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| Abstract

In this paper we will give a uniform approach to the derivation of state space formulas of
coprime factorizations, of different types, for rational matrix functions.

1 Introduction

The notion of coprimeness is as old as mathematics and goes back at least to the golden age of
Greece, we refer to the Euclidean algorithm for the computation of the greatest common divisor of
two integers.

Our interest in this paper lies in the representations of rational functions, i.e. quotients of
coprime polynomials. By the Euclidean algorithm, or equivalently via ideal theory, coprimeness of
two polynomials p, g is equivalent to the solvability of the Bezout equation

ap+bg=1

over the ring of polynomials.
With changing our focus to the study of matrix rational functions, the use of left and right
matrix fractions of the form
G=ND'=D"'N
*Earl Katz Family Chair in Algebraic System Theory
tPartially supported by the Israeli Academy of Sciences
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with N, N, D, D polynomial matrices. Such factorizations are called right and left coprime factor-
izations respectively if there exist polynomial matrix solution to the Bezout equations

XN+YD=1I

and

NX+DY =1

respectively.

These polynomial coprime factorizations played an extremely important role in the development
of algebraic system theory, and in particular in realization theory. In this connection we refer to
Rosenbrock [1970], Fuhrmann [1976], Kailath [1980].

In a development parallel to system theory, operator theorists studied similar types of coprime
factorizations, however over different rings (or rather algebras). The most prominent algebra in this
connection is H, the algebra of bounded analytic functions on the unit disc, or alternatively a half
plane. In the wake of Beurling [1949] came the intensive study of shift operators. Cyclic vectors
for the (right) shift operator were identified already by Beurling as outer functions. The next step
was to determine the cyclic and noncyclic vectors of the backward shift. The noncyclic vectors of
the backward shift are important inasmuch as they generalize the role of rational functions. The
fundamental contribution in this connection is the work of Douglas, Shapiro and Shields {1971] and
its generalization to the matrix case in Fuhrmann {1975]. The interesting point is that noncyclic
vectors in H? are characterized in terms of special coprime factorizations over H*®. We will refer
to these factorizations as DSS (Douglas-Shapiro-Shields) factorizations.

As may be expected, the DSS factorization plays a central role in the development of infinite
dimensional system theory. This is the theme of Fuhrmann [1981]. It is interesting to point out
that the use of shift operators in infinite dimensional system theory predates their use in algebraic
system theory, which was originated in Fuhrmann [1976].

Realization theory is but a tool in the development of control theory. Thus the real interest
in the use of coprime factorizations is their application to the solution of control problems, in
particular to the construction of stabilizing controllers. The cornerstone of this whole area is the
Kucera-Youla parametrization of all stabilizing controllers which is based on coprime factorizations
over H*. Pioneering works in this direction are Desoer et al. [1980], McFarlane and Glover [1989].
State space formulas for coprime factorizations were first developed by Khargonekar and Sontag
[1982], Nett [1984]. The proof of coprimeness was done via explicit construction of doubly coprime
factorizations. Specific' choice was made for the solution of the Bezout equations, however no
attempt was made to give an intrinsic characterization of the resulting doubly coprime factorization.
We remedy this by showing that special choices lead to minimal McMillan degree doubly coprime
factorizations. For the DSS factorization the state space formulas are due to Doyle [1984], and for
the case of normalized coprime factorizations to Meyer and Franklin [1987], see also Vidyasagar
[1985]. A polynomial approach to the derivation of normalized coprime factorizations was given
in Fuhrmann and Ober [1992]. This method is powerful enough to lead to the unified derivation
of state space formulas for various types of coprime factorizations, and this is the theme of this
paper. For results concerning coprime factorization for nonlinear systems see e.g. Hammer [1985]
and Verma [1988]

After some preliminary results on polynomial models we will present a unified approach to the
derivation of state space formulas for coprime factorizations and normalized coprime factorizations
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for various classes of functions. Thus we will study the classes of all rational functions of given
McMillan degree, the class of unstable ones, bounded real and positive real functions. Except for
the case of unstructured coprime factorizations, all other coprime factorizations are naturally given
in terms of special indefinite metrics. Applications of these coprime factorizations, as well as the
methods used to obtain them, to other control problems will be given in a subsequent paper.

The first author would like to thank the Center for Engineering Mathematics at the University
of Texas at Dallas for its hospitality and support during the work on this research. Both authors
wish to thank Prof. D. Pritzel-Wolters and the Department of Mathematics at the University of
Kaiserslautern for their hospitality and support during the final preparations of this manuscript.

2 General factorizations

In this section we are going to analyze general factorizations of proper rational functions such that
the factors are stable rational functions. The precise definition is as follows.

Definition 2.1 Let G be a proper rational matriz-valued function. Then the factorization |

1. G = NM~! is called a right factorization (RF) of G, if N, M are stable rational functions
and M is invertible with proper inverse. '
If N, M are right coprime, t.e. if there ezist stable rational functions U, V such that

MV - NU =1,
then the factorization is called a right coprime factorization (RCF).

2. q = M~-'N is called a left factorization (LF) of G, if N, M are stable rational functions and
M s irfvertible with proper inverse.
If N, M are left coprime, i.e. if there ezist stable rational functions U, V such that

VM -UN =1,
then the factorization is called a left coprime factorization (LCF).

It is a standard result (see e.g. Vidyasagar [1985]) that right (left) coprime factorizations are
unique up to right (left) multiplication by a stable rational function with proper stable inverse.
M
N equals
the McMillan degree of G. The following Lemma shows that the McMillan degree of the function
( A]\/.[f ) is always larger than the McMillan degree of the G = NM 1.

We are in particular interested in factorizations such that the McMillan degree of

Lemma 2.1 Let G = NM~1 be a not necessarily coprime right factorization of the proper rational
function G. Then, ’

A | By
1 if ( ?vl ) =| C,| Dy | is a realization of ( M ) then
C2 | Ds N

G

A, - B, D{'C, | B,D{!
Cy - Dng—lcl I Dle—l
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ts a realization of GG.

2. if we denote by 6(F') the McMillan degree of the proper rational function F then

, M
6(G)56(N )

Proof: 1.) Note that, since M = Dy + Cy(s] — A;)"1 By, it follows that M~! = D7 — D7YCy(sI -
Ay + B1D;'Cy)~1B, D;!. Therefore

G=NM-1= [Dz + Cg(sl - Al)—lBl][Dl_l - Dl_lC'I(SI — Ay + BlDl‘lCl)‘lBlDl'l]
= Dle_l + Cz(sl— Al)—lBlDl-l

—Dng_lcl(SI — A1+ BlDl_lcl)_lBlDi—I
_CZ(S[ - Al)‘lBlDl_lC'l(sI - A + B]Dl_lcl)—lBlDl_l

= DzDi—l‘ - Dng‘lCl(sI — A+ BlDflcl)_lBlDl—l
+Cg(81 - Al)_l[SI - Al + BlDl_lcl - BlDl_lcl](SI - A1 + BlDl_lC'l)“lBlDl'l
= Dle—l + (C2 - D2D1—1C'1)(SI - A+ BlDl"lC'l)‘lBlDl‘l.

2.) This follows immediately from part 1.) a

The following proposition gives a method to obtain factorizations using polynomial matrices. It
establishes the existence of a factorization G = N M~! such that the McMillan degree of AA{ )

equals the McMillan degree of G. A key step in the proof of this proposition is the following result
that follows from the realization theory via polynomial models. For information on polynomial
system and realization theory see Fuhrmann [1981].

Theorem 2.1 LetG = ND~! be a coprime factorization and let (A, B C) be a minimal realzzatzon
of G. LetG' = M D~ 1. Then G' has a realization (A, B ,Co) for some Co.

With the help of this theorem we can now prove the desired existence result of right factoriza-
tions with a given McMillan degree constraint.

Proposition 2.1 Let G be a proper rational transfer function and let G = ED™! (G = 5_1_75‘—) be a
polynomial right (left) coprime factorization. Let T (T ) be a square stable polynomial matriz of the

same dimensions as D (D), such that N := ET-! (N :=T 'E) and M := DT~ (M := T 'D)
are proper and M (M) has a proper inverse, then

(%)=(20) (-5 )= (17 17)

is a right (left) factorization of G (—G) and the McMillan degree of ( Ajg ) (( -N M )) equals
the McMillan degree of G (-G). | |
Proof: The construction implies that N M~! is a right factorization of G.

Let G = (A, B,C,D) be a minimal realization of G. Since G = ED~! and M~! = TD-1,
Theorem 2.1 implies that M ~! has a realization given by
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-1 _ A B
7= (Tt

for some Cy. Hence M has a realization given by

o = (A= BM(0)Co | BM(x0)
=\7 —M(®)Co | M(x) )

Since N = ET"! it follows again from Theorem 2.1 that

N = A — BM(00)Co | BM(o0)
= Ci [ D1 )’

for some C; and D, and therefore
( M ) _ A - BM(00)Co | BM(o0)

“M()Co | M(o)
N Cy ’ D,

This shows that there exists a right factorization whose state space realization has the same state-

N
degree of G and by Lemma 2.1 equal to the McMillan degree of G.
The statement concerning left factorizations is proved using the duality that G = NM~!is a
right factorization if and only if GT = (MY)~!NT is a left factorization of GT. o

space as the realization of G. Therefore the McMillan degree of M ) is less than the McMillan

In the following theorem all right factorizations G = N M~! of a proper rational function G
are characterized such that the McMillan degree of G equals the McMillan degree of %
These factorizations are precisely those that can be obtained via the state feedback construction of
Khargonekar and Sontag [1982] and later of Nett et. al. [1984]. Clearly this approach also provides
a proof for the existence of right factorizations.

Theorem 2.2 Let G be a proper rational function G and let G = (%{%-) be @ minimal real-

ization.
Then G = N M~! is a, not necessarily coprime, right factorization of G such that the McMillan

degree of ( AA{ ) equals the McMillan degree of G if and only if there ezists a state feedback F such

that A — BF is stable, and an invertible matriz D, s.t. ( M

N ) has a realization given by

( M ) ~ A-BF l BD,
N = —F Dl
C - DF ‘ DD,
Proof: Let G = NM~! be a right factorization. Let
A | By
( AA{ ) = Cl Dl
C, | D,
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be a minimal realization and assume that G' and M ) have the same McMillan degree. Since by

N

assumption M has a proper inverse, D; is necessarily invertible. The stability of M and N implies
that A, is stable. By Lemma 2.1 we have that

G = Al—BlDl_lcl ,BlDi'l
T\ C2—D:D'Cy | DD 7

Since G and ?vl have the same McMillan degree this implies that this realization of G is also

minimal. Hence we can assume without loss of generality that

A|B\ _( A -BD'C | BDy!
C ~“ \ C:—D:Dy'Cy | D2DTT )

From here we can see that we have

Dy = DDy,
B, = BD,,
Ay = A+ BCy,
Ce=C + DC,.

Since A, is stable and G = %*—D_) and is minimal, this shows that F' := —( is a stabilizing

state feedback such that,

(M)_ A-—FBF|BDD1
N |~ B !

C - DF| DD,

Since ‘M has a proper inverse by the assumption, this shows that D; = M(o0) is invertible.

Conversely, let Dy be invertible and let F be such that A — BF is stable. Define ( AA{ ) by

M\ A- BF | BD,
' -F D,
C - DF| DD,

Then clearly the McMillan degree of ( A]g ) is less than or equal to that of G since both have a

realization on the ’same state-space. It can be verified easily that G = NM~1. Hence by Lemma 2.1
M

N ) and G have the same McMillan degree.

The following corollary summarizes the analogous results concerning'left factorizations.
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Corollary 2.1 Let G be a proper rational function and let G = ( é, g ) be a minimal realiza-
tion. Then G = M~!N is a, not necessarily coprime, left factorization of G such that the McMillan
degree of ( -N M ) equals the McMillan degree of G if and only if there ezists a oulput injection
H, such that A — HC is stable, and an invertible matriz Dy, s.t. ( -N M ) has a realization
given by :

< =-\_[A-HC|HD-B -H
(—N M)—_—( D.C |—D1DD1)'

Proof: The result can be obtained from the previous theorem, by using the duality that G = NM~!
is a right factorization if and only if GT = (MT)~1NT is a left factorization. o

In this theorem and corollary we examined right (left) factorizations. It was left open whether
these factorizations are in fact coprime. In order to answer this question we will make use of
so-called doubly coprime factorizations.

Definition 2.2 The two proper stable rational block matrices

(v) (5 3),

with M (M) having a proper inverse, form a doubly coprime factorization of the proper rational
function G, if

(5 )N V)=o)

G=NM"'=M"N.

and

We are particularly interested in doubly coprime factorizations such that all three functions

o (%) (¥ 7)

have the same McMillan degree.

Before we can derive state-space realizations of the doubly coprime factorizations we need to
state the following lemma, which is a key step in the proof of the subsequent corollary. It is a
consequence of standard arguments in realization theory.

Lemma 2.2 Let G =[G, G;] be a proper rational function. Assume that G; has McMillan degree
n, then the McMillan degree of G is n if and only if for the Hankel operators Hg, and Hg, we have

range(HGz) c range(HGx ).

A | B,

IfthisisthecaseandG’l-‘_—‘(C 5
1 1

) s a minimal state space realization, then G2 has a state

space realization of the form
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(AL
= (415:)

Jor some L and D,.

The following corollary answers two questions. Given a rational function of McMillan degree n,
all doubly coprime factors are characterized that have McMillan degree n. As a consequence of the

M ) has McMillan degree

construction, we see that a right factorization G = NM ~! such that ( N

n is necessarily right coprime.

Corollary 2.2 Let G be a proper rational function of McMillan degree n. All doubly coprime
factorizations of G such that ‘

(%) (5 )

have McMillan degree n are given by

—-1
(M U) A-BF | BD, BD,+ HD;

N V = —F D1 . D2
C-DF|{DDy D, +DD,
and ‘
v A-HC | HD-B -H
( N ) =| -D{'F -:_Dl‘ngDIC D' + Q_flpleD —Di_iD2D1 ,
ch —DID ‘ Dl

where G = ( é, g ) is a minimal realization and F (H ) is such that A— BF (A— HC) is stable

Dy, D are invertible and D, is arbitrary.

M U vV -U . ‘ . _
Proof: Let ( N Vv ), ( -N M ) be doubly coprime factors of McMillan degree n. Then G =

M

NM-1is a right factorization such that N

has McMillan degree n. Let

MY _ A:ﬁFlBDDl
N |~ I !

C-DF|DD,
be the minimal realization of ( Ajg ) of Theorem 2.2, where F is a stabilizing state feedback and

D, is invertible. By assumption U, V are such that the McMillan degree of ( I;VI ) is equal to

that of ( AA{ g ) By Lemma 2.2 thus has a ( ‘U; ) has a realization
( U ) _ A - BF ] L
V = —F Dz
C - DF | D;
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for some L : K™ — X, Dy : K™ — K?P and D3 : K™ — K™ and therefcre,

(MU) A-BF|BD, L

= -F D, D,
NV C-DF| DDy D3

Similarly, the other factor has a state-space realization

Voo A—-LHC|H1;)—B ;)H
—IV M = ‘ 3 2 )’

T)-l C —ﬁl D ﬁl

forsome L : X — K™, Dy : K™ — K™ and D3 : K» - K™ and where H is a stabilizing output
injection and D; is invertible.

We first consider the feedthrough terms. Since we have a doubly coprime factorization we need
to have that,

I 0\_{( D3 D Dy D
oI/ \-DiD D DD, Dy

_ §3D1 + ELDDl §3D2 + ﬁLDa
~“\ -D1DDy+DyDD, -D:DDy+ D,D;

_ D-3D1 + ﬁgDDl §3D2 + D_?_Dg
0 -D\DDy+ DDs |-

Solving these equations we obtain after some calculations that
Ds = D'+ D{'D,;D,D,
D3 =TD;' + DDy,
D, = -D7'D,D;.

Hence, we necessarily have that

A -
MUY\ BF | BD, L

N v = —-F Dy D,

C-DF|DD, D;'+DD,

and

v 0 A-HC| HD-B -H

( —N M ) = _L D1—1+D1—1D2D1D “Dl—IDle
D,C -DD Dy

To determine L and L, we calculate the state-space realizations of the cascaded system

(195 2) (%)

_ _ - —F D, D2
A - HC [HD B 1-1] c-pr] [HD—B -H][DDI D7+ oD,

) A-BF BD,L

T [ p{'+0'0yByp -D'0,T, || s ] I 0
Blc [ -—BID 51 ] [ C:;F 0 I
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A-HC BF - HC -BD, -BD,- HDy'
_ 0 A- BF BD, L
- I -D{'F-D'D,D\C| T 0
D.C D.C ‘ 0 | I

A state-space transformation by ( g _II ) gives

A—HC 0 0 -BD,-HD;'+1L
0o A- BF BD, L
L ~DI'"F-D{'D,D,C-T| I 0
Bic : |

| 0 I
Consider the (2,2) subsystem

;= (A-HC|-BD,- HD;' + L
“\TDiC | T

and the (1, 1) subsystem

. . A—BF | BD,
- —D?F— D1—1D2DIC - L I 1 )

Since D; and D, are invertible, the first system is observable and the second system is reachable.
Hence these two systems are I if and only if

-BD;-HD;'+L=0
—~D{'F - D;'D,D,C -T =0,
or if and only if
L= BD, + HD;"
and 7
I =-D{'F- D{'D,D,C.
M U v -0

Conversely, let D; be arbitrary and let ( N V and N M

state-space realizations in the statement of the corollary. Then it can be checked in a straightforward
way that

By construction, the McMillan degrees of these two functions are less than or equal to that of G
Lemma 2.1 then implies that the McMillan degrees of all three functions are the sane.

be defined through the

O

The following corollary states that McMillan degree n factors of rational functlons of McMillan
degree n are necessarily coprime.
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Corollary 2.3 Let G = NM~! be a, not necessarily coprime, right factorization of G. If the
McMillan degree of ( 1\13 ) equals the McMillan degree of G then N an M are right coprime.

Similarly, let G = M~1N be a, not necessarily coprime, left factorization of G. If the McMillan
degree of ( -N M ) equals the McMillan degree of G then N an M are left coprime.

Proof: This follows immediately from the previous corollary where solutions to the Bezout equations
were constructed. a

3 Antistable functions

One of the main purposes of this paper is to derive state-space realizations of factorizations that
are normalized in certain ways. The first class of systems for which we are going to consider
normalized factorizations is the class of antistable functions. By an antistable function we mean
a function whose poles are in the open right half plane. Here the factorization is normalized so
that the denominator M is inner, i.e. M*M = I. This type of factorization has been introduced
by Douglas, Shapiro and Shields [1971] for scalar functions and by Fuhrmann [1981] for matrix-
valued functions. It is therefore referred to as the Douglas-Shapiro-Shields factorization (DDS).
This factorization is amongst other applications particularly important in the theory of Hankel
operators. State space formulae for DSS-factorizations appear in the control literature, see e.g.
Doyle [1984].

Let G be a proper antistable function, i.e. all poles of G are in the open right half plane. A
right (left) coprime factorization G = NM~! (G = M~'N) is called a right (left) Douglas-Shapiro-
Shields (DSS) factorization if M*M = I (MM* = 1.)

The existence of a DSS factorization is guaranteed by the following proposition.

Proposition 3.1 Let G be an antistable proper rational function of McMillan degree n. Then there
ezists a right (left) factorization

G=NM"1' (G=M"N)

with M*M = I (M*M = I). Moreover, M and M have McMillan degree n. The right (left)
factorization with this property is unique up to right (left) multiplication by a unitary constant

M ) (( -N M ) ) has McMillan

matriz. All such factorizations are coprime and such that

N
degree n. Moreover, M and M have McMillan degree n.

Proof: Let G = ED™! be a right polynomial coprime factorization. By assumption D is antistable.
Let T be a square stable spectral factor of D*D,i.e. D*D = T*T. Then

(%)= ()

defines by Proposition 2.1 right factors of G, i.e. G = NM~! with N, M and M~! proper and
M
N

Clearly, M*M = I. Since D is antistable and T is stable, there are no pole-zero cancellations and
therefore M is of McMillan degree n. Let G = NM~! = Ny M ! be two DSS factorizations of G.

has the same McMillan degree as G. Hence the factorization is coprime by Corollary 2.3.
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Since both are coprime factorizations, there exists a stable function @ with proper stable inverse
that relates the two factorizations (see e.g. Vidyasagar [1985]). In particular, M = M;Q. Since
I=M*M = Q"MMQ = Q*Q, this shows that @ = @~*. Since @Q is stable with proper stable
inverse, this implies that ¢ must be a constant unitary matrix. ‘

The statement concerning left factorizations follows analogously. o

The following Lemma will be important in the proofs of the main theorems of this and subse-
quent sections.

Lemma 3.1 Let U(s) be a proper rational function such that

U(s) = hU(s)™*J2, seC\o(U),

where J;, t = 1,2, are constant matrices such that J; = J{'l =Jr1=1,2. LetU = ( é g ) be

a minimal realization of U(s). Then,

1. D = JyD~*J,.

2. U(s) has another minimal realization of the form

v (A|B)_(-A+C DB | CT D
=\ = DJ,B" D )’

and there erists a unique non-singular state-space transformation Y between these two real-
izations such that Y = Y*, and

YA=(-A"+C*"J1;DJ;B")Y,
YB=C*"JyD,
C = DJ,B"Y.

Proof: Note fhat

y-1 = (A-BD7'C|BD!
=\T -Dc | DT

U-* _ _An- + C*D—‘Bm I C#D—t
- D—*B* | D—*

and therefore

—A* + C*D~*B* | C*D~*J, )

U=hUh= ( DB | hD T,

A|B
C|D
realization there exists a unique non-singular state-space transformation T', between this and the
second realization of U, i.e.

C=hD"B'T,

Since U = JLU*J, we clearly have that D = JiD~*J,. Since U = ( is a minimal



3 ANTISTABLE FUNCTIONS 13

B=T"'C*D™*J,,

A=T"Y-A*+C*D™*B*)T.
Dualizing these equations, we obtain,

C*=T*BD™ ')y,

B* = J,D7'CT™,

A* =T*(-A+ BD'C)T~*.
Solving for A, B and C we have,

C=DJ,B*T*=J,D"*B*T"

B=T""*C*J1D=T7*C*D™"J,,

A= -TAT*+ BD™'C = -T " AT" + T”'C'D_'JzD‘lle"B*T*

=T *(-A"+C*D™*B*)T*.

But this shows that T'* is also a state-space transformation between the two systems. The unique-
ness of the transformation therefore implies that T* = T. The form of the realization of U given
in the statement, follows immediately from the above identities. a

Proposition 3.1 showed that a right (left) DSS-factorization is unique up to right multiplication
by a constant unitary matrix. The factorization is such that the McMillan degree of Alg )
equals the McMillan degree of G. In the following theorem all doubly-coprime factorizations are

characterized which are such that ( Ajg ) forms a DSS-factorization of G.

Theorem 3.1 Let G be an antistable proper rational transfer function of McMillan degree n with
minimal state-space realization (A, B,C,D). Then all doubly coprime factorizations, such that
G = NM~!, with MM* = I, and G = M~'N with MM* = I, and the McMillan degrees of

MU and v -U are n, are given b
N V N M ) are g y

MU\ A-BB*Y | BD, BD,+ ZC*D;
N V)~

“FY | D D, :
C-DB'Y |DD; T, +DD,
Vo0 A-zCC | zC*D-B ___ -zC*
( v m ) = | =DiB*Y - DiD,DiC | Dy + D;D; 01D -DiD;Dy |,
‘ ch —-T)-ID El

where D, is arbitrary such that Dy = D;*, D, is arbitrary such that D, = D; ", D; arbitrary, and
Y and Z are the unique positive definite solutions to the Riccati equations

AY + YA*-YBB'Y =0,
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A*Z+ZA-2C*CZ = 0.

Proof: Let G = NM~! be a DSS factbrization such that ( M

N ) has McMillan degree n. This exists

by Proposition 3.1. By Theorem 2.2 any right factorization G = N M~! such ( M

N ) has McMillan

degree n is of the form

| A~ BF | BD,
(M)E -F l D1 y

C-DF | DDy

where F is a stabilizing feedback and D; = M(oo) is invertible. Since M is such that M*M = I,
we have that

M=M"*

Since M has McMillan degree n, the realization

ME(A—BF|BDI>

“F | D

is minimal. Lemma 3.1 now implies that there exists a unique non-singular state-space transfor-
mation Y = Y* such that

Dy =Dr~,

YBD, = —F*D;,

—~F = D,D{B*Y = B*Y,

Y(A - BF) = (—A" + F*B* — F*D,D:B*)Y = —A"Y’.
Using that F = —B*Y we can rewrite the equation

Y(A - BF) = —-A*Y

A*Y + YA+ VYBB'Y = 0.

Setting Y := —Y, this equation is equivalent to the more conventional equation,
A"Y +YA-YBB'Y =0.

Since Y is invertible, this Riccati equation is equivalent to the Lyapunov equation,
Y~ 1A*+AY‘ — BB* =0,

which shows that Y ~! and therefore Y is positive definite. Since A* is antistable, Y ~! is the unique
positive definite solution of this equation. Hence Y is the unique positive definite solutlon to the

Riccati equation. A state space realization of ( AA{ ) is given by
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A - BB"Y | BD,
(M>-E 3 ‘Dl ,

C-DBY | DD,

where D, is arbitrary such that Dy = Dy*.
The expressions for the doubly coprime factors now follow from Corollary 2.2.
An analogous argument or the duality consideration that G = NM ™! is a right factorization if

and only if GT = (MT)~!NT, shows that a state space realization of [ -N M ] is given by

. 1_( A-2zC*C|ZC*D- B -ZC*
[ -# M]=( D.C | -DiD Dy )

where Z is the unique positive solution of the Riccati equation

AZ+ ZA*-2C*CZ =0,

hY

and D; is arbitrary such that D; = D;". The remaining part of the argument is analogous to the
above derivation.
Conversely, let Y be the unique positive definite solution to the Riccati equation

A'Y +YA-YBB'Y =0.

Constructing the DSS factorization of G as in Proposition 3.1, proceeding as above and using the
uniqueness of the solution Y, shows that

(M)= A- BB*Y | BD,

N -B*Y D, ,
C-DBY | DDy

gives a realization of the DSS factors of G. Hence F = B*Y is a stabilizing feedback and the
state-space construction gives indeed the required factorizations.
a

The expressions for the doubly-coprime factorizations can be simplified if we are only interested
in a particular factorization and not in all of them. The choice D; = I, ﬁ; = I and D; = 0 would
lead to such a simplification.

As part of the proof of the theorem we have also shown the well-known result that a certain
degenerate Riccati equation has a stabilizing solution.

Corollary 3.1 Let (A, B,C, D) be an antistable continuous-time minimal system. Then there
erists a unique positive definite solution Y (Z) of the Riccati equation

AY +YA*-YBB'Y =0 (A*"Z+ZA-2C*CZ =0).

This solution is such that A — BB*Y (A — ZC*C) is stable, i.e. all eigenvalues of A — BB*Y
(A — ZC*C) are in the open left half plane.

Proof: This statement was proved as part of the proof of the theorem. m)
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‘4 Minimal systems

Normalized coprime factorizations proved to be powerful methods in control theoretic problems,
especially in the area of robust control (see e.g. Vidyasagar [1985], McFarlane and Glover [1989],
Fuhrmann and Ober [1992]). For their relevance in parametrization problems, see Ober and Mc-
Farlane [1989]. ’ :

Let

I 0
JL—(O I)'

A right (coprime) factorization G = NM~! of G is called a J-RF (J-RCF) of G if

(M* N)(é ?)(%):M*M+N*N=I.

Similarly a left coprime factorization G = M ~'N the transfer function G is called JL-LF (a J-
LCF) of G if

NN + MM =1
-The following proposition guarantees the existence of such factorizations. The existence and

uniqueness result is due to Vidyasagar (see e.g. Vidyasagar [1985]).

Proposition 4.1 Let G be a proper rational function of McMillan degree n. Then there ezists a
Jp-right (left) factorization,

G=NM"! (G=M"IN).
This factorization is right (left) coprime and is unique up to right (left) multiplication by a constant

A]\{ ) (( -N M )) is of McMillan degree

unitary matriz. All such factorizations are such that
n.

Proof: Let G = ED~! be a right polynomial coprime factorization. Let T be a square stable spectral
factor of E*E + D*D,i.e. T*T = E*E + D*D. Then :

M\ (DT
N ] T\ ET!
defines by Proposition 2.1 right factors of G, i.e. G = NM~! with N, M and M~! proper

and A]g ) of McMillan degree n. This also implies by Corollary 2.3 that the factorization is

coprime. Let now G = NyM[! be another Jp-right coprime factorization. Then there exists a
stable @ with proper stable inverse (Vidyasagar [1985]) such that M = M1Q and N = N1Q. But
I=M*M+ N*N = Q* M: MQ + Q*NyN,Q = Q*Q, which shows that = @~*, which implies
that Q is a constant matrix.

The statement concerning left factorizations follows analogously. ‘ ]

Note that for Ji-factorizations G = NM~! = M~-!N we have that

(V) (5 )-68)
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The following Lemma will be useful in the proof of the subsequent theorem.

Lemma 4.1 Consider

D, -Dp*Di\ (I -D* Dy 0
DD, D] “\D I 0 D )’

with Dy and D, invertible. Then
, D, -pD;\"!
) DD, D;
_ Dt 0 I D+ (I + D*D)! 0
- 0 D -D I 0 (I+DD*™ J°
D, -pD;\_( D -DDy\
DD, D] ~\ DD D; ’

DD} = (I + D*D)™%,

2. If

then

D;D,= I+ DD*).

Proof: The statements are checked in a straightforward way.

17

The following theorem characterizes all doubly-coprime factorizations such that G = NM~1is
a Ji right coprime factorization. The state-space formulae for Ji- factorizations are not new. They
are due to Meyer and Franklin [1987] for the strictly proper case and due to Vidyasagar [1988] for
the general case. Our proof is however new in that the formulae are derived in a systematic way

starting from the known existence of such factorizations.

Theorem 4.1 Let (A, B,C, D) be a minimal realization of the proper rational function G of McMil-

lan degree n.
Then all doubly coprime factorizations of G, such that
1. G=NM-1isaJi,-RF and G = M~IN isa J.-LF,
9 M U v -U
' N V)’ -N M)’
are of McMillan degree n,

are given by

MU\ A- BF|BD, BD,+HD;'
= —F Dl D2 )
N V 1
C-DF|DD, Di'+DD,
v b A-HC | HD-B -H
( N M ) = —D;IF - Dl_lDQbIC Dl—l + D;I.Dzﬁ1D —Diquﬁl

D,C -D\D D,
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where

e D is such that Dy D} = (I + D*D)~1.
D, is such that D;D; = (I + DD*)~1.
Dy s arbitrary .

o Y and Z are solutions of the Riccati equations

0=(A— B(I + D*D)"'D*C)*Y + Y(A - B(I + D*D)~'D*C)
~YB(I + D*D)"'B"Y + C*(1 + DD*)7'C,

0= (A- B(I+D*D)"'D*C)Z + Z(A - B(I + D*D)~'D*C)"
-ZC*(I + DD*)"'CZ + B(I + D*D)~'B*, |

such that A~ BF and A — HC are stable, where
F=(+D*D)"'D*C + (I + D*D)"'B*Y,
H = BD*(I+ DD*)~' + ZC*(I + DD*)™".

Proof: Let G have a minimal realization (A,B,C,D). Let G = NM~! be a right factorization G
such that

(M- N*)JL(%)=I.

Such a factorization exists by Proposition 4.1 and has the same McMillan degree as G. By The-

AA{ such that the McMillan degree of ( A]g ) is the same as
that of G, has a state space realization of the form,

M A:F}?F|BDD1
N = l 1 )

C-DF{DD,

orem 2.2 any right factorization

where F is a stabilizing state feedback and D; is invertible. Similarly, a left factorization G =
M~1N such that “

. -N=\ _
(-w M)JL< M) =1,
exists and is of McMillan degree n and has a state-space representation of the form

< o«\_(A-HC|HD-B -H
(-# M)=( D:C | =DiD Dl)’

where H is a stabilizing output injection. Since ( AA{ ) is stable and of McMillan degree n and

*

( ;év. ) is antistable and also of McMillan degree n, the function



4 MINIMAL SYSTEMS

A- BF 0 BD; 0
M -N*)\ _ 0 —A*+C*H*| 0 C°D;
N M+ |~ -F  B*-D*H* | D, -D*D]
C - DF H* DD, D;

_ [ A|B
T\ C|D
has McMillan degree 2n. Note that since
M -N\" _ (M -N*
N M AN M)
M -N*

we have by Lemma 3.1 that ( N A

(4#)

—A* +C*DB* | C*D
DB~ | D )

) has two equivalent realizations

and

Since D = D-!, Lemma 4.1 implies that D and D; are such that
D\D: = (I + D*D)%,
DD, =(I+DD*)"L.

We need to compute —A* + C*DB*|
-A* +C*DB*

([ -a"+FB 0
- 0 A-HC
L -F C-FD I -D* Dy 0 DiB* 0
B-HD H D I 0 Di 0 D
_( -A*+ FB* 0
- 0 A-HC

4 -Fd+DD)+C*D C* DDy 0
B —-BD* + H(I + DD*) 0 Dj

—-A*+C*DD\D}B* c*DiD,C
BD,D;B* A-BD*DID,C |’

19
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/ ' .
. A|B ~A* + C*DB* | C*D .. NV M -—-N*
Since \—C—‘-ﬁ) and ( BB D ) are both minimal realizations of ( N i1t ),

Y Y2
Yo Yoo

there exists a unique non-singular state-space transformation Y =

is such that ( Yu Y, ): ( i Y5 ) and such that

) , which by Lemma 3.1 R

Ya Yo Yo Yy
C = DB"Y,
YB=C*D,

YA = (A" +C*DB")Y.

More explicitly, we have writing the equation Y B = C*D componentwise,

Yiin Y2 BD, 0
Y5 Yo 0 C*D;

_ C—F C* - F*D* I =D* Dy 0 ‘
"\ B—-HD H D I 0 _;
and therefore

Yii Yia B 0\ _ [ -F<(I+D*D)+C*D C*
Yy Yo 0o c* |~ B | —BD*+ H(I+DD*) |°

Hence, we have that
—F*(I + D*D)+ C*D = Yy B,
C* =Y1,C",
H(I+‘DD*) — BD* = Y2C*,
B = Y33 B,
which shows that
F=(I+D*D)"'D*C — (I + D*D)"'B*Yy,, - .
H = BD*(I + DD*)™!' 4+ Y5,C*(I + DD*)™'. |
Writing Y A = (—A* +<C;"DB"‘)Y, componentwise, we have for the (1, 1) entry,
Y11(A — BF) = (—A* + C*DD, D} B*)Y1, + C*D;D,CY7;,
and using the above identities, this gives,
0 = (A* = C*DDyD;B*)Yy; + Y11(A - B[(I + D*D)"'D*C — (I + D*D)~'B*Yy])
-C*DiD,C

= (A* = C*D(I + D*D)~*B*)Yi; + Ya1(A — B(I + D*D)"'D*C)+
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YuB(I + D*D)"'B*Y;; - C*(I + DD*)"'C.
Setting Y := —Y;; we obtain the Riccati equation
0=(A-B(I+D*D)"'D*C)*Y +Y(A— B(I + D*D)"'D*C)
-YB(I + D*D)"'B*Y +C*(I + DD*)"'C.

Moreover, with F = (I + D*D)~'D*C + (I + D*D)~'B*Y we have that A — BF is stable.
Evaluating the (2,2) entry we obtain,

Yy2(—A* + C*H*) = BD,D{B*Y12 + (A — BD*D;D,C)Yas,
or,
0=(A-BD*(I+ DD*)"'C)Z + Z(A* - C*(I + DD*)"'DB")
-ZC*(I+ DD*)"'CZ + B(I + D*D)"'B*,
where v;re have set Z := Y3;. Note that A — HC is sté,ble with H = BD*({ + DD*)"1 + ZC*(I +
DDIt) ca;l be verified in a straightforward but tedious way that if state space representations are
‘given as in the statement of the theorem that the transfer functions of these representations give

doubly coprime factorizations with the required properties.
0

In the proof of the theorem we also established the well-known result that the algebraic Riccati
equation has a stabilizing solution.

Corollary 4.1 Let (A, B,C, D) be a minimal continuous-time system. Then there ezist hermitian
solutions Y and Z of the Riccati equations

0=(A-B(I+D*D)"'D*)'Y +Y(A - B(I + D*D)"'D*C)
-YB(I + D*D)"'B*Y + C*({ + DD*)"'C,
respectively,
0=(A-B(I+D*D)"'D*C)Z + Z(A- B(I + D*D)™'D*C)*
~ZC*(I+ DD*"'CZ + B(I + D*D)™'B*,
such that A — BF and A — HC are stable, where
F=(I+D*D)"'D*C+(I+ D*D)™'BY
H = BD*(I+ DD*)™' + ZC*({ + DD*)™1.

Proof: This statement was prcved as part of the proof of the theorem. a
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5 Bounded-real functions

In this section we are going to consider stable rational functions that are bounded in magnitude by
1 in the right half plane. We are going to define factorizations for this class of functions and are
going to give the corresponding doubly coprime factorizations.

Definition 5.1 A proper stable rational function is called bounded real, tf
I - G*(iw)G(iw) > 0,
forallw e RU {£oo}. Let

I 0
J3=(0 —-I)'

A right (coprime) factorization of G = NM™! is called a Jg-normalized right (coprlme) factoriza-
tion (Jp — RF respectively Jg — RCF) of G if

(M N*)JB<%)=I.

Similarly, a left (coprime) factorization is called a Jg- norma.hzed left (coprime) factorization (Jg-—
LF respectwely Jg— LCF)of G if :

.- N*
-( A M)JB(M‘)._I.
The existence and uniqueness of such factorizations is established in the following proposition.

Proposition 5.1 Let G be a proper rational bounded-real function of McMillan degree n. Then
there ezists a Jg-right (left) factorization,

G=NM"1! (G=M"N).
This factorization is right (left) coprime and is unique up to right (left) multiplication by a constant
M ) (( -N M )) is of McMillan degree

unitary matriz. All such factorizations are such that N

n.

Proof: Let G = ED-! be a right polynomial coprime factorization. Let T be a square stable spectral
factor of D*D — E*E,i.e. T*T = D*D — E*E. Then

M\ (DT

N |\ ET!
defines by Proposition 2.1 right factors of G, i.e. G = NM~! with N, M and M~! proper and
( M of McMillan degree n. This also implies by Corollary 2.3 that the factorization is coprime.

N
The remaining parts of the proof follow in the standard way. ‘ a

Some properties of Jg-factorizations are summarized in the following lemma.
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Lemma 5.1 Let G = NM~! be a Jg-RF and G = M~'N a Jg-LF of the stable bounded-real
function G. Then

p M* N* ), M N\ (I o0

: N M JB\' N M) " \o0o -1 )
M N* M N\

2. (NM")_B(N M') JB.

Proof: The statements are easily verified. : |

The following Lemma will be useful in the proof the subsequent theorem.

Lemma 5.2 Consider

p, pD;\ (1 D D, 0
pp, D, J°\D I 0o D} )’

with Dy and D, invertible and D such that [ — DD* > 0. Then
) p. pDI\"
' DD, D

_(D;‘ 0 )( I -1)')((1—1)*0)-1 0 )
Vo o)\ -p 1 0 (I-DD)™ )

D DDy \ _ p, DD} \
(001 D; )‘JB(DM n; ) '

2. If

then
DyD; =(I- D*D)71,
ﬁ;ﬁl = (I - DD‘)_I.

Proof: The statements are checked in a straightforward way. ]

_ Weare now in a position to characterize all doubly coprime factorizations so that G = NM (=
M-1N)isa Jg-RF (Jg-LF). ’

Theorem 5.1 Let(A, B,C, D) be a minimal realization of the proper bounded-real rational function
G of McMillan degree n.
Then all doubly coprime factorizations of G, such that

1.G=NM-'isaJg-RF and G = M~'N is a Jg-LF,
P M U vV -U
: N V)] -N M )’

are of McMillan degree n,
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are given by

: —-1
YA A-BF | BD, BD,+ HD;
N V)=

—-F D, D, )
C-DF|DD, Di'+DD,
( N M ) =\ ——DI_IF —_Dl“rDleC Dl_l + D__l_lDleD‘ —Dl—iDle ,
D.C -D\D D,

where

o D, is such that D, D} = (I — D*D)"!.
e D, is such that DDy = (I — DD*)~1.
e D, is arbitrary .

‘o Y and Z are solutions of the Riccati eéuations

0=(A+ B(I-D*D)"'D*C)*Y +Y(A+ B(I — D*D)~'D*C)
+Y B(I - D*D)"'B*Y + C*(I - DD*)"'C,

0=(A+B(I-D*D)"'D*C)Z + Z(A+ B(I - D*D)"'D*C)*
+ZC*(I - DD*Y"'CZ + B(I - D*D)"'B*, |

such that A — BF and A — HC are stable, where
F=—(I-D*D)'D*C - (I - D*D)"'B*Y,
H = ~-BD*(I - DD*)"! = ZC*(I - DD*)™,

Proof: Let G have a minimal realization (A4, B,C, D). Let G = NM~! be a right factorization G
such that ‘

(M- N*)JB(AA{)zL

Such a factorization exists by Proposition 4.1 and has the same McMillan degree as G. By The-

such that the McMillan degree of ( M

is the sam
N)l ame as

M
N

that of G has a state space realization of the form,

A—BF | BD
MY _F lD1
N = \ 1 ’

orem 2.2 any right factorization

C-DF | DD,

where~F is a stabilizing state feedback and D, is invertible. Similarly, a left factorization G =
M~1N such that

(# M)Jg(z:)=—l,

exists and is of McMillan degree n and has a state-space representation of the form
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- -\_[ A-HC|B-HD -H
(& M)=( D:C | DiD Dl>’

25

where H is a stabilizing output injection. Since ( ?vl ) is stable and of McMillan degree n and

( v ) is antistable and also of McMillan degree n,'the function

M*
A- BF 0 BD, 0
M N\ _ 0 -A*4+C'H*| 0 C'D}
N M)~ -F  D*H*-B* | D, D'D;
C - DF H* DD, D

[ A|B
"\ C|D
has McMillan degree 2n. Note that since
M N* M N\
(N M‘)‘JB( N M) ’B;

M N*

we have by Lemma 3.1 that ( N A

(#15)

—-A* +C*JgDJgB* , C*JgD
DJgB* 1 D ’

) has the two equivalent realizations

and

Since D = JgD~!Jg, Lemma 4.1 implies that D and D, are such that
DD} = (I - D*D)7},
DiD, = (I - DD*)™,

We need to compute —A* + C*JgDJgB*,

-A*+C*JgDJgB*

[ -A*+FB* 0
= 0 “A-HC

of -F  Cr-FDr I -p*\(D o0 D;B*
HD-B H -D I 0 D 0

_{ -A+FB 0
= 0 A-HC

0
D,.C

Univ.-Bibl,
Kalsersgiauterp
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L -F*d-DD)-C*D c* ({D:Df 0 (B 0)
| -B BD*+ H(I- DD*) 0 DD, 0 C

([ -A*-c*DDyD;B*  C*DiD,C
B -BD,D;B* A+ BD*DiD:C |’

, Al B —A* +C*JgDJB* | C*JgD . o M N\
Since (T’T) and ( DIpB* D are both minimal realizations of N a1 )

there exists a unique non-singular state-space transformation Y = }liu 512 ) , which by Lemma 3.1
21 Y22
. Y Y nh Ya
is such that = , and such that
> ( Yar Yo e Y5
C = DJgB'Y,
YB =C*"JgD,

YA=(—A*+C*JgDJgBY)Y.

More explicitly, we have writing the equation Y B = C*JgD componentwise,

Yl] Y12 BD] 0
A\ Yy Yo 0 C*D

=< —F* C*—F‘D*)( I D*)(Dl 0 )
HD-B H -D -I 0 Di
and therefore
( Yu Yi ) ( B 0 ) _ ( _F*(I-D*D)-C*D _c* )
Y, Yoo 0o C* /. -B -BD*-H({I-DD*) |-
Hence, we have that ‘ |
_F*(I = D*D) = C*D = Y1 B,
-C* = Y12C7,
—~H(I - DD*) - BD* = Yp,C*,
-B =Y,,B,
which shows that
F=—(I-D*"D)"'D*C — (I - D*D)™'B*Y,,
H = -BD*(I - DD*)™' - Y,,C*(I - DD*)™L.
Writing YA = (- A* + C*JgDJgB*)Y, componentwise, we have for the (1,1) entry,
Y11(A - BF) = (-A* — C*DD,D}B*)Y11 + C*DD:1CYy,,

and using the above identities, this gives,
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0= (A*+C*DDD}{B*)Yy, + Y11(A+ B[(I - D*D)"'D*C + (I - D*D)"'B*Y1))
+C*D;D,C
=(A*+C*D(I - D*D)'B*)Y +Y(A+ B(I - D*D)"'D*C)+
YB(I - D*D)"'B*Y + C*(I - DD*)"'C,
where we have set Y := Y},. Evaluating the (2,2) entry we obtain,
Yy2(-A*+ C*H*) = -BD, D} B*Y12 + (A+ BD*D{D,C)Yz,,
or,
0=(A+ BD*(I-DD*)"'C)Z + Z(A* + C*(I1 - DD*)"'DB*)
+ZC*(1 - DD*)"'CZ + B(I - D*D)"'B*,

where we have set Z := Y5;. Note that A — BF and A — HC are stable with F and H as above.

It can be verified in a straightforward but tedious way that if state space representations are
given as in the statement of the theorem that the transfer functions of these representations give
doubly coprime factorizations with the required properties.

a

In the proof of the theorem we also gave a proof of the well-known result that the so called
bounded-real Riccati equation has a stabilizing solution.

Corollary 5.1 Let(A, B,C, D) be a minimal realization of a bounded-real rational function. Then
there ezist hermitian solutions Y respectively Z to the Riccati equations

0=(A+ B(I-D*D)"'D*B*C)*+Y(A+ B(I - D*D)"'D*C)+
YB(I - D*D)"'B*Y + C*(I - DD*)"'C,
respectively,
0=(A+B(I-DD*)"'D*C)Z+ Z(A+ B({ - DD*)"'D*C)*
+ZC*(I1- DD*)"'CZ + B(I - D*D)™'B*,
such that A — BF and A — HC respectively are stable, where
F=-(I-D*D)'D*C - (I - D*D)"'B*Y,
H =-BD*(I - DD*)"! - ZC*(I - DD*)™.

Proof: This statement was proved as part of the proof of the theorem. | O
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6 Positive-real functions

Positive real functions are of importance in many areas of ‘system and control theory, e.g. in
stochastic system theory or in adaptive control. We are now going to define what we mean by
positive-real functions and by the Jp-factorization of such functions.

Definition 6.1 A proper square stable rational function is called positive-real, if
G(iw) + G*(iw) > 0,
forallw € RU {£oo}. Let

[0 I
JP:(I 0).

A right (coprime) factorization of G = NM~! is called a Jp-normalized right (coprime) factoriza-
tion (Jp — RF respectively Jp — RCF) of G if

(M N‘)Jp(%):[.

Similarly, a left (coprime) factorization is called a Jp-normalized left (coprime) factorization (Jp—
LF respectively Jp — LCF) of G if

- . N*
(¥ M)JP(M*)_I.
The following proposition establishes the existence of J p-factorizations.

Proposition 6.1 Let G be a proper rational positive-real function of McMillan degree n. Then
there erists a Jp-right (left) factorization,

G=NM"' (G=MR)
This factorization is right (left) coprime and is unique up to right (left) multiplication by a constant

unitary matriz. All such factorizations are such that

Ajg ) (( -N M )) is of McMillan degree

n.

Proof: Let G = ED™! be a right polynomial coprime factorizva.tion. Let T be a square stable spectral
factor of E*D + D*E,i.e. T*T = E*D + D*FE and proceed as previously. a

Some properties of Jp-factorizations are summarized in the following lemma. k

Lemma 6.1 Let G = NM-1 be a Jp-RF and G = M~YN a Jp-LF of the positive-real function
G. Then
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Proof: The statements are easily verified. : O

A few useful identities are given in the following Lemma.

Lemma 6.2 Consider

Dy, -Dy\ (1 -I D, 0
DDy, D*D; ) "\ D D* 0 D7)’

with D, and D, invertible and D is square such that D + D* > (. Then
— -1
1 D, -D,
‘ DD, D*D;

(D" o D* I (D + D*)! 0
= 0 ﬁl"‘ -D I 0 (D+D')"1 ’

2 If
( DD131 1;*%; ) =Jp ( DDBI D—%I; ) ’s;
then
D\Dj = (D + D*)7!,
DD, = (D + D*)™.
Proof: ‘The statements are checked in a straightforward way. a

We can now characterize doubly coprime factorizations for positive-real functions.

Theorem 6.1 Let (A, B,C, D) be a minimal realization of the proper positive-real rational function
G of McMillan degree n.
Then all doubly coprime factorizations of G, such that
1.G=NM""isaJp-RF and G= M~'N is a Jg-LF,
9 M U v -U
' N V)] -N M )
are of McMillan degree n.

are given by

(M U)= A-BF | BD, BD;+ HD;'

N V —F Dl D2 Y
C-DF|DD, D;'+DD,
v A-HC | HD-B -H
( —N M ) = -—DI-IF - Di_ngﬁlc Dl_l + Dl—lDzle —D1—1D2vl )
D,C ~D,D D,
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where

e D, is such that DD} = (D + D*)~1,
e D, is such that DyDy = (D + D*)~!.
o D, is arbitrary .

o Y and Z are solutions of the Riccati equations
0=(A-B(D+D*)Y1C)y'Y +Y(A - B(D + D*)"'C)
+YB(D + D*)"'B*Y + C*(D + D*)"'C,
0=(A-B(D+D")"'C)Z + Z(A - B(D + D*)"'C)
+ZC*(D + D*)"'CZ + B(D + D;‘)’IB‘,
such that A — BF and A — HC are stable, with
F=(D+ D*)"'C - (D + D*)"'B*Y,
H = B(D+ D*)"' —ZC*(D + D*)"'.

Proof: Let G have a minimal realization (4, B,C, D). Let G = NM ™! be a right factorization G
such that

. N M\ _
(‘M N )Jp( e ) =I
Such a factorization exists by Proposition 4.1 and has the same McMillan degree as G. By Theo-
M
that of G' has a state space realization of the form,

rem 2.2 any right factorization

such that the McMillan degree of ( AA{ is the same as

. A- BF | BD,
N = -F D] y
C-DF|DD,

where F' is a stabilizing state feedback and D, is invertible. Similarly, a left factorization G =

M~=1N such that
- . -M*
(-# ¥ )JP( s )_—1,
exists and is of McMillan degree n and has a state-space representation of the form

L A-HC| H B-HD
(-m N)E( D.C =D, DD )

where H is a stabilizing output injection. Since ( 11\V4 ) is stable and of McMillan degree n and

— -

( N ) is antistable and also of McMillan degree n, the function
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A- BF 0 BD, 0
M -M")\_ 0 -A*+C*H*| 0 C*D;
N N+ |~ -F -H* D, -D;
C-DF D*H*-B* |{DD, D*D;
[ A|B
“\C|D
has McMillan degree 2n. Note that since
M M M -\
(N N‘)_JP(N N*) '8
M -M* . —
we have by Lemma 3.1 that ( N N~ ) has the two equivalent realizations

(#15)

-A* +C*JpDJgB* | Cc*JpD
DJgB* | D )

and

Since D = J,D~*Jg, Lemma 4.1 implies that D and D, are such that
D\Di = (D + D)7,
DD, =(D+ D" L

We need to compute —A* + C*JpDJgB*,
-A* +C*JpDJBB*

[ -A*+ F*B* 0
- 0 A-HC
-F* C*— F*D* I -I D, 0 D:iB* 0
+(—H HD-B )JP(D D‘)( 0 ﬁ';)']B( 0 ﬁlc)_
[ -A"+ F*B* 0
- 0 A-HC
L -F ¢ -FD D -D* DD} 0 B* 0
-H ‘HD-B I I 0 D;D; 0 C
[ -A*~+ F*B* 0
- 0 A-HC

+[ -F@@+D)+cC c* D\D; 0 B* 0
-B H(D+D*)-B 0 DD, 0 C



6 POSITIVE-REAL FUNCTIONS 32

_( -A*+cC*D,D{B* C*DiD,C
- -BD,D;B* A-BDiD.C |’

. Al B ~ A" +C*JpDJpB* | C*JpD . o M -,
Since (T’T) and ( DILE D are both minimal realizations of N § )

there exists a unique non-singular state-space transformation Y = }IC“ ?2 ) , which by Lemma 3.1 N
‘ 21 Y22
. Yin Y noYa
is such that = , and such that
; ( Ya Y Yy Yy
C = DJgBY,
YB =C"JpD,

YA = (—A"+C"JpDJgB"YY.

More explicitly, we have writing the equation Y B = C*JpD componentwise,

Y1 1 Y12 BD1 0

:(—F* C‘—F*D‘)(O 1)(1 4)(1%_0 )
-H HD-B I 0 D D* 0 Dj
and therefore |
(Yu le)(B 0 ):(—F'(D‘*'D')'*‘C* -C* )
Y5 Yoo 0 C -B ~-H(D+D*)+B |~
Hence, we have that ’
-F*(D+D*)+C* =Ynhb,
-C* =Y1,C*,
—~H(D + D*)+ B = Y5,C*,
-B =Y13B,
which shows that
F=(D+ D*)"'C - (D + D*)"'B*Yy,,
H=B(D+ D*)™! — YouC*(D + D*)~L.
Writing Y A = (- A* + C*JpDJpB*)Y, componentwise, we have for the (1,1) entry,
Y11(A — BF) = (—A* + C*D; D} B*)Yy1 + C*D1D,1CY7y,,
and using the above identities, this gives, ‘
0= (A* — C*DyD;B*)Y11 + Y11(A - B[(D + D*)"'C + (D + D*)"'B*Yn1))
'+C'15{75,C
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= (A" = C*(D + D*)"'B*)Y + Y(A - B(D + D*)"'C)+
YB(D + D*)"'B*Y + C*(D + D*)"'C,

where we have set Y := Y;,. Evaluating the (2,2) entry we obtain,

—

Yas(~A* + C*H*) = ~BD, D} B*Yy3 + (A = BD}D,C)Yas,
or,
0=(A- B(D+D*)"'C)Z + Z(A* - C*(D + D*)"1B*)
+ZC*(D + D*)"'CZ + B(D + D*)"'B".

The remaining part of the proof is analogous to the equivalent steps in the previous theorems. 0O

In the proof of the theorem we also established the well-known result that positive-real Riccati -
equations have a stabilizing solution.

 Corollary 6.1 Let (A, B,C, D) be a minimal realization of a positive-real rational function. Then

there erist hermitian solutions Y respectively Z to the Riccatt equations
0=(A*-—C*(D+ D*)"'B")Y +Y(A-B(D+ D*)"'C)+
YB(D + D*)"'B*Y + C*(D + D*)"'C.
respectively,
0=(A- B(D+D*)"'C)Z + Z(A* - C*(D + D*)"'B*)
+ZC*(D+ D*)"'Z + B(D + D*)"'B*.
such that A — BF and A — HC are stable, where
F=(D+D*)'C-(D+ D",

H = B(D + D*)"! = ZC*(D + D*)".

Proof: This statement was proved as part of the proof of the theorem. |

7 REFERENCES

[1949] A. Beurling. ”"On two problems concerning linear transformations in Hilbert Space”.
Acta Math., 81, 239-255.

[1980] Desoer, C.A., R.W. Liu, J. Murray and R. Saeks. "Feedback system design: the fractional
representation approach”, IEEE TAC, 25, 399-412.



7 REFERENCES ‘ 34

[1971] R.G. Douglas, H.S. Shapiro and A.L Shields. *Cyclic vectors and invariant subspaces for
the backward shift.” Ann. Inst. Fourier, Grenoble, 20,1, 37-76.

[1984] J.C. Doyle, " Lecture Notes in Advances in Multivariable Control”, ONR/Honeywell
Workshop, Minneapolis, MN.

[1975] P. A. Fuhrmann, "On Hankel operator ranges, meromorphic pseudo-continuation and
factorization of operator valued analytic functions”, J. Lond. Math. Soc., (2) 13, 323-327.

[1976] P. A. Fuhrmann, " Algebraic system theory: An analyst’s point of view”, J. Franklin
Inst., 301, 521-540.

(1979] P. A. Fuhrmann, "Linear feedback via polynomial models”, Int. J. Contr. 30, 363-377.

[1981] P. A. Fuhrmann, Linear Systems and Operators in Hilbert Space, McGraw-Hill, New
York.

(1985) P. A. Fuhrmann, “The algebraic Riccati equation - a polynomial approach” Syst. and
Contr. Lett., 369-376.

[1991] P. A. Fuhrmann, “ A polynomial approach to Hankel norm and balanced approximation”,
Lin. Alg. Appl., 146, 133-220.

[1992] P. A. Fuhrmann and R. J. Ober, "A functional approach to LQG balancing”, to appear
in International Journal of Control.

(1985] J. Hammer, ”Nonlinear systems, stablhzatlon and coprimeness”, International Journal
of Control, Vol. 42, pp. 1 - 20.

[1978] M. L. J. Hautus and M. Heymann, ”Linear feedback-an algebraic approach”, SIAM J.
Control 16, 83-105.

[1980] T. Kajlath; Linear systems, Prentice Hall, Englewood Cliffs, N.J.

[1982] P. Khargonekar and E. Sontag. ”"On the relation between stable matrix factorizations
and regulable realizations of linear systems over rings”, IEEE TAC, 27, 627-638.

[1989] D. McFarlane and K. Glover, "Robust controller design using normalized coprime factor
plant descriptions”, Lecture Notes in Control and Information Sciences, vol. 10, Springer Verlag.

[1987] D. Meyer and G. Franklin, ”A connection between normalized coprime factorizations and
linear quadratic regulator theory”, IEEE Trans. on Auto. Contr. 32, 227-228.

[1975] A. S. Morse, ”System invariants under feedback and cascade control”, Lecture Notes in
Economics and Mathematical Systems, vol. 131 (Proc. Symp. Udine), Springer Verlag.

[1984] C.N. Nett, C.A. Jacobson and M.J. Balas. ™ A connection between state-space and
doubly coprime fractional representations”. IEEE TAC, 29, 831-832.

[1989] R.J. Ober, D.C. McFarlane. "Balanced canonical forms: a norma.hzed coprime factor
approach.” Linear Algebra and its Applications, 122-124: 23-640.



7 REFERENCES 35

[1970] H. H. Rosenbrock, State Space and Multivariable Theory, J.Wiley, New York.

{1988] M.S. Verma, "Coprime Fractional Representations and Stability of Nonlinear Feedback
Systems”, International Journal of Control, 48, 897-918.

[1985]) M. Vidyasagar, Control System Synthesis: A Coprime Factorization Approach, M.I.T.
Press, Cambridge MA.

[1988] M. Vidyasagar. ”Normalized coprime factorizations for non strictly proper systems”.
Automatica, 85-94. Med Y //

[1976] D. C. Youla, J. J. Bongiorno and H. A. Jabr, "Modern Wiener-Hopf design of optimal
controllers, Pt. 2 The multivariable case”, IEEE Transactions on Automatic Control, 21, 319-338.



