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Abstract

The polynomial approach introduced in Fuhrmann {1991} is ex-
tended to cover the crucial area of AAK theory, namely the character-
ization of zero location of the Schmidt vectors of the Hankel operators.
This is done using the duality theory developed in that paper but with
a twist. First we get the standard, lower bound, estimates on the num-
ber of unstable zeroes of the minimal degree Schmidt vectors of the
Hankel operator. In the case of the Schmidt vector correspomding to
the smallest singular the lower bound is in fact achieved. This leads
to a solution of a Bezout equation. We use this Bezout equation to
introduce another Hankel operator which hase singular values that
are the inverse of the singular values of the original Hankel operator.
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Moreover the singular vectors are closely related to the original sin-
gular vectors. The lower bound estimates on the number of antistable
zeroes of the new singular vectors lead to an upper bound estimate
on the number of antistable zeroes of the original singular vectors.
These two estimates turn out to be tight and give the correct number
of antistable zeroes. From here the standard results on Hankel norm
approximation and Nehari complementation follow easily.
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1 INTRODUCTION

In Fuhrmann [1991] a polynomial approach to AAK theory, see Adamjan,
Arov and Krein [1968a,1968b,1971,1978], was given. While many, one might
dare to say even interesting, results were given in that paper, there was
also a fundamental underlying weakness. At a crucial point the paper used
the original AAK results concerning the number of antistable zeroes of the
minimal degree singular vectors of the given Hamkel operator. Thus that
paper was not self contained. In point of fact, the determination of the zero
location of Hankel singular values seems to be the bottleneck of AAK theory.
No simple method was found to this probiem, and even efforts at making
a reasonably elementary exposition of AAK theory, e.g. Young [1988] and
Partington [197?], have failed in this respect. Even the case of singular vectors
corresponding to the largest singular vector, the only relatively easy case in
AAK theory, which is disposed in a one line proof, is not really elementary
inasmuch as it uses inner/outer factorizations.

The object of this paper is to address itself to this problem and to provide
an elementary solution. It should be clarified at the outset that the context
in which the problem is solved is that of rational functions. In fact the proof
uses rationality in a crucial way. Thus the method, at least as presented
in this paper, is not as general as others. However it has the advantage of
simplicity. It can be truly said that this method brings AAK theory to a
level that can be safely presented to the undergraduate student.

To achieve our goal we redevelop the theory with a little twist. The twist
in our approach is that we focus first on the zeroes of the singular vector
corresponding to the smallest singular vector. This turns out to be rather
trivial to figure out. Once this is achieved a natural Bezout equation presents
itself and leads to a related, one should really say a dual, Hankel operator.
For both Hankel operators we have lower bound estimates on the number
of antistable zeroes of the corresponding singular vectors. However the dual
estimates translate into upper bound estimates of the original singular vec-
tors. Moreover the estimates are tight, i.e. they determine the number of
antistable zeroes of the minimal degree singular values. From this point the
results on Hankel norm approximation follow as in Fuhrmann [1991].



I INTRODUCTION = | 4

A natural question presents itself. How was this approach been overlooked
so long. It seems that the explanation lies in the tremendous authority
of M.G. Krein. Once he put the limelight on the largest singular value,
everything else remained in the dark. :

In writing this paper a basic decision had to be made. Most of the
development presented in the current approach is based on the results in
Fuhrmann [1991]. It could be presented via a long list of pointers to the
relevant parts of that paper. That would mean a short, but also nonreadable,
presentation. The other alternative, the one eventually adopted, was to make
‘this paper self contained. This means that there is substantial duplication
of results, but the order of the development is different.

The paper is structured as follows. In section 2 we collect basic informa-
‘tion on Hankel operators, invariant subspaces and their representation via
Beurling’s theorem. Next we introduce model intértwining operators. We do
this using the frequency domain representation of the right translation semi-
group. We study the basic properties of intertwining maps and in particular
their invertibility properties. The important point here is the connection of
invertibility to the solvability of an H{® Bezout equation. We follow this by
defining Hankel operators. For the case of a rational, antistable function we
give specific, Beurling type, representations for the cokernel and the image of
the corresponding Hankel operator. Of importance is the connection between
Hankel operators and intertwining maps. This connection, coupled with in-
vertibility properties of intertwining maps are the key to duality theory.

In section 3 we do a detailed analysis of Schmidt pairs of a Hankel op-
erator with scalar, rational symbol. Some important lemmas, due to AAK
[1971], are rederived in this setting from an algebraic point of view. These
lemmas lead to a polynomial formulation of the singular value singular vec-
tor equation of the Hankel operator. This equation, we refer to it as the
Fundamental Polynomial Equation, is easily reduced, using the theory of
polynomial models. to a standard eigenvalue problem.

Using nothing more than the polynomial division algorithm, the subspace
of all singular vectors corresponding to a given singular value, is parametrized
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via the minimal degree solution of the FPE. We obtain a connection between -
the minimal degree solution and the multiplicity of the singular value.

The FPE can be transformed, using a simple algebraic manipulation to
a form that leads immediately to lower bound estimates on the the number
of antistable zeroes of pi, the minimal degree solution corresponding to the
k-th Hankel singular value. This lower bound is shown to actually coincide
with the degree of the minimal degree solution for the special case of the
smallest singular value. Thus this polynomial turns out to be antistable.
Another algebraic manipulation of the FPE leads to a Bezout equation over
H$. This provides the key to duality.

Section 4 has duality theory is its main theme. Using the previously
obtained Bezout equation, we invert the intertwining mapcorresponding to
the initial Hankel operator. The inverse intertwining map is related to a new
Hankel operator which has inverse singular values to those of the original one.
Moreover we can compute the Schmidt pairs corresponding to this Hankel
operator in terms of the original Schmidt pairs.

Section 5 applies the previous information. The sme estimates on the
number of antistable zeroes of the minimum degree solutions of the FPE
that were obtained for the original Hankel operator Schmidt vectors are ap-
plied now to the new Hankel operator Schmidt vectors. Thus we obtain a
secondset of inequalities. The two sets of inequalities, taken together, lead
to precise information on the number of antistable zeroes of the minimal de-
gree solutions corresponding to all singular values. Utilizing this information
leads to the solution of the Nehari probiem as well as that of the general
Hankel norm approximation problem.

It is fitting that the new insight into this problem came while preparing
for a seminar at the Department of Mathematics of the University Kaiser-
slautern, where much of the research on the previous paper has been done.
For providing this intellectually stimulating atmosphere 1 would like to thank
D. Pratzel-Wolters. This particular piece of research was done while work-
ing on a large joint project with R. Ober. It is a pleasure to acknowledge
his creative criticism and the endless conversations that no doubt helped in
getting this work done.
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2 PRELIMINARIES

Hankel operators are generally defined in the time domain and via the
Fourier transform their frequency domain representation is obtained. We will
skip this part and introduce Hankel operators directly as frequency domain
objects. Our choice is to develop the theory of continuous time systems. This
- means that the relevant frequency domain spaces are the Hardy spaces of the
left and right half planes. Thus we will study Hankel operators defined on
half plane Hardy spaces rather than on those of the unit disc as was done
by Adamjan, Arov and Krein [1971]. In this we follow the choice of Glover
[1984]). This choice seems to be a very convenient ones as all results on
duality simplify significantly, due to the greater symmetry between the two
~ half planes in comparison to the unit disc and its exterior.

2.1 HARDY SPACES

Our setting will be that of Hardy spaces. Thus HZ is the Hilbert space of
all analytic functions in the open right half plane with

11 =sup— [7 (7Gx + iy)Pdy.
>0 T J—co ‘
The space H? is similarly defined in the open left half plane. It is a theorem
of Fatou that guarrantees the existence of boundary values of H?-functions
on the imaginary axis. Thus the spaces HZ can be considered as closed
subspaces of L?(iR), the space of Lebesgue square integrable functions on
the imaginary axis. It follows from the Fourier-Plancherel and Paley-Wiener
theorems that - ‘
L*((R)= H: & H?,

with H2 and H?2 the Fourier-Plancherel transforms of L2(0, c0) and L?(—o0, 0)
respectively. Also H® and H> will denote the spaces of bounded analytic
functions on the open right and left half planes respectively. These spaces
can be considered as subspaces of L>(:R), the space of Lebesgue measur-
able and essentially bounded functions on the imaginary axis. An extensive
discussion of these spaces can be found in Hoffman {1962], Duren [1970] and
Garnett [1981]. '
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We will define f*(s) = f(—3)".

2.2 INVARIANT SUBSPACES

Before the introduction of Hankel operators we digress a bit on invariant
subspaces of H2. Since we are using the half planes for our definition of the
H? spaces, we do not have the shift operators coveniently at our disposal.
This forces us to a slight departure from the usual convention.

The algebra H%° can be made an algebra of operators on H} by letting,
for v € H>, induce a map Ty : H — H?2 which is defined by

Tof =vf, fe€H]. (1)
The next proposition characterizes the adjoints of this class of operators.

Proposition 2.1 Lety € H*® and Ty be defined by (1). The adjoint of Ty
is given by

T;f =Pyyf, feH] (2)

Both T, and T are special cases of Toeplitz operators.

Definition 2.1 e A subspace M C of H? is callaed an invariant sub-
space if, for each v € HY we have

T,j,M C M.

o A subspace M C of H? is callaed a backward invariant subspace
if. for each y € HY we have

T;M C M.

Clearly backward invariant subspaces are just orthogonal complements of
invariant subspaces.

Invariant subspaces have been characterized by Beurling [1949]. For this
we need the notion of an inner function.
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Definition 2.2 A function m € HY is called inner if ||m||o, < 1 and its
boundary values on the imaginary aris are unitary a.e.

Thus on the imaginary axis we have m*m = 1. The next result, Beurling’s
theorem, is central. We quote it to put some results in the right perspective.
We do not actually use it as in our setup we can directly calculate the relevant
invariant subspaces and identify the corresponding inner functions. Thus we
will not give a prooof of this theorem.

Theorem 2.1 (Beurling) A nontrivial subspace M C H? is an invariant
subspace if and only if
M = mHi

for some inner function m.

2.3 MODEL OPERATORS AND INTERTWINING
MAPS |

Given an inner function m € H$ we consider the left invariant subspace
H(m) = {mH2}+ = H2 ©mH?}. The algebra H{, or equivalently the alge-
bra of analytic Toeplitz operators, induce an algebra of bounded operators
in {mH?2}*. Thus for © € HP the maps T : H(m) — H(m) are defined
by

Tof = Pum)©f, for [ € H(m). (3)
Clearly, if © € HY, we have ||To|| < ||0}]w. |

We note that, for t < 0, the functions exp,(s) = e "° are all in H{.
The operators T..,, form a strongly continuous semigroup of operators on
{mH?2}+. The following is a continuous time version of the Sarason [1968]
commutant lifting theorem.

Theorem 2.2 A bounded operator X on {mH3}* satisfies
XTezp, = Tezp, X

- for all T <0 if and only if there exists a © € HY such that

X =Te.
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The next theorem sums up duality properties of operators commuting
with shifts.

Theorem 2.3 Let ©,m € H® with m an inner function, and let To be
defined by

Tof := Pym)©f, for f€ H(m).
Then

1. Its adjoint T§ is given by
T5f = PO f, for fe€ H(m).
2. The operator 1, : H(m) — H(m) defined by
Tmf :=mf

s unitary.

3. The operators To. and T§ are unitarily equivalent. More specifically
we have
ToTm = Tm 1§

Proof:

1. Let f,g € H(m). Then
(Tof 9) = (Puem©f,g)=(mP.-m*0f,g)
= (P-m*©f,m"g) = (m"0f, P_m"g)
= (m"0f,m*g) = (0f,9) = (f,0%9)

= (P+f,0%g) = (f, P+O%g) = (f,T59)-
Here we used the fact that ¢ € H(m) if and only if m*g € H2.

2. Clearly the map T, as a map in L?, is unitary. From the orthogonal
direct sum decomposition

L? = HE@H(m)EBmHi
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it follows, by conjugation, that
L>=m"H: @ {H:om H*} @ H.
Hence m{H2 6 m*H2} = H(m).
3. We compute
Totmf = Tom " = Pyim)Omf* = mP_m*Omf* = mP_0Of*

Now

Tl = (P20 f) = m(P, 0" f)* = mP_0f.

The following spectral mapping theorem has been proved in Fuhrmann
[1968a]. A vectorial generalization is given in Fuhrmann [1968b]. This will be
instrumental in the analysis of Hankel operators restricted to their cokernels.

Theorem 2.4 (Fuhrmann) Let ©,m € H$® with m an inner function.
The following statements are equivalent.

I. The operator To defined in (3) is invertible.
2. There exists a 6 > 0 such that
[@(s)| + |m(s)| > 6, foralls with Res>0. (4)
3. There exist £, n € HY that solve the Bezout equation
£O +nqm = 1. (5)

In this case we have

T = Te.

Proof: We will not give a proof which can be found in Fuhrmann [1968,1981].
We remark only that by the Carleson corona theorem, Carleson [1962], the

strong coprimeness condition of (4) is equivalent to the solvability of the
Bezout equation (5) over H*. .
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2.4 HANKEL OPERATORS

We proceed to define Hankel operators and we do this directly in the
frequency domain. Readers interested in the time domain definition and the
details of the transformation into frequency domain are refered to Fuhrmann

[1981], Glover [1984].

Definition 2.3 Given a function ¢ € L*°(iR) the Hankel operator Hy :
H? — H? is defined by

Hyf = P.(¢f), for f€ HY. (6)
The adjoint operator (Hy)™ : HX — H? is given by
(Ho)"f = Py(8*f), for f € HZ. (7)

Here ¢*(z) = ¢(—2).

In the algebraic theory of Hankel operators the kernel and image of a
Hankel operator are directly related to the coprime factorization of the sym-
bol over the ring of polynomials. The details can be found for example in
Fuhrmann [1983]. In the same way the kernel and image of a large class of
Hankel operators are related to a coprime facorization over H*°. This theme,
originating in the work of Douglas, Shapiro and Shields {1971] and that of D.
N. Clark, see Helton [1974] and Fuhrmann [1975] is developed extensively in
Fuhrmann [1981]. Of course if the symbol of the Hankel operator is rational
and in H*> these two coprime factorizations are easily related.

n
Thus assume ¢ = — € H*® and n Ad = 1. So our assumption is that d

is antistable. In spite of the slight ambiguity we will write n = degd. It will
always be clear from the context what n means. This leads to

n n d*
Y= I Fd
Thus

¢ =mTy
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- with
n d
nN=-—, m=—

dt

is a coprime factorization in H°.

The next theorem discusses the functional equation of Hankel operators.
It can be shown, quite easily using the commutant lifting theorem of Sz.-
Nagy and Foias [1970], that the Hankel operators are the only solutions of
. this functional equation. For more information one can consult Nikolskii

[1985).

Theorem 2.5 1. For every ) € HY the Hankel operator H, satisfies the
' functional equation ‘

P_yHyf = Hyf, feH:. =~ (8)

2. KerHy 1s an invariant subspace, i.e. for f € KerHy and o € HY we
have v f € KerHy . ‘

It follows from a theorem of Beurling [1949] that KerH, = mH? for
some inner function m € H{. Since we are dealing with the rational case
the next theorem can make this more specific and characterizes the kernel
and image of a Hankel operator and also clarifies the connection between
them and polynomial and rational models. A closely related derivation can

be found in Young [1983] and Lindquist and Picci [1985].

Theorem 2.6 Let ¢ = 3 € H® andn Ad =1 Then

I KerH, = %Hi

A KerH,}t = {%Hi}L =X

&S]

9. ImH, = H? & %Hz _ x¢
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d
Proof: {KerHy}* contains only rational functions. Let f = g € {d—.Hi}L,
d*p
dq
d* = ¢gr. Hence f = %{Z € X%,

then

€ H?. So q | d*p. But, as p A ¢q = 1 it follows that ¢ | d*, i.e.

. d *
Conversely, let L € X% then, P _ g— d € H?. So we have

4P
d* d~ d* d d-

Py
d_e{d,H+}' ]

The previous theorem, though of an elementary nature, is central to all
further development as it provides the direct link between the infinite dimen-
sional object, namely the Hankel operator, and the well developed theory of
polynomial and rational models. This link will be continuously exploited.

There is a very close connection between a wide class of Hankel operators
and intertwining maps. This is summarized in the following.

Theorem 2.7 A map H : H} — H? is a Hankel operator with a nontrivial
kernel mH?2, with m inner, if and only if we have

H = m'XPH(m)
where X : H(m) — H(m) is an intertwining map, i.e. of the form
X =To

for some © € HY.

Proof: Assume X = Ty with © € H{®>. We define H : H2 — H? by
Hf = m"X Prym).

Then, since m is inner and Py ) an orthogonal projection, the operator H
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is bounded. Moreover

Hezp,f = m*XPymyezp,f

‘ m‘PH(m)@PH(m)e.’EpTPH(m)f
m*PH(m)@e.’l:pTPH(m)f
m* Py(m)exp: O Py(m) f

' m'PH(m)e.’L'pTPH(m)@PH(m)f
m*mP_m*ezp; Pr(m)©Py(m)f
P_m*exp,.PH(m)@PH(m)f
P_exp,m*mP_m*OPym)f
P_exp,m* X Py(m) f
P_exp,Hf

il

]

il

I

ll

Thus H satisfies the functional equation of a Hankel operator.

Conversely, assume H = Hy is a Hankel operator with a nontrivial kernel
given by mH?, for some inner function m € H*. Then we define a map

T: H(m)— H(m) by |
Tf=mHf, f € H(m).
Then we compute .

T Pr(myexp.f = mHPymyexp,f
mHezp, f
mP_ezxp, Hf
mP_m*mezp,H f
Pymyexp.mH f
= Pymyezp, T f

So T is an intertwiring map. 5

The previous theorem opens the way to prove Nehari’s theorem from
Sarason’s lifting theorem as well as prove Sarason’s theorem from Nehari’s.
This equivalence is known for a long time and can be found in Page {1970},
Nikolskii [1985] and AAK [1968] to cite a few references.

Hankel operators in general and those with rational symbol in particular
are never invertible. Still we may want to invert the Hankel operator as a
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map from its cokernel, i.e. the orthogonal complement of its kernel, to its
image. We saw that such a restriction of a Hankel operator is of considerable
interest because of its connection to intertwining maps of model operators.
Now theorem 2.4 gave a full characterization of invertibility properties of
intertwining maps. These can be applied now to the inversion of the re-
stricted Hankel operators. This will turn out to be of great importance in
the development of duality theory.

3 SCHMIDT PAIRS OF RATIONAL HAN-
KEL OPERATORS

It is quite well known, see Gohberg and Krein [1969], that singular val-
ues of operators are closely related to the problem of best approximation by
operators of finite rank. That this basic method could be applied to the ap-
proximation of Hankel operators by Hankel operators of lower ranks through
the detailed analysis of singular values and the corresponding Schmidt pairs
is a fundamental contribution of Adamjan, Arov and Krein.

We recall that, given a bounded operator A on a Hilbert space, u is a
singular value of A if there exists a nonzero vector f such that

ATAf = u*f.
Rather than solve the previous equation we let ¢ = —};Af and go over to the
equivalent system
{ Af = g
Atg = puf”’
1.e. u 1s a singular value of both A and A~.
The analysis of Schmidt pairs of Hankel operators goes back to Adamjan,

Arov and Krein [1971]. Here, for the rational case we present an algebraic
derivation of some of their results.
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We proceed to compute the singular vectors of the Hankel operator Hy.
'In view of the preceeding remarks we have to solve

Hyf = pg

Hig = pf
or

These equations can be rewritten as polynomial equations
np = ud*p + dr (9)
n*p = pdp + d*€. (10)

Equation (9), considered as an equation modulo the polynomial d, 1s not
an eigenvalue equation as there are too many unknowns. More specifically,
we have to find the coeflicients of both p and p. To overcome this difficulty
we study in more detail the structure of Schmidt pairs of Hankel operators.

Lemma 3.1 Let {(—%,%} and {%, %} be two Schmidt pairs of the Hankel
operator Hxz. corresponding to the same singular value p. Then

Pp_ 14
; pq
i.e. this ratio is independent of the Schmidt pair.
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Proof: The polynomials p, p correspond to one Schmidt pair and iet the
polynomials ¢, ¢ correspond to another Schmidt pair, i.e.

ng = pd*§ +dp (11)
n*q = pdq + d*n. (12)
Now, from equations (9) and (12) we get
0 = pd(pg — qp) + d"(£4 — np)-

Since d and d* are coprime it follows that d* | pg—g¢p. On the other hand,
from equations (9) and (11), we get

0 = pud"(pq — 4p) + d(vq — pp),
and hence that d | pq — ¢gp. Now both d and d* divide pg — ¢p, and, as
deg(pq — gp) < degd + deg d* it follows that
pg—g¢p =0.

Equivalently
P _ 4

b g
ie. BA is independent of the particular Schmidt pair associated to the singular

value p. ]

Lemma 3.2 Let {%, g} be a Schmidt pair associated with the singular value

it. Then e is unimodular or all pass.

Proof: Going back to equation (10) and the dual of (9) we have
n"p = pdp + d*¢

ntp: — ﬂd(ﬁ)‘ + dt,’r:
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It follows that

0 = ud(pp” — p(p)”) + d"({p™ — 7*Pp)
and hence d* | (pp* — p(p)*). By symmetry also d | (pp™ — p(p)*), and so
necessarily ‘
pp" — p(p)” = 0.

*

This can be rewritten as
‘ ‘ p

(p)*

. p. ;
i.e. = is all pass: , ‘ :

=1,

3

We will say that a pair of polynomials (p,p), with degp,degp < degd,
is a solution pair if there exist polynomials 7 and £ such that equations (9)
-and (10) are satisfied.

The next lemma characterizes all solution pairs.

Lemma 3.3 Let p be a singular value of the Hankel operator Hn. Then
there erists a unique, up to a constant factor, solution pair (p,p), of minimal
degree. The set of all solutions pairs is given by ’

{(¢,9)

 Proof: Clearly, if u is a singular value of the Hankel operator, then a nonzero
solution pair (p, p), of minimal degree exists. Let (g, ) be any other solution,
pair with deg ¢, deg ¢ < degd. By the division rule for polynomials ¢ = ap+r
with degr < deg p. Similarly, § = ap + 7 with deg# < deg p. From Equation
(9) we get

q=pa, §=pa ,dega < degq — degp}.

n(ap) = pd"(ap) + d(ar) (13)

whereas Equation (11) vields
n(ap +r) = pd*(ap + 1) + d(7) (14)
By subtraction we obtain |

nr = pd‘((&—a)f;+f')+d(7’—a7r) | (15)
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Similarly from Equation (10) we get
n*(ap +7) = pd(ap +r) + d*¢. (16)
whereas Equation (10) yields ¢
n*(ap) = pd(ap) + d*(af). (17)
Subtracting the two gives
n*((a — a)p + 7) = pdr + d*(n — af). (18)
Equations (15) and (18) imply that {;T, (@-a)p+7)

Since necessarily degr = deg(a@ — a)p + 7) we get @ = a. Finally, since we
assumed (p, p) to be of minimal degree we must have r = 7 = 0.

} is a g Schmidt pair.

Conversely, if a is any polynomial with dega < degd — degp then from
Equations (9) and (10) it follows by multiplication that (pa,pa) is also a
solution pair. s

Lemma 3.4 Let p, q be coprime polynomials with real coefficients such that
P s all pass. Then ¢ = +p*.
q

Proof: Since ~ is all pass, it follows that

PP _
qaq

or pp* = qq*. As the polynomials p and g are coprime it follows that p | ¢*
and hence ¢ = %p. 5

In the general case we have the following.
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Lemma 3.5 Letp, q be polynomials with real coefficients such that pAq =1
and £ is all pass. Then, with r = p A p, we have
q

p=Trs

*

p = *xrs

Proof: Write p = rs, p = ri. Then s A§ =1 and f is all pass. The result
S

follows by applying the previous lemma. 8

The next theorem is of central importance due to the fact that it reduces
the analysis to one polynomial. Thus we get an equation which is easily
reduced to an eigenvalue problem.

~ Theorem 3.1 Let y be a singular value of Hy and let (p,p) be a nonzero,
minimal degree solution pair of Equations (9) and (10). Then p is a solution
of ‘ \
~ np=Ad'p" +dr, ‘ (19)

with X real and |A| = p.

Proof: Let (p,p) be a nonzero, minimal degree solution pair of Equations (9)
and (10). By taking their adjoints we can easily see that (p*,p*) is also a
nonzero, minimal degree solution pair. By uniqueness of such a solution, i.e.

by Lemma 3.3, we have
p" = €p. | - (20)

A

Since P s all pass and both polynomials are real we have e = £1. Let us

p
put A = eu, then (20) can be rewritten as

*

p=ep
and so (19) follows from (9). : 2

We will refer to equation (19) as the fundamental polynomial eqUa;
tion. It will be the source of all future derivations.
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Corollary 3.1 Let y; be a singular value of Hy and let p; be the minimal
degree solution of the fundamental polynomial equation, i.e.

np; = /\,'d'p: + dr;. (21)

Then

deg p; = degp; = deg ;.
2. Putting p;(z) = Z}‘__Y& pi;z and mi(z) = Z:;‘:_(} ;2 we have the equality

Tin-1 = AiPin—1- ' (22)

Corollary 3.2 Let p be a minimal degree solution of equation (19). Then

1. The set of all singular vectors of the Hankel operator Hx, corresponding
to the singular value y, is given by

Ker(HyHz — pil) = {I—;; | a € R[z], dega < degd — degp}
2. The multiplicity of p = ||Hy|| as a singular value of Hy is equal to
m = degd — deg p where p is the minimum degree solution of (19).

3. There ezists a constant ¢ such that c + = is a constant multiple of an

antistable all-pass function if and only of py = - = pn.

Proof: We will prove (3) only. Assume all singular values are equal to p.
Thus the multiplicity of u is degd. Hence the minimal degree solution p of

(19) is a constant and so is 7. Putting ¢ = ~T then (19) can be rewritten as
p
n dtpt
— =
R

and this is a multiple of an antistable all-pass function.
Conversely assume, without loss of generality, that i + ¢ is antistable

all-pass. Then the induced Hankel operator is isometric and all its singular
values are equal to 1. .
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Part 3 of the corollary is due to Glover [1984].

The following simple proposition is important in the study of zeroes of
- singular vectors.

Proposition 3.1 Let ii be asingular value of Hy and let py be the minimal
degree solution of ‘
- npy = A\d*pi + dmg (23)

Then

e The polynomaials pr and p; are coprime.

o The polynomial py has no imaginary azis zeroes.

Proof:

e Let e = pi Ap;. Without loss of generality we may assume that e = e*.
The polynomial e has no imaginary axis zeroes, for that would imply
that e and 7 have a nontrivial common divisor. Thus the fundamental
polynomial equation could be divided by a suitable polynomial factor.
This in contradiction to the assumption that p; is a minimal degree
solution.. |

e This clearly follows from the first part.

The fundamental polynomial equation is easily reduced to either a gen-
eralized eigenvalue equation or to a regular eigenvalue equation. There are
several reductions of this kind in the literature, e.g. Kung [1980], Harshavard-
hana, Jonckheere and Silverman [1984], to cite a few. Another simple ap-
proach to this, using polynomial models is presented in Fuhrmann [1991].
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3.1 Zeroes of singular vectors

We begin now the study of the zero location of the numerator polynomials
of singular vectors. This is of course the same as the study of the zeroes of
minimal degree solutions of equation (19). The following proposition provides
a lower bound on the number of zeroes the minimal degree solutions of (19)
can have in the open left half plane. However the lower bound is sharp in one
special case. This is enough to lead us eventually to a full characterization,
given originally by Adamjan, Arov and Krein [1968], and this will be given
in Theorem 5.1.

Proposition 3.2 Let ¢ = % € H>®. Let up be a singular value of Hy

satisfying py 2 0 2 pk-1 > pk = 00 = Prpy-1 > Phty 2 00 2 fn L€ i
s a singular value of multiplicity v. Let py be the minimum degree solution
of (19) corresponding to ur. Then the number of antistable zeroes of pi are
>k—1.

If un is the smallest singular value of Hy and is of multiplicity v, i.e.
B1 2 0 2 Pney > fneydl = 00 = U, and Prn—v+1 is the Corresponding
minimum degree solution of (19), then all the zeroes of p,_,+1 are antistable.

Proof: From Equation 19, i.e.
npx = Aed"py + dmy, (24)

we get, dividing by dpy,
noom \ d*px

d p Fdm,

which implies of course that

d”p;
de ”00 = Pk

n Th
Ho — Hoy || <= — 2l =
1Hy = Hall < lig = >l = sl

This means, by the definition of singular values, that rankH =, > k—1. But

.. . . Pk
this implies, by Kronecker’s theorem, that the number of antistables poles of
-gf which is the same as the number of antistable zeroes of p; is > k — 1.

If pn is the smallest singular value and has multiplicity v, and p,_,4; is
the minimal degree solution of Equation (19), then it has degree n — v. But
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by the previous part it must have at least n — v antistable zeroes. So this
implies that all the zeroes of p,_,4+1 are antistable.

The previous result is extremely important from our point of view. It
shifts the focus from the largest singular value; the starting point in all
derivations sofar, to the smallest singular value. Certainly the derivation is
elementary, inasmuch as we use only the definition of singular values and
Kronecker’s theorem. The great advantage is that at this stage we can solve
an important Bezout equation which is the key to duality theory.

We have now at hand all that is needed to obtain the optimal Hankel
norm approximant corresponding to the smallest singular value. We shall
delay this analysis to a later stage and develop duality theory first.

From Equation (19)‘ we obtain; dividing by A,d*pZ, the Bezout equation

n, 1 p, d 1 m, |

—(——=) = —(+——) = 1. 25
Since the polynomials p,, and d are antistable all four functions appearing in
the Bezout equation are in € H$®. We shall discuss next the implications of
this Bezout equation.

4 DUALITY

In this section we develop a duality theory in the context of Hankel norm
approximation problems. There are three operations applied to a given, anti-
stable, transfer function. Namely, inversion of the restricted Hankel operator,
taking the adjoint map and finally one sided multiplication by unitary op-
- erators. The last two operations do not change the singular values, whereas
the first operation invertsthem.
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We will say that two Hilbert space operators T' : H; — Hz and T :
H; — H, are equivalent if there exist unitary operators U : H; — Hj; and
V : Hy — Hg4 such that

VT =T'U.

Lemma 4.1 Let T : Hi — H, and T' : Hy — H. be equivalent. Then T
and T' have the same singular values.

Proof: Let T*Tz = p?z. Since VT = T'U it follows that
UT*T'Uz = T*V*VTz =TTz = p’z,

or

T"T'(Uz) = p*(Uz).

The following proposition is bordering on the trivial and no proof need
be given. However, when applied to Hankel operators it has far reaching
implications. In fact it provides a key to duality theory and leads eventually
to the proof of the AAK results.

Proposition 4.1 Let T be an invertible linear transformation. Then, if T
is a singular vector of the operator T corresponding to the singular value p,
i.e. T*Tx = p’z then
T-YT™ ")z =p2z
i.e. x is also a singular vector for (T~')* corresponding to the singular value
-1
ut.

In view of this proposition, it is of interest to compute [(Hg|H(m))~1]*.
Before proceeding with this we compute the inverse of a related operator.
This is a special case of Theorem 2.4 for the rational case. Note that, since
HT&'|| = ps!, there exists, by Sarason’s theorem, a £ € H$® such that Te! =
Te and ||€|lec = u;!. The next theorem provides this £. For an algebraic
analogue of the next two theorems we refer to Helmke and Fuhrmann [1989)].

Univ.-Bibj,
Kaiserslautern
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Theorem 4.1 Let ¢ = Z— € H®. Then 8 =‘(—in: € HY. The operator Ty
defined by equation (8) is invertible and its inverse given by Ty gy, where Ay

n Pn

is the last signed singular value of Hy and p, is the minimal degree solution
of
npn = A d*pl + dm,.

Proof: From the previous equation we obtain the Bezout equation

j — 1. | (26)

By Theorem 3.2 the polynomial p, is antistable so Pn ¢ H. This, by
pi

n

Theorem 2.4 implies the result. ‘ a

It is well known that stabilizing controllers are related to solutions of
Bezout equations over H*. Thus we expect Equation (25) to lead to a
stabilizing controller. The next corollary is a result of this type.

Corollary 4.1 Let ¢ = E € H>. The controller k = W—" stabilizes ¢ [f the

multiplicity of un is m there exists a stabilizing controller of degree n—m.

Proof: Since p, is antistable, we get from (19) that np, — drn = And™pj, is
stable. We compute

n .
@ _ d —nT, - —Ny
E_

= = HYE.
1—k¢  1_ Y S W €

7
nd

This corollary is related to questions of robust control. For more on this

see Glover [1986].

Theorem 4.2 Let ¢ = % € H®. Let H : X* — X? be defined by H =
HéiXd'. Then
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1. Hj': X*— X* is given by

1 d_ pn
Ldp Py
And* p

H;'h =

2. (H;H): X¥ — X4 is given by
1 d* p

—1\= ______ n

Proof:

1. Let m = % and let T be the map given by T' = mHs.

the following commutative diagram

Xd‘ ﬂ) Xd
T !l m
X4
Now d d"
T = = -

n n
Puigy 3/ = Pya—f

27

(27)

(28)

Thus we have

i.e. T =Ty where § = . Now, from Ty = mH_;, we have, by Theorem

4.1,
Te-l :Ti&.
An DX
So, for h € X4,
_ 1 pn d
1 — — — ——
1 d d*p,d
oA ds T doprdt
1 d_ pn

(29)
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2. Equation (29) can be written also as
17 _
H% h= T_l_&mh.
An Py
Therefore, using Theorem 2.3, we have, for f € X%,

d* 1 p 1
—1 % _ - - __ ___2 —
(Hg ) f=miT 1 p, ) = TPes 0/ = 3,

An D3

Corollary 4.2 There exist polynomials o;, of degree < n — 2, such thal

/\iP;Pi - /\nPnP: =MNd'a;, t=1,...,n—1.
This holds also formally for i = n with an =0.

Proof: Since

1t follows that

1w Pi ey
Hrhy<Z2L — 18
( d ) d* tod

So, using equation (28), we have

1d  pipi 1P

Aod FTpad T N d

P Pi

An DF
—t =P .
+pn d*

A d*

4 pr
FP+p—nf-

28

This implies, by partial fraction decomposition, the existence of polynomials

-~ a;,1=1,...,n such that dcgag < degp, =n -1, and

PaPi _ APl o
DPn d* /\,‘ d* Pn
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1.e.
Aiphpi — Anpnp; = Aid" o (30)

We saw, in Theorem 4.2, that for the Hankel operator Hy the map (H;l)*
is not a Hankel map. However there is an equivalent Hankel map. We sum
this up in the following,. ‘

Theorem 4.3 Let ¢ = % € H®. Let H: X* — X? be defined by H =
Hy| X . Then

1. The operator (H;])‘ is equivalent to the Hankel operator H | d*p, -

An dpx

2. The Hankel operator H | d*p., has singular values p7' < --- < p;l.

A dp;
3. The Schmidt pairs of H | 4=, are {E Piy,

1 apn =’ 'd

An dp},

Proof: We saw that
_ L3 d’ *
(Hy')" = RS
P

<

Since multiplication by ’l is a unitary map of X% onto X<, the operator

H:')" has, by Lemma 4.1, the same singular values as T~ . These are
d & 1 Pn

An D,
the same as those of the adjoint operator T | Pu” However the last operator
A
is equivalent to the Hankel operator H ; dep, . Indeed,
An dpp
d d: 1 pn dd _d 1 p,

Tl ipd =Tl f = TEan = L dn )

An DL A dpy
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This Hankel operator has singular values pu7' < --+ < g;'. and its Schmidt
pairs are {Z—l, %} Indeed

pi d*pn i PnP}
H x L= P_ -+ = P_—‘—t.
4Pn - dpj, d* dp;,

dp;,
Now, from equation (30) we get

- A, . - A‘l d*
np; = PP — v d o,
PaPi = 3—PuPi ~ 3

- or taking the dual of that equation

* /\n *« »
PnP; = y~PnPi + da;,

So
PnPi  Aapppi | dof  Aapi 4 aj
dpx — Xidpy dpry  Mid o p
Hence . \ ‘
Pnp,' n P:
p_ 2t ne
Therefore | . .
D . _P;
Y Hdp g =3 d
dp;,

5 HANKEL NORM APPROXIMATION

The duality results obtained before allow us now to complete our study of
the zero structure of minimal degree solutions of the fundamental polynomial
equation (19). This in turn leads to an elementary proof of the central
‘theorem in the AAK theory.
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Theorem 5.1 (Adamjan, Arov and Krein) Let ¢ = —3 € H™. Let px

be a singular value of Hy satisfying py > -+ 2 pg—1 > p =+ = fkgp—1 >
Pty = -+ > o t.€. yg is a singular value of multiplicity v. Let p; be the
minimum degree solution of (19) corresponding to py. Then the number of
antistable zeroes of pi is exactly k — 1. '

If p, is the largest singular value of Hy and s of multiplicity v, i.e.
Pr = 0 = Ry > flup1 2 - 2 fn, and py is the corresponding mintmum
degree solution of (19), then all the zeroes of py are stable, this is equivalent

to saying that p, s outer.

Proof: Wesaw, in the proof of Proposition 3.2, that the number of antistable
zeroes of py is > k — 1. Now, by Theorem 4.3, p; is the minimum degree
soltéltion of the fundamental equation corresponding to the transfer function
1 d*p,
A dp;,
© 2 B > B = 0 = pE > pgly 2 --- 2 p's In particular,
applying Proposition 3.2, the number of antisatble zeroes of p; is > n — k —
v + 1. Since the degree of p; is n — v it follows that the number of stable

and the singular value pj},_, =--- = p;'. Clearly we have p;! >

1

zeroes of p; 1s < k — 1. However this is the same as saying the number of
antistable zeroes of p; is < k — 1. Combining the two inequalities, it follows
that the number of antistable zeroes of pi is exactly k — 1.

The first part implies that the minimum degree solution of (19) has only
stable zeroes, 1.e. it is an outer function.

We now come to apply some results of the previous section to the case
of Hankel norm approximation. We use here the characterization of singu-
lar values as approximation numbers, see Gohberg and Krein [1969] for an
extensive treatment of this topic.

Theorem 5.2 (Adamjan, Arov and Krein) Let¢ = % € H be a scalar,

strictly proper, transfer function, with n and d coprime polynomials and d is
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monic of degree n. Assume that py > -+ 2 pr—1 > pk = 0 = k-1 >
Lksy = -+ 2 pn > 0 are the singular values of Hy. Then

pe = inf {||Hy — Al||rankA < k -1}

= inf {||Hs — Hyl||rankH, < k — 1} (31)

= inf {14~ ¥l € H_y}

Hy f

Moreover, the infimum is attained on a unique function v = ¢ — =

fx

— —~g, where ( fx,gx) is an arbitrary Schmidt pair of Hy that corresponds
Hf g ¢
to pi.

Proof: Given ¢ € H ), we clearly have
pr = inf {||Hy — A||rankA < k -1}

< inf{||Hs — Hy|||rankH, < k -1} (32)

< inf {Jlg - $llolw> € Hiz}

so the proof will be complete if we can exhibit a function ¥ € Hg 4 for
which the equality ur = ||¢ — ¥|| holds. To this end let p; be the minimal

degree solution of (19), and define 3, = "¢ From the equation
Pk

npe = Aed"pp + dmg

we get, dividing by dpx, that

n_m 4Pk
d  pr “dpy
| This is of course equivalent to
Tk 1 d*p; Hy fx
Yk o d M Ip ’¢ 7,

Y
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So Joor
no T Dk
6= Blloo = 12 = oo = I M = e
| lloo = 1l 5 o oo = ™ llo
Moreover ~* € H{_y), as pi has exactly k — 1 antistable zeroes. "
Pk

Corollary 5.1 The polynomials 7y and pr have no common antistable ze-
roes.

Proof: Follows from the fact that rankH=, > k — 1.

Pk
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