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Notation

In the following, we define some of the basic notation and acronyms used throughout this
thesis.

Abbreviations and acronyms

MPC model predictive control

DMPC distributed model predictive control

SMPC stochastic model predictive control

DSMPC distributed stochastic model predictive control

DR-MPC distributionally robust model predictive control

FH-SOCP finite-horizon stochastic optimal control problem

DRO distributionally robust optimization

VaR value-at-risk

CVaR conditional value-a-risk

i.i.d. independent and identically distributed

PRS probabilistic reachable set

DR-PRS distributionally robust probabilistic reachable set

ICC individual chance constraint

JCC joint chance constraint

LMI linear matrix inequality

ADMM alternating direction method of multipliers

w.r.t. with respect to

CCU central convex unimodal

LQG linear quadratic gaussian

SDP semidefinite program

SAA sample average approximation

SOC second-order cone

Sets

∅ The empty set

N Set of natural numbers including 0

R Set of real numbers
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R>0 Set of positive real numbers

R≥0 Set of nonnegative real numbers

R
n Set of n-dimensional vectors with real entries

R
m×n Set of (m× n)-dimensional matrices with real entries

Algebraic Operators

Let v = (v1, . . . , vn) ∈ Rn be vector, p ≥ 1 be a real number, P ∈ Rn×n a quadratic matrix,
Q ∈ Rn×n a symmetric matrix and s ∈ R a scalar.

λmin(Q) Minimum eigenvalue of Q

λmax(Q) Maximum eigenvalue of Q

Q ≻ 0 Positive definite matrix, Q ≻ 0⇔ v⊤Qv > 0 ∀v ̸= 0⇔ λmin(Q) > 0

Q ⪰ 0 Positive semidefinite matrix, Q ⪰ 0⇔ v⊤Qv ≥ 0 ∀v ̸= 0⇔ λmin(Q) ≥ 0

|s| absolute value

∥v∥p lp vector norm, ∥v∥p =
(∑n

i=1 |vi|p
) 1

p

∥v∥2 l2 vector norm (Euclidean norm), ∥v∥2 =
√
v21 + . . .+ v2n

∥v∥Q Weighted l2 vector norm, ∥v∥Q =
√
v⊤Qv, Q ⪰ 0

∥v∥∞ l∞ vector norm, ∥v∥∞ = max
i∈{1,...,n}

|vi|

∥P∥2 l2 induced matrix norm (Spectral norm), ∥P∥2 =
√
λmax(P⊤P )

∥P∥F Frobenius norm of a matrix, ∥P∥F =
√

tr(P⊤P )

Set Operators

Let S,S1, . . . ,SM ⊆ Rn be sets and p ∈ Rn a vector.

|S| Cardinality of S

S1 ∪ S2 Union of sets, S1 ∪ S2 = {s|s ∈ S1 ∨ s ∈ S2}
S1 ∩ S2 Intersection of sets, S1 ∩ S2 = {s|s ∈ S1 ∧ s ∈ S2}
S1 ⊕ S2 Minkowski sum, S1 ⊕ S2 = {s1 + s2|s1 ∈ S1, s2 ∈ S2}
S1 ⊖ S2 Pontryagin difference, S1 ⊖ S2 = {s1 ∈ S1|s1 + s2 ∈ S1,∀s2 ∈ S2}
S1 × S2 Cartesian product of sets, S1 × S2 = {(s1, s2)|s1 ∈ S1, s2 ∈ S2}∏M

i=1 Si Cartesian product of M sets,
∏M

i=1 Si = S1 × . . .× SM
dist(p,S) Point to set distance from p to S, dist(p,S) := infs∈S ∥p− s∥
1S(p) The indicator function 1S(p) = 1, if p ∈ S and 1S(p) = 0 if p ̸∈ S.

Probability theory

Let µ ∈ Rn, Σ ≻ 0, A,B two events and x, y random vectors in Rn.
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Q(µ,Σ) Parametric distribution with mean µ and covariance matrix Σ

N (µ,Σ) Multivariate normal distribution with mean µ and covariance matrix Σ

x ∼ ν A random vector x that follows a distribution ν

x
d
= y Two random vectors x and y that have the same distribution are

equal in distribution

P(A) The probability of occurrence of event A

P(A|B) The conditional probability of occurrence of event A given B

E(x) The expected value of a random variable x

E(x|A) The expectation of x conditioned on A

Eν(x) The expectation of a random variable x w.r.t. distribution ν

var(x) The variance of x is E((x− E(x))(x− E(x))⊤)
var(x|A) The variance of x conditioned on A is E((x− E(x|A))(x− E(x|A))⊤|A)

Other

Let v = (v1, . . . , vn) ∈ R
n be a vector, A ∈ R

m×n a matrix, x ∈ R a scalar, Z the set of
integers and B1, B2, . . . , Bn matrices

[A]ij The element in the i-th row and j-th column of matrix A

[A]i The i-th row of matrix A

[v]i The i-th element of vector v

A† The pseudo inverse of a matrix A

⌈x⌉ The ceiling function min(c ∈ Z, c ≥ x)

blkdiagj∈{1,...,n}(Bj) A block diagonal matrix with elements B1, . . . , Bn

v = colj∈{1,...,n}(vj) A column vector with elements v1, . . . , vn

Convex analysis

Let x, y ∈ Rn be vectors and f : X→ R a real-valued function supported on X ⊆ Rn.

(f(x))+ = max(0, f(x)) The positive part of f

f ∗(θ) := supx∈X θ
⊤x− f(x) The convex conjugate of f

dom(f) = {x ∈ X|f(x) <∞} The effective domain of f

∥x∥∗ := sup∥y∥≤1 x
⊤y The dual norm of a norm ∥ · ∥
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1 Introduction

1.1 Motivation

Model Predictive Control (MPC) is an advanced optimization-based control method that
relies on repetitive solution of finite-horizon optimal control problems [97, 144]. In closed-
loop operation, feedback is generated by implementing only the initial part of the optimized
input sequence and repeating the optimization procedure at the next time instant with a
shifted prediction horizon. The popularity of MPC is based on its ability to handle arbitrary
system dynamics as well as constraints on states and inputs, which is attractive for many
applications.

Most of the early work on MPC addresses the nominal regulation task, i.e., setpoint stabi-
lization without disturbances, and is based on the stability theory presented by Mayne et al.
[119]. Over the last couple of decades the theory has been extended into several directions,
such as robust MPC [118], stochastic MPC (SMPC) [32], distributed MPC (DMPC) [130]
and economic MPC [145].

The contribution of this thesis is twofold. In the first part, we extend the literature on
SMPC for distributed systems (DSMPC), while the second part addresses a relatively new
area called distributionally robust MPC (DR-MPC), which can be viewed as a more realistic
approach to SMPC in case of partially known distributional information.

1.1.1 Stochastic MPC for distributed linear systems

The classical literature on MPC typically deals with the centralized setting, i.e., all state
measurements of the plant are gathered locally, where then a centralized MPC optimization
problem is solved. However, in the domain of large-scale distributed systems this task can
be infeasible due to the following reasons:

1. The sensors are spatially distributed and no central coordinator exists.

2. The curse of dimensionality that is associated with a large state dimension [14].

The above two problems have led to the development of DMPC strategies, where the main
goal is to decompose the distributed system into several subsystems, each of which has a
local MPC controller that solves a smaller scale sub problem. The local controllers are able
to share their information with others through a communication network so that a common



2 1 Introduction

objective function can be minimized. Applications can be found in power systems [166], wa-
ter supply systems [102], irrigation canals [131], building and energy hubs [101], platooning
vehicles [172] and wind farms [161].

A DMPC can be roughly categorized into the following components [38]:

� Communication:
During one sampling interval an iterative controller exchanges several times infor-
mation with its neighbors, while a non-iterative controller receives and transmits
information only once.

� Attitude:
A DMPC is said to be cooperative if the objective is to minimize a global cost function
and non-cooperative if each agent intents to minimize a local cost function.

� Update:
A sequential DMPC updates only one subsystem input at each time instant, whereas
a parallel DMPC updates all subsystem inputs simultaneously.

The vast majority of publications in the field of DMPC considers the nominal case, which
is typically an invalid assumption in reality. In many applications it can be observed that
the underlying dynamics are corrupted by additive/multiplicative disturbances, leading to
the need of stochastic or robust approaches. While robust approaches assume an a-priori
known bound of the worst-case disturbance to satisfy the constraints robustly [118], stochas-
tic approaches make use of an underlying model of the disturbance, e.g., the probability
distribution, to relax the constraints as so-called chance constraints [121]. Unlike hard con-
straints, chance constraints only need to be verified with a predefined probability, allowing
for a certain frequency of constraint violations. It should be noted that for some applica-
tions it is not possible to find a worst-case bound for the disturbance, such as control tasks
involving the ambient temperature [76], rendering robust approaches inapplicable to the
specific task.

The first part of this thesis deals with uncertainties in form of additive/multiplicative
stochastic noise, where the first and second moment and/or the probability distribution
are known. In the literature there are basically two approaches how to treat stochastic dis-
turbances. On the one hand, there are scenario-based approaches [79, 150], which, at every
time instant, sample sufficiently many disturbance realizations in order to approximate a
stochastic optimal control problem. The inherent sampling technique makes the scenario-
based methods applicable for systems with arbitrary disturbances. However, due to their
heavy computational load these methods are still limited to small-scale systems and thus
have not been investigated for the purpose of distributed systems. On the other hand, we
have analytical approximation methods [60, 76, 109, 110], which assume a parametric prob-
ability distribution in order to reformulate the stochastic optimal control problem based on
the moments of the disturbance. Note that the latter approach reduces the online complex-
ity to a nominal MPC optimization problem, enabling the development of fast and scalable
distributed controllers.



1.1 Motivation 3

The development of the last decades has shown that the complexity of modern control
systems is continuously increasing [130]. In addition, these complex interconnections chal-
lenge current control algorithms with uncertain dynamics or falsified measurements due to
measurement or process noise. Therefore, there is an increasing need for distributed control
algorithms capable of dealing with stochastic uncertainties and for systematic approaches
on how to propagate stochastic uncertainties in networked systems [121]. In part one of this
thesis, we investigate iterative, cooperative and parallel DMPC controllers for stochastic
distributed linear systems subject to additive or multiplicative noise, where each proposed
DMPC controller respects the following research goals:

� Quantifying the effect of additive or multiplicative uncertainty in a distributed way.

� Distributed controller synthesis and distributed online operation.

In the following, we discuss chapter-wise the usability and purpose of each considered class
of control problems.

(i) Tracking problem with additive noise:
In Chapter 3, we study a DSMPC for tracking of piece-wise constant output references.
This class is important for many practical applications that require online adaption of
setpoints unequal to zero [104]. Typical examples include distributed power systems
[166], water supply systems [102], energy systems [101] or wind farms [161].

(ii) Output-feedback regulation with additive noise:
In Chapter 4, we consider a distributed regulation task under output-feedback with
additive noise. This chapter is motivated by the practical aspect that in many con-
trol systems the state vector is not fully measurable, which confronts us with the
new challenge of how to deal with different sources of uncertainty, i.e., process and
measurement noise [61]. Examples can be found in distributed power systems [165] or
coordination problems [141].

(iii) State-feedback regulation with multiplicative noise:
Chapter 5 deals with a state feedback approach for distributed systems subject to
multiplicative noise. Multiplicative noise models are less prominent than their addi-
tive counterparts, but they are a very useful tool for representing complex dynamical
systems that are difficult to model [68]. A practical example is the control of wind
turbines [30], which can be extended to a larger scale by considering wind farms [161].

1.1.2 Distributionally Robust MPC

Distributionally robust MPC is a relatively new area of research that arises from a practical
aspect with respect to the applicability of SMPC. In particular, SMPC assumes that the
underlying probability distribution or moments are known exactly, which in practice is
a rather restrictive assumption, i.e., the true distribution is rarely known and must be
estimated from limited data [126]. This is especially problematic if the process of generating



4 1 Introduction

data, i.e., sampling from the true distribution, is costly or time-consuming. In DR-MPC, the
assumption of exact knowledge of the distribution is removed by optimizing the stochastic
optimal control problem over a class of probability distributions contained in a so-called
ambiguity set.

The theory behind DR-MPC traces back to distributionally robust optimization (DRO)
[143], which roughly distinguishes the ambiguity sets into two classes. The first class is
denoted as moment-based ambiguity sets [49], where we assume that the first and second
moment of the disturbance are (probabilistically) bounded in a set P with high confidence.
In a control context, these sets can be useful if we model process or measurement noise
based on limited samples, cf. Chapter 7. The second class of ambiguity sets are so-called
distance-based ambiguity sets, which include all probability distributions within a radius
ϵ of a nominal distribution, measured in the space of probability distributions. These
distance measures include, e.g., the Wasserstein metric [126], Kullback-Leibler divergence
[83], total variation distance [52] and several variations of those, see [143] for a recent
review. The main advantage of distance-based ambiguity sets is their ability to capture
non-parametric probability distributions, which, however, leads to more computationally
demanding optimization problems.

DRO has been applied successfully in many practical scenarios, such as optimal power flow
[72], portfolio optimization [49], economic dispatch [134] and robot motion control [75],
which outperforms the classical stochastic optimization methods based on empirical data
in terms of robustness to sample errors [126].

A risk-averse point of view An alternative interpretation of DRO is given by risk-averse
optimization [157], where under some mild conditions, i.e., real-valued costs, convex and
bounded ambiguity set, DRO is equivalent to minimizing a coherent risk measure [5, 142].
In fact, the dual representation of every coherent risk measure is given by a DRO problem
[156]. The notion of risk plays an important role in modern control systems, especially in
the data-driven regime, where distributional uncertainty is inevitably present. Therefore, to
incorporate risk awareness in the control design, one typically formulates so-called distribu-
tionally robust chance constraints, i.e., chance constraints that have to hold for all possible
distributions contained in an ambiguity set. However, the resulting feasible set is generally
non-convex, which has been addressed in various ways in the literature, e.g., [147] proposes
the use of a coherent risk measure called conditional Value-at-Risk (CVaR), which serves
as an inner approximation of the chance constrained set. This approach is widely used in
the literature in case of Wasserstein ambiguity sets, cf. [45, 111, 112, 126]. An alternative
is given by a second-order cone (SOC) constraint reformulation in case of moment-based
ambiguity sets, cf. [49, 103, 117]. Note that under some mild conditions on the constraint
function, it can be shown that the feasible sets of distributionally robust CVaR constraints
and distributionally robust chance constraints are equal [177, Thm. 2.2].

In control applications, the use of CVaR constraints is in fact more reasonable than chance
constraints, as the CVaR penalizes not only the frequency of constraint violations, as in
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chance constraints, but also the magnitude [45]. For example, a large constraint violation
is potentially more harmful to the control system compared to a small one.

In the following, we discuss the usability of each considered class of ambiguity sets.

(i) DR-MPC with Wasserstein ambiguity sets:
In Chapter 6, we study two DR-MPCs with Wasserstein ambiguity sets for state feed-
back regulation with additive uncertainty and unknown distributions. In Section 6.2,
we consider the general setting of potentially correlated stochastic processes. This is
of practical interest since many control applications do not satisfy the usual assump-
tion of independent and identically distributed (i.i.d.) random variables. Examples are
control tasks that include ambient temperature forecasts [76, 112], wind speed data
[7] or specifically in power systems by computing an optimal power flow in presence of
renewable energy sources [72]. In Section 6.3, we impose the typical i.i.d. assumption
on the additive noise. In contrast to Section 6.2, this results in a controller several
orders of magnitude faster, i.e., the controller has the complexity of a nominal MPC,
which dramatically extends the range of practical applications.

(ii) DR-MPC with moment-based ambiguity set:
In Chapter 7, we consider a DR-MPC with moment-based ambiguity sets for linear
systems subject to additive i.i.d. sub-Gaussian noise. Note that many distributions of
practical interest are sub-Gaussian, e.g., any bounded random variable [167, Sec. 2.5].
From a computational viewpoint, this approach is comparable to the Wasserstein ap-
proach proposed in Section 6.3 and allows for control applications with fast dynamics.
Finally, in Chapter 8, we apply the DR-MPC as a supervisory controller for a wind
farm.
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1.2 Related work

In this section, we review some of the related literature on SMPC and DR-MPC.

1.2.1 Stochastic MPC for linear systems

In the following, we provide a brief overview of the related literature on SMPC and compare
different aspects, such as recursive feasibility, chance constraints and closed-loop guaran-
tees. This overview is by no means exhaustive and we refer the reader to some recent review
papers [57, 121] for a more in-depth comparison. We have selected some key publications
to highlight some aspects of SMPC and also included the author’s publications.

Recursive feasibility

Recursive feasibility is one of the most important properties of an MPC optimization prob-
lem, which ensures that the optimization problem will remain feasible for every possible
initial state [144]. In context of SMPC, this issue can be addressed in several ways [57],
e.g., under the assumption of a bounded uncertainty, one can use a robust MPC inspired
constraint tightening [106]. In presence of an unbounded uncertainty, such a robust bound
cannot be found and thus the feasibility issue is more complicated. One possible solution
is proposed by Farina et al. [60, 61], where a binary initialization constraint is introduced
with the intention to choose between the feedback initialization (state measurement) or a
backup strategy, i.e., the shifted optimal solution from the previous time step. By doing so,
the chance constraints are inherently verified as conditional probabilistic constraints and
thus, no closed-loop guarantees can be given.

An alternative, the so-called direct-feedback approach based on probabilistic reachable sets
(PRS), was proposed by [77], where an additional central convex unimodality assumption
of the noise distribution ensures conservative satisfaction of the chance constraint in closed-
loop. Conservatism is introduced by conditioning the chance constraints on the current
state, which are essentially implemented as hard constraints [78], cf. Remark 2.3. The same
authors proposed a second alternative initialization scheme based on indirect-feedback, where
the chance constraints are conditioned on the closed-loop error [76]. Recursive feasibility
is trivially verified since the MPC optimization problem is always initialized with shifted
nominal state, while feedback is introduced only in the cost function. The authors of [93]
and [153] use a PRS-based approach in conjunction with an interpolated initial constraint
that constrains the initial state on a line between the state measurement and the predicted
nominal state from the previous time step. Similar to [77], this ensures closed-loop chance
constraint satisfaction and recursive feasibility. Finally, Cannon et al. [31] ensures re-
cursive feasibility with the concept of invariance with probability p, where an alternative
optimization problem is solved in case of infeasibility.
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Other notable work includes scenario-based SMPC algorithms [151], where recursive fea-
sibility is either assumed or enforced by soft constraints, leading to scenario optimization
guarantees [28]. Exceptions to this are the works [79, 128], where the authors make use of
an indirect-feedback initialization to decouple the stochastic uncertainty from the nominal
MPC optimization problem. In this case, recursive feasibility can be established and the
chance constraints hold in closed-loop with high probability.

Chance constraint

The main advantage of SMPC is the use of chance constraints, which can be separated in
individual chance constraints (ICC) or joint chance constraints (JCC), cf. Section 2.2 or
[57] for a recent review paper. The vast majority of proposed SMPC controllers considers
ICCs [29, 31, 33, 59, 60, 115], which are in general easier to deal with compared to JCCs
[77, 109, 110, 137]. In analytical approximation frameworks, the ICCs can be reformulated
via concentration inequalities, such as the Chebyshev-Cantelli inequality [60], or in case of
JCCs by making use of the two-sided Chebyshev inequality [77]. Another possibility to
treat JCCs is to use the union bound to approximate the JCCs by a set of ICCs, which
typically results in conservative constraint sets [106]. In most of the literature, constraint
satisfaction in analytical frameworks is only enforced in prediction, i.e., the chance con-
straints are conditioned on the most recent state feedback. This, however, does not ensure
that the closed-loop system verifies the chance constraints, which typically requires stronger
assumptions, cf. [77, 93, 153]. Finally, the authors of [79, 128] propose scenario optimiza-
tion techniques to approximate arbitrary constraints via non-symmetric PRS (ICCs) that
result in non-conservative closed-loop constraint satisfaction.

Distributed stochastic MPC

In the following, we compare some of the key publications in SMPC for distributed sys-
tems, where Table 1.1 focuses on the SMPC aspects and Table 1.2 on the different DMPC
architectures. In both tables, the double horizontal line separates the related publications
(upper part) from the author’s publications (lower part).

From Table 1.1, it can be seen that most related work focuses on the state feedback case con-
sidering ICCs. Moreover, the majority of proposed DMPCs verifies chance constraints only
in prediction. In general, analytical approximation methods are widely used for DSMPC
[46–48, 56, 58], with the exception of [128], which uses a hybrid approach that unifies
scenario-based PRS with analytical approximations to ensure recursive feasibility. Notably,
this allows the authors to give scenario-based closed-loop chance constraint guarantees. Fi-
nally, [148] uses a scenario-based approach for systems subject to arbitrary additive and
multiplicative uncertainty, as well as JCCs. Note that recursive feasibility cannot be estab-
lished and thus, the chance constraints are verified only in prediction.

Next, we compare some of the papers regarding their distributed structure. From Table 1.2,
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it can be seen that some of the previous work on DSMPC considers the non-iterative set-
ting to reduce the communication overhead of the online algorithm [46–48, 56, 58]. As a
result, the MPC optimization becomes suboptimal, which deteriorates closed-loop perfor-
mance. Furthermore, the couplings of the subsystems were usually considered only in the
constraints or in the dynamics. In addition, the design procedures proposed by [46–48]
require a central coordinating node, such that the controller ingredients can be synthesized.
In comparison, we have proposed several DSMPC controllers that consider dynamic and
constraint couplings, with emphasis on a distributed design, cf. Section 1.3 for more de-
tails. Furthermore, we consider an iterative DSMPC with parallel updating local MPCs.
The main drawback of [109, 110, 113, 115, 128] is the increased communication load.

Table 1.1: Comparison regarding SMPC.

Disturbance Chance constraint

Paper Additive Multiplicative Feedback Type Guarantee MPC type

[46] bounded bounded output ICC Predictive Analytical

[47] bounded - state ICC Predictive Analytical

[56] unbounded - state ICC Predictive Analytical

[58] unbounded - state ICC Predictive Analytical

[48] bounded bounded state ICC Predictive Analytical

[148] unbounded unbounded state JCC Predictive Scenario

[128] unbounded - state ICC Closed-loop Scenario

[109, 113] unbounded - state JCC Closed-loop Analytical

[110] unbounded - output JCC Closed-loop Analytical

[115] - unbounded state ICC Predictive Analytical

Table 1.2: Comparison regarding distributed MPC architecture.

Paper Communication Update Design Coupling

[46] non-iterative sequential central Constraints

[47] non-iterative sequential central Constraints

[56] non-iterative parallel distributed Dynamics

[58] non-iterative parallel distributed Constraints

[48] non-iterative sequential central Constraints

[148] non-iterative parallel - Dynamics

[128] iterative parallel distributed Dynamics, Constraints

[109, 113] iterative parallel distributed Dynamics, Constraints

[110] iterative parallel distributed Dynamics, Constraints

[115] iterative parallel distributed Dynamics, Constraints
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1.2.2 Distributionally robust MPC

In the following, we discuss some of the related work on DR-MPC.

Ambiguity set

The ambiguity set is one of the most distinctive elements of a DR-MPC since its choice
directly impacts the complexity of the underlying optimization problem. The literature
proposes several different approaches, where a large part considers moment-based ambiguity
sets [103, 117, 162, 164]. These sets model distributional uncertainty in the first and/or
second moment by introducing upper bounds for the mean and the covariance matrix [49].
An approach closely related is proposed by Coppens et al. [43], where the ambiguity set
is formulated for conically representable risk [35]. Another distinguishing feature in the
selection of moment-based ambiguity sets is whether the set is data-dependent or whether
the size is fixed a priori. Many of the DR-MPCs with moment-based ambiguity sets assume
that the true distribution is contained in the ambiguity set with probability one, e.g., [85,
103, 108, 162, 164], while only few publications consider data-driven ambiguity sets [43,
117], where the true distribution belongs to the ambiguity set with high confidence. Thus,
the latter two approaches can reduce conservatism by successively adjusting the ambiguity
radius by collecting more data.

Besides moment-based ambiguity sets, the use of Wasserstein ambiguity sets is also promi-
nent [45, 74, 108, 111, 112, 174, 176], where the idea is to optimize over all distributions
close to a nominal distribution. Some other notable work considers Dirichlet Process Mix-
ture Models [133] or the total-variation distance [52].

Theoretical properties

Most publications on DR-MPC only focus on reformulating the MPC optimization problem,
with theoretical guarantees such as recursive feasibility or convergence to an average perfor-
mance bound not discussed in detail or not at all. Since DR-MPC is basically an extension
of SMPC, the same principles apply to ensure recursive feasibility, cf. the discussion in the
previous section. To briefly summarize: [103] uses a binary initialization scheme, [111, 112]
use indirect-feedback, [108] uses a soft-constrained set, [43] relies on state feedback initial-
ization due to bounded disturbances and finally, [117] uses an interpolated initial constraint.
Regarding the chance constraints, several approximation methods have been proposed in
the literature, while the closed-loop constraint guarantees are usually not addressed. For
comparison, we refer to Table 1.3.

In addition to the classic MPC frameworks, several recent publications tend to incorporate
online learning, e.g., for Markovian switching systems [154], iterative tasks [176], motion
planning [73] and autonomous driving [155].
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1.3 Contributions and outline

In the following, we detail the outline of this thesis and summarize the contributions.

Chapter 2: Preliminaries

In this chapter, we provide an introduction to some notions of probability theory and
stochastic discrete time-invariant systems. In addition, we discuss common SMPC designs
and detail a PRS-based SMPC design throughout this section.

Part I: Distributed Stochastic Model Predictive Control

Chapter 3: Tracking of piece-wise constant references

In this chapter, we present a DSMPC framework for tracking of piece-wise constant refer-
ences for dynamically coupled distributed systems with neighbor-to-neighbor communica-
tion and (unbounded) additive stochastic noise. Chance constraints are treated with the
concept of distributed PRS, for which we propose two analytical design methods. The first
one relies on the solution of a central linear matrix inequality (LMI), while the second one
uses an iterative distributed update scheme that requires only neighbor-to-neighbor informa-
tion exchange. The DSMPC optimization problem simultaneously optimizes the inputs and
the steady-state tracking targets, where we use the consensus alternating direction method
of multipliers (ADMM) [22] to obtain a distributed algorithm. Due to the unboundedness
of the noise distribution, recursive feasibility of the MPC problem cannot be achieved by
constraint tightening, e.g., as in robust MPC [39]. Therefore, on the one hand, a backup
strategy (the shifted optimal solution) is necessary to ensure this fundamental property,
while on the other hand, the convergence threshold of the ADMM algorithm makes the
state trajectory inaccurate, which affects the feasibility of the shifted optimal solution. The
novelty of the proposed approach is the incorporation of the ADMM threshold in the con-
troller design (similar to but different from [92]), which ensures feasibility of the backup
strategy and satisfaction of the chance constraints in closed-loop. The proposed method is
validated for two numerical examples of a distributed system with 50 double integrators in
a chain graph and a four-tank benchmark system. This chapter is based on [113].

Chapter 4: Output-feedback regulation with additive noise

In this chapter, we develop a stochastic output-feedback MPC scheme for distributed sys-
tems with additive noise. The underlying DSMPC optimization problem is reduced to a
quadratic program, which we opt to solve via distributed optimization (similar to Chap-
ter 3). Chance constraints are treated with the concept of distributed PRS, which we extend
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from the state feedback to the output-feedback case and for which we propose two analyti-
cal design methods. Under an exact feasibility assumption, the MPC optimization problem
is proven to be recursively feasible with guaranteed (conservative) closed-loop chance con-
straint satisfaction and asymptotic convergence to an average cost bound. This assump-
tion can be removed by considering a slightly modified version of the DSMPC algorithm
from Chapter 3. In Section 4.3, we extend the direct output-feedback design to the in-
direct output-feedback case, where we propose an alternative distributed scenario-based
PRS design. Using results from scenario optimization [28], we can construct distributed
non-symmetric PRS that result in non-conservative closed-loop constraint satisfaction. A
numerical example is used to contrast the three distributed PRS designs and discuss the
effects on control performance. The results of this chapter have partly been presented in
[110].

Chapter 5: Regulation problem with multiplicative noise

We propose a DSMPC algorithm for distributed linear systems subject to individual chance
constraints and multiplicative noise. Similar to the previous chapters, we use dual de-
composition to obtain a fully parallelizable DSMPC optimization problem that scales with
the system dimension and can be solved efficiently with distributed consensus ADMM. In
addition, we provide a fully distributed synthesis method for distributed linear feedback
controllers and the distributed terminal ingredients. Thus, the MPC synthesis and the on-
line MPC algorithm both do not rely on a central coordination node. Recursive feasibility
of the MPC optimization problem is ensured by adopting two alternative control policies.
In a numerical example, we illustrate the scalability of the proposed DSMPC algorithm for
different system sizes and compare the closed-loop performance for different parameters.
This chapter is based on [115].

In summary, the main contributions of Part I are the following:

� Development of a DSMPC algorithm using inexact dual consensus ADMM for tracking
of piece-wise constant output references – This controller can easily be amended to
the regulation task, since this forms a special case of tracking.

� We propose a direct and indirect output-feedback DSMPC algorithm that is amend-
able to distributed optimization.

� Development of various analytical and scenario-based distributed PRS design meth-
ods.

� We extend the existing literature on SMPC with multiplicative uncertainty to the
distributed case, where we propose distributed design procedures and a fully paral-
lelizable DSMPC algorithm.
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Part II: Distributionally Robust Model Predictive Control

Chapter 6: Wasserstein distributionally robust Model Predictive Control

In this chapter, we present two DR-MPC strategies with Wasserstein ambiguity sets for lin-
ear systems subject to additive stochastic uncertainty. In Section 6.2, we initially propose a
scenario-based indirect-feedback DR-MPC that allows for use of correlated stochastic pro-
cesses. We investigate linear and nonlinear tube controllers and derive theoretical guaran-
tees for recursive feasibility, distributionally robust performance and distributionally robust
chance constraint satisfaction. The performance of the controller for different Wasserstein
radii is demonstrated on a four-room temperature regulation task with correlated ambient
temperature.

In Section 6.2, the distributional assumptions are strengthened, which allows us to derive
an analytical DR-MPC scheme. By using an indirect-feedback initialization, the closed-loop
error is decoupled from the prediction dynamics, enabling the formulation of a distribution-
ally robust PRS for the closed-loop error. This inherently renders the chance constraints
conditioned on the closed-loop error, resulting in closed-loop chance constraint satisfaction.
We provide details for arbitrary ambiguity sets and give a concrete design in case of Wasser-
stein ambiguity sets. In a numerical example, we highlight the out-of-sample performance
and confidence of the DR-PRS for various sample sizes and Wasserstein radii. This chapter
is based on [111] and [112].

Chapter 7: Moment-based distributionally robust Model Predictive Control

In this chapter, we propose a DR-MPC with data-driven moment-based ambiguity sets for
linear systems with additive i.i.d. noise. Under a sub-Gaussian assumption on the noise dis-
tribution, we derive an explicit number of samples to ensure a user-defined confidence level,
such that the true distribution belongs to the ambiguity set with high probability. In con-
trast, for Wasserstein ambiguity sets (Chapter 6) this is not possible, since the Wasserstein
radius still depends on some unknown parameters of the true distribution. Therefore, we
can estimate the data-driven Wasserstein radius empirically using machine learning tools,
while in the case of moment-based ambiguity sets, the additional sub-Gaussian assumption
allows us to be more rigorous. We use a simplified affine disturbance feedback parameteri-
zation to analytically reformulate the distributionally robust cost function, while the chance
constraints are cast as SOC constraints. The MPC optimization problem is proven to be
recursively feasible, while the closed-loop performance converges to an asymptotic average
bound. In a numerical example, we compare closed-loop performance and constraint satis-
faction for different sample sizes. In addition, we quantitatively investigate the impact of
unmodeled disturbances on constraint satisfaction and performance. This chapter is based
on [117].
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Chapter 8: Distributionally robust control of a wind farm

In this chapter, we apply the moment-based DR-MPC scheme from Chapter 7 to a wind
farm, where the goal is to supervise and coordinate several wind turbines with the common
goal of power tracking and fatigue load minimization. We will introduce an auto-regressive
moving average model to predict locally the turbulent wind speed, while the optimization
problem is robustified using a moment-based ambiguity set. These sets are parameterized
for different mean wind speed and turbulence characteristics of the current wind profile,
which changes on a slow-scale within ten minutes up to one hour. The control algorithm
is tested using the simulation environment SimWindFarm [71], which serves as a nonlinear
reference model in Matlab Simulink. This chapter is based on [116].

In summary, the main contributions of Part II are the following:

� Development of scenario-based and analytical indirect-feedback DR-MPC schemes for
correlated and i.i.d. additive disturbances using Wasserstein ambiguity sets.

� Introduction of distributionally robust PRS for general ambiguity sets, where we pro-
pose a design method using Wasserstein ambiguity sets.

� We extend the literature on moment-based DR-MPC.

� We propose a DR-MPC as a supervisory controller for wind farms.



1.4 Publications of the Author 15

1.4 Publications of the Author

The following are the author’s publications that were published or submitted during his
time as a doctoral candidate.

Journal publications

[113] C. Mark and S. Liu. “Stochastic Distributed Predictive Tracking Control Under
Inexact Minimization”. In: IEEE Transactions on Control of Network Systems 8.4
(2021), pp. 1892–1904.

[115] C. Mark and S. Liu. “A stochastic MPC scheme for distributed systems with multi-
plicative uncertainty”. In: Automatica 140 (2022), p. 110208.

[117] C. Mark and S. Liu. “Recursively Feasible Data-Driven Distributionally Robust
Model Predictive Control With Additive Disturbances”. In: IEEE Control Systems
Letters 7 (2023), pp. 526–531.

Conference publications

[109] C. Mark and S. Liu. “Distributed Stochastic Model Predictive Control for dynami-
cally coupled Linear Systems using Probabilistic Reachable Sets”. In: Proc. European
Control Conf. (ECC). 2019, pp. 1362–1367.

[110] C. Mark and S. Liu. “A stochastic output-feedback MPC scheme for distributed sys-
tems”. In: Proc. American Control Conf. (ACC). extended version: arXiv:2001.10838.
2020, pp. 1937–1942.

[111] C. Mark and S. Liu. “Stochastic MPC with Distributionally Robust Chance Con-
straints”. In: Proc. 21st IFAC World Congress. extended version: arXiv:2005.00313.
2020, pp. 7136–7141.

[114] C. Mark and S. Liu. “Stochastic Model Predictive Control for tracking of distributed
linear systems with additive uncertainty”. In: Proc. European Control Conf. (ECC).
extended version: arXiv:2103.01087. 2021, pp. 216–221.

Preprints

[112] C. Mark and S. Liu.“Data-driven distributionally robust model predictive control: An
indirect feedback approach”. In: arXiv preprint arXiv:2109.09558 (2021). Submitted
to International Journal of Robust and Nonlinear Control (2022).

[116] C. Mark and S. Liu.“Distributionally robust model predictive control for wind farms”.
In: arXiv preprint arXiv:2303.03276 (2023). Accepted for presentation at the 22nd
IFAC World Congress.





2 Preliminaries

In this chapter, we will discuss some preliminary results on stochastic MPC, which we will
use frequently in this thesis. In Section 2.1, we introduce some concepts from probability
theory, which formalizes the idea of a probability space, random variables and expected
values. Afterwards, in Section 2.2, we introduce nonlinear stochastic systems followed by
a brief discussion on stochastic MPC for nonlinear systems to illustrate the theoretical
challenges. The chapter concludes with the Section 2.3, where we focus on linear stochastic
systems for which rigorous theoretical results can be obtained. In particular, we derive and
contrast two popular stochastic MPC approaches.

2.1 Probability theory

A probability space is defined by the triplet (Ω,A,P), where Ω is the sample space, A
the σ-algebra on Ω and P the probability measure on (Ω,A). Throughout this thesis, we
consider the σ-algebra to be the Borel σ-algebra.

Definition 2.1 (Borel σ-algebra, [89, Def. 1.21]). Let (Ω, τ) be a topological space. The
σ-algebra

B(Ω) := σ(τ)

that is generated by the open sets is called the Borel σ-algebra on Ω. The elements A ∈ B(Ω)
are called Borel measurable sets.

In context of this thesis, we consider continuous random variables on Rn. Thus, we specify
the set of open subsets of Rn as O = {A ⊂ R

n | A is open}, such that B(Rn) = σ(O)
generates the Borel σ-algebra, cf. [89, Thm 1.23].

In the following, we formalize the concept of a random variable, which can be understood
as a measurable map from Ω to a space of possible observations W. The probability of the
possible outcomes are described by the distribution of the corresponding random variable,
which is the pre-image of the probability measure P under the measurable map w.

Definition 2.2 (Random variables [89, Def. 1.102]). Let (W,F) be a measurable space and
let w : Ω→ W be a measurable map.
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The map w is called a random variable. If (W,F) = (Rn,B(Rn)), then w is a real random
variable. For any set F ∈ F , we denote {w ∈ F} := w−1(F ) and P(w ∈ F ) := P(w−1(F )).

Definition 2.3 (Distribution of a random variable [89, Def. 1.103]). Let w : Ω → W be a
random variable that maps from the probability space (Ω,A,P) to a measurable space (W,F).

1. The probability measure Pw = P◦w−1 is called the distribution (push-forward measure)
of w. 1

2. We write w ∼ Pw and say that w has distribution Pw.

Expected value

In the following, we introduce the basic concepts of expectations of random variables, where
we start with the fundamental definition of µ-integrable functions.

Definition 2.4 (µ-integrable function [89, Def. 4.7]). A measurable function f : Ω → R ∪
{−∞,+∞} is called µ-integrable if

∫
Ω
|f(ω)|dµ(ω) <∞. We write

L1(µ) := L1(Ω,A, µ) :=
{
f : Ω→ R ∪ {−∞,+∞} : f is measurable and

∫
|f |dµ <∞

}
.

where the integral is a generalized Lebesgue integral, cf. [89, Def. 4.4].

Equipped with the basic integral formulation, we can define the expected value of a random
variable w ∈ L1(Ω,A,P) with w ∼ Pw and w : Ω→ W as follows

EP(w) :=

∫
Ω

w(ω)dP(ω) =

∫
w(Ω)

ϵ dPw(ϵ),

where the second equality uses the change-of-variables [16, Thm 16.13] with w(Ω) = W

being the image of Ω under the random variable w, i.e., w(Ω) := {ϵ | ϵ = w(ω), ω ∈ Ω}. This
can be generalized to the expected value under a measurable map g : W→ R

n, such that

EP(g(w)) :=

∫
Ω

g(w(ω))dP(ω) =

∫
W

g(ϵ)dPw(ϵ). (2.1)

Throughout this thesis, we consider continuous random variables that have a probability
density function fw : Ω→ [0,∞]. Thus, we can simplify (2.1) so that

EP(g(w)) =

∫
W

g(ϵ)fw(ϵ)dϵ. (2.2)

1The symbol ◦ denotes the composition of two functions.
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Remark 2.1. In the first part of this thesis, we consider random variables w for which the
true distribution (push-forward measure) Pw, cf. Def. 2.3, is known exactly, or at least the
first two moments of the random variable are known. In the second part, we remove this
assumption and simply assume that the true distribution belongs with high probability to a
so-called ambiguity set P, i.e., P(Pw ∈ P) ≥ 1− β for some confidence level β ∈ (0, 1).

Consider a random variable w ∈ L1(Ω,A,P) and a sub σ-algebra F ⊂ A. We define the
conditional expectation as follows.

Definition 2.5 (Conditional expectation [89, Def. 8.11]). A random variable y = E(w |F) is
called a conditional expectation of w given F , if:

(i) y is F-measurable.

(ii) For any A ∈ F , we have
∫
A
w(ω)dP(ω) =

∫
A
y(ω)dP(ω).

For B ∈ A, the conditional probability of B given F is defined as P(B | F) := E(1B | F),
where 1B is the indicator function of the set B.

2.2 Stochastic systems

Consider the discrete-time dynamical system

x(k + 1) = f(x(k), u(k), w(k)) ∀k ∈ N, (2.3)

where x ∈ X ⊆ R
n is the state, u ∈ U ⊆ R

m the control input, w ∈ W ⊆ R
n the stochastic

uncertainty (random variable) and f : X× U×W→ X the dynamic.

Let (Ω,F ,P) be a probability space for an infinite sequence w∞ : Ω → W
∞ of random

variables w(k), i.e., w∞ = {w(k)}∞k=0 is a stochastic process, and define the subsequence
wk : Ω → W

k of w∞ as wk = {w(t)}k−1
t=0 . Let (F0,F1, . . .) denote the natural filtration of

the sequence w∞, where the sub σ-algebra Fk ⊂ F contains all sets {ω ∈ Ω|wk(ω) ∈ Fk}
for Fk ∈ Fk := B(Wk). In view of this, also the state x(k) for k ≥ 1 is a stochastic process
defined on (Ω,F ,P) with filtration Fk, i.e., the state x(k) is Fk-measurable for all k ∈ N.

i.i.d. assumption Throughout this thesis, we pose different assumptions on the random
sequence w∞. However, for the sake of introduction we focus only on the independent and
identically distributed case, where each random variable w(k) : Ω → W is i.i.d. in time
for all k ∈ N, i.e., each random variable has a known and equivalent probability measure
µw : B(W)→ [0, 1] defined such that µw(F ) = P({ω ∈ Ω : w(k;ω) ∈ F}) for all F ∈ B(W).
In addition, we assume that the expectation is zero and the second moment of w(k) is finite
with known covariance matrix Σw = var(w(k)) ≻ 0.
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In SMPC, we need to predict the future evolution of the state process in expectation. To
this end, we assume that at time k = 0 the initial state x(0) is deterministic and define the
conditional expectation subject to the filtration Fk at time k as

E(x(k + t+ 1) | Fk) = E(f(x(k + t), u(k + t), w(k + t)) | x(k)) ∀t ∈ N.

The expression defines a t-step ahead prediction with information available at time k, i.e.,
conditioned on the filtration Fk or similarly on x(k).

Chance constraints In many control applications, the system dynamic (2.3) needs to sat-
isfy a set of constraints, which in the most general way can be written as

g(x(k), u(k), w(k)) ≤ 0, (2.4)

where g : X×U×W→ R
r denotes the constraint function and the inequality holds element-

wise. In view of the random variable w(k), satisfaction of (2.4) in form of hard constraints is
not always possible, e.g., if the support set W = R

n is unbounded. In this case, we introduce
chance constraints of the form

P(g(x(k), u(k), w(k)) ≤ 0) ≥ p, (2.5)

where p ∈ (0, 1) denotes the level of constraint satisfaction. At this point, a first distinction
of the chance constraint (2.5) is possible:

(i) If g 7→ R is a scalar function, then the chance constraint (2.5) is called an individual
chance constraint (ICC).

(ii) If g 7→ R
r is a vector-valued function, i.e., r ≥ 2, then the chance constraint (2.5) is

called a joint chance constraint (JCC).

Although JCCs are more natural from a control perspective, their evaluation is in general
cumbersome and involves solving a multivariate integral. In addition, the feasible set is
typically non-convex, which requires further convex approximations, cf. [132]. In case
of ICCs, we can impose several chance constraints at once by defining the vector-valued
function g(x(k), u(k), w(k)) = [g1(x(k), u(k), w(k)), . . . , gr(x(k), u(k), w(k))]

⊤ with gi : X×
U×W→ R for i = 1, . . . , r and interpret the chance constraint (2.5) element-wise.

2.2.1 Discussion of stochastic MPC for nonlinear systems

In the following, we briefly discuss some of the related literature on SMPC for nonlinear
systems of the form (2.3) with potentially nonlinear constraints (2.4).

Uncertainty propagation One of the major issues in nonlinear systems is that the super-
position principle does not hold. Thus, propagating the uncertainty through the system
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dynamics cannot be performed as in linear systems. Several methods have been proposed
over the last decade, with some of the early work considering polynomial chaos expansion
[122], Gaussian Process models [23] or the Fokker-Planck equation [24], see also a recent
survey paper [121] and the references therein. Recently, another line of research has en-
abled a different view on nonlinear SMPC with the concept of incremental stability [95],
which allows to derive a constraint tightening based on the inverse cumulative distribution
function of the bounded random variable [152]. A related approach is proposed by [149],
which uses Lipschitz arguments to bound the uncertainty.

Stability The second issue is related to asymptotic stability of the closed-loop system,
where most of the original work on nonlinear SMPC relies on stochastic stability results
developed by Kushner [100]. Since then, much effort has been put into refining and extending
stochastic Lyapunov functions to achieve global asymptotic stability, cf. [63, 66]. The
concept of input-to-state stability (ISS) was also extended to the stochastic case (SISS),
where SISS-Lyapunov functions were established [163]. The previous work on stochastic
stability theory, however, requires a continuous closed-loop system, which in presence of a
discontinuous SMPC feedback is violated [120]. However, by considering a bounded random
variable, the authors of [149] show that the closed-loop system is ISS using an ISS-Lyapunov
function, while Schlüter and Allgöwer [152] consider an incremental Lyapunov function to
prove practical asymptotic stability of the closed-loop system.

Existence and measurability In a recent paper [120], the authors draw attention to the
fact that some fundamental properties, such as measurability or existence of solutions, are
not currently present in the literature. This question targets the stochastic properties of the
system, such as, e.g., the expected value of the cost function (2.10) is well-defined or even if
it exists. In particular, the measurability condition of g in equation (2.1) must be fulfilled,
such that the optimal state trajectory remains measurable. McAllister and Rawlings [120]
provide some theoretical results on Borel measurability of the optimal value function and
the optimal control law mapping, while furthermore targeting the stochastic asymptotic
stability problem of the closed-loop system, where they introduce a definition of robust
asymptotic stability in expectation.

Chance constraints The extension of general nonlinear constraints (2.4) to chance con-
straints is once again a non-trivial task, even in a static nonlinear optimization problems
[1]. Some solution approaches are based on sparse-grid integration [64] or via mixed-integer
nonlinear programs [1]. Thus, most of the work on SMPC for nonlinear systems uses convex
JCCs or ICCs, which renders the resulting optimization problem computationally tractable.

Due to the aforementioned technical issues, most of the work on SMPC targets linear
systems with linear constraints, for which rigorous theoretical properties can be proven.
Some of the recent advances in SMPC for linear systems are presented below.
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2.3 Stochastic MPC for linear systems

The goal of this section is to give a brief overview of the state of the art in SMPC, while
describing in detail a particular approach used in different chapters of this thesis.

In the following, we consider linear time-invariant systems of the form

x(k + 1) = Ax(k) +Bu(k) + w(k) (2.6)

with system matrix A ∈ Rn×n, input matrix B ∈ Rn×m and a zero-mean i.i.d. noise w(k)
with known covariance matrix Σw ≻ 0. The system is subject to a JCC for the state

P(x(k) ∈ X̄) ≥ p ∀k ∈ N, (2.7)

where X̄ ⊆ Rn is a convex set containing the origin. Input chance constraints can be imposed
in a similar way, but for brevity we omit this in the introduction. The control objective is
to minimize the expected average infinite horizon cost

J∞ = lim
t→∞

E

(
1

t

t−1∑
k=0

l(x(k), u(k))

)
, (2.8)

where l : X × U → R≥0 denotes a non-negative stage cost function, subject to the state
constraints (2.7) at all times k ∈ N.

Receding horizon optimization In the following, we approximate the infinite horizon
cost (2.8) in a receding horizon fashion, resulting in the concept of SMPC. The basic idea
of a SMPC controller is to solve a finite-horizon stochastic optimal control problem (FH-
SOCP) over a prediction horizon N ∈ N, implementing only the first control input and
repeating the steps with a shifted time window. To make predictions with MPC, we de-
fine the predictive dynamics (open-loop dynamics), which has the same structure as its
closed-loop surrogate (2.6), i.e.,

x(t+ 1|k) = Ax(t|k) +Bu(t|k) + w(t|k), (2.9)

where x(t|k) and u(t|k) denote t-step ahead predictions made at time k. The predicted
disturbance w(t|k) is equal in distribution to w(t + k), while the statistics of w(k) for all
k ∈ N are known by assumption. The finite horizon cost function is defined as follows

J(x(·|k), u(·|k)) = E

(
Vf(x(N |k)) +

N−1∑
t=0

l(x(t|k), u(t|k))
∣∣∣∣x(0|k)

)
, (2.10)

where Vf : X → R≥0 denotes a terminal cost function that mimics the infinite horizon tail
for t > N . The FH-SOCP is defined as

min
x(·|k),u(·|k)

J(x(·|k), u(·|k)) (2.11a)

s.t. x(t+ 1|k) = Ax(t|k) +Bu(t|k) + w(t|k) ∀t ∈ {0, . . . , N − 1} (2.11b)

P(x(t|k) ∈ X̄ | x(0|k)) ≥ p ∀t ∈ {0, . . . , N − 1} (2.11c)

x(N |k) ∈ Xf , (2.11d)
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where Xf ⊆ X̄ denotes a terminal set that is used to ensure stability [57]. In the following,
we outline two approaches to address the FH-SOCP, namely an analytical approximation
method and a scenario-based approach.

2.3.1 Analytical approximation method

The key elements of an analytical approximation method include a proper control parame-
terization, a cost function that allows for an analytical evaluation of the expectation operator
and a deterministic reformulation of the chance constraints.

Control parameterization In the FH-SOCP (2.11), optimizing over the control input u(·|k)
would result in an infinite dimensional stochastic programming problem, since the input
sequence u(·|k) depends on w(·|k). These types of problems are difficult to solve, which
renders an online implementation of the optimization problem computationally intractable.

Therefore, we need to restrict the set of control policies so that the MPC makes only nominal
(uncertainty-free) predictions. The literature commonly proposes affine parameterization,
such as affine disturbance feedback [96, 135, 171] or affine state/error-feedback [29, 77,
98]. Note that these two parameterizations are actually equivalent [65], with the difference
that affine state/error-feedback typically uses fixed feedback gains, while in disturbance
feedback the feedback gains are optimized online. However, dynamic feedback gains can
also be used in the case of state/error-feedback, but this results in the set of admissible
control parameters (dynamic feedback gains and nominal inputs) being non-convex [65,
Prop. 1], while in the case of affine disturbance feedback the set is convex [65, Prop. 2]. In
the following, we consider the class of error-feedback parameterizations of the form

u(t|k) := v(t|k) +K(x(t|k)− z(t|k)), (2.12)

whereK ∈ Rm×n is a fixed stabilizing feedback gain for the matrix pair (A,B), z the nominal
state and v the nominal input. Substituting (2.12) into (2.9) and using linear superposition,
we can separate the state x into a deterministic (nominal) part z and a stochastic error part
e, such that x = z + e. The dynamics are governed by

z(t+ 1|k) = Az(t|k) +Bv(t|k) (2.13)

e(t+ 1|k) = AKe(t|k) + w(t|k), (2.14)

where AK = A+BK denotes the closed-loop matrix and e(0|k) = x(0|k)− z(0|k).

Chance constraints In the literature on SMPC, various chance constraint reformulation
methods are proposed. In general, we can distinguish between two subcategories, namely
scenario-based and analytical approximation methods. In this section, we present the latter
approach, where we reformulate the chance constraints (2.11c) as deterministic constraints
and treat the uncertainty similarly to robust MPC by tightening the constraints, cf. [57,
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60, 77, 106]. Within these analytical methods, there are minor variations in the derivation
of the constraint tightening, which are omitted here for brevity.

We focus on one particular constraint tightening technique based on probabilistic reachable
sets [77], where we reformulate the chance constraints (2.11c) by using the superposition
x = z + e, such that

P(x(t|k) ∈ X̄ | x(0|k)) = P(z(t|k) + e(t|k) ∈ X̄ | x(0|k)) ≥ p. (2.15)

This is equal to ∃R ⊆ R
n : z(t|k) ∈ Z := X̄⊖R and P(e(t|k) ∈ R | x(0|k)) ≥ p, where the

set R is also known as a PRS.

Definition 2.6 ([77] PRS). A set R is said to be a probabilistic reachable set (PRS) of
probability level p for system (2.14) with e(0|k) = 0 if P(e(t|k) ∈ R | e(0|k)) ≥ p ∀t ∈ N.

For completeness, we also introduce a k-step PRS, which will be used later in this thesis.

Definition 2.7 ([77] t-step PRS). A set R(t) with t ∈ N is said to be a t-step PRS of
probability level p for system (2.14) with e(0|k) = 0 if P(e(t|k) ∈ R(t) | e(0|k)) ≥ p.

Remark 2.2. Note that the chance constraint (2.15) is conditioned on the initial value x(0|k),
while the PRS is conditioned on e(0|k) = 0. Therefore, we need to initialize x(0|k) with
x(k) such that the error e(0|k) = 0, which can be enforced in terms of (2.13) - (2.14) by
setting z(0|k) = x(k), resulting in e(0|k) = x(k)− z(0|k) = 0. This immediately verifies the
chance constraints in closed-loop, since the distribution of x(k + 1) given x(k) is equal to
the distribution of x(1|k), i.e.,

P(x(1|k) ∈ X̄ | x(k)) = P(z(1|k) + e(1|k) ∈ X̄ | x(k))
(2.14),e(0|k)=0

= P(z(1|k) + w(0|k)︸ ︷︷ ︸
=w(k)

∈ X̄ | x(k)) = P(x(k + 1) ∈ X̄ | x(k)) ≥ p. (2.16)

However, initializing z(0|k) = x(k) in the presence of unbounded additive uncertainty may
lead to a loss of feasibility of the MPC optimization problem, which advocates the use of a
backup initialization strategy as proposed by [57, 60, 77, 109]. Typically, the shifted optimal
solution z(0|k) = z(1|k−1) from time k−1 is used as a guaranteed feasible backup solution,
i.e., x(0|k) = E(x(k) | x(k − 1)). The problem we now face is that by using an initial value
different from x(k), the error e(0|k) ̸= 0 leads to the loss of closed-loop chance constraint
guarantees (without further distributional specifications), since the PRS R is only valid
w.r.t. e(0|k) = 0, cf. Definition 2.6. In other words, the second equality of (2.16) does
not hold, and therefore we can conclude that the chance constraint (2.15) is only verified in
prediction

P(x(1|k) ∈ X̄ | x(k − 1)) = P(z(1|k) + e(1|k) ∈ Z⊕ R | x(k − 1)) ≥ p, (2.17)
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while the distribution of x(k + 1) given x(k) is not equal to the distribution of x(1|k). The
above initialization scheme is termed direct feedback in the related literature [78], since it
directly initializes the nominal prediction dynamics (2.13).

In contrast, consider a bounded random variable w ∈ W, where one can use a robust MPC
inspired constraint tightening [37] to robustly ensure that z(0|k) = x(k) is always feasible
for any realization of w ∈ W, cf. [43, 106, 107]. In this case, the error e(0|k) is always
zero, which implies that the chance constraints are satisfied for the closed-loop system for
all k.

In general, a PRS is a non-unique set that can be designed in different ways, e.g., [77, 109]
define convex symmetric PRS via mean-variance information (see Chapter 3), while [76]
considers non-symmetric mean-variance PRS for Gaussian random variables. Alternatively,
[79, 128] propose a design of non-symmetric PRS via scenario-optimization, cf. Section 4.3.2.
The latter approach is extended to the distributionally robust case in [111] and will be
covered in Section 6.3.1.

In the following, we focus on a PRS design with mean-variance information of the error e,
which is typically used in analytical frameworks [77, 109]. In particular, for a zero-mean
random variable w and e(0|k) = 0, it holds that also the predicted error is zero-mean, i.e.,

E(e(t+ 1|k)) = AKE(e(t|k)) + E(w(t|k)) = 0 ∀t ∈ N,

while the predicted variance evolves as

var(e(t+ 1|k)) = AKvar(e(t|k))A⊤
K + Σw ∀t ∈ N, (2.18)

which, due to Schur stability of AK and positive definiteness of Σw is guaranteed to converge
to a stationary covariance matrix Σe = limt→∞ var(e(t|k)). Since the distribution of w(k)
is equal for all k ∈ N, also the variance evolution for t ≥ 0 is equivalent for all times k.
Thus, this can be computed offline. The stationary covariance matrix allows us to define a
mean-variance PRS, e.g., via Chebyshev’s inequality

R = {e ∈ Rn | e⊤(Σe)
−1e ≤ γ},

where γ = n/(1 − p), which holds for arbitrary probability distributions. However, if the
disturbance is normally distributed, then γ = X 2

n(p) yields the tightest probability bound,
where X 2

n(p) is the inverse cumulative distribution function of the Chi-squared distribution
at probability level p with n degrees of freedom.

Under an additional central convex unimodality assumption for the distribution of w, it is
possible to ensure closed-loop constraint satisfaction in case of x(0|k) = E(x(k) | x(k − 1)),
i.e., with the backup strategy discussed in Remark 2.2 and in particular when e(0|k) ̸= 0.

Definition 2.8 ([51, Def. 3.1]). A distribution Q supported in R
n is called central convex

unimodal (CCU) if it is in the closed convex hull of the set of all uniform distributions on
symmetric compact convex bodies in Rn.
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Therefore, we make use of a property of CCU distributions called monotone unimodality
[51], which, assuming that z(0|k) = z(1|k − 1), allows to assert that

P(e(t|k) ∈ R) ≤ P(e(0|t+ k) ∈ R), (2.19)

cf. [77]. This yields that (2.17) can be upper bounded as follows

p ≤ P(x(1|k) ∈ X̄ | x(k − 1)) = P(z(1|k) + e(1|k) ∈ Z⊕R | x(k − 1))

(2.19)

≤ P(z(1|k) + e(0|k + 1) ∈ Z⊕R | x(k − 1)) = P(x(k + 1) ∈ X̄ | x(k − 1)), (2.20)

which again verifies the chance constraints in closed-loop. A similar conclusion can be made
by constraining the initial state z(0|k) on a line between x(k) and z(1|k − 1), as proposed
by [93, 153].

Remark 2.3. In direct feedback schemes with a feasibility-based initialization constraint (that
is, use always z(0|k) = x(k) if possible and z(0|k) = z(1|k− 1) else), the closed-loop chance
constraints are typically verified conservatively. In particular, the chance constraint (2.7) is
unconditionally satisfied, i.e., conditioned on the initial state x(0), which therefore allows
for multiple subsequent constraint violations, while the chance constraint (2.20) is enforced
conditioned on x(k), making subsequent constraint violations highly improbable [78]. Hence,
constraint (2.20) effectively enforces the chance constraint with regard to an immediate effect
of a disturbance realization only, cf. [78] for a detailed discussion.

Remark 2.4. An alternative to direct feedback (Remark 2.2) is the so-called indirect feed-
back initialization proposed by [76]. The idea is to initialize the nominal dynamics (2.13)
always with z(0|k) = z(1|k−1) for k ≥ 1. In view of this, the closed-loop error e(k) evolves
autonomously from the prediction dynamics, which allows us to formulate a PRS directly
for the closed-loop error e(k) instead of the prediction error (2.14). This immediately en-
sures non-conservative closed-loop chance constraint satisfaction by conditioning the chance
constraints on e(0) instead of x(0|k), i.e.,

P(x(1|k) ∈ X̄ | e(0)) = P(z(1|k) + e(k + 1) ∈ X̄ | e(0)) = P(x(k + 1) ∈ X̄ | e(0)) ≥ p,

where x(0|k) is always initialized with the measurement x(k).

Cost function In order to analytically reformulate the cost function (2.10), we assume that
the terminal and stage cost functions are quadratic, so that J = Ja with

Ja(x(·|k), u(·|k)) = E

(
∥x(N |k)∥2P +

N−1∑
t=0

∥x(t|k)∥2Q + ∥u(t|k)∥2R
∣∣∣∣x(0|k)

)
, (2.21)

whereQ,R, P are symmetric positive definite weighting matrices and P additionally satisfies
the Lyapunov inequality

A⊤
KPAK +Q+K⊤RK − P ⪯ 0.
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Using standard arguments from linear quadratic stochastic control [57], and in particular
the i.i.d. assumption of w(k), the expected value in (2.21) can be analytically evaluated
and the cost can be separated into a mean part Jm

a and a variance part Jv
a , such that

Ja = Jm
a + Jv

a with

Jm
a (z(·|k), v(·|k)) = ∥z(N |k)∥2P +

N−1∑
t=0

∥z(t|k)∥2Q + ∥v(t|k)∥2R

Jv
a (var(e(·|k))) = tr(var(e(N |k) | x(0|k))P ) +

N−1∑
t=0

tr(var(e(t|k) | x(0|k)(Q+K⊤RK))).

Note that in case of an affine state/error-feedback parameterization, the feedback gain K
is typically fixed, cf. [77, 93, 109, 153]. In this case, Jv

a (·) cannot be improved and can be
neglected in a receding horizon implementation. However, other publications use dynamic
feedback gains or require a variance prediction in order to ensure recursive feasibility, cf.
[57, 59, 60], in which case the variance cost Jva (·) must be taken into account.

Remark 2.5. The expected value in (2.10) is conditioned on x(0|k), which renders this
operator ambiguous. In particular, it follows from the discussion in Remark 2.2 that z(0|k)
must be either x(k) or E(x(k) |x(k−1)) to ensure recursive feasibility. Thus, the expectation
operator is either conditioned on x(k), if z(0|k) = x(k) is feasible, or on x(k − 1), if the
backup solution z(0|k) = z(1|k−1) is adopted. This can similarly be observed in the variance
cost Jv

a , where the variance operator is conditioned on x(0|k), i.e., if x(0|k) = x(k), the
variance is var(e(0|k) | x(0|k)) = 0, while if x(0|k) = E(x(k) | x(k − 1)), the variance is
var(e(0|k) | x(0|k)) ≻ 0.

This impacts the proof of convergence, which in general only exists for analytical frameworks
with quadratic cost, e.g., the authors of [60] use the predicted nominal state/input and error
variance to ensure a Lyapunov decrease condition, while [77] use only the nominal cost
without the variance part, but require an additional Lipschitz argument of the value function
to prove convergence. Recently, the authors of [93] have shown that by constraining z(0|k)
on a line between x(k) and z(1|k − 1), a more elegant proof of convergence exists, while no
additional assumptions are required.

Optimization problem Finally, we present a PRS-based SMPC optimization problem that
we solve for all times k ∈ N.

min
z(·|k),v(·|k)

Ja(z(·|k), v(·|k)) (2.22a)

s.t. z(t+ 1|k) = Az(t|k) +Bv(t|k) ∀t ∈ {0, . . . , N − 1} (2.22b)

z(t|k) ∈ X̄⊖R ∀t ∈ {0, . . . , N − 1} (2.22c)

z(N |k) ∈ Zf (2.22d)

z(0|k) ∈ {x(k), z(1|k − 1)}, (2.22e)
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where Zf ⊆ X̄ ⊖R is a terminal set that ensures that for all z ∈ Zf the constraints z ∈ Z
and Az + Bπf(z) ∈ Zf are verified. The function πf(z) is a so-called terminal controller,
which is typically chosen as πf(z) = Kfz, where Kf ∈ R

n×m is a stabilizing gain for the
matrix pair (A,B). Note that the terminal controller gain does not have to coincide with
the tube-controller gain K in (2.12). However, for the sake of simplicity we select Kf = K.
Furthermore, if the MPC optimization problem is subject to input constraints of the type
v(t|k) ∈ V ⊆ Ū ⊖ Ru, the terminal set would require the additional condition πf(z) ∈ V.
The control input for system (2.6) follows from the tube controller (2.12) and is given by

u(k) = v∗(0|k) +K(x(k)− z∗(0|k)),

where (z∗(0|k), v∗(0|k)) are the first elements of the optimizer of (2.22). Then, z∗(1|k) is
stored, the remaining sequence is discarded and the optimization is repeated at the next
time instant k + 1.

Remark 2.6. Under the assumption that the MPC optimization problem (2.22) is feasible
with z(0|0) = x(0), it can be shown that the optimization problem remains feasible for any
realization of the state, i.e., it is recursively feasible. Furthermore, the chance constrains
are verified in closed-loop and the closed-loop system achieves an asymptotic average per-
formance bound [77].

However, a drawback in the present optimization problem is the choice of cost function,
which unfortunately deteriorates the closed-loop performance compared to the linear con-
troller u = Kx. Köhler and Zeilinger [93] addressed this issue by using an interpolated
initial constraint, which results in a different interpretation of the predicted states and in-
puts. While (2.22a) uses the nominal states and inputs z and v, the cost function from [93]
uses the state and input mean x̄ and ū, i.e., (2.9) and (2.12) without the disturbance w,
which follows from the interpolating initial constraint z(0|k) = λkx(k) + (1− λk)z(1|k − 1)
with λk ∈ [0, 1]. Therefore, no case distinction has to be considered, e.g., as required by
[77], which establishes a performance bound no worse than from the linear tube controller
(2.12), cf. Chapter 7. The approach is closely related to SMPC with indirect feedback [76],
which uses the same cost for the predicted mean.

2.3.2 Scenario-based SMPC

In the following, we briefly outline a scenario-based SMPC, which, unlike the analytical
case, requires only samples of a distribution but no analytical expression of it. Hence, we
can treat arbitrary uncertainty sources.

Chance constraints In scenario-based methods, the chance constraints (2.7) are approxi-
mated by sampling Ns ∈ N deterministic state predictions based on extracted uncertainty
samples of w(k) [27]. Note that this can also be combined with different control parameter-
izations, such as error-feedback [79]. In this introduction, we focus on a so-called sample-
and-discard approach for stochastic programming [28], which replaces the chance constraint
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(2.7) with a sample-based surrogate

x(i)(t|k) ∈ X̄ ∀i ∈ Is ∀t ∈ {0, . . . , N − 1}, (2.23)

where Is denotes a subset of I = {1, . . . , Ns} with cardinality |Is| = Ns−Nd. The constraint
satisfaction probability p is regulated by discarding Nd samples of I, such that all discarded
samples intentionally violate (2.23). The amount of samples to discard Nd is obtained, e.g.,
by applying the Chernoff bound to the binomial tail as proposed by [28, Thm. 2.1]. Note
that in view of this the chance constraints only hold with a confidence of 1−β for β ∈ (0, 1),
where β depends on the sample size Ns. We will use this concept in Section 4.3.1, where
we use scenario-based PRS [79] for indirect output-feedback SMPC.

Cost function We consider the cost function (2.10) and replace the expectation operator
with the empirical expectation, which is typically done in the related literature [10, 79, 139,
150]. This implies that the cost function is only approximately minimized, i.e., J ≈ Js with

Js(x(·|k), u(·|k)) = Eµ̂N

(
Vf(x(N |k)) +

N−1∑
t=0

l(x(t|k), u(t|k))

)
. (2.24)

To formalize the empirical expectation, we consider the N -fold joint distribution measure
µ̂N : B(WN)→ [0, 1] of the sequence wN = {w(k), . . . , w(k +N − 1)}, which is defined as

µ̂N(F ) = µ̂(Fk)× · · · × µ̂(Fk+N−1) ∀F = (Fk, Fk+1, . . . Fk+N−1) ∈ B(WN),

where the empirical probability measure µ̂(Fk) = N−1
s

∑Ns

i=1 δw(i)(k)(Fk) concentrates the

probability mass N−1
s uniformly on the I samples w(i)(k) ∼ µ(w(k)) via the Dirac delta

measure. In other words, the expected cost function is approximated via a sample average
approximation (SAA) with Ns predicted state trajectories x(i)(t|k) for t = 0, . . . , N , i.e.,
(2.24) is equal to

Js(x(·|k), u(·|k)) =
1

Ns

(
Ns∑
i=1

[
Vf(x

(i)(N |k)) +
N−1∑
t=0

l(x(i)(t|k), u(t|k))
])

. (2.25)

The minimizer u∗(·|k) of the SAA cost function (2.25) is with confidence 1 − β also the
minimizer of (2.10), which can be deduced from the empirical nature of the SAA. In fact,
the SAA is asymptotically consistent [90], indicating that for Ns → ∞ the confidence
1 − β → 1 and the minimizer of (2.25) is with probability 1 the minimizer of (2.10).
However, the sample size Ns cannot be chosen arbitrarily large, since the computational
complexity grows at least linearly, and often exponentially, in Ns [90].

Notably, we do not require any assumptions on the cost functions Vf : X → R≥0 and
l : X× U→ R≥0 except convexity, e.g., any arbitrary norm satisfies this property.
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Optimization problem The resulting scenario-based SMPC optimization problem is de-
fined as

min
x(i)(·|k),u(·|k)

Js(x(·|k), u(·|k)) (2.26a)

s.t. x(i)(t+ 1|k) = Ax(i)(t|k) +Bu(t|k) + w(i)(t|k) (2.26b)

x(j)(t|k) ∈ X̄ ∀j ∈ Is (2.26c)

x(i)(0|k) = x0 (2.26d)

for all t = 0, . . . , N − 1 and for all i ∈ I. It should be noted that recursive feasibility of the
above optimization problem is not guaranteed in its present form, and in general is difficult
to verify, cf. [123, 139, 150], where this aspect is usually not covered theoretically or only
ensured by assumption. Notable exceptions include the work on scenario-based indirect
feedback SMPC [79, 128], which ensures closed-loop chance constraints satisfaction with
1 − β confidence while being recursively feasible. For details, we refer to Section 4.3 for a
related approach.
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Control





3 Tracking of piece-wise constant
references

Motivated by the practical aspect that many control problems require online adjustment of
nonzero setpoints [104], such as distributed power systems [166] or water supply systems
[102], in this chapter we develop a distributed stochastic MPC framework for tracking of
piece-wise constant output reference points for stochastic distributed systems.

In Section 3.2, we introduce the components of the controller that are suitable for distributed
optimization, while this section ends with a centralized MPC optmization problem. Sec-
tion 3.3 introduces a DMPC framework, which, similar to [39], uses distributed consensus
ADMM to solve the central MPC optimization problem in a distributed fashion. In addi-
tion, we use results from [92] to study the impact of inexact dual optimization on closed-loop
chance constraint satisfaction and on recursive feasibility of the MPC optimization problem.
In Section 3.4, we present the main result of this chapter, while Section 3.5 is devoted to
two numerical examples. This chapter is based on the publication [113] 1.

Related work In [40], the authors propose a cooperative DMPC for tracking of nominal
distributed systems based on the concept of distributed invariance. A distributed terminal
set for tracking ensures recursive feasibility of the DMPC scheme. In [62] a sequential
nominal DMPC scheme for tracking is presented that combines the MPC and steady-state
target optimization problems, such that only one problem needs to be solved at each time
instant. The DMPC can handle unreachable output reference points while maintaining
recursive feasibility of the optimization problem. The authors use a terminal set for tracking
to ensure stability. The authors of [58] use a sequential stochastic DMPC for independent
systems with coupling constraints. The chance constraints are reformulated with Cantelli’s
inequality, which yields chance constraint satisfaction in prediction. In this chapter, we
generalize our previous work on DSMPC with distributed PRS for set point regulation [109]
to the tracking case, while, compared to our proposed tracking DSMPC [114], we consider
explicitly inexact minimization.

1C. Mark and S. Liu. “Stochastic Distributed Predictive Tracking Control Under Inexact Minimization”.
In: IEEE Transactions on Control of Network Systems 8.4 (2021), pp. 1892–1904©2021 IEEE.
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3.1 Problem description

We consider linear systems that are decomposable into i = 1, . . . ,M non-overlapping sub-
systems with local dynamics

xi(k + 1) =
M∑
j=1

Aijxj(k) +Biui(k) + wi(k) (3.1)

yi(k) =
M∑
j=1

CijxNi
(k), (3.2)

where xi ∈ Rni is the local state, ui ∈ Rmi the local input, yi ∈ Rpi the local output and wi ∈
R
ni the local stochastic disturbance. The global state, input, output and disturbance vectors

are defined by the stacked column vector of the local quantities, i.e., x = coli∈{1,...,M}(xi) ∈
R
n, u = coli∈{1,...,M}(ui) ∈ Rm, y = coli∈{1,...,M}(yi) ∈ Rp and w = coli∈{1,...,M}(wi) ∈ Rn with

global dimensions

n =
M∑
i=1

ni, m =
M∑
i=1

mi, p =
M∑
i=1

pi.

To simplify the notation, we assume that the distributed system is graph representable.

Definition 3.1. (Distributed systems on a graph) Let G = (M, E) be a graph, where each
node i ∈ M = {1, . . . ,M} corresponds to a subsystem with local dynamics (3.1) - (3.2),
while the edges E represent physical couplings between the subsystems. We denote the subset
of all nodes that are connected to subsystem i as the strict neighborhood N̄i = {j |(i, j) ∈ E}.
By including subsystem i into N̄i, we obtain the neighborhood Ni = N̄i∪{i} with state vector
xNi

= colj∈Ni
(xj) ∈ R|Ni|ni.

Using Definition 3.1, we can reformulate the dynamics (3.1) - (3.2) for all i ∈M as follows

xi(k + 1) = ANi
xNi

(k) +Biui(k) + wi(k) (3.3a)

yi(k) = CNi
xNi

(k). (3.3b)

We assume that wi for all i ∈M are zero-mean i.i.d. random variables that follow a central
convex unimodal distribution (Definition 2.8) with known covariance matrix Σw

i ≻ 0 . The
overall (global) system is given by

x(k + 1) = Ax(k) +Bu(k) + w(k) (3.4a)

y(k) = Cx(k), (3.4b)

where w is zero-mean with covariance matrix Σw = blkdiagi∈M(Σw
i ). To simplify the expo-

sition, we make the following assumption on stabilizability.
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Assumption 3.1. The pair (A,B) is stabilizable with a structured linear feedback controller

u(k) = Kx(k) = coli∈M(KNi
xNi

(k)),

where KNi
∈ Rmi×nNi , such that the spectral radius ρ(AK) < 1 with AK = A+BK.

Remark 3.1. The structured controller gains KNi
for all i ∈M can be computed via struc-

tured LMIs and distributed optimization, e.g., with [42, Lemma 10 and Proposition 13].

We impose polytopic state and input chance constraints for all times k ∈ N

P
(
xNi

(k) ∈ XNi
:= {xNi

|HNi
xNi
≤ hNi

} | x(0)
)
≥ px (3.5a)

P
(
ui(k) ∈ Ui := {ui | Liui ≤ li} | x(0)

)
≥ pu, (3.5b)

where hNi
∈ Rri>0, li ∈ R

qi
>0 and px, pu ∈ (0, 1) are the levels of chance constraint satisfaction.

In this formulation, we can enforce local input constraints and neighbor-to-neighbor coupled
state constraints, i.e., constraints that include states from the neighboring subsystems. The
global constraint sets are given by the Cartesian product of the local sets

X :=
∏
i∈M

XNi
= {x ∈ Rn |Hx ≤ h} (3.6)

U :=
∏
i∈M

Ui = {u ∈ Rm | Lu ≤ l}. (3.7)

The goal of this chapter is to design a distributed predictive control algorithm that steers
the system output (3.4b) in expectation to a reference point ys in an admissible way, i.e.,
E(y(k)) → ys as k → ∞. In the following section, we introduce the necessary controller
ingredients to pose a centralized MPC optimization problem.

3.2 Controller design

We define for each subsystem i ∈M a distributed error-feedback controller

ui(k) = vi(0|k) +KNi
(xNi

(k)− zNi
(0|k)), (3.8)

where zNi
and vi denote the state and input of the i-th nominal subsystem

zi(t+ 1|k) = ANi
zNi

(t|k) +Bivi(t|k). (3.9a)

The nominal state and input sequences zNi
(·|k), vi(·|k) are the result of an MPC optimiza-

tion problem solved at time k, while the distributed error feedback controller, i.e., the last
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term in (3.8) stabilizes the neighborhood error eNi
= xNi

− zNi
. Defining the local error as

ei = xi − zi, it follows by linear superposition that the error dynamics are governed by

ei(t+ 1|k) = ANi,KeNi
(t|k) + wi(t|k), (3.10)

where ANi,K = ANi
+ BiKNi

. In addition, since the disturbance sequence is i.i.d., we have

that wi(t|k)
d
= wi(t+ k), cf. Section 2.3. The corresponding global system is given by

z(t+ 1|k) = Az(t|k) +Bv(t|k) (3.11a)

e(t+ 1|k) = AKe(t|k) + w(t|k). (3.11b)

In the following, we consider the error dynamics (3.11b) to quantify the uncertainty in a
distributed fashion.

3.2.1 Distributed error propagation

In SMPC with PRS-based constraint tightening, we usually use mean-variance information
of the error state (3.11b) to design the PRS, cf. Section 2.3.1. Note that under the zero-mean
assumption for the disturbance w, also the predicted error (3.11b) is zero mean. Therefore,
it is sufficient to consider only the error covariance in the following. With this in mind, we
will first introduce global covariance dynamics and point out the necessary changes required
for a distributed implementation.

Covariance dynamics We define the global t-step error covariance matrix as Σe(t+1|k) =
var(e(t+ 1|k)), whose dynamics are governed by

Σe(t+ 1|k)
=E(AKe(t|k)w⊤(t|k) + w(t|k)w⊤(t|k) + AKe(t|k)w⊤(t|k) + AKe(t|k)e⊤(t|k)A⊤

K)

=E(AKe(t|k)w⊤(t|k)) + E(w(t|k)w⊤(t|k)) + E(AKe(t|k)w⊤(t|k)) + E(AKe(t|k)e⊤(t|k)A⊤
K))

=AKΣ
e(t|k)A⊤

K + Σw,

where the second equality uses linearity of the expectation and the third equality uses the
assumption that E(w) = 0. Furthermore, Σw = var(w(t|k)) is the covariance matrix of the
noise w and Σe(t|k) = var(e(t|k)) the error covariance. Since AK is Schur stable, Σw ≻ 0

and w(t|k) d
= w(t + k) is i.i.d. for all t, k ∈ N, it is guaranteed that Σe(t|k) converges to

a stationary covariance matrix Σe
f , such that Σe(t|k) ⪯ Σe

f as t → ∞ for all k ∈ N. Note
that the global covariance matrix Σe is in general dense, which is due to the couplings
between subsystems through the matrix AK. This poses a major problem for the design of
distributed controllers. A simple idea to enforce a distributed structure is to upper bound
the global covariance matrix Σe

f by a block-diagonal matrix, cf. [56], where we define

Σ̂e
f =

Σ̂
e
f,1 · · · 0
...

. . .
...

0 . . . Σ̂e
f,M

 , (3.12)
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such that Σe
f ⪯ Σ̂e

f . Each block Σ̂e
i corresponds to an upper-bound of the covariance matrix

of the i-th subsystems error state (3.10). In the following, we present two design methods
for the distributed stationary covariance matrix.

Block-diagonal stationary covariance matrix – A centralized LMI approach

In the first approach, we design (3.12) based on the Lyapunov-like equality

Σ̂e
f = AKΣ̂

e
fA

⊤
K + Σw. (3.13)

By relaxing (3.13) as an inequality, we can establish the following equivalence for positive
definite matrices Σ̂e

f via the Schur complement

Σ̂e
f − AKΣ̂f(Σ̂

e
f )

−1Σ̂e
fA

⊤
K − Σw ⪰ 0⇐⇒

[
Σ̂e

f − Σw AKΣ̂
e
f

Σ̂e
fA

⊤
K Σ̂e

f

]
⪰ 0.

A block diagonal stationary covariance matrix can be found using the following optimization
problem

Σ̂e∗
f = argmin

Σ̂e
f⪰0

∥Σ̂e
f∥2F (3.14a)

s.t.

[
Σ̂e

f − Σw AKΣ̂
e
f

Σ̂e
fA

⊤
K Σ̂e

f

]
⪰ 0, (3.14b)

where the cost function minimizes the Frobenius norm. It then remains to distribute the cor-
responding neighborhood covariance matrices Σ̂e

Ni,f
= blkdiagj∈Ni

(Σ̂e∗
f,j) to each subsystem

i ∈M.

Block-diagonal stationary covariance matrix – An iterative distributed approach

The second approach is based on the idea presented in [56, Sec. II.B]. We define block-
diagonal covariance matrices Σ̂e

Ni
that consist of local covariance matrices Σ̂e

j for all j ∈ Ni,
while the modified local covariance update equations are given by

Σ̂e
i (t+ 1) = ÃNi,KΣ̂

e
Ni
(t)Ã⊤

Ni,K
+ Σw

i ∀i ∈M, (3.15)

where ÃNi,K =
√
|Ni|ANi,K with |Ni| being the cardinality of Ni. With [56, Lemma 1] it can

be shown that, if each subsystem i ∈ M updates its local covariance matrix Σ̂e
i according

to (3.15), then the global block-diagonal covariance matrix satisfies

Σe(t+ 1) ⪯

Σ̂
e
1(t+ 1) · · · 0

...
. . .

...

0 . . . Σ̂e
M(t+ 1)

 = Σ̂e(t+ 1).

Since this holds for all times t ∈ N, we obtain the stationary covariance matrix Σ̂e
f as t→∞,

which can be found in a distributed way with Algorithm 1.
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Algorithm 1 Distributed stationary covariance matrix synthesis

1: For each subsystem i ∈M in parallel:
2: Initialize Σ̂e

Ni
(0) = 0 and t = 0

3: repeat
4: Σ̂e

i (t+ 1) = ÃNi,KΣ̂
e
Ni
(t)Ã⊤

Ni,K
+ Σw

i

5: Communicate Σ̂e
i (t+ 1) to neighbors j ∈ Ni

6: Construct Σ̂e
Ni
(t+ 1) = blkdiagj∈Ni

(Σ̂e
j(t+ 1))

7: Increment time t← t+ 1
8: until convergence, i.e., ∥Σ̂e

i (t+ 1)− Σ̂e
i (t)∥F ≤ threshold ∀i ∈M

9: Construct stationary covariance matrices Σ̂e
Ni,f

= blkdiagj∈Ni
(Σ̂e

j(t)) ∀i ∈M

Remark 3.2. The conservatism of Algorithm 1 depends strongly on the cardinality of the
neighborhood Ni as well as on the coupling strength between the subsystems. If the cardinality
or coupling strength is too large/strong, this may result in a very large distributed covariance
matrix that ultimately leads to a conservative feasible region of the MPC optimization prob-
lem or potentially empty constraint sets. As a general rule of thumb, a centralized design
should always be preferred and is usually associated with less conservatism. We refer to the
following chapter, in particular to Section 4.2.6, where we perform a numerical comparison
of the two design methods in the case of output feedback. These results can be trivially
carried over to the state-feedback case presented in this chapter.

3.2.2 Chance constraints via Distributed Probabilistic Reachable Sets

In the following, we address the chance constraints making use of PRS for constraint tight-
ening, cf. Section 2.3.1, where we use the distributed stationary covariance matrix (3.12)
to derive so-called distributed PRS, i.e., we derive for each subsystem i ∈ M a PRS. We
propose two PRS designs based on the stationary neighborhood covariance matrix Σ̂e

Ni,f
,

where the first design is called marginal PRS that uses the marginal distribution along each
error dimension, while the second design is called constraint-aligned PRS, where we consider
the marginal distribution along each half-space.

Marginal PRS

A marginal PRS is characterized by the marginal distributions of the zero-mean error
eNi
∈ R

nNi , which is readily obtained by applying Chebyshev’s inequality [34, Thm. 1]
along each dimension of eNi

, i.e.,

P

(
[eNi

]2j ≥ γij[Σ̂
e
Ni,f

]j,j

)
≤ 1

γij
∀j ∈ {1, . . . , nNi

},
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while a joint probability statement is obtained by using the union bound

P

( nNi⋃
j=1

[
[eNi

]2j ≥ γij[Σ̂
e
Ni,f

]j,j

])
≤

nNi∑
j=1

1

γij
= 1− px.

By calculating the complementary probability, we obtain the condition 1 −
∑nNi

j=1
1
γij

= px,

where the risk thresholds γij can be used to weight each error dimension individually. For
simplicity, we choose γij = γi, which represents an equally weighted joint chance constrained
set, i.e.,

1−
nNi∑
j=1

1

γij

γij=γi
= 1− nNi

γi
= px.

Thus, the marginal PRS is characterized by γi = nNi
/(1− px) and is defined as

RNi
=

{
eNi
∈ RnNi

∣∣∣∣ ∣∣[eNi
]j
∣∣ ≤√γi [Σ̂e

Ni,f
]j,j ∀j ∈ {1, . . . , nNi

}
}
.

The PRS for the input error eui = ui − vi = KNi
eNi

can be defined analogously as

Ru
i =

{
eui ∈ Rmi

∣∣∣∣ ∣∣[eui ]j∣∣ ≤√γui [Σ̂
u
i,f ]j,j ∀j ∈ {1, . . . ,mi}

}
,

where Σ̂u
i,f = KNi

Σ̂e
Ni,f

K⊤
Ni

and γui = mi/(1− pu).

Remark 3.3. The bound γi holds for arbitrary probability distributions. However, if the
disturbance is normally distributed, then γi = X 2

nNi
(px) yields the tightest probability bound,

where X 2
nNi

(px) is the quantile function of the Chi-squared distribution at probability level
px with nNi

degrees of freedom. This similarly holds for γui .

Remark 3.4. If the chance constraints are enforced individually, a less conservative marginal
parallel-space PRS can be defined with γi = 1/(1 − px) for arbitrary distributions or
γi = X 2

1 (px) for the Gaussian distribution. This should not be confused with individual
chance constraints, i.e., Chebyshev’s inequality is two-sided and leads to JCCs in each di-
mension.

The tightened state and input constraints for the marginal PRS are defined as

h̃Ni
= hNi

−
∣∣HNi

∣∣√diag
(
γiΣ̂e

Ni,f

)
(3.16a)

l̃i = li −
∣∣Li∣∣√diag

(
γui Σ̂

u
i,f

)
, (3.16b)

where the absolute value | · | and the square root of the vector of diagonal elements diag(·)
are taken element-wise.
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Constraint-aligned PRS

We consider the marginal distribution of the error eNi
in direction of the j-th half-space

ẽj = [HNi
]jeNi

∼ Q(0, [HNi
]jΣ̂

e
Ni,f

[HNi
]⊤j ), for which we apply Chebyshev’s inequality, i.e.,

P

(
ẽ⊤j

(
[HNi

]jΣ̂
e
Ni,f

[HNi
]⊤j

)−1

ẽj ≥ γij

)
≤ 1

γij
∀j = {1, . . . , ri}.

Similar to the marginal PRS, we use the union bound and set γij = γi, resulting in the
bound γi = ri/(1− px), while the constraint-aligned PRS is defined as

RA
Ni

=

{
eNi
∈ RnNi

∣∣∣∣ ∣∣[HNi
]jeNi

∣∣ ≤√γi [HNi
]jΣ̂e

Ni,f
[HNi

]⊤j ∀j ∈ {1, . . . , ri}
}
.

The tightened state and input constraints via constraint-aligned PRS are given by

h̃ANi
= hNi

−
√

diag
(
γiHNi

Σ̂e
Ni,f

H⊤
Ni

)
(3.17a)

l̃Ai = li −
√

diag
(
γui LiΣ̂

u
i,fL

⊤
i

)
, (3.17b)

where the absolute value | · | and the square root of the vector of diagonal elements diag(·)
are taken element-wise, while γi and γ

u
i can be chosen according to Remarks 3.3 and 3.4.

Let h̄Ni
and l̄i be either equal to (3.16) or (3.17), then the chance constraints (3.5) are

satisfied in prediction, cf. Remark 2.2, if the nominal MPC optimization problem satisfies
the tightened constraints

ZNi
= XNi

⊖RNi
= {zNi

|HNi
zNi
≤ h̄Ni

}
VNi

= Ui ⊖Ru
i = {vi|LNi

vi ≤ l̄i}.

The corresponding global constraint sets are given by

Z :=
∏
i∈M

ZNi
= {z |Hz ≤ h̄} (3.18a)

V :=
∏
i∈M

Vi = {v | Lv ≤ l̄}. (3.18b)

3.2.3 Objective function

In order to define a cost function for tracking, we need to characterize the steady-states
of system (3.4a). However, due to the additive noise w, the steady-states can only be
formulated in expectation, i.e., w.r.t. the nominal system (3.11a). To this end, we define a
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time-varying artificial tracking target ys(k) that is consistent with the artificial steady-state
pair (zs(k), vs(k)) given by [

A− I B

C 0

] [
zs(k)

vs(k)

]
=

[
0

ys(k)

]
. (3.19)

The idea we are pursuing is based on Limón et al. [104], where the goal is to track the
reachable artificial target ys(k) instead of the true reference yref at each time instant k.
This increases the feasible region of the MPC optimization problem and renders setpoint
changes always feasible [104]. To steer the artificial steady-state ys(k) to a constant reference
yref in an admissible way, we define a cost function for tracking in the deviation variables
∆z = z − zs and ∆v = v − vs, while we consider a quadratic cost function over a finite
prediction horizon N ∈ N

J(∆z,∆v, ys, y
ref) =

N−1∑
t=0

∥z(t|k)− zs(k)∥2Q + ∥v(t|k)− vs(k)∥2R + ∥ys(k)− yref∥2T , (3.20)

where Q ⪰ 0, R ≻ 0 and T ≻ 0 are block-diagonal weighting matrices for the states,
inputs and the output reference. In this chapter, we use a zero-terminal constraint strategy,
i.e., z(N |k) − zs(k) = 0, which renders a terminal cost function obsolete (see Section 3.2.4
and constraint (3.21d) for details). In addition, we omit the variance part that is usually
associated with quadratic cost functions in stochastic MPC, since the tube controller gains
KNi

for all i ∈M in (3.8) are fixed, cf. the paragraph cost function in Section 2.3.1.

3.2.4 MPC optimization problem

The following MPC optimization problem is solved at every time instant k ∈ N.

Problem 3.2.1 (Centralized MPC tracking problem).

min
Z,V,zs,vs,ys

J(∆z,∆v, ys, y
ref) (3.21a)

s.t. z(t+ 1|k) = Az(t|k) +Bv(t|k) ∀t ∈ {0, ..., N − 1}
(z(t|k), v(t|k)) ∈ Z× V ∀t ∈ {0, ..., N − 1}
zs = Azs +Bvs, (zs, vs) ∈ θ(Z× V) (3.21b)

ys = Czs (3.21c)

z(N |k) = zs (3.21d)

z(0|k) ∈ {x(k), z(1|k − 1)}, (3.21e)

where V = {v(0|k), . . . , v(N−1|k)} and Z = {z(0|k), . . . , z(N |k)} denote the nominal input
and state sequences, respectively.
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The MPC is categorized as a direct feedback controller due to the initial constraint (3.21e),
cf. Remark 2.2, where we use the standard conditional update rule, i.e., if the MPC opti-
mization problem 3.2.1 is feasible with z(0|k) = x(k), then we solve it in what is called
mode 1. Otherwise, we use the shifted optimal solution from the previous time step
z(0|k) = z(1|k − 1), which we call mode 2. Similar to [104] the parameter θ ∈ (0, 1)
renders the resulting steady-state pair admissible and can be set arbitrarily close to 1, while
the closed-loop control input for each subsystem (3.3) is given by the tube controller (3.8).

3.3 Distributed consensus optimization with ADMM

In this section, we address a distributed solution of Problem 3.2.1 with consensus ADMM
[22]. Let Ξ be the global vector of decision variables

Ξ =



z(0|k)
...

z(N |k)
v(0|k)

...

v(N − 1|k)
zs(k)

vs(k)

ys(k)


.

In order to decompose the MPC optimization problem 3.2.1 intoM subproblems, we exploit
the structure of the dynamic (equality) constraints (3.9a), steady-state (equality) constraint
(3.19) and the inequality constraints (3.6) - (3.7). For each subsystem i ∈ M, we define a
local vector of decision variables ξi containing the local predictions, as well as the steady-
state triplet in view of subsystem i

ξi =



ziNi
(0|k)
...

ziNi
(N |k)

vi(0|k)
...

vi(N − 1|k)
zNi,s(k)

vi,s(k)

yi,s(k)


.

Hence, each subsystem i ∈ M contains the neighboring states, inputs and steady-state
triplet as independent decision variables in ξj,∀j ∈ Ni and in Ξ. At this point, the global
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optimization problem can be decomposed into M subproblems, each of which optimizes the
local vector ξi, while a consensus constraint coordinates the local solutions

EiΞ = ξi ∀i ∈M. (3.22)

The matrices Ei are so-called mapping operators, where each row is a unit vector with
elements in {0, 1}. The communication graph G is thus encoded in Ei, while the local
vectors ξi can be understood as copies of those entries in Ξ that affect subsystem i [39].

Next, the MPC optimization problem 3.2.1 is expressed in the distributed consensus form

min
Ξ,ξi ∀i∈M

M∑
i=1

Ji(ξi, y
ref
i ) (3.23a)

s.t. ξi = EiΞ ∀i ∈M (3.23b)

ξi ∈ Si(zi,0) ∀i ∈M (3.23c)

zi,0 ∈ {xi(k), zi(1|k − 1)} ∀i ∈M, (3.23d)

where the i-th local objective function is given by

Ji(ξi, y
ref
i ) = ∥yi,s(k)− yrefi ∥2Ti +

N−1∑
t=0

∥zii(t|k)− zii,s∥2Qi
+ ∥vi(t|k)− vi,s∥2Ri

and Si(zi,0) denotes a convex set that enforces all local constraints

Si(zi,0) :=



ξi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zi(0|k) = zi,0
zii(t+ 1|k) = ANi

ziNi
(t|k) +Bivi(t|k)

ziNi
(t|k) ∈ ZNi

vi(t|k) ∈ Vi

zii(N |k) = zii,s(k)

∀t ∈ {0, . . . , N − 1}
zii,s(k) = ANi

ziNi,s
(k) +Bivi,s(k)

yi,s(k) = CNi
ziNi,s

(k)

(ziNi,s
(k), vi,s(k)) ∈ θ(ZNi

× Vi)



. (3.24)

To solve the distributed consensus problem (3.23) via ADMM, we define the augmented
Lagrangian for the consistency constraint (3.23b), i.e.,

Li(Ξ, ξi, λi, yrefi ) = Ji(ξi, y
ref
i ) + λ⊤i (ξi − EiΞ) +

ρ

2
∥ξi − EiΞ∥22, (3.25)

where λi is a dual vector and ρ ∈ R>0 the augmentation factor to increase convexity. The
distributed consensus ADMM procedure is summarized in Algorithm 2 and illustrated in
Figure 3.1, where we use the notation that ξ+ji and λji indicate ξ

+
i and λi predicted by

subsystem j.
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Algorithm 2 Consensus ADMM

1: For each subsystem i ∈M in parallel:
2: Initialize λi = 0, Ξ = 0, zi,0 = {xi(k) ∨ zii(1|k − 1)}
3: repeat
4: ξ+i = argmin

ξi∈Si(zi,0)

Li(Ξ, ξi, λi, yrefi )

5: Communicate ξ+i to neighbors j ∈ Ni
6: Average Ξ+

i =
1

|Ni|
∑
j∈Ni

E⊤
ji(ξ

+
ji +

1

ρ
λji)

7: Communicate Ξ+
i to neighbors j ∈ Ni

8: λ+i = λi + ρ(ξ+i − EiΞ+)
9: until convergence

Figure 3.1: Illustration of dual consensus ADMM (Algorithm 2) for three subsystems in a
chain topology. The shaded rectangles represent the coupled subsystems. For
each iteration, the local solutions ξi, i.e., line 4 of Algorithm 2, are averaged
in the global vector Ξ (Line 6). Afterwards, Ξ is decomposed into its local
equivalents and distributed to each subsystem (Line 7). These steps are repeated
until convergence, i.e., until ∥ξi − EiΞ∥∞ ≤ ϵ for all i ∈M (Line 9).

Remark 3.5. The residuals ∥ξi − EiΞ∥22 converge asymptotically to zero for all i ∈ M if
all functions Ji(ξi, y

ref
i ) are closed, proper and convex and the unaugmented Lagrangian

(equation (3.25) without the last term) has a saddle point [22].

In practice, as computing the exact optimal solution is not feasible at every time step k,
Algorithm 2 is stopped when the following condition is met

∥ξi − EiΞ∥∞ ≤ ϵ ∀i ∈M, (3.26)
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Figure 3.2: Implication of the stopping condition (3.26) for the example in Figure 3.1. The
states of subsystem 2 predicted by subsystem 1 (ξ12) are different from the states
of subsystem 2 predicted by subsystem 2 (ξ22). This inconsistency occurs in all
dynamically coupled subsystems and can lead to a loss of feasibility and closed-
loop chance constraint guarantees.

where ϵ ∈ R>0. The stopping condition implies that the consistency constraint (3.22) is not
exactly satisfied, resulting in predicted state and input trajectories that are only ϵ-feasible.
The effects of this can be seen in Figure 3.2.

3.3.1 Inexact distributed optimization – Implications on feasibility

In the subsequent analysis, we quantify the prediction error of an ϵ-feasible solution by
introducing uncertain dynamics and steady-state conditions that reflect the inexactness
through bounded disturbances δi and γi, i.e.,

zii(t+ 1|k) = ANi
zNi

(t|k) +Bivi(t|k) + δi(t) ∀t ∈ {0, . . . , N − 1} (3.27a)

zii,s(k) = ANi
zNi,s(k) +Bivi,s(k) + γi(k). (3.27b)

Definition 3.2. An ϵ-feasible input sequence resulting from stopping condition (3.26) is de-
noted as vi,ϵ(·|k), while the ϵ-exact steady input is given by vi,s,ϵ(k). The corresponding
ϵ-feasible state trajectory is denoted as zi,ϵ(t|k) = zii(t|k) and the ϵ-exact steady-state as
zi,s,ϵ(k) = zii,s(k).

By inserting the dynamic constraint and steady-state condition from equation (3.24) into
zii(t+ 1|k) and zii,s(k), we obtain

δi(t) = ANi
[ziNi

(t|k)− zNi
(t|k)] ∀t ∈ {0, . . . , N}

γi(k) = ANi
[ziNi,s

(k)− zNi,s(k)],

while the stopping condition (3.26) implies that the state trajectories and the steady-state
of two neighboring subsystems i and j differ at most by∥∥∥∥[ zij − z

j
j

zij,s − z
j
j,s

]∥∥∥∥
∞
≤ 2ϵ.
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Therefore, for each i ∈ M, we can define local compact sets Di and Gi to represent the
inexactness of the predictions

Di :=

{
δi ∈ Rni

∣∣∣∣ ∥δi∥∞ ≤ 2ϵ

( ∑
j∈Ni\{i}

∥Aij∥∞
)}

(3.28)

Gi :=

{
γi ∈ Rni

∣∣∣∣ ∥γi∥∞ ≤ 2ϵ

( ∑
j∈Ni\{i}

∥Aij∥∞
)}

. (3.29)

A global form of the local dynamics and steady-state equation (3.27a) - (3.27b) is given by

zϵ(t+ 1|k) = Azϵ(t|k) +Bvϵ(t|k) + δ(t), δ ∈ D := D1 × . . .× DM (3.30)

zs,ϵ(k) = Azs,ϵ(k) +Bvs,ϵ(k) + γ(k), γ ∈ G := G1 × . . .× GM . (3.31)

Feasibility of nominal predictions in inexact DMPC

So far, it has been shown that the inexact predictions can be formulated as equality con-
straints with bounded additive disturbances. To guarantee constraint satisfaction despite
these uncertainties, we adopt the approach used in [94] and utilize robust MPC techniques
to tighten the nominal constraint sets (3.18).

It is important to note that the nominal system (3.11a) receives its input from the tube
controller (3.8), leading to the definition of the nominal consolidated input trajectory

v̄ϵ(t|k) = vϵ(t|k) +K[z(t|k)− zϵ(t|k)] ∀t ∈ {0, . . . , N}, (3.32)

which is consistent with the consolidated state and error trajectories.

Definition 3.3. Let z̄ϵ(·|k), ēϵ(·|k) be the nominal consolidated state and error trajectories
that are consistent with the consolidated input trajectory v̄ϵ(·|k) and dynamic constraints

z̄ϵ(t+ 1|k) = Az̄ϵ(t|k) +Bv̄ϵ(t|k)
ēϵ(t+ 1|k) = AKēϵ(t|k) + δ(t), δ(t) ∈ D

z̄ϵ(0|k) = z(0|k),

where ēϵ = zϵ − z̄ϵ. We define the consolidated steady-state as

z̄s = Az̄s +Bvs,ϵ, (3.33)

such that the true steady-state lies in a bounded set zs ∈ {z̄s} ⊕ G.

Remark 3.6. In classical robust tube-based MPC, the additive disturbance δ describes an un-
certainty in the system dynamics, while the consolidated trajectories in Definition 3.3 reflect
an uncertainty in the prediction [92]. However, the treatment in both cases is equivalent, as
we demonstrate in the following.
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The goal is to ensure constraint satisfaction of the consolidated trajectories and admissibility
of the steady-state despite inexact minimization. Therefore, the nominal constraints (3.18)
must be robustly tightened to counteract the prediction error ēϵ, which can be achieved by
using the t-step support function.

Definition 3.4 (t-step support function [41]). The t-step support function is defined as

σD(a, t) =sup
δ∈Dt

aζ(t) (3.34)

s.t. ζ(0) = 0

ζ(l + 1) = AKζ(l) + δ(l) ∀l ∈ {0, . . . , t− 1},

where Dt denotes the Cartesian product
∏t−1

i=0 D and δ(0), . . . , δ(t − 1) a sequence of t dis-
turbance realizations.

By utilizing Definition 3.4, the t-step tightened constraint sets are defined as

Z̄t = {z | [H]jz ≤ [h̄t]j ∀j ∈ {1, . . . , r}} (3.35a)

V̄t = {z | [L]jv ≤ [l̄t]j ∀j ∈ {1, . . . , q}}, (3.35b)

with the right-hand sides given by

[h̄t]j = [h̄]j − σD([H]j, t) (3.36a)

[l̄t]j = [l̄]j − σD([L]jK, t). (3.36b)

Problem 3.3.1 (Tightened MPC tracking problem with inexact optimization).

min
Z,V,zs,vs,ys

J(∆z,∆v, ys, y
ref) (3.37a)

s.t. z(t+ 1|k) = Az(t|k) +Bv(t|k) ∀t ∈ {0, ..., N − 1} (3.37b)

(z(t|k), v(t|k)) ∈ Z̄t × V̄t ∀t ∈ {0, ..., N − 1} (3.37c)

zs = Azs +Bvs, (zs, vs) ∈ (Z̄s × V̄s) (3.37d)

ys = Czs (3.37e)

z(N |k) = zs (3.37f)

z(0|k) ∈ {x(k), z(1|k − 1)}, (3.37g)

where Z̄s := Z̄N−1 ⊖ ANKD⊖ G and V̄s := V̄N−1 ⊖KAN−1
K D.

The tightened MPC optimization problem 3.3.1 can be solved similarly to the original MPC
optimization problem 3.2.1 with ADMM, where local minimization (step 4 in Algorithm 2)
uses the tightened constraints S̄i instead of the original constraints Si for all i ∈ M. The
sets S̄i are defined similarly to (3.24) by utilizing the tightened constraints (3.35) as opposed
to (3.18).
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Figure 3.3: The uncertain (inexact) trajectory zϵ satisfies the tightened constraints Z̄t. This
implies that the uncertainty-free (consolidated) trajectory z̄ϵ verifies the original
constraint Z. Note that the uncertainty lies in the prediction, cf. Remark 3.6.

Proposition 3.1. Let zϵ(·|k) and vϵ(·|k) be an ϵ-feasible solution of the MPC optimization
problem 3.3.1 resulting from Algorithm 2, then the consolidated state and input trajectory
z̄ϵ(·|k), v̄ϵ(·|k) satisfy the state and input constraints (3.35) for all i ∈M.

Proof. The proof can be found in Section 3.7.

In Figure 3.3, we illustrate the implication of Proposition 3.1 on feasibility of the consoli-
dated trajectory z̄ϵ. The resulting nominal closed-loop system is given by

v̄ϵ(0|k) = vϵ(0|k) +K(z(k)− zϵ(0|k)) (3.38a)

z̄ϵ(1|k) = z(k + 1) = Az(k) +Bv̄ϵ(0|k). (3.38b)

Proposition 3.1 can be employed to analyze recursive feasibility of the MPC optimization
problem 3.3.1 with respect to the nominal dynamics (3.38), i.e., under application of Mode 2
of the conditional initialization (3.37g).

Lemma 3.1. Given an approximate solution zϵ(·|k), vϵ(·|k) of Problem 3.3.1 corresponding
to the artificial steady-state pair (zs,ϵ(k), vs,ϵ(k)) at time k, the candidate sequence

z̃(0|k + 1) = z(k + 1) = zϵ(1|k) + δ ∀δ ∈ D
z̃(t|k + 1) = zϵ(t+ 1|k) + AtKδ ∀t ∈ {0, . . . , N − 1}
ṽ(t|k + 1) = vϵ(t+ 1|k) +K[z̃(t|k + 1)− zϵ(t+ 1|k)] ∀t ∈ {0, . . . , N − 2}

ṽ(N − 1|k + 1) = vs,ϵ(k) +K[z̃(N − 1|k + 1)− zs,ϵ(k)]
z̃(N |k + 1) = Az̃(N − 1|k + 1) +Bṽ(N − 1|k + 1)

is a feasible solution to Problem 3.3.1 at time k + 1. Problem 3.3.1 is recursively feasible
for the nominal closed-loop system (3.38).

Proof. The proof can be found in Section 3.7.
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Algorithm 3 Online algorithm

1: Measure state xi(k) and communicate it to neighbors j ∈ Ni
2: Set zi,0 = xi(k) for all i ∈M
3: Approximately solve Problem 3.3.1 with Algorithm 2
4: if Infeasibility is detected then Set zi,0 = zi,ϵ(1|k− 1) for all i ∈M and solve Problem

3.3.1 with Alg. 2
5: end if
6: Apply control input: ui(k) = vi,ϵ(0|k) +KNi

(xNi
(k)− zNi,ϵ(0|k))

Remark 3.7. In step 4 of Alg. 3 we need to check for feasibility of the optimization problem.
Primal infeasibility can be detected by infeasibility flags of the local solvers in step 4 of Alg 2.
Similar to [6], consensus infeasibility can be detected via the residuals αi = ∥ξ+i −EiΞ+∥∞,
βi = ∥ξ+i − ξi∥∞. However, for the sake of simplicity, we detect consensus infeasibility
whenever the algorithm has not converged within a maximum number of iterations.

Remark 3.8. In the event of infeasibility, we either resolve the MPC optimization prob-
lem 3.3.1 in mode 2 or directly use the shifted optimal solution from the previous time step
without solving the optimization problem again.

3.4 Theoretical analysis

Before stating the main result, we need the following definitions and assumptions.

Definition 3.5. The set of admissible outputs is defined as YA := {ys = Czs|zs ∈ Z̄s}.

To study the optimality of the proposed controller, we introduce the notion of η suboptimal
solutions.

Definition 3.6. Let J be the cost function of the MPC optimization problem 3.3.1 and
let V (z(k), yref(k)) be the value function, i.e., the cost function J evaluated with the op-
timal input and state sequences for the output reference yref . For an ϵ-feasible solution
zϵ(·|k), vϵ(·|k), zs,ϵ(k) and vs,ϵ(k), we define the suboptimality η w.r.t. the optimal solution
as

J(∆z̄ϵ(·|k),∆v̄ϵ(·|k), ys(k), yref) ≤ V (∆z(k), yref) + η,

where ∆z̄ϵ(·|k) = z̄ϵ(·|k)− zs,ϵ(k) and ∆v̄ϵ(·|k) = v̄ϵ(·|k)− vs,ϵ(k).

Finally, we need an assumption about the boundedness of the set of feasible initial states,
which is always fulfilled in case of bounded constraints and a finite prediction horizon.
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Assumption 3.2. The set of feasible initial states ZROA for the MPC optimization prob-
lem 3.3.1 is bounded.

In order to prove convergence of the closed-loop system under the proposed controller, we
use the known fact that the value function V (x(k), yref) of a nominal MPC problem with
quadratic cost is piece-wise quadratic in the state x [11, Thm. 4]. This fact, together with
Assumption 3.2 implies that there exists a Lipschitz constant L such that

V (x, yref) ≤ V (z, yref) + L∥e∥2. (3.39)

Theorem 3.1. Let Assumption 3.2 hold. Let system (3.4a) be controlled with Algorithm 3,
then the closed-loop system has the following properties:

1. For all x(0) = z(0) ∈ ZROA and any output reference yref , the MPC optimization
problem 3.3.1 is feasible for k ∈ N and the chance constraints (3.5) are satisfied in
closed-loop.

2. The origin ∆x = 0 of the closed-loop system is practically asymptotically stable in
expectation. The cost converges to the following asymptotic average

lim sup
k→∞

1

k
E(V (∆z(k), yref)− V (∆z(0), yref)) ≤ η +

L√
λmin(P )

· tr(ΣwP ),

where η is the suboptimality w.r.t. the optimal solution (Definition 3.6), L the Lipschitz
constant from (3.39) and P ≻ 0 satisfies the Lyapunov inequality

A⊤
KPAK − P ⪯ −κI (3.40)

for some κ ∈ R>0.

3. For any output reference yref , the output y(k) of system (3.4b) converges in expectation
to an admissible reference ỹs ∈ {ȳs} ⊕ C[G⊕ Bη(z̄s)], where Bη(z̄s) is a ball of radius
η, G the disturbance set from (3.29) and ȳs = Cz̄s the consolidated output following
from (3.33) that minimizes the tracking cost ∥ȳs − yref∥2T .

If in addition yref ∈ YA, then ȳs = yref .

Proof. The proof can be found in Section 3.7.

3.5 Numerical examples

In this section, we perform two numerical examples to show the basic functionality of
our approach. We first consider an academic example in which we highlight the need for
tightening constraints due to inexact minimization, while we then implement our controller
for a general benchmark example of a four-tank process.
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3.5.1 Academic example

Consider a network ofM = 50 second-order systems in a chain topology with local dynamics

xi(k + 1) =

[
1 1

0 1

]
xi(k) +

[
0

1

]
ui(k) + wi(k) +

∑
j∈Ni\{i}

[
0 0

0.1 0.1

]
xj(k) ∀i ∈M

yi(k) =
[
1 0

]
xi(k) ∀i ∈M,

where wi ∼ N (0, 0.001I) is a normally distributed noise. For subsystem 1 it holds that
N1 = {1, 2}, for subsystem 50 it holds that N50 = {49, 50} and for subsystems i = 2, . . . , 49
it holds that Ni = {i− 1, i, i+ 1}. For each subsystem i ∈ M we enforce two state chance
constraints, one for each local dimension ni = 2, i.e.,

P(|[xi]p| ≤ 2) ≥ 0.9 ∀i ∈M, p ∈ {1, 2}.

The system is initialized at xi(0) = [0, 0]⊤ for all i ∈ M and we chose the MPC weighting
matrices Qi = I, Ri = 1, Ti = 70 and the ADMM augmentation factor ρ = 5. We perform
Nm = 100 Monte-Carlo simulations and keep the reference output for all subsystems i ∈M
at 0, except for subsystems 1, 25 and 50.

� For 0 ≤ k < 20, we command three unreachable references yref1 = yref25 = yref50 = 2.5.

� For 20 ≤ k < 40 we command two reachable references yref1 = −1 and yref25 = 0, and
one unreachable reference yref50 = 2.5.

� For 40 ≤ k ≤ Ns = 59, we command two unreachable references yref1 = 2.5 and
yref50 = 2.5, and one reachable reference yref25 = −1.

Results In Figure 3.4, the outputs of systems 1, 25 and 50 are plotted with the correspond-
ing reference values. Whenever an admissible reference is commanded, it can be seen that
the output converges in expectation to the reference value. However, if the commanded
reference is unreachable, then the output converges to an admissible reference value that
minimizes the distance to the commanded one. In Table 3.1, we compare for different con-
vergence thresholds ϵ the average and maximum number of iterations until convergence,
denoted Av[it] and Max[it], as well as the absolute suboptimality ψ = 1−J/J∗. The cumu-
lative closed-loop cost is given by J =

∑Nm

i=0

∑Ns

k=0 ∥∆x(k)∥2Q+∥∆u(k)∥2R, while the optimal
exact cumulative cost is denoted as J∗. Furthermore, we compare for subsystem 50 the
number of constraint violations (#Cvio) and the maximum empirical constraint violation
probability of the second local state, that is, P̂max =max0≤k≤59 cv(k) with

cv(k) =
1

Nm

Ns∑
k=0

1{|[x50(k)]2|>2}, (3.41)

where 1 denotes the indicator function of the constraint set {|[x50(k)]2
∣∣ > 2}. The results

in Table 3.1 can be interpreted as follows. With a reduction of ϵ, the number of iterations
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Table 3.1: Convergence for different ADMM parameters. ©2021 IEEE.

ϵ Av[it] Max[it] ψ[%] #Cvio P̂max

5e-2 9.67 13 13.02 3 0.02

5e-3 18.60 24 2.24 147 0.06

5e-4 28.53 38 0.21 225 0.08

5e-5 43.13 76 0.01 253 0.09

0 - - 0 260 0.09

necessary for convergence increases and simultaneously, the level of suboptimality decreases.
Hence, we restore the centralized solution as ϵ→ 0. Furthermore, as the value of ϵ decreases,
the size of the disturbance set (3.28) decreases, resulting in a less conservative tightening of
the constraints (3.36a) - (3.36b), which in turn leads to an increase in constraint violations.
However, the chance constraints of level px = 0.9, i.e., 1− P̂max > px, are satisfied for any ϵ.

To illustrate the importance of accounting for solver inexactness, we implemented a DSMPC
without the additional tightening of constraints (3.35). This leads to an empirical constraint
violation of subsystem 50, which exceeds the desired value of 1−px = 0.1, e.g., for ϵ = 5·10−2

a closed-loop constraint violation of P̂ = 0.15 can be observed, while for ϵ = 5·10−3 we obtain
P̂ = 0.11. As the accuracy increases (ϵ→ 0), the constraint tightening (3.35) becomes less
restrictive as the disturbance set (3.28) vanishes in the limit.
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Figure 3.4: Outputs of subsystems 1, 25 and 50 in black and the corresponding commanded
references in red. ©2021 IEEE.
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3.5.2 Four-tank system

We consider a four-tank system initially proposed by Johansson and Nunes [86]. The goal
is to track the levels of tank 1 and 3 while constraining the level for each tank near the
operating point, see Figure 3.5. The continuous time dynamic of the system is given by

dh1
dt

= − a1
A1

√
2gh1 +

a4
A4

√
2gh4 +

γ1k1
A1

u1

dh2
dt

= − a2
A2

√
2gh2 +

(1− γ1)k1
A2

u1

dh3
dt

= − a3
A3

√
2gh3 +

a2
A2

√
2gh2 +

γ2k2
A3

u2

dh4
dt

= − a4
A4

√
2gh4 +

(1− γ2)k2
A4

u2,

where Ai and ai are the cross-section of tank and the cross-section of the outlet of tank
i, respectively. The constants k1 and k2 are conversion parameters that map from voltage
applied to the pump to flux of the medium, while γ1 and γ2 denote fixed valve positions
representing the fraction of water flowing into the lower tanks. The constant g is the
gravitational acceleration. The above parameters are chosen according to [15].

To obtain a control-oriented model, we first define the state and input vector as x =
[h1 h2 h3 h4]

⊤ and u = [u1 u2]
⊤ and linearize the continuous time dynamics around

the nominal operating point zop =
[
12.263 1.409 12.783 1.634

]⊤
and vop =

[
3 3

]⊤
.

Figure 3.5: Schematic representation of the four-tank system. ©2021 IEEE.
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Then, the linearized continuous dynamics is discretized with a sampling time of Ts = 5
seconds using zero-order hold, which yields the global dynamics, input and output matrices
for the dynamics (3.4a) - (3.4b)

A =

0.9229 0 0 0.1892

0 0.8469 0 0

0 0.1488 0.9463 0

0 0 0 0.8028

 , B =

0.4024 0

0.1447 0

0 0.3037

0 0.2135

 .
For tracking purposes, we set C = blkdiag([1 0], [1 0]). The constraints on the states of
the linearized system are JCCs with probability level 0.9, i.e.,

P(|h2| ≤ 0.3) ≥ 0.9, P(|h4| ≤ 0.3) ≥ 0.9

P(|h1| ≤ 5) ≥ 0.9, P(|h3| ≤ 5) ≥ 0.9,

while the inputs have to satisfy the following expectation constraints |v1| = |v2| ≤ 3. By
partitioning x1 = [h1 h2]

⊤ and x2 = [h3 h4]
⊤, the global system can be separated into

distributed subsystems according to (3.3), where the disturbances w1 and w2 are assumed to
be normally distributed with zero mean and covariance matrix Σi = 0.0005I for i = 1, 2. The
MPC weighting matrices are set to Q1 = Q2 = 0.01I, R1 = R2 = 10, T1 = T2 = 1000 and
the prediction horizon is N = 10, while the augmentation factor of the ADMM algorithm
is set to ρ = 100. Starting from the initial condition x(0) = zop, we perform a series of
tracking objectives for y2, while keeping yref1 = 0 for all k ∈ N:

� For 0 ≤ k < 50, we command yref2 = 0.

� For 50 ≤ k < 150, we command yref2 = 0.5.

� For 150 ≤ k ≤ 250, we command yref2 = −0.5.

Results In Figure 3.6, we plot the corresponding water levels of the tanks. In Table 3.2, we
compare for different accuracy levels ϵ the average and maximum iterations, as well as the
suboptimality w.r.t. the central optimal solution. The constraint violation P̂max is computed
for tank 4 similar to (3.41). In this scenario, the number of iterations until convergence is
higher compared to the academic example in Section 3.5.1. The reason for this is the more
complex interconnection between the subsystems.

Table 3.2: ADMM convergence for different parameters. ©2021 IEEE.

ϵ Av[it] Max[it] ψ[%] #Cvio P̂max

5e-4 85.56 901 15.2 7 0.032

5e-5 119.74 1325 2.9 15 0.041

5e-6 288.15 2165 0.05 19 0.049

0 - - 0 25 0.076



3.6 Summary 55

0 50 100 150 200 250
-1

0

1

0 50 100 150 200 250

-0.2
0

0.2

0 50 100 150 200 250
-1

0

1

0 50 100 150 200 250

-0.2
0

0.2

Figure 3.6: Water levels in deviation variables (black) with reference values (red) and level
constraints (magenta). ©2021 IEEE.

3.6 Summary

In this chapter, we presented a cooperative DSMPC algorithm for tracking of piece-wise con-
stant output references for distributed linear systems subject to local and coupling chance
constraints. We use consensus ADMM to solve the central MPC optimization problem
in a distributed fashion and explicitly incorporate the ADMM stopping condition in the
MPC design to give strong closed-loop guarantees. The algorithm is proven to be recur-
sively feasible, convergent to an asymptotic average performance bound and is able to
converge to arbitrary output reference points in an admissible way. Furthermore, the PRS
constraint tightening yields closed-loop chance constraints satisfaction. The numerical ex-
amples highlight the effects of different ADMM parameters regarding to the performance,
chance constraint satisfaction and iterations until convergence.
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3.7 Proofs

Proof of Proposition 3.1

Let zϵ(·|k), vϵ(·|k) be approximate solutions of the MPC optimization problem 3.3.1. The
consolidated state trajectory from Definition 3.3 and input trajectory (3.32) satisfy

z̄ϵ(t|k) ∈ {zϵ(t|k)}
t−1⊕
l=0

AlKD

v̄ϵ(t|k) ∈ {vϵ(t|k)}
t−1⊕
l=0

KAlKD,

which implies that

[H]j z̄ϵ(t|k)
(3.34)

≤ [H]jzϵ(t|k) + σD([H]j, t) ≤ [h̄t]j + σD([H]j, t)
(3.36a)
= [h̄]j

[L]j v̄ϵ(t|k)
(3.34)

≤ [L]jvϵ(t|k) + σD([L]jK, t) ≤ [l̄t]j + σD([L]jK, t)
(3.36b)
= [l̄]j.

This concludes the proof.

Proof of Lemma 3.1

The proof is inspired by [92] and consists of three parts.

Candidate sequences We construct the candidate sequence z̃(t|k + 1) by shifting zϵ(·|k)
with an additional error term δ propagated through the system dynamics to ensure sat-
isfaction of the initial constraint, while the candidate input ṽ(·|k + 1) is constructed by
shifting the input sequence vϵ(·|k) with the error-feedback controller to compensate for the
additional error term δ. First, we show that the candidate sequence satisfies the perturbed
dynamics (3.30), i.e.,

z̃(t|k + 1) = zϵ(t+ 1|k) + AtKδ

(3.30)
= Azϵ(t|k) +Bvϵ(t|k) + δ(t) + AtKδ

= A
[
z̃(t− 1|k + 1)− At−1

K δ
]
+B

[
ṽ(t− 1|k + 1)−KAt−1

K δ
]
+ δ(t) + AtKδ

= Az̃(t− 1|k + 1) +Bṽ(t− 1|k + 1) + δ(t),

where the third equality substitutes the time shifted state and input candidate sequences
zϵ(t|k) = z̃(t− 1|k + 1)− At−1

K δ and vϵ(t|k) = ṽ(t− 1|k + 1)−KAt−1
K δ.
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Constraint satisfaction By the definition of the support function and due to the linear
superposition we have that

σD([H]j, t+ 1) ≥ σD([H]j, t) + [H]jA
t
Kδ ∀δ ∈ D. (3.42)

Therefore, the candidate sequence satisfies the following bound

[H]j z̃(t|k + 1) = [H]j(zϵ(t+ 1|k) + AtKδ)

≤ [h̄t+1]j + [H]jA
t
Kδ

(3.36a)
= [h̄]j − σD([H]j, t+ 1) + [H]jA

t
Kδ

(3.42)

≤ [h̄]j − σD([H]j, t) ≤ [h̄]j ∀t ∈ {0, . . . , N − 1},

which can similarly be shown for the input sequence, so that

[L]j ṽ(t|k + 1) = [L]jvϵ(t+ 1|k) + [L]jK[z̃(t+ 1|k)− zϵ(t+ 1|k)]
≤ [l̄t+1]j + [L]jKA

t
Kd

(3.36b)
= [l̄]j − σD([L]jK, t+ 1) + [L]jKA

t
Kδ

(3.42)

≤ [l̄]j − σD([L]jK, t) ≤ [l̄]j ∀t ∈ {0, . . . , N − 2}.

Terminal equality constraint Now we show that the terminal state of the candidate se-
quence strictly satisfies the state constraints, i.e.,

z̃(N |k + 1) = Az̃(N − 1|k + 1) +Bṽ(N − 1|k + 1)

= A(zϵ(N |k) + AN−1
K δ) +B(vϵ(N |k) +K[zϵ(N |k) + AN−1

K δ − zs,ϵ(k)])
(3.37f)
= Azs,ϵ(k) +Bvs,ϵ(k) + ANKδ

(3.31)
= zs,ϵ(k)− γ(k) + ANKδ ∀γ(k) ∈ G,

where the third equality is due to the zero terminal constraint (3.37f) and the fourth equality
follows from the steady-state condition (3.31). In addition, the terminal state satisfies

z̃(N |k + 1) = zs,ϵ(k)− γ(k) + ANKδ ∈ Z̄s ⊕ G⊕ ANKD = [Z̄N−1 ⊖ ANKD⊖ G]⊕ G⊕ ANKD ⊆ Z,

which renders z̃(N |k + 1) admissible. This concludes the proof.

Proof of Theorem 3.1

The proof consists of 3 parts. First, we establish recursive feasibility and chance constraint
satisfaction for the closed-loop system, while in the second part we proof convergence to
the artificial steady-state and establish an asymptotic average cost bound. The third part
addresses the minimization of the tracking cost function and is briefly outlined, since it uses
results from [62].
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Part 1

Recursive feasibility: Assume that at time k an ϵ-feasible solution vϵ(·|k), zϵ(·|k) exists.
Now, at time step k + 1 we have to consider the unbounded stochastic disturbance w(k)
and condition the initial state of the MPC optimization problem 3.3.1 on its feasibility. For
mode 2 we set z(0|k + 1) = z(1|k) = zϵ(1|k) + δ, which, by Lemma 3.1 is guaranteed to
be feasible. Thus, if x(0) = z(0) ∈ ZROA, then the MPC optimization problem 3.3.1 is
recursively feasible for all k ∈ N under the conditional update.

Closed-loop chance constraints: By definition of the consolidated state and input trajec-
tories and Proposition 3.1, we have that the true states and inputs of the resulting nominal
closed-loop system (3.38) satisfy z(·|k) ∈ Z, v(·|k) ∈ V for all k ≥ 0. Furthermore, we have
by Definition 2.6 that P(e(t|k) ∈ R | e(0|k)) ≥ px and P(eu(t|k) ∈ Ru | e(0|k)) ≥ pu. Thus,

∀z(t|k) ∈ Z = X⊖R ⇒ P(x(t|k) ⊆ X | x(0|k)) ≥ px

∀v(t|k) ∈ V = U⊖Ru ⇒ P(u(t|k) ⊆ U | x(0|k)) ≥ pu.

Since by assumption the disturbance distribution is CCU and the PRS (3.16) or (3.17)
are both convex and symmetric, we can apply [77, Thm. 3] and verify closed-loop chance
constraint satisfaction, cf. Section 2.3.1 for more details.

Part 2 Let J and V (∆z(k), yref) be defined as in Definition 3.6. We split the expected
optimal cost in the cases where mode 1 or mode 2 is applied

E(V (∆z(k + 1), yref)

=E(V (∆z(k + 1), yref)|M2)P(M2)

+E(V (∆z(k + 1), yref)|M1)P(M1). (3.43)

For mode 2 we find

E(V (∆z(k + 1), yref)|M2) = V (∆z(1|k), yref)
≤ J(∆z̃(·|k + 1),∆ṽ(·|k + 1), ys(k), y

ref), (3.44)

where ∆z̃(·|k + 1) = z̃(·|k + 1) − zs(k) and ∆ṽ(·|k + 1) = ṽ(·|k + 1) − vs(k) (Lemma 3.1)
are consistent with the artificial steady output ys(k). Mode 1 evaluates to

E(V (∆z(k + 1), yref)|M1) = E(V (∆x(k + 1), yref)|M1)

(3.39)

≤ V (∆z(1|k), yref) + E(L∥x(k + 1)− z(1|k)∥2|M1)

≤ J(∆z̃(·|k + 1),∆ṽ(·|k + 1), ys(k), y
ref) + L/

√
λmin(P )︸ ︷︷ ︸
c

E(∥x(k + 1)− z(1|k)∥P |M1),
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where the first inequality uses the shifted optimal solution and (3.39), while the second
inequality uses the fact that λmin(P )∥x∥22 ≤ ∥x∥2P . Adding cE(∥x(k + 1)− z(1|k)∥P |M2) to
(3.44) and substituting both expressions for mode 1 and 2 in (3.43) yields

E(V (∆z(k + 1), yref))

≤J(∆z̃(·|k + 1),∆ṽ(·|k + 1), ys(k), y
ref) + cE(∥x(k + 1)− z(1|k)∥P ).

In the following, we use the suboptimality η according to Definition 3.6, which implies

E(V (∆z(k + 1), yref))− cE(∥x(k + 1)− z(1|k)∥P )
≤ J(∆z̃(·|k + 1),∆ṽ(·|k + 1), ys(k), y

ref)
Lem. 3.1

≤ J(∆z̄(·|k),∆v̄(·|k), ys(k), yref)− ∥∆z(k)∥2Q − ∥∆v(k)∥2R
Def. 3.6

≤ V (∆z(k), yref)− ∥∆z(k)∥2Q − ∥∆v(k)∥2R + η, (3.45)

where the first inequality is due to the principle of optimality. Furthermore, we simplify
E(∥x(k + 1)− z(1|k)∥P ) as

E(∥x(k + 1)− z(1|k)∥P ) ≤ (1− κ)∥e(k)∥P + E(∥w(k)∥P ),

where P ≻ 0, κ ∈ R>0 satisfy the Lyapunov inequality (3.40). After resubstitution of the
above inequality into (3.45), we obtain

E(V (∆z(k + 1), yref))− V (∆z(k), yref)

≤− ∥∆z(k)∥2Q − ∥∆v(k)∥2R − κc∥e(k)∥P + cE(∥w(k)∥2P ) + η.

Furthermore, we achieve the following asymptotic average cost bound

lim sup
k→∞

1

k
E(V (∆z(k), yref)− V (∆z(0), yref))

≤ lim sup
k→∞

1

k

k−1∑
i=0

E

(
− ∥∆z(i)∥2Q − ∥∆v(i)∥2R − κc∥e(i)∥P + c∥w(i)∥2P

)
+ η

≤ η + c · tr(ΣwP ).

This implies that the origin ∆z = 0 is, in expectation, a practically asymptotically stable
equilibrium point [70, Def. 2.15], which implies that the mean E(z(k)) asymptotically
converges to some bounded set and is then merely stable.

To formalize this, we consider the consolidated steady-state (3.33) given by z̄s and a ball
Bη(z̄s) := {z ∈ Rn

∣∣∥z− z̄s∥ < η} with radius η (due to suboptimality), see Figure 3.7. Then
we have that

lim
k→∞

dist(E(z(k)),G⊕ Bη(z̄s)) = 0, (3.46)

where the set G follows from zs ∈ {z̄s} ⊕ G, cf. Def. 3.3. In other words, the set G⊕Bη̃(z̄s)
accounts for the solver inexactness in the state prediction, as well as in the steady-state.
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Figure 3.7: Illustration of the ball Bη(z̄s) centered at the consolidated steady-state z̄s(y
ref),

while the ϵ-exact steady-state zs varies in the interior (dotted trajectory).

Remark 3.9. The set-based convergence result (3.46) reduces to a point-wise convergence if
the ADMM threshold ϵ → 0, i.e., if ϵ → 0, then the radius η → 0 and the set G, defined
through (3.29), vanishes. Therefore, the consolidated steady-state converges to the true
steady-state z̄s → zs, implying that E(z(k))→ zs in the limit.

Part 3 The previous part established that the nominal state converges in expectation to
a bounded set G⊕ Bη(z̄s). From (3.46) and the output map ȳs = Cz̄s we have that

ỹs ∈ {ȳs} ⊕ C[G⊕ Bη(z̄s)], (3.47)

where ỹs is some admissible and ȳs the consolidated output with associated tracking cost

Jt(ȳs, y
ref) = ∥ȳs − yref∥2T . (3.48)

Similar to [104, Thm. 1], we can show that system (3.38b) is only in steady-state if the
cost (3.48) for the consolidated state is at its minimum. Then the true steady output
verifies (3.47), i.e., the output lies in an area around the consolidated output. Now suppose
yref ∈ YA, then, due to admissibility of yref the unique minimum in (3.48) is attained at
ȳs = yref and the output converges in expectation to a neighborhood of yref .



4 Output-feedback regulation with
additive noise

In this chapter, we shift our attention to the output-feedback case, where the goal is to
stabilize a predefined steady-state, e.g., the origin. This extends the state-feedback DSMPC
formulation to the output-feedback case, which is still an open research question (even in
central SMPC) [57]. The main difference compared to a state feedback approach is that
we first need to estimate the current system state based on output measurements of the
system, which is then used to initialize the DSMPC algorithm. This confronts us with the
new challenge of how to deal with different sources of uncertainty, such as measurement and
process noise [61]. The output-feedback case is of practical interest since the state vector
of a control system is often not fully measurable, e.g., as in distributed power systems [165]
or in coordination problems [141].

In Section 4.2, we present a direct output-feedback DSMPC algorithm for distributed sys-
tems with emphasis on a distributed design, such that the controller can be synthesized
and operated fully distributedly. To satisfy the chance constraints in closed-loop, we extend
the distributed PRS approach presented in Chapter 3 to the output-feedback case. In Sec-
tion 4.3, we propose an indirect output-feedback DSMPC with scenario-based distributed
PRS, which yields non-conservative closed-loop constraint satisfaction. This chapter is
partly based on the publication [110] 1, i.e., Section 4.2.

Related work Due to the fact that the output-feedback case is an open research topic
in central SMPC [57], the literature on distributed systems is almost non-existent. One
approach is provided by [46], where the authors propose a non-iterative sequential updating
DSMPC, while considering individual dynamics and ICCs for coupled constraints. The
design for the controller is fully centralized, while also the operation requires a central
warm-start solution. A notable central SMPC approach is proposed by [61], where individual
chance constraints are analytically verified with a combined covariance matrix of the process
and measurement noise via the Cantelli’s inequality. In [33], the authors propose a central
probabilistic tube MPC framework for bounded process and measurement noise.

1C. Mark and S. Liu. “A stochastic output-feedback MPC scheme for distributed systems”. In:
Proc. American Control Conf. (ACC). extended version: arXiv:2001.10838. 2020, pp. 1937–1942
© 2020 AACC.
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4.1 Problem description

We consider a network of M linear time-invariant systems on a graph (Def. 3.1), where
each system i ∈ M = {1, . . . ,M} has a state vector xi ∈ Rni , input vector ui ∈ Rmi and
output vector yi ∈ Rpi . The local dynamics are governed by

xi(k + 1) = ANi
xNi

(k) +Biui(k) + wi(k) ∀k ∈ N (4.1a)

yi(k) = CNi
xNi

(k) + di(k), (4.1b)

where the distributions of the zero-mean i.i.d. process noise wi ∈ R
ni and zero-mean

i.i.d. measurement noise di ∈ Rpi are assumed to be central convex unimodal with known
covariance matrices Σw

i ≻ 0 and Σd
i ≻ 0. The global system is given by

x(k + 1) = Ax(k) +Bu(k) + w(k) ∀k ∈ N (4.2a)

y(k) = Cx(k) + d(k), (4.2b)

where x = coli∈M(xi) ∈ R
n, u = coli∈M(ui) ∈ R

m, w = coli∈M(wi) ∈ R
n and d =

coli∈M(di) ∈ R
p. The global covariance matrices for the process and measurement noise

are given by Σw = blkdiagi∈M(Σw
i ) and Σd = blkdiagi∈M(Σd

i ). Similar to Chapter 3, we
impose polytopic state and input chance constraints of the form

P
(
xNi

(k) ∈ XNi
:= {xNi

|HNi
xNi
≤ hNi

}
∣∣x(0)) ≥ px (4.3a)

P
(
ui(k) ∈ Ui := {ui |Hu

i ui ≤ hui }
∣∣x(0)) ≥ pu, (4.3b)

where hNi
∈ Rri>0, h

u
i ∈ R

qi
>0 and px, pu ∈ (0, 1) are the levels of chance constraint satisfaction.

To simplify the exposition, we impose Assumption 3.1 for the matrix pair (A,B), as well as
the following assumption for distributed observability.

Assumption 4.1. (Structured injection gain) The pair (A,C) is observable with a structured
linear observer of the form

λ(y) = Ly = coli∈M(Liyi),

where Li ∈ Rni×pi, such that ρ(A− LC) < 1.

Remark 4.1. The distributed injection gains Li can be found via distributed optimization
similar to the procedure outlined in Remark 3.1 by setting (ANi

, Bi) = (A⊤
Ni
, C⊤

Ni
) for all

i ∈M.

The goal of this chapter is to develop two stabilizing DSMPC controllers for the origin of
system (4.2a) based on noisy output measurements provided by (4.2b) while satisfying the
closed-loop chance constraints (4.3).
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4.2 Direct output-feedback DSMPC

In this section, we develop a direct output-feedback DSMPC scheme to stabilize the origin
of system (4.2a). We begin by defining a distributed Luenberger observer for the distributed
dynamics (4.1a)-(4.1b) that provides estimates x̂i of the state xi based solely on local output
measurements yi. The distributed observer dynamics can be expressed as follows:

x̂i(k + 1) = ANi
x̂Ni

(k) +Biui(k) + Li(yi(k)− CNi
x̂Ni

(k)) ∀i ∈M.

To stabilize the dynamics (4.2a), we propose a distributed error-feedback control policy

ui(k) = vi(0|k) +KNi
(x̂Ni

(k)− zNi
(0|k)) ∀i ∈M, (4.4)

where zNi
and vi denote the state and input of the nominal dynamics

zi(t+ 1|k) = ANi
zNi

(t|k) +Bivi(t|k).

The nominal input sequences vi(·|k) for all i ∈ M are the result of an MPC optimization
problem solved at time step k, while zNi

(·|k) are the corresponding nominal state predic-
tions. Note that, in contrast to the previous chapter, there are now two error sources acting
on the system, where the state x(k) can be decomposed into

x(k) = z(0|k) + e(k) + x̃(k), 2 (4.5)

where x̃ denotes the state estimation error and e the observation error, such that

x̃(k) = x(k)− x̂(k) (4.6a)

e(k) = x̂(k)− z(0|k). (4.6b)

The corresponding error dynamics of (4.6) are given by

x̃i(t+ 1|k) = ANi,Lx̃Ni
(t|k) + wi(t|k)− Lidi(t|k) (4.7)

ei(t+ 1|k) = ANi,KeNi
(t|k) + Li[CNi

x̃Ni
(t|k) + di(t|k)], (4.8)

with ANi,L = ANi
− LiCNi

and ANi,K = ANi
+BiKNi

.

By stacking the local states x̃ = coli∈M(x̃i) and e = coli∈M(ei) and defining an extended

state ξ =
[
x̃⊤ e⊤

]⊤
, we can express the global extended error dynamics compactly as

ξ(t+ 1|k) =
[
AL 0

LC AK

]
︸ ︷︷ ︸

Ψ

ξ(t|k) +
[
I −L
0 L

]
︸ ︷︷ ︸

Γ

ω(t|k), (4.9)

where ω =
[
w⊤ d⊤

]⊤
, AL = A− LC and AK = A+BK.

2The equation similarly holds for the local and neighborhood states, i.e., xi and xNi
.
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4.2.1 Covariance propagation of the extended state

As in Section 3.2.1, the chance constraints are reformulated using mean-variance PRS, with
the covariance dynamics being computed based on the extended error (4.9), i.e.,

Σξ(t+ 1|k) = var(ξ(t+ 1|k)) = ΨΣξ(t|k)Ψ⊤ + ΓΣωΓ⊤, (4.10)

where Σω = blkdiag(Σw,Σd). By Assumptions 3.1 and 4.1, we know that the matrix Ψ is
Schur stable, i.e., due to the lower block triangular structure of the matrix Ψ it suffices to
show that the spectral radii ρ(A+BK) and ρ(A−LC) are less then one (similar to the LQG
problem). Since the covariance matrices Σw and Σd are positive definite by construction,
convergence of Σξ(t+1|k) to a stationary covariance matrix Σξ

f is guaranteed as t→∞ for
all k ∈ N. Similar to Section 3.2.1, we pursue the goal of upper bounding the stationary
covariance matrix with a structured block-diagonal matrix

Σ̂ξ =

[
Σ̂x̃ 0

0 Σ̂e

]
=



Σ̂
x̃
1 . . . 0
...

. . .
...

0 . . . Σ̂x̃
M

 0

0

Σ̂
e
1 . . . 0
...

. . .
...

0 . . . Σ̂e
M




, (4.11)

where the two main diagonal blocks correspond to an upper-bound for the state estimation
and observation error covariance matrix. In the following, we present two design approaches
for Σ̂ξ.

Distributed stationary covariance matrix – A centralized LMI approach

In the first design approach, we cast (4.10) into its steady-state Lyapunov-like surrogate by
taking t→∞, while constraining the matrix Σ̂ξ

f to have only block-diagonal elements akin
to (4.11), i.e.,

Σ̂ξ
f = ΨΣ̂ξ

fΨ
⊤ + ΓΣωΓ⊤.

The idea is similar to the approach presented in Section 3.2.1, where we relax the former
matrix equality into an LMI constraint of the form[

Σ̂ξ
f − ΓΣωΓ⊤ ΨΣ̂ξ

f

Σ̂ξ
fΨ

⊤ Σ̂ξ
f

]
⪰ 0,
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while the block-diagonal stationary covariance matrix can be found by solving the following
optimization problem

Σ̂ξ∗
f = argmin

Σ̂ξ
f ⪰0

∥Σ̂ξ
f ∥

2
F

s.t.

[
Σ̂ξ

f − ΓΣωΓ⊤ ΨΣ̂ξ
f

Σ̂ξ
fΨ

⊤ Σ̂ξ
f

]
⪰ 0.

The centralized approach inherently assumes that a central coordination node is available
that has access to the dynamics and noise covariance matrices of the entire plant. In the
following, we present a second design approach, where we remove this assumption to obtain
a fully distributed implementation.

Distributed stationary covariance matrix – An iterative distributed approach

We start by writing the individual covariance update equations for the state estimation
error x̃ and the observation error e corresponding to the augmented dynamics (4.9)

Σx̃(t+ 1) = ALΣ
x̃(t)A⊤

L + Σw − LΣdL⊤ (4.12a)

Σe(t+ 1) = AKΣ
e(t)A⊤

K + LCΣx̃(t)C⊤L⊤ + LΣdL. (4.12b)

As stated earlier, the time evolution of these matrices is equivalent for all times k ∈ N.
Therefore, to ease the notation we drop the dependency on k. Even though the matrix pair
(Σx̃(t),Σe(t)) is assumed to be block-diagonal at time t, it is generally not the case at time
t+1 due to couplings between neighboring systems. Therefore, as proposed in Section 3.2.1,
we develop a distributed update scheme based on the block-diagonal matrices Σ̂x̃ and Σ̂e as
defined in (4.11), whose evolution is governed by

Σ̂x̃
i (t+ 1) = ÃNi,LΣ̂

x̃
Ni
(t)Ã⊤

Ni,L
+ Σw

i − LiΣd
iL

⊤
i ∀i ∈M (4.13a)

Σ̂e
i (t+ 1) = ÃNi,KΣ̂

e
Ni
(t)Ã⊤

Ni,K
+ LiC̃Ni

Σ̂x̃
Ni
(t)C̃⊤

Ni
L⊤
i + LiΣ

d
iLi ∀i ∈M, (4.13b)

where ÃNi,L =
√
|Ni|ANi,L, ÃNi,K =

√
|Ni|ANi,K, C̃Ni

=
√
|Ni|CNi

and |Ni| denotes the
cardinality of the neighborhood set. The following result is based on [56, Lemma 1].

Corollary 4.1. Let Σ̂x̃ and Σ̂e be defined as in (4.11) and assume that Σx̃(t) ⪯ Σ̂x̃(t) and
Σe(t) ⪯ Σ̂e(t) at time t. If Σ̂x̃(t+1) and Σ̂e(t+1) are updated according to (4.13a)-(4.13b)
for all i ∈M, then also Σx̃(t+ 1) ⪯ Σ̂x̃(t+ 1) and Σe(t+ 1) ⪯ Σ̂e(t+ 1).

Proof. The proof can be found in Section 4.5.

Based on Corollary 4.1, we present an iterative algorithm (Algorithm 4) that is similar to
Algorithm 1 from the previous chapter.
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Algorithm 4 Distributed stationary covariance matrix synthesis

1: For each subsystem i ∈M in parallel:
2: Initialize Σ̂e

Ni
(0) = Σ̂x̃

Ni
(0) = 0 and t = 0

3: repeat
4: Update covariance matrices (Σ̂x̃

i (t+ 1), Σ̂e
i (t+ 1)) according to (4.13a), (4.13b)

5: Communicate (Σ̂x̃
i (t+ 1), Σ̂e

i (t+ 1)) to neighbors j ∈ Ni
6: Construct Σ̂x̃

Ni
(t+ 1) = blkdiagj∈Ni

(Σ̂x̃
j (t+ 1)), Σ̂e

Ni
(t+ 1) = blkdiagj∈Ni

(Σ̂e
j(t+ 1))

7: Increment time t← t+ 1
8: until convergence
9: Construct stationary covariance matrix Σ̂ξ

Ni,f
= blkdiag(Σ̂x̃

Ni
(t), Σ̂e

Ni
(t)) ∀i ∈M

Remark 4.2. As already stated in Remark 3.2, the conservatism of an iterative design akin to
Algorithm 4 strongly depends on the topology of the communication graph, as well as on the
coupling strength between the subsystems. In the output-feedback case, this issue is even more
amplified due to multiple upper bounds that are involved in the update equations (4.13a)-
(4.13b). Therefore, the distributed stationary covariance matrix is expected to have much
larger eigenvalues than its central counterpart, making the distributed PRS unnecessarily
large and leading to conservative satisfaction of the chance constraints, cf. Section 4.2.6.

4.2.2 Chance constraints via distributed Probabilistic Reachable Sets

In the following, we recall the state separation (4.5) and note that we intend to satisfy the
chance constraints (4.3) for the state xNi

and the input ui. Therefore, we define a combined
random variable δxNi

= eNi
+x̃Ni

= [I I] ξNi
whose distribution is obtained by convolution

of the density functions of eNi
and x̃Ni

[89, Thm. 14.19]. Based on the zero-mean and CCU
assumptions of both random variables, it can be deduced from the property of closure under
convolution, cf. [50], that the distribution of δxNi

retains zero-mean and CCU. Note that
the associated covariance matrix of δxNi

is given by

Σ̂Ni,f =
[
I I

]
Σ̂ξ

Ni,f

[
I I

]⊤
. (4.14)

By defining δui = KNi
(x̂Ni

− zNi
) = [0 KNi

] ξNi
, we have that E(δu) = 0 and the input

error covariance matrix is given by

Σ̂u
i,f =

[
0 KNi

]
Σ̂Ni,f

[
0 KNi

]⊤
. (4.15)

From this point on, we can follow the lines of Section 3.2.2 and define constraint-aligned or
marginal PRS for the error state δxNi

and input error δui. For the sake of simplicity, we
consider the marginal PRS in the following

RNi
=

{
δxNi

∈ RnNi

∣∣∣∣ ∣∣[δxNi
]j
∣∣ ≤√γi [Σ̂Ni,f ]j,j ∀j ∈ {1, . . . , nNi

}
}
, (4.16)
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where γi = nNi
/(1− px). The input PRS is derived for the input error δui, i.e.,

Ru
i =

{
δui ∈ Rmi

∣∣∣∣ ∣∣[δui]j∣∣ ≤√γui [Σ̂
u
i,f ]j,j ∀j ∈ {1, . . . ,mi}

}
, (4.17)

where γui = mi/(1−pu). Note that γi and γui can be chosen according to Remarks 3.3 and 3.4.

The tightened constraint sets for each subsystem i ∈ M are then simply given by the
Pontryagin set differences

ZNi
= XNi

⊖RNi

Vi = Ui ⊖Ru
i .

For details on distributed PRS constraint tightening, please refer to Section 3.2.2. Finally,
a global representation of the tightened constraint sets is obtained by the Cartesian product
of the local sets

Z =
∏
i∈M

ZNi
, V =

∏
i∈M

Vi,

both of which are amendable to distributed optimization.

4.2.3 Cost function and terminal ingredients

We consider a stabilizing MPC framework with terminal cost and terminal constraints. To
this end, we make the following assumption.

Assumption 4.2. There exists a terminal cost Vf(z) =
∑M

i=1 Vf,i(zi) =
∑M

i=1 ∥zi∥2Pi
= ∥z∥2P

with block diagonal matrix P ≻ 0, a distributed terminal controller v = Kz = coli∈M(KNi
zNi

)
and a structured terminal set Zf ⊆ Z, such that the following conditions hold for all z ∈ Zf

Vf((A+BK)z) ≤ Vf(z)− l(z,Kz) (4.18a)

z ∈ Z, Kz ∈ V (4.18b)

(A+BK)z ∈ Zf . (4.18c)

The stage cost l(z, v) =
∑

i∈M li(zi, vi) is the sum of local stage cost functions

li(zi, vi) = ∥zi∥2Qi
+ ∥vi∥2Ri

,

where Qi ⪰ 0, Ri ≻ 0.

Remark 4.3. The design of a separable terminal cost function and distributed terminal
controllers can be achieved via structured LMIs, cf. [42]. Using a quadratic terminal cost
function Vf(z) as in Assumption 4.3, the structured terminal set Zf is defined as the largest
feasible α-level set, i.e.,

Zf = {z ∈ Rn|z⊤Pz ≤ α}, α ∈ R>0,

where α can be obtained from a distributed linear program, see Section 5.3.4 for details.
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For the MPC optimization problem, we consider a quadratic expected value cost function,
which, given Assumption 4.2, can be written as follows

E

(
M∑
i=1

[
∥xi(N |k)∥2Pi

+
N−1∑
t=0

∥xi(t|k)∥2Qi
+ ∥ui(t|k)∥2Ri

] ∣∣∣∣ x(0|k)
)

=
M∑
i=1

(
∥zi(N |k)∥2Pi

+
N−1∑
t=0

∥zi(t|k)∥2Qi
+ ∥vi(t|k)∥2Ri

+ tr(PiΣ
δx
i (t|k)) +

N−1∑
t=0

tr(QiΣ
δx
i (t|k)) + tr(K⊤

Ni
RiKNi

Σe
Ni
(t|k))

)
, (4.19)

where Σδx
i (t|k) = var(δxi(t|k) | x(0|k)), Σe

Ni
(t|k) = var(eNi

(t|k) | x(0|k)). Note that the last
line of (4.19) is independent of the MPC decision variables, since KNi

are fixed gains for all
i ∈M and can therefore be neglected in the receding horizon cost function

J(z(·|k), v(·|k)) =
M∑
i=1

(
∥zi(N |k)∥2Pi

+
N−1∑
t=0

∥zi(t|k)∥2Qi
+ ∥vi(t|k)∥2Ri

)
. (4.20)

4.2.4 MPC optimization problem

The following optimization problem is solved via distributed optimization at every time
instant k ∈ N.

Problem 4.2.1 (Direct output-feedback DSMPC problem).

min
V,Z

J(z(·|k), v(·|k)) (4.21a)

s.t. z(t+ 1|k) = Az(t|k) +Bv(t|k) ∀t ∈ {0, ..., N − 1} (4.21b)

(z(t|k), v(t|k)) ∈ Z× V ∀t ∈ {0, ..., N − 1} (4.21c)

z(N |k) ∈ Zf (4.21d)

z(0|k) ∈ {x̂(k), z(1|k − 1)}, (4.21e)

where V = {v(0|k), . . . , v(N−1|k)} and Z = {z(0|k), . . . , z(N |k)} denote the nominal input
and state sequences, respectively.

Each subsystem i ∈M takes the first element of the state and input sequences and imple-
ments them under the control law (4.4) to system (4.2).

To ensure recursive feasibility, we resort to the feasibility-based initialization strategy as
proposed in Section 3.2.4, i.e., constraint (4.21e) selects the state estimate z(0|k) = x̂(k)
whenever possible (Mode 1), and Mode 2, the backup solution z(0|k) = z∗(1|k − 1), when
Mode 1 is infeasible.
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4.2.5 Theoretical analysis

Before stating the main result, we require a technical assumption to state a Lipschitz-based
convergence result.

Assumption 4.3. The set Ξ of feasible initial states z(0|k) for Problem 4.2.1 is bounded.

Note that the previous results are presented in a centralized fashion. However, each ingredi-
ent is designed in such a way that the distributed structure is preserved, i.e., the constraints,
cost function and terminal ingredients are structured. This allows for a distributed imple-
mentation as presented in Section 3.3.1, where the MPC optimization problem 4.2.1 can be
solved with Algorithm 2. Since the main focus of this section is the treatment of output-
feedback regulation problems, we make the following technical assumption.

Assumption 4.4. The MPC optimization problem 4.2.1 is solved exactly by distributed op-
timization.

Remark 4.4. Assumption 4.4 allows us to prove the main result (Theorem 4.1) in a cen-
tralized fashion, i.e., the ADMM-based MPC (Algorithm 2) converges with ϵ = 0. This
simplifies the proof greatly, since no inexact minimization has to be considered. However,
the proof can easily be extended to the inexact case (ϵ > 0) by considering similar techniques
as proposed in Section 3.3.1 without compromising the closed-loop guarantees.

Theorem 4.1. Let Assumptions 3.1, 4.1-4.4 hold. If the direct output-feedback MPC op-
timization problem 4.2.1 admits a feasible solution at time k = 0, then it is recursively
feasible and the chance constraints (4.3) are satisfied in closed-loop for any k ∈ N with
convex symmetric PRS (4.16) - (4.17). In addition, conditioned on δx(0) = δu(0) = 0, the
controller achieves the following asymptotic average cost

lim
T→∞

1

T

T−1∑
k=0

E(∥x(k)∥2Q + ∥u(k)∥2R) ≤ γ
√

tr(Γ⊤PΣΓΩ),

where γ =
√
2β√

λmin(PΣ)
> 0, Q = blkdiagi∈M(Qi), R = blkdiagi∈M(Ri), β denotes a Lipschitz

constant and PΣ ≻ 0 the solution of the Lyapunov inequality Ψ⊤PΣΨ ⪯ PΣ − κI for some
κ ∈ R>0.

Proof. The proof can be found in Section 4.5.

4.2.6 Numerical example

This section is dedicated to a brief numerical example. We consider M = 5 subsystems in a
chain as depicted in Figure 4.1. For subsystem 1 it holds thatN1 = {1, 2}, for subsystem 5 it
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Figure 4.1: Five subsystems in a chain with a bidirectional communication graph.

holds that N5 = {4, 5} and for the subsystems i = {2, 3, 4} it holds that Ni = {i−1, i, i+1}.
We consider dynamic matrices Aii = [ 1 1

0 1 ] , Aij = [ 0.05 0
0 0.05 ] ,∀j ∈ Ni\{i},∀i ∈ M, input

matrices Bi = [ 0.51 ] ,∀i ∈ M and output matrices Cii = [ 1 0
0 1 ] , Cij = [ 0 0

0 0 ] ,∀i ∈ M. Each
subsystem is subject to a normally distributed process noise with Σw

i = 0.01I and a normally
distributed measurement noise with Σd

i = 0.001. Each subsystem has to satisfy a joint
chance constraint on the second state P(|[xi]2| ≤ 1) ≥ 0.6. The weighting matrices are set
to Qi = [ 1 0

0 0.1 ], Ri = 0.1 and the prediction horizon is N = 10. The distributed controller
and injection gains satisfying Assumptions 3.1 and 4.1 are computed along Remark 4.1. For
simplicity, the terminal set is set to Zf = {0}.

Comparison of covariance matrix design procedures The first case study targets the de-
sign techniques presented in Section 4.2.1 to highlight the differences between the centralized
LMI and the distributed iterative approach. We compare for both methods the resulting
distributed PRS volume given by

V =
M∑
i=1

2
√
γi[Σ̂e

Ni,f
]2,2,

where γi = X 2
1 (px) is set according to Remark 3.3 due to normality of the noise distributions.

In Table 4.1, we compare for different design procedures the resulting volume of the PRS
(smaller is better). The LMI approach and the iterative approach are both distributed PRS
designs, i.e., we use the block-diagonal covariance matrix as presented in Section 4.2.1, while
the central unstructured approach is a centralized PRS design that uses directly the dense
stationary covariance matrix Σξ

f without block-diagonal upper bounding.

As it can be seen in Table 4.1, the central unstructured design yields the least conservative
PRS, which is due to the dense covariance matrix. By imposing a distributed structure, the
LMI approach yields a slightly more conservative PRS, while the iterative approach almost
doubles the PRS volume compared to the LMI approach. This issue was already mentioned
in Remark 4.2, which mainly results from the conservative upper bounding of the local
covariance matrices during the update steps. In Figure 4.2, we quantitatively investigate

Table 4.1: Comparison of different PRS volumes regarding their design procedure.

LMI approach Iterative approach Central unstructured approach

Volume 2.5620 4.8489 1.9078
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Figure 4.2: Effect of coupling strength s on PRS volume.

the effect of the coupling strength s ∈ R on the PRS volume, where we parameterize the
matrices Aij as sAij and compute the PRS volume for each design approach. It can be
seen that the iterative approach grows quickly in size by increasing the coupling strength in
comparison to the LMI approach, while the central unstructured approach is only marginally
affected. This result reiterates the point that a centralized approach should be taken for
the design of the distributed stationary covariance matrix whenever possible.

Performance comparison We carry out K = 5000 Monte-Carlo simulations of the closed-
loop system for 10 time steps each starting from the initial conditions x1(0) = [−4, 0]⊤,
x5(0) = [4, 0]⊤ and x2(0) = x3(0) = x4(0) = [0, 0]⊤. In Table 4.2, we compare the expected
closed-loop performance

E(l(x, u)) =
K∑
j=1

10∑
k=1

1

10K
l(x(k), u(k))

and the empirical worst-case in-time constraint satisfaction rate for subsystem 1 and 5 for
different controller types. We benchmark our proposed DSMPC with PRS design based
on the centralized LMI approach and iterative distributed approach against a centralized
MPC (C-MPC) with central unstructured PRS design, a distributed LQG (D-LQG) and
central LQG (C-LQG). The controller and injection gains for the central controller setups
are obtained as the solution to the linear quadratic control and estimation problem. Note
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Table 4.2: Comparison between central and distributed setups.

C-LQG D-LQG C-MPC
DMPC:

LMI approach

DMPC:

Iterative approach
E(l(x, u)) 51.34 51.37 56.31 60.65 68.00

P(|[x1]2| ≤ 1) 0% 0% 85.00% 91.32% 95.44%

P(|[x5]2| ≤ 1) 0% 0% 85.16% 90.72% 95.60%

that all MPC approaches above yield closed-loop constraint satisfaction. As expected, the
central MPC implementation yields the least conservative constraint satisfaction rate of
about 85%, which, however, is much higher than the prescribed level of 60%. This gap
arises from the direct feedback feasibility-based initialization scheme associated with PRS-
based SMPC design, cf. Remark 2.3. In case of the proposed distributed PRS, this issue is
even further amplified due to the block-diagonal upper bounding procedure, cf. Figure 4.2,
which translates to an even more conservative constraint satisfaction rate.

This issue gives rise to alternative SMPC schemes, such as the indirect feedback SMPC [76],
which can close the gap between prescribed and observed closed-loop constraint satisfaction
probability, while still maintaining the strong closed-loop chance constraint guarantees, cf.
the discussion in Remark 2.4.

4.3 Indirect output-feedback DSMPC: A distributed

scenario PRS approach

As we have seen in the previous section, a distributed design is associated with large con-
servatism regarding closed-loop chance constraint satisfaction. In the following, we ex-
tend the direct feedback formulation to an indirect one, with the goal of achieving non-
conservative closed-loop chance constraint satisfaction through scenario-based distributed
PRS [79]. A similar distributed scenario-based approach has been presented by [128] for
the state-feedback case.

To this end, instead of solving Problem 4.2.1, we aim to solve the following indirect output-
feedback problem.
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Problem 4.3.1 (Indirect output-feedback DSMPC).

min
V,Z

J(ˆ̄x(·|k), ū(·|k)) (4.22a)

s.t. z(t+ 1|k) = Az(t|k) +Bv(t|k) (4.22b)

ˆ̄x(t+ 1|k) = Aˆ̄x(t|k) +Bū(t|k) (4.22c)

ē(t|k) = ˆ̄x(t|k)− z(t|k) (4.22d)

ū(t|k) = Kē(t|k) + v(t|k) (4.22e)

(z(t|k), v(t|k)) ∈ Zs(k + t)× Vs(k + t) (4.22f)

z(N |k) ∈ Zs
f (4.22g)

ˆ̄x(0|k) = x̂(k), z(0|k) = z(k), (4.22h)

for all t = 0, . . . , N − 1, where V = {v(0|k), . . . , v(N − 1|k)} and Z = {z(0|k), . . . , z(N |k)}
denote the nominal input and state sequences, respectively. 3

The above problem is connected to system (4.2a) through the control input (4.4), where
z(k) is the nominal closed-loop state and x̂(k) the observer state initialized with z(0) =
x̂(0) = x(0). Therefore, similar to (4.5), we can decompose the state vector x into x(k) =
z(k) + e(k) + x̃(k), which is governed by the closed-loop dynamics

z(k + 1) = Az(k) +Bv(k)

x̃(k + 1) = (A− LC)x̃(k) + w(k)− Ld(k) (4.23a)

e(k + 1) = (A+BK)e(k) + LCx̃(k) + Ld(k). (4.23b)

Note that (4.22b) is always initialized with the nominal closed-loop state via (4.22h), which
results in linear closed-form expressions for the state estimation and observer error dynamics
x̃(k) and e(k). Hence, both errors evolve autonomously from the chosen MPC control input.
Nevertheless, feedback is introduced indirectly through the cost function (4.22a) via the
predicted mean (4.22c), since we always initialize this sequence with the observer state,
i.e., ˆ̄x(0|k) = x̂(k) through (4.22h). Finally, the constraints (4.22f) are tightened for each
time step k individually via k-step PRS for the combined random variable δx(k) = e(k) +
x̃(k), which ensures maximum flexibility and allows for inclusion of correlated disturbance
sequences.

4.3.1 Scenario optimization – A brief recap

In contrast to the direct output-feedback case, we aim to design the constraint sets Zs and
V
s in (4.22f) via scenario-based PRS. We consider techniques from scenario optimization

[28] that solve chance constrained problems of the form

min
x∈X⊆Rd

c⊤x (4.24a)

s.t. P(x ∈ Xδ) ≥ p, (4.24b)

3Variables with a bar denote the mean values, i.e., ē(t|k) = E(e(t|k)|x̂(k)).



74 4 Output-feedback regulation with additive noise

where Xδ is a convex and closed set for any realization of the random variable δ. By drawing
Ns samples δ(i) of δ we can approximate problem (4.24) as its sample-based surrogate

min
x∈X⊆Rd

c⊤x (4.25a)

s.t. x ∈ Xδ(i) ∀i ∈ Is, (4.25b)

where Is denotes a subset of all samples with cardinality |Is| = Ns − Nd, which is found
by discarding Nd samples from the original set I = {1, . . . , Ns}. To use a simple greedy
sample removing technique, we make the following technical assumption.

Assumption 4.5 ([28]). The optimal solution x∗ of the sample-based problem (4.25) violates
all Nd discarded constraints Xδ(i) with i ∈ I\Is.

Thus, by discarding constraints (samples), we can improve the objective function value
(4.25a) while maintaining probabilistic guarantees of the optimal solution w.r.t. chance
constraint satisfaction. To quantify the violation probability P(x∗ ̸∈ Xδ), we recall the
following result from [28].

Theorem 4.2 ([28, Thm. 2.1]). Let β ∈ (0, 1) be a small confidence parameter, let x ∈ X ⊆ Rd
and choose Ns and Nd, such that

(
Nd + d− 1

Nd

)Nd+d−1∑
i=0

(
Ns

i

)
(1− p)ipNs−i ≤ β, (4.26)

then w.r.t. the Ns-fold product measure we have that PNs(P(x∗ ∈ Xδ) ≥ p) ≥ 1− β.

A sufficient condition for (4.26) is provided by the authors of [28], i.e.,

Nd ≤ (1− p)Ns − d+ 1−

√
2(1− p)Ns ln

(
((1− p)Ns)d−1

β

)
, (4.27)

which gives us an approximate number of samples to remove, such that the optimal solution
x∗ ∈ Xδ is verified with a probability of at least 1 − β. By setting Nd = 0 and solving for
Ns, we find

Ns ≥
2

1− p
((d− 1) ln(2)− ln(β))

as an estimate of how many samples Ns are required to ensure that PNs(P(x∗ ∈ Xδ) ≥ p) ≥
1− β without removing any samples.
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4.3.2 Distributed scenario PRS

In view of the indirect feedback initialization, we know that the closed-loop error dynamics
(4.23a) - (4.23b) evolve autonomously and do not depend on the MPC control input. Thus,
we can sample the closed-loop error dynamics offline under the assumptions that we know
the duration of the control task, i.e., the task horizon, and the distribution of w and d in
(4.2a)-(4.2b) is known exactly.

Assumption 4.6. The finite task horizon NT ∈ N is known a-priori.

The design relies on a distributed error sampling algorithm, which is capable of computing
the state estimation error and observer error trajectories fully distributed in a neighbor-to-
neighbor fashion.

Algorithm 5 Distributed error sampling

1: For each subsystem i ∈M in parallel:
2: Initialize eNi

(0) = 0, x̃Ni
(0) = 0 and k = 0

3: repeat
4: Sample successor error states x̃i(k + 1) and ei(k + 1) according to (4.7), (4.8)
5: Communicate (x̃i(k + 1), ei(k + 1)) to neighbors j ∈ Ni
6: Construct x̃Ni

(k + 1) = colj∈Ni
(x̃(k + 1)) and eNi

(k + 1) = colj∈Ni
(e(k + 1))

7: Increment time k ← k + 1
8: until k = NT

The result of Algorithm 5 is the j-th closed-loop state estimation and observer error trajec-
tory (x̃

(j)
Ni
(k), e

(j)
Ni
(k)) for k = 0, . . . , NT. The main idea is to sample a sufficient amount of

error scenarios along Algorithm 5, such that each subsystem contains Ns scenarios. After-
wards, each subsystem i ∈M solves for each time instant k = 0, . . . , NT a scenario program
for the combined error sample δx

(j)
Ni
(k) = x̃

(j)
Ni
(k) + e

(j)
Ni
(k), i.e.,

min
b(k)>0

∥b(k)∥1 (4.28a)

s.t. ∥HNi
δx

(j)
Ni
(k)∥∞ ≤ b(k) ∀j ∈ Is. (4.28b)

A simpler solution is found thanks to Assumption 4.5, which allows us to successively
remove Nd samples δx

(j)
Ni
(k) with the largest violation ∥HNi

δx
(j)
Ni
(k)∥∞. The optimal solution

to problem (4.28) is then readily given by b∗(k) = maxj∈Is HNi
δx

(j)
Ni
(k). The result of the

optimization problem formally yields a so-called k-step PRS.

Corollary 4.2. Let Ns and Nd satisfy condition (4.26) for some probability level p ∈ (0, 1),
confidence β ∈ (0, 1), constraint function dimension d = ri, and let b∗(k) be the optimal
solution of problem (4.28) for k ∈ {0, . . . , NT}. With probability 1 − β the set Rs

Ni
(k) =

{δxNi
|HNi

δxNi
(k) ≤ b(k)} is a k-step PRS of probability level p for the combined stochastic

error part δxNi
= x̃Ni

+ eNi
at time k initialized with δxNi

(0) = 0.
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Proof. The proof follows immediately by applying Theorem 4.2 to the scenario program
(4.28) with optimal solution b∗(k) for k = 0, . . . , NT.

Analogous to the k-step distributed PRS for the state error δxNi
(k), we can derive a k-step

distributed PRS Rs
u,i(k) for the input error eu,i(k) = KNi

x̃Ni
(k), which follows from the

tube controller (4.4).

Remark 4.5. If the distributions of w and d are not available, instead of sampling via Algo-
rithm 5, we can directly use historical data of δxNi

(k) recorded during closed-loop operation
and apply Corollary 4.2 to obtain a scenario PRS.

Remark 4.6. So far, we have established a result for the joint chance constraints (4.3). Note
that JCCs were only necessary to ensure closed-loop constraint satisfaction in the direct
feedback case, i.e., along convex symmetric PRS, see Theorem 4.1. In the sample-based
indirect feedback framework, we can drop this requirement, which allows us to use non-
symmetric PRS that are defined on single half-spaces and yield non-conservative chance
constraint satisfaction. In view of Corollary 4.2, we can obtain a k-step PRS for the closed-
loop system by simply setting d = 1 and deriving the value b∗(k) for each half-space constraint
individually. Hence, we can decompose HNi

into its row vectors [HNi
]c for c = 1, . . . , ri,

such that [HNi
]cδxNi

(k) ≤ [bi(k)]c and define the alternative optimization problem

min
[bi(k)]c>0

[bi(k)]c (4.29a)

s.t. [HNi
]cδx

(j)
Ni
(k) ≤ [bi(k)]c ∀j ∈ Is, ∀c ∈ {1, . . . , ri}. (4.29b)

This can similarly be solved thanks to Assumption 4.5 by successively removing Nd samples
δx

(j)
Ni
(k) with the highest values [HNi

]cδx
(j)
Ni
(k).

In Algorithm 6, we propose a distributed constraint tightening procedure that results in a
dynamic constraint tightening along the closed-loop trajectory for k = 0, . . . , NT. This can

Algorithm 6 Distributed constraint tightening

1: Input: Chance constraints (4.3), Confidence β, Sample size Ns

2: Distributedly generate Ns samples via Algorithm 5
3: Initialize k = 0
4: For each subsystem i ∈M in parallel:
5: repeat
6: Compute the number of samples to discard Nd via (4.27)
7: Solve optimization problem (4.28) or (4.29) and obtain scenario-based PRS Rs

Ni
(k)

and/or Rs
u,i(k) via Corollary 4.2.

8: Tighten constraints with Zs
Ni
(k) = XNi

⊖Rs
Ni
(k) and Vs

i(k) = Ui ⊖Rs
u,i(k)

9: Increment time k ← k + 1
10: until k = NT
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be used in case of correlated disturbance sequences. The global constraint sets are given by
the Cartesian products

Z
s(k) = Πi∈MZ

s
Ni
(k)

V
s(k) = Πi∈MV

s
i(k)

for all k = 0, . . . , NT.

Remark 4.7. If the noise terms w(k) and d(k) are i.i.d., the assumption on the task horizon
(Assumption 4.6) can be dropped, since any sample δx(j)(k) = x̃(j)(k)+ e(j)(k) for all k ∈ N
is drawn from the same distribution. This optionally simplifies the design procedure (4.28)
or (4.29), since the time dependency k is no longer necessary, resulting in a PRS instead
of k-step PRS.

Objective function In general, in indirect feedback schemes, the cost function can be
reformulated analytically, cf. Section 2.3.1, or sample-based, cf. Section 2.3.2. While
the latter facilitates the use of arbitrary cost functions, analytical approximation schemes
require a quadratic cost. To obtain a comparable result to the direct output-feedback case
from the previous section, we consider a quadratic cost function in the state and input
mean, cf. [76], while the receding horizon cost is defined as

J(ˆ̄x(·|k), ū(·|k)) = ∥ˆ̄x(N |k)∥2P +
N−1∑
t=0

∥ˆ̄x(t|k)∥2Q + ∥ū(t|k)∥2R, (4.30)

where the matrices Q,R, P are block-diagonal matrices defined as in Assumption 4.2. Note
that, similar to the direct output-feedback case, we have omitted the variance part of the
cost function, cf. (4.19), as it cannot be improved by the MPC decision variables. The
difference between the cost function in direct feedback (4.19) compared to indirect feedback
(4.30) is that we now use the mean predictions ˆ̄x(·|k) and ū(·|k), while (4.19) uses the
nominal predictions z(·|k) and v(·|k). In other words, the mean predictions include the
tube feedback, while the nominal ones do not. Finally, to ensure recursive feasibility, we
consider a terminal set/controller approach, where we make the following assumption.

Assumption 4.7. Let Assumption 4.2 hold true with Z = Z
s
f and V = V

s
f , where Zs

f =
∩NT
k=1Z

s(k) and Vs
f = ∩

NT
k=1V

s(k).

4.3.3 Theoretical analysis

We can establish the following result on recursive feasibility and closed-loop chance con-
straint satisfaction.

Proposition 4.3.2. Consider system (4.2) under control law (4.4) resulting from the indirect
feedback MPC optimization Problem 4.3.1 satisfying Assumptions 3.1, 4.1, 4.4, 4.6 and 4.7.
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If Problem 4.3.1 admits a feasible solution with z(0) = x̂(0) = x(0), then it is feasible for
all k ∈ {0, . . . , NT −N} and with a probability of no less than 1− β the chance constraints
(4.3) are satisfied in closed-loop.

Proof. The proof can be found in Section 4.5.

Remark 4.8. Under a zero-mean i.i.d. assumption on w(k) and d(k), we can remove As-
sumption 4.6 in Proposition 4.3.2 and prove the same theoretical properties for all k ∈ N.
This, however, is omitted for brevity and can easily established by following the same steps of
the proof (Section 4.5) with time-invariant constraint sets Zs,Vs,Zs

f due to PRS constraint
tightening (instead of k-step PRS).

Moreover, an expected cost decrease and convergence to an asymptotic average performance
bound, similar to [76, Thm. 3, Cor. 1], can be established. Notably, thanks to the cost
function (4.30) for the mean predictions, the resulting performance bound is no worse than
that from the linear controller u = Kx̂, which improves the bound from Theorem 4.1 by
setting γ = 1.

4.3.4 Numerical example continued

We continue the example from Section 4.2.6 to illustrate that the indirect feedback MPC
scheme verifies the closed-loop chance constraints non-conservatively. For comparison rea-
sons, we use a constant PRS constraint tightening by computing only one PRS over the
entire task horizon NT = 10 (Remark 4.7), which is justified since the process and measure-
ment noise are both i.i.d. in the considered example.

To do so, we compute a PRS at time k = NT with Algorithm 6 and define ZNi
(k) = ZNi

(NT)
for all k = 0, . . . , NT. In the following, we consider Ns = 106, β = 10−9 and px = 0.6 for
each experiment. All offline computations were carried out on standard hardware, i.e., an
Intel i7-9700k CPU with 16gb of RAM, within 60 seconds.

PRS volume We design a non-symmetric scenario-based PRS with optimization problem
(4.29) for the case of ICCs, which yields a volume of 0.584, while the symmetric PRS result-
ing from optimization problem (4.28) for the case of JCCs yields a volume of 1.218. In both
cases, the scenario PRS are significantly smaller compared to the analytical counterparts,
cf. Table 4.1, where the scenario PRS with JCCs is approximately 36% and the scenario
PRS with ICCs nearly 70% smaller compared to the central analytical design.

Closed-loop results In view of Remark 4.6, we formulate the PRS based on the individual
half-space constraints, which results in non-conservative closed-loop constraint satisfaction.
To this end, we consider the same setup as in Section 4.2.6 and simulate the closed-loop
system over the task horizon NT = 10. To facilitate comparison with the results of the
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Table 4.3: Comparison between direct and indirect feedback DMPC.

C-MPC
DMPC:

LMI approach

DMPC:

Iterative approach
IF-DMPC

E(l(x, u)) 56.31 60.65 68.00 48.67

P(|[x1]2| ≤ 1) 85.00% 91.32% 95.44% 60.06%

P(|[x5]2| ≤ 1) 85.16% 90.72% 95.60% 60.14%

previous section, we have extended Table 4.2 with the results from the indirect feedback
approach (IF-DMPC), see Table 4.3. Figure 4.3 illustrates the mean trajectories for different
DMPC approaches, averaged over 5000 Monte-Carlo runs. As it can be seen, the indirect
feedback DMPC operates on average the closest to the constraint [x1]2 ≤ 1, while the direct
feedback approaches with feasibility-based initialization have inherently larger conservatism
due to the conditioning of the constraints on the state x(0|k) instead of the closed-loop error
e(0), cf. the discussion in Remarks 2.3 and 2.4.

0 1 2 3 4 5 6 7 8 9
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1

Figure 4.3: Mean trajectories of subsystem 1 averaged over 5000 Monte-Carlo runs.
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4.4 Summary

In this chapter, we studied an output-feedback SMPC scheme for distributed systems us-
ing distributed PRS. First, we extended a state-feedback distributed SMPC algorithm to
the output-feedback case, where we proposed two synthesis methods for distributed PRS
that combine the effect of process and measurement noise via structured block-diagonal
stationary covariance matrices. The central LMI-based approach yields a less conservative
distributed PRS compared to the distributed iterative approach. However, the main advan-
tage of the iterative distributed approach is that no central coordination node is required.
The output-feedback DSMPC is highlighted through its fully distributed synthesis of the
controller ingredients, the distributed PRS computation and the reduction to a quadratic
program, which renders the optimization problem applicable to ADMM. The optimiza-
tion problem is proven to be recursively feasible, convergent to an average performance
bound, while the chance constraints are guaranteed for the closed-loop system. The nu-
merical example reveals that the distributed PRS synthesis comes at the price of increased
conservatism, which results in a higher empirical chance constraint satisfaction rate than
necessary.

The second contribution is the extension of the direct feedback algorithm to the indirect
output-feedback case, where we made use of distributed scenario PRS for constraint tight-
ening. We propose a distributed constraint tightening algorithm that uses scenario opti-
mization results to provide probabilistic guarantees for closed-loop constraint satisfaction,
while the resulting MPC optimization problem is provably recursively feasible. In a numer-
ical example, we illustrate the reduction in conservatism with respect to the direct feedback
DSMPC case.

4.5 Proofs

Proof of Corollary 4.1

Consider the covariance matrices Σx̃ and Σe and the block-diagonal covariance matrix (4.11),
such that Σx̃(t) ⪯ Σ̂x̃(t) and Σe(t) ⪯ Σ̂e(t). From (4.12a) - (4.12b) we have

Σx̃(t+ 1) = Υ1 + Σw − LΣdL⊤ (4.31)

Σe(t+ 1) = Υ2 +Υ3 + LΣdL, (4.32)

where, for simplicity, we denoted the coupled terms as

Υ1 := ALΣ
x̃(t)A⊤

L

Υ2 := AKΣ
e(t)A⊤

K

Υ3 := LCΣx̃(t)C⊤L⊤.
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Note that Σx̃(t) and Σe(t) are positive semidefinite by design, which renders also Υ1,Υ2,Υ3

positive semidefinite. This allows us to follow the proof of [56, Lemma 1] to find that

Υ1 ⪯ ALΣ̂
x̃(t)A⊤

L ⪯

ÃN1,LΣ̂
x̃
1(t)Ã

⊤
N1,L

. . . 0
...

. . .
...

0 . . . ÃNM ,LΣ̂
x̃
M(t)Ã⊤

NM ,L


Υ2 ⪯ AKΣ̂

x̃(t)A⊤
K ⪯

ÃN1,KΣ̂
e
1(t)Ã

⊤
N1,K

. . . 0
...

. . .
...

0 . . . ÃNM ,KΣ̂
e
M(t)Ã⊤

NM ,K


Υ3 ⪯ LCΣ̂x̃(t)C⊤L⊤ ⪯

L1C̃N1Σ̂
x̃
1(t)C̃

⊤
N1
L⊤
1 . . . 0

...
. . .

...

0 . . . LM C̃NM
Σ̂x̃
M(t)C̃⊤

NM
L⊤
M

 ,
where ÃNi,L =

√
|Ni|ANi,L, ÃNi,K =

√
|Ni|ANi,K, C̃Ni

=
√
|Ni|CNi

and |Ni|. The proof
concludes by recalling that the terms Σw and LΣdL⊤ in (4.31)-(4.32) are block-diagonal by
design.

Proof of Theorem 4.1

The proof consists of four parts. First, we show recursive feasibility and predictive satis-
faction of chance constraints, followed by closed-loop satisfaction of chance constraints and
convergence, while the last part deals with the asymptotic average cost bound. Due to the
assumption of exact feasibility, we can use the global vectors during the proof.

Part 1: Recursive feasibility Suppose that at time k a feasible solution to Problem 4.2.1
exists. Then, at time k + 1, we need to consider the possibly suboptimal solution due to
mode 2, for which we define the candidate solutions

z̃(t|k + 1) = [z∗(1|k), ..., z∗(N |k), AKz
∗(N |k)]

ṽ(t|k + 1) = [v∗(1|k), ..., v∗(N − 1|k), Kz∗(N |k)].

From feasibility at time k+1 follows that (z̃(t|k+1), ṽ(t|k+1)) ∈ (Z×V) for t = 0, ..., N−2.
For t = N − 1 we have that z̃(N − 1|k + 1) ∈ Zf . Thus, by Assumption 4.2, and in
particular from the invariance property (4.18c), recursive feasibility follows. Predictive
chance-constraint satisfaction is then a direct consequence, since for all z ∈ Zf the terminal
constraints (4.18b) are satisfied.

Part 2: Closed-loop chance constraint satisfaction For brevity, we show the closed-loop
guarantees only for the state constraints. Consider the combined error δx = x̃ + e with
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δx(0|0) = δx(0) = 0 and assume that R is a convex symmetric PRS. Now, at time k + 1,
we condition the probability on feasibility of Problem 4.2.1 in Mode 1 or 2

P(δx(k + 1) ∈ R)
=P(δx(k + 1) ∈ R|M1)P(M1) + P(δx(k + 1) ∈ R|M2)P(M2). (4.33)

In Mode 2 we have z(0|k + 1) = z(1|k), so that

P(δx(k + 1) ∈ R|M2) = P(e(1|k) + x̃(1|k) ∈ R). (4.34)

In Mode 1 we have z(0|k + 1) = x̂(k + 1) and thus e(k + 1) = 0, such that

P(δx(k + 1) ∈ R|M1) = P(x̃(k + 1) ∈ R)
≥P(x̃(1|k) ∈ R) ≥ P(e(1|k) + x̃(1|k) ∈ RX),

where the first inequality follows from central convex unimodality and [77, Thm. 3]. The
second inequality is due to [2, Thm. 1]. Substituting the latter inequality and (4.34) into
(4.33) yields

P(δx(k + 1) ∈ R)
≥P(e(1|k) + x̃(k + 1) ∈ R)P(M1) + P(e(1|k) + x̃(k + 1) ∈ R)P(M2)

=P(δx(1|k) ∈ R).

Closed-loop chance constraint satisfaction is then a direct consequence of predictive chance
constraint satisfaction.

Part 3: Optimal cost decrease The convergence proof follows the same structure as in the
proof of Theorem 3.1. Let V (z(k)) = ∥z∗(N |k)∥2P +

∑N−1
t=0 ∥z∗(t|k)∥2Q + ∥v∗(t|k)∥2R be the

value function of Problem 4.2.1. We condition the expected cost at time k+1 on feasibility
of Problem 4.2.1 in Mode 1 or Mode 2

E(V (z(k + 1)) = E(V (z(k + 1))|M2)P(M2) + E(V (z(k + 1))|M1)P(M1). (4.35)

By optimality, the first term directly satisfies

E(V (z(k + 1))|M2) ≤ J(z̃(·|k + 1), ṽ(·|k + 1)), (4.36)

where z̃(·|k + 1), ṽ(·|k + 1) are the shifted state and control sequences. Next, we use the
fact that the value function V (x) of a nominal MPC problem is piece-wise quadratic in x
[11], which, together with Assumption 4.3 implies the existence of a Lipschitz constant β,
such that

V (z + δx) ≤ V (z) + β∥δx∥2. (4.37)
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This allows us to evaluate the expected value in Mode 1 as follows

E(V (x̂(k + 1))|M1) = E(V (z(0|k + 1))|M1)

(4.37)

≤ J(z̃(·|k + 1), ṽ(·|k + 1)) + βE
(
∥x(k + 1)− z(1|k)∥2|M1

)
.

Now we can add βE(∥x(k+1)−z(1|k)∥2|M2) to (4.36) and substitute both inequalities into
(4.35) resulting in

E(V (z(k + 1)) ≤ J(z̃(·|k + 1), ṽ(·|k + 1)) + βE
(
∥x(k + 1)− z(1|k)∥2

)
.

The latter term can be further evaluated by considering the decomposition x(k+1)−z(1|k) =
x̃(1|k) + e(1|k) = [I I] ξ(1|k), so that

βE
(
∥x(k + 1)− z(1|k)∥2

)
= βE

(
∥[I I] ξ(1|k)∥2

)
≤
√
2βE

(
∥ ξ(1|k)∥2

)
(4.9)
=
√
2βE

(
∥Ψξ(0|k)∥2 + ∥Γω(0|k)∥2

)
≤

√
2β√

λmin(PΣ)︸ ︷︷ ︸
γ

(
∥Ψξ(0|k)∥PΣ

+ E
(
∥Γω(0|k)∥PΣ

))
, (4.38)

where the first inequality is due to the triangle inequality together with (4.9). The second
inequality uses

√
λmin(PΣ)∥ξ∥2 ≤ ∥ξ∥PΣ

, where PΣ ≻ 0 solves the Lyapunov inequality in
the theorem statement for some κ ∈ R>0, so that

∥Ψξ(0|k)∥PΣ
≤ ∥ξ(0|k)∥PΣ

− κ∥ξ(0|k)∥PΣ
.

Therefore, (4.38) can be bounded as follows

βE
(
∥x(k + 1)− z(1|k)∥2

)
≤ γ

(
(1− κ)∥ξ(0|k)∥PΣ

+ E
(
∥Γω(0|k)∥PΣ

))
.

By combining the latter inequality with the nominal MPC cost decrease due to the terminal
controller (4.18a), we obtain

E
(
V
(
z(k + 1)

))
− V

(
z(k)

)
≤ −∥z(k)∥2Q − ∥v(k)∥2R − γκ∥ξ(k)∥PΣ

+ γE(∥Γω(k)∥PΣ
,

where z(k) = z(0|k) and Ω = blkdiag(Σw,Σd).

Part 4: Asymptotic average cost bound Using standard arguments from stochastic con-
trol, we obtain

0 ≤ lim
T→∞

1

T
E
(
V
(
z(k)

))
− V

(
z(0)

)
≤ lim

T→∞

T−1∑
k=0

E

(
− ∥z(k)∥2Q − ∥v(k)∥2R − γκ∥ξ(k)∥PΣ

+ γE(∥Γω(k)∥PΣ

)

≤ lim
T→∞

T−1∑
k=0

γE(∥Γω(k)∥PΣ
= γ

√
tr(Γ⊤PΣΓΩ) = c,
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which concludes the proof.

Proof of Proposition 4.3.2

Recursive feasibility for k = 0, . . . , NT − N follows from standard arguments by showing
feasibility of the shifted candidate sequence. Let (z∗(·|k), v∗(·|k)) be the optimal solution to
Problem 4.3.1 at time k. Applying (4.4) to (4.2) yields a new state estimate x̃(k + 1) and
nominal state z(k+1) = z∗(1|k), for which we consider the candidate sequence v(t|k+1) =
v∗(t+1|k) for t = 0, . . . , N−2 appended with the terminal controller v(N−1|k) = Kz∗(N |k).
Since v(t|k + 1) ∈ V

s(k + 1 + t) for t = 0, . . . , N − 2 and v(N − 1|k) ∈ V
s
f ⊆ V

s(k + N)
by Assumption 4.7, we have that v(·|k) satisfies the input constraints (4.22f) at time k+1.
Similarly, the state constraints z(t|k + 1) = z∗(t + 1|k) ∈ Z

s(k + 1 + t) are verified for
all t = 0, . . . , N − 1, while z(N |k + 1) = (A + BK)z∗(N |k) ∈ Z

s
f ⊆ Z

s(k + N + 1) by
Assumption 4.7. This verifies the state constraints (4.22f) and terminal constraint (4.22g)
at time k + 1.

Constraint satisfaction: Let Rs
Ni
(k) and Rs

u,i(k) be state and input PRS for all i ∈ M
designed along Corollary 4.2, then with no less than 1−β probability, the errors δxNi

and eu,i
lie within the PRS of probability level px and pu, respectively. Given that (z∗(0|k), v∗(0|k)) ∈
Z
s(k) × Vs(k) due to recursive feasibility and Z

s(k) = Πi∈M(XNi
⊖ Rs

Ni
(k)) and V

s(k) =
Πi∈M(Ui ⊖Rs

u,i(k)), we therefore have that with no less than 1− β probability the chance
constraints (4.3) are verified in closed-loop conditioned on x(0), i.e., since δx(0) = 0 by
design.



5 Regulation problem with multiplicative
noise

In the previous chapters, we studied the tracking and regulation problem for distributed
systems under additive stochastic uncertainty/noise. In the following, we extend the idea
of dual consensus ADMM-based DSMPC to handle distributed systems with multiplicative
noise, which is attracting increasing interest in the control community due to its ability to
approximate complex dynamical systems [44, 68]. Since multiplicative noise affects both
the predicted states and the inputs, we cannot resort to an offline constraint tightening
approach as in Chapters 3 and 4, but instead consider a probabilistic framework with online
constraint tightening as proposed by [59]. This increases the computational overhead of the
MPC optimization problem, since in addition to the nominal states, the state variance must
also be propagated in the form of LMIs, which ultimately renders the optimization problem
a distributed semidefinite program (SDP).

In Section 5.2, we introduce the controller ingredients in a centralized fashion, where the
emphasis lies on a distributed structure. In Section 5.3, we propose a distributed synthesis
method for the distributed terminal cost function and the distributed terminal set, while
Section 5.4 introduces a distributed optimization-based DSMPC. This chapter concludes
with Section 5.5, where a numerical example is carried out. This chapter is based on the
publication [115] 1.

Related work In [46], an output-feedback DSMPC approach for bounded additive and
parametric uncertainties is proposed, where the algorithm is non-iterative and sequentially
updating. Furthermore, the coupling is only imposed for the individual chance constraints.
The same authors presented a non-iterative sequential state-feedback DSMPC in [48], where
the coupling again affects only the individual chance constraints. In [148], a scenario-
based parallel updating DSMPC for dynamically coupled systems is proposed, while each
subsystem respects local joint chance constraints.

1C. Mark and S. Liu. “A stochastic MPC scheme for distributed systems with multiplicative uncertainty”.
In: Automatica 140 (2022), p. 110208©2022 Elsevier Ltd.
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5.1 Problem description

We consider a network of M linear time-invariant systems, where each subsystem i ∈ M
has a state vector xi ∈ Rni and input vector ui ∈ Rmi . We consider distributed systems on
a graph (Def. 3.1) with local dynamics for each subsystem i ∈M defined as

xi(k + 1) = ANi
xNi

(k) +Biui(k) + [CNi
xNi

(k) +Diui(k)]wi(k), (5.1)

where ANi
∈ Rni×nNi , Bi ∈ Rni×mi , CNi

∈ Rni×nNi and Di ∈ Rni×mi .

The random variable wi(k) ∈ R is a zero mean white noise with unit variance and unbounded
support, where the influence of the multiplicative noise on the nominal system, defined via
ANi

and Bi, can be weighted with the perturbation matrices CNi
and Di.

Assumption 5.1 (Uncorrelated disturbances). E(wi(k)wj(t)) = 0 for all t, k ∈ N and for all
i ̸= j.

We impose individual chance constraints for the local states and inputs

P(Hx
i,rxi(k) ≤ 1) ≥ pxi,r ∀r ∈ {1, . . . , ni,r} (5.2a)

P(Hu
i,sui(k) ≤ 1) ≥ pui,s ∀s ∈ {1, . . . , ni,s}, (5.2b)

whereHx
i,r ∈ Rni,r×ni,x andHu

i,s ∈ Rni,s×ni,u , pxi,r and p
u
i,s are the probability levels of constraint

satisfaction for the ni,r state and ni,s input half-space constraints. The global dynamics
are obtained by stacking the local inputs and states as u = coli∈M(ui) ∈ R

m and x =
coli∈M(xi) ∈ Rn, i.e.,

x(k + 1) = Ax(k) +Bu(k) + [Cx(k) +Du(k)]w(k). (5.3)

To simplify the exposition throughout this chapter, we make the following assumption.

Assumption 5.2 (Stabilizability). There exists a structured linear feedback controller

u := Kx = coli∈M(KNi
xNi

),

where K ∈ Rm×n and KNi
∈ Rmi×nNi ∀i ∈ M, such that the global system (5.3) is asymp-

totically stable in the mean-square sense [53].

Remark 5.1.1. Asymptotic stability in the mean-square sense implies that E(x(k))→ 0 and
var(x(k)) → 0 as k → ∞. In Section 5.3.1, we propose an LMI-based design technique to
synthesized a mean-square stabilizing controller that satisfies Assumption 5.2.
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5.2 Controller design

In the following, we present the main ingredients of the proposed tractable SMPC scheme.
We begin by separating the stochastic dynamics (5.1) into its mean and variance dynamics,
while the control inputs ui(k) are restricted to be affine error feedback policies that stabilize
the deviation between the mean and true state. Afterwards, the chance constraints (5.2)
are analytically approximated via Cantelli’s inequality based on the predicted mean and
covariance. Finally, we introduce the terminal ingredients in a centralized fashion, while
Section 5.3 is devoted to a corresponding distributed reformulation.

5.2.1 Mean-variance dynamics

We define the predicted state mean conditioned on x(k) as z(t|k) = E(x(t|k) | x(k)) and
consider a distributed error feedback controller of the form

ui(t|k) = vi(t|k) +KNi
(xNi

(t|k)− zNi
(t|k)) ∀i ∈M, (5.4)

where KNi
is a structured feedback gain according to Assumption 5.2. The mean states and

inputs (zNi
(·|k), vi(·|k)) are obtained from an MPC optimization problem solved at time k.

In view of Assumption 5.1 and w(t|k) d
= w(t + k), it can easily be verified that the state

mean zi(t|k) evolves according to the dynamics

zi(t+ 1|k) = ANi
zNi

(t|k) +Bivi(t|k). (5.5)

Next, we define the error variance conditioned on x(k) as

Σi(t|k) = var(xi(t|k)− zi(t|k) | x(k)) ∀t ∈ N,

while its time evolution can be described with the variance dynamics, cf. [59, 140],

Σi(t+ 1|k) =
[
CNi

zNi
(t|k) +Divi(t|k)

][
CNi

zNi
(t|k) +Divi(t|k)

]⊤
+ CNi,KΣNi

(t|k)C⊤
Ni,K

+ ANi,KΣNi
(t|k)A⊤

Ni,K
, (5.6)

where ΣNi
(t|k) = var(xNi

(t|k)− zNi
(t|k) | x(k)), ANi,K = ANi

+ BiKNi
and CNi,K = CNi

+
DiKNi

.

Remark 5.1. Similar to the previous two chapters, we again face the problem of imple-
menting (5.6) in a distributed setting, i.e., the left-hand side updates the local covariance
matrix, while the right hand side requires the neighborhood covariance matrix. Thus, we en-
force once again a distributed structure by introducing a positive semidefinite block-diagonal
matrix Σ̂(t|k) ∈ Rn×n in such a way that

Σ(t|k) ⪯ Σ̂(t|k) =

Σ̂1(t|k) · · · 0
...

. . .
...

0 . . . Σ̂M(t|k)

 , (5.7)
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while the local block-diagonal variance dynamics are governed by

Σ̂i(t+ 1|k) =
[
CNi

zNi
(t|k) +Divi(t|k)

][
CNi

zNi
(t|k) +Divi(t|k)

]⊤
+ C̃Ni,KΣ̂Ni

(t|k)C̃⊤
Ni,K

+ ÃNi,KΣ̂Ni
(t|k)Ã⊤

Ni,K
, (5.8)

where ÃNi,K =
√
|Ni|ANi,K and C̃Ni,K =

√
|Ni|CNi,K. The block-diagonal neighborhood

covariance matrix is given by Σ̂Ni
(t|k) = blkdiagj∈Ni

(Σ̂j(t|k)).

Corollary 5.1. Let Σ̂(t + 1|k) be the global block-diagonal matrix consisting of Σ̂i(t + 1|k)
for all i ∈M given by (5.8). If Σ̂(t|k) ⪰ Σ(t|k), then it holds that Σ̂(t+ 1|k) ⪰ Σ(t+ 1|k).

Proof. The proof can be constructed similar to Corollary 4.1 by block-diagonally upper
bounding the two coupled terms involving ÃNi,K and C̃Ni,K in the last line of (5.8).

Covariance propagation via LMIs In the following, the inequality version of (5.8) is con-
verted into a nonlinear matrix inequality assuming that Σ̂Ni

(t|k) is positive definite

Σ̂i(t+ 1|k)− ÃNi,KΣ̂Ni
(t|k)Σ̂−1

Ni
(t|k)Σ̂Ni

(t|k)
− C̃Ni,KΣ̂Ni

(t|k)Σ̂−1
Ni
(t|k)Σ̂Ni

(t|k)C̃⊤
Ni,K

Ã⊤
Ni,K

−
[
CNi

zNi
(t|k) +Divi(t|k)

]
I−1
[
CNi

zNi
(t|k) +Divi(t|k)

]⊤ ⪰ 0.

It remains to apply the Schur complement, which leads to an LMI for each subsystem i ∈M
Σ̂i(t+ 1|k)

[
⋆2 ⋆ ⋆

] (ÃNi
Σ̂Ni

(t|k) + B̃iUNi
)⊤

(C̃Ni
Σ̂Ni

(t|k) + D̃iUNi
)⊤

(CNi
zNi

(t|k) +Divi(t|k))⊤


 Σ̂Ni

(t|k) 0 0

0 Σ̂Ni
(t|k) 0

0 0 I


 ⪰ 0, (5.9)

where we expanded the terms ÃNi,K and C̃Ni,K to define a new variable UNi
= KNi

Σ̂Ni
(t|k).

Note that the mean dynamics (5.5) and covariance dynamics (5.9) involve only local vari-
ables zNi

and Σ̂Ni
, i.e., variables that are accessible by subsystem i through information

exchange with neighbors j ∈ Ni. This is necessary for a fully distributed implementation of
the MPC controller, where we aim to solve the distributed SDP via distributed optimiza-
tion, cf. Section 5.4. In the following sections, we reformulate the chance constraints and
introduce a cost function using only the local variables, which ensures that the distributed
structure of the problem is preserved.

2The symbol ⋆ denotes the corresponding transposed quantity.
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5.2.2 Cantelli chance constraint approximation

The individual chance constraints (5.2) are implemented as probabilistic approximations
via Cantelli’s inequality. As reported in [59], it can be shown that the chance constraints
(5.2) for the predicted states and inputs x(t|k), u(t|k) are verified for all t ∈ N if we instead
impose the following deterministic constraints for all i ∈M

Hx
i,rzi(t|k) ≤ 1− f(pxi,r)

√
Hx
i,rΣ̂i(t|k)(Hx

i,r)
⊤ ∀r ∈ {1, . . . , ni,r} (5.10a)

Hu
i,svi(t|k) ≤ 1− f(pui,s)

√
Hu
i,sΣ̂

u
i (t|k)(Hu

i,s)
⊤ ∀s ∈ {1, . . . , ni,s}, (5.10b)

where Σ̂u
i (t|k) = KNi

Σ̂Ni
(t|k)K⊤

Ni
and f(p) =

√
p/(1− p).

Remark 5.2.1. The function f(p) =
√
p/(1− p) characterizes a distributionally robust

bound on the inverse cumulative distribution function (quantile function) of w at proba-
bility level p. However, this bound is quite conservative and is generally tighter when the
exact quantile function is known. In this case, we can replace f(p) with the exact quan-
tile function. For instance, if w follows a standard normal distribution, f(p) = N−1(p)
gives the tightest bound, where N−1(p) denotes the quantile function of the standard normal
distribution at probability level p.

The constraints (5.10) have unfortunately a nonlinear dependency on the covariance matri-
ces. Therefore, as proposed by [60], we perform a simple Taylor linearization of the square
root terms, i.e., for the state constraints (5.10a) we write

Hx
i,rzi(t|k) ≤ 1−

f(pxi,r)
√
Hx
i,rΣ̂0,i(t|k)(Hx

i,r)
⊤

2
+

f(pxi,r)

2
√
Hx
i,rΣ̂0,i(t|k)(Hx

i,r)
⊤
Hx
i,rΣ̂i(t|k)(Hx

i,r)
⊤.

Next, we define the parameter ϵxi,r := f(pxi,r)
√
Hx
i,rΣ̂0,i(t|k)(Hx

i,r)
⊤ ∈ (0, 2) and repeat the

same linearization procedure for the input constraints (5.10b) resulting in

Hx
i,rzi(t|k) ≤ 1−

ϵxi,r
2
−
f(pxi,r)

2

2ϵxi,r
Hx
i,rΣ̂i(t|k)(Hx

i,r)
⊤ ∀r ∈ {1, . . . , ni,r} (5.11a)

Hu
i,svi(t|k) ≤ 1−

ϵui,s
2
−
f(pui,s)

2

2ϵui,s
Hu
i,sΣ̂

u
i (t|k)(Hu

i,s)
⊤ ∀s ∈ {1, . . . , ni,s}. (5.11b)

Remark 5.2. The definition of ϵxi depends on the linearization point
√
Hx
i,rΣ̂0,i(t|k)(Hx

i,r)
⊤.

Therefore, the optimal value of ϵxi is problem dependent, as the evolution of the covariance
matrix depends on the variance dynamics (5.6), which in turn depends on the initial condi-
tion z(0|k). Thus, it is not possible to a-priori find a decision rule how to select ϵxi , which
was similarly reported by [59].
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5.2.3 Objective function

We consider a quadratic expected value cost function over a prediction horizon N ∈ N

J(x(·|k), u(·|k)) = E

(
∥x(N |k)∥2P +

N−1∑
t=0

(
∥x(t|k)∥2Q + ∥u(t|k)∥2R

)∣∣∣∣x(k)), (5.12)

where Q ⪰ 0 and R ≻ 0 are block-diagonal weighting matrices and P satisfies the following
assumption.

Assumption 5.3. There exists a terminal cost Vf(x) =
∑

i∈M ∥xi∥2Pi
= ∥x∥2P with block-

diagonal matrix P ≻ 0 and a distributed terminal controller u = Kfx, such that

(A+BKf)
⊤P (A+BKf) + (C +DKf)

⊤P (C +DKf) +Q+K⊤
f RKf − P ⪯ 0. (5.13)

Remark 5.2.2. The existence of a terminal cost function according to Assumption 5.3 implies
that the controller u = Kfx is mean-square stabilizing for the global system (5.3). This is
the same condition that we required for the tube controller gain K by Assumption 5.2. Thus,
for simplicity, we set Kf = K.

Similar to Section 2.3.1, we analytically reformulate the expected quadratic cost function
(5.12) by decomposing it into its mean and variance components, such that J = Jm + Jv.
Note that due to block-diagonality of Q,R, P and Σ̂, the cost function (5.12) is fully sepa-
rable, i.e., Ĵ =

∑
i∈M(Jm,i + Jv,i) with

Jm,i(zi(·|k), vi(·|k)) = ∥zi(N |k)∥2Pi
+

N−1∑
t=0

(
∥zi(t|k)∥2Qi

+ ∥vi(t|k)∥2Ri

)

Jv,i(Σ̂Ni
(·|k)) = tr(PiΣ̂i(N |k)) +

N−1∑
t=0

tr(Q̄i +K⊤
Ni
RiKNi

)Σ̂Ni
(t|k)),

where Q̄i = WiT
⊤
i QiTiW

⊤
i is lifted into RNi×Ni via lifting matrices3 Wi ∈ {0, 1}Ni×n and

Ti ∈ {0, 1}ni×n. Unlike in the previous chapters, the variance cost Jv,i depends now on the

MPC decision variables (i.e., the predicted covariance matrices Σ̂Ni
) and thus cannot be

neglected in the receding horizon implementation.

5.2.4 Terminal constraints

To ensure recursive feasibility of the MPC optimization problem and convergence of the cost,
similar to Farina and Scattolini [59], we impose terminal constraints on both the predicted

3The lifting matrices are defined in such a way, that xNi
= Wix and xi = Tix
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mean and the predicted variance at the end of the prediction horizon, i.e.,

z(N |k) ∈ Zf := {z ∈ Rn|z⊤Pz ≤ α} (5.14)

Σ̂(N |k) ⪯ Σ̂f . (5.15)

The terminal set Zf is defined as an α sublevel set of the terminal cost function Vf(z) from
Assumption 5.3, where P denotes the block-diagonal weighting matrix. In conjunction with
the terminal controller vf = Kz, it can be shown that the terminal set Zf is positively
invariant for the global nominal system z+ = Az +Bvf , i.e.,

(A+BK)z ∈ Zf ∀z ∈ Zf .

In view of (5.15), we need to compute a block-diagonal terminal covariance matrix Σ̂f that
verifies the stationary condition

(A+BK)Σ̂f(A+BK)⊤ + (C +DK)Σ̂f(C +DK)⊤ + (C +DK)Ψ(C +DK)⊤ ⪯ Σ̂f ,
(5.16)

where Ψ is an arbitrary state covariance matrix that is defined in such a way that

Ψ ≻ ψI ≻ zz⊤ ⪰ 0 ∀z ∈ Zf (5.17)

for some non-negative ψ ∈ R>0. In addition, the chance constraints (5.11) must also be
fulfilled for all z ∈ Zf under application of the terminal controller, i.e.,

Hx
i,rzi ≤ 1−

ϵxi,r
2
−
f(pxi,r)

2

2ϵxi,r
Hx
i,rΣ̂f,i(H

x
i,r)

⊤ ∀r ∈ {1, . . . , ni,r} (5.18a)

Hu
i,sKNi

zNi
≤ 1−

ϵui,s
2
−
f(pui,s)

2

2ϵui,s
Hu
i,sΣ̂

u
f,i(H

u
i,s)

⊤ ∀s ∈ {1, . . . , ni,s} (5.18b)

for all i ∈M, where Σ̂u
f,i = KNi

Σ̂f,Ni
K⊤

Ni
.

Remark 5.3. Note that in view of (5.16) - (5.17), it is always possible to define a sufficiently
small set Zf , such that for all z ∈ Zf the terminal chance constraints (5.18) are verified. In
fact, the smaller Zf , the smaller Ψ resulting from (5.17) and hence the smaller Σ̂f resulting
from (5.16). If a zero terminal constraint strategy is adopted, then Zf = {0} results in a
state covariance zz⊤ = 0 in (5.17). In this case, ψ can be selected arbitrarily close to zero
to obtain a small (but positive definite) terminal covariance matrix through (5.16).

5.2.5 Central MPC optimization problem

The following MPC optimization problem is solved at every time instant k ∈ N.
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Problem 5.2.3 (Centralized Probabilistic MPC).

V (x(k)) =min
Z,V,S

M∑
i=1

(
Jm,i(zi(·|k), vi(·|k)) + Jv,i(Σ̂Ni

(·|k))
)

(5.19a)

s.t. (5.5), (5.8), (5.11) ∀t ∈ {0, ..., N − 1} ∀i ∈M (5.19b)

z(N |k) ∈ Zf (5.19c)

Σ̂(N |k) ⪯ Σ̂f (5.19d)

(z(0|k), Σ̂(0|k)) ∈ {(x(k), 0), (z(1|k − 1), Σ̂(1|k − 1))} (5.19e)

where V = {v(0|k), . . . , v(N − 1|k)}, Z = {z(0|k), . . . , z(N |k)}, S = {Σ̂(0|k), . . . , Σ̂(N |k)}
denote the input, state and covariance sequences, respectively.

The resulting MPC is categorized as a direct feedback controller, cf. Remark 2.3, due
to the feasibility-based initial constraint (5.19e), where we consider the initial conditions
(z(0|k), Σ̂(0|k)) as free decision variables. We define the feedback mode (Mode 1) as x(0|k) =
E(x(k) | x(k)), which is selected via the condition (z(0|k), Σ̂(0|k)) = (x(k), 0) whenever
possible. In case of infeasibility of Mode 1, we define the backup strategy (Mode 2) as
x(0|k) = E(x(k) | x(k − 1)), which is enforced by the condition (z(0|k), Σ̂(0|k)) = (z(1|k −
1), Σ̂(1|k − 1)).

The last challenge in solving Problem 5.2.3 distributedly is the terminal set Zf , where
the main requirement is that Zf is decomposable into M subproblems, each of which only
involves the variables zNi

. In Section 5.3.4, we propose a structured terminal set as a
Cartesian product of local time-varying sets, which satisfy the decomposability property.

5.3 Distributed synthesis

In the following, we address a distributed design procedure of the controller ingredients.

5.3.1 Structured terminal cost and distributed controller

First, we develop a distributed synthesis procedure for the distributed controller and struc-
tured terminal cost as required by Assumption 5.3. More specifically, the goal is to find
local quadratic functions

Vf,i(xi) = x⊤i Pixi ∀i ∈M
γi(xNi

) = x⊤Ni
ΓNi

xNi
∀i ∈M,

such that the global cost decrease condition (5.13) holds true. Similar to Conte et al. [42],
we introduce indefinite relaxation functions γi(·) to allow the local cost Vf,i(xi) to partially
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increase, as long as the expected global cost Vf(x) always decreases. These implications can
be translated into the following inequalities

E(Vf,i(x
+
i ) | xi)− Vf,i(xi) + l(xNi

, KNi
xNi

)− γi(xNi
) ≤ 0 ∀i ∈M (5.20a)

M∑
i=1

γi(xNi
) ≤ 0, (5.20b)

where x+i = ANi,KxNi
+CNi,KxNi

wi with stage cost l(xNi
, KNi

xNi
) = x⊤Ni

(Q̄i+K
⊤
Ni
RiKNi

)xNi
.

By replacing the expressions for Vf,i(x
+
i ) and γi(xNi

) in equations (5.20a) - (5.20b) with their
definitions and resolving the conditional expectation, we arrive at a set of nonlinear inequal-
ities involving the states xNi

. Since these inequalities should hold for all xNi
, we obtain a

set of nonlinear matrix inequalities

A⊤
Ni,K

PiANi,K + C⊤
Ni,K

PiCNi,K − P̄i ⪯ −(Q̄i +K⊤
Ni
RiKNi

) + ΓNi
∀i ∈M (5.21a)

M∑
i=1

W⊤
i ΓNi

Wi ⪯ 0, (5.21b)

where P̄i = WiT
⊤
i PiTiW

⊤
i is lifted into R

Ni×Ni . Condition (5.21a) is structured by de-
sign, i.e., it is fully distributedly solvable, while (5.21b) connects all subsystems with a
system-wide coupling constraint. In the following, we provide an LMI approximation of the
nonlinear matrix inequalities (5.21).

Corollary 5.2. Conditions (5.21a)- (5.21b) are equivalent to the following set of LMIs
Ēi + FNi

[
⋆ ⋆ ⋆ ⋆

]
ANi

ENi
+BiYNi

CNi
ENi

+DiYNi

Q̄
1/2
i ENi

R
1/2
i YNi




Ei 0 0 0

0 Ei 0 0

0 0 I 0

0 0 0 I



 ⪰ 0 ∀i ∈M (5.22a)

M∑
i=1

W⊤
i FNi

Wi ⪯ 0, (5.22b)

where Ei = P−1
i , Ēi = WiT

⊤
i P

−1
i TiW

⊤
i , ENi

= WiEW
⊤
i , FNi

= ENi
ΓNi

ENi
and YNi

=
KNi

ENi
.

Proof. The proof follows directly from [42, Lemma 10] by considering the additional term
C⊤

Ni,K
PiCNi,K in condition (5.21a).

Remark 5.3.1. The matrix FNi
in (5.22b) is block-sparse and is the last hindrance for the

distributed synthesis procedure. Therefore, Conte et al. [42] propose to use block-diagonal
upper bounding matrices FNi

⪯ SNi
together with a neighbor-to-neighbor coupling constraint∑

j∈Ni
TjW

⊤
j SNj

WjT
⊤
j ⪯ 0 for all i ∈ M to replace the system-wide coupling constraint

(5.22b). This, however, introduces additional conservatism as we essentially upper bound a
dense matrix with a block-diagonal matrix, i.e., similar to Remark 5.1.
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5.3.2 Distributed terminal covariance matrix

Next, we develop an LMI-based design procedure for the terminal covariance matrix as
required by (5.15). Consider the block-diagonal covariance matrix Σ̂f from (5.15) and let
Σ̂f,Ni

= WiΣ̂fW
⊤
i be the block-diagonal neighborhood covariance matrix. To derive the

distributed terminal covariance matrix, we substitute Σ̂f,i, Σ̂f,Ni
together with the termi-

nal controller vi = KNi
zNi

into (5.8), resulting in the Lyapunov-like stationary covariance
equation

Σ̂f,i = ÃNi,KΣ̂f,Ni
Ã⊤

Ni,K
+ C̃Ni,KΣ̂f,Ni

C̃⊤
Ni,K

+ C̃Ni,KΨNi
C̃⊤

Ni,K
∀i ∈M, (5.23)

where ΨNi
∈ RNi×Ni is an arbitrary state covariance matrix. The nonlinear matrix equality

(5.23) can be represented as an LMI by transforming the equality in (5.23) into an inequality
and defining ΨNi

= Σ̂f,Ni
. For the latter equality to hold, it is necessary that Σ̂f,Ni

⪰ ψI
is satisfied, with ψ = min{ψ1, . . . , ψM} additionally verifying the global condition (5.17).
Finally, by defining new matrix variables UNi

= KNi
Σ̂f,Ni

and ψ̄i, the inequality version of
(5.23) can be cast as the following pair of LMIs for all i ∈M via Schur complements Σ̂f,i

[
⋆ ⋆

][
(ÃNi

Σ̂f,Ni
+ B̃iUNi

)⊤

(C̃Ni
Σ̂f,Ni

+ D̃iUNi
)⊤

] [
Σ̂f,Ni

0

0 1
2
Σ̂f,Ni

] ⪰ 0 (5.24a)

[
Σ̂f,Ni

I

I ψ̄iI

]
⪰ 0. (5.24b)

5.3.3 A unique terminal controller

It is important to note that both LMIs (5.22) and (5.24) rely on a structured feedback
matrixKNi

through the matrix variables YNi
and UNi

. To eliminate this ambiguity, a unique
LMI problem must be posed to solve both LMIs simultaneously. A trivial idea would be
to introduce an additional uniqueness constraint UNi

Σ̂−1
f,Ni

= YNi
E−1

Ni
, which unfortunately

destroys the convexity of the problem, as already stated by Farina and Scattolini [59]. A
simple (but conservative) way of circumventing the non-convexity issue is to set Σ̂f,Ni

= ENi

and UNi
= YNi

, which we will consider hereafter.

Proposition 5.1. Let Σ̂f,Ni
= ENi

, UNi
= YNi

∀i ∈M. If the following optimization problem
admits a feasible solution

max
M∑
i=1

log(det(Ei))

s.t. (5.22a), (5.22b), (5.24a), (5.24b) ∀i ∈M,

then the terminal weighting matrices Pi for all i ∈M are unique and the volume the 1-level
set of Vf(x) =

∑
i∈M ∥xi∥Pi

= ∥x∥P is maximized.
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Proof. For ENi
= Σ̂f,Ni

, UNi
= YNi

, ∀i ∈ M, the LMIs (5.22a), (5.22b), (5.24a), (5.24b) are
convex in ENi

and YNi
. Therefore, the minimizer is unique, while the objective function∑M

i=1 log(det(Ei)) is convex and maximizes the volume of the 1-level set of Vf(x) [20].

Remark 5.3.2. Proposition 5.1 yields a separable terminal cost function with weights Pi,
terminal controller gains KNi

, relaxation matrices ΓNi
and terminal covariance matrices

Σ̂f,i = Ei for all i ∈M that satisfy Assumption 5.3. Infeasibility of the optimization problem
in Proposition 5.1 implies that there exists no distributed stabilizing terminal controller for
system (5.1). In this case, we can set Σ̂f,i, Pi,ΓNi

to zero for all i ∈ M and resort to a
zero terminal constraint strategy. Furthermore, in view of Remark 5.2.2, we then have to
compute a structured stabilizing tube controller K for the error system (5.4), e.g., via LMIs
(5.22).

5.3.4 Structured terminal sets

In the following, we propose a structured global terminal set Ẑf that replaces the global
terminal set Zf in (5.19c). The main idea relies on the concept of distributed invariance
[42], which is based on time-varying terminal sets.

Definition 5.1 (Time-varying terminal sets). Let Zf be the global terminal set from (5.14)
and define α, such that for all z ∈ Zf the constraints (5.16) - (5.18) are verified. Define
local time-varying terminal sets as

Zf,i(αi(k)) := {zi ∈ Rni |z⊤i Pizi ≤ αi(k)} ∀i ∈M, (5.25)

where αi(k) is given by the set dynamics

αi(k + 1) = αi(k) + z⊤Ni
(k)ΓNi

zNi
(k) ∀i ∈M

with
∑M

i=1 αi(0) ≤ α and αi(0) ≥ 0 ∀i ∈M.

In order to prove recursive feasibility under time-varying terminal sets, we recall the follow-
ing two lemmas from [42].

Lemma 5.3.3 (Local invariance [42, Lem. 8]). Let Zf,i(αi(k)) for all i ∈M be local terminal
sets as in Definition 5.1, then

zi(k) ∈ Zf,i(αi(k)) =⇒ (ANi
+BiKNi

)zNi
(k) ∈ Zf,i(αi(k + 1)) ∀i ∈M

αi(k + 1) ≥ 0 ∀i ∈M.

Lemma 5.3.4 (Global invariance [42, Lem. 9]). Let Zf be a global terminal set and Zf,i(αi(k))
for all i ∈M as in Definition 5.1, then

Ẑf(α1(k), . . . , αM(k)) :=
M∏
i=1

Zf,i(αi(k)) ⊆ Zf ∀k ∈ N.
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Next, we compute the scaling factor α (Definition 5.1), such that for all z ∈ Ẑf the terminal
constraints (5.17) and (5.18) are satisfied. We propose the following distributed linear
program, which is an extension of the optimization problem from [42, Sec. 4.2].

Problem 5.3.5. (Distributed terminal set)

α =max
α̂>0

α̂ (5.26a)

s.t. ∥P− 1
2

i (Hx
i,r)

⊤∥2α̂ ≤ (h̃xi,r)
2 ∀i ∈M ∀r ∈ {1, . . . , ni,r} (5.26b)

∥P− 1
2

Ni
K⊤

Ni
(Hu

i,s)
⊤∥2α̂ ≤ (h̃ui,s)

2 ∀i ∈M ∀s ∈ {1, . . . , ni,s} (5.26c)

∥P−1
i ∥α̂ ≤ ψi ∀i ∈M, (5.26d)

where

h̃xi,r = 1−
ϵxi,r
2
−
f(pxi,r)

2

2ϵxi,r
Hx
i,rP

−1
i (Hx

i,r)
⊤ > 0

h̃ui,s = 1−
ϵui,s
2
−
f(pui,s)

2

2ϵui,s
Hu
i,sKNi

P−1
Ni
K⊤

Ni
(Hu

i,s)
⊤ > 0

denote the right-hand side of (5.18) with the terminal covariance matrices from Proposi-
tion 5.1, i.e., Σ̂f,i = P−1

i and Σ̂f,Ni
= P−1

Ni
.

Lemma 5.3.6. Let Assumption 5.3 hold. The solution of Problem 5.3.5 defines the largest
feasible level set Zf = {z ∈ Rn|z⊤Pz ≤ α}.

Proof. The proof can be found in Section 5.7.

Once such a global level set Zf with size α is derived, the local terminal sets from Defini-
tion 5.1 can be initialized according to

∑M
i=1 αi(0) ≤ α.

Remark 5.4. Note that h̃xi,r and h̃
u
i,s in Problem 5.3.5 must be positive scalars for all halfspace

constraints. If these conditions are violated, we can vary the linearization parameters ϵxi,r
and ϵui,s or the weighting matrices Q and R, since they directly influence P .

5.4 Distributed Optimization for DSMPC

At this point, the central MPC optimization problem 5.2.3 can be written entirely by means
of distributed ingredients, that is, we replace the terminal set Zf with the structured terminal
set from Definition 5.1 and the terminal covariance matrix Σ̂f with the block-diagonal matrix
P−1. In what follows, we briefly outline a standard distributed consensus ADMM that is
conceptually similar to Chapter 3.
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Let Ξ contain all global predictions of the input, state and covariance sequences. Let ξi
consist of the state and covariance sequence of the neighboring subsystems as predicted
by subsystem i, i.e., ziNi

(·|k) and Σ̂i
Ni
(·|k), and the predicted input vi(·|k) over the predic-

tion horizon N . To coordinate the local solutions, we implement a consensus constraint
Gi Ξ = ξi ∀i ∈M, for which we formulate the augmented Lagrangian

Li(ξi,Ξ, λi) = Ji(ξi) + λ⊤i (ξi −GiΞ) +
ρ

2
∥ξi −GiΞ∥22 ∀i ∈M,

where λi is a Lagrange multiplier and ρ ∈ R>0 a positive augmentation factor. The aug-
mented Lagrangian depends only on local variables, which implies that the MPC optimiza-
tion problem 5.2.3 is decomposable into M local optimization problems.

Problem 5.4.1. (Local MPC optimization problem)

ξ+i = argmin
ξi

Li(ξi,Ξ, λi) (5.27a)

s.t. (5.5), (5.8), (5.11) ∀t ∈ {0, ..., N − 1} (5.27b)

zi(N |k) ∈ Zf,i(αi(k)) (5.27c)

Σi(N |k) ≤ Σ̂f,i = P−1
i (5.27d)

(zi(0|k),Σi(0|k)) = (zi,0,Σi,0) (5.27e)

for all i ∈M, r = 1, . . . , ni,r and s = 1, . . . , ni,s.

We introduce the following notation: ξ+ji and λji indicate ξ
+
i and λi predicted by subsystem j.

For practical reasons, a simple stopping criterion for the ADMM algorithm is implemented

∥GiΞ− ξi∥∞ ≤ ϵc, (5.28)

where ϵc ∈ R≥0. The basic ADMM steps are given in Algorithm 7, while the online DSMPC
steps are summarized in Algorithm 8. Note that Algorithm 7 is executed at every time
instant k ∈ N.

Algorithm 7 Consensus ADMM

1: For each subsystem i ∈M in parallel:
2: Initialize λi = 0, ξi = 0 and (zi,0,Σi,0) according to (Mode 1) or (Mode 2)
3: repeat
4: Solve MPC Problem 5.4.1 and obtain ξ+i
5: Communicate ξ+i to neighbors j ∈ Ni
6: Average Ξ+

i =
1

|Ni|
∑
j∈Ni

G⊤
ji(ξ

+
ji +

1

ρ
λji)

7: Communicate ξ+i to neighbors j ∈ Ni
8: λ+i = λi + ρ(ξ+i −GiΞ

+)
9: until (5.28) is satisfied
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Algorithm 8 Online DSMPC

1: Measure local states xi(k) for all i ∈M and share with neighbors
2: Set (zi,0,Σi,0) = (xi(k), 0) for all i ∈M and solve Problem 5.2.3 via Alg. 7
3: if infeasibility is detected then
4: Set (zi,0,Σi,0) = (zii(1|k − 1), Σ̂i

i(1|k − 1)) for all i ∈M and solve Problem 5.2.3 via
Alg. 7

5: end if
6: Each subsystem i ∈M applies the optimal control input

ui(k) = vi(0|k) +KNi
(xNi

(k)− zi∗Ni
(0|k))

7: Each subsystem i ∈M updates the local terminal set with

αi(k + 1) = αi(k) + (zi∗Ni
)⊤(N |k)ΓNi

zi∗Ni
(N |k)

8: k ← k + 1 and go to step 1

The following theorem is the main result of this chapter and provides guarantees for recursive
feasibility of the MPC optimization problem, predictive chance constraint satisfaction, and
point-wise convergence of the states.

Theorem 5.4.2. If at time k = 0 Problem 5.2.3 admits a feasible solution via Algorithm 8,
then it is recursively feasible, E(||x(k)||2Q)→ 0 as k →∞ and the chance constraints (5.2)
are satisfied for all times k ∈ N.

Proof. The proof can be found in Section 5.7.

5.5 Numerical example

We demonstrate our approach on a numerical example of a chain of coupled double inte-
grators, where for subsystem 1 it holds that N1 = {1, 2}, for subsystem M it holds that
NM = {M − 1,M} and for subsystems i ∈M\{1,M} it holds that Ni = {i− 1, i, i+ 1}.

Problem setting In the first experiment we choose M = 5 and consider the following
dynamics matrices to define system (5.1) for all i ∈M

Aii =

[
1 1

0 0.9

]
, Aij =

[
0.1 0

0.1 0.1

]
, Cii =

[
0.01 0

0.02 0.03

]
, Cij =

[
0.01 0

0 0.01

]
∀j ̸= i,

while the input matrices are given by

Bi =

[
0

1

]
, Di =

[
0

0.001

]
.
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For subsystems i ∈ {1,M} we impose a chance constraint P([xi(k)]2 ≥ −1) ≥ 0.7. The
multiplicative noise is normally distributed with w ∼ N (0, 1), the weighting matrices are
set to Qi = diag(5, 1), Ri = 0.3 for all i ∈ M and the prediction horizon is N = 10. The
initial conditions are x1(0) = xM(0) = [3 0]⊤ and xi(0) = [1 0]⊤ for all i ∈ {2, 3, 4}.
The constraint linearization parameters are set to ϵxi = 0.1, the probability bound is
f(p) = N−1(0.7) = 0.5244 (Remark 5.2.1) and the ADMM augmentation factor is ρ = 10.

Results In the following, we carry out Nmc = 1000 Monte-Carlo simulations to evaluate
the empirical closed-loop chance constraint satisfaction and optimality for different param-
eterizations. Figure 5.1 shows the density plot of the closed-loop trajectories of subsystem
1. In Table 5.1, we compare for different values of ϵc the average and maximum number of
iterations of Algorithm 8, the average cumulative closed-loop cost

av[J ] = N−1
mc

Nmc∑
q=1

13∑
k=0

∥x(k)∥2Q + ∥u(k)∥2R

and the worst-case empirical in-time constraint satisfaction of subsystem 1, i.e.,

cwc = min
k∈{0,...,13}

1−N−1
mc cv(k)

with cv(k) =
∑Nmc

q=1 1{Hx
1,1x1(k)>1}. Furthermore, we can see the total number of constraint

violations for subsystem 1, i.e., ctotal =
∑Nmc

q=1

∑14
k=0 cv(k). For comparison, we computed

two central solutions, where we set up the central SMPC scheme from [59] according to:

i) The distributed design procedure from this chapter.

ii) The centralized design procedure from Farina and Scattolini [59].

By reducing the accuracy level ϵc, the average number of iterations increases, which results
from the stopping condition (5.28). Therefore, ϵc influences the optimality of the solution,
as well as the conservatism of the chance constraint satisfaction, i.e., for ϵc → 0, we restore
the central solution, cf. Chapter 3. Furthermore, it can be seen that for different values
ϵc, the average cost and the number of cumulative constraint violations vary only slightly

Table 5.1: Impact of ϵc on the performance.

Controller ϵc av[it] max[it] av[J] ctotal cwc

DSMPC 5 · 10−3 25.03 36 112.68 439 78.90%

DSMPC 5 · 10−4 37.68 55 113.13 668 77.70%

DSMPC 5 · 10−5 49.73 75 113.64 684 77.50%

i) 0 − − 113.67 734 77.50%

ii) 0 − − 113.06 746 74.10%
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Figure 5.1: Density plot of the closed-loop trajectories of subsystem 1. The red surface
denotes the constraint [x1]2 ≥ −1.

compared to the central case i). In each scenario, the chance constraints of level pxi ≥ 0.7
are empirically verified. Note that due to the block-diagonal upper bounding via (5.7), the
constraint satisfaction is more conservative compared to the centralized case.

Remark 5.5. To cope with inexact solutions, similar techniques as in Chapter 3 can be used.
However, to ensure that the consolidated mean and covariance trajectories, defined similarly
to Definition 3.3, verify the constraints (5.11), a robust constraint tightening must be applied
to account for the inexact mean and covariance predictions resulting from (5.28) for positive
ϵc. This, however, goes beyond the scope of the chapter.

Remark 5.6. The augmentation factor ρ should be selected in appropriate scale to the cost
function (5.19a). If ρ is too small, the primary objective is the minimization of the cost
function (5.19a). As a consequence, the number of iterations until convergence increases.
If ρ is too large, the primary objective is the fulfillment of the consensus constraint. Hence,
the minimization of the MPC cost becomes less important and the MPC optimization prob-
lem 5.2.3 gets solved suboptimally.
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In the following, we quantitatively investigate the effect of the number of subsystems M
on the online computational demand. In Figure 5.2, we can see for M ∈ {5, 10, 15} the
number of iterations averaged over 100 Monte-Carlo simulations. We consider the same
network topology, dynamics, constraints and initial values as before. It can be seen that the
number of iterations required for convergence grows slightly as the number of subsystems
M increases. This is due to the fact that more subsystems result in a larger global cost
(5.19a) and therefore more iterations are required to minimize this cost.

To summarize: The number of subsystemsM affects the number of iterations only marginally,
which verifies the scalability of our approach. In order to further reduce the computational
demand, we can sacrifice the optimality of the solution by increasing ϵc.

0 2 4 6 8 10 12
0

10

20

30

40

50

60

Figure 5.2: Quantitative impact of the number of subsystems M and exactness ϵc on the
average number of iterations of Algorithm 7.
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5.6 Summary

In this chapter, we have presented a DSMPC algorithm for distributed systems with un-
bounded multiplicative uncertainty. The chance constraints are approximated with Can-
telli’s inequality, while the cost function is analytically reformulated by resorting to mean-
variance predictive dynamics. Each component is defined so that the controller can be
synthesized and operated in a fully distributed manner. The distributed design guaran-
tees recursive feasibility, point-wise convergence of the states and predictive chance con-
straint satisfaction. We presented an ADMM-based distributed MPC algorithm to solve
the proposed distributed SDP, while the properties of the controller were demonstrated on
a numerical example.

5.7 Proofs

Proof of Lemma 5.3.6

Constraints (5.26b) and (5.26c) are reformulations of (5.18a) and (5.18b) under usage of
the support function of the 1-level set of the elliptical terminal region, see [42] for details.
Constraint (5.26d) enforces (5.17), which will be shown in the following. Recall that ψ =
min{ψ1, . . . , ψM} and P is block-diagonal, thus we have the equivalence for all α ≥ 0

∥P−1
i ∥α ≤ ψi ∀i ∈M⇐⇒ ∥P−1∥α ≤ ψ.

It remains to show the equivalence of the latter and (5.17). Substitution of z = P− 1
2 z̃ into

the terminal set (5.25) yields

∀z ∈ Zf : z
⊤Pz ≤ α⇐⇒ z̃⊤z̃ ≤ α (5.29)

and by substitution into (5.17) that

zz⊤ ⪯ ψI ⇐⇒ P− 1
2 z̃z̃⊤P− 1

2 ⪯ ψI.

Taking the norm on both sides yields

∥P− 1
2 z̃z̃⊤P− 1

2∥ ≤ ∥P−1∥∥z̃z̃⊤∥
(5.29)

≤ ∥P−1∥α ≤ ψ,

where the second inequality is due to (5.29) and the rank one matrix z̃z̃⊤, which implies
that ∥z̃z̃⊤∥ = z̃⊤z̃. Since all constraints are convex, maximization of α̂ yields the largest
feasible level set Zf .

Proof of Theorem 5.4.2

The proof is inspired by [59] and consists of two parts.
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Recursive feasibility Assume that at time k a feasible solution to Problem 5.2.3 exists. At
time k+1 we consider for each subsystem i ∈M the shifted optimal solution vi(t|k+1) =
v∗i (t + 1|k) for all t = 0, . . . , N − 2 appended with the terminal controller vi(N − 1|k +
1) = KNi

z∗Ni
(N |k), while the corresponding state and variance sequences are given by

zi(t|k + 1) = z∗i (t+ 1|k) and Σi(t|k + 1) = Σ∗
i (t+ 1|k) for all t = 0, . . . , N − 1.

From feasibility at time k follows that the state and input constraints (5.11a), (5.11b) are
verified for any pair (zi(t|k+1),Σi(t|k+1)) and (vi(t|k+1),Σi(t|k+1)) for all t = 0, . . . , N−1.

At time t = N , given the terminal constraint (5.27c) and the invariance property of the
local terminal set (Lemma 5.3.3), we have that

zi(N |k + 1) = ANi,KzNi
(N |k) ∈ Zf,i(αi(k + 1)) ∀i ∈M,

while from Lemma 5.3.4 we can deduce that z(N |k+1) ∈ Ẑf(α1(k+1), . . . , αM(k+1)) ⊆ Zf ,
which verifies the global terminal constraint (5.14) at time k + 1. In view of the shifted
candidate solution, we further have

Σ̂i(N |k + 1) = Σ̂i(N + 1|k)
(5.8)
= C̃Ni,KΣ̂Ni

(N |k)C̃⊤
Ni,K

+ ÃNi,KΣ̂Ni
(N |k)Ã⊤

Ni,K
+ C̃Ni,KzNi

(N |k)(zNi
(N |k))⊤C̃⊤

Ni,K

(5.23)

⪯ ANi,KΣ̂f,Ni
A⊤

Ni,K
+ CNi,KΣ̂f,Ni

C⊤
Ni,K

+ CNi,KΣ̂f,Ni
C⊤

Ni,K

(5.27d)

⪯ Σ̂f,i,

which verifies the terminal constraint (5.27d) at time k + 1. Hence, both global terminal
constraints (5.14) and (5.15) are verified at time k + 1, which implies satisfaction of the
chance constraints (5.2) for all times k ∈ N.

Convergence Next, we prove point-wise convergence of the state trajectories. At time step
k+1, we have to consider the possible shifted optimal solution due to (5.19e), i.e., Mode 2.
Consider the value function V (k) = Vm(k)+Vv(k) of the global system, where the following
inequality holds due to optimality

V (k + 1) ≤ Jm(z(·|k + 1), v(·|k + 1)) + Jv(Σ̂(·|k + 1)),

while the suboptimal mean and variance cost result from the shifted candidate solution due
to recursive feasibility. The suboptimal mean cost is given by

Jm(z(·|k + 1), v(·|k + 1))

= Vm(k)−
M∑
i=1

(
||zi(0|k)||2Qi

+ ||v∗i (0|k)||2Ri
− ||z∗i (N |k)||2Qi

− ||KNi
z∗Ni

(N |k)||2Ri

+ ||z∗i (N |k)||2Pi
− ||ANi,Kz

∗
Ni
(N |k)||2Pi

)
(5.21a)

≤ Vm(k)−
M∑
i=1

(
||zi(0|k)||2Qi

+ ||v∗i (0|k)||2Ri
+ ||z∗Ni

(N |k)||2
W̃
− ∥z∗Ni

(N |k)∥2ΓNi

)
, (5.30)
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where W̃ = C⊤
Ni,K

PiCNi,K. Note that ||z∗i (N |k)||2Qi
= ||z∗Ni

(N |k)||2
Q̄i

and ||z∗i (N |k)||2Pi
=

||z∗Ni
(N |k)||2

P̄i
. The suboptimal variance cost Jv is given by

Jv(Σ̂(·|k + 1)) = Vv(k)−
M∑
i=1

(
tr(QiΣ̂i(0|k)) + tr(K⊤

Ni
RiKNi

Σ̂Ni
(0|k))− tr(QiΣ̂

∗
i (N |k))

− tr(K⊤
Ni
RiKNi

Σ̂∗
Ni
(N |k)) + tr

[
PiΣ̂

∗
i (N |k)− PiANi,KΣ̂

∗
Ni
(N |k)A⊤

Ni,K

− Pi(CNi,KΣ̂
∗
Ni
(N |k)C⊤

Ni,K
)− Pi(CNi,Kz

∗
Ni
(N |k)z∗,⊤Ni

(N |k)C⊤
Ni,K

)

])
(5.21a)

≤ Vv(k)−
M∑
i=1

(
tr(QiΣ̂i(0|k)) + tr(K⊤

Ni
RiKNi

Σ̂Ni
(0|k))

− ||z∗Ni
(N |k)||2

W̃
− tr(ΓNi

Σ̂∗
Ni
(N |k))

])
, (5.31)

where we used tr(QiΣ̂
∗
i (N |k)) = tr(Q̄iΣ̂

∗
Ni
(N |k)), tr(PiΣ̂∗

i (N |k)) = tr(P̄iΣ̂
∗
Ni
(N |k)) and the

cyclic invariance property of the trace to factor out Σ̂∗
Ni
(N |k). Furthermore, note that

||z∗Ni
(N |k)||2

W̃
= tr(PiCNi,Kz

∗
Ni
(N |k)(z∗Ni

(N |k))⊤C⊤
Ni,K

). After combining (5.30) and (5.31),
we obtain

V (k + 1) ≤ V (k)−
M∑
i=1

(
E
(
||xi(k)||2Qi

+ ||ui(k)||2Ri

)
− E

(
∥xNi
∥2ΓNi

))
(5.20b)

≤ V (k)− E(||x(k)||2Q + ∥u(k)∥2R).

Using standard arguments we conclude that E
(
||x(k)||2Q

)
→ 0 as k →∞.
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Distributionally Robust Model Predictive
Control





6 Wasserstein Distributionally Robust
Model Predictive Control

In this chapter, we present two DR-MPC frameworks with Wasserstein ambiguity sets for
linear systems subject to additive stochastic uncertainty. In Section 6.2, we present a novel
scenario-based DR-MPC with indirect feedback that allows the use of correlated stochastic
processes, which has not yet been considered in the related literature, cf. Table 1.3. We
investigate for linear and nonlinear tube controllers whether chance constraints can be
ensured in a distributionally robust manner, and moreover, whether a distributionally robust
performance bound can be established. In Section 6.3, we strengthen the distributional
assumption by requiring that the random variables are zero-mean and i.i.d. so that we can
obtain an analytical DR-MPC scheme. In addition, we use an indirect feedback initialization
that decouples the closed-loop error from the MPC predictions, which allows us to define
so-called distributionally robust PRS. In this way, we obtain an offline constraint tightening
mechanism that conditions the chance constraints via indirect feedback on the closed-loop
error, which leads to satisfaction of the chance constraints in closed-loop. For related work,
please refer to Section 1.2.2. This chapter is based on the publications [112] 1 and [111] 2.

6.1 Problem description

We consider discrete linear time-invariant systems of the form

x(k + 1) = Ax(k) +Bu(k) + w(k) ∀k ∈ N, (6.1)

where x(k) ∈ X ⊆ R
n, u(k) ∈ U ⊆ R

m and w(k) ∈ W ⊆ R
n denote the state, input and

disturbance vectors, while A ∈ Rn×n and B ∈ Rn×m are matrices of conformal dimension.
We consider a probability space (Ω,F ,P) for a finite sequence w̄ : Ω → W

NT of random
variables w : Ω → W, i.e., w̄ = {w(k)}NT−1

k=0 , where NT ∈ N denotes a large but finite task
horizon.

The sequence w̄ has a joint probability measure µw̄ : WNT → [0, 1], defined such that

1C. Mark and S. Liu. “Data-driven distributionally robust model predictive control: An indirect feedback
approach”. In: arXiv preprint arXiv:2109.09558 (2021). Submitted to International Journal of Robust
and Nonlinear Control (2022).

2C. Mark and S. Liu. “Stochastic MPC with Distributionally Robust Chance Constraints”. In: Proc. 21st
IFAC World Congress. extended version: arXiv:2005.00313. 2020, pp. 7136–7141 ©2020 the authors.



108 6 Wasserstein Distributionally Robust Model Predictive Control

µw̄(F ) = P(ω ∈ Ω : w̄(ω) ∈ F ) for all F ∈ B(WNT), where B(WNT) is the Borel σ-algebra
on WNT . We say that w̄ ∼ µw̄, where µw̄ is the true distribution (pushforward measure).

For the sake of simplicity, we assume that the pair (A,B) is controllable and perfect state
measurement is available at each time instant k ∈ N. The system dynamics are subject to
r ∈ N individual state chance constraints

P(h⊤i x(k) ≤ 1) ≥ pix ∀i ∈ {1, . . . , r}, (6.2)

as well as hard input constraints

u(k) ∈ Ū, (6.3)

where Ū ⊆ U is a convex set that contains the origin. We consider a cost function
J : X

NT+1 × U
NT → R≥0 and aim to solve the following finite-horizon stochastic opti-

mal control problem

min
x,u

Eµw̄

(
J
(
x(0, . . . , NT), u(0, . . . , NT − 1)

))
(6.4a)

s.t. x(k + 1) = Ax(k) +Bu(k) + w(k) (6.4b)

P(h⊤i x(k)− 1 ≤ 0) ≥ pix ∀i ∈ {1, . . . , r} (6.4c)

u(k) ∈ U (6.4d)

w̄ = {w(0), . . . , w(NT − 1)} ∼ µw̄ (6.4e)

x(0) = x0 (6.4f)

for all k = 0, . . . , NT − 1.

In SMPC, one typically assumes that the distribution µw̄ is known, e.g., as we have done in
part one of this thesis. However, from a practical point of view, this is quite limiting, since
the statistics of the underlying random variables in any real-world application usually have
to be estimated from finite data. Therefore, we cannot use the true distribution to reformu-
late the FH-SOCP (6.4), which in light of this contains multiple sources of intractability:

(i) The expectation in (6.4a) is taken w.r.t. the true probability distribution µw̄.

(ii) The chance constraints (6.4c) are evaluated under the true probability measure P.

(iii) Optimizing over general control inputs u in the presence of possibly unbounded dis-
turbances w yields an infinite-dimensional optimization problem.

6.1.1 Distributionally Robust Optimization

In the following, we introduce concepts from DRO to reformulate the FH-SOCP, such that
the intractability sources (i) and (ii) can be cast into tractable surrogates. We follow a
data-driven approach and assume the existence of a (possibly small) amount of data.
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Assumption 6.1 (Distributional assumptions).

1. The true probability distribution µw̄ is light-tailed.

2. There exists a set Ŵ = { ˆ̄wj}N̄j=1 that consists of N̄ ∈ N independent and identically
distributed disturbance trajectories ˆ̄wj = {ŵj(0), . . . , ŵj(NT − 1)} ∼ µw̄.

Remark 6.1. The second part of Assumption 6.1 essentially gives us at each time instant
k ∈ [0, NT − 1] a collection of N̄ i.i.d. samples. The sequence w̄ = {w(0), . . . , w(NT − 1)}
can also be viewed as a discrete-time stochastic process, where we distinguish between the
Markovian setting, i.e., stage-wise independent distributions or the more general setting of
stage-wise dependent distributions, e.g., due to time correlation.

First, we would like to point out that the chance constraints (6.4c) can be verified in both
cases, as we evaluate them at each time step k individually. However, with respect to the
cost function (6.4a), the situation is much more delicate, since we have to consider a multi-
stage optimization problem, where in the most general setting the distribution of w(k) at
stage k depends on the entire history {w(0), . . . , w(k − 1)}. This leads to nested optimiza-
tion problems [138] that are difficult to solve numerically. However, by assuming that the
stochastic process is stage-wise independent (Markov property), a much simpler optimiza-
tion problem can be derived since the stochastic process is independent of the historical data.
In the related DRO literature, this concept is also called rectangularity [138].

To avoid the issue of nested optimization problems, we make a second distributional as-
sumption about stage-wise independent distributions, which is necessary for some (not all)
of our theoretical results.

Assumption 6.2. The distribution µw̄ is stage-wise independent, i.e., the joint distribution
µw̄ can be written as a product of marginal distributions so that

µw̄ = µ(w(0))× . . .× µ(w(NT − 1)),

where µ(w(k)) denotes the distribution of w(k) at time k ∈ [0, . . . , NT − 1].

Sample average approximation A straight forward approach to solve problem (6.4) is to
evaluate (6.4a) and (6.4c) with the empirical distribution of µw̄, i.e.,

µ̂w̄ = µ̂(w(0))× . . .× µ̂(w(NT − 1)), 3

where µ̂(w(k)) = N−1
s

∑Ns

j=1 δŵj(k) concentrates the probability mass uniformly on the Ns

i.i.d. samples ŵj(k) ∈ Ŵ via the Dirac delta measure δŵj(k). In other words, we approximate

3The true distribution µw̄ of a sequence w̄ = {w(0), . . . , w(NT − 1)} can always be approximated as
an empirical product distribution µ̂w̄ consisting of empirical marginal distributions µ̂(w(k)) for k ∈
[0, NT − 1]. This should not be confused with stage-wise independency condition from Assumption 6.2,
where the true distribution can be written as a product of marginal distributions µ(w(k)).
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the FH-SOCP with a sample average approximation, which we denote as the SAA-OCP.
The result of the SAA-OCP provides an optimal input sequence û∗(·) that minimizes the
in-sample performance, i.e., the expected cost in terms of µ̂w̄, while the chance constraints
are only empirically verified. Applying the input û∗(·) to the dynamics (6.1) introduces new
disturbances w(k) into the system that were not part of the decision making process. This
may result in poor out-of-sample performance (expected cost w.r.t. the true distribution
µw̄) and a potential violation of the chance constraints (6.4c).

Remark 6.2. The optimizer of the SAA-OCP converges almost surely to the optimizer of
(6.4) when Ns tends to infinity, whereas for small Ns the SAA control input û∗(·) performs
poorly when applied to the real system (6.1). Unfortunately, the sample size cannot be chosen
arbitrarily large, since the sample complexity of the SAA-OCP increases at least linearly in
the sample size Ns, which ultimately boils down to a trade-off between accuracy and com-
putational effort [90]. This is our main motivation to study distributionally robust SOCPs
that allow us to derive meaningful control inputs from a small sample size Ns such that the
system states satisfy the chance constraints with high probability.

Wasserstein DRO With the goal of robustifying the FH-SOCP (6.4) against distributional
uncertainties, we introduce a discrepancy-based ambiguity set using the Wasserstein metric
[126]. For the sake of introduction, consider an arbitrary measure space Ξ and the space of
all Borel probability measures P(Ξ) with q-th finite moment for q ∈ [1,∞] that contains all
distributions ν supported on Ξ.

Definition 6.1 (Wasserstein metric [126]). Let q ∈ [1,∞]. The q-Wasserstein metric dqW(ν1, ν2) :
M(Ξ)×M(Ξ)→ R≥0 is defined as

dqW(ν1, ν2) := inf
γ∈H(ν1,ν2)

(∫
Ξ×Ξ

∥ξ1 − ξ2∥qγ(dξ1, dξ2)
)
,

where H(ν1, ν2) is the set of all joint distributions of ξ1 and ξ2 with marginal distributions
ν1 ∈M(Ξ) and ν2 ∈M(Ξ), respectively.

The Wasserstein metric measures distances between probability distributions by solving an
optimal mass transport problem, where the shortest distance is characterized by the optimal
transport plan γ.

Definition 6.2. The Wasserstein ambiguity set centered at the distribution ν with radius
ϵ ∈ R≥0 is given by

Bϵ(ν) := {ν ′ ∈M(Ξ) | dqW(ν, ν ′) ≤ ϵ}.

In a data-driven framework, one typically centers the Wasserstein ball at the empirical
distribution µ̂w̄.
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Figure 6.1: Illustration of a Wasserstein ball of radius ϵ centered at the empirical distribu-
tion µ̂. The distance from µ̂ to any distribution within radius ϵ is measured in
the q-Wasserstein distance, while the figure illustrates the distance to the true
distribution µ∗. The parameter ϵ regulates the amount of robustification, i.e.,
how many distributions should be considered within the distributionally robust
optimization problem.

In view of Definition 6.2, we extend the definition of a Wasserstein ball to product distri-
butions, such that

Bϵ(µ̂w̄) := Bϵ(µ̂(w(0)))× . . .× Bϵ(µ̂(w(NT − 1))).

The last point we want to cover in this section is the choice of the Wasserstein radius ϵ. To
this end, we recall that the Wasserstein ball itself is a random object as it is constructed
from data, which in turn makes it impossible to give robust guarantees of the type µw̄ ∈
Bϵ(µ̂w̄). However, due to the first part of Assumption 6.1, we can resort to the concentration
inequality result [126, Thm. 3.4], based on which one can find an optimal Wasserstein radius
ϵ that satisfies the following assumption, see also [126, Thm. 3.5].

Assumption 6.3. For a given confidence level β ∈ (0, 1) and sample size Ns there exists a
Wasserstein radius ϵ(β,Ns), such that

P
Ns(µw̄ ∈ Bϵ(µ̂w̄)) ≥ 1− β, 4

where µw̄ and µ̂w̄ are the true and empirical distributions of w̄.

Remark 6.3. The concentration inequality result provides a strong theoretical guarantee [126,
Thm. 3.4], which is unfortunately of limited use in practice, since the Wasserstein radius
still depends on constants of the unknown distribution. In practice, one typically uses tools
from machine learning, such as K-fold cross validation [129], to calibrate the Wasserstein
ambiguity set for a certain sample size Ns given all available samples N̄ from Assumption 6.1
[126].

4In case that µw̄ is a product distribution (Assumption 6.2), the notation P
Ns(µw̄ ∈ Bϵ(µ̂w̄)) ≥ 1 − β

denotes PNs(µ(w(k)) ∈ Bϵ(µ̂(w(k)))) ≥ 1 − β for all k ∈ [0, . . . , NT − 1]. P
Ns denotes the Ns-fold

product probability measure PNs = P× . . .× P, which results from the Ns i.i.d. samples.
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In the following, we present the main result from Mohajerin Esfahani and Kuhn [126], which
establishes a convex reduction of an infinite dimensional worst-case expectation problem.

Proposition 6.1.1 ([126]). Let {ξ̂j}Ns
j=1 be a set of i.i.d. samples of ξ and assume that f(ξ)

is proper, convex and lower semicontinuous, ξ ∈ Ξ = R
n and let q ∈ [1,∞], ϵ > 0. Then it

holds that

sup
ν∈Bϵ(µ̂(ξ))

Eν(f(ξ)) = inf
λ≥0

λϵ+
1

Ns

Ns∑
j=1

sup
ξ∈Rn

(f(ξ)− λ∥ξ − ξ̂j∥q),

where µ̂(ξ) = N−1
s

∑Ns

j=1 δξ̂j is the empirical distribution and λ the Wasserstein penalty.

Proof. The proof follows immediately from [126, Thm. 4.2], which relies on marginalizing
and dualizing the Wasserstein constraint ν ∈ Bϵ(µ̂(ξ)).

Using the former definition, we can robustify the stochastic control problem (6.4) to sam-
pling errors introduced by a small sample size Ns. In the subsequent section, we present an
indirect feedback DR-MPC formulation that uses concepts from Wasserstein DRO, where
we distinguish between the cases of i.i.d. and non-i.i.d. disturbance sequences that lead to
different guarantees for the closed-loop system.

6.2 Scenario-based indirect feedback DR-MPC

In the following, we address the intractability source (iii) of the FH-SOCP (6.4) by solving
the optimization problem over a shortened prediction horizon N ∈ N, where N ≪ NT. We
pursue an indirect feedback tube-based approach [76] and split the dynamics (6.1) into a
nominal and error part, such that the true state satisfies x(k) = z(k)+e(k). Analogously, we
separate the input u(k) into a nominal part v(k) and an error part eu(k) = π(e(k)), where
π(·) is a so-called tube controller, so that u(k) = v(k) + π(e(k)). The resulting decoupled
closed-loop nominal and error dynamics are then given by

z(k + 1) = Az(k) +Bv(k) (6.5a)

e(k + 1) = Ae(k) +Bπ(e(k)) + w(k) (6.5b)

with initial conditions z(0) = x(0) and e(0) = 0. To make predictions at time k, we define
the t-step predictive dynamics

x(t+ 1|k) = Ax(t|k) +Bu(t|k) + w(t|k) (6.6a)

z(t+ 1|k) = Az(t|k) +Bv(t|k) (6.6b)

e(t+ 1|k) = Ae(t|k) +Beu(t|k) + w(t|k) (6.6c)

eu(t|k) = π(e(t|k)) (6.6d)

u(t|k) = v(t|k) + eu(t|k), (6.6e)
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which are coupled to the closed-loop dynamics with x(0|k) = x(k), z(0|k) = z(k), e(0|k) =
e(k). Note that in general the closed-loop error e(k) ̸= 0 for k ≥ 1, which, unlike in reset-
based (direct feedback) SMPC schemes renders the closed-loop error dynamics (6.5b) valid
even under the MPC control input, cf. Remark 2.4. The predictive disturbance sequence
W (k) = {w(k), w(1|k) . . . , w(N − 1|k)} is obtained by conditioning w̄ (defined in (6.4e)) on
all past disturbances, such that

µW (k) = P
(
{w(k), w(1|k), . . . , w(N − 1|k)}

∣∣{w(0), . . . , w(k − 1)}
)
, (6.7)

while the predictive error sequence E(k) = {e(k), e(1|k) . . . , e(N |k)} is obtained from (6.6c)
and (6.7), i.e.,

µE(k) = P
(
{e(k), e(1|k) . . . , e(N |k)}

∣∣{e(0), . . . , e(k − 1)}
)
. (6.8)

Figure 6.2 illustrates the predictive distributions for the disturbance and error trajectories
and highlights the difference to the closed-loop realization.
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Figure 6.2: Illustration of realized and predictive disturbance and error trajectories. (Top)
The realized disturbance trajectory for k = 0, . . . , 9, while for k = 9, . . . , 18 var-
ious predictive sequences W (9) = [w(k), w(1|k), . . . , w(9|k)]⊤ are drawn from
the conditional distribution given [w(0), . . . , w(9)]⊤. (Bottom) The realized er-
ror trajectory for k = 0, . . . , 10, while for k = 10, . . . , 19 we plot the predicted
error sequences that correspond to the disturbance sequences W (9).
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6.2.1 Objective function

In the following, we approximate the cost function (6.4a) over a shortened prediction horizon
and maximize the expected value over the previously introduced Wasserstein ball. At this
point, we invoke Assumption 6.2 to circumvent the issue of nested optimization problems,
compare Remark 6.1. We define the distributionally robust MPC cost function as

sup
ν∈Bϵ(µ̂W (k))

Eν

(
l1(x(·|k)) + l2(u(·|k))

)
, (6.9)

where l1 : XN → R≥0 and l2 : UN → R≥0 denote Borel measurable functions. The Wasser-
stein ball in (6.9) is centered at the empirical predictive distribution ofW (k), which indicates
that the expectation problem is solved w.r.t. w. Furthermore, since the expectation opera-
tor involves both, x and u, this implies that the mapping w 7→ (x, u) must be jointly linear
in w. This property, however, depends on the choice of the tube controller, which can be
seen by separating the states and inputs as

x(t|k) = z(t|k) + e(t|k) (6.10a)

u(t|k) = v(t|k) + eu(t|k), (6.10b)

where the predicted error and input error e and eu are given by (6.6c) - (6.6d). The remainder
of this section examines for linear and nonlinear tube controllers whether the condition of
joint linearity holds, and shows the implications when this condition is violated.

Linear tube controllers

First, we study linear tube controllers of the form π(e) = Ke, where K ∈ R
m×n is a

stabilizing controller gain for the matrix pair (A,B). Due to linearity, we can explicitly
write the prediction and input error (6.6c) - (6.6d) as

e(t|k) = AtKe(0|k) +
t−1∑
i=0

At−1−i
K w(i|k) (6.11a)

eu(t|k) = KAtKe(0|k) +
t−1∑
i=0

KAt−1−i
K w(i|k), (6.11b)

where AK = A + BK. Hence, (6.11a)-(6.11b) are both affine functions, which, together
with (6.10a) - (6.10b) renders the mapping from w 7→ (x, u) jointly linear. Based on this
observation, we can pose the following result.

Lemma 6.1. Suppose that Assumptions 6.1 and 6.2 hold. Let the tube controller be a linear
mapping π(e) = Ke and let the functions l1 and l2 be proper, convex and Lipschitz contin-
uous. Specifically, let Lϕ > 0 be the Lipschitz constant w.r.t. the q-norm of the mapping
(x, u) 7→ l1(x) + l2(u) and assume that W = R

n. Then, for any ϵ > 0, the distributionally
robust cost function (6.9) is equal to

JDR(x(·|k), u(·|k)) := Lϕϵ+ Eµ̂W (k)
(l1(x(·|k)) + l2(u(·|k))) . (6.12)
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Proof. The proof can be found in Section 6.5.

Remark 6.4. The class of proper, convex and Lipschitz functions includes many cost func-
tions of practical interest, e.g., all norms verify these conditions. For example, if the cost
functions l1 and l2 are defined as q-norms, the Lipschitz constant Lϕ of the mapping
(x, u) 7→ l1(x) + l2(u) with respect to the q-norm is equal to 1, while Lϕ must obey the
equivalence of norms when the Lipschitz continuity is measured by the r-norm, where r ̸= q.

Remark 6.5. Lemma 6.1 indicates that the distributionally robust cost function (6.9) is
equivalent to a sample average approximation plus an additional Wasserstein regularization
term Lϕϵ that is independent of any decision variables. Thus, we can neglect this regulariza-
tion term in an MPC implementation, while still obtaining the same minimizer. This was
already mentioned in [126, Remark 6.7] for the case of single stage optimization problems.
Note that in other control parameterization the Lipschitz constant Lϕ = supθ∈Θ(∥θ∥q,∗) (see
proof of Lemma 6.1) might depend on the decision variables, e.g., as in [45, Lemma A.2].
In this case, the equivalence result presented in Lemma 6.1 still holds, but the term Lϕϵ
cannot be neglected in the MPC implementation.

Nonlinear tube controllers

A nonlinear tube controller π(·) does not allow for an explicit representation of the error
and input error akin to (6.11a) - (6.11b), i.e.,

e(t|k) = Ate(0|k) +
t−1∑
i=0

At−1−i[Beu(i|k) + w(k + i)]

eu(t|k) = π(e(t|k)),

which implies that the map w 7→ (x, u) is not jointly linear. In fact, w 7→ u is nonlinear and
thus, it is not possible to represent the worst-case expectation (6.9) together with Proposi-
tion 6.1.1 as a tractable convex optimization problem. However, we can still approximate
the expected value in (6.9) empirically by generating i.i.d. error and input error samples
with (6.6c) - (6.6d)

êj(t+ 1|k) = Aêj(t|k) +Bπ(êj(t|k)) + ŵj(k + t), ŵj(k + t) ∈ Ŵ (6.13a)

êu,j(t|k) = π(êj(t|k)), (6.13b)

where êj(0|k) = e(k), while the empirical distributions for e and eu are easily constructed
from j = 1, . . . , Ns sample trajectories

µ̂E(k) = δe(k) × µ̂(e(1|k))× . . . , µ̂(e(N − 1|k)) (6.14)

µ̂Eu(k) = δeu(k) × µ̂(eu(1|k))× . . . , µ̂(eu(N − 1|k)).
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At time t = 0 we consider the Dirac distribution, since e(0|k) = e(k) and eu(0|k) = eu(k)
are already realizations of the stochastic process. Finally, the SAA MPC cost function can
be defined as

JSAA(x(·|k), u(·|k)) := Eµ̂E(k)

(
l1(x(·|k))

)
+ Eµ̂Eu(k)

(
l2(u(·|k))

)
, (6.15)

where x and u are given by (6.10a) - (6.10b).

Remark 6.6. Note that we cannot give distributionally robust performance guarantees for
nonlinear tube controllers, which, in view of the SAA MPC cost function (6.15) allows
us to work with correlated disturbance sequences. Therefore, we can use Assumption 6.1
without the additional stage-wise independency condition (Assumption 6.2) as required by
Lemma 6.1.

6.2.2 DR-CVaR state constraints

Chance constraints of type (6.4c) are in the literature also known as Value-at-Risk (VaR)
constraints. One of the main problems associated with VaR constraints is that their feasible
set is generally not-convex, except in some generic cases, e.g., when the distribution of
random variables is log-concave, in which case the feasible set happens to be convex [132].
This is an undesirable property for an MPC optimization problem, as it increases the online
complexity of the algorithm and hedges the risk of finding local minima. To alleviate this
problem, we formulate the chance constraints (6.2) for the predicted states

P(h⊤i x(t|k) ≤ 1) ≥ pix ∀i ∈ {1, . . . , r}, (6.16)

which we then relax by using a coherent risk measure called the conditional Value-at-Risk,
serving as a convex relaxation of VaR [132].

Definition 6.3. The conditional Value-at-Risk (CVaR) of a random variable ξ ∼ µ at risk
level p ∈ (0, 1) is defined as

CVaRµ
p(ξ) := inf

τ∈R

(
− (1− p)τ + Eµ

(
(ξ + τ)+

))
,

which penalizes the average loss above the p-th quantile, i.e., above the Value-at-Risk.

From the above definition, it can be seen that we again need the true (unknown) distribution
to evaluate the CVaR. This issue is addressed by maximizing the CVaR over all distributions
contained in the Wasserstein ambiguity set, resulting in the distributionally robust CVaR.

Based on the earlier definitions, we can relax the chance constraints (6.16) as distributionally
robust CVaR constraints, where we define for each half-space i = 1, . . . , r the t-step ahead
predicted constraint function as

γi(x(t|k)) := h⊤i x(t|k)− 1.
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Using the fact that x(t|k) = z(t|k)+ e(t|k), we can impose the CVaR constraints in view of
the empirical error distribution (6.14) for t = 0, . . . , N − 1, resulting in

sup
ν∈Bϵ(µ̂(e(t|k)))

CVaRν
pix

(
h⊤i (z(t|k) + e(t|k))− 1

)
= sup
ν∈Bϵ(µ̂(e(t|k)))

CVaRν
pix

(
γi(x(t|k))

)
≤ 0.

(6.17)

We then define the distributionally robust CVaR constraint set at time k as

XCVaR :=


 x(0|k)

...

x(N − 1|k)

 ∈ RnN
∣∣∣∣∣∣∣

sup
ν∈Bϵ(µ̂(e(t|k)))

CVaRν
pix

(
γi(x(t|k))

)
≤ 0

∀i = {1, . . . , r},∀t ∈ {0, . . . , N − 1}

 ,

which is intractable in its present form, i.e., the evaluation of the constraint x(·|k) ∈ XCVaR

involves multiple infinite-dimensional optimization problems, one for each CVaR constraint.
Therefore, we propose the following convex approximation based on Proposition 6.1.1.

Lemma 6.2. Suppose that Assumption 6.1 holds true. Let pix ∈ (0, 1) and define p, q ≥ 1,
such that 1/p+ 1/q = 1, then

Z :=



 z(0|k)
...

z(N − 1|k)

 ∈ RnN
∣∣∣∣∣∣∣∣∣∣∣∣∣

∃τi,t ∈ R, λi,t ∈ R≥0, si,j,t ∈ R≥0 s.t.

−(1− pix)τi,t + ϵλi,t +
1
Ns

∑Ns

j=1 si,j,t ≤ 0(
γi(z(t|k) + êj(t|k)) + τi,t

)
+
≤ si,j,t

∥h⊤i ∥p ≤ λi,t
∀j ∈ {1, . . . , Ns} ∀i ∈ {1, . . . , r}
∀t ∈ {0, . . . , N − 1}


⊆ XCVaR, (6.18)

where êj(t|k) results from (6.13a).

Proof. The proof can be found in Section 6.5.

Remark 6.7. Note that the distributionally robust CVaR constraint penalizes the worst-case
expected constraint violation above the pix-th quantile of γi(x) (compare Definition 6.3).
Hence, (6.17) is a sufficient condition for the chance constraints (6.16) to hold [164].

Remark 6.8. The choice of p and q-norms as required in Lemma 6.2 can impose different
robustness goals, e.g., by setting q = ∞, we measure distances in the sample space with
∥e − êj∥∞, which results in a robustification of the Wasserstein penalty λ in the 1-norm,
whereas q = 2 leads to a robustification of λ in the 2-norm. The relationship between q and
p is formalized with the duality condition 1/p+ 1/q = 1.

Remark 6.9. For linear tube controllers, we already know from (6.11a)-(6.11b) that the er-
ror and input error can be written as affine functions of the disturbance w. Thus, we can
substitute (6.11a) into (6.18) and center the Wasserstein ball at the t-step empirical distur-
bance distribution µ̂(w(t|k)) instead of µ̂(e(t|k)). Then we can simultaneously ensure dis-
tributionally robust performance (Lemma 6.1) and distributionally robust CVaR constraint
satisfaction (Lemma 6.2).
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6.2.3 Input constraints

We originally indicated that we were imposing hard input constraints, which unfortunately
contradicts with some of our main results. Below we discuss nominal and hard input
constraints, both of which can be used in our framework but lead to different performance
and constraint satisfaction guarantees.

Nominal input constraints

Nominal input constraints are only imposed on v(t|k) acting on (6.6e), i.e., we enforce
constraints of the type

v(t|k) ∈ V = U ∀t ∈ {0, . . . , N − 1}. (6.19)

In view of the tube controller π(e), we are able to use a linear controller π(e) = Ke,
which ensures that the true input is kept close to the nominal predictions. In view of
this, we can use Lemma 6.1 to give distributionally robust performance guarantees, while
Lemma 6.2 additionally guarantees distributionally robust state constraint satisfaction. On
the downside, the actual input (see (6.22) in the following section) acting to the system
(6.1) can deviate greatly from the mean value since the disturbance is unbounded.

Remark 6.10. Another possibility is to derive distributionally robust chance constraints for
the input that at least probabilistically bounds the deviation between u(t|k) and v(t|k).

Hard input constraints

In the nominal case, we required that the nominal input v(·|k) verifies the hard constraints
(6.19), while in the following we require that this condition holds for the predicted tube
input u(t|k) given by (6.6e), i.e.,

u(t|k) ∈ U ∀t ∈ {0, . . . , N − 1}. (6.20)

To ensure this, we limit the control authority of the tube controller π(·), e.g., via a saturated
LQR [82], where we make the following assumption.

Assumption 6.4. The tube controller π satisfies π(e) ∈ Eu ⊂ U ∀e ∈ Rn.

Similar to tube-based robust MPC [118], we tighten the original input constraints with
V = U ⊖ Eu, where V denotes the tightened nominal input constraint set. Note that a
saturated LQR belongs to the class of nonlinear tube controllers. Thus, if we want to
ensure hard input constraints (Assumption 6.4), we cannot achieve distributionally robust
performance along with the reformulation used in Lemma 6.1.1. However, distributionally
robust state chance constraints can still be verified thanks to Lemma 6.2.
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Figure 6.3: Illustration of multi-step Wasserstein balls, i.e., the gray discs centered at the
empirical predictive distribution (black line), and the true predictive distribution
(dotted line). At time k + 2, the Dirac delta measure δe(k+2) (black dot) lies
outside of the Wasserstein ball Bϵ(µ̂(e(1|k + 1))), indicating a loss of feasibility
with β probability.

6.2.4 Recursive feasibility

Following the indirect feedback paradigm, we initialize the nominal states and prediction
errors with z(0|k) = z(k) and êj(0|k) = e(k) for all j = 1, . . . , Ns. However, since at time k
the error e(k) is already a realization of the stochastic process with unbounded support, it
is impossible to guarantee robust recursive feasibility, i.e., at time t = 0, the distributionally
robust CVaR constraint

sup
ν∈Bϵ(µ̂(e(0|k)))

CVaRν
pix

(
h⊤i (z(k) + e(0|k))− 1

) (6.14)
= sup

ν∈Bϵ(δe(k))

CVaRν
pix

(
h⊤i x(k)− 1

)
≤ 0

is prone to be infeasible, see also Figure 6.3 for an illustration of this issue in view of
the space of probability distributions. To render the MPC optimization problem feasible
for all possible realizations of e(k), we resort to a soft constraint framework as proposed
in [169] and introduce a vector Θ = [θ0, . . . , θN−1] of so-called slack variables θt ≥ 0 for
t = 0, . . . , N − 1. These slack variables are penalized with the function lΘ(Θ) = c∥Θ∥1,
where c > 0 is a sufficiently large constant to render lΘ as an exact penalty function, see
[88, Thm. 1] for details. The softening takes into account the right hand side of the CVaR
constraints in (6.18) and allows for constraint violations whenever necessary. The soft CVaR
constraint set is defined as

Z
soft :=



 z(0|k)
...

z(N − 1|k)

 ∈ RnN
∣∣∣∣∣∣∣∣∣∣∣∣∣

∃τi,t ∈ R, λi,t ∈ R≥0, si,j,t ∈ R≥0, θt ∈ R≥0 s.t.

−(1− pix)τi,t + ϵλi,t +
1
Ns

∑Ns

j=1 si,j,t ≤ θt(
γi(z(t|k) + êj(t|k)) + τi,t

)
+
≤ si,j,t

∥h⊤i ∥p ≤ λi,t
∀j ∈ {1, . . . , Ns} ∀i ∈ {1, . . . , r}
∀t ∈ {0, . . . , N − 1}


.
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In order to ensure stability of the control scheme, we impose a zero terminal constraint

z(N |k) = 0.

Remark 6.11. In the related literature, the issue of recursive feasibility is usually not dis-
cussed. The authors of [45] circumvent the feasibility issue entirely by not constraining the
initial state at time t = 0, which implies that no guarantees can be given. Recently, Micheli,
Summers, and Lygeros [124] proposed a Wasserstein DR-MPC scheme similar to our ap-
proach, where recursive feasibility is not explicitly addressed and, similar to [45], the initial
state is unconstrained. In [173], the uncertainty is assumed to be compactly supported, so
that a robust constraint tightening established recursive feasibility. Finally, in [108], the
authors propose a soft-constrained DR-MPC in case of bounded uncertainties.

6.2.5 Tractable MPC optimization problem

At each time step k = 0, . . . , NT−N , we solve the following DR-MPC optimization problem.

Problem 6.2.1 (Wasserstein scenario-based DR-MPC).

min
z,v,Θ
τ,λ,s

lΘ(Θ) +
1

Ns

Ns∑
j=1

l1(x̂j(·|k)) + l2(ûj(·|k)) (6.21a)

s.t. x̂j(t+ 1|k) = z(t+ 1|k) + êj(t+ 1|k) (6.21b)

ûj(t|k) = v(t|k) + π(êj(t|k)) (6.21c)

êj(t+ 1|k) = Aêj(t|k) +Bπ(êj(t|k)) + ŵj(k + t) (6.21d)

z(t+ 1|k) = Az(t|k) +Bv(t|k) (6.21e)

v(t|k) ∈ V (6.21f)

[z(0|k), . . . , z(N − 1|k)] ∈ Zsoft (6.21g)

z(N |k) = 0 (6.21h)

z(0|k) = z(k), x̂j(0|k) = x(k), êj(0|k) = e(k) (6.21i)

for all t = 0, . . . , N − 1 and for all j = 1, . . . , Ns.

The control input applied to system (6.1) is given by

u(k) = v∗(0|k) + π(e(k)). (6.22)

The optimization problem 6.2.1 implicitly defines a set of feasible control sequences

VN(z(k),Θ) :=

v(·|k),Θ
∣∣∣∣∣∣∣
z(0|k) = z(k)

z(·|k) ∈ Zsoft × {0}
v(·|k) ∈

∏N−1
t=0 V

 ,
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Algorithm 9 Scenario-based DR-MPC

Require: Sample trajectories ŴMPC = { ˆ̄wj}Ns
j=1 ⊆ Ŵ (Assumption 6.1)

1: Initialize: z(0) = x(0), e(0) = 0 and k = 0
2: repeat
3: Measure state x(k) of system (6.1)
4: Solve DR-MPC optimization problem 6.2.1 based on ŴMPC samples
5: Apply control input (6.22) to system (6.1)
6: Increment time k ← k + 1
7: until k = NT −N
8: Apply remaining open-loop control input for k = NT −N, . . . , NT − 1

a set of feasible initial states Zsoft
N = {z|∃Θ : VN(z,Θ) ̸= ∅} and a set of strictly feasible initial

states ZN = {z | VN(z,Θ) ̸= ∅, ∥Θ∥ = 0}. In Algorithm 9 we summarize the closed-loop
control procedure. Note that in step 8 of Algorithm 9, the open-loop control input is applied
for the remaining N time steps. This can be circumvented by defining an extended task
horizon NT,ext = NT+N , so that feedback is available up to time k = NT. As a consequence,
we need to gather trajectories of length NT,ext during the offline phase (Assumption 6.1).

6.2.6 Theoretical analysis

In the following, we provide the main results of this section.

Theorem 6.1. Let Assumption 6.1 hold and consider system (6.1) under control law (6.22)
resulting from optimization problem 6.2.1. If x(0) ∈ Zsoft

N , then the Wasserstein DR-MPC
optimization problem 6.2.1 is recursively feasible for all 0 ≤ k ≤ NT −N .

Proof. The proof can be found in Section 6.5.

In Theorem 6.1, we establish recursive feasibility of the DR-MPC optimization problem
6.2.1 independent of the choice of the tube controller (6.22). However, depending on the
tube controller π(·) we can give different guarantees, see Figure 6.4 for a brief overview of
the following results.

Corollary 6.1. Let Assumptions 6.1 and 6.4 hold and consider system (6.1) under control
law (6.22) resulting from the DR-MPC optimization problem 6.2.1. Then the resulting input
u(k) satisfies the hard input constraints (6.3).

Proof. Hard input constraint satisfaction for u(k) follows immediately from control input
(6.22), recursive feasibility (Theorem 6.1) and constraint tightening (Assumption 6.4), i.e.,
u(k) ∈ U, since π(e) ∈ Eu ∀e ∈ Rn.
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Figure 6.4: Overview of the guarantees and implications of the proposed framework.

Due to the soft constraints, we cannot guarantee satisfaction of the chance constraints (6.2)
in closed-loop at all times k. However, under the assumption of strict feasibility at time k,
we can state the following result.

Theorem 6.2. Let Assumptions 6.1 and 6.3 hold and consider a strictly feasible state x(k) ∈
ZN , then the state x(k+1) of system (6.1) resulting from control law (6.22) and the DR-MPC
optimization problem 6.2.1 satisfies the state chance constraints (6.2) with a probability of
at least 1− β for β ∈ (0, 1).

Proof. The proof can be found in Section 6.5.

Remark 6.12. Theorem 6.2 establishes a conditional 1-step ahead constraint satisfaction
guarantee, which is typically given in SMPC [57]. Note that the strictly feasible CVaR
constraint set ZN is an inner approximation of the chance constraint set [132]. Thus, even
if x(k) ∈ Zsoft

N , the chance constraints are still likely to be fulfilled.

Theorem 6.3. Let Assumptions 6.1, 6.2, 6.3 hold and let π(e) be a linear map. Define
the true cost J = EµW (k)

(l1(x(·|k)) + l2(u(·|k))) and let Ĵ∗ be the objective function (6.21a)
evaluated with the optimal solution of the DR-MPC optimization problem 6.2.1. Then, with
a probability of at least 1− β the following distributionally robust performance bound holds

P
Ns(J ≤ Ĵ∗) ≥ 1− β.

Proof. The proof can be found in Section 6.5.

6.2.7 Numerical example

As an example, we consider a temperature regulation task of a four room building model
taken from [76] with state vector x = [T1, T2, T3, T4], where Ti [

◦C] denotes the temperature
of each room i = 1, . . . , 4. The input vector u [kW] consists of the four heat flows, i.e.,
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the heating/cooling power of each HVAC (heating, ventilation, and air conditioning) unit,
while the ambient temperature is given by T0. We consider the following dynamics

x(k + 1) = Ax(k) +Bu(k) + w(k),

where the model parameters are taken from [76]. We model the ambient temperature as a
correlated Gaussian process with Σij = 0.1+2 exp(−(i− j)2/60) for all i, j = 0, . . . , NT− 1
and sinusoidal mean 5 sin((k + 6)/4) + 19. Hence, we cannot verify distributionally robust
performance, but chance constraints.

The system is subject to input constraints on the cooling/heating power ∥u∥∞ ≤ 4.5 kW
and individual chance constraints on the room temperature

P(xi(k) ≥ 20.4) ≥ 0.9 ∀i ∈ {1, . . . , 4}
P(xi(k) ≤ 21.6) ≥ 0.9 ∀i ∈ {1, . . . , 4}.

Starting from the initial condition x(0) = [20.75 20.50 20.65 20.60]⊤, we regulate the
system to the setpoint xs = [21 21 21 21]⊤ over a task horizon of NT = 48 hours.

Simulation setup We consider a stage cost composed of a weighted 2-norm for the states
and a 1-norm for the control input

l1(x) =

∥∥∥∥∥∥∥
Q1/2(x(0|·)− zs)

...

Q1/2(x(N − 1|·)− zs)

∥∥∥∥∥∥∥
2

, l2(u) = R

∥∥∥∥∥∥∥
u(0|·)

...

u(N − 1|·)

∥∥∥∥∥∥∥
1

,

where Q = 0.01I and R = 1. The CVaR constraints are parameterized with pix = 0.9
for all i = 1, . . . , 4 and the prediction horizon is N = 12 hours. To obtain feedback over

Figure 6.5: Representation of a four room building model as a resistor-capacitor network
with states (temperatures) Ti and inputs (heating/cooling power) ui.
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the entire task horizon NT, we implemented the controller for an extended task horizon of
NT,ext = NT+N = 60 hours. The Wasserstein penalty is regularized with the infinity norm,
while the tube controller π(·) is an LQR with weights Qπ = 103I and Rπ = I saturated at
±1 kW. The penalty weight for the slack variables is c = 106.

Results We carried out 300 Monte-Carlo simulations of the system with different noise
realizations, see Figure 6.6. It can be seen that for each disturbance realization, the hard
input constraints are satisfied. In Table 6.1, for different Wasserstein radii ϵ and sample
sizes Ns, we compare the resulting empirical worst-case constraint satisfaction (largest in-
time constraint violation). It is observed that for ϵ = 0 the chance constraints for Ns = 10
and 20 are empirically violated, which underlines the statement that the SAA performs
poorly for small sample sizes (Remark 6.2). The chance constraint satisfaction rate can be
increased by either the sample size Ns (higher sample accuracy) or the Wasserstein radius ϵ
(higher robustness to sampling errors). Moreover, the Wasserstein radius ϵ can be reduced

Figure 6.6: 300 realizations of the ambient temperature (Top), Room temperature (Middle)
and Heating/Cooling power (Bottom). The red lines depict one particular real-
ization.
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Table 6.1: Impact of Wasserstein radius ϵ and sample size Ns on empirical satisfaction of
the constraint x2 ≥ 20.4.

ϵ Ns = 10 Ns = 20 Ns = 50

0 87.8% 89.1% 91.2%

10−5 89.5% 90.4% 92.5%

10−4 91.3% 92.2% 94.6%

10−3 93.1% 95.2% 97.1%

Table 6.2: Impact of Ns on average and maximum time to solve the MPC optimization
problem 6.2.1.

Ns = 10 Ns = 20 Ns = 30 Ns = 40 Ns = 50

average 0.79 s 1.17 s 1.65 s 2.11 s 2.53 s

maximum 0.92 s 1.30 s 1.89 s 2.30 s 2.69 s

Table 6.3: Impact of Ns on strict feasibility, maximum and expected value of the slack
variables conditioned on ∥Θ∥∞ > 0.

ϵ = 1e− 3 Ns = 10 Ns = 20 Ns = 50

P(∥Θ∥∞ = 0) 98.69% 98.99% 99.32%

E(∥Θ∥∞ | ∥Θ∥∞ > 0) 1.268 · 10−3 1.131 · 10−3 1.092 · 10−3

max(∥Θ∥∞) 4.871 · 10−3 4.806 · 10−3 4.637 · 10−3

by increasing Ns, while preserving the prescribed level of chance constraint satisfaction
(Assumption 6.3).

In Table 6.2, we show the effect of the sample size on the average and maximum computation
time of the MPC optimization problem. We used CVX [67] and ran the simulation on a
desktop PC with an Intel i7-9700 CPU and 16gb ram. In order to satisfy the chance
constraints empirically via a SAA, we require a sample size of Ns = 50, which is on average
3.2 times slower compared to our distributionally robust approach with Ns = 10. Finally,
we give some statistics about the slack variables θ0 in Table 6.3. We considered the time
steps between 15 ≤ k ≤ 25 and 40 ≤ k ≤ 48 where constraint violations can occur (cf.
Figure 6.6). It can be observed that as the sample size increases, the expected value and
maximum value of the slack variables decrease, while the probability of slack variables with
value zero increases.
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6.3 Analytical indirect feedback DR-MPC using DR-PRS

In this section, we propose an alternative form of the Wasserstein DR-MPC optimization
problem 6.2.1 by decoupling the CVaR constraints entirely from the optimization problem
using DR-PRS. We consider the same problem setup as in Section 6.1, but replace the
constraints (6.2) and (6.3) with more general joint chance constraints of the form

P(Hx(k) ≤ h|x(0)) ≥ px ∀k ∈ {0, . . . , NT} (6.23a)

P(Lu(k) ≤ l|x(0)) ≥ pu ∀k ∈ {0, . . . , NT}, (6.23b)

where h ∈ Rr>0, l ∈ R
q
>0 and r, q ∈ N denote the number of individual half-spaces. The level

of chance constraint satisfaction is regulated with px, pu ∈ (0, 1).

To immunize the chance constraints (6.23) against distributional ambiguity, we introduce
the following distributionally robust surrogates

inf
ν∈P̂

P(x(k) ∈ X|x(0)) ≥ px (6.24a)

inf
ν∈P̂

P(u(k) ∈ U|x(0)) ≥ pu, (6.24b)

where P̂ ⊆ P(Ξ) is an ambiguity set defined on the space of all Borel probability measures
P(Ξ), while Ξ denotes an arbitrary measurable space. In particular, we consider any data-
driven ambiguity set, such that the true probability distribution µ ∈ P(Ξ) belongs to P̂
with 1−β confidence, i.e., PNs(µ ∈ P̂) ≥ 1−β. In the following, we introduce the concept of
distributionally robust PRS for arbitrary ambiguity sets P̂ , while subsequently we replace P̂
with a Wasserstein ambiguity set to obtain a tractable optimization problem. Throughout
the remainder of this section, we consider the predictive dynamics (6.6) with a linear tube
controller π(e) = Ke, where K is a stabilizing gain for the matrix pair (A,B).

6.3.1 Constraint tightening via distributionally robust PRS

In the following, the chance constraints (6.24) are reformulated in terms of DR-PRS.

Definition 6.4. A set R is a distributionally robust Probabilistic Reachable Set (DR-PRS)
of probability level p w.r.t. to an ambiguity set P̂ for system (6.5b) with e(0) = 0 if

P(e(k) ∈ R) ≥ p ∀ν ∈ P̂ ∀k ∈ N.

For correlated stochastic processes, it is possible to define k-step DR-PRS similar to Defi-
nition 2.7 over the task horizon NT.

Definition 6.5. A set R(k) for k ∈ N is a k-step distributionally robust Probabilistic Reach-
able Set (k-step DR-PRS) of probability level p w.r.t. to an ambiguity set P̂ for system
(6.5b) with e(0) = 0 if

P(e(k) ∈ R(k)) ≥ p ∀ν ∈ P̂ .
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Remark 6.3.1. If P̂ is a singleton that contains only the true distribution µ, then the original
PRS (Def. 2.6) is recovered.

For the remainder of this section, we assume that the disturbance w(k) ∼ µ is zero-mean
and i.i.d. for all k ∈ N and the task horizon is NT = ∞. Under this assumption, the
distribution of the closed-loop error (6.5b) converges to a stationary distribution µe in the
limit, which allows us to state the following result.

Lemma 6.3.2 (Union bound approximation). Consider system (6.5b) with π(e(k)) = Ke
and let e(k) ∼ µe be an identically distributed random variable for all k ∈ N. For some
confidence level β ∈ (0, 1) and sample size Ns ∈ N, let P̂ be an ambiguity set such that
P
Ns(µe ∈ P̂) ≥ 1− β and let p ∈ (0, 1). If η∗ = coli∈{1,...,r}(η

∗
i ) is the optimal solution to

η∗i = min
η̃∈R

η̃ (6.25a)

s.t. inf
ν∈P̂

P([H]ie ≤ η̃) ≥ 1− p̃i5 (6.25b)

with
∑r

i=1 p̃ ≤ 1− p, then with a probability of no less than 1−β the set R = {e |He ≤ η∗}
is a DR-PRS of level p for system (6.5b) initialized with e(0) = 0.

Proof. The proof can be found in Section 6.5.

Corollary 6.2. Let Rx = {e | He ≤ η∗x} and Ru = {Ke | LKe ≤ η∗u} be two polytopic
DR-PRS for the states and inputs. System (6.1) satisfies the distributionally robust chance
constraints (6.24) for all k ∈ N conditioned on e(0) = x(0)− z(0) = 0 with a probability of
at least 1− β, if the nominal system (6.5a) satisfies the constraints z(k) ∈ Z and v(k) ∈ V
with

Z := X⊖Rx, V := U⊖Ru.

Proof. The proof can be found in Section 6.5.

Synthesis The main challenge in the DR-PRS synthesis problem (6.25) is the underlying
distributionally robust chance constraint (6.25b). In the following, we replace the general
ambiguity set P̂ with a Wasserstein ball centered at the empirical distribution µ̂e. Note
that other reformulations are possible as well, e.g., if P̂ is replaced with a moment-based
ambiguity set, then the results from [177] can be used.

The feasible set of (6.25) is defined by the distributionally robust chance constraint (6.25b),
which is in general non-convex. Thus, we additionally have to convexify the feasible set by
replacing (6.25b) with a distributionally robust CVaR constraint

sup
ν∈Bϵ(µ̂e)

CVaRν
1−p̃i([H]ie− η̃) ≤ 0,

5The notation [H]i denotes the i-th row of the matrix H.
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such that the convexified optimization problem is given by

min
η̃∈R

η̃ (6.26a)

s.t. sup
ν∈Bϵ(µ̂e)

CVaRν
1−p̃i([H]ie− η̃) ≤ 0. (6.26b)

Using Proposition 6.1.1, we can state the following result.

Theorem 6.4. Let e ∼ µe be an identically distributed random variable and let P̂ = Bϵ(µ̂e)
be a Wasserstein ambiguity set (Def. 6.2) centered at µ̂e = N−1

s

∑Ns

j=1 δêj with Ns ∈ N,
β ∈ (0, 1) satisfying Assumption 6.3. For the q-Wasserstein distance define the dual p-
norm, such that 1/p + 1/q = 1. Let η∗i be the optimal solution of optimization problem

η∗i = min
η̃∈R
τi,λ,s

η̃ (6.27a)

s.t.

−p̃iτ + λϵ+ 1
Ns

∑Ns

j=1 sj ≤ 0

([H]iêj − η̃ + τi)+ ≤ sj
∥[H]i∥p ≤ λ ∀j = {1, . . . , Ns},

(6.27b)

then η∗i is a feasible solution to problem (6.26).

Proof. The proof can be found in Section 6.5.

Remark 6.13. Lemma 6.3.2 and Theorem 6.4 can now be used together to construct DR-
PRS, i.e., by replacing (6.25) with (6.27). In view of this, DR-PRS with different inter-
pretations are possible, e.g., by defining RCVaR = {e|He ≤ η∗}, we define the DR-PRS in
the CVaR sense, whereas with R = {e|He ≤ τ ∗} with τ ∗ = coli∈{1,...,r}(τ

∗
i ), we restore the

original DR-PRS as in Definition 6.4. Note that the roles of τ and η are switched due to the
replacement of the VaR constraint with the CVaR constraint. However, the quantity RCVaR

in the proposed indirect feedback case seems nonsensical, since the MPC does not actively
use the properties of CVaR during decision making (as in Problem 6.2.1), i.e., we cannot
penalize the magnitude of constraint violations. Nonetheless, Theorem 6.4 is important be-
cause it gives us a tractable optimization problem that yields the distributionally robust VaR
τ ∗ as a byproduct.

We can impose individual chance constraints of the type (6.2) by removing the condition∑r
i=1 p̃i ≤ 1 − p in Lemma 6.3.2. In this case, the individual violation probabilities p̃i for

all i = 1, . . . , r are readily given by p̃i = 1− p.

Remark 6.14. The previous results can easily be extended to correlated disturbances over a
finite task horizon via k-step DR-PRS. To do so, we impose Assumption 6.1 and pre-sample
the error trajectories along

êj(k + 1) = (A+BK)êj(k) + ŵj(k) ∀k ∈ {0, . . . , NT − 1},
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where êj(0) = 0 for all j = 1, . . . , Ns. Then we can easily compute k-step DR-PRS R(k) =
{e|He(k) ≤ τ ∗(k)} by solving the following optimization problem for all k = 0, . . . , NT − 1
and for all i = 1, . . . , r

η∗i (k) = min
η̃i(k)∈R
τi(k),λ,s

η̃i(k) (6.28a)

s.t.

−p̃iτi(k) + λϵ+ 1
Ns

∑Ns

j=1 sj ≤ 0

([H]iêj(k)− η̃i(k) + τi(k))+ ≤ sj
∥[H]i∥p ≤ λ ∀j = {1, . . . , Ns},

(6.28b)

where τ ∗(k) = coli∈{1,...,r}(τ
∗
i (k)).

6.3.2 Objective function

We consider a quadratic distributionally robust cost function

sup
ν∈Bϵ(µ̂e)

Eν

(
N−1∑
t=0

∥x(t|k)∥2R + ∥u(t|k)∥2R

)
, (6.29)

where Q,R are symmetric positive definite weighting matrices. To analytically evaluate the
cost function (6.29), we use the assumption that w(k) is zero-mean i.i.d., which renders the
closed-loop error e(k) resulting from (6.5b) with e(0) = 0 zero-mean for all k ∈ N. However,
this is generally not true for the predicted error e(t|k) resulting from the initialization
e(0|k) = e(k). Thus, the predicted state and input mean are given by x̄(t|k) = z(t|k) +
AtKe(k) and ū(t|k) = v(t|k) +KAtKe(k), such that (6.29) evaluates to

N−1∑
t=0

(
∥x̄(t|k)∥2Q + ∥ū(t|k)∥2R

)
+ sup
ν∈Bϵ(µ̂e)

Eν

(
N−1∑
t=0

∥e(t|k)∥2Q+K⊤RK

)
. (6.30)

It can be seen that the last term in (6.30), i.e., the variance cost, does not depend on the
optimization variables z, v since K is a fixed controller gain. Thus, it can be neglected in
the receding horizon cost function.

Remark 6.3.3. Since the last term of (6.30) is independent of z, v, the out-of-sample per-
formance of (6.29) cannot be improved through the MPC optimization problem. This ob-
servation is closely connected to Remark 6.5 and Lemma 6.1 in case of the scenario-based
DR-MPC, where the Wasserstein regularization is independent of x and u and thus does
not affect the MPC cost.

Remark 6.3.4. We do not penalize the terminal state z(N |k) in the cost function (6.29)
since we use a zero-terminal constraint (6.31g). This can, however, easily be relaxed to a
terminal set/controller approach, cf. Section 4.3 or [79] for related results.
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6.3.3 MPC optimization problem

Using the results from the previous section, in particular the constraint tightening from
Corollary 6.2, we can state the following MPC optimization problem.

Problem 6.3.5 (Tube-based Wasserstein indirect feedback MPC).

min
V,Z

N−1∑
t=0

(
∥x̄(t|k)∥2Q + ∥ū(t|k)∥2R

)
(6.31a)

s.t. z(t+ 1|k) = Az(t|k) +Bv(t|k) (6.31b)

x̄(t+ 1|k) = Ax̄(t|k) +Bū(t|k) (6.31c)

ē(t|k) = x̄(t|k)− z(t|k) (6.31d)

ū(t|k) = Kē(t|k) + v(t|k) (6.31e)

(z(t|k), v(t|k)) ∈ Z× V (6.31f)

z(N |k) = 0, (6.31g)

x(0|k) = x(k), z(0|k) = z(k), (6.31h)

for all t = 0, . . . , N − 1. 6

The result of the optimization problem are the optimal nominal state and control input
sequences Z = {z∗(t|k)}Nt=0 and V = {v∗(t|k)}N−1

t=0 , where only the first element v∗(0|k) is
implemented with control law (6.22) to system (6.1) and the rest is discarded. Recursive
feasibility and closed-loop constraint satisfaction with probability 1 − β follow from the
same arguments as in Proposition 4.3.2 and Remark 4.8 by setting Zs

f = {0}.

6.3.4 Numerical example

This section is dedicated to a numerical example. To compare the results with an analytical
stochastic MPC, we consider a simple double integrator with dynamics

x(k + 1) =

[
1 1

0 1

]
x(k) +

[
0.5

1

]
u(k) + w(k),

where w is a normally distributed zero-mean i.i.d. disturbance with the true distribution

w ∼ N (0,Σw), Σw =

[
0.25 0.5

0.5 1

]
.

We impose an individual chance constraint on the second state P(x2(k) ≤ 5) ≥ 0.8. Fur-
thermore, we chose the stabilizing controller K = [−0.2,−0.6]. The weighting matrices are
defined as Q = diag(100, 0.01), R = 0.1 and the prediction horizon is N = 10.

6Variables with a bar denote the mean values, i.e., ē(t|k) = E(e(t|k)|x(k)).
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DR-PRS guarantees

First, we quantify the impact of the Wasserstein radius on the out-of-sample performance
and confidence level 1 − β of the DR-PRS. To this end, we compute the true VaR of
probability level px = 0.8, which is given by τ ∗ = E(e)+[Σe]2,2f(px), where Σe is the solution
of the Lyapunov equation Σe = (A + BK)Σe(A + BK)⊤ + Σw and f(px) is the inverse
cumulative distribution function (quantile function) of the standard normal distribution.
Since E(e) = 0 by design, the true VaR is given by τ ∗ = 1.2023. Since the exact stationary
error distribution is known, we can sample from it to produce i.i.d. data for the following
experiment, i.e., e

(i)
2 ∼ N (0, [Σe]2,2), where e

(i)
2 is the i-th sample of the second error state.

The Wasserstein DR-PRS is obtained using 5-fold cross validation for different training set
sizes Ns ∈ {10, 100, 400}, where for each Ns we perform j = 1, . . . , Nmc = 300 Monte-Carlo
runs over independent data sets. Each run evaluates for different Wasserstein radii the
out-of-sample performance w.r.t. a set of independent validation data of size Nv = 105, i.e.,

p(Ns, ϵ) =
1

NmcNv

Nmc∑
j=1

Nv∑
i=1

1{e(i)2 ≤ τ (j)(Ns, ϵ)}, (6.32)

where τ (j)(Ns, ϵ) denotes the distributionally robust VaR estimate obtained from 5-fold cross
validation of problem (6.27) for the j-th training data set of size Ns and radius ϵ. A second
indicator is the empirical confidence of the distributionally robust VaR estimate averaged
over the Nmc Monte-Carlo runs

1− β(Ns, ϵ) =
1

Nmc

Nmc∑
j=1

1{τ (j)(Ns,ϵ)≥τ∗}. (6.33)

Results In Figure 6.7, we plot the out-of-sample performance (6.32) and the corresponding
confidence estimate (6.33) for different Wasserstein radii and samples sizes. For Ns = 10, the
confidence of the distributionally robust VaR estimates are below 90% over the entire range
of ϵ, which reflects the poor sample accuracy and the necessity of an even larger Wasserstein
radius. By increasing the sample size, we achieve an empirical confidence of 100% for smaller
Wasserstein radii, which underlines the consistency result from Assumption 6.3. From this
we can conclude that by increasing Ns we can reduce ϵ while maintaining a certain level of
confidence 1− β, which was similarly observed in Section 6.2.7.

The trade-off between sampling accuracy and robustness can be seen by comparing the
out-of-sample performance p with the confidence level, i.e., to achieve a DR-PRS with
1 − β ≈ 1 confidence and a data size Ns = 100, we need a Wasserstein radius ϵ = 0.088,
which corresponds to the out-of-sample performance (constraint satisfaction rate) p = 0.879.
Note that we aim to achieve px = 0.8. If we compare the same indicators for a sample size
Ns = 400, it can be seen that we can reduce the Wasserstein radius to ϵ = 0.072 resulting
in the out-of-sample performance p = 0.856 with 1 − β ≈ 1 confidence. In the limit,
as Ns → ∞, we may select ϵ = 0 and the optimal value of optimization problem (6.27)
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Figure 6.7: Out-of-sample performance (blue) with empirical confidence estimates (red) av-
eraged over 300 independent training data sets.

converges with 1 − β = 1 confidence to the true VaR, i.e., limNs→∞ τ(Ns, 0) = τ ∗. This
follows from the fact that the SAA is asymptotically consistent.

SMPC implementation

Finally, we perform for different controller configurations 104 Monte-Carlo simulations of
the closed-loop system starting at x(0) = [−25 0]⊤ for 15 time steps. As performance
indicators, we consider the expected cumulative closed-loop cost

E(l(x, u)) =
1

104

104∑
i=1

15∑
k=0

∥x(k)∥2Q + ∥u(k)∥2R,

as well as the lowest in-time empirical chance constraint satisfaction. In Table 6.4, we
compare the expected closed-loop cost in percentage to the linear controller u = Kx. As
expected, the constrained controllers attain a higher transient cost compared to the uncon-
strained linear controller. In view of this, starting with Ns = 10, the DR-MPC decreases
the closed-loop cost by gaining more data, while for Ns → ∞ we obtain the SMPC with
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Table 6.4: Performance comparison for different controllers and sample sizes.

DR-MPC

u = Kx Ns = 10 Ns = 100 Ns = 400 SMPC

E(l(x, u)) 100% 132.74% 128.97% 125.58% 123.81%

P(|[x1]2| ≤ 5) 7.98% 90.38% 88.27% 85.87% 84.56%

exact knowledge of the distribution, and thus the lowest closed-loop cost of all constrained
controllers. A similar trend can be seen in the chance constraint satisfaction rates, where
the SMPC achieves the tightest constraint satisfaction w.r.t. the desired level of 80%, while
the DR-MPC leads to slightly more conservative control actions. Hence, the controller
gains confidence to operate closer to the actual chance constraint as more data is gathered.
However, it is worth noting that each constrained controller verifies the chance constraint
of probability level 0.8 in closed-loop.

6.4 Summary

In this chapter, we studied a class of Wasserstein distributionally robust MPC schemes for
linear stochastic systems subject to additive uncertainty.

In Section 6.2, we proposed a scenario-based indirect feedback DR-MPC that uses distri-
butionally robust CVaR constraints to robustify the chance constraints to sampling errors.
In our analysis, we included correlated stochastic processes and investigated whether dis-
tributionally robust performance bounds and/or distributionally robust chance constraint
guarantees can be given. The resulting MPC optimization problem is proven to be recur-
sively feasible by considering a soft constraint formulation, while the closed-loop system
verifies the chance constraints with 1 − β probability. The proposed algorithm is demon-
strated on a four-room temperature control task.

In Section 6.3, the concept of distributionally robust PRS and k-step DR-PRS for general
ambiguity sets is introduced, while a design for Wasserstein ambiguity sets is subsequently
presented. Under a zero-mean i.i.d. assumption on the disturbance, we are able to analyti-
cally reformulate the cost function and obtain a constant constraint tightening for arbitrarily
large task horizons. A numerical example is carried out to investigate the impact of the sam-
ple size and the Wasserstein radius on the VaR estimate. Additionally, we compare different
controller configurations with a stochastic MPC implementation based on full distributional
knowledge.
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6.5 Proofs

Proof of Lemma 6.1

The proof starts by writing the predictive state equation (6.10a) together with (6.11a) in
explicit form

x(t|k) = z(t|k) + AtKe(0|k) +
t−1∑
i=0

At−1−i
K w(i|k)︸ ︷︷ ︸

e(t|k)

. (6.34)

Similarly, we can express the input equation (6.10b) together with (6.11b) as

u(t|k) = v(t|k) +KAtKe(0|k) +
t−1∑
i=0

KAt−1−i
K w(i|k). (6.35)

As it can be seen by (6.34)-(6.35), the state and input sequences are both linear in w(·|k),
thus, we can combine the functions l1 and l2 to Φ : XN × UN × X×WN−1 → R≥0, i.e.,

Φ(W ) := l1(w(0|k), . . . , w(N − 2|k)) + l2(w(0|k), . . . , w(N − 2|k)).
To simplify the notation, we have omitted the arguments z, v, and e, since the expectation
problem (6.9) considers only the linear mappingW 7→ Φ, whereW = {w(k+t)}N−2

t=0 ∈ WN−1

denotes the predicted disturbance sequence. Thus, (6.9) is equal to

sup
ν∈Bϵ(µ̂W )

Eν(Φ(W )). (6.36)

By definition, the functions l1 and l2 are proper, convex and Lipschitz continuous, so is
Φ(·), since it is a sum of nonnegative convex functions [21]. Furthermore, Lϕ > 0 denotes
the Lipschitz constant of Φ(·) w.r.t. the q-norm. Since Assumption 6.1 and 6.2 hold and
W = R

n, we can apply Proposition 6.1.1 with Ξ = W
N−1 to (6.36) and find that

sup
ν∈Bϵ(µ̂W )

Eν(Φ(W )) = inf
λ≥0

λϵ+
1

Ns

Ns∑
j=1

sup
W∈Rn(N−1)

(Φ(W )− λ∥W − Ŵj∥q), (6.37)

where Ŵj = {ŵj(k+ t)}N−2
t=0 . Now we follow the proof of [126, Thm. 6.3], which, given that

Ξ = R
n(N−1), establishes the equivalence

sup
W∈Rn(N−1)

(Φ(W )− λ∥W − Ŵj∥q)

= sup
θ∈Θ

inf
∥ζ∥q,∗≤λ

sup
W∈Rn(N−1)

(
(θ + ζ)⊤W − Φ∗(θ)− ζ⊤Ŵj

)
ζ=−θ
= sup

θ∈Θ
inf

∥θ∥q,∗≤λ

(
θ⊤Ŵj − Φ∗(θ)

)
=

{
Φ(Ŵj) if supθ∈Θ ∥θ∥q,∗ ≤ λ

∞ otherwise,
(6.38)
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where the first equality uses the conjugate function Φ∗(θ) with associated effective domain
Θ = {θ ∈ Rn(N−1) : Φ∗(θ) < ∞} and the definition of the dual norm. The second equality
carries out the supremum overW and the last equality uses the definition of the biconjugate
function Φ∗∗ = Φ due to convexity and continuity. From [126, Prop. 6.5], we know that
∥θ∥q,∗ ≤ Lϕ and from [99, Remark 3] that supθ∈Θ ∥θ∥q,∗ = Lϕ. Equations (6.37) - (6.38)
then imply that the infimum over λ ≥ Lϕ is attained at λ = Lϕ. It remains to substitute the

Ŵj-dependent data trajectories x̂j(·|k) and ûj(·|k) resulting from (6.34) - (6.35) together
with (6.38) and λ = Lϕ into (6.37), which, after reversing the steps of the proof yields that
(6.9) is equal to

Lϕϵ+
1

Ns

Ns∑
j=1

(l1(x̂j(·|k)) + l2(ûj(·|k))) = Lϕϵ+ Eµ̂W (k)
(l1(x(·|k)) + l2(u(·|k))) .

This concludes the proof.

Proof of Lemma 6.2

At the beginning of the proof we neglect the time indices t, k and half-space constraint index
i to simplify the notation. First, we recall the empirical predictive error distribution (6.14),
i.e., µ̂E(k) = µ̂(e(0|k))× . . . , µ̂(e(N |k)). By definition of the CVaR (Def. 6.3), we can write
the distributionally robust constraint (6.17) as

sup
ν∈Bϵ(µ̂(e(t|k)))

inf
τ∈R

(
− (1− p)τ + Eν

{
(γ(z + e) + τ)+

})
≤ 0, (6.39)

where we substituted x = z+e. From the min-max inequality follows that we can exchange
the sup and the inf

sup
ν∈Bϵ(µ̂(e(t|k)))

inf
τ∈R

(
− (1− p)τ + Eν

{
(γ(z + e) + τ)+

})
≤ inf
τ∈R
−(1− p)τ + sup

ν∈Bϵ(µ̂(e(t|k)))
Eν

(
(γ(z + e) + τ)+

)
. (6.40)

Since (γ(z + e) + τ)+ = max(0, γ(z + e) + τ) is the nonnegative pointwise maximum of
an affine function, it is proper, convex and lower semicontinuous [21]. Thus, we can apply
Proposition 6.1.1 to express the supremum over ν as

inf
λ≥0

λϵ+
1

Ns

Ns∑
j=1

sup
e∈Rn

((γ(z + e) + τ)+ − λ∥e− êj∥q).
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To resolve the max-plus function, we replace γ(·) with its definition and distinguish between
the following two cases. Suppose h⊤i (z + e)− 1 + τ > 0, then

sup
e∈Rn

(
h⊤(z + e)− 1 + τ − λ∥e− êj∥q

)
= sup

e∈Rn

(
h⊤(z + e)− 1 + τ − sup

∥ζj∥p≤λ
ζ⊤j (e− êj)

)
= inf

∥ζj∥p≤λ

(
h⊤z − 1 + ζ⊤j êj + τ + sup

e∈Rn

([h⊤ − ζ⊤j ]e)
)

ζj=h
= h⊤(z + êj)− 1 + τ,

where the first equality uses the definition of the dual norm, the second equality the min
max theorem [13, Prop. 5.5.4] and the third equality carries out the supremum over e,
where the infimum is dropped because h is not an optimization variable. However, we still
require the constraint ∥h∥p ≤ λ. On the other hand, if h⊤(z + e)− 1 + τ ̸> 0, it is equal to
0 by definition and thus

sup
e∈Rn

(−λ∥e− êj∥q) = inf
∥ζj∥p≤λ

sup
e∈Rn

ζ⊤j (êj − e) = 0.

In what follows, we resort to an epigraph formulation and define for each sample j an
auxiliary variable sj, such that sj ≥ (h⊤(z + êj) − 1 + τ)+. After combining the above
results we arrive at

(6.40) =


inf

τ∈R,λ≥0
−(1− p)τ + λϵ+

1

Ns

Ns∑
j=1

sj ≤ 0

s.t. (h⊤(z + êj)− 1 + τ)+ ≤ sj
∥h∥p ≤ λ

∀j = {1, . . . , Ns},

which, after invoking (6.39) for all constraints i = 1, . . . , r for each time step t = 0, . . . , N−1
yields

 z(0|k)
...

z(N − 1|k)

 ∈ RnN
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

inf
τ∈R,λ≥0

−(1− pix)τi,t + ϵλi,t +
1

Ns

Ns∑
j=1

si,j,t ≤ 0(
h⊤i
[
z(t|k) + êj(t|k)

]
− 1 + τi,t

)
+
≤ si,j,t

∥hi∥p ≤ λi,t
∀j ∈ {1, . . . , Ns} ∀i ∈ {1, . . . , r}
∀t ∈ {0, . . . , N − 1}


⊆ XCVaR.

Similar to [80, Prop. V.1] the infimum can be replaced with the existence of variables τ, λ, s
satisfying the constraints if and only if the infimum constraint holds true. The ”⇒” part
can be split into two cases: (i) If the infimum is achieved, then the optimizer satisfies the
constraints. (ii) If the infimum is not achieved, then it is −∞ and the first constraint is
trivially satisfied. Thus we can find variables τ, λ, s that satisfy the remaining constraints.
The ”⇐” part is obvious. This concludes the proof.
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Proof of Theorem 6.1

Assume that at time k = 0 a feasible solution to the MPC optimization problem 6.2.1 with
z(0) = x(0) ∈ Zsoft

N exists, i.e., v∗(t|k) for t = 0, . . . , N−1 and states z∗(t|k) for t = 0, . . . , N .

Applying the control input (6.22) to system (6.1) results in the state x(0|k+1) = x(k+1) and
z(0|k+ 1) = z∗(1|k) (initial constraint (6.21i)), for which we consider the shifted candidate
sequence v(t|k + 1) = v∗(t + 1|k) for t = 0, . . . , N − 2 appended with v(N − 1|k + 1) = 0.
Applying the shifted input sequence to the nominal dynamics (6.21e) yields the shifted state
sequence z(t|k+1) = z∗(t+1|k) for t = 0, . . . , N −1. At time t = N , we apply the terminal
control input v(N − 1|k+1) = 0, which results in z(N |k+1) = Az(N − 1|k+1)+Bv(N −
1|k+1) = 0 , since z(N − 1|k+1) = z∗(N |k) = 0 by (6.21h). Thus, z(N |k+1) verifies the
terminal constraint (6.21h). Since v(t|k+1) ∈ V for t = 0, . . . , N−2 and v(N−1|k+1) = 0,
we have that v(·|k + 1) verifies the input constraints (6.21f).

Note that the state constraints (6.21g) are relaxed as soft constraints. In view of this, we can
always find slack variables θt for t = 0, . . . , N−1, such that [z(0|k+1), . . . , z(N−1|k+1)] ∈
Z
soft, i.e., (6.21g) is verified at time k + 1. This concludes the proof.

Proof of Theorem 6.2

Let µE(k) be the true conditional error distribution (6.8) of E(k) = {e(k), e(1|k), . . . , e(N −
1|k)} and suppose that µE(k) = µ(e(k)) × µ(e(1|k)) × . . . × µ(e(N − 1|k)) is a product
of unknown marginal distributions. Now we recall the empirical distribution (6.14), i.e.,
µ̂E(k) = δe(k) × µ̂(e(1|k))× . . . , µ̂(e(N − 1|k)) and define

τi(1|k) := sup
ν∈Bϵ(µ̂(e(1|k)))

CVaRν
pix

(
γi(z

∗(1|k) + e(1|k)︸ ︷︷ ︸
=x̂∗(1|k)

)
)

τi(k + 1) := CVaR
µ(e(k+1))

pix

(
γi(z

∗(1|k) + e(k + 1)︸ ︷︷ ︸
(6.21i)
= x(k+1)

)
)
,

where τi(1|k) is the 1-step ahead predicted distributionally robust CVaR computed over the
Wasserstein ambiguity set centered at µ̂(e(1|k)) and τi(k + 1) denotes the CVaR based on
the true distribution µ(e(k + 1)). By invoking Assumption 6.1 and 6.3, we have

P
Ns
(
µW (k) ∈ Bϵ(µ̂W (k)

)
≥ 1− β.

This guarantee directly carries over to the error sequence E(k) by noting that µE(k) is fun-
damentally obtained from (6.7) along with (6.5b), which preserves the light-tailedness of the
underlying distribution. This can be verified by explicitly writing the density functions for
each term in (6.5b), i.e., for linear tube controllers we have e(k+1) = (A+BK)e(k)+w(k),
which essentially adds two light-tailed distributions (convolution integral), since e(0) = 0
and e(1) = w(0), whereas for saturated tube controllers, the closed-loop error is governed
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by e(k + 1) = Ae(k) + ẽu(k) + w(k), where the input error ẽu(k) = Bπ(e(k)) forms an
additional bounded random variable, which is light-tailed by definition. Thus, we convolve
three light-tailed distributions, which remain light-tailed. In view of this, we have

P
Ns (µ(e(k + 1)) ∈ Bϵ(µ̂(e(1|k))) ≥ 1− β,

which implies that the true CVaR τi(k + 1) can be bounded as

P
Ns
(
τi(k + 1) ≤ τi(1|k)

)
≥ 1− β. (6.41)

Now, consider that whenever x(k) ∈ ZN , the slack variables satisfy ∥Θ∥ = 0, which yields
that (6.21g) verifies the hard constraints (6.18), i.e.,

[z∗(0|k), . . . , z∗(N − 1|k)] ∈ Z.

This implies that τi(1|k) ≤ 0 and thus, τi(k + 1) in (6.41) is bounded from above by 0
with 1− β probability for all constraints i = 1, . . . , r w.r.t. the true measure P. The claim
follows by pointing out that the CVaR majorizes the VaR and forms a sufficient condition
for chance constraint satisfaction in (6.2), cf. Remark 6.7.

Remark 6.15. The inequality (6.41) can be explained with Figure 6.3, where whenever the
Dirac distribution µ(e(k)) = δe(k) is contained in the ambiguity set, the bound (6.41) holds
true. For example, at time step k + 1 the bound is verified, while at time k + 2 the Dirac
distribution is not contained in the ambiguity set, resulting in τi(k + 1) > τi(1|k).

Proof of Theorem 6.3

From Assumption 6.3 we have that PNs(µW (k) ∈ Bϵ(µ̂W (k))) ≥ 1 − β. Hence, J is upper
bounded by the distributionally robust cost function (6.9) with confidence 1 − β. Using
Assumptions 6.1, 6.2 and linearity of π(e) allows for application of Lemma 6.1, which
establishes an equivalence between (6.9) and the SAA cost function (6.12), i.e.,

J ≤ Lϕϵ+ Eµ̂W (k)
(l1(x(·|k)) + l2(u(·|k))) . (6.42)

Since the MPC cost function (6.21a) is equivalent to the the right hand side of (6.42) plus
an additional non-negative penalty term lΘ, and the expectation problem is solved w.r.t.
the disturbance sequenceW (k), the upper bound (6.42) holds for all feasible solutions of the
DR-MPC optimization problem 6.2.1 with 1−β probability. The claim follows by choosing
the optimal solution, which yields Ĵ∗.

Proof of Lemma 6.3.2

We start the proof by recalling the definition of a DR-PRS (Def. 6.4) and an equivalence
result from Zymler et al. [177], which states that the condition P(e(k) ∈ R) ≥ p ∀ν ∈ P̂
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can similarly be written as

inf
ν∈P̂

P(e(k) ∈ R) ≥ p⇐⇒sup
ν∈P̂

P(e(k) /∈ R) ≤ 1− p. (6.43)

Now, consider the polytopic distributionally robust JCC infµ∈P̂ P(He ≤ η) ≥ p, which can
equivalently be written as an intersections of ICCs

inf
µ∈P̂

P

( r⋂
i=1

(
[H]ie(k) ≤ ηi

))
≥ p

(6.43)⇐⇒sup
µ∈P̂

P

( r⋃
i=1

(
[H]ie(k) ≥ ηi

))
≤ 1− p,

where [H]i denotes the i-th row of H and ηi the i-th element of η. Applying the union
bound yields

sup
µ∈P̂

P

( r⋃
i=1

(
[H]ie(k) ≥ ηi

))
≤

r∑
i=1

sup
µ∈P̂

P([H]ie(k) ≥ ηi) ≤
r∑
i=1

p̃i,

where the individual violation probabilities p̃i ∈ (0, 1) satisfy the condition
∑r

i=1 p̃i ≤ 1−p.
Hence, we can approximate the distributionally robust JCC with a set of r distributionally
robust ICCs. By forming the complementary probability, we have

sup
µ∈P̂

P
(
[H]ie(k) ≥ ηi

)
≤ p̃i ⇐⇒ inf

µ∈P̂
P
(
[H]ie(k) ≤ ηi

)
≥ 1− p̃i.

The values ηi for all i = 1, . . . , r that verify the distributionally robust ICCs are the so-
called distributionally robust Value-at-Risk, which can be obtained as the optimal solution
η∗i of problem (6.25) for i = 1, . . . , r. By stacking η∗ = coli∈{1,...,r}(η

∗
i ), we can thus define

R = {e | He ≤ η∗}. Since the ambiguity set is defined based on Ns samples of e(k) ∼ µe,
the guarantee PNs(µ ∈ P̂) ≥ 1 − β implies that R is a DR-PRS of probability level 1 − β
for (6.5b) initialized with e(0) = 0.

Proof of Corollary 6.2

Consider the state constraints (6.24) in polytopic form Hx(k) ≤ h, which can equivalently
be written as

inf
ν∈P̂

P(Hx(k) ≤ h|x(0)) = inf
ν∈P̂

P(Hz(k) ≤ h−He(k)|x(0)) ≥ px,

where we substituted x = z + e. This is equivalent to

∃η̃x ∈ Rr : Hz(k) ≤ h− η̃x and inf
ν∈P̂

P(He(k) ≤ η̃x|x(0)) ≥ px.

Now, set η̃x = η∗x, where η
∗
x is the optimal distributionally robust Value-at-Risk (Lemma

6.3.2). Then we have that infν∈P̂ P(He(k) ≤ η∗x|x(0)) ≥ px is verified and only the first
condition needs to be evaluated, i.e.,

Hz(k) ≤ h− η∗x ⇐⇒ z(k) ∈ Z = X⊖R,
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where R is the DR-PRS of level px associated with η∗x. Since R is only a DR-PRS with
1−β confidence, we have that the original chance constraints are verified with a probability
no worse than 1 − β. This concludes the proof for the state chance constraints (6.24a).
The input chance constraints are similarly derived starting from Lu(k) ≤ l with separation
Lv(k) + LKe(k) ≤ l and input DR-PRS Ru.

Proof of Theorem 6.4

Consider constraint (6.26b), which substituted into the definition of the distributionally
robust CVaR leads to

sup
ν∈Bϵ(µ̂e)

inf
τ∈R

(
− p̃iτ + Eν (([H]ie− η̃ + τ)+)

)
≤ inf
τ∈R

(
− p̃iτ + sup

ν∈Bϵ(µ̂e)

Eν ([H]ie− η̃ + τ)+)
)
, (6.44)

where the inequality follows from the min max inequality. Now we follow the proof of
Lemma 6.2 to conclude that

sup
ν∈Bϵ(µ̂e)

inf
τ∈R

(
− p̃iτ + Eν (([H]iêj − η̃ + τ)+)

)
≤


∃τ ∈ R, λ ∈ R≥0, sj ∈ R≥0 s.t.

−p̃iτ + λϵ+ 1
Ns

∑Ns

j=1 sj ≤ 0

([H]iêj − η̃ + τ)+ ≤ sj
∥[H]i∥p ≤ λ, ∀j = {1, . . . , Ns},

i.e., the distributionally robust CVaR constraint (6.26b) is conservatively verified. Now,
substitute the latter inequality into (6.26b), which results in optimization problem (6.27).
Due to the min max inequality (6.44), the optimal solution η∗i is an inner approximation of
the original CVaR constraint (6.26b), which renders η∗i feasible in (6.26).



7 Moment-based Distributionally Robust
Model Predictive Control

In the previous chapter, we have introduced two distributionally robust MPC schemes with
Wasserstein ambiguity sets. In the following, we propose a DR-MPC for constrained linear
systems with additive sub-Gaussian i.i.d. noise, where we introduce data-driven moment-
based ambiguity in Section 7.1.1. The additional sub-Gaussianity assumption allows us to
derive an explicit number of samples to ensure a user-defined confidence level, such that
the true distribution belongs the ambiguity set with probability 1 − β. In contrast, for
Wasserstein ambiguity sets this is not possible, since the radius ϵ still depends on some
unknown parameters of the true distribution. Therefore, we can only estimate the data-
driven Wasserstein radius empirically using machine learning tools, while in the case of
moment-based ambiguity sets we can provide more rigorous results.

In Section 7.2, we introduce a simplified affine disturbance feedback policy, which allows
us to reformulate the distributionally robust chance constraints as second-order cone con-
straints, while the cost can be analytically reformulated. The main results of this chapter
are given in Section 7.3, while numerical examples are carried out in Section 7.4.

For related work on distributionally robust MPC, please refer to Section 1.2.2. This chapter
is based on the publication [117] 1.

7.1 Problem description

In this chapter, we consider a discrete linear time-invariant system

x(k + 1) = Ax(k) +Bu(k) + Ew(k) (7.1)

with the state x ∈ X ⊆ Rnx , input u ∈ U ⊆ Rnu , disturbance w ∈ W ⊆ Rnw and matrices A,
B and E of conformal dimensions.

We consider a probability space (Ω,F ,P) for an infinite sequence w̄ : Ω → W
∞ of random

variables w : Ω → W, i.e., w̄ = {w(k)}∞k=0, where w(k) ∼ µ∗ is assumed to be zero-mean
i.i.d. for all k ∈ N. We assume that we have access to i = 1, . . . , Ns random samples ŵi ∼ µ∗.

1C. Mark and S. Liu. “Recursively Feasible Data-Driven Distributionally Robust Model Predictive Control
With Additive Disturbances”. In: IEEE Control Systems Letters 7 (2023), pp. 526–531 ©2022 IEEE.
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We further assume that the matrix pair (A,B) is stabilizable, the matrix E has full column
rank and that perfect state measurement is available at each time instant k.

The system dynamics is subject to nr ∈ N and ns ∈ N individual state and input chance
constraints

P(h⊤r x(k) ≤ 1) ≥ pxr ∀k ∈ N ∀r ∈ {1, . . . , nr} (7.2a)

P(l⊤s u(k) ≤ 1) ≥ pus ∀k ∈ N ∀s ∈ {1, . . . , ns}, (7.2b)

where pxr , p
u
s ∈ (0, 1) denote the required levels of chance constraint satisfaction.

Predictive dynamics To distinguish between closed-loop and predicted states, we intro-
duce the predictive dynamics over a time horizon of length N ∈ N

x̄k = Āx0|k + B̄ūk + Ēw̄k, (7.3)

where x̄k = [x⊤0|k, x
⊤
1|k, . . . , x

⊤
N |k]

⊤ ∈ R
(N+1)nx denotes the predicted state sequence, ūk =

[u⊤0|k, . . . , u
⊤
N−1|k]

⊤ ∈ RNnu the input sequence and w̄k = [w⊤
0|k, . . . , w

⊤
N−1|k]

⊤ ∈ RNnw the dis-

turbance sequence. The matrices Ā ∈ R(N+1)nx×nx , B̄ ∈ R(N+1)nx×Nnu and Ē ∈ R(N+1)nx×Nnw

are defined as

Ā :=


I

A

A2

...

AN

 , B̄ :=


0 0 . . . 0

B 0 . . . 0

AB B . . . 0
...

. . . . . . 0

AN−1B . . . AB B

 , Ē :=


0 0 . . . 0

E 0 . . . 0

AE E . . . 0
...

. . . . . . 0

AN−1E . . . AE E

 .

Predictive chance constraints To cope with the vector-valued predictions (7.3), we lift the
half-space matrices hr and hs from (7.2) into the dimension of the vectors x̄k and ūk and
define the individual chance constraints on the predicted states and inputs as

P(h⊤t,rx̄k ≤ 1 | x(k)) ≥ pxr ∀t ∈ {0, . . . , N − 1} (7.4a)

P(l⊤t,sūk ≤ 1 | x(k)) ≥ pus ∀t ∈ {0, . . . , N − 1}, (7.4b)

where ht,r ∈ R
(N+1)nx and lt,s ∈ R

Nnu describe the r = 1, . . . , nr state and s = 1, . . . , ns

input chance constraints at time t. Given an initial value x0|k, we opt to solve the following
finite horizon stochastic optimal control problem

min
ūk

Eµ∗

(
∥xN |k∥2P +

N−1∑
t=0

∥xt|k∥2Q + ∥ut|k∥2R
∣∣∣∣x(k)

)
(7.5a)

s.t. x̄k = Āx0|k + B̄ūk + Ēw̄k

P(h⊤t,rx̄k ≤ 1 | x(k)) ≥ pxr ∀t ∈ {0, . . . , N − 1} ∀r ∈ {1, . . . , nr} (7.5b)

P(l⊤t,sūk ≤ 1 | x(k)) ≥ pus ∀t ∈ {0, . . . , N − 1} ∀s ∈ {1, . . . , ns}, (7.5c)
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where Q ⪰ 0, R ≻ 0 and P ≻ 0 are positive definite symmetric weighting matrices and P
additionally satisfies the Lyapunov inequality

(A+BK)⊤P (A+BK) +Q+K⊤RK ⪯ P (7.6)

for some linear controller matrix K ∈ Rnu×nx .

Problem (7.5) represents an infinite-dimensional optimization problem due to the control
input u and the additive disturbance w. This issue will be tackled in Section 7.2 by us-
ing a simplified affine disturbance feedback (SADF) parameterization. Furthermore, the
cost function (7.5a) and chance constraints (7.5b)-(7.5c) are evaluated w.r.t. the true, but
unknown distribution µ∗. Thus, we instead pose a distributionally robust optimization
problem that uses a moment-based ambiguity set P , where each distribution µ ∈ P lies
within some distance to the sample covariance Σ̂ = N−1

s

∑Ns

i=1 ŵ
i(ŵi)⊤ under the assump-

tion that Eµ(w) = 0. In particular, the ambiguity set represents the uncertainty of the
empirical estimator and is parameterized as proposed by Delage and Ye [49], i.e.,

P :=

{
µ ∈M(W)

∣∣∣∣∣ Eµ(w) = 0

Eµ(ww
⊤) ⪯ κβΣ̂

}
, (7.7)

whereM(W) denotes the set of all Borel probability measures with finite variance defined
on (W,B(W). For some confidence level β ∈ (0, 1), we define a constant κβ ≥ 1, such that
P(µ∗ ∈ P) ≥ 1− β.

Remark 7.1. Moment-based ambiguity sets have two important advantages over Wasserstein
ambiguity sets. First, the resulting optimization problem does not increase in complexity with
the sample size and second, the ambiguity radius is estimated with reasonable accuracy based
on known information of the distribution via concentration inequalities. Therefore, we can
derive a controller that is several orders of magnitude faster than the Wasserstein scenario-
based DR-MPC presented in Section 6.2, while the resulting guarantees are theoretically
stronger compared to the analytical Wasserstein DR-MPC from Section 6.3.

7.1.1 Data-driven ambiguity set

In the following, we derive an explicit value for the constant κβ under the assumption
of sub-Gaussianity of the random variables w(k), which was similarly done by Coppens,
Schuurmans, and Patrinos [44]. This extends the results from Delage and Ye [49], who
provide an explicit value κβ for bounded random variables.

Definition 7.1 ([167]). A random variable ξ is sub-Gaussian with variance proxy σ2 if
E(ξ) = 0 and its moment generating function satisfies

E(eλξ) ≤ e
σ2λ2

2 ∀λ ∈ R.

We denote this by ξ ∼ subG(σ2).
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Proposition 7.1.1. Let w ∈ W ⊆ R
nw be a zero-mean sub-Gaussian random variable with

E(ww⊤) = Σ. Let {ŵi}Ns
i=1 be Ns i.i.d. samples obtained from the true distribution of w

and define Σ̂ = N−1
s

∑Ns

i=1 ŵi(ŵ
i)⊤ as the empirical covariance matrix. Let ϵ ∈ (0, 0.5),

β ∈ (0, 1), c1(σ, ϵ) = σ2/(1 − 2ϵ), c2(β, ϵ, nw) = nw log(1 + 2/ϵ) + log(2/β), then for all
Ns ∈ N satisfying

Ns ≥
⌈
2c1c2

(
8c1 + 4

√
4c21 + c1 + 1

)⌉
, (7.8)

the covariance bound Σ ⪯ 1
1−γ(Ns,β/2)

Σ̂ holds with a probability of at least 1− β, where

γ(Ns, β) := c1(σ, ϵ)

√32c2(β, ϵ, nw)

Ns

+
2c2(β, ϵ, nw)

Ns

 .

Proof. The proof can be found in Section 7.6.

For a fixed β ∈ (0, 1), the mapping from ϵ 7→ Ns in condition (7.8) is convex on the interval
ϵ ∈ (0, 0.5), cf. Figure 7.1. Thus, to obtain the smallest number Ns satisfying (7.8), we
solve a nonlinear (convex) optimization problem

ϵ∗ = argmin
ϵ∈(0,0.5)

2c1c2

(
8c1 + 4

√
4c21 + c1 + 1

)
. (7.9)
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Figure 7.1: Number of samples Ns as a function of ϵ for nw = 2 and β = 0.05 on the interval
ϵ ∈ [10−8, 0.3].
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Finally, by setting κβ = 1/(1− γ(Ns, β/2)), we obtain from optimization problem (7.9) and
Proposition 7.1.1 an explicit number of samples Ns to ensure that the ambiguity set (7.7)
contains the true distribution µ∗ with 1− β confidence.

Corollary 7.1. Select β ∈ (0, 1), ϵ ∈ (0, 0.5) and Ñs ∈ N, such that (7.8) holds. Then, for
Ns ≥ Ñs the function κβ is monotonically decreasing and κβ → 1 as Ns →∞.

Proof. By definition of γ(Ns, β) in Proposition 7.1.1, we have that γ(Ns, β) < 1 for Ns ≥ Ñs

and that γ(Ns, β)→ 0 of order O(1/
√
Ns). Consequently, 1 > γ(Ns, β) > γ(Ns + i, β) ≥ 0

for all i ∈ N. For Ns = Ñs the function κβ = 1/(1−γ(Ñs, β))≫ 1, which in view of γ(Ns, β)
implies that κβ monotonically decreases to κβ = 1 as Ns →∞.

Remark 7.2. The result of Proposition 7.1.1 is a special case of [44, Thm. 8] with known
first moment information. Consequently, we require fewer samples compared to the mean
and variance ambiguity set proposed by [44] to achieve the 1− β confidence in (7.7).

7.2 Controller design

We resort to a SADF parameterization [171] of the form

ut|k = vt|k +
t−1∑
i=0

Mt−i|kwi|k, (7.10)

where vi|k ∈ Rnu is the predicted control input and Mi−t|k ∈ Rnu×nx are feedback matrices,
both of which are decision variables in the resulting MPC optimization problem. Thus, ui|k
depends affinely on the past i disturbance w0|k, . . . , wi−1|k. To streamline the presentation,
we consider the matrix M̄k ∈ RNnu×Nnw and the vector v̄k ∈ RNnu

M̄k :=


0 0 . . . 0

M1|k 0 . . . 0
...

. . . . . . 0

MN−1|k . . . M1|k 0

 , v̄k :=

v0|k
v1|k
...

vN−1|k

 ,
such that ūk = v̄k + M̄kw̄k. Before we proceed, we reformulate the predicted state sequence
(7.3) by means of the SADF policy (7.10), i.e.,

x̄k = Āx0|k + B̄ūk + Ēw̄k
(7.10)
= Āx0|k + B̄v̄k + (B̄M̄k + Ē)w̄k

= z̄k + (B̄M̄k + Ē)w̄k. (7.11)

The vector v̄k can be interpreted as the predicted control input that corresponds to the
predicted state trajectory z̄k = Āx0|k + B̄v̄k.
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Remark 7.3. The simplified affine disturbance feedback parameterization contains (N −
1)nunw decision variables that grow linearly in the prediction horizon, whereas the original
affine disturbance feedback grows quadratically in N with N(N − 1)nunw/2 + nu decision
variables [171].

7.2.1 Distributionally robust chance constraints

In the following, we replace the individual chance constraints (7.5b)-(7.5c) with distribu-
tionally robust chance constraints of the form

inf
µ∈P

P(h⊤t,rx̄k ≤ 1 | x0|k)
(7.11)
= inf

µ∈P
P(h⊤t,r(z̄k + [B̄M̄k + Ē]w̄k) ≤ 1 | x0|k) ≥ pxr , (7.12)

while the input constraints are given by

inf
µ∈P

P(l⊤t,sūk ≤ 1 | x0|k)
(7.10)
= inf

µ∈P
P(l⊤t,s(v̄k + M̄kw̄k) ≤ 1 | x0|k) ≥ pus . (7.13)

By definition of the ambiguity set (7.7), we have that Eµ(w) = 0, supµ∈P Eµ(ww
⊤) = κβΣ̂

and w is i.i.d. for all times k. Therefore, since the random vector w̄k ∈ RNnw contains N -
times the random variable w, the vector is zero-mean and the worst-case covariance matrix
is given by

Σ̂N := sup
µ∈P

Eµ(w̄kw̄
⊤
k ) = IN ⊗ 2κβΣ̂. (7.14)

To obtain tractable expressions for the distributionally robust chance constraints (7.12)-
(7.13), we apply [26, Thm 3.1] and obtain deterministic second-order cone (SOC) constraints
of the form

h⊤t,rz̄k ≤ 1−√κβ
√

pxr
1− pxr

∥h⊤t,r(B̄M̄k + Ē)Σ̂
1/2
N ∥2 (7.15)

l⊤t,sv̄k ≤ 1−√κβ
√

pus
1− pus

∥l⊤t,sM̄kΣ̂
1/2
N ∥2. (7.16)

Remark 7.4. Note that in our setting, the SOC constraints (7.15) - (7.16) are equal to
distributionally robust CVaR constraints, which follows from [177, Thm 2.2] and the fact
that (7.12) and (7.13) are linear (and thus concave) in the uncertainty w, cf. [103, Thm.
4]. Therefore, it is expected that the chance constraints are conservatively satisfied.

2The operator ⊗ denotes the Kronecker product. We use this to describe block diagonal matrices, e.g.,
I2 ⊗Q = blkdiag(Q,Q), where I2 is a 2× 2 identity matrix and Q an arbitrary matrix.
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7.2.2 Distributionally robust cost function

Similar to the previous section, the cost function (7.5a) is robustified to distributional uncer-
tainty. First, we cast the quadratic cost function (7.5a) into a vector-matrix representation
by defining block diagonal weighting matrices Q̄ = blkdiag(IN ⊗ Q,P ) and R̄ = IN ⊗ R,
such that

Jk(k) = sup
µ∈P

Eµ

(
∥xN |k∥2P +

N−1∑
t=0

∥xt|k∥2Q + ∥ut|k∥2R
∣∣∣∣ x0|k

)
=sup

µ∈P
Eµ

(
x̄⊤k Q̄x̄k + ū⊤k R̄ūk | x0|k

)
. (7.17)

Then we use the assumption that E(w̄k) = 0 and substitute the SADF policy (7.10) together
with the state prediction (7.11) into (7.17), resulting in

Jk(k) = z̄⊤k Q̄z̄k + v̄⊤k R̄v̄k︸ ︷︷ ︸
mean part

+sup
µ∈P

Eµ

(
w̄⊤
k

[
(B̄M̄k + Ē)⊤Q̄(B̄M̄k + Ē) + M̄⊤

k R̄M̄k

]
w̄k

)
.︸ ︷︷ ︸

variance part

Next, we use the trace trick, which involves applying the trace operator to the above equa-
tion. By using linearity of the trace, we can separate the mean from the variance part.
Furthermore, due to linearity of the expectation and the cyclic invariance property of the
trace, we can factor out w̄k from the variance part, so that

Jk(k) = tr
(
z̄⊤k Q̄z̄k + v̄⊤k R̄v̄k

)
+ tr

(
sup
µ∈P

Eµ(w̄kw̄
⊤
k )
[
(B̄M̄k + Ē)⊤Q̄(B̄M̄k + Ē) + M̄⊤

k R̄M̄k

])
(7.14)
= z̄⊤k Q̄z̄k + v̄⊤k R̄v̄k + tr

(
Σ̂N

[
(B̄M̄k + Ē)⊤Q̄(B̄M̄k + Ē) + M̄⊤

k R̄M̄k

])
, (7.18)

where the second equality used the fact that the trace of a scalar is equal to the scalar itself.
For the cost Jk(·), we use the convention that the subscript denotes the time on which the
expected value is conditioned on, while the argument denotes the closed-loop time instant
at which the underlying MPC optimization problem is solved.

Remark 7.5. The cost function (7.18) is formulated for the mean and variance of the states.
Note that due to the SADF parameterization, the gain matrix M̄k is a decision variable,
which allows us to minimize the state and input variance. This aspect was neglected in
other proposed MPC schemes, e.g., Section 6.3, where we used a fixed feedback gain. We
refer to paragraph Control parameterization in Section 2.3.1 for more details on this topic.

7.2.3 Terminal constraints

We enforce stability of the controller by imposing constraints at the end of the prediction
horizon, where we make the following assumption.
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Assumption 7.1. There exists a terminal controller πf(z) = Kz and a terminal set Zf , such
that for all z ∈ Zf

(A+BK)z ∈ Zf

h⊤r z ≤ 1−
√

pxr
1− pxr

∥∥∥h⊤r Σ̂1/2
∞

∥∥∥
2
∀r ∈ {1, . . . , nr}

l⊤s Kz ≤ 1−
√

pxr
1− pxr

∥∥∥l⊤s KΣ̂1/2
∞

∥∥∥
2
∀s ∈ {1, . . . , ns},

where Σ̂∞ = (A + BK)Σ̂∞(A + BK)⊤ + κβEΣ̂E
⊤ and hr ∈ R

nx, ls ∈ R
nu denote the

half-space matrices from (7.2).

The first condition of Assumption 7.1 ensures that the terminal set is invariant for the
nominal system under the terminal controller, whereas the second and third conditions
enforce the distributionally robust chance constraints for all z ∈ Zf under the worst-case
stationary covariance matrix Σ̂∞.

Remark 7.6. Assumption 7.1 can be ensured with methods proposed in [42, Sec. 2.4.2], i.e.,
by using an ellipsoidal terminal set Zf = {z | z⊤Pz ≤ α} as an α-scaled sublevel set of the
terminal cost function Vf(z) = ∥z∥2P . It remains to find a scalar α such that the terminal
state and input chance constraints (inequality constraints in Assumption 7.1) are satisfied,
which can be easily determined with a linear program, e.g., similar to Problem 5.3.5.

7.2.4 Interpolated initial constraint

The final and most crucial point in ensuring recursive feasibility is the selection of a suitable
initial condition for the MPC optimization problem. In the following, we adopt a recently
proposed initialization scheme from Köhler and Zeilinger [93], where we constrain x0|k on a
line between x(k) and the guaranteed feasible solution z1|k−1, i.e.,

x0|k = (1− λk)x(k) + λkz1|k−1, (7.19)

where λk ∈ [0, 1]. The advantage is that only one optimization problem needs to be solved,
where λk = 1 reflects the guaranteed feasible solution (Mode 2) and λk = 0 the feedback
strategy (Mode 1). Moreover, this allows a more natural definition of the cost function to
prove that the closed-loop performance is not worse than for a linear controller u = Kx, cf.
[93], where K is the controller gain associated with (7.6).

7.2.5 Optimization problem

At each time instant k ∈ N, we solve the following MPC optimization problem.
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Problem 7.2.1. (Moment-based DR-MPC)

min
v̄k,M̄k,λk

(7.18) (7.20a)

s.t. z̄k = Āx0|k + B̄v̄k (7.20b)

(7.15), (7.16), (7.19), λk ∈ [0, 1] (7.20c)

zN |k ∈ Zf . (7.20d)

The solution of the MPC optimization problem 7.2.1 is the optimal SADF pair (v̄∗k, M̄
∗
k )

and the states z̄∗k. To obtain the control input at time k, we recall [171, Thm. 1], which
establishes an equivalence between the SADF parameterization (7.10) and a state feedback
parameterization. By linear superposition, we can thus establish also an equivalence to
the error feedback parameterization ueft|k = gt|k +

∑t
i=0Kt−i|k(xi|k − zi|k). In other words,

the state and input trajectories (x̄k, ūk) resulting from the SADF parameterization with
(v̄∗k, M̄

∗
k ) are equivalent to the ones obtained from the error feedback parameterization with

(ḡ∗k, K̄
∗
k), where

K̄k :=


K0|k 0 . . . 0 0

K1|k K0|k . . . 0 0
...

. . . . . .
... 0

KN−1|k . . . K1|k K0|k 0

 , ḡk :=

g0|k
g1|k
...

gN−1|k

 .
Similar to [171], the optimal error feedback pair (ḡ∗k, K̄

∗
k) is obtained by

K̄∗
k = (I + M̄∗

k Ē
†B̄)−1M̄∗

k Ē
† (7.21a)

ḡ∗k = (I + M̄∗
k Ē

†B̄)−1(v̄∗k − M̄∗
k Ē

†Az∗0|k), (7.21b)

while the input to system (7.1) is defined with the error feedback parameterization

u(k) = uef0|k = g∗0|k +K∗
0|k(x(k)− z∗0|k). (7.22)

Remark 7.7. Note that the chance constraints (7.12) - (7.13) depend on the information
available at time k. In view of the initial condition (7.19), this implies that whenever the
MPC optimization problem 7.2.1 is feasible with λk = 0, the probability operator in (7.12)
- (7.13) is conditioned on time k, resulting in closed-loop constraint satisfaction, while for
λk ∈ (0, 1] the constraints are verified in prediction, i.e., conditioned on the last time instant
k − τ when problem 7.2.1 was feasible with λk−τ = 0.

By leaving λk un-penalized in the objective function (7.20a), we mimic a so-called hybrid
scheme [57] with the intention to minimize the open-loop cost despite feasibility of x(k).
This can lead to an increase in constraint violations in presence of unmodeled disturbances,
as we will demonstrate in Section 7.4. This approach is related to the indirect feedback
scheme presented in Chapter 6.3, where the MPC cost function (7.20a) similarly penalizes
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the mean predictions rather than the nominal ones, i.e., due to the interpolating initial
constraint (7.19).

However, adding an additional penalty term cλ2k with c > 0 to the objective function (7.20a)
causes the MPC controller to favor feedback initialization x0|k = x(k) with the intention of
introducing as much feedback as possible into the constraints, i.e., conditioning the proba-
bility operator in (7.12) - (7.13) on time k as often as possible. In this case, the behavior of
the controller is closely related to a direct feedback MPC as outlined in Section 2.3.1, where
a drawback is the deterioration of closed-loop performance, since the initial state cannot
be freely chosen and the optimization problem therefore has fewer degrees of freedom, see
Section 7.4 for a numerical comparison.

7.3 Theoretical properties

In the following, we state the main results of this chapter.

Proposition 7.3.1. Let Assumption 7.1 hold. If at time k = 0 the MPC optimization prob-
lem 7.2.1 admits a feasible solution with λ0 = 0, then it is recursively feasible for all k ∈ N.

Proof. The proof can be found in Section 7.6.

The following theorem establishes a quadratic stability result of the closed-loop system (7.1)
under control law (7.22).

Theorem 7.1. Let Assumption 7.1 hold and choose β ∈ (0, 1), ϵ ∈ (0, 0.5) and Ns, such that
(7.8) holds true and let Σ̂ be the corresponding empirical covariance matrix. Suppose that
at time k = 0 a feasible solution to problem 7.2.1 exists. Then, for all k ∈ N the optimal
cost J∗

k (k + 1) satisfies

J∗
k (k + 1)− J∗

k (k) ≤ −E(∥x(k)∥2Q + ∥u(k)∥2R|x(k)) + κβtr(PEΣ̂E
⊤).

Furthermore, with a probability of at least 1−β the closed-loop system achieves the following
asymptotic average bound

P

(
lim
T→∞

1

T

T−1∑
k=0

Eµ∗(∥x(k)∥2Q + ∥u(k)∥2R|x(0)) ≤ κβtr(PEΣ̂E
⊤)

)
≥ 1− β. (7.23)

Proof. The proof can be found in Section 7.6.

Remark 7.8. By adding an additional penalty term cλ2k to the cost function (Remark 7.7),
the performance bound (7.23) contains an additional term c, i.e., κβtr(PEΣ̂E

⊤) + c. This
additional constant is related to the Lipschitz-based arguments we have used in direct feedback
SMPC schemes, e.g., as in Theorem 4.1, which renders the performance bound worse than
that from the linear terminal controller. See also [93] for a more in-depth discussion.
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7.4 Numerical example

In this section, we carry out a numerical example and consider a simple double integrator
system

x(k + 1) =

[
1 1

0 1

]
x(k) +

[
1

0.5

]
u+

[
1 0

0 1

]
w(k),

where w(k) ∼ N (0,Σ) with Σ = 0.012I. For the ambiguity set, we select β = 0.05,
ϵ = 0.0428. Since w(k) is a zero-mean Gaussian it follows that ξ = Σ1/2w is sub-Gaussian
with variance σ2 = 1. According to Proposition 7.1.1, we require Ns ≥ 516 samples to
give the guarantee that P(µ∗ ∈ P) ≥ 1 − β. For the MPC cost function, we choose the
weighting matrices Q =

[
10 0

0 10

]
, R = 1 and P =

[
20.5988 5.9161

5.9161 14.2284

]
. We impose a single chance

constraint P(x2(k) ≤ 1) ≥ px and use an ellipsoidal terminal set Zf = {z |z⊤Pz ≤ α}, where
α = 0.5293 is obtained from Ns = 517 samples. We keep α constant for each experiment
and select a prediction horizon of N = 10. Note that the choice of α is quite conservative,
i.e., for Ns = 103 the resulting terminal set is already 20.4 times larger, while under exact
moment information we can enlarge the terminal set about 21.9 times.

Performance and constraint satisfaction Starting at an initial condition x(0) = [6, 0]⊤,
we performed 103 Monte-Carlo simulations of the closed-loop system for different sample
sizes 550 ≤ Ns ≤ 106. As it can be seen in Figure 7.2 (left), the expected cost converges
asymptotically to the optimal cost derived with exact moment information as the sample
size Ns increases. This result is in line with Corollary 7.1, which indicates a convergence
rate of O(1/

√
Ns) (i.e., fast convergence for small Ns and increasingly slower for larger Ns).

As for the chance constraints, it can be seen in Figure 7.2 (right) that as the number of
samples increases, the controller becomes more confident to operate closer to the constraint.
In Table 7.1, we compare for different prescribed probability levels px and sample sizes Ns

the achieved empirical constraint satisfaction rate averaged over 104 Monte-Carlo runs.
The discrepancy between the prescribed and empirical satisfaction rate follows from the
conservatism of the distributionally robust chance constraints, cf. Remark 7.4. Finally, the
MPC optimization problem 7.2.1 is reliably solved in 6 milliseconds on average on a desktop
PC with an Intel Core i7-9700k processor, Yalmip [105] and MOSEK [4].

Table 7.1: Effect of sample size Ns on the worst-case empirical probability of satisfying the
constraint P(x2 ≤ 1) ≥ px. ©2022 IEEE.

px Ns = 520 Ns = 800 Ns = 105 Ns = 106

0.7 100% 99.25% 86.95% 85.99%

0.8 100% 99.95% 93.81% 93.29%

0.9 100% 100% 99.17% 98.83%
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Figure 7.2: (Left) Expected closed-loop cost l(x, u) =
∑15

k=1 ∥x(k)∥2Q+ ∥u(k)∥2R for different
sample sizes Ns computed over 103 Monte-Carlo simulations (black) and optimal
cost under exact moment information (red). (Right) Closed-loop trajectories for
different Ns with px = 0.9. The black dotted line denotes the constraint x2 ≤ 1.
©2022 IEEE.

Unmodeled disturbances In the following, we investigate the benefits of adding a penalty
term for λk to the objective function (7.20a). To this end, we keep the same simulation setup
as before and introduce an unmodeled larger disturbance at time step k = 5 with w(5) ∼
N (0, 6Σ). We add cλ2k to the objective function (7.20a) to force the MPC optimization
problem to prefer the feedback initialization over open-loop cost reduction (Remark 7.7)
and opt to satisfy the chance constraint with 70% probability.

Table 7.2 reveals that penalization of λk increases the constraint satisfaction rate by sacrific-
ing transient closed-loop performance compared to the unpenalized case c = 0 (Remark 7.8).
Additionally, for c > 0 the chance constraint is empirically verified, whereas c = 0 violates
the prescribed level of 70%.

Table 7.2: Comparison of different controller configurations for unmodeled disturbances.
©2022 IEEE.

c = 0 c = 10 c = 103 c = 106

E(l(x, u)) 783.20 784.47 784.50 784.74

P(x2(5) ≤ 1) 68.76% 73.37% 73.91% 75.08%
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7.5 Summary

In this chapter, we have presented a DR-MPC framework for linear systems with sub-
Gaussian additive disturbances under data-driven moment-based ambiguity sets, providing
guarantees on closed-loop performance and recursive feasibility. We used a simplified affine
disturbance feedback parameterization to obtain a tractable MPC optimization problem,
where the distributionally robust chance constraints are reformulated as SOC constraints.
The quadratic cost function is minimized subject to the worst-case distribution contained in
the ambiguity set. We provided a design procedure for data-driven ambiguity sets, where we
derive an explicit number of samples, such that a user-specified confidence bound holds true.
We carried out a simple numerical example of a double integrator system to demonstrate
the impact of the sample size on the conservatism of the controller.

7.6 Proofs

Proof of Proposition 7.1.1

The proof follows from [44, Thm. 8]. Define a random variable ξ = Σ−1/2w ∼ subG(σ2)
such that

E(ξ) = Σ−1/2
E(w) = 0

E(ξξ⊤) = Σ−1/2
E(ww⊤)Σ−1/2 = I

and let Ĩ = N−1
s

∑Ns

i=1 ξ̂
i(ξ̂i)⊤ be the empirical covariance matrix of ξ. Consider now the

empirical covariance matrix Σ̂ = N−1
s

∑Ns

i=1 ŵ
i(ŵi)⊤ of the actual random variable w, which,

after substitution of ŵi = Σ1/2ξ̂i equals

Σ̂ = Σ1/2

[
N−1

s

Ns∑
i=1

ξ̂i(ξ̂i)⊤

]
Σ1/2 = Σ1/2ĨΣ1/2. (7.24)

From [81, Lem. A.1] we have with probability of at least 1− β that ∥Ĩ − I∥2 ≤ γ(Ns, β/2),
which is equivalent to

(1− γ(Ns, β/2))I ⪯ Ĩ ⪯ (1 + γ(Ns, β/2))I. (7.25)

Since we are only interested in an upper bound for the covariance matrix Σ, e.g., as required
by (7.7), we find from the left inequality in (7.25) that

I ⪯ 1

1− γ(Ns,
β
2
)
Ĩ

(7.24)
=⇒ Σ ⪯ 1

1− γ(Ns,
β
2
)
Σ̂,

where we used the fact that condition (7.8) implies γ(Ns, β/2) < 1. Finally, condition (7.8)
follows from assuming that 1−γ(Ns, β/2) > 0, which is a quadratic inequality in the sample
size
√
Ns.
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Proof of Proposition 7.3.1

Suppose that at time k problem 7.2.1 is feasible with λ∗k = 0, (v̄∗k, M̄
∗
k ), z̄

∗
k and equivalently

with the error feedback parameterized input ūk = ḡ∗k + K̄∗
k(x̄k − z̄∗k) with (ḡ∗k, K̄

∗
k) due to

[171, Thm. 1]. Now we construct the usual shifted candidate sequence ut|k+1 = ut+1|k
for t = 0, . . . , N − 2 and append the terminal controller uN−1|k+1 = Kz∗N |k. The shifted
mean states and controller gains satisfy (zt|k+1,Kt|k+1) = (z∗t+1|k,K

∗
t+1|k) for t = 0, . . . , N − 1

appended with (zN |k,KN |k) = ((A+BK)z∗N |k,K). Recursive feasibility is then a consequence

of Assumption 7.1. By stacking the shifted candidate sequences into the corresponding
matrix and vector form, we obtain the triplet (ḡk+1, K̄k+1, z̄k+1). A feasible input pair
(v̄k+1, M̄k+1) for problem 7.2.1 is then simply found by [171, eq. (24)], i.e.,

M̄k+1 = K̄k+1(I − B̄K̄k+1)
−1Ē

v̄k+1 = K̄k+1(I − B̄K̄k+1)
−1(Āz∗0|k + B̄ḡk+1) + ḡk+1

with λk+1 = 1. This concludes the proof.

Proof of Theorem 7.1

Consider that at time k a feasible solution exists. Now, at time k + 1 we establish an
expected cost decrease condition in case of λk+1 = 1, where we consider the cost function
(7.17) evaluated under the worst-case distribution µ̂, i.e.,

Jk(k) = Eµ̂

(
∥xN |k∥2P +

N−1∑
t=0

∥xt|k∥2Q + ∥ut|k∥2R
∣∣∣∣x0|k

)
. (7.26)

The predicted states xt|k are initialized with x0|k = x(k) and satisfy

xt+1|k = Axt|k +But|k + Ew(t+ k),

while the control input is given by ut|k = gt|k +
∑t

i=0Kt−i|k(xi|k − zi|k). Due to the

quadratic form of (7.26), we can equivalently write the cost function as J̃k(k) = Jm(x̃k, ũk)+
Jv(κβΣ̂, K̄k), where the mean and variance part satisfy

Jm(x̃k, ũk) = ∥x̃N |k∥2P +
N−1∑
t=0

∥x̃t|k∥2Q + ∥ũt|k∥2R

Jv(κβΣ̂, K̄k) = tr(P Σ̂x̃
N |k) +

N−1∑
t=0

tr(QΣ̂x̃
t|k +RΣ̂ũ

t|k),

where x̃t|k = Eµ̂(xt|k | x(k)) and ũt|k = Eµ̂(ut|k | x(k)) denote the mean predictions, whereas

Σ̂x̃
t+1|k = (A+BKt|k)Σ̂

x̃
t|k(A+BKt|k)

⊤ + κβEΣ̂E
⊤ and Σ̂u

t|k =
∑t

i=0Kt−i|kΣ̂
x̃
i|kK

⊤
t−i|k denote

the predicted state and input variance conditioned on x(k), cf. [93]. Note that due to the
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interpolating initial constraint (7.19), the predicted sequences are different to the nominal
trajectories z̄k and v̄k if λk ̸= 1. Therefore, the mean cost Jm(x̃k, ũk) is defined based on the
state and input mean rather than the nominal states and inputs. In view of this, the state
variance of the initial state always satisfies Σ̂x̃

0|k = 0. Using the feasible candidate solution
from Proposition 7.3.1, we can argue by optimality that

J∗
k (k + 1)

λk+1=1

≤ Jm(x̃k+1, ũk+1) + Jv(κβΣ̂, K̄k+1)

= Jm(x̃k, ũk)− ∥x̃0|k∥2Q − ∥ũ0|k∥2R + ∥x̃N |k∥2Q + ∥Kx̃N |k∥2R − ∥x̃N |k∥2P + ∥AKx̃N |k∥2P
+ Jv(κβΣ̂, K̄k)− tr([Q+K⊤

0|kRK0|k]Σ̂
x̃
0|k) + tr([Q+K⊤RK]Σ̂x̃

N |k + PAKΣ̂
x̃
N |kA

⊤
K

+ PEκβΣ̂E
⊤ − P Σ̂x̃

N |k)

(7.6)

≤ Jm(x̃k, ũk) + Jv(κβΣ̂, K̄k)− ∥x̃0|k∥2Q − ∥ũ0|k∥2R
− tr([Q+K⊤

0|kRK0|k]Σ̂
x̃
0|k) + κβtr(PEΣ̂E

⊤)

= J∗
k (k)− Eµ̂(∥x(k)∥2Q + ∥u(k)∥2R | x(k)) + κβtr(PEΣ̂E

⊤),

where AK = A + BK. To achieve the asymptotic average cost bound, we use standard
arguments in stochastic MPC and obtain

0 ≤ lim
T→∞

1

T

(
J∗
0 (T )− J∗

0 (0)
)

≤ lim
T→∞

1

T

T−1∑
k=0

−Eµ∗(∥x(k)∥2Q + ∥u(k)∥2R|x(0)) + κβtr(PEΣ̂E
⊤)

≤ κβtr(PEΣ̂E
⊤),

while the probability bound (7.23) follows by definition of the ambiguity set (7.7), i.e.,
P(Σ ≤ κβΣ̂) ≥ 1− β.





8 Distributionally Robust MPC in
application of wind farms

A large part of green energy production is currently covered by wind farms (WF), where
several wind turbines (WT) are placed in close proximity to each other to reduce the cost of
cabling and maintenance. One problem that occurs in such an environment is that each wind
turbine generates a wake that moves downstream and is characterized by a flow velocity
deficit and increased turbulence intensity [8]. The flow velocity deficit directly impacts
the power production of downstream turbines [9], while the increased turbulence intensity
increases the fatigue loads [18]. In this chapter, a DR-MPC is developed as a supervisory
controller for a wind farm with the primary objective of dynamically distributing a required
wind farm power reference Pwf

ref to the individual i = 1, . . . , Nwt wind turbines in the field,
see Figure 8.1. The WT power references Pwt

i,ref are then tracked by underlying local WT
controllers, which operate on a much faster timescale (millisecond range) compared to the
WF controller (second range). A secondary objective of the wind farm controller is to reduce
fatigue loads of the turbines to increase their overall lifetime.

In Section 8.1, we derive a control-oriented model of the NREL 5MW wind turbine [87],
which was developed with the intention of becoming a benchmark system for the devel-
opment of large-scale wind farm controllers. Throughout this chapter, we use the Mat-
lab/Simulink toolbox SimWindFarm [71] that serves as our simulation environment. In
Section 8.2, we extend the DR-MPC formulation from Chapter 7 to include cost functions
for output variables, while additionally an optimal wind turbulence predictor is introduced.
Section 8.3 is devoted to a numerical example of a wind farm consisting of five wind turbines.
This chapter is based on [116] 1.

Related work In [146], the authors consider the same setup as we do and use a stochastic
MPC to design a supervisory control system for wind farms, adopting the probabilistic
SMPC framework from [60]. However, their approach is based on the assumption that
the true wind speed is Gaussian and the moments are known exactly. In [17], a scenario-
based SMPC for power reference tracking is developed, where Gaussianity of the wind speed
distribution is assumed. Fatigue load reduction is not considered explicitly in this work.
The authors of [160] investigated a deterministic MPC approach for wind farm control.
Similar to our approach, the goal was to track power and reduce mechanical stress, however,

1C. Mark and S. Liu. “Distributionally robust model predictive control for wind farms”. In: arXiv preprint
arXiv:2303.03276 (2023). Accepted for presentation at the 22nd IFAC World Congress©the authors.
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Figure 8.1: Supervisory control of wind farms.

the stochasticity of the wind is neglected and assumed to be constant over the prediction
horizon. This approach was extended to a distributed MPC in [161]. In terms of wind
turbine control, several papers have been published that address fatigue reduction, such as
[55], where a robust MPC was developed for oscillation damping, or [69], where an economic
nonlinear MPC was applied to reduce structural and actuator fatigue.

8.1 Control-oriented modeling of wind turbines

In the following, we first present the nonlinear wind turbine model from [158] and then a
linearized version similar to [146]. Finally, the control-oriented model is validated with the
full-scale nonlinear model provided by SimWindFarm (SWF) [71].

8.1.1 Nonlinear model

We first introduce the mechanical parts of the wind turbine, e.g., the aerodynamics, the
generator, and the transmission system, while we then introduce the local NREL wind
turbine controller that we include in the supervisory control design.

Aerodynamics The wind momentum is transferred to the rotor in form of an aerodynamic
torque given by

Tr =
1

2
ρπR3v2wCq(λ, β), λ = (ωrR)/vw, (8.1)
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Figure 8.2: Torque coefficient of the NREL 5MW wind turbine.

where ωr [rad/s] is the rotor speed, ρ [kg/m
3] the air density, R [m] the blade radius, vw [m/s]

the wind speed and Cq(λ, β) the torque coefficient as a function of the tip speed ratio λ and
the blade pitch angle β [◦]. The function Cq(λ, β) is typically known from measurements and
is available as a look-up table individually for each wind turbine, e.g., Figure 8.2 depicts an
example of such a Cq. During the conversion process, part of the wind energy is dissipated
by secondary effects acting on the WT rotor. This results in a force acting orthogonally to
the rotor plane and leading to a bending moment

Mt = hFt,

where h [m] denotes the tower height, while the exerted force Ft [N] is called the thrust force,
given by the static relation

Ft =
1

2
ρπR2v2wCt(λ, β), (8.2)

where Ct(λ, β) is the corresponding thrust coefficient obtained from measurements.

Generator In the NREL wind turbine, the electrical power output is computed by the
static equation

Pout = µωgTg, (8.3)

where µ denotes the generator efficiency, ωg [rad/s] the generator angular velocity and
Tg [Nm] the generator torque. Next, we introduce the transmission system that connects
the rotor to the generator via the main shaft.
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Transmission The transmission system describes the effects of the aerodynamic rotor
torque Tr and the generator torque Tg on the rotor and generator angular velocities ωr

and ωg, where we follow the lines of [146] and model a low-frequency low speed transmis-
sion shaft neglecting the fast torsional dynamics. The rotor dynamics with lumped inertia
J̃ = Jr +N2

gJg can be described as

ω̇r =
1

J̃
(Tr −NgTg)

ωg = Ngωr,

where Jr [kg/m
2] is the rotor inertia, Jg [kg/m

2] the generator inertia and Ng the gear ratio,
while the main shaft torque Ts [Nm] is given by

Ts =
N2

gJg

J̃
Tr +

NgJr

J̃
Tg. (8.4)

Local NREL turbine controller In the following, we use the results from [158] to describe
the local controller dynamics of the NREL wind turbine. The NREL controller consists of
two control loops based on the measured generator angular velocity ωg and the measured
pitch angle β. The first computes a power reference Pref , which is tracked by an underlying
torque controller that ensures fast tracking of the torque reference

Tg,ref =
Pref

µωg

=
Pref

µNgωr

.

For the slow-scale supervisory control design, we can assume that Tg,ref ≈ Tg, which implies
that Pout ≈ Pref , where Pout is the electrical power output of the generator (8.3). The
second control loop computes a pitch angle reference βref that is tracked by an underlying
hydraulic pitch actuator, where we again assume that βref ≈ β for the purposes of the
supervisory control design. In the wind turbine tracking configuration assumed below, the
NREL controller computes βref using a gain-scheduled PI controller to regulate the generator
angular velocity ωg to the rated speed ωg0. To obtain an accurate model, we include the
controller for the pitch angle in the supervisory control design, where use the following
model of the gain-scheduled PI controller

β̇ =
1

Kgs

[(
Kp

τω
−Ki

)
ωf
g −

Kp

τω
ωg

]
ω̇f
g =

1

τω

(
ωg − ωf

g

)
,

where τω is a time constant of a low-pass filter that lumps the effect of the sensors, ωf
g is

the corresponding filtered angular velocity of the generator, while Kp, Ki and Kgs denote
the proportional, integral and gain-scheduled controller gains. The adaptive correction gain
Kgs depends on the power reference Pref and the pitch angle βref . Note that asymptotically
ωf
g = ωg.
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Thus, the overall nonlinear state space model can be written as

β̇ =
1

Kgs

[(
Kp

τω
−Ki

)
ωf
g −

Kp

τω
ωg

]
(8.5a)

ω̇r =
1

J̃

1

2
ρπR3v2wCq(λ, β)︸ ︷︷ ︸

Tr

−Pref

µωr

 (8.5b)

ω̇f
g =

1

τω

(
ωr −

1

Ng

ωf
g

)
. (8.5c)

8.1.2 Linearized model

To use the DR-MPC framework from Chapter 7, we require a linear representation of the
dynamics (8.5). To this end, let x = [β, ωr, ω

f
g] be the state vector with operating point

x0 = [β0, ωr0, ωg0], u = Pref the control input with operating point u0 = Pref0 and w = vw
the wind speed with mean speed w0 = vw0.

State equation We perform a first order Taylor approximation of (8.5b) to obtain the
linear differential equation

∆ω̇r =
1

J̃

T βr (β − β0)︸ ︷︷ ︸
∆β

+

[
T ωr
r +

Pref0

µω2
r0

]
(ωr − ωr0)︸ ︷︷ ︸

∆ωr

− 1

µωr0

(Pref − Pref0)︸ ︷︷ ︸
∆Pref

+T vwr (vw − vw0)︸ ︷︷ ︸
∆w

 ,

(8.6)

where we introduce deviation variables ∆β, ∆ωg and ∆ωr to stabilize the operating point
x0 instead of the origin, while ∆Pref and ∆w denote deviations from the nominal input and
mean wind speed. The terms T ωr

r , T βr and T vwr denote the gradients of the rotor torque Tr
with respect to ωr, β and vw, which are given by

T ωr
r =

∂Tr
∂ωr

=
1

2
ρπR3v2w0

(
∂Cq(λ, β)

∂λ

∂λ

∂ωr

) ∣∣∣∣
(λ0,β0)

λ=ωrR
vw=

1

2
ρπR3vw0R

∂Cq(λ, β)

∂λ

∣∣∣∣
(λ0,β0)

T βr =
∂Tr
∂β

=
1

2
ρπR3v2w0

∂Cq(λ, β)

∂β

∣∣∣∣
(λ0,β0)

T vwr =
∂Tr
∂vw

=
1

2
ρπR3

(
2vw0Cq(λ0, β0) +

(
∂Cq(λ, β)

∂λ

∂λ

∂vw

) ∣∣∣∣
(λ0,β0)

)
λ=ωrR

vw=
1

2
ρπR3

(
2vw0Cq(λ0, β0)− ωr0R

∂Cq(λ, β)

∂λ

∣∣∣∣
(λ0,β0)

)
.
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It remains to cast (8.6) together with the already linear differential equations (8.5a) and
(8.5c) into the state space form

∆ẋ = A∆x+B∆u+ E∆w, (8.7)

where ∆x = x− x0, ∆u = u− u0 with

A =

 0 −KpNg

Kgsτw

Kp−Kiτw
Kgsτw

Tβ
r

J̃
1
J̃
(T ωr

r + Pref0

µω2
r0
) 0

0 1
τw

− 1
Ngτw

 , B =

 0

− 1
J̃µωr0

0

 , E =

 0
T vw
r

J̃

0

 .

Output equation We define the system output as the tower bending force Ft and the
shaft torque Ts, i.e., y = (Ft, Ts). Linearizing (8.2) and (8.4) around the operating point
y0 = (Ft0, Ts0) yields

∆Ft = F β
t ∆β + F ωr

t ∆ωr + F vw
t ∆w

∆Ts =
JgN

2
gT

β
r

Jt
∆β +

JgN
2
gT

ωr
r

Jt
− JrPref0

Jtµω2
r0

∆ωr +
Jr

Jtµωr0

∆Pref +
JgN

2
gT

vw
r

Jt
∆w,

where the partial derivatives of the thrust force (8.2) are given by

F ωr
t =

∂Ft

∂ωr

=
1

2
ρπR2v2w0

(
∂Ct(λ, β)

∂λ

∂λ

∂ωr

) ∣∣∣∣
(λ0,β0)

λ=ωrR
vw=

1

2
ρπR3vw0

∂Ct(λ, β)

∂λ

∣∣∣∣
(λ0,β0)

F β
t =

∂Ft

∂β
=

1

2
ρπR2v2w0

∂Ct(λ, β)

∂β

∣∣∣∣
(λ0,β0)

F vw
t =

∂Ft

∂vw
=

1

2
ρπR2

(
2vw0Ct(λ0, β0) + v2w0

(
∂Ct(λ, β)

∂λ

∂λ

∂vw

) ∣∣∣∣
(λ0,β0)

)
λ=ωrR

vw=
1

2
ρπR2

(
2vw0Ct(λ0, β0)−Rωr0

∂Ct(λ, β)

∂λ

∣∣∣∣
(λ0,β0)

)
.

The individual output equations are state-space representable with

∆y =

[
F β
t F ωr

t 0
JgN2

gT
β
r

Jt

JgN2
gT

ωr
r

Jt
− JrPref0

Jtµω2
r0

0

]
︸ ︷︷ ︸

C

∆x+

[
0
Jr

Jtµωr0

]
︸ ︷︷ ︸

D

∆u+

[
F vw
t

JgN2
gT

vw
r

Jt

]
︸ ︷︷ ︸

F

∆w.

Finally, we discretize the continuous time dynamics (8.7) with a sample time of 1 second
using exact discretization, which, together with the previous output equation yields the
discrete-time LTI system

∆x(k + 1) = A|(λ0,β0,Kgs)∆x(k) +B|(λ0,β0)∆u(k) + E|(λ0,β0)∆w(k) (8.8a)

∆y(k) = C|(λ0,β0)∆x(k) +D|(λ0,β0)∆u(k) + F |(λ0,β0)∆w(k), (8.8b)

where the matrices A,B,E,C,D, F depend on the linearization point (λ0, β0). In the fol-
lowing, we show how one can obtain the required operating point (λ0, β0).
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Figure 8.3: Steady power curve of the NREL 5MW wind turbine (dashed line) and area of
trackable power references.

8.1.3 Determining the operating point

We characterize the operating point x0 = [β0, ωr0, ωg0] of the turbine through its operating
region and the power balance between demand and generation. First, note that a wind
turbine has four operation regions, as illustrated in Figure 8.3. In Regions 1 and 4, the
wind turbine is not operating because there is too little or too much wind. In Region 2, the
main objective is to maximize the generated power by keeping the blade pitch angle β at
zero, while in Region 3 the objective is to track a power setpoint by controlling the pitch
angle β.

In this work, we consider only operating Region 3, i.e., the above rated area, where the
rated generator speed ωg0, as well as the rated rotor speed ωr0 are known and held constant
by the underlying turbine pitch and torque controller. In this way, we can assign power
references to each turbine, which lie in the gray area in Figure 8.3. To derive the operating
point β0, we consider the aerodynamic torque (8.1) and find that

Pref0

µωr0

=
1

2
ρπR3v2w0Cq(λ0, β0), (8.9)

where vw0 is some above rated average wind speed and λ0 = (ωr0R)/vw0 the current tip-
speed ratio. Therefore, the pitch angle β0 is the only variable in equation (8.9), which can
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readily be computed with the following optimization problem

β0 = argmin
β

β (8.10a)

s.t. βmin ≤ β ≤ βmax (8.10b)

Cq(λ0, β) =
2Pref

ρπR3v2w0µωr0

. (8.10c)

In practice, the static map Cq(λ, β) is generated from measurements of the turbine, which,
in case of the NREL 5MW wind turbine is encoded in a look-up table. Therefore, since
λ0 is fixed, we can heuristically search for β, such that the equality constraint (8.10c)
approximately holds true.

8.1.4 Wind description

The wind w acting on the wind turbine is driven by a stochastic process that can generally
be decomposed into a mean part w0, that changes on a scale of ten minutes to several hours,
superimposed with an additional turbulent part ∆w, that changes on shorter time scales
down to seconds [25, Sec. 2.1]. The turbulence can be characterized with the so-called
turbulence intensity

TI =
σ∆w
w0

,

where σ∆w denotes the standard deviation of the wind speed variation ∆w = w−w0 about
the mean wind speed w0, usually defined over ten minutes or one hour [25, Sec. 2.6]. Even
though the turbulent wind can be roughly approximated by a Gaussian distribution, the
actual wind gusts are non-Gaussian [125]. This highlights the idea of a data-driven moment-
based distributionally robust approach, since we only need to estimate the covariance matrix
of the zero-mean turbulence, rather than making any unrealistic distributional assumptions
(see also [164] for a related distributionally robust approach for a wind turbine blade-pitch
control design).

8.1.5 Model validation

To validate our control-oriented model, we make use of the SWF toolbox and set up a
single NREL 5MW wind turbine with a constant power reference of 4MW as our nonlinear
reference model. We consider a mean wind speed of 15 m/s and different turbulence inten-
sities, e.g., for TI = 0.1, the turbulence ∆w has a variance of 2.25. In Table 8.1, we list the
resulting root mean square errors (RMSE) for the output and state vectors averaged over
four independent wind datasets. As we can see in Table 8.1, a lower turbulence intensity is
associated with a lower RMSE. This follows from the fact that in less turbulent scenarios,
the effective wind speed is closer to the mean of 15m/s, which coincides with the lineariza-
tion point of the state space model (8.8). For higher turbulence intensities, the effective
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Table 8.1: RMSE for different turbulence intensities TI and mean wind speed of 15m/s.

TI ∆β [◦] ∆ωr [
rad
s
] ∆ωg [

rad
s
] ∆Ts [kNm] ∆Ft [kN]

0.01 0.056 0.0028 0.276 20.1 3.7

0.05 0.273 0.0121 1.184 41.9 18.0

0.1 0.751 0.0248 2.418 78.6 42.9

wind speed can be driven far away from the linearization point, which therefore renders the
control-oriented model inexact. This can be seen in Figure 8.4, where large deviations occur
at around t = 450 and t = 760 seconds. Nonetheless, the control-oriented model adequately
captures the slow-scale dynamics of the wind turbine and is used hereafter to model a wind
farm.

8.1.6 Wind farm model

The wind farm model is obtained by indexing the state-space model (8.8) for each wind
turbine i = 1, . . . , Nwt, such that

xwf =
[
∆x⊤1 . . . ∆x⊤Nwt

]⊤ ∈ Rnx

uwf =
[
∆u⊤1 . . . ∆u⊤Nwt

]⊤ ∈ Rnu

wwf =
[
∆w⊤

1 . . . ∆w⊤
Nwt

]⊤ ∈ Rnw

ywf =
[
∆y⊤1 . . . ∆y⊤Nwt

]⊤ ∈ Rny ,

where the dynamic matrices of the wind farm model, i.e., Awf , Bwf , Ewf , Cwf , Dwf , Fwf , are
obtained by block diagonal stacking of the indexed matrices of (8.8). Thus, the resulting
linear state space model has only independent subsystems without dynamic coupling and
is given by

∆xwf(k + 1) = Awf∆xwf(k) +Bwf∆uwf(k) + Ewf∆wwf(k) (8.11a)

∆ywf(k) = Cwf∆xwf(k) +Dwf∆uwf(k) + Fwf∆wwf(k). (8.11b)

Furthermore, state and input constraints are enforced only locally, while an additional
coupled input constraint is required to fulfill the reference tracking goal

Nwt∑
i=1

∆ui(k) = 0,

such that the individual power references add up to the wind farm power reference, i.e.,
Pwf
ref =

∑Nwt

i=1 Pi,ref0 +∆ui(k), where Pi,ref0 is the nominal power reference (operating point)
for the i-th wind turbine, cf. Section 8.1.2.
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Figure 8.4: Comparison of nonlinear model with the control-oriented model for an average
wind speed of w0 = 15 m/s and turbulence intensity of TI = 0.1. The top plot
shows the deviation of the effective wind speed from the average wind speed.

8.2 Distributionally robust Wind Farm MPC

The main objective of a wind farm controller in the above rated region is to distribute the
wind power reference provided by the system operator to each wind turbine in the field while
minimizing fatigue load [3, 91]. Fatigue loads result from repetitive stress reversals on a
specific part of the structure, where typical fatigue prone components are the turbine tower
and the generator shaft [159]. Therefore, we formulate an output cost function for (8.11b)
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such that we minimize the mechanical load, i.e., tower bending force Ft and shaft torque
Ts, of the entire wind farm. Further note that the DR-MPC scheme requires zero-mean
i.i.d. additive disturbances, which the correlated wind speed does not satisfy. To render the
additive disturbance (wind turbulence) ∆w = w − w0 zero-mean and i.i.d., we identify an
autoregressive moving average (ARMA) model and formulate the DR-MPC problem based
on the new stochastic residual part.

8.2.1 ARMA model

An ARMA model represents a stochastic process in terms of two polynomials, where the
first one represents the auto-regressive (AR) part and the second one the moving average
(MA) part [19]. In particular, an ARMA(p, q) model with p AR terms and q MA terms is
given by

∆w(k) =

p∑
l=1

al∆w(k − l) +
q∑
l=1

blϵ(k − l) + ϵ(k),

where ϵ is a zero-mean i.i.d white noise. In related work, e.g. [136, 146], the authors make a
more stringent assumption for ϵ with the additional assumption that the noise is normally
distributed, which in case of wind turbulence data is prone to be wrong, cf. [164]. Therefore,
we treat ϵ as a zero-mean white noise with unknown (but finite) variance Σϵ ≻ 0. In practice,
one needs to identify the ARMA model with limited data. Therefore, the empirical variance
is typically falsified due to sample inaccuracies, for which we introduce a moment-based
ambiguity set that captures the true variance with high probability

P(w0, TI) :=

{
µ ∈M(Rn)

∣∣∣∣∣ Eµ(ϵ) = 0

Eµ(ϵϵ
⊤) ⪯ κ

(w0,TI)
β Σ̂

(w0,TI)
ϵ

}
. (8.12)

Note that we parameterize the ambiguity set with the mean wind speed and turbulence
intensity pair (w0, TI). The ambiguity radius κ

(w0,TI)
β can readily be found thanks to Propo-

sition 7.1.1.

We identify for each wind turbine i = 1, . . . , Nwt an ARMA(p, p − 1) model, which can be
converted to a canonical form similar to [136], i.e,

ψi(k + 1) = Aψ,iψi(k) +Bψ,iϵi(k)

∆wi(k) = Cψ,iψi(k),

where the matrices are defined as follows

Aψ,i :=


ai,1 1 0 . . . 0

ai,2 0 1 0
...

...
. . .

ai,p−1 0 0 1

ai,p 0 0 . . . 0

 , Bψ,i :=


1

bi,1
...

bi,p−2

bi,p−1

 , Cψ,i :=
[
1 0 · · · 0

]
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and the auxiliary state vector ψi is given by ψi(k) =
[
∆w⊤

i (k), ψ
⊤
i,2(k), . . . , ψ

⊤
i,p(k)

]
with

ψi,j(k) =

p∑
l=j

ai,l∆wi(k + j − l − 1) +

p−1∑
l=j−1

bi,lϵi(k + j − l − 1) ∀i ∈ {1, . . . , Nwt}.

To obtain farm-wide wind predictions, we stack the local matrices and vectors together, such
that Aψ = diag(Aψ,1, . . . , Aψ,Nwt), Bψ = diag(Bψ,1, . . . , Bψ,Nwt), Cψ = diag(Cψ,1, . . . , Cψ,Nwt)
and ψ = colNwt

i=1 (ψi). A N -step prediction of the turbulent wind is readily given by

∆w̄k := C̄ψĀψψ(k) + C̄ψB̄ψ ϵ̄k, (8.13)

where C̄ψ := diag(Cψ, . . . , Cψ),

Āψ :=


I

Aψ
A2
ψ
...

AN−1
ψ

 , B̄ψ :=


0 0 . . . 0

Bψ 0 . . . 0

AψBψ Bψ . . . 0
...

. . . . . . 0

AN−2
ψ Bψ . . . AψBψ Bψ

 ,

while the random vector ϵ̄k is zero-mean and each element is i.i.d. with variance Σ
(w0,TI)
ϵ .

Remark 8.1. As a byproduct of the ARMA model, a covariance reduction of the new random
variable ϵ compared to the original random variable w is usually achieved. This aspect is
important for the DR-MPC implementation because the chance constraints and the cost
function depend directly on the covariance matrix, i.e., the lower the covariance, the lower
the conservatism.

8.2.2 Output prediction

We recall the input vector ∆ūk = [∆u⊤0|k, . . . ,∆u
⊤
N−1|k]

⊤ ∈ R
Nnu and the predicted state

vector ∆x̄k = [∆x⊤0|k,∆x
⊤
1|k, . . . ,∆x

⊤
N |k]

⊤ ∈ R(N+1)nx defined as

∆x̄k = Ā∆x0|k + B̄∆ūk + Ē∆w̄k, (8.14)

where the matrices Ā, B̄, Ē are given in Section 7.1. The output equation (8.11b) in a matrix
form can be defined as

∆ȳk = C̄∆x̄k + D̄∆ūk + F̄∆w̄k,

where ∆ȳk = [∆y⊤0|k, . . . ,∆y
⊤
N |k] ∈ R(N+1)ny and the matrices are given by

C̄ :=


C 0 . . . 0 0

0 C . . . 0 0
...

...
. . .

...
...

0 0 . . . C 0

0 0 . . . 0 C

 , D̄ :=


0 0 . . . 0

D 0 . . . 0

0 D . . . 0
...

...
. . .

...

0 0 . . . D

 , F̄ :=


0 0 . . . 0

F 0 . . . 0

0 F . . . 0
...

...
. . .

...

0 0 . . . F
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with dimensions C̄ ∈ R(N+1)ny×(N+1)nx , D̄ ∈ R(N+1)ny×Nnu and F̄ ∈ R(N+1)ny×Nnw . Next, we
include the ARMA prediction (8.13) into the wind farm model and consider the simplified
affine disturbance feedback policy in the new random vector ϵ̄k, i.e.,

∆ūk = ∆v̄k + M̄k ϵ̄k. (8.15)

Based on this, we can reformulate the predicted output sequence as follows

∆ȳk = C̄∆x̄k + D̄∆ūk + F̄∆w̄k
(8.14)
= C̄[Ā∆x0|k + B̄∆ūk + Ē∆w̄k] + D̄∆ūk + F̄∆w̄k

(8.13)
= C̄Ā∆x0|k + (C̄B̄ + D̄)∆ūk + (C̄Ē + F̄ )C̄ψĀψψ(k) + (C̄Ē + F̄ )C̄ψB̄ψ ϵ̄k

(8.15)
= C̄Ā∆x0|k + (C̄B̄ + D̄)∆v̄k + (C̄Ē + F̄ )C̄ψĀψψ(k)︸ ︷︷ ︸

∆˜̄yk

+ [C̄B̄M̄k + D̄M̄k + (C̄Ē + F̄ )C̄ψB̄ψ]︸ ︷︷ ︸
Ψk

ϵ̄k. (8.16)

8.2.3 Cost function

To achieve the primary goal of power tracking and the secondary goal of fatigue load re-
duction, we formulate a quadratic cost function in the output and input deviations

Jk = sup
µ∈P

Eµ

(
∆ȳ⊤k Q̄y∆ȳk +∆ū⊤k R̄∆ūk

∣∣∣∣x(k))
(8.16)
= sup

µ∈P
Eµ

([
ϵ̄k
1

]⊤([
Ψk

∆˜̄yk

]⊤
Q̄y

[
Ψk

∆˜̄yk

]
+

[
M̄k

∆v̄k

]⊤
R̄

[
M̄k

∆v̄k

])[
ϵ̄k
1

] ∣∣∣∣x(k))

= tr

(
sup
µ∈P

Eµ

([
ϵ̄k
1

] [
ϵ̄k
1

]⊤ ∣∣∣∣x(k))[H̄⊤
y,kQ̄yH̄y,k + H̄⊤

u,kR̄H̄u,k

])
, (8.17)

where H̄y,k =
[
Ψ⊤
k ∆˜̄y⊤k

]⊤
and H̄u,k =

[
M̄⊤

k ∆v̄⊤k
]⊤

. The inner distributionally robust
expectation problem can be solved w.r.t. the moment-based ambiguity set (8.12), i.e.,

Σ̂
(w0,TI)
N := sup

µ∈P

{[
¯̃ϵk
1

] [
¯̃ϵk
1

]⊤ ∣∣∣∣x(k)}
i.i.d.
= blkdiag

(
IN ⊗ sup

µ∈P(w0,TI)

{[
ϵ

1

] [
ϵ

1

]⊤ ∣∣∣∣x(k)}, 1
)

(8.12)
= blkdiag(IN ⊗ κ(w0,TI)

β Σ̂(w0,TI)
ϵ , 1),

where the first equality follows from the i.i.d. sequence ϵ̄k. The MPC cost function is obtained
by substituting the latter into (8.17).
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8.2.4 MPC optimization problem

At each time step k ∈ N, we solve the following MPC optimization problem.

Problem 8.2.1 (Distributionally Robust Wind Farm MPC).

min
∆v̄k,M̄k,λk

tr
(
Σ̂

(w0,TI)
N [H̄⊤

y,kQ̄yH̄y,k + H̄⊤
u,kR̄H̄u,k]

)
(8.18)

s.t. ∆z̄k = Ā∆x0|k + B̄∆v̄k + ĒC̄ψĀψψ(k) (8.19)

˜̄yk = C̄Ā∆x0|k + (C̄B̄ + D̄)∆v̄k + (F̄ + C̄Ē)C̄ψĀψψ(k) (8.20)

∆x0|k = (1− λk)∆x(k) + λ∆z∗1|k−1 λk ∈ [0, 1] (8.21)

h̄⊤t ∆z̄k ≤ 1−
√

px
1− px

∥h̄⊤t (B̄M̄k + Ē)(Σ̂
(w0,TI)
N )1/2∥2 ∀t ∈ {0, . . . , N − 1}

(8.22)

l̄⊤t ∆v̄k ≤ 1−
√

pu
1− pu

∥l̄⊤t M̄k(Σ̂
(w0,TI)
N )1/2∥2 ∀t ∈ {0, . . . , N − 1} (8.23)

1
⊤∆v(k) = 0. (8.24)

The optimal solution to Problem 8.2.1 is the SADF pair (∆v̄∗k, M̄
∗
k ) and the mean state

prediction ∆z̄∗k. Similar to Section 7.2.5, we obtain an equivalent admissible error feedback
control policy via

K̄∗
k = (I + M̄∗

k Ē
†B̄)−1M̄∗

k Ē
†

∆ḡ∗k = (I + M̄∗
k Ē

†B̄)−1(∆v̄∗k − M̄∗
k Ē

†A∆z∗0|k),

while the input to the wind turbines is defined as

Pwt
ref (k) = u(k) = Pwt

ref0 +∆g∗0|k +K∗
0|k(∆x(k)−∆z∗0|k),

where Pwt
ref0 is a vector of nominal power references for all wind turbines. Moreover, the

input chance constraints (8.23) are used to bound the power deviation from the nominal set
points, while optionally state chance constraints (8.22) can be imposed, e.g., for the pitch
angle or generator speed.

8.3 Simulation results

In the following, we apply our proposed DR-MPC to a wind farm consisting of Nwt = 5
NREL 5 MW wind turbines in a row, see Figure 8.5, where each WT is equidistantly
arranged with d = 400 m. The wind turbine dynamics use the parameters given in Table 8.2.
The gain scheduled parameter Kgs is obtained from the underlying look-up table.
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Table 8.2: Parameters of the NREL 5MW wind turbine.

Parameter Variable Value Unit

Blade radius R 63 m

Rotor inertia Jr 35.44 · 106 kg/m2

Generator inertia Jg 534.116 kg/m2

Rated generator speed ωg0 122.9096 rad/s

Rated rotor speed ωr0 1.2671 rad/s

Rated power P0 5 · 106 W

Gearbox ratio Ng 97 -

Generator efficiency µ 0.944 -

Filter time constant τω 0.0125 s

Blade control proportional gain Kp −0.2143 -

Blade control integral gain Ki −0.0918 -

Air density ρ 1.2231 kg/m3

Figure 8.5: Simulation setup with five equidistantly arranged wind turbines.

Controllers We compare the DR-MPC to an open-loop scheduler that assigns a constant
power references Pwt

i,ref = 3MW for each wind turbine i = 1, . . . , Nwt for the entire simulation

horizon of T = 900 s, i.e., the wind farm should nominally produce Pwf
ref0 = 15 MW. In

addition, we consider the SWF controller [71], which dynamically dispatches the power
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references based on the available power estimates of each wind turbine

Pi,avail = min

{
P0,

1

2
πρR2w3

iC
max
p

}
∀i ∈ {1, . . . , Nwt},

where wi is the measured wind speed of turbine i, P0 the rated power and Cmax
p = 0.45 the

maximum power coefficient. Therefore, the SWF controller distributes the power as follows

Pwt
i,ref = max

{
0,min

{
P0,

Pwf
ref0Pi,avail∑Nwt

i=1 Pi,avail

}}
∀i ∈ {1, . . . , Nwt}.

For the DR-MPC, we identify for each wind turbine an ARMA(3, 2) model based on an
independent wind scenario of 1000 time steps, i.e., Ns = 1000 samples. In view of Proposi-
tion 7.1.1, we derive an ambiguity radius of κ

(w0,TI)
β = 2.36 with a confidence of 1−β = 0.95.

Performance We use the following criteria to evaluate the performance of each controller:

� Tracking error Jp =

√√√√ 1

T

T−1∑
k=0

Nwt∑
i=1

(Pi,out(k)− Pwt
i,ref(k))

2

NwtP0

,

� Transmission shaft fatigue Js = std

(∑T−1
k=0

∑Nwt

i=1 Ti,s(k)

NwtTs0

)
,

� Tower fatigue Jt = std

(∑T−1
k=0

∑Nwt

i=1 Fi,t(k)
NwtTt0

)
,

where Pi,out, Ti,s and Fi,t denote the power output, main shaft torque and tower bending
force of turbine i, while Ts0 = 2.5 · 106 and Tt0 = 0.27 · 106 are standardization constants
obtained from (8.2) and (8.4) for the nominal operating point of 3 MW. To reduce the
tuning effort of the MPC cost function (8.18), we fix the output weight Q̄y to

Q̄y = IN+1 ⊗ blkdiag

([
qFt 0

0 qTs

]
, . . . ,

[
qFt 0

0 qTs

])
with standardized weights

qFt =
1

F 2
t0N

and qTs =
100

T 2
s0N

.

Analogously, we define the standardized input weighting matrix as

R̄ = IN ⊗


r

P 2
0N

· · · 0
...

. . .
...

0 · · · r
P 2
0N

 ,
where r ∈ R>0. Thus, it remains to tune the parameter r, which introduces a trade-off
between tracking performance and fatigue load reduction. We consider a prediction horizon
of N = 5 seconds for each simulation.
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Table 8.3: Performance comparison of scenario 1. The first row denotes the scheduler per-
formance, which we consider as the baseline, i.e., 100%. The other rows denote
the performance w.r.t. the scheduler, where numbers smaller than 100% denote
a performance increase and numbers greater than 100% a performance decrease.

Method Jp Jt Js

Scheduler 0.0811 0.2944 0.0740
SWF controller 100% 100% 100%
DR-MPC r = 1 99.983% 100.004% 100.003%
DR-MPC r = 10 99.983% 100.004% 100.003%
DR-MPC r = 102 99.972% 100.005% 100.001%
DR-MPC r = 103 99.995% 100.000% 99.998%

Scenario 1 – Strictly above rated wind speed

In the first scenario, we consider a wind field described by a mean velocity of w0 = 20 m/s
and a turbulence intensity of TI = 0.05, which implies that the turbulent wind has σ2

∆w =
(TIw0)

2 = 1 variance. The residual ϵ̄k of the identified farm-wide ARMA model (8.13) has
the following empirical covariance matrix

Σ̂(20,0.05)
ϵ = diag(0.255, 0.270, 0.288, 0.262, 0.274),

which reduces the noise variance around 75% compared to σ2
∆w.

The main assumption in the first scenario is that the wind speed never drops below the
rated level of 11.4 m/s for all wind turbines, cf. Figure 8.3. Thus, each WT operates only
in Region 3 throughout the simulation period. In Figure 8.6, the power output of each
turbine is shown. In this operating region, the available power is always at its upper limit,
i.e., 5 MW. Therefore, the SWF controller and the Scheduler essentially command constant
reference points, while the DR-MPC adjusts the set points dynamically in a prescribed band
of ±0.2MW around the nominal value of 3MW with a probability of 90%. This is enforced
with the input chance constraint (8.23). Additionally, we add a penalty term 5λ2 to the
cost function (8.18), which enforces that the interpolated initial constraint (8.21) favors the
feedback initialization (see Remark 7.7 for a discussion on this matter).

As we can see in Table 8.3, the performance of all considered controllers is almost identical,
which is due to the strictly above rated nature of the wind with relatively low turbulence.
However, this operating condition can be considered as an extreme event since average wind
speeds are typically lower for wind farms, as reported in [127].

Scenario 2 – Above and below rated wind speed

The second scenario assumes a more realistic environment in which some wind turbines
temporarily operate in the below rated region (Region 2, cf. Figure 8.3) due to deficiencies
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Figure 8.6: Wind turbine power output for scenario 1 with weight r = 100.

in wind speed. The wind field has a mean velocity of w0 = 12m/s and a turbulence intensity
of TI = 0.1, yielding a turbulence variance of σ2

∆w = 1.44. The empirical covariance matrix
of the ARMA residuals is given by

Σ̂(12,0.1)
ϵ = diag(0.255, 0.270, 0.288, 0.262, 0.274).

In this scenario, we constrain the input deviations to ±1MW around the nominal operating
point of 3MW. In this way, we can dynamically dispatch the power references depending on
the available wind speed, while ensuring a power tracking goal and minimizing fatigue load,
see Table 8.4 and Figure 8.7. In particular, for r = 1, we increase the tracking performance
compared to the scheduler by approximately 52.6% and compared to the SWF controller by
4.4%. The tracking performance increase comes at the price of increasing the tower fatigue
by 27.8%, while reducing the main shaft fatigue by 10%. A reasonable choice is r = 500,
which only marginally increases the mechanical stress on the tower, while still increasing
the tracking performance by nearly 34%.
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Table 8.4: Performance comparison of scenario 2. The first row denotes the scheduler per-
formance, which we consider as the baseline, i.e., 100%. The other rows denote
the performance w.r.t. the scheduler, where numbers smaller than 100% denote
a performance increase and numbers greater than 100% a performance decrease.

Method Jp Jt Js

Scheduler 0.0999 0.3217 0.0734
SWF controller 51.79% 131.99% 90.15%
DR-MPC r = 1 47.38% 127.85% 89.99%
DR-MPC r = 500 65.79% 105.30% 93.41%
DR-MPC r = 103 84.07% 101.88% 93.67%
DR-MPC r = 104 98.55% 100.12% 99.21%
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Figure 8.7: Wind turbine power output for scenario 2 with weight r = 500 for the DR-MPC.
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8.4 Summary

In this chapter, we presented a distributionally robust MPC approach to tackle the problem
of coordinating individual wind turbines inside of a wind farm. The main objective hereby
was to ensure power tracking, while secondary goals were to reduce the mechanical stress
acting on the tower and main shaft. We numerically verified the increase in tracking perfor-
mance, as well as a reduction in mechanical stress. We considered a simple ARMA model to
predict the turbulent wind speed locally for each wind turbine individually, neglecting the
broader picture of spatial correlations of the wind field. This can be improved by considering
a spatio-temporal wind speed forecast that includes wind measurements from neighboring
turbines, e.g., as proposed by [175]. This could further increase the tracking performance,
i.e., when a wind deficit is measured at an upstream turbine, it is inevitably passed on to
the downstream turbines, allowing us to anticipate the temporary drop in output power.
Therefore, the output of the unaffected wind turbines can be increased to compensate for
the loss of output power of the others.



9 Conclusion

In the following, we summarize the main contributions of this thesis and give an outlook
for future research.

9.1 Summary

Part I

In the first part of this thesis, we considered a class of distributed systems that are repre-
sentable on a graph, i.e., the overall system consists of several non-overlapping subsystems
with neighbor-to-neighbor coupled dynamics and constraints.

Chapter 3 We developed a distributed stochastic MPC for tracking of piece-wise constant
output reference signals subject to coupled state and local input chance constraints. The
contribution of this chapter is twofold. First, two practical design procedures for distributed
PRS are introduced, such that the constraints can be distributedly tightened. Second, we
developed an analytical approach to distributed stochastic MPC with distributed PRS con-
straint tightening, while the online DSMPC algorithm is based on the alternating direction
method of multipliers, incorporating a simple stopping condition for practical reasons. This,
however, introduces inexactness into the global optimal solution, which can compromise re-
cursive feasibility and closed-loop chance constraint satisfaction. This issue is addressed by
explicitly including the inexactness into the design phase of the MPC algorithm via robust
constraint tightening. The MPC optimization problem is proven to be recursively feasible,
convergent to an asymptotic average performance bound and the closed-loop system verifies
the chance constraints. The properties of the resulting controller are demonstrated on two
numerical examples.

Chapter 4 In this chapter, we have extended the state feedback design to the output
feedback case, where we introduced two distributed stochastic MPC controllers for steady-
state regulation for distributed systems, one with direct feedback (Section 4.2) and another
based on indirect feedback (Section 4.3).

The first contribution is the extension of the distributed PRS design from Chapter 3 to
the output feedback case, i.e., by combining the process and measurement noise into a
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new random variable. In Section 4.2, a distributed direct output feedback stochastic MPC
algorithm based on analytical approximations and distributed PRS constraint tightening
is developed. The MPC algorithm is proven to be recursively feasible and the cost con-
verges to an asymptotic average performance bound, while the closed-loop system verifies
the chance constraints. The analytical distributed PRS design is unfortunately associated
with a large conservatism, which we address in Section 4.3 with a scenario-based distributed
PRS. Hereby, the chance constraints are verified with scenario optimization guarantees, i.e.,
the closed-loop system verifies the chance constraints with high probability. Another con-
tribution is a distributed sample-based design procedure for the distributed PRS, where no
strict assumptions on the distribution are required. The resulting indirect output feedback
SMPC is proven to be recursively feasible, while under an additional zero-mean i.i.d assump-
tion the cost converges to an asymptotic average performance bound no worse than from
a linear controller. In a numerical example, we contrasted the three proposed distributed
PRS designs and compared the direct and indirect DSMPC schemes.

Chapter 5 In this chapter, we studied a class of distributed systems on a graph subject to
(local) individual chance constraints and multiplicative noise. The main contribution is an
analytical approximation based DSMPC that uses Cantelli’s inequality to approximate the
local chance constraints, while the expected value cost function is analytically approximated
via mean-variance dynamics. The MPC optimization problem uses LMIs to propagate the
distributed covariance matrices resulting in a semidefinite program, which we solve with
distributed consensus ADMM. In addition, a distributed design procedure for the MPC
ingredients is provided, such that the controller can synthesized fully distributed and no
central coordination node is required. The MPC optimization problem is proven to be
recursively feasible, the closed-loop state to be point-wise convergent, while the chance
constraints are verified in prediction for all times.

Part II

In the second part of this thesis, we studied distributionally robust MPC schemes for con-
strained linear stochastic systems subject to chance constraints and unknown probability
distributions.

Chapter 6 In this chapter, we introduced two DR-MPC schemes with Wasserstein ambi-
guity sets, where we use methods from Wasserstein distributionally robust optimization to
robustify the stochastic optimal control problems to distributional uncertainty.

In Section 6.2, we introduced a scenario-based DR-MPC scheme with indirect feedback,
where only a potentially small set of disturbance trajectories is assumed to exist over a task
horizon. As a first contribution, we investigate for nonlinear and linear tube controllers
whether distributionally robust performance and/or chance constraint guarantees can be
given. The resulting DR-MPC scheme is proven to be recursively feasible, regardless of
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the choice of tube controller, by relying on a soft-constrained framework. In addition, the
proposed framework allows for the use of hard input constraints by restricting the control
authority of the tube controller. In a numerical example of a four-room temperature control
task, the impact of the Wasserstein radius on closed-loop chance constraint satisfaction is
shown.

In Section 6.3, an analytical indirect feedback DR-MPC scheme is developed based on
distributionally robust PRS. The first contribution of this section is the extension of PRS to
the distributionally robust case, where we provide for Wasserstein ambiguity sets a sample-
based design procedure. Under a zero-mean i.i.d. assumption, quadratic cost and fixed tube
controller, it can be shown that the distributionally robust variance cost is independent
of the MPC decision variables, which allows us to omit this part in the receding horizon
implementation. The resulting MPC optimization problem is trivially recursively feasible
due to the indirect feedback initialization, while the closed-loop system verified the chance
constraints with high probability due to the distributionally robust PRS.

Chapter 7 In the previous chapter, we considered Wasserstein ambiguity sets that use
tools from Machine Learning to calibrate the ambiguity radius. In this chapter, we in-
troduce moment-based ambiguity sets that have two main advantages over Wasserstein
ambiguity sets for a class of i.i.d. sub-Gaussian random variables, i.e., (i) the resulting
optimization problem does not increase in complexity with the sample size and (ii) the
ambiguity radius is estimated with reasonable accuracy based on known information of the
distribution via concentration inequalities. Hence, the resulting guarantees are stronger
compared to Wasserstein ambiguity sets. The main contribution of this chapter is a novel
DR-MPC scheme for a class of constrained stochastic systems subject to individual chance
constraints on the states and inputs, which uses a simplified affine disturbance feedback
parameterization to reformulate the cost and chance constraints. Recursive feasibility is es-
tablished by constraining the initial state on a line between the state feedback and a feasible
backup solution. The resulting closed-loop system is proven to converge to an asymptotic
average performance bound no worse that from the equivalent linear quadratic regulator. A
numerical example demonstrates the performance improvements for an increasing number
of disturbance samples.

Chapter 8 In this chapter, a moment-based distributionally robust MPC for coordinated
control of wind farms is proposed, which extends the DR-MPC formulation from Chapter 7
to support cost functions for output variables. We incorporate an ARMA prediction model
that serves as an optimal turbulent wind predictor and additionally renders the stochastic
residual an i.i.d. white noise. We introduce a parameterized moment-based ambiguity set
for mean wind speed and turbulence intensity pairs, which uses the theoretical results from
Chapter 7 to find a data-driven ambiguity radius. In a numerical study, we investigate the
advantages of DR-MPC over a classical scheduler approach, comparing the effective power
gain/loss for different wind scenarios.
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9.2 Outlook

This thesis addressed stochastic MPC for distributed linear systems as well as distribution-
ally robust MPC, both of which enable numerous future research directions, some of which
are presented below.

Distributionally robust distributed MPC An important extension is the combination of
both methods, i.e., distributionally robust distributed MPC, since in distributed stochastic
systems the main problem of unavailability of exact distributional information still exists.
The concept of cooperative distributionally robust distributed optimization is already known
to the literature [36] and was applied successfully to dispatch problems [170]. However, the
main properties of the receding horizon implementation, such as recursive feasibility and
closed-loop chance constraint satisfaction, are so far not investigated. In view of Wasserstein
DRO, the separation of the global ambiguity set is non-trivial and needs to be properly
addressed in future research, i.e., how one can find a worst-case distribution in a distributed
way to solve the underlying expectation problem.

Non-iterative DSMPC In the first part of this thesis, we used an ADMM-based DSMPC
algorithm in each chapter, which has a high communication demand. This communication
overhead can be reduced by resorting to an event-triggered non-iterative DMPC architecture
[12], where the challenge is to incorporate a distributed k-step PRS to ensure closed-loop
constraint satisfaction. Another possibility is to use DSMPC with sequential updating,
similar to [47], which conceptually fits an indirect feedback scheme that always uses the
shifted optimal solution.

Ambiguity set In this thesis, we considered only a small subset of all possible variations
of ambiguity sets, cf. [143]. Future research directions could include different distance
measures, such as the Sinkhorn distance [84], which basically enhances the Wasserstein
distance by an entropic regularization [168]. In addition, the worst-case distribution of a
Sinkhorn ambiguity set is continuous, even if the ambiguity set is centered at the empirical
distribution [168, Remark 5]. Therefore, the question is whether we can achieve a more
meaningful robustification in context of DR-MPC.

Nonlinear systems Throughout this thesis, we considered linear time-invariant systems.
In view of this, the extension to nonlinear systems is desirable, but, due to several cum-
bersome technicalities a non-trivial task to perform, cf. Section 2.2.1. A tractable way of
addressing distributionally robust MPC for nonlinear systems is given by [174], where the
authors rely on linearizing the dynamics along the trajectories. In addition, recent develop-
ments in the field of stochastic MPC using incremental stability [152] enable extensions to
distributionally robust formulations that potentially provide stronger closed-loop guarantees
than the current state of the art.
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Distributionally robust economic MPC Over the last couple of years a lot of research was
done in the field of economic MPC [54], where the main idea is to use cost functions that
represent an economic interest. In view of this, one can introduce a distributionally robust
economic MPC framework to give robust performance certificates for the optimal solution,
e.g., as in Chapter 6. As a consequence, the resulting economic steady-state (if it exists),
is robust against distributional uncertainty that breaks the so-called optimizer’s curse [99].
A possible application of this concept is stochastic optimal power flow, where the cost is
typically economically oriented [72].

Wind farm control A potential extension of MPC-based wind farm control is the inclusion
of spatio-temporal turbulence prediction [175], which could further improve the closed-loop
performance of the wind farm. In particular, predicting the behavior of the wind field allows
to anticipate power drops of downstream wind turbines due to wind deficits (and also wake
effects).
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[161] V. Spudić et al. “Cooperative distributed model predictive control for wind farms”.
In: Optimal Control Applications and Methods 36.3 (2015), pp. 333–352.

[162] Y. Tan et al. “A distributionally robust optimization approach to two-sided chance
constrained stochastic model predictive control with unknown noise distribution”.
In: arXiv preprint arXiv:2203.08457 (2022).

[163] C. Tang and T. Basar. “Stochastic stability of singularly perturbed nonlinear sys-
tems”. In: Proc. 40th IEEE Conf. on Decision and Control (Cat. No.01CH37228).
Vol. 1. 2001, pp. 399–404.

[164] B. P. G. Van Parys et al. “Distributionally Robust Control of Constrained Stochastic
Systems”. In: IEEE Transactions on Automatic Control 61.2 (2016), pp. 430–442.

[165] A. N. Venkat et al. “Distributed Output Feedback MPC for Power System Control”.
In: Proc. 45th IEEE Conf. on Decision and Control. 2006, pp. 4038–4045.

[166] A. N. Venkat et al. “Distributed MPC Strategies With Application to Power System
Automatic Generation Control”. In: IEEE Transactions on Control Systems Tech-
nology 16.6 (2008), pp. 1192–1206.



Bibliography 195

[167] R. Vershynin. High-Dimensional Probability: An Introduction with Applications in
Data Science. Cambridge University Press, 2018.

[168] J. Wang, R. Gao, and Y. Xie. “Sinkhorn Distributionally Robust Optimization”. In:
arXiv preprint arXiv:2109.11926 (2021).

[169] M. N. Zeilinger, M. Morari, and C. N. Jones. “Soft Constrained Model Predictive
Control With Robust Stability Guarantees”. In: IEEE Transactions on Automatic
Control 59.5 (2014), pp. 1190–1202.

[170] J. Zhai et al. “Distributionally Robust Joint Chance-Constrained Dispatch for Inte-
grated Transmission-Distribution Systems via Distributed Optimization”. In: IEEE
Transactions on Smart Grid 13.3 (2022), pp. 2132–2147.

[171] J. Zhang and T. Ohtsuka. “Stochastic Model Predictive Control Using Simplified
Affine Disturbance Feedback for Chance-Constrained Systems”. In: IEEE Control
Systems Letters 5.5 (2021), pp. 1633–1638.

[172] Y. Zheng et al. “Distributed Model Predictive Control for Heterogeneous Vehicle Pla-
toons Under Unidirectional Topologies”. In: IEEE Transactions on Control Systems
Technology 25.3 (2017), pp. 899–910.

[173] Z. Zhong, E. A. del Rio-Chanona, and P. Petsagkourakis. “Data-driven distribution-
ally robust MPC using the Wasserstein metric”. In: arXiv preprint arXiv:2105.08414
(2021).

[174] Z. Zhong, E. A. del Rio-Chanona, and P. Petsagkourakis. “Distributionally Robust
MPC for Nonlinear Systems”. In: Proc. 13th IFAC Symposium on Dynamics and
Control of Process Systems, including Biosystems DYCOPS. 2022, pp. 606–613.

[175] Q. Zhu et al. “Wind Speed Prediction with Spatio-Temporal Correlation: A Deep
Learning Approach”. In: Energies 11.4 (2018), p. 705.

[176] A. Zolanvari and A. Cherukuri. “Data-driven distributionally robust iterative risk-
constrained model predictive control”. In: Proc. European Control Conf. (ECC).
2022, pp. 1578–1583.

[177] S. Zymler, D. Kuhn, and B. Rustem. “Distributionally robust joint chance con-
straints with second-order moment information”. In: Mathematical Programming
137.1 (2013), pp. 167–198.





Deutsche Kurzfassung

Teil I

Im ersten Teil dieser Dissertation wird eine Klasse von verteilten Systemen betrachtet, die
auf einem Graphen darstellbar sind, d.h., das Gesamtsystem besteht aus mehreren nicht
überlappenden Teilsystemen mit einer von Nachbar-zu-Nachbar gekoppelten Dynamik. Es
werden ausschließlich iterative, kooperative und parallele verteilte modellprädiktive Regler
(engl.: model predictive control, MPC) untersucht, wobei die folgenden Forschungsziele
berücksichtigt werden:

(i) Quantifizierung der Auswirkungen von additiver und multiplikativer Unsicherheit auf
verteilte Weise.

(ii) Der Regler sollte verteilt synthetisierbar und im Online-Betrieb sollte kein zentraler
Koordinationsknoten erforderlich sein.

Punkt (i) wird in den Kapiteln 3 und 4 mit dem Konzept der verteilten probabilistisch erre-
ichbaren Mengen (engl.: probabilistic reachable set, PRS) umgesetzt. In Kapitel 5 wird eine
ähnliche Methodik verwendet, wobei die verteilte Kovarianz Matrix des prädizierten Zus-
tandsvektors mittels linearen Matrixungleichungen (engl.: linear matrix inequality, LMI)
propagiert wird. Um den verteilten online Betrieb nach Punkt (ii) zu gewährleisten, wird
in jedem vorgeschlagenen MPC Regler ein verteilter Konsensus ADMM Algorithmus ver-
wendet.

Kapitel 3 In diesem Kapitel wird eine verteilte stochastische MPC zur Verfolgung von
stückweise konstanten Ausgangsreferenzsignalen entwickelt, die gekoppelten Zustands- und
lokalen Zufallsbeschränkungen (engl.: chance constraints) unterliegen. Zuerst werden zwei
praktische Entwurfsverfahren für verteilte PRS vorgestellt, so dass die gekoppelten Zus-
tandsbeschränkungen mittels eines verteilten Verfahrens verschärft werden können (engl.
constraint tightening). Zweitens wird ein analytischer Ansatz für die verteilte stochastische
MPC mit verteilten PRS entwickelt, während der Online MPC Algorithmus auf der ADMM
Methode basiert und aus praktischen Gründen eine einfache Stoppbedingung enthält. Dies
führt jedoch zu Ungenauigkeiten in der globalen optimalen Lösung, was die rekursive
Machbarkeit und die Erfüllung der Zufallsbedingungen im geschlossenen Regelkreis beein-
trächtigt. Dieses Problem wird durch die explizite Einbeziehung der Ungenauigkeit in
die Entwurfsphase des MPC Optimierungsproblems über eine robuste Verschärfung der
nominellen Beschränkungen gelöst. Das MPC Optimierungsproblem ist nachweislich rekur-
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siv durchführbar, die Kosten konvergieren zu einer asymptotischen durchschnittlichen Leis-
tungsschranke und das geschlossene Regelsystem verifiziert die Zufallsbedingungen zu jedem
Zeitpunkt. Die Eigenschaften des Reglers werden anhand von zwei numerischen Beispielen
demonstriert.

Kapitel 4 In diesem Kapitel wird die Zustandsrückführung auf den Fall der Ausgangsrück-
führung erweitert, wobei zwei verteilte stochastische MPC Methoden zur Stabilisierung
verteilter Systeme vorgeschlagen werden. Der erste Ansatz nutzt die direkte Rückführung
(Abschnitt 4.2) und der zweite Ansatz basiert auf der indirekten Rückführung (Abschnitt
4.3).

Der erste Beitrag ist die Erweiterung des analytischen verteilten PRS Entwurfs aus Kapi-
tel 3 auf den Fall der Ausgangsrückkopplung, welcher in Abschnitt 4.2 zur Herleitung
eines analytischen verteilten stochastischer MPC Algorithmus mit direkter Ausgangsrück-
kopplung genutzt wird. Das MPC Optimierungsproblem erweist sich als rekursiv durch-
führbar, wobei die Kosten zu einer asymptotischen durchschnittlichen Leistungsschranke
konvergieren, während das geschlossene System die Zufallsbeschränkungen zu jeden Zeit-
punkt einhält. Der analytische Entwurf des verteilten PRS ist leider mit einem großen
Konservatismus verbunden, den wir in Abschnitt 4.3 mit einem szenariobasierten verteilten
PRS adressieren.

Hierzu werden die Zufallsbedingungen lediglich mit Garantien aus der Szenario-Optimierung
verifiziert, d.h., der geschlossene Regelkreis verifiziert die Zufallsbedingungen mit hoher
Wahrscheinlichkeit anstatt mit Wahrscheinlichkeit 1. Ein weiterer Beitrag ist ein verteiltes
szenariobasiertes Entwurfsverfahren für das verteilte PRS. Der stochastische MPC mit indi-
rekter Rückkopplung ist nachweislich rekursiv durchführbar, während die Kosten unter einer
zusätzlichen Annahme von mittelwertfreiem unabhängig und identisch verteiltem (engl.:
independent and identically distributed, i.i.d.) Rauschen zu einer asymptotischen durch-
schnittlichen Leistungsschranke konvergieren, die nicht schlechter ist als bei einem linearen
Regler.

Kapitel 5 In diesem Kapitel wird eine Klasse von verteilten Systemen untersucht, die
lokalen individuellen Zufallsbeschränkungen und multiplikativem Rauschen unterliegen. Der
Hauptbeitrag ist eine auf analytischer Näherung basierende verteilte stochastische MPC,
welche die Erwartungswert-Kostenfunktion analytisch über Mittelwert-Varianz Dynamik
approximiert und lokale Zufallsbeschränkungen mittels der Cantelli-Ungleichung annähert.
Das MPC Optimierungsproblem verwendet LMIs, um die verteilten Kovarianzmatrizen zu
propagieren, welches wir anschließend mit verteiltem Konsensus ADMM lösen. Darüber hin-
aus wird ein verteiltes Entwurfsverfahren für die MPC Bestandteile bereitgestellt, so dass der
Regler vollständig verteilt synthetisiert werden kann und kein zentraler Koordinationsknoten
erforderlich ist. Das MPC Optimierungsproblem erweist sich als rekursiv durchführbar, der
geschlossene Regelkreis als punktweise konvergent, und die Zufallsbeschränkungen werden
zu jedem Zeitpunkt verifiziert.
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Teil II

Im zweiten Teil dieser Arbeit untersuchen wir verteilungsrobuste MPC (engl.: distribution-
ally robust MPC, DR-MPC) Verfahren für eine Klasse beschränkter stochastischer Systeme.
DR-MPC ist ein relativ neues Forschungsgebiet, das sich aus einem praktischen Aspekt
im Hinblick auf die Anwendbarkeit der stochastischen MPC ergibt. Insbesondere setzt die
stochastische MPC voraus, dass die zugrundeliegendeWahrscheinlichkeitsverteilung oder die
Momente exakt bekannt sind, was in der Praxis eine eher restriktive Annahme ist, d.h., die
wahre Verteilung ist selten bekannt und muss aus begrenzten Daten geschätzt werden [126].
Dies ist besonders problematisch, wenn der Prozess der Datengenerierung kostspielig oder
zeitaufwändig ist. Bei DR-MPC wird die Annahme der exakten Kenntnis der Verteilung
(oder Momente) aufgehoben, indem das stochastische Optimalsteuerungsproblem über eine
Klasse von Wahrscheinlichkeitsverteilungen optimiert wird, die in einer so genannten Ambi-
guitätsmenge (engl. ambiguity set) enthalten sind. In Kapitel 6 nutzen wir die Wasserstein
Metrik als Diskrepanzmaß, welches zu einer Wasserstein Ambiguitätsmenge führt, wobei in
Kapitel 7 eine Momenten-basierte Ambiguitätsmenge verwendet wird.

Kapitel 6 In diesem Kapitel werden zwei DR-MPC Verfahren mit Wasserstein Ambigui-
tätsmengen untersucht, bei denen wir Methoden aus der verteilungsrobusten Optimierung
verwenden, um die stochastischen Optimalsteuerungsprobleme in Bezug auf die verteilungs-
bedingte Unsicherheit robust zu gestalten.

In Abschnitt 6.2 wird eine szenariobasierte DR-MPC Methode mit indirekter Rückkopplung
behandelt, bei der nur eine potenziell kleine Menge von historischen Störungstrajektorien
über einen Aufgabenhorizont angenommen wird. Die DR-MPC Methode erweist sich un-
abhängig von der Wahl des Hilfsreglers (engl.: tube controller) als rekursiv durchführbar,
indem die Zustandsbeschränkungen relaxiert werden. Darüber hinaus können durch die
indirekte Rückkopplung harte Begrenzung der Eingangssignale auch bei unbeschränkten
Unsicherheiten auferlegt werden, was bei herkömmlichen MPC Regelungen mit direkter
Rückkopplung nur für beschränkte stochastische Unsicherheiten möglich ist. Als weiteren
Beitrag untersuchen wir für nichtlineare und lineare Hilfsregler, ob Garantien für die Kosten
und/oder für die Einhaltung der Zufallsbedingungen bezüglich der wahren Verteilungs-
funktion gegeben werden können. Anhand eines numerischen Beispiels einer Temperatur-
regelungsaufgabe eines Gebäudes mit vier Räumen wird der Einfluss des Wasserstein-Radius
auf die Erfüllung der Zufallsbedingungen im geschlossenen Regelkreis veranschaulicht.

In Abschnitt 6.3 wird eine analytische DR-MPC Methode mit indirekter Rückkopplung
entwickelt, welche die Zufallsbedingungen mit verteilungsrobusten PRS behandelt. Der
erste Beitrag dieses Abschnitts ist die Erweiterung von PRS auf den verteilungsrobusten
Fall, wobei wir für Wasserstein Ambiguitätsmengen ein szenariobasiertes Entwurfsverfahren
vorschlagen. Unter der Annahme von mittelwertfreiem i.i.d. Rauschen, quadratischen Kosten
und konstanter Hilfsreglerverstärkung kann gezeigt werden, dass die verteilungsrobusten
Varianzkosten unabhängig von den MPC Entscheidungsvariablen sind, was es uns ermöglicht,
diesen Teil bei der MPC Implementierung zu vernachlässigen. Das MPC Optimierungsprob-
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lem ist aufgrund der indirekten Rückkopplung trivial rekursiv lösbar, während das geschlossene
System aufgrund des verteilungsrobusten PRS die Zufallsbedingungen mit hoher Wahrschein-
lichkeit verifiziert.

Kapitel 7 Im vorigen Kapitel haben wir Wasserstein Ambiguitätsmengen betrachtet, die
Werkzeuge des maschinellen Lernens zur Kalibrierung des Ambiguitätsradius verwenden.
In diesem Kapitel stellen wir momentbasierte Ambiguitätsmengen vor, die zwei wesentliche
Vorteile gegenüber Wasserstein für eine Klasse von i.i.d. sub-Gauß’schen Zufallsvariablen
haben. (i) Die Komplexität des resultierenden Optimierungsproblems nimmt nicht mit der
Datenanzahl zu und (ii) der Ambiguitätsradius wird mit angemessener Genauigkeit auf
der Grundlage bekannter Informationen der Verteilung über Konzentrationsungleichungen
abgeschätzt. Daher sind die sich ergebenden Garantien im Vergleich zu Wasserstein stärker.

Der Hauptbeitrag dieses Kapitels ist eine neuartige DR-MPC Methode für eine Klasse von
eingeschränkten stochastischen Systemen, die individuellen Zufallsbeschränkungen für die
Zustände und Eingänge unterliegen. Im Gegensatz zu den vorangegangenen Kapiteln wird
eine vereinfachte affine Rückkopplungsparametrisierung verwendet, um die Kostenfunktion
und Zufallsbedingungen als deterministische Surrogate umzuformulieren. Die rekursive
Machbarkeit wird durch die Beschränkung des Anfangszustands auf einer Linie zwischen
dem gemessenen Zustandsvektor und einer garantiert machbaren Ersatzlösung hergestellt.
Der geschlossene Regelkreis konvergiert nachweislich zu einer asymptotischen durchschnit-
tlichen Leistungsschranke, die nicht schlechter ist als die des äquivalenten linearen quadratis-
chen Reglers. Ein numerisches Beispiel demonstriert die Leistungsverbesserungen für eine
zunehmende Anzahl von Daten.

Kapitel 8 In diesem Kapitel wird eine momentbasierte DR-MPC zur koordinierten Regelung
von Windparks ab, welche die DR-MPC Formulierung aus Kapitel 7 erweitert, um Aus-
gangsvariablen in der Kostenfunktion zu verwenden. Wir integrieren ein ARMAModell, das
als optimaler Prädiktor für den turbulenten Wind dient und zusätzlich den stochastischen
Vorhersagefehler als weißes i.i.d. Rauschen approximiert. Wir definieren eine parametrisier-
bare momentbasierte Ambiguitätsmenge für die Wertepaare von mittlerer Windgeschwindigkeit
und Turbulenzintensität, wobei der zugehörige Ambiguitätsradius anhand der theoretischen
Ergebnisse aus Kapitel 7 bestimmt wird. In einer numerischen Studie untersuchen wir die
Vorteile von DR-MPC gegenüber einem klassischen Scheduler-Ansatz und vergleichen dabei
für verschiedene Windszenarien den effektiven Leistungsgewinn/-verlust.
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