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We consider a transmission boundary - value problem for (he time - harmonic Maxwell
equations neglecting displacement currents. The usual transmission conditions. which require

the continuity of the tangential components of the electric and magnetic fields across

" boundaries are slightly modified. For this new problem we show that the uniqueness of the

solution depends on the topological properties of the domains under considerartion. Finally

we obtain existence results by using a boundary integral equation approach.

1. Introduction

Many problems in electrical engineering lead to
transmission boundary - value problems for the time -

harmonic Maxwell equations. A standard problem

of this type is shown in Fig.1. One considers a

bounded domain GEcR?® of conducting material

which is surrounded by an isolator (usually air).

In the interior of the unbounded domain G':= R3\ GE

a time - harmonic current density }e(x,t) = Je(x) e ot

is given. We are now interested in the currents

induced in GE by Fe. This leads to the classical

transmission boundary - value problem for the time- Fig.1
harmonic Maxwell equations |

curl H' - Je - jwel EL L curl HE = (¢F - iweF) EE E
in G-, , in G-,
curl EL - iwul‘ Ht curl EE = iqu HE

(1)

nAHL=nAHE E
on oG™,
nAEL=nAEE



With Silver - Miiller radiation condition

L 1
H m -E" =olpy)
uniformly for [x|— co.

The different constants have the following meaning :

szf‘ - frequency,

L, Eso electric permittivity in GL, GE,

u ,‘u >0 ‘magnetic permeability in ‘GL,GE,
o >0 electric conductivity in GE.

Under certain assumptlons on the regularlty of Jo and the smoothness of the
‘boundary r, Wthh separates -the domains GY and GE , existence and uniqueness
of solutions HY, EY, HE EE of (1) can be shown [7,9].

Dealmg with problems in connection with machines working at power frequencies,
equations (1) are modified. Since the frequency o is very small, ‘displacement
currents are usually neglected, which means that e and eF are set to 0 in (1)
Moreover the transmission and radiation  conditions are changed. The continuity
of the tangential components of the electric field across I' is substituted by the
condition n': (uOH )=n- (uH ) on T, n being the outer normal to GE. In addition
the Silver - Miiller radiation condition is replaced by H(x) - o(1), EN(x) = o(1)

umformly for |x|—.c0. All these modifications together yield our new problem

L_
curlH-=] curlH =oF EE
€ in GL, in GE,
curl EL = jwpl HE curl EF = iouF HE
na HE =na HL ‘ ‘ : o
_ on T, (2)

n- (WFHE) =n- (" HY | ‘

H (%) = o(1), "Elx)=o(1)  uniformly for |x|= co.

As we will see, uniqueness results for‘ (2) will strongly depend on the topology '
of Gt resp. GE. In chapter 4, we will show existence for (2) and the set of all
possible solutions will be completely characterized.



2. Preliminaries

Before we start with the existence and uniqueness proof, we want to give a
detailed description of the problem.

Let C(G) (CX(G) resp. C%%(G), 0<a<1) denote the space of .continuous
(k times continuously differentiable resp. holder - continuous) functions on G.

GEcR® is an open, bounded domain with c? boundary. The compiement
- GL=R3\GF should be connected (GF denotes the closure of GE). GF is the
union of m connected components GjE, j=1,...,m having the topological genus p;-
The boundaries I}=c)GjE are closed surfaces, which should be disjoint. Setting

m

r=U I we get I=3GF-0oGh.

i=t ‘ " . .
The topological genus of Gt resp. Gl s p=2 pj- There exist p surfaces
. _ el
. p P
ZFCGE resp. ZiLCGL, i=1,...,p, such that GE\UIEE5 resp. GL\HZ!’ are
= i= .

simply connected. The boundary curves Y-L= c)ZF and YiE= az% lie on T.
¢ i

Example
Let GE be a torus. In this case we

have m =p=1. The surfaces ZF, Z{' and
the curves YIL,YF are shown in Fig. 2.

The problem to be solved, is now defined as:

For J.¢eCHR®), divl.=0, supptJo)cG’, G’cG' bounded,

find HY, E'e cY(Gh)a C(GY, HE, EEe C'(GE) n C(GE)  solving
L E E ~E
curlH™ =] curlH " =6 E ‘
€ in G, in GE, (3)
curl EL - imul' Ht ’ curl EE = iwp.E HE ‘

na HE=nAHL
onl, (4)

n- (EHE) =n- (b HD

HM(x) = o(1), El(x) = o(1) uniformly for |x|-> co. (5)



3. Uniqueness

Taking a closer 100_k at'(3),(4),(5), it becomes obvious, that we can not expect
uniqueness for all four fields, because adding the gradient of a 'suitably chosen
function to EL does. not change anything in (3),(4),(5). Therefore, if we talk about
uniqueness in the sequel, we only mean uniqueness of the fields HL, HE and EE

Theorem 1
For problem (3),(4),(5) together with the additional condition

fr-’HLd1=h!', i=1,....,p, o (6)
vt '

‘hLE C glven t being the unit tangent to Y., the fields HT H EE are umquely
determined.

Proof
We consider the homogeneous problem with J. =0 and h = 0, i=1,...,p. We
show .that the fields HL HE EE vanish 1dent1ca11y
From the first transmission condition n HE=na H" on T, we get with the help
of the Gaussian theorem
fn-(BYAEF) ds = [n- (HE A EF) ds = [(F EE- EE- iwpf HE - HF) av, (7
r T Gt ‘
where F denotes the complex corijugate of the field F. ‘
GE and G' were defined to have topological genus p. In this case, it is well
known [6], that there exist p linear independent Neumann fields zE resp. zh
i=1,...,p, in GE resp. GL, fulfilling

curl ZF-=0, divzF-0  in GE, n-z5=0 onT,
curl Zli'= 0, div Zl-,'= 0 in GL, n- Z[i'= 0 ‘'onT,

L L 4. .7E 41=
JS Zpdi=8y,  Joozpdl=o, Jx- z d1= 3, J;t ZFdl=0

and
zH = oLy,
uniformly for x| > . As a consequence of the regularity assumptions on Gt
and GY we get
| 2% e c®(GF) 0 C"*GH), zte c®Gh n c®ch.



Using the second transmission condition n-(uL HY) - n'(uE HE) on T, we con-
~ clude that for any surface element SCI' we have ‘

fe-(EF-EM d1=[n-curl(EF-ENrds = io[n- EHE- gt HY ds = 0.
oS S ' S

But this means, that the tangential components of EE-EY on I are of the fomi
E_pL & LoL. < EJE
(E*-E )|lan=Grad<p+§lej Zy+ Sei 7,

where Grad ¢ denotes the surface gradient of ¢ on I' and eli‘,eiEe C, i=1,...,p, are

complex numbers.
In complete analogy, we derive from

curlH' =0 in Gh, Jr-Hta1=0, i=1,...p
t
that we can write the tangential components of Ht as a surface gradient
’HLLan = Grad ¢.
Putting (EE- EL)Lan and Hthan in (7), we arrive at
fn-(REAEF)ds = fn-(H"AEF) ds
r r
=fn-(Grad¢A(EL+Grad<p+ileiLZli‘+i‘eiEZ'i5))ds.
P i- i-
Applying Stokes’ theorem to the terms on the right hand side, we deduce
fn- (Grad p AGrad ¢) ds = 0,

fn-(GradT Az} ds -0,

fn (Grad§ A Z5) ds=0
and therefore

[n-(AEAEP) ds = [n- (H"2EL ds. | (8)
r r

Let us now consider G*= Gtn BR, BR:= {x|xc¢ R3 , |x| sR}. For large enough R,
we get by using the Gaussian theorem ’

J. - EEAED as -fn-(lTlLaEL)ds=J‘lle’-(ﬁLAEL)ds=*imuLLHL-P_ILdv,
aB® r oG G*

n’ being the outer normal to Gk



Together with (7) and (8) this means
-iopt [HY A ds + [("EF-EF-iwp"HF -HBydv- f & (H'AED ds. (9
G® Gt oBR ‘

FQr HL we have ‘
L L L Loy .

curlH- =0, divH =0 in G, H™(x) =0(1) uniformly for |x|— .
Theréfore HY is a harmonic vectorfield in G- tending to 0 for |[x|— « and thus [6]

HY (%) = O“‘&,z)’ uniformly for [x|— co. |
From EL(x) = o(1)  uniformly for Ix|— e we get

‘ L L 1 R

[ (HEAED|olge)  on 0BY,  R-w

'~ and |

[ & H 2 EY ds=o) . for R-w.
oBR '

~Taking the limit R—= o equation (9) yields
of [EF-EF dv- i (uf [HE-HEdv+ ' [HE-H dv) - 0.
Since m,oE,uL,pE are real and positive constahts, we conclude

H'=0, EFs0, HFs0. | =

Remark |
The free parameters hil‘ in (6), which are the circulations of Ht along the
curves 'YiL’ are later on used to characterize the different solutions of (3), (4}, (5).



4. Existence

To establish existence results for(3),{4), (5), we consider the following auxiliary
problem :

Find H e cl(GY n C(Gh,
HEe c2(GE)nC(GE), divHFeC(@E), cuHEeC(GH

solving
curlHE = 0 L a+kHHE=0
in G , in G '
divHl -0 k%= iwofpf

nAHE‘nAHL=C

n-wEHE) -n-(utHY =g on T, (10)
divHE=d
[r-Hdi-0 i=1,....p,
v
H(x) = o(1) ~ uniformly for |x|= .

For k we choose the square root with positive imaginary part.

In this chapter, we show, that (10) is uniquely solvable for sufficiently smooth
data c,g,d. Moreover we describe, how all solutions of (3),(4),(5) can be
constructed by using the solvability of the auxiliary problem (10).

By the following Lemma [8], the uniqueness of (10) can be reduced to the
uniqueness theorem given in the last chapter.

Lemma 1

Let He clGh) nC(@h), Hix) - Ot=izg), x| >, 0<B<2, satisfying divH=0

in GL. If we have

fn-Hds=O, j=1...,m

I

for any connected component I of T, there exists a field Field E ¢ C1(Gh) n C(GD),
such that

curlE=iwptH, divE=0 in GL,

E(x) = O(ITI@)’ uniformly for [x|— .



Theorem 2
Problem (10) has at most one solution.

Proof

We consider (10) with homogeheous datac=0, g=0, d= 0. Since HE is a solution
of the vector Helmholtz equation with wave number k in GE, the divergence
of HE solves the scalar Helmholtz equation with the same wave number k in GE.
From d:vHE[p=d=0 and Im(k)>0 it follows, that divH® vanishes identically
in'G~ [1]). Using the identity |

curl curl = grad div- A
and defining EF by

"gE- O—IE curl HE

we conclude, that HE, EE are solutions of the Maxwell equations in GE.'

On the other hand, HY is a harmonic vector field in GL, satisfying HY(x) = o(1)
uniformly for |x|— c. Therefore, we immediately get HL(x‘)=O(|%|2‘) uniformly
for |x| = co. In addition to this, we deduce from the transmission conditions of (10)

e fn-HYds = [n- @ HY ds = [n- (FHE) ds
L , ¥ ‘ L
= ilm fn (iwpF HE) ds = i%» fn -curl EE ds = 0.
5 L | ‘
Applying Lemma 1 with =2 to Ht proves the existence of a field EY defined

in GL, having the following properties :
ccurlEY=jwptHY  in Gh,
Et(x) = o(1) uniformly for [x|— .
Thus we have shown that H-, EL, HE, EE solve the homogeneous equations (3), (4), (5)
with vanishing circulations

.L =N
J;_tH di=0.

Now, from Theorem 1 we conclude HY =0, HE = 0. ~ =

Before we start with the existence proof for (10), we have to introduce some
notation. ' ‘ '



. Definition
Let O<a<l
0o julx) - uly)|
- CHG), lullggg = sup lulx)| + sup——5~,
‘ xeG xey Ix-yl
xyeG

is the space of Holder continuous functions on G.

- V) = (03, lallve,r = max la;lloo.r),

is the space of Holder conti~uous vector fields on T.

- T ={ae V'*()in-a=0}, lallter=lalver

is the space of Holder continuous tangential fields on T.

- T¥*I) = {ae T'UT) IDivae CO%(I)},  Hullger= max (lullter, IDivullger),

is the space of Holder continuous tangential fields on I' having Hoélder continuous
surface divergence.

- XM = TP x %) x O,

llu ”xda = max ( Hulllda.l" "Uz "oa_r, ||U3||omr)-

1 eik|x-y|

1
= ¢(x,y)=4—“ T‘_—yl—, Qo(x,y)=;-,;

Ix-yl*

The spaces Coa(G), Voa(I‘), T°°‘(r), T‘?a(f‘) and x2°‘ equipped with the correspon-
ding norms are Banach spaces.

Jheorem 3

For any ce T(?“(r), gEe Cf’“(r), dec'm), problem (10) is uniquely solvable.
The solution depends continuously on the given data.

Proof

The proof will be divided into three parts. In the first part, we use a special
ansatz for HY and HE to transform the transmission boundary - value problem into
a boqndary integral equation. In the second step, we show that the intégral
equation is of second kind. Finally we conclude the proof by showing the injectivity
~of the corresponding integral operator.



The Ansatz

We are looking for solutions HL HE of the form

HN (x) - grad, f)\(y) Oy (x,y) dsly),

HE(x) = curl fa(y) o(x,y) ds(y) + grad, fl(y) Q(X,y) ds(y)

+ [nty) 8(y) ©(x,y) ds(y),
r .

aET(?a(I‘), )\éCoa(F), SE‘Coa(I‘) For HY, HE we get [1,9]

(i)

i)

(ii1)

(iv)

From ' (i),.

H e c®(GHac®™GH,  H'x)-0(L)  uniformly for 1x[> e,

fr-HMdl=0, i=1,....p.
3 ‘

EeclcBync®GH), divHEeCc'GH),  curlHFe C"*(GH).

curlHY = 0 (a+ k%) HE =

in GL, in GE

divHl =0 \ k%= iwotpF
nHancL <o I loar |
max (||HE lveGE s IldivH |I0¢GE)ScaII( )"de’

Ilcurll—l "me;£ scq max (llallgo r ||5"0mr)-

(1

(1v) we see, that our ansatz meets all the regularity requirements

of (10). HL and H depend continuously on a,\ and § and solve the required

. differential equations.

on I' corresponding to (10).

Defining F.(x) = }‘1{13 F(x £ hn(x)),
following jump conditions for single and double layer potentials

_ derivatives [1]:

curl, [aly) ®(x = [curl faly) ®(x,y)) ds(y) * +n(x) A alx),
r . r -

grad, [A(y) @(x = [\(y) grad,®(x,y) dsly) * +n(x) Ax),
. r r ‘
[ty sy 0x,y) ds(y)|. = [n(y) 3(y) Bx,y) dsly),
r \ r v

ay ox,y) dsy)], = [y ox,y) dsty),

r ‘ r

* [5(y) 95, 0(x,3) dsy)|. = [3(y) 2, @(x,y) dsly) £ 5 8(x).
r r )

Therefore we only have to adjust the boundary values

x €T, n outer normal to .GE, we get the
and their

"



- ll -
The jump conditions do not change, if we replace ® by ®; on both sides. Using
(div HE)(x) = & [ AMy) @(x,y) dsty) + [divy(nly) 8(y) ®(x,y)) dsly)
r r
2
= - K[ y) @(x,y) ds(y) + [3(y) n(y) - grad (®(x,y) ds(y)
r r :
- - K2 Ay @(x,y) dsty) - [3ly) 9, @(x,y) dsly),
r r ;

X € GE,
we deduce

HE (x) = fl(y)‘gradxtbo(x,y) dsly) ~ -;—n(x) Ax),
r
E _ 1
HE(x) = [curl,(aly) ®(x,y)) ds(y) + J n(x) A a(x)
g .
+f)\(y) grad, ®(x,y}ds(y) + Zln(x) rx)
r
+ fn(y) 3(y) ®(x,y)dsly),
r
(div H®)_(x) = - kK [ X(y) ®(x,y) dsly)
r
- [3(y) 35, @(x,y) dsly) + +3(x).
r

Introducing the operators

(Ma)(x) = 2n(x) a [ curl,(aly) ®(x,y)) ds(y),
r
(Na){x) = 2 n(x) -fcmlx(a(y) O(x,y}) dsly),
r
(K2 (x) = 2 fAly) 8, O(x,y) dsly),
r
(K2 (x) = 2 [Aly) 94, 0(x,y) dsly),
r
(SNx) = 2 [A(y) ®lx,y) dsly),
r
(P X (x) = 2n(x) 2 [nly) Ay) ®(x,y) ds(y),
r
QM (x) = 2n(x) - [nly) My) O(x,y) ds(y),
r

(RAMx) = 2n(x) a [ Xly) grad, ®(x,y) dsly),
r



-2 -

(KoM (x) =2 [Aly) 9, @olx,y) dsly),
‘ r '

(RgX) (x) = 2n(x) » [ X(y) grad,@¢(x,y) dsly),
T

we get the following expressions for the boundary vaiues of HL and, HE :
| 2n(x) A HE(x) = (R M) (x), |
2n(x) « HE(x) = (Ma) (x) - alx) + (R ) (x) + (P 3)(x),
2 n(x) -rr(ul' HY (x)) - uL((K’o)\)’(x) - Ax)), |
2n(x) - (@EHEx)) = kB (N a) (x) + (K ) (x) + A(x) + (Q 8) (x)),
2(divHEY.(x) = - k2 (S M) (x) + 8(x) - (K 8)(x)..

Thus, we immediately see that solving (10) is equivalent to solving the integral

equation -
M-1 R-R, p a AN
Av = b, A= (uEN B (I« K+ M- K) pEQ), v=lixl, b=2(g>. (12)
‘ . s d

0 -k?s I-K

The integral equation (12) is of second kind in XZ“(F )

According to [1,2,3,9] the operators defined above have the following mapping

properties ‘
M: TO%T) > T°UD) resp. TOHT) > TOHD), - N: Te%(I) - ™I,
Q,S.K,K,Kp: C'm->c’™m, | P: C'%D) - YD),

R,Ry: CO%(I) = TOX(I).

N,R,Ro are continuous, M,Q,S,K,K’ Kjy,P,R- Ry are compact.
Setting k o o

F(x) = 2 [ \(y) grad,®(x,y) ds(y), x e Com), x € GE,
we get ] ‘
 FeCHGE) n CO%GE),
curlF=0 in GE,
nAF|p= R
According to [1] we deduce

Div(RA) = Div(naF)=-n-curl F|.= 0



_l3_

and therefore
IR M gor = IRM poe

In the same way we show [[RgAllgor=IRogM 1o, so that the continuity of R,Rq
and the compactness of R- R carry over to the case where we consider R,Rq as
operators mapping C°*(I') into Ty *(T).
Now A is split up into _
-1 0 0 M R-R, P
" A=B+_C, B=<(J.EN (uE+ o), C=<o wEK’- ¢lK) (.LEQ>.
0 0 1 0 -k2§ -K
From the above considerations we immediately get

B,C: X9¥(TI) - X3*(I)

where B is continuously invertible and C is compact. Therefore (12) is of second
kind. ’

The operator A is injective
C‘onsider a solution v=(§)£ x3°‘(r) of the homogeneous equation Av=0.
Inserting a, 2,8 in (11), the fields H' and HE obtained in this way, solve the

homogeneous problem (10). Corresponding to Theorem 2, they vanish identically.
But H' was defined as

H' (x) = grad, [A(y) Do(x,y) ds(y).
r

and therefore

0=2n-HY=2 a0, ®ods - A== (I-Kp) A
Jre

Since GL=R3>\GF is connected and unbounded, we get N(I-Kjp)={0} [4], so
A=0.

Using A=0 we obtain from the last component of Av=>b
(I-K)$§=0.

According to [1], N(I-K) = {0} for Im(k) >0 and thus
3=0.

" From the first component of Av=b we get
(I-M)a=0

and again
a=0

because N(I-M)={0} for Im(k)>0 [1].



- 14 -

From the above considerations we conclude that our auxiliary problem (10) is
equivalent to the integral equatlon Av=b. Since c¢ Td *(n), g€ c'%m, dec°°‘(r)
the right-hand side b lies in Xd (T'). Now A is compact and injective in Xd *r)
and therefore, according to the Riesz- theory, continuously invertible in Xda(l")
So Av=b is solvable for any be Xda(l‘) w1th v depending continuously on b. If
we use the components of v to define H’ ,H using (11), we get a solution of (10).
By

IH lvegt <coliMloar
max ( |HE lvege, IdivH ”()dGE)SCa"( )llxda,

llcurl HE lvegE s cqmax (lallger » I8lloer),

we get the continuous dependence of H' and HE on the data c,g,d. =

. Up to now, we have shown the 'unique solvability of the auxialiary problem (10)
for arbitrary cETd 1), ge Coa(I') d € C'%(r). With the help of this result,
we want to prove existence and uniqueness for (3),(4),(5) under the additional
assumption (6) of prescribed circulations for Ht

Lemma 2 o
(i) Let G’ cGL be defined as above, o€ C'*(R®), supp (¢) €G’. Then
u(x) = fp(y) Oo(x,y) dy € CZ(IRB),
GJ

1 -0(Lly =o(Lly 1
ulx) O(le), grad u(x) O(IX'IZ)’ x| co.

(ii) Consider J, € CHRY), divJ.=0, supp(J,)cG’. There exist

H'e cURY), E’'e cliGh nC(GY,
curlH'=J,, divh’=0,  H'G)=0(1,), uniformly for |x|=w,
curl E’ = imuL H", divE’= 0, | Elx) - O(I%l), uniformly for |x|— .

(iii) Corresponding to the Neurhann fields in G- we have Eize CI(GL) n C(GY,

curl EZ = jopt 2t,  divEZ -0, Ez(x)-O(h‘d), uniformly for x| - c.



- 15 -

Proof

The first part is an easy consequence of some well known properties of the

Newtonian potentials in R} [5]
In (ii), we assume J.€C (RY), supp(J)CG Therefore Je e CO%R?) and.

from (i) we get

A= Jo* ®g = [J(y) ®olx,y) dy € CER?).
GJ

'Defihing H' as H'=curlAe Cl(RJ), we see that
divH’=0,  curlH'= curicurl A= (grad div - A) A= J,.
Corresponding to (i), the components of H' behave as O('-)"—lz) uniformly for |x|— co.
Since

fn-Hst=fn-curlAds¥0, j=1,...,m,

T L

we may apply Lemma 1 to H' (with B=1) and get the existence of E’.

For the last part we remark, that Z eclchn C(G ), ...,p, are harmonic
vector fields in G- satisfying
Z‘i'= 0 on T, zk - O(&Iz)’ uniformly for [x|— co.
Using again Lemma 1 with B=1, the proof is completed. [ |

With the help of Lemma 2, we obtain the main result of this paper.

Theorem 4

Consider J, € C(RY), divJ], =0, supplJe) cG’, G'cGl, G’ bounded Under
these assumptlons, problem (3),(4),(5),(6) possesses a solution H', EL HE, EE.
H ,H R EF are uniquely determined.

‘Proof

Consider HJ, which is given by Lemma 2. Define h{ as hJi =II'HJ dl, i=1,...,p,
. v
and o i
HZ=3(hF-nh 7k,

j=1



Cc=na( e HY)|E,
g=n- (e (H + H)|p=n- (" HY|L.
From H’ e CR®) we deduce
H’ | e %)
~ For the surface divergence of na H' on T we get according to [1]
DivinaH')=-n- curlH"lr= - n-Jell—= 0,

because supp(J.) c G, G' c GL.
For the Neumman fields Z+ holds [6]

naZb e CO%D), Div(n a z%)=—n-curlz% r=0.
and therefore | |

ceT{HI).
On the othevr> hand HJ_E clirR?) implies

g C¥%(I). |
By kTheorem 3 there e;(ist unique fields ﬁL, ﬁE; :

H e clichnc(@h,
FEeCAGE)nC(@E), diviEeC@E), curlfife C(GE)

solving
curlH' = 0 L w+kHHEF-0
N in G-, : ‘ in G-,
divAl-=0 k% = iwoEyuE ‘
naHE-naHM=¢
n’-(uEITIE)—n-(uLI?IL);g on T,
divAE=0 -
[v-Hai-=0 i=1,....p,
vt :
M%) = o) uniformly for [x|- co.

From divHE=0 on T and Im(k) >0 we get in the same way as in the proof

of Theorem 2, that ﬁE and EE = curl ﬁE solve the time - harmonic Maxwell

E

A
of
E

,0 and o.

equatiohs in GE with coefficients 1]



1T -

ﬁL is harmonic in GL. From the proof of Theorem 3, we know, that for ﬁl‘

even the stronger condition H (x) = O(&'Z) uniformly for |x|—= o holds. In addition
we have

imu"fn -Hlds - impﬁfn -HEds - imfg cis
)y r,

!’

r} J f)
= fn-curl EBds - iwul‘fn- H' ds
L L
= n-curlEEds- imuLfn-curlAds, ji=1...,m,
T T
J

J

- A being the convolution A= J.* @ from the proof of Lemma 2. Since [}, j=1,...,m
are closed surfaces, we conclude by Stokes’ theorem

fn-‘ﬁLds=0, i=l...,m.
i )

Now Lemma 1 guarantees the existence of Eleclich)nc(Gh) with

curl EL - imul‘ﬁl’ in GL, Elx) = O(l;l‘-l), uniformly for |x|—> co.

Summarizing the results obtained for At , EL, HE,EE, we have

ALY Eleclichnc(@h, HE, EEe cltGEyn C(GH)
curl HY = 0 L curl HE = oF EE E

N N in G-, N — in G,
curl EL - iwuLHL curl EE - imuE HE

nAﬁE-nAﬁL=C
- N on T,
n-(pEHE)-n-(uLHL)=g

sz»ﬁL dl=0 i=1,...,p,

Af]

H"x)=o(1), EYx)=o(1) uniformly for |x|— co.
But in Lemma 2 the existence of EJ, EZeclGh)n C(GL),
curl E = iop HY, curl EZ = iwpt HZ,

is shown, both behaving uniformly like o(1) for |x| = co.
Defining H', EY, HE, EF as

Hl - A+ H'+ HZ, El-EL. gV EZ, HE-HE EE-EE,



and using curl H' = J, curlHZ= 0, we get

curl HY = curl (F+ HY+ HD) - J,

L SO0 2Zy . L in G,
curl EN = curl(EL+ E'+ EZ) = ot HE
curl HE = oF EE E
‘ E E in G,

curlE” =iop HEt
naHE=naHE =naHALs c=na(H H'« HZ) = na L
n-(EHE) =0 @EAB = n- (WP AY g = ne G HEL 1Y 12 on T
=n-(uLHL)

. and ‘ ‘
Je-Hbat=fo- @l v HP) dl= oo dlenE- R = RE 1.
vt vt a vt ‘ ‘

Therefore HY, EL, HE, EE solve (3),(4), (5),(6). n
VCor"ollar‘y‘

For J, ¢ CH(R?), divJ,=0, supp(.l yeg!, Gt bounded problem (3), (4), (5)
is solvable. :

In the homogeneous case Jo=0 we get exactly p linear independent solutions
HL HE EE , where p denotes the topological genus of GE resp. Gt.

E' is not umquely determined.

Proof
- The first statement follows immediately from the last theorem by chosing' the
circulations ht, i=1,...,p arbitrarily. .
. In the case J. =0 Theorem 3 shows the ex1stence of p solutions H~L, EjL, HjE, EjE,
,p, of (3), (4) (5) having circulations h 8ij» i=1,...,p. The linear indepen-

dence of HL EL H- is a consequence of the uniqueness results of Theorem 1.
The nonuniqueness of E' is obvious. ‘ |

b
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