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We consider a transmission boundary - value problem for the time - harmonic Maxwell 

equations neglecting displacement currents. The usual transmission conditions. which require 

the continuity of the tangential components of the electric and magnetic fields across 

boundaries are slightly modified. For this new problem we show that the uniqueness of the 

solution depends on the topological properties of the domains under considerartion. Finally 

we obtain existence results by using a boundary integral equation approach. 

1. Introduction 

Many problems in electrical engineering lead to 
transmission boundary - value problems for the time - 
harmonic Maxwell equations. A standard problem 
of this type is shown in Fig. 1. One considers a 
bounded domain GE C iR3 of conducting material 
which is surrounded by an isolator (usually air). 
In the interior of the unbounded domain GL := lR3 \ GE 
a time - harmonic current density Te(x, t I = J,(x) e- i “r 
is given. We are now interested in the currents 
induced in GE by ‘j,. 

a- 

This leads to the classical 
transmis.$on boundary - value problem for the time - 
harmonic Maxwell equations 

Fig. 1 

: ; 

il 

curlHL= J e - iosLEL 
in GL, 

curl HE = (aE - iusE) EE 
in G E 

&EL L L 
, 

=iop H curl EE = i,pE IkE 

(1) 

nAH L =nAH E 

nAE L E 
on 3GE, 

=nAE 
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with Silver - Miller radiation condition 

HL A,+,- EL=o(,+,l 

uniformly for Ix I + ~0. 
The different constants have the following meaning : 

020 frequency, 

EL, EE ’ 0 electric permittivity in G ‘, GE, 

CL13 CLE ’ 0 magnetic permeability in GL, GE, 

oE>O E electric conductivity in G . 

Under certain assumptions on the regularity of J, and the smoothness of the 
boundary l?, which separates the domains GL and GE, existence and uniqueness 
of solutions HL, EL, HE, EE of (11 can be shown [7, 91. 

Dealing with problems in connection with machines working at power frequencies, 
equations (11 are modified. Since the frequency w is very small, displacement 
currents are usually neglected, which means that E 

L and E E are set to 0 in (11; 
Moreover the transmission and radiation conditions are changed. The continuity 
of the tangential components of the electric field across r is substituted by the 
condition n * (ILO HL 1 = n * (u HE 1 on l?, n being the outer normal to GE. In addition 
the Silver - Miiller radiation condition is replaced by H’(x) = o(l), EL(x) = o(l) 
uniformly for Ix 1 +,a. All these modifications together yield our new problem : 

curlH’= J, 
in G L 

curl EL = iwu’ HL 
, 

curl HE = oE EE E 

curl EE = iouE HE 
in G , 

nAH E =nhH L 

n. (uE HE1 = n * (uL HL1 
on r, (2) 

H’(x) = o(l), EL(x) = o(l) 

\ 

uniformly for lx I + CO. 

As we will see, uniqueness results for (21 will strongly depend on the topology 
of GL resp. GE. In chapter 4, we will show existence for (21 and the set of all 
possible solutions will be completely characterized. 
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2. Preliminaries 
Before we start with the existence and uniqueness proof, we want to give a 

detailed description of the problem. 
Let C(G) (C”(G) resp. Coa(G), 0 <a< 1) denote the space of continuous 

( k times continuously differentiable resp. holder - continuous) functions on G. 
GE C R3 is an open, bounded domain with C2 boundary. The complement 

CL = R3 \ GE should be connected (GE denotes the closure of GE). GE is the 
union of m connected components GF, j = 1 , . . . ,m having the topological genus pj* 
The boundaries 5 = oG,F are closed surfaces, which should be disjoint. Setting 

m 
l?=g 5 we get f’=3GE=3GL. 

The topological genus of GE resp. CL is p = ,t pi. There exist p surfaces . 

$CGE resp. X\C CL, i= l,..., p, such that GE/($ 2: resp. CL\ fi Zl are I 

L simply connected. The boundary curves Y: = 3X: and YE = 3ci lie on T. 

Let GE be a torus. In this case we 

have m = p= 1. The surfaces Z:, Z: and 
the curves y:,-rF are show-n in Fig. 2. 

The problem to be solved, is now defined as : 

For J, E C’(R3), divJ,=O, supp(J,J c GJ, GJCGL 

find HL, EL E C’(GL) n C(cLJ, HE, EE E C’(GE) n C(EE) 

curlHL= Je 
in G L 

curl EL = iouL HL 
, 

curl HE = oE EE 

curl EE = iopE HE 

nAH E =nAH L 

n.(uEHE)=n*(uLHL) 
on T, 

Fig.2 

bounded, 

solving 

E in G , (3) 

HL(x) = o(l), EL(x) = o(l) uniformly for I x I + 00. 

(4) 

(5) 
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3. Uniqueness 

Taking a closer look at (31, (4) ,(5), it becomes obvious, that we can not expect 
uniqueness for all four fields, because adding the gradient of a suitably chosen 
function to EL does not change anything in (3),(4),(S). Therefore, if we talk about 
uniqueness in the sequel, we only mean uniqueness of the fields HL, HE and EE. 

Theorem I 

For problem (3 1, (4) ,(S) together with the additional condition 

s r*HLdl= hk, i= 1 1*.-T Pt 
y,’ 

(6) 

hk E @ given, r being the unit tangent to yf, the fields HL, HE, EE are uniquely 

determined. 

We consider the homogeneous problem with J, = 0 and hk= 0, i = 1,. . . ,p. We 
show that the fields HL, HE, EE vanish identically. 

From the first transmission condition n A HE = n A HL on T, we get, with the help 
of the Gaussian theorem 

.s n * CHL A EE) ds = sn * (HE A EE) ds =CJics” EE *, EE - iwpE HE * GE) dv, (7) 
r I- 

where F denotes the complex conjugate of the field F. 
GE and GL were defined to have topological genus p. In this case, it is well 

known [61, that there exist p linear independent Neumann fields ZF resp. zf, 
i= l,... ,p, in GE resp. GL, fulfilling 

curl z: = 0, div ZF = 0 in G E , n-Zf=O on l?, 

curl z; = 0, div Z\ = 0 L in G , n-Z\=0 >on r, 

s I:* Zfdl= 6ij, 
Yk 

s T’z:dl= 0, 
YE 

s r.Zydl=Sij, 
YE 

s r-Zydl=O 
Y; 

and 

Z\(x) = O$~,,), 
uniformly for [xl+ 03. As a consequence of the regularity assumptions on GE 
and GL we get 

ZE E CaD(GE) n CoatGEl i , Z; E C?GL) n Coa(GL). 
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Using the second transmission condition n .(pL HL) =n.(pE HE) on F, we con- , 

elude that for any surface element S C p we have 

s’ T - (‘EE - EL) dl =s n. curl (EE - EL) ds = iwJn * (uE HE - uL HL) ds = 0. 
35 S S 

But this means, that the tangential components of E,E - EL on l? are of the form 

(EE - EL) ltan = Grad ‘p + 5 e! Zk + 5 ey ZF, 
j-1 ’ ’ j-1 

where Grad ‘p denotes the surface gradient of ‘p on p and ei , ei L EE.Q: i=l , ,...,p, are 

complex numbers. 
In complete analogy, we derive from 

curlHL= 0 L in G , s r.HLdl= 0, i=l ,***, PY 
Y; 

that we can write the tangential components of HL as a surface gradient 

HLltan = Grad +. 

Putting (EE- EL)ltan and HLltao in (71, we arrive at 

s n * (HE A EE) ds =sn* CkL A EE) ds 
r I- 

= s n*(GradGn(EL+Gradrp+iz,ei Zi ’ L L+ieFZy))ds. 
I I- i+l 

Applying Stokes’ theorem to the terms on the right hand side, we deduce 

s n. (Grad$ A Grad (p) ds = 0, 
r 

s n - (Grad$ A Zk) ds = 0, 
r 

s n. (Grad$ A Z:) ds = 0 
r 

and therefore 

s n * (HE A EE) ds =sn. CiL A EL) ds. (8) 
r r 

Let us now consider GR= GLn BR, BR:= {x I x E lR3, 1x1 s R}. For large enough R, 
we get by using the Gaussian theorem 

s 
3BR 

,:, - (fiL A EL) ds - sn- (iL A EL) ds = Sn’- (GL A EL) ds = L iqrLsHL * HL dv, 
r aGR CR 

n’ be& the outer normal to GR. 
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Together with (7) and (5) this means 

- iwu LIRHL*ELds +lE(oEEE*EE- iwuEHE*EE)dv=J ,~,*(HL~EL)ds. (9) 
ABR 

For HL we have 

curl HL = 0, divHL= 0 L in G , HL(x) = o(l) uniformly for IxI+ 00. 

Therefore HL is a harmonic vectorfield in GL tending to 0 for 1 x 1 i 03 and thus [6] 

HL(x) = O(i~,,), uniformly for Ix I + CO. 

From EL(x) = o(l) uniformly for [xl+ 00 we get 

I,*, - cFrL A ELII = o+ on 3BR, R+os 

and 

diCR,~,.(HL~EL)ds=o(l) for R+co. 

Taking the limit R + CO equation (9) yields 

csEJsEE * EE dv - io ( uEJEH E - iiE dv + p’,sLH’. EL dv) = 0. 

Since 0 ,bE, uL,uE are real and positive constants, we conclude 

HL= 0, EE= 0, HE= 0. n 

The free parameters hk in (61, which are the circulations of HL along the 
curves ye, are later on used to characterize the different solutions of (3)) (4)) (5). 
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4. Existence 

To establish existence results for ,(3), (41, (51, w.e consider the following auxiliary 
problem : 

. Find HL E C’(GL) n C(cL), 

HE E C2(GE) n CtGE), 
solving 

curlHL= 0 L in G , 
divHL= 0 

divHE E C(cE), curl HE E CtGE) 

(A+k2)HE=0 

k2 = ioaEuE 

nAH E L -nAH =c 

n * (uE HEI - n. !uL HL) = g 

div HE = d 

s t.HLdl= 0 
Y; 

HL(x) = o(l) 

E in G , 

on T, (10) 

i= 1 ,“., P¶ 

uniformly for Ixl+ co. 

For k we choose the square root with positive imaginary part. 
In this chapter, we show, that (10) is uniquely solvable for sufficiently smooth 

data c,g,d. Moreover we describe, how all solutions of (3),(4),(S) can be 
constructed by using the solvability of the auxiliary problem (10). 

By the following Lemma [ 81, the uniqueness of (10) can be reduced to the 
uniqueness theorem given in the last chapter. 

Lemma 1 

Let He C’(GL) n C(GL), H(x) = O( $1, 1x1 +a, 0 < $ ‘2, satisfying divH = 0 

in G L. If we have 

s n*Hds=O, j = l,...,m 
‘11 

? for any connected component 5 of T, there exists a field Field E E C’(GL) n CtGL), 
such that 

curlE= iWuLH, div E = 0 in G L , 

E(x) = O(&, uniformly for Ix1 + CD. 
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Theorem 2 

Problem (10) has at most one solution. 

proof 
* 

We consider (10) with homogeneous data c = 0, g = 0, d = 0. Since HE is a solution 
of the vector Helmholtz equation with wave number k in GE, the divergence 
of HE solves the scalar Helmholtz equation with the same wave number k in GE. 
From d:vHElr = d = 0 and Im(k) > 0 it follows, that divHE vanishes identically 
in Gr [I]. Using the identity 

t 

curl curl = grad div - A 

and defining EE by 

EE = -$ curl HE 

E- we conclude, that HE, EE are solutions of the Maxwell equations in G . 
On the other hand, HL is a harmonic vector field in GL, satisfying HL(x) = o(l) 

uniformly for Ix I + co. Therefore, we immediately get HLtx) = O(,$,z) uniformly 
for lx ( + 00. In addition to this, we deduce from the transmission conditions of (10) 

uL/n *HL ds =/n * (uL HL) ds =sn. (uE HEI ds 
J J q 

= ,- ’ Jn.(iwuEHE)ds= i~~n*curlEEds=O. 
IW 

q q 

Applying Lemma 1 with /3 = 2 to HL proves the existence of a field EL defined 
in G L, having the following properties : 

.curlEL=iopLHL in G L , 

EL(x) = o(l) uniformly for Ix1 -+ 03. 

Thus we have shown that HL, ‘EL, HE, EE solve the homogeneous equations (3), (41, (5) 
with vanishing circulations 

s r*HLdl=O. 
Y; 

Now, from Theorem 1 we conclude HL E 0, HE= 0. I 

Before we start with the existence proof for (101, we have to introduce some 
notation. 
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Definition 

Let O<a<l 

- Coa(G), lIUIIOa.G= SUP Iu(x)I +SUp I u(x) - u(y)1 

XEG x*Y Ix-yr ’ 
x.y EG 

is the space of Holder continuous functions on G. 

- voa(n = (coa(r))3, Ila 1IVa.r =,:$X3( llai IlOa.~), . . 

is the space of Holder conti-uous vector fields on r. 

- Toa(Tl={a~ Voa(I’lln.a=O), llall-rar= Ilallvarr, 

is the space of Holder continuous tangential fields on r. 

- Tia(Tl = {aEToa(rl IDivaE Coa(13), IlulIda.r=max(JIuIITa,T, IIDivuIIOa~l, 

is the space of Holder continuous tangential fields on I having Holder continuous 
surface divergence. 

I 
- $“cr) = T,Oa(r) x coam x coam, 

llUllx,a~m~(IlU~ll~~~, IIU2IlOa,~, JlU3Ilof&. 

eiklx-yl 
- al(x,y) = & Ix-ylY @o(x,y) = & A. 

The spaces C Oa(Gl, Voa(rl, Toa( Tia(13 and Xza equipped with the correspon- 
ding norms are Banach spaces.’ 

Theorem 3 

For any c E Tia(13, gc CoatI’), dECoa( problem (101 is uniquely solvable. 

The solution depends continuously on the given data. 

The proof will be divided into three parts. In the first part, we use a special 
ansatz for HL and HE to transform the transmission boundary - value problem into 
a boundary integral equation. In the second step, we show that the integral 
equation is of second kind. Finally we conclude the proof by showing the injectivity 
of the corresponding integral operator. 



We are looking for solutions HL, HE of the form 

HL(x) = grad, Jxly) (90(x,y) ds(y), 
r 

HE(x) = curl,Ja(y) cP(x,y) ds(y) + grad,JX(y) @,(x,y) dsty) 
r l- 

+ s n(y) 6(y) @,(x,y) ds(y), 
r 

acTia(r), X E Coa(T), SE Coa(r). For HL,HE we get cl, 91 

(i) HL E C?GL) n CoalGEl, HL(x) = O(,i,,) uniformly for Ix 

s T*H~ dl= 0, i=l ,..., p. 
YF 

(ii) HE E C2(GE) n CoatGEl, div HE E Coa(eE), curl HE E Coa(cE) 

(iii) curl HL = 0 L 

divHL= 0 
in G , 

(A+k2)HE=0 
in G E 

k2 = iooEuE 

(iv) llHL IIva,c L s Ca IIXllOa.r9 

max ( II I-i’ II Va,c E, IIdivHE IIo~cE) 5 Ca II( i)IIX,,a, 

II cud HE II vat E i Ca I’MiX ( Ilallda.r , 11s Ilo~--). 

From (i) , . . . ,(iv) we see, that our ansatz meets all the regularity requirements 
of (10). HL and HE depend continuously on a, X and S and solve the required 
differential equations. Therefore we only have to adjust the boundary values 

on !T corresponding to (10). 
Defining F,(x) = ;\qF(x + hn(x)), x E lY, n outer normal to GE, we get the 

following jump conditions for single and double layer potentials and their 

derivatives Cl] : 

curl,Ja(y) Q(x,y) ds(y)l, = JcurlJa(y) Q(x,y)) ds(y) T +n(x) A a(x), 
r r 

grad,JX(y) Q(x,y) ds(y)l, = sX(y) grad,@(x,y) ds(y) 7 $t(x) X(x), 
r r 

. 

Jn(y) 8(y) Q,(x,y) ds(y)l, = jn(y) 6(y) cP(x,y) ds(y), 
r _ r 

j-X(y) Q(x,y) ds(y$ = ~-NY) Q(x,y) dsty), 
r r 

j-S(y) JnyQ(x,y) ds(y)(, = sS(y) $Q(x,y) ds(y) f +-8(x). 
r r 
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The jump conditions do not change, if we replace 0 by 00 on both sides. Using 

(div HE)(x) = AJh(y) 0(x,y) ds(y) + Jdiv,(n(y) 6(y) ‘0(x,y)) ds(y) 
l- I- 

=- k’JX(y) 0(x,y) ds(y) +s8(y) n(y) .grad,0(x,y) ds(y) 
l- r 

=- k2JX(y) cP(x,y)ds(y) -JS(y, 3”y0,(x,y) dsfy), 
I- r 

E XEG, 

we deduce 

H!‘(x) = sX(y) gtad,0,,(x,y) ds(y) - 3 n(x) X(x), 
r 

H!!(x) = ~curl,(a(y) 0(x,y)) ds(y) + 3 n(x) A a(x) 
r 

+ X(y) grad,0(x,y) dsfy) + in(x) X(x) s 
r 

+ s n(y) 6(y) 0(x,y) dsfy), 
r 

(div HE)-(x) = - k’Jh(y) 0(x,y) ds(y) 
r 

- s 8(y) dnyO(x,y) ds(y) + +8(x). 
r 

Introducing the operators 

(Ma)(x) = 2n(x) AJ curl,(a(y) 0(x,y)) dsfy), 
r 

(Na)(x) = 2 n(x) +s curl,(a(y) 0,(x,y)) ds(y), 
r 

(KM(x) = 2sX(y) dnyO,(x,y) ds(y), 
I- 

(K’h)(x) = 2sX(y) 3,X0(x,y) ds(y), 
r 

(S X)(x) = 2jX(y) 0(x,y) ds(y), 
r 

(P X)(x) = 2n(x) AJn(y) X(y) 0(x,y)ds(y), 
r 

(QX)(x) = 2n(x) *Jn(y) X(y) 0(x,y)ds(y), 
I- 

(R X)(x) = 2 n(x) AJXCY) grad,0(x,y) ds(y), ’ 
r 
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(ICoX)(x) = 2j%y, 3,$+-,(x,y)ds(y), 
I- 

(Ro Xl (x1 = 2 n(x) .sX(y) grad,@o(x,y) ds(y), 
l- 

we get the following expressions for the boundary values of HL and, HE : 

2 n(x) A H!(x) = (Ro X)(x), 

2 n(x) A H!(x) = (Ma)(x) - a(x) + (R X)(x) + (P 6)(x), : 

2 n(x) . (uL H:(x)) = uL ((Kb X)(x) - X(x)), 

2 n(x) * (uE H!(x)) = uE ((N a)(x) + (K’ X)(x) + X(x) + (Q 6)(x)), 

2(divHE)-(x) = - k2 (S X)(x) +6(x) - (K~)(x).. 

Thus, we immediately see that solving (10) is equivalent to solving the integral 
,equation 

R-R, 
Av= b, pE(I+K’)+pL(I-K;)) 

-k*S 
ji!), v= (;), b=$). (Ia 

The integml equation (12) is of second kind in 2?$a07 

According to [ 1,2,3,9] the operators defined above have the following mapping 
properties 

M : Toa + Toa resp. T~“(I? + Tia(P), N: T(fa(r)+coaw, 

Q,S,K,K',Kb: CoaU')+Coa(r), P: coau-b+T~au3 9 

R,Ro: coam + Toam 

N,R,Ro are continuous, M,Q,S,K,K’,Kb,P,R-Ro are compact. 
Setting 

F(x) = 2sXCy) grad,0,(x,y) ds(y), x E co"(r) E 
9 XEG, 

I? 
we get 

FE C2(GE) n Coa(GE) 3 

curlF= 0 E hG, 

nAF r=RX. I 

According to cl1 we deduce 

f 

Div (RX) = Div (n A F) = -n*curlFlr=O 



/ 

/ 

I 

I 

I 

I, 

. 

f 

i. 

- 13 - 

and therefore 

In the same way we show IIRoXlldor,T=llROXll~~T, so that the continuity of R,Ro 
and the compactness of R - R. carry over to the case where we consider R,Ro as 
operators mapping Coa(I’l into Tta(T1. 

Now A is split up into 

.( 

-I 0 0 
A=B+C, B= pEN (t.~r*~LlI 0 , 

0 0 I 1 i 

M R-R, P 
c= 0 pEK’-pLK;) pEQ . 

0 -k2S -K 1 

From the above considerations we immediately get 

B, C : X;OL(I’l -+ X:a(17 

where B is continuously invertible and C is compact. Therefore (121 is of second 
kind. 

The opendor A is injeclive 

Consider a solution v = (i) E Xz” (l’l of the homogeneous equation Av= 0. 

Inserting a,X,6 in (111, the fields HL and HE obtained in this way, solve the 

homogeneous problem (101. Corresponding to Theorem 2, they vanish identically. 
But HL was defined as 

HL(xl = grad, sX(yl cPo(x,yl dsfyl. 
I- 

and therefore 

O=2n*H~=2~~3,x(Dods-X=-(I-K’~lX. 
r 

Since GL = lR3 \ GE is connected and unbounded, we get NII - Kbl = (0) [41, so 

x= 0. 

Using X= 0 we obtain from the last component of Av = b 

(I-Kl8=0. 

According to Cl], N(I - Kl = (0) for Im(k1 > 0 and thus 

6= 0. 

From the first component of Av = b we get 

(I-Mla=O 

and again 

a=0 

because N(I- Ml= (0) for Im(kl> 0 [Il. 
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From the above considerations we conclude that our auxiliary problem (10) is 
equivalent to the integral equation Av = b. Since c E Tfa(r), g E Coa(T), d ECO~(T’), 
the right, hand side b lies in Xza(IY. Now A is compact and injective in Xza(T) 
and therefore, according to the Riesz - theory, continuously invertible in Xia(I?. 
So Av = b is solvable for any b E X SOL, with v depending continuously on b. If 
we use the components of v to define HL, HE using (111, we get a solution of (10). 

BY 

IIHL IIva,c L s Ca IIXIlOa,~, 

max ( II HE II va,G E , lldivHE Ilo&) s Ca II( %) IIXda, 

IIc~rl HE 1Iva.c E g Ca ImX ( Ilall,ja,p , II811 Oar) 9 

we get the continuous dependence of HL and HE on the data c, g, d. n 

Up to now, we have shown the unique solvability of the auxialiary problem (10) 
for arbitrary c E Tia(T), g E Coa (I’), d E Coa(I’). With the help of this result, 

we want to prove existence and uniqueness for (31, (43, (5 1 under the additional 
assumption (6) of prescribed circulations for HL. 

Lemna 2 

(i) Let G’ C GL be defined as above, o E Coa(lR3), supp (8) C G’. Then 

u(x) = j-p(y) Qo(x,y) dy E C20R3), 
GJ 

‘U(X) = O(,$, 1, grad u(x) = O(,$), 1x1 + 03. 

(ii) Consider Je E C’(IR3), div Je = 0, supp (J,) C G’. There exist 

H’ E C1UR3), E’ E C1(GL) I-I C(EL), 

curlH’= Je, divH’= 0, H’(x) = O( ,$I, uniformly for 1x1 -j 03, 

curl E’ = iwpL H’, div E! = 0, 1 E’(x) = O( ,;;1), uniformly for Ixl+o3. 

(iii) Corresponding to the Neumann fields in GL we have Ef E C’(GL) n C(eL), 

curl Ef = iouL Zk, div Ef = 0, E:(x) = O$,), uniformly for Ix1 -)a. 
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The first part is an easy consequence of some well known properties of the 
Newtonian potentials in lR3 [s]. 

I 
In (ii), we assume J, E C’(lR3), supp(J,) c GJ. Therefore Je E Coa(R3) and 

j ‘,. . from (i) we get 

A= J,* O. =sJ,(y) Qo(x,y) dy E C2(lR3). 
I GJ 

;/ ( ‘Defining H J as HJ = curl A E Ct(tR3), we see that 

divHJ= 0, curl HJ = curl curl A = (grad div - A) A = J,. 

Corresponding to (i), the components of HJ behave as O(,+,z) uniformly for 1 x I--) co. 
Since 

Jn.HJds =s n*curlAds = 0, j=l ,-**, m, 
$ ? 

we may apply Lemma 1 to HJ (with @ = 1) and get the existence of EJ. 

For the last part, we remark, that Z: E C’(GL) n C(GL), i= l,...,p, are harmonic 
vector fields in GL satisfying 

n-Z\= 0 on r, z: = O( ,$I, uniformly for Ix I + 0~. 

Using again Lemma 1 with p = 1, the proof js completed. n 

With the help of Lemma 2, we obtain the main result of this paper. 

l7leorem 4 

I 
I . 
/ 

J 

Consider Je E C’(lR3), divJ, = 0, supp(J,) c GJ, EJ C GL, GJ bounded. Under’ 
these assumptions, problem (31, (41, (S),(6) possesses a solution HL, EL, HE, EE. 
HL, HE, EE are uniquely determined. 

-f 

Consider HJ, which is given by Lemma 2. Define hi as hi -ST * HJ dl, i = l,.. .,p, 
and Yf- 

/ 
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c= CIA (HJ+ HZ&, 

g= n*( uL(HJ + Hzl)Ir.=n~(~LHJ1lr. 

From HJ 6 C1(lR31 we deduce 

HJI, E CoaW. 

For the surface divergence of n A HJ on p we get according to [l] 

Div(nhHJ1=-n~curlHJlr=-n.J~[r=O, 

because supp(J,l C GJ, cJ c GL. 
For the Neumman fields Zk holds [6] 

nh Z\ r E Coa(Tl, Div(nhZ~l=-n*curlZtlr=O. 

and therefore 

c E T~a(17. 

On the other hand H J E C ‘(iR3 1 implies 

g E coam 
By Theorem 3 there exist unique fields fiL, GE, 

fiL E C1(GL) n C(cL), 

iiE E C2(GE) n C(eE), divfiE E C(EE1, curl fiE E CEE1 

solving 

i 

curlfiL= 0 (A + k21 fiE = 0 
in G L 

in G E 

div fiL = 0 
, 

k2 = iocsEuE 
, 

“E nhH -nhjiL=c 

n’. (uE I?‘) - n * (uL iiLl = g 

div GE = 0 

on r, 

s r.fiLdl= 0 
L 

yi 

GL(x) = o(l) uniformly for Ix I + 00. 

From div GE = 0 on r and Im(kl > 0 we get in the same way as in the proof 

of Theorem 2, that GE and gE = -$ curl GE solve the time - harmonic Maxwell 

equations in GE with coefficients u E, GE and o. 
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fiL is harmonic in GL. From the proof of Theorem 
even the stronger condition fiLlsI = O(,i,2) uniformly for 
we have 

iwuL s n * fi’ds = iwuE s n * EEds - io s gds 
5 rj 5 

= sn. curl zEds - iwuLsn * HJ ds 
q q 

= s n - curl EEds - iopL s n * curlAds, 
5 q 

3, we know, that for fiL 
Ix 1 + 03 holds. In addition 

j= l,...,m, 

A being the convolution A= Je * 00 from the proof of Lemma 2. Since 5, j = l,...,m 
are closed surfaces, we conclude by Stokes’ theorem 

s n. fiLds = 0, j = l,...,m. 
5 

Now Lemma 1 guarantees the existence of EL E,C’(G~) n CtGL) with 

curl iZL = iwuL fiL L in G , EL(x) = oc,$ uniformly for lx I --j 00. 

Summarizing the results obtained for GL, EL, GE, SE, we have 

fit, EL E C’(GL) n C(cL), GE, EE E C’(GE) n C(GE) 

curlRL= 0 

curl iZL 
in GL, 

= i0t.r L “L H 

curl GE = oE EE 
in G E 

curl EE = iopE GE 
, 

“E nAH -nhfi’=c 

n * Q.rE iiE) - n. (uL EL) = g 
on r, 

s t*fiLdl=O 
Y; 

i= l,...,p, 

iiL(x) = o(l), EL(x) = o(l) uniformly for 1x1 +a. 

But in Lemma 2 the existence of EJ, EZ E C1(GL) n C(cL), 

curl E’ = iqrL H’, curl EZ = iopL HZ, 

is shown, both behaving uniformly like o(l) for Ix I + OX 
Defining HL, EL, HE, EE as 

HL t GL+ HJ+ HZ, EL = EL+ EJ+ EZ, HE z GE, EE z EE, 
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and using curl HJ = J,, ‘curl HZ = 0, we get 

curl HL = curl tfiL+ HJ+ HZ1 = J, 
L 

curl EL = curl (EL+ EJ+ EZ) = iwuL HL 
in G , 

curlHE=aEEE 
E 

curl EE = iwpE HE 
in G , 

nAHE=nh~E=nhiiL+c=nh(fiL+HJ+HZ)= nAH L‘ 

n. (pE HE) = n * (pE GE) = n * tuL fiLl + g = n * (t.rL(fiL+ HJ+ HZ11 on F 

and 

j-r * HL dl =sT. tfiL +HJ+HZ)dl=~r.HJdl+h~-h;=hf, 
T-F rf Y; 

herefore HL, EL, HE, EE solve (31, (41, (51,(61. I 

co?xdlary 

For Je E C’(lR3J, div Je = 0, supp(J,l c GJ, EJ C GL bounded, problem (31, (41, (51 
is solvable. 

In the homogeneous case J, = 0 we get exactly p linear independent solutions 
HL, HE, EE, where p denotes the topological genus of GE resp. GL. 

EL is not uniquely determined. 

proof 

The first statement follows immediately from the last theorem by chasing the 
circulations hk, i=l ,. ..,p arbitrarily. 

In the case J, = 0 Theorem 3 shows the existence of p solutions H:, Ek, Hf, EF, 
j=l,..., p, of (31,(41,(S), having circulations h;= 6ij, i=l,...,p. The linear indepen- 
dence of Ht, Ek, Hr is a consequence of the uniqueness results of Theorem 1. 

The nonuniqueness of EL is obvious. I 
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