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Abstract
Mechanical tests form one of the pillars in development and assessment of modern ma-
terials. In a world that will be forced to handle its resources more carefully in the near
future, development of materials that are favorable regarding for example weight or mate-
rial consumption is inevitable. To guarantee that such materials can also be used in critical
infrastructure, such as foamed materials in automotive industry or new types of concrete in
civil engineering, mechanical properties like tensile or compressive strength have to be thor-
oughly described. One method to do so is by so called in situ tests, where the mechanical
test is combined with an image acquisition technique such as Computed Tomography.

The resulting time series of volume images comprise the delicate and individual nature
of each material. The objective of this thesis is to present and develop methods to unveil
this behavior and make the motion accessible by algorithms. The estimation of motion has
been tackled by many communities, and two of them have already made big effort to solve
the problems we are facing. Digital Volume Correlation (DVC) on the one hand has been
developed by material scientists and was applied in many different context in mechanical
testing, but almost never produces displacement fields that allocate one vector per voxel.
Medical Image Registration (MIR) on the other hand does produce voxel precise estimates,
but is limited to very smooth motion estimates.

The unification of both families, DVC and MIR, under one roof, will therefore be il-
lustrated in the first half of this thesis. Using the theory of inverse problems, we lay the
mathematical foundations to explain why in our impression none of the families is suffi-
cient to deal with all of the problems that come with motion estimation in in situ tests. We
then proceed by presenting a third community in motion estimation, namely Optical flow,
which is normally only applied in two dimensions. Nevertheless, within this community
algorithms have been developed that meet many of our requirements. Strategies for large
displacement exist as well as methods that resolve jumps, and on top the displacement is
always calculated on pixel level. This thesis therefore proceeds by extending some of the
most successful methods to 3D.

To ensure the competitiveness of our approach, the last part of this thesis deals with a
detailed evaluation of proposed extensions. We focus on three types of materials, foam, fibre
systems and concrete, and use simulated and real in situ tests to compare the Optical flow
based methods to their competitors from DVC and MIR. By using synthetically generated
and simulated displacement fields, we also assess the quality of the calculated displacement
fields – a novelty in this area. We conclude this thesis by two specialized applications
of our algorithm, which show how the voxel-precise displacement fields serve as useful
information to engineers in investigating their materials.





Zusammenfassung
Mechanische Tests repräsentieren eine der wichtigsten Säulen in der Entwicklung und Be-
wertung moderner Materialien. Um neu entwickelte Materialien auch zuverlässig in kri-
tischer Infrastruktur verwenden zu können, wie etwa der Automobilindustrie oder dem
Baugewerbe, bedarf es einer gründlichen Charakterisierung insbesondere in Bezug auf
Druck- und Zugfestigkeit. Ein Hilfsmittel hierfür ist durch die sogenannten In Situ Tests
gegeben. In diesen Tests werden mechanische Prüfung und ein Bildgebungsverfahren wie
Computertomographie kombiniert.

Das Resultat ist eine Zeitreihe von Volumenbildern, in der die individuelle, oft filigrane
Reaktion des jeweiligen Material auf Belastungs verborgen ist. Diese Arbeit beschäftigt
sich mit der Offenlegung dieses Verhaltens und der algorithmischen Auswertung der resul-
tierenden Bewegungsfelder. Bewegungsschätzung ist ein klassisches Problem der Bildver-
arbeitung. Insbesondere in zwei Gebieten gibt es bereits umfangreiche Vorarbeiten in 3D.
Einerseits sind hier Methoden zu nennen, die sich unter dem Namen Digitale Volumenkorre-
lation (DVC) zusammenfassen lassen. Entwickelt im Gebiet der Materialwissenschaften ex-
istieren bereits diverse Anwendungen auf Bildserien von mechanischen Tests. In der Regel
sind diese Methoden aber nicht voxel-präzise, was letztendlich bedeutet, dass Verschiebun-
gen, die nur wenige Voxel betreffen, nicht akkurat geschätzt werden können. Anderer-
seits löst die medizinische Bildregistrierung (MIR) genau dieses Problem, indem sie jedem
Voxel Bewegungsinformation zuordnet. Um eine Lösung zu berechnen werden allerdings
oft starke Glattheitsannahmen getroffen, die, bezogen auf In Situ Tests, nicht erfüllbar sind.

Beide Ansätze zu vereinheitlichen wird ein Teil dieser Arbeit sein. Die Theorie der in-
versen Probleme stellt für uns einen ausgezeichneten Rahmen dar um zu argumentieren,
warum beide Methoden nicht unseren Ansprüchen an Algorithmen zur Bewegungschätzung
in In Situ Tests genügen. Wir greifen deswegen auf eine weitere Gruppe von Algorithem
zurück, nämlich die des Optischen Flusses. Ursprünglich ausschließlich in 2D entwick-
elt, lassen sich trotzdem viele vorteilhafte Eigenschaften ausmachen: Strategien für große
Verschiebungen, Abbilden von Sprüngen und Berechnung auf Pixelbasis sind hier nur kurz
genannt und werden in der Arbeit ausführlich erläutert. Diese Arbeit beinhaltet deswegen
eine Erweiterung einiger besonders geeigneter Algorithmen auf 3D.

Der letzte Teil der Arbeit beschäftigt sich mit einer ausführlichen Analyse und Auswer-
tung inklusive eines Vergleiches mit Konkurrenzansätzen. Hierbei konzentrieren wir uns
auf drei Materialtypen: Schäume, Fasersyteme und Beton. Wir verwenden synthetische und
echte Bilder von In Situ Tests, um unsere Erweiterungen mit Mitbewerbern aus DVC und
MIR zu vergleichen. Des weiteren wird auch die Qualität des berechneten Verschiebungs-
feldes auf Basis simulierter Daten ausgewertet – ein Novum in diesem Bereich. Abschlie-
ßend präsentieren wir zwei spezialisierte Anwendungen unserer Erweiterungen, in denen
wir zeigen wie unsere Algorithmen IngenieurInnen in der Erforschung ihrer Materialien
unterstützen können.
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Chapter 1

Introduction

Computed tomography (CT) is undoubtfully one of the game changers in medicine. With
a mathematical theory 60 years older than the actual first device it was possible to image
the inside of the human body in 3D. Unlike classical radiography, CT has no overlay of
structures and offers a significant contrast of distinct tissue. Since the pioneering work of
Radon [98], Cormack [35] and Hounsfield [59], many improvements in all fields of CT have
been made. Detector, gantry, tube – none of the mechanical parts of a CT device has not
been subject to extended research in the past 50 years. But also from an algorithmic point
of view, a whole new research area was built. While the classical reconstruction technique
Filtered Back Projection still serves its duty, iterative algorithms were able to reduce the
radiation dose a patient is exposed to significantly.

But the march of victory is not limited to medical uses. From the very beginning, the
application of CT to industrial applications was also considered. However, the demands for
both applications, medical and industrial, soon began to diverge. Where in the beginning
industrial CT would favor from the improvements regarding the resolution, soon medical
imaging aimed for the reduction of radiation. Though this is very favorable for in-vivo
applications, as radiation harms living organisms, this is almost never true for industrial
applications. Even contrary: high radiation CT would provide insight in materials even with
high absorption coefficients [18], such as steel-fiber reinforced concrete or metallic foams.

And yet another point marks a crucial difference: CT of living objects requires an as
fast as possible acquisition as breathing and heart beat cannot be held. This matter was
also tackled by the development of iterative reconstruction algorithms: As they require less
data for sufficient reconstruction, not only less radiation was necessary but also less time in
image acquisition. However, this again does not hold for materials: we do not expect heavy
movement within a sample when a CT image is taken.

Due to these huge differences in requirements for human and industrial CT, soon also
specialized devices for the latter emerged. Not bothering for acquisition time and radiation
exposure, already in 1982 resolutions within the micrometer scale were described in the
literature [39]. This is also the time when the wording microtomography evolved, marking
the essential difference in small scale resolution. So from now on materials could be imaged
with conservation of very small details. Until 2022 various materials have been investigated
with the help of computed tomography. Already in 1999, Stock et al. [112] presented an
extensive review on the different applications: Porosity in welds, fracture of bonding layers
between ceramic plates, carbon fibre based composites, fatigue crack closure in metals,
pathways for material transport in porous solids, deformation response in inorganic matrix

1



Chapter 1. Introduction

composites. Especially composite materials, as they are light-weight but still very durable
and heat resistant, have always been an active research field. Metal matrix composites
(MMC) for example were already used in the first Space Shuttle programs in the 1970s.
Their exact micromechanical failure mechanisms were investigated much later with the help
of microtomography [112]. MMCs are still an active research field and a good example how
also the testing of materials evolved. Today, MMCs are often produced as foams, not as bulk
material. Foam structures are of course much more complex than their solid counterpart.
And again, CT plays an important role. With the help of so called in situ tests, exact failure
mechanisms can be quantified. In in situ tests, a mechanical test is combined with non-
destructive acquisition of 3D images of the specimen under several loading steps using CT.
Most common and also initially, mechanical tests like compression, tensile or bending are
applied, but also more exotic approaches like battery load can be found [128]. Though at
first sight, this violates the assumption that nothing will move during image acquisition,
the tests are often performed quasi static, i.e. a load is applied and held steady during
acquisition. In situ investigations with the help of microtomography started around the
early 1990 with the work of Stock et al. [113].

Quite soon after that, the urge for quantification of mechanical tests developed. There-
fore, Bay et al. in 1999 [13] proposed a method to describe an in situ compression test by
displacement vector fields. The investigated material was trabecular bone, which was com-
pressed in several interrupted steps. Within each of the steps, a CT image was taken. The
algorithm, going under the name Digital Volume Correlation following its two dimensional
predecessor Digital Image Correlation, established a whole new paradigm in describing the
outcome of an in situ test. The calculation of the displacement is entirely based on only a
pair of images, say the image of the unloaded volume and the first compression step. As
we will see later in this thesis, these calculations form an ill-posed problem and cannot be
solved without additional constraints. The constraint of choice in the work of Bay et al. was
to not calculate a voxelwise displacement, but to divide the image into subvolumes. The
subvolumes were supposed to be much smaller than the original image, but much larger
than a single voxel. The displacement is then calculated per subvolume. Though the rep-
resentation of the subvolumes changed over the years, almost all methods going under the
name DVC still proceed this way.

However, for the recent challenges in materials science, this procedure may not be suffi-
cient anymore. Recent trends in material design tend towards more and more spatially thin
structures, that still maintain their high performance as, again, for example MMC. Foamed
structures only take a fracture of the material consumption compared to their bulk coun-
terparts, but still perform remarkably well in macroscopic mechanical tests. Yet the failure
mechanism of such a foamed material will heavily depend on the microscale structure – we
expect failure of whole layers of the specimen, where the weakest struts fail first.

Unfortunately, when imaged, struts in these materials often only occupy few voxels. And
even worse, they are often thinner than the minimal subvolume size of DVC. The exact
interplay will be discussed later in this thesis. This discrepancy between the minimal reso-
lution that is offered by DVC and the size of the smallest object of interest in in situ tests
does not only limit to foam structures. Microcracks can usually be observed long before
concrete macroscopically fails. In fibre-reinforced-plastics, failure is almost always pre-
ceded by fibre breakage and/or delamination. Again, when monitored in CT, fibres can only
be resolved with few voxels diameter. Therefore, to understand the microscale mechanisms
that foreshadow material failure, there is a need for algorithms that resolve displacement on
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a voxel scale.
And yet another challenge comes with the estimation of motion in materials science: The

observed maximal displacements can be very large. In tests foams for example are usually
compressed until the sample can be nearly considered as bulk. This stage in a compression
test is also of special interest, as the level of compression when this so called densification
happens, belongs to a complete description of a foam’s material properties. But for sure the
displacement that describes this phenomenon will have its peak at several tenths of voxels.

In this thesis, a group of algorithms will be introduced, that not only feature sufficient
accuracy, but also will be able to map the large displacements that occur during a materials
test. These algorithms will be based on one of the oldest algorithms in motion estimation,
namely Optical Flow, and their superior performance will be shown with well known means
from the literature. The performance will also be demonstrated with several examples. Ar-
tificial ones for benchmarking, but also representatives for three kinds of materials: foams,
fibre systems and concrete.

A General Framework for Motion Estimation

In motion estimation, we regard images as functions, that map from a bounded subset Ω of
R3 to R. For two images I0 and I1 of succeeding loading steps, we seek for a transformation
ϕ:R3 → R3, such that

I0(x) = I1(ϕ(x)) = I1 ◦ ϕ. (1.1)

To reconstruct the motion ϕ, we need to fix a function space, not only for the images I0
and I1, but also for ϕ itself. The membership of the quantities in some space has however
heavy influence on the methods we are allowed to use. Differentiability (weak or strong),
smoothness, convexity, all these properties severely affect the outcome of the computation.

A crucial part in answering why motion estimation algorithms perform so differently is to
unite them under a single roof. This roof will be inverse problems and their regularization.
The classical theory of inverse problems deals with linear operator equations, that is for a
linear operator T and given data y, a solution x to the (linear) operator equation

Tx = y (1.2)

is sought. Here, T is usually a compact linear operator, and the right-hand side consists
of some given data y. Finding an inverse T † now often forms an ill-posed problem, so a
problem, that violates at least one of the well-posedness conditions of Hadamard [40]:

• For all admissible data, a solution exists.

• For all admissible data, the solution is unique.

• The solution depends continuously on the data.

Obviously, in motion estimation we at least violate the second condition: We try to estimate
three dimensional motion from scalar image data. Note that neither Hadamard’s conditions
are limited to linear compact operator equations, nor will we stay in this very narrow frame-
work. However, these initial findings will be very helpful to understand how regularization
works and what it is able to achieve.
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Chapter 1. Introduction

Thesis Outline

This thesis proceeds as follows: In Chapter 2 we will describe the mathematical founda-
tions that will be needed throughout this thesis. Starting with the classical theory of inverse
problems in Hilbert spaces, it also includes the generalization to Banach spaces and the
treatment of total variation regularization within these. Chapter 3 will give an overview
on the current state of the art motion estimation in 3D, which can be generously split into
Digital Volume Correlation and Medical Image Registration. In Chapter 4 we introduce an-
other area, in which motion is estimated, namely (2D) Optical Flow, and directly formulate
it in three dimensions. Chapter 5 deals with in situ testing, including a literature review
on experiments on the investigated materials and their thorough introduction. Chapter 6 is
dedicated to experiments. We will not only test how the algorithms perform compared to
each other, but also how the different designs of Optical Flow models influence their per-
formance in motion estimation. We conclude this thesis with an outlook to future work and
closing remarks in Chapter 7.

Before proceeding we want to remark that parts of this thesis have been published else-
where:

• Nogatz, T., Redenbach, C., Schladitz, K., 3D optical flow for large CT data of mate-
rials microstructures, Strain, 2022, 58(3), e12412.
https://doi.org/10.1111/str.12412.
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Chapter 2

Mathematical Preliminaries

This chapter covers all mathematical ingredients that will be needed throughout this thesis.
We start with a short introduction into the classical theory of inverse problems to enlighten
the difficulties that come with compact operator equations. The classical theory also gives
a good intuition what a regularization can achieve. We continue by introducing variational
methods for solving minimization problems. This theory offers methods, that allow to con-
sider regularization not only in a Hilbert space setting, but also in the much more suit-
able Banach space setting. We then turn towards a special representative of regularization,
namely bounded or total variation. We conclude the chapter with some specific strategies
for solving the problems that arise in this thesis.

2.1 Inverse Problems

The majority of this section follows the monograph of Engl, Hanke and Neubauer [40].
However, Tikhonov regularization is introduced more conveniently in the more recent work
of Hanke [52]. Regularization by projection is accurately treated in the monograph of
Kirsch [66], which we will also follow in this topic.

2.1.1 Regularization - Definition and Basic Results

For a linear operator T , we define its domain by D(T ), its range by R(T ), and its Kernel
by N (T ).

Definition 2.1.1 ([40], 2.1.): Let T :X → Y be a bounded linear operator between Hilbert
spaces X and Y . Consider the operator equation

Tx = y. (2.1)

1. x ∈ X is called least-squares solution of Tx = y if

||Tx− y||= inf{||Tz − y|| | z ∈ X}.

2. x ∈ X is called best-approximate solution of Tx = y if x is a least-squares
solution of Tx = y and

||x||= inf{||z|| | z is a least squares solution of Tx = y}

5



Chapter 2. Mathematical Preliminaries

Note that in the above definition we did not require the operator equation Tx = y to be
solvable at all. However, if we cannot guarantee existence of an exact solution to

Tx = y, (2.2)

we have a safety net of solutions that are minimal with respect to some norm. Note that
nevertheless neither least-squares nor best-approximate solutions have to exist. Luckily,
many inverse problems are formulated in Hilbert space settings in which – by restricting
the right-hand side y – existence and uniqueness of solutions can be shown. For a linear
and bounded operator T :X → Y , where X and Y are Hilbert spaces, this is done by the
Moore-Penrose generalized inverse.

Definition 2.1.2 ([40], 2.2.): Let

T̃ := T |N (T )⊥ :N (T )⊥ → R(T ).

The Moore-Penrose (generalized) inverse T † of a bounded linear operator T :X → Y is
defined as the unique linear extension of T̃−1 to

D(T †) := R(T )⊕ R(T )⊥

with
N (T †) = R(T )⊥,

and ⊕ being the direct sum.

The Moore-Penrose inverse has a very special role; particularly, one can show that it is
the (solution) operator, that maps y to the best-approximate solution of Tx = y.

Theorem 2.1.3 ([40], 2.5.): Let y ∈ D(T †). Then, Tx = y has a unique best-approximate
solution, which is given by

x† := T †y.

The set of all least-squares solutions is x† + N (T ).

A similar characterization can also be stated for least-squares solutions.

Theorem 2.1.4 ([40], 2.6.): Let y ∈ D(T †). Then x ∈ X is a least-squares solution of
Tx = y if and only if the normal equation

T ∗Tx = T ∗y (2.3)

holds.

One can show that y ∈ D(T †) is necessary to state any kind of solution term in the
sense of Definition 2.1.1. This also means, that in the context of infinite-dimensional oper-
ators a best-approximate solution does not necessarily exist – contrary to finite dimensional
problems.

We should keep in mind that we develop a theory that must be able to tackle real-world
problems. The right-hand side y in equation (2.1) will almost never be available without
noise. We can only assume to have disturbed data yδ with an (unknown) noise level δ, such
that

||y − yδ||≤ δ. (2.4)
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2.1. Inverse Problems

This sheds a light on the fact, why Hadamard considered continuous dependence as one
of the core points to mark a well-posed problem: Having perturbed data close to the noise
free one, also the perturbed solution should be close to the real one. The following Lemma
shows, that in compact operator equations (which many inverse problems count to), the
above conclusion is not possible.

Theorem 2.1.5 ([5], Theorem 5.1): LetX and Y be (infinite dimensional) Banach spaces,
and let T :X → Y be compact and injective. Then, the inversion T † : R(T ) → X is
unbounded.

Hence, although T † is also linear, it cannot be bounded and is therefore not continuous.
(The monograph of Appell [5] gives this result in the context of general operator theory.
For a result directly related to inverse problems, see [52].) For noisy input data yδ we can
therefore not guarantee that

T †yδ → T †y for δ → 0, (2.5)

and therefore especially not x† → x.
The remedy to this is to drop the requirement of exact solutions and be content with an

approximate, or regularized solution.

Definition 2.1.6 ([40], 3.1.): Let T :X → Y be a bounded linear operator between Hilbert
spaces X and Y , α0 ∈ (0,+∞]. For every α ∈ (0, α0), let

Rα:Y → X

be a continuous (not necessarily linear) operator. The family {Rα} is called a regular-
ization or a regularization operator for T †, if, for all y ∈ D(T †), there exists a parameter
choice rule α = α(δ, yδ), such that

lim sup
δ→0

{ ||Rα(δ,yδ)y
δ − T †y|| | yδ ∈ Y, ||y − yδ||≤ δ} = 0

holds. Here,
α:R+ × Y → (0, α0)

is such that

lim sup
δ→0

{α(δ, yδ) | yδ ∈ Y, ||yδ − y||≤ δ} = 0.

For a specific y ∈ D(T †) satifying the above conditions, a pair (Rα, α) is called a
(convergent) regularization method for solving Tx = y.

Regularization will be our main ingredient for all motion estimation algorithms presented
in the following. Though introduced for Hilbert spaces, the theory can be extended to
Banach spaces, although some results, that hold due to the natural structure of the Hilbert
space have to be derived in Banach spaces “by hand.” This resulting freedom will allow for
a variety of different approaches in the choice of the regularization.

A regularization method in the sense of Definition 2.1.6 consists of two ingredients: the
regularization operator Rα(δ,yδ) and the corresponding parameter choice rule α(δ, yδ). Until
now, the latter one is explicitly dependent on the noise level δ and on the perturbed data yδ.
It is also defined for a specific y ∈ D(T †), which marks another (hidden) dependence.
However, dependence can also be established only based on the noise level. To distinguish
this, we introduce the following convention.
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Definition 2.1.7 ([40], 3.2.): Let α be a parameter choice rule according to Definition 2.1.6.
If α does not depend on yδ, but only on δ, then we call α an a-priori parameter choice
rule and write α = α(δ). Otherwise, we call α an a-posteriori parameter choice rule.

Parameter choice rules have to be selected with care, as one can show that rules that
dependent only on yδ cannot produce a convergent regularization method.

Now that we know which ingredients are necessary in the treatment for inverse problems,
we could ask how to construct them and how to design them, such that they converge, ideally
fast. Operators, for example, that converge pointwise to the generalized inverse, i.e.

Rα → T † pointwise on D(T †) as α→ 0, (2.6)

form a regularization operator, and one can even find an a-priori parameter choice rule α,
such that for every y ∈ D(T †) the regularization method (Rα, α) is convergent ([40],
Proposition 3.4). For regularization methods, where the operator is linear and the parameter
choice rule is a-priori, we can also fix the following characteristics:

Proposition 2.1.8 ([40], 3.7.): Let {Rα} be a linear regularization; for every y ∈ D(T †),
let α:R+ → R+ be an a-priori parameter choice rule. Then (Rα, α) is a convergent
regularization method if and only if

lim
δ→0

α(δ) = 0

and
lim
δ→0

δ||Rα(δ)||= 0

hold.

2.1.2 Regularization by Projection

Regularization by projection is quite a simple and obvious approach to define a regulariza-
tion in the sense of Definition 2.1.6. Even though the theory of inverse problems is built on
operator equations that map between infinite dimensional spaces, many of them will even-
tually be discretized to fit to a real-world problem. One can now ask if not discretization
alone poses a satisfactory regularization. In fact under certain conditions, this is the case,
and the mathematical framework to embed is regularization by projection.

Definition 2.1.9 ([66], 3.1): Let X be a Banach space. Let U ⊂ X be a closed subspace.
A linear bounded operator P :X → X is called projection operator on U if

• Px ∈ U ∀ x ∈ X ,

• Px = x ∀ x ∈ U.

Together with a projection, we can now define projection methods.

Definition 2.1.10 ([66], 3.4.): Let X and Y be Banach spaces and let T :X → Y be
bounded and one-to-one. Furthermore, let Xn ⊂ X and Yn ⊂ Y be finite dimensional
subspaces of dimension n and Qn:Y → Yn be a projection operator. For a given y ∈ Y
the projection method for solving the equation Tx = y is to solve the equation

QnTxn = Qny for xn ∈ Xn. (2.7)
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2.1. Inverse Problems

For bases {x̂1, . . . , x̂n} and {ŷ1, . . . , ŷn} of Xn and Yn, respectively, one can express the
ingredients of equation 2.7 via

Qny =

n∑
i=1

βiŷi and QnT x̂j =

n∑
i=1

Aij ŷi, j = 1, . . . , n,

where βi, Aij are scalar coefficients. Clearly, one can also expand xn in the same way

xn =
n∑

j=1

αj x̂j .

Then, xn is a solution of equation (2.7) if and only if α1, . . . , αn solve the system of linear
equations

n∑
j=1

Aijαj = βi, or as matrix notation Aα = β (2.8)

Example 2.1.11:

a) Galerkin method: We slightly tighten the assumptions on X and Y namely to be
(pre-) Hilbert spaces. Let Qn be the orthogonal projection, i.e. Qn satisfies

||Qny − y||≤ ||w − y|| ∀w ∈ Y

Because we are considering a pre-Hilbert setting, we can define an inner product, for
which equation (2.7) is equivalent to

⟨Txn, zn⟩ = ⟨y, zn⟩ ∀zn ∈ Yn.

The coefficients of the linear system 2.8 are given by

Aij := ⟨T x̂j , ŷj⟩ and βi = ⟨y, ŷi⟩.

b) Collocation method: We now come back to the more general Banach space setting
and explicitly fix Y = C[a, b] and T :X → C[a, b] bounded. Let a = t1 < . . . <
tn = b be an ordered set of given points, the so called collocation points, and let
Yn = S1(t1, . . . , tn) be the space of linear splines. The projection operator Qn is
then given by an interpolation operator

Qny =

n∑
j=1

y(tj)ŷj ,

where the ŷj are the basis functions of the space of linear splines

ŷj(t) =


t−tj−1

tj−tj−1
, t ∈ [tj−1, tj ], if j ≥ 2

tj+1−t
tj+1−tj

, t ∈ [tj , tj+1], if j ≤ n− 1

0, t /∈ [tj−1, tj+1].

The projected operator equation (2.7) is then equivalent to

(Txn)(ti) = y(ti) ∀i = 1, . . . , n.

The coefficients of the linear system (2.8) are given by

Aij := (T x̂j)(ti) and βi = y(ti).
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Note that a priori, convergence of xn towards x† cannot be guaranteed. An example can
be found in [40]. Convergence can be achieved, if the following conditions are fulfilled.

Theorem 2.1.12 ([40], 3.20.): Let y ∈ D(T †) and let xn be the best-approximate solution
of Tx = y in Xn.

i) xn converges weakly to x†, i.e. ⟨xn, w⟩ = ⟨x†, w⟩ for all w ∈ X , if and only if
{||xn||} is bounded.

ii) xn → x† if and only if lim supn→∞||xn||≤ ||x†||.

Instead of considering strong convergence based on boundedness of the solution (which
is not very useful, as we do not know the true solution), one can also express convergence
conditions with the help of T †.

Proposition 2.1.13 ([40], 3.21.): Let y ∈ D(T †) and let xn be the best-approximate solu-
tion of Tx = y in Xn. If

lim sup
n→∞

||(T †
n)

∗xn||= lim sup
n→∞

||(T ∗
n)

†xn||<∞

holds, then xn → x†.

Once more we needed Hilbert spaces to pose a criterion for convergence, though the
actual method can also be formulated in Banach spaces.

Until now we only have considered the convergence of projections given real input data y.
We will now show that projections introduce a hidden regularization parameter and there-
fore serve as regularization just in the sense of Definition 2.1.6.

Our perturbed data will be such that

||Qn(y − yδ)||≤ δ,

and by xδn we denote the least-squares solution of

Tnx = yn with Tn := QnT, yn := Qny
δ. (2.9)

Theorem 2.1.14 ([40], 3.26.): Let y ∈ D(T †) and let 2.9 hold. If δ/µn → 0 as δ → 0 and
n→ ∞, where µn is the smallest singular value of Tn, then

xδn → x† as δ → 0, n→ ∞.

In the spirit of Proposition 2.1.8, we see that the pseudoinverse of the projected oper-
ator T †

n serves as regularization operator. Recall one of the conditions for a convergent
regularization method

lim
δ→0

δ||Rα(δ)||= 0.

Since ||T †
n||= 1/µn, we have

δ||Rα(δ)||= δ||T †
n||=

δ

µn
,

which tends towards 0 for δ → 0 by the assumptions of Theorem 2.1.14. In equation (2.6),
we saw that a parameter choice rule can be found if we have convergence of Rα towards T †

for α → 0. But this convergence is naturally given for n → ∞, the role of the parameter
choice rule is therefore taken by 1/n.

Clearly, discretization is nothing else than a projection from infinite to finite (sub)spaces.
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2.1.3 Tikhonov Regularization

Recall Definition 2.1.1. Here, a least-squares solution x ∈ X was characterized by being
minimal with respect to ||Tx− y||, that is

||Tx− y||= inf{||Tz − y|| | ∀z ∈ X}.

For disturbed data ||yδ−y||≤ δ we already saw that we cannot guarantee convergence of the
disturbed solution towards the real solution. However, considering solutions, such that Tx
is closer to yδ than the actual noise level δ as a starting point for a potential solution seems
like an appealing idea. We therefore call the set

M(yδ, δ) = {x ∈ X | ||Tx− yδ||≤ δ}

the set of admissible solution candidates for some δ > 0. The set will for sure contain the
desired best-approximate solution, and in many cases even the true solution to Tx = y.
Unfortunately, also solutions with undesirably large norms can be a member of this set.

Tikhonov therefore proposed to choose the element of minimal norm from M(yδ, δ).

Proposition 2.1.15 ([52], 7.1.): Let T :X → Y have dense range, y ∈ R(T ), yδ ∈ Y
such that ||yδ − y||≤ δ, and M(yδ, δ) be the set of admissible solution candidates.
Then, M(yδ, δ) is nonempty, closed, and convex and there is exactly one element x∗ ∈
M(yδ, δ) of minimal norm. Moreover,

||x∗||≤ ||x||

holds for every solution x of Tx = y.

Let us now consider the case where available data is not overlaid by noise, i.e. we have
||yδ||≤ δ. Then, the Tikhonov approximation x∗ ∈ M(yδ, δ) can be characterized by
Gaussian normal equations.

Theorem 2.1.16 ([52], 7.2.): Let T :X → Y have dense range, y ∈ R(T ) and yδ ∈ Y
such that ||yδ − y||≤ δ with ||yδ||> δ. Then, for the Tikhonov-approximation x∗ holds

||Tx∗ − yδ||= δ (2.10)

and
(T ∗T + α∗I)x∗ = T ∗yδ (2.11)

for some α∗ > 0.

Proposition 2.1.17 ([52], 7.3.): For every α > 0 the operator T ∗T +α∗I is invertible with

||(T ∗T + α∗I)−1||≤ 1/α.

Therefore, for a given α∗ > 0 the solution x∗ of (2.11) is uniquely determined. Moreover,
the solution x∗ of (2.11) also solves the unconstrained variational problem

minimize Φα∗(x) over x ∈ X, (2.12)

where Φα∗(x) = ||Tx− yδ||+α∗||x||2.
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It remains to show that the method of Tikhonov in fact forms a regularization.

Theorem 2.1.18 ([52], 7.4.): Let T be injective with dense range in y, and let {Rα}α>0

be given by Rα = (T ∗T + α∗I)−1T ∗. If y ∈ R(T ) and {yδ}δ>0 ⊂ Y is a family of
approximations such that ||yδ − y||≤ δ, and if α = α(δ) is chosen such that

α(δ) → 0 and δ2/α(δ) → 0 as δ → 0,

then the approximations Rα(δ)y
δ converge to T †y as δ → 0.

2.1.4 Landweber Iteration

For finite systems of linear equations, the Richardson iteration uses a fixed point formulation
to deduce an iterative solution method. We can derive a similar scheme in the infinite
dimensional case. As starting point, we choose the normal equation (2.3) and formulate the
following equivalent fixed point equation

x = x+ T ∗(y − Tx). (2.13)

The fixed point operator I − T ∗T is non-expansive if ||T ||2< 2. Note that it cannot be
a contraction, we will however show that we can nevertheless reconstruct solutions in the
regularization framework. The Landweber iteration is now given by the following rule

xδk = xδk−1 + T ∗(yδ − Txδk−1), k ∈ N, (2.14)

where the starting value xδ0 is given by some initial guess x∗, which can be without loss of
generality be assumed to be 0.

We now first establish the convergence of this iterative method for unperturbed data y,
that is, the iteration reads

xk = xk−1 + T ∗(y − Txk−1), k ∈ N.

Theorem 2.1.19 ([40], 6.1.): If y ∈ D(T †), then xk → T †y as k → ∞. If y /∈ D(T †),
then ||xk||→ ∞ as k → ∞.

The following lemma gives a simple estimate on how strong the divergence of the Landwe-
ber iteration can be for perturbed data yδ.

Lemma 2.1.20 ([40], 6.2.): Let y, yδ be a pair of right-hand side data with ||yδ − y||≤ δ,
and let {xk} and {xδl } be the corresponding two iteration series by (2.14). Then we have

||xk − xδk||≤
√
kδ, k ≥ 0.

What does that mean for the Landweber iteration? We can split the total error of the
Landweber iteration the following way

||T †y − xδk|| = ||T †y − xk + xk − xδk||
≤ ||T †y − xk||︸ ︷︷ ︸

=:e1

+ ||xk − xδk||︸ ︷︷ ︸
=:e2

(2.15)

Theorem 2.1.19 taught us that we can expect convergence for perturbed data when δ tends
towards zero. If now the first Landweber iterations are computed, one can observe that the
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Figure 2.1: Phenomenon of semiconvergence. For the first iterations (denoted by k), the
residual indicates convergence towards the true solution, before the influence of the data
error takes over and causes divergence. Plot taken from [52].

residual is decreased – the procedure seems to converge to the true solution T †y. e1 in
(2.15) tends towards 0 and e2 is negligible. But if we perform more and more iterations, the
data error e2 will grow and the method will produce worse approximations, see Figure 2.1.

This phenomenon, called semiconvergence, is often observed in iterative procedures to
solve inverse problems. It is therefore of crucial importance to carefully observe the opti-
mization process and stop accordingly.

2.1.5 Regularization for Nonlinear Operators

Recall, that in the case of Tikhonov regularization the relation between the variational for-
mulation

min
x

||Tx− yδ||2+α||x||2 (2.16)

and
(T ∗T + αI)xδα = T ∗yδ (2.17)

was by first order optimality. That this, (2.17) is a necessary condition for x to be a solution
of (2.16). Because the variational formulation is also convex, the condition is also sufficient
for x to solve (2.16) globally. This procedure can be immediately generalized to the nonlin-
ear case. We (for now) consider a nonlinear operator F :D(F ) ⊂ X → Y between Hilbert
spaces X and Y . Ill-posedness in this setting means, that the solution does not depend con-
tinuously on the data. For a proper treatment as in the previous sections, one has to assume
at least some regularity of F (for example continuity and weakly (sequentially) closedness,
see [40], p. 241).

Instead of minimum-norm or best-approximate solutions, we will consider x∗-minimum
norm solutions x†. They are defined as closest solutions to some initial guess, i.e. x† is a
minimum-norm solution to x∗, if

F (x†) = y

and
||x† − x∗||= min{||x− x∗|| | F (x) = y}.
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As in the linear case, such solutions do not have to exist. Hence, we assume in this section
that a x∗-minimum norm solution x† exists for data y ∈ Y . A condition of ill-posedness
similar to Theorem 2.1.5, so a condition, when the inverse F † is not continuous, is given by
local injectivity around x†, provided that x† is infinite dimensional.

For convergence results involving nonlinear equations, we refer to Engl [40]. We now
want to focus on Tikhonov-like approaches to solve the nonlinear problem. That is, we
formulate the variational equivalent to an x∗-minimal solution, i.e.

xδα ∈ argmin
x∈X

||F (x)− yδ||2+α||x− x∗||2︸ ︷︷ ︸
=:Jα(x)

 . (2.18)

Note that in general the above functional without any additional assumptions on F can-
not be assumed to be convex. Moreover, if a solution exists, it might not be a global but
only a local one. However, our regularization will only aim for global solutions. Frechet-
differentiability of F can be transfered to the functional, so if F is Frechet-differentiable, so
is Jα, and the same holds for F ′ and J ′

α. We can therefore compute a derivative and verify,
that a first order solution has to satisfy

F ′(xδα)
∗
(
F (xδα)− yδ

)
+ α(xδα − x∗) = 0, (2.19)

which, as we are in the nonlinear case, has now to be equipped with a sufficient condition
for existence of a minimum. Existence of such a minimum is however already guaranteed
by the continuity and the weak sequential closedness of F .

Theorem 2.1.21 ([106], 3.3.): Let F :X → Y be continuous and weakly sequentially
closed. Then, there exists a minimizer xδα ∈ X of the functional Jα defined by (2.18).

Not only the Tikhonov-approach can be extended to nonlinear problems. The Landweber
iteration for nonlinear problems reads

xδk = xδk−1 + F ′(xδk−1)
∗(yδ − F (xδk−1)), k ∈ N. (2.20)

As opposed to Tikhonov regularization, there are no global convergence guarantees for the
nonlinear Landweber iteration in general. One has to put very strong assumptions on F to
achieve results, and a thorough description of this matter can be found in Engl [40].

One could also consider to use Newton type methods to solve the nonlinear problem. That
is, in each step we perform a local linearization of F and solve the (then) linear equation

F ′(xδk)(x
δ
k+1 − xδk) = yδ − F (xδk). (2.21)

Though we now have to tackle a linear system, we still remain with an ill-posed one, as F ′,
the derivative of a compact and continuous operator, is compact itself. Treatment via for
example Tikhonov regularization gives

xδk+1 = xδk +
(
F ′(xδk)

∗F ′(xδk) + αkI
)−1

F ′(xδk)
∗(yδ − F (xδk)). (2.22)

This method is known as the Levenberg-Marquardt-Method, which we will revisit in the
next section in more detail in the linear case. Note that via linearization of the Tikhonov
functional (2.16)

||yδ − F (xδk − F ′(xδk))(z − xδk)||2+αk||z − xδk||

we arrive at the same iteration as in (2.22), when we minimize the quadratic functional
for z = xδk+1.
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2.2. Variational Methods

2.2 Variational Methods

Having derived the foundation of inverse problems and considering our motion estimation
equation (1.1), we immediately see that linear operator equations are not suitable to describe
our problem. A workaround was already given in Section 2.1.5, where we transformed the
nonlinear operator into a linear one by Taylor approximation. However, this is not the only
nonlinearity that can occur. In fact for motion estimation it is even favorable to consider
nonlinear regularization operators. They allow for solutions that exhibit jumps – a behavior
that we will most certainly find in our motion fields when we consider in situ tests. The
use of nonlinear functionals for regularization often comes with the switch from Hilbert
to Banach spaces. Unfortunately we lose a very important property then: The existence
of the generalized inverse T †, and convergence of a regularization by convergence of Rα

to T †. We therefore need to introduce more sophisticated tools to prove convergence of
regularization methods. The variational formulation will now be treated by calculus of
variations, which we will shortly introduce before specifying its relevance for regularization
in Banach spaces.

The content of the following section mainly follows three monographs. Subsection 2.2.1
follows the book of Aubert and Kornprobst [7]. Regularization in Banach spaces (Subsec-
tion 2.2.2) is treated as in the book of Scherzer [106]. A standard work in Optimal Control of
Partial Differential Equations is the book of Tröltzsch [118], from which the parts presented
here are also taken.

2.2.1 Direct Method

In Section 2.1.3 we showed that regularization can often be transformed to a minimization
problem. This concept is not only very common in inverse problems (so in compact operator
equations), but also in solving partial differential equations. Often, problems can be cast into
functional equations of the form

F (u) = 0 ∈ Rn,

where F :V → Rn, and u is the sought solution. If it is now possible to define a function
J :Rn → R, such that ∇J = F , and such that J has a minimizer, we could equivalently
search for a minimizer of J , i.e.

J(u) = min
v∈Rn

J(v).

This duality between minimization and equation solving may be considered as one of the
starting points of variational calculus. Take for example the Dirichlet problem for the Pois-
son equation in an open bounded set Ω ⊂ Rn

−∆u = f in Ω

u = g on ∂Ω.
(2.23)

Riemann established the connection to the functional

J(v) =

∫
Ω

1

2
|∇v(x)|2−f(x)v(x)dx. (2.24)

Specifically, by setting

K = {v | v ∈ C2(Ω̄), v(x) = g(x) for all x ∈ ∂Ω},
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one can show that solving (2.23) and minimizing (2.24) over K is equivalent, if f and g are
sufficiently smooth. Calculus of variations now generalizes this principle to functionals of
the form

J(v) =

∫
Ω
L(x, v(x),∇v(x)) dx.

However, the Dirichlet-principle does not guarantee existence of a solution in any means.
Moreover, it is not a trivial task at all: The minimization is performed in a subspace of
infinite dimension.

Though implicitly assumed by Riemann in the specific case of the Poisson equation, it
was to Hilbert in 1900 to formalize the proof of existence in his famous direct method of cal-
culus of variations. We will shortly introduce the necessary preliminaries from functional
analysis before presenting the method.

From now on U will denote a Banach space equipped with the norm ||·||, and its topolog-
ical dual by U ′. A norm on U ′ for some l ∈ U ′ is given by

||l||U ′= sup
u̸=0

||l(u)||
||u||U

.

We will endow U with two classical topologies.

Definition 2.2.1 ([7], Def. 2.1.1.):

1. The strong topology, denoted by un −→
U
u is defined by ||un − u||U→ 0 for n→ ∞.

2. The weak topology, denoted by un −⇀
U

u is defined by l(un) → l(u) for n → ∞
and for every l ∈ U ′.

We can also define the dual U ′ with strong and weak topologies.

Definition 2.2.2 ([7], Def. 2.1.2):

1. The strong topology, denoted by ln −→
U ′

l is defined by ||ln − l||U ′→ 0 or equiva-

lently supu̸=0
||ln(u)−l(u)||

||u||U → 0 for n→ ∞.

2. The weak topology, denoted by ln −⇀
U ′

l is defined by z(ln) → z(l) for n → ∞
and for every z ∈ (U ′)′, the bidual of U .

3. The weak-* topology, denoted by ln
∗−⇀
U ′

l is defined by ln(u) → l(u) for n → ∞
and for every u ∈ U .

The weak-* topology is interesting, as it allows to deduce a compactness results in Ba-
nach spaces that are only separable (contain a countable dense subset), but not reflexive.
A Banach space is said to be reflexive if (U ′)′ = U .

Theorem 2.2.3 ([7], Thm. 2.1.1.):

1. Let U be a reflexive Banach space, let K > 0 and un ∈ U a sequence such
that ||un||U≤ K, then there exists u ∈ U and a subsequence unj of un such that
unj −⇀

U
u for n→ ∞.
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2. Let U be a separable Banach space, let K > 0 and let ln ∈ U ′ such that ||ln||U ′≤
K, then there exist an l ∈ U ′ and a subsequence lnj of ln such that lnj

∗−⇀
U ′

l for
n→ ∞.

Another important property which our functionals will need to fulfill is lower semi-
continuity.

Definition 2.2.4 ([7], Def 2.1.3): F is called lower semi-continuous (l.s.c.) for the weak
topology if and only if for all sequences un ⇀ u0 we have

lim
un⇀u0

F (un) ≥ F (u0).

The same definition can be given with the strong topology.

We now consider the minimization of a function J :U → R over a Banach space U

inf
v∈U

J(v).

The existence of a solution of such a problem can be proved via the classical direct method
of calculus of variations. It consists of three steps.

1. One constructs a minimizing sequence vn ∈ U , i.e. a sequence satisfying
limn→∞ J(vn) = infv∈U J(v).

2. If J is coercive, so if lim||v||→∞ J(v) = +∞, one can obtain a uniform bound
|vn|U≤ C. IfU is reflexive, we can, due to the previous theorem, deduce the existence
of v0 ∈ U and of a weakly convergent subsequence vnj , i.e. such that vnj −⇀

U
v0.

3. If the inequality limvnj−⇀U v0 J(vnj ) ≥ J(v0) holds, we deduce that v0 is a minimizer

and that J(v0) = infv∈U J(v).

Note that this method for existence of minimizers is quite a general one. In image processing
however, we are often able to write J as a quadratic functional, that is

J(v) =
1

2
a(v, v)− F (v), (2.25)

where a is a bilinear form on U × U and F a linear form on U . We can again show an
equivalent characterization of solutions, namely that

J(u) = min
v∈U

J(v) ⇔ a(u, v) = F (v) ∀v ∈ U,

holds under certain conditions. It allows to apply the theorem of Lax and Milgram, that
guarantees existence and uniqueness of a solution.

Theorem 2.2.5: Let U be a Banach space, let a:U × U → R be a continuous U -elliptic
bilinear form and let F :U → R be linear and continuous. Then the variational equation

a(u, v) = F (v) ∀v ∈ U, (2.26)

has a unique solution u ∈ U .
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The attractiveness of this theorem comes from the fact, that by integration by parts all
elliptic differential equations can be brought into the form of equation (2.26). Take for
example again problem (2.23). Multiplying both sides by test functions which are 0 in ∂Ω
and performing integration by parts gives∫

Ω
⟨∇u(x), v(x)⟩ dx =

∫
Ω
f(x)v(x) dx.

Existence and uniqueness of solutions of elliptic partial differential equations therefore nail
down to fulfilling the conditions of Theorem 2.2.5. The test functions therefore have to be
chosen, such that the bilinear form remains elliptic and continuous. Usually, this is achieved
by using functions from Sobolev spaces. But the theorem does not only offer this theoretic
result, it also immediately gives an ansatz for the numerical treatment of PDEs, namely
the so called Galerkin method. Instead of choosing functions from an infinite dimensional
Sobolov space, one could choose a finite dimensional subspace Uh and seek an approxima-
tion uh to u such that

a(uh, v) = f(v) ∀v ∈ Uh. (2.27)

Because Uh is now of finite dimension, there is a basis {ϕ1, . . . , ϕn} and uh has a represen-
tation

uh =
n∑

i=1

uiϕi,

and an approximate solution is given by the solution of the linear system of equations

Auh = b

with
A = [a(ϕi, ϕj)]ij ∈ Rn×n, b = [f(ϕj)]j ∈ Rn.

Remark 2.2.6: The careful reader will notice that we already introduced “a” Galerkin
method in Section 2.1.2, which dealt with regularization by projection. It completely
resembles the approach in the context of partial differential equations: first introduce a
bilinear form, next find a suitable approximation to the solution and lastly solve a linear
system. However, both methods suffer from the same problems: The finer the approxi-
mation is chosen, the closer we will be at a true solution, but at the same time the number
of unknowns will grow and the linear system will be harder to solve.

2.2.2 Regularization in Banach Spaces

In the spirit of the Direct Method of calculus of variations, we are now able to formulate
regularization in a Banach space setting. Recall once again that because our operators now
live in a Banach space, we cannot fall back on the singular value decomposition anymore
to prove the desired properties of a regularization. A consequence to this is the fact that
regularization in Banach spaces almost always is formulated as minimization problem in the
spirit of Tikhonov. Once more we will consider a (nonlinear) operator equation F (u) = y,
but F :U → Y will map from a Banach space U to a Banach space Y . We will generalize
the search for a solution u to

min
v
J(v), where J(v) = D(v, yδ) + αR(v), (2.28)
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where D denotes a distance function that correlates F (u) to the disturbed input data yδ and
R a regularization function to overcome the ill-posedness. To show that a general varia-
tional formulation like (2.28) regularizes an ill-posed problem, we dismantle the requested
properties of a regularization into the following, and name the equivalent results in the
Tikhonov case:

1. Existence: A functional as in equation (2.28) has to admit a solution for every
α > 0 and every y ∈ Y . This resembles the non-emptyness of M(yδ, δ) in Proposi-
tion 2.1.15.

2. Stability: For fixed α > 0 and disturbed input data yδ let uδα denote a solution to
(2.28). yδ then has to depend continuously on uδα. This resembles (2.10) in Theo-
rem 2.1.16.

3. Convergence: For α → 0 and vδ → v, we require the regularized solution uδα to
converge to the true solution u of F (u) = y. This resembles Theorem 2.1.18.

4. Convergence rates and stability estimates can also be of interest, but will not be
treated here.

To show that a regularization in Banach spaces fulfills these properties, we have to assume
the following.

• The Banach spaces U and Y are associated with topologies τU and τY that are weaker
than the norm topologies.

• D is given by ||·||pU with p ≥ 1.

• ||·||Y is sequentially lower semi-continuous with respect to τY .

• R:U → [0,∞] is convex and sequentially lower semi-continuous with respect to τU .

• D(F ) ∩ D(R) ̸= ∅.

• For every α > 0, M > 0 the level sets Mα(M) := {v ∈ U | J(v) ≤ M} are
sequentially pre-compact with respect to τU .

Remark 2.2.7: In the Hilbert space setting some of the above assumptions are either natu-
rally given or equivalent among themselves. For a thorough derivation see Remark 3.14
in [106].

The above assumptions are now sufficient to prove that J has a minimizer for α > 0 and
vδ ∈ U . Stability is given by the following theorem.

Theorem 2.2.8 ([106], 2.23.): Let D,R,D , U, Y be as above. If (yk) is a sequence con-
verging to yδ in Y with respect to the norm topology, then every sequence (uk) with

uk ∈ argmin
v∈D

J(v)

has a subsequence that converges with respect to τU . The limit of every convergent sub-
sequence (uk′) of (uk) is a minimizer u of J(u) and (R(uk′)) converges to R(u).
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To state convergence, we need to generalize our notion of solution. We call u† ∈ D an
R-minimizing solution, of F (u) = y, if F (u†) = y and

R(u†) = min{R(v) | v ∈ D(F ), F (u) = y}.

One can show that every solution is also an R-minimizing solution. Convergence is now
given by the following theorem.

Theorem 2.2.9 ([106], 3.26): Let D,R,D , U, Y be as above. Assume that a solution to
F (u) = y exists (which then is also R-minimizing) and that α: (0,∞) → (0,∞) satisfies

α(δ) → 0 and
δp

α(δ)
→ 0 as δ → 0.

Moreover, assume that the sequence (δk) converges to 0, and that yk := yδ,k satisfies
||y − yk||≤ δk.
Set αk := α(δk). Then every sequence (vk) of elements minimizing J has a subse-
quence (vk′) that converges with respect to τU . The limit u† of every τu-convergent
subsequence (vk′) is an R-minimizing solution of F (u) = y and R(vk) → R(u†). If, in
addition, the R-minimizing solution u† is unique, then vk → u† with respect to τU .

2.2.3 Optimal Control of Partial Differential Equations

There is a third mathematical area, that uses reformulation as unconstrained minimization
problem, namely the area of optimal control of PDEs. An optimal control problem is a
constrained minimization problem

min
y,u

J(y, u)

s.t.u ∈ Uad

and y = Su

where the state y is governed by the control u, and u stems from a set of admissible func-
tions Uad. Though the minimization is performed with respect to both state and control,
we are interested in a minimal state such that the control is minimal as well. For the sake
of simplicity, we will derive the following results in terms of finite dimensional optimal
control, that is, we consider the problem

min
y,u

J(y, u) (2.29)

s.t.u ∈ Uad (2.30)

and Ay = Bu, (2.31)

where A and B are finite dimensional operators, i.e. matrices. The extension to optimal
control in infinite dimensions is rather straight forward and can, for example, be found in
the monograph of Tröltzsch [118]. Existence of optimal control can for example be shown
by setting S = A−1B and eliminating J in (2.29) by setting

J(y, u) = J(Su, u) =: f(u).

The reduced problem
min f(u), u ∈ Uad
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then has a solution, if J is continuous, if Uad is nonempty, bounded and closed, and if A is
invertible. However, developing existence and construction of solutions based on S might
be wasted time, as computing the inverse often is too costly. One will therefore often con-
sider the adjoint state p̄, that is a solution to the adjoint equation

AT p̄ = ∇yJ(ȳ, ū),

where (ȳ, ū) is an optimal pair of (2.29). The first step towards an unconstrained mini-
mization problem is now to define a Lagrange-function L(y, u, p), that also depends on the
adjoint state p, as

L(y, u, p) := J(y, u)− ⟨Ay −Bu, p⟩.

Note that at this point the formulation is only equivalent, if we still pose the constraint
u ∈ Uad. Usually, Uad will consist of box constraints, that is

Uad = {u ∈ Rm | ua ≤ u ≤ ub}

or in the case of an infinite dimensional space U

Uad = {u ∈ U | ua ≤ u(x) ≤ ub}.

In this case, we define

µa =
(
BT p̄+∇uJ(ȳ, ū)

)
+

µb =
(
BT p̄+∇uJ(ȳ, ū)

)
− ,

which puts µa and µb componentwise to 0, if the right-hand side is positive or negative, re-
spectively. This allows to formulate the celebrated Karush-Kuhn-Tucker (KKT) conditions,
which state that for optimal control ū and associated state ȳ, Lagrange-multipliers b̄, µa, µb
exist and fulfill the following conditions

∇yL(ȳ, ū, p̄, µa, µn) = 0

∇uL(ȳ, ū, p̄, µa, µn) = 0

µa ≥ 0, µb ≥ 0

⟨ua − ū, µa⟩ = ⟨ū− ub, µb⟩ = 0.

Note that in the case of linear elliptic PDEs, the KKT-conditions are not only necessary but
also sufficient conditions.

2.3 Convex Analysis

Let us now turn once more to the minimization of a functional F

F (u) = inf
v∈Ω

F (v). (2.32)

So far, we only dealt with very well-behaved functions, meaning that ∇F could always
be computed to pose necessary conditions for a minimizer. Furthermore, in the case of
compact operator equations, F was convex (so ∇F = 0 was also a sufficient condition for
a minimizer), or in the case of systems of PDEs, J led to a bilinear system that fulfilled the
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conditions of Lax-Milgram to get existence, uniqueness and solution strategies. Implicitly,
we therefore assumed a certain amount of regularity, namely that our problem is at least
Gâteaux-differentiable. The next section will for one moment forget about the origin of F
(or J), and will answer the question if we can lower the differentiability requirements as
long as we guarantee convexity.

This section mainly follows [30], with some definitions and notions taken from the stan-
dard references [38] and [100].

2.3.1 Tools in Convex Analysis

The objectives of convex analysis is for sure convex functions, which can be introduced as
in any basic calculus class.

Definition 2.3.1 ([38], I.2.1.): Let A be a convex subset of U , and F a mapping from A
into R. F is said to be convex, if for every u and v in A we have

F (λu+ (1− λ)v) ≤ λF (u) + (1− λ)F (v), (2.33)

for λ ∈ [0, 1], whenever the right-hand side is defined. It is said to be strictly convex if
the strict inequality holds for λ ∈ (0, 1).

Note that this definition only holds for proper functions, i.e. functions that nowhere
attain infinity. In the case of improper functions, we can define convexity with the help of
the epigraph of a function.

Definition 2.3.2 ([38], I.2.2.): The epigraph of a function F :V → R is the set

epi F = {(u, a) ∈ V × R|F (u) ≤ a}. (2.34)

A function is convex if and only if its epigraph is convex. Usual operations are inherited,
meaning that sums of convex functions are convex, and the pointwise supremum of a family
of convex functions if also convex. Recall Definition 2.2.4, where we introduced the notion
of a lower semi-continuous function. There are many equivalent ways to characterize lsc,
some of them are

1. ∀a ∈ R{u ∈ U |F (u) ≤ a} is closed

2. ∀u0 ∈ U, limu→u0 F (u) ≤ F (u0)

3. u ∈ U , if un → u, then F (u) ≤ lim infn→∞ F (un)

Example 2.3.3: A very easy and much used example of a convex function is the so called
indicator function

δA (u) =

{
0, if u ∈ A

+∞, if u /∈ A .

If A is convex, so is its indicator function.

One of the most important tools in convex analysis is the following.
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Definition 2.3.4 ([38], I.4.1.): Let U , U∗ be duals of each other connected by the dual
pairing < ·, · >. If F :U → R, we call

F ∗(y) = sup
u∈U

< u, y > −F (u),

conjugate function or Legendre-Fenchel conjugate of F .

The conjugate of the indicator function δA is the so called support function of A

δ∗A (u∗) = sup
u∈V

{< u, u∗ > −δA (u)}

= sup
u∈A

< u, u∗ >

An important example of convex conjugates are those of the norms, that we will use through-
out this manuscript.

Example 2.3.5: Let F (u) = ||u||. The convex conjugate F ∗(y) is then an indicator function
of the unit ball with respect to the dual norm, i.e.

F ∗(y) =

{
0, ||y||∗≤ 1

+∞ ||y||∗> 1.
(2.35)

In the special case of Lp spaces, we know that their duals are Lq spaces with 1
p +

1
q = 1 for

1 < p, q < +∞. Therefore, for ||·||= ||·||L2 , we also have ||·||∗= ||·||L2 . From classical
theory of function spaces we know that the case p = 1 has to be handled with slightly
more care. Nevertheless, we can identify ||·||L∞ as the dual of ||·||L1 . However, L1 is not
a reflexive space, therefore the dual of L∞ is not L1. Thankfully, the dual of L∞ is not of
much interest for us.

Another important finding comes with the biconjugate F ∗∗. By definition we can easily
see that F ∗∗ ≤ F in general. But even more: for convex and lsc functions (our functions of
desire), we have equality, i.e.

F ∗∗ = F.

The introduction to this section hinted that we can drop the restriction of differentiability,
if we deal with convex functions. That is, because for convex functions we can define the
subdifferential, which can be seen as generalization of a derivate.

Definition 2.3.6 ([38], I.5.1.): A function F :U → R is said to be subdifferentiable at a
point u ∈ U if there exists a u∗ ∈ U∗ such that

F (v) ≥ F (u)+ < u∗, v − u > ∀v ∈ U. (2.36)

The element u∗ is the called subgradient of F at u and the set of subgradients at u is
called the subdifferential of F at the point u and is written as ∂F (u).

Specifically, subdifferentiability generalizes the concept of Gâteaux-differentiability.

Definition 2.3.7 ([38], I.5.2.): Let F be a function of U onto R. We call the limit as
λ→ 0+, if it exists, of

F (u+ λv)− F (u)

λ
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the directional derivative of F at u in the direction of v and denote it by F ′(u; v). If there
exists u∗ ∈ U∗ such that for all v ∈ U

F ′(u; v) = ⟨v, u∗⟩,

we say that F is Gâteaux-differentiable at u, call u∗ the Gâteaux-differential at u of F ,
and denote it by F ′(u).

The uniqueness of the Gâteaux-differential follows directly, it is characterized by

∀v ∈ U, lim
λ→0+

F (u+ λv)− F (u)

λ
= ⟨v, F ′(u)⟩.

We will now show that for convex functions Gâteaux-differentiability and uniqueness of the
subgradient coincide.

Proposition 2.3.8 ([38], I.5.3.): Let F be a convex function of U into R. If F is Gâteaux-
differentiable at u ∈ U , it is subdifferentiable at u and ∂F (u) = {F ′(u)}. Conversely,
if at a point u ∈ U , F is continuous and finite and has only one subgradient, then F is
Gâteaux-differentiable at u and ∂F (u) = {F ′(u)}.

The close relationship between convex conjugate and subdifferential can be seen by the
following proposition.

Proposition 2.3.9 (Legendre-Fenchel identity, [38], I.5.2): For every function F of U
into R, we have that if y ∈ ∂F (u), so is u ∈ ∂F ∗(y). Let furthermore F be convex, lsc
and proper. Then

y ∈ ∂F (u) ⇔ u ∈ ∂F ∗(y) ⇔ F (u) + F ∗(y) = ⟨y, u⟩. (2.37)

In what follows, the Proximal Map or Proximity Operator will also play an important
role. We consider the minimization problem

min
v∈U

F̃ (v), F̃ (v) := F (v) +
1

2τ
||v − u||2 (2.38)

for some given u ∈ U . If F is convex, proper and lsc, so is F̃ . Therefore, there is a
unique ũ ∈ U , such that the minimum of

F̃ (v) = F (v) +
1

2τ
||v − u||2

is attained at ũ. We define the map that maps u to the attained minimum ũ by proxτF (u).
One can show that this again defines a 1-Lipschitz monotone operator. In addition, it is
itself the gradient of a convex function, and by basic subdifferential calculus we can show
that

0 ∈ ∂F (ũ) +
ũ− u

τ
. (2.39)

Solving equation (2.39) for ũ shows that ũ is given exactly by the resolvent of the opera-
tor τ∂F at u, namely ũ = (I + τ∂F )−1 u. We can also deduce Moreau’s identity

u = (I + τ∂F )−1 (u) +

(
I +

1

τ
∂F ∗

)−1 (u
τ

)
= proxτF (x) + prox 1

τ
F ∗

(u
τ

)
,

which shows that as soon as we can compute one of the resolvents, we can use the identity to
compute the other one. This will come in handy especially in imaging applications. Often,
resolvents or proximal maps in these areas can be computed easily.
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2.3.2 Minimization of Convex Functions

In the following, we will limit ourselves to spaces where bounded sequences admit conver-
gent subsequences. In Section 2.2.1, we saw that this is an important condition to deduce
the existence of a minimizer. As this is fulfilled for reflexive Banach spaces, V will be such
and endowed with norm ||·||. We consider a function F , that maps from a non-empty closed
convex subset of U , denoted by Ω onto R. Further, F is assumed to be convex and lower
semi-continuous. Our objective will be to find some u ∈ Ω, such that

F (u) = inf
v∈Ω

F (v). (2.40)

The direct method of calculus of variations can now be framed into a proposition for exis-
tence of solutions.

Proposition 2.3.10 ([38], II.1.2.): Let F be convex, l.s.c, and proper and assume that Ω in
equation (2.40) is either bounded our that F is coercive for u ∈ Ω. Then equation (2.40)
has at least one solution. If F is strictly convex over Ω, this solution is unique.

Note that the above problem can also be replaced by a minimization over the whole of U ,
namely by setting

F̂ (u) =

{
F (u), if u ∈ Ω

+∞, if u /∈ Ω.
(2.41)

The variety of solution strategies for convex minimization problems is manifold. Assume
for the moment for example that F is differentiable. Then of course one would wonder if
the classical gradient descent

uk+1 = uk − τ∇F (uk)

with fixed stepsize τ forms a suitable iteration to obtain a minimum. The answer is no,
as we know from classical literature that very strict conditions are necessary (on top of
differentiability) to guarantee convergence, for example that ∇F is Lipschitz with some
constant L and that 0 < τL < 2. Less strict assumptions can be used if one solves the
minimization via implicit gradient descent, i.e.

uk+1 = uk − τ∇F (uk+1). (2.42)

But how is a new iterate computed in this context? An iterate, that satisfies equation (2.42)
also satisfies

∇F (uk+1) +
uk+1 − uk

τ
= 0,

which is a critical point of the function

u 7→ F (u) +
||u− uk||2

2τ
. (2.43)

For a convex and only lsc function this critical point is now exactly the proximal map of τF
at uk introduced in the previous section. Note that by defining the update as a critical point
of (2.43), no smoothness on F is required. The representation

Fτ (ū) := min
u∈Ω

F (u) +
||u− ū||2

τ
(2.44)
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can be also found under the name Moreau-Yosida regularization. It is easy to show that the
gradient of Fτ given by

∇Fτ (ū) =
ū− proxτF (ū)

τ
, (2.45)

does fulfill a Lipschitz condition with constant 1/τ [31], and that equivalently

proxτF (ū) = ū− τ∇Fτ (ū). (2.46)

We can therefore replace the implicit gradient descent (2.42) by an explicit gradient descent
of Fτ

uk+1 = proxτF (u
k) = uk − τ∇Fτ (u

k). (2.47)

We will now turn towards a slight modification of equation (2.40). Especially in imaging
applications it is often convenient to split the minimization problem into two parts

min
v∈U

F (K(v)) + g(v) (2.48)

where
F :V → (−∞,+∞], g:U → (−∞,+∞]

are convex lsc functions and K ∈ L (U, V ) is a continuous linear operator mapping U
into V . We already encountered this motif in regularization theory, where within Tikhonov
regularization F and g can be identified with the corresponding norms, and K denotes the
linear operator.

Recall that for convex and lsc functions it holds that [100]

F = F ∗∗ = sup
y∈Y

⟨u, y⟩ − F ∗(y).

Plugging this into equation (2.48) gives

min
u∈V

F (K(u)) + g(u) = min
u∈V

sup
y∈Y

⟨y,Ku⟩ − F ∗(y) + g(u). (2.49)

The conditions to exchange min and sup are not very strict, it is for example already enough
that F (0) <∞ and g is continuous at 0. We can therefore write

min
v∈U

F (K(v)) + g(v) = min
v∈U

sup
y∈Y

⟨y,Kv⟩ − F ∗(y) + g(v) (2.50)

= max
y∈Y

inf
v∈U

⟨y,Kv⟩ − F ∗(y) + g(v) (2.51)

= max
y∈Y

−F ∗(y)− g∗(−K∗y), (2.52)

where the last formula is the Fenchel-Rockefellar dual problem. With the assumptions as
above, we can show that it has at least one solution y∗. We now define the Lagrangian as

L(v, y) := ⟨y,Kv⟩ − F ∗(y) + g(v). (2.53)

Then, if u is any solution of the primal problem (2.48), then (u, y∗) is a saddle point of the
primal dual formulation (2.51). It holds

L(u, y) ≤ L(u, y∗) ≤ L(v, y∗)
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and we can also show that

0 ∈ ∂g(u) +K∗y∗,

0 ∈ ∂F ∗(y∗)−Ku.

One can now formulate minimization algorithms that explicitly exploit the saddle point
structure of (2.48). In the literature, they are usually found under the name primal dual
algorithms, as they solve the primal and the dual part alternatingly. One of the first, very
inviting approaches uses equation (2.51). It alternates between the solution of the primal
variable u and the dual variable y by solving

uk+1 = proxτg(u
k − τK∗yk)

yk+1 = proxσF ∗(yk + σKuk+1),
(2.54)

where we used the idea of equation (2.47) for each subproblem. Though this method has
been applied successfully, convergence can only be shown for its over relaxed variant

uk+1 = proxτg(u
k − τK∗yk)

yk+1 = proxσF ∗(yk + σKūk)

ūk+1 = uk+1 + θ(uk+1 − uk).

(2.55)

Especially in imaging applications, the solution of the proximal map is often very easily
computed.

Example 2.3.11: In denoising for example, one tries to recover a clean image u from its
noisy version f , where the relation is

u = f + η,

with η being an unknown noise. The problem is ill-posed, and a famous regularization is by
Osher, Rudin and Fatemi [105]

min
v
λ||∇v||1+

1

2
||v − f ||22. (2.56)

In the notation of equation (2.48), we find F = ||·||1, K = ∇ and g = ||· − f ||2, which
yields the saddle-point problem

min
v∈U

sup
y∈Y

⟨y,∇v⟩ > −δ||·||2≤λ(y) +
1

2
||v − f ||22, (2.57)

where we used the findings from Example 2.3.5 to calculate the convex conjugate of the
norm. Performing the minimization now requires to compute the proximal maps of
δ||·||2≤λ(y) and 1

2 ||v − f ||22. The latter one can be easily derived by Moreau-Yosida reg-
ularization and reads

û = proxτg(ũ) ⇔ ûi,j =
ũi,j + τf

1 + τ
, (2.58)

where ũ is the argument of the proximal map as in algorithm (2.54) or (2.55). It remains to
compute the proximal map of δ||·||2≤λ(y). But proximal maps of indicators with respect to
some norms are just the projection to balls with radius λ

y = Π||·||2≤λ(y) ⇔ yi,j =
ỹi,j

max{1, λ−1, |ỹi,j |2}
, (2.59)

where ỹ again denotes the argument as in algorithm (2.54) or (2.55).
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2.4 Bounded Variation

Transferring regularization from Hilbert to Banach spaces will become necessary, as reg-
ularization in Hilbert spaces will almost always produce very smooth solutions. However,
neither the images nor the motion that we expect can be considered as such. Images will
have edges and in motion we will observe jumps. In this section we will therefore intro-
duce the space of functions of bounded variation, which is not only very useful in image
processing, but also turns out to be a suitable space for our motion estimation.

Bounded variation turned out to be beneficial in many applications. This is also reflected
by the extensive literature. The main sources for this section are [30, 106, 29], and especially
when we consider total generalized variation [22] and [23].

2.4.1 Basics from Functional Analysis

Functions of bounded variation are those functions, whose total variation TV is finite.

Definition 2.4.1 ([29]): Let Ω ⊂ Rn be an open set and let f ∈ L1(Ω). Define

TV (f) =

∫
Ω
|Df |

= sup
{∫

Ω
f divg dx |

g = (g1, . . . , gn) ∈ C1
0 (Ω;Rn) and |g(x)|≤ 1 for x ∈ Ω,

} (2.60)

where divg =
∑n

i=1
∂gi
∂xi

.

Example 2.4.2: For f ∈ C1(Ω) the total variation is given by∫
Ω
f divg dx = −

∫
Ω

n∑
i=1

∂fi
∂xi

gi dx

for every g ∈ C1
0 (Ω;Rn) via integration by parts, and therefore

TV (f) =

∫
Ω
|∇f | dx. (2.61)

Unfortunately, such an identity cannot be derived in general. However, for functions that
are finite with respect to TV , we can derive a similar identity.

Definition 2.4.3: A function f ∈ L1(Ω) is said to have bounded variation in Ω if
TV (f) < ∞. We define BV(Ω) as the space of all functions in L1(Ω) with bounded
variation.

The classical theorem of Meyer and Serrin now states that if we relax the gradient in
Example 2.4.2 to the distributional derivate, then this identity holds for functions in BV.
The theorem in context of bounded variation can be found in [30]; a proof can be found in
the original work of [85].
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2.4. Bounded Variation

Theorem 2.4.4 ([30], Thm. 1.): Let Ω ⊂ RN be an open set and let u ∈ BV(Ω). Then
there exists a sequence (un)n∈N of functions in C∞ ∩W 1,1(Ω) such that

• un → u in L1(Ω),

• J(un) =
∫
Ω|∇un|dx→ J(u) =

∫
Ω|Du| as n→ ∞.

Remark 2.4.5: W k,p is the Sobolev space of functions whose derivatives up to k have finite
Lp norm.

The theorem shows another remarkable fact: we can approximate functions in BV by
smooth functions. However, the distributional derivative is quite a difficult quantity to cal-
culate. At best, we can decompose it for BV functions into a weak gradient of a vector
valued function in L1, and a singular part Dsu

Du = ∇u(x)dx+Dsu. (2.62)

What does this mean for TV as an option for regularization? Let us in addition observe, that
discontinuous functions can be of finite variation and therefore in BV. Take for example
Ω = [−1, 1] and define a discontinuous function f via

f(t) =


−1, −1 ≤ t < 0

1, 0 < t ≤ 1

0, else.

Applying the definition of total variation, we get∫
Ω
f div g dt =

∫ 1

−1

∂g

∂t
dt = −2g(0).

Calculating the supremum as in Definition 2.4.1 then gives∫ 1

−1
|Df |= 2.

That means, if we find a way to approximate the total variation, we can expect discontin-
uous functions as an outcome of the regularization. We already saw that the approximation
by smooth functions in Theorem 2.4.4 is one mean. But in fact, if we discretize the total
variation, we can also get a weak convergence result, namely Gamma convergence.

Definition 2.4.6 ([106], 4.48.): Let (Jk) be a sequence of functionals on a metric space U .
If there exists a functional J on U such that

1. for all sequences (uk) → u one has lim infk Jk(uk) ≥ J(u),

2. for each u there exists a sequence (uk) → u such that lim supk Jk(uk) ≤ J(u),

then (Jk) is said to Γ-converge to the Γ-limit J , denoted by

J = Γ− lim
k
Jk.
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We can for example approximate a three dimensional quantity by piecewise constant
functions, i.e. for u = (u, v, w) is approximated by uh = (uh, vh, wh) via

uh(x) =

N,M,L∑
i=1,j=1,k=1

uijkϕu(x), (2.63)

where ϕu(x) = ϕi(x)ϕj(y)ϕk(z) and

ϕi(x) =

{
1, if x ∈ [xi − h

2 , xi +
h
2 )

0, else,

ϕj(y) =

{
1, if y ∈ [yj − h

2 , yj +
h
2 )

0, else,

ϕk(z) =

{
1, if z ∈ [zk − h

2 , zk +
h
2 )

0, else,

and uijk = (uijk, vijk, wijk) ∈ R3 is a vector-valued coefficient.
A possible discretization for TV in three dimensions is to consider the sum of total vari-

ation on each vector component, that is

TVh(uh) = h
∑
i,j,k

√
|ui+1,j,k − ui,j,k|2+|ui,j+1,k − ui,j,k|2+|ui,j,k+1 − ui,j,k|2, (2.64)

and
TVh(u) = TVh(u) + TVh(v) + TVh(w). (2.65)

Theorem 2.4.7 ([30], Prop. 3.1.): Let for the sake of simplicity be N = M = L and
h = 1/M , Ω = (0, 1)3. Set, for u ∈ L1(Ω), the discrete total variation as in (2.64)
if there is a representation of u as in (2.63) and +∞ else. Then, as h → 0, TVh Γ-
converges to

TVh(u; Ω) =

{∫
Ω|Du| if u ∈ BV(Ω) ∩ L1(Ω),

+∞ if u ∈ BV(Ω)\L1(Ω).
(2.66)

The last finding is of special importance, as the analytical representation via singular
parts (2.62) leads to rather complicated representations via lower dimensional Hausdorff-
measures, which are very difficult to compute in the discrete case. The theorem states that
instead we can approximate a functional involving TVh, and a solution to the approximated
functional will eventually converge against the true functional, as h→ 0.

2.4.2 Application of Total Variation in Image Processing

The utilization of bounded variation (and also the idea of the last theorem to have a dis-
cretization that converges to the true functional) are ideas from the heart of image process-
ing. They have been successfully applied to denoising, inpainting, restoration and segmen-
tation. The utilization for motion estimation will be discussed later, but we want to take a
closer look into segmentation with total variation. Mumford and Shah proposed to consider
images in the space of special functions of bounded variation (SBV). The space consists of
those functions of bounded variation, whose distributional derivatives can be decomposed
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into a jump part and an absolutely continuous gradient, and it is therefore a subset of BV.
An image u0: Ω ⊂ R2 → R is therefore segmented by searching for an approximation
u ∈ SBV with jump set Su, such that u is a minimizer of

J(v) :=

∫
Ω\Sv

|∇v|2dx+ νHd−1(Sv) + λ

∫
Ω
(v − u0) dx. (2.67)

Hd−1 is the (d− 1)-dimensional Hausdorff-measure. For d = 2 it is given by the length of
the jump set Su, which is the total length of the edges in u.

Ambrosio and Tortorelli [4] showed that the following sequence of elliptic functionals
Γ-converges to equation 2.67

Jk(v, z) =
1

2

∫
Ω

(
|∇v|2+|∇z|2

)
(1− z)2k + ν2

∫
Ω

k2z2

4
+ λ

∫
Ω
(v − u0)

2 dx. (2.68)

Note that equation (2.68) replaced the Hausdorff-measure by smooth approximations and is
therefore much easier to compute.

Due to the use of the Hausdorff-measure in the original formulation (2.67), only the
length of the edges of u are penalized, but not their smoothness. A solution to the Mumford-
Shah functional therefore can have junctions, corners and crack-tips – a very appealing
property for segmentation.

The characterization of solutions to the Mumford-Shah functional as SBV functions hap-
pened much later than the initial work, and only with the help of the Ambrosio-Tortorelli
limit.

We now return to a general formulation for 2D image processing tasks involving regular-
ization. We once more consider the solution of F (u) = y by regularization

min
v∈BV

λ

2
||F (v)− y||2+TV (v). (2.69)

As BV is a Banach space, existence and uniqueness of solutions have to be investigated with
the means of regularization in Banach spaces. Therefore, following [29], we will consider
BV functions of zero mean, i.e., the subspace

BV0(Ω) = {u ∈ BV(Ω) |
∫
Ω
u dx = 0}.

This choice is not a very harsh restriction – one can show that each solution u to (2.69) can
be decomposed to

u = v +
⟨y, T1⟩
||T1||2

1,

where v ∈ BV0 and 1 is a constant function taking the value 1 everywhere. The minimiza-
tion can therefore be shifted from BV to BV0 by setting y0 = y − ⟨y,T1⟩

||T1||21.

Theorem 2.4.8 ([29], 3.9.): There exists a solution to

min
v∈BV0(Ω)

J(v); J(v) =
λ

2
||F (v)− y0||2+TV (v) (2.70)

in BV0.
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Note that the set of minimizers to (2.70) is convex, as it is composed of two convex
terms. As soon as we pose some additional conditions, for example that the solution is of
some minimal norm (which makes very much sense in the settings of inverse problems as
we saw with the notion of best approximate solutions), the convexity guarantees uniqueness.
In general, uniqueness can only be expected if T is injective.

Theorem 2.4.9 ([29], 3.11.): Let F have a trivial nullspace and λ > 0. Then (2.70) has a
unique minimizer.

Now that we have found conditions for existence and uniqueness for minimizers, one
might ask for conditions on the optimality of a possible solution. As BV functions may
be non-differentiable, we have to formulate these conditions in terms of subgradients (cf
Definition 2.3.6).

Clearly, u is a minimizer of a convex functional J if 0 ∈ ∂J(u), which is, due to the
convexity of J , necessary and sufficient. The computation of the subdifferential of J now
leads to the following optimality condition

λF ∗(Fu− y) + p = 0 p ∈ ∂TV (u).

However this condition gives no recipe for computing an actual minimizer, as it is dependent
on the subdifferential, and this quantity is usually hard to compute. One can for example
consider its dual norm, the so called G-norm. For further investigations in this manner,
see [84].

Recall Example 2.3.11

min
v
λ||∇v||1+

1

2
||v − f ||22. (2.71)

Though we introduced the explicit notion of total variation regularization afterwards, this
denoising method was already an example of such a method. We now want to introduce a
different method to tackle TV-penalizers. We rewrite the problem as

min
v
J(v), J(v) =

1

2

∫
Ω

(
||v − f ||22+λρ(|∇v|)

)
dx, (2.72)

where ρ in this case is a function to tackle the non-differentiability of |∇v|, e.g.
ρ(s) =

√
s2 + β2 for some small β. Because we used the representation of TV (v) via

its gradient, we will seek u ∈ W 1,1, which is not too much of a problem, thanks to Theo-
rem 2.4.4. A necessary condition for u to be a minimizer is vanishing first variation, i.e.

L(u, v) =

∫
Ω

(
(u− f)v + λρ′(|∇u|)∇u · ∇v

)
dx = 0 for all v ∈W 1,1. (2.73)

By integration by parts, we can also formulate u as weak solution of the Euler equation

λ div
(
ρ′(|∇u|)∇u

)
− (u− f) = 0, (2.74)

with reflecting (homogeneous Neumann) boundary conditions

∂u

∂n
= 0 on ∂Ω.

The variational approach just described has a close relative called diffusion filtering [124].
As the name implies, a noisy image f is diffusion filtered by solving the diffusion equation
for a filtered image u(x, t), which reads

∂tu = div (ρ(|∇u|)∇u) , (2.75)
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with initial state given by the original image f(x)

u(x, 0) = f(x), (2.76)

and boundary conditions as before. The resemblance to equation (2.74) becomes clear, if
we write

u− f

λ
= div

(
ρ′(|∇u|)∇u

)
, (2.77)

which is an implicit time discretization of the diffusion equation. No matter how we in-
terpret this problem, we have to solve a nonlinear PDE to reconstruct the filtered image u.
A possible approach is to approximate the variational formulation by a quadratic variant
with the help of an auxiliary variable w by

J̃(u,w) =
1

2

∫
Ω

(
(u− f)2 + λ(w|∇u|2+ψ(w))

)
dx, (2.78)

where ϕ(w) is chosen such that the above functional will be convex with respect to w. It
can therefore be neglected if the functional is already convex. A solution is now found by
solving for w and u in an alternating way

wk = argmin
w

J̃(uk, w)

uk+1 = argmin
u

J̃(u,wk).
(2.79)

Due to convexity, we can immediately calculate wk as

wk = ρ(|∇uk|).

The alternating equations (2.79) therefore boil down to freezing or to lag the nonlinear part
of (2.72). In case of solving variational equations arising from partial differential equations,
this method is known as the Kačanov method, in case of denoising with BV-functions it is
called lagged diffusivity. A detailed convergence analysis is postponed to the next section.

Note that in the classical convergence analysis of the Kačanov method, ρ has to satisfy
the following properties.

(ρ1) The diffusion function ρ: [0,∞) → [0,∞) is continuously differentiable;

(ρ2) The diffusion function ρ is decreasing, i.e. ρ′(t) ≤ 0 for all t ≥ 0;

(ρ3) There are positive constants mρ and Mρ such that mρ ≤ ρ(t) ≤Mρ for all t ≥ 0;

(ρ4) There exists a positive constant cµ such that 2ρ′(t2)t2 + ρ(t2) ≥ cρ for all t ≥ 0; or
equivalently that ϕ defined by

ϕ(t) :=

∫ t

0
ρ(s2)sds, t ≥ 0

is strictly convex.

Clearly, the role of ρ is taken by the derivative of ρ(t) =
√
t2 + ϵ2. As

ρ′(t) =
1

2

1√
t2 + ϵ2

,

the above conditions are fulfilled.
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2.4.3 Total Variation as Regularization

Let us now come back to the considerations if the general TV regularization (2.69) really
forms a regularization. We still need to check if λ in fact serves as the classical regular-
ization parameter, that we defined in the Hilbert space setting, and what we can say about
convergence in case of noisy data. Note that it is quite difficult to define a “real” regulariza-
tion operator Rα (or in this specific case Rλ), that can be checked to fulfill the conditions
of Definition 2.1.6. For convergence for exact data y there exists the following weak con-
vergence result.

Theorem 2.4.10 ([29], 5.4.): Let y ∈ R(T ), and uλ be a solution of J for a specific λ.
Then every subsequence of (uλ) has a weak-∗ convergent subsequence. Every weak-∗

accumulation point is a solution to Tu = y with minimal total variation.

For noisy data yδ we find the following.

Theorem 2.4.11 ([29], 5.5.): Let y ∈ R(T ) and let yδ be such that ||y−yδ||= δ. Moreover,
let the noise be bounded from above. Let λ be such that λ(δ) → ∞ as δ → 0 and
λ(δ)δ2 → 0. Then every subsequence of (uλ) has a weak-∗ convergent subsequence.
Every weak-∗ accumulation point is a solution to Tu = y with minimal total variation.

Having now justified that total variation can in fact be used as regularization, one could
now ask if besides allowing or even promoting jumps, there is another mathematical justifi-
cation to use total variation.

2.4.4 Total Generalized Variation

Recall that we eventually want to compute the deformation a body underwent during a
materials test. It therefore seems natural to check what continuum mechanics has to offer
to simulate the outcome of such an experiment. In fact, already in 1980 Temam [117]
introduced the space of bounded deformation to model plastic deformation, which occurs
after an initial elastic reversible stage. To relate bounded deformation to bounded variation,
we need the following notions from tensor calculus. The vector spaces of k-tensors and
symmetric k-tensors are defined by

T k(Rd) =
{
ξ:Rd × . . .× Rd︸ ︷︷ ︸

k-times

→ R | ξ k-linear
}

and
Symk(Rd) =

{
ξ:Rd × . . .× Rd︸ ︷︷ ︸

k-times

→ R | ξ k-linear and symmetric
}
,

respectively. Just as in the classical theory, we can identify the space of Radon measures
with the dual of continuous functions vanishing on the boundary. For (symmetric) tensor
fields, i.e. mappings from a bounded set Ω to either T k(Rd) or Symk(Rd), we define

M (Ω, X) = C0(Ω, X)∗, X ∈ {T k(Rd),Symk(Rd)}

with Radon norm

||u||M= sup{⟨u, ϕ⟩ | ϕ ∈ C0(Ω, X), ||ϕ||∞≤ 1}.
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Definition 2.4.12: Let l ∈ N, l ≥ 0. The space BD(Ω,Syml(Rd)) of symmetric tensor
fields of bounded deformation is defined as the Banach space

BD(Ω,Syml(Rd)) = {u ∈ L1(Ω,Syml(Rd)) | E u ∈ M (Ω,Syml+1(Rd))},

with norm ||u||BD= ||u||1+||Eu||M and E being the weak symmetrized derivative.

As with total variation, we can express the Radon norm ||Eu||M by its dual representation

||Eu||M= sup

{∫
Ω
u · divϕ dx |ϕ ∈ C 1

c (Ω,Syml+1(Rd)), ||ϕ||≤ 1

}
.

For l = 0 and l = 1 we now arrive at the desired spaces [22], as

BD(Ω,Sym0(Rd)) = BV(Ω) and BD(Ω,Sym1(Rd)) = BD(Ω),

where BD(Ω) is the space of bounded deformation as Temam introduced it together with
Strang to describe perfectly plastic deformations [117]. Just as for TV , we can write
E = (Du +DTu)/2 with D being the distributional gradient as an Definition 2.4.1. The
quantity E in this special case is also called strain tensor. Temam developed the theory for
a suitable space for plastic deformation very similarly to image processing with bounded
variation, but several years earlier: He showed, that the Sobolev space W 1,1 only contains
functions that are too smooth to produce solutions in the plastic case. The “natural can-
didate” BV is also not a correct candidate. Plasticity can be characterized by finite strain
energy, but as finite strain does not dominate the total variation (so the components of the
derivative), we lose coerciveness and cannot apply the direct method of calculus of vari-
ations anymore. He therefore proposed BD and many publications followed manifesting
the correctness of this space. However, the careful reader noted that BD and BV do not
coincide, even worse: One can derive examples of functions that have bounded deformation
but fail to have bounded variation. It is nevertheless not too strict to consider total vari-
ation as regularizer in motion estimation, as piecewise rigid displacements have bounded
variation [3].

2.5 Solution Strategies

2.5.1 Kačanov Method

The following section is based on the quite recent work of Heid et al. [54], who introduced
a modified Kačanov method that works under less strict conditions. We will however show
that we fulfill the strict conditions of the original method, but we profit from their nice
introduction either way.

In their general setting V will denote a reflexive Banach space equipped with a norm ||·||V
and K ⊂ V a closed, convex set. Note that there is a small but significant difference to our
Banach space U from the previous section, namely the reflexivity. One of the main objects
of interest will be a (nonlinear) Gâteaux-continuously differentiable functional H:K → R
with strongly monotone Gâteaux derivative, i.e. H ′ satisfies

⟨H ′(u)−H ′(v), u− v⟩ ≥ ν||u− v||2Y for all u, v ∈ K,

for a constant ν > 0. Such functions admit a unique minimizer in K, as the following
proposition shows.
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Proposition 2.5.1 ([54], 2.1.): Suppose that H:K → R is a (Gâteaux-)continuously dif-
ferentiable functional with the strong monotonicity condition as above. Then there exists
a unique minimizer u∗ ∈ K, i.e. H(u∗) ≤ H(v) for all v ∈ K. Furthermore, u∗ ∈ K is
the unique solution of the weak inequality

⟨H ′(u∗), v − u∗⟩ ≥ 0 for all v ∈ K.

Remark 2.5.2: Y is assumed to be reflexive to guarantee that every bounded sequence has a
convergent subsequence. As we deal with functions in BV, we cannot guarantee reflexiv-
ity. However, we will use Kačanov’s method in motion estimation in a similar manner as
in diffusion filtering (2.72), which allows us to consider an approximate problem inW 1,1.

K will be furthermore characterized by the following assumption.

(K) The set X := {u− v |u, v ∈ K} is a linear closed subspace of V , and x+ v ∈ K for
all x ∈ X and v ∈ K.

This allows for an even stronger characterization (but still a weak formulation) of the mini-
mizer, namely

⟨H ′(u∗), v⟩ = 0 for all v ∈ X. (2.80)

In general, the Kačanov method deals with mappings a:K × V ×X → R and right-hand
sides b:K ×X → R, which satisfy the following properties

(A1) For any given u ∈ K, we suppose that a(u; ·, ·) is a bilinear form on V × X , and
b(u, ·) ∈ X∗.

(A2) There exist positive constants α, β > 0 such that, for any u ∈ K, the form a(u; ·, ·)
is uniformly bounded on V ×X and coercive on X ×X in the sense that

a(u; v, w) ≤ β||v||V ||w||V for all v ∈ V and for all w ∈ X,

and
a(u; v, v) ≥ α||v||2V for all v ∈ X,

respectively; in particular, if the set K satisfies property (K), then it follows that

A(u; v − w, v − w) ≥ α||v − w||2Y for all v, w ∈ K.

(A3) There are Gâteaux continuously differentiable functionalsG:K → R andB:K → R
such that, for all u ∈ K it holds G′(u)|X= a(u;u, ·) and B′(u)|X= b(u) in X∗.

(A4) The (continuously differentiable) functional H:K → R given by G(u) − B(u),
u ∈ K satisfies the strong monotonicity condition.

The characterization of the minimizer (2.80) for the functional H , if K satisfies (K) reads

0 = ⟨H ′(u), v⟩ = ⟨G′(u∗)−B′(u∗), v⟩ = a(u∗;u∗, v)−⟨b(u∗), v⟩ for all v ∈ X. (2.81)

For a given u ∈ K we now define the linear operator A(u):V → X∗, v 7→ A(u)v by

⟨A(u)v, w⟩ = a(u; v, w) for all w ∈ X. (2.82)
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Using A, the weak formulation (2.81) then reads

A(u∗)u∗ = b(u∗) in X∗.

By (A2), we can deduce that a(u; ·, ·) is a bounded and coercive bilinear form on the closed
subspace X × X . That allows to apply the Lax-Milgram theorem: For any u ∈ K and
linear maps ℓ ∈ X∗, we find a unique wu,ℓ such that A(u)wu,ℓ = ℓ in X∗. Therefore, A is
invertible on X for every u ∈ K. That allows us to define an iterative procedure by setting

un+1 = un − ρn, n ≥ 0, (2.83)

where ρ is defined as the solution to the linear system

A(un)ρn = F (un) (2.84)

with
F (u) := H ′(u) = A(u)u− b(u) ∈ X∗. (2.85)

We can now state convergence of the Kačanov method.

Theorem 2.5.3 ([54], 2.5.): Assume (A1)-(A4) and in addition let the following key in-
equality hold

G(u)−G(v) ≥ 1

2
(a(u;u, u)− a(u; v, w)) for all u, v ∈ K. (2.86)

1. For n = 0, 1, . . . the quadratic variational problem

uk+1 = min
u

1

2
a(uk;u, u)− b(u) (2.87)

has a unique solution uk+1 and for uk+1 ∈ K

a(uk;uk+1, v − uk+1) ≥ b(v − uk+1)

holds.

2. If in additionH ′(u) satisfies the strong monotonicity condition, the Kačanov method
converges, that is

uk → u in V as k → ∞. (2.88)

2.5.2 Levenberg-Marquardt Algorithm

As hinted in the previous sections, we now come to the derivation of the method of Leven-
berg and Marquardt for curve fitting problems. We follow the derivation of [53]. Originally,
it is designed to solve least squares curve fitting algorithms, but it also arises in the context
of regularization of nonlinear ill-posed problems.

In the classical context, one seeks a solution to the nonlinear curve fitting problem

min
x

1

2
||F (x)||22=: Φ(x), (2.89)

where F :D(F ) ⊂ Rn → Rm with m ≥ n. For sufficiently smooth F (which we will
assume for now), we know that

∇Φ(x̂) = 0 and HΦ(x̂) positive definite
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are the necessary and sufficient conditions for Φ having a local minimum in x̂. Candidates
for minimizing points, so stationary points, can be computed by the well-known Newton
method

xk+1 = xk − (∇Φ(xk))−1Φ(xk). (2.90)

Note that the classical method was developed for m = n = 1, but the extension to arbitrary
m = n is straight forward. In our case, so m ̸= n, the inverse has to be replaced with a
generalized or Pseudo-inverse, as ∇Φ(xk) is not necessarily quadratic.

Computing the iteration (2.90) is however a very tedious task, as it involves second order
derivatives of F . Am remedy is provided by an additional linearization step, i.e.

xk+1 = min
x

Φ(x), Φ(x) ≈ 1

2
||F (xk) +∇F (xk)

(
x− xk

)
||22.

xk+1 can now be computed via a Newton step with respect to F , that is

xk+1 = xk − (∇F (xk))−1F (xk),

or, if one prefers to solve the linear system

∇F (xk)
(
xk+1 − xk

)
= −F (xk).

This method is usually known under the name Gauss-Newton-method. Convergence is
unfortunately only guaranteed for starting points close to the actual solution which is mainly
due to the possible ill condition of ∇Φ(xk). If ∇Φ(xk) is ill-conditioned the difference
xk+1 − xk can become arbitrary large. The idea of the Levenberg-Marquardt-method is to
limit this difference, i.e. to minimize within a ball-shaped trust region of radius ρk

Rk = {x ∈ R2 | ||x− xk||2≤ ρk}.

The corresponding minimization problem then reads

min
1

2
||F (xk) +∇F (xk)

(
x− xk

)
||22 (2.91)

s.t. ||x− xk||2≤ ρk. (2.92)

This constrained curve fitting problem is now minimized on a compact subset Rk ⊂ Rn –
it therefore has at least one solution. With the notation

Ak = ∇F (xk), h = x− xk, bk = −F (xk)

we arrive at a linear constrained minimization problem

min
1

2
||Akh− bk||22=: Ψ(h) (2.93)

s.t. ||h||2≤ ρk. (2.94)

After solving for h, the next iterate is computed via xk+1 = xk + h.
Let us now consider the special case of an iterate hk satisfying ||hk||= ρk exactly. We

can then deduce that there exists some λk > 0 such that

∇Ψ(hk) = A∗
kAkh

k −A∗bk = −λkhk

or
(A∗

kAk − λkI)hk = A∗bk,

which is exactly the Tikhonov representation of the nonlinear inverse problem (2.22).
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Motion Estimation in Volume Images

After laying the mathematical foundations, we can now turn towards the exact description of
algorithms that estimate motion in volume images. We can identify two communities, that
estimate motion in volume images, but develop their algorithms rather independently from
each other: Materials scientists with their methods going under the name Digital Volume
Correlation (DVC), and medical image analysts, that call their methods Medical Image
Registration (MIR). Due to the vast number of algorithms in these two areas, our choice of
algorithms presented here is far from complete. We limited ourselves to either cornerstones
of their kind or to those of special interest as they seemed particularly suitable.

However, we refer to the following reviews and monographs for a more complete overview
in the respective areas. For DVC, the work of Bay et al. [12] and Buljac et al. [27] presents
a great starting point when reading into the topic. For MIR the monograph [86], and [96]
with special focus on the method we present here should be mentioned.

For all motion estimation algorithms, our setting will be the following. We consider
images I0, I1 as maps from an open and bounded domain Ω ⊂ R3 to the real numbers, so
I0, I1: Ω ⊂ R3 → R. I0 and I1 resemble the same specimen at different, but successive
loading stages, so for example unloaded and loaded, compressed at 2% and compressed
at 4%. The images I0 and I1 are related by a transform ϕ:R3 → R3 that transfers the
images such that

I0(x) = I1(ϕ(x)) = I1 ◦ ϕ. (3.1)

Ideally, the transformation ϕ mimics the motion that the real-world-sample underwent. An
obvious choice is therefore to express ϕ in terms of displacement, so by

ϕ(x) = x+ u(x).

But one could also think of interpreting ϕ as a path that transfers every particle in I0 to a
(preferably unique) position in I1. The former will be the basis for Digital Volume Correla-
tion, the latter for Medical Image Registration.

In spirit of regularization and variational formulation, we usually relate I0 and I1 by a
distance function D, for example

D(I0, I1) = ||I0(x)− I1(ϕ(x))||2L2
,

which is also called the weak formulation, and will pose a regularization R(u) on the dis-
placement u, for example

R(u) = ||u||H1 .
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3.1 Digital Volume Correlation

3.1.1 Local DVC

The starting point of DVC is a displacement based weak formulation first proposed by
Bay et al. [13]. The algorithm starts by separating both images into subvolumes of K3

voxels. Each subvolume is uniquely identified by its center x. Then, for each subvolume
individually, the displacement u is estimated at center x by solving

min
u

K3∑
i=1

(I1(x+mi + u(x))− I0(x+mi))
2 , (3.2)

where mi denotes the offset to all locations within the subvolume. We now want to ex-
tend (3.2) to the whole image in order to fit the formulation to our general motion estimation
approach. Obviously, this approach is regularization by projection. Assume that our image
consists of H ×W ×L or a total of Ntotal voxels. Our reconstructed displacement field will
therefore also be of dimension H ×W ×L× 3, but most certainly not of Ntotal distinct val-
ues. The number of distinct values coincides with the number Ndisp of “supervoxels”, with
Ntotal >> Ndisp – the whole subvolume in (3.2) will be annotated with the displacement u
at x. An approximation uh to u can be now be formulated by piecewise constant functions
covering the supervoxels. By defining xd = (xd, yd, zd) as the center point of a subvolume,
the displacement is approximated by

uh(x) =

Ndisp∑
d

udϕud
(x), (3.3)

where ϕud
(x) = ϕxd(x)ϕ

y
d(y)ϕ

z
d(z) and

ϕxd(x) =

{
1, if x ∈ [xd − K

2 , xd +
K
2 )

0, else,

ϕyd(y) =

{
1, if y ∈ [yd − K

2 , yd +
K
2 )

0, else,

ϕzd(z) =

{
1, if z ∈ [zd − K

2 , zd +
K
2 )

0, else,

and ud ∈ R3 is a vector-valued coefficient. Note that in the above representation the su-
perscripts only indicate which indicator is chosen. The minimization with respect to uh is
therefore equivalent to minimizing with respect to the coefficients ud. Taking into account
all subvolumes in parallel, the minimization reads

min
u

Ndisp∑
d=1

K3∑
i=1

(I1(xd +mi + uh(xd))− I0(xd +mi))
2 , (3.4)

and because our center points of the subvolumes are unique

min
u

Ndisp∑
d=1

K3∑
i=1

(I1(xd +mi + udϕu(xd))− I0(xd +mi))
2 . (3.5)
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Figure 3.1: Speckle pattern. Image taken from [95].

The original work proceeds by using the Levenberg-Marquardt method to iteratively gen-
erate a solution. That is, uk+1 is computed by uk+1 = uk + pk, and pk is the solution to
the linear system

(JT
k Jk + λkI)pk = −Jk

(
I1(u

k)− I0

)
,

where Jk is the Jacobian of I1 evaluated at uk, and where we omitted the dependence on x
and mi, and λk a sequence of nonnegative constants.

In Section 2.1.5 we learned that Levenberg-Marquardt itself is a regularization method
with parameter λk. Therefore, theoretically it is possible to push Ndisp to Ntotal, so to shrink
the supervoxel, such that K3 = 1. By formulating only the system matrix for the Gauss-
Newton-Method (so by setting λk = 0 ∀ k), we get a very visual impression on how the
problem’s ill-posedness manifests in a real world example: If we push the subset size to
one displacement vector per voxel, the system matrix has only diagonal entries – namely
the corresponding squared derivatives. If any two neighboring points in the image have the
same gray values, the system matrix is singular and thus not invertible anymore. Tikhonov
regularization (and thus Levenberg-Marquardt) now adds a small pertubation of size λk
to each diagonal element to guarantee invertibility. Note that the condition number still
might be bad, and thus the result will not be a good one. Regularization by projection, so
choosing subvolumes much bigger than the actual voxel size, will now cause the system ma-
trix to be overdetermined, instead of underdetermined, as before. The Tikhonov approach
(adding λkI) is therefore not necessary anymore, at least if the often required speckle pat-
tern is present in the image, see Figure 3.1. Such a pattern guarantees that no subvolume is
completely empty, which, again, guarantees invertibility.

Bay himself and his group also proposed the first improvements to this method [111].
Instead of only computing displacement, so three translational degrees of freedom per sub-
volume, they propose to use six degrees of freedom, so to also add those related to rotations.
This changes equation (3.2) to
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min
u,R

K∑
i=1

(I1(x+ ni + u(x))− I0(x+mi))
2 . (3.6)

Note that now different offset vectors ni and mi have to be used. That is due to the fact
that rotation has to be applied by a matrix, therefore the relation ni = Rmi for R being a
rotation matrix, i.e. RT = R−1, holds. This variant transitions into the original simply by
setting R = I. However, in our applications we will usually assume that no rotation occurs
or that rigid transformation has been applied as a preprocessing step. Therefore we will not
go much more into detail regarding these kinds of transformations.

The much more interesting improvement, also in the same work by Smith et al. [111], was
to introduce a different metric to measure correlation. Where the original version (3.2) can
be considered as a sum-of-squared-difference (SSD) metric, one can also use a Normalized-
Cross-Correlation (NCC) metric, i.e. by setting

E0 =

K∑
i=1

I0(x+mi)
2,

E1 =
K∑
i=1

I1(x+ ni + u)2,

one can define the NCC coefficient via

Cn(u) = 1−
∑K

i=1 I0(x+mi)I1(x+ ni + u)√
E0E1

. (3.7)

In 2011 Gates et al. [43] proposed to use 12 degrees of freedom, so to estimate the
displacement and the first order derivatives. To cope with the higher computational cost this
extension caused, they limited the maximal possible displacement and proposed a parallel
interpolation scheme. Pan et al. [94] proposed to use zero-mean NCC shortly after.

In the last decade, the focus was put on improvement of the optimization. First, a dis-
tinction between additive and compositional approaches was made. Because of the large
number of unknowns in DVC, the optimization of the above problem is almost always done
via iterative schemes. Compositional in this context means, that after each iteration of the
solution algorithm all terms involving the displacement to be optimized are updated with the
result from the iteration. This specifically involves all terms of the form I1(x+mi+u(x)),
so images evaluated at a displaced position. More detail on how and where to incorporate
compositional methods can be found in Baker et al. [8]. In this context, the method of Bay
et al. [13] can be classified as additive. The inverse compositional Gauss-Newton (IC-GN)
scheme of Pan et al. [94] then led to significant improvement in accuracy and speed. Fur-
ther improvements on IC-GN, especially aiming for fast and memory efficient computations
on high resolution images, were made by Pan et al. [93]. Note that algorithms that only
use Gauss-Newton methods can be considered to be regularized only by projection. Their
theoretical limit therefore lies in subvolume sizes of several voxels.

Another problem with approaching motion estimation via local DVC immediately arises.
As all displacement vectors are estimated independently from each other, they may be
highly uncorrelated. In practice, one would expect that neighboring vectors more or less
act the same, at least outside fracture or other discontinuous regions. Otherwise, the me-
chanical interpretation might be difficult. To tackle this problem, a different approach to
DVC has been introduced, which will be described in the next section.
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3.1.2 Global DVC

At first glance, the formulation of global DVC is not too different from its local variant.
However, one usually starts with a minimization over the domain Ω

min
u

∫
Ω
(I1(x+ u(x))− I0(x))

2 dx, (3.8)

and expresses the displacement field u in terms of basis functions

u(x) =
∑
n

unψn(x), (3.9)

where un are scalar values. Note that this coincides with our formulation in equation (3.4).
The central difference now lies in the different basis functions, namely by choosing them
as Finite Elements. A very obvious option are cuboidal elements, as they resemble the un-
derlying voxel grid very well. Roux et al. [104] did so, by choosing 8-node cubic elements
with piecewise trilinear functions. For a precise formulation of these functions, we refer to
Zienkiewicz, Chapter 6.3 [129].

The minimization procedure is performed very similarly to the local case. As naturally
done by Levenberg-Marquardt, the nonlinearity is eliminated by a Taylor-approximation

I1(x+ u) ≈ I1(x) + u(x) · ∇I0(x).

Instead of solving directly for the displacement u, a solution for an increment is computed,
that is, one solves for du and then updates

un+1 = un + du.

The increment can be computed by solving a system of linear equations

M du = b.

Clearly, this forms a Newton-scheme, M is therefore given by the Hessian, so component-
wise by

Mij =
∑
x

(∇I0(x) · ψi(x)) (∇I0(x) · ψj(x)) .

The elements of the right-hand side vector are given by

bi =
∑
x

(∇I0(x) · ψi(x)) (I0(x)− I1(x+ un))

Obviously, because subvolumes are now finite elements, we have a coupling between
respective displacement vectors. However, the resulting vector field is very smooth. This
may or may not be an advantage. When the underlying motion is expected to be very
smooth, it is most certainly not erroneous to only allow for smooth displacement. Even for
discontinuous displacement, global DVC offers helpful tools. In concrete for example, the
segmentation of cracks based on gray-value levels usually performs very poorly. We will
later see that the inability to match cracks properly in motion estimation can be a very useful
tool for detecting cracks.

Anyhow, if one is interested in exact material behavior, the smoothness of the computed
displacement field causes problems. One possibility to overcome this problem is to estimate
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crack surfaces and to use them as masks, which indicate where displacement shall not be
computed. Rethore et al [99] propose to do so by solving for displacement and crack surface
in parallel. In a first step, the global DVC is performed as described before. The resulting
residual

ρu(x) = |I1(x+ u(x))− I0(x)| (3.10)

will exhibit a large error at voxels which display the crack, due to the smoothness assump-
tions in global DVC. The residual can therefore be thresholded and used as an initial mask
to indicate where to expect a crack and where not. Based on this mask, global DVC is re-
computed, but this time only outside the crack. Inside the crack, a different set of functions
is then used. This procedure is repeated until convergence.

Again, local DVC suffers from an ill-conditioned system matrix when pushing the size of
the subvolumes (now in the shape of finite elements) towards voxel level. Leclerc et al. [70]
proposed to regularize by the finite element stiffness matrix K, so to set

R(u) = ||Ku||L2 . (3.11)

3.1.3 Augmented Lagrangian DVC

Recently, Yang at al. [126] proposed to combine both local and global DVC by an aug-
mented Lagrangian approach. In their work, which is abbreviated by ALDVC, two sub-
problems are solved in an alternating manner: First, a local, IC-GN approach is used to cal-
culate accurate subvolume displacements u. Then a global FE based DVC step calculates
an auxiliary displacement field û, that suffices the properties, that an outcome of global
DVC has and is as close as possible to the local DVC displacement u.The optimization
therefore is performed as follows. Let the image domain Ω be separated into subvolumes
such that

⋃
iΩi = Ω. Then for each subvolume the classical DVC SSD assumption (3.8)

is augmented by terms relating ui to the auxiliary variable û, and a kinematic compatibil-
ity constraint, namely that Fi = ∇û

(
x0
i

)
and ui = û(x0

i ), where x0
i denotes the center

point of the subvolume Ωi. Here, the Fi will serve as auxiliary variables and are subject to
the optimization as well ûi and ui. Therefore, the following functional, denoted by L0, is
computed such that it is minimal with respect to ui

L0 :=

∫
Ωi

(
I1(x+ ui(x) + Fi

(
x− x0

i

)
)− I0(x)

)2
+
µ

2
|ûi − ui|2

+ λi (ûi − ui) +
α

2
|∇ûi − Fi|2 + βi : (∇ûi − Fi) dx.

(3.12)

Now the locally computed unrelated subvolumes are correlated globally by the sum over all
subvolumes:

L :=
∑
i

∫
Ωi

(
I1(x+ ui(x) + Fi

(
x− x0

i

)
)− I0(x)

)2
+
µ

2
|ûi − ui|2 + λ · (ûi − ui) +

α

2
|∇ûi − Fi|2

+ βi : (∇ûi − Fi) dx.

(3.13)

Before proposing the alternating algorithm, the authors perform a simplification step that
has essential influence on the nature of the computed displacement fields. By setting
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Wi := βi/α and vi := λi/µ they derive

L =
∑
i

∫
Ωi

(
I1(x+ ui(x) + Fi

(
x− x0

i

)
)− I0(x)

)2
+
α

2
|∇ûi − Fi +Wi|2 +

µ

2
|ûi − ui − vi|2 dx.

(3.14)

This simplification makes heavy use of a structure that comes only with Hilbert spaces,
namely that a norm in this space is induced by a scalar product. This simplification therefore
only works if we assume u ∈ L2. This manifests a strong restriction and in the later
evaluation we will see that it causes the computation of very smooth solutions.

A full iteration step is now performed by solving two independent subproblems. Given
{Fk

i }, {uk
i }, {ûk

i }, {Wk
i } and {vk

i }, where {Xi} = {Xi|i ∈ I} and I being an index set
to number all components, solve

• Subproblem 1 (local DVC): Hold {ûk
i }, {Wk

i } and {vk
i } fixed and minimize (as we

do in the local setting) independently for each i (where i is an index for the compo-
nent, not for the iteration)

{Fk+1
i }, {uk+1

i } = argmin
{Fi},{ui}

L({Fi}, {ui}, {ûk
i }, {Wk

i }, {vk
i }).

• Subproblem 2 (global DVC): Hold {Fk+1
i }, {uk+1

i }, {Wk
i } and {vk

i } and solve

{ûk+1
i } = argmin

{ûi}
L({Fk+1

i }, {uk+1
i }, {ûi}, {Wk

i }, {vk
i }).

• Subproblem 3 (Lagrange Multiplier update): Update {Wk
i } and {vk

i } for each i
individually by

Wk+1
i = Wk

i +
(
∇ûk+1

i − Fk+1
i

)
vk+1
i = vk +

(
ûk+1 − uk+1

)
.

A stopping criterion can be given either by a maximal number of iterations or by stopping
when |ûk+1 − uk+1| falls below some user-given threshold.

3.1.4 Convergence Analysis and Benchmarking

The convergence analysis of DVC methods leaves room for improvement. Usually, it is
only carried out in terms of benchmarking. That means the authors test if for some artificial
example their algorithm produces reasonable results. Consequently, the operability of DVC
is rather proven empirically than mathematically. This is already visible in the very first
approach of Bay et al. [13]. One can show that the Levenberg-Marquardt method only
converges for Lipschitz-differentiable functions. Images, especially those used in materials
science, are however for sure not Lipschitz, as they can have arbitrary jumps. The same
holds for displacement, and as we saw in Section 2.4, functions with jumps seem to be
of particular interest in describing deformation. By computing Taylor-approximations to
circumvent the highly non-convex and nonlinear evaluation of u inside the image I1, one for
sure introduces an error towards the true solution. Consequently, it is even more important
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Chapter 3. Motion Estimation in Volume Images

to carefully assess the evaluation and benchmarking the respective authors chose. A similar
approach is carried out to evaluate the performance of ALDVC.

Benchmarking in DVC is executed in various ways. Bay et al. [13] used repeated scans
of the same specimens without any loading and calculated displacement between them. For
sure, the outcome should be a zero displacement field, or at most only corrupted by noise.
The deviation to this was used to quantify the approximation error. Liu et al. [71] intro-
duced artificially loaded images, to estimate deviation from a non-zero displacement field.
However, they used only one global displacement vector, so the estimation of displacement
results in a heavily overdetermined system. A very thorough investigation was performed
by Pan et al. [95], where on top of translation as in Liu, in plane translation (so setting one of
the components to 0) and uniaxial tension (varying the value of one component piecewise)
was inspected.

Global DVC is usually evaluated in its performance when noisy images are considered.
In [69], the original image was correlated with the same image but with artifically added
noise. Again, the deviation from zero displacement was considered. In this case, one can
even derive closed form solutions.

Let us spend some last words on the terminology frequently used in DVC. Almost all
algorithms claim to be “subvoxel accurate” [95] and that they are precise within the range of
0.002 voxels [13]. This must be understood as a purely technical result. If the displacement,
that the present sample underwent, can be resolved by the coarse displacement that DVC
offers, then these accuracy results hold true. If we recall the notion of supervoxels from
the beginning of this chapter, this means that the number of distinct values of the original
displacement must not be larger than the number of supervoxels (times three). However, as
we will see later, it is nearly impossible to resolve low scale displacement in magnitudes of
few voxels with this approach.

3.2 Medical Image Registration

Medical Image Registration (MIR) has been around for very long and therefore the fixation
of an initial work is quite hard. Already in 1996, Elsen et al. [125] decided that it is time
for a proper review. Since then, approximately every 10 years the list of algorithms is
updated. Note that also several books [86, 51, 45] have been published in this area. For a
recent review, we propose to combine the review of classical methods by Oliveira et al. [92]
with the more recent review by Fu et al. [41], focusing on application of Deep Learning in
that area.

In this thesis, we will therefore present only selected approaches that seemed suitable for
our applications, and refer to the above mentioned reviews for a general overview in that
topic.

MIR fits exactly in our framework of motion estimation by regularization. It usually
consists of functionals, that can be split into two parts: The so called distance measure
denoted by D and the regularizer denoted by R. Instead of searching for a displacement u,
a transformation ϕ is computed. The transformation shall be such that I0 ◦ ϕ = I1. As in
DVC, ϕ will be then the solution to a minimization problem

min
ϕ

D(I0, I1, ϕ) + λR(ϕ), (3.15)

where λ is a positive real constant.

46



3.2. Medical Image Registration

Remark 3.2.1: Though the regularizer here is defined to be dependent on ϕ, most of the
algorithms will assume a direct dependence on the motion model. Detailed explanations
will be postponed to the explicit algorithm description.

Many MIR algorithms require the transformation ϕ to be diffeomorphic, that means the
transformation is differentiable and has a differentiable inverse. This allows a sound math-
ematical treatment, but will suffer from the same problems as global DVC, namely a very
smooth description of motion.

3.2.1 Elastic Image Registration

Elastic image registration (EIR) was first proposed by Broit in 1981 [24]. Most of its vari-
ants choose the infinitesimal equivalent of the sum of squared differences

DSSD(I0, I1, ϕ) :=

∫
(I1(ϕ(x))− I0(x))

2 dx (3.16)

as distance measure, but some also considered its mass preserving modification

DMP(I0, I1, ϕ) :=

∫
(I1(ϕ(x))det∇ϕ(x)− I0(x))

2 dx.

As the name indicates, elastic image registration is inspired by the mechanical model of
elasticity. Recall from the introduction that elasticity assumes that with release of forces,
the body returns to its reference configuration. The behavior under application of force is
usually described by a displacement based formulation, so that

ϕ(x) = x+ u(x), (3.17)

where x: Ω ⊂ R3 → R3.
Then a regularizer can be formulated in terms of the displacement u, that is, the linearized

elastic potential is proposed as

Relas(u) =

∫
Ω

µ

4

(
∇u+∇Tu

)2
+
λ

2
(divu)2 dx. (3.18)

This regularizer has a very nice physical interpretation as it is based on the deformation of
an elastic body. Its Euler-Lagrange equation becomes the so called Navier-Lamé-equation,
which reads

f = µ∆u+ (λ+ µ)∇ divu.

Note that in this derivation, the linearization of the strain tensorE is essential. The Green-St
Venant strain tensor E is defined by

E =
1

2
(C − I) , C = ∇ϕT∇ϕ, (3.19)

with ϕ being the deformation a body undergoes. If ϕ only consists of small deformations,
so that ϕ(x) = x+u(x) with small u, and that we deal with a St Venant-Kirchhoff material,
E can be written as

E(u) =
1

2

(
∇uT +∇u+∇uT∇u

)
,
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which is up to constants the regularizer that finds its way into (3.18). For a detailed deriva-
tion of the mechanical aspects, we refer to Ciarlet, and for a derivation with respect to
motion estimation to the monograph of Modersitzki [86].

Due to the derivation of the equations via linearization, we cannot deviate from the as-
sumptions of small strains. In image registration however, we do not want to limit us to this
case. In continuum mechanics, the framework to deal with bodies that are subjected to large
deformations is called hyperelasticity. A material is called hyperelastic, if its stress tensor
can be expressed via the derivative of the stored energy function. If the strain tensor E is
small, such a function for example reads

W (C) =
λ

2
(trace(E))2 + µ trace(E2) + o(||E||2),

where C = I + 2E. A stored energy function W should satisfy the following properties
(which we here consider in dependence of some deformation ϕ instead of a tensor C)

• W (ϕ) → ∞ for det∇ϕ→ 0,

• W (ϕ) ≥ c1{||∇ϕ||p+||cof∇ϕ||q+det(∇ϕ)r}+ c2,

where c1 = 0, c2 ∈ R and p, q, r > 1. Burger et al. [28] proposed to use the second growth
condition as regularizer in the form

Rhyper(ϕ) =

∫
α1length(ϕ) + α2surface(ϕ) + α3volume(ϕ) dx, (3.20)

where

length(ϕ) := ||∇ϕ− I||2Fro

surface(ϕ) := (||cof∇ϕ||Fro−3)2

volume(ϕ) :=
(det∇ϕ− 1)2

det∇ϕ
,

where cofactor and determinant are given by

cof∇ϕ =

(
∂2ϕ2∂3ϕ3 − ∂3ϕ2∂2ϕ3 ∂3ϕ2∂1ϕ3 − ∂1ϕ2∂3ϕ3 ∂1ϕ2∂2ϕ3 − ∂2ϕ2∂1ϕ3
∂3ϕ1∂2ϕ3 − ∂2ϕ1∂3ϕ3 ∂1ϕ1∂3ϕ3 − ∂3ϕ1∂1ϕ3 ∂2ϕ1∂1ϕ3 − ∂1ϕ1∂2ϕ3
∂2ϕ1∂3ϕ2 − ∂2ϕ1∂2ϕ2 ∂3ϕ1∂1ϕ2 − ∂1ϕ1∂3ϕ2 ∂1ϕ1∂2ϕ2 − ∂2ϕ2∂2ϕ2

)
,

det∇ϕ = ∂1ϕ1∂2ϕ2∂3ϕ3 + ∂2ϕ1∂3ϕ2∂1ϕ3 + ∂3ϕ1∂1ϕ2∂2ϕ3

− ∂1ϕ3∂2ϕ2∂3ϕ1 − ∂2ϕ3∂3ϕ2∂1ϕ1 − ∂3ϕ3∂1ϕ2∂2ϕ1,

and the Frobenius norm ||A||Fro=
√∑

A2
i,j . The above penalizers on length, surface and

volume changes have direct mechanical interpretations. Remember that (hyper)elastic im-
age registration borrows ideas from mathematical elasticity. There, one is frequently con-
cerned with the question how a deformation ϕ alters (infinitesimal) volume, surface and
length elements. Often, the relation can be established with basic tools from linear alge-
bra, volume elements for example are transformed via det∇ϕ (which we all know from
calculus classes, as it is the core of change of variables in multiple dimensions). Similar
results hold for the cofactor matrix as stated above – it describes how surface elements are
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transformed by a deformation ϕ. Unfortunately, this mechanically justified penalizer is not
convex anymore and so is the resulting minimization. A convexification is possible, but does
not penalize surface shrinkage anymore, which is not desirable in the case of (hyper)elastic
materials.

To pose an existence result for the hyperelastic minimization, Burger et al. [28] require
the deformation to be in the Sobolev space W 1,2. In [86], the solutions for the elastic image
registration problem even have to be C2 (it holds that C2 ⊂W 1,2). Both spaces are also
Hilbert spaces. Again, as in the case of inverse problems, we remark that this produces very
smooth solutions. In elasticity, and also in MIR, this choice is perfectly justifiable, as no
tearing or fracture is apparent. This fact can be assumed for imaging of the human body
as well. If we monitor movement of the lung during breathing, or heart beats, we do not
expect any damage. However, in the design of material tests, one almost always wishes to
monitor plastic deformation, which initiates material failure. Cracks and fracture for sure
will introduce new surface area, and therefore non-smooth solutions. Hence, we once more
declare this approach to registration to be only of limited usefulness in our setting.

Optimization is performed fairly similarly to Section 2.2.1. The equations are cast into a
bilinear and a linear form, and after discretization the resulting linear systems are solved by
a linear solver of choice.

Recently, Aggrawal et al. [2] proposed a framework to introduce at least some level of dis-
continuity into (hyper)elastic image registration. In the case of cracked specimens smooth
transformations can be assumed at least outside the crack. That means if one could recon-
struct a phase field function for a crack, it can be used to weigh the registration functionals.
Hence, let Γ ⊂ Ω be the crack, and let

p: Ω → [0, 1],

be its phase field function. p should ideally be an indicator, which only attains values 0
outside and 1 on the crack, but often smoothly varies in [0, 1]. Then, for DSSD as in (3.16)
and Rhyper as in (3.20), the indicator is incorporated as follows

J(ϕ, p) :=

∫
Ω
α(p)(I1(ϕ(x))− I0(x)) + β(p)Rhyper(ϕ(x)) + γe(p) dx, (3.21)

where e(p) = p2, α(p) = (1 − p)2 and β(p) = ϵ + λ(1 − p)n, ϵ, λ > 0, n ∈ N. As the
independence of p in J(ϕ, p) indicated, optimization is now performed for ϕ and p in an
alternating manner, i.e.

ϕk+1 = argmin
ϕ

J(ϕ, pk)

pk+1 = argmin
p

J(ϕk+1, p).

The penalty e on the crack indicator originates from the energy function of a strongly brittle
material. Following Marigo et al. [78], such materials are assumed to fulfill the following
properties.

1. The material is governed by a damage parameter which is strictly increasing from 0
(undamaged) to 1 (completely damaged).

2. The state of each volume element is characterized by a triplet (ε, p,g). ε denotes
the strain, p the damage parameter, and g being the gradient of the damage vector
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(g = ∇p). Note that the damage parameter will coincide with the crack indicator. In
the optimization process in the image registration, the strict condition of p being an
indicator is dropped and replaced by a characterization as damage parameter as stated
here.

3. The bulk energy density of the material is given by a state function depending on
(ε, p,g). It can be assumed to consist of three parts: a stored elastic energy, dependent
on (ε, p), a local and a non-local part of the dissipated energy. The non local part is
given by 1

2w1ℓg · g. The local part is a positive increasing function depending on p.

Inspired by the Mumford-Shah functional, Marigo et al. now propose energy functions
that suffice the Ambrosio-Tortorelli limit (equation 2.68), which we already met in the
Mumford-Shah functional for image segmentation (equation 2.67). That is,

e(p) = p2 + ℓ|∇p|2. (3.22)

However, the authors of [2] decided to drop the second part of the energy, i.e. set ℓ to 0,
to “keep the numbers of tunable parameters small.” Analysing the results, we can observe
the following. As it is a variant closely related to Mumford-Shah, and because it poses a
weight based on the image and not on the displacement, the crack indicator does not only
indicate cracks but also edges. In the challenges we want to tackle this is fatal: Foams in
CT will merely consist of high contrast sharp edges, and therefore this method of crack
reconstruction labels the whole sample as crack. The same holds also for concrete, which
based on the content, is rather similar to the application of the original authors of [2]: They
analysed brain images, containing tears due to sample preparation. One can observe cracks,
pores and different material phases, just as in concrete, and the algorithm fails to extract the
crack only, and not other materials boundaries.

3.2.2 Large Displacement Diffeomorphic Metric Mapping

To overcome the problem that large deformations cannot be mapped by elastic regulariza-
tion yet another solution was proposed. Instead of modeling the motion via displacements,
i.e. ϕ(x) = x + u(x), Christensen et al. [33] proposed to use a transformation map that
is now described by ordinary differential equations. The transformation map ϕ will be the
result of an integration by time of smooth, time-dependent velocity fields v: [0, 1]×Ω → Rd

ϕ̇(τ,x) = v(τ, ϕ(τ,x)), ϕ(0,x) = x, (3.23)

where we denoted the temporal derivative by ϕ̇. From a continuum mechanics point of view,
this can be considered as moving from solid to fluid mechanics. Note that both theories are
based on Euler’s first law of motion, therefore Christensen used exactly the same regularizer
as in (3.18), but this time not posed on displacement, but on velocity. The overall registration
is then only complemented by an additional Euler-step to calculate ϕ from v.

Nowadays, this method is counted as a variant of Large Displacement Diffeomorphic
Metric Mapping (LDDMM). All algorithms belonging to that framework have exactly the
novelty of Christensen et al. in common, namely that they describe the transformation by
time-dependent velocities. As this approach almost always produces diffeomorphic map-
pings, the designation is self-explanatory. LDDMM has since then become one of the most
used frameworks in MIR, with numerous improvements and applications.
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In 2005 for example (in fact this is the first work using the term LDDMM), Beg et al. [14]
moved away from the justification in continuum mechanics and proposed a method, that is
very attractive from an optimization point of view. Instead of choosing the regularizer as
elastic potential, the minimization problem now reads

v̂ = argmin
v:ϕ̇t=vt(ϕt)

(∫ 1

0
||vt||2V +

1

λ2
||I0 · ϕ− I1||2L2

dt

)
. (3.24)

They were able to show that an optimizer of this formulation generates a geodesic path
of shortest length on the manifold of diffeomorphisms which connect the images.

For further advancements and applications, a very detailed review can be found in
Polzin [96]. In this work, we will focus on the special representative, namely on the work
of Mang et al. [76]. They propose to use, again, the SSD-distance as similarity measure and
either the H1 seminorm (R(v) = ∇v) or the vectorial Laplace operator (R(v) = ∆v) as
regularizer. The key difference is now the formulation as optimal control problem. The im-
age is considered as a time dependent state variable, so I: Ω̄× [0, 1] → R, (x, t) 7→ I(x, t).
I(·, 1) shall therefore correspond to the final state, i.e. I(x, 1) = I1(ϕ(x)). The veloc-
ity v serves as control variable. When considering motion estimation in images, there is a
very natural constraint that can be posed. Consider the case of only small movements ∆x
between two arbitrary time steps It := I(·, t) and It+∆t := I(·, t + ∆t). Our very first
assumption on the preservation of intensity reads

It(x) = It+∆t(x+∆x).

A first order Taylor approximation with respect to x and t of the left-hand side gives

It+∆t(x+∆x) = It(x) +∇I ·∆x+ ∂tI∆t,

which therefore, after dividing by ∆t and considering the infinitesimal limit results in

∂tI +∇I · v = 0.

Remark 3.2.2: We will revisit the above derivation later in this thesis, as it also depicts the
formulation of the very first Optical Flow algorithms.

Collecting all the ingredients so far and adding a condition on the incompressibility on v
leads us to the following constrained minimization problem

min
v

:=
1

2

∫
Ω
(I0 − I1 ◦ ϕ)2 dx+

∫ 1

0
R(v) dt

subject to C [I,v] = 0,

(3.25)

with

C (I,v) :=


∂tI +∇I · v in Ω× (0, 1]

I − I1 in Ω× {0}
γ(∇ · v) in Ω.

The constraint I − I1 = 0 in Ω × {0} might not seem intuitive at first sight. It means,
that at t = 0 the difference of I1(ϕ) and I0, which is nothing else than using the “classical”
distance of I0 and I1 as boundary condition for the PDE constraint.
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The PDE constraints are hyperbolic, therefore the KKT-conditions from Section 2.2.3
are only necessary. For sufficient conditions, one has to consider the second variation and
choose a corresponding solver. We refer to the original work of Mang et al. [76] for a
detailed derivation of the numerical solution.

The same authors put much effort in improving their method with regards to computation
time and memory usage. LDDMM almost never takes “the easy way out”, so performing
a linearization step to gain necessary and sufficient optimality conditions, as one derives a
convex minimization, for which first order variation yields the desired optimality. There-
fore, the algorithm CLAIRE, as baptized by the authors, manifests the most suitable rep-
resentative of this group for us. Note however, that it suffers from the same problems as
(hyper)elastic registration. In fact, because (hyper)elastic registration produces also diffeo-
morphic transformations, it can even be considered to be a variant of LDDMM. Once more
we calculate smooth solutions that seem to be a problem when fracture occurs.
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Optical Flow for Volume Images

In the previous chapter we have seen a variety of algorithms that were developed for the
special purpose to estimate motion in images that stem from CT acquisition schemes (or
other tomographic approaches in MIR). One could therefore ask why we do not stick with
the existing solutions but borrow algorithms from a different area of motion estimation.
The answer to this question was already hinted within some of the algorithm descriptions:
Neither DVC nor MIR fulfill our requirements sufficiently.

Macroscopically, the evolution of a material during the test can be described and moni-
tored rather easily: Elastic materials for instance elongate when tension is applied, or shrink
when compressed. For materials like foams, however, though they seem to behave elasti-
cally at first glance, a closer look into the microstructure gives better insight into the mech-
anisms of failure. For instance, metal-matrix composite (MMC) foams deform in compres-
sion tests first elastically before full layers collapse. The failure of the foam is preceded by
breaking struts. A change on a small scale therefore influences the stability of the whole
component. A similar observation can be made for concrete: fault zones are generally pre-
ceded by a large number of microfractures. CT devices that generate images with voxel
sizes in the micrometer range (µCT) are means to resolve this microstructural behavior.
Nevertheless, the challenge to quantify this deformation on the micrometer scale remains.

Unfortunately, this task is very complex. Even when the imaged components are manu-
factured in sizes of a few millimeters to centimeters, the resulting CT data sets may have a
total number of up to 2 0483 voxels in 16-bit gray value range. Therefore, an algorithm is
required that is not only efficient in time but also in its use of memory.

Another challenge is unveiled immediately, too: the quality of classical algorithms for
estimating deformation fields in two or three dimensions increases if the image displays
many different shapes with distinct gray values. In CT data of materials one hardly ever
observes more than a few distinct intensity levels.

In addition, estimation in medical images often benefits from the fact that the objects
which undergo the motion are fully contained in the image. If, for example, a CT of the head
is aligned to another one, the outer boundary is already a very powerful feature to support
the registration process. Furthermore, these features can be used to generate landmarks to
support the process: Either a doctor sets the landmarks intuitively manually [101] or an
algorithm constructs landmarks automatically based on a clearly detectable feature [97].
In contrast, constructing landmarks is highly challenging, if not impossible, for materials
samples. Figure 4.1, which is an excerpt of a sample of long-fiber reinforced thermoplastics,
shows a typical example lacking both, an outward bound of the imaged structure and unique
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(a) Volume (b) xz-slice (c) yz-slice

Figure 4.1: Volume and slice view of the fiber system in a long glass fiber reinforced com-
posite (LFT). Sample Sabic. Imaging Fraunhofer ITWM. Image size 500 × 600 × 500 at
voxel edge length 5µm.

structural features as candidates for landmarks.
In fact, even with in situ testing it is not guaranteed that the scanned areas before and after

the material test coincide. A meaningful test for example might demand a certain thickness
of the material, so that the material bears a minimal required load. If a foam or a fiber
system is eventually manufactured in components with a thickness of several centimeters,
performing tests on few layers that cover only micrometers may not be meaningful. There-
fore, to guarantee the microstructure to be properly resolved, only parts of the sample are
scanned. If the material is only slightly elastic in this case, the boundaries in both scans do
not coincide anymore.

In summary, an algorithm for estimating displacement has to fulfill the following re-
quirements: First, our method must be a local one in the sense that local behavior such as
breaking struts or delamination of fibers is resolved accurately. Next, our algorithm needs
to work robustly, even if the volume images do not contain very rich features. And last,
the algorithm must yield a valid displacement field, even if the fields of view of the images
do not coincide. Evaluating the algorithms presented in the previous chapter with respect
to these requirements unveils why they are not sufficient: DVC lacks the ability to resolve
local behavior, not only because of the restrictions regarding the size of the subvolumes, but
also because some methods indirectly pose strong smoothness assumptions which cannot
be fulfilled by the motion we expect from in situ tests. This second point also counts for
MIR, but even more severely: As these algorithms require the motion to be diffeomorphic
we have no chance to map any kind of crack or fracture properly.

The remedy we propose is to extend algorithms from 2D. Estimating motion between
digital images is a problem scientists deal with nearly as long as they deal with processing
the images itself. A quick search on “Optical Flow” on Google Scholar gives 5 Million
results, nearly as much as probing “Deep Learning” (5.1 million results), and much more
than MIR (2.7 million) or DVC (70 000).

However, Optical Flow is mainly considered a plain 2D algorithm. Although some ex-
tensions to volume images exist ([56, 89]), “3D” in Optical Flow usually has a completely
different meaning, namely the incorporation of time as third dimension (so to describe the
motion over more than two images), or by deriving three dimensional information from two
dimensional data (scene flow).
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In the following chapter, we will give an introduction to its (two dimensional) roots and
spend some words about the recent trends. We will then present the three dimensional
extension of one of the most celebrated algorithms (Large Displacement Optical Flow), and
its famous successor and variants of them (primal dual methods).

4.1 The Roots

In this contribution, we want to set the roots of Optical Flow to the celebrated algorithms of
Lucas-Kanade [73] and Horn-Schunck [58], which both date back to the year 1981. Once
more we assume intensity constancy, namely that for images I0, I1: Ω ⊂ R3 → R we have

I0(x) = I1(x+ u(x)) (4.1)

with a suitable displacement u: Ω ⊂ R3 → R3. As in LDDMM, if the displacements are
small, a first order Taylor approximation yields the infinitesimal equivalent of equation (4.1)

∇I · u+ ∂tI = 0. (4.2)

Again, no matter which variant we consider, we try to derive a three dimensional (in our
case, in the original formulation of course only two dimensional) displacement vector field
from scalar image data. The problem is therefore ill-posed. Interestingly, the early works
of Optical Flow can be divided rather similarly to DVC, namely into a local and a global
approach [26]. The local approach is given by the Lucas-Kanade algorithm, which assumes
that the displacement vector field is piecewise constant, that is, in a neighborhood of size ρ,
u is reconstructed via a weighted least squares fit by minimizing

JLK(u) = Kρ ∗
(
(∇I · u+ ∂tI)

2
)
,

where Kρ∗ is the convolution of the right-hand side with a Gaussian kernel of size ρ. Note
the small but significant difference to DVC: Though we consider the displacement in a
neighborhood, we still perform the minimization for each voxel with respect to its neigh-
borhood, and not once for the whole neighborhood.

The functional to be minimized is convex, therefore first order variation is sufficient for
finding a minimizer and the resulting linear system for each component of the displacement
field (u, v, w) readsKρ ∗ (Ix)2 Kρ ∗ (IxIy) Kρ ∗ (IxIz)

Kρ ∗ (IxIy) Kρ ∗ (Iy)2 Kρ ∗ (IyIz)
Kρ ∗ (IxIz) Kρ ∗ (IyIz) Kρ ∗ (Iz)2

uv
w

 =

−Kρ ∗ (IxIt)
−Kρ ∗ (IyIt)
−Kρ ∗ (IzIt) ,


where (Ix, Iy, Iz) are the components of ∇I and u = (u, v, w).

In the global approach, as in DVC, no neighborhoods are considered anymore and the
problem is tackled based on the whole image. Contrary to DVC, this implies a dense, so
voxel scale flow field computed for all image positions. Horn and Schunck proposed to
minimize a regularized energy functional of the form

JHS(u) =

∫
Ω
(∇I · u+ ∂tI)

2 + α
(
|∇u|2+|∇v|2+|∇w|2

)
dx,
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for α > 0 and |·| the Euclidean norm. The functional is convex and the Euler-Lagrange-
equations read

0 = ∆u− 1

α
(I2xu+ IxIyv + IxIzw + IxIt)

0 = ∆v − 1

α
(IxIyu+ I2yv + IyIzw + IyIt)

0 = ∆w − 1

α
(IxIzu+ IyIzv + I2zw + IzIt).

To overcome the restrictions to small displacements (which is required to compute a
linearization as in (4.2)), Optical Flow is almost always computed within a coarse-to-fine
scheme. That means, the image is filtered with for example a Gaussian or a Laplacian filter,
and then downscaled. This procedure is repeated, until the expected displacement in the
resulting coarse images can be assumed to be small and linearization can be performed with
only a small error. Then, the displacement is computed on this coarse scale. Images and
displacement are upsampled, and used as starting value for the Optical Flow computation on
the next finer scale. Another procedure to overcome the limitations to small displacements
is to employ a warping strategy. That is, an additional outer iteration is introduced. In
this iteration I1(x+u) is reinitialized by using the displacement that was calculated by the
previous iteration, to warp I1(x+u) towards I0. The resulting image is used as “new” I1 in
the next iteration. We will later see that this procedure drastically improves the performance
when large displacement is apparent, but we also want to note that it comes with an equally
drastic increase of computation time.

However, both the local and the global approach produce continuous solutions, once more
due to the choice of the smooth penalizer on ∇u. From the vast number of contributions
dealing with Optical Flow, one can see that much effort was made to produce discontinuous
solutions, that allow for a more realistic motion model. One of the first authors to introduce
bounded variation into motion estimation was Cohen in 1993 [34]. Instead of using the L2

norm of ∇u, he proposed to use the L1-norm. However, to obtain solutions the author used
variational methods and required u to be in the Sobolev-space H1. This choice has to be
handled with care, as it is again Hilbert and – ad hoc – again too smooth for our demands.
Under certain circumstances one can nevertheless use smooth approximations of a similar
form. The next section will cover such an algorithm and its 3D extension. The work is one
of the milestones of TV Optical Flow, namely the work of Brox et al. [25].

4.2 Large Displacement Optical Flow

The starting point of Brox et al. [25] is to not use the classical L2 distance measure alone,
but to use a concave function Ψ(s) =

√
s2 + ε2, ε = 0.0001, to reduce the proneness

towards outliers
JData(u) =

∫
Ω
Ψ(|I0(x)− I1(x+ u)|) dx, (4.3)

where |·| is the Euclidean norm.
The problem is regularized by total variation, but this time (again) Ψ is applied. Immedi-

ately, we see another merit of such a function, as it constitutes a differentiable approximation
to TV

JSmooth(u) =

∫
Ω
Ψ(|∇u|+|∇v|+|∇w|) dx. (4.4)
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The novelty of [25] is a third penalty on differences in gradients of both images. The
original purpose of this so called gradient constancy assumption was to enhance robustness
with respect to changes in illumination. We noticed that in our applications this term puts
special emphasis on features, mainly on prominent edges. It connects the gradients of the
original image and the deformed image by

JGrad(u) =

∫
Ω
Ψ(|∇I0(x)−∇I1(x+ u)|) dx. (4.5)

The improvement caused by this additional term can be seen in Section 6.2.1. The varia-
tional problem now consists of finding a solution u = (u, v, w), such that

Jtotal(u) = JData(u) + λJGrad(u) + µJSmooth(u) (4.6)

is minimal. λ and µ are regularization parameters and are chosen problem dependent, but
larger than 0.

Calculating the first variation J ′(u), which is given by

J ′
total(u) =

∂

∂τ
Jtotal(u+ τv)|τ=0,

yields componentwise

0 =Ψ′(I2d)IdIx

+ λΨ′(I2xd + I2yd + I2zd)(IxxIxd + IxyIyd + IxzIzd)

+ µdiv
(
Ψ′ (|∇u|+|∇v|+|∇w|)∇u

) (4.7)

0 =Ψ′(I2d)IdIy

+ λΨ′(I2xd + I2yd + I2zd)(IxyIxd + IyyIyd + IyzIzd)

+ µdiv
(
Ψ′ (|∇u|+|∇v|+|∇w|)∇v

) (4.8)

0 =Ψ′(I2d)IdIz

+ λΨ′(I2xd + I2yd + I2zd)(IxzIxd + IyzIyd + IzzIzd)

+ µdiv
(
Ψ′ (|∇u|+|∇v|+|∇w|)∇w

) (4.9)

where

Ix = ∂xI1(x+ u) Ixx = ∂xxI1(x+ u)

Iy = ∂yI1(x+ u) Ixy = ∂xyI1(x+ u)

Iz = ∂zI1(x+ u) Ixz = ∂xzI1(x+ u)

Id = I0(x)− I1(x+ u) Iyy = ∂yyI1(x+ u) (4.10)

Ixd = ∂xId Iyz = ∂yzI1(x+ u)

Iyd = ∂yId Izz = ∂zzI1(x+ u)

Izd = ∂zId.
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Recall now the Kačanov method from Section 2.5.1 applied to total variation denoising.
We saw that applying the method results in freezing the nonlinear parts. In the case of
denoising, these were only given in the regularizer. If we now consider equations (4.7)-(4.9),
we see that almost all terms regarding u are non-linear. Therefore, two nested Kačanov
methods are applied. The first one freezes the stand-alone partial derivatives. That is, all
terms involving Ix, Iy, Iz or their second order terms, are equipped with an iteration index k,
whereas all other terms are equipped with k+1. As an example, the resulting equation for u
reads

0 = Ψ′((Ik+1
d )2)Ik+1

d Ikx

+ λΨ′((Ik+1
xd )2 + (Ik+1

yd )2 + (Ik+1
zd )2)

(IkxxI
k+1
xd + IkxyI

k+1
yd + IkxzI

k+1
zd )

+ µdiv
(
Ψ′
(
|∇uk+1|+|∇vk+1|+|∇wk+1|

)
∇uk+1

)
.

The next step also involves a Taylor approximation, but of quite a different nature compared
to equation (4.2). Instead of linearizing with respect to u, we will linearize only with
respect to small increments (du, dv, dw) such that uk+1 = uk + duk, vk+1 = vk + dvk

and wk+1 = wk + dwk holds. In contrast to linearizations as in (4.2), this is a less strong
restriction, as we can assume that increments are in fact small. Furthermore, as we apply
Kačanov’s method, u will be computed via fixed point iterations (see (2.83)). Separation
of u into increment and update is therefore a very natural procedure. Taylor approximations
of the increments now read

Ik+1
d ≈ Ikd + Ikxdu

k + Iky dv
k + Ikz dw

k

Ik+1
xd ≈ Ikxd + Ikxxdu

k + Ikxydv
k + Ikxzdw

k,

Ik+1
yd ≈ Ikyd + Ikxydu

k + Ikyydv
k + Ikyzdw

k

Ik+1
zd ≈ Ikzd + Ikxzdu

k + Ikyzdv
k + Ikzzdw

k

(4.11)

where all terms involving I are now evaluated for the current known displacement
(uk, vk, wk). Again, for the sake of simplicity, we only show the result for u. We denote

(Ψ′)kD1 := Ψ′
((

Ikd + Ikxdu
k + Iky dv

k + Ikz dw
k
)2)

,

(Ψ′)kD2 := Ψ′
(
(Ikxd + Ikxxdu

k + Ikxydv
k + Ikxzdw

k)2

+(Ikyd + Ikxydu
k + Ikyydv

k + Ikyzdw
k)2

+(Ikzd + Ikxzdu
k + Ikyzdv

k + Ikzzdw
k)2
)
,

and

(Ψ′)kS := Ψ′
(
|∇(uk + duk)|+|∇(vk + dvk)|+|∇(wk + dwk)|

)
,

and therefore linearization yields the following optimality condition for u
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4.2. Large Displacement Optical Flow

0 = (Ψ′)kD1I
k
x(I

k
d+I

k
xdu

k + Iky dv
k + Ikz dw

k)

+λ(Ψ′)kD2

(
Ikxx(I

k
xd + Ikxxdu

k + Ikxydv
k + Ikxzdw

k)

+Ikxy(I
k
yd + Ikxydu

k + Ikyydv
k + Ikyzdw

k)

+Ikxz(I
k
zd + Ikxzdu

k + Ikyzdv
k + Ikzzdw

k)
)

+µdiv
(
(Ψ′)kS∇(uk + duk)

)
.

The remaining nonlinearity is now removed with a similar step: All terms dependent on
u, v or w that occur inside Ψ′ are equipped with an additional index l, the others with the
index l + 1. The nested fixed point iteration for u therefore finally reads

0 = (Ψ′)k,lD1I
k
x(I

k
d+I

k
xdu

k,l+1 + Iky dv
k,l+1 + Ikz dw

k,l+1)

+λ(Ψ′)k,lD2

(
Ikxx(I

k
xd + Ikxxdu

k,l+1 + Ikxydv
k,l+1 + Ikxzdw

k,l+1)

+Ikxy(I
k
yd + Ikxydu

k,l+1 + Ikyydv
k,l+1 + Ikyzdw

k,l+1)

+Ikxz(I
k
zd + Ikxzdu

k,l+1 + Ikyzdv
k,l+1 + Ikzzdw

k,l+1)
)

+µdiv
(
(Ψ′)k,lS ∇(uk + duk,l+1)

)
.

At this point, all nonlinearities are removed except the one within the divergence in the
very last line. These will be removed by extending Brox diffusivity to 3D, that is, we
compute at a voxel position (ℓ,m, n)

div
(
ΨS ∇(uk + duk,l+1)

)
≈ ΨS

ℓ+1/2,m,n

(
ukℓ+1,m,n + duk,l+1

ℓ+1,m,n − ukℓ,m,n − duk,l+1
ℓ,m,n

)
−ΨS

ℓ−1/2,m,n

(
ukℓ,m,n + duk,l+1

ℓ,m,n − ukℓ−1,m,n − duk,l+1
ℓ−1,m,n

)
+ΨS

ℓ,m+1/2,n

(
ukℓ,m+1,n + duk,l+1

ℓ,m+1,n − ukℓ,m,n − duk,l+1
ℓ,m,n

)
−ΨS

ℓ,m−1/2,n

(
ukℓ,m,n + duk,l+1

ℓ,m,n − ukℓ,m−1,n − duk,l+1
ℓ,m−1,n

)
+ΨS

ℓ,m,n+1/2

(
ukℓ,m,n+1 + duk,l+1

ℓ,m,n+1 − ukℓ,m,n − duk,l+1
ℓ,m,n

)
−ΨS

ℓ,m,n−1/2

(
ukℓ,m,n + duk,l+1

ℓ,m,n − ukℓ,m,n−1 − duk,l+1
ℓ,m,n−1

)
.
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Here, we exemplarily denote

ΨS
ℓ+1/2,m,n =

((
(u+ du)k,lℓ+1,m,n − (u+ du)k,lℓ,m,n

)2
+

(
1

2

(
(u+ du)k,lℓ+1,m+1,n − (u+ du)k,lℓ+1,m−1,n

2

+
(u+ du)k,lℓ,m+1,n − (u+ du)k,lℓ,m−1,n

2

))2

+

(
1

2

(
(u+ du)k,lℓ+1,m,n+1 − (u+ du)k,lℓ+1,m,n−1

2

+
(u+ du)k,lℓ,m,n+1 − (u+ du)k,lℓ,m,n−1

2

))2)1/2

,

where we slightly abused our notation to indicate that the quantities (u+ du)k,l and similar
ones are ready to compute at this stage of iteration. Note finally that the terms ΨS

ℓ−1/2,m,n,
ΨS

ℓ,m+1/2,n, ΨS
ℓ,m−1/2,n, ΨS

ℓ,m,n+1/2 and ΨS
ℓ,m,n−1/2 are computed similarly. For all other

derivatives we use central difference schemes.
In addition, we slightly change the computation of gradients compared to the original

contribution. Following [123], we use a blended version of the derivative. That is, we
compute all terms involving image gradients via

∇I = (1− β)∇I1(x+ u) + β∇I0(x). (4.12)

The choice of β is problem dependent, we decided to fix it to a value of β = 0.5. The
final inner iteration is now achieved by collecting all terms duk,ℓ, dvk,ℓ and dwk,ℓ on one
side. This results in a 3-by-3-matrix equation for each u, which we solve by successive
overrelaxation (SOR) [53].

4.3 TV-L1 Optical Flow

Primal dual methods usually do not consider the gradient constancy assumptions as above,
but aim for solving a linearized variational Optical Flow equation. That is, as in the previous
section, the L1 distance measure is considered. Because∫

Ω
|I0(x)− I1(x+ u)| dx

is neither linear nor convex, a first order Taylor approximation is performed, that is

I1(x+ u) = I1(x+ u0) +∇IT1 (x+ u0)(u− u0),

and the minimization is performed for the functional

JPD =

∫
Ω
λ|I0(x)− I1(x+ u0)− (∇I1)Tu+ (∇I1)Tu0|+|∇u| dx. (4.13)

To bring the above equation into a form where the primal dual algorithms from Section 2.3.2
are easily applicable, we separate the motion estimation based on the image data from the
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4.3. TV-L1 Optical Flow

reconstruction of a BV solution, that is, we introduce an auxiliary variable u and solve

min
u,v

Jθ(u,v) =

∫
Ω
|∇u|+ 1

2θ
||u− v||22+λ|ρ(v)| dx, (4.14)

where ρ(u) = I0(x)− I1(x+u0)− (∇I1)Tu+ (∇I1)Tu0 for some initial but known u0.
Equation 4.14 is then solved by alternating between the solution concerning the u and the
v parts

uk+1 = min
u

∫
Ω
|∇u|+ 1

2θ
||u− vk||22 dx (4.15)

vk+1 = min
v

∫
Ω
||uk+1 − v||22+λ|ρ(v)| dx. (4.16)

Subproblem (4.15) is exactly one of those problems, where posing the saddle point for-
mulation and applying the primal dual method (2.55) yields a fast and efficient algorithm,
whose terms are much easier to evaluate. Before applying the framework of Section 2.3.2,
we need to find a finite dimensional equivalent that approximates our problem sufficiently.
The discrete total variation of an approximation uh to u as in (3.3) [30] is given by

TVh(uh) = TVh(uh) + TVh(vh) + TVh(wh), (4.17)

where

TVh(uh) = h2
∑
i,j,k

1

h

√
|ui+1,j,k − ui,j,k|2+|ui,j+1,k − ui,j,k|2+|ui,j,k+1 − ui,j,k|2,

(4.18)
TVh(vh) and TVh(wh) are defined analogously. Note that this amounts to discretizing the
gradient by forward differences. uh is now a multidimensional array with real entries, that
is uh ∈ U := RN×M×L×3. The gradient ∇ is a linear map to V = U × U × U . Let ⟨·, ·⟩U
and ⟨·, ·⟩V denote the standard Euclidean scalar products. The adjoint ∇∗ of the gradient is
then denoted by − div and for any u ∈ U and p ∈ V defined by

⟨∇u,p⟩V = ⟨u,∇∗p⟩U = −⟨u, divp⟩U . (4.19)

Easy computations give

( divp)i,j,k = pxi,j,k − pxi−1,j,k + pyi,j,k − pyi,j−1,k + pzi,j,k − pzi,j,k−1,

where p = (px, py, pz). The discrete equivalent of subproblem (4.15) is then given by

min
u∈U

λ||∇u||2,1+
1

2
||u− vk||22, (4.20)

with ||p||2,1=
∑

i,j,k

√
(pxi,j,k)

2 + (pyi,j,k)
2 + (pzi,j,k)

2. We can now identify

F (·) = ||·||2,1, K = ∇, and g(u) =
1

2θ
||u− v||22. (4.21)

The primal dual iteration in this setting is

pk+1 = proxσF ∗(pk + σKūk)

uk+1 = proxτg(u
k − τK∗pk)

ūk+1 = uk+1 + θ(uk+1 − uk).
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The conjugate function F ∗ of F is the indicator function δP , where

P = {p ∈ Y | ||p||∞≤ 1}

with the discrete maximum norm ||p||∞= maxi,j,k
√

(pxi,j,k) + (pyi,j,k)
2 + (pzi,j,k)

2. The

proximal operator proxσF ∗ was given by the resolvent (I + σ∂F ∗)−1, which in this case is
the pointwise projection onto L2 balls. p is therefore given by

pk+1 =
pk + σ∇ūk

max(1, |pk + σKūk|)
. (4.22)

proxτg is also given by the resolvent, which, as it is a pointwise quadratic problem, is
trivially given by

uk+1 =
uk − τ divpk + v

1 + τλ
. (4.23)

To solve subproblem (4.16), we first remark that there is no dependence on neighboring
voxels in v as we do not consider any gradients. We can therefore solve the equation
voxelwise. Next, we make a case distinction with respect to ρ(v). By considering the three
cases ρ(v) < 0, ρ(v) > 0 and ρ(v) = 0, we can derive from first order optimality that

vk+1 = uk+1 +


λθ∇I1 if ρ(uk+1) < −λθ|∇I1|2

−λθ∇I1 if ρ(uk+1) > λθ|∇I1|2

−ρ(uk+1)∇I1/|∇I1|2 if |ρ(uk+1)|≤ λθ|∇I1|2.
(4.24)

4.4 Total Generalized Variation Optical Flow

There are various analyses on the performance of Total Variation regularization. A very
thorough investigation was done by Jalalzai et al. [62], who considered the denoising of 1D
functions. In denoising of two dimensional images (where TV regularization actually has
its roots) one flaw is very apparent: smooth variations are often approximated via piecewise
constant functions. This phenomenon is also called staircasing due to the very obvious
analogy. This effect can also be observed in three dimensions, and for motion estimation.
In Figure 4.2, we see an artificial displacement field and its reconstructed version by TV-L1

Optical Flow. The stairs are very evident, whereas the original varies smoothly.
We have already seen a generalization of total variation that can also tackle this problem.

Total generalized variation introduced by Bredies et al. [23] and shortly recapitulated in this
thesis in Section 2.4.4, can be used as regularizer via defining

TGV k
α (u) = sup

{∫
Ω
u div kvdx | v ∈ Ck

c (Ω,Symk(Rd)),

|| div lv||∞≤ αl, l = 0, · · · , k − 1,
}

(4.25)

and its vectorial equivalent TGV k
α (u) = TGV k

α (u) + TGV k
α (v) + TGV k

α (w). A very
important order of this regularizer is k = 2, which reads

TGV 2
α (u) = min

w

(
α1

∫
Ω
|∇u− w| dx+ α0

∫
Ω
|∇w| dx

)
. (4.26)

62



4.4. Total Generalized Variation Optical Flow

(a) Ground Truth (b) TV-L1

Figure 4.2: Comparison of TV-L1 flow to a ground truth. Staircasing artifacts are visible in
the center.

Compared to TV-L1 Optical flow, only subproblem (4.15) changes. The saddle-point for-
mulation for k = 2, adapted to our notation in 3D, reads

min
u,w

max
p,q

⟨∇u−w,p⟩+ ⟨Ew,q⟩+ 1

2
||u− vk||2−δ||·||2,∞≤α1

(p)− δ||·||2,∞≤α0
(q).

Here, E = (Du+DTu)/2 is the strain tensor (cf Section 2.4.4).

To follow the notations from Section 2.3.2, we find

F ∗(p,q) = δ||·||2,∞≤α1
(p) + δ||·||2,∞≤α0

(q)

K =

(
∇ −I
0 E

)
, G(u) = ||u− vk||2,

and the dual operators to ∇ and E are suitable divergence terms.

Most algorithms however to not compute iterations based on the full operator K, but
perform separate updates for u,w and their dual variables. Again, as F ∗ only consists of
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indicators of norms, we denote by Pα1 and Pα0 their respective projections. Then

pk+1 = Pα1(p
k + σ(∇ūk − w̄k))

qk+1 = Pα0(q
k + σE w̄k)

uk+1 = proxτG(u
k + τ divpk)

wk+1 = wk + τ(pk+1 + divqk)

ūk+1 = uk+1 + θ(uk+1 − uk))

w̄k+1 = wk+1 + θ(wk+1 −wk)).

The exact derivation of the procedure can be found in [23] or [31].

4.5 Wavelet Optical Flow

The voxel scale resolution of displacement is not always the desired quantification of mo-
tion. Take for example [32], where the lack of performance of DVC in failed areas, so
at cracks, was used to segment the crack itself. However, performing a full cycle of mo-
tion estimation, no matter if DVC, MIR or Optical Flow, just to evaluate the failure of the
method does not seem efficient. It would therefore be desirable to develop a method that
reliably estimates motion on low scales in the coarse-to-fine framework. Due to the down-
scaling by Gaussian filters however, one is very likely to smoothen out cracks in an early
stage, especially at the beginning of the image pyramid. We therefore propose to replace the
coarse-to-fine scheme by Gaussian image pyramids in Optical Flow by wavelets. In fact,
wavelets based on lifting steps seem to be extraordinarily reasonable in this case.

The short introduction into formulating wavelet transforms by lifting follows the work by
its inventor Wim Sweldens [114].

4.5.1 Lifted Wavelets

Wavelets, as the name indicates, are families of wave-like functions. They are usually used
to split data into different frequency components (so scales), which enables a distributed
investigation of these scales. Most appealing about wavelets in this context is the fact, that
they – opposite to Fourier transformations for example – are local not only in their spatial
domain, but also approximately local in their frequency domain. Here, approximately means
up to small variance. Wavelets are formed via dyadic translates of one so called mother
wavelet, that is, all members of the family ϕj,m are computed via

ϕj,m = 2−j/2ϕ(2−j −m).

When one carefully chooses ϕ, one can construct an orthonormal basis of L2 with the fam-
ily ϕj,m. A very old but well-known example are the Haar-wavelets, whose mother wavelet
is given by

ϕ(x) =


1, 0 ≤ x < 1

2 ,

−1, 1
2 ≤ x < 1,

0, otherwise.

(4.27)
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One consequence of ϕj,m being an orthonormal basis of L2 is, that every function in
f ∈ L2 can be approximated by a finite linear combination of ϕj,m up to an arbitrarily
small precision. We have

f =
∑
j,m

γj,mϕj,m, (4.28)

where γj,m are the wavelet coefficients.
This finding is even a sufficient condition, so when one wants to prove that an orthonor-

mal family ϕj,m forms an orthonormal basis, one proves that every function can be approx-
imated this way [36]. In such a proof, one successively approximates f over coarser and
coarser intervals. The difference between two resolution steps can then be written as a linear
combination of the ϕj,m’s. This immediately hints, why decomposition by wavelets can be
seen as a multiresolution analysis. One deduces nested spaces (Vj)j∈Z, which satisfy the
following properties

1. · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · ·,

2.
⋂

j∈Z Vj = {0},
⋃

j∈Z Vj = L2(R),

3. f ∈ Vj ↔ f(2j ·) ∈ V0,

4. f ∈ V0 → f(· − n) ∈ V0 for all n ∈ Z.

Multiresolution in this context means that all Vj are scaled versions of each other. In the
Haar case one for example has

projVj−1
= projVj

+
∑
k∈Z

⟨f, ϕj,k⟩ϕj,k.

We now collect the favorable properties that we just learned wavelets offer.

1. Wavelets form an orthonormal basis (even more general, a Riesz-basis).

2. One can explicitly calculate the coefficients of the basis expansion.

3. Wavelets are approximately local in space and frequency.

4. Wavelets can be used for multiresolution analysis.

Within the “Wavelet-Boom” between the late 1980s and early 2000s, many communities
have proposed improvements and concepts in this area. A rather late one is the concept of
Lifted Wavelets, that transfers the favorable properties of wavelets into a pure space domain
decomposition. The Haar-wavelet in equation (4.27) for example also has a pure space
formulation: Instead of continuous f take its discretized version f [k] sampled at a finite
number of k ∈ Z points. (That is of course not a restriction in any real-world application.)
The approximation of f in the next coarser space f−1 is then

f−1[k] =
f [2k]− f [2k + 1]

2
,

and the wavelet coefficient is given by γ−1,k = f [2k + 1]− f [2k].
The idea of such lifted wavelets is, that correlation of structures is already apparent in

the space domain and a transfer to the frequency domain might therefore not be necessary.
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Figure 4.3: Schematic lifting scheme. The scheme is traversed from the left.

The scheme is best described by considering an abstract example. Once more consider
a signal f , which we know at a fixed sampling distance, e.g. d = 1. This “initial” or
“original” scale will be denoted by λ0,k = f(k), k ∈ Z. An approximation in the next
coarser space can now be to just consider the even samples, that it

λ−1,k := λ0,2k for k ∈ Z. (4.29)

Ideally, the loss of information in such a downscaling step should be small. That means, that
the difference between λ−1,k and λ0,k is ideally kept low. The coefficients, that will encode
the difference, will be denoted by {y−1,k}. In fact, these are, as in the classical approach to
wavelets, the wavelet coefficients.

Now, a very obvious choice is to just put the odd coefficients as wavelet coefficients, that
is γ−1,k = λ0,2k+1, k ∈ Z. This is also called the lazy wavelet. However, this will not
fulfill our requirement to produce small wavelet coefficients, even worse: the signal will be
roughly the same as the approximation. We need a more advanced scheme to do so.

We for now keep with the separation of even and odd samples. But now we predict the
odd samples {λ0,2k+1} based on {λ−1,k} by computing the average of two (even) neighbors.
The wavelet coefficient then reads

γ−1,k := λ0,2k+1 −
1

2
(λ−1,k + λ−1,k+1) .

If the signal we encode contains correlated structures (which it does, as it will be an image),
these coefficients are small. However, proceeding with an iteration like that will cause
aliasing of the approximation at the coarsest level. This can be prevented by requiring that
the coefficients λj,k that can be found on all levels are roughly the same, i.e.∑

k

λ−1,k =
1

2

∑
k

λ0,k. (4.30)

This can be achieved by performing a similar step as before – but this time we use the
neighboring wavelet coefficients and lift the λ−1,k:

λ−1,k = λ−1,k +
1

4
(γ−1,k−1 + γ−1,k) .

Let us now formalize this procedure. The lifting scheme consists of the following steps.
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1. Split the signal into subbands by invertible transformation Σ. For the sake of simplic-
ity, we use 2 subbands. We have

(even−1,k, odd−1,k) = Σ(λ0,k).

2. Predict the wavelet coefficient (also called detail signal) by odd−1,k. We have

γ−1,k = odd−1,k − P (even−1,k),

where P is an (invertible) prediction operator.

3. Update the signal approximation λ−1,k by the previously predicted wavelet coeffi-
cients

λ−1,k = even−1,k + U(γ−1,k),

with update operator U .

The scheme is also depicted in Figure 4.3. The signal enters the scheme from the left.
λ0,k is split by Σ, indicated by two departing lines from the corresponding box. even−1,k

then traverses P and is joined with odd−1,k. Here the result is already γ−1,k. The detail
signal passes through the lower line to be eventually transformed by U and assembled with
even−1,k, which then results in the final, downscaled signal λ−1,k.

4.5.2 Min/Max Lifting on the Quincunx Grid

Until now we did not pay much attention to the generalization of the splitting operator Σ to
higher dimensions. However, images are regarded as two or even three dimensional signals.
Fortunately, there exists a quite straight forward extension to two and three dimensions,
namely by the quincunx scheme, see Figure 4.4 (b) for 2D and Figure 4.4 (a) for three
dimensions. With each pixel or voxel we now associate a black or a white dot. “Splitting
into even and odd” will then mean to split into black and white points. Classically, the
quincunx is the arrangement of black points in Figure 4.4 (b). By associating pixels or
voxels with their points, we can again establish a new grid, in which the nodes are identified
with these points. We will denote this grid by image grid or Cartesian grid. Further, we
now denote by S the set of all original points, byQ the set of black points, and byR = S\Q
the set of white points. We now define an adjacency relation to identify neighbors s′ of s,
i.e. s ∼ s′ if ||s−s′||1= 1. ∼ is a symmetric relation on S×S. Note that only either s or s′

can be a member of Q if s ∼ s′, but not both at the same time. In a first step, we therefore
have λ−1,k(q) = λ0,k(q) and γ−1,k(r) = λ0,k(r) for q ∈ Q and r ∈ R. We now define
specific prediction and update operators by

P (λ)(r) = max
q:q∼r

λ(q) (4.31)

and
U(γ)(q) = max{0,max

r:r∼q
γ(r)}. (4.32)

This scheme is known as Max-Lifting [55], but the maximum can also be exchanged by a
minimum. The use of Max- or Min-Lifting can be directly translated into the morphological
operators dilation or erosion, respectively. Schemes that use this kind of prediction and
update operators are therefore also called Morphological Wavelets.
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(a) 3D Quincunx

(b) Front

(c) Back

Figure 4.4: Separation of an image grid into quincunx. (a) shows the separation in 3D.
Subfigures (b) and (c) show representation by two layers, where (b) coincides with a two
dimensional scheme. White and black voxels are split into two signals.

If we closely observe the calculations (4.31) and (4.32), we see that the calculations can
and should be performed inplace. As a consequence, when starting calculations on a Carte-
sian (image) grid in two dimensions, we do not end up with such a grid again, but by a
45 degree tilted version (or with diagonal instead of horizontal and vertical neighboring re-
lations), see Figure 4.4 (b). If we now want to perform a prediction and an update step on
the tilted version, we can use the exact same neighboring relations (horizontal and vertical
neighbors) to apply the wavelet transform. This is even mathematically justified: The dila-
tion matrix, that transforms a quincunx sublattice into a Cartesian lattice in two dimensions
is a similarity matrix. Unfortunately, such a scheme which

• allows for a 2-channel design (split into even and odd, black and white),

• generates a Cartesian lattice again after d iterations,

• and is a similarity transform,

does not exist in any dimension larger than d = 2. However, the third point is quite a
crucial one: It guarantees that we can “reuse” neighboring relations we stated once. The
consequences for 3D are exactly that: We cannot find a scheme, that produces a Cartesian
grid after 3 iterations and can be split into two distinct channels. We need to borrow one of
the steps from a different wavelet transform. An intuition on why we fail to find a scheme
that is as similar to in the 2D case, can be given if we consider the Voronoi cells of the
resulting 3D quincunx grid.

Voronoi cells can be used to state an equivalent notion of neighborhood between points:
Two points are neighbors if their Voronoi cells share exactly one face (one edge in 2D). Let
us now consider the stepwise outcome of a wavelet transform on a quincunx grid. The first
step, so splitting into black and white balls works fine in 2D and in 3D. We remain with
two distinct sets from which we can predict and update. Performing prediction and update
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then yields an approximation on the positions of the black points. In 2D, we now just rotate
the black points by 45 degree, and once more we can use the previous neighboring relation,
split the remaining points into two distinct sets, perform prediction and update steps on those
and arrive eventually on a Cartesian grid with 1

2 of the number of pixels in each coordinate
direction, so an image whose size is 1

4 of the original.
In 3D, the first step works similarly. But now considering the remaining points, we im-

mediately unveil the issue in 3D. The Voronoi cells of the 3D quincunx grid have the shape
of a rhombic dodecahedron, a twelve-faced polygon with rhombic faces, which means that
every point has twelve neighbors. A similarity transform however requires the same amount
of neighbors as in the Cartesian lattice, which are six. Even worse, the amount of twelve
neighbors prevents us from dividing the remaining points into two distinct subsets, from
which we can predict and update. We therefore borrow the idea of 5/3-LeGall filters [68],
which will not be introduced in detail here.

The resulting Voronoi cell is now a cuboid, with two equal sides and the remaining one
twice as long. The cell is not aligned with Cartesian coordinates. Clearly we loose isotropy
at this stage. It may therefore be worth checking if the cuboidal cell should be aligned
problem dependent to achieve better performance in whatever the wavelets are used for.
This study will however not be part of this thesis.

4.5.3 Efficient Implementation of Morphological Wavelets

In the previous section we saw that a generalization of splitting a one dimensional signal
into even and odd parts is to split a multidimensional signal based on the quincunx grid.
This can also be seen when we transform the multidimensional index to a linear one, i.e. a
signal sampled at n×m or n×m× l points, is transformed to a one dimensional signal by
mapping

(i, j) 7→ i+ j · n, (4.33)

or
(i, j, k) 7→ i+ (j + k · n) ·m, (4.34)

respectively. Then, the quincunx grid corresponds to the even and odd points of the trans-
formed signals. However, transformation to 1D or modulo-checking for being even or odd
are rather costly operations. We therefore extend the efficient implementation approach
of [37] to three dimensions.

For implementation, we do not split the lattice into two subsets, but eight, as in Figure 4.5.
The symbols •,♢,△,⋆, ◦,□,+, p are used to demonstrate the belonging of each voxel.
Instead of modulo operations, this split can be efficiently performed by taking every second
point in each dimension and only varying the starting points (either first or second point) in
each dimension. We will call the application of the Morphological Wavelet Approximation
to a Cartesian image grid Horizontal/Vertical Lifting or hv-Lifting. We start by splitting the
image into (•,♢,△,⋆) and (◦,□,+, p). In the prediction step neighboring relations will be
used as in Figure 4.6. Here, the center character always depicts the point that is predicted
and the lines indicate which neighbors are used for prediction as in (4.31). The neighbors
for the update step are found in Figure 4.7.

We will call the transition from the dodecahedral grid to the cuboidal grid Diagonal
Lifting 1 or d1-Lifting. The points are now partitioned into (•,⋆) and (♢,△). Predict and
update neighboring relations can be found in Figure 4.8 and Figure 4.9, respectively.
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Figure 4.5: Separation of an image grid into quincunx. (a) shows the separation in 3D.
Subfigures (b) and (c) show representation as two layers, where (b) coincides with a two
dimensional scheme.
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Figure 4.6: Horizontal/Vertical Lifting prediction step. (◦,□,+, p) are predicted by their
neighbors as indicated in the Subfigures (a), (b), (c) and (d), respectively.
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Figure 4.7: Horizontal/Vertical Lifting update step. (•,♢,△,⋆) are updated by their neigh-
bors as indicated in the Subfigures (a), (b), (c) and (d), respectively.
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Figure 4.8: Diagonal Lifting I prediction step. (♢,△) are predicted by their neighbors as
indicated in the Subfigures (a) and (b), respectively.
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Figure 4.9: Diagonal Lifting I prediction step. (•,⋆) are predicted by their neighbors as
indicated in the Subfigures (a) and (b), respectively.
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Figure 4.10: Diagonal Lifting II prediction and update step. ⋆ are predicted by their neigh-
bors as indicated in the Subfigure (a) and • is updated by neighbors as in (b), respectively.

Application of the wavelet transform to the cuboidal grid is denoted by Diagonal Lifting 2
or d2-Lifting. As only two sets are left the split is clear, the neighboring relations are
however depicted in Figure 4.10.

4.5.4 Derivatives on the Lifted Grids

In the previous subsection we learned that only in every third step we end up with a Carte-
sian grid in the wavelet transform. The other two steps produce grids that consist of cells
in shapes of dodecahedra and tilted cuboids, respectively. However, if we want to perform
motion estimation via Optical Flow on all scales, we need to estimate derivatives also on
these special grids. We will use the divergence theorem to do so. In what follows, we
strongly follow the notations of [115] for unstructured grids, which clearly have our struc-
tured ones as special case. A cell of a grid will be denoted by P , with ΩP its volume and
SP its bounding surface, respectively. Then, for continuously differentiable Φ we have∫

Ωp

∇Φ dx =

∫
SP

Φn⃗ds.
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Our bounding surface SP consists of F planar faces Sf , and each face has a constant unit
normal, therefore ∫

Ωp

∇Φ dx =
F∑

f=1

(
nf

∫
Sf

Φds

)
. (4.35)

Now apply the midpoint rule: It states that the mean value of a quantity over a cell P (or
face f ) is equal to its value at centroid P of the cell (or cf of the face) plus a second order
correction. We get

1

|ΩP |

∫
ΩP

∇Φ dx = ∇ϕ(P) +O(h2)

1

|Sf |

∫
|Sf |

Φds = Φ(cf ) +O(h2),

where h is the characteristic grid spacing. This yields∫
Ω
∇Φ dx = ∇ϕ(P)|ΩP |+O(h4)∫
Sf

Φds = Φ(cf )|Sf |+O(h3).

Plugging this into (4.35), we get

∇Φ(P) =
1

|Ω|

F∑
f=1

Φ(cf )|Sf |nf +O(h). (4.36)

Normally, one would now need to bother about evaluation of Φ at cell and face centers. But
keep in mind that we calculate derivatives on voxel grid, so Φ is just constant over the cell
and the face.

Having now derived an ingredient to compute gradients on arbitrary grids, we can apply
the TV Optical Flow variant of Section 4.3 to the quincunx grids. We just replace all differ-
ences by their corresponding components in the gradient, computed at every grid position
as in equation (4.36).

4.6 Extensions to Volume Images

We want to conclude this chapter by a small review on algorithms, that can be counted as
extensions of Optical Flow to 3D from the literature. The first one to mention here is the
work by Hermann et al. [57], which uses a similar procedure as in Section 4.3, but with
a different similarity measure. They propose to compare the census transforms of both
images. The census transform of an image assigns a binary vector to each image position,
which encodes features at that position. A similarity measure based on this transform then
only measures the activated bits in the vector. In equation (4.14), this only influences ρ,
therefore only the optimization of (4.16) changes. The binary vector, denoted by C at each
voxel position is generated by considering the set of all neighboring voxels Nx of x and
setting

C(x) = {χ(I(x) ≥ I(y))}y∈Nx ,
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where χ returns 1 if the condition is fulfilled and 0 otherwise. ρ is then given by the Ham-
ming distance of the census transforms C0 and C1 of both images, i.e.

ρ(x,u) = Γ(C0(x)⊕ C1(x+ u)),

where ⊕ concatenates both bitstrings and Γ counts the positive bits. The solution of (4.16)
requires the computation of gradients of ρ. Unfortunately the authors did not describe how
they proceeded here. In 2020, Manandhar et al. [75] proposed to use the exact same setup to
estimate motion in 3D fluorescence images. However, when performing the optimization,
they use a continuous approximation to the census transform. This approximation can then
easily be incorporated into classical optimization procedures.

The same authors describe a very similar extension in [56]. They now use the algorithm of
Subsection 4.2. Again, they replace the L1 similarity measure by a census based approach,
but keep the distance measure based on the image gradients. Interestingly, the use of census
transforms was also investigated in [49] by one of the authors of [25]. There, the census
transform does not replace the data term but is directly related to the gradient constancy by
its continuous limit. Moreover, the census transform is shown to perform better than the
classical gradient constancy assumption only in case of strong illumination changes. It can
therefore be considered as a more robust version. The price for this increased robustness
however is the loss of information. The census cost transform is a binary measure, and
therefore loses parts of already sparse information of our data. These two reasons, the loss
of information and the fact that CT data usually does not suffer from strong illumination
changes caused us to consider the 3D extension of the original work, consisting of the
constancy assumption, the gradient constancy assumption and the smoothness constraint.

Another extension that can roughly be counted as Optical Flow extension are two recent
works by Nie et al. [89, 88]. Both methods take up the findings of Temam, which we pre-
sented in Section 2.4, i.e that the space of functions of bounded variation should be replaced
by bounded deformation to produce mechanically admissible solutions in case of plastic de-
formations. Note however that they apply their algorithm to estimate motion in images of
lungs during free breathing, where the benefits of considering nonsmooth displacements
may not pay off the loss of invertibility of the transformation.

In their first contribution, Nie et al. [89] propose to use the L2-norm similarity measure
together with a L1-penalty on the strain, that is, they minimize

E(u) = ||I0(x)− I1(x+ u)||2+λ|E (u)|.

They follow a standard procedure: They compute Euler-Lagrange-equations and then derive
a gradient descent scheme. However, such approaches often only produce valid results in
terms of minimal residuals, if the image is transported within the optimization process.
This means that instead of computing a residual based on the displacement that is computed
during the whole optimization process, one uses the outcome of the last warping stage. The
resulting displacement fields are often rather sparse and therefore cannot be a reliable mean
for material testing. This is also visible in the contribution of Nie et al. [89], where the
quiver plots of the displacement fields seem to consist of only few large estimates, whereas
the remaining vectors seem to have small length. But we already saw that total variation
especially helps to estimate piecewise rigid vector fields, if optimized correctly.

The subsequent contribution [88], generalizes bounded deformation to bounded gener-
alized deformation, in the same manner as Bredies et al. did for total variation [23]. The

74



4.6. Extensions to Volume Images

optimization this time is applied with the means of convex optimization (Section 2.3.2).
However, the careful reader will note that we stated, based on the work of Bredies [23], that
bounded deformation is already covered by k = 2 when considering arbitrary orders of total
generalized variation. This shows also in the optimization process: The authors of [88] say
that the only difference between their work and the seminal work of Bredies et al. lies in the
computation of the projection operators Pα1 and Pα0 , as they are not computed componen-
twise but for whole vector fields. This basically nails down to divide by a norm involving
all components compared to dividing only by some of the components.

Unfortunately, there is no implementation available to the public of the TGV Optical Flow
implementation of Chambolle et al. [31]. This algorithm has been proposed by the same
group, that proposed TGV as a regularizer in the general setting. Our impression however is
that a stabilization as proposed by Nie et al., so dividing by the norm, is necessary anyway,
when TGV is used as a regularizer. It is therefore in fact difficult to assess how much
bounded generalized deformation really deviates from total generalized variation.
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In Situ Testing

Microtomography, so the imaging of materials with computed tomography at scales of mi-
crometers, has been around almost as long as medical computed tomography. But still
in 1999, Stock [112] did not give X-ray tomography much chance to overtake classical
2D radiography as imaging modality of choice in non-destructive material tests due to “the
high cost of instrumentation.” However, 15 years later, Maire et al. [74] manifested the in-
creasing success in using 3D images of materials for analyses by a thorough review on the
findings and advantages that come with microtomography. Numerous research facilities all
over the world have formed and overcome the financial issues by offering their setups for
industry corporations.

It is therefore no surprise that today’s main interest lies in the investigation of highly
advanced materials. In a world that becomes more and more demanding, materials that
deal with resources sustainably have to be developed and analyzed. In situ tests play an
important role, as they allow to monitor behavior under load of such new materials and
without this knowledge no one can justify the use in buildings, cars or planes.

Nevertheless, there are limits in incorporating mechanical tests into a CT device. Let us
shortly recall the process of generating images by CT. The basis of CT are the findings by
Röntgen, who discovered x-radiation, whose attenuation of X-rays is given by the Beer-
Lambert law

I/I0 = exp(−µd), (5.1)

where I0 is the initial intensity at the X-ray source, I the intensity measured at a detector
after traversing through the object, µ the attenuation coefficient and d the material thickness.
Infinitesimally, the loss of intensity dI along a short path ds is given by

dI = −
∫
µ(s)ds. (5.2)

By taking the limit, we arrive at the linear differential equation I ′ = −µI . Integration yields

− log
I0
I

=

∫
µ(s)ds. (5.3)

In CT, we now rotate source and detector of the X-rays around the object and collect slice-
wise all line integrals of µ of the object. The famous Radon transform is now exactly
performing this step. For a specific line parametrized by r > 0 and a two dimensional unit
vector ϕ ∈ S1, it computes the line integral over that line

(Rµ)(r, ϕ) :=

∫
R
µ(rϕ+ sϕ⊥) ds = −log I0

I
.
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Note that the quantity on the very right can be measured. Speaking of measurement, the CT
acquisition process now consists of parameterizing ϕ and r by discrete values. In fact, one
can prove that if we do this by infinitely many values, we can reconstruct the original object
from µ perfectly. In a more realistic setting, the rule of thumb on how many projections N
are needed to reconstruct an object of effective diameter d at a resolution r is N > πd/r,
which results in the classical number of projections of around 1000. Note that the above
framework does not allow for motion. The object under investigation has to stand still
during the whole acquisition process. This is for sure a problem in medical imaging, but
also for performing in situ tests. As we are intrinsically interested in the motion from such
a test, using an imaging modality not allowing for motion at all does not seem plausible.

There are two directions in which a remedy can be found. One is the very recent trend
to dynamic reconstruction operators [50, 44]. These have hardly been introduced and are
a massive open research topic. The second one is to perform quasi static or interrupted
testing. That is, mechanical engineers estimate the important stages of loading of a material
by small ex situ experiments, for example elastic regime, plastic regime and failure. During
the CT scan, the load is then applied until a certain level is reached and kept constant during
the acquisition.

It is therefore essential, that the experiment can be interrupted: This is for example the
case in compression, bending and tensile tests. Note also that the interrupted state has to be
kept constant for acquisition times around an hour.

In situ tests are documented for a large variety of materials. We will now focus on three
special kinds, namely materials exhibiting foam like structures, fiber systems, and concrete.
The current state-of-the-art in microtomography and in situ testing of these materials will
be presented next.

One example of the subsequent use of in situ tests is by Betts et al. [17]. The authors
performed in situ tests on single struts of an open-cell metal foam and afterwards used their
results to perform finite element simulations on full foams. Marter et al. [79] performed a
study, in which by the Virtual Fields Method [46] material parameters were estimated. The
parameters were compared with the real values, and with competitive methods to measure
them, such as crosshead displacement and optical measurements. The estimates by DVC
turned out to be very reliable, where crosshead measurements underestimated the Youngs
modulus (which can be interpreted as the materials stiffness) significantly.

5.1 Foams

Foams are a lightweight alternative to their solid counterpart. But the reduced demand in
resource is not the only advantage that can be found when considering cellular materials.
Metal foams for example experience growing popularity in the automotive industry because
of their favorable stiffness and energy absorption properties [65].

In this contribution, we only consider compressive experiments of foams. This conforms
with their general application: Compared to specimens from bulk material, which behave
more or less the same no matter if compression or tension is applied, foams fail to bear high
tension. Under compression, one can observe that after an initial regime of linear elastic
behavior, they exhibit a plateau stress. This means that beyond the elastic limit, foams fail
at nearly constant stress. Failure in foams is manifold and dependent on the underlying bulk
material. Struts in ceramic and glass foams fracture very suddenly under load, elastomeric
foams buckle, and metal foams yield [6]. In the plateau region, the transition from linear to
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plastic behavior is usually initiated by the failure of a single strut. This causes a weakened
cell within the foam, which corrupts also the stability of neighboring cells. These are then
very likely to collapse next, and this propagates to a full level. This proceeds until all cells
densify to a near bulk material.

Note that though foams undergo initial linear elastic behavior, they may exhibit plasticity
already at this stage [65].

The first work that describes in situ CT tests on cellular structures is in fact the initial work
on DVC by Bay et al. [13]. Point of interest of this work and a succeeding one [111] was to
assess the heterogenity of trabecular bone, which is in fact a porous, foam like structure, and
correlate it to the performance during an in situ test. In 2007, Roux et al. [104] investigated a
polypropylene solid foam. Polypropylene can be considered as foam in foam, as it consists
of porous beads, where each bead itself again exhibits a foam-like structure. The analysis of
such complex materials highly benefits from a local strain analysis. Therefore, the objective
of Roux et al. was not only to compute local strain at the scale of the porous beads but also
inside the beaded structures. The method of choice was a global DVC to allow for a straight-
forward comparison to Finite Element simulations afterwards. However, the data posed
challenges exceeding the limits of DVC. The thickness of the struts of the foam was only
few voxels. It is therefore very difficult to map the local behavior, even with the authors’
choices of rather small subvolumes with 8 or 16 voxels in each direction. This was also
manifested by the fact that the authors could not achieve convergence with their approach at
a higher compression rate, though visually many cells seemed to be intact and only a small
band of densification may have caused trouble in our impression. Nevertheless, the authors
were able to detect the desired shear bands at the lower compression stage.

Jirousek in 2011 [63] also investigated trabecular bone, but this time by NCC local DVC.
Bouterf et al. [20] examined nail pull tests in plasterboard. With the help of in situ syn-
chrotron images, one could see that plasterboard tends to fail very suddenly and after a
short period of compaction. Bouterf et al. also investigated indendation tests in foamed
gypsum [21]. The high uncertainty of displacement and strain motivated the authors to
develop a reduced but more reliable kinematic basis for the displacement.

Yet many following contributions performing in situ tests lack of an algorithmic explo-
ration of the motion a sample underwent during the test.

Adrien et al. [1] investigated compression tests of syntactic foams with Synchrotron X-
Ray tomography. Syntactic foams consist of hollow glas spheres embedded into a polymer
matrix and are used for thermal insulation of pipelines. Only by the opportunity to inves-
tigate the interior of the specimens, it was possible to observe that a soft matrix spreads
load equally among the spheres and eventually the weakest, in this case the largest, break
first. In 2011, Berek et al. [15] investigated Metal Matrix Composite Foams in in situ tests.
As it was a fairly new material at that time, the aim of the study was to show agreement
with literature: MMC foams first deform elastically before they enter a plastic regime. Fail-
ure is eventually manifested in densification. Note that we will use exactly this time series
later in our evaluation chapter. Ballaschk et al. [10] used MMC cruciform structures and
investigated the highly non-uniform behavior of these. Wang et al. [120] were able to show
different behavior of different regimes in pomelo peel compression experiments. Hubalkova
et al. [60] performed compression tests on glass and ceramic foams. These foams tend to
fracture very suddenly, which makes their assessment by motion estimation a very difficult
task. Note again that though the findings in the publication by Hubalkova et al. were not
supported by DVC or other algorithms, we catch up on this matter in the next chapter.

79



Chapter 5. In Situ Testing

5.2 Fibers

Fibers or fibrous structures usually appear in two variants. The first one is by fiber rein-
forced composites (FRC), that is a material consists of a matrix, usually polymer, ceramic
or metal, which is reinforced by fibers. Especially for polymer matrix such materials are
very attractive as they combine a lightweight material with the strength of stiff fibers [108].
In addition, the production process (often by injection molding) allows for a very flexible
design of shapes. Yet a very natural question in this case is how fibers influence the sta-
bility and failure mechanics of specimens. For FRC, the failure can be devided into four
stages [102]:

1. Damage at fiber ends

2. Fiber failure

3. Debonding of fibers from matrix

4. Damage growth in the matrix.

The first three stages can usually only be observed in sychrotron imaging, which allows for
voxelsizes below 1µm. Several studies aimed to understand exactly these failure mecha-
nisms, for example in short glass fiber reinforced thermoplastics [102, 103], in E-glass fiber
reinforced epoxy resin [80] and carbon fiber reinforced epoxy laminate [109], and with
special regard to influence of preexisting cracks in the same material in [110]. Synchro-
ton facilities and measurements are however far from being easily accessible to standard
research. Therefore, the fourth point, damage growth in the matrix, ideally correlated to
the underlying fiber structure was investigated by Hufenbach et al. [61] by a laboratory CT
with resolutions of approximately 25µm. They also performed compression experiments,
similar studies were performed by Wang et al. [122], also in Micro CT. Wang et al. focused
on kink bands, which usually can be found shortly before fibers fail in compression tests.

All of the contributions mentioned until this point have a very severe point in common:
None of them investigates the motion between the different loading steps. Quantification of
strain and stress is only done globally, and local material damage is investigated visually.
One of the rare works to change this is by Borstnar et al. [19]. The authors use DVC on
carbon fiber reinforced plastics to quantify delamination. Again, as delamination was the
damage mechanism of interest, synchrotron images are needed. The method of investigation
was a local DVC algorithm with a rather large subvolume size of 1503 voxels. Therefore,
the resulting displacement fields and the computed local strain are unfortunately very rough,
though the image quality in our impression would allow for more detailed description.

Mazars et al. [82] carried out in situ tests on woven ceramic matrix composites at varying
temperature. Not only did they use a global DVC to derive a qualitative damage scenario,
but they also located cracks within the material – again with the help of DVC. Mendoza
et al. [83] also considered woven composites and used full-field measurements computed
by DVC to assess the influence of weaving anomalies. Recently, the second category of
fiber systems, namely entangled ones without matrix, were investigated by Johansson et
al. [64] by in situ tests and motion estimation by DVC. The underlying materials, single ply
and 3-ply paperboard, were investigated at a resolution of 4µm within a tensile test. The
local DVC at a subvolume size of 203 voxels was able to map the auxetic behavior of the
paperboard, and gave a rough impression on formation on strain maxima at crack formation.
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Lastly, we want to point towards a review covering plenty of different aspects of in situ
tests of fiber systems, namely the work of Garcea et al. [42].

5.3 Concrete

Roughly speaking, concrete belongs to a very similar category as fibers in Section 5.2. It is
a composite, meaning it consists of two or more materials, mixed together such that it forms
a fully dense and strongly bonded material. As in all composite materials, different mixes
lead to different material properties. In the work of Maryamh et al. [81], fiber reinforced
concrete was investigated. The authors found dependencies between production parame-
ters, the fibre positions and directions, and the mechanical performance. In 2003, Wang et
al. [121] investigated the performance of different pavement varieties under load. But con-
crete is not only used in pavement, but also as common material in buildings. Both areas
rely on the stability and durability of concrete. Therefore, thorough mechanical testing is –
once more – inevitable.

Mechanically, concrete exhibits only a small elastic regime. Already at relatively low
loading stages, microcracks, that developed during the manufacturing process, start to evolve.
Formation of new microcracks follows, usually at porous areas, or at large voids. Failure of
concrete is eventually induced, when the microcracks develop into macrocracks [67].

Various in situ studies have been performed to quantify this behavior. Trtik et al. [119]
investigated tensile load of concrete with synchrotron based microtomography and observed
bridging and branching on the microscale. Landis et al. [67] used in situ compression tests
to improve numerical simulations of fracture processes. Yang et al. [127] computed material
parameters of concrete with the help of DVC. The algorithm was also used to visualize the
crack evolution. The motion, that concrete undergoes during drying in the manufacturing
process was investigated by Wan et al. [122], also with the help of DVC. Chateau et al. [32]
used DVC indirectly to segment cracks. Local DVC usually does not perform very well
at jumps due to the implicit smoothness assumptions (see Section 3.1.1). Computing the
residual will show the largest error exactly at the crack surface, and thresholding of the
residual then yields the segmented crack.

5.4 Samples in this Contribution

The choice of limiting to foams, fibers and concrete is justified by the samples that we
will investigate in this contribution. In the following section we will shortly describe the
specific underlying materials and the corresponding tests, as well as their outcome in the
volume images.

5.4.1 Synthetically Deformed Ceramic Foam

The first data set is given by synthetically deformed CT images of a ceramic foam. The
original image is of size 630 × 630 × 230 voxels at a voxel edge length of 70.88µm. The

81



Chapter 5. In Situ Testing

chosen displacement field follows [72], and is defined by

u(x, y, z) =

{
z · 0.005 ·K if z < D/2,

(z −D/2) · 0.005 ·K if z > D/2

v(x, y, z) = 0

w(x, y, z) = −0.2− K − 0.2√
0.5 · e−0.04·(z−D/2)

,

(5.4)

where K is the maximal displacement and D = 230 is the image size in z-direction. The
displacement field exhibits two difficulties: The deformation in z-direction is nonlinear and
mimics a compression. The deformation in x-direction is discontinuous mimicking struts
breaking due to load. Both effects can be seen in Figure 5.1. The displacement field will
be used in two ways. First, for fixed values K = 20 and D = 230, the performance of
the Optical Flow variant in Subsection 4.2 will be compared against its competitors from
materials science and MIR. Second, we will present a study on how different variants of
Optical Flow perform regarding maximal displacement. To do so, the image of the foam
is downscaled by factor 2 in each direction, and 80 deformed images are computed by
starting with K = 1 and increasing it by 0.5 until K = 40. Though we may expect larger
absolute displacement in other in situ tests, the displacement compared to the image size is
still considerably big. This study will therefore aid in choosing appropriate algorithms and
understanding what to expect from motion estimation algorithms.

Due to the known ground truth displacement field, we cannot only evaluate the qual-
ity of the residual but also the quality of the computed displacement vector fields. Exact
definitions of error measures to do so will be given in the next chapter.

5.4.2 Simulated Displacement of LFT

The next data set that we will investigate consists of long fiber reinforced thermoplas-
tics (LFT), for which a tensile test has been simulated. LFTs can be produced inexpensively
and provide favorable properties with respect to stiffness and impact strength [90], therefore
they are a popular replacement for metals in automotive industry. In order to fully exploit
their potential it is crucial to characterize their material behavior under load reliably. In situ
testing is the method of choice to accomplish this task as the LFT’s macroscopic behav-
ior is known to be driven by the microstructure, in particular the fiber component. In situ
testing enables better understanding of the relationship of microstructural geometric and
macroscopic physical properties by direct observation of microstructural changes during
loading.

The simulation of the tensile test accounts for both matrix and fiber phase of the material.
It is based on an efficient homogenization technique [107] and incorporated into the soft-
ware FeelMath. Though introduced for general purpose simulations, the method has been
successfully applied to LFTs [48, 47]. The simulated fields display a maximal displacement
of 70 voxels, we therefore incorporate a scheme fairly similar to the one for the syntheti-
cally deformed foam. We scale the simulated fields linearly by a scalar t between 0.1 and
1.0 in discrete steps of 0.05. The resulting 19 displacement calculations are once more used
to benchmark the influence of larger deformations. Slices of the displacement at scaling
parameter t = 1 can be found in Figure 5.2.
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(a) Volume rendering (b) xy-slice (c) xy-slice compressed

(d) xz-slice with discontinuity

Figure 5.1: Volume and slice view of the synthetically compressed ceramic foam. Note the
discontinuity in the middle layer in (d). Sample Foseco. Imaging Fraunhofer IZFP. Image
size 630× 630× 230 at voxel edge length 70.88µm.

(a) u component (b) v component

(c) w component

Figure 5.2: Simulated displacement fields for LFT. Images show a slice of u, v and w
component respectively.
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(a) Initial (b) Masked

Figure 5.3: MMC foam: Result of the background noise removal

5.4.3 Tensile Tests of LFT

Another example of an LFT will be used to assess the performance regarding large data
sets. Until now no sample exceeded 1000 voxels in any dimension, but as mentioned it
is essential that the presented motion estimation algorithms can also be applied to large
volume images.

We use a µCT image of the central part of a tensile test specimen of size 1162×769×1481
voxels at a voxel edge length of 5µm. A volume rendering and a slice view illustrating the
spatially sparse microstructure can be found in Figure 4.1.

5.4.4 Compression Tests on MMC Foams

For the second data set we choose CT images of an MMC foam acquired during a compres-
sion test. The foam consists of highly alloyed stainless Cr-Mn-Ni TRIP-steel reinforced
by magnesia partially stabilized zirconia (Mg-PSZ)-particles [16]. MMC foams are used
as lightweight materials. Yet they need to be mechanically sufficiently stable. Their load-
bearing capacity can be investigated in in situ tests. In the experiment described in [16], the
foam was compressed by 2%, 10%, and 16%. The image size is 420 × 420 × 480 voxels
at a voxel edge length of 30µm.

Figure 5.3(a) shows a slight corruption in the background caused by the high X-ray ab-
sorption of metals. We therefore pre-process the images: The whole image is binarized by
Otsu’s method, and the resulting binary image is used as a mask for the original image. Fig-
ure 5.3(b) shows the result. Note that these images are brightened to make the background
corruption visible.

Metal foams feature rather large struts and do not fall in the category of foams whose
failure is preceded by breaking struts. They are nevertheless a very suitable example to test
the power of our algorithm. In fact, one can observe three stages of deformation during
compression: linear elasticity, plastic collapse, and densification. Hopefully, our algorithm
is able to map all three kinds of motion. The stages of deformation can be seen in Figure 5.4.

5.4.5 Compression Tests on Glass Foams

The third foam that we use to evaluate our method consists of recycled float glass. The
CT images are acquired during an in situ compression test. In detail, we investigate the
volumes at strain levels 1% and 3.8%. More information about the testing procedure can be
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(a) Unloaded (b) 10% compression, linear
elastic and early plastic defor-
mation

(c) 16% compression, plastic
deformation and early densifi-
cation

Figure 5.4: yz-slices showing the collision behavior of the MMC foam. Red arrows indicate
compression direction. Sample, in situ testing, and imaging: TU Bergakademie Freiberg.
Image size 420× 420× 480 at voxel edge length 30µm.

found in [60]. The image size is 450 × 450 × 400 voxels at a voxel edge length of 40µm.
Figure 5.5 shows the same slice at the different loading steps. While images (a) to (c)
show the evolution of a crack orthogonal to the compression direction, we can also observe
diagonal cracks in images (d) to (f).

5.4.6 Compression Tests on Refractory Concrete

The last time series discussed in this thesis consists of refractory concrete under load. Re-
fractory concrete is a special type of concrete that is designed to withstand high tempera-
tures. It usually consist of a hydraulic cement phase and is combined with heat resistant,
refractory aggregates or fillers [87]. Their heat resistance allows for usage in domestic flues
and chimneys, but they are also common in fire training areas.

In this study, cylindrical samples have been investigated during compression tests. Three
loading stages have been applied on the circular cross sections, where already at the first
stage a fine crack can be observed. Figure 5.6 shows the sample, where 5.6 (a) is the un-
loaded stage, and 5.6 (b) and 5.6 (c) shows the loaded stage in gray and color transformed
respectively, to make the crack more visible.
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(a) Unloaded, xz-slice (b) 1% compression, xz-slice (c) 3, 8% compression, xz-slice

(d) Unloaded, yz-slice (e) 1% compression, yz-slice (f) 3, 8% compression, yz-slice

Figure 5.5: Slices of the compressed white glass foam. Observe that the first loading stage
in (b) and (e) hardly influences the structural integrity. The second loading stage however
introduces a diagonal crack visible in the lower left corner in (c) and a crack orthogonal
to pressure direction visible in (f). The samples are compressed in negative z-direction,
which is indicated by red arrows. Sample, in situ testing and imaging by TU Bergakademie
Freiberg.

(a) Unloaded, xz-slice (b) Loaded, gray (c) Loaded, color

Figure 5.6: Slices of concrete sample.
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Chapter 6

Evaluation of Motion Estimation
Algorithms

It’s too easy in computer vision to develop an algorithm that does something
plausible on a few images rather than something correct

— RICHARD SZELISKI1

The following chapter deals with a thorough evaluation of our methods. By defining three
error measures, we not only measure the goodness based on the warped images, but also on
reconstructed displacement fields. In contrast to Optical Flow, there exist no commonly ac-
cepted benchmarks for DVC. We therefore generate two ground truth displacement fields for
evaluation: One is a rather synthetic, hardly realistic field, that nevertheless exhibits the dif-
ficulties we expect in materials tests: jumps, smoothly varying parts and strongly differing
components. The second ground truth displacement consists of simulated displacement – it
is therefore of high relevance. Parts of the evaluation have already been published by the
author of this thesis in [91]. The displacement studies in Section 6.2.2 and Section 6.2.3 as
well as the applications in Section 6.3 have not been part of this contribution.

6.1 Error Measurements

Assessing the error, that comes with any motion estimation algorithm is an important point
in evaluating the performance of the methods. Luckily, we can once more have a recourse
on methods provided by the Optical Flow community. The amount of methods that have
been developed in 2D made a structured and commonly accepted evaluation unavoidable.
The 2D vision community widely accepts to evaluate Optical Flow based on three mea-
sures [9]. The first one, also manifested as meaningful by the DVC community [69], is the
root mean-squared error (RMSE). Before stating the error formally, we want to fix the no-
tion of residual. Recall that our algorithms are supposed to reconstruct displacement vector
fields u such that I0(x) = I1(x+u). It is therefore very obvious to assess the performance
of an algorithm based on this exact relation. Hence, one can consider the absolute value of

1Richard Szeliski is one of the co-developers of the famous “Middlebury” benchmark in Optical Flow [9].
The citation is taken from his monograph on Computer Vision [116].
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the initial residual

r0 = |I0(x)− I1(x)|,

and the absolute value of residual after warping,

r = |I0(x)− I1(x+ u)|,

where I1(x+u) was computed by interpolation at deformed coordinates. We will consider
normalized images, that means that both residuals have a maximal value of 1. Note that we
will often slightly carelessly call these quantities only initial residual and residual.

The RMSE is now given by averaged sum of the squared residual, i.e. if N is the number
of voxels, then

RMSE :=

(
1

N

∑
x

(I1(x+ u)− I0(x))
2

) 1
2

. (6.1)

In our setting, this will be the method of choice for all data sets, where we do not have
access to a ground-truth displacement field. This type of error can always be computed, and
in general an algorithm is considered to perform well, if the RMSE regarding the residual
is much lower than the RMSE regarding the initial residual. Anyhow, a low residual only
partially allows for conclusions concerning the quality of the displacement vector fields.
This is due to the nature of our ill-posed problem: Again, we estimate a three dimensional
quantity (displacement) based on a one dimensional relation (intensity difference), so we
cannot expect a unique solution.

Consequently one needs to find a measure to evaluate displacement as well. A crucial
part in the following two sections thus will be the comparison of the computed displacement
field to ground truths, which have been artificially generated. The Optical Flow community
mainly uses two means to do so. The first one is the average angular error (AAE)

AAE :=
1

N

∑
x

arccos
( 1 + u · uGT
√
1 + u2 + v2 + w2

√
1 + u2GT + v2GT + w2

GT

)
, (6.2)

where u = (u, v, w) and uGT = (uGT , vGT , wGT ) are the components of the computed and
the ground truth displacement field, respectively. The second one is the average endpoint
error (AEE), which can be understood as a residual in the displacement field, i.e.

AEE :=
1

N

∑
x

(√
(u− uGT )2 + (v − vGT )2 + (w − wGT )2

)
. (6.3)

AAE measures the angular deviation between computed and ground truth displacements,
but penalizes in regions of non-zero motion more than in areas of zero motion. This seems
to be arguable, the second measure AEE was introduced. Note that however none of the
measures seems to be common neither in DVC nor in MIR. But keeping in mind that we
compute motion between in situ tests, the quality of the constructed displacement fields may
even be of higher importance than low residuals. A thorough evaluation of the relevance of
both vector field measures may assist the findings in this contribution, but will be postponed
to future work.
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Method Abbr. Source Code Ref.
Optical Flow 3DOF https://gitlab.itwm.fraunhofer.de/kuschnerus/3dof [91]
local DVC ICGN https://github.com/FranckLab/ALDVC [126]
global DVC FEM https://github.com/jyang526843/FE_Global_DVC [126]
ALDVC ALDVC https://github.com/FranckLab/ALDVC [126]
Elastic Elas https://github.com/C4IR/FAIR.m [86]
LDDMM CLAIRE https://github.com/andreasmang/claire [77]

Table 6.1: Testbed for performance comparison on synthetically deformed foam including
links and references.

6.2 Performance Evaluation of Motion Estimation Algorithms

The objective of the first evaluation will be a performance comparison with other state-of-
the-art methods. As representative in Optical Flow based methods we chose the algorithm
presented in Section 4.2, denoted by 3DOF, and compared it to elastic (Section 3.2.1),
and LDDMM (Section 3.2.2) image registration methods, and local (Section 3.1.1), global
(Section 3.1.2) and combined (Section 3.1.3) DVC methods. Following the names of their
implementations, the algorithms for comparison are denoted by ICGN, FEM, ALDVC, Elas
and CLAIRE, respectively.

Our final choice of methods was not exclusively influenced by the fact whether they seem
suitable from a mathematical viewpoint. Even further – methods that were available open-
source or are capable of dealing with large data sets were preferred. That led to a testbed of
six methods, whose links to source code and reference can be found in Table 6.1. The library
FAIR [86] would also allow to use Hyperelastic Image Registration. Unfortunately, there
is no matrix-free version of the implementation, and already a downscaling by factor 2 in
each coordinate direction exceeds the memory of our largest available cluster computer with
1400 GB RAM. Furthermore, the evaluation on the artificial example already shows why the
smoothness assumptions in MIR are not suitable for materials science. Our impression is
that the algorithms in CLAIRE [76] have a better chance in at least partly mapping jumps.
In addition, these algorithms are, as already mentioned, very costly. In the evaluation on the
real-world examples therefore only CLAIRE is used for comparison. The parameters for all
methods can be found in Tables 6.2 (3DOF), 6.4 (CLAIRE) and 6.3 (DVC). The parameters
have been extracted by a small prestudy. Coarse ranges were extracted from the literature
on 2D methods, and fine tuning was then performed on 3D datasets. Note that due to the
size of the images, applying an exhaustive parameter search is hard, if not impossible.

6.2.1 Synthetically Deformed Foam - Single Computation

The RMSE values for this data set already demonstrate the superior performance of our
algorithm. Figure 6.1 shows a slice view of the residuals of the data sets at a critical po-
sition. The view exhibits the main difficulty of the data set, namely the discontinuity. All
algorithms struggle to compute a perfect residual here, 3DOF showing the lowest error.

Table 6.6 contains RMSE, AAE and AEE for the synthetically deformed foam with max-
imal displacement K = 20. Again, our method 3DOF clearly yields the lowest values.
The values in the range achieved here by 3DOF are considered to prove good performance
already in two dimensions. The outstanding performance can also be observed visually.
Figure 6.2 shows slices of the displacement field in all coordinate directions of our method,
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Data set 3DOF
λ µ M N W L d σ

Synth. Def. Foam 1 20 15 15 3 10 0.9 1√
2d

MMC 10% 10 10 20 30 3 15 0.9 1√
2d

MMC 16% 10 10 20 30 3 15 0.9 1√
2d

Glass Foam 1% 20 5 20 30 3 15 0.9 1√
2d

Glass Foam 3.8% 20 5 20 30 3 15 0.9 1√
2d

LFT 50 50 10 5 3 15 0.98 1√
2d

Table 6.2: Parameter choice for our algorithms. λ and µ regularization parameters, M
number of outer iterations, N number of inner iterations, W number of warps, L number of
levels, d downscaling factor, σ smoothing factor.

Data set ICGN FEM ALDVC
SV SFEM α SFEM SV

Synth. Def. Foam 40 10 2 10 40
MMC 10% 40 20 2 10 40
MMC 16% 40 10 2 10 40
Glass Foam 1% 40 10 2 10 40
Glass Foam 3.8% 40 10 2 10 40
LFT 40 120 2 40 120

Table 6.3: Parameter choice for DVC based methods. SV subvolume size for ICGN based
local DVC, SFEM subset size for global FEM based DVC, α regularization parameter. Note
that for ALDVC the used parameters are the recommended minimal choice of parameters by
the original authors, except for LFT, where the sizes had to be increased due to the sample
size.

Data set CLAIRE
N nt

Synth. Def. Foam 40 16
MMC 10% 20 8
MMC 16% 20 8
Glass Foam 1% 20 8
Glass Foam 3.8% 20 8
LFT 20 8

Table 6.4: Parameter choice for CLAIRE. N maximal number of iterations, nt time step-
ping.
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Data set 3DOF ICGN FEM ALDVC CLAIRE
MMC 10% 0.0110 0.0225 0.0202 0.0224 0.1245

MMC 16% 0.0101 0.0173 0.0163 0.0172 0.1467

Glass Foam 1% 0.0124 0.0164 0.0147 0.0146 0.0627

Glass Foam 3.8% 0.0182 0.0237 0.0234 0.0224 0.0767

LFT 0.0073 0.0277 0.0283 0.0277 0.2930

Table 6.5: RMSE (equation 6.1) for our application cases. Best performing method high-
lighted in bold.

(a) Initial (b) 3DOF (c) ALDVC (d) Elas (e) CLAIRE

Figure 6.1: xz-slices of residuals of the synthetically deformed ceramic foam. Yellow color
in the residual indicates the largest possible error, dark blue indicates a perfect match be-
tween both data sets. The scale for all the data sets can be found on the very right of the
figure. The images are normalized, the maximum possible error is therefore 1.
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Measure 3DOF ICGN FEM ALDVC Elas CLAIRE
RMSE 0.0876 0.1265 0.1343 0.1069 0.115 0.1732

AAE 2.29◦ 2.34◦ 2.31◦ 2.31◦ 11.5◦ 15.1◦

AEE 1.60 2.57 1.99 2.05 5.42 24.14

Table 6.6: Error measures of all methods for the synthetically deformed foam.

ALDVC as best performing DVC based method, Elas and CLAIRE. Especially the discon-
tinuity in u is computed best by our algorithm. Note that for the displacement fields in u and
v direction, the color axis for CLAIRE had to be modified due to large outliers. Figure 6.2
also quite remarkably shows what we hinted in the theoretical investigation of the motion
estimation algorithms: ALDVC (Section 3.1.3) and elastic image registration (Section 3.2)
seek for the displacements in spaces that produce functions which are too smooth to capture
our artifical discontinuity in the u-component. But exactly these smoothness assumptions
of course favor the reconstruction of the w-component, as the displacement here is smooth.
The 3DOF introduces an edge in the displacement field that is not in the ground truth field.
However, let us remark that it is often very unlikely to find such discontinuities only in one
of the components, while the other ones remain smooth. In the case of fracture, this error
may therefore be not very severe.

At points of discontinuity, most methods including ours still struggle. This can be seen
in the difference images of Figure 6.3. In Figure 6.3 (a), the initial difference image is
shown. Here, white pixels represent components, that overlay in both images. Magenta
color corresponds to the solid component that is only apparent in the original, undeformed
foam, whereas the green color corresponds to the solid component of the synthetically de-
formed foam. A favorable result would therefore be a difference image, that consists only
of white color. Our algorithm nearly achieves this, see Figure 6.3 (b). Note that in this case
the magenta color displays the initial foam deformed by the computed displacement field.
The same holds for Figures 6.3 (c) and 6.3 (d), which show the difference image resulting
from ALDVC and CLAIRE. Compared to this result, our algorithm performs much better,
however the zoom shows the inability of the algorithm to eventually break the strut.

We also used this synthetic example for a small study on how the parameter λ influences
the quality of the estimation of the displacement vector field. In Figure 6.4, we can see
that a careful choice of λ results in a minimum in the RMSE and, most important, yields a
drastic improvement over setting λ = 0, so not including the difference in gradients at all.
Note that nonetheless the choice of the parameters µ and λ is highly problem dependent. To
our knowledge, there are no rules for calculating the optimal parameters, they can only be
found by testing, for example, on downscaled versions of the images to reduce computation
time.

6.2.2 Synthetically Deformed Foam - Maximal Displacement Study

The synthetically deformed foam and the available ground truth can also be used for a
performance study regarding increasing displacement. We compared four different imple-
mentations of Optical Flow: The large displacement Optical Flow from Section 4.2, again
denoted by 3DOF, an approach which solves the total variation by primal dual algorithms
from Section 4.3, denoted by TV, the morphological primal dual scheme from Section 4.5,
denoted by TVMorph and a primal dual implementation of the TGV regularizer, denoted
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(a) GT u (b) 3DOF u (c) ALDVC u (d) Elas u (e) CLAIRE u

(f) GT v (g) 3DOF v (h) ALDVC v (i) Elas v (j) CLAIRE v

(k) GT w (l) 3DOF w (m) ALDVC w (n) Elas w (o) CLAIRE w

Figure 6.2: Slices of the ground truth (GT) and computed displacement fields for the syn-
thetically deformed ceramic foam. Yellow color indicates movement along the horizontal
axis, blue refers to the opposite direction.

93



Chapter 6. Evaluation of Motion Estimation Algorithms

(a) No warping (b) 3DOF with zoom (c) ALDVC (d) CLAIRE

Figure 6.3: Difference images of the synthetically deformed foam. White: pixels in the solid
component in original and deformed image. Magenta: pixels only in the solid component
of the initial foam in (a) and deformed by the computed displacement fields in (b)–(d).
Green: pixels only in the solid component of the synthetically deformed foam. In (a) we
also marked the discontinuity by a red line. To not distort the results, we forgo this marker
in the computed images. The zoom in (b) shows that the displacement field does not fully
capture discontinuous behavior. 3DOF did not break the strut.

Figure 6.4: Influence of the parameter λ. The residual plot shows the improvement over
λ = 0 and also that an optimal value can be found at λ = 1.
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Parameter θ λ (α0, α1) σ τ

TV 0.2 25 – 1 0.25

TVMorph 0.2 25 – 1 0.25

TGV 0.2 – (0.1, 10) 0.1 0.25

Table 6.7: Parameters for additional Optical Flow based methods.

by TGV (Section 4.4), and lastly, as best competitor also ALDVC. The parameters for the
additional TV methods can be found in Table 6.7. Figure 6.6 now shows the performance
with the best performing set of parameters. RMSE-wise, TV performs best, with 3DOF
and TGV achieving similar results. The angular measures identify 3DOF best, with only
marginal differences to other Optical Flow based algorithms as the displacements turn large.
As already expected, ALDVC cannot compete with the voxel-based methods residualwise,
as it struggles to compute the jump in the u-component properly. Interestingly, TVMorph
seems to stabilize the AAE for large displacements.

The angular measures identify 3DOF best for small and medium displacements, with
only marginal differences to other Optical Flow based algorithms. Interestingly, TVMorph
and ALDVC seem to stabilize the AAE for large displacements. Especially ALDVC still
produces reliable results for large displacements. An explanation for this can be given by
the usage of an initial guess. Based on Fourier methods [11], a preceding computation
is performed to fulfill the requirement of the Gauss-Newton-method, namely to start the
iteration close to the actual optimum. This strategy is highly related to the idea of the
coarse-to-fine strategy in Optical Flow: Some easier method is used to generate a starting
point for the current iteration, either by efficient approximate methods like in ALDVC or on
a coarser scale as in 3DOF. However, for the plots in Figures 6.6 we used roughly the same
amount of multiresolution steps for all Optical Flow Methods (10 with downscaling factor
0.9 for the classical, 9 for the morphological scheme). The reason why 3DOF then performs
worse than ALDVC nevertheless is that due to large displacements, the approximations on
coarse scales become bad initial guesses. Recall that the coarse-to-fine scheme in Optical
Flow is incorporated to ensure the applicability of linearization by Taylor approximation.
This means, that on the coarsest scale the maximal displacement should be around one
voxel. One can therefore pose the following rule of thumb when deciding for the choice of
parameters d and L

KdL−1 = 1, (6.4)

where K is the maximal expected displacement on the finest scale, d is the downscaling
factor, and L is the number of levels. The heatmap in Figure 6.5 displays this relation
visually. If one now follows this rule and alters the parameters to fit for large displacements,
we again observe a better performance compared to ALDVC, even if preinitialization is
performed for large displacement.

Another major difference in the choice of parameters in the Optical Flow based algo-
rithms can be found in the number of warps used to derive satisfactory results. Where
3DOF only needs 2 warping steps, we need at least 10 for TV and TGV to produce an
error that is sufficiently low. This becomes even more visible in the accompanying stud-
ies in Figure 6.7. Here we see that increasing the number of warps linearly also increases
the maximal possible displacement in 3DOF linearly. However doing the same with TV
does have less and less influence on the performance. That means that the treatment of the
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Figure 6.5: Heat map indicating how parameters for the image pyramid should be chosen.
X-axis: Number of levels in the pyramid. Y-axis: Downscaling factor. Color: Maximal
displacement value in voxels that can be captured by the whole coarse-to-fine scheme. NaN
values indicate parameter combinations that exceed image limits, as this scheme condenses
the image edge length below 1.

nonlinearities in 3DOF in fact is beneficial compared to just performing a first-order Taylor
linearization as in TV or TGV.

Yet another fact is interesting when observing the error plots: Assessment of which
method performs best seems to be highly dependent on the error measure. If we looked
for example only at RMSE (Figure 6.6), one would conclude that TV performs best. Even
further – in 3DOF it would be highly questionable if increasing the number of warps from 2
to 5 has any beneficial effect at all, see Figure 6.7 (a). But if we consider the error measures
on the displacement fields (Figures 6.7 (c) and 6.7 (e)) we see that more warps allow for
larger maximal displacement. Vice versa, if one expects to observe large displacements in
the in situ test, we highly recommend to increase the number of warps, even if this also
causes an increase of computational time.

6.2.3 LFT - Maximal Displacement Study

The second study on the performance of the algorithms for increasing displacement was
executed on simulated displacement fields of LFT. Though the fields seem to be smoother
than what we will construct in the foam samples without ground truth, it still offers many
of the difficulties that come with motion estimation in materials tests: We can find plateau
regions or jumps, but also large smoothly varying areas in the component images.

Figure 6.8 shows RMSE, AAE and AEE for the test series. The RMSE of all methods is
remarkably low – it starts by a factor 10 lower than what we found in the previous section.
The discrepancy between 3DOF and the methods that solve based on primal dual approaches
is once more explainable due to the use of Kačanov’s method. Using 5 warps in the TV
based approach seems just not to be enough to compete with the 2 warps of the Kačanov
method. Let us investigate this finding a little bit further. Observing the AAE for ALDVC,
we find a minimum at maximal displacement of approximately 20, which corresponds to
the scaling parameter t = 0.3. All other methods seem to grow linearly for increasing t. We
therefore extracted the residuals for all methods at parameter t = 0.3, and also recomputed
the displacement fields for TV and TVMorph with 15 instead of 5 warps. We see that both
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(a) RMSE (b) AAE

(c) AEE

Figure 6.6: RMSE, AAE and AEE measures for maximal displacement study on syntheti-
cally deformed foam.

Data set Time (in hours) RMSE AAE AEE
3DOF 4.5 0.0003 0.003 0.04

TV – 5 warps 3.9 0.006 0.16 4.20

TV – 15 warps 13.3 0.0026 0.02 0.62

TGV 18.5 0.0087 0.48 7.27

TVMorph – 5 warps 1.9 0.0089 0.21 5.80

TVMorph – 15 warps 5.5 0.0058 0.095 3.59

ALDVC 2.4 0.0016 0.12 23.88

Table 6.8: Calculation time and error measures for scale parameter t = 0.3 (maximal
displacement ≈ 20).
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(a) RMSE 3DOF (b) RMSE TV

(c) AAE 3DOF (d) AAE TV

(e) AEE 3DOF (f) RMSE TV

Figure 6.7: Error measures for 3DOF and TV with different numbers of warps.
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(a) RMSE (b) AAE

(c) AEE

Figure 6.8: RMSE, AAE and AEE measures for simulated displacement fields of LFT.
3DOF performs significantly better than all other methods.

(a) 3DOF (b) TV – 5 warps (c) TV – 15 warps

(d) TVMorph – 15 warps (e) TGV (f) ALDVC

Figure 6.9: Residuals of simulated displacement for scale parameter t = 0.3 (maximal
displacement approximately 20 voxel).
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methods still do not perform as remarkably as 3DOF, which exhibits a residual that is nearly
flawless (see Figure 6.9), but yet all the methods produce surprisingly accurate residuals
compared to what we saw in the previous section. Let us proceed with an inspection on
the displacement fields in Figure 6.10, in particular the w-component. We see that, except
3DOF, ALDVC and TV with 15 warps, all other methods only roughly display the correct
behavior. The error mainly occurs on the left-hand-side of the depicted slice. These are
in fact the areas of large displacement, and – consulting also the initial residual of this
slice in Figure 6.11 – we see that large displacement cannot be reconstructed very well
in areas of sparse spatial content with a low number of warps in TV. This makes sense:
Taking a second glance at the terms involving the optimization for 3DOF and TV we see
that many terms involving Id remain in the iterations of 3DOF, where almost all terms are
replaced by gradient approximations in TV. Once more the “freezing” of Kačanov seems
to be beneficial for motion estimation in materials science. Note that also the visually
appealing performance of ALDVC can be explained (see Figure 6.10 (g)). Fibers do admit
the required speckle pattern for which DVC was designed in the first place. However,
once more due to the choice of subvolumes instead of voxel bases, we lose detail in the
calculated fields. The consequence is a significantly worse performance than 3DOF, but a
very competitive one compared to other methods.

The low error measures for all of the methods can be explained by the absence of large
jumps in the simulated displacement fields. The finite element approach in simulation (once
more) assumes implicit smoothness, namely by assuming the displacement is an element of
a Hilbert space. It will be left to future work to compare simulated displacements with
computed ones, where the computation will be performed based on the actual tensile test on
these data sets. Note however that bringing these displacement fields into accordance will
entail an investigation in different function spaces and how well solutions can be approxi-
mated in these.

A last aspect that has been checked with these samples is the computation time of all
methods, which can be found in the first column of Table 6.8. All Optical Flow based meth-
ods have been executed in the exactly same setup, ALDVC on a less powerful machine.
For sure, TVMorph with 5 warps and ALDVC produce results in significantly less time –
ALDVC computes less degrees of freedom by definition, where TVMorph reduces compu-
tational time algorithmically due to its keener downsampling scheme. What we also want
to emphasize is that when using the same resources in time and memory, 3DOF achieves
much better results than TV with 5 warps. To accomplish comparable performance of TV
to 3DOF, we have to triple the computation time, which still seems feasible in this example.
But recalling the dimension of 210 × 250 × 1720 voxels, this can be considered only a
moderate image size, and looking at the results, one could easily justify the need for even
more warps. We however want to remark that all methods leave room for improvement:
3DOF currently uses successive overrelaxation, a method that is difficult to parallelize, and
all methods based on primal-dual approaches would heavily benefit from the use of a GPU
instead of (as in our case) a CPU.

6.2.4 LFT - In Situ Test

Having dealt with synthetically generated pairs of images in the previous section, we now
want to turn towards a real tensile test on LFT. Note that this data set and the one from
Section 6.2.3 do not coincide and stem from completely different experimental setups.
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(a) Ground truth

(b) 3DOF

(c) TV – 5 warps

(d) TV – 15 warps

(e) TVMorph

(f) TGV

(g) ALDVC

Figure 6.10: w-component of simulated displacement for scale parameter t = 0.3 (maximal
displacement approximately 20 voxel).

Figure 6.11: Initial residual extracted at the same position as w-components in Figure 6.10.
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(a) Initial residual (b) Residual 3DOF

(c) Residual ALDVC

Figure 6.12: LFT: slice view of the residuals

Figure 6.12 shows the residuals for the LFT data set. The algorithm managed to match
the individual fibers properly, and to significantly reduce the overall RMSE, when computed
with the initial residual. Note that the initial RMSE is already much lower than for all data
sets we discussed earlier. This can also be seen in Figure 6.12(a), where the maximal
absolute difference value can be found at ≈ 0.2, where for other data sets it was close to 1,
see for example Figure 6.1. This means that the expected maximal displacement is also
much lower than for the foam samples we already investigated. Nevertheless, the residual
of our method in Figure 6.12(b) shows a slight improvement and a lower residual than
ALDVC in Figure 6.12(c). Therefore, our proposed method does not only compute large
displacement of foams in a very exact way, but also smaller displacement of fibers.

6.2.5 MMC Foam

Table 6.5 again shows that we outperform the state-of-the-art methods with respect to the
RMSE. Note that from now on, we will only focus on the analysis of our results and re-
nounce further comparisons to CLAIRE and local and FE-based DVC, but show compar-
isons to ALDVC, as it performed best among the comparison methods.

Our interest also lies in the displacement field. As the data set was generated during a
compression test, the computed displacement should reflect the behavior during the test.
Figure 6.13 shows, that our algorithm again describes the increasing compression best. We
can see a very detailed edge where material densifies in the middle. ALDVC resolves this
behavior rather roughly. The displacement field between 10% and 16% presents a plausible
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(a) 3DOF, w from 0% to 10% (b) 3DOF, w from 10% to 16%

(c) ALDVC, w from 0% to 10% (d) ALDVC, w from 10% to 16%

Figure 6.13: xz-slices of displacement field of the MMC foam. Again, yellow color indi-
cates movement along the horizontal axis, blue refers to the opposite direction. The com-
puted displacement field reflects the expected behavior during the experiment.

discontinuity along the failure. Note that we only focus on w, the displacement field in
z-direction, as it is along compression direction and therefore the most interesting one.

However, the difference images in Figure 6.14, composed in the same way as in Sec-
tion 6.2.1, again show the difficulty of brittle and plastic behavior. We can clearly see that
the result on those parts yet needs to be improved in future work.

6.2.6 White Glass Foam

We proceed with a data set that is the main representative of data sets of special interest for
us. Its spatial content is very sparse, as it consists of very thin struts, and is fractured rather
immediately between 1% and 3.8% of loading. Figure 6.15 shows the displacement of the
glass foam from 1% to 3.8%. We did not include the displacement field of the first loading
stage here, as it does not contain any large damage behavior. The qualitative result of the
displacement field perfectly maps the behavior described in [60]. This example also shows
remarkably the difference between DVC-based methods like ALDVC and our approach:
We compute a true voxel-based displacement field that is not gained by interpolation as in
DVC. The accurate outcomes of this approach are apparent over all directions, but are par-
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(a) Initial, 0% to 10% (b) 3DOF, 0% to 10%

(c) ALDVC, 0% to 10% (d) Initial, 10% to 16%

(e) 3DOF, 10% to 16% (f) ALDVC, 10% to 16%

Figure 6.14: xz-slices of the difference image of MMC foam. White: pixels in the solid
component in original and deformed image. Green: pixels only in the solid component of
the initial foam in (a) and (d) and deformed by the computed displacement fields in (b), (c),
(e) and (f). Magenta: pixels only in the solid component of the deformed foam. Especially
brittly fractured parts are difficult to match, as we can see in magenta in (b), (c), (e) and (f).
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(a) 3DOF, xz-slice u, 1% to
3.8%

(b) 3DOF, xz-slice v, 1% to
3.8%

(c) 3DOF, xz-slice w, 1% to
3.8%

(d) ALDVC, xz-slice u, 1% to
3.8%

(e) ALDVC, xz-slice v, 1% to
3.8%

(f) ALDVC, xz-slice w, 1% to
3.8%

(g) 3DOF, yz-slice u, 1% to
3.8%

(h) 3DOF, yz-slice v, 1% to
3.8%

(i) 3DOF, yz-slice w, 1% to
3.8%

(j) ALDVC, yz-slice u, 1% to
3.8%

(k) ALDVC, yz-slice v, 1% to
3.8%

(l) ALDVC, yz-slice w, 1% to
3.8%

Figure 6.15: Slices of the displacement field of the glass foam. The discontinuity along the
previously observed fault zones can be well observed in the computed displacement fields
in z-direction in (c) and (i). Both the averaging nature of the DVC based displacement field
and the fine details of 3DOF can be observed very well.
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(a) Initial, 0% to 1% (b) Computed 3DOF, 0% to
1%

(c) Computed ALDVC, 0% to
1%

(d) Initial, 1% to 3.8% (e) Computed 3DOF, 1% to
3.8%

(f) Computed ALDVC, 1% to
3.8%

Figure 6.16: xz-slices of the difference image of the glass foam. White: pixels in the solid
component in original and deformed image. Green: pixels only in the solid component of
the initial foam in (a) and (d) and deformed by the computed displacement fields in (b), (c),
(e) and (f). Magenta: pixels only in the solid component of the deformed foam. Observe
the green component in the lower left corner of (e) and (f). Although the displacement field
displays plausible behavior, the fault zone is not mapped correctly.

ticularly prominent in Figures 6.15(c), (f), (i) and (l). These images show the fault zones
in loading direction and are therefore of special interest. Here we see that our approach
calculates a strut-wise displacement, where we gain the impression that ALDVC computes
only an average displacement (per subvolume). Nevertheless, the difference images in Fig-
ure 6.16 again shows the weakness of our method. Especially in this case, where the motion
between 1% and 3.8% is rather large, the areas suffering from brittle fracture cannot be
matched sufficiently, but still better than in ALDVC. And again, the improvement in these
regions is postponed to future work.

6.3 Specialized Applications of Motion Estimation

The last section of our evaluation will deal with the use of our methods beyond just plain
displacement calculation. Both applications will exploit the voxel-based calculation of our
computations and will show how our method can assist engineers in the assessment of their
materials.
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(a) Step 3 (b) Step 6 (c) Step 9 (d) Step 12

Figure 6.17: Application of morphological wavelet transform to concrete sample. Images
display those stages that finish in a Cartesian voxel grid. Rescaling to equal sizes has been
applied for visual impression. One can clearly see that the crack is preserved over all scales.
The initial number of voxels in each direction of the quadratic slices was 648 and was then
reduced to 324, 162, 81, and 41 voxels, respectively.

(a) u-component (b) v-component

Figure 6.18: Displacement field components of concrete at downsampling stage 6.

6.3.1 Crack Detection in Concrete by Morphological Optical Flow

We start by investigating the compression of refractory concrete with our morphological
approach to TV Optical Flow. Instead of using a coarse-to-fine scheme up to the original
voxel grid for our calculations, we will use only four coarse steps. That is, we initially
downscale the image with our morphological wavelets by 9 steps and calculate displacement
on each level until we reach a quadratic voxel grid again. The four stages are therefore
Cartesian, dodecahedral, cuboidal and finally Cartesian.

In Section 4.5, we already saw that morphological wavelets preserve minima, if Min-
Lifting is applied. In Figure 6.17, we see the outcome of a downsampling scheme by Min-
Lifting. 12 steps are applied, where we only display those stages that appear on cubic grids.
We can clearly see that while loosing details concerning the aggregates in the concrete
(which is the desired effect of a coarse-to-fine scheme in Optical Flow), all stages maintain
their local minima in the crack area.

The calculated displacement fields between downscaling step 9 and step 6 at final step 6
can be found in Figure 6.18. Clearly, the displacement exhibits a jump in the crack area.
Calculating the (1, 1)-component of the strain ε1,1, i.e. the derivative of u in x-direction,
in fact clearly displays the crack as a local minimum, that can easily be thresholded. The
strain component and the threshold computed on it can be seen in Figure 6.19.
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(a) ε1,1-component (b) Detected Crack

Figure 6.19: Strain component and crack segmentation based on displacement field calcu-
lated at stage 6. In (a) negative maximal strain is indicated in blue, positive maximal strain
in yellow, and zero strain in turquoise.

The advantages of this method are manifold. First, our approach, that preserves the
important detail within all coarsening steps, can be interpreted as a reversion of the coarse-
to-fine scheme of classical 2D Optical Flow – at least when applied in materials science.
Recall the reasoning for coarse-to-fine schemes in 2D: only large objects will undergo large
motions and those objects can still be found after smoothing and downsampling. This can
also be accepted partly for in situ, as the strong, global deformation of the MMC foam
in the previous section for example will also be apparent on the coarsest scale. But often
the “interesting” motion in materials science is not occurring on the coarse but actually
on the finest scale, such as local cracking or fracture. Luckily, such material failure will
almost always result in generation of new void material, which in CT imaging will manifest
in a local minimum. Preserving these minima up to the coarsest scale therefore enforces
computation of this behavior in a very early stage of the algorithm. So, though being at a
coarse resolution, we still match fine details first – a reversion of the original scheme.

This fact turns also out to be beneficial for avoiding local minima. In Figure 6.20 we see
corresponding slices of the unloaded and stage 1 loaded volume, presented in an overlay im-
age. Recall that an overlay image indicates by color, which structures can be found in one
image but not in the other. First, we spot the misalignment on the very left in Figure 6.20 (a),
denoted by letter a , where the mounting is supposed to coincide in both images, but the
green shade indicated that it did not. Second, on top of the concrete sample we see a purple
shade (letter b ), where in parallel we see a green shade on the bottom (letter c ). In fact,
that indicates rotation of the samples towards each other. It becomes also apparent if we
look at Figure 6.20 (b), where d and e again represents purple and green shade, respec-
tively. In classical TV Optical Flow, the rotation overlays the motion induced by fracture,
as seen in Figure 6.21. The e1,1 component shows no extrema due to the crack anymore,
in contrast to the approach which used morphological wavelets. Here, the influence of the
rotation is also visible, but the crack can still be seen very well. In the area of materials
science morphological coarse-to-fine schemes therefore perform more robust than classical
approaches.
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(a) xz slice (b) xy slice

Figure 6.20: Overlay of both loading stages.

(a) ε1,1 component based on 3DOF (b) ε1,1 component based on TVMorph

Figure 6.21: Comparison of strains based on 3DOF and TVmorph.
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(a) Sliceview of w-component 1 (b) Sliceview of ε3,3 with local extremum 1

(c) Sliceview of w-component 2 (d) Sliceview of ε3,3 with local extremum 2

Figure 6.22: Slices of displacement and strain, positions of potential interest marked by red
boxes.

Another advantage comes with the nature of the wavelets, but can be interpreted twofold:
As we estimate motion on downsampled images, the complexity of the algorithm drastically
decreases. Performing calculations on stage 6 as in the present example only uses 2% of the
amount of the original voxels. As especially in materials science there is a trend towards
resolving specimens of several meters at resolutions of micrometers, the resulting images of
10 0002× 2 000 voxels have to be treated in a very efficient manner. This is clearly fulfilled
by our approach.

And yet another advantage stems from this interplay: As we used the coarsest levels to
estimate our motion, we basically calculated displacement on compressed data. In samples
as large as the ones just mentioned it is very advantageous to have a hand on algorithms that
do not require full decompression of the data.

6.3.2 Early Stage Failure Identification in Foams by Optical Flow

The last example in this contribution will now shed a light on the fact why it is so impor-
tant to have a voxel exact algorithm for materials that exhibit delicate behavior like foams.
The material investigated here will be a fairly similar one to the MMC foam presented in
Section 6.2.5. A detailed description of the compression tests of this sample can be found
in [15]. Images were taken at 2, 4, 6, 10 and 20 percent of compression. The investigators
did not expect fracture already at the lowest compression rate, they therefore only inves-
tigated the sample containing 10% compression for fractured cells. We now check if the
displacement computed between unloaded and loaded at 2% will give a hint on where ma-
terial failure will occur.
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(a) Densification

(b) Unloaded (c) 2% (d) 4% (e) 6% (f) 10%

Figure 6.23: Densification of MMC sample. (a) shows the original image with an excerpt
marked by a red box. (b)-(f) show how the extracted field of view develops during the whole
experiment.

Due to the similarity of the material we use the same parameters as in Subsection 6.2.5.
The sample is compressed in z-direction, we therefore calculate the strain and investigate
its (3, 3)-component, i.e. the derivative of w in z-direction. Slicewise investigation indeed
brings two interesting positions to light. The respective slices of the strain can be found in
Figure 6.22. Figure 6.23 now shows all corresponding positions throughout the time series.
In fact, we can see two loose ends of struts colliding, which constitutes densification already
at a very early stage.

The second position is even more interesting. Figure 6.24 shows the evolution in all
slices, and in fact we can see that we found a breaking strut. We can even see that until the
stage of 10% compression the strut is nearly completely fractured, whereas the authors of
the original work struggled to observe real cracking at this stage at all.

We therefore conclude this chapter on evaluation of our methods by showing that cal-
culating voxelwise displacement indeed offers great possibilities in mapping the delicate
behavior of materials such as foams or fibers.
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(a) Densification

(b) Unloaded (c) 2% (d) 4% (e) 6% (f) 10%

Figure 6.24: Fracture of cell of MMC sample. ensification of MMC sample. (a) shows the
original image with an excerpt marked by a red box. (b)-(f) show how the extracted field of
view develops during the whole experiment.
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Conclusion and Future Work

In this thesis we investigated motion estimation algorithms to compute displacement in ma-
terials tests. Having constituted two areas which already established methods working on
volume images, we used the theory of inverse problems in Banach spaces to unify them
under this roof. Inverse problems is a framework to tackle illposedness – and motion es-
timation can be considered as an ill-posed problem. We try to derive a three dimensional
displacement field from only scalar correspondences. However, we saw that formulating the
theory in Hilbert spaces is not suitable to describe the outcome of a materials test. As we are
interested in assessing the durability and performance of specimens under load, we expect
fracture and cracking in our images. Displacement describing this behavior will for sure
consist of discontinuities and jumps – a feature that cannot be achieved if we consider dis-
placement in Hilbert spaces. Unfortunately, the literature on algorithms overcoming these
problems in three dimensions is very sparse. Luckily, we showed that a remedy can be
found by extending total variation regularized Optical Flow to three dimensions.

We then proceeded with a thorough evaluation of our proposed extension. Motion es-
timation is a highly nonlinear problem and in the Optical Flow community several ways
have been developed to deal with these. In this thesis, we considered the Kačanov method
and primal dual approaches in detail. Primal dual algorithms treat the regularization very
accurately, but still need a linearization of the data term in contrast to Kačanov’s method.
As it “freezes” the nonlinearities, it treats them without linearization. Especially when as-
sessing the displacement fields, this approach turned out to be advantageous. This made
it the method of choice for a comparative study on artificial displacement and real-world
examples, which came to the conclusion that Optical Flow based methods outperform all
state-of-the-art methods in motion estimation for materials tests.

We also investigated the behavior of motion estimation algorithms if large displacement
can be expected. As the primal dual approaches rely on linearization, which itself relies
on the assumptions of small displacement, this matter had to be rechecked. We saw that
increasing the number of warps is the way to go to guarantee sufficient results in all algo-
rithms, but once more Kačanov’s method requires much less computational demand.

Another method to overcome the limitations of small displacements is to employ a coarse-
to-fine strategy. By replacing the common Gaussian or Laplacian filters by a multiresolution
wavelet analysis, and by choosing morphological wavelets to do so, we employed a whole
new paradigm in coarse-to-fine strategies. Instead of matching the delicate behavior that
we expected in our concrete sample only on the finest scale, we used the property of mor-
phological wavelets, that they preserve local minima over all scales, to estimate cracks in
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concrete already on coarse levels.
Even further, if used on the full image resolution, our voxel exact approaches were able

to detect fracture in foams already at very low compression rates. Where struts only cover
few voxels and their breakage is a phenomenon of equally few voxels, precise estimation
algorithms are required. We showed that our extension fulfills this.

Nonetheless, our investigation opened much room for future work. Optical Flow in 2D
is one of the most tackled problems in Computer Vision. However, the algorithms that we
used here are fairly old, as in the recent years a trend to use learning based approaches
evolved. The complexity, that comes with deep-learning in more than two dimensions and
the absence of reliable training data in 3D nevertheless prohibits the use of such approaches
in our applications. But there is a trend evolving in learning the regularizers of ill-posed
problems. Motion estimation in materials science might also benefit from this.

Furthermore, a very appealing property of DVC always was its direct connection to FEM
simulations in materials science. Having seen that the functional spaces used in DVC may
produce too smooth displacement, raises the question on how to compare our motion esti-
mation to simulations. This problem has to be evaluated not only on a computational but
also on a mathematical level.

Lastly, the new paradigm introduced by morphological wavelets leaves room for many
improvements. As stated, the scheme is not unique in 3D and its anisotropic nature has to
be investigated further. This also applies for motion estimation on compressed data: mor-
phological wavelets at this point are a theoretical construct and have never been employed
in any compression scheme. If one wants to fully exploit their potential, these investigations
cannot be avoided.
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Andrich, M.: A test device for damage characterisation of composites based on in
situ computed tomography. Composites Science and Technology, 72(12):1361–1367,
2012.

[62] Jalalzai, K.: Some remarks on the staircasing phenomenon in total variation-based
image denoising. Journal of Mathematical Imaging and Vision, 54(2):256–268, 2016.
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