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Abstract

Given a proper antistable rational transfer function g, a balanced realization of ¢
is constructed as a matrix representation of the abstract shift realization introduced
in Fuhrmann [1976]. The required basis is constructed as a union of sets of polyno-
mials orthogonal with respect to weights given by the square of the absolute values of
minimal degree Schmidt vectors of the corresponding Hankel operators. This extends
results of Fuhrmann [1991], obtained in the generic case.
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1 Introduction

In Moore [1981] the concept of balanced realizations has been introduced as a method of
model reduction. Since then an enormous amount of work has been done on balanced
realizations and their applications to model reduction and robust control. Kung [1980],
Pernebo and Silverman [1982], Glover [1986], McFarlane and Glover [1989] are some papers
in this connection. Of course the list is far from exhaustive.

Balancing was introduced first by Moore in the context of stable systems, and has been
extended by Jonckheere and Silverman [1983] to arbitrary systems with a pair of Riccati
equations replacing the Lyapunov equations in Moore’s definition. Fuhrmann and Ober
[1993] contains a comprehensive account of various aspects of LQG balancing.

While balanced realizations are usually introduced on the state space level, it is clear,
especially from the various balanced canonical forms studied in Ober [1987,1989], that
they exhibit certain system invariants. Thus it would be of interest to explore the links
between these invariants and the external, i.e. input/output, properties of the system.

In the stable case, that is the case of Lyapunov balancing, it has long been known, see
Glover [1984], that the Lyapunov singular values are identical to the singular values of the
induced Hankel operator.

However it was not till Fuhrmann [1991] that, at least in the generic case of distinct
singular values, the balanced canonical form of Ober was obtained as a matrix representa-
tion of the shift realization, introduced in Fuhrmann [1976], with respect to a basis made
of suitably normalized Schmidt vectors. Even in the other extreme case, that of all singu-
lar values being identical, no such complete identification was made. Rather an approach
using continued fractions was taken there. Of course continued fractions relate also to
families of orthogonal polynomials, see Akhiezer [1965], Gragg [1972], Szeg6 [1959], Wall
[1948], but the explicit connection, as far as balancing is concerned, was left unexplored.

The present paper closes this gap and produces a construction of a natural orthogo-
nal basis for the state space of the shift realization, such that the corresponding matrix
representation is the balanced canonical form. The method we use focuses on the set of
all minimal (numerator) degree singular vectors corresponding to the set of all singular
values of the Hankel operator. These vectors are uniquely determined, up to a nonzero
multiplicative constant. In terms of these vectors we have a simple description of the set
of all singular vectors. The degrees of freedom are determined by the degree deficiencies of
these singular vectors. By applying a Gram-Schmidt procedure separately in each spectral
subspace we get the required basis.

The paper is structured as follows. We begin with a very short review of the shift
realization and by recalling the basic results from Fuhrmann [1991]. In section 3 we
analyse the case of all singular values coinciding, i.e. of transfer functions of, up to additive
constants, antistable inner functions. Finally, in section 4 we state and prove the general
result. In the process we also correct an omission in Fuhrmann [1991] by computing also
the diagonal elements of the generator matrix of a balanced realization. The present paper
is of a technical nature. Yet we believe that it provides some additional insight into the
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nature of balanced canonical forms. The techniques used in this paper can be applied to
derive balanced canonical forms for other classes of functions and this will be the subject
of a forthcoming paper.

This work was done while the second author was visiting the Mathematics Department
of the University of Kaiserslautern. He would like to express his thanks to D. Pratzel-
Wolters for the opportunity and to the DFG for its support.

2 Preliminaries

Polynomial and, even more so, rational models provide the main tool in this paper. We pro-
ceed to give the basic definitions. Necessarily the exposition is brief and it is suggested that
the interested reader consult some other papers as Fuhrmann [1976,1977,1981,1983,1984,1991]
and Helmke and Fuhrmann [1989].

Throughout the paper we will restrict ourselves to the real number field. By R][z]
we denote the ring of polynomials over R, R((271)) the set of truncated Laurent series
in 271, i.e. the set of all formal series of the form E;i_oo [i70, ny € Z. R((z71)) is
a vector space over R as well as a field. It contains the field R(z) of rational functions
as a subfield. By R[[27!]] and z7'R[[z7!]] we denote the set of all formal power series
in 27! and the set of those power series with vanishing constant term respectively. Let
74 and 7_ be the projections of R((27!)) onto R[z] and z7'R[[27!]] respectively. Since
R((271)) = R[z] 4 27 'R[[271]] they are complementary projections. The space z71R[[z7]]
carries a module structure over the ring R[z], with the module action given by

z-h=5_h=m_zh. (1)

Given a monic polynomial ¢ of degree n, we define the associated rational model to be the
space

X?=Imn?, (2)
where 77 is the projection in z7'R[[z7!]] defined by
mh =n_q 'nryqh for k€ z'R[[z7Y]. (3)

X?is a submodule of z7R[[27}]], its elements being all strictly proper rational functions
with ¢ as denominator. The module structure is given by

S%h =S5_h for he X" (4)

The great usefullness of these functional models in system theory stems from the fact
that, in these terms, realization theory becomes a triviality. Moreover, realization theory
provides a link between techniques based on functional and operator methods on the one

hand and state space methods on the other. Thus, given a proper rational function ¢ = 7

the associated realization is constructed as follows.
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The state space for the realization is chosen to be X% and (A, B,C, D) are defined
through

A= 51
n
Bt = Ef for £ € R, (5)
Cf = ()1 = (2)(0) for fex,
D = ¢(00).

The realization of ¢ is minimal, by the coprimeness of n and d. It is this realization we
use as a basis for obtaining a balanced realization.

In Fuhrmann [1991,1993], a detailed analysis of Hankel operators with rational, scalar,
antistable symbol, was carried out. We refer to these papers for a more complete intro-
duction of all the spaces. Here we restrict ourselves to the basics. H_f_ and H?2 are the
Hardy spaces of the right and left half planes respectively. Both spaces are considered as
subspaces of the L? space of the imaginary axis. H> is the space of bounded analytic
functions in the left half plane.

n
We assume ¢ € H is rational and ¢ = 7 is a representation of ¢ as a quotient of

coprime polynomials, naturally with d antistable. The Hankel operator H, : H_IQ_ — H?
is defined by

Hyf = P_¢f  for feHE,
where P_ is the orthogonal projection of L? onto H2. It has been shown in Fuhrmann
[1991] that KerHy = di*H_lz_, {KerHy}t = {%Hi}J‘ = X¥ and I'mHy = H? © %*HE =
X? The space X% is the space of all strictly proper rational functions with d as their
denominator.

Thus for the study of the Hankel operator we can restrict the Hankel operator to a
map from X% to X?¢. The advantage is that, by cutting out the kernel, the restriction is
a finite dimensional linear transformation.

It has been shown in the quoted papers that the Schmidt pairs with numerator poly-
nomials of minimal degree, corresponding to the Hankel singular value p, are of the form

%, e%}, € € {£1}; here p € R[z]is such that the equation

np p* n T
S T
dd-~ Pa T a
or, equivalently, that the fundamental polynomial equation, with A = eu,

np = Ad*p* +dr (6)

is solvable. The minimum degree Schmidt vectors, with different singular values, have
been shown to be of particular importance, in the generic case, and were used to construct
a basis for X% and X% respectively. In fact bases with a suitable normalization led to
balanced realizations.
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3 All-pass transfer functions

In this section we restrict ourselves to the special case of antistable transfer functions all
of whose Hankel singular values coincide. By a result of Glover [1984], see also Fuhrmann
[1991], the functions are, up to an additive constant, conjugate inner functions, or inner
functions in H*°. This special case has been studied already in Ober [1987] where the
connections to continued fractions are indicated. However no attempt has been made
there to identify the canonical form in functional terms. Similarly, in Fuhrmann [1991]
there was no attempt to identify the basis that leads, via the shift realization, to the
balanced canonical form for this class of functions.

The importance of this special case, providing in a sense the building blocks for the
general case, has been already recognized by Ober. Now with a continued fraction expan-
sion we can associate a sequence of orthogonal polynomials. This is a classical subject,

see Akhiezer [1965].

The theorem that follows explains the connection between the balanced canonical form
for conjugate inner functions and a sequence of polynomials orthogonalized relative to a
weight function related to the minimum (numerator) degree singular vector of the corre-
sponding Hankel operator. With respect to this particular basis, suitably normalized, the
matrix representation of the shift realization is just the balanced canonical form obtained

by Ober.

Theorem 3.1 Let ¢ = n € H*, d monic, n ANd =1 and degd = n. Let us assume that

all the singular values of the Hankel operator Hy coincide, that is oy = --- =0, =0 > 0.
Let ¥ be the polynomials obtained from {1,z,...,2""} via the Gram-Schmidt orthonor-

malization procedure with respect to the weight function Then a set of constants

1
|df*

{91,...,9.} CR can be chosen such that for qf := g;t7,1 € n the normalizalion
92
I llz =0 (7)

holds and that the matriz representation of the shift realization of ¢ with respect to the
*

basis {%,z =1,...,n} of X% has the following form:

0 —a; 0 - 0
(8 5] 0 :
A= . , a;>0,i=1,....,n—-1, (8)
. . . - —Q,_9 0
0 —Qp_1
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0
B = . , b, = —€qpn_1, €= %1, (9)
0
by,
C=(0, ... ... ,0 ,sb, ), s=(=1)", (10)
D = ¢(o0) (11)
and
b2
0, = 2. 12
55 (12)

*

Proof: We start with the construction of the specific basis {%,z =1,...,n} of X which
guarrantees the special form of the matrix A.

i—1
Take the basis {ZT,Z =1,...,n} of X% and apply the Gram-Schmidt orthonormalization

*

procedure; this yields a new basis {EZ,Z =1,...,n} of X¢, where

N P :

PR R (13)
and

o1

a_ - 14

d & (14)

iz* a-1 =l i {; {; ) 5

E_ d _Jz_;( d 73)?7 t =2, s I ( )
Observe that

degt; =i—1, i1=1,...,n (16)
and

tr 2 . .

jlspan{z,jé{o,...,z—Q}}, 1=2,...n. (17)

Furthermore, equations (13) - (15) show that all the leading coefficients of the polynomials

7 are positive. We remark that the basis {EZ,Z =1,...,n} is, up to multiplication of the

elements of the basis by constants, equal to the desired basis.
Now we proof a recursion formula for the polynomials ¢7. Obviously there holds
13 mezl

t*
= -6, L 1,601 € R. 1
4 d 1 1,01 € (18)
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Multiplication by d yields

i3 =2ty — 011 = (n12 — 61)11, 71,01 € R. (19)
Moreover, for ¢ = 2,...,n — 1 there holds
= (riz = 0t — Bisatl_y,  7i,0;, i1 €R. (20)

To prove this, let for i € {2,...,n — 1}

1% i+1 *

“b t J

i Z%’g- (21)
i=1

Now for k € {1,...,i— 2}, because of the orthonormality, there holds

; 217 1 1 2ty
o = G =)
i 2ty
- (= - 22
(77 =0 (22)

since deg(z13) = (k—1)+ 1=k <i—1, (by (16)) and (17).
Multiplication of equation (21) by d and defining

7

al al 1
-1 .
Bi1i= ——, 0;:=—"—and y;:= —, ie{2,....n—1}
at at at
1+1 1+1 1+1

yields (20).
Since all the leading coefficients of the polynomials ¢} are positive, it immediately follows
that

v >0, t=1,...,n—1. (23)
Moreover, there holds

0; =0, i=1,...,n—1. (24)

*

1
Divide both sides of (19) respectively (20) by d and take the inner product with EZ; because

of the orthonormality this results in

Hi:('yi%,%), 1=1,...,n—1. (25)
Hence
b; = ”/z'(Z?a%)
= 72»% /:: z’gf;dz
= 72»% . z | % | dz.

—%00
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t.
Now | EZ | is symmetric with respect to the origin, whereas z changes sign. Thus

L[>t
— z

27 —100
and (24) follows.
This implies that the polynomial ¢7 does only contain even/odd powers of z for ¢ odd/even,

which is easily proved using (20), (24) by an induction argument; observe that ¢} is constant
and that, by (19) and (24),

=mzti, meR.
Finally,

Bii1 <0, i=2,....n—1. (26)

*

5
Proceeding as for the proof of (24), but now applying inner multiplication by % yields

L o R A
ﬁz—l - /2( da d )— /2(37 d ) (27)
[3-1 33
= —yi(L, ¢ . 2

Furthermore, by (20) and (27)

Yic12ti_y — Bicotl_ 5 274
d T d )
27 2 i, 27,

—7i(7i-1(— a%)—ﬁi_z( Zdv 7))

Bi-1 = =l

Zli_y 1y 2t
= bl PR - g2, 2L
2t]_ Bi—2
= —7%{7i-1l leg—ﬁi—27,_1>
274 2'2—2
= =ilviall— "%_7'_1>'
But
2tY_ ti_
Fo o= 1B =2, (57,23
< AR (29)

2t

”/2'2—1HT1”%

by the Cauchy - Schwartz inequality, and hence
Bi-1 <0, t=2,...,n—1.

Equality in the Cauchy - Schwartz inequality does hold iff the two factors in the inner
product are linearly dependent which obviously is not the case here. Hence (26) is true.
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Observe that by dividing equations (19) and (20) by d one obtains a representation of

tr 2t .
de: dZ’ 1=1,...n—1
*
with respect to the basis {EZ,Z =1,...,n}.

t*
What we will do next is to find a representation of S¢ E” with respect to this basis.

The technique we will use is to replace inner products in H i, which are given by integrals
on the imaginary axis, by limits of contour integrals. These contour integrals are more
amenable to computation using partial fraction decompositions.
Because of the monicity of d there holds

25 — (=1 pnd

t*
d o= .
51 _ (30)

Moreover, for k € {1,...,n — 2} we have

il Gy At = (S Hapad 4
L [% 2t — (1) My pad 1y
- n * CEd
o | d "
1 t*t —1) t
= hm <— andz—( ) - : 1/—kd,2'>7
R—oo ' 271 5 dd* 271 @d*

where 7 and 4 denote the semicircular contours defined below.

4/

-iR

Note that v is positively oriented, whereas 4 is negatively oriented. Moreover, the degree

. . . . . Zt;z - (_1)n_1tn n—ld 1y,
deficiency of numerator relative to denominator in the integrand yi : o

is at least two. This permits the switch to contour integrals.
Since d* is stable, i.e. d* has only poles in LHP, there holds



3 ALL-PASS TRANSFER FUNCTIONS 10

So we obtain

oo 1 [ atity,
gdn By = lim — ntq 31
) T A 2 ) a (31)
1 [ %2y,
= — n= kg 2
o . Tddr * (32)
iy 2"t iy 2ty

= ) =) (33)
But for k£ € {1,...,n — 2} equation (16) gives
deg(=t}) = (degtp) + 1< (n—3)+1=n—2,
and by (17) this implies
(sd%,%) =0, k=1,...,n—2.
Hence we have

t t i
S5 =0kt B T 6B €R. (34)

Now we verify that

Br-1 < 0. (35)
From (34) one obtains, using the orthonormality of the d_i*’
1
o — Sd _n7 n—1
P )
B (zt;—(—l)n—ltm_ld t;_l)
B d T d
T 2t — (1) Yy prd Ly
- Zly ( ) n—1 t le
27 —{o0o d d*
1 [%° 2%, 4 (=1 Yy 7ty
_ L mbnt g , d
or | dar o7 /_ioo a
1 Uity o) Ly S
= hm <—/Zn le—( ) ,7 1/ 1dZ>.
Reco ' 27t J;  dd* 271 5 d*
The last integral is zero because of the stability of d*. So
, 1 P 1 [% t*2t, 4
o1 = , L dz = — L d
P Reoso 274 L a7 2r ) dar

- GIE -G

Furthermore, by (20) and (27)

2l
ﬁn—l — _(37 d )



3 ALL-PASS TRANSFER FUNCTIONS 11

~ * * *
Yn—12l,_1 — ﬁn—Qtn_Q zth 4

. 2 _q 2l bhoo 254
- 7n—1( d d )‘|’ﬁn—2( d ” d )
2t e
=l PR 22 (36)
fn—1

Analogously, as in (29), one sees

2t*
721—2 < ”1’2—1” :} 1”%7 (37)

which proves (35) by substituting it in (36).
t*
Taking equation (34), substituting expression (30) for $¢ E” and multiplying by d, we

obtain
20— (1) My ad = 0,85 + Bl (38)

Now the comparison of the leading coefficients in (38) yields

(_1)n_2tn,n—2 - (_1)n_1tn,n—1dn—1 = en(_l)n_ltn,n—l (39)
or
Trm—
0, = -2 _d,_,. (40)
n,n—1

But ¢} contains only even/odd powers of z depending on whether n is odd/even. Since by

(16)
degt, =n—1,
we have 1, ,_o = 0 and hence
0, = —dy1. (41)
Observe that d* is stable, i.e. for
d'(z) = (-1)"2" +dy_y 2" 4+ dg
there holds
d; #0, sgnd; =(-1)", 1=0,...,n—1.
But
dr = (-1)'d;, i=0,...,n—1.

Hence the signs of the coefficients of d interlace. Since d is monic, we finally get d,,—1 < 0
and hence

6, > 0. (42)
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Looking at equations (19), (20) and (34) we have derived the following matrix represen-

tation for the map

St X X4
3 >
with respect to the basis B := {EZ,Z =1,...n}h
0o B oo ... ... 0
72
1 g B
o ¥a
L0
i 72
(55 = ' 0 (43)
Bn—
r 0
: oo 0 B
0 -« -or e 0 L= 9,
Tn—1
Now we can finally determine the basis B := {%,z =1,...,n} from the statement of the

theorem. This is done by

q; = git;, g ER,i=1,...,n, (44)

*
where the g; are constructed in the following such that A is of the form (8) and || %H;‘; =o.

From the orthogonality of the basis B we get

4 g

d 1) 7

0 = (5' 733 ?i) _ gi(sd EZ éz)

1] (ﬁﬁ) g; d’ d”’
d’d

and hence A is of the following form:

A = diag™ (g1, .. .,gn)[Sd]g diag(g1,- .., 9n)

0 Bz o ... ... 0 0
Y291
o g B2
Y192 Y292
g2 . . . .
0 P 0 . . : : (45)
ﬁn—QQn—l 0
Tn—19n—2
Bn-19n
. g 0 In—1
n—1
0 B 0} S 8,

By (26) and (35) there holds

Bi <0, r=1,...,n— 1.
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Write
Bi = =62, 6;>0, 1=1,...n—1.

Then we have to solve the following set of equations:

q
12 = o
. _(5,2 .
B T (46)
Vigi+1 Yi+19i
or
q
12z = o
!]'2+1 Yi+1
2 1 .
pr = 52y i=1,...,n—1 (47)

(with 7, = 1). Observe that equations (47) are solvable, since by (23)
";’Z’>O, i:l,...,n—l.
Now
b
1503 = 1,

since the basis B was constructed by the Gram-Schmidt orthonormalization procedure; in
view of the first equation of (47) this implies

gn = £V0; (48)

the sign can be chosen arbitrarily. Then one solves the last n — 1 equations in (47) for
t=n-—1,...,1:

71'52'2 2
gi = sgn(gn 9ty 49
gy 25, (49)

here the sign is now uniquely determined by the choice in (48) and the additional requi-

rement

0= 9 _ Bigiv1 >0, (50)
Yidi+1 Yit+19:

which was formulated in the statement of the theorem.

It remains to calculate the maps B, ¢' and D; for this purpose we take a closer look
at ¢. Since the multiplicity of the singular value o is n, by Glover [1984] or Corollary

3.2,3. in Fuhrmann [1991], there exists a constant & such that
n d*
—+k=A— 51
attehT (51)

where A = €0 and € € {1} is determined from (6), i.e.

ng = eod”qy + d. (52)
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Rewrite (51) as

n d*

—=A——k.

¥ 7 (53)
Now define

n n

7= = = (o). (54)

Then % is strictly proper, i.e.

n
— e X<
P €
Furthermore, by (53)
n d* s -
—=A——k- =:A— —k. 55
R e s (5)
Moreover, comparison of the leading coefficients of the numerator polynomials in (55)
yields
0=A-1)"—k, (56)

as d is monic and degn = n — 1. Hence
E=(-1)"X,

and (55) gives

n d*

—=A—=-(-1D)").

IR L0 (57)
Now, by setting

D = ¢(0),

n
it suffices to consider the shift realization of T We begin by computing the representation

of the input map
B=(b,....b,)  :R— X4

of the realization. We can write
= b (58)
=1

By the orthogonality of the basis we have

=

=49 i=1,..n (59)
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Observe that from (52) we can conclude that
ng; = ead”q; + d;, i=1,...,n. (60)

Dividing this by dd* and integrating over the contour 4 one can calculate the numerator
in expression (59); this yields

bi=0, i=1,...n—1 (61)
and in view of the normalization condition (7)

1

bn = - * *€0Qnn—1 = —€4nn-1 (62)
14212
d

The output map
C=(c1,...,¢n) XY= R
is easily computed as

" ¢ 0 ,2=1,...,n—1
¢ =C(7)=(7)1= : (63)
(=1 1 L=
Setting s := (—1)"e we have verified relations (9) and (10).

Finally we have to check that equation (12) is true. Take equation (58), substitute ex-
pression (57) and multiply by d to obtain

Md™ = (=1)"d) =Y biq} = bng; (64)
7=1

in view of (61). Comparison of the leading coeflicients results in

(=1t = (=1)dn 1) = ba(— 1) . (65)
Furthermore, using (62) one obtains
Mdnt + dn1) = =€, (66)
and
2
o _i 2 o _qn,n—l
dn—l - 22 Tn—1 = 2 (67)

which by (41) results in

2
o qn,n—l i
20

this is relation (12). |

0r
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4 General result

Now we turn to the study of the general case, i.e. the case of several singular values whose
multiplicity may be greater than 1. Again we identify the balanced canonical form obtained
by Ober with a matrix representation of the shift realization. The matrix representation is
with respect to a basis constructed from local families of orthogonal polynomials. Specifi-
cally, for each singular value o of multiplicity v we consider the minimum degree solution
of the fundamental polynomial equation (6). For the corresponding Schmidt vector, whose
numerator polynomial has degree n—v, we take the square of its absolute value as a weight
function and compute a set of v polynomials orthogonal with respect to this weight. With
these polynomials we identify a corresponding set of Schmidt vectors. The union, over all
singular values, of these sets of vectors provides an orthogonal basis. With an appropriate
normalization we obtain the required basis.

Theorem 4.1 Let ¢ = n € H>, d monic, n ANd = 1 and degd = n. Let 01 > g9 >

<o > o > 0 be the singular values of the associaled Hankel operator Hy, where o; is

k

of multiplicity n;, 7 =1,...,k, an =n, and let pgl),j =1,...,k denote the minimal
=1

degree solutions, corresponding to o;, of the fundamental polynomial equation (6) such

that (p;I))* is monic. Finally, let (t;g))*, ¢ =1,...n; be the polynomials obtained from

{1,2,...,2%71} via the Gram-Schmidt orthonormalization procedure with respect to the
(1) * |2
weight function %, for j=1,....k. Then a set of constants {g), L =1,...nj, j =

1,...,k} CR can be chosen such that for (qu))* = gg(ty))*, (=1,...n;,7=1,...,k the
normalizalion

(4" .
H ]d ”%:O—ﬁ ]Ilvvk (69)
holds and that the matriz representation of the shift realization of ¢ with respect to the
() \
basis { ]d) U=1,...n5,7=1,...,k} of X? has the following form:

A= (Ag)ij=1,..k Ay e R™HM g5 =1,...k,

0 _ai 0o --- .. 0
al 0 '
0
A = . , i=1,...,k, (70)
_a'ZrLz‘—Q 0
.O —Qp, 1
0 0 a4 ai;
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0 0 0
A = . , n,j=1,...,k, t #j, (71)
0
0 0 a;
B=(0,...,0,b,0,...,0,by,...,0,...,0,0)T, (72)
n1 ng g
bi= (1" g G =1 i =1, Lk,
CI(O,...,O,CL,O ..,O,CQ7 .,0,. ,O,Ck), (73)
n1 ng g
i = (1)) = (—) b, i =1,k
D = ¢(0) (74)
and
bib; .
a;5 = ( (1) e (=) 1o, + o ) ) ,j=1,...,k (75)
Proof: Setting
D = g(c0)
we may assume without loss of generality that % € H™ is strictly proper, i.e.
n
— e X<
p €
([))*
We start with the construction of the basis { ]d J=1,...n;,5=1,...,k} of X¢.
Let
pgl), j=1,...,k
denote the minimal degree solutions of the equations
npgl) = Ajd*(pgl))* + dr;, j=1,...,k (76)
such that
(pgl))* is monic , j=1,...,k (77)
and
/\]' € R, /\]‘ =€;0;, € = +1.
Then, by Corollary 3.2,1. in Fuhrmann [1991], we have
d.egpgl):n—nj, j=1,... k. (78)
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Furthermore, again by Corollary 3.2,1. from the above reference

RO N M 10 A
B;:={ ]d , Zl df 1, j=1,...,k (79)

is a basis for the space spanned by the singular vectors of Hy corresponding to the singular
value o;; denote

X, := spanB;, j=1,...,k. (80)

Now apply to each of the bases B; the Gram-Schmidt orthonormalization procedure to
obtain bases

s @Ay @) .
B;:={ ]d , Jd fd 1, j=1,...k (81)
of X; with
degtg-g):n—nj—}—ﬁ—l, (=1,...,n5,7=1,... k. (82)
Observe that
(1) p
Jd L span{EEXj,degp<n—n]-—|—ﬁ—1}

(1)«
= span{ Jd q,degq < L—1}

RO 0 M (7 0

= Spa'n{ d ? d 202 d }; (83)
this is immediately clear from the construction. One also obtains the recursion formulas
(1) = (= = o)) (84)
and
£41)\ % ] ] £)\ x ] £—1)\ %
(1) = (= oDy = BT e=2 e (85)

for j =1,...,k, which are analogous to (19) and (20). Equation (84) is obvious from the
Gram-Schmidt procedure. Since

(1)

J

d

one can prove (85) with the help of (83) exactly as (20).
The monicity of the (pgl))*, 7=1,...,k and the applied construction yield

EX]', K:Q,...,nj—l,jzl,...,k (86)

ﬁ,fg>0, (=1,...m;—1,5=1,...,k. (87)
Moreover, there holds

9 =0, L=1,...,n;—1,5=1,...k (88)
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this follows in the same way as (24).
Finally,

Bl <0, £=2,...m;j—1,5=1,...k (89)

this is proved analogously as relation (26).
By dividing equations (84) and (85) by d we obtain a representation of

(=1,....nj—1,j=1,...,k

d d ’
with respect to the bases Bj, 7 =1,...,k, respectively. Since
(£) %
A
Sd% €X;, L=1,...m—1,j=1,...,k
and
X;L Xy, L#7, (90)

the representations obtained so far are also representations with respect to the basis
1)y n * 1)\ % n * 1)\x n *

PO 0 M G0 W 50 W G 0 M C o o1)
T g g g e g g

of X?. It remains to find a representation of

oM

()% (n5)\* n—1,4(75)
1\ SRR S G DU AL
Sd(fd) :Z(] ) (d) gn-l j=1,...,k (92)

with respect to B. Observe that in general

(n5)\%
d (tj )

S ¢X;,  j=1,...k

d
Let for j € {1,...,k}
<§-) S5 ()
Sy, (99
=1 4=1

Now because of (90) and the orthonormality of the bases B; there holds

d ° d 7

The calculations done to obtain equation (31) are also valid here:

NG SC S
d 7~ d d ’ d

fort=1,...,n;—1,1=1,...,k.

First consider the case ¢ # j; then

(=1,...,n5i=1,.... k. (94)

j d
af,z =(9

(1)
11 € X;1X;, (=1,....n;— 1,
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and hence

al, =0, f=1,...m—1i=1,.. ki#j (96)
For ¢ = j we obtain by (82), (83) and (95) that

al, =0,  £=1,...n;-2, (97)
since

deg(2(117)") = deg(t)* +1< (n—nj+n; —3)+1=n—2
for £ € {1,...,n; — 2}. The argument for the proof of (35) can be used to show that

ol <0, j=1,...,k (98)

j7n]
Summarizing, equations (84), (85) and (93) provide the following representation of the
mapping

St x4 X1

with respect to the basis B:

(S5 = (Aij)ij=1,...k; (99)
where
0 0 0
Aj=1 " C \ ij=1,...ki#j (100)
. : O
0 0 of .
and
J
0 a9 0 0
Y2
1 5
o 0 73
0 X o0
g
A = STl Tl el e, 0 : . (101)
B
7%—1
0 a?’m;—l
1 J
0 0 - i,
J
)
Finally, we can now determine the basis B := {———, ¢ =1,...n;,j = 1,...,k} from

d
the statement of the theorem by defining

(qﬁ)) ::gz-(tg)), g eER(=1,...,n;,5=1,....k (102)
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Observe that for each j € {1,...,k} the matrices A;; are of the form (43); also (87), (89)
and (98) show that the signs of the elements of A;; coincide with the ones in (43); hence

Ajj = diag™(gi,. . .,g%})zéijjdiag(g{, . .,gZL])

can be brought to the form (70) by solving the same set of equations as in the all-pass

case. Moreover, because of (69) and the orthonormality of the bases B]-, we have

gg] =405, j=1,....k (103)
Hence we have proved the following:
A=T7V[SYET = (Aij)i o, s (104)
where
T:= diag(g%,...,g}bl,gf,...,gfLQ,...,gf,...,gﬁk)
with
0 —aof 0 0 0
b 0
o . 0
Ay = 0 , t=1,...,k (105)
_aéi—2 0
0 —an,
0 0 —o. 4 a;
and
0 0 0
A= , ,j=1,.. kit #j; (106)
: 1 0
0 -+ -+ 0 aj
here the
ab,  j=1,...m-1i=1,...k
are defined completely analogous as in (50); furthermore, observe that
ai; = gi? ol L ij=1,..,k (107)
The calculation of the ¢;, ¢ = 1,...,k is again obvious; hence (73) holds true. For the
calculation of the B-matrix we make the following ansatz:
F- xS 9

=1 /=1
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which by the orthogonality of the basis yields

£)\«
o wr
hi=—4d° d C=1,...nii=1,...k (109)
L ( (5))* (q(g))* T ey iy O — Ly e ey e
( d ? d )

()"
Since ZT, t = 1,...,k are minimal degree Schmidt vectors, they satisfy the fundamen-
tal polynomial equation (6), i.e.

g = qoid (¢ v dm,  i=1,.. 0k, (110)

where ¢; € {£1} and 7; polynomial for ¢ € {1,...,k}. Furthermore, all numerator poly-
(1)

nomials of elements of X; are of the form qil p with p a polynomial of degree less than n;
(see Fuhrmann [1991], Lemma 3.3). Thus in particular:

qy) :ql(l)aé, =1,...,n5,0=1,....k, (111)

where the a} are polynomials of degree ¢ — 1. In view of (84) and (85) it is clear that a}
only contains even/odd powers of z for £ odd/even. So we obtain from (110) that

ng” = coid(q")aj + d(miaj)
= o1 (q) (af) + d(mial)
= aoi(=1)"'d(¢)" + d(mia)) (112)

Division by dd* and contour integration over 4 gives

() 0 A=1,...,n;—1
(5, ) = (113)
d d —emi(—l)”_”"q(nll A =mn;

k2
1,

fori=1,...,k, which in view of normalization (69) results in (72).
Next we calculate a;;, ¢ # j; observe that from (112) we get

0= d{eoi(=1)" 7 (a™)a)") - oy (=1 g ™)

—I-d{ma;iq](-m) _ ﬂjaiqu(m)}‘
Since d and d* are coprime, there exists a polynomial z;; of degree less than n — 1 such
that

dz;; = emi(—l)”i_l(qu))*q;nj) — 6]'0']'(_1)nj_1(q]('nj))*%(ni) (114)

After some algebra one obtains

a1\ —1
eoi(=1)"w
2 2

ol —o; o} —o?

(ni) (”J))* —

q; (qj d*z¥. (115)
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(see also Fuhrmann [1991]). Now from (107), (95), (102) and (103) we get the following

representation of a;;:

J
In; ;
ai; = g;% ag,ni
Lt )y
gL, d ' d
g 1@ )y
- i3 »(S > )
Ini Gn; 9n, d d
(n5) i)\ %
o; d ’ d '

Moreover, using

Sd (q§nj))* B Z(q](-n]))* _ (—1)n_1q](';bjlld
d d
and integrating over contour 4 yields
() (n4) \x (75)yx (1)
G (¢") . 1 / 2(q; ') q;
: = lim — [ ———d
I L el AN R
which in view of (115) gives
() (n:) o
(67 (") _ eo(=1)" 7'
(Sd ]d T4 ) = o2 — o2 (-1) lxij,n—Q
i j

On the other hand, integration over 7 and application of (115) results in

d ’ d

d .
= 1
(S ) Rgnoo 271

dd*

€;oi(—=1)m"
o} — o

Equating (118) and (119) shows that

2 _ 52
9 U] (ny)

cioi(=1)mt 4 ¢joj (1)

Tijn—2 =
which plugged in in (118) and (116) gives

€; -1 ni—l n n;
S, (',njllqz(,nll7

aij = coi(—1)m1 4 Ejo-j(_l)n]—lqj

this is (75) for the case i # j.
Finally, by (94) and (107) there holds

a; = azﬁﬁ — (Sd (tzd ) 7(tzd ) )

1 / 2(g")) g™
vy

(ny) (ni)

dz + qj,n—l qi,nz—l

(

(mi)

(_ 1)n_1qj,n—1 qi,nl—l

(=1)"@ijn-2 + qﬁllqm’ll.

(116)

(117)

(118)

(119)

(120)

(121)
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and in view of (102) and (103)

L guta™) (™)

L (@) (™))
— (5% = : : 122
sl LT (122)
Moreover, using the previously defined contours v and 4 we have
LU U (@Whﬂweuwwﬁhdmﬁ%3
@ d ; (nd‘) 7 (ng ;
B Y el U M G A T
o 27T —ioco d d*
) 1 z(q(ni))*q(”i)
— 2 A 123
A, zm% v (123)
(mi)
n— g q'L
( 1) 1qz(,nll . d* d~>
%l
(i) yx  (74)
-  lim L/Mdz
R—sco 271 4 dd*
because of the stability of d*. On the other hand
ale ) (6") Lo /Z(q- )"4;
% % — 1 . % % d
Y Y A P
(i)
(0l | ) (124)
’ ~ d*
(ni)ys  (n4)
= lim L/Mdz
Ri—sco 271 o dd*
~ D)
Hence summing (123) and (124) one obtains
(ri)yx (o (mi) (i) yx  (m3)
alg ) (@) _1- L/Z(‘Zi )"4;
T T ) T A T e ©

(ni)yx (1)
2(g; )7 1 () |2
b )+ el (125)
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Now we decompose 7 and 4 in the way indicated below.

iR

V2 /

71
73

\

-iR

/

Observe that v = v3 + 73 and

(ni)yx (n
T / 2q" ) g
R—co 271 "3 dd*

Let

¥ =71+ 7s. Then

) 1 ()
dz:hm —,/Z|%—|2d2‘:
3 d

@1 : [0,7]—C, t— ReNETY

be a parametrization of v; an

d

@3 : [0,7] = C, 1 ReNETD

be a parametrization of v5. It

P1= —pa(m — 1)

Furthermore, for

is easily calculated that

(")) g™
9(2) T
there holds
9(=z) = —g(2).
So finally we can show that
g(z)dz =[] g(er(t))ea(t)dl
= o o 2 T —1))pa(m — t)dl
= —fo (m—1))@a(m — t)di
= J! g@z ))@ (T)dr
= — [ g(@a(T))@a(T)dT
= T w ( )dz

Because of (126) and (129) equation (125) is reduced to

(ni)ys ¢ (ni)y«
q; q; 1 n;
(Sd ( d ) ) ( d ) ) = 5 (qz(,nll)Q‘

25

(126)

(127)

(128)

(129)
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Together with (122) one obtains

()2 e

ay; = ——0—— = , t=1,...,k,
20; 20;
which is (75) for the case i = j. |
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