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Abstract 

The paper presents theoretical and numerical investigations on simulation 
methods for the Boltzmann equation with axisymmetric geometry. The main 
task is to reduce the computational effort by taking advantage of the symmetry 
in the solution of the Boltzmann equation. 
The reduction automatically leads to the concept of weighting functions for 
the radial space coordinate and therefore to a modified Boltzmann equation. 
Consequently the classical simulation methods have to be modified according 
to the new equation. 
The numerical results shown in this paper - rarefied gas flows around a body 
with axisymmetric geometry - were done in the framework of the european 
space project HERMES. 



1 Introduction 

In the following paper we will consider the Boltzmann equation of the form 

(1) 

with -7 

on a given spatial domain R c R3. 
The left hand side of equation (1) represents the free transport of the gas particles, 
the operator J(f, f). th e influence of binary interactions of gas particles during the 
free transport. The function C( I;-- Gl,q) corresponds to the differential cross section 
of the binary collisions. 
The aim of the paper is to elaborate a simulation method in the case of an axisymmet- 
ric flow problem. We assume that the set I?’ \ 0 C R3 is compact and the boundary 
dR is axisymrnetric with respect to the Cartesian coordinate x. This means if the 
boundary XI is given by 

a-l = {(x,y,t) E l@ I4-+,Y,Z) = 0) 

then by introducing cylindrical coordinates (x’, r, 4) according to the transformation 

X = x I 

Y = TXOS~ 

the function FA is independent of the variable 4, i.e. 

If the Boltzmann equation 

FA = F;(x,r) 

is supplied with initial condition 

f(t = o,z,q = fo(S,c) 

and boundary condition 
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then under the assumption that the initial condition f. as well as the scattering kernel 
R( u’ + v’; t, 2) is independent of the angle 4 in a cylindrical system, the solution f 
of (1) together with (2) and (3) will be independent of the angular variable 4, i.e. f 
will be invariant under the group of rotations around the cylinder axis. 
In the context of numerical simulation methods for the Boltzmann equation, as given 
in [9], it is very useful to consider this property to reduce the computational effort 
for three dimensional axisymmetric flow problems. 
The reduction makes it possible to calculate very small Knudsen number flows within 
a reasonable computational effort (see for example [5]). 
Unfortunately it is not straightforward how to use the symmetry in the solution of 
the Boltzmann equation in numerical simulation methods. A way to implement an 
axisymmetric flow problem on a computer was first given by Bird ([4]), however with- 
out theoretical investigations. In this approach the space coordinates are reduced 
to the cylinder coordinate z and the radial distance T. The velocity vector remains 
unchanged in the Cartesian system. Using Cartesian velocity components makes it 
possible to use the collision routines of the standard simulation codes, which are 
widely elaborated also with regard to real gas effects. 
The construction of a simulation method, which is based on a complete transfor- 
mation, i.e. two dimensional velocity vectors, is much more complicated. The main 
problem is the transformation of the collision operator to axisymmetric geometry (see 
for example [12]). 
In the following we give a detailled description of the modifications of the standard 
simulation codes, using axisymmetric space coordinates, but Cartesian velocity com- 
ponents. 
It is therefore necessary to introduce a weighting function R(r) with respect to the 
radial direction r and to consider the Boltzmann equation for the new function 

In the modified Boltzmann equation appears a new term on the left hand side of the 
equation, which influences the free transport of the particles. 
The paper is organized as follows : 
In the following section we describe briefly the general concept of particle methods 
for the Boltzmann equation as given in [9]. In part 3 of the paper we consider the 
modified Boltzmann equation for cylindrical coordinates and the modifications which 
are necessary in order to use a particle method for this equation. Finally we present 
some typical numerical results obtained with the presented method. 

3 



2 Numerical simulation methods 

Numerical methods for the Boltzmann equation are first of all particle methods. 
Other numerical concepts like finite difference or finite element schemes play only a 
minor role in the computation of rarefied gas flows. The reason for this is the high 
dimensional phase space of the distribution function f as well as the highly nonlinear 
collision term on the right hand side of the equation, 
The most popular numerical method for the Boltzmann equation is the Direct Simula- 
tion *Monte Carlo Method introduced by Bird ([4]). Th eoretical investigations on the 
connection of this method to the Boltzmann equation were given by Wagner ([15]). 
Based on the work of Nanbu ([ll]), Babovsky ([l], [2] and [3]) introduced a general 
concept to construct particle methods directly from the Boltzmann equation. This 
general concept, also called Finite Pointset Method, is further developed in several 
papers from authors at the University of Kaiserslautern ([9],[6], [7],[8] and [14]). 
The idea of the finite pointset method (at the same time the general concept of a 
particle method) is to use a set of discrete points in the phase space II x R3, which 
approximates the function f(t, ?,I?) at a given time t. This kind of approximation is 
possible because every absolutely continuous probability measure on R x Rs can be 
approximated by a sum of discrete measures P,V of the form 

where f is the density of the measure /.L and “w” denotes the weak convergence. 
The discrete measures can be used in the following way to approximate the solution 
of the Boltzmann equation : 
The initial condition fo is approximated by a finite pointset of the form (Z;(O), c(O)). 
The next step is to hnd a time evolution of the set (Zi(t),v’;(t)) such that the time 
dependent discrete measure converges weakly to the solution of the Boltzmann equa- 
tion. 
To construct the time evolution of the discrete particle set, the first step is to consider 
a time discretization of the Boltzmann equation (1) in the form 

f (A4 5, c> = fd, V) + At - J(fo(C c), fo(% c>> 

Next, the spatial domain R is divided into a disjoint covering {52;};=1,.-.,K of the form 

i= )..., 1 K 

On R the solution of (1) is approximated by a step function according to the given 
cell system {fh}i=~,...,K~ This spatial discretization leads to the following time and 
space discretized Boltzmann equation 

f(At,Z,C) = (1 +AtJ)(Pj,)(+?) (4) 
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where 

and 

i=l 

I fP-4 if - AK, V’)dZ 
(Pj)($ ?T) := l-l* 

Vol( i-2;) 
for Z E 0; (5) 

.- 
According to equation (4) it is obvious that the time evolution consists of two steps: 

(i> APPLY th e o P erator P to the approximation of the initial condition fo. The 
approximation of fo is given by a sum of step functions on the spatial cell 
system. According to (5) every particle performs a free transport over the time 
step At with the given velocity v;. If the approximation is given by a continuous 
function, the next step will be the projection to the given cell system. For 
discrete measures the particles have to be sorted with respect to the cell system 
in order to perform the collision process. During the free transport of the 
particle set, particles can interact with the given boundary ~30. In this case one 
has to consider the boundary condition given at X2, i.e. to fulfil1 the relation 

(3). 

(ii) apply the operator (1 +AtJ) to the pointset of step (i). This operator describes 
the influence of binary collisions. The collision process is based on the homoge- 
neous Boltzmann equation, because the spatial discretization is given by a step 
functions and the operator J acts locally on the space coordinate Z. 
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3 The Boltzmann simulation with axisymmetric 
geometry 

We consider now the Boltzmann equation together with an axisymmetric boundary 
80. As already mentioned, if the initial condition fe as well as the scattering kernel 
R are independent of the angular component 4, the solution f will be invariant under 
the group of rotations about the s-axis. It is obvious to use this symmetry for a 
simulation method like the one described in section 2. 

3.1 The Boltzmann equation in cylindrical coordinates 

There are two ways to consider the Boltzmann equation in a cylindrical coordinate 
system. The first one is to use a complete transformation of the Boltzmann equation 
into the cylindrical system, which is given by the following transformation in the 
phase space a x R3 

I 
X = 5 

y = 2‘. cosfp 

z = rnsina5 
I TJ, = v, 

vy = cos C$ - v, - sin CJ~ . vQ 

v, = sin C#I . u, + cos C$ . u+ 

Since the velocity space is also transformed into cylindrical coordinates, the collision 
operator J( f, f) on the right hand side of the equation has to be transformed with 
respect to the new coordinates as well. Furthermore artificial force terms appear on 
the left hand side of the equation, because the velocity components II, and ~4 do not 
only depend on the velocities uY and v,, but also on the space coordinate q!~ The 
Boltzmann equation is given by 

where J denotes the transformed collision operator. 
From a numerical point of view it is much more complicated to construct a numerical 
method with total axisymmetric geometry than a classical two or three dimensional 
code. The main problem is given by the transformation of the collision operator to 
axisymmetric geometry (see [12]). 
Furthermore the new terms on the left hand side of equation (6) have to be modelized 
in the free transport of the particle set. Therefore we will not consider this approach 
here. 
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If one uses only the transformation of the spatial coordinates into cylindrical rep- 
resentation and leaves the velocity components unchanged, the Boltzmann equation 
can be written as 

af a/ 
T&- + vz .z+( c0sd-u,+sind-u,)- 

af 
Fr+ 

i.(- af 
sin 4 . uy + cos a5 . v,) - - = J(f, f) 

%J 

In a simulation method such as the one of section 2 the free transport of particles, 
i.e. the hyperbolic left hand side of the Boltzmann equation, is decoupled from the 
binary interactions described by the collision operator J. 
The solution of the left hand side of the equation, i.e. 

af af 7g -I- vz *z+( 
af co.s+-v,+sincS.v,)-T+ 

i-c 
af -sin$~v,+cos~+v,)~ - = 0 
a4 

(7) 

with initial condition 
f (t = o,z, f, 4, C) = +, f, 4% u3 

is given by 
f(t, z, r, q!J, q = a(s - tu,, w-4, Td-t), q 

where T,(t) and T&(t) are the solutions of the coupled system 

(8) 

1: = cos fj - uy + sin 4 . v, (9) 
r.cj = - sin 4 - vy + cos 4 - 0, 

with initial condition r(0) = r, 4(O) = 4. Th e solutions Z’,(t) and T,(t) of the system 
(9) are given by 

W) = arctan( 
r-sin$+t-v, 
P * cos l$ + t * vy ) 

which correspond to the following linear functionals in Cartesian coordinates 

T&) = y+t-v, 
Tz 0) = z+t-v, 

and 
t 

W) = (T’(t) + T:(t)+ 

T,(t) 4 arctan 
Y 

(10) 
(11) 

Therefore the free transport of a finite pointset in cylindrical coordinates can be done 
according to equation (S), (10) and (11). 
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There is no change in the collision process, because the velocity vectors of the particles 
are expressed in the original Cartesian coordinate system. The standard routines can 
be applied directly. 
We will now consider the reduction to two dimensional space coordinates using the 
rotational invariance of the solution of the Boltzmann equation. 
There are three main problems for ,reducing the space coordinates to the cylinder 
coordinates (2, r): 

(i) a uniform spatial discretization according to the coordinates x and T leads to an 
increasing number of points in the radial direction using discrete point measures. 
Therefore it is necessary to introduce a weighting function in the radial direction 
r to achieve a reasonable space discretization. 

‘I 

.* 

(ii) the weighting function leads to a modified Boltzmann equation and to modifi- 
cations in the free transport of the particles. 

(iii) the modified Boltzmann equation for the weighted distribution function requires 
modifications in the radial distribution of the particles. 

3.2 The spatial discretization with axisymmetric geometry 

If we consider a uniform space discretization with cellsize A, in the x-r- plane, where 
r is the radial component of the system, then the corresponding cell system in the 
original y-z-plane is given by rings with width A,. 
The area A,, of the n-th ring is given by 

A,, = (2n - 1). K. Ar* 

If we now assume a uniform spatial distribution on 12 then the number of particles 
in the single cells must be chosen with respect to the area A,,. This means that the 
particle number N,, in radial direction at a fixed point z” is given by the sequence 

N,, = (27~ - 1) . Nr 

where Nr is the number of particles at the first radial cell. 
From a numerical point of view it is not useful to work with increasing particle 
numbers in the cells with increasing radial distance to the cylinder axis, because the 
statistical fluctuations in the results at the cells near to the cylinder axis will be much 
higher than far away from the axis. Furthermore decreasing the fluctuations near the 
cylinder axis requires too much particles far away from the axis. 
A similar problem occurs when using a sequence of radial cellsizes Ar, such that the 
corresponding areas A,, remain constant with n. In this case the sequence Ar, must 
be chosen according to the formula 

‘P 

= 

Ar, = (6 - dx) . Ar, n = 1,2, . . . 

The problem now is that the cellsizes far away from the cylinder axis are very small, 
so that one needs a lot of cells in the radial direction to cover a given spatial domain. 
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Both spatial discretization concepts described above are not useful in a numerical 
simulation method. It is necessary to introduce the concept of weighted particles in 
the spatial domain R, where the weights of the particles are given by a weighting 
function, which depends only on the radial distance . The task of the weighting func- 
tion is to correct the differences in the areas A,, such that the corresponding particle 
numbers remain constant with increasing radial distance. 

3.3 Boltzmann equation with a radial weighting function 

The concept of a weighting function R(r) can be included in the Boltzmann equation 
by considering the dynamic behaviour of the function 

It is easy to verify that the time evolution for the function g in cylindrical space 
coordinates is given by 

&l at + vz - g + (cos g5 39 - vy t sin 4 . vZ) . z 

1 
t 

r ( 
a!2 -. - sin f$ . vY + cos C$ . v,) * - 
a4 

- (cos$.v,+sin4.vZ).y.g = k*J(g,g) 

A numerical simulation procedure for the equation above can be set up exactly as 
for the original Boltzmann equation. The discretized equation can also be decoupled 
into a free transport according to the left hand side and a collision process according 
to the collision operator J(g,g). 
The new term on the left hand side influences only the free transport of the particles. 
The solution of the equation 

&J 
at + vz 

f% 
-z+( 

89 cos~.v,+sin~.v,).ap 

+ f-C 
& -sin&.v,+cos~.v,)*~ 

alnR 
= (cos fj5 - vy + sin q5 . vZ) . F * g 

with initial condition 

is given by 

dt, =, p,d, 3 = WX-t)) . 
R(r) a(= - tvz, W-t), &(-t), a 
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which can be shown by direct calculation. The functions T,(t) and T+ are given 
according to (10) and (11). 
We show now that the difference between the solution (8) and (13) 

w+-w 

R(r) 
n 

represents exactly the correction of the weight of a single particle moving in radial 
direction. The correction must be implemented in the simulation procedure when 
using cylindrical coordinates and a weighting function R(r). 

3.4 Simulations with a radial weighting function 

We will now consider the numerical simulation for the solution g of equation (12). 
In a numerical simulation method, as described in section 2, the solution of the 
Boltzmann equation is approximated by a finite pointset of the form 

N 
f(tqZ,77) % iCS(z’-Zi(t)) X S(v’-v’;(t)) 

N I=1 

Hence we consider now an approximation of the solution g of (12) by a pointset of 
the form 

g(tyXyry4,G) Z ~a;(rj(t))-s(X-E;(t)) X 6(r-r;(t)) X6($-4;(t)) X 6(v’-v’;(t)) 
i= 1 

with weights ai dependent on the radial coordinate T. The dynamical behaviour of 
the finite pointset is described by the discretized version of equation (12) according 
to a time discretization At and the cellsystem {R;};=l,...,K and is exactly constructed 
as in section 2. 
After decoupling the free transport from the collision operator J(g,g), the first step 
in the simulation method is to perform the free transport given by the solution (13) 
of equation (12). If we assume that at time t = 0 the function g(t = 0, x, r, 4,;) is 
given by a finite pointset with weights CY~, then the solution of (12) is 

N R(T,i(-At)) g(At, x, r, 4,;) = c (14) 
i=l R(G) - a: .6(x - (x; - At - v,,;)) 

>I 
x6(r - (I&(-At))) x 6(~$ - (T&-At))) x S(G - G;(t)) 

With a given uniform discretization in the x-r-plane at time t = 0 there exist two 
possibilities for thk weighting function R(r). The first one is to choose the function 
R(r) inverse proportional to the radial distance T, i.e. 

R(r) = ; 
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Then the number of particles is constant in every cell. 
The main disadvantage is that the weights of the points vary with the radial distance 
r: in every cell, where the distribution function f is assumed to be homogeneous, the 
pointset consists of particles, which have different weights. The different weights make 
the collision procedure of a numerical simulation method much more complicated. 
Furthermore it is not possible to homogenize the weights over a single cell without 
changing the macroscopic quantities of the distribution function f. 
Therefore it is much more useful to introduce the weighting function R(r) as a step 
function over the radial distance F, i.e. 

R(r) = c - j=l ,..., M 2j ‘_ 1 ~(j-~W.iArl(‘) (15) 

where M is the total number of cells in radial direction. In this case the weights of 
the particles are elements of a discrete set and depend only on the index of the cell 
in radial direction, where the particles are actually located. It is obvious that it will 
be possible to homogenize ‘the particle weights in a given cell without changing the 
macroscopic parameters, because in a given cell the weight is constant. 
According to formula (15) the weight of a particle changes, if the particle crosses 
cell boundaries in radial direction. Therefore it is not possible to apply directly the 
collision procedure to the pointset (14), b ecause particles located in the same celI can 
have different weights. 
There are two possibilities to overcome this difficulty: 
The first one is to homogenize the particles in one cell with respect to the weight 
prescribed by the weighting function R(r). Such a homogenization step was already 
used in the context of weigthed particle simulations ([13]). 
The second possibility was already mentioned by Bird ([4)) without a general theo- 
retical background however. The underlying principle is to fix the weights in every 
step at the initial value a: = l/N. This is possible if one considers the change in the 
weights ai given by 

Pi(j * k) = R(ri) 
R(T,i(-At)) 

(with (k - 1)Ar 5 ri 5 kAr and (j - l)Ar 5 Tri(-t) 5 jar) as the’staying alive’ 
probability of the i-th particle. If a particle stays in the same radial section the weight 
a; remains unchanged, whereas if a particle crosses a radial boundary during the free 
transport the particle has to be deleted or doubled according to the probability Pi. 
For example, if a particle moves from the first to the second radial section the prob- 
ability Pi( 1 + ‘2) is equal to 5, which means that the particle will be deleted with 
probability f, on the other hand the probability Pi(2 -+ 1) is equal to 3, which means 
that one has to create three identical particles instead of one. 
Therefore it is unnecessary to save a weight Qi for every particle. With this modifi- 
cation in the free transport of the function g it is guaranteed that the fluxes across 
the radial boundary are approximated correct. 

The modifications in the free transport described above still use three space coor- 
dinates in a cylindrical system. We will now consider the techniques to reduce the 
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space discretization to the coordinates z and r. 
The free transport of the particles requires three dimensional space coordinates, be- 
cause it is necessary to use the relation between the velocity vector in the Cartesian 
and the cylindrical coordinate system. On the other hand it is no restriction to fix 
at a given time to all particles at a given angular component $0, because the solution 
will be invariant under rotations about the s-axis. If all particles are located at the 
same angular component it is not necessary to save the information for all particles, 
such that the discrete measure can be written in the form 

-d 

g(to, 5, r, q = 5 a; * S(x - Xi@o)) x b(r - Qo)) x w - Wo)) 
? 

i= 1 

With this approximation and the global angular component +. it is possible to per- 
form the free transport according to equation (14). After applying (14) all particles 
wilI have a different angular component 4 in dependence on the velocity vector v’. 
Now it is necessary to transform this local information of a single particle again to a 
global one in order to reduce the amount of information, which has to be stored for 
a single particle. In other words the individual angular coordinate 4; of the particles 
have to be transformed somehow to the given value 40. This can be done by rotating 
the given velocity components uy,i and u,,i acoording to the angle 4rot = 40-4;. After 
the rotation of the velocity compone,nts v,, and V, all particles are again located at 
the fixed angular component bo. The spatial information which has to be stored for a 
single particle is now reduced to the cylinder coordinate x and the radial coordinate 
r. 

After the free transport all particles, which are located in the same cell, have the 
prescribed weight, so it is possible to apply directly the collision operator on the 
Cartesian velocity components as given in the classical simulation method. 

Finally we want to focus again on the spatial distribution of particles according to the 
weighted distribution function. As an example we consider in the following a uniform 
distribution on a bounded spatial domain in R3 given by a cylinder with length L 
and radius &. Then the spatial measure for the modified distribution g is given by 

a&, r, 4)dddrda: = 
1 

c 
1 

-X[(j-l)A,jarl (r)dbdrdx 
2X * L . Ro j=l,...,M % - 1 

The corresponding particle approximation is then 

Xi = tf.L ‘E 

ri = [(2j - 1) . tf - (j - l)*]! - Ar, for r; E [(j - l)Ar, jAr], j = 1,2,... 

4i = tf - 27r 
2 

1 
Cri = 

Iv 

where the triple (ti, tf, tf) is a random number in [0, 113 and N is the number of 
particles per cell. 
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It is important to notice that the radial direction is not uniformly distributed aIthough 
the original function f is corrected by the radial weighting function R. The weighting 
function R can only correct the differences between radial sections, inside a given 
radial section the approximation must be performed according to the exact measure. 
The difference between the (incorrect) uniform distribution in radial direction and 
the (correct) nonuniform distribution decrease with increasing radial distance, but in 
sections near to the z-axis the differences are quite important. The use of the incorrect 
distribution can lead to undesired artificial effects in the numerical simulation method. 
These effects, among others, are illustrated in the next section. 
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4 Numerical results 

The modified Boltzmann simulation method described in the previous section was 
used to calculate a rarefied gas flow around a body with axisymmetric geometry. 
This work was done in the framework of the european space research project HER- 
MES. A detailed description of the numerical results can be found in ([lo]). 

reference length : reference length : 
Is-5 m Is.5 m 

reference surface : reference surface : 73 m2 73 m2 
______;_::_: ______;_::_: 

\ \ 
moments origin : moments origin : x = 5.903 m x = 5.903 m 

r = 2.075 m r = 2.075 m 

-10 ’ 
0 

I I , I 

ad length (m) 
10 

Fig. 1: HERMES windward centerline near the symmetry plane 

The geometry of the axisymmetric body is given by the windward centerline of the 
HERMES space shuttle (in its symmetry plane), starting at the stagnation point for 
30 degree angle of attack up to the leading edge. (see figure 1). The threedimensional 
axisymmetric body is created by rotating the centerline with respect to the s-axis. 
The physical parameters of the gas flow are choosen according to different reentry 
altitudes. Furthermore the geometry of the body is slightly modified by including a 
small flap at the leading edge (see also figure 1). The main task for this configuration 
is to determine the influence of the flap deflexion angle on the aerodynamic charac- 
teristics of the body. In a more extensive study the influence of real gas effects like 
vibrational or chemical effects will be examined. 
The physical parameters of a gas flow at altitudes around 100 km demand a very 
fine spatial discretization. This requirement can easily lead to the limits of computer 
hardware, if the simulation method is based on standard threedimensional space co- 
ordinates. Therefore it is essential to consider the simulation procedure together with 
cylindrical space coordinates as the one described above. 

’ 
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Fig. 2: Channel flow at equilibrium with incorrect spatial distribution 

. . 
..‘.; ,,.-- . I. ;:. :. A 

Fig. 3: Channel flow at equilibrium with correct spatial distribution 

15 

Univ.-Blbl. 

Kakerslsutern 



The amount of memory can be reduced by orders of magnitude using the axisymmet- 
ric simulation code. 
A11 the calculations shown in the following were done on a nCUBE 2 parallel com- 
puter at the Laboratory of Technomathematics, University of Kaiserslautern. The 
implementation of the simulation code on a parallel computer is based on the work 
given in [14]. 

9 

At first we want to focus on the spatial distribution of the particles at the beginning 
of the simulation procedure and the way how to construct the spatial distribution on 
the artificial boundaries. As mentioned in the previous section it is very important to 
consider the correct spatial measure for the radial direction r. The correct measure is 
given by a nonuniform distribution in radial direction, although the space distribution 
is uniform over the whole threedimensional domain. 
The numerical simulation of a simple channel flow at equilibrium conditions shows 
the influence of the numerical solution on the spatial distribution: 
The results for a (incorrect) discretization according to a uniform spatial distribution 
are shown in figure 2. Along the s-axis the deviations from equilibrium are evident. 
With increasing distance from the artificial boundary some artificial shock structures 
appear near the cylinder axis. Figure 7 shows the same flow problem together with 
the (correct) modified nonuniform space discretization. The equilibrium is preserved 
in the whole channel without artificial numerical error. 

f 

Table 1 : Numerical parameters and results 

0.60 1 

2.5 
4.0 

.641 
-490 

.727 4 .584 
Pitching 

. F 

.f 

Table 1 shows some typical results for the axisymmetric body described above. With 
the axisymmetric code it is possible to perform calculations with a very high dis- 
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cretization and therefore to obtain very accurate results. Furthermore the modifica- 
tions in the simulation procedure are not very time consuming compared with the 
total CPU times. Moreover it is possible to reduce the specified total CPU times 
by using the techniques described in [14] to optimize the load balance of the parallel 
processors. 
An illustration of a typical flow field is shown in figure 4. Part (a) of the figure shows 
the global Mach field at an altitude of 100 km, part (b) the rotational temperature 
of the flow near the flap with a flap deflexion angle of 0 degree and part (c) the 
corresponding rotational temperature for a flap deflexion angle of 12 degree. 
Finally figure 5 shows the local pressure coefficient along the surface line in compar- 
ison with the modified Newton theory. The local surface quantities show only small 
fluctuations, although the number of averaging time steps is very small compared 
with other calculations. 

Fig. 4(a): Mach distribution at 100 km altitude 
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4(b): Kinetic 
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- 
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- -- - CAIC. cp, rnt-vih. flnp 0” 
- - CRIC. cr. rot-vib, flnp 12” 

- mod. Newton. flnp 0” 
- mod. Newton. flnp 12” C? 

IO.. = 2 o5 

altitude: 100 km 

0.0 
I I I I 1 I 3 

0 

x - axis (m) lo 

Fig. 5: Local pressure coefficient along the surf&e line 

5 Conclusion 

In the numerical simulation of axisymmetric rarefied gas flows it is reasonable to take 
advantage of the symmetry in the solution of the Boltzmann equation. On the other 
hand it is not straightforward how to include the symmetry in the classical simulation 
methods. 
The transformation to cylindrical space coordinates leads automatically to the con- 
cept of weighting functions in the radial space coordinate. Otherwise it is not possible 
to achieve an adequate space discretization over the whole spatial domain. By intro- 
ducing weighting functions it is necessary to consider a modified Boltzmann equation. 
This modified Boltzmann equation can be discretized in the same way as the original 
equation and the modifications of the numerical method affect only the free transport 
and the spatial distribution of the particles. The collision process remains unchanged. 
Numerical results illustrate the essential increase in computational efficiency which is 
achieved by the presented method. 
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