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Abstract

This thesis is primarily motivated by a project with Deutsche Bahn about offer preparation
in rail freight transport. At its core, a customer should be offered three train paths
to choose from in response to a freight train request. As part of this cooperation with
DB Netz AG, we investigated how to compute these train paths efficiently. They should
be all “good” but also “as different as possible”. We solved this practical problem using
combinatorial optimization techniques. In particular, we formulated it as a multi-criteria
shortest paths problem in a time-dependent network with various constraints.

At the beginning of this thesis, we describe the practical aspects of our research collabo-
ration in detail. This includes, for example, the data provided by Deutsche Bahn, our
mathematical models, the algorithmic ideas that we exploit, problems we encountered
and our approaches to solve them. The more theoretical problems, which we consider
afterwards, are divided into two parts.

In Part I, we deal with a dual pair of problems on directed graphs with two designated
end-vertices. The Almost Disjoint Paths (ADP) problem asks for a maximum number of
paths between the end-vertices any two of which have at most one arc in common. In
comparison, for the Separating by Forbidden Pairs (SFP) problem we have to select as
few arc pairs as possible such that every path between the end-vertices contains both
arcs of a chosen pair. The main results of this more theoretical part are the classifications
of ADP as an NP-complete and SFP as a Σp

2-complete problem.

In Part II, we address a simplified version of the practical project: the Fastest Path
with Time Profiles and Waiting (FPTPW) problem. In a directed acyclic graph with
durations on the arcs and time windows at the vertices, we search for a fastest path from
a source to a target vertex. We are only allowed to be at a vertex within its time windows,
and we are only allowed to wait at specified vertices. After introducing departure-duration
functions we develop solution algorithms based on these. We consider special cases that
significantly reduce the complexity or are of practical relevance. Furthermore, we show
that already this simplified problem is in general NP-hard and investigate the complexity
status more closely.
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Zusammenfassung

Diese Arbeit ist durch ein Forschungsprojekt mit der Deutschen Bahn zur Angebotser-
stellung im Schienengüterverkehr motiviert. Das Ziel dieses Projektes war es, Kunden
für eine Güterzuganfrage im Gelegenheitsverkehr drei verschiedene Angebote machen zu
können. Im Rahmen der Zusammenarbeit mit der DB Netz AG haben wir untersucht, wie
man diese Trassen effizient berechnen kann. Diese sollten alle „gut“ aber auch „möglichst
verschieden“ sein. Gelöst haben wir dieses Problem mit Techniken der kombinatorischen
Optimierung. Insbesondere haben wir es dafür als mehr-kriterielles kürzeste Wege Problem
in einem zeitabhängigen Netzwerk unter diversen Nebenbedingungen formuliert.

Zu Beginn dieser Arbeit beschreiben wir die praktischen Aspekte des Forschungsprojektes.
Dazu gehören zum Beispiel die von der Deutschen Bahn bereitgestellten Daten, unsere
mathematischen Modelle, die von uns entwickelten algorithmischen Ideen, aufgetretene
Probleme und unsere Lösungsansätze dafür. Die theoretischen Probleme, welche wir
anschließend betrachten, gliedern wir in zwei Teile.

In Teil I untersuchen wir zwei duale Probleme auf gerichteten Graphen mit zwei ausge-
wiesenen Endknoten. Im Almost Disjoint Paths (ADP) Problem suchen wir möglichst
viele Pfade zwischen den Endknoten, die paarweise maximal eine Kante gemeinsam
haben. Für das Separating by Forbidden Pairs (SFP) Problem sollen möglichst wenige
Kantenpaare gewählt werden, so dass jeder Pfad zwischen den Endknoten beide Kan-
ten eines solchen Paares enthält. Die Hauptergebnisse dieses eher theoretischen Teils
sind die Klassifizierungen von ADP als NP-vollständiges und SFP als Σp

2-vollständiges
Problem.

In Teil II behandeln wir eine vereinfachte Version des praktischen Problems aus dem
Forschungsprojekt: das Fastest Path with Time Profiles and Waiting (FPTPW) Problem.
In einem gerichteten, azyklischen Graphen mit Laufzeiten auf den Kanten und Zeitfenstern
an den Knoten suchen wir einen schnellsten Weg von einem Start- zu einem Zielknoten.
Dabei dürfen wir uns an jedem Knoten nur innerhalb von dessen Zeitfenstern aufhalten
und nur an bestimmten Knoten warten. Wir führen Departure-Duration Functions ein
und entwickeln darauf basierende Lösungsalgorithmen. Neben der Betrachtung einiger
Spezialfälle, welche die Komplexität signifikant reduzieren oder praktisch relevant sind,
zeigen wir auch, dass schon dieses vereinfachte Problem im Allgemeinen NP-schwer ist
und analysieren die Komplexität dieses Problems genauer.
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Chapter 1

Introduction

One of the greatest challenges of our time is the transformation to a more sustainable
society. The transport sector plays a crucial role in this process and an important task in
this context is to get more goods onto the rails. For this purpose, rail freight transport
must become more attractive. Furthermore, as the railway infrastructure is limited, we
must make the best use of the available capacities.

Since 2019, the German railway operator Deutsche Bahn simplifies and improves short-
term train path requests with the web application “Click & Ride”. After specifying train
characteristics and route information customers are offered an automatically constructed
train path within a few minutes. Before this service was available, all train paths for
customer requests were constructed manually, which took considerably longer. So far, the
web application only provides a single train path for each customer request, however.

A research cooperation between Deutsche Bahn and TU Kaiserslautern aims to improve
and to diversify train paths offered to short-term train path requests. More precisely,
the goal of this project was to develop and evaluate methods to algorithmically create
multiple train paths, which should be “as different as possible” in order to offer each
customer a wide range of options. In addition, we respected the utilization of track
sections during the train path construction. From the customer’s point of view, train
paths with low utilization are an advantage as the risk of delay is much lower. On the
other hand, railway operators and other customers benefit from this as well because it
results in a more evenly loaded rail network.

This thesis is motivated by this collaboration but apart from a brief outline of our
practical attainments in Chapter 3, we mainly focus on more theoretical problems related
to and inspired by this project. The treatment of these theoretical problems is divided
into two parts. In Part I, we deal with the almost disjoint paths and separating by
forbidden pairs problems. We formally introduce them, analyze their relation, and resolve
their complexity statuses. In Part II, we focus on the fastest path with time profiles
and waiting problem. We examine the temporal component of the problem, derive
solution algorithms, and identify classes of instances on which we can find fastest paths
in polynomial time.
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1 Introduction

Part I: Almost Disjoint Paths and Forbidden Pairs

We consider the Almost Disjoint Paths (ADP) and Separating by Forbidden Pairs (SFP)
problems, which have not been considered before and both of which we introduce. They
belong to the field of graph theory, and they are inspired by both common practical and
well-known theoretical problems. An instance of either problem is given by a directed
graph with a source and a target vertex.

In the almost disjoint paths problem ADP we are looking for a set of paths from the
source to the target from which every two paths are almost disjoint, meaning that every
two paths are only allowed to have at most one arc in common. It exhibits parallels to the
maximum flow problem and to the problem of finding disjoint paths, whose disjointedness
requirement it relaxes in a natural and simple way. By requiring the paths to be almost
disjoint we have an elementary criterion formalizing that we want sufficiently dissimilar
paths. This does not only fit to the setting in our railway project where customer requests
should be answered with various different train paths. Similar requirements also apply to
other practical problems, for example in the construction of alternative routes.

In the separating by forbidden pairs problem SFP we select pairs of arcs such that every
path from the source to the target contains both arcs of at least one chosen pair. As
such, it is reminiscent of the minimum cut problem, where instead of choosing one arc,
we now have to choose a pair of arcs on each path. In addition, the SFP adds another
level on top of the already well-researched path avoiding forbidden pairs problem. This
brings us back full circle to our practical project: with the latter problem we can model
the requirement that train paths must not contain any cycles.

Our newly introduced problems have conceptual and content similarities to the maximum
flow and to the minimum cut problem. It is therefore not surprising that also the almost
disjoint paths and the separating by forbidden pairs problems form a dual pair. Unlike
the maximum flow and the minimum cut problems, however, we have only weak duality
for our problems. Another difference concerns the complexity of these problems, the
study and classification of which we focus on in this thesis.

We deal with ADP and SFP in the first part of this thesis, and divide our results into
three chapters. First, in Chapter 4, we formally introduce ADP and SFP, relate them
to well-known problems from the literature, and focus on their relation to each other.
With the help of integer programming formulations and suitable relaxations we prove
that the problems form a dual pair. We construct a class of examples for which their
duality gap is unbounded, which then, in particular, shows that ADP and SFP are only
weakly dual. However, we show that strong duality holds if we restrict the graph class to
those graphs that have a cut with a single outgoing arc. In this case, the problems are
not only strongly dual but also polynomial time solvable.

Thereafter, in Chapters 5 and 6, we look at the problems ADP and SFP separately,
where we mainly focus on their complexity. Starting with ADP in Chapter 5, we develop
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a dynamic program that, given a natural number k, allows us to compute up to k almost
disjoint paths on directed acyclic graphs. Moreover, we extend this approach so that it
also works for any directed graph. We obtain that we can solve the almost disjoint paths
problem in polynomial time when assuming this parameter k to be constant. In general,
however, ADP is NP-complete, which we prove by a reduction from the independent set
problem. Since all graphs that we construct for this are acyclic, the almost disjoint paths
problem remains NP-complete if we restrict the graph class to directed acyclic graphs.

In Chapter 6, we address the separating by forbidden pairs problem and, especially, its
complexity. The main result of this chapter classifies SFP as Σp

2-complete, which we prove
by a reduction from the quantified satisfiability problem with two alternations Σ2SAT.

Part II: Fastest Paths with Time Profiles and Waiting

The third problem that we introduce and consider in this thesis is the Fastest Path
with Time Profiles and Waiting (FPTPW) problem. It is much closer to the train path
construction from the practical project than the previously described problems. For this
reason, we consider our fastest paths problem from a more algorithmic point of view.
Instead of focusing on the complexity of the problem itself (as we do for ADP and SFP)
we mainly develop an algorithm whose running time we analyze.

An instance of the fastest path with time profiles and waiting problem consists of a
directed acyclic graph. Every arc has a duration, and every vertex contains time windows
during which we are allowed to be there. In addition, the instance specifies for each
vertex whether we are allowed to stop and wait there or whether we have to go straight
through. For given source and target vertices, the task is to find a fastest path that
complies with all additional requirements. Hence, a solution to this problem is a path
from the source to the target that is enriched with departure times at the vertices it
contains.

Problems similar to FPTPW occur not only in railway routing but also in the context
of vehicle scheduling. In this area, however, we usually have slightly different conditions
for the feasibility of solutions regarding waiting. The main reason for this is that cars
can be parked almost anywhere without problems and in doing so they block much less
infrastructure than trains do. But even if we only compare railway routing problems
with each other, many differences come to light. The way in which the infrastructure,
the time dependencies, and the feasible train paths are represented varies greatly. One
reason for this is that managing and operating railroad traffic requires an enormous
amount of effort. Due to very limited infrastructure, restricted maneuverability, and
comparatively long breaking distances of trains, very precise timetables have to be drawn
up in advance. To guarantee safety and to coordinate the trains, a lot of restrictions
have to be considered. Thus, the nature of a railway routing problem highly depends on
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1 Introduction

which components are already precomputed and available as input and which restrictions
have to be ensured within the problem. Therefore, the theoretical problems that are
considered in this context exhibit fundamental differences.

We deal with our fastest path with time profiles and waiting problem in Part II of this
thesis. Basically, the task is to find a fastest path, that is, one with minimum duration.
What distinguishes our situation from several similar problems is that we determine the
duration of a path based on its actual departure and arrival times and not in relation to
a fixed time point (for example an earliest start time). Therefore, we cannot easily adapt
standard shortest path algorithms to FPTPW. Instead, we develop an algorithm that
propagates functions as labels in Chapter 10. Such a function is associated to a specific
vertex. It maps the possible departure times to the shortest durations to get there,
which is why we call them departure-duration functions. In Chapter 9, we introduce
these functions and analyze their structure. A key feature for their use in our fastest
path algorithms is their piecewise linearity. Furthermore, we classify the breakpoints of
the departure-duration functions and connect these to the paths that represent feasible
solutions. These connections allow us to prove in Chapter 11 that our fastest path
algorithm requires only polynomial time for certain classes of instances.

By taking a step back, we can ask the question of whether a valid path exists at all.
To answer that question, we do not even need the departure-duration functions yet. A
method that can provably deny this question restricts all time windows at the vertices
to those time points that are used by any valid solution. This procedure, which we
develop in Chapter 8, automatically synchronizes all the time windows. Since even this
simpler problem is NP-complete, it is not surprising that this algorithm might require
exponential time. However, if waiting is allowed at every vertex, the synchronization can
be performed in polynomial time, and also our shortest path algorithm remains in this
complexity class. Finally, we collect and refine all our complexity-related results about
FPTPW in Chapter 12.

Literature and Publications

Because this thesis contains quite different subjects, we refrain from summarizing related
literature at this point and refer to Sections 3.3, 4.3 and 7.2 for detailed literature
information tailored to the respective topics.

A large portion of Part I concerning the almost disjoint paths and the separating by
forbidden pairs problem is joint work with Oliver Bachtler and Sven O. Krumke. It is
already published in [BBK22].
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Chapter 2

Mathematical Preliminaries

In this chapter, we list relevant concepts and introduce the notation we use throughout
this thesis. We assume a certain basic knowledge of these topics. Thus, we do not
introduced them in detail, but only roughly to make the notation clear. However, we
also refer to further literature.

2.1 Fundamentals

Numbers We use Z, N, Q, and R to denote the set of integers and the sets of natural,
rational, and real numbers, respectively. To restrict these sets we use self-explanatory
subscripts, such as R≥0 = {x ∈ R : x ≥ 0}. The natural numbers contain zero. To
explicitly exclude zero we write N>0. If we have to extend the real numbers by infinity,
we write R∪ {∞}. We define the minimum of the empty set to be infinity min∅ =∞.

Sets and Subsets Let S be a set. By |S| we denote its cardinality, by 2S its power set,
and by

(
S
k

)
the set of all k-element subsets of S. Thus, it is |2S| = 2|S| and |

(
S
k

)
| =
(|S|
k

)
.

We denote the topological interior of a set T ⊆ R by

int(T ) = {t ∈ T : (t− ε, t+ ε) ⊆ T for some ε > 0}.

For T1, T2 ⊆ R we write

T1 + T2 = {t1 + t2 : t1 ∈ T1, t2 ∈ T2} and
T1 − T2 = {t1 − t2 : t1 ∈ T1, t2 ∈ T2}.

If T2 = {c} ⊆ R, we also write T1 ± c instead of T1 ± T2.

Functions For a real-valued function f : X → R and ε ∈ R we define f + ε : X → R
by x 7→ f(x) + ε. Analogously, we define f − ε. In this thesis, we only deal with the case
X ⊆ R. If f is piecewise linear, we denote its number of linear pieces by #p(f).
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2 Mathematical Preliminaries

2.2 Graphs and Networks

For detailed introductions to and rigorous definitions of graphs and networks we refer to
the text books of Diestel [Die00], West [Wes00], as well as Ahuja, Magnanti, and Orlin
[AMO93] although we deviate slightly from their notations.

Directed Graphs A (directed) graph G consists of a finite non-empty vertex set V (G),
a finite arc set A(G), and mappings that assign every arc a ∈ A(G) one start-vertex α(a)
and one end-vertex ω(a). However, we normally write G = (V,A) with V = V (G) and
A = A(G), and assume the mappings are given implicitly.

Two arcs are parallel if they have the same start-vertex and the same end-vertex. We
represent an arc with start-vertex u and end-vertex v by uv if there is no risk of confusion
(for example, if the graph has no parallel arcs). For an arc uv we call u a predecessor of v
and v a successor of u. For a vertex v we denote the set of its predecessors by N in

G (v)
and the set of its successors by Nout

G (v). The sets of all arcs with end-vertex v or with
start-vertex v are denoted by δinG (v) and δoutG (v), respectively. Indegree degin

G(v) = |δinG (v)|
and outdegree degout

G (v) = |δoutG (v)| of v are the corresponding cardinalities and the
degree degG(v) of v is the sum of in- and outdegree. If the graph is clear from the context,
we will omit the subscript G. We write ∆(G) for the maximum degree, ∆in(G) for the
maximum indegree, and ∆out(G) for the maximum outdegree of the graph G.

The inverse graph G−1 has the same vertex and arc set as the graph G but every arc
reversed. That is, G−1 has the arc uv if and only if G has the arc vu. Formally, this can
be defined by exchanging the mappings α and ω of start- and end-vertices. For a subset
S ⊆ V (G) of the vertices of a graph G, the induced subgraph G[S] has the vertex set S
and contains exactly the arcs a ∈ A(G) that have both endpoints α(a), ω(a) ∈ S in the
restricted vertex set S.

Undirected Graphs An undirected graph G is of a finite non-empty vertex set V (G)
with a finite edge set E(G) and a mapping that assigns every edge e ∈ E(G) two end-
vertices γ(e) ∈

(
V (G)
2

)
. As for directed graphs we usually write G = (V,E) with V = V (G)

and E = E(G), and assume the mapping γ to be given implicitly. We also write uv or vu
for an edge e ∈ E with γ(e) = {u, v}. Note that this definition of undirected graphs
prevents self-loops.

Within this thesis, almost all considered graphs are directed. The only exceptions are
graphs for instances of decision problems, which we use in reductions.
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2.3 Complexity Theory

Paths A path in a directed graph G is a finite sequence P = (v0, a1, v1, . . . , ak, vk) of
vertices and arcs such that, for 1 ≤ i ≤ k, the arc ai has start-vertex α(ai) = vi−1 and
end-vertex ω(ai) = vi [see walk in Wes00, Definition 1.2.2]. We call v0 the start-vertex and
vk the end-vertex of the path. A u-v-path is a path with start-vertex u and end-vertex v.
Since we abbreviate an arc a from u to v by uv, it has no added value to include the
arcs in the notation for a path. Thus, we usually describe a path only by its vertices
P = (v0, . . . , vk).

By P |uv we denote the restriction of the path P to the subpath between the two vertices
u and v, which we assume to be among v0, . . . , vk. More precisely, we even assume that
u precedes v on the path P . If the end-vertex vk of the path P equals the start-vertex of
a path P ′, we can concatenate P and P ′ and write P ◦ P ′.

Cuts For two vertices s and t of a graph G = (V,A), an s-t-cut is a partition (S, T ) of
the vertex set V into two sets such that s ∈ S and t ∈ T . We denote by δout(S) ⊆ A all
arcs with start-vertex in S and end-vertex in T . The cardinality |(S, T )| of the cut is
defined as the amount |δout(S)| of arcs leaving S.

Networks We use the term network to denote a graph associated with further informa-
tion, such as capacities on arcs or demands on vertices. Thus, all relevant information on
an instance of a specific problem can be encoded in a network. For example, to represent
an instance of the maximum flow problem as stated in [AMO93, Chapter 6], we would
define a network consisting of a directed graph, arc capacities, and designated source
and sink vertices.

2.3 Complexity Theory

The most important complexity classes for this work are P and NP. Roughly speaking,
the class P contains all decision problems which are solvable in polynomial time by
a deterministic algorithm. Similarly, the class NP contains those problems that are
verifiable in polynomial time by a deterministic algorithm. A problem is NP-hard if it is
at least as hard as every problem in NP. An NP-hard problem is NP-complete if it is
also contained in NP.

Another complexity class, which is relevant for SFP in Chapter 6, is the class Σp
2 from

the second level of the polynomial hierarchy. One way to characterize this class is via
oracle machines. Again roughly speaking, the class Σp

2 contains those problems that are
verifiable in polynomial time by a Turing machine that has access to an oracle for an
NP-complete problem. This oracle essentially allows answering decision problems for
the corresponding problem in constant time.

7



2 Mathematical Preliminaries

For an introduction to the classes P and NP with a comprehensive list of NP-complete
problems we refer to the book of Garey and Johnson [GJ79]. For more detailed introduc-
tions and further insights into Σp

2 we refer to Papadimitriou [Pap94, Section 17.2], Arora
and Barak [AB09, Section 5.1], and Haan [Haa19, Section 2.2.1]. Of course, these books
also contain chapters about the classes P and NP.

We always consider (polynomial-time) Karp reductions when proving the NP- or Σp
2-

hardness of problems. For more information on this aspect we again refer to Arora and
Barak [AB09, Section 2.2].

If we write that a problem is polynomially solvable or solvable in polynomial time, it
always means that it is solvable in a time that is polynomial in the input size.

Additionally, in Section 5.4 we prove the APX-hardness of MaxADP. Roughly speaking,
the complexity class APX consists of those optimization problems (from the class NPO)
that can be approximated up to a constant factor in polynomial time [see ACG+99,
Definition 3.9]. This latter class NPO essentially contains the optimization problems
corresponding to decision problem from NP [see ACG+99, Definition 1.17].

When proving APX-hardness for problems in NPO we use L-reductions as defined
in [ACG+99, Definition 8.4], [Pap94, Section 13.2], or [PY91]. For more information
about optimization problems, approximation algorithms, and approximation preserving
reductions we refer to the textbook of Ausiello et al. [ACG+99] in general.

2.4 Linear and Integer Linear Programming

A few times in this thesis, we use linear and integer linear programs to formalize
optimization problems. As this is a well-researched topic and lots of literature is available,
the usage of these concepts allows us to easily obtain profound results. We distinguish
Linear Programs (LP) that only contain fractional variables, Integer Programs (IP) that
only contain integer variables, and Mixed Integer Linear Programs (MIP) that might
contain fractional as well as integer variables. For an introduction to this topic we refer
to Grötschel, Lovasz, and Schrijver [GLS88].

2.5 Multi-Criteria Optimization

Although the mathematical problems considered in Parts I and II of this thesis are
exclusively single-criteria, the practical project is of an inherently multi-criteria nature.
For its description in Chapter 3, we take up only the very basic concepts in multi-criteria
optimization and refer to [Ehr05] for a detailed introduction to this topic.
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2.5 Multi-Criteria Optimization

Given a set X of feasible solutions and an objective f : X → Rp we are mostly interested
in efficient solutions. Here, a solution x̂ ∈ X is efficient or Pareto optimal if no other
solution has an objective vector that is at least as good in every and strictly better in at
least one component. The image f(x̂) of an efficient solution x̂ is called non-dominated.

In our project, the feasible solutions correspond to paths in a graph. Since “efficient” is also
used in common parlance, we refrain from writing “efficient paths” in the project descrip-
tion and instead use “non-dominated paths” in order to avoid confusion. Mathematically
speaking, we identify the paths with their objective vector.
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Chapter 3

Application Background

In this chapter, we focus on our project with Deutsche Bahn, which motivated this
thesis. We give an overview of the tasks and goals of this cooperation and work
out the connection to the theoretical parts of this thesis. In short, the project was
about the diversification of train paths offered to short-term train path requests in
rail freight transport.

3.1 Basic Concepts and Tasks

In essence, the project with DB Netze was about preparing offers for rail freight transport.
Like Deutsche Bahn in Germany, railroad network operators offer industry customers
the ability to reserve train paths (German Trassen) for freight trains. A customer
request consists of route and train specifications. The route specification includes origin,
destination, and potentially some intermediate points. At least one of them must be,
but also several may be, provided with a desired departure or arrival time. The train
specification contains information about the train, such as length, weight, maximum
speed, or the type of locomotive. The task of the network operator is now to offer train
paths for such a customer request.

A train path aggregates all the relevant spatial and temporal information about a possible
route for the train. For every used track section, it contains exact entry and exit times.
To meet the former requirements the course must lead from the origin via all intermediate
points to the destination. Furthermore, the train path must approximately adhere to
all specified departure and arrival times. To be compatible with the existing traffic, the
train path may only use a track section if it is not already occupied in the required time
interval. That also includes respecting a specific amount of buffer time (as trains may
not run arbitrarily close) and track sections that lie behind break paths (these must be
free in the event that the train does not stop in time).

Remember that we differentiate between tracks and train paths : by tracks we mean only
the raw infrastructure whereas train paths add departure and arrival times to tracks.
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3 Application Background

The computation of train paths depends significantly on the representation of the
rail network and the existing traffic. During the project, this representation changed
fundamentally. The reason for this was to adapt to a change in the data structures used
internally by DB Netze in order to be able to work with up-to-date data. We describe
the data structures in the two project phases to Sections 3.4 and 3.5. In these sections,
we also describe for each of the two cases how to address the computation of train paths
and discuss challenges to be overcome.

In addition to the public transport timetable there is also a (long-term) working timetable
for freight transport, where customers can apply for train paths to requests that are
known in advance or that are required periodically. Furthermore, customers can order
train paths at short notice. So far, these short-term requests have mostly been answered
manually. The manual construction of these train paths has been technically supported
for a long time but a fully automatic construction has only been in practical use for a
few years. However, until now, this construction only works if the request meets certain
conditions, and so far a customer is only offered a single train path.

The primary goal of this project was to investigate how customers could be offered various
and especially different train paths. However, the project was also about the limited
remaining capacities and how to use them optimally. These two aspects raise a number
of questions, some of which are: How can different train paths be computed? What
does different mean in this context? How should different train paths be evaluated and
compared? Which paths should be offered to the customer? How do the individual train
paths influence the remaining capacities, and how should this be measured?

The requirement that several, suitably different offers should be presented does not only
occur in this setting. For example, car drivers also expect the navigation system to
provide alternatives with less tolls or with a lower risk of traffic jams. These types of
problems inspired us to consider the almost disjoint paths problem in Chapter 5.

3.2 Rating and Selecting Train Paths

We mainly focus on three parameters in order to evaluate train paths: distance, duration,
and deviation. The distance is the length of the route, the duration is the total travel
time including waiting, and the deviation is the sum of all deviations from the desired
departure or arrival times specified by the customer. Moreover, we also include the
utilization along the train paths in the selection process to avoid sections that are already
heavily used. Additionally, we respect differences between the geographic courses of train
paths as these play an important role in the subjective perception of difference. Thus,
comparing and selecting train paths is an intrinsically multi-criteria problem.
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3.3 Literature and Related Problems

Selection Overview First, we need a set of train paths from which to select. In this
section, we assume such a set to be given and refer to Sections 3.4 and 3.5 for more
information about computing such a set. Our selection process then works as follows.
Initially, we rate the train paths by distributing points that measure how good a train
path is. Hereafter, we successively choose the best-rated of the remaining train paths
and adjust the scores of the rest. This adjustment is based on the geographic difference
to the just selected train path. This procedure is repeated until we obtain the desired
amount of paths.

Initial Scores The initial scores are determined based on scores for the aforementioned
criteria, which we compute independently of each other. For distance, duration, and
occupancy we put the corresponding value of every train path in relation to the best
value among all train paths. That is, we divide, for example, the distance of every train
path by the distance of the shortest path to obtain detour factors. This way we get a
normalized value for every criterion. Only for the deviation we use absolute values as
these are comparable, no matter how different the route specifications are. Based on
these values we then compute points that penalize large discrepancies exponentially. The
overall initial score of a train path is then composed of a weighted sum of the penalty
points for the different criteria.

Geographic Difference The geographic difference between two train paths is deter-
mined by two measures. First, we look at the geographic courses and compute the area
spanned between them. Again, this area is normalized based on the linear distance
between origin and destination. Second, we use the railway facilities on both train paths.
On the one hand, we compare how many facilities on the paths coincide and how many
are contained in only one path. On the other hand, we also consider the smallest distances
between these railway facilities.

3.3 Literature and Related Problems

In the course of climate change and the movement toward a more sustainable transport
sector, rail freight transport has become an increasingly important topic. This triggers a
lot of research in this area, especially since the rail infrastructure is limited and already
heavily utilized today. We focus on the literature that is related to our situation.

Some literature specifically addresses the problem of scheduling additional trains into an
existing timetable. However, the way infrastructure, existing traffic, track occupancies,
and further requirements are modeled differs a lot. Also the level of detail and the
degree of abstraction varies strongly. Finally, a large part of the literature formulates the
problem as an integer linear program whereas we focus on network algorithms.
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3 Application Background

A model quite similar to our setting is described by Haehn, Ábrahám, and Nießen in
[HÁN20]. They also investigate the task of scheduling freight trains under consideration
of the existing traffic that is already scheduled on the network. Comparable to the
problem in the second phase of our project they specify a train path by a timed path,
which is a path in the underlying network where each vertex of the path is associated
with departure and arrival times. A bit different to our setting is the underlying graph,
which in [HÁN20] reflects the raw railway network in a very detailed way. This network
is independent of both the currently considered train and the existing traffic, and it
does not contain temporal information. It reminds of the topological network in our
first phase (cf. Section 3.4) but the level of detail and the way they handle the time is
closer to the snippet graphs in our second phase (cf. Section 3.5). The main difference to
our time-dependent setting is that the duration of a path in [HÁN20] is the difference
between the arrival and a fixed earliest starting time tstart. In contrast, our duration
is the time span between the actual departure and the arrival. This small difference
changes the problem fundamentally as we always have to keep track of the corresponding
departure times. While we have to use functions as labels for fastest path algorithms in
the second phase of the project, Haehn, Ábrahám, and Nießen can stick to single values.
To compute fastest timed paths they adapt methods of a more theoretically focused
paper [HP74] by Halpern and Priess to their setting. For more information, especially
regarding [HP74], we also refer to the literature overview in Section 7.2.

Except from the algorithmic approach in [HÁN20] the further literature is predominantly
based on mixed integer linear programming formulations.

The routing of freight trains with fixed existing traffic explicitly on the German railway
network is considered in [BKS+16] and [Klu18]. The freight train routing problems
defined therein assume a much coarser model compared to our situation. However, they
look at the problem from a long-term, more strategic perspective and also schedule
multiple trains at once. To this end, they build time-space networks and formulate the
problem as a mixed integer linear program.

Cacchiani, Caprara, and Toth use similar methods in [CCT10] to schedule additional
trains into an existing timetable. They also focus on freight trains and use a time-space
network together with integer linear programming. As in [Klu18] they schedule multiple
trains simultaneously. In contrast, they have a much more detailed model and thus
consider the problem on a railway corridor rather than on the complete network.

Another work dealing with scheduling additional trains in existing timetables (related to
the high-speed railway network in China) is [Tan14] by Tan. A major difference to our
setting is that he allows modifying the given timetable which is excluded in our situation.
However, Tan’s PhD thesis covers different variants of the problems and contains a clear
literature overview with helpful tables comparing problems with various characteristics.
Tan assumes an initial cyclic timetable and mainly investigates mixed integer linear
programs exploiting the periodic structure of constraints.
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3.4 The First Phase: A Time-Expanded Network

Mu and Dessouky also develop methods to schedule multiple freight trains in [MD11].
They use a detailed model and tackle the problem on large networks by heuristically
decomposing it into smaller subproblems, which are then solved using mixed integer
linear programs.

Weiß, Opitz, and Nachtigall describe an automated train path construction to schedule
freight trains between already existing traffic in [WON14]. The approach is based on the
software system TAKT [GWON12; Opi09] and uses the functionalities it provides.

Burdett and Kozan follow in [BK09] a heuristic approach to route multiple trains. They
formulate the scheduling additional train services problem as a hybrid job shop scheduling
problem in which trains correspond to jobs and track sections to machines. They schedule
the trains one after the other in a greedy manner and make use of backtracking. To
further improve the solution they apply a simulated annealing approach.

In the second phase of our problem we also take the utilization in the railway network
into account. The goal is here to avoid heavily occupied track sections, which directs to
[FGN09]. There, Flier, Graffagnino, and Nunkesser consider the scheduling of trains on
corridors while minimizing the risk of delay. They use a time-expanded network in which
they compute a set of train paths that are Pareto optimal with respect to travel time
and risk. To determine the risk of a connection they use regression models based on real
world delay data.

3.4 The First Phase: A Time-Expanded Network

We describe data, algorithms, and challenges in the first phase of the project. Here, the
train path construction reduces to a shortest path problem in a time-expanded network
whose sheer size is challenging. The need to avoid geographic cycles causes further
difficulties as they necessitate resource constraints that make the shortest path problem
much harder. In order to find various “good” paths, we compute all non-dominated
solutions with respect to distance, duration, and deviation. However, before we describe
our train path construction, we have to explain how train paths are represented and
which data is given.

Train Paths in the Time-Expanded Network

In the first phase of the project, the railway network is cut into many track segments that
are equipped with several time corridors throughout the planning period. A time corridor
is represented by a departure and an arrival time, and it is associated with minimum
requirements on train specifications. Together with the underlying track segment we
refer to such a time corridor as train path segment.
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A train may only use a train path segment if it meets the required specifications. For
example, it must be able to reach a certain speed in order to be able to achieve the
desired arrival time at the end of the track section. Similar restrictions apply for other
criteria such that a train also needs a minimum breaking power and can only have a
certain length. Since a train path segment corresponds to a track segment, it has a
specific length to which we refer as distance. With the associated departure and arrival
times we can also assign a duration to every train path segment.

Time-Expanded Network All train path segments are connected to form a large
time-expanded network. For two train path segments to fit together, arrival time and
destination of the earlier one have to match with departure time and origin of the later
one. However, further requirements have to be fulfilled as well, for example because the
effect of switches depends on the passage direction. The arcs of the resulting network
correspond to the train path segments and the vertices represent locations at certain
points in time.

In particular, the time-expanded network is independent of the customer requests. The
arcs represent track sections in time corridors during which these are still unoccupied.
The structured arrangement in a graph locally models which train path segments we can
connect. Usually, the planning period is one day with additional train path segments
that start the previous day and others that last into the following day.

Train Paths A train path for a customer request corresponds to a path in the time-
expanded network. Recall that a customer request consists of route information and train
specifications. Concerning the route we are given an origin and a destination, potentially
with desired departure and arrival times.

The train path has to start in a vertex that represents the origin at a time close to the
desired departure. Accordingly, it has to end in a vertex of the destination at a time
close to the desired arrival time. If intermediate points are specified, the train path has
to respect these, too. Furthermore, only suitable arcs may be contained. That is, the
train path may only use arcs for which the train specifications from the customer request
fulfill the requirements of the respective train path segment.

We evaluate a train path, as already described in Section 3.2, with distance, duration,
and deviation. In the first phase, we do not take the track utilization into account. The
distance of the train path is the sum of the distances of the train path segments it consists
of. The duration is the difference of the arrival time at the destination and the departure
time at the origin. The deviation of a train path is calculated from the desired departure
and arrival times. For every location that has a desired time we check when the train
path passes through there and sum up the corresponding deviations.
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3.4 The First Phase: A Time-Expanded Network

Computing Train Paths in the Time-Expanded Network

To compute a broad range of different train paths for a customer request, we determine
all non-dominated paths. In order for this to be fast enough in practice, however, we
have to restrict the time-expanded network to a sufficiently small subgraph. To speed up
this restriction too, we need the topological network. In the following, we deal with these
aspects and with the need to avoid geographic cycles.

Multi-Criteria Shortest Path Algorithm We determine all non-dominated paths with
a multi-criteria label-correcting algorithm similar to [Ehr05, Algorithm 9.2]. At every
vertex v of the time-expanded network we store a label containing distance, duration,
and deviation of every non-dominated path from a source vertex to the vertex v. To
relax an arc uv during the algorithm we add distance, duration, and deviation of the
train path segment corresponding to the arc to the labels stored at u. We unite these
with the labels already at v and only keep the non-dominated ones.

Topological Network The vertices of the time-expanded network correspond to loca-
tions at certain points in time. Merging all vertices corresponding to identical locations
results in the topological network. It solely represents spatial information and only
contains a very limited amount of temporal information. Each of its arcs represents a set
of arcs from the time-expanded network. We define distance (and duration) of arcs in
the topological network as the minimum distance (duration) of represented arcs in the
time-expanded network. Thus, shortest paths in the topological network (with respect to
distance or duration) are lower bounds for paths between the corresponding locations in
the time-expanded network. Due to the small size of the topological network, we can
compute shortest path trees quickly.

Selecting Subgraphs We are only interested in “sufficiently good” solutions. A formal-
ization of this vague statement on the part of Deutsche Bahn in this project phase is
that we only want to offer paths whose distance (and duration) is at most twice as large
as the distance (duration) of a shortest (fastest) path. Before we run the aforementioned
multi-criteria shortest path algorithm, we restrict the time-expanded network to exactly
the vertices that are contained in paths of appropriate distance and duration.

First, we restrict the time-expanded network with respect to the distances. That is, we
compute the subgraph that consists of the vertices on paths that are at most twice as
long as the distance of a shortest path. For this we use a multi-source A*-algorithm
[HNR68] with the distances in the topological network as lower bounds. In a first run,
we compute the distances from the source vertices until we know the distance D of a
shortest path in the time-expanded network. We continue with this run until a vertex
for which the known distance from the source plus the heuristic distance to the target
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exceeds 2D. That is, we stop this run when we first see a vertex that is guaranteed not
to lie on a feasible path. Thereafter, in a similar second run, we use the A*-algorithm in
the inverse graph to determine for every vertex on a feasible path the shortest distance
to a target vertex. As spatial subgraph we can select all vertices for which the distances
from a source vertex and to a target vertex sum up to at most 2D.

Second, we can further restrict this spatial subgraph to all vertices that are also contained
on paths that are fast enough. For this we use two runs of a multi-source Dijkstra algorithm
[Dij59] (the second again in the inverse graph starting from the target vertices).

We start with the spatial subgraph because the topological network provides much better
lower bounds for distances than for durations, which is presumably due to the inherent
spatial structure of the topological network. The A*-algorithm allows us to translate
the good lower bounds for distances into a fast selection of the spatial subgraph. For
the further restriction we use Dijkstra’s algorithm as the reduced search space does not
compensate the overhead for the A*-algorithm in this situation.

Avoiding Geographic Cycles A requirement we have to cope with is that train paths
must not contain geographic cycles. That is, we are not allowed to use two vertices of the
time-expanded network that correspond to the same location. This requirement has less
objective mathematical reasons than rather subjective ones. Driving a cycle feels like
a detour although it might actually be the fastest or shortest path possible. Note that
geographic cycles in a train path make sense in principle since it is not always possible
to wait because this occupies track sections, which might be required by other trains.

We incorporate this restriction into our algorithms by introducing resources for the
locations. This translates the shortest path problem into one with additional resource
constraints, which makes the problem significantly harder. Note that in general the
resource constrained shortest path problem is NP-complete [HZ80] whereas we can find
a shortest path without resource constraints in polynomial time. In fact, introducing
a resource constraint for every location would ensure that we could barely remove any
labels in the multi-criteria label-correcting algorithm (a path can only dominate another
if its used locations are a subset of those of the other). This would result in unacceptably
large running times.

Instead, we first compute the non-dominated paths without any resource constraints. We
check which locations are repeatedly contained in one of the non-dominated paths, add
resource constraints for them, and run a resource constrained multi-criteria shortest path
algorithm. We iterate this procedure until none of the non-dominated paths contains a
geographic cycle anymore.
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3.5 The Second Phase: A Time-Dependent Network

We describe data, algorithms, and challenges in the second phase of the project. During
the construction of train paths we have to actively manage the temporal component. The
flexibility in determining departure times opens up a lot of possibilities on the one hand,
but complicates the train path construction enormously. To compute various paths, we
concentrate on a weighted-sum approach.

Train Paths in the Time-Dependent Network

In contrast to the setting in the first phase of the project (see Section 3.4) we now have an
individual network for each customer request. The time-dependent model is much more
detailed. This complicates the train path computation but opens up new capabilities in
return. For example, this model allows us to respect the occupancy of track segments,
which in turn makes it possible to better utilize remaining capacities.

Snippet Graph The relevant data for a customer request is bundled in a directed
acyclic graph. In this graph, the vertices represent track segments and the arcs indicate
which of them the train can use consecutively. In this phase, the track segments are
associated with further information, too. We refer to a vertex representing such a segment
together with all associated data as a snippet and therefore call the directed acyclic graph
a snippet graph. The graph has one origin and one destination snippet.

Unlike in the first phase, however, the given temporal information associated with the
snippets is relative and not absolute. For every snippet, a speed profile, specifically
adapted to the customer request, determines when the train is where on the segment. To
this end, the track segment is further divided into single infrastructure elements, for each
of which the speed profile provides an interval [t0, t1]. A train starting this snippet at a
time t then occupies such an infrastructure element during the interval [t+ t0, t+ t1].

The speed profile also provides a duration of a snippet. A train can only wait at the end
of snippets at which this is permitted. If waiting is allowed, the snippet also provides the
infrastructure elements that the train occupies while waiting there.

Train Path A train path in this setting is given by a path from the origin to the
destination snippet on which every snippet is assigned a departure time. These departure
times must fit to the time profiles of the snippets. That is, we may first depart at a
snippet after we arrive at the predecessor. Furthermore, there may only be waiting time
in between the arrival at the end of a snippet and the departure at the subsequent snippet
if waiting is allowed there.
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Existing Traffic Another restriction on the departure times is that they must not cause
conflicts with already scheduled trains. For every train of the existing traffic we are given
the infrastructure elements it uses, each associated with an absolute time interval during
which it is occupied by the train. When specifying the (absolute) departure times for
the snippets on the path in our snippet graph, we have to ensure that occupancies of
infrastructure elements of our train always have a certain time gap to occupancies by
already scheduled trains.

In Part II of this thesis, we simplify the problem of constructing train paths in this
time-dependent setting into the Fastest Path with Time Profiles and Waiting (FPTPW)
problem. Although we skip many requirements and only consider fastest paths without
respecting distance or deviation, the resulting problem is still quite similar to the practical
one described here.

Computing Train Paths in the Time-Dependent Network

Unlike in the time-expanded setting we have to actively manage the time information
while computing train paths. We restrict departure times to seconds (making them
integers), but although the snippet graphs consist of relatively few vertices, very many
possible time points have to be considered. To overcome these difficulties we first compute
synchronized time profiles for the snippets and then run a shortest path algorithm that
propagates functions as labels. However, it is far too cumbersome to compute all non-
dominated train paths in this setting. Instead, we concentrate on the weighted-sum
approach and compute shortest paths for various weights in order to obtain a diverse set
of train paths. We now describe these aspects in more detail and finally also examine
how we can respect the utilization in the network.

Precomputing Time Profiles Before we actually compute train paths, we determine
for every snippet the time intervals during which we might depart, arrive, or wait. On
the one hand, this is based on the desired departure and arrival times of the customer
and on the other hand on the existing traffic. We use a maximum waiting time to bound
these time intervals in case this is not implied by other track occupancies.

For a snippet we define departure (arrival) time profiles as the union of all time intervals
during which we might depart (arrive). However, we not only determine these time
profiles separately for all snippets but also synchronize them across the snippet graph.
This way we ensure that for any point in a departure time profile there is a train path
from the origin to the destination that departs exactly at this point. Accordingly, we
reduce the search space of the much more complex train path computation as much as
possible. For more details on the synchronization we refer to our theoretic considerations
on this topic in Chapter 8.
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Computing Train Paths As highlighted above we have to keep track of the temporal
component while computing train paths. We do this by a shortest path algorithm
that uses cost functions as labels. Such a function for a snippet v maps every possible
departure time t to the minimum cost of a train path from the origin to v that we can
continue by departing at v at time t. In Chapter 9 we define these functions for FPTPW
and prove that they are piecewise linear. This remains true in the practical situation
where we calculate the cost as a weighted sum of duration, distance, and deviation.

In the end, we are interested in a path corresponding to a minimum of the cost function
at the destination. By maintaining predecessor information along with the cost functions,
we can backtrack these to obtain such a path, see also Section 10.2.4.

To obtain the cost function at the destination we can compute all cost functions in the
order of a topological sorting. However, this is not practical as the number of their linear
pieces becomes quite large. Additionally, we collect a lot of information in this way,
which we do not need for an optimum train path. In order to keep the search space as
small as possible we use an A*-based algorithm that only propagates single linear pieces
of the cost functions. Which piece to propagate is determined by its minimum cost value
and an estimated cost to the destination. For these estimates we compute the shortest
distance and duration from every snippet to the destination in the snippet graph by
completely ignoring the temporal component. We will return to this in Section 10.3 at
the end of Chapter 10, which covers fastest path algorithms for FPTPW from a mainly
theoretical point of view.

Respecting Utilization The freedom to choose the exact departure times very flexibly
allows respecting the utilization in the network. By knowing the existing traffic we
can compute occupancy rates of a snippet depending on the exact departure time.
Approximating these with piecewise linear functions allows us to integrate them in the
train path computation. By choosing appropriate weights we can thus avoid heavily used
track sections. Furthermore, we can use our information about already scheduled trains
such that the train path nestles against the existing traffic as well as possible and, thus,
try to preserve construction scopes for subsequently scheduled trains.
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Part I

Almost Disjoint Paths and
Forbidden Pairs

In this part, we introduce the Almost Disjoint Paths (ADP) and the Separating
by Forbidden Pairs (SFP) problem. The first, ADP, adapts the problem of finding k
arc-disjoint paths between vertices s and t by relaxing the disjointedness requirement:
every two of the selected paths may share up to one arc. The latter, SFP, asks for k arc
pairs such that every s-t-path contains both arcs of at least one such pair.

The main results classify ADP to be NP-complete and SFP to be Σp
2-complete.

Furthermore, we show how to solve ADP for constant k in polynomial time and analyze
the relation between ADP and SFP. In particular, we prove that these problems form a
weakly dual pair whose duality gap is unbounded in general.
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Chapter 4

Two Weakly Dual Problems

We introduce the Almost Disjoint Paths (ADP) and the Separating by Forbidden
Pairs (SFP) problem. Using integer programming formulations and their relaxations
we prove that they are weakly dual and that their duality gap is unbounded in general.
However, we also specify a class of graphs for which this duality gap disappears and
on which the problems are thus even strongly dual.

Assumptions and Notes

Throughout this chapter, G = (V,A) denotes a directed graph, s, t ∈ V are two distinct
source and target vertices, and P is the set of all s-t-paths.

Large parts of this chapter are joint work with Oliver Bachtler and Sven O. Krumke,
which is already published in [BBK22].

4.1 The Problems ADP and SFP

In this section, we define the Almost Disjoint Paths (ADP) and the Separating by
Forbidden Pairs (SFP) problem. After relating the latter to the Path Avoiding Forbidden
Pairs (PAFP) problem, we conclude the section with non-restrictive assumptions, which
facilitate the handling of both problems ADP and SFP.

The Almost Disjoint Paths Problem

In many applications, customers receive various offers from which they can select one
or between which they can switch. Usually, these offers should be as diverse as possible
to provide the customer with many different options. This also applies to our practical
project, see Section 3.1. In practice, however, there is often no precise specification
of what diverse means and one has a lot of freedom in measuring it. In contrast, we
now consider a fairly simple theoretical problem that reflects certain aspects of these
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application-oriented questions. To this end, we define the almost disjoint paths problem.
An instance of this problem is given by a directed graph G = (V,A) with designated
source and target s, t ∈ V . Offers correspond to s-t-paths and we assume two paths to
be sufficiently different if they have at most one arc in common. We formalize this in the
following definition before we define the almost disjoint paths problem in Problem 4.2.

Definition 4.1 (Almost Disjoint). A set of paths in a graph is called almost disjoint if
every two paths of this set have at most one arc in common.

Problem 4.2 (ADP). An instance of the Almost Disjoint Paths (ADP) problem is given
by a directed graph G = (V,A) with two vertices s, t ∈ V and a natural number k ∈ N.
The question is, whether a set of k almost disjoint s-t-paths exists.

Problem 4.3 (MaxADP). In the optimization variant MaxADP of ADP we are given
a directed graph G = (V,A) with two vertices s, t ∈ V . The goal is to find the maximum
number of almost disjoint s-t-paths.

We address the problem ADP again in Chapter 5, where we focus on complexity theoretic
results. In the course of this chapter, we regard the connection to its dual problem SFP,
which we introduce in the following.

The Separating by Forbidden Pairs Problem

In the separating by forbidden pairs problem we have to choose a set of arc pairs that
cover all s-t-paths in a graph. As we did for ADP, we define a decision variant SFP as
well as an optimization variant MinSFP for this problem.

Problem 4.4 (SFP). An instance of the Separating by Forbidden Pairs (SFP) problem
is given by a directed graph G = (V,A) with two vertices s, t ∈ V and a natural
number k ∈ N. The question is, whether there exists a set of k arc pairs, that is, A ⊆

(
A
2

)
with |A| = k, such that every s-t-path in G contains both arcs of at least one chosen pair.

Problem 4.5 (MinSFP). In the optimization variant MinSFP of SFP we are given a
directed graph G = (V,A) and two vertices s, t ∈ V . The goal is to find a minimum set
of arc pairs such that every s-t-path in G contains both arcs of at least one chosen pair.

From a complexity-theoretic point of view we consider SFP in detail in Chapter 6. We
expand on the weak duality to ADP in Section 4.2. Prior to that, we show that SFP
adds another level on top of the well-known Path Avoiding Forbidden Pairs (PAFP)
problem.
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4.1 The Problems ADP and SFP

Relation to the Path Avoiding Forbidden Pairs Problem

In order to relate our separating by forbidden pairs problem to the path avoiding forbidden
pairs problem, we first give a definition of the latter one.

Problem 4.6 (PAFP). An instance of the Path Avoiding Forbidden Pairs (PAFP)
problem is given by a directed graph G = (V,A), two vertices s, t ∈ V , and a set A ⊆

(
A
2

)
of arc pairs. The question is, whether an s-t-path exists that uses at most one arc of
every pair in A.

In this light, SFP asks for a set A of arc pairs such that the corresponding PAFP
instance has no solution. By negating the Boolean question from PAFP, the separating
by forbidden pairs problem basically precedes a universally quantified statement (“Every
path uses both arcs of at least one pair in A.”) with an existentially quantified question
(“Does a small set A with this property exist?”). Since the inner statement corresponds
to the NP-complete [GMO76] PAFP problem, it seems reasonable to expect that SFP
is Σp

2-complete. Indeed, we prove this later in Theorem 6.8.

Instead of specifying forbidden pairs of arcs in a PAFP instance one can also consider
forbidden pairs of vertices, which is actually common in the literature. However, these
two variants are “essentially equivalent” as we point out in the following remark.

Remark 4.7. For most purposes, it is not that important whether we forbid pairs of
arcs or pairs of vertices in a PAFP instance because we can convert both variants into
each other in polynomial time by standard constructions.

To move from pairs of arcs to those of vertices we subdivide the relevant arcs: If an
arc uv is contained in a forbidden pair, we introduce a new vertex w and replace uv by
the arcs uw and wv. A forbidden pair containing uv now contains the vertex w instead.

For the converse, if pairs of vertices are forbidden, we split a vertex v into two vertices
vin and vout, which we connect by an arc vinvout. We replace every arc uv entering v by
the arc uvin and every arc vw leaving v by the arc voutw. A forbidden pair containing
the vertex v now contains the arc vinvout instead. /

Note that arc pairs in the definitions of both SFP and PAFP each contain two different
arcs. The following remark justifies this restriction.

Remark 4.8. If arc pairs may contain the same arc twice, we can make PAFP instances
smaller and reduce SFP to the well-known problem of finding a minimum cut.

If a PAFP instance has a forbidden pair p = {a, a} that consists of a single arc twice,
two interpretations are possible: either the arc a must not be contained in any path or
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the pair does not enforce any additional constraints. In the first case we can remove the
arc a and in the second case we can ignore the pair p.

Also, it does not make sense to consider pairs with twice the same arc in SFP. To see
this, let k denote the cardinality of a minimum s-t-cut. By Menger’s Theorem we know
that there are k arc-disjoint s-t-paths [see Die00, Theorem 3.3.5]. Hence, we need at
least k pairs to separate s and t. However, choosing a pair for each arc in the cut that
contains this arc twice yields a feasible solution with k pairs. Thus, the problem reduces
to determining a minimum cut. /

Finally, we note that one can exploit PAFP to model a restriction in the first phase of
our practical project, which we describe in Section 3.4 in detail. In this project phase,
the train paths correspond to paths in a time-expanded network that must not contain a
geographic cycle. Partitioning the vertices according to their geographic location allows
us to reformulate this requirement: every train path may contain at most one vertex from
every block of the partition. Thus, for every location and every two vertices corresponding
to this location we can introduce one forbidden pair. To obtain pairs of arcs instead of
vertices we can alternatively pair the arcs entering vertices of the same location.

Assumptions on ADP and SFP

We consider simplifying restrictions on instances for ADP and SFP that we may assume
without loss of generality.

Our first assumption is based on the observation that arcs and vertices not contained in
any s-t-path are also not contained in any forbidden pair of an optimal solution. Thus,
they are irrelevant for ADP as well as for SFP and we may assume they do not exist.

Assumption 4.9. Every arc and every vertex is contained in an s-t-path.

Note that we can restrict the graph G to a subgraph that fulfills Assumption 4.9 in linear
time by two breadth-first or depth-first searches: the graph fulfilling Assumption 4.9 is
the subgraph induced by all vertices reachable from s in G and reachable from t in G−1.

Our second assumption concerns the direct arc st, which itself forms an s-t-path of
length one. Since the two arcs in a forbidden pair of an SFP instance are distinct, see
Remark 4.8, this path never contains both arcs of a forbidden pair. Consequently, if G
contains the direct arc st, we cannot separate s and t by forbidden pairs, no matter how
large the number k of forbidden pairs is. Regarding ADP we can add the path formed
by the arc st to every set of almost disjoint paths while maintaining this property: a
path consisting of a single arc can have at most one arc with any other path in common.
To exclude this case we assume that this arc does not exist.

Assumption 4.10. The graph G does not contain the arc st.
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4.2 Weak Duality

4.2 Weak Duality

In this section, we show that ADP and SFP are weakly dual by providing integer pro-
gramming formulations with suitable linear relaxations that form a dual pair. Thereafter,
we construct graphs on which the duality gap between ADP and SFP becomes arbitrarily
large and close the section with showing that the duality gap disappears on every graph
that contains an s-t-cut with a single outgoing arc.

Exponential-Size IP Formulations

We provide integer programming formulations for MaxADP and MinSFP based on the
set P of all s-t-paths and on the set

(
A
2

)
of all possible arc pairs.

For MaxADP we introduce for every path P ∈ P a binary variable yP that indicates
whether we choose this path or not. This allows us to formulate MaxADP as the
following integer program.

max
∑
P∈P

yP (4.1a)

s.t.
∑

P∈P:{a1,a2}⊆A(P )

yP ≤ 1 ∀ {a1, a2} ∈
(
A

2

)
(4.1b)

yP ∈ {0, 1} ∀P ∈ P (4.1c)

Similarly, we formulate MinSFP by introducing a binary variable x{a1,a2} for every pair
of arcs {a1, a2} ∈

(
A
2

)
. Such a variable indicates whether we choose the corresponding

pair as a forbidden one.

min
∑

{a1,a2}∈
(
A
2

)x{a1,a2} (4.2a)

s.t.
∑

{a1,a2}∈
(
A(P )
2

)x{a1,a2} ≥ 1 ∀P ∈ P (4.2b)

x{a1,a2} ∈ {0, 1} ∀ {a1, a2} ∈
(
A

2

)
(4.2c)

Note that the number of s-t-paths in G might be exponential in the size of G. Accordingly,
both Programs (4.1) and (4.2) are in general exponentially large.

We obtain straightforward linear relaxations of the Programs (4.1) and (4.2) by replacing
the integrality constraints yP ∈ {0, 1} and x{a1,a2} ∈ {0, 1} by non-negativity constraints
yP ≥ 0 and x{a1,a2} ≥ 0, respectively.
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For MaxADP we obtain Program (4.3) as a linear relaxation of Program (4.1).

max
∑
P∈P

yP (4.3a)

s.t.
∑

P∈P:{a1,a2}⊆A(P )

yP ≤ 1 ∀ {a1, a2} ∈
(
A

2

)
(4.3b)

yP ≥ 0 ∀P ∈ P (4.3c)

For MinSFP we obtain Program (4.4) as a linear relaxation of Program (4.2).

min
∑

{a1,a2}∈
(
A
2

)x{a1,a2} (4.4a)

s.t.
∑

{a1,a2}∈
(
A(P )
2

)x{a1,a2} ≥ 1 ∀P ∈ P (4.4b)

x{a1,a2} ≥ 0 ∀ {a1, a2} ∈
(
A

2

)
(4.4c)

We denote Programs (4.1) and (4.2) by IPADP and IPSFP, respectively. Accordingly, let
LPADP and LPSFP denote the corresponding linear relaxations given by Programs (4.3)
and (4.4). Writing c(Π) for the optimal objective value of a program Π, we obtain

c(IPSFP) ≥ c(LPSFP) = c(LPADP) ≥ c(IPADP). (4.5)

The two inequalities hold since LPADP and LPSFP are relaxations of IPADP and IPSFP,
respectively. The equality is due the (strong) duality of linear programming [see, for
example, MG07, Section 6.1] since Program (4.4) is the dual of Program (4.3) and vice
versa. Hence, ADP and SFP form a pair of dual problems.

A direct consequence of this duality is that the size of a set of almost disjoint s-t-paths is
a lower bound on the number of forbidden pairs required to separate s and t. This is
also intuitively clear since no pair of arcs can be contained in two paths that only have a
single arc in common. Thus, a separating set of forbidden pairs has to contain at least
one pair for each path of a set of almost disjoint paths.

Duality Gap

In the following, we show that ADP and SFP are only weakly dual in general. Therefore,
we consider their duality gap c(IPSFP) − c(IPADP). By Equation (4.5) it is the sum
of the integrality gap c(LPADP)− c(IPADP) between the MaxADP formulations from
Programs (4.1) and (4.3) and of the integrality gap c(IPSFP) − c(LPSFP) between the
MinSFP formulations from Programs (4.2) and (4.4).
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4.2 Weak Duality

In Example 4.11 we provide an instance with a positive integrality gap between IPADP

and LPADP. Afterwards, in the proof of Lemma 4.12, we extend this example to a family
of instances for which this integrality gap is unbounded.

Example 4.11. An instance with 4 = c(IPSFP) = c(LPADP) > c(IPADP) = 2 is given in
Figure 4.1. It consists of a path of length four where every arc is doubled.

We first show c(IPADP) = 2. A maximum set of almost disjoint paths contains at least
one path. Without loss of generality we assume that this path uses only upper arcs (by
swapping upper and lower arcs). Thus, every other path in this set has to use at least
three lower arcs. But two paths using three lower arcs have at least two lower arcs in
common. Since there are two disjoint paths, we have c(IPADP) = 2.

We continue with c(IPSFP) = 4. It holds |P| = 24 = 16 and for a pair {a1, a2} ∈
(
A
2

)
of

non-parallel arcs we have |{P ∈ P : {a1, a2} ⊆ A(P )}| = 22 = 4. Note that choosing
a pair of parallel arcs for SFP does not make sense as no s-t-path uses both of these.
Hence, y ≡ 1/4 is a feasible solution for LPADP with an objective value of 4. Thus,
we have c(IPSFP) ≥ c(LPADP) ≥ 4 and since four forbidden pairs are also sufficient to
separate s and t, we obtain c(IPSFP) = c(LPADP) = 4. /

s t

Figure 4.1: A graph for Example 4.11 with an integrality gap for ADP.

Lemma 4.12. The integrality gap c(LPADP)− c(IPADP) for ADP is unbounded. More-
over, also the ratio c(LPADP)/c(IPADP) can become arbitrarily large.

Proof. We extend the graph from Figure 4.1 to a family of instances. For this purpose, let
P k
` denote an s-t-path of length ` whose ` arcs are all replaced by bunches of k parallel arcs.

Assume k ≥ 2 and ` ≥ k + 1 + k(k − 1)/2. We prove c(LPADP) = k2 > k = c(IPADP).

We first observe that k2 pairs are sufficient to separate s and t: select two bunches of
parallels and choose all pairs containing exactly one arc from each of these bunches.
Hence, k2 ≥ c(IPSFP) ≥ c(LPSFP) ≥ c(LPADP).

The graph P k
` has k` different s-t-paths. For a fixed pair of arcs we either have 0 or k`−2

many s-t-paths using this pair (depending on whether both arcs are contained in the
same bunch or not). Therefore, y ≡ 1/(k`−2) is feasible for LPADP and has an objective
value of k` · 1/(k`−2) = k2. Using Equation (4.5) we obtain

k2 ≤ c(LPADP) = c(LPSFP) ≤ c(IPSFP) ≤ k2

and, thus, c(LPADP) = k2.
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We now show that P k
` admits at most k almost disjoint paths proving c(IPADP) = k.

To this end, let Q be a maximum set of almost disjoint s-t-paths and enumerate these
paths arbitrarily. Since the graph has k disjoint s-t-paths, we have |Q| ≥ k. The second
path has at most one arc in common with the first path and, if this is the case, we can
assume without loss of generality that it is contained in the first bunch. More general,
the i-th path has at most one arc in common with any of the first i− 1 paths and we
can assume (again without loss of generality) that these arcs are contained in the first∑i−1

j=1 j bunches.

Hence, if two of the first k paths in Q have an arc in common, we can assume that it
is in the first

∑k−1
j=1 j = k(k − 1)/2 bunches. Our assumption ` ≥ k + 1 + k(k − 1)/2

thus implies that each arc from the last k + 1 bunches is contained in at most one of the
first k paths. Each bunch consists of k arcs. Thus, each arc of the last k + 1 bunches is
contained in exactly one of the first k paths. Any further path in Q has to use one arc
from each of the last k + 1 bunches. However, this means that it has at least two arcs in
common with one of the first k paths. As a consequence, there is no further path and it
follows c(IPADP) = |Q| = k.

In particular, Lemma 4.12 together with Equation (4.5) directly implies that the duality
gap between ADP and SFP is unbounded, which we state in the following corollary.

Corollary 4.13. The duality gap between ADP and SFP is unbounded.

In contrast to Lemma 4.12 we are not aware of any instance with an integrality gap for
SFP. In this light, the formulation of MinSFP given by Program (4.2) seems to be quite
strong. This fits together with the following observation that, if P 6= NP, the linear
relaxation (4.4) cannot be solved in polynomial time.

Lemma 4.14. Program (4.4) cannot be solved in polynomial time unless P = NP.

Proof. Because the separation problem for the integral program (4.2) is the NP-complete
PAFP problem, also the separation problem for the relaxation (4.4) is NP-hard. By
[CCPS98, Theorem 6.36], the claim follows if we can prove that the polyhedra defined
by Constraint (4.4b) form a proper class. To this end, we have to prove that, given a
directed acyclic graph G = (V,A), the dimension of each polyhedron and the maximum
encoding size of Constraint (4.4b) for a path P ∈ P can be computed in polynomial time.

The dimension of the polyhedron corresponding to the graph G is
(|A|

2

)
∈ O (|A|2) which

can be computed in polynomial time. And as the coefficients in Constraint (4.4b) are all
either 0 or 1, we can also compute the maximum encoding length of such an inequality
in polynomial time.
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We conjecture that the polyhedra of the linear programming relaxation (4.4) are in fact
integral, or that at least all “relevant” extreme points are integral. However, the constraint
matrix of Program (4.4) is not totally unimodular as the following example shows.

Example 4.15. For the SFP instance depicted in Figure 4.2, the constraint matrix
of Program (4.4) is not totally unimodular: the sub-matrix corresponding to the pairs
{sv1, v1v2}, {v2v3, v3v4}, {v4v5, v5t} and the three paths that each use exactly one bend
arc has determinant

det

0 1 1
1 0 1
1 1 0

 = 2. /

s tv1 v2 v3 v4 v5

Figure 4.2: An SFP instance for which the constraint matrix is not totally unimodular.
See Example 4.15 for more information.

Although the duality gap between ADP and SFP is in general unbounded, this is not
always the case. For example, if we restrict ourselves to graphs that have an s-t-cut
with a single outgoing arc, the duality gap disappears. In particular, for these instances
neither the MaxADP nor the MinSFP formulation has an integrality gap.

Lemma 4.16. If G has an s-t-cut (S, T ) with a single outgoing arc δout(S) = {uv}, the
duality gap is zero and we can solve ADP and SFP in polynomial time.

Proof. Note that every s-t-path in G must use the arc uv, so the paths in a set of almost
disjoint s-t-paths must be disjoint aside from uv. We can compute maximum sets Ps
and Pt of disjoint s-u- and v-t-paths, respectively. Combining k = min{|Ps|, |Pt|} paths
from each of these sets results in k almost disjoint s-t-paths. In addition, one of the
subgraphs G[S] or G[T ] has a cut with k outgoing arcs. Bundling uv with each of these
arcs results in k forbidden pairs separating s and t.

We will encounter this type of graphs again in Section 6.1 when we analyze a heuristic
for MinSFP. It is stated in Algorithm 6.1 on Page 54 and extends the idea from the
proof of Lemma 4.16.
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4.3 Literature

As already mentioned at the start of Section 4.1, there are many applications, in which
customers receive multiple offers that should be as diverse as possible. A common
use case is the construction of alternative routes in transportation or road networks.
These make sense in this context, for example to avoid route closures, heavy traffic, or
tolls. Another example where alternative routes are of use is to distribute risk. For
example, if dangerous goods need to be transported regularly, alternative routes that
affect different people allow for an equal risk distribution amongst the people exposed.
Several practical algorithms for computing alternative routes have been developed [see,
for example, ADGW10; AEB00; BDGS11; DGS05; JKPK09].

On the graph-theoretic side, the (arc- or vertex-) disjoint paths problem is well-studied.
Determining a maximum amount of disjoint s-t-paths can easily be done using maximum
flow techniques [AMO93]. By Menger’s theorem [Men27; Die00] this amount is equal to
the minimum number of arcs needed to separate s from t. This result follows from the
max-flow min-cut theorem [DF57], which shows that these two problems form a strongly
dual pair.

The following extension of the disjoint paths problem is also well-understood: given k
pairs of terminals (s1, t1), . . . , (sk, tk), the objective is to find disjoint si-ti-paths. For
undirected graphs it is solvable in polynomial time if k is constant (see [RS95] for a cubic
and [KKR12] for a quadratic algorithm) and NP-complete in general [EIS76]. In the case
of directed graphs, a single path is easy and two paths are already NP-complete [FHW80].
The problem remains NP-complete for few paths even on very restricted graph classes
like acyclic, Eulerian, or planar graphs [Vyg95].

Another possible extension is to ask for k disjoint s-t-paths that are short, which again
makes sense for routing purposes. Suurballe describes an algorithm for this problem that
is based on shortest path labelings [Suu74]. It is possible to combine both extensions
and ask for shortest paths between different terminals. Eilam-Tzoreff shows that these
problems in all configurations (for directed and undirected graphs with vertex- or arc-
disjoint paths) are NP-complete and also provides a polynomial algorithm for two
paths in an undirected graph with positive edge-weights [Eil98]. Berczi and Kobayashi
present a polynomial algorithm for the directed version, also with two paths and positive
arc-lengths, in [BK17].

In contrast, the same problem where the paths need not be completely disjoint has not
garnered as much attention in the literature. The natural choice of allowing paths to
have at most one arc in common leads to the Almost Disjoint Paths (ADP) problem
that we defined in Problem 4.2 on Page 26.

Most of the literature on nearly disjoint paths is of a very practical nature as is evidenced
by the initial examples we presented. We now discuss some of the (rarer) theoretical
results that exist for problems similar to ADP. In [LJYZ18], Liu et al. introduce the k
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shortest paths with diversity problem, in which the goal is to find a set of sufficiently
dissimilar paths of maximum size (bounded by k). Of such sets, the one that minimizes
the total path length is optimal. For this problem, an (incorrect) NP-hardness proof as
well as a greedy framework is presented. In [CBG+18], Chondrogiannis et al. rectify said
NP-hardness proof, showing that the problem is indeed strongly NP-hard, and develop
an exact algorithm for it as well as heuristics. Moreover, Chondrogiannis et al. consider
the problem of finding k shortest paths with limited overlap [CBG+20]. This differs from
the previous problem by requiring the k paths to exist (instead of looking for a maximal
set of up to k paths). They prove that this variant is weakly NP-hard and develop
two exact algorithms for it, one of which is pseudo-polynomial if k is constant. The
problems here are similar to ADP in the sense that they look for paths that are sufficiently
dissimilar, though the measures used always result in similarity values between 0 and 1
because they compare the amount of arcs in common with some function based on the
lengths of the two paths. Additionally, they want to minimize the total length of the
paths found.

Inspired by the strong duality of max-flow and min-cut, we make analogous considerations
for our almost disjoint paths problem and its dual, the Separating by Forbidden Pairs
(SFP) problem. While the linear programming relaxations (4.3) and (4.4) of ADP and
SFP form a dual pair and thus have the same objective value [GKT51], the corresponding
integer versions (4.1) and (4.2) are only weakly dual. Note that in the min-cut problem
we select an arc on every s-t-path whereas in SFP we select a pair of arcs on every
s-t-path.

Apart from being dual to ADP, the separating by forbidden pairs problem adds another
level on top of the well-known Path Avoiding Forbidden Pairs (PAFP) problem, see
Section 4.1 for further information. Originating from the field of automated software
testing [KSG73], PAFP also has applications in aircraft routing [BBB+15] and biology,
for example in peptide sequencing [CKT+00] or predicting gene structures [KVB09]. The
PAFP is NP-complete [GMO76] and various restrictions on the set of forbidden pairs
have been considered. The problem becomes solvable if the pairs satisfy certain symmetry
properties [Yin97] or if they have a hierarchical structure [KP09] while it remains NP-
hard even if the pairs have a halving structure [KP09] or no two pairs are nested [Kov13].
The structure of the PAFP polytope has been analyzed [BBB+15] and Hajiaghayi et al.
show that determining a path that uses a minimal amount of forbidden pairs cannot
have a sublinear approximation algorithm [HKKM10]. Furthermore, forbidden pairs were
also transferred to other combinatorial problems, for example minimum spanning trees
[KLM13], matchings [AJKS20], and regular languages [CL16].

Note that some of the referenced papers consider forbidden pairs of vertices instead
of pairs of arcs. However, these two variants can be converted into one another by
standard constructions as we have shown in Remark 4.7. Moreover, as this problem is
usually regarded on acyclic graphs, we also specifically regard ADP and SFP under this
restriction.
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Conclusion

We defined the almost disjoint paths and the separating by forbidden pairs problem.
With exponential-size integer programming formulations we proved that they form a
dual pair and constructed a class of examples on which their duality gap is unbounded.
Thus, in contrast to the max-flow and min-cut problems, ADP and SFP are only weakly
dual. However, on graphs that have an s-t-cut with a single outgoing arc, the duality
gap disappears and we can solve both problems in polynomial time.

This, however, is in general not the case. As we have seen in Section 4.1, SFP adds
another level on top of the path avoiding forbidden pairs problem. The NP-completeness
of the latter already suggests that SFP is Σp

2-complete. Before we prove this in Chapter 6,
we first prove the NP-completeness of ADP in the following chapter.
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Chapter 5

Almost Disjoint Paths

We study the complexity of the Almost Disjoint Paths (ADP) problem and prove
that it is NP-complete and that MaxADP is APX-hard. Moreover, we provide a
dynamic program that allows solving ADP for constant k in polynomial time.

Assumptions and Notes

Throughout this chapter, G = (V,A) denotes a directed graph and s, t ∈ V are distinct
source and target vertices in this graph. The following assumptions apply.

Only Relevant Arcs and Vertices → see Assumption 4.9 on Page 28
Every arc and every vertex is contained in an s-t-path.

No Direct Arc → see Assumption 4.10 on Page 28
The graph G does not contain the arc st.

We formally defined ADP in Problem 4.2 on Page 26. Recall that it asks whether
G = (V,A) contains a set of k almost disjoint s-t-paths.

Large parts of this chapter are joint work with Oliver Bachtler and Sven O. Krumke,
which is already published in [BBK22].

5.1 Constantly Many Paths

We first show how to solve ADP for k ≤ 2 before we present a dynamic program that
solves the problem for any constant k in polynomial time.

For k = 1, ADP reduces to reachability, which can be solved in linear time, for example
by a breadth- or depth-first search. We can check whether two almost disjoint paths
exist by computing one maximum flow per arc. For a ∈ A we can define arc capacities ca
with ca(a) = 2 and ca(a′) = 1 for a′ ∈ A \ {a}. An s-t-flow with respect to ca of value `
corresponds to ` many s-t-paths that have at most the arc a in common. Therefore,
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two almost disjoint paths exist if and only if an s-t-flow of value at least 2 exists with
respect to arc capacities ca for some arc a. Hence, we can solve the problem for k = 2 by
computing a maximum s-t-flow with respect to ca for each a ∈ A and checking whether
one of them has value at least 2. In fact, instead of computing a maximum flow for each
capacity ca it suffices to make (at most) two flow augmentations, which only require
linear time. We obtain the following result.

Lemma 5.1. For k = 2, ADP can be solved in O (|A|(|V |+ |A|)) time.

However, this technique does not generalize to k > 2 because in this case several arcs
might be contained in multiple paths and we cannot guarantee that two paths only share
a single arc. Instead we use a dynamic program to find a constant number k of almost
disjoint s-t-paths in polynomial time.

Theorem 5.2. For constant k, ADP is polynomial time solvable on acyclic graphs.

Proof. Let m = |A| be the number of arcs and assume k to be fixed. By assumption
G is acyclic and therefore admits a topological ordering ν : V → N of its vertices.
Assumption 4.9 implies that the source s (the target t) always has the smallest (largest)
value of ν. We now describe a dynamic program solving ADP.

States The dynamic program is based on states. A state ((a1, . . . , ak), I) consists of k
(not necessarily disjoint) arcs and an intersection pattern I ⊆

({1,...,k}
2

)
. We associate a

state with a Boolean value x((a1, . . . , ak), I) that is true if and only if k almost disjoint
paths P1, . . . , Pk with the following properties exist:

. For every i ∈ {1, . . . , k} the path Pi is an s-ω(ai)-path whose last arc is ai.

. For i 6= j the paths Pi and Pj have an arc in common if and only if {i, j} ∈ I.

There are mk different possibilities to choose k out of m arcs (with replacement). Addi-
tionally, we have O(2k

2
) different intersection patterns, yielding O(mk2k

2
) states in total.

Note that this amount is polynomial since we assume k to be constant.

Comparing States To enable the computation of the truth values of all states with a
dynamic program we have to order them appropriately. For this purpose, we introduce the
relation≺ on the states. Using the topological ordering ν we define that ((a1, . . . , ak), I) ≺
((a′1, . . . , a

′
k), I ′) applies if and only if

ν(α(ai)) ≤ ν(α(a′i)) for all i ∈ {1, . . . , k} and
ν(α(ai)) < ν(α(a′i)) for at least one i ∈ {1, . . . , k}.

That is, we ignore the intersection pattern and compare the values in the topological
ordering of the arc’s start-vertices for each of the k components separately.
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Goal If we know the truth values of all states, we can determine whether k almost
disjoint s-t-paths in G exist. We only have to check whether a state with value true
exists whose arcs all enter the target t. In fact, we can check this during the dynamic
program when computing the truth values of the appropriate states.

Base Similarly, we proceed at the start by determining the truth values of all states
whose arcs all leave the source s. For any k arcs a1, . . . , ak ∈ δout(s) and an arbitrary
intersection pattern I we have that the value x((a1, . . . , ak), I) is true if and only if
I = {{i, j} : ai = aj for i, j ∈ {1, . . . , k}, i 6= j}. Note that these states actually suffice
as base due to Assumption 4.9, which states that all arcs are contained in s-t-paths.

Recursion The dynamic program is based on a recursion that allows the computation of
the truth value of a state based on the truth values of smaller states (with respect to ≺).
To derive this recursion let ((a1, . . . , ak), I) be a state. If all arcs a1, . . . , ak start in s,
we are in the base case, which is already handled in the previous paragraph. Otherwise,
an arc a ∈ {a1, . . . , ak} maximizing the value ν(α(a)) satisfies α(a) 6= s. Without loss of
generality we assume a = a1.

If a1 = ai but {1, i} /∈ I for some i ∈ {2, . . . , k}, the state must have truth value false
as any paths P1 and Pi ending with the arc a1 = ai have this arc in common. In the
following, we therefore assume C = {{1, i} : a1 = ai, i 6= 1} ⊆ I and define Ĩ = I \ C. We
claim that the truth value of ((a1, . . . , ak), I) is the disjunction

x((a1, . . . , ak), I) =
∨{

x((ã, a2, . . . , ak), Ĩ) : ã ∈ δin(α(a1))
}

(5.1)

of truth values of smaller states. Note that all states in the disjunction are indeed smaller
as ν(α(ã)) < ν(ω(ã)) = ν(α(a1)) due to fact that ν is a topological ordering. We now
prove the correctness.

First, suppose that x((a1, . . . , ak), I) is true. Thus, there exist almost disjoint paths
P1, . . . , Pk with intersection pattern I and last arcs a1, . . . , ak. The paths remain almost
disjoint when removing the last arc a1 from P1. This removal changes the intersection
pattern from I to Ĩ. This shows that x((ã, a2, . . . , ak), Ĩ) is true for ã being the
penultimate arc on the path P1. As ã ∈ δin(α(a1)), this value is contained in the
disjunction from Equation (5.1).

Now, suppose that x((ã, a2, . . . , ak), Ĩ) is true for an arc ã ∈ δin(α(a1)) and let Ĩ be
as defined above. Again, there are almost disjoint paths P1, P2, . . . , Pk with last arcs
ã, a2, . . . , ak and intersection pattern Ĩ. By the choice of the arc a1, we obtain that a1
is the last arc of a path Pi whenever it is contained in Pi. To see this, recall that a1 is
among the arcs {a1, . . . , ak} one whose start-vertex has the largest value ν(α(a1)) in the
topological ordering. If a1 is contained in a path Pi but not the last arc a1 6= ai, we have
ν(α(ai)) > ν(α(a1)) which is a contradiction.
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5 Almost Disjoint Paths

Since Ĩ ∩ C = ∅, the path P1 shares no arc with another path that ends with a1. And
because a1 can only be the last arc of a path Pi, we can extend P1 by the arc a1 while
maintaining that the paths are almost disjoint. Moreover, the new intersection pattern
is I as

I = Ĩ ∪ C = Ĩ ∪ {{1, i} : a1 = ai, i 6= 1} = Ĩ ∪ {{1, i} : a1 ∈ Pi, i 6= 1}.
This shows the correctness of the recursion from Equation (5.1). Hence, we can compute
the truth values of all states in polynomial time and the claim follows.

Theorem 5.3. For constant k, ADP is polynomial time solvable.

Proof. We prove the claim by converting G = (V,A) into a directed acyclic graph G′ and
by adapting the dynamic program from the proof of Theorem 5.2 to the new situation.
To this end, let n = |V |.

The vertex set of G′ consists of n copies v1, . . . , vn for every vertex v ∈ V , and we call
the vertices {vi : v ∈ V } the i-th layer of G′. For every arc uv ∈ A we add the n − 1
arcs ui−1vi for i ∈ {2, . . . , n} to G′, which we call copies of uv. Since all arcs in G′ lead
exactly one layer up, the graph G′ constructed so far is acyclic. Furthermore, we add an
additional vertex t′ to G′, which we connect with arcs tit′ for i ∈ {1, . . . , n}. Note that G′
remains acyclic. In order to ensure Assumption 4.9 we restrict G′ to those vertices and
arcs that are reachable from s1 and from which we can reach t′.

The basic idea is now to find k almost disjoint s1-t′-paths in G′ and translate these back
to s-t-paths in the original graph G. For this we ignore the last vertex t′ and replace
every other vertex vi on such a path by the corresponding vertex v ∈ V . In this way,
however, almost disjoint paths in G′ need not remain almost disjoint in G. For this to
be the case, we have to identify all copies of an arc: for every two paths that we choose
in G′ there must be at most one arc uv ∈ A of which both paths contain a copy. If this
is the case, we call the paths almost copy-disjoint.

To achieve this, we have to slightly modify the dynamic program from the proof of Theo-
rem 5.2. More precisely, we update the definition of the Boolean value x((a1, . . . , ak), I).
Instead of assuming the s-ω(ai)-paths Pi to be almost disjoint, we now require that
they are almost copy-disjoint. Accordingly, we have to update the interpretation of the
intersection pattern: we now have {i, j} ∈ I if and only if the paths Pi and Pj both
contain a copy of the same arc.

Consequently, we have to amend the recursion. A state must be false not only if a1 = ai
and {1, i} /∈ I, but even if a1 and ai are copies of the same arc and {1, i} /∈ I. This also
entails a slightly different definition of C:

C = {{1, i} : a1 and ai are copies of the same arc, i 6= 1}.

Overall, the size of G′ is polynomial in the size of G, it can be constructed in polynomial
time, and all modifications in the dynamic program induce only polynomial overhead.
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5.2 Polynomial-Size IP Formulation

With Program (4.1) we already have an integer programming formulation for MaxADP.
However, this formulation has an exponential number of variables. With Program (5.2)
we now provide an integer programming formulation of polynomial size.

max
k∑
i=1

c(i) (5.2a)

s.t. c(i) =
∑

a∈δout(s)

x(i, a) ∀ i ∈ {1, . . . , k} (5.2b)

∑
a∈δin(v)

x(i, a) =
∑

a∈δout(v)

x(i, a) ∀ i ∈ {1, . . . , k} ∀ v ∈ V \ {s, t} (5.2c)

x(i, a) + x(j, a)− b(i, j, a) ≤ 1 ∀ 1 ≤ i < j ≤ k ∀ a ∈ A (5.2d)∑
a∈A

b(i, j, a) ≤ 1 ∀ 1 ≤ i < j ≤ k (5.2e)

c(i) ∈ {0, 1} ∀ i ∈ {1, . . . , k} (5.2f)
x(i, a) ∈ {0, 1} ∀ i ∈ {1, . . . , k} ∀ a ∈ A (5.2g)
b(i, j, a) ∈ {0, 1} ∀ 1 ≤ i < j ≤ k ∀ a ∈ A (5.2h)

For an upper bound k on the number of almost disjoint paths, we have binary variables c(i)
stating whether an i-th path is chosen. Consequently, Objective (5.2a) aims to maximize
the number of chosen paths. If we choose an i-th path, we specify its arcs with the binary
variables x(i, a). Such a variable indicates for an arc a whether it is contained in the
i-th path. Constraints (5.2b) and (5.2c) ensure that these arcs form indeed an s-t-path
whenever c(i) = 1. To guarantee that no two paths have more than one arc in common,
Program (5.2) uses the binary variables b(i, j, a). If an arc a is chosen in the i-th as well
as in the j-th path, Constraint (5.2d) enforces b(i, j, a) = 1. Constraint (5.2e) thus limits
the number of common arcs for every two paths to one.

This integer programming formulation requires an upper bound k on the maximum
number of almost disjoint s-t-paths in G. If this bound is polynomial in the instance
size, also Program (5.2) is polynomially large. Fortunately, we can bound the number of
almost disjoint paths by O (|A|2). One option is to pair every arc sv ∈ δout(s) with every
arc vu ∈ δout(v), which results in k =

∑
sv∈δout(s) |δout(v)| ∈ O (|A|2). Another possibility

is to combine every arc sv ∈ δout(s) leaving the source s with an arc ut ∈ δin(t) entering
the target t resulting in k = |δout(s)| · |δin(t)| ∈ O (|A|2). Using one of these upper bounds
results in O (|A|5) variables and constraints.
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5 Almost Disjoint Paths

5.3 NP-Completeness

Although we can solve ADP for constant k in polynomial time, it is NP-complete in
general. This is stated in Theorem 5.4, which we prove in this section.

Theorem 5.4. ADP is NP-complete, even on acyclic graphs.

ADP is contained in NP since we can check in polynomial time whether k paths are
almost disjoint and since we can polynomially bound the maximum number of almost
disjoint s-t-paths as shown in the previous section. In the rest of the section, we prove
the NP-hardness of ADP by a reduction from the NP-complete [GJ79] independent
set problem IndSet. For this purpose, let an instance of the independent set problem
be given by an undirected graph H = (VH , EH). After constructing a directed acyclic
graph G = (V,A) we show that H has an independent set of size k if and only if there
are 2 · |EH |+ k almost disjoint s-t-paths in G.

Graph Construction

The Gadget The basic component to construct the graph G is the edge gadget depicted
in Figure 5.1. Such a gadget gad(uv) corresponds to an edge uv ∈ EH and has four inputs:
two labeled u and v corresponding to the end vertices of the edge and two auxiliary
inputs h1 and h2. Analogously, the gadget also has four outputs: u′ and v′ as well as
h′1 and h′2. In addition, it contains ten interior vertices, which we name and connect as
drawn in Figure 5.1. When using this gadget in the graph construction, we rearrange its
in- and output vertices as shown in Figure 5.2.

The Graph The graph G = (V,A) of the ADP instance corresponding to the graph
H = (VH , EH) is drawn in Figure 5.3. It consists of a gadget gad(e) for every edge
e ∈ EH and additional vertices VH ∪ {s, t, vV , vE}. The source s is connected with vV
and vE and the vertex vV has outgoing arcs to all v ∈ VH . To every auxiliary input of a
gadget we have an arc from vE. From every auxiliary output of a gadget there is an arc
to the target t.

Finally, we explain how the vertex inputs of the gadgets are connected. To this end,
sort the edges EH = {e1, . . . , em} arbitrarily. In the graph G, every vertex u ∈ VH is
connected to the target t by a path Pu that starts with (s, vV , u) and passes through
every gadget gad(e) corresponding to an incident edge e ∈ δH(u). For ` = degH(u) we
choose j1 < · · · < j` such that δH(u) = {ej1 , . . . , ej`}. We connect u with the input of
gad(ej1) that is labeled u. Its output u′ is connected with the input u of gad(ej2) and
so on. Finally, the output u′ of the last gadget gad(ej`) has an arc to the target. If the
vertex u ∈ VH has no incident edge, we introduce the direct arc ut.
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Figure 5.1: The gadget gad(uv) of an edge uv ∈ EH .
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Figure 5.2: The rearrangement of the in- and outputs of a gadget from Figure 5.1 in
order to simplify the resulting graph in Figure 5.3.
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Figure 5.3: The graph G = (V,A) for the hardness proof of ADP. The gadgets are those
from Figure 5.1 with rearranged in- and outputs as specified in Figure 5.2.
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5 Almost Disjoint Paths

Definition 5.5 (Auxiliary and Vertex Paths). Every s-t-path in G either starts with the
arc svV or with the arc svE. Those starting with svV are vertex paths and those starting
with svE are auxiliary paths.

In the following, we prove that H contains an independent set of size k if and only if
there are 2m+ k almost disjoint paths in G. The direction from an independent set to
almost disjoint paths is relatively simple whereas the converse is a bit more involved.

From an Independent Set to Almost Disjoint Paths

Lemma 5.6. Given an independent set U ⊆ VH in H of size |U | = k, there are 2m+ k
almost disjoint s-t-paths in G.

Proof. We construct 2m + k almost disjoint s-t-paths, from which k are vertex paths
corresponding to the vertices in U and the remaining 2m are auxiliary paths.

The auxiliary paths are obtained by extending the h1-h′1- and h2-h′2-paths visualized in
Figure 5.4 of all gadgets gad(e), e ∈ EH . They have the first arc svE in common and are
disjoint afterwards.

For u ∈ U we choose the unique s-t-path in G that starts with (s, vV , u) and uses all u-u′-
paths through gadgets gad(e) of incident edges e ∈ δH(u) as well as the arcs connecting
these. We denote this path by Pu. Since U ⊆ VH is an independent set in H and since
the gadgets correspond to edges in H, there is no gadget gad(uv) with {u, v} ⊆ U . Thus,
for every gadget, we choose at most one vertex path passing through it. This implies that
also all chosen vertex paths have the first arc svV in common and are disjoint afterwards.

A vertex path Pu and an auxiliary path have exactly one arc in common, if the auxiliary
path passes through a gadget corresponding to an edge that is incident to u. Otherwise,
the two paths are disjoint. Hence, the 2m+ k chosen s-t-paths are almost disjoint.

From Almost Disjoint Paths to an Independent Set

In the following, let Q be a set of 2m+ k almost disjoint s-t-paths in G among which the
number of auxiliary paths is maximized. Note that we need not to be able to find such a
set Q constructively but only have to know that it exists. Nevertheless, the way we build
on this assumption below will still open up possibilities for constructing it. We assume
k ≥ 0 as we can choose 2m auxiliary paths as described in the proof of Lemma 5.6.

Assumption 5.7. No set of 2m+k almost disjoint s-t-paths in G contains more auxiliary
paths than Q.
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u
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h1

h2

u′

v′

h′1

h′2

Figure 5.4: A gadget as in Figure 5.1 with four different paths passing through it: the
unique u-u′-path in red, the unique v-v′-path in blue, an h1-h′1-path in green,
and an h2-h′2-path in orange.

The following three lemmas provide structural results of the paths in Q. They allow us
to prove in Lemma 5.11 the counterpart of Lemma 5.6, which completes the proof of
Theorem 5.4.

Lemma 5.8. Without loss of generality we can assume that every auxiliary path in Q
leaves the gadget it enters first via an auxiliary output.

Proof. Let P ∈ Q be an auxiliary path, let gad(e) be the gadget it enters first, and
suppose that P leaves gad(e) via a vertex output u′. By the construction of the graph,
there is a single arc leaving u′. This arc either points to the vertex input of another
gadget or to the target.

We first consider the case that the arc leaving u′ points to a vertex input ũ of another
gadget gad(ẽ). In this situation, which is depicted in Figure 5.5, the path P enters gad(ẽ)
via ũ directly after leaving gad(e) via u′. No auxiliary path leaves gad(e) via h′2 and no
auxiliary path enters gad(ẽ) via h̃1. Otherwise, such a path has not only the arc svE in
common with P , but also either yR1 xR1 or x̃L1 ỹL1 . Thus, we can replace P in Q by two
auxiliary paths: one that equals P until vertex xR1 but then continues along (xR1 , h

′
2, t)

and the other starting with (s, vE, h̃
′
1, x̃

L
1 ) and following P from x̃L1 on. To preserve the

amount of paths in Q, we remove a vertex path from Q in return.

Note that the paths from Q remain almost disjoint after this modification, except if there
is a vertex path leaving gad(e) via h′2. However, if this is the case we can simple remove
this vertex path. Also note that Q contains at least one vertex path since k ≥ 0 and
because Q contains at most 2m− 1 auxiliary paths: degout(vE) = 2m and no auxiliary
path uses the arc vEh̃1. Thus, the replacement of P in Q contradicts Assumption 5.7
such that this case cannot occur.
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Figure 5.5: A path that leaves gad(e) via its vertex output u′ and enters gad(ẽ) via its
vertex input ũ uses at least the red marked arcs.

We now consider the remaining case, in which the arc leaving u′ directly points to the
target t. In this situation, P ends with (yR1 , x

R
1 , u

′, t) and we can modify P by using
(yR1 , x

R
1 , h

′
2, t) instead. As argued in the first case, another path in Q leaving gad(e)

via h′2 has to be a vertex path. If it exists, we can modify it by changing its end from
(yR1 , x

R
1 , h

′
2, t) to (yR1 , x

R
1 , u

′, t).

Hence, these modifications reduce the number of auxiliary paths leaving a gadget via a
vertex output by one. Formally, the claim follows by induction.

Lemma 5.9. Let gad(e) be a gadget that is passed through by exactly one vertex path P
from Q. If P enters gad(e) via a vertex input u, it leaves gad(e) via the corresponding
vertex output u′.

Proof. If P leaves gad(e) via an auxiliary output, Lemma 5.8 implies that Q contains at
most one auxiliary path passing through gad(e). In this case, we can remove all paths
passing through gad(e) from Q and replace them by the same amount of auxiliary paths.
This increases the amount of auxiliary paths in Q contradicting Assumption 5.7.

Next, suppose that P leaves gad(e) via the vertex output v′. In this case, it must
definitely use the arcs that are marked in red in Figure 5.6. The only chance for an
almost disjoint auxiliary path P ′ entering gad(e) via h1 is to use the h1-h′2-path whose
arcs are green in Figure 5.6. However, every other auxiliary path entering gad(e) must
share an arc of gad(e) with P ′. Thus, they are not almost disjoint and Q contains again
at most one auxiliary path passing through gad(e). As in the first case we can replace all
paths through gad(e), thereby increasing the amount of auxiliary paths in Q, and again
contradicting Assumption 5.7.
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Figure 5.6: A vertex path entering a gadget gad(e) via a vertex input u and leaving it
via the “wrong” vertex output v′ has to use at least the red marked arcs. In
this situation, an auxiliary path entering gad(e) via h1 must follow the green
arcs. A visualization for the proof of Lemma 5.9.

Lemma 5.10. There is no gadget through which two vertex paths of Q pass.

Proof. Suppose there is a gadget gad(e) that is passed through by two vertex paths.
Denote these paths by Pu and Pv. Since they already have the arc svV in common, they
are disjoint in gad(e). Hence, the path Pu entering gad(e) via u has to use yR2 xR2 and the
path Pv entering gad(e) via v has to use yR1 xR1 .

Furthermore, there is also an auxiliary path passing through gad(e) because otherwise
we could replace one of the two vertex paths by an auxiliary path contradicting As-
sumption 5.7. Similarly to the proof of Lemma 5.9, this auxiliary path has to be either
an h1-h′2-path or an h2-h′1-path inside gad(e). By symmetry we assume without loss of
generality that it is an h1-h′2-path. Hence, the situation is as depicted in Figure 5.7 (the
path Pu can leave gad(e) either via v′ or via h′1).

We now construct a new vertex path P that replaces Pu and Pv in Q. This path first uses
Pu until yL1 in gad(e). From thereon it uses (yL1 , z

L, zR, yR1 ) and then continues like Pv.
Since all vertex paths are disjoint after vV , the new path P has only the arc svV in
common with any of the remaining vertex paths. Moreover, it has at most one arc in
common with any auxiliary path outside of gad(e) since this was already the case for
Pu and Pv. We also replace the auxiliary h1-h′2-path by an auxiliary h1-h′1-path and
an auxiliary h2-h′2-path. The resulting paths passing through gad(e) are visualized in
Figure 5.8.

After these modifications, Q contains the same number of paths but the amount of
auxiliary paths increases by one. This contradicts Assumption 5.7.
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Figure 5.7: Two vertex paths passing a gadget gad(e). The path Pu entering via u
contains at least the red marked arcs, the path Pv entering via v the arcs
marked blue. An additional auxiliary path is drawn with green arcs. A
visualization for the proof of Lemma 5.10.
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Figure 5.8: The result of the modifications in Lemma 5.10. The two vertex paths and
the auxiliary path from Figure 5.7 are replaced by the vertex path marked
red and the two auxiliary paths drawn in green and orange.
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Using Lemmas 5.8 to 5.10 we are now able to prove in Lemma 5.11 the counterpart of
Lemma 5.6 and thus complete the proof that ADP is NP-complete.

Lemma 5.11. Given 2m+ k almost disjoint s-t-paths in G, there is an independent set
U ⊆ VH in H of size |U | = k.

Proof. We choose a set Q of 2m + k almost disjoint s-t-paths in G that fulfills
Assumption 5.7. By Lemma 5.8 we also assume that every auxiliary path in Q passes
through exactly one gadget.

We define U ⊆ VH to be the set of vertices that are contained in a vertex path of Q. We
first prove that U is an independent set in H.

Lemma 5.10 implies that for every gadget there is at most one vertex path in Q that
passes through this gadget. If this is the case, Lemma 5.9 states that this vertex path
enters the gadget via a vertex input u and leaves it via the corresponding vertex output u′.
Thus, a vertex path starting with (s, vV , u) passes through a gadget gad(e) if and only
if e ∈ δH(u). Because no two vertex paths from Q pass through the same gadget, we
obtain that U is indeed an independent set.

We complete the proof by showing that U contains k elements. Every gadget is used by
at most one vertex path, see Lemma 5.10. Moreover, such a vertex path leaves every
gadget via the correct vertex output, see Lemma 5.9 again. Thus, we can additionally
choose two auxiliary paths passing through every gadget. Furthermore, since Q fulfills
Assumption 5.7, it contains 2m auxiliary paths. And since there can only be at most 2m
almost disjoint auxiliary paths, Q contains exactly k vertex paths. Because these are
also almost disjoint, they contain distinct vertices u ∈ VH showing |U | = k.

5.4 APX-Hardness

In this section, we lift the NP-hardness proof for ADP from the previous section to an
APX-hardness proof for MaxADP. This shows that the almost disjoint paths problem
is even hard to approximate within a constant factor.

Theorem 5.12. MaxADP is APX-hard, even on acyclic graphs.

Proof. We essentially show that the Karp reduction that proves the NP-hardness of
ADP in Section 5.3 is actually an L-reduction if we restrict the graph H (in which we
search for an independent set) to have maximum degree ∆(H) ≤ 3. We may do this since
the independent set problem remains APX-complete on graphs whose maximum degree
is bounded by a constant B ≥ 3, see [ACG+99, Problem GT23], [PY91], and [BF95]. We
call this problem IndSet-B and restrict ourselves to IndSet-3 in the following.
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In order to prove that IndSet-3 L-reduces to MaxADP we are guided by the definition
of an L-reduction from [PY91]: we provide polynomial-time computable functions f
and g as well as constants α, β > 0 such that

(a) the function f maps instances of IndSet-3 to instances of MaxADP such that
OPTMaxADP(f(H)) ≤ α ·OPTIndSet-3(H) for every IndSet-3 instance H, and

(b) the function g maps every set Q of almost disjoint s-t-paths in f(H) to an inde-
pendent set U of H with OPTIndSet-3(H)− |U | ≤ β · (OPTMaxADP(f(H))− |Q|).

Here, OPTIndSet-3(H) and OPTMaxADP(f(H)) denote the maximum size of an inde-
pendent set in H and the maximum number of almost disjoint s-t-paths in f(H). Let
H = (VH , EH) be an undirected graph as in Section 5.3. We write n = |VH | andm = |EH |.

We first show that (a) holds for α = 13 and for the function f representing the graph
construction from Section 5.3. This construction only requires polynomial time and,
thus, the function f is polynomial-time computable. A greedy algorithm that iteratively
chooses an arbitrary vertex and removes it with its at most 3 neighbors results in an
independent set with at least n/4 vertices. Hence, we have OPTIndSet-3(H) ≥ n/4. With
m ≤ 3n/2 (due to ∆(H) ≤ 3) this results in

m ≤ 6 ·OPTIndSet-3(H). (5.3)

From Lemmas 5.6 and 5.11 we obtain

OPTMaxADP(f(H)) = 2m+OPTIndSet-3(H). (5.4)

Using (5.3) in Equation (5.4) we have OPTMaxADP(f(H)) ≤ 13 ·OPTIndSet-3(H).

We now show that (b) holds for β = 1 and for the function g that represents the procedure
from the proof of Lemma 5.11. This procedure transforms a set Q of 2m + k almost
disjoint paths in f(H) into an independent set U of size k in H. Equation (5.4) yields

OPTMaxADP(f(H))− |Q| = 2m+OPTIndSet-3(H)− (2m+ k)

= OPTIndSet-3(H)− k
= OPTIndSet-3(H)− |U |.

If |Q| ≤ 2m, we can choose U = ∅. Using again Equation (5.4) in an analogous
computation results in

OPTMaxADP(f(H))− |Q| ≥ OPTIndSet-3(H)− |U |.

What remains to prove is that g is polynomial-time computable. This is not obvious since
the proof of Lemma 5.11 requires a set of almost disjoint paths that satisfies Assump-
tion 5.7 instead of an arbitrary one. Contrary to our comment before Assumption 5.7
on Page 44, we now need to be able to transform an arbitrary set Q of almost disjoint
s-t-paths in polynomial time into one of the same cardinality that satisfies Assumption 5.7.
However, the proofs of Lemmas 5.8 to 5.10 are constructive such that they provide a way
to perform exactly this task in polynomial time.
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5.4 APX-Hardness

Conclusion

We analyzed the complexity of the almost disjoint paths problem, and one of the key
findings was that it is NP-complete, even on acyclic graphs. In addition, we showed that
the presented reduction actually is an L-reduction and derived the APX-hardness of
MaxADP. Furthermore, we explained how to find two almost disjoint paths efficiently,
and we established a dynamic program that allows solving ADP for constant k in
polynomial time. In the following chapter, we focus on the complexity of the separating
by forbidden pairs problem.
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Chapter 6

Separating by Forbidden Pairs

As the main result of this chapter, we prove that the Separating by Forbidden Pairs
(SFP) problem is Σp

2-complete. Additionally, we provide a heuristic for MinSFP
and analyze its capabilities and limits.

Assumptions and Notes

Throughout this chapter, G = (V,A) denotes a directed graph and s, t ∈ V are distinct
source and target vertices in this graph. The following assumptions apply.

Only Relevant Arcs and Vertices → see Assumption 4.9 on Page 28
Every arc and every vertex is contained in an s-t-path.

No Direct Arc → see Assumption 4.10 on Page 28
The graph G does not contain the arc st.

We formally defined SFP in Problem 4.4 on Page 26. Recall that it asks for a set A of
arc pairs such that every s-t-path contains both arcs of at least one pair of A.

Large parts of this chapter are joint work with Oliver Bachtler and Sven O. Krumke,
which is already published in [BBK22].

6.1 Upper Bounds and Examples

In Lemma 4.16 on Page 33 we saw that we can solve SFP in polynomial time if the
graph G contains an s-t-cut (S, T ) with a single outgoing arc δout(S) = {uv}. The proof
was based on the fact that every s-t-path must use this arc and on the weak duality of
ADP and SFP: we get an optimal set of separating pairs by pairing uv with every arc of
a minimum s-u- or v-t-cut depending on which of the two is smaller. In Algorithm 6.1 we
extend this idea to a heuristic for MinSFP. Instead of an s-t-cut with a single outgoing
arc we now allow to choose an arbitrary s-t-cut (S, T ) in G. For every arc uv ∈ δout(S)
we proceed as before and add pairs that suffice to separate all s-t-paths using uv.
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6 Separating by Forbidden Pairs

Algorithm 6.1: Minimum Cut Heuristic

Input: A directed graph G = (V,A) with source and target vertices s, t ∈ V .
Output: A set A ⊆

(
A
2

)
of arc pairs separating s and t in G in terms of SFP.

1 Initialize A = ∅.
2 Choose an s-t-cut (S, T ).
3 for every arc a = uv ∈ δout(S) in the cut do
4 if u 6= s then
5 Determine a minimum s-u-cut (Su, Tu).
6 end
7 if v 6= t then
8 Determine a minimum v-t-cut (Sv, Tv).
9 end

10 Let (Sa, Ta) be the one of the (at most) two cuts with smaller cardinality.
11 Add the pairs {(a, a′) : a′ ∈ δout(Sa)} to A.
12 end

13 return A

Lemma 6.1. The set A returned by Algorithm 6.1 is a solution for MinSFP, that is, it
contains at least one pair on every s-t-path in G.

Proof. Let P be an s-t-path. Since (S, T ) is an s-t-cut, there exists at least one arc
a = (u, v) ∈ A(P ) ∩ δout(S) that is contained in the path and in the cut. Since (Sa, Ta)
is either an s-u-cut or a v-t-cut, there is at least one arc a′ ∈ A(P ) ∩ δout(Sa). Thus, the
path P contains both arcs of the pair {a, a′} ∈ A.

Analogous to Lemma 4.16 we prove in Lemma 6.2 that Algorithm 6.1 computes an
optimum separating set of arc pairs if the graph has an s-t-cut with a single outgoing arc
and if we choose this cut at the start of the algorithm.

Lemma 6.2. If a G has an s-t-cut (S, T ) with a single outgoing arc δout(S∗) = {uv},
Algorithm 6.1 with choosing (S, T ) in Line 2 computes an optimal solution of MinSFP.

Proof. By Menger’s Theorem there exist |(Su, Tu)| arc-disjoint s-u-paths and |(Sv, Tv)|
arc-disjoint v-t-paths, where Su and Sv are as defined in Lines 5 and 8 of Algorithm 6.1
[see Die00, Theorem 3.3.5]. Hence, there are |(Suv, Tuv)| many paths that only have the
arc uv in common. For every such path we need a separate forbidden pair.

In the following, we examine capabilities and limits of this heuristic. First, Example 6.3
provides an instance for which Algorithm 6.1 is able to find the unique optimal solution
whose both pairs are contained in one path if the “right” cut is chosen in Line 2. In general,
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6.1 Upper Bounds and Examples

an obvious choice for this initial cut would be a minimum s-t-cut. However, Example 6.4
points out that this choice does not necessarily lead to an optimal solution. In fact, in
Example 6.7 we present instances on which this heuristic cannot find an optimal solution
no matter which initial s-t-cut we choose. This even holds for an improved version of the
heuristic that we develop in Example 6.5 and Lemma 6.6.

Example 6.3. Some paths may contain multiple forbidden pairs of an optimal solution
of SFP. Such a situation is depicted in Figure 6.1. The unique optimal solution A =
{{sv1, v1v2}, {v3v4, v4t}} consists of two forbidden pairs. All four involved arcs are
contained in the path P = (s, v1, v2, v3, v4, t). Algorithm 6.1 computes this solution if we
initially choose the cut (S, T ) that is defined by S = {s, v3}. /

Example 6.4. Choosing a minimum s-t-cut (S, T ) in Line 2 of Algorithm 6.1 does not
result in an optimal solution in general. Figure 6.2 shows a graph, for which the unique
minimum s-t-cut ({s}, V \ {s}) contains the two arcs su1 and su2. If we use this cut as
initial s-t-cut in Algorithm 6.1, we obtain six forbidden pairs. However, starting with the
cut (V \ {t}, {t}) results in an optimal solution with only three forbidden pairs. /

Example 6.5. In Lines 5 and 8 of Algorithm 6.1 it is in general not sufficient to consider
the cuts (Su, Tu) and (Sv, Tv) only in G[S] and G[T ], respectively. To see this, consider
the graph from Figure 6.3 and the cut with S = {s, u1, u2}. Considering the minimal
s-u- and v-t-cuts only in G[S] and G[T ], respectively, results in the set of forbidden pairs
A = {{u1v1, v1t}, {su2, u2v2}}. However, the path P = (s, u1, v1, u2, v2, t) is not covered
by a forbidden pair in this case. /

The previous example shows that we cannot simultaneously restrict the minimal cuts in
Algorithm 6.1 to the graphs G[S] and G[T ]. Nonetheless, we can restrict one of the cuts
as the following lemma states.

Lemma 6.6. In Algorithm 6.1 we can consider the cuts (Su, Tu) in G[S] if we consider
the cuts (Sv, Tv) in G. Conversely, we can consider the cuts (Sv, Tv) in G[T ] if we consider
the cuts (Su, Tu) in G.

Proof. We prove that we can determine the cuts (Su, Tu) in G[S] instead of G. The other
case is analogous. So, assume we consider the cuts (Su, Tu) in G[S] and the cuts (Sv, Tv)
in G. Let P be some s-t-path and let a = (u, v) be the first arc on P in δout(S). If
(Sa, Ta) is the cut (Sv, Tv) in G, then the path P has an arc a′ 6= a which is contained in
(Sv, Tv). Thus, the path P contains the pair {a, a′} ∈ A. Now, consider the case that
(Sa, Ta) is the cut (Su, Tu) in G[S]. Since a is the first arc of P not contained in S, all
arcs prior to a in P are contained in S, that is, the path P up to the arc a is contained
in G[S]. Hence, there also is an edge a′ 6= a on P which is contained in (Su, Tu). Thus,
the path P contains the pair {a, a′} ∈ A.
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6 Separating by Forbidden Pairs

s t
v1 v2 v3 v4

Figure 6.1: The instance from Example 6.3 in which both pairs of the optimal solution
A = {{sv1, v1v2}, {v3v4, v4t}} are on the path P = (s, v1, v2, v3, v4, t).

s t

Figure 6.2: A graph for Example 6.4 where choosing a minimum s-t-cut as initial cut in
Algorithm 6.1 does not result in an optimal solution.

s

u1

u2

v1

v2

t

Figure 6.3: An instance for Example 6.5. Defining (S, T ) by S = {s, u1, u2} and restricting
the minimum s-u- and v-t-cuts to G[S] and G[T ], respectively, results in
forbidden pairs not covering the path P = (s, u1, v1, u2, v2, t).

s

u

v

w

t

(a) Algorithm 6.1 is off by at least one

s

u

v

w

t

(b) Algorithm 6.1 is off by at least two

Figure 6.4: Two graphs for Example 6.7 on which Algorithm 6.1 cannot find an optimal
solution, independent on the minimum cut that is chosen.

56



6.1 Upper Bounds and Examples

S δout(S)
G[S], G G,G[T ]

|δout(Sa)| |A| |δout(Sa)| |A|

{s}
(su)1 3

8
3

8(su)2 3 3
sv 2 2

{s, u}

sv 2

8

2

8
uv 2 2
(uw)1 2 2
(uw)2 2 2

{s, v}

(su)1 3

8

2

8
(su)2 3 2
vw 1 2
vt 1 2

{s, w}

(su)1 3

8

1

9
(su)2 3 1
sv 2 1
(wt)1 0 3
(wt)2 0 3

{s, u, v}

(uw)1 2

8

2

8
(uw)2 2 2
vw 2 2
vt 2 2

{s, u, w}

sv 2

8

1

8
uv 2 1
(wt)1 2 3
(wt)2 2 3

{s, v, w}

(su)1 3

9

0

8
(su)2 3 0
vt 1 2
(wt)1 1 3
(wt)2 1 3

{s, u, v, w}
vt 2

8
2

8(wt)1 3 3
(wt)2 3 3

Table 6.1: All possible s-t-cuts and the corresponding cardinalities of the resulting set A
of forbidden pairs generated by Algorithm 6.1. A table for Example 6.7.
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6 Separating by Forbidden Pairs

However, also with the improvement of Lemma 6.6 there are instances where Algorithm 6.1
cannot yield an optimal solution, no matter which initial s-t-cut is chosen. One such
instance is presented in the following example.

Example 6.7. Consider the graph from Figure 6.4a. We distinguish parallel arcs with
superscript indices we write, for example, (uw)1 and (uw)2 for the arcs from u to w. The
following 7 pairs are a feasible solution of SFP:

p1 = {(su)1, (wt)1} p5 = {sv, vw}
p2 = {(su)1, (wt)2} p6 = {sv, vt}
p3 = {(su)2, (wt)1} p7 = {uv, vt}
p4 = {(su)2, (wt)2}

A path with sv as first arc has either vw or vt as second arc. Thus, it contains either
the pair p5 or p6. A path starting with (su)1 (the case (su)2 is analogous) either uses uv
and vt, thus containing p7, or visits the vertex w. In the latter case it uses either (wt)1

or (wt)2 and, hence, contains p1 or p2, respectively.

The solutions of Algorithm 6.1 with the improvement of Lemma 6.6 for all possible
s-t-cuts (S, T ) are enumerated in Table 6.1. For any s-t-cut (S, T ) (in the table given
by S) we get a set A of separating pairs of cardinality at least 8. Moreover, this is the
case no matter if we restrict the cut (Su, Tu) to G[S] or the cut (Sv, Tv) to G[T ].

One can also extend this example such that we have an optimality gap of two. Although
16 forbidden pairs suffice to separate s and t in the graph depicted in Figure 6.4b,
Algorithm 6.1 always yields a solution with at least 18 pairs. /

6.2 Σp
2-Completeness

In this section, we prove that SFP is Σp
2-complete. More precisely, this section is about

the proof of the following theorem.

Theorem 6.8. SFP is Σp
2-complete, even on acyclic graphs.

First, in Lemma 6.9, we prove the simple part, namely that SFP is contained in Σp
2.

Afterwards, for the hardness of the problem, we present a reduction from the Σp
2-complete

quantified satisfiability problem Σ2SAT. Since this reduction is a bit more complicated,
we start by first formulating Σ2SAT and by sketching the idea of the proof.
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6.2 Σp
2-Completeness

Lemma 6.9. SFP is contained in Σp
2.

Proof. To prove the claim, it suffices to show that SFP can be solved by a nondeterministic
Turing machine that has access to an oracle for an NP-complete problem [see AB09,
Chapter 5.5]. In the proof we use the notation of certificates that correspond to the
nondeterministic choices of the Turing machine [see AB09, Theorem 2.6], and we assume
the oracle to answer PAFP.

Given an instance of SFP, we use a separating set A of forbidden pairs as certificate.
With the help of the PAFP-oracle, we can check in constant time whether this is indeed
a separating set. Additionally, we can determine the size k = |A| in time that is linear in
|A|.

For a satisfiable SFP instance we can choose a separating set of size k as certificate.
Given an SFP instance that is not satisfiable and a certificate A, we can either detect
that the size of A does not equal k or that A does not separate s and t.

The Problem Σ2SAT

An instance of Σ2SAT is given by a quantified Boolean formula ϕ(x, y) depending on two
types of variables. The question is, whether an assignment of the x-variables exists such
that ϕ(x, y) is true for every assignment of the y-variables. This problem, sometimes
also denoted by QSAT2, is a standard Σp

2-complete problem, see [Pap94, Theorem 17.10]
or [Haa19, Section 2.2.1]. We first introduce some notation that we use in order to deal
with this problem.

Notation 6.10. The quantified Boolean formula ϕ = ϕ(x, y) depends on nx many x-
variables X = {x1, . . . , xnx} and on ny many y-variables Y = {y1, . . . , yny} whose union
we denote by Z = X ∪ Y . A truth assignment T : Z → {0, 1} assigns a Boolean value
to every variable. If we are only interested in the assignments of x- or y-variables, we
write TX : X → {0, 1} as well as TY : Y → {0, 1} and identify T with (TX , TY ), where
TX = T |X and TY = T |Y .

We say that the instance ϕ is satisfiable if an x-variable assignment TX exists such that
ϕ evaluates to true for every y-variable assignment TY .

Outline of the Σp
2-Hardness Proof

To prove the hardness of SFP, we construct a directed acyclic graph G for such a
quantified Boolean formula ϕ. For carefully chosen k ∈ N we show that a source s and a
target t in G can be separated by a set A of k forbidden pairs if and only if the Σ2SAT
instance ϕ is satisfiable.
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6 Separating by Forbidden Pairs

In this graph G, most separating pairs are predetermined. Those that are not have
essentially two options, which are used to encode assignments of the x-variables. This
means that an assignment TX of the x-variables corresponds to a selection of forbidden
pairs A and vice versa. An assignment TY of the y-variables will correspond to s-t-paths
in the graph that contain a pair from A if and only if the assignment T = (TX , TY )
satisfies a clause. From this we conclude that an assignment TX exists such that ϕ
evaluates to true for all assignments TY if and only if there exists a small set A such
that every s-t-path contains a pair from A. However, the construction of the graph also
generates s-t-paths that do not correspond to any y-variable assignment TY . To make the
argumentation work, we have to enforce that all these paths contain forbidden pairs.

In the following, we start with non-restrictive assumptions about the Boolean formula ϕ.
Thereafter, we introduce the gadgets and concepts required for the final Σp

2-hardness
proof.

Assumptions and Assignments

Without loss of generality we may assume that the Boolean formula ϕ is given in 3-DNF,
that is, in disjunctive normal form where each clause contains exactly three literals [see
Haa19, Section 2.2.1]. Hence, we can write ϕ = C1 ∨ · · · ∨ Cm as a disjunction of m
clauses where each clause is the conjunction of three literals.

Assumption 6.11. The Boolean formula ϕ is given in 3-DNF.

Let us consider a clause consisting entirely of x-variables. If it contains a variable xi
and its negation xi, the clause can never be fulfilled and we can remove it. Otherwise,
we can satisfy this clause (and with it the entire formula ϕ) solely by an appropriate
x-variable assignment. Hence, we may also assume that every clause contains at least
one y-variable.

Assumption 6.12. No clause of ϕ consists entirely of x-variables.

Our last assumption is that no variable is contained in a single clause only. This can be
guaranteed, for example, by duplicating all clauses.

Assumption 6.13. Every variable is contained in at least two clauses of ϕ.

Assumptions 6.11 and 6.12 directly imply the following lemma.

Lemma 6.14. Every clause contains either one, two, or three y-variables.
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6.2 Σp
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Before we describe the graph construction in detail, we introduce local as well as global
y-variable assignments and define inconsistencies.

Notation 6.15. The Boolean formula ϕ = C1 ∨ · · · ∨ Cm is given as a disjunction of
m clauses, where every clause Ci = `1i ∧ `2i ∧ `3i is a conjunction of exactly three literals
`ji ∈ {z, z : z ∈ Z}. By Y (C) ⊆ Y we denote the set of y-variables that occur (negated
or not) in a clause C. We call an assignment of these variables a local (y-variable)
assignment and denote it by TY (C) : Y (C) → {0, 1}. In the same spirit, we call TY a
global assignment.

Definition 6.16. Local y-variable assignments L = TY (C) and L′ = TY (C′) for distinct
clauses C and C ′ are consistent if they coincide on Y (C) ∩ Y (C ′). Otherwise, they are
inconsistent and the pair I = {L,L′} is an inconsistency.

Graph Components

We are now ready to start with our graph construction that is based on several gadgets.

Inconsistency Gadgets We start with the simplest gadget, the inconsistency gadget.
They correspond to inconsistencies and their only purpose is to enforce that a minimal
separating set A contains a specific pair of arcs. We use this gadget to ensure that paths
not corresponding to a global y-variable assignment contain a forbidden pair.

Every inconsistency gadget is a directed acyclic graph as depicted in Figure 6.5. It
consists of an sI-tI-path with five arcs where the first, third, and last arc is replaced by
two parallel arcs.

sI tI
vI1 vI2 vI3 vI4

Figure 6.5: An inconsistency gadget corresponding to an inconsistency I.

Lemma 6.17. The unique optimal solution to separate sI and tI in an inconsistency
gadget by forbidden pairs is AI = {{vI1vI2 , vI3vI4}}.

Proof. AI separates sI and tI and every separating set needs at least one pair. Thus,
every optimal solution consists of a single forbidden pair. To prove the uniqueness,
suppose there is an optimal solution whose pair contains one of two parallel arcs. In this
case, a path using the other arc does not completely contain this pair, which yields a
contradiction.
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6 Separating by Forbidden Pairs

Variable Gadgets The variable gadgets correspond to the x-variables in ϕ. Their
purpose is to reflect a truth assignment TX of these variables. That is, there should be
exactly two optimal sets of forbidden pairs that separate such a gadget: one corresponding
to setting the variable to true and one for making it false. An illustration of such a
gadget is given in Figure 6.6. We now describe its construction in more detail. Thereafter,
we explain what the two separating sets look like and prove that these are indeed the
only two optimal solutions.

Basically, the variable gadget corresponding to a variable xi consists of two vertices si
and ti that are connected by several paths. Similar to the inconsistency gadgets we
double some arcs on these paths and we link them in a certain way.

The gadget contains an si-ti-path for every occurrence of xi in the formula ϕ. More
precisely, the j-th occurrence corresponds to a path (si, vij,1, . . . , v

i
j,7, t

i) on which we
replace the first, fourth, fifth, and last arc by two parallels. Additionally, we add a path
(si, vi0,1, v

i
0,2, v

i
0,3, v

i
0,5, v

i
0,6, v

i
0,7, t

i), which is not associated with any occurrence. On this
path we replace the first, fourth, and last arc by two parallel arcs. Furthermore, we
introduce the arcs vi0,3vij,4 and vij,4vi0,5 between these paths.

si ti

vi0,1

vi1,1

vi2,1

viq,1

...

vi0,2

vi1,2

vi2,2

viq,2

...

vi0,3

vi1,3

vi2,3

viq,3

...

vi1,4

vi2,4

viq,4

...

vi0,5

vi1,5

vi2,5

viq,5

...

vi0,6

vi1,6

vi2,6

viq,6

...

vi0,7

vi1,7

vi2,7

viq,7

...

Figure 6.6: A variable gadget corresponding to variable xi. We use q = qi for the number
of occurrences of xi (including negated literals) in formula ϕ.

Let qi denote the number of occurrences of variable xi in the formula ϕ. As there are, by
construction, qi + 1 arc-disjoint si-ti-paths in this gadget, an optimal set of forbidden
pairs separating si and ti must contain at least qi + 1 pairs. Thus, the two separating
sets Ai = {{vij,1vij,2, vij,2vij,3} : j = 0, . . . , qi} and Ai = {{vij,5vij,6, vij,6vij,7} : j = 0, . . . , qi}
are optimal. The following lemma shows that these are in fact the only two optimal
separating sets of forbidden pairs. We identify choosing the separating set Ai with setting
xi to true and choosing Ai with setting xi to false.
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Lemma 6.18. The sets Ai and Ai are the only optimal sets of forbidden pairs separating
si and ti in the variable gadget corresponding to variable xi.

Proof. As argued above, an optimal separating set contains exactly qi + 1 pairs, thus Ai
and Ai are optimal separating sets. It remains to prove the uniqueness.

Similarly to the proof of Lemma 6.17 we can show that no forbidden pair of an optimal
solution uses one of two parallel arcs: otherwise, there are still qi + 1 disjoint si-ti-paths,
none of which completely contains this pair. With the same argumentation it follows
that none of the arcs vi0,3vij,4 and vij,4vi0,5 between these paths is contained in a forbidden
pair of an optimal solution.

Thus, all forbidden pairs are composed of arcs of the form vij,1v
i
j,2, vij,2vij,3, vij,5vij,6, and

vij,6v
i
j,7. For j ∈ {1, . . . , qi} we consider the four different paths

(si, vi0,1, . . . , v
i
0,7, t

i), (si, vi0,1, v
i
0,2, v

i
0,3, v

i
j,4, . . . , v

i
j,7, t

i),

(si, vij,1, . . . , v
i
j,7, t

i), and (si, vij,1, . . . , v
i
j,4, v

i
0,5, v

i
0,6, v

i
0,7, t

i).

An optimal solution has to separate these four paths with only two forbidden pairs as
there are qi − 1 disjoint paths in the remaining gadget. This, however, is only possible if
either the pairs {vi0,1vi0,2, vi0,2vi0,3} and {vij,1vij,2, vij,2vij,3} or the pairs {vi0,5vi0,6, vi0,6vi0,7} and
{vij,5vij,6, vij,6vij,7} are chosen. Since this holds for all j ∈ {1, . . . , qi}, the claim follows.

Formula Gadget The formula gadget consists of clause assignment units, which we
describe later, that are ordered in a layered structure. For now it suffices to know that
they have one input vertex and one output vertex which we use to connect them. By
Lemma 6.14, every clause C of ϕ, contains ` ∈ {1, 2, 3} many y-variables. For every of
the 2` possible local y-variable assignments L = TY (C) for C we introduce one such clause
assignment unit. We denote its input vertex by sL and its output vertex by tL. This
yields either two, four, or eight clause assignment units for each clause.

The i-th layer of the formula gadget consists of all clause assignment units corresponding
to the i-th clause of ϕ. A source s0 is connected to the input sL of every clause assignment
unit corresponding to a local assignment L = TY (C1) of the first clause. In addition,
we connect the clause assignment units of successive clauses in the formula gadget by
complete bipartite graphs. Finally, we connect every output tL of a unit corresponding to
the last clause Cm with the target t0. The structure of the formula gadget is visualized
in Figure 6.7.

Most clause assignment units provide paths from their input to their output vertex.
Therefore, s0-t0-paths through the formula gadget pass through exactly one clause
assignment unit of every layer. This way, every such path selects a local y-variable
assignment for every clause. If these are consistent, that is, if every y-variable is assigned
the same truth value in each clause assignment that contains it, they can be combined
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s0 t0

T 1
Y (C1)

T 2
Y (C1)

T 1
Y (C2)

T 2
Y (C2)

T 3
Y (C2)

T 4
Y (C2)

· · ·

T 1
Y (Cm)

T 2
Y (Cm)

Figure 6.7: The formula gadget for the formula ϕ = C1 ∨ C2 ∨ · · · ∨ Cm in 3-DNF. To
distinguish the different possible local assignments of a clause C we enumerate
them T 1

Y (C), T
2
Y (C), and so on.

to a global y-variable assignment. The other way around, we can also associate an
assignment TY with an s0-t0-path which uses in every layer the clause assignment unit
corresponding to TY (C) = TY |Y (C) for the respective clause C.

Thus, the paths through the formula gadget are linked with the global y-variable assign-
ments. Our goal is to ensure that any such path contains a forbidden pair if and only
if the associated assignment satisfies the formula ϕ (in conjunction with the x-variable
assignment). For this, the variable gadgets will play an important role. However, we
also have to take those paths into consideration that do not correspond to consistent
y-variable assignments. In order to ensure that these paths contain forbidden pairs as
well, we will make use of the inconsistency gadgets.

Typification All the gadgets introduced until now need to be part of s-t-paths in the
final graph. In order to keep mixed paths in check when we finally put these pieces
together we need the concept of typification.

To explain the idea of the typification concept, we start with a small example. Given are
two disjoint graphs G1 and G2. In each graph Gi we want to separate a source si and a
target ti by forbidden pairs. However, we want to combine these two graphs to a single
graph G without affecting the optimal choice of forbidden pairs, that is, we still only
want to select pairs in G1 and G2. Simply adding a source s, a target t, and connecting
these with arcs ss1, ss2, t1t, and t2t does not suffice as the combined instance can always
be separated by the two forbidden pairs {ss1, t1t} and {ss2, t2t}. But if we know that
p − 1 pairs are sufficient to separate Gi for i ∈ {1, 2}, we can replace each of the four
additional arcs by a bunch of p parallel arcs. In other words: if ki pairs are sufficient to
separate Gi, we can choose any p > max{k1, k2}. Therefore, an optimal solution in the
combined instance only uses arcs that are contained within the subgraphs G1 and G2.
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If we also add p+ 1 parallel arcs from s1 to t2 as well as from s2 to t1, we have to choose
forbidden pairs separating all paths (s, s1, t2, t) and all paths (s, s2, t1, t). These paths
only consist of additional arcs not contained in the original graphs G1 and G2. The
unique optimal solution to separate these paths is to choose the 2p2 forbidden pairs
that combine an arc ss1 with an arc t2t and an arc ss2 with an arc t1t. Thus, we can
separate G1 by k1 forbidden pairs and G2 by k2 forbidden pairs if and only if we can
separate G by 2p2 + k1 + k2 forbidden pairs. This situation is visualized in Figure 6.8.

s t

G1

G2

s1 t1

s2 t2

Figure 6.8: An exemplary typification construction. The bold arcs ss1, ss2, t1t, and
t2t represent bunches of p parallel arcs. The even thicker arcs s1t2 and s2t1
represent bunches of p+ 1 parallel arcs.

The reason we introduce these additional arcs is because they help us weed out mixed
paths: if we allow arcs between G1 and G2 in G, then it becomes possible to obtain
s-t-paths containing si and tj for i 6= j. By adding the additional “diagonal” arcs s1t2
and s2t1 we enforce the choice of all 2p2 pairs {ssi, tjt} for i 6= j and, thus, ensure that
these mixed paths are already saturated with at least one pair. This just leaves paths
that start with ssi and end with tit for all possible indices i. We only have to examine
whether all paths of these two types contain a forbidden pair or not. Note that this does
include paths that are not solely part of a subgraph Gi, as they can leave and return,
but it does reduce the potential paths without a forbidden pair immensely.

This construction can be generalized to more than only two types. For q subgraphs
G1, . . . , Gq with sources si and targets ti, i ∈ {1, . . . , q}, we can add p parallel arcs from
s to every source si and from every target ti to t. Additionally, we add p + 1 parallel
arcs sitj for all i, j ∈ {1, . . . , q} with i 6= j. Every optimal solution has to use the p2
forbidden pairs of arcs {ssi, tjt} of different types i 6= j. Thus, every optimal solution
has p2q(q − 1) forbidden pairs and, additionally, the pairs required to separate all paths
of the q different types (all paths using ssi and tit for some i). We intend to use this to
give all inconsistency gadgets, all variable gadgets, as well as the formula gadget their
own type.
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6 Separating by Forbidden Pairs

Clause Assignment Units and Graph Construction To construct the graph corre-
sponding to formula ϕ we use the formula gadget, a variable gadget for every x-variable,
and several inconsistency gadgets. More precisely, for every pair of clause assignment
units (within the formula gadget) that corresponds to incompatible assignments we
introduce one such inconsistency gadget. All these gadgets are combined into the graph G
as explained in the typification section.

Let us describe the graph construction in detail. That is, we finally have to specify what
the clause assignment units look like and how these are connected to the other gadgets.
Recall that the formula gadget contains a clause assignment unit for every clause C and
every possible assignment L = TY (C) of Boolean values to the y-variables contained in C.
As already stated in the formula gadget section, these are 2` clause assignment units for
a clause with ` many y-variables.

A clause assignment unit corresponding to a y-variable assignment L of a clause C
contains exactly three vertices: sL, vL, and tL. Note that we use sL and tL in order
to connect the clause assignment units in the formula gadget as described above. The
vertices vL and tL are connected by an arc vLtL if and only if C contains at least one
y-literal that evaluates to false with the y-variable assignment L. This arc is missing in
exactly one clause assignment unit corresponding to a clause C as there is only exactly
one assignment TY (C) that satisfies all y-literals in C.

These are all components within a clause assignment unit. In particular, the clause
assignment units are not connected and, thus, neither is the formula gadget. The following
modifications only add some arcs between different gadgets. These are illustrated by
dashed arcs in Figures 6.9 to 6.11.

In addition to the (potentially non-existing) arc vLtL, we add another path from vL to tL
for every x-literal contained in C. The path of a literal corresponding to variable xi passes
through the variable gadget of xi. If the occurrence of xi in C is the j-th occurrence in ϕ
in total, this path uses either the arcs vij,1vij,2 and vij,2vij,3 (if C contains the literal xi) or
the arcs vij,5vij,6 and vij,6vij,7 (if C contains the literal xi). In the former case we add the
inter-gadget arcs vLvij,1 and vij,3tL and in the latter case we add vLvij,5 as well as vij,7tL.
These connecting arcs are indicated by dashed orange arcs in Figures 6.9 and 6.10.

Magnitudes and Parameters

Recall that we denote the number of clauses of ϕ = C1∨· · ·∨Cm by m and the number of
x- and y-variables by nx and ny, respectively (compare Notations 6.10 and 6.15). Also as
before, let qi denote the number of occurrences of the i-th x-variable xi in the formula ϕ.
Additionally, we denote the number of inconsistencies by nI .

The graph of the corresponding SFP instance consists of one formula gadget, nx variable
gadgets, and nI inconsistency gadgets. The formula gadget consists of at most eight clause
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sL · · ·
vL

tL

PL

Figure 6.9: A clause assignment unit corresponding to a local y-variable assignment L for
clause C containing a single x-variable. The assignment L does not fulfill all
y-literals of C as the arc vLtL is present. The colored, solid arcs are contained
in other gadgets and the dashed arcs connect these, see also Figures 6.10
and 6.11.

si ti

vi0,1

vi1,1

vi2,1

viq,1

...

vi0,2

vi1,2

vi2,2

viq,2

...

vi0,3

vi1,3

vi2,3

viq,3

...

vi1,4

vi2,4

viq,4

...

vi0,5

vi1,5

vi2,5

viq,5

...

vi0,6

vi1,6

vi2,6

viq,6

...

vi0,7

vi1,7

vi2,7

viq,7

...

Figure 6.10: A variable gadget (as in Figure 6.6) with the connections to clause assignment
units. The blue arcs and the dashed orange arcs correspond to these from
Figure 6.9. In this example, the first and last occurrence of the corresponding
x-variable occurs non-negated and the second occurrence is negated.

sI tI
vI1 vI2 vI3 vI4

Figure 6.11: An inconsistency gadget (as in Figure 6.5) with the connections to clause
assignment units or other inconsistency gadgets. The red arcs and the green
dashed arcs correspond to these from Figure 6.9.
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assignment units per clause. Hence, we have O (m) clause assignment units. Moreover,
since we have at most one inconsistency gadget for every pair of clause assignment units,
it holds that nI ∈ O (m2).

As shown in Lemmas 6.17 and 6.18 we need one forbidden pair to separate every
inconsistency gadget and qi + 1 forbidden pairs to separate the variable gadget for xi.
Since the formula gadget itself is not connected, we do not need additional forbidden
pairs to separate it. Thus, for the typification framework, we choose

p = max
i=1,...,nx

qi + 2 (6.1)

and add p parallel arcs from a source s to all input vertices of variable and inconsistency
gadgets as well as to the formula gadget. That is, we add all parallels of the form ssi,
ssI , and ss0. Analogously, we add p parallel arcs from every such output vertex to a
target t resulting in parallels tit, tIt, and t0t. Furthermore, we add p + 1 parallel arcs
from every input vertex of such a gadget to the output vertices of all other gadgets. In
total, we introduce

2p(nx + nI + 1) + (p+ 1)(nx + nI + 1)(nx + nI) ∈ O
(
m5
)

arcs for the typification. The asymptotic complexity O (m5) follows since nI ∈ O (m2)
and since both, nx and p, are bounded by the number 3 ·m of literals in ϕ. As explained
in the typification section we need

k0 = p2(nx + nI + 1)(nx + nI) (6.2)

pairs to separate all paths that only consist of arcs introduced for typification. We show
in the analysis section below that we can separate the graph G by

k = k0 + nI +
nx∑
i=1

(qi + 1) (6.3)

forbidden pairs if and only if the quantified Boolean formula ϕ has an x-variable assignment
such that ϕ evaluates to true for every y-variable assignment.

Analysis

So far, given a quantified Boolean formula ϕ, we have constructed an SFP instance G
with source s and target t and specified the number k of forbidden pairs. In the following,
we use this to give a proof for Theorem 6.8, which we divide into a few lemmas. First,
in Lemmas 6.19 and 6.20 we prove G to acyclic and that we can construct this graph
in polynomial time. Thereafter, we show in Lemma 6.21 that k pairs are required to
separate s and t. Finally, in Lemmas 6.22 and 6.23 we prove that k pairs actually suffice
if and only if ϕ is satisfiable.
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Lemma 6.19. The graph G that is constructed as described above is acyclic.

Proof. As a graph is acyclic if and only if it exists a topological ordering, we prove the
claim by specifying such a topological ordering for G. However, we do not explicitly map
every vertex to a natural number. Instead, we describe a procedure how to obtain the
order of the vertices. The reason is that we have to insert some vertices in between others
multiple times. This would make a formal definition of this mapping quite technical.

In a first step, we enumerate all vertices in the formula gadget together with the interior
vertices from inconsistency gadgets. Here, the “interior vertices” of an inconsistency
gadget for an inconsistency I are the vertices vI1 , . . . , vI4. Note that each arc from vI1v

I
2

and vI3vI4 is contained in an sL-vL-path PL of some clause assignment unit. We start to
enumerate the vertices in clause assignment units corresponding to the first clause C1.
There, we first enumerate the paths PL of assignments L for C1 followed by the output
vertices tL of the corresponding gadgets. Afterwards, we proceed in the same way with
the subsequent clauses. This procedure is visualized in Figure 6.12.

s0 t0· · · · · ·

Figure 6.12: A schematic representation how to enumerate the vertices in a formula gadget
for a topological ordering. The sL-vL-paths within the clause assignment
units are drawn as wavy lines. The path and lines that might connect vL
and tL are only indicated. This visualizes the first step in the proof of
Lemma 6.19.

By enumerating the formula gadget that way, for i < j every vertex corresponding to a
clause Ci gets a lower number than every vertex corresponding to clause Cj. This holds
in particular for the vertices on the sL-vL-paths PL in the clause assignment units. For
every inconsistency I = {L = TY (Ci), L

′ = TY (Cj)} with i < j, the path PL uses the arc
vI1v

I
2 and the path PL′ uses the arc vI3vI4 within the corresponding inconsistency gadget.

Thus, the partial topological ordering defined up to this point is not only consistent with
all arcs of the formula gadget and the arcs in between formula and inconsistency gadgets,
but also within all these inconsistency gadgets.

It remains to prove that we can extend this partial ordering to the variable gadgets and
the missing in- and output vertices. The latter are, however, no problem as we can put all
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input vertices at the start and all output vertices at the end, directly after s or before t
(except for the in- and outputs of clause assignment units that already are assigned a
number in the first step).

Thus, in a second step, we have to assign numbers to the vertices of the variable gadgets.
Such a variable gadget corresponding to a variable xi consists of qi + 1 many si-ti-paths.
With the exception of the additional path, every path corresponds to one occurrence of
this variable. Let us consider the j-th occurrence and let C be the corresponding clause.
Depending on whether xi occurs negated or not, we have restrictions either for the values
of vij,5 and vij,7 or for the values of vij,1 and vij,3, respectively (as those have arcs to vertices
in clause assignment units that are already assigned a number). In particular, we only
have restrictions on the “left half” or on the “right half” of the path but not on both. In
the case the j-th occurrence is not negated, we assign the vertices vij,1, . . . , vij,3 increasing
values that we insert in between the highest number of a vertex vL and the lowest number
of a vertex tL in the topological ordering for every assignment L of clause C. Note that
we have enumerated these vertices in the first phase, such that the highest number of a
vertex vL is in fact smaller than the lowest number of a vertex tL for an assignment L of
clause C.

Because all paths within the variable gadget are only connected to the additional path
(si, vi0,1, v

i
0,2, v

i
0,3, v

i
0,5, v

i
0,6, v

i
0,7, t

i), we can extend the partial topological ordering within
every variable gadget. Therefore, we can assign vi0,1, vi0,2, and vi0,3 values that are smaller
and vi0,5, vi0,6, and vi0,7 values that are larger than any values of vertices within the variable
gadget. Thereafter, we can insert the “missing half” of paths accordingly.

Lemma 6.20. The graph G corresponding to the formula ϕ is of polynomial size and it
can be constructed in polynomial time, both with respect to the size of ϕ.

Proof. For a given instance ϕ = C1 ∨ · · · ∨ Cm with nx many x-variables, let G be the
graph as described in this section. Its size is polynomial in the size of ϕ as it contains
O (m) clause assignment units, nx variable gadgets, and O (m2) inconsistency gadgets.
The size of the clause assignment and inconsistency gadgets is constant and the size of a
variable gadget is linear in the number of occurrences of the corresponding x-variable.
We add O (m5) arcs for the typification and to see that also only polynomially many arcs
connect different gadgets we can associate these to at least one of the two corresponding
gadgets. Every inconsistency gadget is connected by exactly four inter-gadget arcs and
every clause assignment unit is connected by either two, four, or six inter-gadget arcs. All
the arcs connecting a variable gadget to other gadgets have the other endpoint in a clause
assignment unit and are thus already considered. Hence, the amount of inter-gadget
arcs is polynomially bounded. Moreover, we can also construct the graph G from the
formula ϕ in polynomial time.
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Lemma 6.21. At least k forbidden pairs are required to separate s and t in G, where k
is defined as in Equation (6.3) on Page 68.

Proof. This follows from the typification construction. Every set of forbidden pairs A
has to contain

. the k0 pairs to separate all paths that consist only of typification arcs,

. the nI pairs to separate all inconsistency gadgets (see Lemma 6.17), and

. for every xi either Ai or Ai (see Lemma 6.18).

Lemma 6.22. If the Σ2SAT instance ϕ is satisfiable, we can separate s and t in G by k
forbidden pairs, where k is defined as in Equation (6.3) on Page 68.

Proof. If ϕ is satisfiable, there is an x-variable assignment TX such that ϕ evaluates to
true no matter which values are assigned to the y-variables. We define a set of forbidden
pairs depending on TX as follows.

First, it contains the k0 forbidden pairs to separate all paths only consisting of typification
arcs. Second, it contains the nI pairs that separate all inconsistency gadgets, compare
Lemma 6.17. Finally, we choose a separating set for every x-variable xi. If TX(xi) = 1, we
use the separating set Ai. Otherwise, we use Ai. See Lemma 6.18 for more information
on these two sets.

By Equation (6.3) and Lemmas 6.17 and 6.18 we have chosen k forbidden pairs. Moreover,
by the typification construction, these pairs separate all paths that do not use any gadget
and those whose first and last gadgets are not the same.

It remains to prove that every path that enters a gadget via a direct arc from s and
leaves this gadget via a direct arc to t completely contains at least one forbidden pair.
We consider the different gadgets.

First, consider an inconsistency I and the corresponding inconsistency gadget. Every
path entering this gadget via ssI must also use the arc vI1vI2. Analogous, every path
leaving this gadget via tIt must also use the arc vI3vI4. Thus, every path entering and
leaving this gadget via input sI and output tI contains the forbidden pair {vI1vI2 , vI3vI4}
that we have chosen.

Next, consider the variable gadget for a variable xi. Similarly to the inconsistency gadget,
a path entering the gadget via si can leave the gadget at the earliest at some vertex vij,3
and, thus, it has to contain the pair {vij,1vij,2, vij,2vij,3}. Analogous, a path leaving the
gadget via ti must enter the gadget at the latest at some vertex vij′,5 and, thus, it has to
contain the pair {vij′,5vij′,6, vij′,6vij′,7}. At least one of these two pairs is contained in the
set of forbidden pairs we have chosen.
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Finally, let us consider the formula gadget and let P be a path that enters the gadget
via s0 and leaves it finally via t0. The path P passes through multiple inconsistency
gadgets. If it uses more than one arc from one of them, it directly contains the forbidden
pair chosen in this inconsistency gadget. Thus, we can assume that P uses at most one
arc from every inconsistency gadget.

If the path P leaves some clause assignment unit for a clause C via an arc to a variable
gadget, it has to leave this variable gadget via an arc to the vertex tL of a clause
assignment unit that also corresponds to clause C. Thus, for every clause, this path
enters exactly one clause assignment unit via its input sL and uses the sL-vL-path PL

therein. Consequently, if P passes through clause assignment units corresponding to
inconsistent assignments L and L′, it contains the forbidden pair contained in the
inconsistency gadget for I = {L,L′}.

Therefore, we can assume that P enters only clause assignment units corresponding to
consistent assignments. This allows us to define a global y-variable assignment TY by
combining the local clause assignments related to the clause assignment units that P
enters via sL. As ϕ is satisfiable and TX is chosen appropriately we have that ϕ evaluates
to true with T = (TX , TY ). In particular, there is at least one clause C that is fulfilled.
Let us consider the clause assignment unit associated to C that P enters via sL. As this
clause is fulfilled, all y-literals are true and, thus, the arc vLtL is not present. Hence,
the path P has to pass through an x-variable gadget. However, as also this x-literal in C
is true, by the construction of the graph and the choice of the forbidden pairs, P has to
use a forbidden pair in this variable gadget.

In all possible cases, the path P contains a forbidden pair. Thus, s and t can be separated
in G by k forbidden pairs.

Lemma 6.23. If the Σ2SAT instance ϕ is not satisfiable, we cannot separate s and t
in G by k forbidden pairs, where k is defined as in Equation (6.3) on Page 68.

Proof. Toward a contradiction, suppose that we can separate s and t in G by k forbidden
pairs.

By Lemma 6.21 we need at least k forbidden pairs. By the typification construction
and by Lemmas 6.17 and 6.18 we have to choose the forbidden pairs from Ai or Ai in a
variable gadget corresponding to variable xi.

We define an x-variable assignment TX based on this set of forbidden pairs. A variable xi
is set to true if we have chosen Ai to separate its variable gadget. Otherwise, if we have
chosen Ai, we set xi to false.

As ϕ is not satisfiable, there exists a y-variable assignment TY such that ϕ evaluates to
false with T = (TX , TY ). This y-variable assignment TY corresponds to exactly one
clause assignment unit TY (C) = TY |Y (C) for every clause C. We now construct an s-t-path
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in G that does not contain a forbidden pair. This path starts with the arc ss0 and ends
with t0t. For every clause C it passes through the clause assignment unit corresponding
to L = TY |Y (C) where it first uses the s

L-vL-path PL. If the clause contains a y-literal that
is false, the path continues along the arc vLtL that is present in this case. Otherwise,
there is an x-literal that is not fulfilled. In this case, there exist a vL-tL-path through
the corresponding variable gadget using two arcs that are not chosen as a forbidden pair
(as this literal is false).

The path constructed this way does not contain a forbidden pair from a variable gadget.
It does not contain a forbidden pair from an inconsistency gadget either as it only uses
at most one arc from every inconsistency gadget. This is the case because it only uses
consistent assignments for the clauses. And since the path does not contain a forbidden
pair used to separate paths consisting of only typification arcs, the path does not contain
a forbidden pair at all. This contradicts our initial assumption and finishes the proof.

Conclusion

The undisputed highlight of this chapter was the Σp
2-completeness proof for SFP, which

is based on a reduction form Σ2SAT. Previously, we developed a heuristic for MinSFP.
This algorithm is often capable of computing optimal separating pairs of arcs. However,
we provided an instance that cannot be solved optimally by applying it.
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Part II

Fastest Paths with Time Profiles
and Waiting

In this part, we deal with a simplified version of the practical problem in the time-
dependent setting: the Fastest Path with Time Profiles and Waiting (FPTPW) problem.
Given a directed acyclic graph with durations on the arcs and time profiles at the vertices,
we are interested in a fastest path from a source to a sink vertex. At specified vertices we
are allowed to wait, and the solutions have to comply with related temporal constraints.

We develop a solution algorithm for FPTPW, which propagates “departure-duration
functions” as labels. Proving its correctness and bounding its running time requires
profound knowledge about the structure of these functions. As a preliminary step to
the analysis of these functions, we focus on the temporal information and provide an
algorithm that synchronizes the time profiles between the vertices. Although FPTPW
is NP-complete in general, we develop algorithms that allow solving the problem in
polynomial time for certain special cases, in particular if waiting is allowed at every
vertex.
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Chapter 7

The Fastest Path Problem

We define the Fastest Path with Time Profiles and Waiting (FPTPW) problem
and prove its NP-completeness. To represent feasible solutions we introduce “valid
paths”, which also play an important role in solving the problem algorithmically.
For this purpose, we lay the foundations by providing operations to modify and
combine valid paths. Furthermore, we present a mixed integer linear programming
formulation for FPTPW.

Assumptions

Throughout this chapter, G = (V,A) always denotes a directed acyclic graph with
designated source vertex vs and target vertex vt.

7.1 Setting and Problem Definition

Before we are able to define the Fastest Path with Time Profiles and Waiting (FPTPW)
problem in Problem 7.6, we need to introduce time profiles, prepare the setting by defining
an appropriate network, and specify what valid solutions to the problem look like. We
start with the time profiles.

Definition 7.1 (Time Profile, Time Window). A time profile T ⊆ R is a finite union of
closed intervals. A time window in T is an inclusion-wise maximal interval I ⊆ T . The
(unique) number of distinct time windows in T is denoted by |T | and the set of all time
profiles by T .

Next, we bundle all the data required for an instance of our fastest path problem in
a network. Anticipating the abbreviation for Problem 7.6 we call this an FPTPW
network.
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Definition 7.2 (FPTPW network). An FPTPW network N = (G, vs, vt, d, tp,W ) is a
tuple consisting of

. a directed acyclic graph G = (V,A),

. a source vs and a target vt in V ,

. a function d : A→ R assigning a duration to every arc,

. a function tp : V → T assigning a time profile to every vertex, and

. a subset W ⊆ V of vertices at which waiting is allowed.

Since we are not only interested in static paths, we have to specify how these depend on
the time, referring to the FPTPW instance. Think of walking along a path as follows:
We depart at a vertex u at a certain time and reach its successor v after the duration d(uv)
of the arc uv has passed. If the vertex v allows, we may wait there before continuing
further along the path. A more detailed intuition of this kind of time dependency (and
the reason for using it) is given in Section 3.5.

In order to formally grasp the temporal component of paths, we specify the departure
times τ . These implicitly define arrival times σ as well as waiting times for all vertices
on the path. To neatly express the conditions that these departure times must meet in
order to call them valid, we first define arrival intervals. For a potential departure time t
at a vertex v, the corresponding arrival interval contains exactly the times at which we
can arrive at v in order to be able to depart as desired at time t. We denote the arrival
interval for a departure time t at a vertex v by Iσv (t). Note that the superscript σ only
indicates that this interval specifies possible arrival times. We give intuition about these
arrival intervals after defining them formally.

Definition 7.3 (Arrival Interval). Let (G, vs, vt, d, tp,W ) be an FPTPW network with
G = (V,A). The arrival interval Iσv (t) at a vertex v ∈ V for departure t ∈ R is defined
by

Iσv (t) =


∅ if t /∈ tp(v),

{t} if t ∈ tp(v) and v /∈ W, and
[t0, t] if t ∈ tp(v) and v ∈ W

where t0 in the last case is given by t0 = min{t′ ∈ R : [t′, t] ⊆ tp(v)}.

If we fix a vertex v and a departure time t ∈ R, the arrival interval Iσv (t) contains the
points in time at which we are allowed to arrive at v. In the first case t /∈ tp(v) we are
not allowed to depart at time t. Consequently, there is no time at which we can arrive
in order to depart at the time t. If we are not allowed to wait at v, we have to arrive
exactly at the time at which we want to depart. Finally, if we are allowed to wait, we
must arrive not later than t but in the time window of tp(v) that contains t. This is
expressed by the interval [t0, t].
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7.1 Setting and Problem Definition

Definition 7.4 (Valid Path). Let (G, vs, vt, d, tp,W ) be an FPTPW network based on
a graph G = (V,A) and let u, v ∈ V .

A departure time specification for a path P = (v0, . . . , vk) is a function τ : V (P ) → R.
The corresponding arrival time specification σ : V (P )→ R is defined by σ(v0) = τ(v0)
and σ(vi) = τ(vi−1) + d(vi−1vi) for i ∈ {1, . . . , k}.

A tuple (P, τ) consisting of a u-v-path P and a departure time specification τ for P
is a valid u-v-path, if the corresponding arrival times σ satisfy σ(w) ∈ Iσw(τ(w)) for all
w ∈ V (P ). In this case we also call τ valid for P .

We simply call τ the departure times and σ the arrival times. Note that arrival times
always depend on departure times. However, we refrain from including the departure
times in the notation for arrival times to keep the notation simple. Instead, when
dealing with different departure times τ and τ ′, we analogously write σ and σ′ for the
corresponding arrival times. Furthermore, since we usually consider only valid paths, we
sometimes omit the adjective valid and only refer to these as paths. It should always be
clear from the context whether we need the corresponding departure times or not.

Definition 7.5 (Fastest Path). Let (G, vs, vt, d, tp,W ) be an FPTPW network based
on a graph G = (V,A). The duration d(P, τ) of a valid u-v-path (P, τ) is the difference
τ(v)−τ(u) between the departure times at its ends. A fastest u-v-path is a valid u-v-path
(P, τ) with minimum duration d(P, τ).

We now have all ingredients needed to define the fastest path with time profiles and
waiting problem, the central problem in this part of the thesis.

Problem 7.6 (FPTPW). An instance of the Fastest Path with Time Profiles and Waiting
problem consists of an FPTPW network (G, vs, vt, d, tp,W ). In the optimization variant
MinFPTPW the goal is to find a fastest vs-vt-path. The decision variant FPTPW
requires another parameter D ∈ R and the question is whether there exists a valid
vs-vt-path (P, τ) whose duration does not exceed D.

We close this first section about the problem FPTPW with a few assumptions that we
use repeatedly throughout this thesis.

Vertices that are not contained in any path from the source to the target are irrelevant
for the problem. We can identify and remove these vertices in linear time by performing
two depth- or breadth-first-searches: one from the source vs in the original graph G and
one from the target vt in the inverse graph G−1. Throughout this part, we assume that
such vertices do not exist.

Assumption 7.7. Every vertex v ∈ V is contained in some vs-vt-path.
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Moreover, we often assume that the graph does not contain parallel arcs. This simplifies
notation as we can associate outgoing arcs with the corresponding vertices. We can
remove parallels by subdividing involved arcs. Replacing an arc uw for that purpose
means introducing a new vertex v with the same properties (time profile and waiting
characteristic) as u and inserting the arcs uv with d(uv) = 0 and vw that gets assigned
the duration of the original arc.

Assumption 7.8. The graph G does not contain parallels.

Shifting the time profiles of all vertices by the same constant does not have much influence
on the problem instance: we obtain a one-to-one correspondence between the valid paths
of both instances by uniformly shifting their departure times. Compare also the shifting
operation that we introduce later in Notation 7.17 on Page 84. In particular, the durations
of corresponding paths coincide. Thus, we may assume that all time profiles contain only
nonnegative time points, that is, tp(v) ⊆ R≥0 for all vertices v ∈ V .

Assumption 7.9. All time profiles contain only nonnegative time points.

7.2 Literature

Shortest path problems including a temporal component have already been extensively
studied. This section gives an overview of the work that is particularly similar to our
problem, at least in certain aspects. The problems are often inspired by applications
from different thematic areas. We also refer to Section 3.3 for the literature that is more
related to the practical problem on which FPTPW is based.

Railway Routing Halpern and Priess describe in [HP74] an almost identical problem,
the setting is only slightly more general. They motivate this by scheduling trains on a
railway network or convoys on a network of narrow streets. Every arc has a duration
and a collection of time intervals representing permissible departure times. In addition,
every vertex is associated with a finite set of time intervals during which parking is
permissible. For two vertices r and s, their goal is to find a valid r-s-path with minimum
arrival time at the target s. This differs from FPTPW where we search for a path
with fastest duration and therefore have to respect the departure time at the source.
Consequently, Halpern and Priess can restrict to calculating the time points at which a
valid path arrives or departs at a vertex. For this task they provide an algorithm, which
is inspired by Dijkstra’s shortest path algorithm [see Dij59]. By contrast, we cannot
simply restrict these possible arrival and departure times but we have to further associate
each such time point with the corresponding duration to get there (for more information
see Chapter 9).
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7.2 Literature

The problem from [HP74] is addressed again by Sancho in [San92] and [San94]. He
restricts the number of time intervals associated with vertices or arcs to one, and gives
dynamic programming formulations to solve the problem.

The situation dealt with in [HÁN20] is also quite similar to our practical problem. In
fact, Haehn, Ábrahám, and Nießen consider basically the same task on a different data
basis. They extend and adapt the algorithm of Halpern and Priess from [HP74] to their
needs. In particular, they also have a fixed starting time tstart to which the duration
of the fastest path is related. This is the crucial point where our problem differs and
why we need different algorithms. For further information we also refer to the literature
overview for the practical problem in Section 3.3 from Page 13 on.

Vehicle Scheduling There are several publications on related problems in the field of
vehicle scheduling. A common setting contains vehicles with one or multiple depots and
rides, each associated with a time window in which it must be started. The task is to
assign the rides to the vehicles and a subproblem is the routing of a single vehicle. This
is often formalized as a shortest path problem with time windows and waiting.

Such a vehicle scheduling problem with multiple depots is described by Desaulniers,
Lavigne, and Soumis in [DLS98]. In addition to the duration, each arc has a cost. Vehicles
are allowed to wait everywhere and the time windows only restrict the departure times.
More precisely, it is possible to arrive at a vertex before its time window opens and then
wait a correspondingly long time. In [DV00], Desaulniers and Villeneuve extract the
subproblem of scheduling a single vehicle and extend the model by linear waiting costs.
This Shortest Path with Waiting Costs (SPWC) problem is similar to our problem when
we choose costs equal to durations. However, waiting is still allowed everywhere, and one
can still arrive before the time windows open.

A similar vehicle scheduling problem is described by Desrosiers, Soumis, and Desrochers
in [DSD84]. As with the above mentioned SPWC, the Shortest Path with Time Windows
(SPTW) subproblem described therein is closely related to our problem. Desrochers
and Soumis present another algorithm which solves this problem in [DS88]. However, as
for SPWC, also SPTW allows waiting everywhere and arriving before time windows
open.

Postal Services In the route planning for postal services, time windows are common
constraints, especially when delivering parcels to industry customers. These problems
are often modeled as traveling salesperson problems, see, for example [BDR21].

Propagating Functions The main idea of our algorithms solving FPTPW is to prop-
agate functions, which is also done by Xing and Kao in [XK02] for a different problem.
They want to find a shortest path in the plane with rectangular obstacles. Based on the
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7 The Fastest Path Problem

obstacles they divide the plane into segments and compute shortest path functions for
the boundaries of these segments. That is, their functions depend on space and refer
to shortest distances where our functions depend on time and refer to fastest durations.
However, their functions are also piecewise linear and the algorithmic idea is similar.

7.3 Handling Paths

The aim of this section is to provide tools to handle (valid) paths. First, we give an
alternative characterization for the validity of departure times. Thereupon we consider a
few variants of modifying paths: restricting and concatenating paths, replacing subpaths,
and shifting the departure times slightly.

Lemma 7.10. Let (G, vs, vt, d, tp,W ) be an FPTPW network and let P be a path in G.
A departure time specification τ : V (P ) → R is valid if and only if there exist time
windows Iv ⊆ tp(v) for the vertices on the path P such that the following conditions are
satisfied:

(DT1) τ(v) ∈ Iv for all v ∈ V (P ),

(DT2) σ(v) ∈ Iv for all v ∈ V (P ),

(DT3) τ(v) ≥ σ(v) for all v ∈ V (P ), and

(DT4) τ(v) = σ(v) for all v ∈ V (P ) \W .

Proof. First, let τ be a valid departure time specification and let v ∈ V . Since τ is valid,
the arrival time σ(v) ∈ Iσv (τ(v)) is contained in the arrival interval. Thus, the arrival
interval Iσv (τ(v)) is non-empty, which according to Definition 7.3 can only be the case if
τ(v) ∈ tp(v). Let Iv be the time window of tp(v) containing τ(v). Again by the definition
of the arrival interval, it is Iσv (τ(v)) ⊆ Iv and every t ∈ Iσv (τ(v)) satisfies t ≤ τ(v). This
implies (DT1) to (DT3). In the case v /∈ W , the arrival interval Iσv (τ(v)) = {τ(v)} only
consists of a single point and σ(v) ∈ Iσv (τ(v)) also implies (DT4).

Now let τ : V (P )→ R and let Iv ⊆ tp(v) be some time windows for the vertices v ∈ V (P )
that satisfy (DT1) to (DT4). Let v ∈ V (P ). By (DT1) we have that the arrival interval
Iσv (τ(v)) 6= ∅ is non-empty. In the case v /∈ W , (DT4) implies σ(v) = τ(v) ∈ Iσv (τ(v)).
Otherwise, it follows from (DT1) to (DT3) and the fact that Iv is a time window that
[σ(v), τ(v)] ⊆ tp(v). Hence, it is σ(v) ∈ Iσv (τ(v)) by Definition 7.3.

As already mentioned above, we want to provide operations to modify valid paths.
Common paths can be restricted or concatenated and subpaths can be replaced. We
translate these operations to valid paths, making sure the temporal components fit
together.
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Restriction

We can restrict every valid path to a subpath by restricting the spatial path as usual and
by keeping only the departure times of vertices that remain on the restricted path.

Definition 7.11 (Restriction). Let (P, τ) be a valid path and let {u, v} ⊆ V (P ) be
two vertices on this path. Restricting (P, τ) to its u-v-subpath results in the path
(P, τ)|uv = (P |uv , τ |V (P |uv)

).

Lemma 7.12. Restricting a valid path yields another valid path.

Proof. Let (P ′, τ ′) = (P, τ)|uv be a restriction of a valid path to its u-v-subpath. By
Definition 7.4 the path (P ′, τ ′) is valid if its arrival times σ′ satisfy σ′(w) ∈ Iσw(τ ′(w)) for
all w ∈ V (P ′). The arrival times σ and σ′ of the path and its restriction can differ at
most in the vertex u as σ(u) ≤ τ(u) = τ ′(u) = σ′(u). The claim now follows since (P, τ)
is valid and the arrival intervals are independent of the path.

Concatenation

In order to concatenate two valid paths, their spatial and temporal information must
match. On the one hand, the end-vertex of the first path must be the start-vertex of the
second path. On the other hand, the first path has to arrive at its end-vertex within the
arrival interval corresponding to the departure time of the second path.

Definition 7.13 (Concatenation). Let (P, τ) be a valid u-v-path and let (P ′, τ ′) be a
valid v-w-path with σ(v) ∈ Iσv (τ ′(v)). Concatenating (P, τ) and (P ′, τ ′) results in the
path (P, τ) ◦ (P ′, τ ′) = (P ◦ P ′, τ ′′) with τ ′′ : V (P ◦ P ′)→ R defined by

τ ′′(x) =

{
τ ′(x) if x ∈ V (P ′) and
τ(x) otherwise.

Lemma 7.14. Concatenating two valid paths yields another valid path.

Proof. Let (P ′′, τ ′′) = (P, τ) ◦ (P ′, τ ′) be the concatenation of a valid u-v-path and a
valid v-w-path. We have to show that σ′′(x) ∈ Iσx (τ ′′(x)) for all x ∈ V (P ′′). If x 6= v, this
follows since (P, τ) and (P ′, τ ′) are valid. In the case x = v this follows as σ′′(v) = σ(v),
τ ′′(v) = τ ′(v), and because the concatenation requires σ(v) ∈ Iσv (τ ′(v)).
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Replacement

To replace the subpath of a valid path by another valid path, the spatial and temporal
information on both ends of the subpath have to fit. As we can replace a part at the
start, at the end, or right in the middle, we need a case distinction. Since a replacement
is nothing but the concatenation of (restricted) paths, we only have to ensure that the
corresponding operations can be performed.

Definition 7.15 (Replacement). Let (P, τ) be a valid u-v-path and let (P ′, τ ′) be a
valid u′-v′-path with {u′, v′} ⊆ V (P ) such that u′ precedes v′ on P . If u′ = u or
σ(u′) ∈ Iσu′(τ ′(u′)), and v′ = v or σ′(v′) ∈ Iσv′(τ(v′)), replacing the u′-v′-subpath of (P, τ)
by the path (P ′, τ ′) results in the path

(P, τ)|uu′ ◦ (P ′, τ ′) ◦ (P, τ)|v′v if u 6= u′ and v 6= v′,

(P, τ)|uu′ ◦ (P ′, τ ′) if u 6= u′ and v = v′,

(P ′, τ ′) ◦ (P, τ)|v′v if u = u′ and v 6= v′, and
(P ′, τ ′) if u = u′ and v = v′.

Lemma 7.16. Replacing a subpath of a valid path by a valid path as specified in Defini-
tion 7.15 yields another valid path.

Proof. The requirements for the replacement are chosen such that the restrictions and
concatenations of the different cases are feasible. Thus, the claim follows by Lemmas 7.12
and 7.14.

Shifting

We can shift a path by uniformly adding or subtracting some constant from all departures
times. This results in a path with the same duration that departs and arrives this
constant later or earlier, respectively. Although we can shift a path by arbitrarily large
constants, we are mostly interested in small shifts.

Notation 7.17. Let (P, τ) be some u-v-path and let ε > 0. Shifting the path by ε
forward in time means that we switch to the path (P, τ + ε). Analogously, shifting it
by ε backward in time results in the path (P, τ − ε).

Lemma 7.18. Let (P, τ) be a u-v-path and let δ > 0. The path (P, τ + ε) is valid for all
0 ≤ ε ≤ δ if and only if [τ(w), τ(w) + δ] ⊆ tp(w) for all w ∈ V (P ).

Proof. By (DT1) from Lemma 7.10 we have τ(w) + ε ∈ tp(w) if (P, τ + ε) is valid. Thus,
the validity of (P, τ + ε) for 0 ≤ ε ≤ δ implies [τ(w), τ(w) + δ] ⊆ tp(w) for all w ∈ V (P ).
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Assuming now that [τ(w), τ(w) + δ] ⊆ tp(w) for all w ∈ V (P ), we show that (P, τ + ε)
satisfies (DT1) to (DT4) from Lemma 7.10 for every 0 ≤ ε ≤ δ. As the arrival times of
(P, τ + ε) are exactly the arrival times σ of (P, τ) shifted by ε, the difference of arrival
and departure at every vertex remains the same. Hence, (DT3) and (DT4) are satisfied.
Now, let w ∈ V and 0 ≤ ε ≤ δ. (DT1) and (DT2) hold because [σ(w), τ(w) + ε] ⊆ tp(w).
Therefore, the same time window Iw ⊆ tp(w) that contains the original arrival and
departure also contains the shifted arrival and departure.

Lemma 7.19. Let (P, τ) be a u-v-path with arrival times σ and let δ > 0. The path
(P, τ −ε) is valid for all 0 ≤ ε ≤ δ if and only if [σ(w)−δ, σ(w)] ⊆ tp(w) for all w ∈ V (P ).

Proof. Similar to the proof of Lemma 7.18.

7.4 MIP Formulation

The problems FPTPW and MinFPTPW can both be formulated by mixed integer
linear programs. Thus, let (G = (V,A), vs, vt, d, tp,W ) be an FPTPW network. For the
programming formulation we introduce the following variables:

. A binary variable y(uv) for every arc uv ∈ A that states whether uv is on the
fastest path.

. A binary variable x(v, I) for every vertex v ∈ V and each of its time windows
I ⊆ tp(v). It describes whether the fastest path uses this time window.

. A continuous variable τ(v) for every vertex v ∈ V that denotes the departure time
at this vertex if it is on the fastest path.

For ease of notation we introduce further variables that can be eliminated again:

. A binary variable x(v) =
∑

I∈tp(v) x(v, I) for every vertex v ∈ V stating whether it
is used by the fastest path.

. Variables t0(v) =
∑

I∈tp(v) min(I) · x(v, I) and t1(v) =
∑

I∈tp(v) max(I) · x(v, I)

attaining lower and upper bounds on τ(v) for every vertex v ∈ V .

ByM we denote a time constant that is large enough to guarantee that Constraints (7.1k)
to (7.1m) are fulfilled for every arc uv ∈ A with y(uv) = 0, that is, for every arc
not on the fastest path. If we assume that all time profiles contain only nonnegative
time points (Assumption 7.9 applies), it suffices to choose this constant M larger than
maxv∈V max(tp(v)). Otherwise, we also have to respect the difference between the largest
and the smallest time point across all time profiles.
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With these variables we can formulate MinFPTPW as mixed integer linear program:

min τ(vt)− τ(vs) (7.1a)

s.t.
∑

u∈Nout(vs)

y(vsu) = 1 (7.1b)

∑
u∈N in(v)

y(uv) =
∑

u∈Nout(v)

y(vu) ∀ v ∈ V \ {vs, vt} (7.1c)

x(vs) = 1 (7.1d)

x(v) =
∑

u∈N in(v)

y(uv) ∀ v ∈ V \ {vs} (7.1e)

x(v) =
∑
I∈tp(v)

x(v, I) ∀ v ∈ V (7.1f)

t0(v) =
∑
I∈tp(v)

min(I) · x(v, I) ∀ v ∈ V (7.1g)

t1(v) =
∑
I∈tp(v)

max(I) · x(v, I) ∀ v ∈ V (7.1h)

τ(v) ≥ t0(v) ∀ v ∈ V (7.1i)
τ(v) ≤ t1(v) ∀ v ∈ V (7.1j)
t0(v) ≤ τ(u) + d(uv) · y(uv) +M · (1− y(uv)) ∀uv ∈ A (7.1k)
τ(v) ≥ τ(u) + d(uv) · y(uv)−M · (1− y(uv)) ∀uv ∈ A (7.1l)
τ(v) ≤ τ(u) + d(uv) · y(uv) +M · (1− y(uv)) ∀uv ∈ A : u /∈ W (7.1m)
x(v) ∈ {0, 1} ∀ v ∈ V (7.1n)
x(v, I) ∈ {0, 1} ∀ v ∈ V ∀ I ∈ tp(v) (7.1o)
y(uv) ∈ {0, 1} ∀uv ∈ A (7.1p)

The Constraints (7.1b) and (7.1c) ensure that the arcs selected by the y variables
correspond to a vs-vt-path in G. With Constraints (7.1d) and (7.1e) we enforce the
x variables to select exactly the vertices on the path defined by y. Constraint (7.1f)
guarantees that we select exactly one time window for every vertex on the path. From
Constraints (7.1g) and (7.1h) we get the time bounds of the specified time windows.
The Constraints (7.1i) and (7.1j) restrict the departure times τ(v) to the selected time
intervals and with Constraint (7.1k) we ensure that the arrival times are not earlier than
the selected time windows. The Constraints (7.1l) and (7.1m) enforce that we depart
later than the arrival time or at the arrival time if waiting is not allowed.

Note that we can remove Constraints (7.1f) to (7.1h) if we substitute the variables x(v),
t0(v), and t1(v) appropriately.

86



7.5 Hardness

7.5 Hardness

Theorem 7.20. FPTPW is NP-complete.

Proof. Given a path P together with departure times τ , we can check whether (P, τ) is a
valid path in polynomial time. We only have to ensure that P is in fact a vs-vt-path, that
the departure times τ satisfy (DT1) to (DT4) from Lemma 7.10, and that the duration
τ(vt)− τ(vs) does not exceed the maximum duration D. Since each of these tasks only
takes polynomial time, FPTPW is contained in NP.

To prove the hardness, we present a reduction from the NP-complete SubsetSum
problem [GJ79, Problem SP13]. For B ∈ N>0 and b1, . . . , bk ∈ N>0 the question is
whether a set J ⊆ {1, . . . , k} with B =

∑
i∈J bi exists. We construct an FPTPW

network based on the graph depicted in Figure 7.1. It is a path with vertices v0, . . . , vk
whose arcs are doubled: for i = 1, . . . , k the graph contains two arcs from vi−1 to vi. One
with a duration of bi that we denote by (vi−1vi)

+ and the other with a duration of 0 that
we denote by (vi−1vi)

0. The time profiles consist of single time windows each. The source
vs = v0 gets tp(v0) = [0, 0], the target vt = vk gets tp(vk) = [B,B], and every remaining
vertex vi (with 1 ≤ i < k) gets tp(vi) = [0, B]. Waiting is not allowed at any vertex, that
is, W = ∅.

Every v0-vk-path P uses for i = 1, . . . , k exactly one of the two parallel arcs (vi−1vi)
+ and

(vi−1vi)
0. This allows us to uniquely identify such a path P with a subset J ⊆ {1, . . . , k}:

i ∈ J if and only if P uses (vi−1vi)
+. All valid departure times satisfy τ(vk)− τ(v0) = B

as τ(vk) ∈ tp(vk) = {B} and τ(v0) ∈ tp(v0) = {0}. Thus, the valid paths correspond
exactly to the subsets of {b1, . . . , bk} summing up to B.

v0 v1 v2 vk

d = b1

d = 0

d = b2

d = 0

d = b3

d = 0 d = 0

d = bk

Figure 7.1: Graph with durations of the FPTPW network for the proof of Theorem 7.20.

Note that the graph constructed in the proof of Theorem 7.20 and visualized in Figure 7.1
contains parallels. However, we can eliminate these by subdividing, for example, every
arc (vi−1vi)

0 as described directly before Assumption 7.8 on Page 80.

The FPTPW network defined for the reduction in the proof of Theorem 7.20 is based
on a quite simple graph and does not make use of waiting. Thus, we can tighten the
NP-completeness claim which we state in Corollaries 7.21 and 7.22 for future reference.
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Corollary 7.21. FPTPW is still NP-complete under the restriction that waiting is
forbidden everywhere.

Corollary 7.22. FPTPW is still NP-complete if the underlying graph is a path whose
arcs are doubled. In particular, it is NP-complete for series-parallel graphs.

Corollary 7.21 suggests that the prohibition of waiting makes the problem hard whereas
Corollary 7.22 refers to the structure of the graph. We further examine the complexity
of the problem later in this part. For example, we show in Corollary 11.6 that the
basic algorithm to solve MinSFP (Algorithm 10.1 from Section 10.2) runs in polynomial
time if waiting is allowed everywhere. We summarize the complexity-related results in
Chapter 12.

Conclusion

With the fastest path with time profiles and waiting problem we formulated a simplified,
one-dimensional version of the practical problem from Section 3.5, which retains the basic
structure but omits technical refinements. Its feasible solutions are valid paths and we de-
fined different ways to modify and combine them: restriction, concatenation, replacement,
and shifting. Except for the last one, these are essentially standard operations on paths
that have been generalized for our time-dependent setting. Furthermore, we presented a
MIP formulation of the problem and proved that FPTPW is NP-complete.

In what follows, we inspect the problem in more detail and start with the time profiles.
We show how to reduce them to the necessary parts and gain first knowledge about the
hard parts of this problem.
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Chapter 8

Synchronizing Time Profiles

Not every time point in the time profiles needs to be contained in a valid path. If this
is the case, we can shrink the time profiles to the necessary parts. In this section,
we present an algorithm to perform this shrinking. Its execution automatically
synchronizes the time profiles but their number might grow exponentially. We
analyze these characteristics and determine sufficient conditions for instances whose
increase in size remains polynomially bounded.

Assumptions

Throughout this chapter, an FPTPW network N = (G, vs, vt, d, tp,W ) based on a graph
G = (V,A) is always given. The following assumptions apply.

Only Relevant Vertices → see Assumption 7.7 on Page 79
Every vertex is contained in a vs-vt-path.

No Parallels → see Assumption 7.8 on Page 80
The graph does not contain parallel arcs.

8.1 Idea and Algorithm

If a time point t in the time profile of a vertex v cannot be used by any valid path, it is
essentially irrelevant for the problem. “Cannot be used” in this case means that there is
no valid path (P, τ) satisfying σ(v) ≤ t ≤ τ(v). Thus, the set of feasible paths remains
the same if we remove all of these time points. Because we assume in the following
chapters that such time points does not exist, we formulate this in Assumption 8.1. The
goal of this chapter is to develop an algorithm that shrinks the time profiles of a given
instance such that every valid path remains valid but this assumption is fulfilled.

Assumption 8.1. For any vertex v ∈ V and any time point t ∈ tp(v) there exists a
valid vs-vt-path (P, τ) that contains v and satisfies σ(v) ≤ t ≤ τ(v).
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An obvious question is whether the time profiles retain the property that they can be
written as a union of finitely many closed intervals, which is required by Definition 7.1.
If this is the case, the question arises whether the number of time windows increases
significantly. We can answer the first one positively in Corollary 8.5. However, the
number of time windows can grow exponentially by the synchronization. We examine
this in detail in Section 8.3.

Before we go into the algorithm, we gather a few reasons why this approach of shrinking
respectively synchronizing the time profiles makes sense in the first place. On the one
hand, we can use this method to figure out whether a valid path exists at all. If we are
only interested in this question, there is no need to consider fastest durations. Although
this synchronization of the time profiles goes a little beyond the question of whether
a valid path exists, there is probably no much simpler way to prove that there is no
valid path. On the other hand, this shrinking reduces the search space for fastest path
algorithms solving FPTPW. As mentioned above, this can be helpful since an FPTPW
algorithm should need to store much more information. For every time point that is
possibly on a valid path, such an algorithm has to keep information about the duration
to get there. In particular, every FPTPW algorithm has to do this synchronization, at
least implicitly. Outsourcing this step to a simpler, preceding algorithm keeps us from
expensively storing unnecessary information about fastest durations. A disadvantage in
practical applications is that we might waste a lot of resources on time intervals that
are not on fastest paths at all. In terms of worst case analysis, however, this does not
make a difference. This can already be seen in the NP-completeness proof for FPTPW,
see Theorem 7.20. Valid paths for the constructed instances therein all have the same
duration. Thus, FPTPW is already hard if we are only interested in whether a valid
path exists.

We now describe an algorithm to ensure Assumption 8.1, which iterates over the vertices
of the graph twice. During the first pass (the forward iteration) it removes those parts of
the time profiles that cannot be reached from the source vs. This is done by propagating
the intervals which can be reached from the source throughout the graph to the target.
Similarly, in the second pass (the backward iteration) it removes those parts of the time
profiles from which we can no longer reach the target vt. It is basically the same as the
forward iteration in “the inverse graph with reversed time”.

When considering a vertex v, we have to distinguish whether or not waiting is allowed
there. If waiting is forbidden, we can simply shift the time profiles of the predecessors
of v (respectively the successors in the backward iteration) by the respective durations
and intersect tp(v) with the union of these. Otherwise, if waiting is allowed at v, for
every time window I ⊆ tp(v) we compute the earliest possible arrival time and cut off
everything before. In the backward iteration this earliest arrival time transfers to the
latest departure time and we cut off the remaining part of the respective time window.

The whole procedure is formalized in Algorithm 8.1. Note that vs = v0 and vt = vn−1
since we assume that Assumption 7.7 applies.
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8.1 Idea and Algorithm

Algorithm 8.1: Synchronizing time profiles

Input: FPTPW network N = (G, vs, vt, d, tp,W ) with G = (V,A), n = |V |
Output: Synchronized time profiles

↔
tp : V → T

1 Label the vertices according to a topological ordering of G with v0, v1, . . . , vn−1.

// Forward iteration
2
→
tp(v0) := tp(v0)

3 for i = 1, . . . , n− 1 do
4 tppreds :=

⋃
u∈N in(vi)

(
→
tp(u) + d(uvi))

5 if vi /∈ W then // waiting forbidden
6

→
tp(vi) := tp(vi) ∩ tppreds

7 else // waiting allowed
8

→
tp(vi) := ∅

9 for every time window I ⊆ tp(vi) do
10

→
tp(vi) :=

→
tp(vi) ∪ (I ∩ ((I ∩ tppreds) + [0,∞))).

11 end
12 end
13 end

// Backward iteration
14
↔
tp(vn−1) :=

→
tp(vn−1)

15 for i = n− 2, . . . , 0 do
16 tpsuccs :=

⋃
u∈Nout(vi)

(
↔
tp(u)− d(viu))

17 if vi /∈ W then // waiting forbidden
18

↔
tp(vi) :=

→
tp(vi) ∩ tpsuccs

19 else // waiting allowed
20

↔
tp(vi) := ∅

21 for every time window I ⊆ →tp(vi) do
22

↔
tp(vi) :=

↔
tp(vi) ∪ (I ∩ ((I ∩ tpsuccs)− [0,∞))).

23 end
24 end
25 end

26 return
↔
tp
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8 Synchronizing Time Profiles

8.2 Correctness

The correctness of Algorithm 8.1 is proved in Theorem 8.4, for which the following two
lemmas serve as preparation. Essentially, Lemmas 8.2 and 8.3 provide the basic results
that we need to prove that the resulting time profiles satisfy Assumption 8.1. What
remains for the proof of Theorem 8.4 is to show that we do not lose any valid path.

Lemma 8.2. Let N be an FPTPW network and let
↔
tp be the synchronized time profiles

generated by Algorithm 8.1 on input N . Furthermore, let v ∈ V \ {vs}, I ⊆
↔
tp(v), and

t ∈ I. Then, the following holds:

. If v /∈ W , there exist u ∈ N in(v) and t′ ∈ ↔tp(u) such that t = t′ + d(uv).

. If v ∈ W , there exist u ∈ N in(v), t′ ∈ ↔
tp(u), and t′′ ∈ I ∩ (−∞, t] such that

t′′ = t′ + d(uv).

Proof. First, we prove that the claim holds for
→
tp instead of

↔
tp after the execution of the

for-loop in Lines 3 to 13 (the forward iteration). Second, we show that all actions within
the for-loop in Lines 15 to 25 (the backward iteration) preserve the stated properties,
that is, the claimed properties afterwards also hold for

↔
tp.

Step 1. Let v ∈ V \ {vs}, I ⊆
→
tp(v) be a time window in

→
tp(v), and t ∈ I. By v 6= vs and

Assumption 7.7 we have N in(v) 6= ∅. If v /∈ W , we have t ∈ tppreds and by its definition
in Line 4 there exists u ∈ N in(v) and t′ ∈ →tp(u) with t = t′ + d(uv). If v ∈ W , we have
t ∈ I ′ ∩ ((I ′ ∩ tppreds) + [0,∞)) for some time window I ′ ⊆ tp(v). Hence, t = t′′ + c for
t′′ ∈ I ′ ∩ tppreds and c ≥ 0. Due to the maximality of the time window I ′, [t′′, t] ⊆ I ′, and
[t′′, t] = [t′′, t′′] + [0, c] we have t′′ ∈ I ∩ (−∞, t]. Since t′′ ∈ tppreds, there exist u ∈ N in(v)
and t′ ∈ →tp(u) with t′′ = t′ + d(uv).

Note that this argumentation suffices since the time profile
→
tp(u) of a vertex u is only

modified in a single iteration of the for-loop and since
→
tp(u) for u ∈ N in(v) is modified

earlier than
→
tp(v).

Step 2. Let v ∈ V \ {vs}, I ⊆
↔
tp(v) be a time window in

↔
tp(v), and t ∈ I. We have

↔
tp(v) ⊆ →tp(v) and thus also t ∈ →tp(v). Furthermore, I ⊆ I ′ for a time window I ′ in

→
tp(v).

If v /∈ W , let t′′ = t and if v ∈ W , let t′′ as defined in step 1. In the latter case we have
[t′′, t] ⊆ I ′. When considering I ′ in the loop in Line 21 of Algorithm 8.1 we add not only
t to

↔
tp(v) but also all points of I ′ which are less than t. In particular, we have [t′′, t] ⊆ I.

Hence, t′′ ∈ I ∩ (−∞, t] as required.

Now, let u ∈ N in(v) and t′ ∈ →tp(u) as defined in step 1 with the property t′′ = t′ + d(uv).
It remains to prove that t′ ∈ ↔tp(v). However, since t′′ ∈ ↔tp(v) and v ∈ Nout(u) we have
t′ = t′′ − d(uv) ∈ tpsuccs and Algorithm 8.1 enforces in both cases tpsuccs ⊆

↔
tp(v).
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Lemma 8.3. Let N be an FPTPW network and
↔
tp the synchronized time profiles

generated by Algorithm 8.1 on input N . Furthermore, let v ∈ V \ {vt}, I ⊆
↔
tp(v), and

t ∈ I. Then, the following holds:

. If v /∈ W , there exist u ∈ Nout(v) and t′ ∈ ↔tp(u) such that t′ = t+ d(vu).

. If v ∈ W , there exist u ∈ Nout(v), t′ ∈ ↔
tp(u), and t′′ ∈ I ∩ [t,∞) such that

t′ = t′′ + d(vu).

Proof. Analogous to the proof of Lemma 8.2.

Theorem 8.4. Algorithm 8.1 computes time profiles that satisfy Assumption 8.1 and
for which any valid departure time specification for a vs-vt-path remains valid.

Proof. The first part of the claim follows by iterated applying and combining Lemmas 8.2
and 8.3. To prove the second part, let (P, τ) be a valid path before Algorithm 8.1 is
executed. We show that τ is still a valid departure time specification afterwards. For
this we show that τ is valid with respect to the time profiles

→
tp, which are calculated as

intermediate results in the algorithm. Analogous to this reasoning, we can then show
that τ is also a valid departure time specification for the time profiles

↔
tp.

Let P = (v0, v1, . . . , vk). We show by induction on the vertices of P that there are time
windows Îv ⊆

→
tp(v) for v ∈ V (P ) fulfilling the conditions from Lemma 7.10. Since the

last two properties (DT3) and (DT4) only depend on τ and not on the time profiles,
we only have to show the first two properties (DT1) and (DT2). Let Iv ∈ tp(v) for
v ∈ V (P ) be the time profiles proving that τ is a valid departure time specification with
respect to tp.

For the source vs = v0 we can choose Îvs = Ivs since
→
tp(vs) = tp(vs). Now consider vi for

i > 0 and assume that appropriate time windows Îvj for j < i are already chosen. We
first consider vi /∈ W . In this case τ(vi) = τ(vi−1) + d(vi−1vi) and we only have to show
that τ(vi) ∈

→
tp(vi) (Îvi is then the (unique) time window containing τ(vi)). However,

since τ(vi−1) ∈
→
tp(vi−1) we have that τ(vi) ∈ tppreds in Line 4 of Algorithm 8.1. Hence,

τ(vi) ∈ Ivi ∩ tppreds will be added to
→
tp(vi). In the case vi ∈ W we get by the same

argumentation that τ(vi−1) + d(vi−1vi) ∈ Ivi ∩ tppreds. Since τ is valid for tp we also have
[τ(vi−1) + d(vi−1vi), τ(vi)] ⊆ Ivi . Thus, the interval added to

→
tp(vi) in Line 10 contains at

least the interval [τ(vi−1) + d(vi−1vi), τ(vi)].

Corollary 8.5. The synchronized time profiles that ensure Assumption 8.1 can be written
as a union of finitely many closed intervals.

Proof. Algorithm 8.1 ensures Assumption 8.1, and during the execution of the algorithm
all time profiles remain unions of finitely many closed intervals.
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8 Synchronizing Time Profiles

8.3 Running Time

Before we analyze the running time of Algorithm 8.1 in detail in Theorem 8.8, we present
an example that shows its output sensitivity. However, the running time of Algorithm 8.1
actually depends not only of its output

↔
tp, but also on the internal time profiles

→
tp as we

explain in Remark 8.9.

Example 8.6. For certain instances Algorithm 8.1 divides the intervals exponentially
often. The graph of an FPTPW network corresponding to such an instance together
with the arc durations is shown in Figure 8.1. Note that we use parallel arcs for the
sake of clarity. We can remove the parallels by subdividing, for example, the arcs with
duration 0 as described directly before Assumption 7.8 on Page 80. We have vs = v0 and
vt = vn−1. The time profile for vertex vi consists of the single time window [0, 2i+1 − 1]
and we set W = ∅. Algorithm 8.1 splits the time profile of a vertex vi into the 2i disjoint
time windows [0, 1], [2, 3], [4, 5], . . . , [2i+1 − 2, 2i+1 − 1]. /

v0 v1 v2 vn−1
d = 21

d = 0

d = 22

d = 0

d = 23

d = 0 d = 0

d = 2n−1

Figure 8.1: Graph with durations of the FPTPW network for Example 8.6.

A key point for the exponential increase of time windows in Example 8.6 is the prohibition
of waiting (W = ∅). In fact, synchronizing the time intervals does not increase the
number of time windows for vertices where waiting is allowed. We only move the lower
bound to the earliest arrival time and the upper bound to the latest departure time. This
is formalized and proved in the following lemma.

Lemma 8.7. Let N be an FPTPW network,
↔
tp the synchronized time profiles generated

by Algorithm 8.1 on input N , and let v ∈ V be any vertex. If v ∈ W , then it holds
| ↔tp(v)| ≤ | →tp(v)| ≤ |tp(v)|.

Proof. For a vertex v with v ∈ W , Algorithm 8.1 restricts all time windows I ⊆ tp(v) in
Line 10. However, only the lower bound of I is increased as we add [0,∞). It can be
the case that I is not restricted (if the lower bound of I is contained in tppreds) or that
the whole time window is cut out (if I ∩ tppreds = ∅). But it never happens that a time
window I is cut into multiple time windows. Similarly, in Line 22 only the upper bounds
of the time windows are restricted. Again, the intervals are not divided into several.
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Theorem 8.8. Let N = (G, vs, vt, d, tp,W ) be an FPTPW network based on the graph
G = (V,A) and let

↔
tp be the time profiles generated by Algorithm 8.1 on input N . Define

M = maxv∈V {max{|tp(v)|, | →tp(v)|, | ↔tp(v)|}} and let ∆ = max{∆in(G),∆out(G)}. Then,
Algorithm 8.1 runs on input N in time O (log(∆) ·M · |A|).

Proof. We can compute a topological ordering of the graph G in Line 1 of Algorithm 8.1
in time O (|V |+ |A|) = O (|A|) [see CLRS09, Chapter 22.4].

The running time of the two for-loops is essentially the same, so we only consider the
first one (Lines 3 to 13). Note that |V | ∈ O (|A|) since G is connected.

To unite time profiles of the predecessors in Line 4 we have to perform a k-way merge.
Merging |N in(vi)| ≤ ∆in(G) time profiles with at most M time windows each (that
is, |N in(vi)| · M in total) results in a running time of O

(
log(∆in(G)) · |N in(vi)| ·M

)
,

see [Knu98, Chapter 5.4.1].

In the case vi /∈ W we have to intersect tp(vi) with tppreds. We can achieve this
by iterating over both time profiles simultaneously. This requires a running time of
O (|tp(vi)|+ |tppreds|) ≤ O

(
|N in(vi)| ·M

)
. We can also deal with case vi ∈ W in this

way. The only difference is that we only restrict time windows I ⊆ tp(vi) to the left
allowing us to possibly skip certain time windows of tppreds.

In total, we can estimate the running time as

O

(
|V |+ |A|+

∑
v∈V

(
log(∆in(G)) · |N in(v)| ·M + log(∆out(G)) · |Nout(v)| ·M

))
,

which simplifies to O (log(∆) ·M · |A|).

Remark 8.9. As already anticipated in Example 8.6, Algorithm 8.1 is output-sensitive.
In addition, the running time also depends on the time profiles

→
tp(v) that are only

required internally. Modifying Example 8.6 by setting the time window of vn−1 to [0, 1],
we get an instance in which both tp and

↔
tp consist of only a single time window per

vertex. In contrast, the number of time windows of
→
tp still grows exponentially during

the forward iteration. Thus, for certain instances Algorithm 8.1 has a running time that
is exponential both in the instance and in the output size. /

Corollary 8.10. For an FPTPW network with W = V , Algorithm 8.1 has a running
time that is polynomial in the input size.

Proof. By Lemma 8.7 we get thatM from Theorem 8.8 simplifies to maxv∈V |tp(v)| which
is polynomial in the input size.
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8 Synchronizing Time Profiles

Conclusion

We described how to restrict the time profiles of an FPTPW network by removing all
“unnecessary” parts. This makes the time profile of each vertex fit together with those of
its predecessors and successors, which is why we call this synchronizing.

Since the synchronization process might create exponentially many new time windows,
this algorithm has an exponential running time in general. Moreover, we showed that
this might even be the case if the output is polynomial in the instance size.

For waiting vertices, however, we proved that the number of time windows does not in-
crease during the synchronization process. This led to the consequence that Algorithm 8.1
runs in polynomial time if waiting is allowed at every vertex.
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Chapter 9

Departure-Duration Functions

We introduce “departure-duration functions” and use them to formulate a subpath
optimality criterion. In particular, this criterion leads to a recursive formulation of
these functions, which plays a central role in our algorithms solving MinFPTPW.
Furthermore, we study the structure of these functions. The most fundamental
property that we prove is their piecewise linearity, which is crucial for the usage
in our algorithms. A deeper analysis of the structure of the departure-duration
functions, especially a classification of their breakpoints, allow us to derive running
time bounds on our algorithms for certain instance classes later in this thesis.

Assumptions

Throughout this chapter, an FPTPW network N = (G, vs, vt, d, tp,W ) based on a graph
G = (V,A) is always given. The following assumptions apply.

Only Relevant Vertices → see Assumption 7.7 on Page 79
Every vertex is contained in a vs-vt-path.

Synchronized Time Profiles → see Assumption 8.1 on Page 89
All time profiles are synchronized.

No Parallels → see Assumption 7.8 on Page 80
The graph does not contain parallel arcs.

9.1 Definition and Recursive Formulation

The departure-duration function of a vertex v maps every point t ∈ tp(v) to the minimum
duration of a valid vs-v-path (P, τ) that satisfies τ(v) = t. Informally speaking, this
function maps a departure time to the duration of a “fastest path to get there”. It is of
interest when we look for the (duration of a) fastest path that departs at a vertex v at a
fixed time t. Analogously, we define arrival-duration functions that store durations of
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9 Departure-Duration Functions

fastest paths that arrive at a specific vertex at a fixed time. In the following chapters,
we mainly consider the departure-duration functions. The main motivation to introduce
the arrival-duration functions is to simplify proofs concerning the departure-duration
functions.

Definition 9.1. For a vertex v ∈ V , the departure-duration function f τv and the arrival-
duration function fσv are defined by

f τv : tp(v)→ R
t 7→ min{t− τ(vs) : (P, τ) valid vs-v-path with τ(v) = t} and

fσv : tp(v)→ R ∪ {∞}
t 7→ min{t− τ(vs) : (P, τ) valid vs-v-path with σ(v) = t}.

Note that we use the superscripts τ and σ to indicate that these functions represent
departure or arrival information, which is in accordance with our notation for arrival
intervals, see Definition 7.3 on Page 78.

Lemma 9.2. Let v ∈ V . The departure-duration function f τv and the arrival-duration
function fσv are well-defined.

Proof. Let t ∈ tp(v). If no valid vs-v-path arrives at v at time t, the arrival-duration
function is well-defined at time t because its codomain contains infinity. Thus, we may
assume that the set of valid vs-v-paths with σ(v) = t is non-empty. By Assumption 8.1
we obtain that also the set of valid vs-v-paths with τ(v) = t is non-empty. Since both
sets contain only nonnegative numbers, the corresponding infima are real-valued. That
these are in fact attained, and the minima thus exist, is due to the fact that all time
profiles are composed of closed intervals only and because the graph is finite.

Before we go into detail about departure-duration and arrival-duration functions, we look
at a small example to gain some intuition.

Example 9.3. Let us consider the FPTPW network given in Figure 9.1. Waiting is only
allowed at vertex v3, that is, W = {v3}. Throughout this thesis, we draw waiting vertices
with filled circles whereas we use blank circles for vertices where waiting is forbidden.

At the source vs, the departure-duration and the arrival-duration function is constant 0
since we can depart and arrive at every time within the time profile [0, 2]. In fact, it is
not surprising that both functions coincide because we prove in Lemma 9.18 on Page 107
that the departure-duration function of a vertex equals the arrival-duration function if
waiting is forbidden at this vertex.

In order to arrive at vertex v2 at a time t ∈ [1, 3], we have to depart at the source exactly
one time unit earlier. In particular, these paths are unique and each has a duration of 1.
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vs

[0, 2] v1

[1, 1]

v2

[1, 3] v3

[2, 5]

vt

[5, 6]
1

1

1

2

1

Figure 9.1: The FPTPW network for Examples 9.3 and 9.4. The time profiles are located
above the vertices and the durations are next to the arcs. Waiting is only
allowed at vertex v3.

1 2 3

1

(a) The arrival-duration function fσv2 and the
departure-duration function f τv2 at ver-
tex v2.

5 6

4

(b) The arrival-duration function fσvt and the
departure-duration function f τvt at ver-
tex vt.

2 3 4 5

2

3

(c) The arrival-duration function fσv3 at ver-
tex v3. In the open interval (2, 3) its value
is infinite.

2 3 4 5

2

3

(d) The departure-duration function f τv3 at
vertex v3.

Figure 9.2: Some selected departure-duration and arrival-duration functions for the
FPTPW network from Figure 9.1.
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9 Departure-Duration Functions

Thus, the corresponding arrival-duration and departure-duration function, visualized in
Figure 9.2a, is constant 1.

We can reach vertex v3 by a path via vertex v1 or via v2. In the first case we can only arrive
at time 2 because we have to depart at v1 exactly at time 1. This path has duration 2. In
the latter case we can arrive at v3 at any time within the interval [3, 5] with duration 3
each. Since we cannot arrive within the open interval (2, 3), the arrival-duration function
is infinite on this interval. It is illustrated in Figure 9.2c.

However, as waiting is permitted at v3, we can arrive at time 2 and wait until every
time t ∈ (2, 3) resulting in the departure-duration function for vertex v3 that is drawn in
Figure 9.2d. /

The departure-duration functions store shortest path information for all possible departure
times. This allows us to formulate some sort of a subpath optimality criterion in
Lemma 9.5. In fact, the following example shows that there is no optimality criterion
that is independent of time.

Example 9.4. The fastest vs-v3-path in the FPTPW network from Figure 9.1 is unique.
It consists of the path (vs, v1, v3) with departure times τ(vs) = 0, τ(v1) = 1, and τ(v3) = 2.
However, every fastest vs-vt-path is based on the path P = (vs, v2, v3, vt). This is because
the earliest departure time at the target is 5 and the latest departure time at v1 is 1.
Thus, a valid path based on (vs, v1, v3, vt) has a duration of at least 5. On the other hand,
choosing departure times τ(vs) = 1, τ(v2) = 2, τ(v3) = 4, and τ(vt) = 5 yields a valid
path (P, τ) with duration 4. /

Lemma 9.5. Let (P, τ) be a vs-v-path with τ(v)− τ(vs) = f τv (τ(v)). Then, also every
other vertex u ∈ V (P ) on the path P satisfies τ(u)− τ(vs) = f τu (τ(u)).

Proof. Let u ∈ V (P ). Since the vs-u-subpath of P is itself a valid vs-u-path, we have
τ(u)− τ(vs) ≥ f τu (τ(u)) by the definition of the departure-duration function. If it holds
τ(u) − τ(vs) > f τu (τ(u)), then there is a faster vs-u-path departing at u at time τ(u)
(that is, one with a later departure time at the source). Thus, we can improve (P, τ) by
replacing its vs-u-subpath with the faster one. Since this does not modify the departure
time τ(v) at v, it contradicts the fact that (P, τ) is a fastest vs-v-path arriving at v at
time τ(v).

The following lemma provides a way to equivalently express the departure-duration
functions f τv recursively. It allows us to derive a couple of properties.

100
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Lemma 9.6. The arrival-duration and departure-duration functions at the source are
constant 0, that is, fσvs ≡ 0 and f τvs ≡ 0. For v ∈ V \ {vs} and t ∈ tp(v) they can be
expressed by

f τv (t) = min{fσv (t′) + (t− t′) : t′ ∈ Iσv (t)} and (9.1)
fσv (t) = min{f τu (t− d(uv)) + d(uv) : u ∈ N in(v) and t− d(uv) ∈ tp(u)}. (9.2)

Proof. A valid vs-vs-path consists of exactly the vertex vs at which we can depart at
every point in its time profile. Thus, we have f τvs ≡ 0. Since the arrival time at the first
vertex of a path is by definition the same as the departure time, we also have fσvs ≡ 0.

To prove the recursive formulas (9.1) and (9.2), let v ∈ V \ {vs} and let t ∈ tp(v).

We start with Equation (9.1). Every valid vs-v-path (P, τ) with τ(v) = t must satisfy
σ(v) ∈ Iσv (t). Reformulating Definition 9.1 yields

f τv (t) = min{t− τ(vs) : (P, τ) valid vs-v-path with τ(v) = t}
= min{t− t′ + t′ − τ(vs) : (P, τ) valid vs-v-path with σ(v) = t′ ∈ Iσv (t)}
= min{fσv (t′) + (t− t′) : t′ ∈ Iσv (t)}.

For Equation (9.2) we first note that arriving at v at time t requires to depart at a
predecessor u ∈ N in(v) exactly at time t−d(uv). For this to be possible, t−d(uv) ∈ tp(u)
must apply. Thus, we get

fσv (t) = min{t− τ(vs) : (P, τ) valid vs-v-path with σ(v) = t}
= min{t− d(uv) + d(uv)− τ(vs) : u ∈ N in(v), t− d(uv) ∈ tp(u), and

(P, τ) valid vs-v-path with τ(u) = t− d(uv)}
= min{f τu (t− d(uv)) + d(uv) : u ∈ N in(v) and t− d(uv) ∈ tp(u)}.

The formulation of Lemma 9.6 allows us to recursively compute all departure-duration
functions f τv for v ∈ V . If we additionally backtrack predecessor information, we are thus
able to solve MinFPTPW: compute all departure-duration functions, determine the
minimum of the one at the target f τvt , and use the predecessor information to reconstruct
the corresponding fastest path. In fact, this approach is our base algorithm for solving
MinFPTPW, which we discuss and analyze in detail in Section 10.2. An essential point
that allows the efficient representation of the departure-duration functions (which makes
this algorithm practically feasible) is their piecewise linearity, see Lemma 9.8.

Remark 9.7. Due to the assumption that G has no parallels we can iterate in Equa-
tion (9.2) in Lemma 9.6 over all predecessor u ∈ N in(v). However, this can also be
generalized to graphs that contain parallels by iterating over all arcs entering v. /
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9.2 Properties

We split the statements about the departure-duration functions into two parts. First, in
Section 9.2.1, we consider properties that are independent of the waiting characteristics
of the vertices. Second, in Section 9.2.2, we deal with properties that depend on whether
waiting is allowed at the respective vertex or not. There, we focus on the case that
waiting is permitted.

9.2.1 General Properties

This section primarily deals with structural properties of the arrival-duration and the
departure-duration functions. In Lemma 9.8 we prove that they are piecewise linear and
that every piece has slope 0 or 1. After that, we classify the breakpoints of these functions
in Definition 9.10 and Lemma 9.11. For two types of these breakpoints, namely left bend
and jump down, we prove in Lemmas 9.16 and 9.17 that valid paths corresponding to such
breakpoints cannot be shifted forward or backward in time, compare with Lemmas 7.18
and 7.19 on Pages 84 and 85.

As we have seen in Example 9.3, the arrival-duration functions might be infinite on some
intervals. We regard such a piece as linear and define its slope to be 0. This allows us to
formulate and prove the following lemma.

Lemma 9.8. For v ∈ V the functions fσv and f τv are piecewise linear. In addition, each
linear piece containing more than one point has either slope 0 or 1.

Proof. We prove the claim by induction on the vertices in a topological ordering. For the
source vs we have fσvs ≡ 0 ≡ f τvs which is piecewise linear and all pieces have slope 0.

Let v ∈ V \ {vs} be some vertex and assume the claim holds for all vertices that
precede v in a topological ordering. In particular, this implies that the claim holds for all
predecessors of v.

By Equation (9.2) from Lemma 9.6 the arrival-duration function fσv is the lower envelope
of the functions f τu + d(uv) for the predecessors u ∈ N in(v). Because there are only
finitely many predecessors and their departure-duration functions are piecewise linear,
the arrival-duration function fσv is also piecewise linear. Moreover, since every piece of
fσv is either constant infinity or part of a piece in the departure-duration function of some
predecessor, each slope is also either 0 or 1.

By Equation (9.1) from Lemma 9.6, the departure-duration function f τv only depends
on the arrival-duration function fσv . If a fastest path departing at v at time t ∈ tp(v)
requires waiting at v, we have f τv (t) = fσv (t′) + (t− t′) for some arrival time t′ < t. In
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9.2 Properties

this case, f τv (t′′) = fσv (t′) + (t′′− t′) holds for every departure time t′′ ∈ [t′, t]: if otherwise
f τv (t′′) = fσv (t′′′) + (t′′ − t′′′) < fσv (t′) + (t′′ − t′), we obtain the contradiction

f τv (t) ≤ fσv (t′′′) + (t− t′′′) < fσv (t′) + (t− t′) = f τv (t).

We get that the departure-duration function f τv restricted to the interval [t′, t] is a linear
function of slope 1. Thus, those t ∈ tp(v) where f τv (t) 6= fσv (t) are contained in linear
pieces of slope 1.

Notation 9.9. We call a linear piece of a departure-duration function singleton piece if
it only consists of a single time point. Otherwise, we call it horizontal piece if its slope
is 0 and waiting piece if its slope is 1.

In the following definition, we categorize the breakpoints of f τv , that is, the points at
which f τv is not differentiable. The four types are also visualized in Figure 9.3. Note
that a departure-duration function always takes the smaller value at discontinuity points
because it is defined as a minimum and since all time windows are closed intervals.

Definition 9.10 (Breakpoints). Let v ∈ V . An interior point t ∈ int(tp(v)) in the time
profile of vertex v is called

. a jump down if f τv (t) < limt′↗t f
τ
v (t′),

. a jump up if f τv (t) < limt′↘t f
τ
v (t′),

. a left bend if a δ > 0 exists such that for all 0 < ε < δ we have
f τv (t− ε) = f τv (t) and f τv (t+ ε) = f τv (t) + ε, or

. a right bend if a δ > 0 exists such that for all 0 < ε < δ we have
f τv (t− ε) = f τv (t)− ε and f τv (t+ ε) = f τv (t).

t0 t1 t2 t3

Figure 9.3: Schematic view of the four different types of breakpoints of departure-duration
functions, see Definition 9.10. Depicted are a jump down at t0, a left bend at
t1, a right bend at t2, and a jump up at t3.
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9 Departure-Duration Functions

The following lemma shows that all breakpoints of f τv are covered by the four types from
Definition 9.10.

Lemma 9.11. Let v ∈ V and let t ∈ int(tp(v)) be a point at which f τv is not differentiable.
Then t is a jump down, a jump up, a left bend, or a right bend.

Proof. By Lemma 9.8 the function f τv is piecewise linear and every piece has slope 0
or 1. The non-differentiable points are exactly the end points of these pieces. If f τv is not
continuous at t, we have a jump down, a jump up, or both a jump down and a jump up
(see also Remark 9.12 for more information on the latter). Otherwise the slope either
changes from 0 to 1 or from 1 to 0. In the first case we are exactly in the situation of a
left bend and in the second case we have a right bend.

Remark 9.12. A time point t ∈ int(tp(v)) can be both a jump down and a jump up.
However, in this case the point t alone forms a linear piece. It only happens if the
fastest vs-v-path neither can be shifted forward nor backward in time for some arbitrarily
small ε > 0. Such a situation is depicted in Figure 9.4. /

vs

[0, 2]

[1, 3]

[3, 3] vt

[3, 5]
1

1

2

1

(a) FPTPW network

3 4 5

2

3

(b) Departure-duration function f τvt

Figure 9.4: A point in time can both be a jump down and a jump up as described in
Remark 9.12.

To understand the departure-duration functions even more precisely, we connect the
pieces with their corresponding paths.

Lemma 9.13. Let v ∈ V . Every point in the interior of a waiting (horizontal) piece of
f τv corresponds to a fastest vs-v-path that does (not) make use of waiting.

Proof Sketch. The proof of Lemma 9.8 shows that pieces of slope 1 are only due to
waiting. We solely start with pieces of slope 0 at the source. In the transition from
departure-duration functions to arrival-duration functions (see Lemma 9.6) we only take
lower envelopes of shifted functions. Thereby, the slopes of the pieces are preserved.
This also applies for the transition from arrival-duration to departure duration functions
at the points where a fastest path does not wait. Otherwise, if a fastest path requires
waiting time, this results in a piece of slope 1.
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9.2 Properties

A direct consequence of Lemma 9.13 is that waiting pieces are only induced by vertices
at which waiting is allowed, which we state in the following corollary.

Corollary 9.14. In the case that waiting is forbidden everywhere, that is, W = ∅, all
departure-duration functions consist of horizontal pieces only.

Proof. By Lemma 9.13, a point in the interior of a waiting piece would make use of
waiting. However, this is not possible as W = ∅.

Example 9.15. We can associate points on departure-duration functions with valid
paths of the specific duration that depart at these points. In doing so, valid paths that
are based on the same spatial path of the underlying graph often correspond to points
on the same piece of the departure-duration function as their duration only differs in the
waiting time.

However, there is no unique correlation between pieces and paths in the underlying
graph G. On the one hand, multiple paths can correspond to the same piece as shown
in Figure 9.5. On the other hand, a path can correspond to multiple pieces of the
departure-duration function, see Figure 9.6. /

vs

[0, 2]

[1, 2]

[2, 3] vt

[2, 4]
1

1

1

1

(a) FPTPW network

2 3 4

2

(b) Departure-duration function f τvt

Figure 9.5: Two paths corresponding to one piece of the departure-duration function.
Waiting is forbidden everywhere.
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(a) FPTPW network
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(b) Departure-duration function f τvt

Figure 9.6: One path corresponding to two pieces of the departure-duration function.
Waiting is forbidden everywhere.
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9 Departure-Duration Functions

At first glance, the statements of the following two lemmas, the Left Bend Lemma and
the Jump Down Lemma, are quite arbitrary. They state that fastest paths according to
a left bend or a jump down depart at some vertex at the boundary of a time window.
However, these two lemmas will play a central role in bounding the complexity of the
departure-duration functions for the case that waiting is allowed everywhere. We will
use these statements when we investigate this case in Section 11.2.

Lemma 9.16 (Left Bend Lemma). Let v ∈ V be a vertex and let (P, τ) be a path
corresponding to a left bend t ∈ tp(v) of f τv . Then, there is a vertex u ∈ V (P ) with a
time window [tu0 , t

u
1 ] ⊆ tp(u) such that τ(u) = tu1 .

Proof. For w ∈ V (P ) let [tw0 , t
w
1 ] ⊆ tp(w) be the time window containing τ(w). Toward a

contradiction, suppose that τ(w) < tw1 for all w ∈ V (P ).

With choosing δ = min{tw1 − τ(w) : w ∈ V (P )} > 0 we have [τ(w), τ(w) + δ] ⊆ tp(w) for
every w ∈ V (P ). Thus, Lemma 7.18 from Page 84 states that the path (P, τ + ε) is valid
for every 0 ≤ ε ≤ δ. In particular, this shifting has no effect on the difference between
the departure times of consecutive vertices and we obtain

f τv (t+ ε) ≤ (τ(v) + ε)− (τ(vs) + ε) = τ(v)− τ(vs) = f τv (t)

contradicting the fact that t is a left bend.

Lemma 9.17 (Jump Down Lemma). Let v ∈ V be a vertex and let (P, τ) be a path
corresponding to a jump down t ∈ tp(v) of f τv . There is a vertex u ∈ V (P ) with a time
window [tu0 , t

u
1 ] ⊆ tp(u) such that either τ(u) = tu0 or τ(u) = tu1 .

Proof. For w ∈ V (P ) let [tw0 , t
w
1 ] ⊆ tp(w) be the time window containing τ(w). Toward a

contradiction, suppose that tw0 < τ(w) < tw1 for all w ∈ V (P ).

We first show that the path (P, τ) does not make use of waiting. If that were the case,
we could shift the subpath up to the first waiting vertex by some small ε > 0 to the right
(due to τ(w) < tw1 ). This reduces the waiting time by ε and thus results in a faster path
that arrives at time t at vertex v.

Since (P, τ) does not make use of waiting, the arrival times equal the departure times for
all vertices in the path. Thus, with δ = min{τ(w)− tw0 : w ∈ V (P )} > 0 we have

[σ(w)− δ, σ(w)] = [τ(w)− δ, τ(w)] ⊆ tp(w)

for every w ∈ V (P ). This allows us to apply Lemma 7.19 from Page 85 and we obtain
that (P, τ − ε) is a valid path for every 0 ≤ ε ≤ δ. Analogous to the proof of Lemma 9.16
we have

f τv (t− ε) ≤ (τ(v)− ε)− (τ(vs)− ε) = τ(v)− τ(vs) = f τv (t)

contradicting the fact that t is a jump down.

106



9.2 Properties

9.2.2 Properties Depending on Waiting Characteristic

We move on to properties of the departure-duration functions that depend on whether
waiting is allowed at the corresponding vertex or not. After a first, small observation
about vertices where waiting is forbidden we focus on those where it is allowed. The main
result is that we can bound the number of linear pieces #p(f τv ) of the departure-duration
functions f τv in this case, see Lemma 9.24 and Corollary 9.25.

Lemma 9.18. For v /∈ W we have fσv = f τv .

Proof. By Lemma 7.10 on Page 82 it is σ(v) = τ(v) for a valid vs-v-path if v /∈ W . Thus,
the claim directly follows from Definition 9.1 on Page 98.

From now on, in the rest of this chapter, we consider properties of departure-duration
functions at vertices that permit waiting. The following lemma states that f τv has no
jump up if v allows waiting.

Lemma 9.19. The departure-duration function f τv of a vertex v ∈ W at which waiting
is allowed does not contain a jump up.

Proof Sketch. Let v ∈ W and assume that f τv has a jump up at time t ∈ int(tp(v)). Let
(P, τ) be a fastest vs-v-path corresponding to time t. We can extend this path by an
arbitrarily small amount ε of waiting at the end. This results in a path departing at v at
time t+ ε, whose duration is only exactly ε larger than d(P, τ). This contradicts the fact
that f τv contains a jump up at t.

The following lemma states that pieces with slope 1 are not divided within a time window.
If for two time points t0 < t1 of the same time window the value of f τv differs by t1 − t0,
then f τv has to be a linear function with slope 1 on the interval [t0, t1]. In particular,
there is no breakpoint of the departure-duration function f τv within this interval.

Lemma 9.20. Let v ∈ W and let t0, t1 ∈ tp(v) with t0 < t1 and [t0, t1] ⊆ tp(v). If
f τv (t1) = f τv (t0) + (t1 − t0), then f τv (t) = f τv (t0) + (t− t0) for all t ∈ [t0, t1].

Proof. Let (P, τ) be a fastest vs-v-path with τ(v) = t0. Because v ∈ W and since
[t0, t1] ⊆ tp(v), we can artificially increase the duration of the path by appending waiting
time up to t1 − t0. Thus, it is f τv (t) ≤ f τv (t0) + (t− t0) for all t ∈ [t0, t1].

Suppose that f τv (t) < f τv (t0) + (t − t0) for some t ∈ [t0, t1] and let (P ′, τ ′) be a fastest
path with τ ′(v) = t. Extending this path with t1 − t waiting at the end results in a path
departing at v at time t1 with a duration of f τv (t) + (t1 − t) < f τv (t0) + (t1 − t0), which
contradicts the assumption that f τv (t1) = f τv (t0) + (t1 − t0).
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9 Departure-Duration Functions

Example 9.21. If v /∈ W , f τv does not necessarily have to be right-continuous and
waiting pieces might be divided. Thus, it is crucial to have the requirement v ∈ W in
Lemmas 9.19 and 9.20. An example that shows this fact is given in Figure 9.7. The
only vertex of the FPTPW network that admits waiting is w. Since its predecessor v
only allows for a single departure time, the departure-duration function of w contains a
waiting piece that is propagated to the departure-duration function of the non-waiting
vertex vt. This waiting piece in f τvt is split by a horizontal piece corresponding to the
faster but more time-limited path via u, see Figure 9.7b. /
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(b) Departure-duration function f τvt

Figure 9.7: If waiting is not allowed at a vertex, the corresponding departure-duration
function may contain jumps up and waiting pieces might be divided. See also
Example 9.21.

As promised at the start of Section 9.2.2 the main result of this section is to bound
the number of linear pieces of departure-duration functions for vertices where waiting is
allowed. At this point, let us sketch the general idea to prove this.

Instead of bounding the number of linear pieces we bound the number of breakpoints. By
Lemma 9.19 we already know that the departure-duration function of a waiting vertex
does not contain a jump up. And since two consecutive breakpoints cannot both be right
bends, it is sufficient to bound the number of left bends and jump downs (more details
in the proof of Lemma 9.23). To bound these, we associate valid paths to them. By the
Left Bend Lemma and the Jump Down Lemma (Lemmas 9.16 and 9.17) these depart
at some intermediate vertex at a boundary point of a time window. This way we can
associate breakpoints of departure-duration functions with endpoints of time windows
(of other vertices). As we have to specify the time windows explicitly when encoding an
instance, their number is polynomial in the input size. Thus, it suffices to show that
different breakpoints are associated to different endpoints of time windows. To this end
we have the following lemma that provides a sufficient criterion to apply Lemma 9.20.
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Lemma 9.22. Let v ∈ W and let t0, t1 ∈ tp(v) with t0 < t1 and [t0, t1] ⊆ tp(v). If
two fastest vs-v-paths (P0, τ0) and (P1, τ1) with τ0(v) = t0 and τ1(v) = t1, depart at
a common vertex u ∈ V (P0) ∩ V (P1) at the same time τ0(u) = τ1(u), then it holds
f τv (t1) = f τv (t0) + (t1 − t0).

Proof. The condition τ0(u) = τ1(u) allows interchanging the vs-u-subpaths of (P0, τ0)
and (P1, τ1). That is, we can replace both the vs-u-subpath of (P0, τ0) by (P1, τ1)|vsu
and that of (P1, τ1) by (P0, τ0)|vsu (see Lemma 7.16 and Definition 7.15). This implies
that both paths have the same departure time τ0(vs) = τ1(vs), since otherwise we can
improve the duration of one of the two paths (namely the one with the earlier departure
time). Finally, the claim follows because (P0, τ0) and (P1, τ1) are fastest paths and, thus,
f τv (t1)− f τv (t0) = d(P1, τ1)− d(P0, τ0) = t1 − t0.

Lemma 9.23. If |tp(u)| = 1 for all u ∈ V , then #p(f τv ) ≤ 4 · |V | + 2 for every vertex
v ∈ W at which waiting is permitted.

Proof. Let v ∈ W . As proved in Lemma 9.19 the departure-duration function f τv does
not contain a jump up. By Lemma 9.11 and Remark 9.12 the number of linear pieces of
f τv is exactly one larger than the number of breakpoints. Thus, we prove that the latter
is bounded by 4 · |V |+ 1.

Since the piece on the left of a right bend has slope 1 whereas the piece on the right has
slope 0, the departure-duration function f τv does not contain two consecutive right bends.
Hence, the number of breakpoints can be estimated above by

2 · (number of left bends + number of jump downs) + 1

and it remains to prove that the total number of left bends and jump downs is bounded
by 2 · |V |. To this end we associate every left bend and jump down t ∈ int(tp(v)) with a
fastest vs-v-path departing at v at time t.

Lemmas 9.16 and 9.17 now guarantee that every such path uses some vertex u at either
the earliest or latest time of its time window (recall that |tp(u)| = 1). As there are exactly
2 · |V | many of these time points, it is sufficient to show that no two fastest paths use
a common one of them. Toward a contradiction, let (P0, τ0) and (P1, τ1) be two fastest
paths corresponding to breakpoints t0 < t1 of the departure-duration function f τv that
depart at some vertex u at the same time (either the earliest or the latest time in the
time window of u). Now, all requirements of Lemma 9.22 are satisfied. This implies that
we can apply Lemma 9.20 and obtain that f τv has a waiting piece on the interval [t0, t1].
Hence, t1 has to be a jump down and we get the contradiction

f τv (t1) < lim
t↗t1

f τv (t) = f τv (t0) + (t1 − t0) = f τv (t1).
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9 Departure-Duration Functions

Lemma 9.24. For v ∈ W , we have #p(f τv ) ≤ |tp(v)| · (4 ·
∑

u∈V |tp(u)|+ 2).

Proof Sketch. Basically, the proof idea is to transform the graph and apply Lemma 9.23.
Replacing each vertex v by |tp(v)| many copies, one for each of its time windows, allows
us to transform the graph into one with

∑
v∈V |tp(v)| many vertices that have single time

windows as time profiles each.

Applying Lemma 9.23 to this new instance results in departure-duration functions that
have at most 4 ·

∑
v∈V |tp(v)| many linear pieces. If we combine the departure-duration

functions of all copies corresponding to one vertex v from the original graph, we obtain
the departure-duration function of v. This results in the claimed bound.

Corollary 9.25. For v ∈ W , the number of linear pieces of f τv is polynomially bounded
in the input size.

Proof. The claim follows directly from Lemma 9.24.

For v ∈ V \W , the number of linear pieces of f τv does not have to be polynomially
bounded. This might even be the case if all time profiles consist of single time windows
each as the following example shows.

Example 9.26. We consider an FPTPW network quite similar to that used in the proof
of Theorem 7.20 where we show that the synchronizing of time profiles might result in
exponentially many time windows. The graph is also a path (v0, . . . , vn−1) where every
arc is doubled. For i ∈ {0, . . . , n− 1}, one of the two arcs from vi to vi+1 gets duration 0
and the other gets duration 2i (in contrast to 2i+1 as in the proof of Theorem 7.20). The
time profile of a vertex vi is set to tp(vi) = [0, 2i].

In this case, the time profiles are already synchronized but the departure-duration function
f τvi of a vertex vi consists of 2i linear segments. As an example, the departure-duration
function of vertex v2 is drawn in Figure 9.8. Note that only a single vertex at which
waiting is allowed suffices to “smooth out” this step function. /
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2

3

Figure 9.8: Departure-duration function f τv2 for Example 9.26.
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Conclusion

In this chapter, we defined the departure-duration functions, used them to formulate an
optimality criterion for fastest paths, and analyzed their structure. Especially, we proved
them to be piecewise linear and classified their breakpoints. Furthermore, we derived
the Left Bend Lemma and the Jump Down Lemma, which allowed us to associate the
breakpoints with endpoints of time windows. As a result, we could polynomially bound
the number of linear pieces of the departure-duration functions for vertices at which
waiting is allowed.

Moreover, the departure-duration functions are the basic structure of our fastest path
algorithms solving MinFPTPW, which we consider in the following chapter.
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Chapter 10

Fastest Path Algorithms

In this chapter, we present a MinFPTPW algorithm that builds on the concept of
departure-duration functions that we introduced in the previous chapter. A central
task in the algorithm is the computation of lower envelopes, which we therefore first
consider as an isolated subproblem. With this preparation, we can then formulate
and analyze the algorithm. Thereafter, we bridge the gap to practical applications
by discussing variants and extensions of this algorithm that make a difference in
practice.

Assumptions and Notes

Throughout this chapter, an FPTPW network N = (G, vs, vt, d, tp,W ) based on a graph
G = (V,A) is always given. The following assumptions apply.

Only Relevant Vertices → see Assumption 7.7 on Page 79
Every vertex is contained in a vs-vt-path.

Synchronized Time Profiles → see Assumption 8.1 on Page 89
All time profiles are synchronized.

No Parallels → see Assumption 7.8 on Page 80
The graph does not contain parallel arcs.

In this chapter, we focus on determining the duration of a fastest path and sideline the
actual computation of a fastest path. The latter can be incorporated into the algorithm
without much effort by memorizing predecessor information during its execution. We
give more details on this practical extension in Section 10.2.4. A more theoretic approach
that justifies the restriction to durations is given in Section 12.1. Specifically, we show
there that it is polynomial time equivalent to compute fastest paths and to compute only
their durations.
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10 Fastest Path Algorithms

10.1 Lower Envelopes

A key task in the MinFPTPW algorithm presented in the following section is to compute
lower envelopes of departure-duration functions. The problem of computing lower or
upper envelopes occurs not only in combinatorial optimization but it is also important in
computer graphics and computational geometry, which is one of the reasons why this
problem is already well-investigated. This section aims to summarize the information
which is relevant in our situation. We thus focus on lower envelopes of piecewise linear
functions in one dimension.

The running time of algorithms computing lower envelopes highly depends on the
complexity of this lower envelope function which in turn is related to Davenport-Schinzel
sequences. The latter are introduced by Davenport and Schinzel in [DS65] as an approach
to transform the problem of how complicated the upper envelope of finitely many
continuous functions could become into a purely combinatorial problem. Hart and Sharir
prove asymptotically tight bounds on the maximum length of these sequences in [HS86].
It follows from these bounds that the lower (and upper) envelope of n linear segments in
the plane consist of at most O (nα(n)) segments, where α denotes the inverse Ackermann
function. In [WS88], Wiernik and Sharir construct an example where this bound is in
the worst case, in fact, tight. A sweep line algorithm to compute upper envelopes of n
line segments in time O (n log(n)) is given in [Her89] by Hershberger. An introduction
to Davenport-Schinzel sequences, their analysis, and applications like lower envelope
computations can also be found in [AS00].

Our specific problem is to find the lower envelope of k partially defined, piecewise linear
functions. We first describe the case for k = 2. However, we keep this very brief and refer
to [Her89, Section 3] for a more detailed description. Let f1 and f2 be two such functions
with n1 and n2 many linear segments. To compute the lower envelope of f1 and f2 we
can sweep a line from left to right while always retaining the currently relevant segment
of each function. At every breakpoint of one of the functions we can check in constant
time whether the following pieces intersect and on which intervals which piece is smaller.
This can be turned into an algorithm computing the lower envelope of f1 and f2 in a
time that is linear in n1, n2, and the number of linear pieces of the resulting envelope.

As stated above, the lower envelope of k piecewise linear functions with n segments in
total has at most O (nα(n)) many pieces. Thus, applying the algorithm to determine
the lower envelope of two functions successively on the current pointwise minimum and
the next function allows us to compute the lower envelope of all k functions in time
O (knα(n)).

Lemma 10.1. The lower envelope of k piecewise linear functions with n line segments
in total can be computed in O (knα(n)) time.
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This algorithm can be improved by a divide-and-conquer strategy where we split the
pieces into two equally sized chunks, determine the lower envelopes of those, and finally
merge these two functions with the algorithm just like we did before. This approach is
described, for example, in [Ata85] or [HS86] and it results in an algorithm running in
time O (nα(n) log(n)). With a more sophisticated way to subdivide the linear segments
into different chunks, [Her89] improves this approach to an algorithm with a running
time of O (n log(n)).

Lemma 10.2 ([Her89]). The lower envelope of n line segments can be computed in
O (n log(n)) time.

In general, the time bound O (n log(n)) from Lemma 10.2 is better than O (knα(n))
from Lemma 10.1, especially in the case k = n when every function only consists of a
single piece. In our situation, however, the number k is the relatively small indegree of a
vertex whereas the number n of linear pieces might become extremely large in practice.

10.2 Label Setting Algorithm

In this section, we describe a label setting algorithm for MinFPTPW that is based
on the departure-duration functions introduced in Chapter 9. A high-level description
of this algorithm is given in Section 10.2.1. Thereafter, in Section 10.2.2, we go into
algorithmic details and, in particular, we specify how to represent and compute the
departure-duration functions. We derive bounds on the running time and prove the
correctness of the algorithm in Section 10.2.3 before we outline how to adapt it in order
to compute fastest paths instead of only their durations.

10.2.1 Basic Algorithm

To compute the duration of a fastest path in an FPTPW network, the label setting
algorithm presented here computes the departure-duration functions of all vertices in
the order of a topological ordering. Such a topological ordering of the vertices exists
because the graph of every FPTPW network is required to be acyclic. The advantage
of this order is that we have already computed the departure-duration functions of all
predecessors when we handle a vertex. Thus, we can use the recursive formulation from
Lemma 9.6 to compute every departure-duration function. By Assumption 7.7 we start
with the source vs for which we already have f τvs ≡ 0. After computing f τvt at the target,
the duration of a fastest path equals the minimum of f τvt . Furthermore, as we can assume
σ(vt) = τ(vt) in an optimum solution, there exists a path that arrives at vt at the time
where this minimum is attained. This procedure is summarized in Algorithm 10.1.
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10 Fastest Path Algorithms

Algorithm 10.1: Duration of a Fastest Path based on a Topological Ordering

Input: FPTPW network N = (G, vs, vt, d, tp,W ) with G = (V,A), n = |V |
Output: Duration of a fastest vs-vt-path (P, τ)

1 Label the vertices V according to a topological ordering of G with v0, . . . , vn−1.
2 Initialize f τv0 ≡ 0.
3 for i = 1, 2, . . . , n− 1 do
4 Determine the departure-duration function f τvi .
5 end

6 return mint∈tp(vt) f
τ
vt(t)

10.2.2 Algorithmic Details

Algorithm 10.1 sketches the ideas of this label setting algorithm only roughly. In this
section, we explain more precisely how we represent the departure-duration functions
and how to compute them in Line 4 of the algorithm.

Representing the Functions

As all functions are piecewise linear functions of a scalar variable, we represent each as a
sorted list of its pieces. Every such piece is specified by a tuple ((t0, y0), (t1, y1)) containing
its two endpoints (t0, y0) and (t1, y1). These are sufficient to represent departure-duration
functions: the values y0 and y1 denote the durations of fastest paths that depart at
t0 and t1, respectively. Thus, by the linearity of the piece we have a path of duration
λy0 + (1− λ)y1 that departs at time λt0 + (1− λ)t1 for all λ ∈ [0, 1].

During the algorithm, all lists containing such pieces are kept sorted lexicographically by
the departure times (t0, t1). One advantage of this sorting is that we can use a binary
search whenever we seek for a piece containing a specific time t. In particular, we obtain
a value f τv (t) in time O (log #p(f τv )). Regarding binary search we refer, for example,
to [Knu98, Section 6.2.2] or [CLRS09, Chapter 12].

Computing Departure-Duration Functions

To compute the departure-duration functions in Line 4 of Algorithm 10.1 we use their
recursive formulation given by Equation (9.1) in Lemma 9.6. However, these only depend
on the arrival-duration functions of the same vertex and not on the departure-duration
functions of its predecessors. Thus, we also have to take Equation (9.2) from Lemma 9.6
into consideration.
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10.2 Label Setting Algorithm

One way to compute the arrival-duration function fσv of a vertex v is given by Equa-
tion (9.2) from Lemma 9.6: shift the departure-duration function of each predecessor u
by the duration d(uv), compute the pointwise minimum of all these shifted functions,
and restrict the result to the time profile of v. Shifting a piecewise linear function
by d(uv) means that each piece ((t0, y0), (t1, y1)) is shifted, which then results in the piece
((t0 + d(uv), y0 + d(uv)), (t1 + d(uv), y1 + d(uv))). To compute the pointwise minimum we
have to determine the lower envelope of all these

∑
u∈N in(v) #p(f τu ) shifted pieces. The

restriction of this lower envelope to the time profile of v can be performed in linear time
by iterating all contained pieces once.

If waiting at the vertex v is forbidden, its departure-duration function equals its arrival-
duration function. Otherwise, we have to compute f τv from fσv as specified by Equa-
tion (9.1) in Lemma 9.6 on Page 101. That is, we have to add the waiting pieces wherever
this is necessary, which is exactly where fσv has a jump up. This can also be done in
linear time by iterating all pieces of the arrival-duration function once. An example for
the addition of such waiting pieces is given in Figure 10.1.

By Lemma 9.24 and Corollary 9.25 we only have bounds on the size of departure-duration
functions. Although we can bound the arrival-duration functions with the help of
Davenport-Schinzel sequences as described in Section 10.1, we can save their explicit
calculation and compute the departure-duration functions directly based on those of the
predecessors. At a waiting vertex v ∈ W we can extend every shifted piece by adding
another waiting piece. Thus, we can directly compute its departure-duration function f τv
as the lower envelope of at most 2 ·

∑
u∈N in(v) #p(f τu ) shifted pieces.

So, in order to compute the departure-duration function f τv at vertex v we must already
have the departure-duration functions of all predecessors of v available. This is guaranteed
by the fact that we process the vertices in the order of a topological ordering.

3 4 5 6 7

2

3

4

(a) The arrival-duration function.

3 4 5 6 7

2

3

4

(b) The departure-duration function.

Figure 10.1: Converting an arrival-duration into a departure-duration function for v ∈ W
with tp(v) = [3, 7] by adding two waiting pieces. One at the jump up at 4
and one from the last arrival 6 till the end of the time window.
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10.2.3 Running Time and Correctness

Theorem 10.3. Algorithm 10.1 terminates and it can be implemented to run in time
O (|A| ·#pmax · log(|A| ·#pmax)) where #pmax = max{#p(f τv ) : v ∈ V } denotes the
maximum number of linear pieces among all departure-duration functions.

Proof. Initializing the departure-duration function f τvs at the source in Line 2 requires
O (|tp(vs)|) ∈ O (#pmax) time, where |tp(vs)| = #p(f τvs).

As we have already seen in the proof of Theorem 8.8, we can compute the topological
ordering of the graph G in Line 1 of Algorithm 10.1 in time O (|A|) [see CLRS09,
Chapter 22.4].

To determine the departure-duration function of a vertex v in Line 4 we have to compute
the lower envelope of degin(v) many piecewise linear functions. Each function has at most
#pmax pieces and, if v ∈ W , we get up to the same amount of additional waiting pieces
(compare with the algorithmic details from Section 10.2.2). Thus, we have to compute
the lower envelope of at most 2 · degin(v) ·#pmax many linear segments in the plane. By
Lemma 10.2 this can be done in time

O
(
degin(v) ·#pmax · log(degin(v) ·#pmax)

)
⊆ O

(
degin(v) ·#pmax · log(|A| ·#pmax)

)
.

We have to compute such a lower envelope for every vertex v ∈ V . Thus, the time we
spend in the for-loop is

O

(∑
v∈V

degin(v) ·#pmax · log(|A| ·#pmax)

)
= O (|A| ·#pmax · log(|A| ·#pmax)) .

The way we represent the departure-duration functions as described in Section 10.2.2
allows us to find the duration of a fastest path mint∈tp(vt) f

τ
vt(t) in time O (#pmax).

In total we get the claimed running time of O (|A| ·#pmax · log(|A| ·#pmax)), and because
this running time is bounded, the termination is clear.

For certain special cases we can limit the running time of Algorithm 10.1 even more
precisely by limiting the number #pmax of linear pieces, see Chapter 11.

Theorem 10.4. Algorithm 10.1 correctly computes the duration of a fastest path.

Proof. Algorithm 10.1 terminates by Theorem 10.3. Since the departure-duration func-
tions are computed correctly, the correctness of the algorithm follows from the definition
of departure-duration functions (Definition 9.1 on Page 98).
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10.2.4 From Durations to Fastest Paths

A slight modification of Algorithm 10.1 allows us to compute a fastest path and not only
its duration. To achieve this we can store predecessor information that we can backtrack
in order to obtain a fastest path. In the following, we describe how to adapt the algorithm
in order to practically obtain a fastest path. An alternative algorithm to determine a
fastest path, which simply calls Algorithm 10.1 as a subroutine, is given by Algorithm 12.1
on Page 134. It is more of theoretical interest and proves the polynomial-time equivalence
of computing fastest paths and their durations, which is stated in Theorem 12.1.

In a standard shortest path computation we can store predecessors next to distance labels
if we are also interested in a shortest path and not only in its length [see, for example,
AMO93, Section 4.5]. The distance labels correspond to the departure-duration functions
in our setting, and we also have to deal with the temporal component in the predecessor
information. On the one hand, this means that also the predecessor information is
a function in time. On the other hand, this information should not only contain the
predecessor but also the time at which we have to depart there.

Formally, we define the predecessor information that we store at a vertex v as the
function πv : tp(v)→ V ×R. The value (u, tu) = πv(t) for time t ∈ tp(v) has the following
meaning: there is a vs-v-path departing at v at time t with a duration of f τv (t) such
that the predecessor of v on this path is the vertex u at which it departs at time tu.
Since the departure-duration functions are piecewise linear (see Lemma 9.8 on Page 102),
the predecessor departure times (the second components of πv) are also piecewise linear
functions. Furthermore, we can attach the predecessors (the first components of πv)
to the linear pieces of these. This allows a compact representation of the predecessor
information that is illustrated in the following example.

Example 10.5. An FPTPW network together with the departure-duration function f τv4
at vertex v4 and the corresponding predecessor information πv4 is depicted in Figure 10.2.
The FPTPW network depicted in Figure 10.2a contains with the vertex v4 only a
single waiting vertex. The departure-duration function is visualized in Figure 10.2b and
Figure 10.2c shows the temporal component of πv4 . Since the information about the
predecessor is constant along the pieces, it is written next to these.

In the interval [3, 4], the fastest path is not unique because we can either use the vertex v1
or v2 as a predecessor. Thus, the same applies to the predecessor information: either the
piece corresponding to v1 or that corresponding to v2 is contained. To illustrate this, we
have exceptionally drawn both pieces in Figure 10.2c.

Since the target vt has the same time profile as v4 and the arc v4vt has duration 0,
the departure-duration function f τvt at the target equals f τv4 . However, the predecessor
information πvt is the identity restricted to the time window [3, 9] enriched with the
information that the predecessor is v4. /
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[0, 4]

[1, 2]

v1

[2, 4]

v2

[5, 6]

v3

v4

[3, 9]
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(a) FPTPW network
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(b) Departure-duration function f τv4
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v1

v2

v3

(c) Predecessor information πv4

Figure 10.2: The departure-duration function and the corresponding predecessor infor-
mation at vertex v4 for the given FPTPW network, see also Example 10.5.
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10.3 Improvements

We can calculate the predecessor information πv at the same time when determining the
departure-duration function f τv of v: instead of only computing the lower envelope of the
shifted predecessor pieces we just need to additionally remember where the minima are
attained. At the end we can backtrack the predecessor information to obtain a fastest
path. If we include these changes into Algorithm 10.1, we obtain Algorithm 10.2.

Algorithm 10.2: Fastest Path based on a Topological Ordering

Input: FPTPW network N = (G, vs, vt, d, tp,W ) with G = (V,A), n = |V |
Output: A fastest vs-vt-path (P, τ)

1 Label the vertices V according to a topological ordering of G with v0, . . . , vn−1.
2 Initialize f τv0 ≡ 0.
3 Initialize πv0 by t 7→ (v0, t).
4 for i = 1, 2, . . . , n− 1 do
5 Determine the departure-duration function f τvi .
6 Determine the predecessor information function πvi .
7 end

8 Determine (P, τ) by backtracking πv starting at vt at arg mint∈tp(vt) f
τ
vt(t).

9 return (P, τ)

Thanks to the predecessor information functions πv, we can backtrack a fastest path in
Line 8 of Algorithm 10.2. Assume the minimum of f τvt is attained at time t. We only
have to determine πvt(t) to obtain the penultimate vertex u of a fastest path together
with the time tu at which we have to depart there. As long as u 6= vs we use the
predecessor information πu to obtain the preceding vertex on a fastest path together with
its departure time.

With these modifications, however, the running time for Algorithm 10.1 from Theorem 10.3
does not simply transfer to Algorithm 10.2: the running time of the latter algorithm
also depends on the complexity of the predecessor information functions and on the time
to compute these. In particular, it is not clear that complexity-related results on the
departure-duration functions carry over to the predecessor information functions.

10.3 Improvements

In this section, we outline variants of the fastest path algorithms from the previous section.
These variants are mainly of interest from a practical point of view. All improvements
have in common that they try to reduce the amount of work instead of speeding it up.
Since the ideas are already mentioned in Section 3.5, we will keep this short.
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10 Fastest Path Algorithms

Label Correcting Algorithm In Algorithm 10.1 we always compute the departure-
duration function of every vertex. However, in this way it can happen that we compute
many functions of vertices that are not contained on a fastest path. A first approach to
circumvent this issue is to refrain from using the topological ordering. Instead we always
process the most promising vertex and propagate its departure-duration function to all
of its successors.

The most promising vertex in this context is the one with the minimum duration that
is not yet propagated to the successors. Whenever we handle a vertex, we update the
departure-duration functions of all successors. If this strictly improves the duration f τu (t)
for a successor u at a time t, the value f τu (t) is a duration that vertex u has not yet
passed on to its successors. We can stop the algorithm when the minimum duration
that has not yet been propagated to the successors (see the start of this paragraph) is
attained at the target.

This algorithm does not have to process every vertex, but in general it has to handle
vertices multiple times. It might run faster than Algorithm 10.1 if there are many vertices
that are only reachable from the source with a duration that is larger than the duration
of a fastest vs-vt-path.

Piece Propagation Algorithm One drawback of the algorithm variant we just de-
scribed is that it still propagates the entire departure-duration functions, even if parts
of these certainly do not correspond to fastest vs-vt-paths. To address this issue we
can propagate only single linear pieces instead of entire departure-duration functions.
Therefore, we not only handle the most promising vertex in each iteration but also
restrict to propagating the most promising parts of the departure-duration function of
this vertex.

With this further adjustment the algorithm essentially computes only those parts of the
departure-duration functions that are bounded from above by the duration of a fastest
vs-vt-path. In fact, this is not entirely correct as we still propagate pieces instead of
single points and because we still pass these values on to succeeding vertices.

Lower Bounds We can further improve the practical performance of both variants, the
label correcting algorithm as well as the piece propagation algorithm, by refining the
choice of the most promising vertex. To this end, we can adapt the A*-algorithm to
our setting by computing lower bounds on the remaining durations to the target. We
only have to compute a single shortest path tree in a time-independent network, which
is relatively fast in comparison to our time-dependent fastest path algorithms. This
improvement is particularly helpful if the time profiles fit well in the sense that no large
waiting times are needed.
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Conclusion

With Algorithm 10.1 we developed an algorithm to solve MinFPTPW and proved a
bound on its running time. We mainly focused on computing the duration of a fastest
path but also described how to generalize the algorithm in order to actually compute a
fastest path. Finally, we commented on variants of how to improve the algorithm for
practical applications.

As the running time of Algorithm 10.1 depends on the complexity of the departure-
duration functions, further investigations are necessary in order to figure out whether
it runs in time that is polynomial in the input size. We address this question in the
following chapter for several special cases.
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Chapter 11

Special Cases

This chapter deals with special cases for which we can prove deeper results or that
are relevant in practice. First, we restrict the underlying graph and consider the
case that it is a path. Second, we investigate the situation in which it is allowed
to wait at every vertex. For these first two variants we can solve MinFPTPW in
polynomial time. Last, we deal with the practically relevant case of integer data.

Assumptions

Throughout this chapter an FPTPW network N = (G, vs, vt, d, tp,W ) based on a graph
G = (V,A) is always given. The following assumptions apply.

Only Relevant Vertices → see Assumption 7.7 on Page 79

Every vertex is contained in a vs-vt-path.

Synchronized Time Profiles → see Assumption 8.1 on Page 89

All time profiles are synchronized.

11.1 Path

In this section, we consider MinFPTPW on a path G = P = (v0, . . . , vn−1). By the
assumption that all vertices are relevant we have vs = v0 and vt = vn−1. First, in
Section 11.1.1, we start with the case that the time profiles consist of a single time
window each. Thereafter, we consider the general case in which the time profiles can be
composed of multiple time windows.

125
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11.1.1 Single Time Windows

In the case that the time profile of every vertex consists of only a single time window
all departure-duration functions have at most two linear pieces. Each such function is a
hinge function that consists of a horizontal piece with slope 0 followed by a waiting piece
with slope 1 (cf. Notation 9.9 on Page 103). However, only one of these two pieces can
be there, and, if the time window is a single point, there is only a singleton piece. The
recursive formulation of the departure-duration functions from Lemma 9.6 on Page 100
allows us to prove this by induction on the position i of a vertex vi on the path. In the
following, we only sketch the idea of the proof.

At the source vs the departure-duration function is constant zero and we have as many
linear pieces as we have time windows. Hence the departure-duration function at the
source consists of a single horizontal piece. Let us now consider a vertex vi with i ≥ 1.
As vi−1 is the only predecessor of vi, the recursive formulation of f τvi from Lemma 9.6
simplifies: we have to shift the departure-duration function f τvi−1

of vi−1 by d(vi−1vi),
restrict it to the time window of vi, and potentially extend it by a waiting piece. Thus,
we have that f τvi is a hinge-function as described if the departure-duration function f τvi−1

of the predecessor has this property.

In particular, this directly implies that we can determine the duration of a fastest path
on a path with Algorithm 10.1 from Page 116 in polynomial time.

Lemma 11.1. If the underlying graph G of an FPTPW network is a path and every
time profile consists of a single time window each, we can find the duration of a fastest
path in polynomial time.

Proof. If G is a path and every time profile consists of a single time window, every
departure-duration function has at most 2 linear pieces. Thus, by Theorem 10.3 from
Page 118 we can determine the duration of a fastest path with Algorithm 10.1 in
time O (|A| · log |A|).

In this case, however, we can also determine a fastest path and not only its duration
in polynomial time. On the one hand, this could be shown by the fact that also the
predecessor information in Algorithm 10.2 can be represented by functions with few
pieces. On the other hand, the MIP formulation from Section 7.4 simplifies to a linear
program that can be solved in polynomial time. In the following, we consider the latter
variant.

As the graph G is only a path and because every time profile consists of a single time
window, we only have to specify the departure times. This means that we only need the
variables τ from Program (7.1) (see Pages 85 and 86) and neither the x-variables, which
specify the used vertices and time windows, nor the y-variables, which specify the arcs
on the path. We denote the single time window of a vertex vi by [ti0, t

i
1]. In particular, we
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have t0(vi) = ti0 and t1(vi) = ti1 with the notation from Section 7.4. Thus, Program (7.1)
simplifies for the case of a path P = (v0, . . . , vn−1) with single time windows at the
vertices to the following problem.

min τ(vt)− τ(vs) (11.1a)
s.t. τ(vi) ≥ ti0 ∀ i = 0, . . . , n− 1 (11.1b)

τ(vi) ≤ ti1 ∀ i = 0, . . . , n− 1 (11.1c)
ti0 ≤ τ(vi−1) + d(vi−1vi) ∀ i = 1, . . . , n− 1 (11.1d)
τ(vi) ≥ τ(vi−1) + d(vi−1vi) ∀ i = 1, . . . , n− 1 (11.1e)
τ(vi) ≤ τ(vi−1) + d(vi−1vi) ∀ i = 1, . . . , n− 1 : vi−1 /∈ W (11.1f)

Constraints (11.1b) to (11.1f) from Program (11.1) correspond to Constraints (7.1i)
to (7.1m) from Program (7.1). The remaining constraints in the general program are
only needed to enforce that the solution corresponds to a vs-vt-path and to involve the
time windows.

Theorem 11.2. If the underlying graph G of an FPTPW network is a path and every
time profile consists of a single time window each, we can find a fastest path in polynomial
time.

Proof. The formulation from Program (11.1) has only fractional variables τ making it a
linear program. Furthermore, we only need linearly many variables and constraints. The
claim follows since we can solve linear programs in polynomial time [see, for example,
AP01, Remark 9.11].

11.1.2 General Time Profiles

We will now move on to more than a single time window at every vertex. Still assuming
the underlying graph G = (v0, . . . , vn−1) to be a path we allow general time profiles.
Lemma 11.3 shows that we can linearly bound the complexity of the departure-duration
functions in this case.

If we allow each time profile to consist of multiple time windows, a departure-duration
function restricted to one of the time windows does not have to be a single hinge function.
Instead, it can be composed of multiple hinge functions. However, the horizontal pieces
of all hinge functions that together form a departure-duration function have the same
duration value. This follows from Lemma 9.13 (Page 104) since these points correspond
to paths without waiting and their duration is unique on a graph that is a path.

127



11 Special Cases

Lemma 11.3. Let N = (G, vs, vt, d, tp,W ) be an FPTPW network based on a graph
G = (vs = v0, . . . , vn−1 = vt) that is a path. Then #p(f τv0) = |tp(v0)| and for i > 0

#p(f τvi) ≤ 2 · (|tp(v0)|+
∑
0<j<i

(|tp(vj)| − 1)) + |tp(vi)| − 1.

Proof Sketch. First, we bound the number of horizontal pieces of f τvi . For f
τ
v0

we have
exactly |tp(v0)| horizontal pieces as f τv0 ≡ 0, see Lemma 9.6. The departure-duration
function f τvi only has strictly more horizontal pieces than f τvi−1

if some of them are split
by a hole in the time profile of vi. That is, the maximum number of horizontal pieces
of f τvi is |tp(v0)|+

∑
0<j≤i(|tp(vj)| − 1).

Second, a new waiting piece can only be created if we wait after a horizontal piece or if
we split a waiting piece by a hole in the time profile. However, splitting a waiting piece
creates at most one additional piece whereas splitting a horizontal piece creates up to
two additional pieces (one horizontal and potentially a subsequent waiting piece). Hence,
we may assume without loss of generality that we only split horizontal pieces.

We are now able to bound the total number of pieces #p(f τvi). Starting with |f τv0| many
pieces, every hole in the time profile of some vertex vj might increase the number of
horizontal pieces by one. For j ≤ i this affects the departure-duration function of vi.
However, only horizontal pieces created by a hole in a preceding vertex vj (with j < i)
can be followed by a waiting piece. This results in the claimed bound.

Corollary 11.4. If the underlying graph G of an FPTPW network is a path, we can
find the duration of a fastest path in polynomial time.

Proof. Let G = (v0, . . . , vn−1). Lemma 11.3 implies #p(f τvi) ∈ O(
∑

j≤i |tp(vj)|) for every
vertex, which is linear in the input size. Thus, Theorem 10.3 from Page 118 completes
the proof by showing that we can use Algorithm 10.1 to find the duration of a fastest
path.

We finish the special case of a path by providing an example where the bound on the
number of linear pieces of departure-duration functions from Lemma 11.3 is tight.

Example 11.5. Let G = (v0, . . . , vn−1) be a path with vs = v0 and vt = vn−1, let d ≡ 1,
and let the time profiles be defined by

tp(vi) =


[0, 1] ∪ [2, 2n− 1] if i = 0,

[i, 1 + 3i] ∪ [2 + 3i, 2n+ i] if i < n− 1, and
[n− 1, 2n+ i] if i = n− 1.

If waiting is allowed at every vertex, the departure-duration function f τvn−1
at the target

consists of 2n pieces. For n = 4 the cost functions are shown in Figure 11.1. /
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Figure 11.1: Departure-duration functions from Example 11.5 for the case n = 4.

11.2 Waiting Allowed Everywhere

In this section, we deal with the case that waiting is allowed at every vertex, that is,
W = V . Basically, we already have all the essential results for this case and only have to
put them together.

From Corollary 9.25 (Page 110) we get that all departure-duration functions have only
polynomially many pieces. Thus, by Theorem 10.3 from Page 118 we obtain a polynomial
running time of Algorithm 10.1 in this case as well.

Corollary 11.6. If waiting is allowed at every vertex, that is, if W = V , we can find
the duration of a fastest path in polynomial time.

In fact, for Corollary 11.6 we do not even need the assumption that all time profiles are
synchronized. The reason for this is that by Lemma 8.7 and Corollary 8.10 on Pages 94
and 95 the number of time windows does not increase during the synchronization.
Additionally, we can compute the synchronized time profiles with Algorithm 8.1 from
Page 91 in polynomial time.
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11.3 Integer Data

In the project with Deutsche Bahn, which is described in detail in Chapter 3 of this thesis,
all time points and durations were integral. We now look at this aspect from a more
theoretical point of view. First, in Section 11.3.1, we show that we can restrict to valid
paths with integral departure times in this situation. This result allows more efficient
representation and handling of the departure-duration functions (see Chapter 9) in fastest
path algorithms (see Chapter 10). Thereafter, we draw connections to two different
concepts that can be applied if all data is integer. On the one hand, in Section 11.3.2 we
consider time-expanded networks and, on the other hand, we look at temporal graphs in
Section 11.3.3.

11.3.1 Restriction to Integer Departure Times

In the case that all time windows have integer bounds and all durations are integer, the
following lemma justifies that we can also restrict to integer departure times.

Lemma 11.7. If there is a valid path for an FPTPW network N with only integer data,
then there is a fastest path with integer departure times.

Proof. Let i be the index of a vertex vi on the path P at which we wait and an integral
time point is contained in the waiting time. Formally, that is an index i ∈ {0, . . . , k} for
which vi ∈ W , σ(vi) < τ(vi), and dσ(vi)e ≤ bτ(vi)c. If such a vertex does not exist, we
can choose i = −1 or i = k + 1.

We define departure times τ ′ for the path P such that (P, τ ′) is valid and has a duration
that is not larger than the duration of (P, τ). To this end, let the departure time of a
vertex vj on the path P be

τ ′(vj) =

{
dτ(vj)e if j < i and
bτ(vj)c otherwise.

First, we argue that (P, τ ′) is valid based on (DT1) to (DT4) from Lemma 7.10 on
Page 82. Since all durations are integer, the arrival times satisfy σ′(vj) = dσ(vj)e for
j ≤ i and σ′(vj) = bσ(vj)c for j > i. And because all bounds of time windows are integer,
we have btc ∈ Iv and dte ∈ Iv for every time window Iv in the time profile of a vertex v
and a time t ∈ Iv. This shows (DT1) and (DT2). As x ≤ y implies bxc ≤ byc and
dxe ≤ dye, we also get (DT3) and (DT4) for all vertices except potentially vi. For this
vertex, however, it is σ′(vi) = dσ(vi)e ≤ bτ(vi)c = τ ′(vi). Thus, the path (P, τ ′) is valid.
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11.3 Integer Data

In the case that such a vertex vi exists, we have

d(P, τ ′) = bτ(vk)c − dτ(v0)e ≤ τ(vk)− τ(v0) = d(P, τ)

showing that P with the new departure times τ ′ has a duration that is at least as good as
the duration with the original departure times τ . If, otherwise, there is no such vertex vi,
all waiting times of (P, τ) are smaller than one second and they does not contain an
integral second. By rounding up or down all departure times we eliminate all waiting
times and obtain a path (P, τ ′) that does not make use of waiting at all. Hence, also in
this case the duration of (P, τ ′) is at least as good as the duration of (P, τ).

11.3.2 Time-Expanded Network

If all data is integral, we can transform the time-dependent FPTPW network into a
time-expanded graph GT = (V T , AT ). Its vertex set V T consists of a vertex vt for every
v ∈ V and every integer time point within the time profile tp(v) of v. For an arc uv ∈ A
we add all arcs of the form utvt+d(uv) to AT for which both end-vertices are contained
in V T . Additionally, for vertices v ∈ W where waiting is allowed we add arcs vtvt+1

to AT whenever both end-vertices are in V T . We also add a source and a target that
we connect to all vertices corresponding to the source and the target of the FPTPW
network, respectively. Formally, we have

V T = {vt : v ∈ V, t ∈ tp(v)} ∪ {vs, vt} and

AT = {utvt+d(uv) : uv ∈ A, t ∈ tp(u), t+ d(uv) ∈ tp(v)}
∪ {vtvt+1 : v ∈ W, [t, t+ 1] ⊆ tp(v)}
∪ {vsvts : t ∈ tp(vs)} ∪ {vttvt : t ∈ tp(vt)}.

The duration of an arc utvt′ in this time-expanded network is defined as the time difference
between the times associated with its end-vertices d(utvt

′
) = t′ − t. A fastest path in the

FPTPW network then corresponds to a shortest vs-vt-path in the time-expanded graph
GT where we use the durations as costs.

For the sake of simplicity we assume that all time profiles contain only nonnegative time
points, that is, we assume that Assumption 7.9 from Page 80 applies. Denoting the
largest time bound of any time window by M = maxv∈V max(tp(v)) allows us to bound
the number of vertices |V T | of the time-expanded network by |V T | ≤M · |V |+ 2. Since
we need at least log(M) bits to encode the time window with the largest time bound,
the size of the time-expanded graph GT is pseudo-polynomial in the size of the FPTPW
network. For more information about what pseudo-polynomial means, we refer to [GJ79,
Section 4.2].

Having the time-expanded network graph GT at hand, the problem MinFPTPW reduces
to finding a shortest vs-vt-path with respect to the durations d. This can be done by
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standard shortest path algorithms in time that is polynomial in the size of GT . Thus, we
obtain the following result.

Lemma 11.8. For an FPTPW network N with only integer data, we can solve MinSFP
in pseudo-polynomial time.

This time-expanded approach, however, is most likely not practical in real applications
due to the enormous size of the network. A short comparison of time-dependent and
time-expanded approaches in the context of timetable information problems is given in
[MSWZ07, Section 1.2] where also more related literature is listed. Instead of delving
further into this, we want to build a bridge to another topic that is primarily interesting
for our problem from a theoretical point of view.

11.3.3 Temporal Graphs

Another concept that fits reasonably well is that of temporal graphs. In contrast to the
time-expanded approach, the vertices are static and not associated with time points. A
temporal graph represents the time by a varying arc set: every arc has an integer time
point at which we can start to use it. Hence, we can create the arc set for a temporal
graph corresponding to an FPTPW network similarly to the time-expanded graph shown
in the previous section. Only the waiting arcs are not necessary, as waiting at vertices is
usually allowed in temporal graphs. This prevents the standard temporal graph setting
to describe our problem exactly. However, there is current research that deals with
restricting the waiting at the vertices, see, for example, [DRSS21] and [CHMZ21].

Conclusion

If waiting is allowed everywhere or if the graph is a path, we can compute the duration of
a fastest path in polynomial time. Moreover, if the path is a graph and the time profile
of every vertex consists of a single time window, we can even find the fastest path (and
not only its duration) in polynomial time. This result is particularly interesting because
we can extend it to all instances for which we can compute the duration of a fastest path
in polynomial time. We give more details on this in Section 12.1.

Furthermore, we dealt with instances that only have integer data. The main result for
this special case is that we can also restrict the departure times of paths to integer
seconds. In addition, we can represent the network as a time-expanded graph in this
case, which allows solving MinFPTPW in pseudo-polynomial time.
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Chapter 12

Complexity

The main result in this chapter is the polynomial time equivalence of computing
fastest paths and of computing only their durations. Furthermore, we specify more
accurately when FPTPW is polynomially solvable. In the end, we collect and
combine the complexity-related results about FPTPW to obtain an overall picture.

Assumptions

Throughout this chapter, an FPTPW network N = (G, vs, vt, d, tp,W ) based on a graph
G = (V,A) is always given. The following assumption applies.

Only Relevant Vertices → see Assumption 7.7 on Page 79
Every vertex is contained in a vs-vt-path.

Recall that we can restrict every directed acyclic graph such that the resulting graph fulfills
this assumption and such that every valid path remains valid. Hence, this assumption
does not affect the running time statements in this chapter since we only classify whether
the problem is polynomially time solvable or not.

12.1 Durations versus Fastest Paths

In Section 10.2.4 from Page 119 on, we describe how to incorporate predecessor information
in Algorithm 10.1. The result is Algorithm 10.2, which allows us computing fastest paths
instead of only their durations. It is an algorithm that is practically of interest, but
proving theoretic running time bounds requires further detailed analysis of the predecessor
information functions used therein.

Instead, with Algorithm 12.1 we now provide a method that allows us to compute fastest
paths in polynomial time if we can determine the duration of a fastest path in polynomial
time. From a practical point of view it is probably of little interest but it adds another
point to the theoretical consideration of FPTPW and MinFPTPW.
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Algorithm 12.1 is based on a similar idea as the algorithm for the Traveling Salesperson
Extension that is described in [GJ79, pp. 116–117]. First, we compute the duration of a
fastest vs-vt-path in the original graph G. Then we successively remove arcs and compute
durations of fastest paths in these restricted graphs until we identify a set of arcs that
form a fastest path. With the same idea we then proceed in restricting all time profiles
to single time windows. In the end, we obtain an instance that is based on a path whose
vertices have single time windows as time profiles. Thus, we can solve this instance in
polynomial time with Program (11.1) as stated in Theorem 11.2 on Page 127.

Algorithm 12.1: Fastest Path based on Fastest Duration

Input: FPTPW network N = (G, vs, vt, d, tp,W ) with G = (V,A), n = |V |
Output: A fastest vs-vt-path (P, τ).

1 Compute the duration d of a fastest vs-vt-path in G.

// Restrict the graph to a path
2 Set v = vs.
3 while v 6= vt do
4 for vw ∈ δout(v) do
5 Let G′ = G− (δout(v) \ {vw}).
6 Compute the duration d′ of a fastest vs-vt-path in G′.
7 if d = d′ then
8 Let G = G′ and set v = w.
9 break // continue with Line 3

10 end
11 end
12 end

// Restrict the time profiles to single time windows
13 for v ∈ G do
14 foreach time window [t0, t1] ∈ tp(v) do
15 Let tp(v) = [t0, t1].
16 Compute the duration d′ of a fastest vs-vt-path.
17 if d = d′ then
18 break // continue with Line 13
19 end
20 end
21 end

22 Compute a fastest path (P, τ) with Program (11.1).

23 return (P, τ)
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12.1 Durations versus Fastest Paths

Theorem 12.1. It is polynomial-time equivalent to compute a fastest path and to
compute only the duration of a fastest path.

Proof. Given a fastest path (P, τ) we can compute the duration of a fastest path in
polynomial time by τ(vt)− τ(vs). The more interesting direction is the reverse, which we
prove by showing that Algorithm 12.1 is correct and that it can be implemented to run
in polynomial time.

Correctness First, in Line 1 we compute the duration d of a fastest vs-vt-path in the
complete graph. We then gradually restrict the graph more and more and have to show
that d is still the duration of a fastest path after these restrictions.

In Lines 2 to 12 we restrict the graph G to a single vs-vt-path. We end the for-loop
in Lines 4 to 11 only if the duration d′ of a fastest path equals the original duration d.
Thus, for every vertex v from the outer while-loop we have to show that there is always
an arc vw ∈ δout(v) for which this is the case. This can be shown by induction. For
the first vertex v = vs we know that at least one outgoing arc vsw is contained in a
fastest vs-vt-path. Hence, when handling this arc in the for-loop, we remove all other
arcs leaving vs and continue with v = w. Since vsw is now the only arc leaving vs, every
fastest vs-vt-path has to use an arc leaving w.

In Lines 13 to 21 we then restrict the time profiles of the vertices on the path to single time
windows. We do this with the same idea as restricting the graph to a path. Analogously,
we can show by induction that we always break the inner for-loop.

Running Time With the while-loop in Lines 3 to 12 and the for-loop in Lines 4
to 11 we iterate every arc uv ∈ A of the graph at most once. We can construct G′ from G
in Line 5 in polynomial time. Additionally, the computation of the duration of a fastest
path in Line 6 requires only polynomial time by assumption. Thus, we can restrict the
graph to a path (Lines 2 to 12) in polynomial time.

Similarly, we can restrict all remaining time profiles to single time windows in Lines 13
to 21 in polynomial time: The two for-loops in this part iterate all time windows of
the remaining vertices exactly once. And since we have to encode the time windows
separately in the instance, this results in polynomially many iterations. Again, the
computation of the duration of a fastest path in Line 16 within every such iteration
requires by assumption only polynomial time.

Since the resulting graph is a path and the time profile of every vertex now consists of
a single time window, we can compute a fastest path with Program (11.1) as stated in
Theorem 11.2 on Page 127.
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12.2 Replacing Vertices

Theorem 7.20 proves MinFPTPW to be NP-hard. However, we can solve the problem
in polynomial time if waiting is allowed everywhere, see Corollary 11.6. In this section, we
further examine the border at which the complexity status changes. The key concept is
the replacement of non-waiting vertices. We replace such a vertex v by degin(v) ·degout(v)
many vertices that all allow waiting. As we do these replacements in the order of a
topological ordering, waiting is allowed at all predecessors of a vertex we are replacing.
We now describe in detail how to replace the vertices.

For a vertex v ∈ V \W at which waiting is forbidden let δin(v) = {u1v, . . . , ukv} and
δout(v) = {vw1, . . . , vw`}. In particular, we have k = degin(v) and ` = degout(v). We
replace v by k new vertices vi for i ∈ {1, . . . , k}. Accordingly, we replace all arcs
incident to vertex v. Instead of an arc uiv we now have the arc uivi that we assign the
duration d(uiv) of the original arc. Every arc vwj is replaced by k arcs viwj , each with a
duration of d(vwj). Waiting at all new vertices is allowed and we set the time profile of a
new vertex vi to

tp(vi) = tp(v) ∩ (tp(ui) + d(uiv)). (12.1)

Note that this construction also works with parallels. If we have, for example, w1 = w2

we assume that vw1 and vw2 are parallel arcs. The vertex replacement in such a situation
is illustrated in Figure 12.1.

u1

u2

v

w1 = w2

w3

(a) The original situation.

u1

u2

v1

v2

w1 = w2

w3

(b) The new situation.

Figure 12.1: Replacing a vertex v.

In the following, we show that such a replacement does not change the duration of a
fastest path if waiting is allowed at all predecessors u1, . . . , uk. More precisely, we show
that we can identify valid paths in the original instance with valid paths in the modified
instance and vice versa.

By the following lemma we may assume that waiting is allowed at the source and at
the target. In fact, for these two vertices, we can always independently choose whether
waiting is allowed or not. The reasons are that we can never make use of waiting at the
source and that waiting at the target is never useful as it only extends the duration of a
path. This allows us to only consider replacements of vertices that are neither the source
nor the target.
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12.2 Replacing Vertices

Lemma 12.2. Without loss of generality we may assume {vs, vt} ⊆ W .

Proof. For vs we set σ(vs) = τ(vs) anyway, and choosing τ(vt) > σ(vt) only increases the
duration of a path.

Note that we can just as well assume {vs, vt} ⊆ V \W with the same reasoning. Here,
however, we are only interested in the statement of Lemma 12.2.

Lemma 12.3. Let v ∈ V \W be a vertex, and let N ′ be the FPTPW network that
results from replacing this vertex as described above. Every valid path (P, τ) in N
corresponds to a valid path in N ′ with a duration that equals d(P, τ).

Proof. By Lemma 12.2 we may assume v /∈ {vs, vt}. Thus, the vertex v has a predeces-
sor ui on the path P . Replacing v on P by vi and keeping τ(vi) = τ(v) remains valid
in N ′ and does not change the duration of the path.

Lemma 12.4. Let v ∈ V \W be a vertex whose predecessors all allow waiting, and let
N ′ be the FPTPW network that results from replacing this vertex as described above.
Without loss of generality we may assume that no valid vs-vt-path in N ′ waits at a newly
introduced vertex vi.

Proof. Suppose that a valid path (P, τ) in N ′ waits at a newly introduced vertex vi.
The unique predecessor of vi is ui. The idea is now to move the complete waiting time
to ui. At the vertex vi the path waits during the interval [σ(vi), τ(vi)] ⊆ tp(vi) and
Equation (12.1) implies that

[τ(ui), τ(vi)− d(uivi)] = [σ(vi), τ(vi)]− d(uivi) ⊆ tp(ui).

Hence, we can set the departure time at ui to τ(vi) − d(uivi). This moves the arrival
time at vi to the departure time there and, thus, removes all waiting time at this vertex.
The duration of the modified path remains the same or decreases in the case ui = vs.

Lemma 12.5. Let v ∈ V \W be a vertex whose predecessors all allow waiting, and let
N ′ be the FPTPW network that results from replacing this vertex as described above.
Every valid path (P, τ) in N ′ corresponds to a valid path in N with a duration not larger
than d(P, τ).

Proof. If (P, τ) does not use a newly introduced vertex, it is also a valid path in N and
the claim follows. Otherwise, the path uses exactly one new vertex vi. Hence, replacing vi
in P by v transforms P into a path in the original graph G. By Lemma 12.4 we can
assume that (P, τ) does not wait at vi. This implies that the departure times remain
valid for the original instance N .
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We can replace all non-waiting vertices in an FPTPW instance in the order of a topological
ordering. Since we can assume vs ∈ W by Lemma 12.2, this guarantees that waiting is
allowed at all predecessors of the respective vertex to be replaced. Thus, Lemmas 12.3
and 12.5 yield that the duration of a fastest path in the new instance is the same as in
the original instance. Furthermore, we can identify the fastest paths in both instances.
We obtain the following result.

Corollary 12.6. We can replace all vertices v ∈ V \W such that the fastest paths of
the resulting instance correspond to fastest paths in the original instance. In addition,
the durations of fastest paths coincide.

The fact that FPTPW is NP-hard but polynomially solvable if waiting is allowed
everywhere already suggests that the replacement of all non-waiting vertices might blow
up the instance exponentially. We now analyze this increase in size and classify instances
for which we can polynomially bound it. In the following, we abbreviate the number of
vertices and arcs by n = |V | and m = |A|, respectively.

Replacing a single vertex v increases the number of vertices by degin(v) − 1 and the
number of arcs by degout(v) · (degin(v)− 1) ∈ O (m2). In particular, this increases the
indegree of every successor w ∈ Nout(v) by a factor of at most degin(v) ∈ O (m). This
is not a problem if waiting at w is allowed. Otherwise, when replacing w, this factor
propagates amplified by degin(w) to the successors of w. The following example illustrates
this behavior.

Example 12.7. We again consider the FPTPW instance that we construct in the
proof of Theorem 7.20 in order to show the NP-hardness. This instance represents a
SubsetSum instance that is given by B ∈ N>0 and b1, . . . , bk ∈ N>0. The graph of the
FPTPW instance consists of vertices v0, . . . , vk with vs = v0 and vt = vk. Compared
with the notation from Theorem 7.20 we change from subscript to superscript indices.
This allows us to still use subscripts for vertex copies that we create throughout the
replacement process. Every two consecutive vertices vi−1 and vi are connected by two
parallel arcs, one with duration 0 and the other with duration bi. For the time profiles
we have tp(vs) = {0}, tp(vt) = {B}, and tp(vi) = [0, B] for all remaining vertices. We
repeat Figure 7.1 from Page 87 again in Figure 12.2a.

By Lemma 12.2 we can assume that waiting is allowed at the source and the target.
Replacing the remaining vertices v1, . . . , vk−1 in this order by waiting vertices as described
above results in the graph that is drawn in Figure 12.2b. A vertex vi is replaced by 2i

copies vi` and the graph obtained this way is a binary decision tree. Such a copy vi`
represents a subset J ⊆ {1, . . . , i} and by Equation (12.1) we get that the time profile
of vi` only consists of the time point

∑
j∈J bj if this sum is less or equal than B (otherwise

the time profile is empty). /
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v0 v1 v2 vk
d = b1

d = 0

d = b2

d = 0

d = b3

d = 0 d = 0

d = bk

(a) The original situation.

v0

v11

v12

v21

v22

v23

v24

vk
d = b1

d = 0

d = b2

d = 0

d = b2

d = 0

(b) The situation after replacing all vertices by waiting vertices.

Figure 12.2: An FPTPW network corresponding to a SubsetSum instance. Replacing
all vertices by waiting vertices exponentially increases the graph size.

Example 12.7 demonstrates that the number of required new vertices in the replacement
procedure grows exponentially along a path of non-waiting vertices. However, a single
waiting vertex after such a path absorbs this increase. If we can bound the number
of successive non-waiting vertices on a path, we can also bound the increase from the
replacement procedure.

Lemma 12.8. Let k ∈ N. If every path in G with more than k vertices contains at least
one waiting vertex v ∈ W , we replacing all vertices v ∈ V \W results in an increase by a
factor of at most (nm)k.

Proof. For v ∈ V \W let λ(v) be the maximum length of a path that ends in v and
consists only of non-waiting vertices. That is, we define

λ(v) = max{i ≥ 1 : (v1, . . . , vi−1, v) is a path for v1, . . . , vi−1 ∈ V \W}.

We show by an induction on λ(v) that replacing a vertex v ∈ V \W creates at most
nλ(v)−1mλ(v) new vertices and increases the number of arcs by at most this factor. The
claim then follows as we have to replace at most n vertices and λ(v) ≤ k holds for every
vertex v ∈ V \W .

For the induction base let v ∈ V \W with λ(v) = 1. We have N in(v) ⊆ W and, thus, at
the moment when we replace v we also have degin(v) ≤ m and degout(v) ≤ m. Hence,
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we introduce at most m new vertices and increase the number of arcs by a factor of at
most m.

For the induction step let v ∈ V \W and suppose that the claim holds for all vertices u
with λ(u) < λ(v). By the definition of λ, every predecessor u ∈ N in(v) ∩W satisfies
λ(u) < λ(v). When replacing v we already have replaced all predecessors. For every
predecessor u this has increased the number of arcs going out of u to at most nλ(v)−2mλ(v).
As v has at most n predecessors in the original graph, it has at most nλ(v)−1mλ(v) incoming
arcs at the moment when we replace v. Thus, we add at most nλ(v)−1mλ(v) vertices and
increase the number of its outgoing arcs by at most this factor.

Corollary 12.9. FPTPW can be solved in polynomial time if G contains at most
constantly many successive vertices at which waiting is forbidden.

Proof. Follows from Lemma 12.8 together with Corollary 11.6 from Page 129.

12.3 Summary

In this section, we summarize our complexity theoretic results concerning the fastest
path with time profiles and waiting problem.

FPTPW is NP-complete

. in general, see Theorem 7.20 on Page 87,

. if waiting is forbidden everywhere, see Corollary 7.21 on Page 88, and

. if the graph is series-parallel, see Corollary 7.22 on Page 88.

FPTPW is solvable in pseudo-polynomial time

. if all data is integer, see Lemma 11.8 on Page 132.

FPTPW is solvable in polynomial time

. if the graph is a path, see Corollary 11.4 on Page 128,

. if waiting is allowed everywhere, see Corollary 11.6 on Page 129, and

. if the graph has at most constantly many successive vertices at which waiting is
forbidden, see Corollary 12.9.

Moreover, it is polynomial time equivalent to compute fastest paths and to compute only
their durations, see Theorem 12.1 on Page 135.
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12.3 Summary

Conclusion

In this chapter, we had two main insights. First, we saw that it is polynomial time
equivalent to compute fastest paths and to compute only their durations. Second, we
provided a way to replace a non-waiting vertex by polynomially many waiting vertices.
The latter allowed us to narrow down the boundary between polynomially solvable and
NP-hard instances.
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Chapter 13

Conclusion and Future Research

In Part I, we considered the Almost Disjoint Paths (ADP) and the Separating by
Forbidden Pairs (SFP) problem. Based on two exponentially large IP formulations we
proved that these problems form a weakly dual pair. In particular, we constructed a
family of examples for which the duality gap between ADP and SFP is unbounded.
However, these examples only reflect this duality gap in the integrality gap of the ADP
formulation, and we are not aware of any instance for which the SFP formulation has
an integrality gap. We suspect that this SFP formulation actually has no integrality
gap, and first computer-aided verification for small directed acyclic graphs confirm this
conjecture. A proof or counter-example for this would fill a small gap in this area, but
also more general questions concerning these two problems are of interest. For example,
we introduced ADP and SFP only on directed graphs and focused mainly on directed
acyclic graphs. However, there is nothing wrong with considering these problems on
undirected graphs as well.

We proved that ADP and SFP form a strongly dual pair on directed graphs that have an
s-t-cut with a single outgoing arc. Moreover, both problems are solvable in polynomial
time if we restrict them to such graphs (incidentally, this also holds on the problem
variants for undirected graphs that have a bridge). However, this is not the case in
general. We proved that ADP is NP-complete and that SFP is Σp

2-complete, and both
statements still hold if we restrict the problems to directed acyclic graphs. Since both
proofs make heavy use of the fact that the graphs are directed, the complexity status of
these problems on undirected graphs has not yet been clarified. In addition to examining
this point more closely, it would be interesting to find other graph classes on which the
duality gap disappears or on which at least one of the problems is significantly easier.

For ADP we presented a dynamic program that allows solving ADP for constant k in
polynomial time. Since this dynamic program depends on O(mk2k

2
) states, where m

denotes the number of arcs of the graph, its running time is extremely large. In particular,
a solution algorithm based on this dynamic program is not fixed-parameter tractable in k.
This raises the questions whether ADP is fixed-parameter tractable in k and whether
faster algorithms for constant k exist.

143



13 Conclusion and Future Research

In Part II, we considered the Fastest Path with Time Profiles and Waiting (FPTPW)
problem. We developed a solution algorithm that propagates departure-duration functions
as labels. The structural analysis of these functions gave us insights into the running
time of the fastest path algorithm. Particularly interesting at this point is our finding
that we can solve FPTPW in polynomial time if all vertices permit waiting. We slightly
generalized this result to a constant amount of non-waiting vertices by replacing these
by vertices that allow waiting. Instead of restricting the temporal characteristics of an
instance by limiting the number of non-waiting vertices we can alternatively simplify
the problem by restricting the structure of the graph. In this regard, we proved that
FPTPW is polynomial time solvable on a path but it already becomes NP-hard if we
replace all arcs on such a path by two parallels.

Our recursive formulation of the departure-duration functions and our fastest path
algorithm require that the graph is acyclic, which we assume throughout Part II. But
FPTPW still makes sense even if we drop this restriction. In this case, other or adapted
algorithms are needed. The variants that we describe in Section 10.3 in the context of
practical performance should be able to overcome this hurdle. However, deeper analysis
of the departure-duration functions and of these algorithms are needed to prove this. In
particular, it would be interesting to determine whether the instance classes that we have
identified as polynomially solvable remain that way in this more general form.

Since FPTPW is only a simplified version of our practical project, it would still be
interesting to consider further problem variants that are closer to this original problem.
One possibility would be to simultaneously consider multiple objective functions such
as distances or deviations from desired time points. For such a multi-criteria shortest
path problem that continuously depend on time, a whole set of exciting questions arise.
Specifically, it is already challenging to efficiently store, update, and maintain the efficient
paths during a solution algorithm.

Altogether, with ADP, SFP, and FPTPW we introduced three new problems that
integrate well into the field of combinatorial optimization. Although very similar to
existing problems, they significantly differ from these in complexity and require other
solution methods. Therefore, they open up new possibilities and further questions worth
considering.
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Appendix A

Notation

This appendix lists most of the notation used in this thesis. For the sake of clarity
and because we use a few symbols in different contexts with different meanings, we
split this overview thematically.

A or A(G) the arc set of a directed graph, see Section 2.2
APX the complexity class APX, see Section 2.3
degG(v) the degree of vertex v in G, see Section 2.2
degin

G(v) the indegree of vertex v in G, see Section 2.2
degout

G (v) the outdegree of vertex v in G, see Section 2.2
E or E(G) the edge set of an undirected graph, see Section 2.2
G a graph, see Section 2.2
int(S) the topological interior of the set S, see Section 2.1
P a path, see Section 2.2
P the complexity class P, see Section 2.3
N in
G (v) the predecessors of v in G, see Section 2.2

Nout
G (v) the successors of v in G, see Section 2.2

NP the complexity class NP, see Section 2.3
V or V (G) the vertex set of a graph, see Section 2.2
#p(f) number of pieces of a piecewise linear function f , see Section 2.1

α(a) the start-vertex of arc a, see Section 2.2
γ(e) the end-vertices of an edge e, see Section 2.2
δinG (v) the arcs of G with end-vertex v, see Section 2.2
δoutG (v) the arcs of G with start-vertex v, see Section 2.2
∆in(G) the maximum indegree of a vertex of G, see Section 2.2
∆out(G) the maximum outdegree of a vertex of G, see Section 2.2
∆(G) the maximum degree of a vertex of G, see Section 2.2
Σp

2 the complexity class Σp
2, see Section 2.3

ω(a) the end-vertex of arc a, see Section 2.2

Table A.1: Global notation.
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A Notation

gad(e) a gadget for the NP-hardness proof of ADP, see Section 5.3
H the undirected graph representing an IndSet instance, see Section 5.3
I an intersection pattern in the dynamic program, see Theorem 5.2
m = |EH | the number of edges of H, see Section 5.3
P the set of all s-t-paths, see Chapter 4
Q a specific set of almost disjoint paths in G, see Assumption 5.7
s a designated source vertex, see Problem 4.2
t a designated target vertex, see Problem 4.2
x the Boolean value of a state in the dynamic program, see Theorem 5.2

ν a topological ordering of the graph, see Theorem 5.2

Table A.2: Notation concerning ADP.

A the set of forbidden pairs, see Problem 4.4
Ai and Ai optimal separating sets for a variable gadget, see Lemma 6.18
I an inconsistency of local assignments, see Definition 6.16
L short for a local y-variable assignment TY (C), see Section 6.2
P the set of all s-t-paths, see Chapter 4
m the number of clauses in the formula ϕ, see Notation 6.15
nI number of inconsistencies for formula ϕ, see Section 6.2
nx = |X| number of x-variables occurring in ϕ, see Notation 6.10
ny = |Y | number of y-variables occurring in ϕ, see Notation 6.10
qi number of occurrences of variable xi in ϕ, see Section 6.2
s a designated source vertex, see Problem 4.4
t a designated target vertex, see Problem 4.4
T an assignment for all variables in ϕ, see Notation 6.10
TX an assignment for the x-variables, see Notation 6.10
TY an assignment for the y-variables, see Notation 6.10
TY (C) an assignment for the y-variables of clause C, see Notation 6.15
X all x-variables occurring in ϕ, see Notation 6.10
Y all y-variables occurring in ϕ, see Notation 6.10
Y (C) the y-variables occurring in clause C, see Notation 6.15
Z = X ∪ Y all variables occurring in ϕ, see Notation 6.10

ϕ = ϕ(x, y) a quantified Boolean formula, see Notation 6.10

Table A.3: Notation concerning SFP.
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AT the arcs of the time-expanded graph, see Section 11.3
d(a) the duration of arc a, see Definition 7.2
D the maximum duration for FPTPW, see Problem 7.6
fσv arrival-duration function of vertex v, see Definition 9.1
f τv departure-duration function of vertex v, see Definition 9.1
GT the time-expanded graph, see Section 11.3
N an FPTPW network, see Definition 7.2
Iσv (t) the arrival interval at v for departure t, see Definition 7.3
tp(v) the time profile of vertex v, see Definition 7.2
T the set of all time profiles, see Definition 7.1
vs a designated source vertex, see Definition 7.2.
vt a designated target vertex, see Definition 7.2.
V T the vertices of the time-expanded graph, see Section 11.3
W the set of vertices where waiting is allowed, see Definition 7.2.

α the inverse Ackermann function, see Section 10.1
πv predecessor information for vertex v, see Section 10.2
σ(v) the arrival time at vertex v, see Definition 7.4
τ(v) the departure time at vertex v, see Definition 7.4

Table A.4: Notation concerning FPTPW.
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Appendix B

Decision Problems

This appendix lists the decision problems used within this thesis. The presentation
of the problems is inspired from Garey and Johnson’s “Guide to the Theory of
NP-Completeness” [GJ79].

Problem B.1 (ADP). Almost Disjoint Paths

Instance: A directed graph G = (V,A) with source and target s, t ∈ V and k ∈ Z>0.
Question: Are there k almost disjoint s-t-paths in G?
Reference: Problem 4.2 on Page 26 for the definition, Chapter 5 in general

Problem B.2 (FPTPW). Fastest Path with Time Profiles and Waiting

Instance: A directed acyclic graph G = (V,A), source and target vs, vt ∈ V , durations
d : A→ R, time profiles tp : V → T , and a set of vertices W ⊆ V where waiting is
allowed. A maximum duration D ∈ R.

Question: Does a valid path (P, τ) with τ(vt)− τ(vs) ≤ D exist?
Reference: Problem 7.6 on Page 79 for the definition, Part II in general

Problem B.3 (IndSet). Independent Set

Instance: An undirected graph G = (V,E) and a positive integer k ∈ Z>0.
Question: Does G contain an independent set of size k?
Reference: [GJ79, Problem GT20]

Problem B.4 (PAFP). Path Avoiding Forbidden Pairs

Instance: A directed graph G = (V,A) with source and target s, t ∈ V and a set
A ⊆

(
A
2

)
of forbidden pairs.

Question: Does an s-t-path with at most one arc from every forbidden pair exist?
Reference: [GMO76] with forbidden pairs of vertices instead of arcs under the name

“Impossible Pairs Constrained Path”; Problem 4.6
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B Decision Problems

Problem B.5 (Σ2SAT). Quantified Satisfiability with Two Alternations

Instance: A quantified Boolean formula ϕ(x, y) depending on two types of variables.
Question: Does an assignment of the x-variables exist such that ϕ(x, y) is true inde-

pendently of the assignment of the y-variables?
Reference: A more general version with i instead of only exactly 2 alternations in [Pap94,

Chapter 17] with the abbreviation QSATi

Problem B.6 (SFP). Separating by Forbidden Pairs

Instance: A directed graph G = (V,A) with source and target s, t ∈ V and k ∈ Z>0.
Question: Does k arc pairs exist such that every s-t-path in G contains both arcs of at

least one chosen pair?
Reference: Problem 4.4 on Page 26 for the definition, Chapter 6 in general

Problem B.7 (SubsetSum). Subset Sum

Instance: Finitely many positive integers b1, b2, . . . , bk, B ∈ Z>0.
Question: Does J ⊆ {1, . . . , k} with

∑
i∈J bi = B exist?

Reference: [Kar72, Section 4] under the name “Knapsack”; [GJ79, Problem SP13]

Problem B.8 (TSP). Traveling Salesperson

Instance: A complete graph G = (V,E) with distances d : E → Z>0 and B ∈ Z>0.
Question: Is there a Hamiltonian cycle in G of length at most B?
Reference: [GJ79, Problem ND22] under the name “Traveling Salesman”

Problem B.9 (TSE). Traveling Salesperson Extension

Instance: A complete graph G = (V,E) with distances d : E → Z>0, B ∈ Z>0, and a
simple path P in G.

Question: Can P be extended to a Hamiltonian cycle of length at most B?
Reference: [GJ79, Chapter 5]
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Schlechte. “On the Path Avoiding Forbidden Pairs Polytope”. In: Electronic Notes
in Discrete Mathematics 50 (2015), pp. 343–348. issn: 1571-0653. doi: 10.1016/
j.endm.2015.07.057.

[BBK22] Oliver Bachtler, Tim Bergner, and Sven O. Krumke. Almost Disjoint Paths and
Separating by Forbidden Pairs. 2022. doi: 10.48550/arXiv.2202.10090.

153

https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1007/978-3-642-13193-6_3
https://doi.org/10.1016/S0377-2217(99)00214-3
https://doi.org/10.1007/s00453-020-00681-y
https://doi.org/10.1007/978-3-642-56628-8
https://doi.org/10.1016/B978-044482537-7/50002-4
https://doi.org/10.1016/j.endm.2015.07.057
https://doi.org/10.1016/j.endm.2015.07.057
https://doi.org/10.48550/arXiv.2202.10090


Bibliography

[BDGS11] Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders. “Alternative
Route Graphs in Road Networks”. In: Theory and Practice of Algorithms in
(Computer) Systems. Springer Berlin Heidelberg, 2011, pp. 21–32. doi: 10.1007/
978-3-642-19754-3_5.

[BDR21] Alexis Bretin, Guy Desaulniers, and Louis-Martin Rousseau. “The traveling sales-
man problem with time windows in postal services”. In: Journal of the Opera-
tional Research Society 72.2 (2021), pp. 383–397. doi: 10.1080/01605682.2019.
1678403.

[BF95] Piotr Berman and Toshihiro Fujito. “On approximation properties of the Inde-
pendent set problem for degree 3 graphs”. In: Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1995, pp. 449–460. doi: 10.1007/3-540-60220-8_84.

[BK09] Robert L. Burdett and Erhan Kozan. “Techniques for inserting additional trains
into existing timetables”. In: Transportation Research Part B: Methodological 43.8
(2009), pp. 821–836. issn: 0191-2615. doi: 10.1016/j.trb.2009.02.005.

[BK17] Kristof Berczi and Yusuke Kobayashi. “The Directed Disjoint Shortest Paths
Problem”. en. In: 25th Annual European Symposium on Algorithms (ESA 2017).
Ed. by Kirk Pruhs and Christian Sohler. Vol. 87. Leibniz International Proceedings
in Informatics (LIPIcs). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH,
Wadern/Saarbruecken, Germany, 2017, 13:1–13:13. doi: 10.4230/LIPIcs.ESA.
2017.13.

[BKS+16] Ralf Borndörfer, Torsten Klug, Thomas Schlechte, Armin Fügenschuh, Thilo
Schang, and Hanno Schülldorf. “The Freight Train Routing Problem for Congested
Railway Networks with Mixed Traffic”. In: Transportation Science 50.2 (2016),
pp. 408–423. doi: 10.1287/trsc.2015.0656.

[CBG+18] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, Ulf Leser, and
David B. Blumenthal. “Finding k-dissimilar paths with minimum collective length”.
In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems. ACM, Nov. 2018, pp. 404–407. doi:
10.1145/3274895.3274903.

[CBG+20] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, Ulf Leser, and
David B. Blumenthal. “Finding k-shortest paths with limited overlap”. In: The
VLDB Journal 29.5 (Feb. 2020), pp. 1023–1047. doi: 10.1007/s00778- 020-
00604-x.

[CCPS98] William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander
Schrijver. Combinatorial Optimization. USA: John Wiley & Sons, Inc., 1998. isbn:
047155894X.

[CCT10] Valentina Cacchiani, Alberto Caprara, and Paolo Toth. “Scheduling extra freight
trains on railway networks”. In: Transportation Research Part B: Methodological
44.2 (2010), pp. 215–231. issn: 0191-2615. doi: 10.1016/j.trb.2009.07.007.

[CHMZ21] Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche.
“Finding Temporal Paths Under Waiting Time Constraints”. In: Algorithmica 83.9
(2021), pp. 2754–2802. doi: 10.1007/s00453-021-00831-w.

154

https://doi.org/10.1007/978-3-642-19754-3_5
https://doi.org/10.1007/978-3-642-19754-3_5
https://doi.org/10.1080/01605682.2019.1678403
https://doi.org/10.1080/01605682.2019.1678403
https://doi.org/10.1007/3-540-60220-8_84
https://doi.org/10.1016/j.trb.2009.02.005
https://doi.org/10.4230/LIPIcs.ESA.2017.13
https://doi.org/10.4230/LIPIcs.ESA.2017.13
https://doi.org/10.1287/trsc.2015.0656
https://doi.org/10.1145/3274895.3274903
https://doi.org/10.1007/s00778-020-00604-x
https://doi.org/10.1007/s00778-020-00604-x
https://doi.org/10.1016/j.trb.2009.07.007
https://doi.org/10.1007/s00453-021-00831-w


Bibliography

[CKT+00] Ting Chen, Ming-Yang Kao, Matthew Tepel, John Rush, and George M. Church. “A
Dynamic Programming Approach to de Novo Peptide Sequencing via Tandem Mass
Spectrometry”. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium
on Discrete Algorithms. SODA ’00. San Francisco, California, USA: Society for
Industrial and Applied Mathematics, 2000, pp. 389–398. isbn: 0898714532. doi:
10.1089/10665270152530872.

[CL16] Alexis Cornet and Christian Laforest. Note: Regular languages with no conflicts
(forbidden pairs) are regular but have exponential size DFA. Research Report.
LIMOS (UMR CNRS 6158), université Clermont Auvergne, France, Nov. 2016.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. 3rd. The MIT Press, 2009.

[DF57] George B. Dantzig and Delbert R. Fulkerson. “On the Max-Flow Min-Cut Theorem
of Networks”. In: Linear Inequalities and Related Systems. Princeton University
Press, Dec. 1957, pp. 215–222. doi: 10.1515/9781400881987-013.

[DGS05] Paolo Dell’Olmo, Monica Gentili, and Andrea Scozzari. “On finding dissimilar
Pareto-optimal paths”. In: European Journal of Operational Research 162.1 (Apr.
2005), pp. 70–82. doi: 10.1016/j.ejor.2003.10.033.

[Die00] Reinhard Diestel. Graph Theory. 2nd ed. Vol. 173. Graduate Texts in Mathematics.
Springer-Verlag New York, 2000. isbn: 0-387-95014-1.

[Dij59] Edsger W. Dijkstra. “A note on two problems in connexion with graphs”. In:
Numerische Mathematik 1.1 (Dec. 1959), pp. 269–271. doi: 10.1007/BF01386390.

[DLS98] Guy Desaulniers, June Lavigne, and François Soumis. “Multi-depot vehicle schedul-
ing problems with time windows and waiting costs”. In: European Journal of Oper-
ational Research 111.3 (1998), pp. 479–494. issn: 0377-2217. doi: 10.1016/S0377-
2217(97)00363-9.

[DRSS21] Umesh Sandeep Danda, G. Ramakrishna, Jens M. Schmidt, and M. Srikanth.
“On Short Fastest Paths in Temporal Graphs”. In: WALCOM: Algorithms and
Computation. Ed. by Ryuhei Uehara, Seok-Hee Hong, and Subhas C. Nandy. Cham:
Springer International Publishing, 2021, pp. 40–51. isbn: 978-3-030-68211-8. doi:
10.1007/978-3-030-68211-8_4.

[DS65] Harold Davenport and Andrzej Schinzel. “A Combinatorial Problem Connected
with Differential Equations”. In: American Journal of Mathematics 87 (1965),
p. 684. doi: 10.2307/2373068.

[DS88] Martin Desrochers and Francois Soumis. “A Generalized Permanent Labelling
Algorithm For The Shortest Path Problem With Time Windows”. In: INFOR:
Information Systems and Operational Research 26.3 (1988), pp. 191–212. doi:
10.1080/03155986.1988.11732063.

[DSD84] Jacques Desrosiers, François Soumis, and Martin Desrochers. “Routing with time
windows by column generation”. In: Networks 14.4 (1984), pp. 545–565. doi:
10.1002/net.3230140406.

155

https://doi.org/10.1089/10665270152530872
https://doi.org/10.1515/9781400881987-013
https://doi.org/10.1016/j.ejor.2003.10.033
https://doi.org/10.1007/BF01386390
https://doi.org/10.1016/S0377-2217(97)00363-9
https://doi.org/10.1016/S0377-2217(97)00363-9
https://doi.org/10.1007/978-3-030-68211-8_4
https://doi.org/10.2307/2373068
https://doi.org/10.1080/03155986.1988.11732063
https://doi.org/10.1002/net.3230140406


Bibliography

[DV00] Guy Desaulniers and Daniel Villeneuve. “The Shortest Path Problem with Time
Windows and Linear Waiting Costs”. In: Transportation Science 34.3 (2000),
pp. 312–319. doi: 10.1287/trsc.34.3.312.12298.

[Ehr05] Matthias Ehrgott. Multicriteria Optimization. Berlin, Heidelberg: Springer-Verlag,
2005. isbn: 3540213988. doi: 10.1007/3-540-27659-9.

[Eil98] Tali Eilam-Tzoreff. “The disjoint shortest paths problem”. In: Discrete Applied
Mathematics 85.2 (June 1998), pp. 113–138. doi: 10.1016/S0166-218X(97)00121-
2.

[EIS76] Shimon Even, Alon Itai, and Adi Shamir. “On the Complexity of Timetable and
Multicommodity Flow Problems”. In: SIAM J. Computing 5 (Dec. 1976), pp. 691–
703. doi: 10.1137/0205048.

[FGN09] Holger Flier, Thomas Graffagnino, and Marc Nunkesser. “Scheduling Additional
Trains on Dense Corridors”. In: Experimental Algorithms. Ed. by Jan Vahrenhold.
Springer Berlin Heidelberg, 2009, pp. 149–160. isbn: 978-3-642-02011-7. doi:
10.1007/978-3-642-02011-7_15.

[FHW80] Steven Fortune, John Hopcroft, and James Wyllie. “The directed subgraph home-
omorphism problem”. In: Theoretical Computer Science 10.2 (1980), pp. 111–121.
issn: 0304-3975. doi: 10.1016/0304-3975(80)90009-2.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.,
1979. isbn: 0716710447.

[GKT51] David Gale, Harold W. Kuhn, and Albert W. Tucker. “Linear programming and
the theory of games”. In: Activity analysis of production and allocation 13 (1951),
pp. 317–335.

[GLS88] Martin Grötschel, Laszlo Lovasz, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization. 2nd ed. Springer, Berlin, Heidelberg, 1988. isbn:
978-3-540-56740-0. doi: 10.1007/978-3-642-78240-4.

[GMO76] Harold N. Gabow, Shachindra N. Maheshwari, and Leon J. Osterweil. “On Two
Problems in the Generation of Program Test Paths”. In: IEEE Transactions on
Software Engineering SE-2.3 (Sept. 1976), pp. 227–231. issn: 0098-5589. doi:
10.1109/TSE.1976.233819.

[GWON12] Peter Großmann, Markus Weiss, Jens Opitz, and Karl Nachtigall. “Automated
Generation and Optimization of Public Railway and Rail Freight Transport Time
Tables”. In: Machines Technologies Materials. Vol. 6. 5. 2012, pp. 23–26.

[Haa19] Ronald de Haan. Parameterized Complexity in the Polynomial Hierarchy: Extending
Parameterized Complexity Theory to Higher Levels of the Hierarchy. 1st ed. Lecture
Notes in Computer Science. Springer, Berlin, Heidelberg, 2019. isbn: 978-3-662-
60670-4. doi: 10.1007/978-3-662-60670-4.

[HÁN20] Rebecca Haehn, Erika Ábrahám, and Nils Nießen. “Freight Train Scheduling in
Railway Systems”. In: Measurement, Modelling and Evaluation of Computing
Systems. Ed. by Holger Hermanns. Cham: Springer International Publishing, 2020,
pp. 225–241. isbn: 978-3-030-43024-5. doi: 10.1007/978-3-030-43024-5_14.

156

https://doi.org/10.1287/trsc.34.3.312.12298
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1016/S0166-218X(97)00121-2
https://doi.org/10.1016/S0166-218X(97)00121-2
https://doi.org/10.1137/0205048
https://doi.org/10.1007/978-3-642-02011-7_15
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1109/TSE.1976.233819
https://doi.org/10.1007/978-3-662-60670-4
https://doi.org/10.1007/978-3-030-43024-5_14


Bibliography

[Her89] John Hershberger. “Finding the upper envelope of n line segments in O(n log n)
time”. In: Information Processing Letters 33.4 (1989), pp. 169–174. issn: 0020-0190.
doi: 10.1016/0020-0190(89)90136-1.

[HKKM10] Mohammad Taghi Hajiaghayi, Rohit Khandekar, Guy Kortsarz, and Julián Mestre.
“The Checkpoint Problem”. In: Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques. Ed. by Maria Serna, Ronen Shaltiel,
Klaus Jansen, and José Rolim. Springer Berlin Heidelberg, 2010, pp. 219–231.
isbn: 978-3-642-15369-3.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths”. In: IEEE Transactions on
Systems Science and Cybernetics 4.2 (July 1968), pp. 100–107. issn: 0536-1567.
doi: 10.1109/TSSC.1968.300136.

[HP74] Jonathan Halpern and I. Priess. “Shortest path with time constraints on move-
ment and parking”. In: Networks 4.3 (1974), pp. 241–253. doi: 10.1002/net.
3230040304.

[HS86] Sergiu Hart and Micha Sharir. “Nonlinearity of davenport–Schinzel sequences and
of generalized path compression schemes”. In: Combinatorica 6.2 (June 1986),
pp. 151–177. issn: 1439-6912. doi: 10.1007/BF02579170.

[HZ80] Gabriel Y. Handler and Israel Zang. “A dual algorithm for the constrained short-
est path problem”. In: Networks 10.4 (1980), pp. 293–309. doi: 10.1002/net.
3230100403.

[JKPK09] Yeon-Jeong Jeong, Tschangho John Kim, Chang-Ho Park, and Dong-Kyu Kim. “A
dissimilar alternative paths-search algorithm for navigation services: A heuristic
approach”. In: KSCE Journal of Civil Engineering 14.1 (Sept. 2009), pp. 41–49.
doi: 10.1007/s12205-010-0041-8.

[Kar72] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In: Proceedings
of a symposium on the Complexity of Computer Computations, held March 20-22,
1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, USA. 1972, pp. 85–103. doi: 10.1007/978-1-4684-2001-2_9.

[KKR12] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. “The disjoint paths
problem in quadratic time”. In: Journal of Combinatorial Theory, Series B 102.2
(Mar. 2012), pp. 424–435. doi: 10.1016/j.jctb.2011.07.004.

[KLM13] Mamadou Moustapha Kanté, Christian Laforest, and Benjamin Momège. “Trees in
Graphs with Conflict Edges or Forbidden Transitions”. In: Theory and Applications
of Models of Computation. Ed. by T-H. Hubert Chan, Lap Chi Lau, and Luca
Trevisan. Springer Berlin Heidelberg, 2013, pp. 343–354. isbn: 978-3-642-38236-9.
doi: 10.1007/978-3-642-38236-9_31.

[Klu18] Torsten Klug. “Freight Train Routing”. In: Handbook of Optimization in the Railway
Industry. Springer International Publishing, 2018, pp. 73–91. doi: 10.1007/978-
3-319-72153-8_4.

157

https://doi.org/10.1016/0020-0190(89)90136-1
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1002/net.3230040304
https://doi.org/10.1002/net.3230040304
https://doi.org/10.1007/BF02579170
https://doi.org/10.1002/net.3230100403
https://doi.org/10.1002/net.3230100403
https://doi.org/10.1007/s12205-010-0041-8
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1007/978-3-642-38236-9_31
https://doi.org/10.1007/978-3-319-72153-8_4
https://doi.org/10.1007/978-3-319-72153-8_4


Bibliography

[Knu98] Donald E. Knuth. The Art of Computer Programming. 2nd ed. Vol. Volume 3:
Sorting and Searching. USA: Addison Wesley Longman Publishing Co., Inc., 1998.
isbn: 0201896850.

[Kov13] Jakub Kováč. “Complexity of the path avoiding forbidden pairs problem revisited”.
In: Discrete Applied Mathematics 161.10 (2013), pp. 1506–1512. issn: 0166-218X.
doi: 10.1016/j.dam.2012.12.022.

[KP09] Petr Kolman and Ondřej Pangrác. “On the complexity of paths avoiding forbidden
pairs”. In: Discrete Applied Mathematics 157.13 (2009), pp. 2871–2876. issn:
0166-218X. doi: 10.1016/j.dam.2009.03.018.

[KSG73] K. A. Krause, R. W. Smith, and M. A. Goodwin. “Optimal software test planning
through automated network analysis”. In: Proceedings of the IEEE Symposium on
Computer Software Reliability. New York, 1973, pp. 18–22.

[KVB09] Jakub Kováč, Tomáš Vinař, and Broňa Brejová. “Predicting Gene Structures
from Multiple RT-PCR Tests”. In: Algorithms in Bioinformatics. Ed. by Steven L.
Salzberg and Tandy Warnow. Springer Berlin Heidelberg, 2009, pp. 181–193. isbn:
978-3-642-04241-6. doi: 10.1007/978-3-642-04241-6_16.

[LJYZ18] Huiping Liu, Cheqing Jin, Bin Yang, and Aoying Zhou. “Finding Top-k Shortest
Paths with Diversity”. In: IEEE Transactions on Knowledge and Data Engineering
30.3 (Mar. 2018), pp. 488–502. doi: 10.1109/TKDE.2017.2773492.

[MD11] Shi Mu and Maged Dessouky. “Scheduling freight trains traveling on complex net-
works”. In: Transportation Research Part B: Methodological 45.7 (2011), pp. 1103–
1123. issn: 0191-2615. doi: 10.1016/j.trb.2011.05.021.

[Men27] Karl Menger. “Zur allgemeinen Kurventheorie”. ger. In: Fundamenta Mathematicae
10.1 (1927), pp. 96–115.

[MG07] Jiri Matousek and Bernd Gärtner. Understanding and Using Linear Programming.
Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-30717-4.

[MSWZ07] Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos
Zaroliagis. “Timetable Information: Models and Algorithms”. In: Algorithmic
Methods for Railway Optimization. Ed. by Frank Geraets, Leo Kroon, Anita
Schöbel, Dorothea Wagner, and Christos D. Zaroliagis. Springer Berlin Heidelberg,
2007, pp. 67–90. isbn: 978-3-540-74247-0.

[Opi09] Jens Opitz. Automatische Erzeugung und Optimierung von Taktfahrplänen in
Schienenverkehrsnetzen. Gabler, 2009. doi: 10.1007/978-3-8349-8466-1.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994,
pp. I–XV, 1–523. isbn: 978-0-201-53082-7.

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. “Optimization, approximation,
and complexity classes”. In: Journal of Computer and System Sciences 43.3 (1991),
pp. 425–440. issn: 0022-0000. doi: 10.1016/0022-0000(91)90023-X.

[RS95] Neil Robertson and Paul D. Seymour. “Graph minors .XIII. The disjoint paths
problem”. English (US). In: Journal of Combinatorial Theory. Series B 63.1 (Jan.
1995), pp. 65–110. issn: 0095-8956. doi: 10.1006/jctb.1995.1006.

158

https://doi.org/10.1016/j.dam.2012.12.022
https://doi.org/10.1016/j.dam.2009.03.018
https://doi.org/10.1007/978-3-642-04241-6_16
https://doi.org/10.1109/TKDE.2017.2773492
https://doi.org/10.1016/j.trb.2011.05.021
https://doi.org/10.1007/978-3-540-30717-4
https://doi.org/10.1007/978-3-8349-8466-1
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1006/jctb.1995.1006


Bibliography

[San92] Neville G. F. Sancho. “A dynamic programming solution of a shortest path problem
with time constraints on movement and parking”. In: Journal of Mathematical
Analysis and Applications 166.1 (1992), pp. 192–198. issn: 0022-247X. doi: 10.
1016/0022-247X(92)90335-B.

[San94] Neville G. F. Sancho. “Shortest Path Problems with Time Windows on Nodes
and Arcs”. In: Journal of Mathematical Analysis and Applications 186.3 (1994),
pp. 643–648. issn: 0022-247X. doi: 10.1006/jmaa.1994.1324.

[Suu74] J. W. Suurballe. “Disjoint paths in a network”. In: Networks 4.2 (1974), pp. 125–
145. doi: 10.1002/net.3230040204.

[Tan14] Yuyan Tan. “Techniques for Inserting Additional Train Paths into Existing Cyclic
Timetables”. PhD thesis. TU Braunschweig, 2014.

[Vyg95] Jens Vygen. “NP-completeness of some edge-disjoint paths problems”. In: Discrete
Applied Mathematics 61.1 (July 1995), pp. 83–90. doi: 10.1016/0166-218X(93)
E0177-Z.

[Wes00] Douglas B. West. Introduction to Graph Theory. 2nd ed. Prentice Hall, Sept. 2000.
isbn: 0130144002.

[WON14] Reyk Weiß, Jens Opitz, and Karl Nachtigall. “A Novel Approach to Strategic
Planning of Rail Freight Transport”. In: Operations Research Proceedings 2012.
Ed. by Stefan Helber, Michael Breitner, Daniel Rösch, Cornelia Schön, Johann-
Matthias Graf von der Schulenburg, Philipp Sibbertsen, Marc Steinbach, Stefan
Weber, and Anja Wolter. Cham: Springer International Publishing, 2014, pp. 463–
468. isbn: 978-3-319-00795-3. doi: 10.1007/978-3-319-00795-3_69.

[WS88] Ady Wiernik and Micha Sharir. “Planar realizations of nonlinear davenport-schinzel
sequences by segments”. In: Discrete & Computational Geometry 3.1 (Mar. 1988),
pp. 15–47. issn: 1432-0444. doi: 10.1007/BF02187894.

[XK02] Zhaoyun Xing and Russell Kao. “Shortest path search using tiles and piecewise
linear cost propagation”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 21.2 (Feb. 2002), pp. 145–158. issn: 1937-4151.
doi: 10.1109/43.980255.

[Yin97] Hananya Yinnone. “On paths avoiding forbidden pairs of vertices in a graph”.
In: Discrete Applied Mathematics 74.1 (1997), pp. 85–92. issn: 0166-218X. doi:
10.1016/S0166-218X(96)00017-0.

159

https://doi.org/10.1016/0022-247X(92)90335-B
https://doi.org/10.1016/0022-247X(92)90335-B
https://doi.org/10.1006/jmaa.1994.1324
https://doi.org/10.1002/net.3230040204
https://doi.org/10.1016/0166-218X(93)E0177-Z
https://doi.org/10.1016/0166-218X(93)E0177-Z
https://doi.org/10.1007/978-3-319-00795-3_69
https://doi.org/10.1007/BF02187894
https://doi.org/10.1109/43.980255
https://doi.org/10.1016/S0166-218X(96)00017-0




Curriculum Vitae

Tim Bergner

since Feb. 2019 Doctoral Studies in Mathematics,
Technische Universität Kaiserslautern (TUK)

December 3, 2018 Master of Science in Mathematics, TUK
Apr. 2016 – Dec. 2018 Master Studies in Mathematics, TUK

April 12, 2016 Bachelor of Science in Mathematics, TUK
Apr. 2013 – Apr. 2016 Bachelor Studies in Mathematics, TUK

March 16, 2013 Abitur, Werner-Heisenberg-Gymnasium Bad Dürkheim

161





Wissenschaftlicher Werdegang

Tim Bergner

seit Feb. 2019 Promotionsstudium in Mathematik,
Technische Universität Kaiserslautern (TUK)

3. Dezember 2018 Master of Science Mathematik, TUK
Apr. 2016 – Dez. 2018 Masterstudium in Mathematik, TUK

12. April 2016 Bachelor of Science Mathematik, TUK
Apr. 2013 – Apr. 2016 Bachelorstudium in Mathematik, TUK

16. März 2013 Abitur, Werner-Heisenberg-Gymnasium Bad Dürkheim

163


	Introduction
	Mathematical Preliminaries
	Fundamentals
	Graphs and Networks
	Complexity Theory
	Linear and Integer Linear Programming
	Multi-Criteria Optimization

	Application Background
	Basic Concepts and Tasks
	Rating and Selecting Train Paths
	Literature and Related Problems
	The First Phase: A Time-Expanded Network
	The Second Phase: A Time-Dependent Network

	Almost Disjoint Paths and Forbidden Pairs
	Two Weakly Dual Problems
	The Problems ADP and SFP
	Weak Duality
	Literature

	Almost Disjoint Paths
	Constantly Many Paths
	Polynomial-Size IP Formulation
	NP-Completeness
	APX-Hardness

	Separating by Forbidden Pairs
	Upper Bounds and Examples
	Sigma2P-Completeness


	Fastest Paths with Time Profiles and Waiting
	The Fastest Path Problem
	Setting and Problem Definition
	Literature
	Handling Paths
	MIP Formulation
	Hardness

	Synchronizing Time Profiles
	Idea and Algorithm
	Correctness
	Running Time

	Departure-Duration Functions
	Definition and Recursive Formulation
	Properties

	Fastest Path Algorithms
	Lower Envelopes
	Label Setting Algorithm
	Improvements

	Special Cases
	Path
	Waiting Allowed Everywhere
	Integer Data

	Complexity
	Durations versus Fastest Paths
	Replacing Vertices
	Summary


	Conclusion and Future Research
	Appendices
	Notation
	Decision Problems

	Bibliography

