 1.5. In addition, we apply the

CM strategy that was mainly used in the simulation studies in Section 4.

We consider a life insurer with a gradually decreasing new business which is motivated
by the results from Section 6.1 indicating that the performances of CM and DCF strategies
differ more in such cases. The shape parameters of the beta distribution for modeling the
new contract arrivals are

(α1, β1) = (16, 3), (αK , βK) = (4, 12),

and for k = 0, . . . ,K − 2

αk+1 = α1 − (α1 − αK)
k

K − 1
, βk+1 = β1 + (βK − β1)

k

K − 1
.

The corresponding new business scenario and the resulting size of the insurance portfolio
are illustrated in Figure 6.6.
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Figure 6.6.: Considered new business scenario. Left: number of new customers per period
(expected number in red, one path in green), right: corresponding path of the
insurance portfolio size.

6.2.1. Simulation of the Heston model

In most of the simulation studies we used the basic capital market model from Section 3.3.1,
where stock prices follow a geometric Brownian motion with dynamics (3.3.4) as in the
Black-Scholes model. A more general model was applied in Section 4.5.2, where we allowed
for crashes in the stock and bond markets.

In this section, we investigate the impact of applying the Heston instead of the Black-
Scholes model for the simulation of stock prices. By allowing for a non-constant volatility
of the stock price process, the resulting capital market model can be seen as an extension of
the basic model. In the Heston model, the stock price and variance processes are given by
the coupled system of stochastic differential equations (3.3.6) and (3.3.7) in Section 3.3.2.
Regarding the latter, we choose ν0 = 0.04, κ = 2, θν = 0.04, σν = 0.2, and ρsν = −0.9.
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6.2. Further applications of the refined ALM model

In particular, the long-term mean θν of the variance process coincides with the constant
squared volatility σ2

s = 0.22 of the stock price process in the Black-Scholes model. The
remaining parameters of the capital market model are taken from Table 4.2.
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Figure 6.7.: Development of the default probability if stock prices are modeled by the
Black-Scholes and by the Heston model, respectively. Left: CM, right: DCF.

Figure 6.7 displays the development of the default probability in the considered settings.
The stochastic volatility in the Heston model incorporates additional uncertainty in the
ALM model which results in larger default probabilities PDk. In the CM-case, PDK is
increased by 3.3pp (58.6%) and in the DCF-case it is increased by 5.4pp (41.5%).
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Figure 6.8.: Development of the declared interest rate if stock prices are modeled by the
Black-Scholes and by the Heston model, respectively. Left: CM, right: DCF.

In comparison, the annual declared interest rate shown in Figure 6.8 is much less affected
by the alternative approach for modeling stock prices. Especially in the CM-case, the
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difference is negligible. Applying the DCF strategy, the declared interest rates in the
best-5% average case (AC) are 0.3pp smaller in the long term if we apply the Heston
model, while on average they are slightly increased (by 0.08pp). In the worst-5% average
case, only the guaranteed rate îG = 0.25% is paid in any case.

IS ∆ (γk ≥ γ) ∆γk ∆ (ψk ≥ ψ) ∆ψk ∆Gk · 105 ∆Bk in %

CM 1.02 0.07 −1.03 −0.23 −3.20 0.46
DCF 2.17 0.30 −1.84 −0.40 −7.66 1.93

Table 6.8.: Absolute or relative changes due to applying the Heston model for the sim-
ulation of stock prices. If not stated otherwise, the change is measured in
percentage points.

Table 6.8 displays further quantities that are affected by the alternative modeling of
stock prices. As we can see, the effects are stronger if we apply the DCF investment
strategy. This results from the fact that here the average stock ratio is significantly larger
than in the CM-case, see e.g. Figure 6.4. However, they are still small compared to the
impact on the default probability.

6.2.2. Alternative interest rate declaration

In the following, we compare the two methods for declaring the annual interest rate intro-
duced in Section 3.5.2. In more detail, these are the basic method from equation (3.5.5)
which was always used so far and the alternative method from equation (3.5.9) in Re-
mark 3.5.1. For the stock price modeling, we use the Heston model.

According to the alternative method, the declared interest rate is directly linked to the
obtained investment returns. For period k, the portfolio return Rk is defined as weighted
average of the aggregated bond and stock returns, i.e. by

Rk =
(

1− πs(k−1)+

) ∑k−1
i=k− τ

∆t
ϕb (tk; ti + τ)∆pk,i∑k−1

i=k− τ
∆t
ϕb (tk; ti + τ) p (tk−1, ti + τ)

+ πs(k−1)+
∆sk
sk−1

with ∆sk = sk − sk−1 and ∆pk,i = p (tk, ti + τ)− p (tk−1, ti + τ). At the beginning of the

simulation, we choose R0 = îG. For the reserve rate-depending interest rate adjustment
term iadjust

k , we choose

γmin
k−1 = 10% and γmax

k−1 = 20%.
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Figure 6.9.: Development of the default probability for both methods of declaring the
annual interest rate. Left: CM, right: DCF.

Figure 6.9 shows the development of the default probability if we use the basic and the
alternative interest rate declaration procedure, respectively. Only during the first years,
we obtain the same developments in both cases. Then, the alternative method leads to
smaller default probabilities and the differences increase steadily with time. After 50 years,
PDK is decreased by 3.3pp (37.8%) and by 7.3pp (39.7%) if we apply the CM and the
DCF strategy, respectively.
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Figure 6.10.: Development of the declared interest rate for both methods of declaring the
annual interest rate. Left: CM, right: DCF.

As we can see in Figure 6.10, the average interest rate in the medium and long term is
not affected by the alternative method. In the first years, we even obtain smaller values.
However, in the best-5% average case, the alternative method yields much larger declared
interest rates already after few years. In the worst-5% average case, only the guaranteed
rate îG = 0.25% is paid in any case.
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Note that smaller values for γmin
k or γmax

k may increase the declared interest rate, yet also
the default probability substantially.6 As illustrated in Figure 6.11 for the DCF-case, a
decrease in the default probabilities to a certain degree can be achieved by increasing γmax

k .
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Figure 6.11.: Development of the 50-year default probability depending on γmax
k−1 if we apply

the DCF strategy.

For the basic interest rate declaration procedure, the control parameter would be the
distribution ratio ω and the target reserve rate γ.

IS ∆ (γk ≥ γ) ∆γk ∆ (ψk ≥ ψ) ∆ψk ∆Gk · 106 ∆Bk in %

CM 14.51 3.26 2.54 3.48 3.93 −1.73
DCF 7.86 1.50 4.09 2.26 2.13 −1.01

Table 6.9.: Absolute or relative changes due to applying the alternative interest rate dec-
laration. If not stated otherwise, the change is measured in percentage points.

Table 6.9 summarizes the impact of the alternative method on further quantities. This
time, the effects are mostly larger if we apply the CM investment strategy. Together with
the above observations, we conclude that for the considered settings the alternative method
for the interest rate declaration performs better than the basic method, even though the
total benefit payments are (slightly) decreased.

6.2.3. Alternative strategy for the use of surpluses

In the following, we compare the two introduced strategies for the use of surpluses, i.e.
for the specified allocation of the periodic surplus Gk between free reserve Fk−1 and eq-
uity Qk−1. The main differences are that according to the basic method from Section 3.7.2,
a fixed portion of a positive surplus is deposited in the free reserve which also primarily

6For example, choosing γmin
k = 5% and γmax

k = 10% in the DCF-case increases the average interest rate
in the long term about 0.2pp while the default probability is increased to PDK = 66.3%, i.e. by over
55pp.
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covers losses. In contrast, the alternative method from Section 5.5 aims at providing a
potential fair splitting of losses. At the same time, repaying debts to shareholders yet has
the highest priority. Regarding Case 3, we choose τG = 5 implying that if the equity is
non-negative, losses are shared in the same proportion as positive surpluses were allocated
in the last 5 years. As before, we use the Heston model for the simulation of stock prices.
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Figure 6.12.: Development of the default probability for both methods for the use of sur-
pluses. Left: CM, right: DCF.

Figure 6.12 illustrates the development of the default probability if we use the basic
and the alternative method for the use of surpluses, respectively. Clearly, the alterna-
tive strategy yields substantially smaller values, especially in the CM-case. Indeed, the
default probability is smaller than 0.1% and 0.4% in the first 23 years and PDK is de-
creased by 8.3pp (93.8%) and by 14.1pp (76.6%) if we apply the CM and DCF strategy,
respectively.

149



6. Simulation Studies: Part II

0 10 20 30 40 50
0%

2%

4%

6%

8%

Time in years

Best-5% AC basic method AC basic method îG
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Figure 6.13.: Development of the declared interest rate for both methods for the use of
surpluses. Left: CM, right: DCF.

In Figure 6.13, we show the declared interest rate if we use the basic and the alterna-
tive method for the use of surpluses. Especially in the average case, the corresponding
differences remain approximately stable from year 10 onwards. In contrast to the section
before, now the best-5% average case is less affected. In addition, the benefit payments
are now increased and the surplus decreased if we apply the alternative method as we
can see Table 6.10. Here, we also see that the differences between the CM and the DCF
strategy are smaller compared to Table 6.9.

IS ∆ (γk ≥ γ) ∆γk ∆ (ψk ≥ ψ) ∆ψk ∆Gk · 106 ∆Bk in %

CM 11.61 1.34 −6.51 −4.25 −6.50 2.60
DCF 8.74 0.98 −9.10 −4.24 −7.25 2.60

Table 6.10.: Absolute or relative changes due to applying the alternative strategy for the
use of surpluses. If not stated otherwise, the change is measured in percentage
points.

The effects of combining both the alternative interest rate declaration and the alterna-
tive strategy for the use of surpluses are illustrated in Appendix A.3 and complete the
investigations from the last two sections.

6.2.4. Outlook: refinement of the CF strategies

The following outlook illustrates that there is still potential to further improve the strate-
gies developed in this thesis. Here, we focus on the CF strategies that are based on the
coverage fund CFk−1 given by the general representation (5.1.1) in Section 5.1.2, i.e. by

CFk−1 = E
[
Dk−1+ τ

∆t
| Fk−1

]
p (tk−1, tk−1 + τ) .
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6.2. Further applications of the refined ALM model

So far, we used a constant value for the expected amount E
[
Dk−1+ τ

∆t
| Fk−1

]
of disburse-

ments. We saw in Section 6.1 that this already led to good performances. Especially
the DCF strategy performed well regarding many different criteria in all considered new
business scenarios, and the last sections showed that the overall performance can be even
increased if we apply alternative strategies for the interest rate declaration and the use of
surpluses.

The refined versions of the CF strategies proposed in this section aim at estimating
the dynamics of the future disbursements, thereby adjusting correspondingly the required
coverage funds and thus the new bond investments. Recall that the disbursements Dk−1+i

at time tk−1+i, for i = 1, . . . , τ
∆t , consist of benefit payments Bk−1+i and expired long-term

credits L−k−1+i, i.e.

Dk−1+i = Bk−1+i + L−k−1+i.

The last term is already known since these correspond to the number ϕlk−1+i− τ
∆t

of emitted

bonds at time tk−1+i− τ
∆t

, see equation (3.5.12) in Section 3.5.3. The benefit payments
can be decomposed into survival, death, and surrender benefit payments according to
equation (3.6.1) in Section 3.6.1. Taking into account a safety loading λD, this yields

E [Dk−1+i | Fk−1] = (1 + λD)

·
(
E
[
Ek−1+i | Fk−1

]
+ E

[
Tk−1+i | Fk−1

]
+ E

[
Sk−1+i | Fk−1

]
+ ϕlk−1+i− τ

∆t

)
. (6.2.1)

The safety loading is incorporated to cope with upper deviations from the expected dis-
bursements since we ignore the future number of new customers, for example. The single
conditional expectations of (6.2.1) are calculated approximately according to

E
[
Ek−1+i | Fk−1

]
=

Mk∑
m=1

1{dmk−1+i=0} ·
(
δmk−1 + δnew

k−1

)
·

Am(k−1)+ (1 + iG)d
m
k−1 +Bm

(k−1)+

(
1 + îk

)dmk−1
+

dmk−1∑
j=1

(1 + iG)j Pm(k−1)+

 ,

E
[
Tk−1+i | Fk−1

]
=

Mk∑
m=1

1{dmk−1+i≥0} ·
(
δmk−1 + δnew

k−1

)
qmk−1+i

·

Am(k−1)+ (1 + iG)d
m
k−1 +Bm

(k−1)+

(
1 + îk

)dmk−1
+

dmk−1∑
j=1

(1 + iG)j Pm(k−1)+

 ,
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and

E
[
Sk−1+i | Fk−1

]
=

Mk∑
m=1

1{dmk−1+i>0} ·
(
δmk−1 + δnew

k−1

)
umk−1+i

(
1− qmk−1+i

)
ϑ

·

Am(k−1)+ (1 + iG)d
m
k−1 +Bm

(k−1)+

(
1 + îk

)dmk−1
+

dmk−1∑
j=1

(1 + iG)j Pm(k−1)+

 .

Following this approach, we can precisely estimate the dynamics of the future disburse-
ments as displayed in Figure 6.14, where we chose λD = 30% as safety loading. Note that
we did not make any assumptions regarding the new business scenario.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6
·108

Time in years

Real Estimated

Figure 6.14.: Development of the average disbursements. The safety loading for the esti-
mation is λD = 30%.

We close this section by investigating the effect of the above refinement on the perfor-
mance of the DCF strategy. The general distributional assumptions and the parameter
specification are as before. Furthermore, we use the alternative strategy for the use of
surpluses, i.e. we are in the setting of Section 6.2.3. The performance of the (basic) DCF
strategy in that section serves as a benchmark and the changes due to applying the refined
version are summarized in Table 6.11.

λD ∆PDK ∆îk ∆ (γk ≥ γ) ∆γk ∆ (ψk ≥ ψ) ∆ψk ∆Gk · 105 ∆Bk in %

30% 0.90 0.07 −0.98 0.07 −1.37 0.04 3.07 0.72
50% 0.00 0.01 −0.08 0.01 −0.12 0.01 0.57 0.07

Table 6.11.: Absolute or relative changes due to applying the refined DCF strategy. If not
stated otherwise, the change is measured in percentage points.

Choosing λD = 30%, the arithmetic mean of the estimated disbursements per period is
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now 3.63 · 108 and thus smaller than in Section 6.2.3, where we assumed

E
[
Dk−1+ τ

∆t
| Fk−1

]
= 4 · 108.

Correspondingly, the average bond investments are also smaller. Indeed, the average stock
ratio after the asset reallocation is 1.99pp larger which leads to increased interest rates,
surpluses, and benefit payments but also to increased default probabilities. If we increase
the safety loading to 50%, the average stock ratio after the asset reallocation is only 0.23pp
larger. We obtain the same 50-year default probability and also the other criteria are much
less affected on average.
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7. Conclusion

In this thesis, we developed a stochastic asset-liability management model for life insurers
allowing for different strategies for investing in the capital market and for financing the
due obligations. The model is consistent in the sense that it respects the fundamental
balance sheet equation at the end of every period according to the principle of double-
entry bookkeeping as required in accounting. The framework is kept universal, such that
the realization of alternative modeling approaches or the adaption to different insurance
products are straightforward. We elaborated on this by proposing varying strategies e.g.
for the annual interest rate declaration and the use of surpluses but also by applying
different capital market models. In addition, we illustrated that the model is capable of
simulating different business forms of a life insurer. As examples we considered the two
important cases of a run-off scenario and an ongoing insurance business with stationary
new business but also more dynamic scenarios with shocks on the expected future number
of new customers.

Motivated by the observation that a naive contract-specific simulation is not applicable
if we consider large, heterogeneous insurance portfolios with new business, we proposed
different compression and simulation methods, where we explicitly generate cohorts and in-
tegrate new contracts to maintain efficiency throughout the simulation. Extensive Monte
Carlo studies allowed us to derive respective recommendations as to which simulation
method can be used for which purposes and under which conditions. We saw that those
methods Pb1,b2 with b1 > 1 suffer from a decline in efficiency throughout the simulation
while the ones of P1,b2 remained stable from the beginning. For smaller time horizons,
we would prefer Pb1,b2 with b1 > 1, but due to the convergence towards the efficiencies
of P1,b2 , we are indifferent after a certain amount of time. In general, the approximation
quality of the simulation methods remained stable, even in the case of an ongoing insur-
ance business, where new contract arrivals induce additional uncertainty. For estimating
the default probability, which represents an important measure for the overall risk, we
observed that it suffices to apply quite coarse simulation methods that are very efficient.
Yet we found that, at some point, it is not reasonable to further increase the degree of
compression being generally associated with a worse approximation quality since the ad-
ditional amount of saved run time gets smaller. While most of the developed simulation
methods provide a good approximation quality, especially P1,1, we saw that there is still
potential for improvement, e.g. regarding the approximation of the survival benefit pay-
ments. Furthermore, a topic of further research could be to establish a link between the
selected simulation methods and the resulting performances.

The general goal of this thesis was always the simulation of large insurance portfolios
and the investigation of factors potentially disturbing the stability of the corresponding
balance sheets. We elaborated on the intrinsic risk of selecting a model and fixing a
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certain parameter configuration. Using a sensitivity analysis, we discussed the strong
influence of single parameters on the performance. Keeping in mind that the simulation
requires to model or estimate a lot of input parameters, this shows that one has to be
careful with the interpretation of single observations. Nevertheless, the application of
such stochastic simulations can support management decisions by illustrating the long-
term effects of potential measures, as for example the impact of specific investment and
financing strategies, interest rate fixings, or the applied method for the use of surpluses.
Indeed, from this thesis, one can derive several fundamental observations regarding the
profitability and the security of the life insurance business. We could identify several
risk drivers that may threaten the life insurer’s liquidity and long-term solvency. For
example, we saw that especially bond market crashes can lead to extreme liquidity shocks
in the short term and thus constitute a substantial risk. This setting covers the extension
to corporate bond investments and is related to times of high inflation, where instantly
or sharp rising interest rates imply strongly decreasing bond prices. We saw that also
run-off scenarios are associated with risks since missing new premiums imply a potential
increased demand for credit liabilities. It is particularly remarkable that even in different
new business scenarios and in the presence of stock and bond market crashes, we observed
a certain stationarity in the long term.

Furthermore, several extensive comparison studies gave insight on the performance and
robustness of the introduced strategies for investing in the capital market and for financing
the periodic obligations, also in the presence of transaction costs. Here, we always took
into account different criteria reflecting both the policyholders’ and the insurer’s point of
view. We observed that none of the strategies performed best regarding all of them but we
were able to identify criteria-depending superior investment and financing strategies. For
example, we saw that the CPPI strategy is much more risky than the simple-structured CM
strategy but yields on average higher declared interest rates. Even though we assumed
that there is no liquidity gap at the beginning of the first period and that the initial
amount of cash equals the average excessive value of expiring bonds, we observed a periodic
pattern in the value of bought bonds in both cases. This showed that neither CM nor
CPPI strategy are well oriented to the obligations induced by the (compressed) insured
collective, and motivated to develop more evolved strategies that take into account the
future disbursements by reconciling the bond investments accordingly. We showed that
the resulting coverage fund-based strategies perform well regarding many criteria and that
performances can be further improved for some of them by additional refinements. In
practice, choosing the applied strategies might additionally depend on the management’s
subjective assessment of which criterion has the highest priority.
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Appendix A. Simulation Studies: Additional
Results

A.1. Compression and simulation methods: approximation
quality

In the following, we provide additional results regarding the approximation quality of
our developed simulation methods Pb1,b2 with b1, b2 from (4.2.1) in the case of a run-off
and in the case of an ongoing insurance business. They complete the investigations in
Section 4.2.2 and approve the recommendations in Section 4.2.3.
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Approximation quality in the case of a run-off
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Figure A.1.: Development of the insurance portfolio size δk according to P0,0 and Pb1,b2
in the case of a run-off.
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Figure A.2.: Average development of the death and surrender benefit payments Tk and Sk
according to P0,0 and Pb1,b2 in the case of a run-off.
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Figure A.3.: Average development of the survival benefit payments Ek according to P0,0

and Pb1,b2 in the case of a run-off.
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Figure A.4.: Average development of the liabilities to banks Lk according to P0,0 and Pb1,b2
in the case of a run-off.
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Figure A.5.: Average development of the declared interest rate îk according to P0,0

and Pb1,b2 in the case of a run-off.
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Approximation quality in the case of an ongoing insurance business
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Figure A.6.: Development of the insurance portfolio size δk according to P0,0 and Pb1,b2
in the case of an ongoing insurance business.
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Figure A.7.: Total variation distances of the sample distributions of the equity Qk accord-
ing to P0,0 and Pb1,b2 in the case of an ongoing insurance business. The
number of intervals in (2.2.4) is J = 50.
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Figure A.8.: Development of the default probability according to P0,0 and Pb1,b2 in the
case of an ongoing insurance business.
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Figure A.9.: Average development of the death and surrender benefit payments Tk and Sk
according to P0,0 and Pb1,b2 .
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Figure A.10.: Average development of the declared interest rate îk according to P0,0

and Pb1,b2 in the case of an ongoing insurance business.
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A.2. Performance of the investment and financing strategies

In the following, we provide additional results regarding the investment strategies devel-
oped in this thesis. More specifically, we show the average amount of bought bonds and
the stock ratio after the asset reallocation in the case of NBS 1, NBS 2, and NBS 3.
Thereby, we complete the investigations in Section 6.1. The corresponding new business
scenarios were parameterized in Table 6.2 and illustrated in Figure 4.17. As financing
strategy, we use FS 4.

0 10 20 30 40 50
0

0.5

1

·109

CM CPPI

0 10 20 30 40 50
0

0.5

1

·109

CM SCF

0 10 20 30 40 50
0

0.5

1

·109

Time in years

CM RCF

0 10 20 30 40 50
0

0.5

1

·109

Time in years

CM DCF

Figure A.11.: Amount of bought bonds applying different investment strategies and fi-
nancing strategy FS 4 in the case of NBS 1.
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Figure A.12.: Amount of bought bonds applying different investment strategies and fi-
nancing strategy FS 4 in the case of NBS 2.
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Figure A.13.: Amount of bought bonds applying different investment strategies and fi-
nancing strategy FS 4 in the case of NBS 3.
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Figure A.14.: Stock ratio after reallocation of assets applying different investment strate-
gies and financing strategy FS 4 in the case of NBS 1.
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Figure A.15.: Stock ratio after reallocation of assets applying different investment strate-
gies and financing strategy FS 4 in the case of NBS 2.
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Figure A.16.: Stock ratio after reallocation of assets applying different investment strate-
gies and financing strategy FS 4 in the case of NBS 3.

A.3. Alternative interest rate declaration and strategy for the
use of surpluses

Here, we provide additional results regarding further applications of the introduced ALM
model. More specifically, we show the effects from combining the alternative interest rate
declaration from equation (3.5.9) in Remark 3.5.1 with the alternative strategy for the
use of surpluses from Section 5.5. For the former, we choose R0 = îG, γmin

k = 10%, and
γmax
k = 20%. We use the Heston model for the simulation of stock prices. The presented

results complete the corresponding investigations from Sections 6.2.3 and 6.2.2.
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Appendix A. Simulation Studies: Additional Results
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Figure A.17.: Development of the default probability for both methods of declaring the
annual interest rate and for the use of surpluses. Left: CM, right: DCF.
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Best-5% AC alternative methods AC alternative methods

0 10 20 30 40 50
0%

5%

10%

Time in years

Figure A.18.: Development of the declared interest rate for both methods of declaring the
annual interest rate and for the use of surpluses. Left: CM, right: DCF.

IS ∆ (γk ≥ γ) ∆γk ∆ (ψk ≥ ψ) ∆ψk ∆Gk · 106 ∆Bk in %

CM 24.48 5.31 1.36 −0.07 −2.75 0.85
DCF 19.33 3.38 −1.05 −1.67 −5.59 1.70

Table A.1.: Absolute or relative changes due to applying the alternative methods of declar-
ing the annual interest rate and for the use of surpluses. If not stated otherwise,
the change is measured in percentage points.
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S, Pelsser A, Schiller F, Schmeiser H, et al. (2018) Asset-liability management for
long-term insurance business. European Actuarial Journal 8(1):9–25

[2] Barsotti F, Milhaud X, Salhi Y (2016) Lapse risk in life insurance: correlation and
contagion effects among policyholders’ behaviors. Insurance: Mathematics and Eco-
nomics 71:317–331

[3] Bauer D, Kiesel R, Kling A, Ruß J (2006) Risk-neutral valuation of participating life
insurance contracts. Insurance: Mathematics and Economics 39(2):171–183

[4] Biagini F, Huber T, Jaspersen JG, Mazzon A (2021) Estimating extreme cancellation
rates in life insurance. Journal of Risk and Insurance 88(4):971–1000

[5] Björk T (1997) Interest rate theory. In: Financial Mathematics, Springer, Berlin,
Heidelberg, pp 53–122

[6] Black F, Scholes M (1973) The pricing of options and corporate liabilities. Journal of
Political Economy 81(3):637–654

[7] Bodie Z, Marcus AJ, Merton RC (1988) Defined benefit versus defined contribution
pension plans: What are the real trade-offs? In: Pensions in the US Economy,
University of Chicago Press, pp 139–162

[8] Bohnert A (2013) The market of dynamic hybrid products in Germany: concept, risk-
return profiles, and market overview. Zeitschrift für die gesamte Versicherungswis-
senschaft 102(5):555–575

[9] Bohnert A, Gatzert N (2012) Analyzing surplus appropriation schemes in participat-
ing life insurance from the insurer’s and the policyholder’s perspective. Insurance:
Mathematics and Economics 50(1):64–78

[10] Bohnert A, Gatzert N, Jørgensen PL (2015) On the management of life insurance
company risk by strategic choice of product mix, investment strategy and surplus
appropriation schemes. Insurance: Mathematics and Economics 60:83–97

[11] Brigo D, Mercurio F (2006) Interest Rate Models – Theory and Practice. Springer,
Berlin, Heidelberg

[12] Bundesanstalt für Finanzdienstleistungsaufsicht (2020) Statistik der BaFin – Erstver-
sicherungsunternehmen 2019

175



Bibliography

[13] Burkhart T, Reuß A, Zwiesler HJ (2015) Participating life insurance contracts under
Solvency II: inheritance effects and allowance for a going concern reserve. European
Actuarial Journal 5(2):203–244

[14] Burkhart T, Reuß A, Zwiesler HJ (2017) Allowance for surplus funds under Sol-
vency II: adequate reflection of risk sharing between policyholders and shareholders
in a risk-based solvency framework? European Actuarial Journal 7(1):51–88

[15] Christiansen MC, Niemeyer A (2014) Fundamental definition of the solvency capital
requirement in Solvency II. ASTIN Bulletin: The Journal of the IAA 44(3):501–533

[16] Christiansen MC, Denuit MM, Lazar D (2012) The Solvency II square-root formula
for systematic biometric risk. Insurance: Mathematics and Economics 50(2):257–265

[17] Desmettre S, Korn R (2018) Moderne Finanzmathematik – Theorie und Praktische
Anwendung Band 2. Springer, Wiesbaden

[18] Desmettre S, Korn R, Sayer T (2015) Optionsbewertung in der Praxis: Das stochastis-
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