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Abstract 

In this paper we will give a uniform approach to the derivation of state space formulas of 
coprime factorizations, of different types, for rational matrix functions. 

1 Introduction 

. 
The notion of coprimeness is as old as mathematics and goes back at least to the golden age of 

Greece, we refer to the Euclidean algorithm for the computation of the greatest common divisor of 
two integers. 

Our interest in this paper lies in the representations of rational functions, i.e. quotients of 
coprime polynomials. By the Euclidean algorithm, or equivalently via ideal theory, coprimeness of 
two polynomials p, q is equivalent to the solvability of the Bezout equation 

up+bq= 1 

over the ring of polynomials. 
With changing our focus to the study of matrix rational functions, the use of left and right 

matrix fractions of the form 
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with N,x, D,D polynomial matrices. Such factorizations are called right and left coprime factor- 
izations respectively if there exist polynomial matrix solution to the Bezout equations 

XN+YD=I s 
and 

respectively. 

These polynomial coprime factorizations played an extremely important role in the development 
of algebraic system theory, and in particular in realization theory. In this connection we refer to 
Rosenbrock [1970], Fuhrmann [1976], Kailath [1980]. 

In a development parallel to system theory, operator theorists studied similar types of coprime 
factorizations, however over different rings (or rather algebras). The most prominent algebra in this 
connection is Hm, the algebra of bounded analytic functions on the unit disc, or alternatively a half 
plane. In the wake of Beurling [1949] came the intensive study of shift operators. Cyclic vectors 
for the (right) shift operator were identified already by Beurling as outer functions. The next step 
was to determine the cyclic and noncyclic vectors of the backward shift. The noncyclic vectors of 
the backward shift are important inasmuch as they generalize the role of rational functions. The 
fundamental contribution in this connection is the work of Douglas, Shapiro and Shields [1971] and 
its generalization to the matrix case in Fuhrmann [1975]. The interesting point is that noncyclic 
vectors in H2 are characterized in terms of special coprime factorizations over Hm. We will refer 
to these factorizations as DSS (Douglas-Shapiro-Shields) factorizations. 

As may be expected, the DSS factorization plays a central role in the development of infinite 
dimensional system theory. This is the theme of Fuhrmann [1981]. It is interesting to point out 
that the use of shift operators in infinite dimensiond system theory predates their use in algebraic 
system theory, which was originated in Fuhrmann [1976]. 

Realization theory is but a tool in the development of control theory. Thus the real interest 
in the use of coprime factorizations is their application to the solution of control problems, in 
particular to the construction of stabilizing controllers. The cornerstone of this whole area is the 
Kucera-Youla parametrization of all stabilizing controllers which is based on coprime factorizations 
over H-. Pioneering works in this direction are Desoer et al. [1980], McFarlane and Glover [1989]. 
State space formulas for coprime factorizations were first developed by Khargonekar and Sontag 
[1982], Nett 119841. The proof of coprimeness was done via explicit construction of doubly coprime 
factorizations. Specific choice was made for the solution of the Bezout equations, however no 
attempt was made to give an intrinsic characterization of the resulting doubly coprime factorization. 
We remedy this by showing that special choices lead to minimal McMillan degree doubly coprime 
factorizations. For the DSS factorization the state space formulas are due to Doyle [1984], and for 
the case of normalised coprime factorizations to Meyer and Franklin [1987], see also Vidyasagar 
[1985]. A polynomial approach to the derivation of normalized coprime factorizations was given 
in Fuhrmann and Ober [1992]. This method is powerful enough to lead to the unified derivation 
of state space formulas for various types of coprime factorizations, and this is the theme of this 
paper. For results concerning coprime factorization for nonlinear systems see e.g. Hammer [1985] 
and Verma [1988] 

After some preliminary results on polynomial models we will present a unified approach to the 
derivation of state space formulas for coprime factorizations and normalized coprime factorizations 
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for various classes of functions. Thus we will study the classes of all rational functions of given 
McMillan degree, the class of unstable ones, bounded real and positive real functions. Except for 
the case of unstructured coprime factorizations, all other coprime factorizations are naturally given 
in terms of special indefinite metrics. Applications of these coprime factorizations, as well as the 
methods used to obtain them, to other control problems will be given in a subsequent paper. 

The first author would like to thank the Center for Engineering Mathematics at the University 
of Texas at Dallas for its hospitality and support during the work on this research. Both authors 
wish to thank Prof. D. Pratzel-Wolters and the Department of Mathematics at the University of 
Kaiserslautern for their hospitality and support during the final preparations of this manuscript. 

2 General factorizations 

In this section we are going to analyze general factorizations of proper rational functions such that 
the factors are stable rational functions. The precise definition is as follows. 

Definition 2.1 Let G be a proper rational matrix-valued function. Then the factorisation 

1. G = NM-l is called a right factorization (RF) of G, if N,M are stabfe rational functions 
and M is invertible with proper inverse. 
If N, M are right coprime, i.e. if there exist stable rational functions 0, v such that 

M+Ni?=I, 

then the factorisation is cafled a right coprime factorization (RCF). 

2. G = $f-lfi is called a left factorization (LF) of G, if fi, ti are stable rational functions and 
A? is invertible with proper inverse. 
Zf N, fi are left coprime, i.e. if there exist stable rational functions U, V such that 

v&f-Ui&I, 

then the factorisation is called a left coprime factorization (LCF). 

It is a standard result (see e.g. Vidyasagar [1985]) that right (left) coprime factorizations are 
unique up to right (left) multiplication by a stable rational function with proper stable inverse. 

We are in particular interested in factorizations such that the McMillan degree of M 

c 1 
N equals 

the McMillan degree of G. The following Lemma shows that the McMillan degree of the function 
M 

c 1 N 
is always larger than the McMillan degree of the G = NM-l. 

Lemma 2.1 Let G = NM-l be a not necessarily coprime right factorisation of the proper rational 
function G. Then, 

I. if(z) E (*) isareakationof (F) then 
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is a realization of G. 

2. if we denote by 6(F) the h!cMiUan degree of the proper rutional function F then 

Proof: 1.) Note that, since M = Dl t Cl(s1- Al)-lB 1, it follows that M-l = DT1 - D~lC~(sI - 
Al + B1 D;‘Cl)-l Bl DL1. Therefore 

G = NM-l = [D2 -i- C&I - Al)-lBl][D;’ - D;‘Cl(sI - Al + BID;lCl)-lBID;l] 

= D2D;’ i- C2(sI - Al)-lBlD;’ 
-D2D;‘Cl(sI - Al t BID;lCl)-lBID;l 
-C&I - Al)-lBID;lCl(sI - Al t BID;lCl)-lBID;l 

= D2D;* - D2D;‘Cl(sI - Al t BID$I)-‘BID;’ 
+&(sI - Al)-+1 - Al + BID;%1 - BID$I](sI - AI + BID;‘CI)-~&D;~ 

= D2D;l t (C2 - D2D;‘Cl)(sI - AI t BID;%‘I)-~BID;~. 

2.) This follows immediately from part 1.) cl 

The following proposition gives a method to obtain factorizations using polynomial matrices. It 

establishes the existence of a factorization G = NM-l such that the McMillan degree of M 

c 1 N 
equals the McMilIan degree of G. A key step in the proof of this proposition is the following result 
that follows from the realization theory via polynomial models. For information on polynomial 
system and realization theory see Fuhrmann [1981]. 

Theorem 2.1 Let G = ND-’ be a coprime factorisation and let (A, B, C) be Q minimal realizution 
of G. Let G’ = MD-l. Then G’ bus a reakzation (A, B, Co) for some Co. 

With the help of this theorem we can now prove the desired existence result of right factoriza- 
tions with a given McMillan degree constraint. 

Proposition 2.1 Let G be a proper rational transferfunction and let G = ED-l (G = n-‘i?) be Q 
polynomial right (left) p co rime factorization. Let T (??) b e a square stuble polynomial matrix of the 
same dimensions as D @), such that N := ET-l (fi := F-‘E) and M := DTml (&i := T-‘n) 
are proper and M (i@) has a proper inverse, then 

is Q right (lej?) f ac orization t of G (-G) and the McMil6an degree of 

the McMillan degree of G (-G). 

(( -I? hYf )) equals 

Proofi The construction implies that N44-1 is a right factorisation of G. 
Let G = (A,B,C,D) b e a minimal realisation of G. Since G = ED-l and iVsl = TD-l, 

Theorem 2.1 implies that MS1 has a realization given by 
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for some Cu. Hence A4 has a realization given by 

M ~ /I- BWdCo B&4 

C -~(ocwo 1 wJ4 * 

Since N = ET-l it follows again from Theorem 2.1 that 

N & /I- BM@‘+o BM(m) 
C Cl Dl , 

for some Cl and DI and therefore 

This shows that there exists a right factorisation whose state space reahzation has the same state- 

space as the realization of G. Therefore the McMillan degree of M 

c 1 N 
is less than the McMillan 

degree of G and by Lemma 2.1 equal to the McMillan degree of G. 
The statement concerning left factorizations is proved using the duality that G = NM-l is a 

right factorization if and only if GT = (My)-l NT is a left factorization of GT. cl 

In the following theorem all right factorizations G = NM-’ of a proper rational function G 

are characterized such that the McMillan degree of G equals the McMillan degree of 
M 

c 1 N - 
These factorizations are precisely those that can be obtained via the state feedback construction of 
Khargonekar and Sontag [1982] and later of Nett et. al. [1984]. Clearly this approach also provides 
a proof for the existence of right factorizations. 

Theorem 2.2 Let G be a proper rational function G and let G = AIB 

ization. 
c 1 -m- 

be a minimal real- 

Then G = NM-l is a, not necessarily coprime, right factorisation of G such that the McMillan 
M 

degree of N 
c ) 

equals the McMillan degree of G if and only if there exists a state feedback F such 

that A - BF is stable, and an inuertible matrix DI, s.t. has a realization giuen by 

Proofz Let G = NM.-l be a right factorization. Let 
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be a minimal realisation and assume that G and A4 

c 1 
N have,the same McMillan degree. Since by 

assumption A4 has a proper inverse, & is necessarily invertible. The stability of A4 and N implies 
that Al is stable. By Lemma 2.1 we have that s 

have the same McMillan degree this implies that this realisation of G is also 

From here we can see that we have 

Bl = BDl, 

Al = A+BCl, 

C2 = C + DCl. 

Since Al is stable and G G 

state feedback such that, 

and is minimal, this shows that F := -Cl is a stabilizing 

Since it4 has a proper inverse by the assumption, this shows that Dl = A!f(oo) is invertible. 

Conversely, let Dl be invertible and let F be such that A - BF is stable. Define by 

(:)=(~). * 
Then clearly the McMillan degree of M 

c 1 
N is less than or equal to that of G since both have a 

reaJization on the same state-space. It can be verified easily that G = NiEf-l. Hence by Lemma 2.1 

and G have the same McMillan degree. 

q 

The following corolIary summarises the analogous results concerning left factorizations. 
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. 

Corollary 2.1 Let G be a proper rational function and let G z 
A B 

C+J 
C D be a minimal realiza- 

tion Then G = M-lN is a, not necessarily coprime, left factorisation of G such that the McMillan 
degree of ( -N M ) equals the McMillan degree of G if and only if there exists a output injection 

II, such that A - HC is stable, and an invertible mat& nl, s.t. ( -& fi ) has a realisation 
given by 

( -N A? ) = 
C 

A-HC HD-B -H 
Dlc 

1 -DID Dl ’ 

Proofi The result can be obtained from the previous theorem, by using the duality that G = NM-’ 
is a right factorisation if and only if GT = ( MT)-l NT is a left factorization. cl 

In this theorem and corollary we examined right (left) factorizations. It was left open whether 
these factorizations are in fact coprime. In order to answer this question we will make use of 
socalled doubly coprime factoAzations. 

Definition 2.2 The two proper stable rational block matrices 

(; ;), (-; ;), 

with M (u) h aving a proper inverse, form a doubly coprime factorization of the proper rational 
function G, if 

(-; :)(: ;)=(; ;) 

and 

We are particularly interested in doubly coprime factorizations such that all three functions 

G, (-> 2) (; ;) 

have the same McMillan degree. 
Before we can derive state-space realizations of the doubly coprime factorizations we need to 

state the folIowing lemma, which is a key step in the proof of the subsequent corollary. It is a 
consequence of standard arguments in realization theory. 

Lemma 2.2 Let G = [Gl, Gz] be a proper rational function. Assume that Gl has McMillan degree 
n, then the McMillan degree of G is n if and only if for the Hankel operators HG, and HG~ we have 

IfthisisthecaseandG~~ 

space reulixdon of the form 

is a minimal state space malization, then Gz has a state 
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for some L and D2. 

The following corollary answers two questions. Given a rational function of McMillan degree n, 
all doubly coprime factors are characterised that have McMillan degree n. As a consequence of the 

construction, we see that a right factorisation G = NM-r such that has McMillan degree 

n is necessarily right coprime. 

Corollary 2.2 Let G be a proper rational function of McMillan degnze n. All doubly coprime 
factorizations of G such that 

have McMillan degree n are given by 

and 

HD-B -H 
D;’ + Dc1D2DID -D;‘D2DI , 

--BID a 

where G = is a minimal realisation and F (H) is such that A- BF (A- HC) is stable 

Dl, DI are invertible and D2 is arbitrary. 

Prooft Let be doubly coprime factors of McMillan degree n. Then G = 

NM-l is a right factorization such that has McMillan degree n. Let 

be the minimal realization of of Theorem 2.2, where F is a stabilizing state feedback and 

DI is invertible. By assumption U, V are such that the McMillan degree of is equal to 

that of By Lemma 2.2 thus has a has a realization 
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. 

. 

for some L : Km + X, Ds : Km + KP and Ds : KY” -+ KY’” and therefcve, 

Similarly, the other factor has a state-space realization 

(-; ;)=(yy%gg-), 

for some z : X -+ Km, nz : Km + Km and iis I A?’ -+ Km and where I3 is a stabilizing output 
injection and Dr is invertible. 

We first consider the feedthrough terms. Since we have a doubly coprime factorization we need 
to have that, 

C 
173Dl+&D~l ndh + Ddh Z 

-~lD~l+171DDl -nl~~2+nlD3 1 

C 
&D~+&DD~ ihDz+%Ds Z 

0 1 -I&DD~+Z~~D~ . 

Solving these equations we obtain after some calculations that 

&= D;'+D;'D&D, 

Hence, we necessarily have that 

To determine L and z, we calculate the state-space realizations of the cascaded system 

A-IfC HD-B eH] [ C~?IF] 

i 1 

A-BF I3Dl L 

I 0 

KC 0 I 
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A-HC BF-HC -BDl -BDz - Hxl 
0 A-BF C BQ L 
L -D;'F - DTIDzDIC I 0 

z&c DlC 0 I 

gives 

A-HC 0 0 -BDz - HF1 + L 
0 A-BF BDI L 

DfC 
-D;'F - D;'DzDIC - L I 0 

0 0 I 

Consider the (2,2) subsystem 

I5 A-HC -BDz-Hx'+L 
DIG I 

and the (1,l) subsystem 

IS 
C 

A-BF Bh 
-D;'F - DT1D2DlC - L I * 

Since Dr and Dl are invertible, the first system is observable and the second system is reachable. 
Hence these two systems are I if and only if 

or if and only if 

L=BDz+Hxl 

and 

Conversely, let Dz be arbitrary and let (z F) and ( JN $) bedefinedthroughthe = 

state-space realisations in the statement of the corollary. Then it can be checked in a straightforward 
way that 

By construction, the McMillan degrees of these two functions are less than or equal to that of G. 
Lemma 2.1 then implies that the McMillan degrees of all three functions are the same. 

cl 

The following corollary state-s that McMiUan degree n factors of rational functions of McMillan 
degree n are necessarily coprime. 
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Corollary 2.3 Let G = NM-l be a, not necessarily coprime, right factorisation of G. If the 

McMillan degree of 
M 

c 1 
N equals the McMillan degree of G then N an M are right coprime. 

Similarly, let G = fi-lfi be a, not necessarily coprime, left factorisation of G, If the McMillan 
degree of ( -fi I@ ) equals the McMillan degree of G then &r an ti are left coprime. 

Proofi This follows immediately from the previous corollary where solutions to the Bezout equations 
were constructed. cl 

3 Antistable functions 

One of the main purposes of this paper is to derive state-space realizations of factorizations that 
are normalized in certain ways. The first class of systems for which we are going to consider 
normalized factorizations is the class of antistable functions. By an antistable function we mean 
a function whose poles are in the open right half plane. Here the factorization is normalised so 
that the denominator M is inner, i.e. M*M = 1. This type of factorization has been introduced 
by Douglas, Shapiro and Shields [1971] f or scalar functions and by Fuhrmann [1981] for matrix- 
valued functions. It is therefore referred to as the Douglas-Shapiro-Shields factorization (DDS). 
This factorization is amongst other applications particularly important in the theory of Hankel 
operators. State space formulae for DSS-factorizations appear in the control literature, see e.g. 
Doyle [ 19841. 

Let G be a proper antistable function, i.e. all poles of G are in the open right half plane. A 
right (left) coprime factorization G = NM;l (G = &f-lfi) is called a right (left) Douglas-Shapiro- 
Shields (DSS) factorization if M*M = I (Mi@* = I.) 

The existence of a DSS factorization is guaranteed by the following proposition. 

Proposition 3.1 Let G be an antistable proper rational function of McMiilan degree n. Then there 
exists a right (left) factorisation 

G z NM--l (G z a+) 

. 

with M*M = I (fi*&$ = I). M oreouer, M and ti have McMillan degree n. The right (Zeft) 
factorisation with this property is unique up to right (left) multiplication by a unitary constant 

matrix. All such factorizations are coprime and such that ((-N ti))hasMcMillan 

degree n. Moreover, M and fi have McMillan degnze n. 

Proof: Let G = ED-l be a right polynomial coprime factorization. By assumption D is antistable. 
Let T be a square stable spectral factor of D*D, i.e. D*D = T*T. Then 

(;) := ($) 

defines by Proposition 2.1 right factors of G, i.e. G = NM-l with N, M and Ms1 proper and 
M 

c 1 N 
has the same McMillan degree as G. Hence the factorization is coprime by Corollary 2.3. 

Clearly, M*M = I. Since II is antistable and T is stable, there are no pole-zero cancellations and 
therefore M is of McMillan degree n. Let G = NM-l = NlMi’ be two DSS factorizations of G. 



3 ANTISTABLE FUNCTIONS 12 

Since both are coprime factorizations, there exists a stable function Q with proper stable inverse 
that relates the two factorizations (see e.g. Vidyasagar [1985]). In particular, A4 = MrQ. Since 
1= M*M = Q*MiMrQ = Q*Q, this shows that Q = Q-*. Since Q is stable with proper stable 
inverse, this implies that Q must be a constant unitary matrix. 

The statement concerning left factorizations follows analogously. cl 

The following Lemma wilI be important in the proofs of the main theorems of this and subse- 
quent sections. 

Lemma 3.1 Let U(s) be a proper rationatfunction such that 

U(s) = JJqs)-*J2, s c c \ o(U), 

where J;, i = 1,2, are constant matrices such that Ji = J,:l = J,?, i = 1,2. Let ,?IJ E 

a minimal realisation of U(s). Then, 

1. D = JID-*J2. 

2. U(s) has another minimal realisation of the form 

-A* + C*JIDJ2B* C*JID 
‘=(: :)=( DJ2B* D )’ 

and there exists a unique non-singular state-space transformation Y between these two real- 
izations such thut Y = Y *, and 

YA = (-A* + C*JIDJ2B*)Y, 

YB = C*JID, 

C = DJ2B*Y. 

Proof: Note that 

and 

(yJ-* x 
-A* + C*D-*B* C*D-* 

- 
D-•B* D-* 

and therefore 

U = JIU-*J2 G 
-A* + C*D-*B* C”D-*J2 

JID-*B* 

Since U = Jl U-* Jz we clearly have that D = Jl D-* Jz. Since U E is a minimal 

realization there exists a unique non-singular state-space transformation T, between this and the 
second realisation of U, i.e. 

C = JID-*B*T, 
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B = T-‘C*D-*J2, 

A = T-‘(-A* + C*D-*B*)T. 

Dualizing these equations, we obtain, 

9 C* = T*BD-’ JI, 

B* = J2D-‘CT-*, 

A* = T*(-A + BD-‘C)T-*. 

Solving for A, B and C we have, 

C = DJ2B*T* = JID-*B*T* 

B z T-•C*J1D = T-*C*D-*J2, 

A = -T-•A*T* + BD-lC = -T-*AT* + T-•C*D-*J2D-‘JID-*B*T* 

= T-*(-A* + C*D-*B*)T*. 

But this shows that T* is also a state-space transformation between the two systems. The unique- 
ness of the transformation therefore implies that T* = T. The form of the realization of U given 
in the statement, follows immediately from the above identities. cl 

. 

Proposition 3.1 showed that a right (left) DSS-factorization is unique up to right multiplication 

by a constant unitary matrix. The factorization is such that the McMillan degree of 
M 

c J 
N 

equals the McMillan degree of G. In the following theorem all doubly-coprime factorizations are 

characterized which are such that M 

c J N 
forms a DSS-factorization of G. 

Theorem 3.1 Let G be an anti&able proper rational transfer function of McMillan degree n with 
minimal state-space realizution (A, B, C, D). Then all doubly coprime factorizations, such that 
G = NM-l, with MM* = I, and G = hSII? with u&f* = I, and the McMillan degrees of 

( f F) and ( yN z) aren, aregivenby 

. 
A - .ZC*C .ZC*D - B -2X* 

-DiB*Y - DiDzDlC Di + DiDsDlD -DiDzDl 7 
---DID n 

where DI is arbitmry such that Dl = DF*, i51 is arbitmy such that nI = nL*, Dz arbitm y, and 
Y and 2 are the unique positive definite solutions to the R&c& equations 

AY + YA* - YBB*Y = 0, 
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A*2 + ZA - ZC*C.Z = 0. 

Proof: Let G = NM-l be a DSS factorization such that A4 

c J 
N has McMillan degree rx. This exists 

by Proposition 3.1. By Theorem 2.2 any right factorization G = NM-l such has McMillan 

degree n is of the form 

where F is a stabilizing feedback and Dr = M(oo) is invertible. Since &i is such that M*Af = I, 
we have that 

A4 = Iv-*. 

Since M has McMillan degree n, the realization 

is minimal. Lemma 3.1 now implies that there exists a unique non-singular state-space transfor- 
mation Y = Y* such that 

PBD~ = -FEDS, 
. . 

-F = DID;B*Y = B*Y, 

%‘(A - BF) = (-A* + F*B* - F*DIDTB*)$’ = --A*p. 

Using that F = - B*p we can rewrite the equation 

?(A 7 BF) = -A*? 

as 

A*P + PA + PBB*P = 0. * 
Setting Y := -Y, this equation is equivalent to the more conventional equation, 

A*Y + YA - YBB*Y = 0. . 

Since Y is invertible, this Kccati equation is equivalent to the Lyapunov equation, 

Y-‘A* + AY-’ - BB* z 0 , 

which shows that Y-l and therefore Y is positive definite. Since A* is antistable, Y-r is the unique 
positive definite solution of this equation. Hence Y is the unique positive definite solution to the 

R,iccati equation. A state space realization of is given by 
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where LIr is arbitrary such that III = LI;*. 

, 
The expressions for the doubly coprime factors now follow from Corollary 2.2. 
An analogous argument or the duality consideration that G = NM-l is a right factorisation if 

and only if GT = (A4T)-1N T, shows that a state space reabzation of [ -IV ti ] is given by 

[ -N ii ] = A- .ZC*C ZC’D - B -ZC* Dl& -DID DI 

where Z’is the unique positive solution of the Riccati equation 

AZ + .ZA* - ZC*CZ = 0, 
, 

and Dr is arbitrary such that Dr = py*. The remaining part of the argument is analogous to tbe 
above derivation. 

Conversely, let Y be the unique positive definite solution to the R.iccati equation 

A*Y + YA - YBB*Y = 0. 

Constructing the DSS factorization of G as in Proposition 3.1, proceeding as above and using the 
uniqueness of the solution Y, shows tbat 

gives a realization of the DSS factors of G. Hence F = B*Y is a stabilizing feedback and the 
state-space construction gives indeed the required factorizations. 

cl 

The expressions for the doubly-coprime factorizations can be simplified if we are only interested 
in a particular factorization and not in all of them. The choice Dl = I, fl = I and Dz = 0 would 
lead to such a simplification. 

As part of the proof of the theorem we have also shown the well-known result that a certain 
degenerate R,iccati equation has a stabilizing solution. 

Corollary 3.1 Let (A, B, C, D) b e an antistable continuous-time minimal system. Then there 
exists a unique positive definite solution Y (2) of the Riccati equation 

AY + YA* - YBB*Y = 0 (A*2 + ZA - ZC*CZ = 0). 

This solution is such that A - BB*Y (A - ZC*C) is stable, i.e. all eigenvalues of A - BB*Y 
(A - ZC*C) are in the open left half plane. 

Proofi This statement was proved as part of the proof of the theorem. cl 
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4 Minimal systems 

Normalized coprime factorizations proved to be powerful methods in control theoretic problems, 
especially in the area of robust control (see e.g. Vidyasagar [1985], McFarlane and Glover [1989], 
Fuhrmann and Ober [1992]). For their relevance in parametrization problems, see Ober and Mc- 
Farlane [ 19891. 

Let 

A right (coprime) factorization G = NM-l of G is called a JL-RF (JL-RCF) of G if 

(M* N*)(; ~)(~+w*~~+~V*IV=L 

Similarly a left coprime factorization G = z-‘%r the transfer function G is called JL-LF (a JL- 
LCF) of G if 

%W+MM*=~. 

The following proposition guarantees the existence of such factorizations. The existence and 
uniqueness result is due to Vidyasagar (see e.g. Vidyasagar [1985]). 

Proposition 4.1 Let G be a proper rational function of McMillan degree n. Then there exists a 
JL-right (6eft) factorisation, 

G = NM-’ (G = it?+). 

This factorisation is right (left) co rime and ,is unique up to right (left) multiplication by a constant p 

unitary matrix. All such factorizations are such that is of McMillan degree 

n. 

Proofi Let G = ED-l be a right polynomial coprime factorization. Let T be a square stable spectral 
factor of E*E + D*D, i.e. T*T = E*E + D*D. Then 

(;):=( $1:) 

defines by Proposition 2.1 right factors of G, i.e. G = NM-l with N, M and M-* proper 

and 
M 

c 1 N 
of McMillan degree n. This also implies by Corollary 2.3 that the factorization is 

coprime. Let now G = NlM;’ be another JL-right coprime factorization. Then there exists a 
stable Q with proper stable inverse (Vidyasagar [1985]) such that M = MlQ and N = NrQ. But 
I = M*M + N*N = Q*MTMlQ + Q*NiNlQ = Q*Q, w K s h* h h ows that Q = Q-*, which implies 
that Q is a constant matrix. 

The statement concerning left factorizations follows analogously. cl 

Note that for JL-factorizations G = NM-l = &-la we have that 
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The following Lemma will be useful in the proof of the subsequent theorem. 

Lemma 4.1 Consider 

C 
;A1 -g?)=(; -;*)( 2 g), 

with Dl and nl invertible. Then 

1. 

then 

DID; = (Z + D*D)-‘, 

xi& = (Z + DD*)-‘. 

Proofi The statements are checked in a straightforward way. 

The following theorem characterises all doubly-coprime factorizations such that G = NM-l is 
a JL right coprime factorization. The state-space formulae for JL- factorizations are not new. They 
are due to Meyer and Franklin [1987] for the strictly proper case and due to Vidyasagar [1988] for 
the general case. Our proof is however new in that the formulae are derived in a systematic way 
starting from the known existence of such factorizations. 

Theorem 4.1 Let (A, B, C, D) be a minimal realization of the proper mtional function G of McMil- 
lan degnze n. 

Then all doubly coprime factorizations of G, such that 

1. G= NM-l is a JL-RF and G = &fS1fi is a JL-LF, 

2. (; ;), ( yN z), 

are of h4cAfillan degree n, 

are given by 

(; qpJ-%y%F), 



4 MIhVMA,L SYSTEMS 18 

where 

l III is such that DIDi = (I+ D*D)-l. 

l Dl is such that flnl = (I + DD*)-‘. 

a Dz is arbitrary . 

l Y and .Z are solutions of the Riccati equations 

0 = (A - B(I + D*D)-‘D*C)*Y + Y(A - B(I + D*D)-‘D*C) 

-YB(I + D*D)-‘H*Y t C*(I t DD*)-‘C, 

o = (A - B(I -+ D*D)-‘D*C)Z t Z(A - B(I t D*D)-‘D*C)* 

--.X*(1 + DD*)-‘CZ •t B(I i- D*D)-‘B*, 

such that A - BF and A - HC are stable, where 

F = (I + D*D)-‘D*C + (It D*D)-‘B*Y, 

H = BD*(I -i- DD*)-’ i- ZC*(I t DD*)-‘. 

Proof: Let G have a minimal realization (A, B, C, D). Let G = NM-l be a right factorization G 
such that 

(M* N*)JL ; =I. 
c ) 

Such a factorization exists by Proposition 4.1 and has the same McMillan degree as G. By The- 

orem 2.2 any right factorization such that the McMillan degree of is the same as 

where F is a stabilizing state feedback and Dl is invertible. Similarly, a left factorization G = 
ti-lfi such that 

( -T? ti ) JL --** = I, 
c J 

exists and is of McMillan degree n and has a state-space representation of the form 

where H is a stabilizing output injection. Since is stable and of McMillan degree n and 

is antistable and also of McMillan degree n, the function 
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has McMillan degree 2n. Note that since 

(; -fJ-•q; --g, 

we have by Lemma 3.1 that has two equivalent realisations 

and 

Since V = IV- l, Lemma 4.1 implies that 27 and Dl are such that 

DIDi = (I + D*D)-l, 

rpl = (I + DD*)-1. 

We need to compute -d* + C*DB*, 

-d* + C*VB* 

-A*+ F*B* 0 C 
0 A-HC 

+ 
-F* (J’* - J’*D* 

B-HD H )(A -;*)(: ;)(D:B* &) 

-A* + F*B* 0 Z 0 A-HC 

+ 
-F*(I + D*D) + C*D c* 

B -BD* + H(I+ DD*) 

Z -A* + C*DDlDiB* c*iqi&c 
BDl Dr B* A - BD*qD& 
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Since (s) and (9) are both minimal reakations of ( f s ), 

there exists a unique non-singular state-space transformation Y = , which by Lemma 3.1 ~ 

is such that (2: zz)= (2 2) andsuchthat 

c = vt3*y, 

Yd = (Ad* $ C*DB*)Y. 

More explicitly, we have writing the equation Yf? = C*D componentwise, 

-F* Z B-HD 
C*-;D*)(; -;*)(; $) 

and therefore 

Hence, we have that 

-F*(I+D*D)+C*D = YllB, 

H(I+ DD*)- BD* = YzzC*, 

B=Y;B, 

which shows that 

F = (I+ D*D)-'D*C -(ItD*D)-'B*&, s 

H = BD*(I+ DD*)-' tY&*(It DD*)-'. 
l 

Writing Yd = (-d* t C*DB*)Y, componentwise, we have for the (1,l) entry, 

YdA- BF)=(-A*tC*DDID;B*)yb +c*17;Dlcy& 

and using the above identities, this gives, 

O=(A*- C*DDID;B*)YlltYll(A- B[(I+D*D)-'D*C -(ItD*D)-'B*Yll]) 
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Y**B(I + D*D)-*B*Y** - c*(I + my-lc. 

Setting Y := -Yii we obtain the Riccati equation 

0 = (A - B(1 + D*D)-‘D*C)*Y + Y(A - B(I + D*D)-‘D*C) 

-YB(I + D*D)-*B*Y + c*(I + m*)-lc. 

Moreover, with F = (1+ D*D)-lD*C + (1+ D*D)-lB*Y we have that A - RF is stable. 
Evaluating the (2,2) entry we obtain, 

Yz2(-A* + C*H*) = BDlD~B*Y12 + (A - BD*DplC)Y22, 

0 = (A - BD*(I + IID*)-‘C)Z + Z(A* - C*(I + DD*)-‘DB*) 

--zc*(I -i- DD*)-*cz + B(1 t D*D)-lB*, 

where we have set 2 := Yzz. Note that A - HC is stable with H = BD*(I i- IID*)-’ t ZC*(I t 
HI*)-*. 

It can be verified in a straightforward but tedious way that if state space representations are 
-given as in the statement of the theorem that the transfer functions of these representations give 
doubly coprime factorizations with the required properties. 

cl 

In the proof of the theorem we also established the well-known result that the algebraic Riccati 
equation has a stabilizing solution. 

Corollary 4.1 Let (A, B, C, II) be a minimal continuous-time system. Then there exist hermitian 
solutions Y and 2 of the Riccxti equations 

0 = (A - B(I+ D*D)-‘D*)*Y t Y(A - B(1 t D*D)-‘D*C) 

-YB(I t D*D)-*B*Y + c*(I -I- m*)-*c, 

respectively, 

0 = (A - B(I+ D*D)-lD*C)Z t Z(A - B(1 t DV)-‘D*C)* 

-zc*(I i- m*)-*cz -t B(1 j- D*D)-*B*, 

such that A - BF and A - HC are stable, where 

F = (I+ D*D)-‘D*C -t (I •t- D*D)-‘B*Y 

H = BD*(I t DD*)-’ t X*(1 t DD*)-‘. 

Proofi This statement was prcved as part of the proof of the theorem. 
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5 Bounded-real functions 

In this section we are going to consider stable rational functions that are bounded in magnitude by 
1 in the right half plane. We are going to define factorizations for this class of functions and are 
going to give the corresponding doubly coprime factorizations. 

Definition 5.1 A proper sta6le rational function is called bounded real, if 

I - G*(iw)G(iw) > 0, 

for idi w E 8? U {ho}. Let 

A right (coprime) factorisation of G = NA4-r is called a JB-normabzed right (coprime) factoriza- 
tion (JB - RF respectively JB - RCF) of G if 

(M* N* ) JB r = I. 
c ) 

Similarly, a Zeft (coprime) factorisation is called a ..JB-norm&zed left (coprime) factorization (JB - 
LF respectively JB - LCF) of G if 

The existence and uniqueness of such factorizations is established in the following proposition. 

Proposition 5.1 Let G be a proper rational bounded-ma1 function of McMiUan degree n. Then 
there exists a JB-right (left) factorisation, 

G = NM-’ (G = A?-‘@. 

This factorisation is right (left) co p rime and is unique up to right (left) mu&p&cation by a constant 

unitary matrix. AH such factorizations are such that is of McMillan degree 

n. 

Proofi Let G = ED-l be a right polynomial coprime factorization. Let T be a square stable spectral 
factor of D*D - E*E, i.e. T*T = D*D - E*E. Then 

defines by Proposition 2.1 right factors of G, i.e. G = NiU-l with N, h4 and iki-1 proper and 
M 

c ) N 
of McMillan degree n. This also implies by Corollary 2.3 that the factorization is coprime. 

The remaining parts of the proof follow in the standard way. cl 

Some properties of JB-factorizations are summxti in the following lemma. 
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Lemma 5.1 Let G = Nh4-1 6e a JB-RF and G = fimlN a JB-LF of the stable bounded-real 
function G. Then 

1. 

2. (F ;~)=JB( z iI)-*JB. 

Proofi The statements are easily verified. cl 

The following Lemma will be useful in the proof the subsequent theorem. 

Lemma 5.2 Consider 

C 
;il L$y)=(; ?)(;I &), 

with D1 and n1 inuertible and D such that I - DD* > 0. Then 

-1 

1. 
D1 D*fl 

DD1 q 

2. If 

D1 D*??; D1 D*q 
-* 

DD1 F DD1 q JB, 

then 

DID; = (I- D*D)-‘, 

qDl = (I - DD*)-‘. 

Proof: The statements are checked in a straightforward way. cl 

We are now in a position to characterise all doubly coprime factorizations so that G = N M-‘( = 
%$-la) is a JB-RF (JB-LF). 

Theorem 5.1 Let (A, B, C, D) be a minimal realisation of the proper bounded-real mtional function 
G of iUch4illan degree n. 

Then all doubly coprime factorizations of G, such that 

1. G = NM-’ is a JB-RF and G = tiWIH is a JB-LF, 

2% (; ;), (TN z), 

am of iUcMllan d&fee n, 
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are given by 

(; ;)+fJjyYF)7 & 

’ 

where 

l Dl is such that DIDi = (I - D*D)-‘. 

l Dl is such that ~DI = (I - DD*)-I. 

l D2 is arbitrary . 

l Y and 2 are so&ions of the Riccati equations 

0 = (A + B(I- D*D)-‘D*C)*Y + Y(A + B(I- D*D)-‘D*C) 

+YB(I - D*D)-‘B*Y + C*(I - DD*)-‘C, 

0 = (A + B(I- D*D)-‘D*C)Z + .Z(A + B(I- D*D)-‘D*C)* 

i-ZC*(I - DD*)-‘CZ t B(I- D*D)-‘B*, 

such that A - BF and A - HC are stable, where 

F = -(I - D*D)-‘D*C - (I - D*D)-‘B*Y, 

H = -BD*(I - DD*)-’ - ,X*(1 - DD*)-I. 

Proof: Let G have a minimal realization (A, B,C, D). Let G = NM-’ be a right factorization G 
such that 

( M* N* ) JB 

Such a factorization exists by Proposition 4.1 and has the same McMillan degree as G. By The- 

orem 2.2 any right factorization 
M 

c 1 N 
such that the McMillan ‘degree of is the same as 

that of G has a state space realization of the form, 

where F is a stab&zing state feedback and Dl is invertible. Similarly, a left factorization G = 
&f-lfi such that 

exists and is of McMillan degree n and has a state-space representation of the form 
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. 

where H is a stabilizing output injection. Since M c ,J N 
is stable and of McMillan degree n and 

is antistable and also of McMillan degree n, the function 

A-BF 0 
0 -A* + C*H* 

-F D*H*wB* 
C-DF H* 

has McMillan degree 2~. Note that since 

(; ;:) =JB(; ;:)-*J*, 

we have by Lemma 3.1 that has the two equivalent realizations 

and 

-A* + C*JB’DJBB* C*JBV 
‘DJBB* 

Since D = J~i9-l JB, Lemma 4.1 implies that D and DI are such that 

DID; = (I - D*D)-‘, 

qzl = (I - DD*)-‘. 
* 

We need to compute -A* + C*JBV JBB*, 

. -A* + C*JBVJBB* 

-A*+ F*B* 0 Z 
0 .A-HC 

+ -F* 
HD-B 

-A*+ F*B* 0 Z 
0 A-HC 

LJnlv.-abi. 
wm3iautfJra 
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t -F*(I - D*D) - C*D c* 
-B BD* t H(I- DD*) 

-A* - C*DDlDiB* c*Dp1 c t 
Z 

-BDlDiB* A j- BD*qn& ’ 

-A* +- C*JBVJBB* C*JBV 
si~ce (s) and ( vJ~t?* V ) 

arebothminirnalreakationsof ( t i: ), ’ 

there exists a unique non-singular state-space transformation Y = 

is such that (‘2: zi)= (2 2 ),andsuchthat 

which by Lemma 3.1 

C = VJBB*Y, 

YB = C*JBV, 

YA = (-A* t C*JBVJBB*)Y. 

More explicitly, we have writing the equation YB = C*JB’D componentwise, 

C -F* Z 
HD-B c*-;*D*) (-; :;) (; ;;) 

and therefore 

Hence, we have that 

-F*(I - D*D) - C*D = YllB, 

-c* = Y&*, 

-H(I - DD*) - BD* = Y&‘*, 
c 

-B = Y;B, a 

which shows that 

F = -(I - D*D)-‘D*C - (I - D*D)-‘B*Yll, 

H = -BD*(I - DD*)-’ - Y&*(1 - DD*)-‘. 

Writing YA = (-A* + C*JBVJBB*)Y, componentwise, we have for the (1,l) entry, 

Yll(A - BF) = (-A* - C*DDID;B*)Yll + C*D;n&Y&, 

and using the above identities, this gives, 
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0 = (A* + C*DDlDiB*)Yll + Yll(A + B[(I - D*D)-‘WC + (I - D*D)-‘B*Yll]) 

+C*FD1C 

s = (A* t C*D(I - D*D)-‘B*)Y -+ Y(A +- B(I - D*D)-lD*C)+ 

. YB(I- D*DyB*Y -+ c*(I - myc, 

where we have set Y := Yrt. Evaluating the (2,2) entry we obtain, 

Yzz(-A* + C*H*) = -BDlDiB*Ylz + (A + BD*~~~C)Y&, 

0 = (A t BD*(I - DD*)-‘C)Z t Z(A* t C*(I - DD*)-‘DB*) 

+X*(1 - DD*)-Yz + B(I - ml)-98, 

where we have set 2 := Yzz. Note that A - BF and A - HC are stable with F and H as above. 
It can be verified in a straightforward but tedious way that if state space representations are 

given as in the statement of the theorem that the transfer functions of these representations give 
doubly coprime factorizations with the required properties. 

Cl 

In the proof of the theorem we also gave a proof of the well-known result that the so called 
bounded-real R,iccati equation has a stabilizing solution. 

Corollary 5.1 Let (A, B, C, D) 6 e a minimal realizution of a bounded-ma1 rational function. Then 
there e&t hermitian solutions Y respectively 2 to the Riccati equations 

0 = (A + B(I- D*D)-lD*B*C)* t Y(A t B(I - D*D)-‘D*C)+ 

YB(I- D*lyB*Y + c*(I - m*)-w, 

respectively, 

0 = (A t I?(1 - DD*)-‘D*C)Z + .Z(A t B(I - DD*)-‘D*C)* 

+ZC*(I - DD*)-*cz -j- B(I - ll*q-II?*, 

such that A - BF and A - HC respectively are stable, where 

F = -(I - D*D)-‘D*C - (I - D*D)-lB*Y, 

H= -BLqI - IID*)- - 2x*(1 - DD*)-1. 

Proof: This statement was proved as part of the proof of the theorem. cl 
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6 Positive-real fund ions 

Positive real functions are of importance in many areas of system and control theory, e.g. in 
stochastic system theory or in adaptive control. We are now going to define what we mean by 
positive-real functions and by the Jp-factorization of such functions. 

Definition 6.1 A proper square stable rational function is called positive-real, if 

G(iw) + G*(iw) > 0,’ 

for all w E $2 U {km}. Let 

A right (coprime) factorisation of G = NA4-1 is called a Jp-normahzed right (coprime) factoriza- 
tion (JP - RF respectively Jp - RCF) of G if 

(M* N*)Jp ; =I. 
c ) 

Similarly, a lefi ( co rime) factorisation is called a Jp-normalized left (coprime) factorization (JP - p 
LF respectively Jp - LCF) of G if 

The following proposition establishes the existence of Jp-factorizations. 

Proposition 6.1 Let G be a proper rational positive-real function of McMillan degree n. Then 
there exists a JP-right (left) factorisation, 

G = NM-’ (G = ti-‘fi). 

This factorisation is right (left) co rime and is unique up to right (left) multiplication by a constant p 

unitary matrix. All such factorizations are such that is of McMillan degree 

n. 

Proof: Let G = ED-l be a right polynomial coprime factorization. Let T be a square stable spectral 
factor of E*D + D*E, i.e. T*T = E*D + D*E and proceed as previously. cl 

Some properties of Jp-factorizations are summarized in the following lemma. 

Lemma 6.1 Let G = NM-l be a JP-RF and G = fi-lfl a Jp-LF of the positive-real function 
G. Then 

I. (; -;*)*JP(: -$*)=(; !*), 

2. (; -f*)=Jp(; -$*)-*JB. 
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Proofz The statements are easily verified. 

29 

cl 

. 

A fey useful identities are given in the following Lemma. 

Lemma 6.2 Consider 

C 
;A1 ;*s)=(; ;!)(; ;J 

with Dl and Dl invertible and D is square such that D + D* > 0. Then 
-1 

1. 
D1 -D; 

DD1 D*r 

2. If 

JB, 

then 

DID; = (D + D*)-‘, 

qDl = (D + D*)-‘. 

Proof: The statements are checked in a straightforward way. cl 

We can now characterise doubly coprime factorizations for positive-real functions. 

Theorem 6.1 Let (A, B, C, D) b e a minimal realisation of the proper positive-real rational function 
G of h4cMiiian degree n. 

Then ail doubly coprime factorizations of G, such that 

1. G = NM-l is a JP-RF and G = timlfi is a JB-LF, 

2. (: ;), (TN ;), 

are of McA4illan degree n. 

are given by 
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where 

l Dl is such thut DID; = (D + D*)-I. 
l i?l is such that ~DI = (D + D*)-l. 
l Dz is arbitrary . 
l Y and .Z are solutions of the Riccati equations 

0 = (A - B(D + D*)-‘C)*Y t Y(A - B(D + D*)-‘C) 

tYB(D t D*)-‘B*Y + C*(D t D*)-‘C, 

0 = (A - B(D t D*)-‘C)Z t Z(A - B(D t D*)-IC) 

tzC*(D + D*)-%‘.Z i- B(D -+ D*)-lB*, 

such that A - BF and A - HC are stable, with 

F = (D t D*)-‘C - (D + D*)-‘B*Y, 

H = B(D t D*)-’ - ZC*(D + D*)-‘. 

Proof: Let G have a minimal realization (A, B, C, D). Let G = NA4-* be a right factorization G 
such that 

(M* N* ) Jp ; = I. 
c ) 

Such a factorization exists by Proposition 4.1 and has the same McMillan degree as G. By ‘Pheo- 

rem 2.2 any right factorization such that the McMillan degree of is the same as 

that of G has a state space realization of the form, 

where F is a stabilizing state feedback and Dl is invertible. Similarly, a left factorization G = 
&#-lfi such that 

exists and is of McMillan degree n and has a state-space representation of the form 

where H is a stabilizing output injection. Since is stable and of McMillan degree n and 

is antistable and also of McMillan degree n, the function 
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. 

-. -. 

has McMillan degree 2n. Note that since 

we have by Lemma 3.1 that 
A4 
N 

-&f* 
-* N 

has the two equivalent retizations 

and 

-d* + C*J~VJBB* C* JpV 
VJBB* J v - 

Since V = JpVe* JB, Lemma 4.1 implies that V and Dl are such that 

DID; = (D t D*)-l, 

Dpl = (D t D*)-l. 

We need to compute -d* + C*J~VJBB*, 

-d* + C*J~VJBB* 

-A* + F*B* 0 Z 
0 A-HC 

+ 
-F* C* - J'*D* 
-H HD-B )Jp(; ;f)( 2 ;;)JB(Dr* &) 

C 

-A* i- F*B- 0 Z 
0 A-HC 1 

t 
C 

-J’* C* - J’*D* 
-H HD-B )(: -:*)(DiDi $j&)(: :) 

-A* + F*B* 0 Z 
0 A-HC 

+ -F*(D + D*) + C’* C’ 
-B H(D+D*)-B 
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E -A* + C*DID;B= C*iJp& 
-BDl D;B* A-BD;D& 

-A* +C*J~‘DJBU* C*JpD 
sin” (s) and ( DJB~~* ‘D ) 

arebothminimalrealizationsof ( T -K* ), ’ 

there exists a unique non-singular state-space transformation Y = which by Lemma 3.1 , 

is such that (2: zz)= ($ E),andsuchthat 

C = VJB~?*Y, 

YB = C*JpV, 

YA = (-A* + C8Jp’DJ~f3*)Y. 

More explicitly, we have writing the equation Yf3 = C*JpIV componentwise, 

-F* C* - F*D* 
HD-B )(; ;)(h ;!)(? i;)’ 

and therefore 

;;) ( f &) = ( -F*‘D;;*“+c* -Y&&+B)’ 

Hence, we have that 

-F*(D + D*) + C* = YllB, 

-H(D + D*) + B = YnC*, 

-B = Y;B, 

which shows that 

F = (D + D*)-‘C - (D + D*)-’ B*Yll, 

H = B(D + D*)-’ - Y&*(D + D*)-‘. 

Writing YA = (-A* + C*J~~VJBB*)Y, componentwise, we have for the (1,l) entry, 

YII(A - BF) = (-A* + C*DID;B*)Yll + C*c?%CY;z, 

and using the above identities, this gives, 

0 = (A* - C*DID;B*)Yll + Yll(A - B[(D + D*)-'C + (D + D*)-'B*Yh]) 
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= (A* - C*(D + D*)-‘B*)Y + Y(A -- B(D + D*)-lC)-+ 

YB(D •t II*)-*B*Y -t c*p -I- rye, 
’ ! 

where we have set Y := Yii. Evaluating the (2,2) entry we obtain, 

. Y&-A* t C*H*) = -BDID;B*Y12 i- (A - BD;DIC)Yz2, 

or,\ 

0 = (A - B(D + II*)-‘C)Z + Z(A* - C*(L) -I- D*)-lB*) 

tZC*(D + D*)-lcz -I- B(D -I- D*)-*B*. 

The remaining part of the proof is anaIogous to the equivalent steps in the previous theorems. 0 

In the proof of the theorem we also estabiished the weiI-known result that positive-reaI Riccati 
equations have a stabihzing solution. 

Corollary 6.1 Let (A, B, C, II) be a minimal realisation of a positive-real rational function. Then 
there exist hermitian solutions Y respectively .Z to the Ricati equations 

0 = (A* - C*(D -t D*)-‘B*)Y + Y(A - B(D t D*)-‘C)t 

YB(D i- D*)-*B*Y + c*p i- II*)-*c. 

respectively, 

0 = (A - B(D -t D*)-‘C)Z i- Z(A* - C*(D +- II*)-‘B*) 

-i-zc*(D •t D*)-*.z -I- B(D + II*)-*B*. 

such that A - BF and A - HC are stable, where 

F = (D t D*)-‘C - (D t D*)-‘, 

H = B(D t II*)-’ - .W*(D t II*)-‘. 

Proof: This statement was proved as part of the proof of the theorem. 
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