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Abstract 

The polynomial approach introduced in Fuhrmann [1991] is ex- 
tended to cover the crucial area of AAK theory, namely the character- 
ization of zero location of the Schmidt vectors of the Hankel operators. 
This is done using the duality theory developed in that paper but with 
a twist. First we get the standard, lower bound, estimates on the num- 
ber of unstable zeroes of the minimal degree Schmidt vectors of the 
Hankel operator. In the case of the Schmidt vector correspomding to 
the smallest singular the lower bound is in fact achieved. This leads 
to a solution of a Bezout equation. We use this Bezout equation to 
introduce another Hankel operator which hase singular values that 
are the inverse of the singular values of the origina..l Hankel operator. 
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Moreover the singular vectors are closely related to the original sin- 
gular vectors. The lower bound estimates on the number of antistable 
zeroes of the new singular vectors lead to an upper bound estimate 
on the number of antistable zeroes of the original singular vectors. 
These two estimates turn out to be tight and give the correct number 
of antistable zeroes. From here the standard results on Hankel norm 
approximation and Nehari complementation follow easily. 
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1 INTRODUCTION 

In Fuhrmann [1991] a polynomial approach to AAK theory, see Adamjan, 
Arov and Krein [1968a,l968b,l971,1978], was given. While many, one might 
dare to say even interesting, results were given in that paper, there was 
also a fundamental underlying weakness. At a crucial point the paper used 
the original AAK results concerning the number of antistable zeroes of the 
minimal degree singular vectors of the given Hamkel operator. Thus that 
paper was not self contained. In point of fact, the determination of the zero 
location of Hankel singular values seems to be the bottleneck of AAK theory. 
30 simple method was found to this probiem, and even efforts at making 
a reasonably elementary exposition of AAK theory, e.g. Young [1988] and 
Partington [ 19??], h ave failed in this respect. Even the case of singular vectors 
corresponding to the largest singular vector, the only relatively easy case in 
AAK theory, which is disposed in a one line proof, is not really elementary 
inasmuch as it uses inner/outer factorizations. 

The object of this paper is to address itself to this problem and to provide 
an elementary solution. It should be clarified at the outset that the context 
in which the problem is solved is that of rational functions. In fact the proof 
uses rationality in a crucial way. Thus the method, at least as presented 
in this paper, is not as general as others. However it has the advantage of 
simplicity. It can be truly said that this method brings AAK theory to a 
level that can be safely presented to the undergraduate student. 

To achieve our goal we redevelop the theory with a little twist. The twist 
in our approach is that we focus first on the zeroes of the singular vector 
corresponding to the smallest singular vector. This turns out to be rather 
trivial to figure out. Once this is achieved a natural Bezout equation presents 
itself and leads to a related, one should really say a dual, Hankel operator. 
For both Hankel operators we have lower bound estimates on the number 
of antistable zeroes of the corresponding singular vectors. However the dual 
estimates translate into upper bound estimates of the original singular vec- 
tors. Moreover the estimates are tight, i.e. they determine the number of 
antistable zeroes of the minimal degree singular values. From this point the 
results on Hankel norm approximation follow as in Fuhrmann [1991]. 
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A natural question presents itself. How was this approach been overlooked 
so long. It seems that the explanation lies in the tremendous authority 
of M.G. Krein. Once he put the limelight on the largest singular value, 
everything else remained in the dark. 

In writing this paper a basic decision had to be’ made. Most of the 
development presented in the current approach is based on the results in 
Fuhrmann [1991]. It could be presented via a long list of pointers to the 
relevant parts of that paper. That would mean a short, but also nonreadable, 
presentation. The other alternative, the one eventually adopted, was to make 
this paper self contained. This means that there is substantial duplication 
of results, but the order of the development is different. 

The paper is structured as follows. In section 2 we collect basic informa- 
tion on Hankel operators, invariant subspaces and their representation via 
Beurling’s theorem. Next we introduce model intertwining operators. We do 
this using the frequency domain representation of the right translation semi- 
group. We study the basic properties of intertwining maps and in particular 
their invertibility properties. The important point here is the connection of 
invertibility to the solvability of an Hy Bezout equation. We follow this by 
defining Hankel operators. For the case of a rational, antistable function we 
give specific, Beurling type, representations for the cokernel and the image of 
the corresponding Hankel operator. Of importance is the connection between 
Hankel operators and intertwining maps. This connection, coupled with in- 
vertibility properties of intertwining maps are the key to duality theory. 

In section 3 we do a detailed analysis of Schmidt pairs of a Hankel op- 
erator with scalar, rational symbol. Some important lemmas, due to AAK 
[1971], are rederived in this setting from an algebraic point of view. These 
lemmas lead to a polynomial formulation of the singular value singular vec- 
tor equation of the Hankel operator. This equation, we refer to it as the 
Fundamental Polynomial Equation, is easily reduced, using the theory of 
polynomial models. to a standard eigenvalue problem. 

6sing nothing more than the polynomial division algorithm, the subspace 
of all singular vectors corresponding to a given singular value, is parametrized 
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via the minimal degree solution of the FPE. We obtain a connection between 
the minimal degree solution and the multiplicity of the singular value. 

The FPE can be transformed, using a simple algebraic manipulation to 
a form that leads immediately to lower bound estimates on the the number 
of antistable zeroes of ph, the minimal degree solution corresponding to the 
k-th Hankel singular value. This lower bound is shown to actually coincide 
with the degree of the minimal degree solution for the special case of the 
smallest singular value. Thus this polynomial turns out to be antistable. 
Another algebraic manipulation of the FPE leads to a Bezout equation over 
L!‘$‘. This provides the key to duality. 

Section 4 has duality theory is its main theme. Using the previously 
obtained Bezout equation, we invert the intertwining mapcorresponding to 
the initial Hankel operator. The inverse intertwining map is related to a new 
Hankel operator which has inverse singular values to those of the original one. 
Moreover we can compute the Schmidt pairs corresponding to this Hankel 
operator in terms of the original Schmidt pairs. 

Section 5 applies the previous information. The sme estimates on the 
number of antistable zeroes of the minimum degree solutions of the FPE 
that were obtained for the original Hankel operator Schmidt vectors are ap- 
plied now to the new Hankel operator Schmidt vectors. Thus we obtain a 
secondset of inequalities. The two sets of inequalities, taken together, lead 
to precise information on the number of antistable zeroes of the minimal de- 
gree solutions corresponding to all singular values. Utilizing this information 
leads to the solution of the Nehari probiem as well as that of the general 
Hankel norm approximation problem. 

It is fitting that the new insight into this problem came while preparing 
for a seminar at the Department of Mathematics of the University Kaiser- 
slautern, where much of the research on the previous paper has been done. 
For providing this intellectually stimulating atmosphere I would like to thank 
D. Pratzel-Wolters. This particular piece of research was done while work- 
ing on a large joint project with R. Ober. It is a pleasure to acknowledge 
his creative criticism and the endless conversations that no doubt helped in 
getting this work done. 
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2 PRELIMINARIES 
. 

Hankel operators are generally defined in the time domain and via the 
Fourier transform their frequency domain representation is obtained. We will 
skip this part and introduce Hankel operators directly as frequency domain 
objects. Our choice is to develop the theory of continuous time systems. This 
means that the relevant frequency domain spaces are the Hardy spaces of the 
left and right half planes. Thus we will study Hankel operators defined ,on 
half plane Hardy spaces rather than on those of the unit disc as was done 
by Adamjan, Arov and Krein [1971]. In th is we follow the choice of Glover 
[1984]. This choice seems to be a very convenient ones as all results on 
duality simplify significantly, due to the greater symmetry between the two 
hlfl ’ a p anes m comparison to the unit disc and’its exterior. 

2.1 HARDY SPACES 

Our setting will be that of Hardy spaces. Thus Hf is the Hilbert space of 
all analytic functions in the open right half plane with 

The space HZ is similarly defined in the open left half plane. It is a theorem 
of Fatou that guarrantees the existence of boundary values of Hi-functions 
on the imaginary axis. Thus the spaces Hi can be considered as closed 
subspaces of ,C2(iR), the space of Lebesgue square integrable functions on 
the imaginary axis. It follows from the Fourier-Plancherel and Paley-Wiener 
theorems that 

L2(iR) = Ht @j H!, 

with Hz and HZ the Fourier-Plancherel transforms of L2(0, m) and ,C2(-co, 0) 
respectively, Also HF and HF will denote the spaces of bounded analytic 
functions o’n the open right and left half planes respectively. These spaces 
can be considered as subspaces of ,Cm(iR), the space of Lebesgue measur- 
able and essentially bounded functions on the imaginary axis. An extensive 
discussion of these spaces can be found in Hoffman [ 19621, Duren [1970] and 
Garnett [1981]. 
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We will define f*(s) = f( -s)*. 

2.2 INVARIANT SUBSPACES 

Before the introduction of Hankel operators we digress a bit on invariant 
* subspaces of H+ . Since we are using the half planes for our definition of the 

H* spaces, we do not have the shift operators coveniently at our disposal. 
This forces us to a slight departure from the usual convention. 

The algebra Hy can be made an algebra of operators on Ht by letting, 
for $1 E frX, induce a map Tti : HT + Ht which is defined by 

Tti.f = ti.f, fcH;. m 

The next proposition characterises the adjoints of this class of operators. 

Proposition 2.1 Let I/J E Hm and T,J be defined by (1). The adjoint ojT$ 

is given by 

T;f = f’++*.f, Jo Hi. (21 

Both Tti and T; are special cases of Toeplitz operators. 

Definition 2.1 l .4 subspace M c ofHt is callaed an invariant sub- 
space if, for each + E Hy we have 

T+M c M. 

l A subspace M c ofHt is callaed a backward invariant subspace 
if, for each 4 E HF we have 

T;M c M. 

Clearly backward invariant subspaces are just orthogonal complements of 
invariant subspaces. 

Invariant subspaces have been characterized by Beurling [1949]. For this 
we need the notion of an inner function. 
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Definition 2.2 ,4 fwd~o~ vz E IIF 13 caZled inner if i[mi[w 5 1 and its 
boundary values on the imaginary axis are unitary a.e. 

: 

Thus on the imaginary axis we have m*m = 1. The next result, Beurling’s 
theorem, is central. We quote it to put some results in the right perspective. 
We do not actually use it as in our setup we can directly calculate the relevant 
invariant subspaces and identify the corresponding inner functions. Thus we 
will not give a prooof of this theorem. 

Theorem 2.1 (Beurling) A nontrivial subspuce M c Ht is an invariant 
.subspace if and only if 

M=mHt 

for some inner function m. 

2.3 MODEL OPERATORS AND INTERTWINING 
MAPS 

Given an inner function m c Hr we consider the left invariant subspace 
H(m) = {mHt}’ = Ht EI mHt. The algebra HT, or equivalently the alge- 
bra of analytic Toeplitz operators, induce.an algebra of bounded operators 
in {mH:}‘-. Thus for @ E Hy the maps Te : H(m) -+ H(m) are defined 

tv 
Taf = h(m)@.f7 ./-or .f E Hb-4. (31 

Clearly, if 0 E Hr, we have ljTa[l 5 jlQ\L. 

We note that, for t 5 0, the functions ezpT(s) = e-” are all in Hr. 
The operators TCzP7 form a strongly continuous semigroup of operators on 
{mH:}‘. The following is a continuous time version of the Sarason [1968] 
commutant lifting theorem. 

Theorem 2.2 A bounded operator -Y on {mHt}* satisfies 

5 

XTtezpr = GpJ l 

for all r 2 0 if and only if there exists a Cl E Hr such thut 

X = T@. 
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The next theorem sums up duality properties of operators commuting 
with shifts. 

Then 

TQf := Pfqm)@f, for f c H(m). 

1. Its adjoint TG is given by 

2. The operator r,,, : H(m) + H(m) defined by 

is unitary. 

3. The operators Te. and T& are unitarily equivalent. More specifically 
we have 

TUT,,, = T~TG 

ProoF d 

1. Let j,g E f?(m). Then 

= (P-m8@f, m*g) = (m*@f, Pmm*g) 

= (m*W,m*g) = (qf,g) = (f,@*g) 

Here we used the fact that g E H(m) if and only if m*g E IY!. 

2. clearly the map TV, as a map in L2, is unitary. From the orthogonal 
direct sum decomposition 

L2 = H? @ H(m) @ rnHt 
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3. 

it follows, by conjugation, that 

L2 ,= m*H! @ {Hz @ m*Hf} @Hz. 

Hence m{H! @ m*H!} = H(m). 

We compute 

The following spectral mapping theorem has been proved in Fuhrmann 
[1968a]. A vectorial generalization is given in Fuhrmann [1968b]. This will be 
instrumental in the analysis of Hankel operators restricted to their cokernels. 

Theorem 2.4 (F’uhrmann) Let @,m c Hr with m un inner function. 
The following statements are equivalent. 

1. The operator T@ defined in (3) is invertible. 

2. There exists a 6 > 0 such that 

i@(s)1 + jm(s)[ 2 6, for all s with Re s > 0. (41 

3. There exist t, 7 c HT that solve the Bezout equation 

In this case we have 
T$ = T[. 

? 
Proofi We will not give a proof which can be found in Fuhrmann [1968,1981]. 

We remark only that by the Carleson corona theorem, Carleson [1962], the 
strong coprimeness condition of (4) is equivalent to the solvability of the 
Bezout equation (5) over Hm. w 
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! 2.4 HANKEL OPERATORS 

. 
We proceed to define Hankel operators and we do this directly in the 

frequency domain. Readers interested in the time domain definition and the 
details of the transformation into frequency domain are refered to Fuhrmann 
[1981], Glover [1984]. 

Definition 2.3 Given u function 4 E Lm(iR) the Hankel operator LL+ : 
Hz -+ HI is defined by 

The adjoint operator (H&j* : HT -+ Hi is given by 

Here $*(.z) = 4(-z). 

In the algebraic theory of Hankel operators the kernel and image of a 
Hankel operator are directly related to the coprime factorization of the sym- 
bol over the ring of polynomials. The details can be found for example in 
Fuhrmann [1983]. In the same way the kernel and ima.ge of a large class of 
Hankel operators are related to a coprime facorization over Hm. This theme, 
originating in the work of Douglas, Shapiro and Shields [1971] and that of D. 
IV. Clark, see Helton [1974] and Fuhrmann [1975] is developed extensively in 
Fuhrmann [1981]. Of course if the symbol of the Hankel operator is rational 
and in H? these two coprime factorizations are easily related. 

Thus assume b = $ E Hr and n A d = 1. So our assumption is that d 

is antistable. In spite of the slight ambiguity we will write n = degd. It will 
always be clear from the context what n means. This leads to 

. 

Thus 
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with 

is a coprime factorisation in HF. 

The next theorem discusses the functional equation of Hankel operators. 
It can be shown, quite easily using the commutant lifting theorem of Sz.- 
Nagy and Foias [1970], that the Hankel operators are the only solutions of 
this functional equation. For more information one can consult Nikolskii 
[ 19851. 

Theorem 2.5 1. For every t+b E HF the Hankel operator H$ satisfies the 
functional equation 

2. KerHb is an invariant subspace, i.e. for f E KerHd and V+!J E Hy we 
have $f E KerHd . 

It follows from a theorem of Beurling [19491 that KerH+ = rnHf for 
some inner function m E HF. Since we are dealing with the rational case 
the next theorem can make this more specific and characterizes the kernel 
and image of a Hankel operator and also clarifies the connection between 
them and polynomial and rational models. A closely related derivation can 
be found in Young [1983] and Lindquist and Picci [1985]. 

Theorem 2.6 Let 4 = : E Hr and n II d = 1 Then 

2. {ICerHO}’ = {-$Ht}l = .Yd* 

3. IrnH@ = Hz 0 SHz = Xd 
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. 

{ KerfYd}’ Prook 
d 

contains only rational functions. Let f = !! E {-Hi}L, 
(7 d* 

.  

P P  then - E Hz. 
& 

SO q 1 tip. But, as p A q = 1 it follows that q 1 &, i.e. 

ti=qr. Hencef=$EXd’. 

Conversely, let 5 E Xd* Pd @P 
then, -$ = 2F or 2Z E HZ. So we have 

H 

The previous theorem, though of an elementary nature, is central to all 
further development as it provides the direct link between the infinite dimen- 
sional object, namely the Hankel operator, and the well developed theory of 
polynomial and rational models, This link will be continuously exploited. 

There is a very close connection between a wide class of Hankel operators 
and intertwining maps. This is summarized in the following. 

Theorem 2.7 A map H : Hz 4 HZ is a Hankel operator with a nontrivial 
kernel rnHtJ with m inner, if and only if we have 

where -Y : H(m) --+ H(m) is an intertwining map, i.e. of the form 

for some C3 E HT. 

Proofi Assume X = Ta with 0 E Hy . We define H : Hi - HZ by 

Hj = rn*XPHtml. 

Then, since m is inner and PH(~J an orthogonal projection, the operator H 
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is bounded. Moreover 

XL P- eXpTm*mP-m*@PH(,,,) f 
= P-eXpTm*xxPH(m) f 
= P-expTHj 

Thus H satisfies the functional equation of a Hankel operator. 

Conversely, assume H = Hb is a Hankel operator with a nontrivial kernel 
given by mH+, ’ for some inner function m E H@‘. Then we define a map 
T : H(m) 4 H(m) by 

Then we co,mpute , 

l%qrn)exPTf = mHhqm)-P~f 
= mHexpTj 
= mP-exp7Hj 
X mP-m*mexp7Hj 

= l%qm)eXPTmHf 
= bqm)exP~Tf 

So T is an intertwining map. m 

, 

The previous theorem opens the way to prove Nehari’s theorem from 
Sarason’s lifting theorem as well as prove Sarason’s theorem from Nehari’s. 
This equivalence is known for a long time and can be found in Page [1970], 
Nikolskii [1985] and AAK [1968] t 0 cite a few references. 

Hankel operators in general and those with rational symbol in particular 
are never invertible. Still we may want to invert the Hankel operator as a 
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map from its cokernel, i.e. the orthogonal complement of its kernel, to its 
image. We saw that such a restriction of a Hankel operator is of considerable 
interest because of its connection to int,ertwining maps of model operators. 
Now theorem 2.4 gave a full characterization of invertibility properties of 
intertwining maps. These can be applied now to the inversion of the re- 
stricted Hankel operators. This will turn out to be of great importance in 
the development of duality theory. 

3 SCHMIDT PAIRS OF RATIONAL HAN- - 
KEL OPERATORS 

It is quite well known, see Gohberg and Krein [ 19691, that singular val- 
ues of operators are closely related to the problem of best approximation by 
operators of finite rank. That this basic method could be applied to the ap- 
proximation of Hankel operators by Hankel operators of lower ranks through 
the detailed analysis of singular values and the corresponding Schmidt pairs 
is a fundamental contribution of Adamjan, Arov and Krein. 

We recall that, given a bounded operator A on a Hilbert space, p is a 
singular value of A if there exists a nonzero vector f such that 

A*Af = p’j-. 

Rather than solve the previous equation we let g = ;Af and go over to the 
equivalent system 

i 

kf = P9 
A*g = pf ’ 

i.e. p is a singular value of both A and ,4*. 

The analysis of Schmidt pairs of Hankel operators goes back to Adamjan, 
Arov and Krein [1971]. H ere, for the rational case we present an algebraic 
derivation of some of their results. 
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We proceed to compute the singular vectors of the Hankel operator Hd. 
In view of the preceeding remarks we have to solve 

bf = /w 

or 

This means there exist polynomials 7r and [ such that 

nP lj Ii- -- 
d& =P-j+F 

n* fi t -- = 
d* d I++-$ 

These equations can be rewritten as polynomial equations 

Equation (9), considered as an equation modulo the polynomial d, is not 
an eigenvalue equation as there are too many unknowns. More specifically, 
we have to find the coefficients of both p and j. To overcome this difficulty 
we study in more detail the structure of Schmidt pairs of Hankel operators. 

, .  A 

Lemma 3.1 Let {$, $} and { f-, :} be two Schmidt pairs of the Hankel 

operator HzQ corresponding to the same singular value p. Then 

i.e. this ratio is independent of the Schmidt pair. 



3 SCHMHX PAIRS OE’ RATIONAL HANKIX OPI3RATORS 17 

. 
Proofi The polynomials p, fi correspond to one Schmidt pair and iet the 
polynomials q, i correspond to another Schmidt pair, i.e. 

n*G = pdq + d+q. 

Now, from equations (9) and (12) we get 

Since d and d* are coprime it follows that d* 1 pG-q$. On the other hand, 
from equations (9) and (1 l), we get 

and hence that d 1 jq - Gp. N ow both d and d* divide iq - Gp, and, as 
deg& - 4~) < deg d + deg d* it follows that 

fiq - ljp = 0. 

Equivalently 
P (7 ;I=; 
P q 

P i.e. : is independent of the particular Schmidt pair associated to the singular 
P 

value p. a 

Lemma 3.2 Let {-f-, $} b e a Schmidt pair associated with the singular value 

p. Then ! is unimodular or ail pass. 
P 

Proof: Going back to equation (10) and the dual of (9) we have 
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It follows that 
0 = pd(pp* - $(fi)*) + qc$* - T*j) 

and hence & 1 (pp* - c(6)*). By symmetry also d 1 (pp* - 6(F)*), and so 
necessarily 

pp* - j(j)* = 0. 

This can be rewritten as 

P i.e. y is all pass. 
P 

We will say that a pair of polynomials (p, j), with degp, deg j < deg d, 
is a solution puir if there exist polynomials r and [ such that equations (9) 
and (10) are satisfied. 

The next lemma characterizes all solution pairs. 

Lemma 3.3 Let p be a singular value of the Hankel operator Hs. Then 
there exists a unique, up to a constant factor, solution pair (p, j), of minimal 
degree. The set of all solutions pyirs is given by 

Proof: Clearly3 if p is a singular value of the Hankel operator, then a nonzero 
solution pair (p, $), of minimal degree exists. Let (q, 4) be any other solution, 
pair with deg q, deg 4 < deg d. By the division rule for polynomials q = up+r 
with deg r < deg p. Similarly, 4 = ~56 + ? with deg + < deg 6. From Equation 
(9) we get 

n(up) = ~+qj) + d(ur) WI 

whereas Equation (11) yields 

n(up + r) = /A?(@ + +) + d(T) 

By subtraction we obtain 
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Similarly from Equation (10) we get 

whereas Equation (10) yields 4 

Subtracting the two gives 

n*((ii - u)$ + f) = pdr + d*(rj - ut). 

r (ii-a)j++) 
Equations (15) and (18) imply that { &, d } is a p Schmidt pair. 

Since necessarily deg r = deg(& - u)$ + +) we get & = u. Finally, since we 
assumed (p, ~3) to be of minimal degree we must have T = + = 0. 

Conversely, if u is any polynomial with deg u < deg d - degp then from 
Equations (9) and (10) it f 11 o ows by multiplication that (pu,fiu) is also a 
solution pair. m 

Lemma 3.4 Let p, q be coprime polynomiuls with reul coeficients such thut 
P 

i 
zs ull puss. Then q = zkp*. 

Proof Since !! is all pass, it follows that A 
q 

or pp* = qq*. As the polynomials p and q are coprime it follows that p 1 q* 
and hence q* = *p. m 

l 

In the general case we have the following. 
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Lemma 3.5 Let p, q be polynomials with real coeficients such that p/I q = 1 

and !! is all pass. Then, with r = p A 5, we haue 
cl 

p = rs 

Proofi Write p = rs, fi = r.4. Then s A i = 1 and i is all pass. The result 

follows by applying the previous lemma. a 

The next theorem is of central importance due to the fact that it reduces 
the analysis to one polynomial. Thus we get an equation which is easily 
reduced to an eigenvalue problem. 

Theorem 3.1 Let d be a singular value of H4 and let (p, j) be a nonzero, 
minimal degree solution pair of Equations (9) and (1U). Then p is a solution 

of 
np = Ad*p* + dr, W) - 

with A keal and /A\ = 1~. 

Proofi Let (p, 6) be a nonzero, minimal degree solution pair of Equations (9) 
and (10). By taking their adjoints we can easily see that (j?,p*) is also a 
nonzero, minimal degree solution pair. By uniqueness of such a solution, i.e. 
by Lemma 3.3, we have 

A* 
P = lzp. W 

6 Since - is all pass and both polynomials are real we have c = &l. Let us 

put A z C,U, then (20) can be rewritten as 

and so (19) follows from (9). a 

We will refer to equation (19) as the fundamental polynomial equa- 
tion. It will be the source of all future derivations. 
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. 
Corollary 3.1 Let p; be a singular ualue of Hd and let p; be the minimal 
degree solution of the fundamental polynomial equation, i.e. 

Then 
1. 

deg pi = deg pr = deg ri. 

2. Putting J&(Z) = ~~~~ pi,J ,ZJ and ri(z) = ET:; ri,Jz’ we have the equality 

Ti,n-l = AiJ%,n-l. cm 

Corollary 3.2 Let p be a minimal degree solution of equation (19). Then 

1. The set of all singular vectors of the Hankel operator Hs, corresponding 
to the singular value p, is given by 

Ker(HiH; - ~~1) = {z 1 a c R[z], dega < degd - degp} 

2. The multiplicity of p = \\Hb/\ as a singular value of Hd is equal to 
m = deg d - deg p where p is the minimum degree solution of (19). 

3. There exists a constant c such that c + : is a constant multiple of an 

antistable all-pass junction ij and only ij pl = . . . = Pi. 

Proofz We will prove (3) only. Assume ail singular values are equal to p. 
Thus the multiplicity of p is degd. Hence the minimal degree solution p of 

(19) is a constant and so is x. Putting c = -E then (19) can be rewritten as 

pp* 
Z+c=A- 

dP ’ 

and this is a multiple of an antistable all-pass function. 

Conversely assume, without loss of generality, that : + c is antistable 

all-pass. Then the induced Hankel operator is isometric and all its singular 
values are equal to 1. H 
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Part 3 of the corollary is due to Glover [1984]. 

The following simple proposition is important in the study of zeroes of 
singular vectors. 

Proposition 3.1 Let pk be asingular value of H4 and let pk be the minimal 
degree solution of 

npk = /!/&; + drk (23) 

Then 

l The polynomiak pk and p: are coprime. 

l The polynomial pk has no imaginary axis zeroes. 

Proofi 

l Let e = pk ApE. Without loss of generality we may assume that e = e*. 
The polynomial e has no imaginary axis zeroes, for that would imply 
that e and rk have a nontrivial common divisor. Thus the fundamental 
polynomial equation could be divided by a suitable polynomial factor. 
This in contradiction to the assumption that pk is a minimal degree 
solution. 

l This clearly follows from the first part. 

The fundamental polynomial equation is easily reduced to either a gen- 
eralized eigenvalue equation or to a regular eigenvalue equation. There are 
several reductions of this kind in the literature, e.g. Kung [ 19801, Harshavard- 
hana, Jonckheere and Silverman [1984], to cite a few. Another simple ap- 
proach to this, using polynomial models is presented in Fuhrmann [1991]. 
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? 

3.1 Zeroes of singular vectors 

We begin now the study of the zero location of the numerator polynomials 
of singular vectors. This is of course the same as the study of the zeroes of 
minimal degree solutions of equation (19). Th e o f 11 owing proposition provides 
a lower bound on the number of zeroes the minimal degree solutions of (19) 
can have in the open left half plane. However the lower bound is sharp in one 
special case. This is enough to lead us eventually to a full characterization, 
given originally by Adamjan, Arov and Krein [1968], and this will be given 
in Theorem 5.1. 

Proposition 3.2 Let C$ = : l Hr. Let pk be a singular value of H+ 

satisfying pl 2 ‘. ’ 2 p&l > pk = “. = pk+“-.l > pk+” 2 . . . 2 pn i.e. pk 
is a singular value of multiplicity V. Let pk be the minimum degree solution 
of (19) corresponding to pk. Then the number of antistable zeroes ojpk are 
>/C-l. 

lf Pn is the smallest singular value of H+ and is of multiplicity u, i.e. 

Pl 2 *** 2 h-u > Pn-l/+1 = ‘** = pn, and p,+“+l is the corresponding 
minimum degree solution of (19), th en all the zeroes ojpn++l are antistable. 

Proofi From Equation 19, i.e. 

we get, dividing by dpk, 
n rk d*P; ---= 
d 

&----- 
Pk h’k 

which implies of course that 

This means, by the definition of singular values, that rankH% 2 k - 1. But 

this implies, by Kronecker’s theorem, that the number of ant%ables poles of 
E which is the same as the number of antistable zeroes of pk is 2 k - 1. 

If p,-, is the smallest singular value and has multiplicity V, and P,+“+~ is 
the minimal degree solution of Equation (19), then it has degree n - V. But 
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by the previous part it must have at least n - v antistable zeroes. So this 
implies that all the zeroes of pnsv+l are antistable. 

u 

The previous result is’ extremely important from our point of view. It 
shifts the focus from the largest singular value, the starting point in all 
derivations sofar, to the smallest singular value. Certainly the derivation is 
elementary, inasmuch as we use only the definition of singular values and 
Kronecker’s t,heorem. The great advantage is that at this stage we can solve 
an important Bezout equation which is the key to duality theory. 

We have now at hand all that is needed to obtain the optimal Hankel 
norm approximant corresponding to the smallest singular value. We shall 
delay this analysis to a later stage and develop duality theory first. 

From Equation (19) ‘we obtain, dividing by A,,cPpE, the Bezout equation 

Since the polynomials pm and d are antistable all four functions appearing in 
the Bezout equation are in E Hp. We shall discuss next the implications of 
this Bezout equation. 

4 DUALITY 

In this section we develop a duality theory in the context of Hankel norm 
approximation problems. There are three operations applied to a given, anti- 
stable, transfer function. Yamely, inversion of the restricted Hankel operator, 
taking the adjoint map and finally one sided multiplication by unitary op- 
erators. The last two operations do not change the singular values, whereas 
the first operation invertsthem. 
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We will say that two Hilbert space operators 7’ : Hi d Hz and T’ : 
Hs d Hd are equivufent if there exist unitary operators U : HI + Hs and 
V : Hz + H4 such that 

VT = T’U. 

Lemma 4.1 Let T : HI + Hz and T’ : Hs + Hd be equivalent. Then T 
and T’ have the same singular values. 

Proof- Let T*Tx = p2x. Since VT = T’U it follows that d 

lJ-T”T’Ux = T*V=VTx = T-TX = p2x, 

Or 

T’*T’(Ux) = p2(Uz). 

The following proposition is bordering on the trivial and no proof need 
be given. However, when applied to Hankel operators it has far reaching 
implications. In fact it provides a key to duality theory and leads eventually 
to the proof of the AAK results. 

Proposition 4.1 Let T be an invertible linear transformation. Then, if x 
is a singu6ar vector of the operator T corresponding fo the singular value p, 
i.e. T*Tx = p2x then 

T-l(T-l)*x x p-2x 

i.e. x is also a singular vector for (T-l)* corresponding to the singular value 
-1 P . 

In view of this proposition, it is of interest to compute [(H+jH(m))-‘I*. 
Before proceeding with this we compute the inverse of a related operator. 
This is a special case of Theorem 2.4 for the rational case. Note that, since 

KG111 = pi?, th ere exists, by Sarason’s theorem, a [ E Hy such that TG’ = 

Tt ad Mm = K’. The next theorem provides this [. For an algebraic 
analogue of the next two theorems we refer to Helmke and Fuhrmann [1989]. 
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Theorem 4.1 Let $ = 5 E HE’. Then 13 = g E HF. The operator TO 

defined by equation (3) is invertible and its inverse given by T+Q where Afl 
Ia pn 

is the last signed singular value of Hd and p,, is the minimal degree solution 

?f 
vn = &Zp; + dr,,. 

Proof From the previous equation we obtain the Bezout equation 

By Theorem 3.2 the polynomial pn is antistable so !!!I E Hy. This, by 
PFI 

Theorem 2.4 implies the result. 1 

It is well known that stabilising controllers are related to solutions of 
Bezout equations over HW. Thus we expect Equation (25) to lead to a 
stabilizing controller. The next corollary is a result of this type. 

Corollary 4.1 Let 4 = : E HZ. The controller k = !!? stabilises $. If the 
rn 

multiplicity of p,, is m there exists a stabilising controller of degree n - m. 

Proofi Since pn is antistable, we get from (19) that npn - drn = &,,d*pz is 
stable. We compute 

This corollary is related to questions of robust control. For more on this 
see Glover [1986]. 

Theorem 4.2 Let 4 = : E HF. Let H : Xd* 4 Xd be defined by H = 

Hb\Xd’. Then 
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1. Hi1 : Xd d Xd* is given by 

’ 

2. (ff;‘)* : Xd’ -+ Xd is given by 

(H;‘)*f = 

Proof: 

1. I2et uz = g and let T be the map given by T = mH;. Thus we have 

the following commutative diagram 

Now 

= pH(fA& Tf = P***$f 

i.e. T = To where 0 = 5. Now, from To = rnH$ we have, by Theorem 
4.1, 

T;‘=T l pn. 
-- 
A VI P; 

So, for h E Xd, 

&‘h z L Pn ti 
d A pW$)F$h 

n n 
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2. Equation (29) can be written also as 3 

Hi’h = T 1 pn mh. 
-- 
A 7L P; 

. 

Therefore, using Theorem 2.3, we have, for j c Xd*, 

(Hi*)*f = m*(T 1 PA*= -- 
&l P; 

Corollary 4.2 There exist polynomials ai, of degree 5 n - 2, such that 

Aipzpi - AnpnpT = Sinai, i = 1,. . . , n - 1. 

This holds also formally for i = n with CY~ = 0. 

it follows that 

So, using equation (28), we have 

i.e. 
Al PT -- = 
A; & 

p+ PE Pi 
pn b * 

This implies, by partial fraction decomposition, the existence of polynomials 
OIiy i = 1,. . e 2 n such that deg ai < deg p,, = n - 1, and 
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i.e. 

We saw, in Theorem 4.2, that for the Hankel operator ~~ the map (Hi’)* 
is not a Hankel map. However there is an equivalent Hankel map. We sum 
this up in the following. 

Theorem 4.3 Let 4 = z c HF. Let H : Xd* + Xd 6e defined 6y H = 

H*/Xd*. Then 

1. The operutor ( Hi1 )* is equivalent to the Hankel operator H 1 @Pm . 
-- 
At &; 

2. The Hunkel operator H 1 depn has singular values pT1 < . . . < pi’. 
-- 
L dp; 

3. The Schmidt pairs of H 1 depn are { $,9}. 
-- 
k dp; 

Proof. We saw that d 

(Hi’)* = ;T*l pi. 
-- 
A rl P; 

Since multiplication by s is a unitary map of Xd’ onto Xd, the operator 

( Hi1 )* has, by Lemma 4.1, the same singular values as T* 1 pn* 
These are 

-- 
A * 

the same as those of the adjoint operator T 1 pn . However t?rrlast operator 
-- 
hl Pi 

is equivalent to the Hankel operator H 
k*. 

Indeed, 
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This Hankel operator has singular values pT1 < - . - < pi’. and its Schmidt 

pairs are { 5, $}. Indeed 

Now, from equation (30) we get 

or taking the dual of that equation 

so 

Hence 
p- PnPT An Pi -=---* 

dP; Ai d 
Therefore 

5 HANKEL NORM APPROXIMATION 

The duality results obtained before allow us now to complete our study of 
the zero structure of minimal degree solutions of the fundamental polynomial 
equation ( 19). This in turn leads to an elementary proof of the central 
theorem in the AAK theory. 
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. Theorem 5.1 (Adamjan, Arov and Krein) Let 4 = z E HY. Let t.& 

be a singular value of Hb satisfying pl 2 . . . 2 pk-1 > t& = . . . = t&+“-l > 

pk+v 2 ” ’ 2 t.&, i.e. pk is a singular value of multiplicity V. Let pk be the 
minimum degree solution of (19) corresponding to pk. Then the number of 
antistable zeroes of pk is exactly k - 1. 

If ~1 is the largest singular value of Hd and is of multiplicity u, i.e. 
p, x . . . = Pv > PHI 2 * ’ * 2 /.&I, and pI is the corresponding minimum 
degree solution of (19), th en all the zeroes of pl are stable, ihis is equivalent 
to saying that pl is outer. 

. 

. 

Proofz We saw, in the proof of Proposition 3.2, that the number of antistable 
zeroes of pk is 2 k - 1. Now, by Theorem 4.3, pz is the minimum degree 
solution of the fundamental equation corresponding to the transfer function 

1 @Pn -- 
L dp; 

and the singular value p&-r = . . . = pF1. Clearly we have pi1 2 

. . . 2 p& > j~&-i = . . . = pL1 > p;Jr 2 . . . 2 PC’. In particular, 
applying Proposition 3.2, the number of antisatble zeroes of pz is 2 n - k - 
v + 1. Since the degree of pt is n - u it follows that the number of stable 
zeroes of pl is 5 k - 1. However this is the same as saying the number of 
antistable zeroes of pk is 5 k - 1. Combining thz two inequalities, it follows 
that the number of antistable zeroes of pk is exactly k - 1. 

The first part implies that the minimum degree solution of (19) has only 
stable zeroes, i.e. it is an outer function. 

u 

We now come to apply some results of the previous section to the case 
of Hankel norm approximation. We use here the characterization of singu- 
lar values as approximation numbers, see Gohberg and Krein [1969] for an 
extensive treatment of this topic. 

Theorem 5.2 (Adamjan, Arov and Krein) Let c!~ = : l H? be a scalar, 

strictly proper, transfer function, with n and d coprime polynomials and d is 



5 HANKEL NORM APPROXIMATION 32 

manic of degree n. Assume that pl 2 . a. 2 pk-1 > pk = . . . = &++l > 

pk+u 2 * ’ * 2 p,, > 0 are the singular values of H4. Then 
: 

b = inf { 11 Hb - A/[ IrankA 5 k - 1} . 

i%foreover, the infimum is uttuined on a unique function $k = C$ - - = 
h 

4 - pz, where (jk,gk) is an arbitrary Schmidt pair of H# that corresponds 
f 

h-I pk. 

Proof: Given + E HLrdll, we clearly have 

pk = inf { 11 H4 - AlI IrunkA 5 k - 1} 

so the proof will be complete if we can exhibit a function $k E H&l for 
which the equality pk = 114 - $J[[~ holds. To this end let pk be the minimal 

degree solution’of (19), and define $k = 2. From the equation 
Pk 

we get, dividing by dpk, that 

This is of course equivalent to E 



, 
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corollary 5.1 The polynomials ?rk and pk have no common antistable ze- 
roes. 

Proofz Follows from the fact that rankH% 2 k - 1. 
Pk 

References 

[1968a] V. M. Adamjan, D. Z. Arov and M. G. Krein, “Infinite Hankel ma- 
trices and generalized problems of Caratheodory-Fejer and F. Riesz”, 
Funct. Anal. Appl. 2, l-18. 

[1968b] V. M. Adamjan, D. Z. Arov and M. G. Krein, “Infinite Hankel ma- 
trices and generalized problems of Caratheodory-Fejer and I. Schur”, 
Funct. Anal. Appl. 2, 269-281. 

[1971] V. M. Adamjan, D. Z. Arov and M. G. Krein, “Analytic properties of 
Schmidt pairs for a Hankel operator and the generalized Schur-Takagi 
problem”, Math. USSR Sbornik 15 (1971), 31-73. 

[1978] V. M. Adamjan, D. Z. Arov and M. G. Krein, “Infinite Hankel block 
matrices and related extension problems”, Amer. Math. Sot. Transl., 
series 2, Vol. 111, 133-156. 



REFERENCES 34 

[1949] A. Beurling, “On two problems concerning linear transformations in 
Hilbert space”, Actu kfath., 81, pp. 239-255. 

[1962] L. Carleson, “Interpolation by bounded analytic functions and the 
corona problem”, Ann. of Math. 76, 547-559. 

[1970] R.G. D ou gl as, H.S. Shapiro and A. Shields, 

[1970] P. Duren, Theory of HP Spuces, Academic Press, Xew York. 

[1968a] P. A. Fuhrmann, “On the corona problem and its application to spec- 
tral problems in Hiibert space”, Truns. Amer. M&h. Sot. 132(1968), 
55-67. 

[1968b] P. A. Fuhrmann, “A functional calculus in Hilbert space based on 
operator valued analytic functions”, Isruel J. Muth. 6, 267-278. 

[1975] P. A. Fuhrmann, J. London M&h. Sot. 

[1981] P. A. F h u rmann, Linear Systems and Operators in Hilbert Space, 
McGraw-Hill, New York. 

[1991] P. A. Fuhrmann, “A polynomial approach to Hankel norm and bal- 
anced approximations”, Linear Algebra and Appl., 146, 133-220. 

[1981] Garnett, Bounded Anuiytic Functions, Academic Press. z 

[1984] K. Glover, “All optimal Hankel-norm approximations and their LW- 
error bounds”, Ink J. Contr. 39, 1115-1193. 

. 



REFERENCES 35 

[1986] K. Glover, “R,obust stabilisation of linear mukivariable systems, rela- 
tions to approximationn, Int. J. Contr. 43, 741-766. 

]1969] I. Gohb er and M. G, Krein Introduction to the Theory of Nonselfad- g 
joint Operutors, Amer. Math. Sot., Providence. 

[1988] K. D. Gregson and N. Young, “Finite representations of block Hankel 
operators and balanced realizations”, Operutor Theory: Advunces and 
Appkztions 35, Birkhauser Verlag, 441-480. 

[1984] P. H ars h avardhana, E. A. Jonckheere and L. M. Silverman, “Eigen- 
value and generalized eigenvalue formulations for Hankel norm reduc- 
tion directly from polynomial data”, 23rd 1,!T,?Z,rZ Conf. on Decision und 
Control, Las Vegas, Nevada, December 1984, 111-l 19. 

[1989] U. Helmke and P. A. Fuhrmann, “Bezoutians”, Lin. Alg. AppZ., v. 
122-124, 1039-1097. 

[1974] J. W. Helton, “Discrete time systems, operator models and scattering 
theory”, J. Funct. Anal., 16, 15-38. 

[1962] K. H ff o man, Eunuch Spuces of Anulytic Functions, Prentice Hall. 

[1980] S. Kung, “Opt imal Hankel-norm reductions: scalar systems”, 1980 
Proc. Joint Automut. Contr. Conf., San Francisco. 

[1985] A. Lindquist and G. Picci, “Realization theory for multivariate sta- 
tionary Gaussian processes”, SIAM J. Contr. kY Optim., Vol. 23, 809- 
857. 

[1985] N. K. Nikolskii, Treatise on the Shift Operator, Springer Verlag, 
Berlin. 



REE’ERENCES 36 

[1987a] R. Ober, “Balanced realizations: canonical form, parametrization, 
model reduction”, I&. J. Conk. 46, 643-670. 

[1987d] R. Ober, “Asymptotically stable allpass transfer functions: canon- 
ical form, parametrization and realization”, Proceedings U’AC World 
Congress, Munich 1987. 

[1989] R. Ober, “Balanced parametrization of classes of linear sy&tems”, to 
appear. 

[1970] L. Page, “Applications of the Sz.-Nagy and Foias lifting theorem”, 
Ind. Univ. kiuth. J., 20, 135-145. 

[198?] J. 

[1967] D, Sarason, “Generalized interpolation in Hm”, Truns. Amer. Math. 
sot. 127, 179-203. 

[1970] B. Sz.-Nagy and C. Foias, Harmonic analysis of Operators on Hilbert 
Space, North Holland, Amsterdam. 

Partington, 

[1983] N. Young, “Th e singular value decomposition of an infinite Hankel 
matrix”, Linear Algebra and Appl., 50,639-656. 

[1985] N. Young, “B 1 a anced realizations via model operators” Int. J. Control, 
42, 369-389. 


