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Executive Summary

Genomics and Proteomics sequence analyses are the scientific studies of understanding the language of Deoxyribonu-
cleic Acid (DNA), Ribonucleic Acid (RNA) and protein biomolecules with an objective of controlling the production of
proteins and understanding their core functionalities. It helps to detect chronic diseases in early stages, root causes of
clinical changes, key genetic targets for pharmaceutical development and optimization of therapeutics for various
age groups. Most Genomics and Proteomics sequence analysis work is performed using typical wet lab experimental
approaches that make use of different genetic diagnostic technologies. However, these approaches are costly, time
consuming, skill and labor intensive. Hence, these approaches slow down the process of developing an efficient and
economical sequence analysis landscape essential to demystify a variety of cellular processes and functioning of
biomolecules in living organisms.

To empower manual wet lab experiment driven research, many machine learning based approaches have been
developed in recent years. However, these approaches cannot be used in practical environment due to their limited
performance. Considering the sensitive and inherently demanding nature of Genomics and Proteomics sequence
analysis which can have very far-reaching as well as serious repercussions on account of misdiagnosis, the main
objective of this research is to develop an efficient automated computational framework for Genomics and Proteomics
sequence analysis using the predictive and prescriptive analytical powers of Artificial Intelligence (AI) to significantly
improve healthcare operations.

The proposed framework is comprised of 3 main components namely sequence encoding, feature engineering and
discrete or continuous value predictor. The sequence encoding module is equipped with a variety of existing and newly
developed sequence encoding algorithms that are capable of generating a rich statistical representation of DNA, RNA
and protein raw sequences. The feature engineering module has diverse types of feature selection and dimensionality
reduction approaches which can be used to generate the most effective feature space. Furthermore, the discrete and/or
continuous value predictor module of the proposed framework contains a wide range of existing machine learning
and newly developed deep learning regressors and classifiers. To evaluate the integrity and generalizability of the
proposed framework, we have performed a large-scale experimentation over diverse types of Genomics and Proteomics
sequence analysis tasks (i.e., DNA, RNA and proteins).

In Genomics analysis, Epigenetic modification detection is one of the key component. It helps clinical researchers
and practitioners to distinguish normal cellular activities from malfunctioned ones, which can lead to diverse genetic
disorders such as metabolic disorders, cancers, etc. To support this analysis, the proposed framework is used to solve the
problem of DNA and Histone modification prediction where it has achieved state-of-the-art performance on 27 publicly
available benchmark datasets of 17 different species with best accuracy of 97%. RNA sequence analysis is another vital
component of Genomics sequence analysis where the identification of different coding and non-coding RNAs as well as
their subcellular localization patterns help to demystify the functions of diverse RNAs, root causes of clinical changes,
develop precision medicine and optimize therapeutics. To support this analysis, the proposed framework is utilized for
non-coding RNA classification and multi-compartment RNA subcellular localization prediction. Where it achieved
state-of-the-art performance on 10 publicly available benchmark datasets of Homo sapiens and Mus Musculus species
with best accuracy of 98%.

Proteomics sequence analysis is essential to demystify the virus pathogenesis, host immunity responses, the way

proteins affect or are affected by the cell processes, their structure and core functionalities. To support this analysis,

the proposed framework is used for host protein-protein and virus-host protein-protein interaction prediction. It has

achieved state-of-the-art performance on 2 publicly available protein protein interaction datasets of Homo Sapiens

and Mus Musculus species with best accuracy of 96% and 7 viral host protein protein interaction datasets of multiple

hosts and viruses with best accuracy of 94%. Considering the performance and practical significance of proposed

framework, we believe proposed framework will help researchers in developing cutting-edge practical applications for

diverse Genomic and Proteomic sequence analyses tasks (i.e., DNA, RNA and proteins).
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INTRODUCTION

Humans (and other living organisms) usually rely on different organs (brain, heart, lungs, etc.)

and biological systems (nervous system, immune system, reproductive system, etc.) in which

organs communicate with each other to carry out vital functions such as pumping blood and

keeping blood oxygenized. Organs comprise different tissues (e.g., skin, bones and nerve tissues)

and tissues are made up by the grouping of similar cells, hence cell is the basic structural and

functional unit of living organisms. Cells can grow, move, adapt to different environmental

changes and can replicate themselves. Despite these similarities, cells differ in size, shape and

capabilities to perform the functions of life. Cells contain Deoxyribonucleic Acid (DNA) that

carries instructions about various activities such as synthesis of proteins which are essential to

maintain the health and working of organs. From birth to death, DNA contains all the information

organisms needed to grow, survive, reproduce and perform diverse types of functions. A 100

trillion meters long DNA is mainly comprised of repetitions of 4 different nitrogenous bases called

Adenine (A), Thymine (T), Guanine (G) and Cytosine (C). In order to compress long DNA within

a tiny 100 micrometer (µm) cell, negatively charged DNA is wrapped around histone proteins

octamer (2 copies of H2A, H2B, H3 and H4) known as Histone proteins octamer. The resulting

DNA-protein complex is known as chromatin, fundamental structural and functional unit of

which is known as nucleosome. In chromatin, thousands of nucleosomes organise DNA in 23 pairs

of thread-like structures called chromosomes. On average, every chromosome comprises more

than 100 million nucleotides and each nucleosome contains 146 nucleotides sequence wrapped

around histone octamers.

Based on cell’s elementary structures, living organisms are broadly classified into 2 categories

namely eukaryotes and prokaryotes. Eukaryotes are multi-cellular organisms in which linearly

arranged DNA lies inside the nucleus of cell. A few examples of such organisms are animals,

plants, protists, fungi and humans. Prokaryotes are unicellular organisms in which circularly
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arranged DNA lies in cytoplasm compartment of cell. A few examples of prokaryotes are bacteria

and archaea. In eukaryotes such as humans, 50 trillion cells are broadly classified into 200

classes (e.g., nerve cells, muscle cells, skin cells, etc.) where cells of each class are responsible to

perform distinct biological functions such as nerve cells transfer messages from brain to muscles

for muscular activity like speaking. All 50 trillion cells contain the same DNA which is mainly

comprised of 3 distinct regions: genes/coding DNA, regulatory elements and non-coding DNA.

Within DNA, different combinations of 4 nucleotides ranging from a few hundred to more than

2 billion represent 1,40,000 functional units called genes which produce proteins essential for

organism’s growth, survival and health. Genes are a core part of genetic material which control

functional modules of organ systems. Regulatory and non-coding DNA supports the process of

gene expression regulation that controls unique types and numbers of proteins across different

cells.

According to principal dogma of molecular biology, DNA replicates to provide genetic code

for newborn cells and it is transcribed to RNA that further translates to proteins. In the process

of transcription, coding DNA/genes are transformed into messenger RNA (mRNA) and non-

coding DNA generates non-coding RNA. During the process of translation, mRNA and some

particular types of non-coding RNAs make proteins, which are essential parts of life. Without the

consumption of proteins, we cannot perform any activity including speaking, hearing, walking

and even in the process of breathing, we are constantly burning a lot of proteins. Furthermore,

even regulatory network that follows the instructions of genetic code to control the production

of proteins cannot work without the support of proteins. For example, enzymes that metabolize

nutrients to generate energy that is necessary for organs to perform different functions and also

required for DNA polymerases which create the copies of DNA during the cell division, are all

proteins. Regulatory network controls the expression and repression of genes to produce right

type and amount of proteins within different cells. Within the regulatory network, irregularities

at the transcription and translation levels lead to malfunctioning of molecular processes that

eventually cause chronic diseases. To better understand and control the production of mRNAs in

different cells, researchers are trying to find different factors such as diet, lifestyle, drug routine

etc., non-coding DNA segments and regulatory elements roles that largely influence the process

of transcription. Similarly, they are investigating non-coding RNA roles in translation to decode

and control the synthesis of proteins across unique cell types. Genomics and Proteomics sequence

analysis is the scientific study for understanding the language of DNA, RNA and protein bio-

molecules with an objective to control the expression and repression of genes at transcriptional as

well as post-transcription levels. Through this analysis, biomedical researchers and practitioners

are not only successfully forecasting the likelihood of different diseases in patients, but they have

also developed genetic therapies to cure genetic diseases by suppressing or replacing the diseases

specific genes. Furthermore, this analysis also paves way to develop novel drugs, optimize existing

therapeutics and understand their impact on living organisms. More accurate and comprehensive
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Genomics and Proteomics sequence analysis can potentially open new horizons for personalized

healthcare, facilitating optimal treatment options to ensure healthier and longer lifespans.

Pre-dominantly, Genomics and Proteomics sequence analysis is being performed using typical

wet lab experiments. However, these approaches require controlled environments based on

genetic diagnostic technologies in order to process the Genomes of different living organisms

which is why these approaches are not easily adaptable for a very large scientific community.

Furthermore, these approaches are skill and labor intensive, hence these approaches are not

appropriate for efficient genetic sequence analysis. This dissertation utilizes the powers of

Artificial Intelligence methods to develop a generic framework competent in performing efficient

Genomics and Proteomics sequence analysis at large-scale. The generic nature of the presented

framework makes it applicable to a variety of Genomics (Histone occupancy prediction, Histone

and DNA modification prediction, RNA classification and subcellular location prediction) and

Proteomics (host protein-protein and viral host protein-protein interaction prediction) sequence

analysis tasks across multiple species.

1.1 Motivation

The main motivation behind this study is author’s observation that there is a very limited

availability of robust computational frameworks for Genomics and Proteomics sequence analysis

despite their immense need in research and industry. Aim of this work is to develop a generic

computational framework, capable of performing different types of Genomics and Proteomics

sequence analysis tasks. By unraveling the nature of diverse sequence analysis tasks, it is

observed that majority of the sequence analysis tasks are related to classification problems such

as enhancer identification and their strength prediction, histone occupancy detection, acetylation

and methylation level prediction in histone and DNA bio-molecules, RNA classification and their

subcellular location prediction, host protein-protein and viral host protein-protein interaction

prediction. Building on this, author decides to develop automatic methods in generic framework

which can identify and learn discriminative information of nucleic and amino acids from raw

sequences and use such information to categorize sequences into relevant classes.

Furthermore, author observes that few sequence analysis tasks such as antibody sequence

performance prediction and prediction of channelrhodopsins proteins within plasma membrane

fall under the hood of regression problems. In this regard, author aims to develop efficient

methods which can learn and extract distribution of nucleic and amino acids in the raw sequences

and use this information to predict float values associated with the sequences.

Following the working paradigm of machine and deep learning approaches that do not op-

erate on raw DNA, RNA and protein sequences, author observes that a variety of sequence

encoders have been proposed for different biomolecules that convert raw biomedical sequences

into statistical vectors by extracting comprehensive information of nucleic and amino acids. In
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addition, author observes the most dominantly used machine learning classifiers and regressors

across different sequence analysis tasks. In order to truly reveal the effectiveness of new pre-

dictive methods, researchers need to perform a comprehensive benchmarking of new methods

using multiple approaches as baseline as well as an unbiased performance comparison of new

predictive methods with existing predictive methods for various sequence analysis tasks. In

such a comprehensive analysis, researchers face multiple challenges such as time constraint to

implement existing approaches from scratch due to unavailability of source codes, missing or

hard to find hyperparameters and model training information, etc. To facilitate a more generic

framework which can potentially make the lives of biomedical researchers and practitioners

easier, author aims to implement all sequence encoders published for three different biomolecules

including DNA, RNA and protein, the most widely used machine learning classifiers, regressors

and evaluation metrics, all at one platform. Furthermore, author’s aim is to organize the pool of

existing sequence encoders and predictors in an automated setting which exhaustively evaluates

all possible combinations of sequence encoders and predictors to facilitate comprehensive bench-

marking performance. This framework facilitates development of practical end-to-end pipelines

for certain biomedical applications without considering any human effort at any level.

Moreover, author finds that existing sequence encoders lack in extracting comprehensive

discriminative and positional information of nucleic or amino acids while transforming raw

sequences into statistical vectors. Considering, Genomics and Proteomics sequences have large

number of constant regions where the distribution of nucleic and amino acids remains almost the

same and very few regions have distinguishing distribution of nucleic and amino acids which is

important for accurate sequence analysis. Author aims to develop and incorporate novel sequence

encoding methods in generic framework, capable of finding position specific discriminative

distribution of nucleic and amino acids which largely assist the predictor in achieving optimal

performance for diverse DNA, RNA and protein sequence analysis tasks.

Furthermore, author notes that few biomedical researchers treat the processing of DNA,

RNA and protein sequences similar to Natural Language Processing (NLP) and adopt different

neural embedding methods from NLP domain. Author aims to address this research direction by

facilitating multiple neural embedding generation methods in generic framework which have

shown great performance in different NLP and Bioinformatics tasks, in order to quantify their

performance potential for Genomics and Proteomics sequence analysis tasks.

With the availability of huge number of methods in published literature, researchers and

practitioners preference for quick customization of predictive pipeline such as combining the

benefits of multiple sequence encoders to enhance predictive performance, generalizability, etc.,

is inevitable. Author aspires to provide automated settings in generic framework which are

capable of combining homogeneous as well as heterogeneous sequence encoders using different

strategies to generate more appropriate statistical vectors. Furthermore, apart from traditional

deep learning predictors, author aims to develop and incorporate a variety of novel deep learning
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based classifiers that can achieve state-of-the-art performance in different types of Genomics and

Proteomics sequence analysis tasks related to binary/multi-class or multi-label classification.

1.2 Problem Statement

Unlike the tasks related to different domains (e.g., NLP and energy forecasting), Genomics and

Proteomics sequence analysis tasks are highly sensitive by nature where false analysis can

have very far-reaching as well as serious repercussions on human lives. To perform an accurate

and large scale analysis of different biomolecules sequences (DNA, RNA, protein) related to

multiple species, development of robust Artificial Intelligence (AI) based approaches for different

biomedical classification and regression tasks face multiple challenges.

Raw sequences of DNA/RNA consist of repetitive patterns of 4 unique nucleic acids while

protein raw sequences are made up of repetitive patterns of 20 unique amino acids. For any

particular sequence analysis task, distribution of unique nucleic or amino acids remain same

in sequence samples that belong to same class, whereas this distribution slightly varies among

sequence samples of different classes. Therefore, one of the challenges which AI based approaches

need to address is to develop an effective sequence encoder which can generate statistical vectors

of raw sequences by capturing comprehensive local and global relations of nucleic or amino acids.

The performance of AI predictors mainly relies on the quality of generated statistical vectors. A

simple classifier can precisely discriminate sequence samples into different classes when it is

fed with statistical vectors which contain comprehensive discriminative patterns. Contrarily, a

sophisticated classifier may fail to discriminate sequence samples into multiple classes when it is

fed with in-effective statistical representations.

Another challenge that impacts the performance of AI predictors is how they deal with

variable length sequence samples. For some sequence analysis tasks, the length of sequences

largely varies from hundreds to thousands of nucleic or amino acids. Most of the sequence

encoding methods either require fixed-length sequences as input, or they generate variable length

statistical vectors for input sequences. Few sequence encoders take variable length sequences

and generate fixed-length statistical vectors of sequences. Particularly, diverse type of textual

classification approaches in the domain of NLP and most of the existing DNA/RNA or protein

sequence classification approaches generate fixed-length sequence samples using three different

tricks. Copy padding trick maps shorter length sequence samples to maximum possible sequence

length by adding a constant. Sequence truncation trick discards words or nucleic/amino acids in

sequence samples whose lengths are larger than minimum possible sequence length. The average

length based copy padding/truncation method computes average length of sequence samples and

according to that length, it discards words or nucleic/amino acids from the sequence samples

that are larger than defined length and adds constant to the sequence samples that have length

less than defined length. However, pre-pocessing of biomedical sequences is different from the
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preprocessing of textual sequences, as unlike textual sequences, lengths of biomedical sequences

samples vary by thousands of nucleic or amino acids. Here, addition of a significant number

of constant to shorter length sequences makes them almost similar whereas truncation may

discard important regions where distribution of nucleic/amino acids is highly variable and useful.

Building on this, another open challenge for AI based approaches is to generate fixed-length

biomedical sequences without losing important distribution of nucleic/amino acids.

In addition, most genetic sequence analysis datasets are highly imbalanced in nature where

few target classes have a large number of sequence samples while other classes have few

numbers of sequence samples. Furthermore, the magnitude and diversity of features importance

for accurately predicting target classes also vary across multiple species, indicating one set of

features may be good enough to determine target classes for humans but not sufficiently good to

predict same target classes for other species like mouse. Hence, third biggest challenge for AI

based Genomics and Proteomics sequence analysis approaches is to develop a more robust and

generalized machine or deep learning model which can precisely and most accurately predict

target classes across multiple species.

In order to effectively resolve the aforementioned challenges, the prime focus of this dis-

sertation is to develop a robust and adaptable machine or deep learning predictors for various

Genomics and Proteomics sequence analysis tasks which make best use of different strategies

to precisely predict target classes of sequence samples across a variety of species. Furthermore,

another focus of this dissertation is to facilitate comprehensive existing approaches and newly

developed approaches at a single platform with customization capabilities to empower wide

scientific community.

1.3 Research Questions and Goals

Following are the research questions that are investigated to make the proposed framework

generic and capable of developing diverse types of practical applications for Genomics and

Proteomics sequence analysis tasks.

1 What is the most effective sequence preprocessing strategy to fix the length of fluctuating

biomedical sequences?

Goal: To fix the length of highly variable DNA/RNA and protein sequences without losing the

important information about distribution of nucleic or amino acids, this dissertation inves-

tigates the performance impact of traditional fixed-length sequence generation approaches.

Through this analysis, it develops a novel mechanism to generate fixed-length sequences

by keeping only the most informative distribution of nucleic/amino acids.

2 How to generate comprehensive statistical representation of DNA/RNA and protein sequences

by precisely capturing the distribution and heterogeneous relations of nucleic/amino acids
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in the raw sequences?

Goal: This research explores the potential of existing encoding methods that made use of

physicochemical properties, occurrence frequency, local and global context information of

nucleic/amino acids to generate a rich statistical representation of DNA/RNA and protein

sequences. Through this exploration and by performing a deep performance comparison of

existing encoders, this research provides two different paradigms to generate comprehensive

statistical representation of raw sequences. First paradigm goal is to reap the benefits of

different top performing encoding methods. Second paradigm focuses on the development

of novel standalone encoders capable of generating statistical representation by capturing

occurrence and positional information of nucleic or amino acids.

3 Is it possible to develop a unified deep learning based predictor that can be used for multiple

species?

Goal: Here the goal is to deeply evaluate the functional paradigms and performances of existing

computational approaches over multiple datasets belonging to distinct species and identify

the factors which contributed to decline the generalizability of existing approaches. This

analysis is performed with an aim to develop an improved approach by extracting task and

specie specific features and perform a rich performance comparison with other multi-species

genetic sequence analysis approaches.

4 Is it possible to highlight important patterns of nucleic/amino acids in the raw sequences to

interpret classifier decisions?

Goal: One of the many important goals of this dissertation is to develop interpretable deep

learning based predictors that can explain which nucleic/amino acid distribution patterns

are most informative in the sequences and what exactly they represent, which is a crucial

information to make predictor decisions more transparent and understandable for wide

scientific community.

5 Do the raw DNA/RNA and protein sequences contain sufficient information to perform compu-

tational Genomics and Proteomics sequence analysis?

Goal: The aim of this research is to compare the efficacy and potential of raw sequences based

computational approaches with other computational approaches which rely on cellular,

molecular, or structural profiles of biomolecules to identify them, their families, their

localization inside the cell and the probability to interact with other biomolecules.

1.4 Contributions

The main contribution of this dissertation is the conceptualization and implementation of a

computational framework using the power of Artificial intelligence approaches. The generic
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nature of the presented framework makes it applicable to a variety of Genomics (DNA, RNA)

and Proteomics (protein) sequence analysis tasks. A premier on presented framework is that,

it only requires raw DNA/RNA and protein sequences to perform a more accurate biomedical

sequence analysis. A high-level overview of dissertation contributions is provided in the following

subsections.

1.4.1 Genomics & Proteomics Sequence Analysis

A high level overview in terms of Genomics & Proteomics Sequence analysis framework needs

and manifold contributions of this dissertation for the development of computational framework

is summarized below.

1.4.1.1 Contribution 1: An Efficient Automated Machine Learning Framework for
Genomics and Proteomics Sequences Analysis

Background:
An efficient comprehensive Genomics and Proteomics sequence analysis is important to

understand the functional dynamics of different biomolecules, execution of various biological

processes and irregularities in core cellular behaviors. To provide automated methods for biomed-

ical sequence analysis, several computational frameworks have been developed. However, these

frameworks are not generic in nature as they only facilitate a handful of existing sequence

encoders and predictors for two types; of tasks binary or multi-class classification and cluster-

ing. They neither provide regressors nor multi-label classifiers. Furthermore, under the hood

of binary classification, they also lack to facilitate robust pipelines for biomolecule interaction

prediction tasks. The influx of biological sequences demands a generic computational framework

which can accurately perform multi-dimensional analysis of Genomics and Proteomics sequences

such as predicting multiple subcellular localization compartments of biomolecules, biomolecules

interaction possibility, antibody sequence performance values, etc.

Contribution:
This dissertation provides a computational framework capable of automatically developing

pipelines for accurate biomedical sequence analysis tasks related to 4 different major cate-

gories: regression, clustering, binary/multi-class classification and multi-label classification. The

proposed computational framework facilitates 221 existing and novel DNA, RNA and protein

sequence encoders, 25 dimensionality reduction and feature selection methods, 25 widely used

machine learning classifiers/regressors and a variety of deep learning based architectures. To

ensure the generalization and applicability of the proposed framework, it is evaluated on dif-

ferent tasks related to multiple species. Furthermore, it facilitates 5 web applications 1 capable

of performing efficient histone sequence analysis, RNA subcellular localization prediction, host

1https://sds_genetic_analysis.opendfki.de/
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protein-protein interaction prediction and viral-host protein-protein interaction prediction on

new sequence data related to multiple species.

1.4.2 Genomics Sequence Analysis

In Genomics sequence analysis, proposed framework is evaluated on 5 different classification

tasks and produces state-of-the-art performances.

1.4.2.1 Contribution 2: DNA Modification Prediction

Background:

Accurate prediction of DNA modifications is essential to explore and discern the process of

cell differentiation, gene expression and epigenetic regulation. Pre-dominant DNA modifications

predictors are suitable to predict only one particular type of modification. Only two generic

predictors support the prediction of multiple DNA modifications. Both type specific and generic

DNA modification predictors produce suboptimal performance across multiple species. This is

mainly due to the use of ineffective sequence encoding methods based on nucleotide frequency

and physicochemical properties that lack to capture comprehensive discriminative nucleotide

distributions.

Contribution:

This dissertation develops a generic approach “DNA-MP" to most accurately predict 4-

Methylcytosine (4mc), 5-Hydroxymethylcytosine (5hmc) and N6-methyladenine (6mA) modi-

fications across multiple species only using raw DNA sequences. DNA-MP makes use of a novel

encoding method “POCD-ND" to generate a comprehensive statistical representation of DNA

sequences by capturing position specific discriminative distribution of nucleotides and a deep

forest classifier for modification prediction.

To perform a large scale performance comparison of proposed sequence encoder with existing

31 most widely used sequence encoders, an intrinsic performance comparison is performed by

visualizing the feature space of proposed sequence encoder and existing 31 sequence encoders. Ex-

trinsic performance comparison of proposed sequence encoder and existing 31 sequence encoders

is performed using 10 different machine learning classifiers on 17 benchmark DNA modification

prediction datasets of 12 different species. The proposed DNA-MP predictor outperforms state-

of-the-art type-specific and generic modification predictors by an average accuracy of 7% across

4mc datasets, 1.35% across 5hmc datasets and 10% for 6ma datasets. DNA-MP is deployed as an

interactive web application at 2 which can be used to predict DNA modifications on the go and

can be adapted for other epigenetic modification prediction tasks.

2https://sds_genetic_analysis.opendfki.de/DNA_Modifications/
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1.4.2.2 Contribution 3: Prediction of Histone Occupancy and Modifications along
with Enhancer Identification and their Strength Detection

Background:
In order to deeply understand and control the production of proteins and for the development

of novel genetic therapies to treat complicated diseases like Cancer by addressing the issues

of under or over expression of genes, determining histone occupancy, modifications, enhancers

and their strengths are extremely important sequence analysis tasks. To perform this analysis,

existing computational approaches produce suboptimal predictive performance due to their

inability to extract discriminative features from DNA sequences. Furthermore, existing histone

sequence analysis approaches face the huge overhead of training separate predictors for different

histone markers.

Contribution:
Following the success of the supervised FastText classifier in the domain of Natural Language

Processing, this dissertation develops a novel deep learning predictor Histone-Net [22] which

can more accurately predict histone occupancy, methylation and acetylation levels across 10

different datasets in intra-domain and cross-domain binary classification paradigms. Histone-Net

outperforms state-of-the-art histone occupancy, acetylation and methylation prediction approach

by an average accuracy of 7.5% on 10 different datasets. Another promising contribution is the

development of a multi-label classification dataset which will accelerate the research direction

of simultaneously predicting histone occupancy, acetylation and methylation levels across 10

histone markers using a single predictor. Apart from traditional binary classification paradigm,

proposed Histone-Net approach also produces promising performance in multi-label classification

paradigm. To analyze generalizability and applicability of the proposed Histone-Net approach in

other Genomics sequence analysis tasks, it is evaluated for enhancers identification and their

strength prediction tasks [20] where it outperforms state-of-the-art enhancer sequence analysis

predictor on 2 benchmark datasets by an average accuracy of 9%. To enable the wide scientific

community to perform efficient histone sequence analysis under the hood of different paradigms,

Histone-Net is deployed as a web application at 3.

1.4.2.3 Contribution 4: Small Non-Coding RNA Classification

Background:
The development of biomolecular devices which interface with the biological systems to unveil

novel insights and produce new functions is one of the most promising goals of synthetic biology.

Accurate classification of small non-coding RNAs (sncRNAs) is a pre-requisite for the development

of powerful riboregulators competent in providing modular, tunable, as well as precise control

of the gene expression. Existing sncRNA classification approaches mark suboptimal predictive

3https://histone.opendfki.de/
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performance due to their dependency on secondary structural features which lack to capture

comprehensive local and global relations of nucleotides.

Contribution:
This dissertation develops a robust and precise deep learning model namely RPC-snRC [28]

for accurate classification of small ncRNAs into relevant families by utilizing their primary se-

quences. Contrary to existing predictors, RPC-snRC makes use of working paradigm of DenseNet

architecture which is competent to learn hierarchical representation of features by providing

comprehensive paths for the flow of gradients to all the previous layers. To prove the effectiveness

of proper gradient flow while learning better representations, similar to DenseNet architecture,

two ResNet architectures are adopted to perform small non-coding RNA classification. RPC-snRC

outperforms adapted approaches by an accuracy margin of 3% and state-of-the-art approaches

with an accuracy margin of 10% on a public benchmark dataset.

1.4.2.4 Contribution 5: Circular RNA Identification

Background:
Circular RNAs (circRNAs) have emerged as useful regulators for physiological development

and disease parthenogenesis due to their cell specific expression associations with a plethora

of biological functions. Accurate detection of circRNAs is essential to decode transcription and

splicing regulation which provide new opportunities for clinical applications development. Stat-

of-the-art circular RNA identification approach relies on handcrafted features which do not only

increase the feature space but also extract irrelevant and redundant features.

Contribution:
This dissertation develops an end-to-end deep learning framework namely CircNet [372]

which utilizes encoder-decoder strategy to learn lower-dimensional latent representations and

convolutional operations to automatically extract the most discriminative features from latent

feature space. Another distinguishing contribution is that, unlike existing circRNA identification

approaches, CircNet finds and highlights different regions of genome which contain the most

useful information for accurate detection of circRNAs. CircNet significantly outperforms state-

of-the-art approaches with a considerable margin of 10.29% in terms of F1 measure on a public

benchmark dataset.

1.4.2.5 Contribution 6: RNA Subcellular Localization Prediction

Background:
Subcellular localization of Ribonucleic Acid (RNA) molecules provides significant insights

into the functionality of RNAs and helps to explore their associations with various diseases.

Pre-dominantly developed single-compartment localization predictors (SCLPs) lack to demystify

RNA associations with diverse biochemical and pathological processes mainly happen through

RNA co-localization in multiple compartments. Few multi-compartment localization predictors
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(MCLPs) mark suboptimal generalizability. Furthermore, both types of predictors have below par

practical significance due to a low degree of model explainability.

Contribution:
To empower the process of RNA subcellular localization prediction, contributions of this dis-

sertation are manifold. 1) It briefly, illustrates the working paradigms of existing RNA subcellular

localization predictors in terms of their pros and cons [19]. 2) It develops two computational

predictors for miRNA subcellular localization prediction [24] [27]. 3) It develops first computa-

tional predictor for circular RNA subcellular localization prediction [306]. Considering the need

of a robust and generalized predictor, it develops a robust deep learning predictor namely EL-

RMLocNet [23] which can more accurately predict multi-compartment localizations of 4 different

RNA classes across two different species. EL-RMLocNet makes use of a unique graph based

encoding method to capture comprehensive local and global interaction patterns and transla-

tional in-variances of nucleotides. Furthermore, it reaps the benefits of Long Short-Term Memory

(LSTM) and attention layers to capture the most informative features and their heterogeneous

relations which are important for accurate multi-compartment localization prediction for target

species. EL-RMLocNet outperforms state-of-the-art predictor by an average accuracy of 8% for

Homo sapiens species and 6% for Mus Musculus species. To the best of author knowledge, this is

the very first explainable predictor which is competent in handling multiple RNA types across

different species in a more complicated multi-compartment subcellular localization prediction

setting where it highlights which nucleic acids patterns are responsible for certain model deci-

sions. Furthermore, it facilitates a web application 4 to enable the researchers and practitioners

to predict multi-compartment localizations of new RNA sequences.

1.4.3 Proteomics Sequence Analysis

In Proteomics sequence analysis, proposed framework is evaluated on 2 different applications

areas where it produces state-of-the-art performances.

1.4.3.1 Contribution 7: Protein-Protein Interaction Prediction

Background:
Protein-protein interaction (PPI) prediction is essential to understand the functions of proteins

in various biological processes and their roles in the development, progression and treatment of

different diseases. Existing PPI prediction approaches have suboptimal predictive performance

and practical significance as they lack the ability to extract comprehensive discriminative features

and aptitude to explain the decision making of predictor.

Contribution:
This dissertation develops a novel PPI predictor namely ADH-PPI that uses Long Short-Term

Memory layer to extract short and long range dependencies of features, convolutional layer to
4https://rna_subcellular_predictor.opendfki.de/
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extract comprehensive hidden informative features and Self-Attention layer to focus on most

valuable features which contribute the most for accurate PPI prediction. Another, promising

contribution is that it generates the k-mer amino acid representations using FastText in an

unsupervised manner. In addition, it performs a comprehensive performance comparison using 2

benchmark core datasets and 4 independent test sets related to different species where ADH-PPI

outperforms existing PPI predictors by an overall accuracy of 4% and 7%, respectively. One more

contribution is that it finds and highlights which amino acid distributions are more important

for accurate PPI prediction across multiple species which helps to decode the decision making of

predictor. It facilitates the PPI prediction web application 5 which can be used to make accurate

and explainable predictions in multiple species.

1.4.3.2 Contribution 8: Virus-Host Protein-Protein Interaction Prediction

Background:
Viral-host protein-protein interaction (VHPPI) analysis is essential to decode molecular

mechanism of viral pathogens and host immunity processes which eventually helps to control the

viral diseases and optimize therapeutics. Multiple AI-based approaches have been developed to

predict VH-PPIs interactions across a wide range of viruses and hosts, however, these approaches

produced better performance only for specific types of hosts and viruses. The influx of viruses

from heterogeneous sources including farm or wild animals, arthropods, etc., leading to plethora

of deadly infectious diseases implies the desperate need of a generic predictor that can efficiently

determine the viral-host PPIs across diverse hosts and viral species.

Contribution:
To supplement the process of Viral-host protein-protein interaction prediction, this disserta-

tion develops LCGA-VHPPI predictor [21] that makes use of a deep forest classifier and novel

sequence encoding method capable of capturing local and global context of amino acids. Further-

more, it develops a robust meta predictor capable of more accurately predicting VHPPI across

multiple hosts and viruses. Proposed meta predictor makes use of two well-known encoding

methods APAAC and QS order that captures and encodes sequence order and distributional

information of amino acids to statistical vectors. Feature agglomeration method is utilized to

transform original feature space to more comprehensive feature space. Random forest and Ex-

tra tree classifiers are trained on optimized feature space by combining encodings generated

by APAAC and QS order encoders. Furthermore, predictions of both classifiers are utilized to

train SVM classifier that makes final predictions. Proposed meta predictor is evaluated, over 7

different benchmark datasets, where it outperforms existing VH-PPI predictors with average

performance figures of 3.864%, 8.434%, 8.857% and 7.365% in terms of accuracy, MCC, precision

and sensitivity, respectively. Furthermore, it develops an interactive web server6, which enables

5https://sds_genetic_analysis.opendfki.de/PPI/
6https://sds_genetic_analysis.opendfki.de/MP-VHPPI/
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the scientific community to predict viral-host PPIs across multiple viral and host species in no

time.

1.5 Dissertation Overview

This dissertation makes great efforts to develop cutting-edge Artificial Intelligence based auto-

mated Genomics and Proteomics sequence analysis approaches and centralise them in a single

platform to ease the lives of different end users. It also makes notable efforts to make sequence

analysis approaches applicable to different biomolecules and species using only raw genetic of

sequences. This dissertation is organized into 10 different chapters. After providing a bird’s

eye view the core motivations behind biological sequence analysis and author major contribu-

tions to address different problems in Chapter 1. Chapter 2 provides the complete workflow of

proposed framework and performs a detailed comparison of proposed framework with existing

frameworks on the basis of different core qualities and acceptance criteria. Chapter 3 discusses

the importance of determining DNA modifications to better understand the process of cell dif-

ferentiation and gene expression regulation. It also sheds light on a novel predictor developed

to infer three different modifications: 4-Methylcytosine (4mc), 5-Hydroxymethylcytosine (5hmc)

and N6-methyladenine (6mA) across multiple species and its overall effectiveness as compared

to existing single type and multi-type DNA modifications predictors. Chapter 4 describes the

significance of histone and enhancer sequence analysis for controlling the production of proteins

and development of naive genetic therapies for complex diseases. It discusses a novel predictor

developed for histone occupancy, histone modifications, enhancer identification and their strength

prediction tasks and its efficacy as compared to existing predictors. Chapter 5 discusses the

worth of small non-coding RNAs classification for the development of powerful riboregulators.

It describes the working paradigm of novel predictor developed for classifying small non-coding

RNAs into their respective families and their practical significance as compared to existing

predictors. Chapter 6 describes the emerging regulatory roles of circular RNA in physiological

development and disease parthenogenesis. It discusses the novel predictor developed for circular

RNA identification and its performance as compared to state-of-the-art predictors. Chapter 7

describes the importance of identifying multi-compartment subcellular localization of different

RNAs to better understand their functions and associations with diverse diseases. It provides

details about a novel predictor developed to infer multi-compartment subcellular localization of

different RNAs, its generalization across multiple species and overall efficacy as compared to

existing predictors. Chapters 8 and 9 discuss the significance of determining host protein-protein

interactions and viral-host protein-protein interactions to understand the functions of proteins,

molecular mechanisms of viral pathogens and host immunity processes. These chapters shed

light on the working paradigms of developed novel predictors, their performances on different

datasets and species and overall effectiveness as compared to existing predictors. Final chapter
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10 provides conclusive remarks, major limitations of developed novel predictors and compelling

future directions of current work.
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A GENERIC FRAMEWORK FOR GENOMICS (DNA, RNA) AND

PROTEOMICS (PROTEIN) SEQUENCE ANALYSIS

Genetic sequence analysis technologies that are competent in analyzing a large number of DNA

molecules in a massively parallel manner are labeled as next-generation sequencing (NGS)

technologies [17, 152]. NGS technologies enable the exploration of hundreds and thousands of

genes to demystify the associations of genetic variations with different diseases and biological

phenomenon [17, 152]. NGS technologies provide the basis to control the regulation of gene

expression and have revolutionized the development of new applications in clinical and genomic

research, reproductive health, environmental, agricultural and forensic science [64, 104, 145,

175, 234, 364, 465].

The high throughput paradigm of NGS technologies has given birth to exponentially in-

creasing Genomics and Proteomics data which is of great significance [120]. The humongous

Genomics and Proteomics data analysis is useful to comprehensively understand diverse biologi-

cal processes, gene expression patterns and their associations with the initiation, progression and

treatment of different diseases through optimizing therapeutics [318]. An accurate exploration of

genetic data will not only take our understanding regarding life science to an advanced level that

we cannot imagine yet, but it will also make personalized healthcare a reality [318].

Considering the aptitude of Artificial Intelligence (AI) approaches to automatically extract

important hidden patterns, these approaches have been extensively utilized to explore the hidden

potential of biological sequences for the establishment of economical large-scale Genomics and

Proteomics sequence analysis landscape [106, 289]. Within this landscape, a closer look at the

problem nature of various genetic sequence analysis tasks reveals that most of the tasks fall under

three different paradigms: 1) Classification, 2) Clustering and 3) Regression. In classification,

the primary goal of AI approaches is to forecast discrete values such as families of biomolecules,
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possibility of biomolecules interaction, localization of biomolecules within the cell, distinguishing

normal cells from disease cells [154, 430], etc. In clustering, the main focus of AI approaches is to

group different sequences that have similar characteristics [154, 430]. Whereas, in regression,

the focus of AI based genetic sequence analysis approaches is to estimate continuous values such

as genomic prediction of disease risk, quantifying the drug response and estimating DNA copy

number variations [154, 430].

With an aim to perform accurate genetic sequence analysis, diverse AI frameworks have

been developed [29, 45, 48, 74, 85–87, 224, 267]. Despite the diversity, genetic sequence analysis

pipelines of all the frameworks are based on five different modules 1) Sequence data collection and

preprocessing, 2) Feature Representation, 3) Feature Engineering, 4) Predictor construction, 5)

Predictor Evaluation and intrinsic or extrinsic performance visualization. To facilitate researchers

by providing diverse types of algorithms related to all 5 modules at a single platform, according

to our best knowledge, 9 different generic frameworks have been developed.

For instance, Selene [74] is a command-line Pytorch based deep learning framework which

provides sequence sampling module, existing model training and improvement modules for only

multi-class sequence classification tasks. Another framework Janggu [224] provides few existing

encoding schemes and deep learning models for predicting transcription factors, chromatin effects

and promoter usage, most of which fall under the hood of multi-class classification tasks. Kipoi

[29] provides 2,194 ready-to-use trained deep learning based predictive models for transcriptional

and post-transcriptional gene regulation. BioSeq-Analysis [45] is the first machine learning-based

genetic sequence analysis platform that supports the development of end-to-end pipelines for

classification tasks. Its more recent version called BioSeq-Analysis-2.0 [267], contains 35 sequence

encoding algorithms to further improve the process of analyzing genetic sequences. In 2018,

researchers from different institutes collaborated to release the first comprehensive framework

named iFeature [86]. iFeature provides the implementation of 53 feature representation methods

for only protein and peptide sequences. Later in 2020, an extended version of iFeature named

iLearn [87] has been published. iLearn is designed to generate statistical representations of all

three DNA, RNA and protein sequences. It also contains some feature engineering approaches

along with traditional machine learning classifiers. Recently, in 2021, the advanced version of

iLearn named iLearn plus [85] is released that provides more encoding methods to transform

DNA, RNA and protein sequences into statistical vectors. Recently, another framework named

math feature [48] has been published, which contains a variety of feature encoding methods and

a pool of machine learning classifiers.

Prime focus of existing computational frameworks is to provide an effective platform which

researchers and practitioners can use to perform diverse types of Genomics and Proteomics

sequence analysis tasks. To accomplish this goal, existing computational frameworks facilitate

different sequence encoding methods, however, there is not even a single computational frame-

work that provides word embedding methods to generate statistical representations of Genomics
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and Proteomics sequences despite considering their success in Natural Language Processing and

Bioinformatics. Furthermore, these frameworks only support the development of pipelines for

two major tasks namely clustering and binary/multi-class classification. Also, these frameworks

do not facilitate pipelines for biomolecule interaction prediction tasks despite considering the

fact that pre-dominant biomolecule interaction prediction tasks such as host protein-protein

interaction prediction, virus-host protein-protein interaction prediction, RNA-protein interaction

prediction, lncRNA-miRNA interaction prediction, etc., are binary in nature. Another major

pitfall is existing frameworks neither support regression nor multi-label classification, neglecting

that a significant number of tasks fall under the hood of multi-label classification such as RNA

multi-compartment subcellular localization prediction and protein multi-compartment subcellu-

lar localization prediction. It is widely accepted that feature engineering is important to achieve

good predictive performance. However, existing frameworks only support a few generic feature

engineering methods. One more downfall is existing frameworks have suboptimal practical

significance because they are evaluated on limited case studies and few species.

2.1 Functional Scope and Description of Proposed Generic
Framework

Considering the diversity of Genomics and Proteomics sequence analysis tasks and the sensitive

nature of sequence analysis which can have serious repercussions on human health in the case of

incorrect findings and suboptimal accuracy, this dissertation develops a robust generic framework

for Genomics and Proteomics Sequence Analysis (GFGPA). GFGPA framework supports the auto-

mated development of predictive sequence analysis pipelines and meta predictors to handle tasks

of 4 different major categories including regression, clustering, binary/multi-class classification

and multi-label classification. Besides facilitating all existing DNA, RNA and protein sequence

encoders, widely used dimensionality reduction algorithms, feature selection algorithms, machine

learning classifiers, different neural architecture based deep learning predictors, it also facilitates

novel sequence encoders and deep learning predictors to perform more accurate sequence analysis

across multiple species.

Figure 2.1 illustrates complete workflow of the proposed generic GFGPA framework. To

perform any genetic sequence analysis task after data collection in preprocessing stage, an

important task is to fix the length of sequence samples. Genetic sequence analysis tasks can

be considered similar to Natural language processing tasks. Just like text classification where

the words present within sentences determine the context and make sense of the sentences, in

genetic sequence analysis, we have a string of letters that is segregated into small subsequences

where each subsequence acts as a feature to make biological sense of sequences. However, in text

classification, length of documents does not vary as much as sequence samples length varies in

genetic analysis tasks. Traditional machine and deep learning algorithms require fixed-length
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sequence samples as an input. Hence, in the proposed GFGPA framework, we incorporate 3

traditional fixed-length generation approaches copy padding at maximum length, truncation at

minimum length and copy padding or truncation sequences at average length. Furthermore, we

notice that most informative distributional information of nucleic and amino acids lies at the

starting region and at the ending region of sequences. To more effectively handle high length

variability of genomic and proteomic sequences, in the GFGPA framework, we integrate a unique

way of generating fixed-length sequences based on the most informative bins of sequences.
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Figure 2.1: The complete workflow of generic GFGPA framework proposed for efficient Genomics
and Proteomics sequence analysis.

After generating fixed-length sequences, the next step is to generate k-mers of the sequences.

To generate k-mers, we slide a fixed-size window with particular stride size over sequences.

If the window size is equal to the stride size, non-overlapping k-mers are generated and by

taking different window and stride sizes, overlapping k-mers are generated. Proposed framework

supports the generation of overlapping as well as non-overlapping k-mers of sequences.

After k-mer generation, next phase is to transform k-mer sequences into statistical vectors.

The proposed framework supports several published heterogeneous statistical representation gen-

eration approaches and also provides novel statistical representation generation methods, details

of which are given in section 2.1.1. The statistical vectors of k-mer sequences are either directly

passed to deep learning based predictors which automate the process of feature engineering or

they are passed to feature engineering module before feeding to machine learning based predic-

tors. Feature engineering module analyzes whether the statistical vectors contain redundant or
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noisy features. It is widely accepted that not all input features significantly contribute in the

accurate estimation of target class labels for hand on task [163]. Feeding predictors with highly

informative features significantly assist them to find useful correlations for accurate predictive

modeling. It is commonly acknowledged that even a simple predictor performs better when it

is fed with a relevant and informative subset of input features. Whereas, even a sophisticated

predictor underperforms on account of noisy features.

Generally, there are two prominent ways to select the most informative subset of features

from noisy data. One way is to apply feature selection that removes irrelevant and redundant

features and retain the most informative features from original subset of features. While other

way is to apply dimensionality reduction approaches that transform original feature space

into reduced feature space by eliminating redundant correlations of features. Proposed GFGPA

framework facilitates a variety of feature selection and dimensionality reduction algorithms that

are summarized in section 2.1.2.

Using the optimized statistical vectors, the GFGPA framework supports the training and

evaluation of a variety of existing and novel predictors for accurate genetic sequence analysis,

details of which are summarized in section 2.1.3. With an aim to most effectively quantify the

performance of predictors, the comprehensive performance evaluation metrics used by proposed

GFGPA framework for different genetic sequence analysis tasks are briefly described in section

2.1.4.

2.1.1 Feature Representation Module

In comparison to existing frameworks, a high-level contribution at this particular stage is that it

contains novel sequence encoder that is briefly described in chapter 3. Furthermore, following

the success of word embedding methods in NLP, the author incorporated 11 diverse types of word

embedding generation methods in the developed framework, these methods are not available in

any of the existing framework. A comprehensive working paradigm of word embedding methods

is described in chapters 7 and 8. Similarly, in NLP domain from information retrieval task, author

adopted a well-known method okapi-BM25 for k-mers representation. This method is used for

in house DFKI industrial project in the development of an application for antibody sequence

performance prediction. Overall, sequence representation module contains 35 generic encoders

that can be utilized to generate statistical representation of all three types of sequences DNA,

RNA and protein. Furthermore, it facilitates 29, 23 and 64 encoding methods for specifically

DNA, RNA and protein sequences, respectively. A comprehensive details about categories and

names of generic encoders are illustrated in Table 2.1, DNA and RNA based encoding methods

are summarized in Table 2.2 and encoding methods for protein sequences are summarized in

Table 2.3.

Most of the DNA/RNA and protein sequence encoding methods make use of pre-computed

physicochemical properties. In these encoding methods, it is important to find which particular
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set of properties should be used to generate statistical representations of raw sequences. For

instance, AAINDEX encoder has 512 physciochemical properties, existing frameworks require

manual input of names for a particular set of properties out of 512 which should be used to

generate statistical representation of protein sequences. Manual selection of different subsets of

properties is a tedious and time consuming task.

To fully utilize the potential of physicochemical properties based encoders, GFGPA framework

facilitates a strategy similar to forward feature selection method, with an aim to find out the

most appropriate physicochemical properties inside the encoders. For instance, from 3 properties

of APAAC encoder, first it generates statistical vectors by using one property and compute

performance of classifier. Similarly, it repeats the same process for the second and third properties

in order to record the performance of classifier. On the basis of higher performance, it takes the

property specific statistical vectors and combine them with the second best performing property

vectors. This is followed by the evaluation on the basis of combined features, if this does not yield

any performance gains then the iterative process stops and individual property based statistical

vectors with the highest performance are selected. In contrast, if there are any performance gains

with such combinations then the combined encodings are retained and utilized further. A more

comprehensive detail about property selection method is provided in chapter 9.

Apart from property selection, a similar working paradigm is also developed to reap the

benefits of diverse types of sequence encoding methods. Proposed GFGPA framework provides

option to run different encoders in a batch manner, where from the batch of encoders it first

generates and evaluates the encodings of each encoder one by one. Further, it combines the

statistical vectors of different encoders similar to property selection criterion.

2.1.2 Feature Engineering Module

In the domain of feature engineering, researchers have always been striving to develop innovative

techniques for selecting relevant and more appropriate features. In this marathon, a variety

of feature selection and dimensionality reduction approaches have been proposed. This section

briefly describes different feature selection and dimensionality reduction approaches that GFGPA

framework facilitates to scientific community.

2.1.2.1 Feature Selection

The working paradigm of feature selection approaches can be categorized into three main classes:

filter [163], wrapper [221] and embedded [236]. To precisely analyze which feature selection

approach is more appropriate to find optimal subset of features for a particular Genomics

and Proteomics sequence analysis task, the proposed framework facilitates the top performing

approaches from each of the three categories. The filter based feature selection techniques filter

the corpus features based on their general properties, such as correlation with the dependent

variable. It is considered the fastest and the best approach when the corpus has a large number
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Table 2.1: Generic encoding methods for DNA, RNA and protein sequences

Descriptor Category DNA/RNA/protein Encoding Method Reference

Nucleic/Amino Acid composition Basic Kmer (Kmer) [42, 245]

Tri-Peptide Composition (TPC) [42, 350]

Enhanced Amino Acid Composition (EAAC) [87, 472]

Accumulated Nucleotide Frequency (ANF) [79]

Pseudo nucleic/amino acid composition Pseudo KNC (PseudoKNC) [269, 270]

Residue composition Binary (binary) [84, 88] [84, 88]

Nucleic/Amino acid Mapping Electron-ion interaction pseudopotentials value(MappingClass_eiip_fourier) [237, 307]

MappingClass_integer_fourier (MappingClass_integer_fourier) [237, 307]

Nucleic/Amino acid Distribution Term Frequency Inverse Document Frequency (TFIDF) [164, 336]

Okapi-BM25 [419]

Gap based Mono Mono K-Gap (monoMonoKGap) [303]

Mono Di K-Gap (monoDiKGap) [303]

Mono Tri K-Gap (monoTriKGap) [303]

Di Mono K-Gap (diMonoKGap) [303]

Di Di K-Gap (diDiKGap) [303]

Di Tri K-Gap (diTriKGap) [303]

Tri Mono K-Gap (triMonoKGap) [303]

Tri Di K-gap (triDiKGap) [303]

Composition of k-spaced Nucleic Acid Pairs (CKSNAP) [87]

Graph Representation Complex Network (complex_network) [49, 50]

Enhanced Complex Network (enhanced_complex_network) [49, 50]

K-mer embeddings Word2Vec [94]

FastText [57, 137]

DeepWalk [328]

Node2Vec [157]

Graph Auto Encoder (GAE) [220]

Graph Factorization (GF) [153]

Graph Representation (GraRep) [63]

Large scale Information Network Embedding (LINE) [382]

High-Order Proximity preserved Embedding (HOPE) [476]

Laplacian [298]

Structural Deep Network Embedding (SDNE) [401]

Singular Value Decomposition (SVD) [3]

Similarity based Position-specific trinucleotide propensity based on single-strand (PSTNPss) [98, 173]

Position-specific trinucleotide propensity based on double-strand (PSTNPds) [98, 173]

of features. From filter based feature selection methods, proposed GFGPA framework contains

5 different methods: pearson correlation [163], mutual information [163], uni-variate [163],

constant [236], quasi constant [236] and duplicate feature removal [163] encoders.

Uni-variate [163], constant [236] and quasi constant [236] feature selection methods eliminate

duplicate features. Pearson correlation retains subset of features that are significantly corre-

lated with the target but not with each other. The mutual information technique measures the
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Table 2.2: Encoding methods for DNA and RNA sequences

Descriptor Category DNA/RNA Encoding Method Sequence Type Reference

Nucleic acid composition Nucleotide chemical property (NCP) DNA/RNA [79]

Reverse compliment kmer (RCKmer) DNA [162, 313]

Pseudo nucleic acid composition Pseudo dinucleotide composition (PseDNC) DNA/RNA [269, 270]

Pseudo k-tupler composition (PseKNC) DNA/RNA [269, 270]

Parallel correlation pseudo dinucleotide composition (PCPseDNC) DNA/RNA [269, 270]

Parallel correlation pseudo trinucleotide composition (PCPseTNC) DNA [269, 270]

Series correlation pseudo dinucleotide composition (SCPseDNC) DNA/RNA [269, 270]

Series correlation pseudo trinucleotide composition (SCPseTNC) DNA [269, 270]

Autocorrelation and cross-covariance Dinucleotide-based auto covariance (DAC) DNA/RNA [111, 161, 269]

Dinucleotide-based cross covariance (DCC) DNA/RNA [111, 161, 269]

Dinucleotide-based auto-cross covariance (DACC) DNA/RNA [111, 161, 269]

Trinucleotide-based auto covariance (TAC) DNA [269]

Trinucleotide-based cross covariance (TCC) DNA [269]

Trinucleotide-based auto-cross covariance (TACC) DNA [269]

Nucleic acid Mapping Electron-ion interaction pseudopotentials of Trinucleotide (PseEIIP) DNA/RNA [237, 307]

MappingClass_binary_fourier DNA/RNA [49, 50]

MappingClass_zcurve_fourier DNA/RNA [49, 50]

MappingClass_real_fourier DNA/RNA [49, 50]

MappingClass_complex_number DNA/RNA [49, 50]

MappingClass_atomic_number DNA/RNA [49, 50]

Chaos theory classifical_chaos DNA/RNA [49, 50, 303]

frequency_chaos DNA/RNA [49, 50, 303]

Z-curve zCurve DNA/RNA [144] [303]

Nucleic acid Distribution gcContent DNA/RNA [49, 50, 303]

cumulativeSkew DNA/RNA [49, 50, 303]

atgcRatio DNA/RNA [49, 50, 303]

spectrum DNA/RNA [49, 50]

orf DNA/RNA [49, 50]

fickett_score DNA/RNA [49, 50]

reduction in uncertainty in one variable ‘X’ when the variable ‘Y’ is known. Mutual information

assigns a score to each feature by utilizing information of input and output variables. Higher

mutual information values imply that the target ‘Y’ has a low uncertainty given the predictor ‘X’.

Univariate feature selection (ANOVA) selects an informative subset of features by making use of

the Gaussian distribution to compute linear connections between the input and output variables.

Unlike filter based methods, wrapper based methods make use of predictors to select the

important features. Although this approach is computationally expensive, however, it is con-

sidered better than filter-based feature selection methods in terms of performance. Proposed

framework supports the most commonly used wrapper techniques based on sequential feature

selection methods, which include forward feature selection, backward feature selection, recursive

feature selection and exhaustive feature selection. These approaches iteratively choose the most

informative subset of features from the feature space. Forward feature selection starts with the
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Table 2.3: Encoding methods for protein sequences

Descriptor Category Protein Encoding Method Reference

Amino acid composition Adaptive skip dipeptide composition (Protein_ASDC) [416]

Kmer dipeptides composition (Protein_DPC) [42, 350]

Dipeptide deviation from expected mean (Protein_DDE) [350]

PseAAC of distance-pairs and reduced alphabet (Protein_DistancePair) [45, 272]

Conjoint triad (Ctriad) [362]

Conjoint k-spaced Triad (KSCTriad) [87, 472]

Enhanced amino acid composition (EAAC) [87, 472]

Weighted Sparse Representation based Classification Global (WSRC_global) [223]

Weighted Sparse Representation based Classification Local (WSRC_local) [223]

Weighted Sparse Representation based Classification Local+Global (WSRC_local_global) [223]

Grouped amino acid composition Enhanced Grouped amino acid composition (EGAAC) [87, 472]

Grouped amino acid composition (GAAC) [87, 472]

Grouped tripeptide composition (GTPC) [87, 472]

Grouped dipeptide composition (Protein_GDPC) [87, 472]

Composition of k-spaced amino acid group pairs (CKSAAGP) [87, 472]

Pseudo-amino acid composition Pseudo-amino acid composition (PAAC) [92, 233]

Amphiphilic PAAC (APAAC) [92, 233]

Pseudo K-tuple reduced amino acids composition (PseKRAAC type 1 to type 16) [483]

Residue composition Protein_binary_6bit [45, 406]

Protein_binary_5bit_type_1 [45, 420]

Protein_binary_5bit_type_2 [45, 420]

Protein_binary_3bit_type_1 [416]

Protein_binary_3bit_type_2 [416]

Protein_binary_3bit_type_3 [416]

Protein_binary_3bit_type_4 [416]

Protein_binary_3bit_type_5 [416]

Protein_binary_3bit_type_6 [416]

Protein_binary_3bit_type_7 [416]

Overlapping property features (Protein_OPF_10bit) [416]

Overlapping property features (Protein_OPF_7bit_type_1) [416]

Overlapping property features (Protein_OPF_7bit_type_2) [416]

Overlapping property features (Protein_OPF_7bit_type_3) [416]

Learn from alignments (Protein_AESNN3) [45, 262]

BLOSUM matrix BLOSUM62 (BLOSUM62) [248]

Z-Scale index ZSCALE (ZSCALE) [83]

Physicochemical property AAINDEX (AAINDEX) [394]

Composition (CTDC) [59, 60, 117, 118, 165]

Transition (CTDT) [59, 60, 117, 118, 165]

Distribution (CTDD) [59, 60, 117, 118, 165]

Quasi-sequence-order Sequence-order-coupling number (SOCNumber) [91, 93, 356]

Quasi-sequence-order descriptors (QSOrder) [91, 93, 356]

Autocorrelation Moran [134, 264]

Geary [367]

NMBroto [184]

auto_covariance [111, 161, 269]

auto_cross_covariance [111, 161, 269]

bi_auto_covariance [111, 161, 269]

feature that performs best against the target. Then we select a second feature in such a manner

that when it is paired with the first, both yields the best results. This procedure is repeated until

the predetermined criterion is satisfied [397].

Backward feature selection, also known as backward elimination, operates in the exact
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Table 2.4: Feature selection and dimensionality reduction methods in the proposed GFGPA
framework

Method Algorithm Reference

Wrapper Based Feature Selection Approaches Forward Feature Selection [221]

Backward Feature selection [221]

Recursive feature selection [221]

Exhaustive Feature Selection [221]

Embedded Feature Selection Approaches Lassso [236]

Redige [236]

Tree based Feature Selection Approaches Random Forest based Feature Importance [295]

Decision Tree based Feature Importance [295]

Gradient Boost based Feature Importance [295]

Xtreame Gradient Boost based Feature Importance [295]

Filter Based Feature Selection Approaches Mutual Information [163, 163]

Univariate Feature selection [163]

Pearson [163]

constant Feature [236]

Quasi constant Features [236]

Duplicate Features [163]

Dimensionality Reduction K-means [167]

T-SNE [395]

Principal Component Analysis (PCA) [187]

Kernel PCA [358]

Locally Linear Embedding [352]

Singular Value Decomposition (SVD) [166]

Non-Negative Matrix Factorization (NMF) [100]

Independent Component Analysis (ICA) [247]

Multi-Dimensional Scaling (MDS) [207]

Factor Analysis [346]

Feature Agglomeration [359]

Gaussian Random Projection [101]

Sparse Random Projection [254]

Auto Encoder Auto Encoder [411]

opposite way as forward feature selection. This technique starts with all the input features and

builds a model around them. At each iteration, it removes least performing feature from the

feature set. Recursive Feature Elimination (RFE) employs a greedy search method to find the

best feature subset. It builds models iteratively, identifying which features perform best or worse
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in each iteration. It continues to develop models based on the features that are left in the feature

space until all of them have been examined. The features are then graded according to how likely

they are to be removed.

In embedded feature selection methods, the feature selection process is included in the

learning or model building phase, also known as the training phase. These approaches require

less time to train and are less prone to model over-fitting as compared to wrapper feature selection

methods. Proposed framework supports Lasso and Ridge embedded paradigms. Lasso paradigm

eliminates the feature to alleviate over-fitting in a linear classifier, whereas Ridge mainly reduces

the overall impact of features which are not useful in making accurate predictions of target class

labels. Besides these two paradigms, embedded feature selection paradigms based on Random

Forest, Decision Tree, Gradient Boost and Extreme Gradient Boost are provided where the

importance of the features is computed in terms of the purity of subset of dataset on which

individual tree operates.

2.1.2.2 Dimensionality Reduction

The aim of dimensionality reduction procedures is to transform original p-dimensional feature

space into the lower k-dimensional feature subspace. Proposed GFGPA framework facilitates

14 dimensionality reduction algorithms shown in Table ??, which can be segregated into two

different categories: linear and nonlinear.

Linear dimensionality reduction methods including non-negative Matrix Factorization (NMF),

Independent Component Analysis (ICA), Principal Component Analysis (PCA), Truncated SVD,

Factor Analysis (FA) and linear discriminative analysis (LDA) transform high-dimensional

feature space into a low-dimensional feature space as a linear combination of the original

variables. The low-dimensional feature space retains the intrinsic structure of statistical sequence

vectors such that the least numbers of parameters manage to capture the essential sequence

features. NMF decomposes statistical feature space into two non-negative matrices known as

NMF matrix and coefficients matrix and original statistical feature space is transformed into

reduced feature space through additive combination of vectors present in underlay matrix. ICA

also generates reduced feature space by separating original statistical feature space into additive

components. PCA converts original statistical vectors into n principal components that represent

the most relevant information. Similarly, Truncated SVD factorizes the original statistical vectors

into number of columns equal to truncation to retain only a few largest singular values, Factor

Analysis finds factor to describe the covariance of correlated observed variables. LDA focuses on

low dimensional feature space with maximum separability between the groups.

Contrary to linear methods, nonlinear methods are applied to original statistical vectors that

contain a nonlinear relationship. These methods preserve the global as well as local features

of high-dimensional feature space in low-dimensional feature space. Nonlinear dimensionality

reduction methods including K-means, t-SNE, Kernel PCA, Isometric Mapping (Isomap) and
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multi-dimensional scaling (MDS) preserve the global features of original statistical vectors of

sequences. K-means computes the cluster centers and sets the number of clusters equal to target

dimensions of statistical feature space. The new statistical feature space is generated in which

new features are actually the distances of each point with respect to each cluster center. The t-

SNE algorithm constructs a probability distribution on the feature pairs in the higher dimensions

in such a manner that similar features are assigned higher probabilities and dissimilar features

are assigned lower probabilities. Kernel PCA projects the nonlinear inseparable statistical vectors

onto a higher dimensional feature space where it becomes linearly separable. Isomap generates

the neighborhood networks and preserves the geodesic distance in low-dimensional feature space.

Similar to Isomap, MDS measures the similarities and dissimilarities between the observed

variables.

Instead of preserving global features, some methods try to preserve only geometrical proper-

ties of local features of nonlinear original statistical vectors such that locally linear embedding

(LLE), Hessian LLE and Laplacian eigenmap. These methods preserve the local features in

low-dimension statistical vectors assuming that only the local distances are reliable in high-

dimensional statistical vectors. LLE reduces the original feature space to lower embedding while

preserving the embedding of original sequences. Laplacian eigenmap maps the embedding corre-

sponding to nearest neighbor and represents the graph with its Laplacian matrix. Hessian LLE

is an extension of LLE that first minimizes the curviness of high dimensional original statistical

vectors and then transfers to low dimensional feature space to make low dimension feature

space locally isometric. Feature Agglomeration is another nonlinear dimensionality reduction

approach which groups various components that behave similarly using hierarchical clustering.

This behavior can be achieved by clustering in the feature direction or clustering transposed

feature space. Gaussian Random Projection reduces the dimensions of high-dimensional feature

space by projecting the original input’s dimensional space onto a randomly generated matrix.

Sparse Random Projection transforms feature space to sparse random matrices. These matrices

are the best alternative to the dense Gaussian random projection matrices as they generate

similar quality feature space in less memory and allow faster computation on the new feature

space.

AutoEncoder is another very efficient dimensionality reduction approach based on artificial

neural network. It is based on encoder-decoder paradigm where encoder compresses the original

feature space into lower dimensions using bottleneck layers and decoder produces the original

feature space from compressed representation. By reducing the reconstruction loss, an effective

compressed representation of statistical feature space is learned. A brief description about

autoencoder base dimensionality reduction is provided in chapter 6.
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2.1.3 Predictor Construction Module

This section summarizes machine and deep learning based predictors that proposed framework

facilitates.

2.1.3.1 Traditional Machine Learning Classifiers and Regressors

Primarily, biomedical sequence classification approaches can be categorized into two main types:

multi-class and multi-label classification. To perform binary-class or multi-class classification,

proposed GFGPA frameworks facilitate 12 widely used machine learning classifiers.

Naive Bayes (NB) [413] is a probabilistic/Bayesian generative model that assigns class labels

based on subsequent conditional probabilities against a certain hypothesis (presence/absence).

As it is based on the Bayes theorem, it assumes independence among the features from each

other, whereas the outcome of NB is the class with maximum probability. Naive Bayes by default

considers Gaussian distribution, however, multinomial Naive Bayes considers multinomial

distribution for the features which is more appropriate to analyze the count of features in corpus

sequences. Logistic regression models the associations of features with target classes and predicts

the probabilities of target classes using sigmoid function. Gaussian Process classifier can be

considered a generalization of Gaussian probability distribution which predicts target class on

the basis of probability values of features.

The support vector machine (SVM) is a discriminative classifier which finds the appropriate

hyperplanes that isolate two classes by maximizing the margin. For nonlinear problems, it uses

kernel trick that transforms feature space of nonlinear sequence samples to linearly separable

feature space [58]. K-Nearest Neighbors (KNN) is the simplest distance based machine learning

classifier that assumes that similar sequence samples lie in close proximity to each other [227].

For a sequence sample and k number of neighbors, distance is computed using different metrics,

e.g., Euclidean distance, Hamming distance and based on the distance, a class is assigned to a

sequence sample.

Decision Tree (DT) [206] classifier transforms sequence samples into tree based structure.

Initially, a root node is selected on the basis of the feature having a lower Gini impurity or

the maximum information gain [206, 380]. Then, a split of the sequence samples is performed

based on the different categories present within that specific feature. This process is repeated

until the nodes reach a stage where they only contain the sequence samples that belong to only

one class. In the end, a decision is made by iterating over the nodes of the tree with specific

conditions until it does not reach the terminal node. A random forest (RF) classifier incorporates

the decision tree [140] as a base model built on bootstrap aggregation (bagging) and an averaged

or voted decision is constructed from a forest of decision trees. Gradient boosting classifier

mainly combines multiple weak classifiers to construct a strong classifier. Bagging classifier is

a meta-classifier which fits the base classifiers on randomly selected subsets of sequences and

afterward aggregates their predictions to formulate a final prediction. Extra trees classifier (ETC)
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[149] is the extension of the ensembling method RF. In ETC, the concept is to introduce more

randomness when creating subsets of sequence samples; ETC abandons bootstrapping (Bagging)

and enhances the model’s accuracy. Relatively, Adaptive Boosting (AdaBoost) [140] classifier is

established on the idea of training multiple weak classifiers to create a strong classifier. Unlike

other classifiers, AdaBoost uses all training sequence samples to train a classifier. The dataset

is updated by assigning higher weights to the misclassified samples. A new classifier is trained

on the updated dataset and the process is replicated N times; as a result, a strong predictor is

constituted.

To support regression tasks, proposed framework facilitates 11 machine learning regressors.

Working of most machine learning regressors is similar to their classifiers counterparts. Few re-

gressors (Elastic-Net, Stochastic Gradient Descent ) apply penalties and regularization strategies

to obtain optimal model weights.

The multi-label classification approaches can be categorized into two main categories namely

problem transformation [53] and algorithm adaptation [461]. Problem transformation based

classification is a two-stage process [368, 390]. In first stage, multi-label problem is converted

into a binary or multi-class problem [368, 387, 390]. Then in second stage, traditional binary or

multi-class classifiers are used to perform final classification [368]. The primary objective of data

transformation approaches is to transform the multi-label problem into a binary or multi-class

problem without losing the label-to-label and sample-to-label relations [368]. Proposed GFGPA

facilitates 3 different most widely used problem transformation methods, namely Label Powerset

[391], Binary Relevance [53] and Classifier Chains [340] which have shown great effectiveness in

different Natural Language Processing and Bioinformatics tasks.

With the passage of time, researchers have modified several binary or multi-class classifiers

such as MLkNN [461] and BRkNN [370], both are extended from kNN classifier. Similarly, RF-

Boost [5], MP-Boost [125] and MH-boost [355] are extended forms of AdaBoost [140], MLTSVM

[81] is a modified form of SVM classifier [81], MLARAM [38] is an extension of Adaptive Res-

onance Associative Map neural-fuzzy networks. Also, several tree based, nearest neighbour

based probabilistic distribution based machine learning classifiers are modified to perform multi-

label classification. Proposed framework facilitates 15 most widely used algorithm adaptation

approaches to support different multi-label sequence analysis tasks.

2.1.3.2 Deep Learning based Predictors

In the marathon of developing robust and precise deep learning based predictors for diverse

Genomics and Proteomics sequence analysis tasks, we are witnessing the explosion of deep

learning approaches , core architectures of which are mainly formed by deep feed forward neural

networks [256], convolutional neural networks [256], recurrent neural networks [299] and hybrid

networks that make use of both CNN and RNN layers.

Proposed GFGPA framework facilitates different deep learning based predictors for multi-
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Table 2.5: Classifiers and regressors available in proposed GFGPA framework

Predictor category Algorithm Classifier Regressor Reference

Machine Learning Classifiers/Regressors (Multi-class/Binary) Random Forest ✓ ✓ [140]

Support vector ✓ ✓ [81]

Naïve Bayes ✓ - [413]

Logistic Regression ✓ ✓ [422]

K Neighbors ✓ ✓ [227]

Gaussian Process ✓ - [279]

Gradient Boosting ✓ ✓ [279]

Extra Trees ✓ - [149]

Decision Tree ✓ ✓ [206]

Bagging ✓ - [344]

AdaBoost ✓ - [140]

Multinomial NB ✓ - [156]

Elastic Net - ✓ [156]

Linear Regression - ✓ [156]

Huber - ✓ [156]

Stochastic Gradient Descent (SGD) - ✓ [344]

Extreme Gradient Boosting (XGB) - ✓ [344]

Data Transformation Approaches (Multi-Label Classifiers) Binary Relevance [53, 53]

Classifier Chain [53, 340]

Label Powerset [53, 391]

Algorithm Adaptation Approaches (Multi-Label Classifiers) Random Forest Classifier [461]

Decision Tree Classifier [461]

Extra Tree Classifier [461]

K Neighbors Classifier [461]

Multi-Layer perceptron (MLP) Classifier [461]

Radius Neighbors Classifier [461]

Logistic Regression [461]

RidgeClassifierCV [461]

BRkNNa Classifier [370]

GridSearchCV [58] [338]

GridSearchCV_MLKNN [461]

Linear SVC [58]

Multilabel k Nearest Neighbours (MLkNN) [461]

MLARAM [38]

MLTSVM [81]

Deep Learning Algorithms Multi-Layer Perceptron (MLP) ✓ ✓ [381, 461]

Dense-Net [19]

Res-NET [28]

CNN [256]

LSTM [299]

LSTM-CNN [200]

CNN with attention [200] [28]

LSTM with attention [200] [28]

LSTM-CNN with attention [200] [28]

class and multi-label Genomics and Proteomics sequence classification which can be classified as

modified deep learning predictors and novel deep learning predictors. The focus of modified deep

learning predictors is to evaluate the efficacy of architectures that are built by inspiring from
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those architectures which have shown great performance in diverse tasks of various domains. In

this regard, the GFGPA framework facilitates deep predictors based on DenseNet and ResNet

architectures, which utilize different strategies to more effectively propagate the error signal to

earlier layers. Final classification layer provides implicit supervision to earlier layers which helps

the model to converge to true parameters for accurate prediction.

Furthermore, the GFGPA framework facilitates novel deep learning predictors solely based on

multi-layer perceptron, different number of Long-Short Term Memory (LSTM) layers, LSTM and

attention layers, convolutional layers, convolutional and attention layers, LSTM and convolutional

layers, as well as LSTM, convolutional and attention layers.

With an aim to optimize the decision making of deep learning based predictors and accelerate

training, GFPGA framework facilitates multiple neural strategies such as combination of different

pooling methods to retain comprehensive discriminative features, normalization to prevent

exploding and vanishing gradient issues, different kinds of dropout to avoid over-fitting, learning

rate decay to rapidly reduce the prediction error and converge the model parameters to true

parameters. A brief description of proposed deep learning predictors is provided in chapters 4, 5,

6, 7 and 8.

2.1.4 Performance Evaluation Module

To perform a large-scale genomics (DNA, RNA) and Proteomics (protein) sequence analysis for

multiple species, the proposed GFGPA framework is capable of performing various types of tasks

that fall under the hood of classification and regression. However, unlike Natural Language

Processing, biomedical domain tasks are extremely sensitive as false positive or false negative

predictions can cost millions of lives. In order to evaluate the integrity, generalizability and

applicability of any application developed through the proposed GFGPA framework, GFGPA

framework facilitates comprehensive performance evaluation metrics for different classification

and regression tasks, an effective visualization of which helps to present the key findings in the

most efficient manner. A brief description of evaluation measures facilitated by the proposed

GFGPA framework is provided in following subsections.

2.1.4.1 Multi-Class Classification Evaluation Measures

In multi-class classification tasks, each corpus sequence belongs to only one particular class label

at a time. Hence, the predicted class label will fall into one of the four categories true positive, true

negative, false positive and false negative that are shown in Table 2.6. True Positive illustrates

the count of correctly predicted positive class values, e.g., if both the actual and predicted class

labels are yes then it will be considered as true prediction of positive class label. Similarly,

True Negative is accurate prediction of negative class labels. False Positive denotes the count of

wrongly predicted class labels, i.e., when actual class is ‘no’ but model predicts ‘yes’. Likewise,

False Negative is wrong prediction of ‘no’ class when actual class is ‘yes’.
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Table 2.6: Confusion matrix for binary classification

Predicted Class

Actual Class
Class=yes Class=no

Class=yes True Positive False Negative
Class=no False Positive True Negative

Accuracy (ACC) [185] determines the proportion of correct predictions with respect to total

predictions. Precision (PR) measures the percentage of the complete true positive matches from

all true positive matches. Specificity (SP) [185] also known as true negative rate (TNR) measures

the correct predictions of negative class sequences. It is the ratio between true negative class

predictions and overall predictions of negative class. Similarly, Recall/Sensitivity [185] calculates

performance scores by taking into account correct predictions of positive class sequences. MCC

[185] measures the correlation of the true classes with the predicted classes by taking all four

true positives, false positives, true negatives and false negatives into account. F1-score measures

a harmonic mean of precision and sensitivity. Mathematical expressions of the aforementioned

evaluation measures are given as follows:

f (x)=



Accuracy (ACC)= (TP +TN )/(TP +TN +FP +FN )

Precision (PR)= TP /(TP +FP )

specificity (SP)= TN /(TN +FP )

Recall/Sensitivity (SN)= TP /(TP +FN )

False Positive Rate (FPR)= FP /(TN +FP )

MCC= TP ×TN −FP ×FN /Q

Q=
√

(TP +FN )(TP +FP )(TN +FP )(TN +FN )

F1-score= 2∗PR∗SN/(PR+SN)

(2.1)

In above mathematical expressions of different evaluation measures, TP and TN denote the

true predictions related to the positive and negative classes. While, FP and FN indicate the false

predictions related to the positive and negative class, respectively.

Besides these, two probability curve based evaluation measures are used in proposed frame-

work. Area under receiver operating characteristics (AUROC) [185] measures degree of sepa-

rability of the model by analyzing both true positive rate (TPR) and false positive rate (FPR)

at different thresholds. Area under precision recall curve (AUPRC) measures model ability to

handle imbalance datasets by analyzing precision and sensitivity at different thresholds where

the goal is to have higher precision and sensitivity.
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2.1.4.2 Multi-Label Classification Evaluation Measures

Performance evaluation of multi-label predictors is difficult as compared to performance evalua-

tion of binary or multi-class predictors [423]. In multi-label classification, a sequence can have

two or more labels at the same time, so there is a possibility that model predicts only one label

correctly, both labels correctly or both labels incorrectly [423]. Due to partial corrections, it is

hard to quantify the performance of a multi-label predictor [423]. Over the time, researchers have

proposed different evaluation measures to compute the performance of multi-label classifiers.

Each evaluation measure has its own pros and cons. Most of the existing evaluation measures

fall under the two different categories namely correct performance prediction computers and loss

calculators. Both types of measures are briefly described below.

Accuracy [423] assesses the performance of classifier by computing the ratio between actual

and predicted labels. Precision computes performance by closely monitoring actual true labels

from the set of labels that classifier predicted as true. Recall measures how many labels are

correctly predicted from actual labels. F1-score is a harmonic mean between precision and recall.

The higher the value of accuracy, precision, recall and f1 the better will be the performance of a

classifier. Average Precision evaluates the performance of predictor by summarizing the precision

recall curve in a single value representing the average of all precisions.

Hamming loss measures how many labels are wrongly predicted and how many labels remain

unpredicted. One error [423] monitors the performance of a classifier by computing number of

sequences in which top-ranked labels of the classifier are different from the set of actual labels

associated with those sequences. Coverage measures how many steps, on average, are needed to

move down the ranked label list to cover all actual labels of a sequence. Ranking Loss measures

how many times the wrong label is ranked above the actual label. Smaller values of these ranking

metrics represent better performance of a classifier.

f (x)=



Recall = 1
M

∑M
i=1

|A i∧Pi |
|A i |

Accuracy= 1
M

∑M
i=1

∣∣∣ A i∧Pi
A i∨Pi

∣∣∣
F1−Score = 1

M
∑M

i=1
2∗|Pre(ni)∗Rec(ni)|
|Pre(ni)+Rec(ni)|

Precision = 1
M

∑M
i=1

|A i∧Pi |
|Pi |

RankingLoss = 1
M ∗∑M−1

o=1
1

∥A i∥o∗(nlabels−∥A i∥o)

HammingLoss = 1
ML

∑M
i=1

∑L
j=1

[
I(A i

j ̸= Pi
j)
]

AveragePrecision = 1
|M|

∑|M|
i=1

∑
yϵYi

|{y′| frank(xi ,y′)≤ frank(xi ,y),y′ϵYi}|
frank(xi ,y)

Coverage = 1
M ∗∑M−1

o=1 max j : ai j=1ranki j

OneError = 1
M

∑M
i=1[[argmaxF(ni) ̸∈ A+

i ]]

ranki j = |{l : f̂ il ≥ f̂ i j}|

(2.2)

In these equations 2.2, M denotes total number of sequences, ni represents ith sequence from
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m sequences, A i represents actual class label and Pi denotes predicted label of ni sequence, L

represents length of sequence, jth represents the class index, ∨ represents logical OR operator

and ∧ represents logical AND operator.

In addition, proposed GFGPA framework supports AUROC and AUPRC evaluation measures

to quantify the performance of a multi-label classifier.

2.1.4.3 Regression Evaluation Measures

Proposed GFGPA framework contains 4 different evaluation measures (mean bias error (MBE),

mean absolute error (MAE), root mean square error (RMSE) and r-squared score (R2)) [52]

to carryout performance analysis of any regression related model. To provide an intuitive un-

derstanding for readers, evaluation metrics along with mathematical expressions are briefly

described below.

f (x)=



Mean Absolute Error (MAE)= I/N
∑N

i=1 |(yp,i )− (ya,i )|

Mean Bias Error (MBE)= I/N
∑N

i=1(yp,i )− (ya,i )

Root Mean Squared Error (RMSE)=
√

I/N
∑N

i=1((yp,i )− (ya,i ))2

R2 score (R2)= 1−
∑N

i=1(yp,i−ya,i)2∑N
i=1(ya,i−avg(ya))2

(2.3)

Where N expresses the number of sequences, yp is the predicted value through machine

learning or deep learning regressors, ya is the measured value through pyranometer of sequence

“i" and avg(ya) is average of all pyranometer calculated values.

2.2 A Look Back & into Future: Functional Scope of the Existing
and Proposed Generic Framework

To investigate the potential of proposed GFGPA framework, Table 2.7 performs a comprehensive

functional scope comparison of the proposed GFGPA framework with five most recent generic

sequence analysis frameworks under the hood of 17 key functionalities and criteria.

With an aim to generate statistical representations of DNA, RNA and protein sequences by

extracting distribution of nucleic and amino acids, as compared to the most recent frameworks

iLeanPlus [85] and MathFeature [51], proposed framework provides 71 more sequence encoding

methods. Considering, that not all features contribute equally to make accurate genetic sequence

analysis, another distinguishing functionality of the GFGPA framework is that it provides four

times more algorithms to perform feature engineering. It enables the researchers to deeply

explore 30 different algorithms related to two different paradigms namely feature selection and

dimensionality reduction to optimize the feature space for different sequence analysis tasks.
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(PROTEIN) SEQUENCE ANALYSIS

Table 2.7: A comprehensive functional scope analysis of proposed GFGPA and existing frameworks

Category iFeature [86] iLearn [87] BioSeq-Analysis2.0 [45] MathFeature [51] iLearnPlus iLeanPlus [85] Proposed GFGPA Framework

Number of feature sets for DNA sequence 0 26 36 38 46 64

Number of feature sets for RNA sequence 0 18 27 38 35 58

Number of feature sets for protein sequence 53 53 53 25 66 99

Number of clustering algorithms 5 6 0 - 10 -

Number of feature selection algorithms 4 5 2 - 5 16

Number of feature normalization algorithms 0 2 0 - 2 2

Number of dimension reduction algorithms 3 3 0 - 3 14

Number of machine-learning Classifiers 0 5 5 4 21 23

Number of machine-learning Regressors - - - - - 12

Number of machine-learning Multilabel Classifiers - - - - - 26

Number of cross-validation methods 0 2 3 2 2 4

Number of evaluation metrics 0 8 5 4 8 14

Sequence Interaction Analysis - - - - - Yes

Can build machine-learning pipeline No Yes No Yes Yes Yes

Can perform evaluation of the feature sets/machine

learning models in a batch manner
No Yes No No Yes Yes

Case Studies and Species Evaluation Limited Limited Limited Limited Limited Comprehensive

Results Visualization Limited Limited Limited Limited Limited Comprehensive

Contrary to existing frameworks that only support two sequence analysis tasks namely cluster-

ing and binary/multi-class classification, proposed GFGPA framework supports four different

sequence analysis tasks including regression, clustering, multi-class classification and multi-label

classification. Furthermore, it allows researchers to assess the true performance potential of

pipelines by facilitating 4 different cross-validations methods and 16 distinct evaluation metrics

which are almost twice the number of evaluation methods provided by existing frameworks. The

GFGPA is the only framework that provides 5 web applications based on pre-trained AI models

related to multiple species and facilitates predictions on the go.
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DNA MODIFICATION PREDICTION

DNA modification is a core feature in the eukaryotic and prokaryotic genomes for the control

of gene expression, chromosome inactivation, replication and cell differentiation [301]. Various

DNA modifications occur due to the addition of the methyl group into two different nucleotide

bases, Cytosine (C) and Adenine (A). The addition of methyl groups at different positions in

cytosine produces different modifications such as N4-methylcytosine (4mc), 5-methylcytosine

(5mc), 3-methylcytosine (3mc), 5-hydroxymethylcytosine (5hmc), 5-formylcytosine (5fc) and

5-carboxylcytosine (5caC) [277]. Similarly, the addition of methyl in Adenine produces N6-

methyladenine (6mA) modification. Among these different modifications, 6ma, 4mc and 5hmc are

considered important modifications due to their critical roles in the mammalian and prokaryotic

genome [321]. The 4mc and 6ma modifications are common in bacterial genomes [73, 255, 321],

while the 5hmc modification is prevalent in the eukaryotic genome. In the prokaryotic genome,

4mc and 6ma modifications regulate the correction of DNA replication errors and gene expression

as well as defend the DNA from the attacks of foreign DNA of viruses and bacteria [73, 212].

The modified state of DNA (addition of methyl in cytosine or adenine) affects transcription

because of its hypomethylation or hypermethylation state. Hypomethylation is an unmethylated

state of DNA where the DNA is accessible and available for transcription. Whereas, in the state

of methylated DNA called hypermethylation, the DNA becomes compact and inaccessible; thus,

the transcription stops [301]. During the process of demethylation called hypomethylation, 5mc

breakdowns and forms a critical demethylation complex (5hmc) which affects gene expression

regulation. It is believed that methylated DNA (DNAm) is the core regulatory factor for aging,

which highlights the preeminence of modification and demodification process. Furthermore, DNA

0This chapter is an adapted version of the work presented in Asim et al. "DNA-MP: A Generic DNA Modifications
Predictor for Multiple Species based on Novel Sequence Encoding Method", under review in briefings in Bio-informatics
2022
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modification plays a significant role in various biological processes, so it is important to explore

DNA modifications in detail.

The effects of differential DNA methylation on oncogenes result in different types of cancer,

such as breast, squamous cell lung cancer and glioblastoma [211]. DNA modification such as

methylation plays a critical role in inducing autoimmune diseases and neurological disorders

like systemic lupus erythematosus, multiple sclerosis, autism spectrum disorder (ASD) and

schizophrenia [211]. Irregular expression of 6ma prompts severe consequences in prokaryotes,

i.e., sensitivity to ultraviolet radiations and mitomycin C treatment in E. coli.

3.1 Related Work

Following the success of Artificial Intelligence (AI) in various application areas, i.e., Genomics

and Proteomics [417, 481], the development of robust AI based approaches for DNA modifications

prediction is an active area of research [273, 287]. To date, a number of AI-based approaches

have been developed [415, 455, 482] with an aim to more precisely predict three different types

of DNA modifications. Fundamentally, AI-based predictors work in a two-stage process, i.e.,

feature representation and classification. The first stage involves the generation of statistical

representations of DNA sequences and the second stage makes use of statistical representations

to extract comprehensive discriminative features using machine or deep learning classifiers.

In order to more precisely distinguish modification sites, for 4mc modification prediction,

24 different classifiers have been proposed, out of which 11 are based on machine learning

(ML) [8, 80, 130, 169, 173, 257, 283, 287, 414, 431, 470] and 13 are based on deep learning

(DL) [1, 6, 128, 218, 273, 342, 378, 400, 415, 435, 455, 457, 482]. Similarly, for 6ma modification

prediction, out of 15 different classifiers, 8 are based on DL [2, 72, 192, 335, 377, 392, 451, 458]

and 7 are based on ML [37, 61, 168, 222, 274, 333, 404]. Two generic approaches iDNA-Ms [282]

and iDNA-MT [435] which are capable of predicting multiple types of DNA modifications, are

based on DL [435] and ML classifiers [282], respectively. To summarize, prior mentioned deep

learning classifiers make use of different neural architectures i.e., Multi-Layer Perceptron models

(MLPs) [460], convolutional neural networks (CNNs) [377], recurrent neural networks (RNNs)

[435], hybrid neural network (CNNs+RNNs) [72] and language models like transformers [457].

Whereas, ML based approaches make use of traditional ML classifiers i.e., random forest [8],

decision trees (DT) [8], adaboost [274], random forest (RF) [169], extra tree classifier (EXT) [274],

gradient boosting (GB) [404], naive bayes (NB) [130, 257], logistic regression (LR) [130] and

support vector machine (SVM) [457] classifier.

At the first stage, for the conversion of DNA sequences into statistical vectors, prior mentioned

deep learning models make use of one hot encoding [435], Word2vec embeddings, contextual

binary encoding (C-BE) [392], contextual nucleotide chemical property and nucleotide frequency

(NCPNF) based encoding [392], Bert representations [242], KNN based similarity scores [37]
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and trinucleotide composition (TNC) [335] based encoding methods. In literature, diverse types

of sequence encoding methods that have been utilized in combination with traditional machine

learning classifiers can be categorized into 2 mathematical and physicochemical categories.

Mathematical encoders include k-mer [6], adjacency dependent information [431], nucleotide

positional specificity (NPS) [61], motif score matrix [61], transition probabilities [333], position-

specific trinucleotide propensity (PSTNP) [173] and k-mer [414]. Physicochemical properties

based encoders [6, 131, 173] include nucleotide chemical property (NCP) [6, 130], mono nucleotide

binary encoding (MBE) [6, 282], dinucleotide binary encoding (DBE) [6], k-nucleotide composition

(KNC) [130], electron–ion interaction pseudopotentials (EIIP) [6], pseudo dinucleotide composition

(PseDNC) [415], ring function hydrogen and chemical properties [37], dinucleotide composition

and dinucleotide based properties (F twist, slide, energy, enthalpy) [222], K-tuple nucleotide

component [130], nucleotide property and frequency (NPF) [282] and position-specific nucleotide

composition (PSNP) [404]. Furthermore, to reap the benefits of different encoding methods, few

researchers have concatenated the statistical representations of multiple sequence encoders

[61, 273, 287, 470].

Using a variety of standalone as well as combination of sequence encoders and machine or

deep learning classifiers, a plethora of DNA modifications predictors have been proposed which

can be broadly classified into two categories on the basis of their ability to predict one or multiple

DNA modifications, 1) type-specific modification predictors, 2) generic modifications predictors. A

critical analysis indicates that both type-specific and generic modification predictors have limited

predictive performance and generalizability across benchmark datasets of multiple species.

This is mainly due to the use of ineffective sequence encoding methods that lack to capture

position specific distributional information of nucleotides, which is essential to most effectively

characterize constant as well discriminative regions of nucleotides within DNA sequences to

accurately predict different DNA modifications.

With an aim to develop an efficient large scale DNA modifications prediction landscape for

multiple species, the contributions of this chapter are manifold: (I) It presents a novel statistical

representation generation approach that makes use of position specific occurrence based on

modification and non-modification class densities normalized difference to compute the score of

nucleotides (POCD-ND). Unlike existing nucleotide composition, frequency and physicochemical

properties based sequence encoding methods, POCD-ND captures distributional information of

unique higher order nucleotides called k-mers with respect to all possible unique positions inside

DNA sequences. POCD-ND method helps to encode position aware comprehensive discriminative

patterns of k-mers which are extremely useful for the detection of DNA modifications (II) To

validate the efficacy of proposed POCD-ND encoding method, we compare statistical representa-

tions generated through POCD-ND encoding method with statistical representations generated

through 32 most widely used existing encoding methods. In this intrinsic evaluation, our aim

is to analyze which encoder is capable of generating highly disjoint clusters for positive and
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negative modification sites classes (III) Over 17 datasets of 12 different species, it performs

a comprehensive extrinsic evaluation of proposed encoder and 32 existing encoders using 10

different machine learning classifiers for the detection of three different DNA modifications. (IV)
To objectively evaluate the predictability and generalizability of the proposed generic DNA-MP

predictor, it performs a detailed performance comparison with existing type-specific and generic

modifications predictors using 17 benchmark datasets under the hood of 5-fold cross-validation

and independent test sets (V) To enable biomedical researchers and practitioners to predict

different DNA modifications on the go, we have developed a user-friendly and interactive web

server, freely available at https://dna_modification_predictor.opendfki.de/.

3.2 Materials and Methods

This section illustrates details of proposed DNA sequence encoding method and DNA modification

benchmark datasets. A comprehensive detail of used classifiers and evaluation measures is

provided in Chapter 2.

3.2.1 Proposed DNA Sequence Encoder

Position
Position-Distribution Aware 

Positive Class Matrix

TA AC CT GT TT CG TC
P1 0 1 0 0 0 0 1
P2 0 0 0 0 0 2 0
P3 0 0 0 2 0 0 0
P4 2 0 0 0 0 0 0

Position
Position-Distribution Aware 

Negative Class Matrix

TA AC CT GT TT CG TC
P1 0 0 0 0 2 0 0
P2 1 0 0 0 0 0 1
P3 0 1 0 0 0 1 0
P4 0 0 1 1 0 0 0

Data Split ID Sequence Class

Train Set

S1 TCGTA Positive
S2 ACGTA Positive

S3 TTACT Negative

S4 TTCGT Negative

Test set
S5 ACGTC Positive

S6 TTCTA Negative

Data Split ID K-mer class

Train Set

S1 TC CG GT TA Positive

S2 AC CG GT TA Positive

S3 TT TA  AC  CT Negative

S4 TT TC CG GT Negative

Test Set
S5 AC CG GT TC Positive

S6 TT TC CT TA Negative

Data split ID Encoding

Train Set

S1 0.125 0.25 0.25 0.25

S2 -0.25 -0.125 -0.125 -0.125

S3 0.125 0.25 0.25 0.25

S4 -0.25 -0.125 -0.125 -0.125

Test Set
S5 0.125 0.25 0.25 0.00

S6 -0.25 -0.125 0.00 0.25

Train Set

ACCG GT TA TCTT CT

Vocabulary of Unique K-mers

ij
posZ       (k-mer )

posNSijkmer              =
posden

Z       (k-mer )ij
neg

negNSijkmer              =
negden

POCD-ND = ij
posden

kmer
negden
ijkmer-

kmerij
posden negden

ijkmer, )(min

Figure 3.1: Working paradigm of proposed POCD-

ND encoding method

Machine learning classifiers cannot directly

process raw DNA sequences due to their

inherent dependency on numerical values.

DNA sequences are comprised of only four

basic nucleotides, positions-specific distribu-

tions of which are very similar across the

sequences of the same class and different

across the sequences of distinct classes. To

date, several encoding methods have been

proposed where the aim of each newly de-

veloped method has been to capture posi-

tion aware discriminative distribution of nu-

cleotides. However, these encoders still fail

to capture comprehensive position aware dis-

criminative patterns of nucleotides in DNA

sequences. To generate a more comprehen-

sive statistical representation of DNA se-

quences that can capture position aware dis-

criminative distributional information of nu-

cleotides, we present a novel DNA sequence

encoder namely position aware k-mer occur-
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rence based on modification and non-modification class densities normalized difference (POCD-

ND).

To generate statistical representations of DNA sequences, the first step is to generate k-mers

by sliding a fixed-size window with a particular stride size. In this process, DNA sequences

are segregated into subsequences where each subsequence called k-mer represents a group of

nucleotides. In the generated subsequences, size of k-mer or subsequence depends upon the size

of a window which is slid to generate them.

Suppose we have a corpus C = S1,S2, ...SM , where X number of sequences belong to training

set and Y number of sequences belong to test set. In the corpus C, each Si represents a DNA

sequence that is comprised of four repeated letters including A,C,G,T. After generating k-mers

of corpus sequences, each sequence Si can be represented as Si = k−mer1,k−mer2, .....k−merk.

In each sequence, k-mers positions can be represented as Pi = P1,P2, ...Pn. The proposed encoder

computes the vocabulary V = v1,v2, ...vk which contains unique k-mers of the corpus sequences.

The size of the vocabulary depends on the size of k-mer and can be computed using 4k where k

represents the size of k-mer. For example, in the case of 1-mer, vocabulary size will be 41 = 4, for

2-mers, vocabulary size will be 42 = 16 and so on. With the increase in size of k-mers, the size of

vocabulary also increases.

With an aim to compute position specific k-mers occurrence frequencies in modification

and non-modification classes, POCD-ND encoder makes use of unique vocabulary V and k-mer

sequences of training set to generate position aware distribution matrices Z = Zpos, Zneg for

modification and non-modification classes, respectively. Here, positive (pos) class represents all

the sequences of training set that belong to modification site and negative (neg) class denotes all

the sequences of training set that belong to non-modification site.

Zpos/neg =


k−mer1,1 k−mer1,2 · · · k−mer1,k

...
...

. . .
...

k−mern,1 k−mern,2 · · · k−mern,k

 (3.1)

In both matrices (Zpos, Zneg), each entry k-meri j represents ith k-mer at jth position occur-

rence frequencies in positive and negative class sequences. Specifically, Zpos is populated using

following mathematical expression.

Zpos = Fork
i=1(Forn

j=1(
NSpos∑

t=1
(k−mer i j) Occurrence)) (3.2)

From left to right, first loop index i is an iterator on vocabulary V of k-mers, second loop index

j is an iterator on all possible positions P and last loop index t is an iterator on all sequences

of positive class to compute the count of positive sequences in which ith k-mer appears at jth

position.

Similarly, Zneg is populated using the following expression, where we compute the count of
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negative sequences in which ith k-mer appears at jth position.

Zneg = Fork
i=1(Forn

j=1(
NSneg∑

t=1
(k−mer i j Occurrence))) (3.3)

Afterward, POCD-ND method computes k-mer position specific density values in positive

and negative classes. The positive density of the ith k-mer at jth position denoted as kmerposden
i j ,

can be computed by normalizing the k-meri j occurrence frequency value with total number of

positive sequences NSpos.

k−merposden
i j = Zpos(k−mer i j)

NSpos , 0≤ k−merposden
i j ≤ 1

= p(k−mer i j = 1|NSpos)
(3.4)

Similarly, k-meri j negative density value represented as kmernegden
i j is computed by normal-

izing the k-meri j occurrence frequency value with total number of negative sequences NSneg.

k−mernegden
i j = Zneg(k−mer i j)

NSpos , 0≤ k−mernegden
i j ≤ 1

= p(k−mer i j = 1|NSneg)
(3.5)

The prime assumption behind the development of existing encoder named position-specific

trinucleotide propensity based on single-stranded characteristic (PSTNPss) [85] was to generate

statistical representations of DNA sequences by generating 3-mers and assigning higher scores

to those 3-mers which had more discriminative class densities. PSTNPss [85] encoder utilizes

only 3-mers, however, different k-mers generate different types of discriminative patterns. To

address this limitation, we present a more generalized version of PSTNPss [85] encoder that can

be utilized for any k-mer to capture comprehensive discriminative patterns. Using the values

computed through equations 3.4 and 3.5, modified PSTNPss [85] encoder scores can be computed

using equation 7.9.

kmer i j Class Density Di f f erence (PSTNPss)= kmerposden
i j −kmernegden

i j (3.6)

Another major downfall of PSTNPss [85] encoder is that it assigns same scores to k-mers

having different level of discriminative potential. Let’s briefly discuss this drawback using a

contour plot [138]. Figure 3.2 illustrates contour lines with respect to positive and negative class

densities. In Figure 3.2, we have shown two different k-mers along the contour lines having

positive to negative class density difference values equal to 0.3. Similarly, another pair of k-mers

k3 and k4 are shown where positive to negative class density difference value is equal to 0.5.

Analysis of positive and negative class densities along with differences for all four k-mers (Figure

3.2) indicates that from first pair, k1 (posden=0, negden=0.3, PSTNPss=0.3) located near to y-axis

is of utmost importance on the contour line. Similarly, from second pair, k3 (posden=0, negden=0.5,

PSTNPss=0.5) near to y-axis has more importance on the contour line. Across both pairs, as we

move along the contour line away from the origin towards the top right-corner, posden and negden

values are increasing. In first pair, k2 (posden=0.2, negden=0.7, PSTNPss=0.5) and in second pair,
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k4 (posden=0.8, negden=0.5, PSTNPss=0.3) are less important than k-mer k1 and k3, respectively.

This is because k1 and k3 are present in only negative class and absent in positive class whereas

k2 and k4 are present in both classes. PSTNPss [85] encoder assigns equal score of 0.3 to first

pair of k-mers and 0.5 to second pair of k-mers, indicating that it assigns equal scores to k-mers

regardless of their occurrences in positive and negative classes, which shall not be the case.

Figure 3.2: Contour plots for PSTNPss encoder

where contour lines parallel to diagonal reveals

PSTNPss encoder assigns same scores to k-mers

that have same positive to negative class density

differences

To generate more comprehensive statis-

tical representations of DNA sequences, our

proposed encoder working paradigm relies on

three main assumptions. (I) Like PSTNPss as-

sumption [85], those k-mers are discrimina-

tive which have large position aware occur-

rence based positive to negative class den-

sity difference, (II) Those k-mers are more

discriminative whose position aware occur-

rence based density is high in only one par-

ticular class and close to zero in other classes,

(III) If two k-mers have equal kmerposden
i j −

kmernegden
i j difference, then the k-mers having

lower min(kmerposden
i j , k−mernegden

i j ) value

shall be assigned higher scores. Here min de-

notes the minimum function which returns the

minimum value by comparing modification and non-modification class densities. A comprehensive

detail of these assumptions is provided in motivating example section 3.2.1.1.

To generate statistical representations of DNA sequences based on above assumptions,

proposed encoder makes use of following expression to assign scores to k-mers based on their

discriminative potential.
POCD−ND (k−mer i j)=

PSTNPss(k−mer i j)

min(kmerposden
i j , k−mernegden

i j )

=
0.1, if min(k−merposden

i j )== 0

0.1, if min(k−mernegden
i j )== 0

(3.7)

A complete workflow of the proposed POCD-ND encoder using a hypothetical corpus of

6 sequences is illustrated in Figure 3.1. POCD-ND encoder segregates the sequences into k-

mers and divides the sequences into training and test k-mer sequences sets. It computes the

vocabulary of unique k-mers and utilizes vocabulary and only training sequences to precisely

generate statistical representations of corpus sequences in three steps: 1) Generate k-meri j

position aware distribution matrices for modification and non-modification classes, 2) Compute

k-meri j densities in modification and non-modification classes, 3) Compute k-mer position aware
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distribution based modification and non-modification class densities normalized difference. We

assume that distribution of k-mers in test sequences is close to the distribution in training

sequences. Hence, we utilize the k-mer position aware distribution matrices constructed using

training sequences in order to generate statistical weights of k-mer test sequences by following

the aforementioned steps 2 and 3.

3.2.1.1 A Motivational Example

We describe the effect of division by minimum k-mer position specific class density using a

hypothetical example.

Table 3.1: A hypothetical dataset containing
15 sequences related to modification (c1) and
non-modification (c2) classes. In the sequence
samples, occurrence frequencies of a particu-
lar k-mer at 10 different positions

Sequences Class P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
1 c1 1 0 1 1 0 0 0 1 1 1
2 c1 0 0 1 1 1 0 0 0 0 1
3 c1 1 0 1 0 0 0 0 0 0 0
4 c1 1 1 1 1 0 0 0 0 1 1
5 c1 1 0 1 0 0 0 0 0 0 0
6 c2 0 1 0 0 0 1 0 0 0 1
7 c2 0 1 1 0 0 1 1 0 0 1
8 c2 1 1 0 0 0 1 0 0 0 1
9 c2 1 1 0 0 0 0 0 0 0 1
10 c2 0 0 0 1 0 0 0 0 0 0
11 c2 1 0 0 1 1 0 0 0 0 0
12 c2 1 0 0 0 0 1 0 0 0 0
13 c2 0 1 0 0 0 1 1 0 0 1
14 c2 0 1 1 0 0 0 0 0 0 1
15 c2 1 1 1 0 1 0 1 0 0 1

Table 3.2: K-mers densities in, modifi-
cation (kmerposden

i j ) and non-modification

(kmernegden
i j ) classes, based on the k-mer den-

sities, scores and ranks assigned by the ex-
isting PSTNPss [85] and proposed POCD-ND
encoders to a particular k-mer present at 10
different positions

k-mer P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

kmernegden
i j 0.5 0.7 0.3 0.2 0.2 0.5 0.3 0 0 0.7

kmerposden
i j 0.8 0.2 1 0.6 0.2 0 0 0.2 0.4 0.6

PSTNPss [85] Score 0.3 0.5 0.7 0.4 0 0.5 0.3 0.2 0.4 0.1

POCD-ND Score 0.6 2.5 2.23 2 0 5 3 2 4 0.17

PSTNPss [85] Rank 7 2 1 4 10 3 6 8 5 9

POCD-ND Rank 8 4 5 6 10 1 3 7 2 9

Figure 3.3: Graphical representation of a partic-

ular k-mer at 10 different positions

Table 3.1 indicates a hypothetical dataset

containing 15 sequences related to two classes

c1 and c2. In each sequence, k-mer occur-

rences at 10 different positions are provided.

The dataset is unbalanced because only 5 se-

quences belong to c1 class and remaining 10

sequences belong to c2 class.

Table 3.2 shows k-mer positive and neg-

ative class densities for the sample dataset

and k-mer scores produced by PSTNPss and

proposed POCD-ND encoder. Furthermore, we

show the locations of k-mer at ten different

positions in the Figure 3.3 where x-axis repre-

sents the k-mer density in c1 class and y-axis

represents the k-mer density in c2 class.

In Figure 3.3, k-mers positions located in

the top left and bottom right corners are most
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discriminative. K-mers located along the diagonal are the least discriminative as their occurrences

in both classes are equal. The k-mers located on axes, except the k-mer closer to the origin are

the most discriminative because they occur in only one class. A good encoding method shall

assign higher scores to the k-mers located in top left and bottom right corners. We discuss why

POCD-ND scores and rankings for most k-mer positions are different than PSTNPss [85] encoder

scores and rankings.

• The k-mer at 1st and 7th positions has same score of 0.3 for PSTNPss [85] encoder. POCD-

ND encoder assigns higher score to k-mer at 7th position and lower score to k-mer at 1st

position. It is evident in the Figure 3.3 that k-mer at 7th position lies on y-axis as compared

to k-mer at 1st position which lies on slight distance to diagonal at middle of lower and

upper right corner. So intuitively, k-mer at 7th position is more discriminative and shall be

assigned a higher score, as done by the POCD-ND encoder.

• The k-mer at 4th and 9th positions has equal PSTNPss [85] scores. We can see in the Figure

3.3 that k-mer at 9th position is far more important than k-mer at 4th position as it is very

close to x-axis, hence POCD-ND encoder assigns higher score to k-mer at 9th position and

lower score to k-mer at 4th position.

• The k-mer at 3rd position has the highest weight and rank for PSTNPss [85] encoder among

the ten k-mer positions. POCD-ND places k-mer at 3rd position at fifth rank because of

normalization with 0.3 that lowers its score as compared to k-mer at 2nd, 6th, 7th and

9th positions. It is clear from the Figure 3.3 that k-mer at 6th position lies on y-axis.

Furthermore. this k-mer position is the nearest to top left or bottom right corner, hence

this k-mer position is the most discriminative among all k-mer positions.

• The k-mer at 5th position is assigned the lowest score and rank by both PSTNPss [85] and

POCD-ND as it lies on diagonal and has equal positive and negative class densities. Both

encoders assign this k-mer position zero score.

As a whole, proposed POCD-ND encoder assigns better scores and ranks to k-mers at different

positions by correctly quantifying their discriminative potential.

3.2.2 Benchmark Datasets

To evaluate the integrity of proposed DNA modification predictors, researchers have developed

several benchmark datasets for different types of modifications and species [282, 342]. Recently,

Lv. et al. [282] developed 12 different species related benchmark datasets and independent

test sets for three different types of modifications namely 4mc, 5hmc and 6ma. These datasets

are being used to evaluate the performance of newly developed predictors [392, 435]. Few of

these datasets are utilized by Yang et al. [435] to evaluate the performance of their proposed
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modification predictor and Tsukiyama et al. [392], also utilized 11 different datasets related to

6ma modification prediction.

5hmC

4mC

2344

3680

15327

197915797

6774

8608

53800

1690

1893

600

9168

3102 5596

3033

3981

15937

Benchmark 
Datasets

Figure 3.4: Distribution of sequences in 17 bench-

mark datasets related to 4mc, 5hmc and 6ma

modifications

The datasets related to 4mc modifica-

tion prediction contain DNA modification se-

quences of 4 different species i.e., Casuarina

equisetifolia, Fragaria vesca, Saccharomyces

cerevisiae and Ts. SUP5-1. These datasets

have been developed by collecting DNA mod-

ification sequences from the MDR database

[275]. 5hmc modification has 2 benchmark

datasets belonging to Homo sapiens and Mus

musculus species. These datasets have been

developed by collecting DNA modification se-

quences from the NCBI GEO database [188].

Whereas, 6ma modification datasets contain

DNA modification sequences related to 11 dif-

ferent species i.e., A. thaliana, C. elegans, C.

equisetifolia, D. melanogaster, Homo sapiens,

S.cerevisiae, Xoc.BLS256, T. thermophile, R.

chinensis, F. vecsa and Ts. SUP5-1. These

datasets have been collected from different sources i.e., MDR database [275], MethSMRT database

[441] and NCBI GEO database [188]. For all DNA modification prediction datasets, negative

samples are collected by satisfying the requirement that the 41 nucleotides long sequences

with Cytosine/Adenine in the center are proved not to be modified by experiments [282]. A

comprehensive detail of 17 different datasets is provided in Figure 3.4.

To evaluate the integrity of proposed approach, we have used these datasets for multiple

reasons. First, three most recent DNA modifications predictors have reported their performance

values over these datasets, which has facilitated us with a way to directly compare our model

performance with existing predictors. Second, the datasets contain a significant number of

sequences for the training and testing of the models. Third, the datasets are well distributed

across different DNA modifications with respect to different species which makes the selection

of these datasets a versatile choice to test any statistical representation generation method

or classification model. Lastly, the datasets contain sequences that are rich in terms of motifs,

whether the sequences are in the same species or in different species, which can aid in cross-

species validation of the model as explained in the study [282]. The negative samples are random

biological sequences not having similar motifs like positive samples, i.e., not having cytosine in

the middle of the sequences [282].
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3.3 Evaluation Criteria

Following evaluation criteria of existing DNA modifications predictors [8, 257, 342], to evaluate

the integrity of proposed DNA modifications predictor by making a fair performance comparison

with existing DNA modifications predictors, we assess the performance of proposed predictor in

terms of 6 different evaluation measures i.e., accuracy (ACC), specificity (SP), sensitivity (SN),

Matthews correlation coefficient (MCC), and area under the receiver operating characteristic

(AU-ROC).

3.4 Results and Discussions

This section briefly illustrates the performance produced by the proposed DNA sequence encoder

at different k-mers using a random forest (RF) classifier. It comprehensively illustrates the

efficacy of the proposed DNA sequence encoder with 10 different machine learning classifiers for

17 datasets of 12 different species related to three different DNA modifications (4mc, 5hmc and

6ma) in two different settings, k-fold cross-validation and independent test sets based evaluation.

Furthermore, it compares the performance of proposed DNA sequence encoder with existing 32

different encoders using 10 different classifiers for the prediction of 3 distinct DNA modifications

under 2 different paradigms, extrinsic evaluation and intrinsic evaluation. Finally, it compares

the performance of proposed generic DNA modifications predictor with existing generic i.e.,

iDNA-MS [282], iDNA-MT [435] and single type DNA modification predictors i.e., DCNN-4mc

[342] and Bert6ma [392].

3.4.1 Performance Analysis of Proposed DNA Sequence Encoder at Different
k-mers

The k-mer size directly impacts the feature representation by yielding either common or rare

patterns. Lower-order k-mers (1-mer and 2-mer) based features are known as frequent features,

as the occurrence frequency of these k-mers among sequences belonging to different classes would

be approximately same. However, their occurrence distribution with respect to positions may

vary. On the other hand, higher-order k-mers (3-mer, 4-mer and 5-mer) are less frequent features,

since their occurrence frequencies vary significantly among sequences of different classes. While

generating statistical representation of raw sequences, the proposed encoder makes use of the

position specific occurrence information of k-mers. Hence, to analyze whether lower or higher-

order k-mers generate better representations, we perform the performance analysis on different

size k-mers with respect to different datasets. Figure 3.5 illustrates the accuracy produced by

the RF classifier using statistical vectors generated by the proposed encoder “POCD-ND” with 5

different k-mers (k=(1, · · · , 5)) under the hood of 5-fold cross validation.
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4mc modification Datasets. 5hmc modification Datasets.

6ma modification Datasets. 6ma modification Datasets.

Figure 3.5: Random Forest classifier based extrinsic performance analysis of statistical represen-
tations generated at different k-mers using proposed encoder for different modification datasets.

For the task of 4mc modification prediction, accuracy analysis of 4 different species benchmark

datasets indicates that, on two datasets namely TS.SUP5-1 and F.vesca, performance of RF

classifier slightly increases until 4-mer and 3-mer, respectively, however, drops afterwards. On

C.equisetfolia dataset, performance of RF classifier drops with the increase of k-mer and RF

marks lowest performance on 5-mer. On S.cerevisiase dataset, performance increase to 72% and

remains same until 3-mer however, drops to 64% at 5-mer.

For 5hmc modification prediction datasets, on H.sapiens dataset, 95% performance of RF

classifier remains same until 4-mer but drops by 2% at 5-mer. A similar performance trend is

evident on M.musculus dataset where the RF classifier performance of 97% remains same until

4-mer but drops to 95% at 5-mer.

For 6ma modification prediction datasets, on three datasets namely S.cerevisiase, C.equisetfolia

and R.chinensis, accuracy of RF classifier fluctuates at different test k-mers. On t.thermophile,
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accuracy is slightly improved at each k-mer starting from 1-mer to 5-mer. On Tolypocladium

and H.sapiens, accuracy of RF is slightly improved with the increase of k-mer size from 1-mer

to 3-mer, afterward, it slightly drops on remaining k-mers. On all other 5 6ma datasets, the

performance of RF classifier improves until 4-mers before dropping at 5-mer.

In a nutshell, the most dominant trend in 4mc and 6ma modifications prediction datasets is

that the performance of RF slightly improves with the increase of k-mer up to 3-mer or 4-mer as

compared to 5hmc datasets where performance remains the same with few k-mers and drops on

5-mer. Across most datasets of 3 different DNA modifications predictions, RF classifier achieves

lowest performance with 5-mer. A variety of trends analyzed on different DNA modifications

prediction datasets reiterate the importance of selecting the most appropriate window size while

performing any DNA sequence classification task.

3.4.2 Performance Impact of Proposed DNA Sequence Encoder on Different
Classifiers

This section performs 5-fold cross-validation based performance comparison of 10 different

classifiers using the statistical representations generated by the proposed DNA sequence encoder

“POCD-ND”.

Accuracy achieved by different classifiers under the hood of 5-fold cross-validation is shown

in the Figure 3.6. It is evident that, using novel sequence encoder POCD-ND statistical repre-

sentations, across all 17 benchmark datasets related to three different DNA modifications, from

all machine learning classifiers, tree based classifiers produce better accuracy. Furthermore,

from tree based classifiers, Random Forest (RF), GradientBoot (GB) and Extra tree (ET) based

classifiers achieve better performance as compared to adaboost (AB) and decision tree (DT)

classifiers, achieving the top accuracy around 85%, 84%, 75% and 73% on 4mc datasets such as

F.vesca, C.equisetofolia, TS.SUP5-1 and S.cerevisiae, respectively.

These classifiers achieve the accuracy of 95% and 97% on 2 benchmark 5hmc modification

datasets related to two species Homo sapiens and M.musculus, respectively. Furthermore, these

classifiers achieve best performance on all 11 6ma benchmark datasets where the accuracy

falls in range of 73% to 95%. The primary reason behind the dominance of tree based machine

learning classifiers such as RF is its ability to operate on random subset of features using multiple

individual tree and combine the output of individual decision trees to generate the final output.

After tree based classifiers, Multi-Layer Perceptron (MLP) and K-nearest neighbour (KNN)

classifiers achieve decent performance across most DNA modifications prediction datasets fol-

lowed by Logistic Regression (LR). Generative classifier such as Naive Bayes (NB) performs

better than its counterpart discriminative classifier Support Vector Machine (SVM) across all

datasets except two 5hmc modification prediction dataset namely Homo sapiens and M.musculus

where SVM performs better. Overall decision tree and SVM achieve lower accuracies on most

benchmark DNA modifications prediction datasets.
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Figure 3.6: 5-fold cross-validation based performance comparison of 10 classifiers using 17
modification datasets related to (a) 4mc modification datasets, (b) 5hmc modification
datasets and (c) 6ma modification datasets.

In a nutshell, detailed analysis of performance potential of proposed novel sequence encoder

indicates that proposed encoder most effectively characterizes DNA sequences and generate

comprehensive discriminative patterns which enable even simple machine learning classifiers to

achieve good DNA modifications performance across multiple datasets of distinct species.

As discussed earlier, size of k-mers largely impacts the performance of machine learning

classifiers. We perform 5-fold cross-validation based evaluation of ten different classifiers using

statistical representations generated by novel sequence encoder with different k-mers, falling in

range of 1-to-5. Most machine learning classifiers perform better with lower sized k-mers falling

in range of 1-to-3 for most DNA modifications prediction datasets. This is primarily due to the

fact that with lower size k-mer, size of vocabulary is limited and statistical representation is

generated by focusing on comprehensive discriminative position specific distributional patterns

of k-mers. However, with the increase of k-mer size, vocabulary also increases which brings a lot
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of rare k-mers as well which have limited discriminative position specific distributional patterns

in sequences.

Extrinsic Performance Comparison of the Proposed DNA Sequence Encoder
with Different Existing Encoders

The efficiency of the proposed POCD-ND encoding approach is further proven by performing a

comprehensive extrinsic performance comparison of POCD-ND with 32 different existing encoding

methods, out of which 11 are physicochemical properties based encoders, 12 are mathematical

encoders and 8 are gap-based encoders. We feed the statistical representations generated by

different sequence encoders to 10 different machine learning classifiers to predict three different

DNA modifications across 17 different datasets. Accuracy values produced by different sequence

encoders in combination with distinct best performing machine learning classifiers for three

different DNA modifications prediction are mentioned in Table 3.3.

For 4mc, 5hmc and 6ma modifications prediction, from the category of physicochemical prop-

erties based encoders, SCPSeDNC, PCPSeDNC, PSEIIP and PseDNC encoders achieve better

performance using RF and ET classifiers. Whereas TAC and TCC encoders mark lower perfor-

mance for different DNA modifications prediction. Top four better performing encoder achieve an

average performance of 94%, 84.5%, 80.7%, 79.5% on C.equisetfolia, F.vesca, S.cerevisiae and

TS.SUP5-1 datasets and overall average performance of 85% for 4mc modification prediction.

These encoders achieve an average performance of 74.5%, 88.3% on H.sapiens and M.musculus

datasets and an overall average performance of 81% for 5hmc modification prediction. Likewise,

these encoders obtain an overall average performance of 84% for 6ma modification prediction.

Across different DNA modifications prediction, from the category of mathematical encoders,

PSTNPss [85] achieve best performance with tree based machine learning classifier achieving

an average performance of 89%, 95%, 93% on benchmark 4mc, 5hmc and 6ma modifications

prediction datasets. Furthermore, sequence encoders namely pseudoKNC, kmer, RCKMER and

spectrum achieve top four performance values using tree based machine learning classifiers.

Whereas three sequence encoders namely orf, gc content and atcg ratio achieve least performance

using three different classifiers SVM, LR and DT classifiers for 4mc modification prediction. For

5hmc modification prediction fickett score, cumulative skew and orf mark lower performance and

for 6ma modification prediction, gcontent and orf sequence encoders mark lower performance

across most benchmark datasets using different classifiers. Better performing mathematical

encoders in combination with tree based machine learning classifier achieve an overall average

performance of 85%, 82% and 86% on benchmark 4mc, 5hmc and 6ma modifications prediction

datasets, respectively.

Furthermore, from the category of gap-based encoders, CKSNAP, monoDiKgap, diDiKgap

and diMonoKGap achieve better performance using tree based machine learning classifiers for

4mc modification prediction. For 5hmc modification prediction, top five better preforming se-
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Table 3.3: Extrinsic performance analysis of proposed and 32 existing encoders using 17 modifica-
tion datasets. For each encoder accuracy values of 2 top performing classifier are given.
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DAC [269]
ET 0.91 0.85 0.79 0.80 0.59 0.69 0.82 0.83 0.79 0.82 0.84 0.83 0.84 0.81 0.80 0.80 0.80
RF 0.91 0.85 0.80 0.80 0.59 0.69 0.83 0.82 0.78 0.83 0.84 0.83 0.84 0.82 0.81 0.79 0.81

DCC [478]
ET 0.90 0.84 0.79 0.80 0.58 0.67 0.82 0.82 0.79 0.82 0.84 0.83 0.86 0.81 0.81 0.78 0.79
RF 0.89 0.85 0.80 0.80 0.59 0.68 0.82 0.82 0.78 0.83 0.84 0.82 0.84 0.81 0.81 0.79 0.81

DACC [271]
ET 0.91 0.85 0.79 0.80 0.59 0.69 0.82 0.83 0.79 0.82 0.84 0.83 0.84 0.81 0.80 0.80 0.80
RF 0.91 0.85 0.80 0.80 0.59 0.69 0.83 0.82 0.78 0.83 0.84 0.83 0.84 0.82 0.81 0.79 0.81

TAC [111]
RF 0.90 0.82 0.78 0.77 0.55 0.65 0.80 0.79 0.77 0.82 0.79 0.78 0.83 0.80 0.78 0.78 0.79
ET 0.90 0.80 0.80 0.77 0.56 0.65 0.79 0.79 0.77 0.83 0.79 0.79 0.83 0.80 0.79 0.78 0.79

TCC [111]
RF 0.89 0.80 0.79 0.77 0.55 0.63 0.79 0.78 0.76 0.82 0.80 0.78 0.80 0.79 0.78 0.77 0.79
ET 0.86 0.79 0.78 0.77 0.53 0.63 0.79 0.78 0.76 0.82 0.78 0.79 0.79 0.79 0.78 0.76 0.79

TACC [111]
ET 0.90 0.80 0.80 0.77 0.56 0.65 0.79 0.79 0.77 0.83 0.79 0.79 0.82 0.80 0.79 0.76 0.79
RF 0.90 0.82 0.78 0.77 0.54 0.65 0.80 0.79 0.77 0.82 0.79 0.78 0.83 0.80 0.78 0.77 0.79

PseDNC [76]
RF 0.93 0.84 0.79 0.79 0.74 0.88 0.83 0.82 0.78 0.83 0.83 0.85 0.86 0.82 0.82 0.80 0.82
ET 0.92 0.84 0.81 0.78 0.74 0.88 0.83 0.81 0.78 0.83 0.83 0.84 0.87 0.82 0.81 0.80 0.81

PseKNC [160]
RF 0.92 0.83 0.79 0.79 0.74 0.88 0.83 0.81 0.78 0.83 0.83 0.85 0.87 0.81 0.82 0.80 0.82
ET 0.92 0.84 0.80 0.78 0.73 0.88 0.83 0.81 0.78 0.83 0.83 0.84 0.87 0.82 0.81 0.80 0.81

SCPseDNC [77]
RF 0.95 0.84 0.81 0.79 0.74 0.88 0.84 0.80 0.79 0.84 0.84 0.86 0.86 0.84 0.81 0.80 0.82
ET 0.94 0.84 0.80 0.79 0.72 0.86 0.84 0.81 0.78 0.84 0.84 0.84 0.87 0.83 0.81 0.80 0.82

PCPseDNC [77]
ET 0.94 0.84 0.80 0.78 0.74 0.88 0.83 0.80 0.78 0.83 0.84 0.85 0.86 0.83 0.81 0.80 0.81
RF 0.93 0.84 0.80 0.79 0.75 0.88 0.83 0.81 0.78 0.83 0.83 0.85 0.86 0.82 0.82 0.79 0.82

PseEIIP [307]
RF 0.94 0.86 0.83 0.81 0.75 0.89 0.88 0.85 0.81 0.88 0.90 0.89 0.90 0.86 0.82 0.81 0.89
ET 0.93 0.86 0.82 0.80 0.75 0.89 0.88 0.86 0.80 0.87 0.90 0.89 0.89 0.86 0.82 0.81 0.88

M
at

he
m

at
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al

k-mer [319]
RF 0.94 0.86 0.83 0.81 0.75 0.89 0.88 0.85 0.80 0.88 0.90 0.89 0.90 0.86 0.82 0.81 0.89
ET 0.93 0.86 0.82 0.80 0.75 0.89 0.88 0.86 0.80 0.87 0.90 0.89 0.89 0.86 0.82 0.81 0.88

RCk-mer [428]
RF 0.92 0.85 0.82 0.80 0.74 0.88 0.87 0.85 0.80 0.86 0.88 0.88 0.89 0.85 0.79 0.81 0.88
ET 0.92 0.85 0.80 0.80 0.74 0.88 0.87 0.85 0.80 0.86 0.88 0.88 0.89 0.84 0.79 0.80 0.87

atgcRatio [303]
ET 0.78 0.64 0.52 0.50 0.57 0.71 NAN 0.53 NAN NAN NAN NAN 0.58 NAN NAN 0.55 0.53
DT 0.78 0.64 0.52 0.50 0.57 0.71 NAN 0.53 NAN NAN NAN NAN 0.58 NAN NAN 0.55 0.53

gcContent [303]
ET 0.78 0.64 0.52 0.50 0.57 0.71 0.56 0.53 0.52 0.54 0.59 0.58 0.58 0.53 0.53 0.55 0.53
LR 0.78 0.64 0.51 0.50 0.57 0.71 0.56 0.49 0.52 0.54 0.59 0.58 0.58 0.53 0.50 0.56 0.53

orf [49]
GB 0.57 0.53 0.51 0.50 0.51 0.54 0.51 0.53 0.51 0.52 0.52 0.52 0.55 0.51 0.52 0.52 0.50

SVC 0.57 0.53 0.52 0.50 0.51 0.54 NAN 0.53 0.51 0.52 0.52 0.52 0.55 0.51 NAN 0.52 0.51

TPC [303]
ET 0.93 0.85 0.82 0.79 0.69 0.84 0.84 0.83 0.79 0.83 0.88 0.85 0.87 0.83 0.82 0.79 0.83
RF 0.93 0.85 0.81 0.79 0.72 0.86 0.84 0.83 0.79 0.84 0.87 0.85 0.86 0.83 0.82 0.79 0.84

complex_network [95]
RF 0.78 0.77 0.78 0.77 0.55 0.60 0.77 0.77 0.77 0.79 0.77 0.79 0.78 0.78 0.76 0.76 0.76
ET 0.76 0.77 0.78 0.76 0.54 0.59 0.77 0.76 0.76 0.78 0.77 0.79 0.76 0.78 0.76 0.76 0.76

cumulativeSkew [459]
DT 0.77 0.65 0.66 0.59 0.53 0.60 NAN 0.62 NAN NAN NAN NAN 0.77 NAN NAN 0.64 0.59
RF 0.77 0.65 0.66 0.58 0.53 0.60 NAN 0.62 NAN NAN NAN NAN 0.76 NAN NAN 0.65 0.59

fickettScore [407]
DT 0.81 0.73 0.74 0.69 0.52 0.53 0.68 0.71 0.72 0.72 0.74 0.72 0.75 0.71 0.60 0.74 0.67
ET 0.78 0.73 0.74 0.69 0.49 0.53 0.67 0.71 0.71 0.72 0.73 0.72 0.73 0.72 0.60 0.73 0.66

spectrum [303]
ET 0.92 0.85 0.82 0.80 0.75 0.88 0.86 0.85 0.79 0.85 0.89 0.87 0.90 0.85 0.82 0.79 0.87
RF 0.92 0.85 0.81 0.79 0.75 0.88 0.85 0.84 0.79 0.85 0.89 0.87 0.89 0.85 0.82 0.80 0.88

pseudoKNC [270]
ET 0.94 0.85 0.82 0.80 0.76 0.88 0.87 0.86 0.81 0.86 0.90 0.89 0.91 0.86 0.82 0.80 0.88
RF 0.93 0.85 0.82 0.80 0.75 0.88 0.86 0.85 0.80 0.86 0.89 0.88 0.90 0.85 0.82 0.80 0.89

ANF [78]
RF 0.87 0.82 0.82 0.80 0.70 0.71 0.86 0.84 0.82 0.90 0.90 0.88 0.84 0.87 0.86 0.81 0.85
ET 0.83 0.81 0.80 0.79 0.68 0.71 0.85 0.83 0.81 0.90 0.87 0.87 0.84 0.86 0.86 0.80 0.85

PSTNPss [85] [250]
RF 0.93 0.91 0.87 0.87 0.94 0.96 0.93 0.94 0.87 0.96 0.97 0.95 0.92 0.92 0.89 0.88 0.94
ET 0.91 0.91 0.88 0.87 0.94 0.96 0.94 0.95 0.88 0.96 0.97 0.96 0.91 0.93 0.89 0.88 0.94

K
G

ap

CKSNAP [286]
ET 0.94 0.84 0.81 0.79 0.73 0.87 0.84 0.82 0.80 0.84 0.85 0.85 0.88 0.83 0.82 0.80 0.83
RF 0.93 0.84 0.82 0.79 0.75 0.88 0.84 0.82 0.80 0.84 0.86 0.86 0.88 0.83 0.82 0.80 0.83

monoMonoKGap [288]
ET 0.92 0.83 0.81 0.79 0.60 0.72 0.82 0.81 0.79 0.84 0.85 0.82 0.88 0.83 0.81 0.80 0.82
RF 0.92 0.83 0.81 0.79 0.60 0.72 0.82 0.81 0.80 0.84 0.85 0.82 0.88 0.84 0.82 0.80 0.82

monoDiKGap [428]
ET 0.94 0.84 0.82 0.80 0.76 0.89 0.85 0.85 0.81 0.85 0.87 0.88 0.90 0.84 0.81 0.80 0.84
RF 0.93 0.85 0.81 0.80 0.77 0.89 0.86 0.84 0.80 0.85 0.87 0.88 0.89 0.84 0.82 0.81 0.85

monoTriKGap [303]
RF 0.93 0.86 0.84 0.81 0.76 0.89 0.87 0.86 0.81 0.86 0.90 0.89 0.91 0.86 0.82 0.82 0.87
GB 0.92 0.73 0.72 0.62 0.73 0.87 0.70 0.72 0.66 0.75 0.83 0.79 0.88 0.73 0.66 0.71 0.71

diDiKGap [303]
RF 0.94 0.85 0.83 0.81 0.76 0.89 0.87 0.87 0.81 0.87 0.89 0.89 0.90 0.84 0.81 0.82 0.86
ET 0.93 0.85 0.82 0.81 0.76 0.89 0.87 0.86 0.81 0.87 0.89 0.89 0.91 0.85 0.80 0.82 0.85

diMonoKGap [114]
ET 0.94 0.84 0.82 0.80 0.75 0.89 0.85 0.84 0.80 0.85 0.86 0.87 0.91 0.84 0.81 0.81 0.84
RF 0.94 0.85 0.82 0.80 0.75 0.89 0.84 0.83 0.80 0.85 0.87 0.87 0.90 0.84 0.82 0.81 0.84

diTriKGap [114]
RF 0.94 0.86 0.83 0.82 0.75 0.89 0.89 0.86 0.81 0.88 0.90 0.90 0.88 0.84 0.81 0.81 0.88
LR 0.92 0.77 0.78 0.67 0.66 0.82 0.74 0.83 0.75 0.81 0.88 0.83 0.91 0.82 0.68 0.80 0.76

triDiKGap [303]
RF 0.94 0.86 0.83 0.82 0.75 0.89 0.89 0.86 0.80 0.89 0.89 0.90 0.88 0.84 0.81 0.80 0.88
ET 0.92 0.86 0.83 0.81 0.76 0.89 0.89 0.87 0.81 0.89 0.90 0.90 0.89 0.83 0.80 0.79 0.86

Proposed DNA-MP
ET 0.95 0.91 0.89 0.87 0.95 0.97 0.94 0.95 0.88 0.96 0.97 0.96 0.93 0.94 0.90 0.90 0.94
RF 0.93 0.92 0.88 0.87 0.95 0.97 0.94 0.95 0.88 0.97 0.97 0.96 0.94 0.93 0.90 0.89 0.95

quence encoders are monoDiKgap, diDiKGap, monoTriKGap, triDiKGap and diTriKGap. Whereas

for 6ma modification prediction, top four better performing sequence encoders are diDiKGap,

monoTriKGap, triDiKGap and diTriKGap. Across all three DNA modifications prediction datasets,

monoMonoKGap achieves the lowest performance using tree based machine learning classifiers.

Using better performing sequence encoder, tree based classifier achieves an average overall

performance of 85%, 82% and 86% on benchmark 4mc, 5hmc and 6ma modifications prediction

datasets, respectively.
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3.4. RESULTS AND DISCUSSIONS

Figure 3.7: Intrinsic performance analysis of proposed POCD-ND and 32 existing encoders using
4mc modification prediction dataset C.equisetfolia.

Overall, for 4mc modification prediction, mathematical encoders achieve better performance.

For 5hmc modification prediction, gap based sequence encoders mark better performance. For

6ma modification prediction, gap based and physicochemical properties based sequence encoders

achieve better performance.

Proposed POCD-ND encoding method outperforms all 32 different sequence encoders by a

decent margin across all three different DNA modifications prediction using tree based machine

learning classifier. On 4 benchmark datasets related to 4mc modification prediction, it outperforms

better performing mathematical encoders by an overall average accuracy of 5% and existing

best performing encoder PSTNPss [85] by an average accuracy of 2% using tree based classifier.

Furthermore, it beats the performance of gap-based and physicochemical properties based

sequence encoders by an overall average accuracy of 14% and 9% on benchmark 5hmc and 6ma

modifications prediction datasets, respectively.

The primary factor behind the dominant performance of proposed POCD-ND encoding method

is its ability to capture discriminative position specific distributions of lower and higher order

nucleotides called k-mers. PSTNPss [85] fails to assign appropriate scores to different level

discriminative k-mers as briefly described in section 3.2.1. In addition, few physicochemical

properties based sequence encoders solely focus on positional information of k-mers, other

encoders pay more attention to distributional information of k-mers, indicating existing encoders

fail to capture position aware discriminative distribution of k-mers. Furthermore, in order to

encode k-mers, selecting the most appropriate physical or chemical properties from a huge set

of properties is difficult. Researchers usually employ expert knowledge or extensive hit-and-

trial experimentation methods to find appropriate k-mers properties, however, both methods
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CHAPTER 3. DNA MODIFICATION PREDICTION

lack generalizability which is why such approaches fail to mark consistent performance across

different datasets of the same or distinct species. In addition, because of unique functional

paradigm, K-gap based sequence encoders generate large vocabulary which make length of

statistical vectors very large and negatively impact the predictive performance.

In a nutshell, unlike proposed novel sequence encoding approach, all categories of sequence

encoders including physicochemical properties, mathematical and k-gap based sequence encoders

lack to capture comprehensive position aware discriminative distribution of nucleotides which

are crucial to distinguish different class DNA sequences that commonly have many regions based

on repetitive entries of four basic nucleotides.

3.4.3 Intrinsic Performance Comparison of the Proposed DNA Sequence
Encoder with Different Existing Encoders

To perform a intrinsic evaluation of proposed encoder and existing encoders, we have randomly

selected the dataset of Casuarina equisetfolia from 4mc type DNA modification. After generating

statistical representations using all encoders, we have utilized t-distributed stochastic neighbor

embedding (TSNE) approach to reduce statistical vectors to two dimensions that are graphically

illustrated in Figure 3.7.

Overall, mathematical encoders like complex network, orf, fickett score, cumulative skew,

atgcskew, gccontent and physicochemical properties based encoders like DAC, DCC, DACC,

TAC and TACC, lead to the formation of poor clusters which suggests the poor quality of the

encodings generated by these encoders. Comparatively, physicochemical encoders like PseDNC,

PseKNC, SCPseDNC, PCPseDNC, PseEIIP and mathematical encoders like k-mer, RCKMER,

TPC and most of the gap based encoders lead to the formation of unique yet dependent clusters.

Among all existing encoders, mathematical encoder based on simple k-mer class dependent

densities difference namely PSTNPss [85] generates less overlapping clusters. Although, these

encodings can be used for classification purposes, but there is a strong possibility that the

classification results may not be optimal. This is because clusters generated by all existing

sequence encoders are not highly disjoint, indicating existing sequence encoders fail to extract and

encode discriminative patterns of nucleotides while generating statistical representations of DNA

sequences. In comparison to existing encoders, the visualization of the encodings generated by the

proposed encoder reveals a clear difference in the formation of unique and independent clusters,

which proves the efficiency and strength of the proposed encoder for capturing discriminative

features from DNA sequences.

In a nutshell, among all existing methods, only PSTNPss [85] manages to generate partially

disjoint clusters for modification and non-modification classes. However, there still exist a sig-

nificant number of sequences which belong to modification class cluster but falsely placed in

non-modification class cluster and vice versa. In contrast, proposed POCD-ND encoder gener-

ates fully disjoint clusters for modification and non-modification classes. Although the working
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3.4. RESULTS AND DISCUSSIONS

paradigm of PSTNPss [85] is almost similar to POCD-ND but PSTNPss [85] only generates DNA

sequence encoding of 3-mers. However, the unique distribution of nucleotides at different sizes

k-mers offers more comprehensive discriminative patterns of nucleotides. Furthermore, PSTNPss

[85] only computes simple class densities difference. In this process, k-mers which occur more

sequences of one class and very less sequences of other class get higher scores, however, a similar

score is also assigned to other k-mers which occur in almost all sequences of one class but do not

occur at all in other classes. In particular, those k-mers are more discriminative which occur in

more sequences of one class and do not occur at all in second class at a particular position, which

are rightly characterized by proposed POCD-ND encoder by normalizing the PSTNPss score with

minimum of modification and non-modification class densities. This is why proposed POCD-ND

manages to generate highly disjoint clusters for modification and non-modification classes as

compared to existing PSTNPss [85] encoder.

3.4.4 Performance Comparison of Proposed DNA-MP Predictor with
State-of-the-art Predictors

Table 3.4 and Table 3.5 compare the performance figures of proposed DNA-MP predictor with four

most recent predictors namely Bert6ma [392], iDNA-MT [435], DCNN-4mc [342] and iDNA-MS

[282] in terms of accuracy, sensitivity, specificity, MCC and AUROC, for three different types of

DNA modifications prediction over two different settings 5-fold and independent test sets.

Table 3.4: 5-fold cross-validation based performance comparison of the proposed DNA modification
predictor with existing generic and type specific predictors i.e., iDNA-MS [282], DCNN-4mc [342]
and Bert-6ma [392], across 17 different benchmark datasets in terms of 5 evaluation measures.
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ns
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it
y iDNA-MS [282] 0.727 0.846 0.705 0.725 0.974 0.963 0.82 0.852 0.707 0.906 0.942 0.852 0.84 0.771 0.749 0.959 0.859

DCNN-4mc [342] 0.765 0.81 0.731 0.773

Proposed DNA-MP 0.841 0.834 0.72 0.747 0.951 0.97 0.848 0.895 0.751 0.928 0.947 0.889 0.843 0.832 0.747 0.876 0.883

Sp
ec

ifi
ci

ty iDNA-MS [282] 0.724 0.807 0.732 0.711 0.929 0.978 0.843 0.839 0.72 0.899 0.925 0.895 79.33 0.823 0.726 0.757 0.861

DCNN-4mc [342] 0.786 0.82 0.754 0.778

Proposed DNA-MP 0.841 0.846 0.72 0.747 0.951 0.97 0.848 0.895 0.751 0.928 0.947 0.889 0.843 0.832 0.747 0.876 0.883

A
cc

ur
ac

y iDNA-MS [282] 0.726 0.826 0.718 0.718 0.951 0.97 0.831 0.846 0.714 0.902 0.933 0.873 81.67 0.797 0.737 0.858 0.86

DCNN-4mc [342] 0.772 0.82 0.675 0.725

Proposed DNA-MP 0.841 0.846 0.72 0.747 0.951 0.97 0.848 0.895 0.751 0.928 0.947 0.889 0.843 0.832 0.747 0.876 0.883

M
C

C

iDNA-MS [282] 0.452 0.654 0.438 0.437 0.905 0.941 0.664 0.692 0.429 0.805 0.86 0.748 0.634 0.596 0.476 0.733 0.721

DCNN-4mc [342] 0.517 0.692 0.547 0.501

Proposed DNA-MP 0.685 0.669 0.442 0.494 0.904 0.941 0.696 0.79 0.504 0.857 0.895 0.779 0.686 0.665 0.4947 0.756 0.766

A
U

R
O

C

iDNA-MS [282] 0.79 0.905 0.791 0.788 0.966 0.987 0.906 0.922 0.786 0.962 0.977 0.944 0.902 0.883 0.803 0.925 0.932

Bert-6ma [392] 0.928 0.962 0.802 0.97 0.978 0.963 0.897 0.892 0.939 0.838 0.95

DCNN-4mc [342] 0.887 0.911 0.78 0.801

Proposed DNA-MP 0.889 0.921 0.804 0.82 0.962 0.986 0.916 0.953 0.822 0.971 0.979 0.952 0.909 0.903 0.82 0.936 0.949

Table 3.4 compares the accuracy of proposed DNA-MP predictor with most recent DNA

modification predictors over 17 different benchmark datasets using 5-fold cross validation. From

existing 4mc modification predictors, 4mc type-specific predictor DCNN-4mc [342] achieves better
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CHAPTER 3. DNA MODIFICATION PREDICTION

performance on two datasets as compared to generic iDNA-MS [282] predictor as it achieves an

increment of 4% for C.equisetofolia and 1% for TS. SUP5-1 datasets. On F.vesca and S.cervisiae

datasets, iDNA-MS [282] predictor marks better performance than DCNN-4mc [342] where it

achieves the increment of 1% and 4%, respectively. Analysis of the performance in terms of other

evaluation metrics indicates that DCNN-4mc [342] predictor achieves better MCC, specificity,

AUROC across all four datasets, as well as achieves better sensitivity across most 4mc prediction

datasets. The primary reason behind the limited performance of generic iDNA-MS [282] predictor

is the ineffective statistical representation generated by inherently used different sequence

encoders that fail to extract position aware discriminative distributions of k-mers.

Proposed DNA-MP predictor outperforms both iDNA-MS [282] and DCNN-4mc [342] pre-

dictors across all four 4mc prediction datasets in terms of five distinct evaluation metrics. It

achieves an accuracy increment of 7%, 2%, 0.2% and 2% on C.equisetofolia, F.vesca, S. cere-

visiae and Ts. SUP5-1 datasets, respectively. Furthermore, it achieves a sensitivity increment

of 7% on C.equisetofolia dataset, specificity increment of 5% and 3% on C.equisetofolia and

F.vesca datasets, MCC increment of 17%, 4%, 11% and 6% and AUROC increment of 1%, 1%, 2%,

2% on C.equisetofolia F.vesca, S.cerevisiae, TS.SUP5-1 datasets. Proposed DNA-MP predictor

outperforms best performing existing 4mc predictor namely DCNN-4mc [342] across all four

different datasets because it performs characterization of DNA sequences using k-mers position

aware distribution based class densities difference as compared to DCNN-4mc [342] predictor

which makes use of traditional one-hot encoding that lacks to capture contextual information of

nucleotides while generating statistical representation of DNA sequences.

As shown by Table 3.4, for 5hmc modification prediction, proposed DNA-MP predictor equal-

izes the accuracies of iDNA-MS [282] predictor on H.sapiens and M.musculus datasets. In

addition, it equalizes the performance on H.sapiens and M.musculus datasets across most of

the other evaluation metrics including MCC, AUROC, sensitivity and achieves slightly better

specificity on H.sapiens dataset.

It is evident in the Table 3.4 that, for 6ma modification prediction, proposed DNA-MP predictor

outperforms existing iDNA-MS [282] predictor on all 11 different datasets by a comparable margin

in terms of most evaluation metrics, specifically an average accuracy of 3%, average sensitivity of

2%, average specificity of 3% and average MCC of 5%.

Furthermore, on 4 independent test sets of 4mc modification prediction (Table 3.5, from

existing predictors, DCNN-4mc [342] predictor achieves better performance in terms of most

evaluation metrics. DCNN-4mc [342] outperforms other existing predictors by the accuracy of

8%, 14%, 7% and 12% on F.vesca, S,cerevisiae, C.equisetofolia and TS.SUP5-1 species datasets,

respectively. The ineffective statistical representations generated by one-hot encoding method

and limited discriminative features extracted by bidirectional gated recurrent units hinder

generic iDNA-MT [435] to achieve good performance across multiple datasets. Using effective

statistical representations generated by novel encoder, proposed DNA-MP outperforms all existing
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3.4. RESULTS AND DISCUSSIONS

Table 3.5: Performance comparison of the proposed DNA modification predictor with existing
generic and type specific predictors i.e., iDNA-MS [282], DCNN-4mc [342], iDNA-MT [435] and
Bert-6ma [392], based on independent test sets in terms of 5 evaluation measures for 17 different
DNA modification datasets.
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iDNA-MS 0.71 0.829 0.701 0.715 0.977 0.968 0.824 0.867 0.71 0.889 0.939 0.863 0.879 0.753 0.742 0.957 0.825
iDNA-MT 0.83 0.826 0.692 0.72 0.873 0.714 0.796 0.742
DCNN-4mc 0.912 0.934 0.876 0.849
Bert-6ma 0.846 0.908 0.707 0.913 0.925 0.891 0.743 0.801 0.772 0.925 0.848
Proposed DNA-MP 0.931 0.918 0.886 0.873 0.947 0.968 0.94 0.955 0.885 0.974 0.974 0.959 0.926 0.918 0.891 0.909 0.945

Sp
ec

ifi
ci

ty

iDNA-MS 0.7 0.81 0.7 0.7 0.91 0.96 0.851 0.843 0.704 0.902 0.905 0.905 0.829 0.817 0.725 0.754 0.865
iDNA-MT 0.83 0.79 0.728 0.731 0.857 0.745 0.826 0.767
DCNN-4mc 0.931 0.923 0.895 0.858
Bert-6ma 0.859 0.895 0.736 0.917 0.926 0.901 0.938 0.825 0.732 0.823 0.878
Proposed DNA-MP 0.931 0.918 0.886 0.873 0.947 0.968 0.94 0.955 0.885 0.974 0.974 0.959 0.926 0.918 0.891 0.909 0.945

A
cc

ur
ac

y

iDNA-MS 0.71 0.823 0.7 0.71 0.947 0.96 0.837 0.855 0.711 0.896 0.922 0.884 0.854 0.785 0.734 0.856 0.845
iDNA-MT 0.83 0.81 0.71 0.72 0.865 0.72 0.826 0.754
DCNN-4mc 0.902 0.905 0.845 0.835
Bert-6ma 0.853 0.902 0.721 0.915 0.926 0.896 0.781 0.813 0.752 0.874 0.863
Proposed DNA-MP 0.931 0.918 0.886 0.873 0.947 0.968 0.94 0.955 0.885 0.974 0.974 0.959 0.926 0.918 0.892 0.909 0.945

M
C

C

iDNA-MS 0.422 0.648 0.408 0.423 0.947 0.936 0.676 0.712 0.423 0.792 0.846 0.769 0.71 0.57 0.468 0.728 0.691
iDNA-MT 0.666 0.635 0.413 0.448 0.731 0.438 0.913 0.511
DCNN-4mc 0.848 0.858 0.773 0.708
Bert-6ma 0.705 0.803 0.443 0.83 0.851 0.792 0.564 0.627 0.505 0.752 0.726
Proposed DNA-MP 0.871 0.848 0.793 0.772 0.896 0.936 0.887 0.914 0.791 0.949 0.95 0.921 0.862 0.849 0.802 0.832 0.896

A
U

R
O

C

iDNA-MS 0.78 0.9 0.771 0.78 0.96 0.984 0.911 0.935 0.779 0.956 0.977 0.95 0.924 0.868 0.813 0.922 0.921
iDNA-MT 0.904 0.896 0.776 0.798 0.937 0.792 0.822
DCNN-4mc 0.927 0.962 0.799 0.967 0.976 0.962 0.865 0.89 0.834 0.938 0.936
Bert-6ma 0.97 0.97 0.946 0.914
Proposed DNA-MP 0.99 0.987 0.995 0.983 0.962 0.985 0.989 0.995 0.986 0.997 0.997 0.995 0.996 0.993 0.991 0.983 0.99

approaches by achieving an average sensitivity increment of 1%, average specificity increment of

0.5%, average accuracy increment of 3%, average MCC increment of 2% and average AUROC

increment of 4%.

As shown in Table 3.5, on 2 independent test sets (H.sapiens, M.musculus) of 5hmc modifica-

tion prediction, proposed DNA-MP predictor equalizes the accuracies of iDNA-MS [282] predictor.

Furthermore, it achieves sensitivity and MCC values which are close to performance figures

of iDNA-MS [282] predictor and achieve an average specificity increment of 3% and AUROC

increment of 0.5%.

On 11 independent test sets of 6ma modification prediction (Table3.5), from existing predictors,

Bert-6ma [392] predictor achieves better performance followed by two generic iDNA-MS [282]

and iDNA-MT [435] predictors. Proposed DNA-MP predictor outperforms existing predictors

by an average sensitivity, specificity and AUROC of 7% and MCC of 16%. Proposed DNA-MP

predictor is better than existing predictors especially Bert-6ma [392] in multiple ways. Despite

the utilization of 7 different sequence encoders (i.e., nucleotide chemical property, nucleotide

frequency, binary encoding, Word2vec) and 8 different neural networks (CNN, LSTM, Hybrid,

Bert), Bert-6ma [392] predictor lacks to capture position aware discriminative distribution of

k-mers. Proposed DNA-MP predictor only makes use of a single novel sequence encoder to encode

comprehensive position aware k-mer discriminative patterns and a simple RF classifier to most
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accurately predict 6ma as well as 5hmc and 4mc modifications prediction.

To summarize, a comprehensive k-fold and independent test sets based performance compari-

son of proposed DNA-MP predictor with existing predictors over 17 benchmark datasets indicates

that novel k-mer position aware distribution based class densities normalized difference encoder

captures comprehensive position specific discriminative k-mers patterns which helps the Random

forest classifier to most accurately predict different DNA modifications.

3.5 Conclusion

The contributions of this study are manifold. It presents position specific k-mer occurrence based

class densities difference regularized through their minimum value to assign effective scores to

k-mers that lead to better characterization of DNA sequences. Experimental results reveal that

position aware higher order k-mers based statistical representations generate rare features which

negatively impact the performance of machine learning classifiers. Intrinsic analysis indicates

that using discriminative distributions of k-mers in which k-mers present in large number of

sequences in one class at certain positions and either do not present at all or present in low

number of sequences in other class at same positions, highly disjoint clusters for modification and

non-modification classes are obtained as compared to 32 existing sequence encoders. Furthermore,

these features also significantly enhance the generalizability of 10 different machine learning

classifiers. Using novel sequence encoder, Random forest classifier manages to beat state-of-

the-art type specific and generic DNA modifications predictors on 17 benchmark datasets of 12

different species. A compelling future line of current work would be to investigate the effectiveness

of novel sequences encoder for other Genomics and Proteomics sequence classification tasks.
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HISTONE OCCUPANCY/MODIFICATIONS PREDICTION AND

ENHANCER IDENTIFICATION/STRENGTH PREDICTION

The way different living organisms grow, survive, develop and reproduce is regulated by an

instruction manual called Deoxyribonucleic Acid (DNA) or genetic code [174, 281]. The genetic

code is organized into chromatin in a series of nucleosomes, where in each nucleosome, DNA is

wrapped around histone octamers that are made up of four pairs of histone proteins (H2A, H2B,

H3 and H4). A graphical representation of nucleosome construction with Histone Octamer and

DNA binding is illustrated in Figure 4.1. DNA consists of three main components namely: genes,

non-coding DNA and regulatory elements. Mainly, genes produce proteins while other two compo-

nents control the production type and number of proteins. To produce proteins, genes go through

two different stages namely transcription and translation. Specifically, at transcription stage,

negatively charged DNA sequence gets unwrapped from positively charged histone octamers in

order to allow the regulatory network read the target instructions and produce the most appropri-

ate proteins through the expression of certain genes. After the expression of genes, DNA sequence

gets tightly wrapped once again around histone octamers because of the dynamics of opposite

charges. Histone octamers get saturated with acetylation and methylation modifications that

induce high negative and positive charges, respectively on histone octamers. Histone acetylation

modification promotes gene expression, whereas histone methylation modifications hinder gene

expression by making unwrapping of DNA sequences difficult. Therefore, without altering the

DNA sequence, histone modifications influence the remodeling of chromatin, which eventually

0This chapter is an adapted version of the work presented in Asim et al., "Histone-Net: A Multi-Paradigm
Computational Framework for Histone Occupancy and Modification Prediction", In Complex & Intelligent Systems
(2022) [22] and Asim et al., "Enhancer-DSNet: A Supervisedly Prepared Enriched Sequence Representation for the
Identification of Enhancers and Their Strength.", In 27th International Conference on Neural Information Processing,
(ICONIP-2020) [20]
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impacts the gene expression. Cells maintain a balance between acetylation and methylation

levels to express more genes or repress certain sets of genes to produce right amount of proteins

essential for normal functioning of different organs. Irregularities in acetylation or methylation

cause over-expression or under-expression of genes that initiate and propagate several diseases

such as cancer, autoimmune diseases, mental disorders and diabetes.

H2A
H2B
H3
H4

H2A
H2B
H3
H4

4 kinds of Histone
proteins

histone
octamer

binding to
DNA

DNADNA

nuclsome

Figure 4.1: Histone octamer and nucle-

osome formation

Methylation of histone proteins H3 and H4 mainly

regulates the core activity of DNA replication [113] and

acetylation of different histone proteins affects the struc-

ture of the chromatin as well as gene transcription

[99, 208]. Histone modifications are responsible to regu-

late multifarious biological processes including chromo-

some wrapping [34, 54], transcriptional activation and

de-activation [46, 90, 225], damaging and repairing of

DNA [228, 310]. To acquire a deeper comprehension of

epigenetic regulation at cellular level and to pave way

for the development of drugs specifically cancer treat-

ment and histone altering enzymes [322], histone mod-

ification detection is essentially required [10]. A thor-

ough analysis of histone acetylation and methylation

areas in histone sequences can decipher the association

of histone modification with metabolism that mediates

diverse epigenetic abnormalities in multifarious patho-

logical conditions [440].

Furthermore, to study the state of the nucleosome array before gene expression and nu-

cleosome array recreation after gene expression, it is important to analyze histone occupancy.

Determining whether DNA around histone octamer is tightly wrapped or loosely wrapped, a

genetic task known as histone occupancy determination has profound importance in genetic

research [235, 240]. Histone occupancy significantly influences epigenetic silencing [261], cell

replication [343], differentiation [418] and re-programming [418]. Accurate determination of his-

tone occupancy can facilitate a deeper understanding of DNA accessibility to proteins, chromatin

functions and occupancy correlation with promoter strength [41].

In addition to histone modifications, regulatory elements primarily enhancers also impact the

production of proteins. Specifically, genes are expressed when DNA sequence gets unwrapped from

histone octamers and the strength of enhancers decides the duration for which a gene will remain

active. If a gene unexpectedly remains deactivated for a longer time period, then there might

be some issue with its associated enhancer. Enhancers impact cell growth, cell differentiation,

cell carcinogenesis, virus activity and tissue specificity through enhancing genes transcriptions

[209]. Discriminating enhancers from regulatory elements, estimating their location and overall
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strength are few most promising tasks which can facilitate deeper comprehension of eukaryotic

spatio-temporal gene regulation and evolution of diseases [266].

4.1 Related work

This section summarizes existing computational approaches that have been developed for both

application areas, namely enhancers and histone occupancy/modification prediction.

4.1.1 Histone Occupancy and Modification Prediction

Developing a robust computational approach for accurate histone occupancy and modification

prediction has been an active area of research since the public availability of 10 benchmark

datasets developed by Phaml et al. [332]. They proposed the very first computational approach

that utilized occurrence frequency of k-mers to generate statistical representations of histone

sequences and SVM classifier for histone modification prediction. Tran et al. [389] generated a

Boolean representation of DNA sequences based on the presence and absence of k-mers. They

utilized conditional random fields (CRFs) to infer nucleosome acetylation and methylation levels

in DNA sequences. Considering the significance of both position and frequency of k-mers, Pham et

al. [331] combined k-mer frequency based encoding with positional information based encoding to

reap the benefits of both kinds of representation learning approaches. Aggregated representations

were fed to SVM classifier for accurate prediction of histone occupancy, methylation and acety-

lation levels. Higashihara et al. [177] utilized the filter-based feature selection algorithm “Gini

Index" to obtain highly discriminative k-mers and used their occurrence frequency to generate

statistical representation that was passed to the SVM classifier. Benveniste et al. [39] developed

a logistic regression based approach to infer histone modifications by solely utilizing transcription

related factor-binding profiles to generate statistical representation.

On the other hand, taking into account the wide success of deep learning approaches, Nguyen

et al. [312] proposed a deep learning based methodology by utilizing k-mer one-hot vector

encoding and convolutional neural network (CNN). Likewise, Yin et al. [443] proposed another

deep learning approach in which they transformed one-hot encoded vector of k-mer sequences

into image-like tensors by making use of Hilbert curves. Image-based representations of histone

sequences were passed to a CNN model for the extraction of discriminative features and the

final classification. Aforementioned approaches were developed under the paradigm of binary

classification where each sequence of every task is either associated with positive class or negative

class.

A critical analysis of existing computational approaches [177, 312, 332, 443] indicates that

these approaches lack in generating comprehensive statistical representations of histone se-

quences. To generate statistical representations of histone sequences, few approaches utilized

bag-of-words based approaches [177, 332] which only manage to capture k-mer frequency and
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neglect rich semantic information. Whereas, others have utilized one-hot encoding scheme that

lacks the ability to capture comprehensive contextual information and correlations of k-mers

[33, 251, 312, 444]. Although, image based representation manages to find discriminative k-mers,

however, it failed to handle positional information of k-mers and transnational invariance of

k-mers mainly due to the supreme attention towards local residue context.

Furthermore, existing computational predictors have not been evaluated in cross-domain

setting [43, 183, 217, 471], where the key idea is to train model on one type of histone marker

and predict histone occupancy and modifications on other type of histone marker. Also, a closer

look at existing computational approaches reveals that in all existing approaches, 10 different

model checkpoints are deployed by rigorously training the single model separately over 10

benchmark datasets to provide practical application for the prediction of histone occupancy,

methylation and acetylation areas in histone sequences. In this strategy, one needs to know the

target histone marker beforehand to select appropriate model checkpoint amongst all available

model checkpoints while making prediction over unseen histone sequences. More recently, Yin

et al. [444] developed a deep learning approach “DeepHistone" that can simultaneously predict

different histone markers associated with particular sequence. Yin et al. [444] work motivates

us to develop a single multi-label predictor that can simultaneously predict histone occupancy,

acetylation and methylation levels associated to different histone markers.

4.1.2 Enhancer Identification and Strength Prediction

There exists a plethora of computational approaches which can discriminate enhancers from

other regulatory elements, however, few 2-layer predictors have been proposed which can predict

enhancers as well as their strength. This section summarizes enhancer identification and strength

prediction approaches.

Liu et al. [266] presented the very first 2-layered computational predictor namely IENHANCER-

2L that can discriminate enhancers from other regulatory elements as well as estimate their

strength. They leveraged pseudo k-tuple nucleotide composition encoding method to transform

DNA sequences and SVM classifier.

To improve the performance of IENHANCER-2L predictor, Jia et al. [209] developed Enhancer-

Pred. In order to learn optimal representations of DNA sequences, they utilized 3 different feature

encoding schemes including: Bi-profile Bayes, nucleotide composition and pseudo-nucleotide com-

position. They fed the optimized representations to SVM classifier. Liu et al. [265] developed

another 2-layer computational framework namely iEnhancer-PsedeKNC that used pseudo k-mer

nucleotide composition encoding method and SVM classifier. He et al. [172] proposed Enhancer-

Pred2.0 that utilized 2 different physicochemical property based encoding methods electron-ion

interaction potential and position-specific trinucleotide propensity. They utilized wrapper based

feature selection and SVM classifier.

Liu et al. [268] presented another 2-layer predictor namely iEnhancer-EL which fused six
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classifiers probabilities for layer-1 and 10 classifiers probabilities for layer-2 prediction. They

performed sequence encoding using 3 different methods including k-mer, subsequence profile and

pseudo K-tuple nucleotide composition. Tan et al. [379] proposed an ensemble of convolutional

neural network and recurrent neural network for efficient identification of enhancers and their

strength prediction. For generating sequence representations, they employed 6 different kinds

of dinucleotide physicochemical properties. Le et al. [243] presented iEnhancer-5Step predictor

based on neural k-mer embeddings and SVM classifier.

Nevertheless, still there is a lot of room for the improvement in the predictive performance

especially in distinguishing strong enhancers from weak enhancers. To develop an optimal

machine learning model for enhancer identification and strength prediction task, the most crucial

step is to encode biomedical sequences into fixed-size low-dimensional vectors. In this context, few

sequence encoding methods including: Local Descriptor, Conjoint Triad (CT), Auto Covariance

(AC) and PSE-KNC [268] have been utilized. However, such methods fail to take semantic

information of residues into account (such as residues order). To overcome these shortcomings

up to certain extent, Le et al. [243] recently employed neural word embeddings prepared in an

unsupervised manner. Although unsupervised k-mer embeddings capture semantic information

of k-mers, however, they still lack to associate inherent k-mer relationships with sequence type

while learning low-dimensional vector space.

Considering the downfalls of existing computational approaches in both application areas

and following the success of FastText approach in diverse NLP tasks, this research presents a

novel deep learning approach, working paradigm of which is similar to FastText model which

incorporates class label information while learning discriminative k-mers weights of histone

sequences. Furthermore, to assess the true generalization aptitude of proposed approach across 10

distinct histone markers belonging to histone occupancy, acetylation and methylation, proposed

approach is evaluated in cross-domain setting, where aim is to evaluate whether proposed

predictor can perform accurate predictions over new histone markers.

To develop a more comprehensive landscape for histone sequence analysis, we develop a multi-

label classification dataset which will further assist researchers to develop a unified model for

multiple histone markers related to three different tasks namely histone occupancy, acetylation

and methylation level prediction. In multi-label classification paradigm, performance of proposed

predictor is evaluated in terms of its ability to simultaneously predict histone type, occupancy,

acetylation and methylation levels.

To explore the potential of proposed predictor for other Genomics sequence analysis tasks, we

utilize same model for enhancers identification and their strength prediction tasks.
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4.2 Materials and Methods

This section describes the details of proposed predictor and benchmark datasets related to

two different tasks namely Histone occupancy/modification prediction and enhancer identifica-

tion/strength prediction.

4.2.1 Proposed Methodology

Histone sequences are comprised of 4 repetitive nucleotides adenine (A), guanine (G), cytosine (C)

and thymine (T). To develop a deep learning based predictor for analysis task of any biological

sequence, first step is to generate k-mers by sliding a fixed-size window over raw sequences

[109, 203]. However, while generating k-mers, it is important to decide the size of k-mers. Because

performance of classifiers relies on the number of discriminative k-mers among different classes.

To analyze which window size generates the most discriminative k-mers for histone occupancy,

acetylation and methylation prediction tasks. we generate overlapping k-mers with 10 different

degrees ranging from 2-to-12. We find that among positive and negative classes, there do not

exist any discriminative k-mers until 7-mers, however, afterward with the increase of k-mers

size, the number of discriminative k-mers also get increased which are present in one class and

absent in other class.

Figure 4.2: Discriminative and overlapping k-mers in positive and negative classes

In particular, to provide a bird’s eye view of discriminative potential of different size k-mers

across positive and negative classes, we randomly select a dataset from each histone sequence

analysis task and reveal the discriminative k-mers for each class for 5 different higher order
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residues (8-mers to 12-mers) in the form of Venn diagrams (Figure 4.2). As shown by the Figure

4.2, for histone occupancy H3 dataset, in case of 8-mers, positive class has only 20 unique k-mers

which are not present in the negative class while negative class has 10 unique k-mers which

are not present in positive class. Whereas, 65506 k-mers are present in both classes. With the

increase in degree of k-mers, discriminative as well as overlapping k-mers also increase. Histone

acetylation (H3K9ac) and methylation (H3K4me1) datasets also follow the distributional trend of

H3 dataset.
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Figure 4.3: Workflow of Histone-Net [22] approach

Considering above discussed distribution of k-mers in both classes, the key idea behind the

proposed approach is an assumption that traditional deep learning classifiers that make use

of CNN, RNN or hybrid layers (CNN + RNN) cannot perform better for classification tasks

where vocabulary of unique k-mers is very large. In particular, such humongous vocabulary

contains several rarely occurring k-mers that confuse deep learning models while extracting more

comprehensive features. To handle this problem, we propose a deep learning predictor competent

in learning representations of k-mers by incorporating class label information. We believe in this

particular scenario, rarely occurring k-mers will get less weights while discriminative k-mers

will get more weights.

A graphical illustration of proposed predictor is provided in Figure 4.3, where for binary

classification problems related to 3 different tasks of histone sequence analysis and two different

tasks of enhancer sequence analysis, the process of generating task aware distributed representa-
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tion of histone sequences starts by dividing the sequences into higher order residues (K-mers, e.g.,

10-mers). Then, distributed representations of sequences are learned by averaging the randomly

initialized 100-dimensional vectors of k-mers present in sequences, regularization of which is

performed by applying the dropout rate of 0.5. The training objective of embedding generation

model is to optimize k-mer embedding matrix by monitoring the cross entropy loss produced while

estimating the probability of target class (overall classes) through softmax classifier. Through

iterative learning, proposed predictor manages to encapsulate histone occupancy, acetylation and

methylation information in embedding matrix.

While in case of multi-label classification paradigm, we expose 3 histone sequence analysis

tasks related to meta-data at once to generate more generalized 64-dimensional k-mer embed-

dings followed by sigmoid classifier to simultaneously get the probabilities with respect to histone

marker type, occupancy, acetylation and methylation levels. Histone-Net [22] multi-label classifi-

cation paradigm effectively handles the overhead of training 10 different binary classifiers for 10

histone markers belonging to histone occupancy, acetylation and methylation.

As proposed model is evaluated in two different scenarios, in case of binary classification

paradigm it is evaluated for two different applications areas histone sequence analysis and

enhancer sequence analysis. To better elaborate the performance, in case of histone sequence

analysis, we name this approach Histone-Net [22], while for enhancer sequence analysis, we

name this approach as Enhancer-DSNet [20]. In multi-label scenario, we name this approach as

Histone-Net multi-label.

4.2.2 Benchmark Datasets

This section describes benchmark binary classification datasets for both application areas. It also

summarizes the process used to develop a multi-label classification dataset for histone occupancy

and modification prediction.

4.2.2.1 Benchmark Binary Classification Datasets for Histone Occupancy and
Modification Prediction

This section illustrates the details of 10 public benchmark histone occupancy and modifications

(acetylation and methylation) prediction datasets [443] used to evaluate the performance of

proposed multi-paradigm computational framework Histone-Net [22]. A comprehensive detail

of experimental process used to prepare 10 benchmark datasets is described in [331], here we

only summarize the statistics of 10 benchmark datasets. Table 4.1 describes sequence-to-label

distribution of 2 histone occupancy (H3, H4), 5 methylation (H3K4me1, H3K4me2, H3K4me3,

H3K36me3, H3K79me3) and 3 acetylation datasets (H3K9ac, H3K14ac, H4ac). For acetylation

and methylation level prediction datasets, K with its leading number represents the K th amino

acid which has to be modified with mono, di, or tri acetyl (“ac") and methyl (“me") modifications.
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For example, in H3K4me1 dataset, 4th amino acid of H3 protein is modified with a mono methyl

group.

For each benchmark dataset, histone sequences having relative occupancy, methylation and

acetylation values greater than 1.2 belong to positive class and lower than 0.8 belong to negative

class.

Table 4.1: Statistical summary of 10 benchmark datasets including 2 datasets for histone occu-
pancy detection, 3 datasets for acetylation and 5 datasets for methylation level prediction.

Dataset Name Description Positive Samples Nagative Samples

H3 H3 occupancy 7667 7298

H4 H4 occupancy 6480 8121

H3K4me1 H3K4 mono-methylation relative 17266 14411

H3K4me2 H3K4me2 H3K4 di-methylation relative to H3 18143 12540

H3K4me3 H3K4me3 H3K4 tri-methylation relative to H3 19604 17195

H3K36me3 H3K36me3 H3K36 tri-methylation relative to H3 18892 15988

H3K79me3 H3K79me3 H3K79 tri-methylation relative to H3 15337 13500

H3K9ac H3K9 acetylation relative to H3 15415 12367

H3K14ac H3K14 acetylation relative to H3 18771 14277

H4ac H4 acetylation relative to H4 18410 15686

4.2.2.2 Multi-label Classification Dataset for Histone Occupancy and Modification
Prediction

This section describes the process used to develop multi-label classification dataset for histone

occupancy and modification prediction.

Figure 4.4 illustrates the complete workflow used to develop imbalanced and balanced version

of multi-label histone sequence analysis dataset by utilizing 10 benchmark datasets given by

Pham et al. [331]. All 10 benchmark datasets have total of 2.74 million sequences where each

sequence is annotated with either 0 or 1. A closer look at sequence ids provided by Pham et

al. [331] reveals that a significant number of sequence ids appear in multiple histone markers

datasets. For instance, consider a sequence id “iTELL-Chr1_61" which is annotated as 1 in H3

histone marker dataset indicates that the sequence has histone occupancy the more than 1.2,

same sequence id is annotated as 0 in H3k4me1 histone marker dataset indicating that the

sequence methylation level is less than 0.8 and same sequence id is annotated as 1 in H4kme2

histone marker dataset indicating that the sequence methylation level is more than 1.2.

This analysis serves as a basis to formulate multi-label dataset where each sequence id

may have 20 labels at max instead of one label (0 or 1). From 20 labels, 10 labels represent the

association of sequence with positive class distribution of 10 benchmark histone markers whereas

69



CHAPTER 4. HISTONE OCCUPANCY/MODIFICATIONS PREDICTION AND ENHANCER
IDENTIFICATION/STRENGTH PREDICTION

Unique IDs
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Figure 4.4: Development workflow of imbalanced and balanced multi-label classification datasets
for histone occupancy and modification prediction

other 10 labels show the association of sequence with negative class distribution of 10 benchmark

histone markers. In this manner, each sequence target label is represented as a 20-dimensional

binary vector where 1 is assigned for the association of sequence with positive class of particular

histone marker and 0 is assigned for the association of sequence with negative class of particular

histone marker. Considering, whether multi-label dataset is imbalanced or balanced largely

impact the predictor performance, 2 different versions of multi-label histone sequence analysis

dataset is prepared to assess the behavior of Histone-Net on account of imbalance and balance

dataset.

A balanced version of multi-label dataset is prepared by eliminating all label cardinalities

which have less than 25 sequences, whereas imbalanced version of dataset is obtained by retaining

all label cardinalities. In this manner, balanced multi-label dataset of 19,088 and imbalanced

dataset of 22,191 sequences are obtained.

4.2.2.3 Enhancer Identification and Strength Prediction Benchmark Datasets

To assess the performance of enhancer identification and strength predictors, researchers [172,

209, 266, 268, 379] have utilized two benchmark core datasets and independent test sets. These

datasets are comprised of chromatin states of nine distinct cells involving GM12878, HepG2,

H1ES, K562, HUVEC, HSMM, NHLF, HMEC and NHEK [266] where each enhancer sequence

has same 200 bPs size. Statistics of both core datasets and independent test sets are shown in

Table 4.2.

Table 4.2: Statistics of enhancer identification and strength prediction datasets

Class enhancer non-enhancer weak enhancer strong enhancer
Core Data set 1484 1484 742 742

Independent Test Set 200 200 100 100
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4.3 Evaluation Criteria

In binary classification paradigm for histone sequence analysis, following Yin et al. [443] criteria,

80% of sequences of each dataset are used for training and 10% of sequences are used as

validation set to find best parameters of the model. Whereas, 10% sequences are used to evaluate

the performance of Histone-Net [22] predictor. In multi-label classification paradigm, we utilize

70% data for training, 10% data for validation and 20% data for testing. Similarly, in enhancer

identification and strength prediction, following evaluation criteria of existing predictors [266,

268, 379] , we perform 5-fold cross-validation over core datasets and independent test sets based

evaluation. In binary classification, Histone-Net [22] and Enhancer-DSNet predictors make use

of categorical cross-entropy loss and softmax classifier. In multi-label classification Histone-Net

uses binary cross-entropy loss function and sigmoid classifier. Furthermore, in both classification

scenarios, predictors are trained using an Adam optimizer with a decay rate of 0.95, epsilon of

1e-08, learning rate of 0.008 and 64 batch size.

4.4 Results and Discussions

This section illustrates performance of proposed Histone-Net [22] approach at different size

k-mers using 10 different datasets for histone occupancy, methylation and acetylation prediction

tasks. It compares the performance of proposed approach with adapted DeepHistone approach

[444] and state-of-the-art image representation based predictor ‘HCNN" [443]. Furthermore, it de-

scribes the generalization potential of proposed Histone-Net predictor by performing cross-domain

evaluation. To evaluate the aptitude of Histone-Net predictor for simultaneously identifying

histone marker, occupancy, acetylation and methylation areas in histone sequences, performance

of Histone-Net predictor is analyzed in the paradigm of multi-label classification. Finally, it

summarizes the performance statistics of the proposed Enhancer-DSNet and existing approaches

for the task of identifying enhancers and predicting their strength.

4.4.1 Evaluation of Histone-Net in Intra-Domain Setting using Binary
Classification Paradigm

Table 4.3 reveals the performance figures produced by proposed predictor at different k-mers in

terms of accuracy. As clearly inferred by Table 4.3, the idea of using a traditional softmax classifi-

cation layer to fuse label information into sequence vectors and perform sequence classification

proves extremely effective.

Among different k-mers, at 9-mers and 10-mers, proposed Histone-Net predictor manages to

achieve the top performance of 89% and 90% over two datasets of histone occupancy (H4, H3),

respectively. On the other hand, at 11-mers it proves versatile enough for overall methylation

and acetylation prediction datasets by achieving the performance figures of around 90%.
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Table 4.3: Performance statistics of proposed Histone-Net [22] predictor over 10 benchmark
datasets using 5 different k-mers

K-mers
Occupancy Methylation Acetylation

H3 H4 H3K4me1 H3K4me2 H3K4me3 H3K79me3 H3K36me3 H4ac H3K14ac H3K9ac
7 0.863 0.873 0.685 0.686 0.673 0.809 0.747 0.706 0.721 0.746
8 0.885 0.884 0.730 0.741 0.753 0.838 0.792 0.776 0.787 0.778
9 0.895 0.891 0.789 0.797 0.833 0.875 0.845 0.849 0.855 0.818

10 0.899 0.886 0.820 0.828 0.873 0.899 0.874 0.876 0.887 0.838
11 0.878 0.872 0.825 0.831 0.873 0.902 0.876 0.875 0.896 0.836
12 0.857 0.861 0.815 0.823 0.867 0.891 0.871 0.868 0.882 0.822

4.4.2 Performance Comparison of Histone-Net Predictor with Adapted and
State-of-the-art Histone Occupancy and Modification Predictors

We perform a fair performance comparison of proposed Histone-Net predictor with image repre-

sentation based on state-of-the-art histone occupancy and modification predictor namely "HCNN"

[443] and adapted convolutional neural network based approach DeepHistone [444].

Table 4.4: Accuracy comparison of proposed Histone-Net [22] approach with state-of-the-art
HCNN [443] and adapted DeepHistone [444] approach. Accuracy values of DeepHistone are
obtained by processing raw histone sequences of various histone markers using convolutional
neural network model presented by the authors [444] and accuracy values of HCNN are taken
from Table 4.3 of Yin et al. [443] study.

Method
Occupancy Methylation Acetylation

H3 H4 H3k4me1 H3k4me2 H3k4me3 H3k79me3 H3k36me3 H4ac H3K14ac H3K9ac
HCNN [443] 0.8734 0.8733 0.7321 0.7427 0.7445 0.8163 0.7703 0.867 0.7479 0.7919

Deep-Histone [444] 0.8697 0.8979 0.6944 0.6496 0.6533 0.811 0.7609 0.7152 0.7334 0.7433
Proposed Histone-Net [22] 0.8951 0.8911 0.8251 0.8312 0.8726 0.9022 0.8756 0.8747 0.8962 0.8384

Table 4.4 reports the performance of Histone-Net predictor, state-of-the-art HCNN [443] ap-

proach and adapted DeepHistone [444] approach over 10 different histone occupancy, methylation

and acetylation prediction datasets in terms of accuracy. As illustrated in Table 4.4, for both

histone occupancy prediction datasets (H3, H4), on average, HCNN achieves the performance

figures of around 87%. For most methylation prediction datasets, HCNN average performance

falls around 75% except H3k79me3 dataset where it achieves 80% performance. Similarly, for

acetylation prediction datasets, it manages to mark the performance of nearly 80%.

To perform a rich performance assessment of proposed Histone-Net predictor, we adopt a

convolutional neural network based approach DeepHistone proposed by Yin et al. [444]. As

shown in Table 4.4, DeepHistone only manages to achieve over 85% accuracy on 2 histone

occupancy prediction datasets, over 80% accuracy on only 1 histone methylation prediction dataset

(H3K79me3) from 5 histone methylation prediction datasets and over 70% accuracy on 3 histone

acetylation prediction datasets. The reasons behind the limited performance of DeepHistone [444]

in comparison to state-of-the-art HCNN [443] is the use of suboptimal statistical representation

learning scheme which lacks to capture translational invariance of residues.

Proposed Histone-Net predictor produces superior performance than HCNN [443] across 10
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different benchmark datasets. While for histone occupancy and acetylation prediction datasets

(H3, H4), on average, Histone-Net produces performance figures around 90% and 86%, respec-

tively. Whereas, for most methylation prediction datasets, its performance crosses the landmark

of 85% and on H3k79me3 dataset it manages to achieve the top performance figure of 90%.

Likewise, Histone-Net significantly outperforms adapted DeepHistone [444] approach across

all 10 benchmark histone markers datasets for 3 different histone sequence analysis tasks. For

histone occupancy prediction, on average, Histone-Net achieves an increment of 3%, for histone

methylation prediction, it attains an increment of 15% and for histone acetylation prediction, it

achieves an increment of 14%.

4.4.3 Evaluation of Histone-Net in Cross-Domain Setting

In biomedical sequence analysis, generally, cross-domain evaluation is used to examine the

practical significance of predictive approaches in terms of their ability to perform accurate

predictions over new histone markers. In cross-domain setting, for histone occupancy sequence

analysis task, Histone-Net predictor is trained over the sequences of different histone markers

belonging to Histone occupancy and tested on one of the test sets of particular histone marker that

was not added in training set. This process is repeated to ensure that Histone-Net predictor is

evaluated on the test set of each histone marker belonging to histone occupancy. A similar process

is repeated for histone acetylation and methylation prediction tasks to ensure that Histone-Net

is not biased towards specific histone marker data. In this manner, cross-domain performance

of Histone-Net predictor over test sets of 10 benchmark datasets belonging to 3 distinct histone

sequence analysis tasks is computed.

Table 4.5: Performance of proposed Histone-Net [22] predictor in cross-domain setting using
different degree higher order residue based sequence representation.

Histone Marker Test Set K-mers Accuracy Precision Recall F1-score
H3 7 0.7112 0.7214 0.7112 0.7069
H4 7 0.6753 0.6894 0.6753 0.6742

H3K14ac 10 0.8493 0.8461 0.8493 0.8495
H3K9ac 10 0.8297 0.8321 0.8297 0.8285

H4ac 11 0.8618 0.8625 0.8618 0.8615
H3K4me1 7 0.5792 0.5724 0.5792 0.565
H3K4me2 7 0.5913 0.5717 0.5913 0.5869
H3K4me3 7 0.4511 0.4433 0.4511 0.4471
H3K79me3 7 0.7153 0.7146 0.7153 0.7146
H3K36me3 7 0.6127 0.6087 0.6127 0.6103

Like intra-domain setting, in cross-domain setting, performance of Histone-Net predictor

is assessed using 5 different higher order residues (7-to-11). Table 4.5 summarizes the peak

performance achieved by Histone-Net predictor under different higher order residues over the

test sets of 10 different benchmark datasets belonging to histone occupancy, acetylation and

methylation prediction. As indicated in Table 4.5, just like intra-domain setting, Histone-Net
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achieves top performance of around 86% in terms of 4 different evaluation metrics using upper

degree higher order residues (11-mers) based sequence representations in cross-domain setting

for the task of histone acetylation prediction. Whereas, for 2 other histone sequence analysis tasks

including Histone Occupancy and Histone Methylation prediction, unlike intra-domain setting,

here Histone-Net marks better performance with medium degree higher order residue (7-mers)

based sequence representations. For histone occupancy, Histone-Net achieves best performance

of 71% on test set of H3 histone marker as compared to H4 across all 4 evaluation metrics. For

histone acetylation prediction, Histone-Net achieves better performance of 86% on test set of H4ac

followed by H3K14ac and H3K9ac. Whereas, for histone methylation prediction, Histone-Net

attains the best performance of 72% on the test set of H3K79me3 dataset.

Empirical evaluation on the test sets of 10 benchmark datasets belonging to 3 distinct histone

sequence analysis tasks indicates that Histone-Net manages to attain the average performance

of more than 80% for histone acetylation (H3K14ac, H3K9ac, H4ac), 70% for histone occupancy

and 60% for histone methylation prediction. Across 10 benchmark datasets, compared to average

performance of 87% and peak performance of 90% achieved by Histone-Net in intra-domain

setting, Histone-Net manages to attain an average performance of 70% with the peak performance

of 86% in cross-domain setting. Usually, the performance of computational approaches drops up

to great extent when evaluated using cross-domain paradigm, however, Histone-Net predictor

shows decent generalization potential across a variety of datasets belonging to 3 distinct histone

sequence analysis tasks.

4.4.4 Intrinsic Evaluation of Histone-Net Predictor

Intrinsic evaluation assesses the quality of internal sequence representations of proposed Histone-

Net predictor with an aim to evaluate the clusters of both classes in terms of cohesiveness and

coupling levels using Principal Component Analysis (PCA) and T-distributed Stochastic Neighbor

Embedding (t-SNE).

In particular, to provide a bird’s eye view of discriminative potential of learned statistical

vectors in positive and negative classes, we randomly select one dataset from each histone

sequence analysis task. By training the Histone-Net predictor on training sets of all three

datasets, we extract internal representations of all sequences belonging to test sets of all three

datasets.

Extracted vectors are passed to PCA approach that reduces the dimensions from 100 to 25.

These 25-dimensional statistical vectors are passed to T-SNE visualizer that further reduces

the dimensions and creates mappings in two-dimensional space. T-SNE graphs for 1 randomly

selected histone occupancy, methylation and acetylation dataset using 11-mer are shown here.

As depicted by the embedding chart 4.5, clusters for both positive and negative class for

all three selected datasets are far less overlapping. Also, it is quite evident that Histone-Net

predictor better captures the local and global semantic composition of k-mers which eventually
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(a) H3K4me3 Dataset (b) H3K4me3 Dataset (c) H3K14ac Dataset

Figure 4.5: Internal representation of Histone-Net predictor [22] for three distinct datasets at
11-mers

assists to develop optimal sequence clusters.

4.4.5 Evaluation of Histone-Net in Multi-label Classification Paradigm

This section briefly describes the performance of the Histone-Net multi-label classification

paradigm using balanced and imbalanced versions of multi-label datasets in terms of 11 different

evaluation metrics. To better quantify the effectiveness of the Histone-Net multi-label classifica-

tion paradigm, it compares the performance of proposed Histone-Net predictor with an adapted

convolutional neural network based DeepHistone approach [444].

Table 4.6 reports the performance produced by proposed Histone-Net predictor over im-

balanced and balanced versions of multi-label histone occupancy and modification prediction

datasets in terms of 9 distinct multi-label evaluation metrics. Table 4.6 illustrates that across

both versions of multi-label datasets, Histone-Net performance almost gradually improves by

increasing the degree of higher order residues, indicating Histone-Net achieves the best perfor-

mance with upper degree higher order residues (10-mers, 11-mers) across all evaluation metrics.

Furthermore, across all different higher-order residues, Histone-Net achieves slightly better per-

formance on balanced versions of multi-label dataset as compared to imbalanced version in terms

of the most evaluation metrics. On balanced version of multi-label dataset, Histone-Net achieves

the F1-score of 72% and hamming loss of 0.20 which surpasses the Histone-Net performance

achieved on imbalanced version by the figure of 3% and 1%.

Table 4.7 compares the performance of Histone-Net predictor with adapted DeepHistone ap-

proach using imbalanced and balanced versions of multi-label histone occupancy and modification

prediction dataset. It is evident from the Table 4.7 that Histone-Net significantly outperforms

adapted DeepHistone predictor across all 11 evaluation metrics. On imbalanced version of multi-

label histone occupancy and modification prediction dataset, Histone-Net achieves the accuracy

increment of 14%, precision increment of 8%, recall increment of 21%, F1-score increment of
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Table 4.6: Performance statistics of Histone-Net predictor [22] using different size k-mers over
imbalanced and balanced version of multilabel dataset

Multi-Label DNA
Sequence Analysis Datasets

Performance
Measures

K-mers
7 8 9 10 11 12

Imbalance Dataset
Accuracy 0.475 0.5129 0.5535 0.5714 0.57 0.559
F1 0.6146 0.6451 0.6787 0.693 0.6921 0.684
Average Precision 0.529 0.529 0.529 0.529 0.529 0.529

Balanced Dataset
Accuracy 0.5486 0.5783 0.6099 0.6171 0.6078 0.6051
F1 0.676 0.6973 0.7217 0.7299 0.7187 0.709
Average Precision 0.5712 0.5712 0.5712 0.5712 0.5712 0.5712

15%, average precision increment of 13%, AUPRC increment of 18%, AUROC increment of 12%,

hamming loss improvement of 7% and coverage improvement of 2%. On the balanced version

of multi-label histone occupancy and modification prediction dataset, Histone-Net achieves the

increment of 10%, 4%, 15%, 10%,15%, 17%,10%, 5% and 2% in terms of aforementioned distinct

evaluation metrics. On average, Histone-Net supersedes the performance of adapted DeepHistone

by the figure 10% and 8% on imbalanced and balanced version of multi-label histone occupancy

and modification prediction datasets, respectively.

Table 4.7: Performance statistics of proposed Histone-Net [22] and adapted DeepHistone predic-
tors using optimal size k-mer, over imbalanced and balanced versions of multilabel dataset in
terms of 11 distinct evaluation metrics

Datasets Datasdet Accuracy Precision Recall F1
Average

Precision
AUPRC AUROC

Ranking

Loss
OneError

Hamming

Loss
Coverage

Imbalanced

Dataset

Histone-net [22] 0.5714 0.6882 0.7257 0.693 0.529 0.788 0.868 0.3812 0.8556 0.2049 15.8996

DeepHistone [444] 0.4269 0.6127 0.5245 0.5467 0.4014 0.6114 0.7502 0.2295 0.8143 0.2717 17.7378

Balanced

Dataset

Histone-net [22] 0.6171 0.7113 0.7652 0.7299 0.5712 0.8244 0.8821 0.3412 0.8324 0.1977 15.7452

DeepHistone [444] 0.5235 0.6693 0.6164 0.6296 0.4088 0.6464 0.7842 0.1958 0.8297 0.2439 18.082

Furthermore, in order to analyze the effectiveness of proposed Histone-Net predictor for

accurately predicting histone occupancy and modifications, we utilize one-versus-all strategy to

generate 20 binary confusion matrices for 10 histone markers for imbalanced (Figure 4.6) and

balanced versions of multi-label datasets (Figure 4.6). In one-versus-all strategy, false positives,

false negatives, true negatives and true positives are computed by treating one particular histone

marker class as positive and all other histone markers classes belonging to same histone sequence

analysis task as negative irrespective of the multi-label problem. More specifically, we evaluate

the behavior of Histone-Net when there is a decent gap between the total number of positive and

negative sequences.

A critical analysis of 20 confusion matrices (Figure 4.6) produced by Histone-Net over imbal-

anced dataset shows that overall 64% positive histone marker appearances and 82% negative

histone marker appearances (represented as rest) are correctly predicted by Histone-Net. Top

true positive figure of 89% is achieved on H3 histone marker, whereas, top true negative figure of

94% is achieved on H3ac histone marker. Among histone markers related to occupancy, a higher
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Figure 4.6: Confusion metrics of Histone-Net [22] predictor for unbalanced version of multi-label
classification dataset, where each confusion matrix illustrates correct and wrong predictions of a
particular class.

number of positive and negative sequences are correctly classified on H3 makers as compared

to H4. Among histone markers related to acetylation, most number of positive class sequences

are accurately classified in H3K14ac histone marker with the performance around 82% whereas

the most numbers of negative class sequences are correctly predicted in H34ac histone maker

with the performance around 95%. Turning towards the performance of methylation related

histone markers, 80% of positive class sequences are correctly classified in 3 histone mark-

ers (H3K36me3, H3K4me1, H3K4me3) whereas 88% of negative class sequences are correctly

predicted by Histone-Net on H3K79me3 histone marker.

In one-versus-all setting as negative class gets more number of samples which is why usually

there exist a huge gap between the performance of positive and negative class, however, here the
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gap is not large at all due to the robustness of Histone-Net predictor towards imbalance class

distribution.

Figure 4.7: Confusion metrics of Histone-Net predictor [22] for balanced version of multi-label
classification dataset, where each confusion matrix illustrates correct and wrong predictions of a
particular class.

In imbalanced version of multi-label dataset, there exist only 5 uni-label and 24 bi-label

sequences which are too less for effective model training. Considering uni-label and bi-label

sequences act as a noise and derail the generalizability of classifier, we perform experimentation

on balanced version of multi-label dataset prepared after eliminating all uni-label and bi-label

sequences. Performance analysis on 20 confusion matrices produced by Histone-Net on balanced

version of multi-label dataset reveals that overall 66% positive and 80% negative histone marker

appearances are predicted accurately.

Across different histone markers, overall Histone-Net marks better performance on balanced
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versions of multi-label datasets as compared to imbalanced version of multi-label datasets.

Highest true positive figure of 97% and true negative figure of 99% is achieved on H3 and H4ac

histone markers, respectively, achieving an increment of 8% and 5% as compared to the peak

performance achieved by Histone-Net on imbalanced version of dataset. From histone markers

related to occupancy, while the most positive sequences are correctly predicted in H3 histone

marker, the higher number of negative sequences are correctly classified in H4 histone marker.

Among histone markers related to acetylation, greater number of positive class sequences are

accurately classified in H3K14ac histone marker with the performance of around 86% whereas

the most number of negative class sequences are correctly predicted in H34ac histone maker with

the performance of around 99%, outperforming the performance attained on imbalanced version

by 4%. Concerning the performance of methylation related histone markers, 93% of positive

class sequences are correctly classified in H3K36me3 histone marker whereas 89% of negative

class sequences are correctly predicted by Histone-Net on H3K4me2 histone marker, achieving

ac increment of 13% and 1%, respectively when compared with top performance attained by

Histone-Net on methylation histone marker of imbalanced dataset.

In a nutshell, across different evaluation metrics, although average performance figures

attained by Histone-Net on imbalanced and balanced versions of multi-label dataset are compa-

rable. However, a close look indicates that across most histone markers, Histone-Net achieves

better performance on balanced version of multi-label dataset as compared to imbalanced version.

To identify up to what degree Histone-Net manages to simultaneously predict histone-

occupancy, acetylation and methylation areas in unseen histone sequences, performance of

Histone-Net is analyzed over imbalanced and balanced version of multi-label dataset in terms

of multi-label confusion matrices corresponding to unique sequence-label distributions. In both

versions of multi-label datasets, number of correctly predicted histone markers out of all actual

histone markers are highlighted in confusion matrices (Figure 4.8).

For imbalanced version of multi-label dataset, a closer look at sequence-label distribution

(Figure 4.8) and confusion matrix (Figure 4.8) reveals that, Histone-Net manages to make

accurate predictions for 90% uni-label sequences as only 1 sequence is missclassified out of

5 sequences. For bi-label sequences, it correctly predicts 46% sequences because 11 bi-label

sequences are correctly classified out of 24 sequences. For tri-label sequences, Histone-Net

performance drops as it only manages to identify the target histone markers of 31% sequences.

For tetra-label sequences, Histone-Net achieves best performance of around 83% as it makes

correct predictions for 260 sequences out of 314 sequences. However, afterward, with the increase

of histone marker combinations, Histone-Net best performance of 83% keeps on declining with

great margin, dropping to 51%, 25% 26% and 22%, for penta, hexa, hepta and octa-label sequences,

respectively, achieving lowest performance 15%, 9% on highest label cardinalities including nona-

label and deca-label sequences.

On the other hand, for balanced version of multi-label dataset, uni and bi-label samples are
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A. Confusion matrix for B. Sequence-Label distribution for
imbalanced dataset imbalanced dataset

C. Confusion matrix for D.Sequence-Label distribution
balanced dataset for balanced dataset

Figure 4.8: Performance analysis of proposed Histone-Net predictor [22] in terms of sequence
label distributions using imbalance and balanced versions of multilabel classification datasets

removed from the dataset and label cardinalities which have 25 or more samples are kept. For tri-

label and tetra-label sequences, Histone-Net manages to correctly predict 60% and 26% sequences,

respectively. Afterward, with the increase of label cardinality, unlike imbalanced dataset, here

Histone-Net performance decreases with less margin, it manages to correctly predict penta, hexa,

hepta and octa-label sequences with 49%, 44%, 32% and 23% accuracy. However, for highest label
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cardinalities like nona-label and deca-label sequences, Histone-Net once again only manages to

correctly predict 11% and 9% sequences. Overall, Histone-Net achieves better performance on

balanced version of multi-label dataset. For balanced version of dataset, Histone-Net achieves

better performance with medium to higher level of histone marker combinations. Whereas, for

imbalanced version, Histone-Net achieves better performance with low to medium level of histone

marker combinations. However, for highest histone marker combinations (9 and 10), Histone-Net

makes correct predictions for only 10% of sequences.

To summarize, a comprehensive evaluation of Histone-Net in multi-label sequence classifi-

cation paradigm using imbalanced and balanced datasets proves the capability of Histone-Net

for simultaneously predicting histone type, occupancy, acetylation and methylation areas in

histone sequences. Furthermore, Histone-Net achieves decent performance on both imbalanced

and balanced versions of multi-label datasets, showing its robustness to handle diverse data and

sample-to-label distributions.

4.4.6 Performance Comparison of Proposed Enhancer-DSNet Approach with
Existing Enhancer Identification and Strength Prediction Approaches

Here, we briefly describe and compare the performance of proposed Enhancer-DSNet approach

with state-of-the-art Enhancer determinant and strength prediction approaches by performing

cross-validation on core benchmark datasets and independent test sets based evaluation.

4.4.6.1 Evaluation on Benchmark Core Dataset

Following Tan et al. [379] work, in our experimentation, we used 5-fold cross-validation on

benchmark core datasets.

Table 4.8 reports the average performance figures produced using 5-fold cross-validation at

layers 1 and 2 in terms of accuracy, specificity, sensitivity and Matthews Correlation Coefficient

(MCC). As indicated in Table 4.8, for enhancer/non-enhancer prediction task (layer-1), proposed

Enhancer-DSNet approach outperforms Tan et al. Enhancer [379] approach by the sensitivity

figure of 3% and MCC figure of 2%. However, for strong/weak enhancer prediction task (layer-2),

proposed Enhancer-DSNet outperforms Tan et al. Enhancer approach [379] with a significant

margin across 4 different evaluation metrics. Enhancer-DSNet significantly superior performance

overshadows the most recent Tan et al. approach [379] performance by the figure of 17% in terms

of sensitivity, 29% in terms of specificity, 4% in terms of accuracy and 6% in terms of MCC.

4.4.6.2 Performance Comparison of Proposed Enhancer-DSNet with Existing
Predictors over Independent Test Set

Table 4.9 compares the performance of proposed Enhancer-DSNet and existing predictors over

independent test sets for enhancer/non-enhancer and strong/weak enhancer prediction tasks
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Table 4.8: 5-Fold cross-validation based performance comparison of proposed Enhancer-DSNet
[20] and latest existing predictor [379] for enhancer/non-enhancer and strong/weak enhancer
prediction.

Classifiers Sensitivity Specificity Accuracy MCC
1st Layer (Enhancer/Non-Enhancer)

Proposed Enhancer-DSNet [20] 0.76 0.76 0.76 0.52
Tan et al. Enhancer [379] 0.73 0.76 0.74 0.50

2nd Layer (Strong Enhancer/Weak Enhancer)
Proposed Enhancer-DSNet [20] 0.63 0.67 0.63 0.26

Tan et al. Enhancer [379] 0.80 0.38 0.59 0.20

in terms of accuracy, specificity, sensitivity and MCC. According to Table 4.9, at layer-1, among

all existing predictors excluding the most recent Tan et al. approach [379], -iEnhancer-EL [268]

marks better performance across most evaluation metrics. Here, proposed Enhancer-DSNet

outperforms the most recent Tan et al. approach [379] by the figure of 2%, 1%, 2% and 5% in

terms of sensitivity, specificity, accuracy and MCC and second best performing -iEnhancer-EL

[268] by the figure of 7%, 3% and 6% in terms of sensitivity, accuracy and MCC, respectively.

Whereas, at layer-2, once again proposed Enhancer-DSNet outshines the most recent Tan et al.

approach [379] by the promising figure of 21% in terms of specificity, 15% in terms of accuracy

and 39% in terms of MCC and second best performing predictor -iEnhancer-EL [268] by the

figure of 29% in terms of sensitivity, 22% in terms of accuracy and 48% in terms of MCC.

Table 4.9: Performance comparison of proposed Enhancer-DSNet [20] with existing Enhancer/Non-
Enhancer and Strong/Weak Enhancer predictors over independent test sets

Classifiers Sensitivity Specificity Accuracy MCC
1st Layer (Enhancer/Non-Enhancer)

Proposed Enhancer-DSNet [20] 0.78 0.77 0.78 0.56
Tan et al. Enhancer [379] 0.76 0.76 0.76 0.51

iEnhancer-EL [268] 0.71 0.79 0.75 0.50
iEnhancer-2L [266] 0.71 0.75 0.73 0.46
EnhancerPred [209] 0.74 0.75 0.74 0.48

2nd Layer (Strong Enhancer/Weak Enhancer)
Proposed Enhancer-DSNet [20] 0.83 0.67 0.83 0.70

Tan et al. Enhancer [379] 0.83 0.46 68.49 0.31
iEnhancer-EL [268] 0.54 0.68 0.61 0.22
iEnhancer-2L [266] 0.47 0.74 0.61 0.22
EnhancerPred [209] 0.45 0.65 0.55 0.10

4.5 Conclusion

Histone markers and Enhancers are considered core areas of epigenetic sequence analysis that

pave way for the development of drugs and identification of diseases. To supplement epigenetic

sequence analysis, contributions of this chapter are manifold: it presents a generic classifier

that can accurately predict occupancy, acetylation and methylation levels in histone markers.

It provides a unique dataset for Histone markers sequence analysis. This dataset will facilitate
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researchers to develop and evaluate novel methods that can simultaneously predict Histone

markers type, occupancy, acetylation and methylation levels. Furthermore, proposed classifier

managed to outperform existing histone sequence analysis predictors over 10 public benchmark

datasets. Experimental results in cross-domain setting reveal proposed classifier potential to

perform accurate analysis over unseen histone markers. While, simultaneously predicting histone

type, occupancy, acetylation and methylation levels, it also produced comprehensive performance

over newly developed dataset. Furthermore, effectiveness of proposed classifier over state-of-the-

art enhancer identification and strength predictors, proves its practical significance and usability

for other Genomics sequence analysis tasks.
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SMALL NON-CODING RNA CLASSIFICATION

Ribonucleic acid (RNA) is an essential molecule for living entities which is involved in multifarious

biological processes, such as translation, sponging, gene regulation and splicing [180, 292]. Four

basic nucleotides, namely guanine (G), uracil (U), adenine (A) and cytosine (C) define the basic

structure of RNA molecules [345], where structure means to have knowledge about its biological

properties. Involvement of RNA molecules in different biological functions and their importance

in different diseases attracts many researchers to analyze RNA molecules in more detail to find

their new functions and roles in biological processes [339, 341, 438]. Primarily, RNA molecules

are categorized into coding and non-coding RNA classes, where about 3% of total RNA is coding

that produce proteins (so called messenger RNA = mRNA) and the remaining 97% is known as

non-coding (ncRNA) or functional RNA [198] . While the function of mRNAs is well-known and

has been studied extensively, non-coding RNAs were considered junk code and thought not to

participate in the process of developing proteins [324, 412, 438]. At the beginning of 21st century,

analysis of mouse [96] and human [239] Genomes and later in 2005 findings of human Genome

project revealed that majority of ncRNAs are involved in many essential biological processes

such as dosage compensation, genomic imprinting and cell differentiation [13, 129]. After these

findings, in-depth analysis of ncRNAs became even more interesting because of their importance

in understanding the phenomena behind human health and diseases [13].

Most recent literature reveals that ncRNAs not only participate in the development of

proteins, but also control the process in which proteins are produced. They act as key players

in the development and progression of complex diseases [182] and are involved in several

0This chapter is an adapted version of the work presented in Asim et al., "A Robust and Precise ConvNet for small
non-coding RNA classification (RPC-snRC)." , In IEEE Access 9 (2020) [28] and Asim et al., "Advances in Computational
Methodologies for Classification and Subcellular Locality Prediction of Non-Coding RNAs", In International Journal
of Molecular Sciences (2021) [19]
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Figure 5.1: A comprehensive taxonomy of RNA families

biological and physiological processes [182] such as gene expression regulation [302] and RNA

maturation [232]. Contribution of ncRNAs in vital oncogenic processes such as differentiation,

proliferation, migration, angiogenesis and apoptosis has gained much attention as potential

diagnostic and prognostic biomarkers in leukemia [44]. Furthermore, ncRNAs are discovered as

tumor suppressors, oncogenic drivers in different cancer types [325] and are strongly linked to

the development of Alzheimer’s and cardiovascular diseases [124, 363].

Based on cellular functionality, variation in sequence length, unique structure, physical and

chemical properties [13], ncRNAs can be segregated into different subclasses, a taxonomy of

which is depicted in Figure 5.1. ncRNAs are categorized into small non-coding RNAs (sncRNA)

and long non-coding RNAs (lncRNA). The lncRNAs are further categorized into linear and circular

RNAs. Linear RNAs play diverse roles in intracellular processes such as gene transcription and

translation [452]. Circular RNAs are involved in gene regulation, where irregularities cause

complex diseases like lung cancer and tumor [67, 285].

Primarily, small ncRNAs are classified into 13 subclasses where each subclass has distinct

medical and biological significance. For instance, scaRNAs, most of which are functionally and

structurally identical to snoRNAs can guide modifications in pseudo uridylation and methyla-

tion. miRNAs are involved in various complex human diseases such as cancer, autoimmune,

cardiovascular and neurodegenerative diseases [124]. Similarly, Ribosomal RNA (rRNA) plays

an essential role in protein synthesis and its characteristics are considered very valuable for

the development of antibiotics. 5.8S ribosomal RNAs actively participate in protein translation

[122] and facilitate to understand other rRNA pathways and processes in the cell [15]. Although

the complete functionalities of 5 S ribosomal RNA have not been discovered yet, it has been

shown that its deletion substantially reduces protein synthesis that creates harmful effects on

cell fitness [311].

Accurate discrimination of ncRNAs from coding RNAs and identification of their subtypes can

lay the foundation for demystifying the core functions and biological roles of different subclasses of
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ncRNAs, their involvement to suppress the mechanism [253] underlying complex human diseases

[31, 179] or to develop effective treatments and optimize therapeutics [291, 409]. Classification of

small non-coding RNAs (sncRNAs) is of high importance due to unique role of each subclass into

molecular processes and in the development of diseases. It can support biologists and clinicians

to get a better understanding for the role of sncRNAs in biological processes such as classification

of sncRNAs is important in developing procedures for cancer therapeutics [13].

5.1 Related Work

The interest to develop sophisticated computational methods for ncRNA classification has rock-

eted over the period since knowing the family of ncRNA is substantial for drug targeting and

understanding growth of various complex diseases. Non-coding RNA classification is a vast

domain where classification at different levels of ncRNA (shown in figure 5.1) has been performed.

Mainly, researchers have been focusing on 1) distinguish non-coding RNA from coding RNA, 2)

categorize ncRNA into long and small non-coding RNA, 3) segregate long non-coding RNA into

its subtypes such as circular RNA and 4) classify small non-coding RNA into its 13 subclasses.

Classification of ncRNAs at each level facilitates distinct biological advantages.

To date, several computational approaches have been proposed for non-coding RNA classifica-

tion at different stages which are comprehensively summarized in our paper [19]. As compared

to other types of ncRNA classification, small non-coding RNA classification lacks AI based

approaches.

Antonino Fiannaca et al. [136] proposed first computational predictor named nRC that

can classify small non-coding RNAs using only sequence information. nRC extracts secondary

structures of RNA sequences and feeds them to Convolutional Neural Network (CNN) that

discriminates small non-coding RNAs into 13 subclasses. More recently, Emanuele Rossi [345]

proposed another predictor that also extracts secondary structural features and uses Graph

convolutional neural network for further feature extraction and classification.

As described above, both small non-coding RNA classification approaches use secondary

structure of RNA sequences as input and extract discriminative features by utilizing convolution

layers or graph based methodologies. Secondary structure extraction methods only consider

global characteristics of nucleic acids and ignore their local characteristics [142]. Furthermore,

transformation of raw RNA sequences to secondary structural features creates high-dimensional

feature space which is computationally inefficient [142].

Instead of extracting secondary structures of RNA sequences, we explore the potential of

three different RNA discretization strategies namely: one-hot vector encoding, random and

pretrained embeddings. Following the success of DenseNet architecture for diverse types of

classification tasks in computer vision domain [229, 365]. We propose a robust and precise

classifier based on DenseNet architecture where key idea is to provide a proper gradient flow
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path among CNN layers which could learn more discriminative features. However, while using

deep learning based classifier, it is unexplored whether such architectures performs better with

one-hot vector encoding or random embeddings or pretrained embeddings. Furthermore, in all

three types of representations, we examine whether classifier performs better while training

character level feature of RNA sequence or k-mer level feature. To answer above questions, we

have performed detailed experimentation on small non-coding RNA classification dataset with

the proposed RPC-snRC classifier using all three types of representations at character level

and k-mer level. Moreover, to further analyze the idea of utilizing primary RNA sequences, we

performed experiments with two adapted ResNet architectures which vary in terms of depth and

hyper-parameters.

5.2 Materials and Methods

This section illustrates the proposed RPC-snRC predictor and details of ResNet-based architec-

tures along with benchmark dataset.

5.2.1 Proposed RPC-snRC Methodology

This section briefly describes the proposed RPC-snRC methodology for the classification of small

non-coding RNA. We develop a deep classifier in which a phenomenon similar to DenseNet is used

to enable proper flow of gradient between the layers. RPC-snRC utilizes a set of convolutional

layers for extraction of discriminative features from the primary sequences of small non-coding

RNA. Discriminative features are then fed to dense layers for classification of sequences into a

set of predefined classes.

Figure 5.2 illustrates the architecture of the proposed methodology along with noteworthy

model parameters. The proposed RPC-snRC methodology is based on three dense modules.

Each dense module contains the same number of layers; however, output units get doubled in

each successive dense module. Each dense module first performs batch normalization on the

given input and then applies ReLu activation to introduce nonlinearity followed by convolution

operation to extract discriminative features. Finally, it repeats the discussed operations one more

time in order to better learn hierarchical representation of data. Each dense module is followed

by a transition layer that performs batch normalization, ReLu activation, convolution with the

filter size 1×1 and max pooling with the size of 4 to retain discriminative features and discard

useless ones. Dense architecture was proposed by Gao Huang et al. [191] and has been widely

utilized for various applications of computer vision. We utilize this architecture for sequence

data which is one-dimensional and entirely different from visual data. Integral components of

the proposed methodology such as DenseNet, Dense connectivity, Composite function, Pooling

layers, Growth rate and Bottleneck layers which are adapted to cope one-dimensional data, are

discussed below.
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Figure 5.2: Proposed RPC-snRC methodology for small non-coding RNA classification. In figure,
(128,16,18) indicates there are 128 kernels, each of width 16 and length 18 in a convolutional
layer and (1,4) indicates kernel width and length are set to 1 and 4, respectively in a pooling
layer. Remaining layers of network also follow same dimensionality pattern.

5.2.1.1 DenseNet

Consider a small non-coding RNA sample S0 that is passed through a convolutional network.

The network consists of L layers, each of which performs a non-linear conversion HL(·), where L

indicates the layer. HL(·) may be a composite function for operations like batch normalization

[202], rectified linear units (RELU) [150], Pooling [244], or Convolution (Conv). We refer to the

Lth layer output as xL.

Dense connectivity: State-of-the-art feed-forward convolutional networks attach the Lth

layer output as an input to the (L+1)th layer, which produces the following transition layer

xL = HL(xL−1) [229]. ResNets [171] along with skip connection strategy use an identity function

to bypass nonlinear transformations shown in equation 5.1

XL = HL (XL−1)+ xL−1 (5.1)

ResNets benefit is that the gradient can flow straight from subsequent layers to previous layers

through the identity function. However, the identity function and output of HL are mixed by

summation which can hinder the flow of data in the network.

We utilize Densenet a distinct connectivity model to further enhance the information flow

between layers. In this model Lth layer gets all previous layer’s feature maps, x0,· · · ; xL−1, as
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input.

XL = HL ([x0, x1,· · · ; xL−1]) (5.2)

In equation 5.2, x0,· · · ; xL−1 relates to the concatenation of the feature maps in the 0,· · · ,L−1

layers

Composite function: Following He et al. [171], we define HL(·) as a composite function

of three successive operations: Batch Normalization (BN) [202], Activation function named as

rectified linear unit (ReLU) [150] and a convolution (Conv) layer.

Transition layers: We refer to the layers between blocks that perform convolution and

pooling operations as transition layers. The procedure of concatenation used in equation 5.2 is not

applicable if size of feature maps is variable. In our architecture, we split the network into various

tightly linked dense blocks to generate feature maps of same size. Down sampling is performed

through transition layers which consist of a batch normalization layer and a convolution layer of

kernel size 1, followed by an average pooling layer of kernel size 4.

Table 5.1: Architecture summary of Res18-nRC and Res50-nRC

Layer_Name Res18_nRC Res50_nRC
Output Size Parameters detail Parameters detail Output Size

Conv-1 64×1182 (64,3), s=1,p=1 64 x 1182

Conv-2 64×1182
[
(64,17)
(64,17)

]
×2, p = 8

 (64,1) , p = 0
(64,17) , p = 8
(256,1) , p = 0

×3 256 x 1182

Pool-1 64×591 (2, 2) 256 x 591

Conv-3 128×296
[
(128,17)
(128,17)

]
×2, s = 2, p = 8

 (128,1) , p = 0
(128,17) , p = 8
(512,1) , p = 0

×4, s = 2 512 x 296

Pool-2 128×148 (2, 2) 512 x 148

Conv-4 256×74
[
(256,17)
(256,17)

]
×2, s = 2, p = 8

 (256,1) , p = 0
(256,17) , p = 8
(1024,1) , p = 0

×6, s = 2 1024 x 74

Pool-3 256×37 (2, 2) 1024 x 37

Conv-5 512×19
[
(512,17)
(512,17)

]
×2, s = 2, p = 8

 (512,1) , p = 0
(512,17) , p = 8
(2048,1) , p = 0

×3, s = 2 2048 x 19

Pool-4 512 x 9 (2, 2) 2048 x 9
Output 13 Flatten-4608 Flatten-18432 13
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Growth rate: If each composite function HL(·) produces N feature maps, then Lth layer

will have N0 +N × (L−1) input feature-maps, where N0 denotes number of channels in the input

layer. We refer to the N hyperparameter as the network’s growth rate.

5.2.1.2 Adapted ResNet Architectures

To make sure whether, deeper classifiers with proper gradient flow among layers can produce

better performance, we adapted two predefined ResNet architectures Res18-nRC and Res50-nRC

from the domain of computer vision. Table 5.1 illustrates parameter details of the adapted

ResNet architectures. In both architectures, ncRNA samples are passed through convolutional

layers before feeding to ResNet modules. Both architectures have 4 ResNet modules, while each

module of Res18-nRC has 2 basic blocks, where each basic block has two convolutional layers

but Res50-nRC architecture has variable bottleneck blocks in each ResNet module which are

mentioned by a number outside the matrix brackets, i.e., first ResNet module has 3 bottleneck

blocks and second has 4. In the first matrix (64,17) 64 represents number of feature maps and 17

shows the kernel size.

5.2.2 Benchmark Dataset

We perform experimentation on a small non-coding RNA classification dataset provided by

Antonino et al. [136]. This is the only benchmark dataset which is publicly available. It contains

8920 samples that belong to 13 different ncRNA classes and each class has 700 samples except

IRES class which contains 520 samples. Table 5.2 illustrates samples distribution and sequence

length variation in each class.

Table 5.2: Characteristics of non-coding RNA classification dataset, where Max-seq length and
Min-seq length illustrate maximum and minimum length of nucleotides in each class.

Classes No.of Samples Max-seq length Min-seq length
IRES 520 630 53
Intron_gpI 700 1182 133
leader 700 237 38
scaRNA 700 445 78
S5_rRNA 700 199 61
miRNA 700 631 52
tRNA 700 177 47
riboswitch 700 399 44
ribozyme 700 1136 41
S8_rRNA 700 290 50
CD-box 700 404 54
HACA-box 700 508 59
Intron_gpII 700 241 48

The dataset has benchmark defined split with 6320 training and 2600 test samples. In the

test set, each class has 200 samples, whereas in training set, each class has 500 samples except

the IRES class which has 320 samples available for training.
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5.3 Evaluation Criteria

A detailed parametric description of adapted ResNet based methodologies is summarized in

Table 5.1. We use cross entropy loss function and Adam [219] optimizer with learning rate

0.001. In order to alleviate training time, an early stopping approach is used. Proposed classifier

performance is evaluated using four different evaluation metrics namely: Accuracy, Precision,

Recall and F1 measure. Following existing studies [345], [296] leave one out cross-validation is

used to perform experimentation.

5.4 Results and Discussions

This section briefly describes the performance of the proposed RPC-snRC classification system

and two adapted ResNet architectures (ResNet 18 layers, ResNet 50 layers) for the task of ncRNA

classification. It shows the impact of three sequence representation schemes while treating

RNA sequence as a set of characters and k-mers based words for both proposed and adapted

methodologies. In the benchmark dataset maximum length of the sequence is 1180, so to make

the length of sequences equal, we apply paddings for the sequences which have length less than

1180. Experimentation is performed in two different ways: First, RNA sequence is taken as a

set of characters with two different representation schemes namely one-hot vector encoding and

random embedding initialization, which are separately fed to the proposed RPC-snRC system.

Second, we generate 3-mers of the sequence by sliding a window of size three on the sequence.

K-mers based sequence representations along with one-hot vector encoding, random embedding

initialization and pretrained word embeddings provided by Asgari et al. [18] are fed to the

proposed RPC-snRC system.

Proposed RPC-snRC [28] Res18-nRC Res50-nRC State-of-the-art

Performance
Measures

Character
one-hot

3-mers
one-hot

3-mers
random

embeddings

3-mers
prot2vec

embeddings

Character
one-hot

3-mers
one-hot

3-mers
random

embeddings

3-mers
prot2vec

embeddings

Character
one-hot

3-mers
random

embeddings

3-mers
prot2vec

embeddings

nRC
[296]

RNAGCN
[345]

Accuracy 0.9538 0.9285 0.9327 0.9326 0.9169 0.8842 0.8880 0.9000 0.8680 0.8365 0.8915 0.7838 0.8573
Precision 0.9539 0.9312 0.9344 0.9322 0.9185 0.8859 0.8929 0.9000 0.8701 0.8377 0.8941 0.7780 –
Recall 0.9538 0.9285 0.9326 0.9326 0.9169 0.8842 0.8880 0.9000 0.8680 0.8365 0.8915 0.7830 –
F1-Score 0.9536 0.9286 0.9328 0.9319 0.9174 0.8842 0.8880 0.8987 0.8680 0.8357 0.8921 0.7790 0.8561

Table 5.3: Performance statistics of the proposed RPC-snRC, adapted (Res18-nRC, Res50-nRC)
and state-of-the-art (nRC [296] and RNAGCN [345]) methodologies on the benchmark small
non-coding RNA dataset.

Table 5.3 compares the performance of state-of-the-art and adapted resnet based methodolo-

gies with the proposed RPC-snRC methodology for the task of small non-coding RNA classification.

It also illustrates the performance of the proposed RPC-snRC methodology when RNA sequence

is treated as a set of characters, 3-mers based features with random and pre-trained neural word

embeddings. As depicted by the Table 5.3 renowned methodology proposed by Antonio Fiannaca

et al. [136] managed to achieve the performance figures of 78%, 77%, 78% and 77% in terms of

accuracy, precision, recall and F1 measure, respectively. This performance is outperformed by a
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recent Graph Convolutional Neural architecture based methodology given by Emanuele RossiGet

et al. [345] as it marked state-of-the-art performance for small non-coding RNA classification with

85.7% accuracy. However, the adapted ResNet-18 and ResNet-50 manage to produce the peak

performance of 91% and 89% by representing RNA sequences as character with one-hot encoding

and as 3-mers features with pre-trained prot2vec embedding, respectively. On the other hand,

the proposed RPC-snRC classification system has significantly outperformed the state-of-the-art

methodology, as well as, the two adapted ResNet architectures in all settings. While, RPC-snRC

with 3-mers random embedding initialization and pre-trained neural word embeddings schemes

has raised state-of-the-art performance almost by the figure of 8% in terms of F1 measure,

the RPC-snRC with character level features and one-hot encoding manages to mark the peak

performance at 95% thereby clearly outperforming all the other systems (previously existing

systems and ResNet based systems adapted in this research).

In a nutshell, convolutional neural network based deep architectures have the ability to

extract discriminative features directly from primary sequences of small non-coding RNA. This

is depicted by the results where performances of the proposed and adapted methodologies are

significantly higher than the state-of-the-art methodologies which take secondary structural

features as input. Moreover, performance of ResNet based architectures is lower than the per-

formance of the proposed RPC-snRC methodology because in ResNet models gradient does not

flow properly from subsequent layers to previous layers [191]. It can also be inferred that ResNet

model with 50 layers extracted some irrelevant and redundant features which slightly reduced

its performance as compared to the performance of ResNet 18 layers model.

5.4.1 Class Level Performance Comparison of Proposed RPC-snRC and
State-of-the-art nRC Methodologies

In order to further compare the performance of the proposed RPC-snRC and the adapted ResNet

based methodologies with the state-of-the-art methods, a class level performance comparison

is performed in terms of accuracy confusion matrix. Accuracy confusion matrices of RPC-snRC,

ResNet-18 and nRC methodologies on the test set of nRC dataset are shown in the Figure 5.3.

RNAGCN [345] is the most recently reported method for small non-coding RNA classification,

however, the authors have not provided class level results of their method. Therefore, we per-

formed class level performance comparison of the proposed RPC-snRC and adapted methodologies

with nRC classification methodology. The proposed RPC-snRC and the adapted Res18snRC based

methodologies produce the highest performance with character level and one-hot vector represen-

tation. So here we take confusion matrices of both methodologies with the highest performance

values. As depicted in Figure 5.3, RPC-snRC methodology correctly classifies all 200 samples of

two classes namely Intron gpII and tRNA as compared to the state-of-the-art nRC methodology

which manages to correctly classify only 180 samples of tRNA and 196 samples of Intron gpII

class. Performance of Res18-snRC remains in between the performance of nRC and RPC-snRC
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Figure 5.3: Accuracy confusion matrix of the proposed RPC-snRC [28], adapted Res18-nRC and
state-of-the-art nRC [296] classification methodologies.

methodologies as it correctly predicted 198 samples of Intron gpII and 193 samples of tRNA class.

In addition, state-of-the-art nRC methodology fails to mark prominent performance as significant

samples of almost every class are mistakenly classified in miRNA, HACA-box, CD-box and IRES

classes, while, only a few samples of each class are misclassified in the proposed RPC-snRC

methodology.

Although, miRNA has shown the lowest performance among all classes in both methodologies,

the proposed RPC-snRC still correctly classifies 163 samples out of the maximum possible 200

as compared to state-of-the-art nRC methodology which only manages to correctly classify only

98 samples. Also, the proposed RPC-snRC methodology successfully classifies more than 190

samples in each of the nine classes, i.e., introl_gpll, tRNA, 5S_rRNA, 5_8S_rRNA, leader, scaRNA,

ribozyme, introl_gpl and CD-box. Whereas, the other classes achieve counts of 180s and 160s

as shown in Figure5.3. In contrast to the state-of-the-art nRC methodology, only two classes

intron_gpl and intron_gpll correctly classify more than 190 samples. Similarly, the adapted

Res18-nRc methodology was able to correctly predict more than 190 samples for 4 classes, namely
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Figure 5.4: Class level performance comparison of proposed RPC-snRC [28] approach and state-
of-the-art nRC [296] approach using small ncRNA classification dataset.

Figure 5.4 shows individual class level performances of RPC-snRC and nRC classification

methodologies over small ncRNA classification dataset in terms of precision, recall and F1

measure. Overall, for all classes, RPC-snRC methodology significantly outperforms the state-of-

the-art nRC methodology in all three performance metrics with exception of the miRNA class,

where nRC methodology manages to deliver better recall figure. Moreover, among all performance

metrices, nRC classification methodology manages to sustain performance values of precision,

recall and F1 measure only for three classes (IRES, 5.8S rRNA, scaRNA). On the other hand, the

performance of RPC-snRC classification methodology remains consistent for 6 classes namely:

ribozymes, 5_8S_rRNA, tRNA, scaRNA, Intron_gpII and riboswitch. This unique behavior of

RPC-snRC methodology shows that it suffers less from type I and type II errors as compared to

nRC methodology-performance which seems less stable at class level.

5.5 Conclusion

This chapter presents a novel RPC-snRC methodology, which classifies small non-coding RNA

sequences into their relevant families by utilizing positional and occurrence information of

various nucleotides. Experimental results reveal that the proposed RPC-snRC methodology is

highly robust as it is neither biased towards false positive nor towards false negative predictions.

Adapted Res18-snRC and Res50-snRC methodologies perform better than the state-of the-art

small non-coding RNA classification methodologies. However, their performance is less than

the performance of proposed RPC-snRC methodology because in ResNet architectures gradi-

ent cannot flow properly from subsequent layers to previous layers. The proposed RPC-snRC

methodology marks the highest F1-score of 95% by representing character based features through

one-hot encoding, while state-of-the-art ncRNA, RNAGCN and adapted Res18-nRC, Res50-nRC

classification methodologies manage to produce the performance figures of 77%, 85%, 91% and

89%, respectively. Moreover, in our experimentation, almost all methodologies perform better with
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one-hot vector encoding than randomly initialized or pretrained word embeddings. From these

results, it can be concluded that character or atom level feature generates better performance as

compared to k-mers based features.
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Among different types of non-coding RNAs, following recent findings about different roles of

circular RNA in diverse biological processes such as disease prediction and their use in therapies;

in depth exploration of circular RNAs become more attractive area of research [194]. Moreover,

identification of suitable drugs targeting the regulatory circuits of functional RNAs requires infor-

mation about the subtype of non-coding RNAs family also known as RNA sequence classification

[28].

In order to perform circular RNA classification, it is necessary to understand the formation

of circular RNAs [372]. In circular RNA formation, firstly DNA is transcribed into a precursor

messenger RNA (pre-mRNA) [194] that consists of introns and exons regions [388]. Through the

process of splicing from pre-mRNA, intron regions are removed and mature messenger RNA

is produced from exons regions [388]. The process of pre-RNA splicing, also produces circular

RNAs [241]. A slight change in the process of circular RNA formation leads towards failure

of various biological processes that initiate and propagate diverse types of diseases, such as

cancer, Alzheimer and Parkinson [31, 246, 467]. Although, circular RNA is found to be involved

in various biological processes, however, its complete functionality still remains unexplored

[467]. Precise identification of circular RNAs facilitates in depth exploration of their biological

roles [13, 136, 412, 466]. Circular RNA classification is different from small non-coding RNA

classification, as distribution of nucleotides in circular RNA is different from small non-coding

RNAs. Furthermore, length of circular RNA sequences is much longer than small non-coding

RNA sequences [31, 179, 253].

0This chapter is an adapted version of the work presented in Asim et al., "CircNet: an encoder–decoder-based
convolution neural network (CNN) for circular RNA identification", In Neural Computing and Applications (2021)
[372] and Asim et al., "Advances in Computational Methodologies for Classification and Subcellular Locality Prediction
of Non-Coding RNAs", In International Journal of Molecular Sciences (2021) [19]
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6.1 Related Work

One way to classify or identify circular RNAs is to perform laboratory experiments, as done by

Zaghlool et al. [453] and Zirkel et al. [479]. Unfortunately, performing classification through such

experimental methods suffers from multiple drawbacks such as Zirkel et al. [479], experimental

method requires chemical materials that are costly and experimentation process is time con-

suming [479]. Laboratorios experimentation is error-prone, as in Zaghlool et al. [453] work a low

reproducibility rate of different experimental methods is reported. Furthermore, relatively low

appearance rate of circular RNAs compared to other RNAs and circular RNAs sequence similarity

with non-linear RNAs make their classification difficult.

Thanks to high-throughput technologies which produce large amount of nucleotide sequencing

data [194, 425] and provide another way to perform RNA classification by utilizing machine

learning approaches. To the best of our knowledge, there are currently three computational

approaches that can discriminates circular RNAs from other long non-coding RNAs.

The first approach PredcircRNA proposed by Pan et al. [324] generates statistical represen-

tation of raw RNA sequences by extracting seven different features including graph features,

sequence composition, conservation information, tandem repeat, ALU, ORF features and SNP

density. Based on generated statistical representation, multi kernel learning classifier acquire a

linear weight combination of multiple kernels in which every kernel transforms the hands-on

representation into a higher-dimensional space where data becomes linearly separable. Finally,

SVM classifier makes use of high-dimensional feature space to make final predictions. Using

a similar set of features, Chen et al. [75] developed H-ELM predictor, which additionally uti-

lizes minimum redundancy maximum relevance (mRMR) as well as iterative features selection

approach with an aim to retain discriminative set of features. By using the most informative

features hierarchical extreme learning classifier discriminates circRNAs from other lncRNAs.

CircDeep [68] predictor transforms raw sequences to statistical vectors by utilizing three different

encoding methods. Conservation scoring method extracts motif specific information while other

two encoders word2vec embedding generation model and Reverse Complement Matching (RMC)

method capture context of nucleotides. Furthermore, three different types of representations

are passed to hybrid model based on Convolution Neural Network (CNN) and Bidirectional

Long Short-Term Memory (BLSTM) layers that extracts discriminative features and perform

classification.

Existing predictors utilize hand crafted features, while recent research about genomics

analysis has proved that deep learning based methodologies perform better when they are fed

with raw DNA or RNA sequences as compared to their performance when they are fed with

manually extracted features. We [28] proposed an end-to-end deep learning based approach for

small non-coding RNA classification. Based on the experimental results we concluded that when

deep learning predictors are fed with hand crafted features, their performance decreased because

during the process of feature extraction important information about occurrences and positions
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of nucleotides may get lost. Our experimental results proved that deep learning methodologies

perform better by extracting more discriminative features from raw sequences based on the

position and occurrences of basic nucleotides. Moreover, to perform different sequence analysis

tasks such as classification of long non-coding RNAs and RNAs subcellular location prediction,

several deep learning predictors have produced state-of-the-art performance values by utilizing

raw RNA sequences.

In order to improve the performance of circular RNA identification, we propose a two stage

classification methodology where at first stage we utilize an encoder decoder approach for the

extraction of latent space and at second stage, by utilizing learned representation, a convolutional

neural network is used for the extraction of discriminative features. Discriminative features

are fed to a fully connected layer that discriminate circular RNAs from other long non-coding

RNAs. Lastly, in order to explore different regions of genome which contain more important

information about the identification of circular RNAs, we performed extensive experimentation

by taking different combinations of sequence lengths, scaling methods and number of added

adjacent nucleotides.

6.2 Materials and Methods

This section describes the details of proposed predictor and benchmark dataset.

6.2.1 Proposed Methodology

We propose a two stage classification methodology, where at first stage we learn discriminative

features by utilizing an encoder-decoder architecture and at second stage the learned features

are passed to a convolutional neural network for the extraction of more discriminative features

and to perform classification between circRNAs and other long non-coding RNAs (lncRNAs).

The encoder utilizes convolution and pooling, while decoder makes use of deconvolution and

un-pooling/up-sampling to reconstruct the original raw sequence. The key idea is to apply encoder

based convolutional operations to learn sequence representation in less space while the up-

sampling of decoder network makes sure whether the sequence can be reconstructed from the

learned space. This architecture substantially reduces the number of trainable parameters of

classifier. A brief description of encoder-decoder architecture is given in section 6.2.1.2 and deep

learning classifier is described in section 6.2.1.3. In order to understand the area of genome that

contains more important information about the identification of circRNAs, we take different

segments of the genome which are briefly described in the preprocessing stage, section 6.2.1.1.

6.2.1.1 Preprocessing

The dataset provided by Chaabane et al. [68] contains circular RNA and lncRNA sequences

along with their positional information in the human genome, i.e., in the genome sequence
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start and end locations of nucleotides on the basis of which authors extracted non-coding RNA

sequences. Utilizing start and end locations, we extracted adjacent nucleotides from genome

sequence and embed them with non-coding RNA sequences, since these regions might contain

valuable information about circular RNA classification [205, 405]. Adjacent nucleotides appear

directly after or before the start and end locations of non-coding RNA sequences. The concept

of adjacent nucleotides is illustrated in Figure 6.1, where let’s we have a genome sequence in

which start and end positions denote the sequence of circular RNA. To more precisely illustrate

the concept of adjacent nucleotides, in the genome sequence CAG nucleotides are before the start

position and ATC nucleotides are after end position of circular RNA sequence.

Figure 6.1: Circular RNA sequence extension by adding adjacent nucleotides

Furthermore, in the benchmark dataset, length of non-coding RNA sequences varies from 201

to 3050672 nucleotides, however, deep learning predictors require same length of sequences. In

order to fix the length of sequences, rather than taking maximum length of 3050672 nucleotides

and apply zero padding to shorter sequences, we set maximum length to a predefined number

M, then zero padding is applied in the sequences which are smaller than M and truncates the

nucleotides from sequences which are longer than M. We take 3 different values 200, 500 and

1000 for M. The size of sequences equal to a predefined length M is made by applying three

padding approaches, denoted as post, pre and middle. In post padding, from sequences which are

longer than predefined number M, we remove all nucleotides appearing after the M th nucleotide.

If the sequences are shorter than M, an additional zero Z symbol is added at the end of the

sequence as many times as needed to achieve the predefined length M. On the other hand. pre

padding removes or adds nucleotides from the beginning of the sequences. In middle approach,

the first and last M/2 nucleotides of sequences are kept, while removing or adding nucleotides in

between. An illustration of said approaches can be seen in Table 6.1.

Table 6.1: Scaling of two different sequences ATAG and ATATGUAT to length of 6 by either
addition or removal with three different methods namely Pre, Middle and Post.

Pre Middle Post
Addition ZZATAG ATZZAG ATAGZZ

Removal ATATGUAT ATATGUAT ATATGUAT

As deep learning methodologies require data in real number format, we transform each sequence
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in one-hot encoded representation. Furthermore, we extract the sequence from the genome

dataset based on positional information, which also includes the letter N in addition to the four

nucleotides A, C, G and U. Note that due to ambiguity between nucleotides, an exact identification

is not always possible. Therefore, the additional symbol N represents either A, U, C or G. Because

we are interested in the positions of nucleotides rather than removing them, we give them a

one-hot vector representations. In one-hot encoding every nucleotide is represented by a vector of

five bits, where four bits are 0 and one bit is 1. The position of the 1 bit is always the same for a

specific nucleotide. Using this methodology adenine is represented as A = [1,0,0,0,0], Cytosine C

= [0,0,0,1,0], Guanine G = [0,0,1,0,0], Uracil U = [0,1,0,0,0], N = [0,0,0,0,1] and zero symbol Z =

[0,0,0,0,0].

6.2.1.2 Latent Space Extraction using Autoencoder

We utilize raw ncRNA sequences for the extraction of latent space features, where each RNA

sequence has four basic nucleotides: adenine (A), cytosine (C), guanine (G) and uracil (U).

Furthermore, each nucleotide is encoded using one hot vector encoding, as described in section

6.2.1.1. A graphical representation of proposed autoencoder used for latent space learning is

shown in Figure 6.2.
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Figure 6.2: Graphical representation of the employed autoencoder.

We use 1d convolutional layers with 128 filters, kernel size 12 and stride size 1. This layer extract

discriminative features based on the nucleotide’s occurrences and positions. In order to reduce the

dimensions of extracted feature space, we employ a max pooling layer with kernel size 2. Another

convolutional layer, with 128 filters, kernel size 6, stride size 1 and max pooling layer with kernel

size 2 is used to extract more discriminative features. Reconstruction of initial sequence from the

latent space verifies the extraction of comprehensive features. For this purpose, we use the same

number of layers in reverse order. The output of each convolutional layer is calculated by:
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cxyf =
k∑

i=1

5∑
j=1

nksf ,i jwksf ,i j +bksf ,i j (6.1)

where f denotes the f th filter, x and y represent the indices of the output tensor, k and s define

the currently observed patch of the input tensor n given as kernel and stride size, respectively.

i and j denote indices inside this patch. Furthermore, w and b define the learned weights and

biases, respectively. Considering sequence length of 200, the input is given as a 200×5 tensor for

the first convolutional layer. Its output is defined by a 200×128 tensor which gets reduced to a

100×128 after applying max pooling. Max pooling calculates the output as a tensor where each

index xyf is calculated as follows:
mxyf =max cksf (6.2)

where f denotes the f th filter, x and y the indices of the output tensor and k and s define the

currently observed patch of the input tensor c given as kernel and stride size, respectively. The

second convolutional layer does not change the shapes. However, the second max pooling layer

again halves the shape to 50×128, which is our latent feature representation. The decoder has

the same shapes in reverse order. All layers are utilizing Relu as the activation function defined

by:
a(y)= max(0, y) (6.3)

where y is the output of a layer. However, in the last reversal operation of the decoder sigmoid

is applied, which is defined by:
a(y)= 1

1+ e−y (6.4)

6.2.1.3 Convolutional Neural Network based Classifier

Figure 6.3 illustrates architecture of proposed classifier that uses latent space and discriminates

between circular RNA and other lncRNA.

Figure 6.3: Graphical representation of the employed classifier.

Latent space is fed to two one dimensional convolutional layers with kernel size 3, stride size 1

and 64, 32 filters for the first and second layers, respectively. Following this we have a dropout
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layer with a probability of 0.5 and max pooling with kernel size and stride size equal to 2. Finally,

a flattened layer followed by a dense layer is used. Note, that we do not freeze the weights of the

trained encoder in our classification model, but instead fine-tuned the weights during the second

training stage.

Convolutional and max pooling layers working paradigm is explained in section 6.2.1.2. Dropout

randomly ignores a fixed percentage of neurons during the optimization step. All layers utilize

Relu as an activation function, besides the last dense layer which uses softmax defined as:

a(y)i = eyi∑K
j=1 eyj

f or i = 1, ...K and y= (yi, ..., yK ) ∈RK (6.5)

Let’s assume we have an input sequence of length 200, our input shape is defined by 200×5

which gets transformed to 50×128 by the encoder, as defined in section 6.2.1.2. Our convolutional

based classifiers change the shape to 48×64 and 46×32 for the first and second convolutional

layers. Dropout does not change shapes of sequences. On the other hand, max pooling reduces

the shape to 23×32, flattening this shape results in a vector of size 736. Lastly, the dense layer

calculates our final prediction with an output size of 2×1.

6.2.2 Benchmark Dataset

In order to evaluate the integrity of proposed CircNet approach we performed experimentation

on the publicly available benchmark dataset provided by Chaabane et al. [68]. It consists of two

classes, circular RNAs and other lncRNAs. Chaabane et al. [68] utilized CircRNADb database to

extract 31939 circular RNA sequences [82]. On the other hand, the GENCODE database was used

to extract 19683 lncRNAs [139]. More details about the dataset, such as the minimal, maximal,

average sequence length and the standard deviation of all sequences is summarized in Table 6.2.

Table 6.2: Statistics of benchmark dataset, where minimal and maximal sequence length repre-
sents the length of shortest and longest sequences, respectively. On the other hand average and
standard deviation of sequence length illustrate the mean and standard deviation of sequences
in the corresponding classes.

Measure Positive class Negative class Both classes
Minimal sequence length 201 204 201
Maximal sequence length 3050672 1536213 3050672
Average sequence length 19924 18653 19439

Standard Deviation of sequence lengths 34439 47025 39716

6.3 Evaluation Criteria

In order to ensure a fair performance comparison of proposed CircNet predictor with state-

of-the-art circular RNA classification approaches [68, 75, 324], we performed experimentation
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with standard data splits provided by Chaabane et al. [68] where benchmark dataset has 75%

train, 15% test and 10% validation samples. Following evaluation criteria of existing studies

[68, 75, 324], we utilize 6 different evaluation measures namely accuracy, f1-measure, Matthews

correlation coefficient, specificity, recall and AUROC. The learnable parameters of CircNet

predictor are optimized through RMSProp optimizer, with an initial learning rate of 0.001 and

the Mean Squared Error (MSE) as the loss function.

6.4 Results and Discussions

We performed experimentation by scaling the length of highly variable non-coding RNA sequences

to 3 different predefined lengths: 200, 500 and 1000. To accomplish this we utilize 3 different

fixed-length generation strategies: middle, pre and post. Furthermore, with an aim to verify

claim that important information can be extracted from genome sequence regions adjacent to

circular RNA sequences, we also performed experimentation by extracting 2 different lengths

(50, 100) adjacent nucleotides from genome sequences and combining them with non-coding RNA

sequences. A detailed description about predefined lengths values and 3 fixed-length generation

strategies is provided in section 6.2.1.1. Considering, all possible settings, 26 experiments have

been performed and the results are summarized in Table 6.3.

From Table 6.3, it can be concluded that when CircNet is fed with only circular RNA sequences

using three different padding schemes (post, pre and middle), it performs better with middle

padding method. This proves that in a sequence more important information lies at the beginning

and end of a sequence. When CircNet is fed with an input of 200 nucleotides and padding at the

middle it produces performance figures of 0.9827, 0.9860, 0.9633 and 0.9813 in terms of accuracy,

f1, MCC and specificity, respectively. However, when input length increases to 500 nucleotides

the performance of all three measures improves. The same scenario holds true when the length

is increased to 1000 nucleotides.

On the other hand, experimental results also validate that by using adjacent nucleotides

performance gets improved. Along with the addition of adjacent nucleotides, here once again

middle padding approach performed better as compared to other pre and post padding approaches.

Comparing the best performing model which does not use adjacent nucleotides with the worst

performing model which uses adjacent nucleotides, there is an increase of 5.64% for accuracy,

4.41% for F1, 12.12% for MCC and 10.92% for specificity for the latter model. Among different

experimental settings, 100 adjacent nucleotides and 1000 sequence length with middle fixed-

length generation strategy produce the best performance in terms of accuracy, F1 and MCC,

while 50 adjacent nucleotides with a sequence length of 500 achieved the best specificity.

Furthermore, we evaluate the integrity of proposed CircNet approach using AUROC curves

and the respective AUROC values at different experimental settings. Figure 6.4(a) illustrates

AUROC curves when CircNet was fed with original sequences and the curves of Figure 6.4(b)
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Table 6.3: Performance statistics of CircNet [372] based on different adjacent nucleotides, scaling
methods and sequence lengths.

Number of
adjacent nucleotides

Scaling Seq. Len. Acc. F1 MCC Spec.

0 Middle 200 0.8985 0.9192 0.7832 0.8462
500 0.9063 0.9266 0.7997 0.8278
1000 0.9134 0.9315 0.8148 0.8544

Post 200 0.8301 0.8709 0.6335 0.6774
500 0.8293 0.8689 0.6315 0.6941
1000 0.8372 0.8705 0.6518 0.7642

Pre 200 0.8802 0.9052 0.7434 0.8115
500 0.8831 0.9067 0.7506 0.8299
1000 0.8751 0.9040 0.7328 0.7567

50 Middle 200 0.9827 0.9860 0.9633 0.9813
500 0.9818 0.9853 0.9615 0.9826
1000 0.9813 0.9849 0.9602 0.9755

Post 200 0.9771 0.9816 0.9514 0.9653
500 0.9771 0.9816 0.9514 0.9650
1000 0.9768 0.9813 0.9506 0.9646

Pre 200 0.9700 0.9758 0.9366 0.9670
500 0.9702 0.9759 0.9369 0.9677
1000 0.9702 0.9759 0.9368 0.9656

100 Middle 200 0.9810 0.9847 0.9598 0.9855
500 0.9823 0.9858 0.9624 0.9724

1000 0.9828 0.9862 0.9635 0.9775
Post 200 0.9770 0.9815 0.9511 0.9639

500 0.9773 0.9818 0.9517 0.9636
1000 0.9775 0.9819 0.9523 0.9677

Pre 200 0.9703 0.9760 0.9371 0.9660
500 0.9702 0.9759 0.9368 0.9639
1000 0.9698 0.9756 0.9360 0.9650

represent AUROC values when CircNet was fed with original sequences along with adjacent

nucleotides. A detailed description of how we define adjacent nucleotides and what our motivation

is in using them, is given in section 6.2.1.1. Briefly, these are nucleotides appearing before and

after the circular RNA sequence in the original genome. From Figure 6.4 it can be concluded that

the approach denoted with middle, in which we extract nucleotides from the beginning and end

of the sequence, improves circNet performance, as compared to its performance when it was fed

with pre and post sequence length selection method. In the case of not using adjacent nucleotides,

middle length scaling approach achieves an AUROC of 0.96 while pre and post length selection

methods achieve AUROC of 0.94 and 0.90, respectively. Moreover, as written in our motivation,

important information is contained in adjacent nucleotides, as it can be seen from the AUROC

values, where the AUROC value is always higher when including adjacent nucleotides compared
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(a) CircNet performance by feeding different subse-
quences of the original sequence

(b) CircNet performance by feeding different subse-
quences taken from the original sequence and fusing
it with genomic subsequences adjacent to circular
RNA positions

Figure 6.4: CircNet [372] performance in terms of AUROC for different experimental settings by
taking subsequences from different positions along with fusion of genome adjacent nucleotide
information

to using only the original ones. The worst AUROC measure in the adjacent case is 0.98, while

the best AUROC value for the nonadjacent case is 0.97. Visually, this improved performance can

also be observed in the AUROC curves, since the curves in the adjacent case converge faster to a

high true positive rate, compared to the nonadjacent ones. Lastly, the curves representing the

adjacent case all behave very similar and are quite close to each other, unlike the nonadjacent

case, where many curves vary largely.
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Figure 6.5: Performance comparison of proposed CircNet predictor with existing circular RNA
classification approaches.

Figure 6.5 illustrates performance comparison of our best performing CircNet approach

setting with three previous machine and deep learning based approaches. PredcircRNA [324]

approach makes use of hand crafted features that degrade its performance, so it manages to pro-

duce 77% accuracy, 78.1% F1 measure and 55.4% MCC. On the other hand, although H-ELM [75]

approach uses hand crafted features, but it removes irrelevant and redundant features through

feature selection method that slightly improves its performance and makes it better predictor
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than PredcircRNA [324]. CircDeep [68] approach makes use of a combination of only two hand

crafted features with a feature representation learned through a deep learning model, based on

convolutional neural networks and long short term memory layers. As compared to PredcircRNA

[324], together all three encoders improve CircDeep predictor performance values of accuracy,

F1, MCC with a significant margin of 16.37%, 10.08% and 38.62%, respectively. In comparison

to CircDeep predictor, proposed CircNet approach [372] improves the performance values of

accuracy, F1 and MCC with a significant margin of 4.11%, 10.29% and 2.33%, respectively. We do

not compare specificity and recall values of proposed CircNet approach with the circDeep [68]

approach as authors did not report the values of these measures. In comparison with other two

approaches, namely PredcircRNA [324] and H-ELM [75], proposed CircNet approach achieves

12.75% and 20.75% improvement in terms of specificity, respectively. Similarly, CircNet approach

also outperforms both existing approaches in terms of recall with a significant margin of 20.5%

from PredcircRNA [324] and 28.3% from H-ELM [75] approach.

6.5 Conclusion

This chapter presents CircNet approach that makes use of autoencoder and CNN based classifier

competent in categorizing circular RNAs from other lncRNAs. Proposed CircNet approach out-

performed state-of-the-art CircDeep [68] predictor with a significant margin of 4.11%, 10.29%

and 2.33% in terms of accuracy, F1 and MCC. With an aim to find the most discriminative

regions of RNA sequences, we performed extensive experimentation by taking different sequence

lengths, scaling methods and extension of the sequences. Extension of sequences is performed by

incorporating adjacent nucleotides. We observed that addition of adjacent nucleotides improves

the performance of predictor. Based on predictor performance improvement, it can be concluded,

that in the genome sequence adjacent regions of circular RNAs preserve information about their

classification. Lastly, among 3 different sequence fixed-length generation strategies, proposed

predictor produces better performance by taking nucleotides from starting and ending regions of

sequences. This performance gain reveals in non-coding RNA sequences more comprehensive

information about circular RNA classification is present in the starting and ending regions.

Finally, we hope to accurately distinguish between circular and other long non-coding RNAs,

proposed predictor will facilitate to understand the roles of circular RNAs in biological processes,

which in turn will expedite diagnosis and treatment of many severe diseases, such as cancer,

diabetes and respiratory illness.
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Biological functions of a variety of Ribonucleic Acids (RNAs) such as messenger RNA (mRNAs)

[27, 252], microRNA (miRNAs) [24, 27], small nucleolar RNA (snoRNAs), long non-coding RNAs

[127, 263] and circular RNA rely on their localization in various subcellular compartments

such as nucleus, cytoplasm and cytosol [215, 403]. mRNAs localization in nucleus regulate gene

expression by eliminating defective RNAs from the cell and tweaking the expression levels of

various non-coding RNAs [146, 383]. It provides quantitative as well as spatial control over the

production of proteins by localizing in cytoplasm [252]. mRNA localization in cytosol helps to

maintain cell membrane and control the use of nutrients for metabolism [293, 468]. miRNAs

localization in nucleus plays a key role in cell division where each cell divides into identical

daughter cells with an objective to promote organism growth and well-being by replacing worn

out cells [294]. Furthermore, miRNAs localization in cytoplasm causes gene silencing by binding

to mRNA molecules [294]. Small nucleolar RNAs (snRNAs) play a key role in post-transcriptional

regulation by guiding RNA modifications of ribosomal RNAs (rRNA), transfer RNAs (tRNAs) and

small nuclear ribonucleic acid RNAs (snRNAs) molecules by localizing in the nucleus [371]. Long

non-coding RNAs (lncRNAs) control gene expression through chromatin remodeling by localizing

in nucleus [55]. In cytoplasm, lncRNAs avoid mRNAs degradation as well as repress miRNAs to

reduce their regulatory effects on mRNAs [456]. Within the nucleus, circular RNAs enhance the

0This chapter is an adapted version of the work presented in Asim et al. "EL-RMLocNet: An Explainable
LSTM Network for RNA-Associated Multi-Compartment Localization Prediction", In Computational and Structural
Biotechnology Journal (2022) [23], Asim et al., "MirLocPredictor: A ConvNet-Based Multi-Label MicroRNA Subcellular
Localization Predictor by Incorporating k-Mer Positional Information", In Genes (2020) [27], Asim et al., "Advances
in Computational Methodologies for Classification and Subcellular Locality Prediction of Non-Coding RNAs", In
International Journal of Molecular Sciences (2021) [19], Asim et al., "Circ-LocNet: A Computational Framework for
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expression of mRNAs and within cytoplasm compartment they perform different regulatory roles

by interacting with proteins and miRNAs [181] [258].

The subcellular localization of RNAs is an efficient and a widespread strategy to target the

gene products to a particular region of various cells. Localization of various RNA molecules con-

trols the translation of mRNAs into proteins in a temporal and spatial manner. It influences which

type and number of proteins will be produced within certain cell by regulating the production

of mRNA molecules and the amount of time they reside in the cytoplasm. Likewise, the spatial

distribution of the RNA molecules mainly influences cellular concentration as well as location

of its corresponding proteins which impact the cell function and its aptitude to interact with

neighboring cells or respond to environmental changes. Furthermore, it has the potential to avoid

toxicity of various protein products, generates fast cellular responses and determines molecular

interactions [354, 360, 454]. It provides the basis for spatial differences in shape, structure and

function of a variety of cells in order to ensure that each cell exhibits a unique form of polarization

[323, 421]. Characterizing RNA subcellular localization is essential for thorough categorization

of different cell types and cell states [353]. In addition to facilitate a deep understanding of

molecular and cellular biology, knowledge of RNA subcellular localization is also beneficial for

the development of heterogeneous biomedical applications [353]. Like subcellular localization

of messenger RNAs (mRNAs) assists to identify and treat Huntington’s disease by eliminating

active mRNAs of disease specific gene in nucleus and cytoplasm [107]. Also, mRNAs guide protein

synthesis by localizing in cytoplasm [252], paving way for the production of the most effective

recombinant proteins [214]. Furthermore, considering the association between RNA expression

levels in different subcellular compartments with a variety of diseases such as Cancer [107],

accurately determining RNA subcellular localization can largely assist to demystify their roles in

various disease as well as to design optimized therapeutics responsible to increase or decrease

various RNAs expression levels in the target subcellular compartment.

7.1 Related Work

Considering the efficiency and robustness of computational approaches shown in various fields

such as Natural Language Processing [320] and Bioinformatics [442], to date, a number of Ar-

tificial Intelligence based RNA subcellular localization predictors have been developed which

are summarized in Table 7.1. The paradigms of existing approaches can be broadly classi-

fied into 2 categories, single compartment localization prediction (SCLP) [89, 132, 426, 437,

468? ] and multi-compartment localization prediction (MCLP) [403]. To better illustrate SCLP

and MCLP paradigms, consider a hypothetical corpus C which contains 5 RNA sequences

X = X1, X2, X3, X4, X5 that belong to 5 subcellular compartments L = Nucleus, Cytoplasm,

Mitochondria, Cytosol, Exosome. In SCLP, each RNA sequence X i belongs to exactly one

subcellular compartment L i, such as X1 belongs to Nucleus, X2 belongs to Cytoplasm and so on.
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Whereas, in MCLP, each RNA sequence X i belongs to more than one subcellular compartment

L i at the same time, such as X1 belongs to {Nucleus, Exosome}, X2 belongs to {Mitochondria,

Cytosol, Cytoplasm } and so on.

Table 7.1: A summary of existing computational subcellular localization predictors for miRNA,
lncRNA, mRNA and circular RNA molecules

Approach
Sequence Encoding

Methods
Cardinality

Nucleotide
Encoding

Classifier

RNA Type: miRNA
Our L2S-MirLoc [24]

Multi-Label

Electronion Interaction PseudoPotentials (EIIP) Random Forest (RF)

miRNALoc [294]
pseudo dinucleotide compositions

and di-nucleotide properties
Support Vector
Machine (SVM)

Our MirLocPredictor [27]
positional and semantic

information of k-mers (kmerPR2Vec)
Convolutional Neural

Network (CNN)

MirGOFS [437] functional similarity based encoding matrix
microRNA-based

similarity inference model

MiRLocator [426] K-mer embeddings using Word2vec (RNA2Vec)
BiLSTM

encoder-decoder model
RNA Type: LncRNA

iLoc-LncRNA 2.0 1

Multi-Class

fusing mutual information algorithm
and incremental feature selection strategy

SVM

lncLocation [133]
k-mer frequency, physicochemical properties

and secondary structure features Autoencoder
and binomial distribution based feature selection

SVM, RF, Logistic
regression, XGBoost,

lightGBM, DNN and CNN
Locate-R [4] K-mer composition and Pearson based filtering Deep SVM

lncLocator 2.0 [263] Glove embeddings CNN, BiLSTM, MLP

lncLocator [65] k-mer frequency and stacked autoencoder
stacked ensemble classifier

(SVM, RF)

iLoc-lncRNA [373]
binomial distribution-based feature selection,

Pseudo K-tuple Nucleotide Composition
SVM

DeepLncLoc [456] subsequence embeddings CNN

lncLocPred
k-mer, triplet and PseDNC VarianceThreshold,

binomial distribution and F-score based feature selection
Logistic Regression

Yang et al
LncRNAPred [436]

kmer nucleotide composition, Analysis Of
Variance (ANOVA) based feature selection

SVM

DeepLncRNA [158] k-mer, RNA binding motifs Genomic loci
feed-forward multi-layer

deep neural network

KD-KLNMF [463]
k-mer and dinucleotide based

spatial autocorrelation, KLD non-negative
matrix factorization based feature selection

SVM

RNA Type: mRNA
mLoc-mRNA [293]

Multi-Label
k-mer frequency and elastic-net based feature selection RF

DM3Loc [402] One-hot encoding Attention based CNN

Zhang mRNALoc [468]

Multi-Class

9-mer, binomial distribution and one-way
analysis of variance based features

SVM

RNATracker [429] One-hot encoding
Hybrid (CNN+

LSTM+Attention)
mRNAloc [146] pseudo k-tuple nucleotide composition SVM

mRNALocater [383]
pseudo k-tuple nucleotide composition electron-ion

interaction pseudopotential, correlation coefficient filtering
Ensemble(CatBoost+
LightGBM+XGBoost)

SubLocEP [252] Nucleotide physicochemical properties Weighted LightGBM

NN-RNALoc [30]
k-mer frequency, distance-based subsequence

profiling and PCA for dimensionality reduction
Multi-Layer DNN

RNA Type: Circular RNA

Our Circ-LocNet [306] Multi-Calss
K-Mer, Reverse Compliment Kmer, Pseudoknc, Xxkgap, Z-Curve,
Electron–Ion Interaction Pseudopotentials of Trinucleotide (Eiip)

RF, Xgboost, Naive Bayes,
SVM, AdaBoost

RNA Type: miRNA, mRNA, lncRNA, snoRNAs
Multi-compartment

localization predictor [403]
Multi-Label

K-Mer4, K-mer1234, Reverse Compliment Kmer, NAC, DNC, TNC,
composition of k-spaced nucleic acid pair (CKSNAP)

SVM

Table 7.1 categorizes existing RNA subcellular localization predictors in terms of SCLP

and MCLP, where 5 MCLP have been developed for miRNA molecules and 2 predictors have
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been developed for the mRNA molecules. A total of 6 SCLP have been developed for mRNA

and 11 predictors have been developed for lncRNA biomolecules. One SCLP is developed for

Circular RNA. It is evident from Table 7.1, most of the existing RNA subcellular localization

predictors [65, 89, 132, 426, 437, 468] handle the problem of SCLP. However, these predictors

are not effective to decode RNA association with various biochemical and pathological processes

mainly happen through RNA concurrent presence in multiple compartments [403]. Furthermore,

MCLPs for miRNA, lncRNA, mRNA and snoRNAs can be developed by utilizing publicly available

databases that contain annotated localization information against these 4 different types of RNA

molecules. However, public databases do not contain much MCLP information about circular

RNAs that hinders the development of MCLPs. To best of our knowledge, there is only one generic

multi-compartment localization predictor [403] for multiple RNA types (mRNAs, snoRNAs,

miRNAs, lncRNAs) and species (Homo sapiens, Mus musculus). However, this approach is

computationally expensive and relies on manually curated features which is why it lacks to

produce promising performance for the subcellular localization prediction of different types of

RNAs across multiple species.

Regardless of whether an existing predictor addresses the problem of SCLP or MCLP are

not well generalized as they are designed to predict subcellular localization of one particular

RNA type. Due to utilization of suboptimal feature extraction methods existing approaches are

not powerful enough to handle different kinds of RNAs which vary in terms of sequence length,

nucleotides composition, chemical structures and molecular interactions. Furthermore, majority

of existing approaches are based on deep neural networks which are known as black box predictors

as they do not explain which features are important for the accurate identification of subcellular

compartment of particular RNA and species. The poor degree of model explainability hinders the

researchers to accurately estimate the effects of diverse trade-offs in a model. Building on the

need of a robust and explainable RNA subcellular localization predictor, this chapter presents

another contribution of the dissertation, we develop an end-to-end deep learning approach

“EL-RMLocNet" [23] for multi-compartment localization prediction of 4 different RNAs (mRNAs,

snoRNAs, miRNAs, lncRNAs) across 2 distinct species (Homo sapiens, Mus musculus). It presents

novel approaches to optimize multi-compartment subcellular localization predictive pipeline at

different levels:

• This chapter presents a novel approach GeneticSeq2Vec to generate a statistical represen-

tation of RNA sequences. By treating nucleotide k-mers as vertices and their interactions

as edges, GeneticSeq2Vec captures heterogeneous relations of vertices to generate k-hops

proximity matrices. The k-hops proximity matrices are decomposed to generate the most

informative components based on precise representation. It concatenates k-hops precise

representation to encode nucleotide k-mers translational invariance, their local and global

interaction patterns and correlations with target RNA in statistical sequence vectors.

• Considering accurate subcellular localization prediction of target RNA class and species
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relies on the most relevant features, EL-RMLocNet [23] makes use of Long Short Term

Memory (LSTM) and attention mechanism to find the most discriminative features and

their heterogeneous dependencies.

• To better illustrate the decision making of EL-RMLocNet approach and quantify the

practical significance. EL-RMLocNet [23] performs reverse engineering to map the weights

of statistical feature space to nucleotide k-mers patterns for 4 different RNA classes (mRNA,

snoRNA, miRNA, lncRNA) and 2 species (Homo sapiens, Mus Musculus).

• To objectively evaluate the efficiency and generalizability of EL-RMLocNet approach, we

perform a comprehensive performance comparison of proposed EL-RMLocNet with state-of-

the-art RNA associated subcellular localization predictor across 4 different RNA classes

(Homo sapiens, Mus Musculus) and 2 species (Homo sapiens, Mus Musculus).

• To enable the scientific community to infer RNA subcellular localization on the go, we

develop an interactive and user-friendly web server which is publicly available at https:

//rna_subcellular_predictor.opendfki.de/.

7.2 Materials and Methods

This section describes different modules of proposed EL-RMLocNet approach and benchmark

datasets used to evaluate the performance of proposed approach.

7.2.1 Proposed EL-RMLocNet Approach

Working paradigm of proposed EL-RMLocNet approach can be categorized in two distinct phases.

Firstly, k-mer embeddings are generated in an unsupervised manner using graph based approach

which is explained in section 7.2.2 In second stage, an explainable deep learning classifier

makes use of generated pretrained k-mer embeddings and raw sequences to predict subcellular

compartments. A comprehensive details of proposed classifier is illustrated in section 7.2.3.

7.2.2 A K-hop Neighbourhood Relation based Statistical Representation
Scheme for RNA Sequences (GeneticSeq2Vec)

Considering the effectiveness of graph based representation learning approaches for a variety of

Natural Language Processing [396] and Bioinformatics tasks [442] mainly due to their ability to

capture comprehensive semantic information and translational invariance of words. We present a

novel graph based approach GeneticSeq2Vec to generate a rich statistical representation of RNA

sequences, complete working paradigm of which is summarized by the pseudo-code in Figure 7.2.

Generation of statistical representation of raw RNA sequences using the proposed Genetic-

Seq2Vec approach is mainly comprised of four steps: 1) an un-directed k-mer graph generation,
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2) k-hop proximity matrices construction, 3) k-hop proximity matrices factorization, 4) k-hop

representation concatenation. In the 1st step, sequences of particular RNA class (mRNA, snoRNA,

miRNA, lncRNA) and species (Homo sapiens, mus musculus) are divided into nucleotide k-mers.

Then, nucleotide k-mers of all the RNA sequences are concatenated to generate a nucleotide

k-mers list. Using nucleotide k-mers list, unique nucleotide k-mer pairs are generated by rotat-

ing a window of 2 with the stride size of 1. To effectively model the correlations of nucleotide

k-mers at different granularity, an un-directed graph G = (V ,E) is generated where the set of

nucleotide k-mers are represented as vertices V = {vi,v j, ...,vz} and their interaction as edges

E = {e i, j, ...eo,p} primarily treating nucleotide k-mer pairs collection as connection reference. To

perform computational analysis of V ∗V sized un-directed graph G, a numerical representation

of the graph G is generated through an adjacency matrix S ∈R|V |∗|V | where Si, j = 1 as well as

S j,i = 1 if there is an edge e i, j between vertex vi and vertex v j. On the other hand, if there is no

edge between vertex vi and vertex v j then Si, j = 0 and S j,i = 0, revealing each entry in adjacency

matrix indicates whether the pair of vertices have any association.

With an aim to capture proximity which measures diverse relational information and semantic

closeness of one vertex to another vertex, in 2nd step, it transforms adjacency matrix into

proximity matrix by performing multiple operations. Firstly, by computing the summation of

every row of adjacency matrix S, a normalized adjacency matrix X ∈ R|1|∗|V | is generated. To

match the size of adjacency matrix S, normalized adjacency matrix X is extended to the size

|V |∗ |V | by repeating its only row. Afterward, using Equation 7.1, transition probability of each

vertex vi to its immediate neighbouring vertex is computed to produce proximity matrix A, where

A i, j is the transition probability from vertex vi to its immediate neighboring vertex v j.

A = log
ad jacencymatrix(S)

normalizedad jacencymatrix(X )
− log

1
vertexvocabularysize(β)

(7.1)

The proximity matrix A is multiplied by an identity matrix to generate a first-order (1-hop)

proximity matrix A1. The first-order (1-hop) proximity matrix A1 models whether there exists

a direct connection between vertices by modeling the pairwise closeness between vertices. In

Figure 7.1, analysis of the edges connecting different vertices within the boundary of red dotted

circle reveals that first-order proximity (1-hop) captures two kinds of information: 1) vertex A1 is

directly connected to vertex A2 as well as vertex A3, 2) vertex A1 and vertex A2 has strong relation

represented with thick line and vertex A1 and vertex A3 has weak connection represented with

thin line. By extending this paradigm to all vertices pairs present in the vocabulary, first-order

(1-hop) proximity matrix captures the most fundamental relation between vertices. Considering,

the extraction of information regarding whether two vertices are directly connected (1-hop) is not

sufficient to capture heterogeneous relations of k-mer vertices. Hence, it is important to capture

higher-order (k-hop) proximity which can effectively model the complex relationships of vertices.

More specifically, the second-order (2-hops) proximity information A2 captures the common

neighbors among two vertices, the more neighbors are shared among vertices, the stronger the
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connection is. In Figure 7.1, analysis of the vertices connection within the boundary of green

dotted circle indicates that, vertex A1 and A2 has 4 common neighbors (B1, B2, B3, B4), hence

these vertices have a far more stronger connection as compared to A2 and A3 vertices which

have only common neighbour (B5). This paradigm is extended to all vertices pairs to generate

second-order (2-hops) proximity matrix. Clearly, second-order (2-hops) proximity information is

important to determine the strength of vertices connection on the basis of number of common

neighbors, extracting key nucleotide k-mers information such as most frequently co-occurring

nucleotide k-mers as well as common contexts.

Figure 7.1: Illustration of k-order (K-hop)

proximity information, red dotted circle rep-

resents first-order proximity(A1), green dot-

ted circle indicates second-order proximity

(A2), aqua dotted circle represents third-

order (A4) proximity and orange dotted cir-

cle indicates fourth-order proximity (A4).

Further, the third-order (3-hops) proximity in-

formation A3 is essential to measure the impact of

common neighbors on the strength of long range

connection between vertices. In Figure 7.1, analysis

of the trajectory A1-B-C-A2 within the boundary

of aqua color dotted circle reveals that despite the

strong connection among vertex A1 and vertex B,

the connection between vertex A1 and A2 can be

significantly weakened because of two weaker con-

nections between vertex B and vertex C as well

as vertex C and vertex A2. On the contrary, the

trajectory A1-B-Ci indicates that the relationship

between vertex A1 and A2 remains very strong

primarily due to the decent number of common

neighbors between vertex A2 and vertex B which

greatly strengthens their relationship. Likewise,

the fourth-order (4-hops) proximity information is

also crucial to capture global relations of vertices.

In Figure 7.1, analysis of the vertices connection

inside the boundary of orange dotted circle reveals

that the relation between vertex A1 and vertex A2

remains very strong because their connection partners B1 and B2 have four common neighbors

D1-to-D4 which strengthens the relation of vertex A1 and A2. On the other hand, vertex A1

and vertex A2 become totally unrelated if we only consider their relation with vertex D5 and

vertex D6, respectively mainly, because no path is left which connects vertex A1 to vertex A2.

By extending the paradigms of third-order (3-hops) and fourth-order (4-hops) proximity to all

possible vertices trajectories, global relations of the vertices can be captured in 3-hops and 4-hops

proximity matrices which corresponds to long range contextual information of nucleotide k-mers.

It is evident from a thorough analysis of high order (k-hops) proximity modeling that each

higher order (k-hop) proximity matrix captures different kind of relations among k-mer vertices.
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Therefore, instead of mapping heterogeneous nucleotide k-mer relations in a common subspace,

GeneticSeq2Vec generates k-hop proximity matrices to retain heterogeneous relational informa-

tion in different subspaces. Considering sequences vary across different RNA subtypes in terms

of sequence length, nucleotide k-mer distribution, the idea of generating different subspaces

helps to find optimal value of k-hop proximity for each RNA subtype as it avoids the influence

of higher order proximity modeling to lower order proximity modeling. Building on, first order

(1-hop) proximity matrix A1 is computed through the multiplication of proximity matrix A to an

identity matrix. Higher order (k-hop) proximity matrices Ak can be computed by multiplying the

proximity matrix A k-times to itself.

Algorithm 1: A K-hop Neighbourhood Relation based Statistical Repre-
sentation Scheme for RNA Sequences

Input:
k-mer pair collection
maximum value of hop k
Vertex Vocabulary size β

Dimension of representation vector d
1. Generate an undirected k-mer Graph G
Generate adjacency matrix of the graph S
2. Generate normalized adjacency matrix X
Compute basic proximity matrix (A)
A=log (S/X) - log (1/ β )
Calculate A1,A2, ......AKrespectively
Get each k-hop representations
for K = 1 to K do

if K==1 then
Ak = A∗ Identitymatrix(I)
Construct the representation vector Wk

else
Calculate higher order proximity matrix
Ak = [A.A.A...]k

Construct the representation vector Wk

3. Factorizing higher order proximity matrix
Uk

∑
k,(V k)T

= SVD(Ak)
Wk =Uk

d (∑
k
d)

1/2

4. Concatenate all the k-hop representations
W=[W1,W 2, ....W k]
Output: Matrix of the graph representation W

1

Figure 7.2: A k-hop neighbourhood relation based statistical representation scheme for RNA
sequences

Where the proximity from the vertex vi to v j is mainly an entry in ith row and jth column

of k-order (k-hops) proximity matrix Ak. The k-hop multiplications of proximity matrix A help

to capture diverse interactions and global relations of the vertices, indicating higher order
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proximity matrices encode translational invariance information of nucleotide k-mers to generate

heterogeneous context aware representations. More specifically, the 2nd step produces k-hop

representation matrices Wb,Wc, ...Wk ∈R|V |∗ |d| for the input graph G where the ith row of each

Wi represents a continuous value vector of d dimension for the nucleotide k-mer vertex vi learned

by modeling its proximal k-hop relations with respect to all nucleotide k-mer vertices present in

the vocabulary.

In 3rd step, proposed GeneticSeq2Vec factorizes proximity matrices produced by different

k-hops using Singular Value Decomposition (SVD) approach in order to learn precise k-hops

representation matrices Wb,Wc, ...Wk ∈ R|V | ∗ |d|. Using equation 7.2, SVD decomposes each

k-hops proximity matrix into the product of three matrices, two of them U and V are orthogonal

matrices and
∑

serves as a diagonal matrix which is comprised of an ordered set of singular

values.
Wk =Uk

k∑
(V k)T (7.2)

Finally, in 4th step, it combines the precise representation produced by different k-values to

generate k-order (k-hops) relations aware representations of all vertices, which can be expressed

as follows:
W = [W1,W2,W3, .......Wk] (7.3)

7.2.3 Explainable Deep Learning based RNA Associated Multi-Compartment
Localization Predictor

To accurately predict subcellular localization patterns of different RNA classes in multiple

species, we have developed an explainable deep learning classifier “EL-RMLocNet". EL-RMLocNet

leverages the stochastic embedding layer to optimize the embedding matrix generated through

GeneticSeq2Vec approach. It uses LSTM to find and retain most informative features as well their

long range dependencies from statistical vectors of RNA sequences. Unlike a trivial recurrent

neural network (RNN), LSTM does not face the problem of vanishing gradients because it

utilizes a gating mechanism to regulate the flow of information. The distribution of nucleotide

k-mers vary across sequences of different RNA types and classes, indicating accurate subcellular

localization of target RNA classes rely on certain set of nucleotide k-mers patterns. EL-RMLocNet

captures potential nucleotide k-mers patterns using attention mechanism which weights the

features on the basis of their potential to accurately predict subcellular localization of target RNA

classes. By revealing potential nucleotide k-mers patterns for different RNA classes and species,

attention mechanism also makes the decision making of deep learning model quite transparent. To

significantly reduce the classification error, predictive potential and generalizability of proposed

classifier are optimized using multiple neural strategies such as normalization, dropout and

learning rate decay. Considering, the performance of the deep learning model is largely influenced

by different hyperparameters such as number of layers, learning rate, batch size, etc., we optimize

hyperparameters using grid search and facilitate optimal values of different hyperparameters in
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Table 7.2. Architecture of proposed deep learning model EL-RMLocNet is given in Figure 7.3 and

details of various inherent layers are provided in following subsections.
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Figure 7.3: Workflow of an explainable deep learning model for RNA associated multi-
compartment subcellular localization prediction

7.2.3.1 Stochastic Embedding Layer

The process of predicting RNA associated subcellular localization starts by dividing the RNA

sequences into nucleotide k-mers by sliding a window of size w with the stride size of s. For

every RNA sequence, statistical vector of each nucleotide k-mer is retrieved at the embedding

layer mainly using embedding matrix of size vocabulary × vector-dimensions produced by novel

graph based representation learning module, discussed in section 7.2.2. To optimize embedding

matrix, 2 distinct embedding dropout tricks are utilized in order to avoid model over-fitting which

happens due to over-specialization of only few features. In k-mer embedding dropout, entire k-mer

has the dropout probability of dp whereas in k-mer vector dimension dropout, each k-mer vector

dimension has the likelihood of dp to be replaced by zero. Optimized d−dimensional statistical

vectors of RNA sequences are obtained by averaging the respective k-mer statistical vectors. The

d-dimensional RNA sequence vectors are passed to LSTM network having ll layers, ld hidden

units which find and retain the most informative features along with their dependencies.

7.2.3.2 Optimized Long Short Term Memory (LSTM) Layer

Contrary to the traditional recurrent neural network, LSTM controls the information flow by

making use of 3 distinct gates. Update gate or Input gate or update gate, indicated as Īu (Equation

7.14) mainly regulates the flow of naive information in current time step. Forget gate, indicated

as Ī f (Equation 7.15) decides whether memory information of last time step shall be dropped to

taken forward. Third gate known as output gate is indicated by Īo (Equation 7.16). It determines

up to what extent information from previous time step will be transferred to next time step by
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taking currently available information into account. In these mathematical expressions, [W i,

W f , W o, U i, U f , U o] refer to weight matrices, bu, b f , bo indicate bias vectors, xt represents

d-dimensional nucleotide k-mer vector fed at particular time-step t, t+1 and t−1 refer to next

and previous time steps, respectively, ht refers to current hidden state, ct indicates memory cell

state and ⊙ represents element-wise product.

Īu =σ(W i.xt +U i.ht−1 +bu) (7.4)

Ī f =σ(W f .xt +U f .ht−1 +b f ) (7.5)

Īo =σ(W o.xt +U o.ht−1 +bo) (7.6)

cint = tanh(W c.xt +U c.ht−1) (7.7)

ct = (Īu ⊙ cint + Ī f ⊙ ct−1 (7.8)

ht = (Īo ⊙ tanh(ct)) (7.9)

Figure 7.4: Information flow in standard

LSTM cell

These 3 different gates mainly get activated or

de-activated on the basis of corresponding weight

matrices and behave on the basis of the correspond-

ing activation function (e.g., sigmoid (σ), tanh). In

equation 7.15, weight matrix W f controls the work-

ing of forget gate. For example, if forget gate vector

Ī f is completely zero, then ct−1 content will not

be considered at all, indicating all information pro-

vided by the ct−1 will be discarded. Contrarily, if

forget gate vector Ī f contains one, then the model

preserves the information. These 3 different gates perform a variety of operations to regulate nu-

cleotide k-mers information represented as a floating point vector falling in range of 0-to-1. Each

cell of LSTM is comprised of these three gates. To preserve long term information of nucleotide

k-mers, hidden state h of every cell is saved at each time step.

To regularize LSTM ll layers, considering, dropping hidden state of LSTM layers can signifi-

cantly hinder the aptitude of LSTM to retain long term dependencies. We optimize LSTM layers

by applying weight dropout on recurrent weight matrices [U i, U f , U o] as well non-recurrent

weight matrices [W i, W f , W o] of LSTM layers where we randomly drop subset of weights in the

network instead of dropping subset of activations. While weight dropout on recurrent weights

avoid overfitting on the recurrent connections of LSTM layers, weight dropout on non-recurrent

weight matrices enhance the LSTM ability to extract important residue dependencies. In this

manner, LSTM layers produce d-dimensional feature vectors for RNA sequences which are passed

119



CHAPTER 7. RNA SUBCELLULAR LOCATION PREDICTION

to an attention layer.

7.2.3.3 Attention Layer

Figure 7.5: Architecture of the Attention

model

One of the most important feature of the human

perception is its ability to focus on only the most im-

portant parts of the input to make sense of the infor-

mation present in outside world. Similarly, the sig-

nificance of various nucleotide k-mers patterns for

accurate RNA associated subcellular localization

prediction varies across RNA classes and species,

some nucleotide k-mers patterns are more discrimi-

native while others are completely redundant. Con-

sidering, accurate multi-compartment subcellular

localization prediction of various RNA classes and

species mainly depends on the set of most relevant

features. We utilize attention paradigm to opti-

mize input d-dimensional RNA sequence vectors

by weighting the features on the basis of their im-

portance for hand on task.

The workflow of attention paradigm involves the generation of attention weights and optimize

input features using attention weights is summarized in the Figure 7.5. First of all, we map the

input d-dimensional LSTM feature vectors represented as xt to ht using Equation 7.10, where

f1 refers to nonlinear activation function and ht ∈ Rs represents hidden state at the time step t

with size s.

ht = f1(ht−1, xt) (7.10)

In order to avoid the issue of long-term dependencies which can significantly derail multi-

compartment subcellular localization prediction performance, we utilize LSTM as nonlinear

activation function f1. Then attention mechanism is developed using a deterministic attention

based deep learning model. For a particular sequence xk = xk
1 , xk

2 , ....xk
m)T ∈ Rm, using previous

hidden state represented as ht−1 as well as cell state ct−1 within LSTM cell, αk
t and βk

t can be

defined using Equation 7.11 and Equation 7.12, respectively:

αk
t = vT tanh(W1 ∗ [ht−1,Ct−1]+W2xk) (7.11)

βk
t == sof tmax(αk

t )= exp(ak
t )∑n

i=1 exp(ak
t )

(7.12)

In these equations, matrices W1,W2,W3, .. and v are hyperparameters of the attention model

that can be learned through backpropagation. The αk
t vector is of length m where ith value

estimates the significance of kth given feature sequence for a particular time step t. These values
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are normalized through softmax. Whereas βk represents attention weight that contains a value

indicating the amount of attention should be placed on kth input feature sequences. Output

produced by attention model can be obtained at a particular time step t where the weighted and

optimized input feature sequence represented as zt will be equivalent to (Equation 7.13):

zt = (β1
t x1

t ,β2
t x2

t , .......βn
t xn

t )T (7.13)

By replacing the normal d-dimensional LSTM feature vector xt with zt and updating attention

model, we manage to obtain optimized attention based feature vectors for RNA sequences. Unlike

xt where all input features are treated equally, zt assigns higher weights to the most potential

features effectively by eliminating the impact of redundant features for target RNA associated

subcellular localization prediction. Optimized ad dimensional attention based feature vectors

are passed forward in the network.

7.2.3.4 Bag of Tricks for Optimizing the Training and Prediction of EL-RMLocNet
Approach

To optimize the training of deep learning model EL-RMLocNet, 3 distinct optimization tricks are

utilized. The ad dimensional vectors produced by attention layer are passed to the normalization

layer [202]. Normalization addresses the issue of co-variance shift which de-stabilizes the neural

network by standardizing the input before feeding it to a hidden layer for every batch. It ensures

that input-to-output mapping of a neural network does not overspecialize one particular region of

protein sequences, resulting in faster training, convergence and improved generalizability [202].

Equation 7.14 describes the overall paradigm of normalization which normalizes each se-

quence xi by tuning 2 parameters γ and β.

Yi = BNγ,β(xi) (7.14)

Equation 7.15 illustrates the way mean of a given batch is computed where xi represents the

current sequence from m sequences present in a given batch b.

ub = 1/m
m∑

i=1
(xi) (7.15)

Equation 7.16 describes the way variance of every batch b is computed where each sequence

xi is subtracted from the mean of entire batch (ub) before aggregating and computing average

using m number of sequences present in given batch b.

02
b = 1/m

m∑
i=1

(xi −u)2 (7.16)

Equation 7.17 subtracts each sequence xi from mean of the batch ub and takes fraction by

standard deviation to normalize the values between 0 and 1, which is represented with x̂i.

x̂i = xi −ub√
02

b +ϵ
(7.17)
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In order to enable the network to adapt mean and variance of distribution, 2 parameters γ and

β are learned and updated along with biases and weights during training. Final, normalized,

scaled and shifted version of hidden distribution can be represented using equation 7.18.

yi = γ∗ x̂i +β (7.18)

Further, we also apply traditional dropout to avoid model overfitting occurred due to neuron

co-adaptation where neurons stop operating independently and rely on other neurons to make

decisions. Through random sampling based on the Bernoulli distribution (Equation 8.6), we apply

traditional dropout on hidden neurons where each hidden neuron has the likelihood of dp to be

dropped.
y= f (Wx)•m,mi ∼ Bernoulli(p) (7.19)

Considering choosing an optimal learning rate lr for deep learning model is not a straightfor-

ward task, another optimization trick used in proposed deep learning model EL-RMLocNet is

learning rate decay. Learning rate decay trick smartly updates the learning rate in such a manner

that global minima is computed and model converges to the best possible weights. By making

use of adaptive moment estimation based on weight decay (ADAMW) optimizer, learning rate lr

value is optimized using decay rate of ld during weight update, which can be mathematically

expressed as:
wi+1 = wi −2λwi −〈δL

δw
|wi 〉 (7.20)

Using one-hot encoded actual subcellular localization compartments, probability score si for

each subcellular localization compartment present in benchmark dataset is computed through the

application of sigmoid f (si) before computing cross-entropy loss CE, which can be mathematically

expressed as:
f (si)= ex

1+ ex CE =−t1log( f (s1))− (1− t1)log(1− f (s1)) (7.21)

Using the batch size b through the process of backpropagation, proposed EL-RMLocNet

predictor learns hyperparameters that facilitate accurately infering the multi-compartment

subcellular localization of various RNAs across multiple species.

7.2.4 Benchmark RNA-Associated Subcellular Localization Prediction
Datasets

We collect 8 different RNA subcellular localization datasets belonging to Homo sapiens and mus

musculus species from literature [403]. To prepare these datasets, Wang et al. [403] utilized

a public metathesaurus RNALocate [464] to get raw sequences and subcellular localization

information related to 4 RNA classes namely mRNA, miRNA, snoRNA and lncRNA.

Further, in each RNA class sequences which have more than 80% similarity were removed

using CD-HIT tool. For 8 benchmark datasets, statistical distribution of 4 different RNAs in

diverse subcellular compartments is provided in Figure 7.7. More specifically, 4 pie graphs in first

row of the Figure 7.7 indicate the statistical distribution of mRNA, miRNA, snoRNA and lncRNA
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sequences in multiple subcellular compartments for Homo sapiens species, whereas second row

pie graphs reveal the statistical distribution of 4 different RNAs in diverse cellular compartments.

Comparing the variations in sequence length across all 8 benchmark datasets indicates that all 4

RNA subtypes datasets have slightly longer sequences in Homo sapiens species as compared to

mus muscluss species.
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Figure 7.6: A comparison of variations in

sequence length across 8 benchmark RNA

associated multi-compartment subcellular

localization datasets

Further, in order to analyze the variation in

sequence length across all 8 benchmark datasets,

donut chart in Figure 7.6 reports the minimum,

maximum and average sequence length of 4 dif-

ferent RNA subtypes datasets for Homo sapi-

ens species represented as H_mRN A, H_miRN A,

H_snoRN A, H_lncRN A and for mus musculus

species represented as mRN A, miRN A, snoRN A,

lncRN A. For Homo sapiens species, H_lncRN A

dataset contains the most lengthy sequences whose

average length falls around 16,335 nucleotides.

The H_mRN A dataset contains the second most

lengthier sequences followed by H_snoRN A and

H_miRN A dataset with average length of 3,675,

111 and 43 nucleotides, respectively. For mus mus-

culus species, lncRNA dataset contains longer se-

quences followed by mRNA, snoRNA and miRNA

dataset with average sequence length of 11,052,

3,547, 116 and 50 nucleotides, respectively.

7.3 Evaluation Criteria

Table 7.2: Optimal parameter values of proposed EL-RMLocNet approach for 8 benchmark
datasets belonging to 4 different RNA classes and 2 species

Benchmark
Dataset K-mer Stride

Size (s)
Embedding

Dimension (d)
Embedding

Dropout (ed)
LSTM

Layers (ll)
LSTM

Hidden Units (ld)
Attention

Dimension(ad) Dropout (dp) Learning
Rate (lr)

Learning
Rate Decay (ld)

Batch
Size (b)

Homo sapiens species
mRNA 3 2 200 0.005 1 200 50 0.01 0.05 0.001 32
miRNA 1 1 32 0.0025 1 32 60 0.005 0.06 0.1 32
snoRNA 2 2 64 0.0025 1 64 50 0.005 0.06 0.01 32
lncRNA 2 2 200 0.005 1 200 50 0.1 0.05 0.1 64

Mus Musculus species
mRNA 2 1 200 0.0025 4 64 90 0.05 0.06 0.1 32
miRNA 1 1 32 0.0025 1 32 60 0.005 0.06 0.1 32
snoRNA 2 2 16 0.0025 1 16 50 0.005 0.06 0.0001 32
lncRNA 3 2 200 0.0025 4 60 50 0.05 0.05 0.01 128

In order to perform a fair performance comparison of proposed approach with existing state-

of-the-art RNA multi-compartment localization predictor, 10-fold cross validation is performed.

We use GridSearch [259] to optimize a variety of hyperparameters. To capture hidden pattern
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A. H_mRNA B. H_miRNA C. H_snoRNA D. H_lncRNA

A. mRNA B. miRNA C. snoRNA D. lncRNA

Figure 7.7: Statistical distribution of benchmark RNA associated multi-compartment localization
prediction datasets for Homo sapiens (A-D) and Mus Musculus species (E-H)

of nucleotides, considering RNA sequences are comprised of only 4 unique bases, we perform

experimentation with 5 different k-mers ranging from 1-to-5 generated using stride size of 1-to-3.

To capture comprehensive relations and positional in-variances of nucleotide k-mers, novel k-hop

neighborhood based statistical representation learning scheme performs experimentation with 2

to 7 hop based proximity matrices to generate rich d-dimensional vectors for RNA sequences.

Proposed EL-RMLocNet classifier is trained by tweaking an embedding dropout from 0.004

to 0.005, LSTM neurons from 100-to-400, batch size from 32-to-128, adaptive moment estimation

based on weight decay (ADAMW) as an optimizer, learning rate from 0.04-to-0.05, decay rate from

1e-05-to-1e-07, standard dropout from 0.1-to-0.05 and categorical cross entropy as a loss function.

Model checkpoint which achieves lowest training error is saved to make prediction on test

sequences for the task of RNA subcellular localization prediction. To ensure the reproducibility of

reported results, optimal values of different hyperparameters are summarized in Table 7.2.

7.4 Results and Discussions

This section quantifies the impact of 6 different sequence fixed-length generation approaches over

the performance of the proposed EL-RMLocNet [23] approach for RNA multi-compartment sub-

cellular localization prediction. Further, it performs a comprehensive assessment of the predictive
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performance and generalizability of proposed EL-RMLocNet [23] approach for RNA associated

multi-compartment subcellular localization prediction using a variety of evaluation metrics. It

compares the performance of proposed EL-RMLocNet [23] approach with state-of-the-art RNA

associated multi-compartment subcellular localization predictor using 8 benchmark datasets. It

also performs intrinsic analysis of the key nucleotide k-mers patterns found by proposed approach

EL-RMLocNet [23] to accurately predict the subcellular localization of different RNA classes in

distinct species.

7.4.1 Performance Assessment of EL-RMLocNet for Multi-Compartment RNA
Localization Prediction

It is evident from the donut chart 7.6 that in both Homo sapiens and mus musculus species,

sequence length of all 4 RNA subtypes including mRNA, miRNA, snoRNA and lncRNA signif-

icantly differ from each other. Considering machine and deep learning classifiers operate on

fixed-length genomic sequences, we perform experimentation with 6 different settings based on

copy padding, sequence truncation and hybrid paradigms to fix the length of RNA sequences

across all 8 benchmark datasets of 2 distinct species.

In copy padding paradigm, first of all, maximum possible sequence length is computed by

comparing all the sequences of particular dataset. Afterward, all the sequences whose lengths

are less than maximum threshold, are extended to justify maximum length by inserting a specific

constant at starting or ending region of sequences. Another paradigm to fix the length of sequences

is sequence truncation where first of all minimum possible sequence length is computed. Then,

nucleotides from starting or ending region of all those sequences whose lengths are greater

than minimum threshold are truncated in order to reduce the length up to minimum threshold.

Considering copy padding paradigm may create an unnecessary bias to fade out discriminative

sequence patterns and sequence truncation paradigm is vulnerable to lose important nucleotide

distribution information. Hybrid paradigm first finds average sequence length and then utilize

copy padding trick to fix the length of those sequences whose lengths are shorter than average

length threshold and leverage sequence truncation trick for sequences whose lengths are greater

than average length threshold.

Considering accurate RNA subcellular localization prediction relies on certain distributional

patterns of nucleotides which can be present in any region of the sequences. We perform ex-

perimentation with all 3 sequence fixed-length generation paradigms using 6 different settings.

Table 7.3 quantifies the impact of 6 different sequence fixed-length generation settings over

the performance of proposed EL-RMLocNet [23] approach in terms of average precision. In

Table 7.3, 2 settings related to copy padding are represented as start_max, end_max, sequence

truncation settings are shown as start_min, end_min and hybrid paradigm settings are shown

as start_average, end_average, where the setting names reveal the region of the sequences

targeted for extension or truncation along with length threshold criteria. As evident from the
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Table 7.3: Comparative analysis of 6 different fixed-length sequence generation approaches based
on proposed EL-RMLocNet [23] approach over 8 benchmark datasets of 2 different species in
terms of average precision

RNA Subtype
Sequence Length Variation

Start_Max End_Max Start_Average End_Average Start_Min End_Min
Homo sapiens

mRNA 0.72 0.70 0.77 0.72 0.73 0.71
miRNA 0.85 0.86 0.85 0.84 0.77 0.77
lncRNA 0.83 0.84 0.83 0.84 0.82 0.85
snoRNA 0.77 0.83 0.80 0.78 0.80 0.80

Mus Musculus
mRNA 0.66 0.65 0.71 0.68 0.60 0.63
miRNA 0.86 0.87 0.86 0.86 0.84 0.83
lncRNA 0.73 0.70 0.77 0.73 0.72 0.69
snoRNA 0.82 0.81 0.82 0.81 0.80 0.81

Table 7.3, for Homo sapiens species, from both copy padding settings, EL-RMLocNet [23] ap-

proach achieves better average precision with end_max setting across all RNA subtypes except

H_mRN A where start_max setting performs better. A similar performance trend can be seen

with sequence truncation settings where EL-RMLocNet [23] attains better average precision

with end_min as compared to start_min across most RNA subtypes. Unlike copy padding and

sequence truncation settings, from 2 hybrid paradigm settings, EL-RMLocNet [23] approach

produces better average precision with start_average across all RNA subtypes except lncRNA

where its counterpart setting performs better. Overall, EL-RMLocNet [23] achieves peak per-

formance with end_max setting for miRNA and snoRNA biomolecules, with start_average for

mRNA biomolecule and with end_min for lncRNA biomolecule, obtaining the average precision

of 86%, 83%, 77% and 85%, respectively. This indicates that all 3 sequence fixed-length generation

paradigms (copy padding, sequence truncation and hybrid) manage to achieve good performance

for one or the other RNA multi-compartment subcellular localization prediction.

Analyzing the performance trends for mus musculus species (Table 7.3) indicates that from 2

copy padding settings, EL-RMLocNet [23] approach achieves superior average precision using

start_max for 3 RNA subtypes including mRNA, lncRNA and snoRNA attains better perfor-

mance using end_max for miRNA biomolecule. Whereas from 2 sequence truncation settings,

EL-RMLocNet approach produces good performance with start_min setting for miRNA and

lncRNA bimolecules and with end_min for mRNA and snoRNA biomolecules. Contrarily, from

2 hybrid paradigm settings, EL-RMLocNet approach produces better average precision with

start_average setting as compared to end_average setting across all 4 different RNA sub-

types. Overall, EL-RMLocNet approach achieves peak performance with start_average setting

for mRNA, lncRNA biomolecules, with end_max for miRNA biomolecule and with start_max

for snoRNA biomolecule, obtaining the highest average precision of 71%, 77%, 87% and 82%,

respectively.
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Multi-compartment confusion Sequence-compartment distribution
matrices of 4 different RNAs of 4 different RNAs

Figure 7.8: Multi-compartment localization prediction performance produced by EL-RMLocNet
on 4 benchmark Homo spaien datasets of mRNA, miRNA, snoRNA and lncRNA corresponding to
unique sequence-compartment distribution

Further, to analyze up to what extent EL-RMLocNet approach manages to correctly pre-

dict various combinations of subcellular compartments on account of heterogeneous subcellular

compartment cardinality across 8 different benchmark datasets, multi-compartment confusion

matrices along with sequence-to-compartment distributions bar graphs for Homo sapiens species

and mus musculus species are given in Figure 7.8 and Figure 7.9, respectively. We leverage

one-versus-rest strategy in order to generate confusion matrices across all 8 benchmark datasets

where false negatives (fn), false positives (fp), true negatives (tn) and true positives (tp) are

computed by considering one subcellular compartment as positive and other subcellular compart-

ments as negative. By averaging fn, fp, tn and tp using total number of available subcellular

compartments, confusion matrix for target RNA associated subcellular localization dataset is

computed. This is primarily to assess the robustness of EL-RMLocNet when positive subcellular

compartment has few number of RNA sequences and negative subcellular compartment has large

number of RNA sequences.

From accuracy confusion matrices (Figure 7.8) produced by proposed EL-RMLocNet approach

for Homo sapiens species, performance analysis for mRNA multi-compartment localization pre-

diction indicates that, from 3,858 uni-compartment RNA sequences, subcellular localization of

3,413 sequences are correctly predicted by proposed EL-RMLocNet approach, indicating over 88%

of uni-compartment RNA sequences are correctly predicted. From 3,144 bi-compartments RNA

sequences, 2,442 RNA sequences are correctly classified into 2 cellular compartments, making

it 78% of total bi-compartment sequences. For tri-compartment and tetra-compartment cardi-

nalities, almost 54% and 43% RNA sequences of respective cardinalities are correctly classified
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in appropriate subcellular compartments. For Homo sapiens miRNA subcellular localization,

63% of total uni-compartment, 33% of total bi-compartment and 15% of total tri-compartment

RNA sequences are accurately categorized in respective subcellular localization compartments

by EL-RMLocNet approach. For Homo sapiens snoRNA subcellular localization prediction, EL-

RMLocNet approach accurately categorizes 83% of uni-compartment 63% of bi-compartment,

58% of tri-compartment and 60% of tetra-compartment RNA sequences. Further, for lncRNA

multi-compartment subcellular localization prediction, 66% of uni-compartment and 82% of

bi-compartment RNA sequences are correctly predicted. Whereas, no tri-compartment or tetra-

compartment RNA sequence is correctly classified in respective subcellular compartment by

EL-RMLocNet approach.

It is evident that a significant number of genomic sequences having different subcellular

compartment cardinalities are accurately predicted by EL-RMLocNet approach across different

RNA classes. Overall, for Homo sapiens species, EL-RMLocNet achieves better performance

on mRNA followed by snoRNA, lncRNA and miRNA biomolecules. It manages to correctly

predict 88% of mRNA uni-compartment, 82% of lncRNA bi-compartment, 58% of snoRNA tri-

compartment and 60% of snoRNA tetra-compartment RNA sequences. Unlike existing RNA

associated multi-compartment localization predictors whose performance significantly drops

on account of different sized datasets as well as with the increase of subcellular compartment

cardinality, proposed EL-RMLocNet approach shows promising performance across multiple

datasets and shows robustness for different subcellular compartment cardinalities.

Multi-Compartment Confusion Sequence-Compartment Distribution
Matrices of 4 Different RNAs of 4 Different RNAs

Figure 7.9: Multi-compartment localization prediction performance produced by EL-RMLocNet
[23] on 4 benchmark Mus Musculus datasets of mRNA, miRNA, snoRNA and lncRNA correspond-
ing to unique sequence-compartment distribution
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Turning towards the accuracy confusion matrices produced by proposed EL-RMLocNet ap-

proach for 4 different RNAs belonging to mus musculus species, performance analysis of mRNA

multi-compartment localization prediction indicates that from 8,695 uni-compartment RNA

sequences, 5,244 are correctly predicted which makes up to 60% of uni-compartment sequences.

Further, 28% of bi-compartment, 32% of tri-compartment and 17% of tetra-compartment RNA

sequences are accurately inferred in respective cellular compartments. For miRNA subcellu-

lar localization, decent percentages of uni-compartment, bi-compartment and tri-compartment

RNA sequences are accurately predicted which fall around 71%, 33% and 11%, respectively. For

snoRNA subcellular localization prediction, 82% of uni-compartment, 86% of bi-compartment,

79% of tri-compartment and 80% of tetra-compartment RNA sequences are corrected predicted

by EL-RMLocNet approach. Similarly, for lncRNA subcellular localization prediction, 77% of

uni-compartment and 86% of bi-compartment RNA sequences are accurately predicted into

respective localization compartments. To summarize accuracy confusion matrices performance

across both species, it is easy to understand that unlike existing computational approaches

whose performance decline on account of different species, proposed EL-RMLocNet achieves

promising performance across all 4 different RNA classes. Contrary to Homo sapiens species,

for mus musculus species, EL-RMLocNet achieves better performance on snoRNA followed by

lncRNA, mRNA and miRNA biomolecules. It manages to accurately predict 82% of snoRNA uni-

compartment, 86% of snoRNA and lncRNA bi-compartment, 79% of snoRNA tri-compartment and

88% of snoRNA tetra-compartment RNA sequences, revealing once again a promising robustness

towards different subcellular compartment cardinalities.

In a nutshell, a comprehensive and multi-dimensional assessment indicates that proposed

EL-RMLocNet approach marks promising performance for multi-compartment subcellular lo-

calization of 4 different RNAs across 2 different species. It achieves higher performance figures

for mus musculus species for most RNA classes. While the novel approach based on the idea of

using RNA-As-Graphs assists to capture comprehensive semantic and structural information

of nucleotide k-mers. The gating mechanism of LSTM helps to find and retain long range de-

pendencies of the features and attention mechanism assists to find most relevant features for

target RNA class and species. By optimizing feature extraction and target specific subcellular

localization prediction, proposed EL-RMLocNet manages to achieve promising performance over

multiple different sized benchmark datasets for RNA associated multi-compartment subcellular

localization prediction.

7.4.2 Comparison of EL-RMLocNet with Existing Multi-Compartment RNA
Localization Predictors

Considering the significance of determining co-localization of biomolecules in multiple subcellular

compartments for deep understanding of cellular biology and to develop diverse biochemical

applications [19], Wang et al. [403] developed the state-of-the-art multi-compartment localization
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predictor for 4 different RNA classes of 2 distinct species. They utilized 6 different nucleotide

composition and statistics based sequence encoding schemes including nucleotide property

composition, nucleotide k-mers composition, reverse compliment k-mer, nucleic acid composition,

di-nucleotide composition, tri-nucleotide composition and composition of k-spaced nucleic acid

pairs to adequately represent the nucleotide information present in RNA sequences. By fusing

multivariate information using Hilbert-Schmidt independence criterion based multiple kernels

learning, they found an optimal combined kernel for SVM classifier for multi-compartment

localization prediction of mRNAs, miRNAs, snoRNAs and lncRNAs for home sapiens and mus

musculus species.

Table 7.4 compares the performance produced by proposed EL-RMLocNet approach with

stat-of-the-art approach [403] for the subcellular localization of 4 different RNAs (mRNAs,

miRNAs, snoRNAs and lncRNAs) for home sapien species. As indicated by the Table 7.4, proposed

approach EL-RMLocNet outperforms state-of-the-art approach [403] across all 4 benchmark

datasets belonging to different RNAs in terms of 5 different evaluation measures. EL-RMLocNet

achieves the average precision increment of 7%, 1%, 1% and 10% as compared to state-of-the-art

[403] performance for miRNA, mRNA, snoRNA and lncRNA multi-compartment localization

prediction. EL-RMLocNet improves state-of-the-art accuracy by 11%, 5%, 1% and 13% for miRNA,

mRNA, snoRNA and lncRNA multi-compartment localization prediction. Performance analysis

in terms of coverage, ranking loss and one-error where lower value indicates better predictive

performance, EL-RMLocNet surpasses the previous best performance by a decent margin for all

4 RNAs across all evaluation metrics.

Table 7.4: Performance comparison of proposed EL-RMLocNet approach with state-of-the-art
approach for multi-compartment localization prediction of miRNA, mRNA, snoRNA and lncRNA
using 8 benchmark datasets of Homo sapiens (Human) and Mus Musculus (Mouse) species

Average Precision Accuracy Coverage Ranking Loss One error
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miRNA 0.79 0.86 0.52 0.63 1.46 0.70 0.17 0.11 0.29 0.26
mRNA 0.76 0.77 0.41 0.46 1.69 0.68 0.24 0.23 0.37 0.35

snoRNA 0.82 0.83 0.54 0.55 1.54 0.45 0.18 0.17 0.24 0.20
lncRNA 0.75 0.85 0.42 0.55 1.18 0.45 0.22 0.17 0.37 0.20

M
ou

se

miRNA 0.79 0.87 0.58 0.69 1.31 0.50 0.18 0.10 0.31 0.28
mRNA 0.70 0.71 0.34 0.37 1.71 0.87 0.14 0.13 0.44 0.40

snoRNA 0.80 0.82 0.52 0.56 1.59 0.29 0.21 0.20 0.25 0.20
lncRNA 0.76 0.77 0.43 0.47 0.95 0.60 0.19 0.18 0.40 0.36
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Furthermore, performance comparison of proposed EL-RMLocNet approach with stat-of-the-

art approach [403] for the subcellular localization of 4 different RNAs (mRNAs, miRNAs, snoRNAs

and lncRNAs) for Mus Musculus species (Table 7.4) indicates that proposed EL-RMLocNet ap-

proach once again outperforms previous best performance across all 4 benchmark datasets in

terms of five different evaluation metrics. EL-RMLocNet outperforms state-of-the-art average

precision by 8%, 1%, 2% and 1% for miRNA, mRNA, snoRNA and lncRNA multi-compartment

subcellular localization. In terms of accuracy, EL-RMLocNet outperforms previous best perfor-

mance by 11%, 3%, 4% and 4% for all 4 miRNA, mRNA, snoRNA, lncRNA multi-compartment

localization prediction. Similarly, performance analysis in terms of coverage, ranking loss and

one-error reveals that EL-RMLocNet achieves lower error values across most evaluation metrics

for all 4 different RNA classes.

To sum up, proposed EL-RMLocNet approach [23] achieves better performance across most

datasets from 8 benchmark datasets belonging to 4 different RNAs and 2 species. Overall EL-

RMLocNet achieves higher performance increment for Homo sapiens species as compared to

Mus musculus. It outperforms stat-of-the-art approach [403] by an average accuracy figure of

8% for Homo sapiens species and 6% for Mus musculus species. Unlike traditional nucleotide

frequency and physicochemical properties based sequence encoding schemes used by stat-of-the-

art approach [403] which lacks to capture comprehensive relations of nucleotides. EL-RMLocNet

uses a novel weighted graph based statistical representation learning scheme which treats

nucleotide k-mers as nodes and their interactions as edges to better characterize nucleotide

k-mers relations. Further, unlike machine learning based stat-of-the-art approach [403], proposed

EL-RMLocNet makes use of a precisely deep neural network which utilizes gating mechanism to

retain informative features and their dependencies and attention mechanism to find RNA class

and species specific discriminative distribution of features to accurately predict target species

RNA subcellular localization.

7.4.3 Visualization of Most Informative Nucleotide k-mers Patterns

Proposed EL-RMLocNet approach effectively predicts the subcellular localization of various

RNAs mainly by finding the most discriminative features with the help of attention mechanism.

The mapping of statistical feature space having certain attention weights to their correspond-

ing nucleotides k-mers is essential to elaborate on which nucleotide k-mer distribution is most

informative to accurately predict various subcellular compartments of target RNA subtype of

particular species. The acquisition and interactive visualization of such information effectively

interpret and explain the decision making of deep learning model, actualize the generalizability

and practical significance of the model to facilitate biomedical researchers and practitioners. Con-

sidering, sequence length largely fluctuates across different RNA subtypes and species ranging

from few hundreds of nucleotides to thousands of nucleotides. We visualize the importance given

by attention mechanism of proposed EL-RMLocNet approach to nucleotide k-mer distribution
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within the range of 100 nucleotides across all 8 benchmark datasets of 4 different RNAs (mRNA,

miRNA, snoRNA and lncRNA) and 2 species (Homo sapiens, Mus Musculus) to avoid repetition

of information and improve readability.

Considering, attention mechanism can even assign different weights to same nucleotide

k-mer and same weight to different nucleotide k-mers depending on the short and long range

contextual information. Figure 7.10 highlights nucleotide k-mer distribution of 4 different RNAs

across 2 species on a gradient scale from light to darker shade of a specific color and size

scale from shorter to larger fonts, indicating more darker and standout nucleotide k-mers are

the most informative for target RNA subtype. For instance, for Homo sapiens lncRNA multi-

compartment subcellular localization prediction, nucleotide bi-mer “CG" is the most informative

across different distributions of nucleotides. For Mus Musculus miRNA multi-compartment

subcellular localization prediction, nucleotide bi-mers CC,GC, AG, GG are most informative

followed by AA and TT within certain nucleotide distributions. Similarly, for other RNA subtypes

across both species, most informative and least informative nucleotide k-mers and their different

nucleotide distributions (unique color shaded) are evident in the Figure 7.10. We believe that an

interactive intrinsic analysis of various RNAs helps to identify the most appropriate degree of

nucleotide k-mer (e.g., bi-mer, tri-mer), identify region containing most useful nucleotide k-mer

distribution, providing a direction to optimize the performance and generalizability of various

other RNA sequence analysis tasks.

Homo sapiens species Mus Musculus species

Figure 7.10: Most and least informative nucleotide k-mers patterns for 4 different RNAs belonging
to Homo sapiens and Musculus species identified by attention layer of proposed EL-RMLocNet
[23] approach

7.5 Conclusion

In this study, we establish an effective multi-compartment localization prediction landscape for

4 different RNA classes and 2 distinct species to better understand the functional dynamics of

RNAs. Unlike existing computational approaches which lack to capture context of residues at

different granularity while generating statistical representation of RNA sequences as well as
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potential residue patterns important for accurate multi-compartment localization prediction. Our

proposed approach EL-RMLocNet generates a comprehensive local and global residue contextual

information aware statistical vectors of RNA sequences by treating RNA-As-Graph captures. It

makes use of LSTM network to extract features, short and long range dependencies and attention

mechanism to assign weights to the features on the basis of their importance for accurate

multi-compartment localization of target RNA class. Visualization of important higher order

residue patterns can assist researchers to draw important insights while comparing sequences

of homogeneous or heterogeneous RNA classes. A comprehensive comparison of proposed EL-

RMLocNet approach with state-of-the-art approach using 8 benchmark datasets of 4 different

RNA classes and 2 distinct species proves that EL-RMLocNet is the first most effective generic

yet explainable model for RNA multi-compartment localization prediction. We expect public

availability of EL-RMLocNet will prove a valuable asset for subcellular localization prediction

of various RNAs across multiple species, as well as an additional tool for the classification and

localization prediction of other biomolecules.
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PROTEIN-PROTEIN INTERACTION PREDICTION

Proteins are large and complex biomolecules that perform a multitude of crucial functions within

living organisms mostly by interacting with other proteins [40]. Protein-protein interaction

(PPI) analysis is important to understand diverse biological processes including cell proliferation

[314], signal transduction [326], DNA transcription, replication [398, 462], hormone regulation

[469], cycle control [231] and neuro-transmission [374]. It also helps to identify disease-related

signaling pathways and symbolizes unfamiliar targets for therapeutic intervention [447]. In-

depth exploration of PPIs is critical for a thorough understanding of protein functionalities,

genetic mechanisms [7, 408], discovery of novel drug targets [16] and development of effective

preventive or therapeutic strategies to combat diseases [330].

8.1 Related Work

A number of experimental approaches such as tandem affinity purification (TAP) [147], mass

spectrometric protein complex identification [178], protein chips [477] and yeast two-hybrid

(Y2H) [204, 230] have been utilized to infer PPIs. However, these experimental methods are

expensive and time-consuming [357]. Furthermore, because of high specificity between proteins,

these experimental approaches produce significant false positive results which mark the need

for additional methodologies to cross-check the obtained results. Due to slow sequence analysis

process, these approaches have been typically applied to identify intra-species PPIs, whereas

inter-species interactome remained comparatively understudied [357]. Advancements in high-

0This chapter is an adapted version of the work presented in Asim et al., "CONR-NET: A Collection of Neural
Refinements for protein-protein Interaction Prediction", In iScience (2022) and Asim et al., "BoT-Net: A Lightweight
Bag of Tricks based Neural Network for Efficient lncRNA–miRNA Interaction Prediction", In Interdisciplinary
Sciences: Computational Life Sciences (2022) [25]
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throughput approaches and the influx of PPI data related to different species have given rise

to many databases including the Database of Interacting proteins (DIP) [348], the Molecular

Interaction Database (MINT) [260] and the Human protein References Database (HPRD) [327].

The public availability of such humongous annotated data has opened new horizons for the

development of computational approaches for economical, fast and more accurate analysis of

PPIs.

In order to predict PPIs to date, a plethora of computational approaches have been developed

[213, 334] which can be broadly segregated into three classes: 1) Structure based, 2) Network

based and 2) Sequence based. Structure based approaches estimate the likelihood of PPIs by

leveraging primary and higher-level spatial structures like secondary, tertiary or quaternary

structures [315]. Those proteins are more likely to interact in which compatibility levels of

interacting regions are high or in which spatial structures more often appear on protein-protein

binding-motif regions. [123, 315, 366]. Following this principle, Hue et al. [199] performed the

pioneer work to predict PPIs in which they fed structural information of protein pairs to support

vector machine (SVM) classifier. Zhang et al. [462] performed similar work by using protein

structural information and Bayesian classifier for PPI interaction prediction. Hosur et al. [186]

utilized protein structural information to compute the interaction confidence score for each

protein pair using a boosting classifier. Structural information based PPI predictors neglect the

mutual influence of local structures [28, 142]. Such approaches are more vulnerable to overlook

important information for accurate PPI prediction which might be present in primary sequences

and likely to get lost while extracting structural information [28, 142].

Network based PPI prediction approaches utilize the link information present in existing PPI

networks. PPI networks are hierarchical illustrations of interacting proteins and exist in form

of ontologies where each node represents a particular protein and interaction of two different

proteins is represented by an association link. Proteins residing in upper hierarchy act as parents

and their attached interacting partners of lower hierarchy act as child. Network based PPI

prediction approaches extract the names of proteins from existing ontologies to find their biological

characteristics in other resources and heterogeneous relations between proteins in order to

predict interactions between unseen proteins on the basis of prior learning. Initial network based

approaches considered that these proteins are more likely to interact which share more common

interacting partners in PPI network [226]. However, these approaches have become obsolete after

the discovery of Kovacs et al [226] that two proteins are more likely to interact if at least one of

them is very similar to other’s interacting partners. But Kovacs et al [226] approach has limited

practical significance as it lacks to determine the interactions between the long distant proteins.

To address this problem, Wang et al. [410] predicted PPIs without defining the length of different

network paths in advance, however, their approach heavily relies on the quality of PPI network.

Most recent paradigm of network based approaches considers that proteins of same functional

module are more likely to interact as compared to the proteins of different functional module
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[190]. Using the already known information of the functional modules, Hu et al [189] integrated

biological information of proteins particularly gene ontology into PPI network to predict PPIs.

Likewise, Ioan et el. [201] proposed attention based deep learning model which used graph based

embeddings to learn deep semantic relations of gene ontology to distinguish interactive and

non-interactive protein sequence pairs. A closer look at different network based PPI prediction

approaches reveals that these approaches completely rely on pre-computed PPI networks and

biological information, both of which need periodic updates to cater huge proteins related data

produced by high throughput technologies. Furthermore, such resources are characterized by

high false-positive as well as false negative rates which eventually hamper the performance of

PPI predictors. Therefore, raw sequence based PPI prediction approaches are widely considered

more appropriate to perform large scale PPI analysis.

To date, several raw sequence based machine and deep learning based approaches have also

been proposed [450] for PPI prediction. For example, most recently, Yu et al. [450] proposed

a machine learning based PPI predictor GcForest-PPI. It utilized amino acids composition

information and physicochemical characteristics to generate statistical representation of protein

sequences. It used Elastic Net [480] to extract a discriminative set of features that were passed

to an ensemble classifier based on three different models namely XGBoost, Random Forest

and Extra-Tree. GcForest-PPI achieved the accuracy of 95.44% and 89.26% on benchmark

saccharomyces cerevisiae (S.cerevisiae) and Helicobacter Pylori (H.pylori) datasets. Kong et al.

[223] presented another machine learning approach namely FCTP-WSRC. They utilized amino

acid physicochemical properties, composition and transition information to generate statistical

representations of protein sequences. They utilized principal component analysis to reduce

redundant features and generate better feature space. Using reduced statistical representations

and WSRC [223] classifier, they managed to achieve the accuracy of 86.73% and 78.70% on 2

benchmark S.cerevisiae and H.pylori datasets. Jia et al. [210] also proposed a machine learning

based PPI predictor namely “iPPI-Esml". They combined amino acid composition information,

physicochemical characteristics and protein chain specific wavelet transform information to

generate statistical representations of protein sequences which were passed to a deep forest

classifier. The iPPI-Esml approach achieved the accuracy of 95% on benchmark S.cerevisiae and

90% on H.pylori datasets.

Apart from machine learning based PPI predictors, Yao et al. [439] proposed a deep learning

based predictor namely DeepFE-PPI. They utilized Word2vec based embedding generation

approach [300] to generate statistical representations of protein sequences which were passed to

a Multi-Layer Perceptron model for PPI prediction. DeepFE-PPI achieved the accuracy of 95% on

benchmark S.cerevisiae dataset. Du et al. [116] presented DeepPPI which utilized amino acid’s

physicochemical properties to generate statistical representations of protein sequences. They

utilized a Multi-Layer Perceptron model which extracted the high-level discriminative features

from statistical vectors to make accurate PPI prediction. DeepPPI achieved the accuracy of 94%

139



CHAPTER 8. PROTEIN-PROTEIN INTERACTION PREDICTION

and 86% on 2 benchmark S.cerevisiae and H.pylori datasets.

Critical analysis of machine and deep learning based PPI predictors (i.e., GcForest-PPI [450]

WSRC [223], DeepFE-PPI [439]) reveals that amino acid composition or physicochemical prop-

erties based protein sequence encoding methods overlook the relationships that exist between

different amino acid segments as a function of context of long protein sequences [210, 450]. Fur-

thermore, selecting an optimal set of physicochemical properties from a huge available collection

requires extensive empirical evaluation [210, 450]. Besides, concatenation of statistical repre-

sentations generated through different types of encoding methods also gives birth to redundant

features. To remove redundant features, existing PPI predictors [223, 450] utilize dimensionality

reduction or feature selection approaches to generate an effective feature space. However, dimen-

sionality reduction approaches generally prove inefficient for large and weakly non-linear data

[69, 369]. Also, determining the number of principal components for the generation of compressed

representation varies across different datasets, indicating that optimal principal components

are found through comprehensive empirical evaluation. Similarly, major disadvantage of using

elastic-net as a feature selection approach [450] is the high computational cost as one needs to

cross-validate the relative weights of L1 and L2 penalty. Elastic-net leverages a combination of

L1 and L2 penalties in order to shrink coefficient of un-important features to near zero, which is

a computationally expensive and a time consuming process [349].

Furthermore, Word2vec [300] based PPI prediction approaches [439] also lack to generate

an effective statistical representation of protein sequences. Because Word2vec [300] treats k-

mers as atomic entities to generate their distinct vectors in which it neglects the distribution

of amino acids within each k-mer. FastText [47] is an extension of Word2vec [300] where vector

of each k-mer is computed by considering the distribution of k-mers and distribution of amino

acids inside the k-mers. Also, our previous work [26] found that among three different neural

embedding generation approaches namely: Word2Vec, FastText and Glove; FastText approach

most effectively captures semantic information of k-mers.

We use FastText approach to generate comprehensive contextual information aware statistical

vectors for k-mers present in protein sequences. Furthermore, we generate fixed-length protein

sequences using six traditional and four novel fixed-length generation approaches. We propose a

novel attention based deep hybrid model namely ADH-PPI, which makes best use of different

neural network layers and optimization strategies for accurate PPI prediction. ADH-PPI makes

use of Long Short-Term Memory, convolutional and attention layers to find the most discrim-

inative features along with their short and long range dependencies important to effectively

distinguish interactive protein sequence pairs from non-interactive protein sequence pairs. To

avoid under-fitting and over-fitting, training of the AHH-PPI is optimized using different kinds of

dropout, normalization and learning rate decay strategies.

A comprehensive empirical evaluation indicates that proposed ADH-PPI approach outper-

forms several machine and deep learning based PPI predictors across 6 different species bench-
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mark datasets with a decent margin. To better describe the decisions of proposed ADH-PPI

approach, we map the weights of statistical feature space to potential k-mer distributions which

contribute the most to accurate PPI prediction through the reverse engineering strategy.

8.2 Materials and Methods

This section explains different modules of proposed predictor and describes protein-protein

interaction prediction benchmark datasets.

8.2.1 Methodology of Proposed ADH-PPI Predictor

The working of the proposed ADH-PPI predictor can be categorized into three different modules.

First module generates effective statistical representations of k-mers present in protein sequences

by applying transfer learning in an unsupervised manner. Second module generates fixed-length

protein sequences using traditional and novel sequence fixed-length generation methods. Using

fixed-length protein sequences and k-mer embeddings, third module trains a novel attention

based deep hybrid neural network for PPI prediction. A brief description of each module is

provided in the following sub-sections.

8.2.1.1 K-mer Embedding Generation

To generate k-mer embeddings, first step is to divide the protein sequences into k-mers. Overlap-

ping k-mers are generated by rotating a fixed-size window over a protein sequence where the

stride size is always less than the size of window. On the other hand, non-overlapping k-mers are

generated by rotating a window with a stride size equal to window size.

Protein sequences are made up of 20 distinct amino acids. Hence, in both overlapping or

non-overlapping k-mer generation, the unique vocabulary size is equal to 20k. The value of k

determines the size of vocabulary which impacts model complexity, memory cost, run time cost,

as well as up to what extent amino acid contextual information is taken into account, hence the

choice of k is very crucial. Following the work of Le et al. [243] and Asim et al. [20], we generate

different overlapping and non-overlapping k-mers by varying the window size from 2-to-7 and

stride size from 1-to-7.

For different sizes overlapping and non-overlapping k-mers, we generate k-mers embed-

dings of different dimensions using FastText embedding generation model, working of which is

graphically illustrated in Figure 8.1.

With an aim to capture comprehensive information of amino acids distributions, we take

two benchmark S.cerevisiae, H.pylori datasets and four independent test sets in order to most

effectively train the FastText model over large dataset of 26,886 protein sequences. For all

26,886 protein sequences, we generate overlapping and non-overlapping k-mers by varying the

window size from 2-to-7 and stride size from 1-to-7. This produces number of different k-mers=6
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Figure 8.1: Workflow of unsupervised transfer learning applied using 6 datasets of distinct species
to learn distributed representation of higher order sequence amino acids

× maximum possible different stride size =6 equal to 36 different versions of protein sequences

corpus based on different overlapping k-mers and 6 versions of protein sequences corpus based

on different non-overlapping k-mers. For each version of protein sequences corpus, we train the

FastText model to generate k-mer embeddings of different dimensions d ranging from 100, 120,

240, to 300. For example, by considering non-overlapping 3-mers, 26,886 protein sequences are

divided in 3-mers which generates a vocabulary of 203 unique 3-mers and FastText generates

d-dimensional statistical vectors for each 3-mer. FastText embedding generation model is an

extension of Skipgram model [300]. Given a training k-mer sequence k1,k2,k3, ....kT, objective

function of Skipgram model can be defined as follows:

J = max
1
T

T∑
1

∑
c∈Ct

logp(kc|kt) (8.1)

Where Ct represents the collection of surrounding k-mers of current k-mer kt, given current

k-mer kt, p(kc|kt) denotes the probability of observing its surrounding k-mer kc.

p(kc|kt)= es(kt,kc)∑W
j=1 es(kt,k j)

(8.2)

Here s(kt,kc) represents the scoring function. Skipgram model considers the scoring function

as scalar product s(kt,kc)= uT
ktvkc, where uk t and vkc represent the vectors of two k-mers kt and
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kc, respectively. However, Skipgram can only generate a distinct vector for each k-mer without

exploiting their sub-kmer information. To overcome this problem, FastText represents a k-mer

as a bag of sub-kmers. For instance, k-mer “HGDTP" will be represented by sub-kmers such as

<#HGD, HGDT, GDTP, DTP#> and k-mer itself <HGDTP>. Unlike Skigpgram model, FastText

defines the scoring function s(kt,kc) as the
∑

g∈(1,....G)zT
g vc

where (1, ....G) denotes the sub-kmers

collection of kt, zg represents the vector of sub-kmer and vc represents the vector of k-mer kc.

In this manner, FastText learns the embeddings of sub-kmers. Using sub-kmers embeddings, a

k-mer embedding is learned as the sum of distributed representations of its sub-kmers. Major

advantage of FastText embedding generation model is that it takes k-mer distributions as well

as distributions of amino acids within k-mers into account to generate effective distributed

representation of k-mers. Another advantage is that it shares the distributed representation

of sub-kmers across all the k-mers which is extremely useful to generate optimal embeddings

for less frequent k-mers. FastText embedding generation model is trained with an objective

to maximize the probability of target k-mer over all k-mers present in the vocabulary using

a softmax layer. Embedding matrix along with output layer parameters are learned by back

propagating the error using stochastic gradient descent and negative sampling approach. Using

FastText, we generate effective d-dimensional vectors for k-mers where the value of d is varied

from 100, 120, 240, to 300.

8.2.1.2 Fixed-Length Generation of Protein Sequences

Exploratory analysis of 2 core PPI datasets (Figure 8.4) indicates that minimum sequence

length for both S.cerevisiae and H.pylori datasets is 10 amino acids, average protein sequence

length for S.cerevisiae dataset is around 1100 amino acids and for H.pylori dataset, average

sequence length is around 734 amino acids. It is evident that protein sequences have high length

variability. Considering machine learning approaches require fixed-length protein sequences,

existing PPI prediction approaches transform variable length protein sequences into fixed-length

sequences using traditional copy padding or sequence truncation approaches [450]. We perform

experimentation with 6 different variations of copy padding and sequence truncation approaches

in order to quantify their efficacy for PPI prediction. Furthermore, we present a unique way

to generate fixed-length protein sequences by finding and retaining only the most informative

amino acids distributions. This section briefly summarizes five different settings to generate

fixed-length sequences.

In 1st setting, performance of 6 traditional copy padding and sequence truncation approaches

is evaluated. In copy padding approach, first maximum length of sequence is computed by

comparing corpus sequences. Then, all the sequences having length less then maximum length

are extended to make them equal to maximum length by adding certain constant. Sequence

truncation is another way to make fixed-length sequences where minimum sequence length is

computed by comparing corpus sequences. Amino acids from all those sequences whose length is
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larger than minimum length are truncated to make them equal to minimum sequence length.

Another trend is to utilize both copy padding and truncation approaches where average length of

corpus sequences is computed. Certain constant is added in sequences which are shorter than

the average length, whereas, amino acids from the sequences that are larger than the average

length are truncated.

In copy padding trick, it is an important question whether the start of the sequences is an

ideal location for the addition of constant or the end of the sequences. Likewise, in the sequence

truncation approach, it is questionable whether extra amino acids need to be truncated from

start of the sequences or end of the sequences. For copy padding trick, we first add constant at

the start of sequences and in another variation, we add constant at the end of the sequences to

find out which strategy is more appropriate. Similarly, for the sequence truncation approach, we

truncate sequences from the start of sequences and from the end of sequences in other variation.

In hybrid sequence fixed-length generation paradigm based on average length, we also extend

or truncate corpus sequences from the start of sequences or end of the sequences. A graphical

representation of all 6 strategies is presented in Figure 8.2 under the hood of setting-1.

Figure 8.2: A variety of experimental settings to generate fixed-length sequences based on
traditional copy padding or sequence truncation and proposed bag of most informative amino
acids distribution tricks.

Considering, the vulnerability of traditional copy padding approach to create unnecessary

bias through the addition of too many constants and sequence truncation to lose important amino

acid distribution while handling flexible protein sequences. Here we propose a unique idea to

optimize fixed-length sequence generation process where fixed-length sequences are generated

using only the few amino acids from different regions of protein sequences which contains the

most informative distribution of amino acids for the task of PPI prediction. More specifically, in

Figure 8.2, under the hood of 2nd setting, ADH-PPI selects X amino acids solely from the starting

region of one protein A and Y amino acids solely from starting region of protein B. In 3rd setting,

performance of X amino acids taken from the ending region of protein A and Y amino acids taken

merely from the ending region of protein B is evaluated. Whereas, in 4th setting, X amino acids of
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protein A taken from the starting region of protein sequence are combined with Y amino acid of

protein B taken from the ending region of protein sequence to assess the discriminative aptitude

of start-end region. In last setting, performance is assessed by combining X amino acids taken

from start-end regions of protein A with Y amino acid taken from start-end region of protein B.

To identify up to what number of amino acids can capture the discriminative essence of protein

sequences, in all 4 proposed subsequence based fixed-length generation settings, we select as

minimum number of amino acids as possible (e.g., 10, depending on the minimum sequence

length of the benchmark dataset) and iteratively increment this number with a step size of 10

amino acids up to 50% of average sequence length of benchmark core PPI prediction datasets. In

all 4 settings, number of amino acids range varies from 10-to-70 with an increment of 10 amino

acids. By fusing protein A sequences with protein B sequences, the fixed-length protein sequence

generated through traditional and novel preprocessing strategies are passed to an attention

based deep hybrid neural network for PPI prediction.

8.2.1.3 An Attention based Deep Hybrid Neural Network (ADH-PPI)

In the marathon of developing robust and precise deep learning based end-to-end frameworks for

diverse Genomics and Proteomics sequence analysis tasks, we are witnessing the explosion of deep

learning approaches, core architectures of which are mainly formed by deep feed forward neural

networks [256], deep belief networks [481], convolutional neural networks [256], autoencoders

[299] and long short-term memory networks [299]. Predominantly, efforts are being made under

the hood of two different paradigms to develop more efficient deep learning models for diverse

sequence analysis tasks [256, 299, 481]. The main focus of one paradigm is to develop deep neural

networks based on series of neural layers (i.e., convolutional layer, recurrent layer) to effectively

capture the non-linearity of genomic and proteomic sequences [256, 284, 299, 317, 481]. Whereas,

other paradigm pays more attention to develop shallow or ensemble neural networks which

utilize neural layers (i.e., convolutional layer, recurrent layer) in different parallel channels and

combine the features extracted by different channels to perform target prediction. The chapter

in hand develops an attention based deep hybrid model (ADH-PPI) for PPI prediction following

the structure of first paradigm. Workflow of proposed ADH-PPI approach is illustrated in Figure

8.3, a brief description of different components of ADH-PPI approach is given in the following

subsections.

Stochastic Embedding Layer:

Stochastic embedding layer takes k-mers of protein sequences and k-mer embeddings learned

in unsupervised manner (generation of which is explained in section 8.2.1.1) to generate an

embedding weight matrix E ∈ R|unique_kmers| × embedding_size. To fine-tune embedding matrix in a

more generic way, we apply two different kinds of dropouts on the embedding matrix, where there

is a probability pembeddings to fully replace k-mer embedding vectors with zeros and probability
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Figure 8.3: Workflow of proposed attention based deep hybrid methodology ADH-PPI for protein-
protein interaction prediction

pembeddings_dim to replace individual continuous values with zero in remaining k-mer embedding

vectors. First kind of dropout drops few k-mer embedding vectors whereas second kind of dropout

drops few continuous values of remaining k-mer embedding vectors [143, 297]. This regularization

avoids model over-fitting by ensuring that model does not over-specialize certain k-mers to extract

the most informative features for various classes. While performing experimentation, the k-mer

embedding vector pembeddings and dimension pembeddings_dim dropout probabilities vary from

0.002-to-0.008 where we find that pembeddings of 0.004 and pembeddings_dim of 0.005 performs

better. The optimized embedding matrix containing 120-dimensional embedding vectors for

unique k-mers is passed to a Long Short Term Memory layer.

Optimized Long Short Term Memory Layer:
Long short-term memory (LSTM) layer is a special kind of recurrent layer that avoids gradient

explosion and gradient disappearance issues faced by the neural network during the modeling of

long sequences [197]. Furthermore, LSTM is effective for the extraction of long dependencies of

features which is very critical for accurate PPI prediction [197]. Unlike a traditional recurrent

neural network, LSTM makes use of multiple gates for the extraction of informative features. A

brief description of information flow and extraction in LSTM cell is briefly describe in chapter 7.

The 120-dimensional feature vectors produced by the LSTM layer are passed to the convolutional
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layer.

Convolutional Layer:

Like simulating the cells with local receptive fields within human brain, the convolutional

layer performs an operation known as convolution which uses local connection and shared weights

to extract hidden informative features [151]. Convolution operation applied at a particular l th

layer produces a feature map A[l] that can be mathematically expressed as:

A[l] = f (A[l] ⊗W [l] +b[l]) (8.3)

Where W [l] represents the weight matrix of convolutional kernel of the l th layer, symbol ⊗
denotes the convolutional operation, b[l] represents the offset vector and f(x) denotes the activation

function. We use ReLu as an activation function to sparse the final output of convolutional layer

which leads to speed up the training process and maintain the steady convergence rate to prevent

vanishing gradient issue. CNN layer uses 50 kernels of size 3 to produce 50-dimensional feature

vectors which are passed to an attention layer.

Attention Layer:

Attention layer is widely used to adjust the weights of feature vectors in such a manner

that most crucial features are emphasized and less important features are penalized [151].

Attention function can be considered a mapping from a Query vector (Q) and Key-Value vectors

(K-V) to an output vector. Here Q, K and V are linear projection of given protein sequence

statistical representation and output is the new protein sequence statistical representation

of same dimensions incorporating comprehensive mutual association of higher order amino

acids present in protein sequences. The entire process involves three steps: acquiring Query,

Key and Value linear projections, estimating the weight through placing Query and Key into a

certain compatibility function and obtaining the output by estimating the weighted sum of value

using the pre-computed weight. There are many types of compatibility functions which produces

many flavors of attention mechanism. We use the least space and time efficient version of the

compatibility function namely Scaled Dot-Product Attention (SDPA). The SDPA computes the

dot product of Query and Key which is divided by
√

dk where dk denotes the Key dimension and

finally applies the softmax over it to obtain the weight.

Weight = sof tmax
QKT√

dk
(8.4)

In equation 8.4, weight represents a square matrix having number of rows/columns equivalent

to length of protein sequences calculated in terms of number of higher order amino acids. Each

ith row jth column value denotes the interaction intensiveness among ith higher order amino acid

and jth higher order amino acid. After computing weight, every row of output that represents the

statistical vector of a higher order amino acid, can be estimated as the weighted sum of all higher

order amino acids. This is primarily implemented through a single-matrix multiplication which

can be mathematically expressed as follows:
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Output =Weight∗V = sof tmax
QKT√

dk
V (8.5)

Given, 50-dimensional statistical vectors of protein sequences, attention layer updates the

values of statistical features on the basis of their usefulness for PPI prediction.

Normalization Layer:

Neural network faces the issue of internal co-variance shift which de-stabilizes the neural

network due to change in input distribution to hidden layers of neural network when model

weights are updated after the execution of every batch [202]. Internal co-variance shift makes

the optimal weights learned by the network during previous iterations obsolete [202], disturbs

the convergence and generalizability of the model [202].

Normalization addresses this issue by standardizing the input before feeding it to a hidden

layer for every batch. It ensures that input to output mapping of a neural network does not over-

specialize one particular region of protein sequences, resulting in faster training, convergence

and improved generalizability [202]. A comprehensive detail of normalization layer in terms of

mathematical expressions is given in chapter 7.

Standard Dropout Layer:

Dropout is a de-facto standard to regularize neural networks, which generally improves the

quality of the hidden features by alleviating the likelihood of hidden units co-adaptation problems.

More specifically, for every hidden unit, dropout avoids co-adaptation by iteratively tweaking the

presence and absence of other hidden units to ensure that a hidden unit cannot rely on other

hidden units to fix its mistakes.

In proposed ADH-PPI methodology, each hidden unit has the probability p to be dropped

where the value of p falls in range of 0.01-to-0.4. Mathematically (Equation 8.6), likelihood of

omitting a hidden unit is done according to the Bernoulli distribution with probability p. Through

an element wise product of hidden unit vector with a mask where each element is randomly

sampled from Bernoulli distribution, hidden units are dropped during training. Whereas, for

testing (Equation 8.7), instead of dropping the hidden unit, probability for a hidden unit not to be

dropped 1− p% is estimated.

y= f (Wx) ·m,mi ∼ Bernoulli(p) (8.6)

y= (1− p) f (Wx) (8.7)

Softmax Layer:

Using a dense 50-dimensional representation of protein sequences, softmax layer discrimi-
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nates interactive protein pairs from non-interactive protein pairs. Categorical cross-entropy also

known as softmax loss is used as a loss function which is a simple softmax activation plus a cross

entropy loss. Working of softmax activation and categorical cross entropy is described in equation

8.8 and equation 8.9, respectively.

f (si)=
es

i∑C
j es

j

(8.8)

CE =−
C∑
i

ti log( f (si)) (8.9)

In these equations, t represents one-hot encoded ground truth, si represents probability

score for each class in C and f (si) refers to softmax activation applied before the computation of

cross-entropy loss.

8.2.2 Benchmark Datasets

In order to prove the integrity of proposed ADH-PPI approach and to perform a fair comparison

with existing PPIs prediction approaches, we evaluate ADH-PPI performance over PPIs datasets

of 6 different species including humans, Drosophila, Yeast, Bacterium, Caenorhabditis elegans

and Escherichia coli.

From Yeast specie, performance of ADH-PPI is evaluated on a well-known public benchmark

dataset namely Saccharomyces cerevisiae (S.cerevisiae), which is extensively utilized by several

researchers for PPI prediction [450]. PPIs of Saccharomyces cerevisiae (S.cerevisiae) were first

extracted by Guo et al. [161] from Database of Interacting proteins (DIP) [424]. Authors elimi-

nated those protein pairs where any one of the protein was comprised of less than 50 amino acids

and obtained a dataset of 5,943 protein pairs with positive interactions. To eliminate redundancy,

researchers utilized a renowned program CD-HIT [141]. From 11,188 PPIs, a total of 5,594 PPIs

were retained considering that they had less than 40% pairwise sequence similarity with each

other. An equal number of negative PPIs were generated using 3 different approaches. In first

approach, non-interacting protein pairs were generated by random pairing of proteins which

were not present in the positive dataset. In second approach, negative dataset was generated by

combining proteins having similar subcellular localization patterns extracted from Swiss-Prot

database [32]. In third approach, negative dataset was generated using data augmentation

approach. Another widely used PPI prediction dataset [450] Helicobacter pylori belongs to Bac-

terium specie, which was compiled by Martin et al. [290]. It contained 2,916 protein pairs out of

which 1,458 protein pairs were positive and 1,458 protein pairs were negative. From a collection

of protein pairs which were not explicitly declared as interactive, a bunch of protein pairs were

selected as non-interacting proteins. Statistics of both core datasets S.cerevisiae and H.pylori are

described in Figure 8.4.

149



CHAPTER 8. PROTEIN-PROTEIN INTERACTION PREDICTION

Figure 8.4: Statistics of 2 core protein-protein interaction prediction datasets

In order to perform a fair performance comparison with existing PPI predictors and to

further prove the versatility of proposed methodology ADH-PPI, we also evaluate ADH-PPI over 4

independent test sets developed by Zhou et al. [474]. These datasets have been extensively used in

literature [170, 196, 450]. As the procedure used to develop 4 different independent test sets has

been described in existing studies [170, 196, 450, 474], here we only shed light on the statistics of

4 independent test sets. E.coli consists of 6,954 protein pairs with positive interactions, C.elegans

contains 4,103, Homo sapiens (H.sapiens) consists of 1,412 and Mus musculus (M.musculus) is

composed of 313 protein pairs with positive interactions.

8.3 Evaluation Criteria

Following the evaluation criteria of previous PPI prediction studies [450], performance of ADH-

PPI for 2 core benchmark datasets is evaluated using 10-fold cross-validation. We utilize 6

most commonly used evaluation measures namely: recall, precision accuracy (ACC), Matthews

correlation coefficient (MCC), F1-score and area under receiver operating characteristics (AUROC)

to compute the model performance from different perspectives.

Exploratory analysis of 2 core PPI datasets (Figure 8.4) indicates that minimum sequence

length for both datasets is 10 amino acids, average protein sequence length for S.cerevisiae
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dataset is around 1100 amino acids as compared to H.pylori dataset whose average sequence

length is around 734 amino acids. To identify up to what number of amino acids can capture

discriminative essence of protein sequences, ADH-PPI performs experimentation by selecting as

minimum number of amino acids as possible (e.g., 10, depending on minimum sequence length

of benchmark dataset) and increments this number with the defined step size up to 50% of

average sequence length of benchmark dataset. For 2 core PPI datasets, using the step size of

10, ADH-PPI finds that within 70 amino acids based subsequences (which is almost just 15% of

average sequence length) manage to capture the discriminative essence of long protein sequences

for the task of PPI prediction. Therefore, in our experimentation, we report the performance by

varying amino acids from 10-to-70 using the step size of 10.

Considering the efficacy of grid search for automated parameter search [259, 361], we employ

grid search to find optimal values of hyperparameters. We find that FastText [47] captures rich

inherent relationships with 5-mers and represents protein sequences using 120-dimensional

vectors generated through the concatenation of character k-mers and amino acid level vectors. For

embedding generation, experimentation is performed by varying the window size from 3-to-10 and

stride size from 1-to-5. To regularize embedding matrix, higher order amino acid vector dropout

varies from 0.002-to-0.08 and vector dimension dropout varies from 0.002-to-0.008. Learning

rate initial range is defined as 0.05-to-0.01 which is tweaked using the weight decay range of

0.00001-0.01 if validation loss stops improving. Standard dropout probability is varied from

0.001-to-0.6 to avoid over-fitting the proposed ADH-PPI approach for the task of PPI prediction.

Table 8.1: Optimal values of different hyperparameters of proposed ADH-PPI methodology for 2
core datasets and 4 independent test sets for the task of PPI prediction.

PPI Dataset Degree of Higher Order
Amino acid (K-mer) Stride Size Sequence Embedding

Dimension Learning Rate Weight Decay Dropout Rate Subsequence Regions

S.Cerevisiave 5 5 FastText-120 0.03 0.1 0.3 P-A_S-40, P-B_E-40
H.Pyloir 5 1 FastText-120 0.05 0.01 0.01 P-A_S-40, P-B_E-40

C.elegans 5 5 FastText-120 0.05 1.00E-05 0.1 P-A_S-40, P-B_E-40
H.sapiens 5 5 FastText-120 0.05 1.00E-05 0.1 P-A_S-40, P-B_E-40

M.musculus 5 5 FastText-120 0.05 1.00E-05 0.1 P-A_S-40, P-B_E-40
E.coli 5 5 FastText-120 0.05 1.00E-05 0.1 P-A_S-40, P-B_E-40

ADH-PPI is trained using the batch size of 64, adaptive moment estimation based on weight

decay (ADAMW) as an optimizer and categorical cross entropy as a loss function. ADH-PPI

is trained on complete core S.cerevisiae dataset to evaluate its performance on 4 independent

test sets. Extensive empirical evaluation using defined ranges of diverse hyperparameters is

performed to optimize these hyperparameters, the best values of most crucial hyperparameters

with respect to 2 core benchmark datasets and 4 independent test sets are summarized in Table

8.1. For both core benchmark datasets, ADH-PPI is trained for 10 epochs where the best model

having least validation loss is saved to perform evaluation.
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8.4 Results and Discussions

This section comprehensively describes the performance produced by 6 traditional preprocessing

strategies used to generate fixed-length sequences. It compares the performance of 4 distinct

settings based on subsequences to showcase which region of protein sequences contain the most

crucial information about PPI prediction. It also makes a comprehensive comparison between

traditional preprocessing strategies and proposed subsequence generation settings. Further, it

assesses the performance of optimal most informative subsequence generation setting using

protein sequence pairs generated through 2 different protein subsequence orders to validate the

robustness of ADH-PPI approach. Finally, it performs a fair comparison of proposed ADH-PPI

approach with existing PPI predictors using 2 core datasets and 4 independent test sets belonging

to 6 different species.

8.4.1 A Comprehensive Performance Analysis of Traditional Sequence
Preprocessing Strategies

Figure 8.5 illustrates the performance values produced by proposed ADH-PPI predictor under

the hood of 6 traditional copy padding and sequence truncation approaches used to generate

fixed-length sequences across two benchmark core datasets.
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Figure 8.5: Performance comparison of proposed ADH-PPI approach across 2 different datasets
including S.Cerevisiave and H.Pyloir using 6 traditional sequence fixed-length generation ap-
proaches

Performance analysis of 6 commonly used preprocessing strategies over Saccharomyces

cerevisiae (S.cerevisiae) dataset indicates that, mapping protein sequence to maximum possible

length and applying copy padding at the end of protein sequences marks the best performance

of 92% in terms of accuracy and F1-score. Mapping protein sequences to average length and
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applying padding or sequence truncation trick at the end of protein sequences achieve second

best performance. Among all 3 settings which apply copy padding or sequence truncation at the

end of protein sequences, mapping protein sequences to minimum possible length attains lowest

performance across both evaluation measures. On the other hand, from 3 settings where copy

padding or sequence truncation trick is applied at the start of protein sequences, once again

mapping protein sequences to maximum possible length achieves overall 3rd best and slightly

better performance than other 2 settings based on average and minimum length.

Contrarily, over Helicobacter pylori (H.pylori) dataset, mapping protein sequences to average

sequence length and applying copy padding or sequence truncation at the ending region of

protein sequence marks the best performance followed by the performance produced by maximum

sequence length setting where copy padding is applied at the starting region of protein sequences

across both evaluation metrics. Setting based on maximum length where copy padding is applied

at the end of protein sequence and setting based on minimum length where sequence truncation

is applied at the end of sequence length achieve almost similar performance of around 87% in

terms of accuracy and F1-score. Whereas, average sequence length based setting where copy

padding or sequence truncation is applied at starting region of protein sequences mark slightly

better performance than minimum sequence length based setting.

Among all 6 traditional copy padding or sequence truncation approaches, sequence fixed-

length generation approaches which apply copy padding or sequence truncation at the ending

regions of protein sequences using average or maximum sequence length mark better performance

across both core datasets.

8.4.2 Performance Analysis of Proposed Subsequence based Preprocessing
Approaches

To showcase the impact of 4 different subsequence based fixed-length generation strategies on

the performance of proposed classifier, Figure 8.6 illustrates which protein regions contain most

informative distribution of amino acids for PPI predictions across core datasets of 2 distinct

species.

A critical analysis indicates that over S.cerevisiae dataset, performance of 2 settings where

amino acids taken from the start of protein A are combined with the amino acids taken from

the end of protein B and amino acids of starting region of protein A are combined with amino

acids of starting region of protein B mark similar performance trends across different thresholds

of amino acids. While former setting achieves the performance of 95.5%, latter setting attains

the performance of 94% until 20 amino acids. With the increase of amino acids, performance

of both settings slightly fluctuate before finishing at 95% and 93.5%, respectively at 70 amino

acids across both evaluation metrics. Former setting achieves the peak performance using 40

amino acids whereas latter setting mark the best performance with 10 amino acids. Performance

of setting-5 which explores the start-end regions of protein A and protein B almost gradually

153



CHAPTER 8. PROTEIN-PROTEIN INTERACTION PREDICTION

Pylori Accuracy Pylori F1

S_cere Accuracy S_cere F1

Figure 8.6: Proposed classifier performance analysis under the hood of 4 different subsequences
based strategies used to generate fixed-length sequences. Here ‘PA’ represents protein A and
‘PB’ refers to protein B, whereas S indicates the starting amino acids of protein sequence and E
represents the ending amino acids of protein sequence.

declines until 30 amino acids, increases up to 94% with 40 amino acids before flattening off across

rest of amino acids thresholds. Likewise, performance of setting-3 which selects amino acids from

the ending regions of protein A and protein B also progressively decreases from the peak of 93.5%

until 30 amino acids before leveling off until 50 amino acids and finishing at 93% at 70 amino

acids in terms of accuracy and F1-score. Among all 4 settings, setting-4 which selects amino acids

from starting region of protein A and ending region of protein B marks best performance followed

by setting-5 which explores the start-end region of both proteins. Whereas, setting-3 marks the

lowest performance among all settings based on protein discriminative subsequences.

Over H.pylori dataset (Figure 8.6), performance of setting-4 remains around 86% until 30

amino acids before jumping to the peak of 91% with 40 amino acids which declines afterward and

finished at 87% with 70 amino acids. Here, performance of setting-2 slightly fluctuates until 40

amino acids before declining and leveling off at 87%. Performance of setting-2 almost gradually

decreases from 86% to 84% until 30 amino acids, jumps to the peak of 88.5% until 50 amino acids

before decreasing and ending around 86%. Setting-5 performance shows upward trend at most

amino acids thresholds and finishes around 86% across both evaluation metrics. Like S.cerevisiae

dataset, once again, setting-4 which explores the starting region of protein A and ending region
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of protein B marks the best performance in terms of accuracy and F1-score. However, for H.pylori

dataset, peak performances of all 4 settings are comparatively lower than the figures achieved

over S.cerevisiae dataset across both evaluation metrics.

Overall, among all protein subsequence based settings, setting-4 which selects amino acids

from starting region of protein A and ending region of protein B marks best performance across

both core PPI datasets in terms of accuracy and F1-score.

8.4.3 Performance Comparison of Proposed Subsequence Approaches with
Traditional Sequence Fixed-Length Generation Approaches

In order to compare the performance of traditional copy padding or sequence truncation based

settings with 4 other settings which explore the performance potential of distinct regions of

protein sequences by selecting different number of amino acids, Figure 8.7 indicates area under

receiver operating characteristics (AUROC) produced by 5 different settings over S.cerevisiae

and H.pylori datasets. As is indicated by the Figure 8.7, over S.cerevisiae dataset, in setting-1,

applying traditional copy padding or sequence truncation approaches at the ending region of

protein sequence slight achieve better degree of separability as compared to those approaches

which pad or truncate starting region of protein sequence. Former approaches attain the peak of

95% and latter approaches acquire the peak of 94%. Among all 6 approaches, mapping protein

sequences to average length and applying copy padding or sequence truncation at the end of

protein sequences mark the best performance followed by another ending region based setting

which maps protein sequences to minimum length.

Furthermore, in setting-2 based on partial protein sequences, with the influx of amino acids,

ADH-PPI degree of separability gets improved up to the peak of 98% until 30. Afterward, ADH-PPI

performance fluctuates across different amino acid thresholds before finishing at 97%. However,

all setting-2 amino acid variants achieve better performance than traditional copy padding or

sequence truncation approaches (setting-1), indicating the prime performance potential of protein

subsequences.

In setting-3 which explores the performance potential of merely ending region of protein pairs,

varying the amino acids from 10-to-70, performance of ADH-PPI remains almost constant at

96% which is still better than the performance attained by the most commonly used sequence

fixed-length generation approaches (setting-1). Likewise, in setting-4 which selects different

amino acids from starting region of protein A and ending region of protein B, ADH-PPI achieves

the degree of separability of 98% across 7 different amino acid thresholds, showing best AUROC

among all 5 settings. Whereas setting-5 based on start-end region of protein pairs attains

the performance of 97% across all 7 amino acid thresholds, indicating degree of separability

comparable to setting-2.

On the other hand, over H.pylori dataset, applying copy padding or sequence truncation

approaches at the starting region of protein pairs attain slightly superior degree of separabil-
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Pylori_Setting-1 Pylori_Setting-2

Pylori_Setting-3 Pylori_Setting-4
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S_cere_setting-2 S_cere_setting-3

S_cere_setting-4 S_cere_setting-5

Figure 8.7: Impact of 5 different settings on the performance of proposed ADH-PPI approach
across 2 different datasets including S.Cerevisiave and H.Pyloir for the task of PPI prediction
in terms of area under receiver operating characteristics. Setting 1 is based on traditional
copy padding, sequence truncation and hybrid approaches. Settings 2, 3, 4 and 5 are based on
subsequences criteria where X number of amino acids from starting and ending regions of protein
A and protein B are taken. The value of X varies from 10 to 70 amino acids with the difference
of 10 amino acids. Setting 2 takes X number of amino acids from starting region of protein A
and ending region of protein B. Setting-3 takes X number of amino acids from ending region of
protein A and protein B. Setting 4 takes X number of amino acids from starting region of protein
A and protein B. Setting 5 takes X number of amino acids from starting and ending region of
protein A and starting and ending region of protein B.
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ity as compared to approaches based on ending region of protein sequences. However, unlike

S.cerevisiae dataset, here, both kinds of approaches mark better performance by mapping the

protein sequences to minimum length. In setting-2, performance of ADH-PPI declines from 93%

to 91% until 30 amino acids, however, jumps to 95% until 50 amino acids before finishing at 93%.

Overall, it outperforms traditional copy padding or sequence truncation approaches by 2% in

terms of AUROC. In setting-3 which merely selects amino acids from ending region of protein

pairs, performance of ADH-PPI fluctuates by the figure of 1%. ADH-PPI attains the degree of

separability of 93% with 40 amino acids, indicating overall better performance than setting-1 but

slightly lower performance than setting-2. Like S.cerevisiae dataset, here once again, setting-4

based on starting region of protein A and ending region of protein B achieves the best degree of

separability among all 5 settings. With the influx of amino acids, ADH-PPI performance jumps to

96% until 40 amino acids before slightly fluctuating and ending at 93%. Whereas, performance of

setting-5 based on start-end region of protein pairs increases up to 92% until 30 amino acids and

gets flattened afterward across rest of the amino acid thresholds.

In a nutshell, prime objective of developing Artificial Intelligence based predictors is to make

the best use of raw protein sequences, extract distinct distribution of amino acids in the sequences

in order to discriminate interactive protein sequences from non-interactive protein sequences.

However, protein sequences are highly variable in length and deep learning models require

fixed-length input sequences. Commonly used sequence fixed-length generation approaches are

copy padding and sequence truncation. In copy padding approach, all sequences are mapped to

maximum sequence length by padding certain letter to shorter sequences, whereas in sequence

truncation approach, all sequences are mapped to minimum sequence length by eliminating extra

amino acids from longer sequences. Distribution of amino acids varies in different subregions

of sequences and the performance of deep learning algorithms primarily rely on the extraction

of discriminative distribution of amino acids. Copy padding approach creates unnecessary bias

through the repetition of same padding letters which make sequences quite similar to each other,

similarly, sequence truncation approach is vulnerable to lose the most informative distribution of

amino acids. Subsequences based fixed-length generation is more effective as it does not insert

any hypothetical letter. Furthermore, it skips constant regions that usually lie in center of the

sequences and does not lose informative distribution because it takes both starting and ending

regions of the sequences into account. Experimental results reveal that the most discriminative

distribution of amino acids lies in first 40 amino acids of protein A and last 40 amino acids of

protein B, indicating the success of subsequence based setting for capturing the informative and

discriminative essence of protein sequences.

8.4.4 Performance Impact of CNN Layer

To better illustrate the necessity of CNN layer in proposed ADH-PPI predictor, we have performed

experimentation on H.pylori dataset under the hood of two different settings. In first setting,
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we take LSTM, CNN and Attention layers, whereas in second setting, we only take LSTM and

Attention layers. Table 8.2 illustrates the predictive performance of both settings in terms of five

different evaluation measures namely accuracy, precision, recall, F1-score and MCC.

Table 8.2: Performance analysis of proposed model using pipeline of LSTM, CNN and Attention
layers and only LSTM and Attention layers over H.pylori species dataset to quantify the impact
of CNN layer

Evaluation
Measures

Proposed Model with LSTM,
CNN and Attention Layers

Proposed Model with only
LSTM and Attention Layers

Performance
Difference

Accuracy 0.926 0.919 Around 1%
Precision 0.928 0.921 Around 1%

Recall 0.961 0.945 Around 2%
F1-score 0.944 0.912 Around 3%

MCC 0.855 0.848 Around 1%

Among different subsequence based settings, using 40 amino acids from starting region of

protein A and 40 amino acids from ending region of protein B, proposed model with LSTM and

Attention layers achieve the accuracy of 0.919, recall of 0.945, precision of 0.921, F1-score of

0.912 and MCC of 0.848. However, this performance is less than the performance achieved using

LSTM, CNN and Attention layers in proposed predictor by the F1-score of 3%, accuracy of 2%,

precision, recall and MCC of 1%. Overall, exclusion of CNN layer slightly drops the predictive

performance and better performance is achieved when LSTM, CNN and Attention layers are

used in proposed predictor. This proves the necessity of CNN layer in proposed predictor that

essentially captures local dependencies and translational invariance of amino acids present in

protein subsequences which complement predictive performance.

8.4.5 Performance Assessment of ADH-PPI Robustness for Different Order
Protein Sequence Pairs

Empirical evaluation reveals that proposed ADH-PPI achieves the highest performance on 2 core

benchmark datasets and 4 independent test sets on account of protein sequence pairs generated

by combining the subsequence of protein A with subsequence of protein B. Among different

subsequence generation settings, setting-4 (Figure 8.2) which focuses on the starting region of

protein A and ending region of protein B develops the most informative amino acid distribution

based protein sequence pairs. However, it is important to note that we have randomly chosen

one protein as protein A and other protein as protein B. Building on the equal possibility of

generating conversely ordered protein sequence pairs, here we validate the idea that regardless of

protein sequence order, starting region of one protein and ending region of other protein contains

the most informative amino acid distribution for PPI prediction.

Mainly, experimentation is performed with optimal subsequence generation setting across 2

core datasets and 4 independent test sets by treating one protein subsequence as protein A, other
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Figure 8.8: Performance assessment of most optimal informative subsequence generation setting
using 2 differently ordered protein sequence pairs over S.Cerevisiave and H.Pyloir core datasets.
Here P_A represents the protein A and P_B refers to protein B, whereas start and end represent
the starting and ending region of respective protein

protein subsequence as protein B and exchanging the order of protein subsequences. Furthermore,

we use same parameters (e.g., subsequence window size, model

Figure 8.9: Performance assessment of most op-

timal informative subsequence generation set-

ting using 2 differently ordered protein sequence

pairs over C.Elegans, H.sapiens, M.musculus

and E.coli independent test sets after training

the model on core S.cerevisiae dataset.

parameters (Table 8.2) values described in pre-

vious sections 8.4.3 for each dataset across

both kinds of paradigms in order to accurately

reveal the robustness of ADH-PPI approach.

Figures 8.8 and 8.9 illustrate the perfor-

mance produced by setting-4 using protein se-

quence pairs generated by treating one pro-

tein as protein A and other protein as pro-

tein B as well as reversing the order on 2 core

benchmark datasets and 4 independent test

sets, respectively. As indicated by the Figures

(8.8, 8.9), ADH-PPI achieves almost same per-

formance across all datasets with protein se-

quence pairs generated using 2 different pro-

tein subsequence orders. This indicates that

although changing the combination order of

protein-subsequences change the character-

istic of protein-sequence pairs, however, pro-

posed ADH-PPI is robust enough to capture

most informative distribution of protein sequences important for PPI prediction.
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8.4.6 Performance Comparison of Proposed ADH-PPI Predictor with
Existing PPI Predictors using two Benchmark Core Datasets

In order to prove the integrity of proposed ADH-PPI predictor, rich performance comparison with

existing PPI predictors is performance using two core datasets in terms of 4 different evaluation

metrics.

Table 8.3: Performance comparison of proposed ADH-PPI predictor with 12 existing PPI predictors
on benchmark S. cerevisiae dataset, where results of existing PPI predictors are taken from Yu et
al. [450] paper.

Method ACC (%) Recall (%) Precision (%) MCC
ACC+SVM [161] 0.8933 ± 2.67 0.8993 ± 3.68 0.8887 ± 6.16 N/A

Code4+KNN [161] 0.8615±1.17 0.8103±1.74 0.9024±1.34 N/A
MCD+SVM [449] 0.9136 ±0.36 0.9067 ±0.69 0.9194 ±0.62 0.8421±0.0059
MLD+RF [445] 0.9472±0.43 0.9434±0.49 0.9891±0.33 0.8599±0.0089

PR-LPQ+RF [446] 0.9392±0.36 0.9110±0.31 0.9645±0.45 0.8856±0.0063
MIMI+NMBAC+

RF [110] 0.9501±0.46 0.9267±0.50 0.9716±0.55 0.9010±0.0092

LRA+RF [448] 0.9414 ± 1.8 0.9122 ± 1.6 0.9710 ± 2.1 0.8896 ± 0.026
DeepPPI [116] 0.9443±0.30 0.9206±0.36 0.9665±0.59 0.8897±0.0062
ippi-esml [210] 0.9515±0.25 0.9221±0.36 0.9797±0.60 0.9045±0.0053

WSRC [223] 0.8673 0.8993 NA 0.7693
DeepFE-PPI [439] 0.9478 0.9299 0.9645 0.8962
GcForest-PPI [450] 0.9544 0.9272 0.9805 0.9102
Proposed ADH-PPI 0.9573 0.9394 0.9575 0.9144

Table 8.3 compares the performance of proposed ADH-PPI predictor with 12 machine and deep

learning based predictors over S.cerevisiae dataset. As indicated by the Table 8.3, proposed ADH-

PPI predictor outperforms auto co-variance and SVM based PPI prediction methodology [161]

by 7%, 5% and 7% and KNN based methodology [161] by 10%, 13% and 6% in terms of accuracy,

recall and precision, respectively. It outperforms WSRC classifier [223] by 9%, 4% and 14% in

terms of accuracy, recall and MCC and ippi-esml [210] approach by 3%, 5%, 3% and 4% in terms

of accuracy, recall, precision and MCC, respectively. Multi-scale continuous and discontinuous

(MCD) feature representation and SVM classifier based approach [449] takes the previous best

accuracy of 89% to 91%, amino acid substitution matrix based feature representation and RF

classifier based approach [448] attains the accuracy of 94%. RF classifier achieves the accuracy

of 95% using multivariate mutual information (MMI) of protein feature representation [110]

and 94% using multi-scale local descriptor (MLD) based feature representation [445]. Proposed

ADH-PPI predictor outperforms SVM and random forest based PPI prediction methodologies

by the comparable margin. From existing machine learning based PPI predictors, GcForest-PPI

[450] achieves top performance in terms of most evaluation metrics. Proposed ADH-PPI predictor

surpasses the performance of GcForest-PPI [450] by 1% in terms of accuracy and recall and

equalizes the MCC performance value.
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Turning towards existing deep learning based PPI prediction methodologies, DeepPPI [116]

and DeepFE-PPI [439] achieve almost similar performance on S.cerevisiae dataset in terms of

four different evaluation metrics. Proposed ADH-PPI predictor outperforms deep learning based

PPI predictors by 1% in terms of accuracy, recall and MCC.

Table 8.4: Performance comparison of proposed ADH-PPI predictor with 10 existing predictors on
benchmark H. pylori dataset, where results of existing PPI predictors are taken from Yu et al.
[450] paper.

Method ACC (%) Recall (%) Precision (%) MCC
SVM [6] 0.8340 0.7990 0.8570 N/A

WSR [308] 0.8370 0.7900 0.8700 N/A
Ensemble of
HKNN [309] 0.8660 0.8670 0.8500 N/A

DCT+WSRC [195] 0.8674 0.8643 0.8701 0.7699
MCD+SVM [449] 0.8491 0.8324 0.8612 0.7440

MIMI+
NMBAC+RF [110] 0.8759 0.8681 0.8823 0.7524

DeepPPI [116] 0.8623 0.8944 0.8432 0.7263
ippi-esml [210] 0.9047±0.84 0.9115±1.42 0.8999±2.06 0.8100±0.0163

WSRC [223] 0.7870 0.7321 NA 0.7693
GcForest-PPI [450] 0.8926 0.8971 0.8895 0.7857
Proposed ADH-PPI 0.9263 0.9609 0.9284 0.8547

Moreover, performance produced by proposed ADH-PPI predictor and ten existing PPI pre-

dictors on H.pylori dataset is shown in Table 8.4. Analysis of Table 8.4 reveals that proposed

ADH-PPI predictor achieves even more promising figures than existing PPI predictors across all

evaluation metrics. Proposed ADH-PPI predictor outshines best performing machine learning

based PPI predictor namely GcForest-PPI [210] by 7%, 7%, 4% and 4% in terms of recall, MCC,

precision and accuracy, respectively. It outperforms another top performing MIMI and Random

forest based PPI predictor [110] by Matthews correlation coefficient of 13%, recall of 10%, preci-

sion of 5% and accuracy of 6%. In comparison to deep learning based PPI predictors, proposed

ADH-PPI predictor outperforms DeepPPI [116] predictor by 7%, 7%, 9% and 12% in terms of

accuracy, recall, precision and MCC.

To summarize, proposed ADH-PPI predictor outperforms both machine and deep learning

based PPI prediction methodologies by decent margin for S.cerevisiae and by significant margin

for H.pylori dataset. It is important to mention that Kong et al. [223] proposed FCTP-WSRC

predictor results are not comparable to proposed ADH-PPI predictor. Generally, dimensionality

reduction approaches such as principal components analysis (PCA) is applied on training data to

learn the reduced matrix and the transformation is applied on testing data where test data is

projected to reduce feature space. However, Kong et al. [223] applied PCA on training and testing

data separately which introduces biasness. In our experimentation, to find the valid performance

figures of FCTP-WSRC predictor [223], we have applied the PCA in correct manner and reported
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the valid results on 2 core benchmark datasets (Tables 8.3, 8.4) and independent test sets (Figure

8.10).

8.4.7 Performance Comparison of Proposed ADH-PPI Predictor with
Existing PPI Predictors using four Independent Test Sets

To further prove the effectiveness of proposed ADH-PPI predictor, comparison between 6 existing

PPI predictors and proposed ADH-PPI predictor is performed. Following experimentation criteria

of existing predictors, we train the proposed predictor over core S.cerevisiae dataset and perform

evaluation over 4 different independent test sets belonging to C.elegans, E.coli, H.sapiens and

M.musculus species [196, 450]. Figure 8.10 compares the accuracy of proposed ADH-PPI predictor

with existing predictors. As shown by the Figure 8.10, proposed ADH-PPI predictor achieves the

best performance across all four independent test sets which is higher than the peak performance

achieved by deep learning based PPI predictor DeepPPI [116] by 4% for C.elegans, 6% for E.coli,

5% for H.sapiens and 9% for M.musculus species test sets.
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Figure 8.10: Accuracy comparison of ADH-PPI and recent PPI predictors on 4 independent test
sets

Furthermore, proposed ADH-PPI predictor outperforms machine learning based state-of-the-

art PPI predictor namely GCForest-PPI [450] by 3%, 2%, 1% and 1%, achieving more than 98%

performance over all four different species independent test sets.

In a nutshell, over two core datasets and four independent test sets, among all existing PPIs

predictors, machine learning based PPI predictors perform better than deep learning based

predictors. Proposed ADH-PPI predictor outshines state-of-the-art PPI predictor across all 6

datasets of different species including: humans, Drosophila, Yeast, Bacterium, Caenorhabditis

elegans and Escherichia coli in terms of most evaluation metrics. The paradigm of considering

both k-mer distributions as well as amino acid distributions within k-mer best characterize

the protein sequences. Furthermore, the utilization of LSTM, CNN and attention ensures the
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extraction of comprehensive discriminative features along with long range dependencies which

are essential to accurately predict PPIs across different species. The best utilization of multiple

strategies not only enhances the predictive power of proposed ADH-PPI approach but also makes

the decisions of proposed ADH-PPI predictor interpretable. Therefore, we believe ADH-PPI will

prove a great computational asset for biological researchers and practitioners which can be

used to find protein-protein interactions, protein non-coding ribonucleic acid interactions or even

interactions between different biomolecules.

8.4.8 A Case Study: Objective Evaluation of Proposed Strategies for
Fixed-Length Generation of Sequences

We have seen in previous sections, while generating fixed-length sequences of proteins, novel

paradigm of retaining only most informative subsequences helps the proposed ADH-PPI approach

to most precisely predict protein–protein interactions. To validate the versatility, generalizability

and practical significance of subsequence based fixed-length generation strategies, to perform a

case study analysis, similar to protein-protein interaction prediction [25], we consider two tasks

namely lncRNA–protein interaction prediction and lncRNA-miRNA interaction prediction. In

lncRNA-miRNA interaction prediction, length of lncRNAs varies in thousands of nucleotides,

to generate fixed-length sequences, we perform experimentation by utilizing traditional fixed-

length generation strategies (copy padding, sequence truncation and hybrid approach) and

taking only few nucleotides from starting region, ending region and from both starting and

ending regions. Selected subsequences of lncRNAs and miRNAs were passed to LSTM based

classifier with random embeddings. Based on experimental results, among traditional and

proposed subsequence based sequence fixed-length generation strategies, classifier produces

better performance by generating fixed-length of lncRNA sequences by retaining nucleotides

from starting region only. Furthermore, LSTM based classifier along with subsequence based

strategy manages to outperform existing lncRNA-miRNA interaction predictors.

On the other hand for lncRNA-protein interaction prediction, both types of molecules lncRNA

and protein have high variability in the length of sequences. To generate fixed-length of lncRNA

and protein sequences, we utilize traditional and proposed subsequence based fixed-length

generation strategies. Experimental results reveals the superior performance of LSTM based

classifier by taking few nucelotides from the starting region of both sequences. Over public

benchmark dataset, proposed classifier along with subsequence based strategy outperforms

existing lncRNA protein interection predictors.

8.5 Explainability of Proposed ADH-PPI Predictor

With an aim to overcome a very common black box modeling issue of deep neural networks by

decoding the importance of individual amino acids and k-mers, we analyze the attention weights
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associated with different k-mers to illustrate which k-mers contribute the most in making

accurate PPI predictions.

Figure 8.11: Most and least informative amino acid and k-mers patterns identified by Attention
layer of proposed ADH-PPI predictor in two test protein sequences belonging to benchmark
S.cerevisiase and H.pylori datasets

To more precisely demonstrate the explainability of the proposed ADH-PPI approach, we

arbitrarily take two protein sequence pairs from test sets of benchmark S.cerevisiae and H.Pylori

datasets. Following the working paradigm of proposed ADH-PPI predictor, we generate 5-mers of

both test protein sequence pairs and feed both test protein sequence pairs 5-mers along with pre-

trained embeddings to two different classifiers trained on S.cerevisiae and H.Pylori training sets.

These classifiers decide whether given protein sequence pairs are interactive or non-interactive.

Classifiers make decisions based on the attention weights associated with 5-mers. We extract

attention weights and feed these attention weights to decision explainable module which performs

reverse engineering to map these attention weights to different 5-mers. To illustrates better,
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decision explainable module categorizes different 5-mers into five different groups based on

different thresholds applied at attention weights ranging from 0-to-1. Each group is represented

with a unique shade of red color, the higher the intensity of red color is the higher the attention

weight is for particular k-mer, indicating the darkest red color 5-mers and their inherent amino

acids contribute the most in making accurate PPI predictions and the lightest red color 5-mers

and their inherent amino acids make least contributions in making accurate PPI predictions. The

attention weights range of five different groups of 5-mers is shown on the x-axis of the bar graph

(Figure 8.11) whereas y-axis of the bar graph shows the count of 5-mers in each group.

It is evident in the Figure 8.11, for S.cerevisiae dataset, only two 5-mers GGKAG and SAAKA

fall in first group which has the best range of attention weights 0.90-to-1.0. Two 5-mers fall in

second group which has second best range of attention weights 0.70-to-0.89. Similarly, one 5-mer

falls in third group and three k-mers fall in fourth group which have attention weight ranges of

0.50-to-0.69 and 0.20-to-0.49, respectively. Among all groups, fifth group has most eight 5-mers,

attention weights of which falls in range of 0.1-to-0.20. Furthermore, it can be seen that starting

5-mers distribution has the top attention weights where amino acids G and A are most frequent,

which contribute the most in making accurate PPI predictions on S.cerevisiae dataset.

Unlike S.cerevisiae dataset, in H.pylori dataset, eighteen 5-mers fall in fifth group, fourteen

5-mers in second group and four 5-mers in third group. Once again, very few 5-mers fall in first

and second group. More specifically, three 5-mers LIFYYF, IFYFL, LDFKG, individual amino

acids F and L of central regions of subsequence contributes the most in making accurate PPI

predictions on H.pylori dataset.

These attention weight distribution patterns at the k-mer level and amino acid level are

quite consistent across most sequences. Furthermore, this is quite consistent with our unique

hypothesis of predicting PPIs using only the most discriminative subsequences. The starting or

central k-mers distribution within subsequences gets the higher attention weight and serves as

most influential regions and the surrounding k-mers distribution gets lower attention weights and

exists as supportive and auxiliary information regions. In a nutshell, we validate the ADH-PPI

suitability to discover useful patterns in protein sequences, their dependencies and explainable

associations for PPI predictio.

8.6 Conclusion

This dissertation can be considered a huge milestone towards the accurate prediction of PPIs for a

variety of species solely using raw sequences. First, unlike previous methods, it captures compre-

hensive amino acids order, occurrence and contextual information by generating k-mer of protein

sequences, distributed representations of which are computed as the sum of their embeddings

and the embeddings of their inherent amino acid sub-mers using FastText [47] approach. Second,

instead of feeding entire protein sequences to deep learning models, it explores the discriminative
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aptitude of multifarious regions of protein sequences to obtain highly informative amino acid dis-

tribution based subsequences. Third, it develops an attention based deep hybrid neural network

which makes the best use of heterogeneous layers (LSTM, CNN, Attention) to make accurate and

interpretable PPI predictions. A stringent benchmarking performance comparison of ADH-PPI

with existing computational predictors proves that ADH-PPI outperforms existing machine and

deep learning based PPI predictors by decent margin. A compelling future line of current would

be to assess the performance potential of ADH-PPI approach for interaction prediction tasks

related to other bio-molecules.

167





C
H

A
P

T
E

R

9
PROTEIN VIRUS INTERACTION PREDICTION

Viruses have a long history of posing threat to living organisms [126] as they have caused more

than 300 million deaths worldwide [249]. A recent emanation of Severe Acquired Immunode-

ficiency Syndrome Coronavirus-2 (SARS-CoV-2) is an example of an acute virus that caused a

global pandemic [316]. According to World Health Organization, SARS-CoV-2 has caused approx-

imately more than 400 million infections and 6 million deaths across the globe [305]. Likewise,

Ebola virus was also responsible for an epidemic that caused more than 11 thousand deaths in

Africa [66].

Viruses are small microscopic particles that contain a genetic material (DNA or RNA) sur-

rounded by a protein coat [126]. These particles are considered non-living because of their

inability to reproduce or perform any other biological function since they lack specific proteins

[399]. However, once they get a chance to enter inside host cell, they make interactions with

available proteins in the cell and become capable to reproduce themselves [102]. Initially, to enter

inside a host cell, the viruses interact with the host cell receptor proteins [108] and replicate

themselves by injecting their genetic material in the cell’s genome [280]. After the entrance into

the cell, the aim of viruses is to interact with diverse types of proteins through which they can

control the process of cell cycle, particle assembly, apoptosis and cell metabolism [102, 385]. The

relationships between host and virus proteins are termed as virus-host (VH) protein-protein

interactions (PPIs) [432].

To prevent viruses from interacting with host proteins, hosts have sophisticated mechanisms

to recognize and confine the viruses, such as the dendritic and β- cells, T-cells and major histo-

0This chapter is an adapted version of the work presented in Asim et al., "LGCA-VHPPI: A Local-Global Residue
Context Aware Viral-Host Protein-Protein Interaction Predictor", In PLOS ONE (2022) [21] and Asim et al., "MP-
VHPPI: Meta Predictor For Viral Host Protein-Protein Interaction Prediction in Multiple Hosts and Viruses", Under
review in Frontiers in Medicine
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compatibility complex (MHC) [70]. Therefore, viruses tend to adapt in an efficient manner by

interacting with specific host proteins and cellular pathways that prove to be substantial for

evading or inactivating factors that are detrimental to viral growth [102]. Meanwhile, to enhance

the immunity against viruses, it is difficult to develop efficient vaccines/drugs because of the poor

understanding of different mechanisms that have been adapted by the viruses and their frequent

transmissibility from cell-to-cell or species-to-species [337]. Consequently, analyses of virus-host

PPIs is essential to explore their effects on diverse types of biological functions and to design

antiviral strategies [329]. Furthermore, through such analyses essential viral proteins and viral

dependencies on host proteins can be identified as drug targets to halt the replication process of

viruses by pharmacological inhibition [278].

9.1 Related Work

Multiple experimental techniques have been utilized to identify virus-host protein-protein interac-

tions (VHPPIs) such as protease assay [304], surface plasmon resonance (SPR) [347], Förster res-

onance energy (FRET) [427], Yeast two hybrid screening (Y2H) [56] and affinity purification mass

spectrometry (AP-MS) [148]. Such conventional wet lab methods are expensive, time-consuming

and error-prone, which impede inter and intera species large scale virus-host PPIs analyses.

To empower the process of virus-host protein-protein interaction analyses, the development of

computational approaches by utilizing the power of artificial intelligence is an active area of

research [35, 112, 393]. With an aim to provide cheap, fast and accurate virus-host PPIs analyses

to date around 13 AI-based predictors [9, 35, 105, 112, 115, 121, 216, 238, 276, 393, 433, 434, 473]

have been proposed.

Recently, Yang et al., [434] proposed VHPPIs predictor by utilizing position-specific scoring

matrices to statistically represent virus and host protein sequences that were further passed

to Siamese convolutional neural network for VHPPI prediction. The predictor was evaluated

on VHPPI data of human proteins and 8 different viruses. Another similar predictor namely,

Deep Viral [276] used one hot vector encoding (OHE) for the discretization of sequences and

convolutional neural network (CNN) architecture for VHPPI prediction. Deep Viral was evaluated

on VHPPIs of human and 12 different viruses. Deep-VHPPI [238] predictor also used one hot

vector encoding (OHE) and attention mechanism along with CNNs for VHPPIs prediction. The

predictor was evaluated on VHPPIs data related to human and 4 different viruses.

Ding et al., [105] proposed a VHPPI predictor based on long short-term memory (LSTM)

neural network. At preprocessing stage, they generated statistical representations of viral

and host proteins by reaping the benefits of 3 different encoders namely, relative frequency of

amino acid triplets (RFAT), frequency difference of amino acid triplets (FDAT) and amino acid

composition (AC). The predictor [105] was evaluated on VHPPIs across proteins belonging to 137

different viruses and 13 hosts.

170



9.1. RELATED WORK

Denovo [121] used amino acids properties like dipoles and volumes of side chains to represent

20 amino acids (AAs) with only 7 cluster numbers to reduce the diversity of amino acids. The

sequences were then encoded based on the normalized k-mer frequencies of 7 unique clusters.

Denovo predictor used supprt vector machine (SVM) and was evaluated on the dataset of 10

viruses and human proteins. HOPITOR [36] used the similar encoding method as Denovo [121].

HOPITOR used SVM and was evaluated on 10 different viruses and human proteins. Yang et al.,

[433] proposed InterSPPI-HVPPI which utilized Doc2vec embeddings and random forest (RF)

classifier for VHPPIs prediction. The predictor [433] was evaluated on data related to 12 viruses

and human proteins. Karabulut et al., [216] proposed meta predictor (ML-AdVInfect) that reaped

the benefits of 4 existing predictors namely HOPITOR [36], InterSPPI-HVPPI [433], VHPPI and

Denovo [121]. Specifically authors passed the predictions of existing predictors to SVM classifier

for final VHPPI prediction.

Barman et al., [35] proposed VHPPIs predictor that utilized RF classifier and statistical

vectors generated through 4 different encoding methods namely, average domain-domain asso-

ciation score, virus methionine, virus seline and virus valine. The predictor was evaluated on

VHPPIs data related to human proteins and 5 different viruses. Zhou et al., [473] used 7 sequence

encoding methods i.e., RFAT, FDAT, AC, composition, transition and distribution of amino acid

groups. The approach [473] used SVM for VHPPIs predictions across the proteins of 332 viruses

and 29 hosts. Alguwaizani et al., [9] combined statistical vectors of 4 different encoders namely,

amino acid repeats, the sum of squared length of single amino acid repeats (SARs), maximum of

the sum of squared length of SARs in a window of 6 residues and composition of amino acids in 5

partitions of the protein sequence. The predictor used SVM classifier and experimentation was

performed on VHPPI data related to 6 hosts and 5 viruses. Recently, we proposed LCGA-VHPPI

predictor [21], that made use of local-global residue context aware sequence encoding scheme and

a deep forest model. Proposed predictor was evaluated on data related to 23 viruses and human

proteins.

Following the success of neural word embedding approaches in natural language processing

and bioinformatics, Tsukiyama et al., proposed LSTM-PHV [393] that transformed viral host

protein sequences to statistical vectors by learning statistical representation of k-mers in an

unsupervised manner using Word2vec approach. The study [393] used bidirectional LSTM for

VHPPI prediction and data of proteins belonging to 332 viruses and 29 hosts. Similarly, MTT [112]

predictor utilized randomly initialized embeddings and LSTM based classifier. MTT predictor

was evaluated on data related to 16 viruses and human proteins. Hangyu et al., [115] developed

a VHPPI predictor based on Node2vec and Word2vec embeddings methods and a multilayer

perceptron (MLP) classifier. Authors performed experimentation over 7 variants of SARS virus

and 16 different hosts proteins.

The working paradigm of existing VHPPI predictors can be broadly categorized into two

different stages. At first stage, raw sequences are transformed into statistical vectors where the
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aim is to capture distributional information of 21 unique amino acids. In second stage, machine

or deep learning classifier is utilized to discriminate interactive viral-host protein pairs from

non-interactive ones. At first stage, while transforming raw sequences to statistical vectors, 2

predictors [238, 276], has made use of one hot vector encoding method which lacks information

related to correlations of amino acids. Moreover, 3 predictors use word embedding generation

approaches [112, 276, 393], that capture kmer-kmer associations but lack information related to

distribution of amino acids. To capture distribution and various patterns of amino acids, other

predictors utilized 10 different mathematical encoders [35, 105, 121, 433, 434] however, these

encoders do not capture sequence order or amino acids (AAs) correlation information. Such

information is crucial for the analyses of protein sequences as reported in the existing studies

[91, 193, 375, 386] which include sequence encoders such as, amphiphilic pseudo-amino acid

composition (APAAC) and Quasi sequence order (QS order). Despite the promising performance

shown by APAAC and QS order encoders for subcellular location prediction [91], Cyclin protein

classification [375] and protein-protein interaction prediction [193, 386] tasks, no researcher has

explored their potential to effectively generate numerical representations of viral-host protein

sequences.

At second stage, 4 predictors [105, 238, 276, 434] utilize convolutional neural networks

(CNNs), 2 predictors [105, 393] make use of LSTM architecture and 8 predictors [9, 35, 112, 115,

121, 216, 433, 473] use traditional classifiers. As such predictors have shown better performances

across limited hosts and viruses, therefore these predictors cannot be generalized across multiple

hosts and viruses. For instance, LSTM-PHV is the most recent predictor which managed to

produce better performance for human and SARS-CoV-2 related VHPPIs, but failed to produce

similar performance over Zhou et al., [475] datasets which contain multiple hosts and viruses. To

make a generic predictor capable to accurately predict interactions across multiple hosts and

viruses, only one meta predictor [216] has been developed. However, this meta predictor relies

on the predictions of 4 existing VHPPI predictors that have their own drawbacks at sequence

encoding and classification level.

With an aim to develop more accurate and generic meta predictor, the contributions of this

chapter are manifold, i) It makes use of two different physicochemical properties based sequence

encoding methods namely, APAAC and QS order. In addition, unlike other protein sequence

analysis tasks where numerical representations of protein sequences have been generated

through these encoders by utilizing combination of different physicochemical properties, it

proposes an effective way to generate numerical representations by using a precise subset of

physicochemical properties. ii) Considering different physicochemical properties in both encoders

extract some irrelevant and redundant features, to remove such features, it transforms original

feature space into reduced and more discriminative feature space by utilizing dimensionality

reduction method named feature agglomeration. iii) Using separate and combined statistical

vectors generated through APAAC and Qsorder, it generates more effective and discriminative
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probabilistic feature space by fusing the predictions of two different classifiers. Optimized

probabilistic feature space is used to feed SVM classifier which makes final predictions. iv)

Large-scale experimentation over 7 public benchmark datasets and performance comparison of

proposed meta predictor with existing predictors is performed. v) To facilitate researchers and

practitioners, web application based on proposed meta predictor is developed.

9.2 Materials and Methods

This section illustrates details of proposed meta predictor and Viral-host protein interaction

prediction benchmark datasets. A comprehensive details of evaluation measures and classifiers

used in propose meta predictor are describe in chapter 2.

9.2.1 Meta Predictor

Machine learning classifiers cannot directly operate on raw sequences due to their dependency

over statistical representations. While transforming raw protein sequences into statistical vectors,

the aim is to encode positional and discriminative information of amino acids. To represent viral

and host protein sequences by extracting both types of information, proposed meta predictor

makes use of two sequence encoders namely amphiphilic pseudo-amino acid composition (APAAC)

and Quasi sequence-order (QS order). The statistical vectors generated by these methods de-

pend on certain physicochemical properties. For example, APAAC [92] encoder contains three

different physicochemical properties namely hydrophobicity, hydrophilicity and side chain mass

whereas, QS order [91] has two content matrices namely, Schneider and Grantham. However,

it is important to investigate which particular properties of both encoders are appropriate in

order to generate more comprehensive statistical vectors, rather than utilizing all the available

properties.

To fully utilize the potential of both encoders, a strategy similar to forward feature selection

method is adopted to find out the most appropriate physicochemical properties. For instance,

from 3 properties of APAAC encoder, first we generate statistical vectors by using one property

and compute performance of RF classifier. Similarly, we repeat the same process for the second

and third property in order to record the performance of RF classifier. On the basis of higher

performance, we take the property-specific statistical vectors and combine them with the second

best performing property vectors. This is followed by the evaluation on the basis of combined

features, if this does not yield any performance gains then the iterative process stops and

individual property-based statistical vectors with the highest performance are selected. In

contrast, if there are any performance gains with such combinations then the combined encodings

are retained and utilized further. Similar procedure is used to generate statistical representations

using QS order.
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The statistical vectors generated from the encoders may contain irrelevant and redundant

features. In order to remove such features and retain only the most informative features, we

utilize a dimensionality reduction algorithm named feature agglomeration [135]. While reducing

dimensions of original feature space, it is important to find the target dimension of reduced

feature space. To find an appropriate feature space, we reduce the dimension of original feature

space from 40% to 95% with a step size of 5%. By utilizing RF classifier based on its performance,

we chose the most appropriate feature space. It is noteworthy to mention that the process of

property selection and appropriate reduced feature space selection is performed only using

training data.

Furthermore, the training of meta predictor can be seen as a two-stage process. In the first

stage, the statistical vectors generated for virus-host protein sequences using APAAC and QS

order are separately passed through two machine learning classifiers i.e., RF and ET [12]. Then

the prior representations are concatenated and passed again through the RF and ET classifiers,

predictions of both classifiers using individual and combined encodings are utilized to create a

new feature space on which SVM classifier is trained to make final predictions.

Figure 9.1 describes graphical illustration of the proposed meta predictor’s workflow. More

detailed working of the encoding methods is given in subsection 9.2.2. Dimensionality reduction

method is explained in section 9.2.2.2. In addition, details about second stage classification is

provided in subsection 9.2.3.

9.2.2 Protein Sequence Encoding

The following subsections briefly illustrate the working paradigm of APAAC and QS order

sequence encoding methods.

9.2.2.1 Amphiphilic Pseudo-Amino Acid Composition (APAAC)

Chou et al. [92, 233] proposed APAAC encoder that makes use of pre-computed physicochemical

values of hydrophobicity, hydrophilicity and side chain mass [92, 233]. Each physicochemical

property contains 20 float values associated with 20 unique amino acids (supplementary file 2

Table 1). These values are computed based on diverse types of information related to protein

folding and protein’s interactions with the environment and other molecules. For each of the

three quantitative properties, the values of its corresponding amino acids are normalized to zero

mean and unit standard deviation through equation 9.1.
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Figure 9.1: The overall working paradigm of the proposed VH-PPIs predictor. Dataset Construc-
tion To begin with, different datasets are collected from existing studies based on VH-PPIs from
several databases such as, HPID, intact and VirusMentha. Feature Representation Obtained
protein sequences are encoded on the basis of two physicochemical properties based protein
sequence encoders i.e., QS order and APAAC. Feature Analyses Appropriate physicochemical
properties are selected for the APAAC and QS order on the basis of feature analyses. Model
Construction The VH-PPIs predictor is a SVM model formed on the basis of probabilistic vectors
obtained from the RF and ET classifiers. Finally, a web server is established for fast and easy
on-go analyses of VH-PPIs.
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Figure 9.2: The process of computing amino acid combinations based on the lag values.

f (x)=



Mean[pi]=
∑20

k=1 pi[AAk]

20
,

S[pi]=
√

(
∑20

k=1 (pi[AAk]−Mean[pi])2)

20
,

P[pi]= pi[AAk]−Mean[pi]
S[pi]

, k ∈ {1.,2,3, · · · ,20},

pi ∈ {hydrophobicity, hydrophilicity, side chain mass}.

(9.1)

whereas, pi represents the physicochemical property based value of a amino acid (AAk) which

is either hydrophobicity, hydrophilicity or side chain mass. In equation 1, Mean[pi] is the mean

of 20 amino acids in each property and S[pi] is the standard deviation, where both can computed

using equation 9.1.

In each physicochemical property, using normalized values of all 20 amino acids, order of

amino acids within host and viral protein sequences is captured using lag-based phenomenon.

For instance, we have a raw sequence S=R1,R2,R3,R4, · · · ,RL, where R1,··· ,L denotes 20

unique amino acids. If lag=1, then two most contiguous amino acids i.e., Slag1 = R1R2,R2R3,R3R4,R4R5,

are taken, for lag=2, second-most contiguous amino acids, i.e., Slag2 = R1R3,R2R4,R3R5 are

taken by skipping 1 amino acid and for lag=3, third-most contiguous amino acids are taken by

skipping 2 amino acids i.e., Slag3 = R1R4,R2R5 and so on. After generating bigrams, from Slag1,

Slag2, Slag3, iteratively, bigrams are taken and in each bigram, physicochemical values of both

amino acids are multiplied using a correlation function shown in equation 9.2.

Pi[B]= pi(AA j).pi(AAk),

pi ∈ {hydrophobicity, hydrophilicity, side chain mass}
(9.2)

After computing the correlation functions, for a property, across N number of lags, a single

float is computed by averaging property values across all the lag-based amino acid bigrams.
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Enc[pi]=
lag∑
l=1

P[B]
seq len− lagl

. (9.3)

Furthermore, both types of sequence order and amino acid distributional information can be

captured using equation 9.4.

Enc [AA]= f requency of AA in protein sequence
1+w×Enc[pi]

, (9.4)

here, w is a weight parameter that varies from 0.1 to 1. Similarly, normalization is applied on

the original sequence order information by using equation 9.5,

Enc[pi] lag i = w×Enc[pi]lag i

1+w×Enc[pi]
. (9.5)

Once the amino acid distribution and sequence order related information are encoded, the

final statistical representation is obtained by concatenating the amino acid distributions and

correlations among amino acids, that represent the sequence order information of a protein

sequence.

Encoding [seq]Pi = Enc[AA]∥Enc [pi]lag i (9.6)

The dimension of the final statistical vector for a single physicochemical property is 20 +

lag-D vector and for 3 physicochemical properties, the final statistical vector is (20 + lag) × 3

dimensional vector. In which, first 20 numbers are the normalized amino acid frequencies and

the next following discrete numbers reminisce the amphiphilic amino acid correlations along a

protein chain.

9.2.2.2 Quasi-sequence (QS) Order

Owing to similar ideas like APAAC, QS order also encodes the sequence order and discriminative

information based on different physicochemical properties [91]. To incorporate more significant

sequence order information, QS order makes use of pre-computed values of 4 different physic-

ochemical properties namely, hydrophobicity, hydrophilicity, polarity and side chain volume to

compute the coupling factors among the amino acids of a protein sequence [91]. These physic-

ochemical properties describe protein folding and its structural features, particularly surface

physical chemistry. These pre-computed values have been averaged and on the basis of Man-

hattan distance, new values (20 × 20 = 400) have been provided by Schneider et al., [356] and

Grantham et al., [155] (for details see supplementary file 2 Table 2 and 3).

In QS order, first the bigrams of amino acids are generated on the basis of lag phenomenon as

shown in Figure 9.2 and discussed earlier in APAAC. To compute a coupling factor P[B], distance

values between two amino acids are taken from the Tables 2 and 3 given in Supplementary File

2, with respect to bigrams generated via lag value. The coupling factor P[B] can be written as;
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P[B]= D2
i (AAk, AA j),

D i ∈ {Schneider,Grantham},
(9.7)

where, D is the distance value taken from the Schneider or Grantham’s content matrices and

B denotes a bigram of amino acids. Corresponding encoding value for a lag can be computed by

averaging all the physicochemical distance values for bigrams,

Encoding [D i]lag i =
∑len seq−i

k=1 (P[B]k)

len seq−1
. (9.8)

To get a single float value for the encoding, lag values are averaged depending on the size of

lag. For example, for lag=3, first the bigrams are generated with lag=1,2,3, then the corresponding

encodings for these bigrams are generated and averaged using following equation.

Encoding [D i]=
lag∑
i=1

Encoding [D i]lag i (9.9)

These computed encoding values are normalized along with a weight factor w,

Encoding [D i]lag i =
w×Encoding [D i]lag i

1+w×Encoding[D i]
(9.10)

To incorporate the distribution of amino acids, normalized frequencies of 20 different amino

acids are computed, according to the following equation,

Encoding [AAk]= f requency of AAk in protein sequence
1+w×Encoding[D i]

. (9.11)

Finally, (20+lag) × 2 dimensional statistical vector is formed by concatenating 20 amino acids

distribution values and lag number of correlation factors referring to sequence order information

with respect to distance values provided by Schneider and Grantham.

Encoding [seq]= Encoding[AA]∥Encoding [D i]lag i , (9.12)

where, Encoding[AA] represents the normalized frequency values of 20 different amino

acids and Encoding[D i]lag i refers to the sequence order information.

Dimensionality Reduction via Feature Agglomeration Clustering

Hierarchical clustering (HC) is a known group of clustering algorithms that construct clusters

on the basis of similarities among the data samples. The end goal of HC is to compute clusters

that are completely different from each other and data samples within a single cluster are

similar to each other. Similar ideas are inherited by feature agglomeration, where the grouping is

applied on the features of the data rather than the data samples. In feature agglomeration, two
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steps are iteratively followed to achieve required dimensions of feature space namely, distance

computation and pooling. First the distance among all the features are computed using Euclidean

or Manhattan distance [351]. On the basis of the minimum distance, two features are combined

together on the basis of a pooling function which can be the mean of respective features. This

process is repeated unless the features are reduced to desired dimensions.

9.2.3 Iterative Representation Learning

Iterative representation learning is a crucial step for performance improvements of ML models,

inspired by layer-wise training of deep learning models. In the current study, the proposed meta

predictor works in a two-stage process based on iterative representation learning. In the first

stage, the statistical vectors generated for virus-host protein sequences by APAAC and QS order

are separately passed through two machine learning models i.e., RF and ET. Then the prior

representations are concatenated and passed again through the RF and ET classifiers. As a

result, for protein sequences, in total around 6 different positive class probabilities are obtained.

In the second stage, these probabilistic values are concatenated with each other to form a new

6-D feature vector for protein sequences. This probabilistic feature representation of protein

sequences is used as an input for a support vector machine classifier that provides results for the

prediction of VHPPIs.

9.2.4 Benchmark Datasets

Benchmark 
Datasets

Interactive Non-Interactive

Figure 9.3: Distribution of sequences in interac-

tive and non-interactive classes.

In order to develop and evaluate AI-based pre-

dictors for virus-host protein-protein interac-

tion prediction, several datasets have been

developed in the existing studies [9, 35, 393,

432, 434, 473]. We have collected 7 publicly

available benchmark datasets from 4 different

studies. These datasets have been extensively

utilized in the development/evaluation of the

most recent VHPPIs predictors [35, 121, 434,

473].

One dataset is taken from the study of

Barman et al., [35], which contains VHPPIs

across human and 4 viruses i.e., HIV-1, simian

virus 40 (SV40), HBV, HCV, papilloma virus,

these VHPPIs were downloaded from Virus-

Mint database [71]. Whereas, negative sam-

ples were collected from Uniprot [97] based

on their dissimilarity with the true VHPPIs.
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Similarly, another dataset is taken from Fatma et al., work [121], which contains VHPPIs of

human and 173 viruses i.e., Paramyxoviridae, Filoviridae, Bunyaviridae, Flaviviridae, Aden-

oviridae, Orthomyxoviridae, Chordopoxviridae, Papillomaviridae, Herpesviridae, Retroviridae.

These VHPPIs were collected from VirusMetha [62] and Uniprot [97]. Negative class samples

were generated by random dissimilarity algorithm, which assumed the condition that two vi-

ral proteins comprised of similar amino acid sequences could not interact with the same host

protein. The similarity between two proteins was decided through distance (dissimilarity) score

based on normalized global alignment bit scores. Furthermore, once unique viral proteins were

obtained, their interactions were decided based on the dissimilarity (distance) score > 0.8 with

host proteins.

SARS-CoV-2 and human proteins related dataset is taken from Yang et al., work [434], where

the interactions were collected from HPID [14], VirusHostNet [159], PHISTO [119] and PDB

[376] databases. Moreover, negative samples were generated by dissimilarity-based negative

sampling across the PPIs retrieved from Uniprot [97, 434].

To make predictor generic and capable to predict interactions over new viruses, we collected 4

datasets from Zhou et al. [473] study. These datasets contain interactions related to 29 different

hosts and 332 different viruses. To collect raw sequences and interactions, authors utilized 5

different databases namely PSICQUIC [103], APID [11], IntAct [176], Mentha [62] and Uniprot

[97]. Furthermore, for negative data, authors obtained protein sequences of 4 major hosts namely,

human, non-human animal, plant and bacteria, from UniProt [97] and removed sequences with a

sequence similarity higher than 80% to any positive data using CD-HIT-2D [141]. Moreover, in

order to assess the applicability on new/unseen viruses, authors distributed VHPPIs of 29 hosts

and 332 viruses into 4 different train and 2 test sets, the distribution of viruses and hosts in

these datasets is given below,

TR1: PPIs between human and any virus except H1N1 virus.

TR2: PPIs between human and any virus except Ebola virus.

TR3: PPIs between any host and any virus except H1N1 virus.

TR4: PPIs between any host and any virus except Ebola virus.

TS1: PPIs between human and H1N1 virus.

TS2: PPIs between human and Ebola virus.

Furthermore, Figure 9.3 summarizes the statistics of datasets in terms of number of positive

and negative samples. In order to perform experimentation, selected datasets are more appropri-

ate due to multiple reasons such as, recent VHPPI predictors reported their performance scores,

making it possible to compare our proposed VHPPIs predictor to existing predictors directly.

These datasets contain sufficient VHPPIs which enable to train machine learning models in an

optimal way. Furthermore, these datasets contain diverse VHPPIs across a broad selection of

viruses and hosts which allows to test the generalizability of the model against muliple hosts and
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viruses for the task of VHPPI prediction.

9.3 Evaluation Criteria

Following evaluation criteria of existing predictors, over Barman and SARS-CoV-2 datasets, we

perform 5 fold cross validation based experimentation, whereas over Denovo, TR1-TS1, TR2-TS2,

TR3-TS1 and TR4-TS2 datasets, we perform independent test based experimentation as their

standard train test splits are available.

9.4 Results and Discussions

This section briefly describes the performance of proposed meta predictor at different levels

of ensembling. Furthermore, it compares the performance of proposed meta predictor with

existing predictors [9, 35, 112, 121, 393, 432, 434, 473] over 7 different benchmark datasets

[35, 121, 434, 475].

9.4.1 Performance Analyses of Proposed Meta Predictor using Different
Representations at Property Level and Encoder Level

The impact of different physicochemical properties and dimensionality reduction is explored

by analyzing the performance of RF and SVM classifiers on the TR4-TS2 dataset. Table 9.1

shows 8 different evaluation measures based performance values produced by RF classifier using

statistical representations generated through APAAC and Qsorder encoders using individual

and combinations of properties. It also illustrates the performance values of classifier using

combined statistical vectors of both encoders. To illustrate the performance impact of dimension-

ality reduction, it shows the performance of RF classifier using feature agglomeration method

based generated comprehensive feature space of statistical vectors produced through individual

encoders (APAAC, Qsorder) and combination of both encoders. To illustrate, the performance

gains achieved through iterative representation learning of second stage classifier using first

stage classifiers predicted probabilities, it shows the performance of SVM classifier.

In Table 9.1, for Qsorder encoder, p1 represents Schneider-Wrede property and p2 denotes

Grantham property. Similarly for APAAC encoder, p1, p2 and p3 denotes hydrophobicity, hy-

drophilicity and side chain mass properties, respectively. RF classifier with statistical vectors

generated through Qsorder using p1 property produces 84.16% accuracy and 83.89% accuracy

using p2 property. It can be concluded that, RF classifier produces different performance when

it is fed with two different statistical vectors generated through Qsorder encoder by using two

different physicochemical properties p1 and p2. This performance difference illustrates both

properties extract and encode different types of information while generating statistical vectors.

The performance of the classifier is improved when it is fed with combined statistical vectors
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Table 9.1: Performance comparison of different statistical representations across 1st stage RF
classifier and with iterative feature learning based 2nd stage SVM classifier.

Encoder Properties DR Random Forest Classifier

ACC PR F1 SP SN AUPRCAUROC MCC

QSOrder

p1 no 84.16 85.46 84.01 84.06 91.01 98.02 97.55 69.91
p2 no 83.89 85.75 83.68 83.89 90.23 98.16 97.74 69.62

p1+ p2 no 84.23 85.99 84.03 84.23 91.77 98.24 97.89 70.20
p1+ p2 yes 85.23 86.72 85.08 85.23 92.30 97.90 97.49 71.94

APAAC

p1 no 83.22 85.80 82.91 83.22 90.22 98.09 97.49 68.97
p2 no 82.89 85.05 82.62 82.89 89.45 98.04 97.35 67.90
p3 no 84.56 86.71 84.34 84.56 91.45 98.30 97.88 71.24

p1+p2+p3 no 85.23 87.17 85.04 85.23 92.23 98.16 97.63 72.38
p3+ p1 no 82.89 85.30 82.59 82.89 89.45 98.10 97.49 68.15
p3+p2 no 85.57 87.65 85.37 85.57 92.59 98.24 97.75 73.19
p3+p2 yes 86.24 88.36 86.05 86.24 92.98 98.26 97.96 74.57

APAAC+QSorder no 86.24 87.88 86.09 86.24 92.90 98.10 97.49 74.10
yes 86.24 87.88 86.09 86.24 92.91 98.24 97.80 74.10

2nd Stage Predictors SVM Classifier

Qsorder +APAAC-DR-RF,
Qsorder-DR-RF, APAAC-DR-RF,
Qsorder+APAAC-DR-ET, Qsorder-
DR-ET, APAAC-DR-ET

93.62 93.64 93.62 93.62 96.71 98.50 98.14 87.27

generated through both properties. Its performance gets further improved when it is fed with

combined vectors of both properties reduced through the feature agglomeration method. This

performance improvement validates, that both properties extract some redundant features that

when eradicated in the newly generated feature space, the performance gets improved.

Similarly, for APAAC encoder among 3 statistical vectors generated through 3 different

properties, RF classifier produces better performance with p3 property and produces the lowest

performance with p2 property. So, according to the working paradigm of the proposed property

selection method, top-performing property p3 vectors will combine with p1 and p2 properties

vectors iteratively. From the concatenation of p3 property vector with p1 and p2 property vectors,

classifier achieves slight performance gain with p3 and p2 concatenation. Furthermore, when

p3 and p2 properties vectors combined with the p1 property, the performance of the classifier

decreased as compared to its performance with p2 and p3 properties combinations and the

property selection method selected p2 and p3 as two optimal properties. These results reveal that

to fully utilize the potential of the APAAC encoder, it is essential to utilize the best combination

of properties. Furthermore, concatenation of statistical vectors generated through selected best
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properties based APAAC and Qsorder encoders fail to improve the performance of the RF classifier

as compared to its performance on individual statistical representations.

Dimensionality reduction along with individual encoders has improved the performance of RF

classifier as compared to its performance on the same encoders without applying dimensionality

reduction. However, it produces almost similar performance with and without dimensionality

reduction on combined vectors of APAAC and Qsorder encoders.

To gain further performance enhancement, at the second stage we utilize positive class

probabilities predicted by ET and RF classifiers using feature agglomeration based optimized

statistical vectors of individual APAAC and Qsorder encoders and both encoders combined

vectors. SVM classifier is trained on newly generated probabilistic 6D feature space where it

achieves higher performance as compared to the performance values of RF and ET classifiers. In

comparison to the performance of RF classifier with sequence representations generated through

(APAAC+Qsorder, DR=yes), it achieves performance improvements of 7.38% in accuracy, 5.76%

in precision, 7.53% in F1-score, 7.38% in specificity, 3.1% in sensitivity, 0.26% in AUPRC, 0.34%

in AUROC and 13.17% in MCC. In comparison to performance of RF classifier with sequence

representations generated through (p1+p2, DR=yes) of Qsorder and (p3+p2, DR=yes) of APAAC,

it achieves performance improvements with an average margin of 6.10% across all the evaluation

measures. Therefore, it is inferred that the SVM classifier along with the iterative representation

learning leads to the highest performance for virus-host protein-protein interaction prediction.

9.4.2 Proposed MP-VHPPI Predictor Performance Comparison with Existing
Predictors on Barman’s Dataset

Table 9.2 shows the performance values of 7 different evaluation measures of the proposed meta

predictor and 6 existing VHPPI predictors [9, 21, 35, 433, 473] on Barman’s dataset, [35]. From

6 existing predictors, our LGCA-VHPPI [21] predictor achieves better performance in terms of

accuracy 82%, specificity 89.37%, f1-score 81.47%, MCC 63.99% and AUROC 88%. Whereas,

Zhou et al., [473] predictor produces better performance in terms of precision 82.46%. Among

7 different evaluation measures, Barman et al., predictor [35] only managed to produce the

highest sensitivity 89.08% as compared to the sensitivity of 5 other predictors. Comparatively,

the proposed meta predictor outperforms 6 previously mentioned predictors [9, 21, 35, 433, 473]

in terms of 6 distinct evaluation measures. Overall, in terms of accuracy, the proposed meta

predictor achieves an improvement of 0.9%, 1.79% in sensitivity 1.62% increase in precision,

1.27% increase in F1-score, 2.97% in MCC and 0.17% in terms of AUROC.

In terms of robustness on Barman’s dataset, the proposed and existing predictors fall into

two different categories based on the differences between their specificity and sensitivity scores,

i.e., less biased, predictors with a small difference in specificity and sensitivity scores and more

biased predictors with a large difference in specificity and sensitivity scores. Individually there

are sensitivity and specificity differences of 5.4%, 9.76%, 7%, 33.42%, 7.63%, 7.37% and 7.97% for
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Table 9.2: Performance comparison of proposed MP-VHPPI with existing viral-host PPI predictors
over a benchmark Barman dataset in terms of 7 different evaluation measures. Performance
figures of Barman et al. SVM [35], Barman et al. RF [35], Alguwzizani et al. SVM [9] and Yang et
al. RF [433] are taken from Yang et al. [433] work.

Approach ACC SN SP PR F1 MCC AUROC

Yang et al. RF [433] 79.17 81.85 76.45 77.83 79.79 58.40 87.1
Alguwzizani et al. SVM [9] 78.6 73.72 83.48 81.69 77.50 57.50 84.70
Barman et al. SVM [35] 71.00 67.00 74.00 72.00 69.41 44.0 73.00
Barman et al. RF [35] 72.41 89.08 55.66 82.26 66.39 48.00 76.00
Zhou et al. SVM [473] 79.95 76.14 83.77 82.46 79.17 60.1 85.8
Our LGCA-VHPPI [21] 82.00 82.00 89.37 82.40 81.47 63.99 88.00
Proposed MP-VHPPI 82.90 90.87 82.90 84.08 82.74 66.96 88.17

Yang’s RF [433], Alguwzizani et al., SVM [9], Barman et al., SVM [35] and RF [35], Zhou et al.,

SVM [473], our LGCA-VHPPI [21] predictor and the proposed meta predictor, respectively. On

the basis of these difference values, among all predictors, Yang’s RF [433], Barman et al., SVM,

Zhou et al., SVM [473], our LGCA-VHPPI [21] and proposed meta predictor can be considered

less biased as they have small difference (<8%) in terms of their specificity and sensitivity scores.

Contrarily, the other two predictors Barman’s RF [35] and Alguwzizani et al., SVM [9], have large

differences between sensitivity and specificity scores and are biased towards either type I or type

II error. Type I error arises when a predictor is prone towards the false positive predictions due to

low specificity and high sensitivity scores (TI E = 1−SP) and in type II error the predictor is prone

to false negative predictions due to low sensitivity and high specificity scores (TI I E = 1−SN).

Barman’s RF [35] is more prone to type I error due to high sensitivity and lower specificity scores,

whereas Alguwzizani et al., SVM [9] is more prone to type II error due to higher specificity and

lower sensitivity scores.

9.4.3 Proposed MP-VHPPI Predictor Performance Comparison with Existing
Predictors on Denovo’s Dataset

Table 9.3 illustrates performance values of 7 different evaluation measures of the proposed meta

predictor and 7 existing VHPPI predictors Yang et al., RF [433], Alguwzizani et al., SVM [9],

Fatma et al., SVM [121], Yang et al., CNN [434], Zhou et al., SVM [473], Dong et al., LSTM [112]

and our LCGA-VHPPI on Denovo dataset [121].

From 7 existing predictors, our LGCA-VHPPI predictor [21] achieves better performance

in terms of accuracy 94.24%, sensitivity 94.24%, f1-score 94.23%, MCC 88.56% and AUROC

98.49%. Whereas, Yang et al., predictor [434] achieves the highest performance values in terms

of specificity 97.41% and precision 97.23%. Among all existing predictors, Fatma et al., predictor

[121] shows the least performance. In comparison to these predictors, the proposed meta pre-

dictor offers performance improvements across 4 different evaluation measures. It achieves a
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performance gain of 0.35% in both accuracy and f1-score, 2.99% increment in sensitivity and

0.76% increment in MCC.

Table 9.3: Performance comparison of proposed MP-VHPPI with existing viral-host PPI predictors
over benchmark DeNovo dataset [121] in terms of 7 different evaluation measures. Performance
figures of DeNovo SVM [121], Alguwzizani et al. SVM [9] and Yang et al. RF on DeNovo dataset
[121] are taken from Yang et al. work [433].

Approach ACC SN SP PR F1 MCC AUROC

Yang et al. RF [433] 93.23 90.33 96.17 95.99 93.07 86.60 98.10
Alguwzizani et al. SVM [9] 86.47 86.35 86.59 86.56 86.46 72.90 92.60
Fatma et al. SVM [121] 81.90 80.71 83.06 – – – –
Yang et al. CNN [434] 94.12 90.82 97.41 97.23 93.92 – –
Zhou et al. SVM [473] 84.47 80.00 88.94 87.86 – 62.92 89.7
Dong et al. LSTM [112] – 84.12 – 83.92 84.02 – 92.21
Our LGCA-VHPPI [21] 94.24 94.24 96.47 94.32 94.23 88.56 98.49
Proposed MP-VHPPI 94.59 97.23 94.59 94.73 94.58 89.32 98.16

The predictors on the Denovo dataset can be seen in two different categories as done previously

in terms of Barman’s dataset on the basis of specificity and sensitivity differences. Individually

there exist differences of 5.84 %, 6.59%, 2.35%, 2.23% , 2.64% across Yang et al., predictor [433],

Yang et al., CNN [434], Fatma et al., [121], our LGCA-VHPPI [21] and proposed meta predictor.

Due to less difference (<3%) in the specificity and sensitivity scores, Alguwzizani et al., [9], Fatma

et al., [121], our LGCA-VHPPI [21] and proposed meta predictor can be considered less biased

towards type I and type II errors as compared to other two predictors i.e., Yang et al., RF [433]

and Yang et al., CNN [434] that are more biased towards type II error due to high specificity and

low sensitivity scores.

9.4.4 Proposed MP-VHPPI Predictor Performance Comparison with Existing
Predictors on SARS-CoV-2 Dataset

Due to a recent pandemic of SARS-CoV-2, it is important to analyze the performance of a

predictor on SARS-CoV-2 and human proteins. Table 9.4 shows performance values of proposed

meta predictor, Yang et al., CNN [434] and our LGCA-VHPPI [21], across SARS-CoV-2 and

human proteins dataset [434], in terms of 8 distinct evaluation measures.

Out of two existing predictors, Yang et al., predictor based on CNN achieves better accuracy

90.64%. Whereas, our LGCA-VHPPI predictor [21] shows better performance in terms of, sensitiv-

ity 93.6%, precision 85.67%, AUPRC 38.01% and f1-score 85.07%. Due to the highly imabalance

number of samples for interactive and non-interactive classes in SARS-CoV-2 dataset, Yang et al.,

predictor [434] performs poorly as evident from its extremely low sensitivity, precision, F1 and

AUPRC scores. The proposed meta predictor outperforms existing predictors in terms of accuracy
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Table 9.4: Performance comparison of the proposed predictor with existing Yang et al. predictor
[434] over the SARS-CoV-2 dataset.

Approach ACC SN SP PR F1 MCC AUPRC AUROC

Yang et al., CNN [434] 90.64 16.37 98.06 45.81 24.12 - 32.9 -
our LGCA-VHPPI [21] 90.11 93.6 50.04 85.67 85.07 22.21 38.01 80.0
Proposed MP-VHPPI 91.18 95.58 51.74 86.01 87.27 10.08 47.07 82.95

by a margin of 0.54%, 1.98% in sensitivity, 0.34% in precision, 2.2% in f1-score, 9.06% in terms of

AUPRC and 2.95% in AUROC.

Individually, there exist differences of 81.69%, 43.56% and 43.84% in specificity and sensitivity

scores for Yang et al., predictor [434], our LGCA-VHPPI predictor [21] and the proposed meta

predictor. On the basis of that, it can be inferred that the proposed meta predictor and our

LGCA-VHPPI predictor [21] are less biased towards type I and type II errors. Whereas, Yang

et al., predictor [434] is biased towards type II error due to high specificity and low sensitivity

scores.

9.4.5 Proposed MP-VHPPI Predictor Performance Comparison with Existing
Predictors on Unseen Viruses Test Sets

To assess the applicability of the VHPPI predictors on unseen viruses where predictors are

trained on different types of viruses and evaluation is performed on the test sets that contain

viruses (Influenza A virus subtype H1N1 and Ebola virus EBV) which are not part of the training

sets. Table 9.5 compares the performance values of the proposed meta predictor with 4 existing

predictors i.e., Zhou et al., SVM [473], Tsukiyama et al., LSTM-PHV [393], Dong et al., predictor

[112] and our LGCA-VHPPI [21].

Over TR1-TS1 dataset, out of 4 existing predictors Tsukiyama et al., LSTM-PHV [393]

performs better in terms of accuracy 86.7% and MCC 73.7%, Dong et al. predictor [112] shows

the highest precision 86.28%, f1-score 86.40% and AUROC 94.61%. our LCGA-VHPPI shows

the highest performance in terms of specificity and sensitivity i.e., 83.82% and 91.48%. Whereas

Zhou et al. predictor [473] shows the least performance across all evaluation measures except

sensitivity. In comparison to the existing predictors, the proposed meta predictor outperforms

existing predictors across 7 evaluation measures. It achieves an increase of 3.56% in accuracy,

6.44% in specificity, 3.58% in sensitivity, 5.16% in precision, 3.79% in F1-score, 7.99% in MCC

and 2.09% in AUROC. Three out of 4 existing predictors, Tsukiyama et al., LSTM-PHV [393],

Zhou et al., SVM [473] and our LGCA-VHPPI [21], are biased towards type 1 error due to lower

specificity (82.9%, 66.14%, 83.82%) and higher sensitivity scores (90.6%, 89.76%, 91.48%) with

differences of 7.7%, 23.62% and 7.66%. In comparison, the proposed meta predictor is robust and

generalizable due to the small difference between specificity and sensitivity scores i.e., 4.8% and
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Table 9.5: Performance comparison of the proposed MP-VHPPI with existing virus-Host PPI
predictors over 4 datasets developed by Zhou et al., [473], to assess the applicability on the
unseen viruses. The performance values of the existing approaches i.e., Zhou et al., [473] and
Tsukiyama et al. (LSTM-PHV) [393] are taken from their corresponding studies [393, 473]

Dataset Approach ACC SN SP PR F1 MCC AUROC

TR1-TS1 Zhou et al. (SVM) [473] 77.95 89.76 66.14 72.61 - 57.5 88.6
Tsukiyama el. al LSTM-PHV [393] 86.7 90.6 82.9 84.1 - 73.7 91.2

Dong et al., LSTM [112] – 86.51 – 86.28 86.40 – 94.61
our LGCA-VHPPI [21] 83.82 91.48 83.82 85.34 83.64 69.14 94.0
Proposed MP-VHPPI 90.26 95.06 90.26 91.44 90.19 81.69 96.70

TR2-TS2 Zhou et al. (SVM) [473] 78.00 90.67 65.33 72.34 - 57.9 86.7
Tsukiyama el. al LSTM-PHV [393] 84.0 93.3 74.7 78.7 - 69.2 94.1

Dong et al., LSTM [112] – 92.53 – 90.93 91.23 – 96.80
our LGCA-VHPPI [21] 86.58 93.11 86.57 88.35 86.42 74.9 96.0
Proposed MP-VHPPI 94.30 97.07 94.30 94.39 94.29 88.69 97.77

TR3-TS1 Zhou et al. (SVM) [473] 77.43 88.98 65.88 72.28 - 56.4 88.4
Tsukiyama el. al LSTM-PHV [393] 85.7 89.2 82.2 83.3 - 71.6 92.1

our LGCA-VHPPI [21] 83.29 91.2 83.28 85.31 83.05 68.57 94.0
Proposed MP-VHPPI 90.53 95.06 90.53 90.78 90.51 81.31 95.98

TR4-TS2 Zhou et al. (SVM) [473] 81.67 94.67 68.67 75.13 - 65.6 89.0
Tsukiyama el. al LSTM-PHV [393] 90.0 91.3 88.7 89.0 - 80.0 95.6

our LGCA-VHPPI [21] 85.57 92.59 85.57 87.65 85.37 73.19 96.0
Proposed MP-VHPPI 93.62 96.71 93.62 93.64 93.62 87.27 98.14

overall higher sensitivity, specificity, AUROC, accuracy and MCC scores.

Over TR2-TS2 dataset, out of four existing predictors Tsukiyama et al., LSTM-PHV performs

better in terms of sensitivity 93.3%, whereas Dong et al. [112] predictor performs better in

terms of precision 90.93%, f1-score 91.23% and AUROC 96.80%. our LGCA-VHPPI [21] predictor

performs better in terms of accuracy 86.58%, specificity 86.57% and MCC 74.9%. Zhou et al.

predictor [473], shows the least performance across all the evaluation metrics except sensitivity

90.67%. The proposed meta predictor outperforms existing predictors across all of the evaluation

measures. Overall, the proposed meta predictor achieves a gain of 7.72% in accuracy, 3.77%

increase in sensitivity, 7.73% in specificity, 3.46% in precision, 3.06% in F1, 13.79% in MCC and

0.97% in AUROC. Among these predictors, the predictors of Tsukiyama [393], Zhou et al., [473]

and our LGCA-VHPPI [21], are prone to type 1 error due to high sensitivity and low specificity

scores. For instance, the difference in specificity and sensitivity scores of Zhou et al. predictor is

25.34%, 18.6% for Tsukiyama et al., LSTM-PHV [393] and 6.54% for our LGCA-VHPPI predictor

[21]. Due to these big differences, these predictors do not generalize well against the human

and Ebola virus protein data. Whereas, the proposed meta predictor has a smaller difference of

2.77% between specificity and sensitivity values, which makes it more generalizable than existing
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predictors.

Out of three existing predictors, LSTM-PHV predictor performs better across TR3-TS1 in

terms of 2 different evaluation metrics i.e., 85.7%, 71.6%, for accuracy and MCC. Similarly, our

LGCA-VHPPI predictor [21] shows better performance in terms of sensitivity 91.2%, specificity

83.28%, precision 85.31% and AUROC 94.0%. On the other hand, the proposed meta predictor

outperforms existing predictors on 7 different evaluation measures by significant margins. The

proposed meta predictor achieves a raise of 4.83% in accuracy, 3.86% in sensitivity, 7.25% in

specificity, 5.47% in precision, 9.71% in MCC, 7.46% in f1 and 1.98% in AUROC. Similar to the

previous cases, existing predictors are again prone to type 1 errors due to high sensitivity and low

specificity scores with differences of 23.1%, 7% and 7.92% for Zhou et al. [473], LSTM-PHV [393]

and LGCA-VHPPI [21] predictors. Comparatively, the proposed meta predictor has a smaller

difference of 4.53% between specificity and sensitivity scores, which makes the proposed meta

predictor more suitable for VHPPI prediction.

Over TR4-TS2 dataset out of three existing predictors, LSTM-PHV [393] achieves better

results across 4 evaluation measures i.e., 90.0%, 88.7%, 89.0%, 80.0%, in terms of accuracy,

specificity, precision and MCC. LGCA-VHPPI [21] excels in terms of AUROC 96.0%. Whereas,

Zhou et al., SVM [473] shows better sensitivity score 94.67%. The proposed predictor achieves

performance gains of 3.62% in accuracy, 2.04% in sensitivity, 4.92% in specificity, 4.64% in

precision, 8.25% in f1-score, 7.27% in MCC and 2.14% in AUROC. There exists a difference in

the specificity and sensitivity scores of these predictors which are 26% for Zhou et al. predictor

and 7.02% for our LGCA-VHPPI [21], which makes them more biased towards type I error due to

high sensitivity and lower specificity scores. Comparatively, LSTM-PHV and the proposed meta

predictor have a lower difference in specificity and sensitivity scores of (<3.1%), which suggests

that for TR4-TS2 dataset, both of the predictors are able to generalize well over positive and

negative class samples.

9.4.6 Discussion

Since last decade, the development of machine and deep learning-based computational approaches

for virus-host protein-protein interaction prediction has been an active area of research [35,

393]. In the marathon of developing robust computational VHPPI predictors, the aim of each

newly developed predictor has been to utilize raw virus-host protein sequences and precisely

discriminate interactive viral-host protein sequences from non-interactive ones. However, most

predictors have been evaluated on a limited type of viruses and hosts, such as 6 different

predictors have been evaluated on Barman dataset that contains 5 different viruses and human

proteins as host. Seven predictors are evaluated on Denovo dataset that is comprised of 10

different viruses and human proteins as host and 2 predictors are evaluated on SARS-CoV-2

virus. Only 4 predictors are evaluated on the Zhou et al., [473] dataset, that consists of 332

viruses and 29 hosts proteins. These datasets are more suitable to evaluate the robustness,
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generalizability and predictive performance of a computational predictor. These datasets were

developed with an objective to train models on different types of viruses and evaluate them on

the particular viruses which were not part of the training set.

Over unseen virus host protein-protein interaction prediction datasets, the performance of

existing predictors is comparably low, as compared to their performance on Barman and Denovo

datasets. Recently, we developed a machine learning-based predictor namely LGCA-VHPPI [21],

which produced state-of-the-art performance on both Barman and Denovo datasets. We evaluated

our predictor on Zhou et al., [473] datasets, where it showed relatively lower performance as

compared to its performance on Barman and Denovo datasets. This motivated us to develop

an improved predictor that performs better not only on Barman and Denovo datasets but also

produces similar performance for unseen viral-host protein-protein interaction predictions.

Barman Denovo

SARS2 TR1-TS1

TR2-TS2 TR3-TS1

TR4-TS2

Figure 9.4: Distribution of amino acids in 7 different datasets. For each dataset the distribution
of amino acids is shown across interactive and non-interactive protein samples

As discussed in section 9.4, most of the existing predictors are biased towards type I or type

II error, this is mainly because in viral and host protein sequences, distribution of amino acids

is almost similar for interactive and non-interactive classes. To illustrate this phenomenon, we

perform amino acids distribution analysis across both classes with the help of Two Sample Logo

[384]. As viral host protein sequences are highly variable in length, so to perform position-aware

distribution analysis, we take 20 amino acids from the start of host proteins and discard others

and similarly, we take 20 amino acids from the start of viral protein sequences. Figure 9.4
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illustrates the distribution of amino acids in interactive and non-interactive classes for 7 different

data sets. It can be seen that the distribution of amino acids is approximately similar in interactive

and non-interactive classes. Considering Barman’s dataset as an example (Figure 9.4:Barman), in

interactive and non-interactive samples, there are overlapping amino acids at every position i.e.,

for position 2, interactive samples contain one of the following amino acid, H, A, E, G, S whereas,

non-interactive samples also contain one of the following amino acid, A, E, G, S. In both classes

occurrence of 4 amino acids is the same while few samples of the interactive class contain amino

acid H, a similar trend exists at other locations as well. Furthermore, other datasets also contain

a similar distribution of amino acids as in Barman dataset. It can be concluded that, across all

7 datasets, we observe limited discriminative distribution of amino acids and because of that

existing predictors lack in performance due to the utilization of suboptimal sequence encoding

methods that generate statistical vectors by neglecting most of the discriminative features about

the distribution of amino acids in interactive and non-interactive classes.

It is important to mention that all the amino acids are either polar or non-polar in nature

and can carry charges, such as out of 21 unique amino acids, 11 amino acids are polar in nature,

4 AAs carry a positive charge (R, D, H, K), 2 AAs carry a negative charge (D, E) and 5 AAs are

neutral (C, Q, S, T, Y). Whereas, 10 amino acids are non-polar in nature (A, G, I, L, M, F, P, W, Y,

V). Irrespective of positions aware occurrences, considering the overall distribution of amino acids

in the protein sequence, charges can be computed by utilizing the physicochemical properties.

Overall charge information of amino acids along with their distribution information can extract

and encode more discriminative patterns.

Figure 9.5 shows different clusters of 7 benchmark datasets for the intrinsic analyses of the

statistical vectors generated through APAAC and Qsorder sequence encoders. These clusters are

computed by first reducing the dimensions of statistical vectors through principal component

analysis (PCA) and then by t-distributed stochastic neighbor embedding (TSNE). In Figure 9.5(A)

and 9.5(B), rows represent clusters of interactive and non-interactive classes based on statistical

vectors generated through individual encoders (APAAC, Qsorder) and a combination of both

encoders. Whereas, the columns represent 7 different benchmark datasets namely, Barman,

Denovo, SARS-CoV-2. TR1-TS1, TR2-TS2, TR3-TS1 and TR4-TS2. Overall, statistical vectors

from APAAC and Qsorder without dimensionality reduction lead to the formation of overlapping

clusters for interactive and non-interactive classes. This overlapping reveals that generated

statistical vectors are almost similar and contain less discriminative information about inter-

active and non-interactive classes, as shown in Figure 9.5(A). Furthermore, this overlapping

behavior among clusters exists due to the extraction of some irrelevant and redundant features

by different physicochemical properties. To eradicate such type of information, we utilize the

feature agglomeration method with an objective to transform generated statistical vectors into a

more informative and discriminative feature space. Comparatively, statistical representations of

APAAC and Qsorder with dimensionality reduction lead to the formation of slightly unique yet
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A. Feature space without Dimensionality reduction

B. Feature space with Dimensionality reduction

C. Probabilistic feature space

Figure 9.5: Clusters formation with representations of protein sequences based on APAAC
and Qsorder without dimensionality reduction (a), with dimensionality reduction (b) and 6D
representations from ET and RF classifier (c).
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heavily dependent clusters as shown in Figure 9.5(B). Though these encodings could be used for

classification purposes, however, still the performance would not be very promising. In addition,

the clusters do not seem independent because a single human protein that interacts with some

viral proteins, might not interact with some other viral proteins. This means that positive and

negative class samples can have very similar representations due to the presence of such pro-

teins. Although dimensionality reduction produces better feature space, however, still clusters

are not very much separable. To further improve the performance of the predictor, we perform

iterative representation learning, where we pass 3 different statistical representations separately

to RF and ET classifiers and take their predicted class probabilities to develop a new feature

space. The generated feature space lead to the formation of unique and independent clusters as

shown in Figure 9.5(C), which suggest the presence of comprehensive discriminatory features for

interactive and non-interactive VHPPI pairs. Due to the discriminative and informative nature of

newly generated feature space, we utilize this feature space to train SVM classifier for virus-host

protein-protein interaction prediction.

Overall, as compared to state-of-the-art predictors, the proposed predictor has shown a

slight performance improvement on Barman and Denovo datasets and significant performance

improvements on Sars-CoV-2 datasets and other 4 datasets namely, TR1-TS1, TR2-TS2, TR3-TS1

and TR4-TS2. We believe that the performance of proposed predictor can be further improved by

incorporating representations learned through diverse types of language models such as BERT

and XLNET.

This work can be considered another step up in terms of designing a robust tool for VHH-

PPI prediction, which in spite of performing quite precisely can be further improved. In the

future, three main paradigms can be opted for further performance improvements, first using

physicochemical properties based encoders deep learning architectures such as convolution and

recurrent neural networks can be tested, secondly, Bayesian optimization can be used to get

performance enhancements by optimizing ensembling strategy and lastly, language models such

as BERT, XLNET and pre-trained protein language-based models such as ProtTrans, TAPE and

ProtBert can be used to design better VHPPI predictors.

9.5 Conclusion

The prime objective of this research is the development of a robust machine learning-based

computational framework capable of precisely predicting viral host protein-protein interactions

across a wide range of hosts and viruses. Proposed meta predictor makes use of APAAC and

QS order sequence encoders for statistical representation generation and feature agglomeration

method to refine feature space. Furthermore, meta predictor utilizes the predictions of random

forest and extra tree classifiers to feed SVM classifier that makes final predictions. Experimental

results reveal the competence of APAAC and QS order encoders for most effectively generating
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numerical representations of sequences by capturing amino acids sequence order and distribu-

tional information. We have observed dimensionality reduction method removes irrelevant and

redundant information which slightly improves the performance of classifiers. The process of

iterative representation learning in which predictions of RF and ET classifiers are passed to

SVM classifier, significantly improves the accuracy of interactions predictions. The proposed meta

predictor is evaluated over 7 benchmark datasets where it outperforms existing predictors with a

significant margin of 3.07%, 6.07%, 2.95% and 2.85%, in terms of accuracy, MCC, precision and

sensitivity, respectively. We believe that deployment of proposed meta predictor as a web interface

will assist researchers and practitioners in analyzing the complex phenomenon of VHPPIs at a

larger scale to unravel substantial drug targets and optimize antiviral strategies.
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10
CONCLUSION AND FUTURE WORK

This chapter compiles the conclusive remarks drawn from the problems that are considered in

this dissertation and the solutions presented to tackle them. Possible limitations of the presented

solutions are discussed along with future research work that would mitigate these limitations.

10.1 Conclusions

The aim of this dissertation is to empower the process of biological sequence analysis using the

powers of Artificial Intelligence (AI). Biological sequences of different biomolecules (e.g., DNA,

RNA, protein) contain diverse types of information such as, a set of instructions to produce

distinct proteins in different amounts, genetic diseases, potential biological pathways to design

therapies for various diseases, the ways in which viruses hijack cellular processes, strategies for

controlling their propagation and procedures for promoting certain immunity responses. Key idea

is to use AI algorithms to explore such information while using only raw biological sequences.

Raw sequences of DNA/RNA and proteins are composed of repetitive patterns of 4 unique nucleic

acids and 20 unique amino acids, respectively. Therefore, distribution of distinct nucleic and

amino acids in raw sequences represents diverse information related to biological processes

and treatment of different diseases. It is essential to develop automatic methods which can

precisely extract distributional information of nucleic and amino acids and use this information

to perform different types of analyses to unlock the hidden potential of biological sequences. The

main motivation for this work comes from the author’s observation that there is a very limited

availability of robust computational frameworks for Genomics and Proteomics sequence analysis

despite their immense need in research and industry.

The main contribution of this dissertation is the conceptualization and implementation of

a computational framework by using the powers of AI approaches. The generic nature of the
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presented framework makes it applicable to a variety of Genomics (DNA, RNA) and Proteomics

(protein) sequence analysis tasks. A highlight of the presented framework is that apart from

newly developed methodologies, it contains existing sequence encoders and the most widely used

predictors that will facilitate researchers to reproduce the performance of existing methodologies

for diverse types of tasks and will enable them to develop meta-predictors and compare the

performance of their novel approaches with existing approaches on new benchmarks.

In the area of Genomics (DNA, RNA) sequence analysis, proposed framework is used to solve

5 different problems where it produces state-of-the-art performances. To supplement the process

of genomic sequence analysis, a novel sequence encoder is presented in this dissertation. Proposed

encoder is competent in capturing position specific distributional information of nucleic acids in

the DNA sequences and encode such information into statistical vectors. Using statistical vectors

generated through proposed sequence encoder, random forest classifier manages to outperform

existing computational approaches for the task of DNA modification predictions across multiple

species. Another contribution to Genomics sequence analysis is the development of a novel deep

learning classifier for histone occupancy and modification prediction. Proposed predictor is also

evaluated in another similar application area, namely enhancer identification and strength

prediction, where it also produces state-of-the-art performance.

Third contribution is the development of a novel classifier based on DenseNet architecture

which is capable of more precisely discriminating 13 different classes of small non-coding RNAs.

To more precisely analyze the impact of utilizing alternative paths for the flow of gradient, two

different depth based ResNet architectures are adapted which also produces decent performances

for small non-coding RNA classification. Fourth contribution is the development of a novel

autoencoder and convolutional neural network based predictor for accurate identification of

circular RNAs. A comprehensive experimentation is performed using proposed predictor with an

aim to find appropriate regions of genome that contain more comprehensive information about

circular RNAs. Fifth contribution is the development of an explainable classifier for predicting

multi-compartment subcellular localizations of four different RNA types across multiple species.

This classifier utilizes a unique graph based encoding method to capture comprehensive local

and global interaction patterns and translational invariances of nucleotides which are difficult

to capture in traditional sequence encoding methods due to their focus on occurrence and

physicochemical properties of nucleic acids. Proposed predictor is capable of highlighting unique

patterns of nucleic acids in the RNA sequences associated with particular subcellular localization.

In the area of Proteomics sequence analysis, proposed framework is used to solve 2 different

problems namely: host protein-protein interaction prediction and viral host protein-protein

interaction prediction. A novel predictor based on hybrid architecture is developed that makes

use of LSTM, CNN and Attention layers to more precisely distinguish interactive protein pairs

from non-interactive ones across multiple species. Proposed approach uses FastText embedding

generation method for the comprehensive characterization of protein sequences. A generic
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meta predictor (MP-VHPPI) is proposed that can more accurately predict viral-host protein-

protein interactions across multiple hosts and viruses. To generate the most effective numerical

representations of viral-host protein sequences, meta predictor reaps the benefits of two different

sequence encoding methods that are competent in capturing amino acids sequence order and

distributional information. Furthermore, it takes advantage of dimensionality reduction to

transform original feature space into more informative feature space. It generates a new feature

space that contains predicted probabilities of two tree-based classifiers by feeding them with

optimized feature spaces of individual encoders and their combined encodings. The probabilistic

feature space is fed to SVM classifier that makes final predictions.

10.2 Limitations

This section summarizes the limitations of the different methods presented in this dissertation.

A novel encoder is proposed for the characterization of DNA sequences that produces good

performance with different machine learning classifiers for the task of predicting 3 different DNA

modifications. However, the working paradigm of the proposed encoder relies on the assumption

that, for a particular dataset, distribution of nucleic acids remains somewhat similar between

the sequences of the same class while differs among the sequences of different classes. Based

on this assumption, proposed encoder uses class labels of training sequences to learn class

conditional densities based distribution of nucleic acids and maps these distributions to generate

statistical representation of test sequences. A comprehensive empirical evaluation on large

number of benchmark datasets related to multiple species thoroughly validates the assumption.

However, this assumption proves more effective when statistical representation of test sequences

is generated using the class conditional densities based distribution of nucleic acids learned on

large training dataset. If the distribution of nucleic acids is learned on small training data, then

the proposed approach will incorrectly characterize the distribution of nucleic acids within test

sequences that are not seen during the training phase.

Furthermore, decisions of deep learning predictors are hard to interpret because of their

black box working paradigms. Recently, in the domain of Natural Language Processing (NLP),

significant efforts have been made to develop explainable predictors. However, the domain of

Genomics (DNA, RNA) and Proteomics (protein) sequence analysis is lagging in this regard

due to the scarcity of explainable deep learning predictors. In this dissertation, 5 deep learning

predictors are developed however, only 2 predictors can explain their decisions. Integration of

Attention layer in other three predictors will not only make the predictors explainable but may

also increase the predictive performance of these predictors as it assists the predictors to focus

on the most discriminative features.

Deep learning predictors produce better performance when trained on large datasets and

their performance reduces on account of small datasets. To solve this problem, pre-trained k-
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mer embeddings are generated that facilitate deep learning predictors to perform better even

when they are trained on small datasets. We utilize a similar strategy to develop two predictive

approaches for RNA subcellular location prediction and host protein-protein interaction prediction

tasks, respectively. However, using pre-trained k-mer embeddings, only embedding layer of deep

learning predictors gets pre-trained weights while other layers are still randomly initialized. To

solve this problem, in the NLP domain, several language models have been proposed. Hence, by

adapting these models or developing paradigms similar to these models, performance of both

proposed predictors can be further improved.

10.3 Future Work

This section provides an overview of various compelling research directions which will be consid-

ered in future.

The presented framework is generic and contains diverse types of feature selection and

dimensionality reduction algorithms. However, potential of these approaches is not utilized in

the development of end-to-end pipelines developed for multiple applications in this dissertation.

For instance, using proposed encoder and random forest classifier, a web based application is

developed for DNA modification prediction for multiple species. Incorporation of an appropriate

feature selection or dimensionality reduction algorithm may improve the performance of proposed

predictor. Furthermore, while evaluating the performance of proposed encoder with multiple

classifiers, we note that different classifiers produce the best performance for various species data

and different types of DNA modification prediction. On average the performance of random forest

classifier is better, hence, we use a random forest classifier with proposed encoder to construct

final predictor. By reaping the benefits of multiple classifiers, a meta predictor can be developed

which may further improve the performance for DNA modification prediction in multiple species.

DenseNet based predictor is proposed and evaluated only for small non-coding RNA classifica-

tion. Proposed predictor can be utilized for other DNA, RNA and protein sequence analysis tasks

where it may produce state-of-the-art performance similar to small non-coding RNA classification.

Furthermore, incorporation of attention layer in the proposed predictor may slightly improve its

performance and could make predictor decisions explainable. While developing protein-protein

interaction predictor, a unique idea is proposed to generate fixed-length sequences by taking most

informative regions. A similar idea can be used to develop better predictors for circular RNA and

protein interaction prediction and viral host protein-protein interaction prediction tasks.

In order to reap the benefits of multiple sequence encoders, proposed generic framework

contains a unique approach called meta sequence descriptor that generates a new feature space

by combining the weighted feature spaces of a certain number of homogeneous or heterogeneous

sequence encoders. Meta sequence descriptor approach is not evaluated extensively, in future,

this particular method can be utilized to develop more appropriate statistical representations of
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biological sequences which will help the classifiers to achieve more promising performance for

different sequence analysis tasks. Proposed framework contains 12 different types of embedding

generation approaches, however, in this dissertation, only two embedding generation methodolo-

gies are utilized. To practically analyze which embedding method is better for multiple sequence

analysis tasks, a detailed comparative study using multiple types of deep learning predictors

needs to be performed. Following the success of diverse types of language models in the domain

of NLP, there is also a need of investigating the efficacy of language models in the domain of

Genomics and Proteomics sequence analysis.
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APPENDIX

The proposed framework is developed on top of following APIs

Pandas https://pandas.pydata.org
scikit-learn https://scikit-learn.org
Scipy https://scipy.org
Itertools https://docs.python.org/3/library/itertools.html
Numpy https://numpy.org/
mlxtend http://rasbt.github.io/mlxtend/
Torch https://pytorch.org/
Tensorflow https://www.tensorflow.org/
Matplotlib https://matplotlib.org/
Gensim https://pypi.org/project/gensim/
Igraph https://igraph.org/
Keras https://keras.io/
Nltk https://www.nltk.org/
Networkx https://networkx.org/
Node2vec https://snap.stanford.edu/node2vec/
math https://docs.python.org/3/library/math.html
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