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We consider a transmission boundary - value problem for the time harmonic Maxwell 

equations without displacement currents. As transmission condilions we use the continuity 

of the tangential parts of the magnetic field H and the continuity of the normal com- 

ponents of the magnelizalion B = PH. This problem. which is posed over all R3. is then 

restricted to a bounded domain by introducing artificial boundary conditions. 

We present uniqueness and existence proofs for this problem using an integral equation 

approach and compare the results with those obtained in the ubounded case. 

1. Introduction 

A large number of different problems in electrical enigneer- 
ing lead to transmission boundary value problems for the time - 
harmonic Maxwell equations : 

Consider a bounded domain of conductive material GE c lR3, 
which is surrounded by air. In GL = iR3 \ GE (GE denotes 
the closure of GE) a given, time - harmonic current density 
Te(x,t) = J,(x) eSiot induces electromegnetic fields in GE 
(Fig. 1). We are interested in computing the current densities 

;i) GE 

Fig. 1 

in G’ which are due to the induced fields. 

The resulting classical transmission boundary - value problem 

curl HL= Je - itiEL EL 

curl EL = iouL HL 
in G L , 

curl HE = (aE - iweE) EE 

E E in G E 

curl EE 
, 

= iou.H 

nhHE=n*HL 

nhEE=n*EL 
on lT= 3GE = 3GL, 
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with Sil\>er- - .\liiller radiation condition 

HL A& - EL= o(,$ 

and coefficients 

020 frequency, 

EL, EE ’ 0 electric permittivity in G L, GE, 

!JL, PE ’ cl E magnetic permeability in GL, G , 

050 E electric conductivit\ in G , 

is well investigated. Under certain regularity assumptions this problem is uniquely 
solvable [ 7, 10 I. 

For devices working at low frequencies, the above problem is modified. The 
displacement currents are neglected, the boundary condition n A EL = I; I\ EE on r is 
changed to n * (pE HE) = n * (pL HL1 on r and the radiation condition is substituted 

‘by HL(xl = o(l), EL(x) = o(l) uniformly for /xl+ a. This new, problem 

curl HL = J, 
L 

curl EL = iwuLHL 
in G , 

curl HE = crE EE 
in G E 

curl EE = itip’ HE 
, 

nAH E =nAH L 

on r. 
n * (pE HE1 = n * (pL HLl L 

(1) 

HL(xl = o(l), EL(x) = o(l) uniformly for 1 x I + 03. 

was investigated in CSI. 
For the application of certain numerical tech-’ 

niques (finite difference or finite volume schemes) 
to (1) GL is cut off (Fig. 21. Instead of the un- 
bounded domain GL we now consider a bounded 
domain Gk. On the new boundary ro, the values r, 

of n. (l.~~ HLl are prescribed. The corresponding 
data is given by measurements or is estimated. 

In this paper, we consider (11 together with 
this artificial boundary condition : 

curlHL= Je 

curl EL = i,pL HL 
in Gk, 

curl HE = oE EE 

curl EE = iwuE HE 

F 

Fig. 2 

c 

in G E , (2) 
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nAH E =nAH L 

onr, 
n * (uE HEI = n. (pL HL) (2) 

n. (uL HL) = f on l& 
! 1  

We show existence and uniqueness theorems for (2) and compare them with the 

: corresponding results for ( 1) .’ 

2. Preliminaries 
Before we start with the main part, we have to define the class of admissible 

domains GE, Gb. 
Let C(G) ( C k (G) ) denote the space of continuous ( k times continuously 

differentiable) functions on G. 
GE C R3 is an open, bounded domain with C2 boundary. The complement 

GL = lR3 \ GE should be connected (GE denotes the closure of GE). GE is the 
union of m connected components GF, j = 1 , . . . ,m having the topological genus pj. 
The boundaries 3 = 3GF are closed surfaces, which should be disjoint. Setting 

r=$) 5 we get r=3GE=3GL. 

The topological genus of GE resp. GL is p = 5 pi- There exist p surfaces 
j-l 

$CGE resp. ZkcGL, i=l,...,p, such that GE\()ZZE resp. GL\QZk are 
i-l I 

simply connected. The boundary curves yk = 32: and $ = 3Zk lie on r. 
Moreover, let Go be a simply connected, open, bounded domain in R3, such 

that 

,, . . 
/. 

The boundary ro := ~GO is assumed to be C2. 
Gk is now defined as 

G; = Go\ GE. 

Therefore, the topological genus of Gb is p and Gk \ fi Zf is simply connected . 



-4- 

Example 

Let GE be a torus, Go 
be a sphere containing GE 
in its interiour. In this case 

J we have m=p=l. The sur- 
faces 17, 1: and the curves 
uf, -fF are shown in Fig. 3. 

Fig. 3 

Since GE and Gk both have topological genus p, there exist p linear independent 
Neumann fields Zs resp. Z,Li, i = 1,. . . ,p, in GE resp. Gk, fulfilling 

curl Zy = 0, div ZF = 0 E inG, n*Zy=O on I= 3GE, 

curl Z,Li = 0, div Zbi = 0, in Gb, n’Z~i=O on l? u I0 = aGk, 

.S~. Z: dl= 6ij, 
y,E 

s r.ZFdl= 0, 
Y; 

ST . Zbj dl= 0, 
YE 

As a consequence of the regularity assumptions on GE and Gk we get 

Ze E CatGEl n CoatGEl I , Z,Li E Ca(G,L) n Coa(GL) 0 * 

For the prescribed data in (1) resp. (2) we suppose 

J, E C1(IR31, div J, = 0, supp( J,) C GJ, eJcGb bounded, 
resp. 

f E coa(r,I. 
\ 

Moreover, we are looking for classical solutions of (2) satisfying 

HL, EL E C’(GbI n CtGkI, HE, EE E C1(GEl n C(cEI. 

In the subsequent analysis we make use of the following Banach spaces : 

Let O<a<l 

Coa(G), IIUIIo&= SUP lU(X)l+SUp 
I u(x) - u(y)1 

XCG X’Y Ix-YIQ ’ 
x.y EG 

is the space of Holder continuous functions on G. 
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- da(G). llutl 1a.G = SUP Ill(X)1 + SUP IVU(S)l + SUP 
IVu(x)- Vu(y)1 

XEG XEG X’Y 
x.y EG 

Ix-YIQ 

is the space of continuously differentiable functions on G with Holder continuous 
derivatives. 

- voa(n = (coa(r))3, Ilallva.r=,yy3( IIaillOa,~-)~ -. . 
is the space of Holder continuous vector fields on r. 

- T°C’(~)={aEVoa(r)lnma=O~, IIaIITacr= Ilallv~r, 

is the space of Holder continuous tangential fields on r. 

- Tta(I’) = {a E Toa I Diva E Coat I’)}, IIuIIda,r=max(IIuIITa,r, IIDivullOacd, 

is the space of Holder continuous tangential fields on I’ having Holder continuous 
surface divergence. 

- xiam = -r,Oam x coam x coam, 
IIUIlxda= max (IlUlllda.~, IIU2IlOa,~, IIUJIl()&- 

- Yea= -roam x coam x Coa(r) x coa(roj, 
IlUllya= max (IlulllT~ri IIU~llOa.~x llu~lloa.~~ IIU4IlOa,q)- 

- yia= Tiam x coam x coam x coa(ro 1, 

llu II,, = max (Ilulllda.r, IlUzIlo~r, IlUg IlOa,~, IlU~llo~q). 

- ~~a=~~a~r~~coa~r~~cla~r~~coac(rO~, 
Ilu IIyda = max(Ilu~lldar,j3 llqll~~~, Ilu3111ar~, IIu~IIo~,~). 

Moreover we define 

- the bilinear form 

<.;>: yoaxyoa + c , <u,v> = s h.q-v,+u2v2+u3v3) ds + s u4v4ds, 
r, 

Oar which is nondegenerated on Yd xyoa. = 

- the dual system (Yia,Yoa;c., a>). 
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- the Hilbert space L’T( JY) of L’ tangential fields on F. 

- the Hilbert space 

L2 = L+(r) x L2C, x L2C, x L?r,,, 

equipped with the natural scalar product 

(u,v)L”=<u,v>. 

eiklx-yl 
- the functions CD and QO as O(x,y) = & ~x-yl, Oo(x,y) = & A. 

- [VI as the span of v, [v]={xlx=zv, ZEC}. 

3. Uniqueness 

Taking a closer look at (2) we see, that EL is ,not uniquely determined, 
because .adding a suitably chosen gradient field does not change the equations. 

This is also true for the unbouded problem. Moreover, in the unbounded case’ 
we have to prescribe some additional data to make HL,HE,EE unique [S] : 

Theorem I 

For the unbounded problem, together with the additional condition 

s t.HLdl= hk, 
Y; 

hk E @ given, ‘c being the unit tangent to y:, the fields HL, HE, EE are uniquely 

determined. 

Problem (2) exhibits the same behaviour, as is shown in the next theorem. 

. 
Theorem 2 ’ 

For the bounded problem (2) together with 

s r.HLdl= h;, i= l,...,p, 
Y/- 

i 

(3) 

the fields HL, HE, EE are uniquely determined. 
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We consider the homogeneous problem with J, = 0 and hk= 0, i = 1,. ..,p, and 
show that the fields HL, HE, EE vanish identically. 

From the second transmission condition n. (uL HL) = n * ($ HE) on F, we con- 
clude that for any surface element S C p holds 

s r*(EE-EL)dl=Jn.curl(EE-EL)ds = iwJn*(uEHE-pLHL)ds= 0, 
3s S S 

so that the tangential components of EE - EL on F are of the form 

(EE - E’)it,, = p L L ‘EE 
Gradcp+iTei Zoi +i5ei Zi, . . 

where Grad ‘p denotes the surface gradient of ‘p on F and ef, e: E @, i = l,.. . ,p, are 
complex numbers. 

In the same way, we derive from 

curlH’= 0 L in G , s t.HLdl= 0, i=l ,*--, PY 
Y; 

that the tangential components of HL on F can be written as a surface gradient 

HLlran = Grad $. 

Therefore, 

s 
r 

n.(HLnEE)ds=Sn.(Grad~~(EL+Gradp+i~efZoLi+i~eBZ~))ds, 
r I . 

where F denotes the complex conjugate of a field F. By Stokes’ theorem we 
deduce for the terms on the right hand side 

s n*(Grad$AGradcp) ds = 0, 
r 

s 
- 

n * (Grad 4 A Zbi) ds = 0, 
l- 

S n*(Grad$nZ:)ds=O 
r 

and thus 

S n. (GL A EE) ds -sn. (EL A EL) ds. (4) 
r r 

Using the homogeneous boundary condition n. (uL HL) = 0 on ra we get for any 
surface element S c r, 

ST *EL dl =sn * rot EL ds = iosn * (uL HL) ds = 0, 
as S S 
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so that 

ELllan = Grad ‘po on r0, 

since Ta is the boundary of the simply connected domain Go, 
With the same reasoning as above we have 

HLItao = Grad +a on TO 
i 

and a simple application of Stokes’ Theorem shows 

s n + (iL x EL) ds =sn. (Grad& x Grad cpo) ds = 0. (5) 
r, r, 

Using the first transmission condition n A HE = n A HL on JY together with (4) 
and the Gaussian theorem we get 

s n.(HLhEL)ds =Jn*(HEnEE) 
I- r 

From the application of the Gaussian 

ds =# aE EE * EE - iopE HE + HE) dv. 

theorem to the fields in Gb follows 

sn. CsL x EL) ds -sn. (EL x EL) ds = Jno* (EL ” EL) ds 
r,- r ruq 

= s div(HLx EL) dv=- iopL s HL. fiL dv, 
L 

Gn G,L 

where n is the outer normal to GE resp. Go and ‘no is the outer normal to Gb. 
Adding the last two equations, we get with the help of (5) 

aEJeEE * EE dv - io (t.~“,sE,, * GE dv + pLIHL * gL dv) = 0. 
GO 

Since the coefficients o, pL, pE and csE are positive we finally conlcude 

HL=O, HEnO, EE=O. H 

, 

Theorem 3 

For Je e C’(lR3), div Je = 0, supp(J,) c GJ, EJ CGL bounded, the unbounded 
problem ( 1) is solvable. 

In the homogeneous case J, = 0 we get exactly p linear independent 

HL, HE, EE, where p denotes the topological genus of GE resp. GL. 
solutions 
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The different solutions are characterized by their circulations 

s r*HLdl= hk, i=l ,..*, P3 
y,’ 

along yiL. 
EL is not uniquely determined. 

To show existence for (21 we consider the following auxiliary problem 

Find HL E C’IGkl n CtGkl, 

HE E C2(GEl I-I C(GE1, div HE E CtGEl, curl HE E C(cE) 
solving 

curlHL= 0 
in Gb, 

(A+k21HE=0 

divHL= 0 k2 = iodEuE 

nAH E -nhHL=c 

n. (uE HE1 - n. (uL HLl 7 g 

divHE= d 

n. (uL HLl = f 

.I- r*HLdl= 0 
Y; 

where we choose k so that Im(k1 > 0. 

in G E , 

on I, (6) 

on G, 

i= l,...,p, 

We show that (61 is uniquely solvable for sufficiently smooth data c,g,d,f. 
Using the solutions of (61, we solve our original problem (21. In this process, the 
following Lemma, which is shown in [ 91, plays an important role. 

Le?nma 1 

Let He C’(Gkl n C(ckl satisfy divH= 0 in Gb and 

s n*Hds=O, j = l,...,m 
lY 

for any connected component 4 of p. There exists a field Field E e C’(GbI n C (@I 
such that 

curlE= iouLH, div E = 0 in Gb. 
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With the help of this Lemma, we prove uniqueness for (6). 

Lemma 2 
a 

Problem (6 1 has at most one solution. 

Proof 

Let HL, HE be solutions of the homogeneous problem. The divergence of HE 
vanishes identically in GE, because div HE 1 r- = 0, Im(k) > 0 and divHE is a solution 
of the scalar Helmholtz equation in G ’ with wave number k [ 11. Therefore, HE 
and EE = -$ curl HE solve the Maxwell equations in G E. Moreover from g = 0 we 

iset 
uLJn *HL ds =sn * (uL HL) ds =sn * (uE HEI ds 

5 q q 
=,iiJn.(iouEHE)ds= iiJn.curlEEds=O, 

rj q 

so that Lemma 1 can be applied to HL. Lemma 1 guarantees the existence of EL, 

curlEL= iwuLHL in Gk. 

But now, the fields HL, EL, HE, EE are solutions of (2) with homogeneous cir- 
culations (3). Using Theorem 2, we get 

HLcO, HE+). I 

For the solution of the auxiliary problem (61, we make the following ansatz : 

Lemma 3 

Define HL and HE as 

I-IL(x) = grad,JA(y) 0,0(x,y) ds(y) + grad,Jx(y) Oo(x,y) ds(y), 
r % 

HE(x) = curl,Ja(y) @,(x,y) ds(y) + grad,JX(y) @(x,y) ds(y) 
r r 

+ .I- n(y) 6(y) cP(x,y) ds(y), 
r 

aET~a(17, x E co=(r), 6 E co=(r), x E coa(r~). 
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Then 

HL E CCD(GL) n Coa(GL) 0 0 9 

HE E C2(GE) n Coa(EE), div HE E Coa(GE), curl HE E Coa(cE) , 

curlH’= 0 
in G 

divH’= 0 
k 

s T.HLdl=O 
7; 

The regularity properties of HL and HE follow from corresponding theorems 
about single and double layer potentials in [l]. HL and HE obviously solve the 

required differential equations. Since HL is a gradient field, the circulations along 
yL vanish. n 

(A+ k2) HE= 0 
in G E , 

k2 = iwaEuE 

For the values of HL, HE on the boundaries follows 

Le?n?na4 

Defining F, as F,(x) = ~~~F(x * hn(x)) for x E I’ or x E To, we get 

H!(x) = JX(y) grad,Qo(x,y) ds(y) - =)n(x) X(x) + sx(y) grad,@g(x,y) ds(y), 
r Gl 

H!(x) = s curl,(a(y) Wx,y)l ds(y) + + n(x) A a(x) 
r 

+ X(y) grad,Wx,y) ds(y) s + in(x) X(x) 
r 

+ s n(y) 6(y) @(x ,y) ds(y), 
r 

(div HE)-(x) = - k2JX(y) Mx,y) ds(y) 
r 

- s S(y) 3,+D(x,y) ds(y) + +8(x) 
r 

on r resp. 
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c 

H!(S) = sX(yl grad,O,-,(x,y) ds(y1 + sx(yl grad,@o(x,y) dsty) + in(x) x(x) 
I- r, 

on ro, where n is the outer normal to GE resp. Go. 

The jump conditions for single and double layer potentials and their derivatives 
are given by Cl] : 

’ curl,Ja(y) D,(x,y) ds(y)l, = Jcurl,(a(y) cD(x,y)) ds(y) ? in(x) A a(x), 
‘i r 

grad, sX(y) O(x,y18ds(y)l, = JXCyl grad,O(x,y) d,s(y) 7 +n(x) X(x), 
r r 

Sri(y) S(y) @(x,y) ds(y)l, = Sri(y) 6(y) @(x,y) dsfy), (7) 
r I? 

j-X(y) Q(x,y) ds(y)l;= sX(y) O(x,y) ds(y), 
r I- 

j-h’(y) dQ(x,y) ds(y)l, = JS(y) 3,Y@(x,y) ds(y) f +6(x). 
l- I- 

They do not change if we replace @ by @O or T by IO. 
Thus we immediately get the representation of ,Hk, H!! on l? and HL on l-0. 

For (divHE)- on I we use 

(divHE)(x) = AsXCy1(9(x,y) ds(y) + Jdiv,( n(y) 8(y) cD(x,yl) ds(y) 
l- r * 

=- k2JX(y)‘O(x,y) ds(y) +sS(y) n(y) .grad,Q(x,y) ds(y) 
r r 

=- k2sX(y) (9(x,y) ds(y) - s8(y) &,,O(x,y) ds(y). n 
r r 

Thus our ansatz solves the differential equations of (6), so that only the 
boundary conditions on T resp. l-0 have to be adjusted. This leads to a boundary 
integral equation on r u r,. 

In the subsequent Lemmata we make use of the following operators 

(Ma)(x) = 2n(x) ~s curl,(a(y) @(x,y)) dsfy), 
r 

XE r, 

(Na)(x) = 2 n(x) *s curl,(a(y) O,(x,y)) ds(y), x E r, 
r 

f 



(K Xl(x) = 2&r, 3nY@(x,yl ds(y1, 
l- 

XC r, \ 

(K’Xl(xl = 2~5(yl 3,$‘,(x,yl ds(y1, 
r 

XC I-, 

i 
,’ l 

(S X)(x) = 2sMy) O(x,y) ds(y1, 
r  

x E I-, 

. 
5 

: 
I 

(P Xl(x) = 2 n(x) hJn(yl X(y) (9(x,yl ds(y1, 
l- 

(QX)(x) = 2n(xl *Jn(yl A(y) @(x,ylds(yl, 
r 

XC l-, 

x E r, 

(R Xl (xl = 2 n(x) ASA grad,0(x,yl ds(y1, XEr, 
r 

US0 x)(x) = 2sx(y) 3,9x,y) ds(y1, 
‘r, 

(K’r”rxHx) = 2i)c(y) d,$Ux,y) ds(y1, 
r, 

(K-J X)(x) = 2j-My) d,$(x,y) ds(y1, 
r 

XC To, 

XC r, 

XE r,, 

(Rqrxl(xl = 2n(xl ~sx(yl grad,@(x,yl ds(y1, 
r, 

XE r. 

If Cp is replaced by cPo, the operators are marked with a lower index 0. 

Lem?na 5 

The integral operators defined above have the following mapping properties 

M : Toa -j Toa resp. Tta(17 -j T~OL(I?, N: T~au-)-+coau-~ 3 

K,Ko,K’,K’o,S,Q : Coa(Pl + CoaU7, P. coa~r)+T~"(r) . , / 
R,Ro: coaw)+T~am , Kb": coa(ro) -+coa~ro) , 

KO F coa(ro) +coam, ~~~~~ coam +coa(ro), 

% W coatro) +T~aw). 
1 N,R,Ro are continuous, M,K,K~,K’,K~,S,Q,P,R-RO,K~,K~~~,KO~~,@~ are 

compact. 
r 

-f 

In [1,2,3,10] the continuity of N, the compactness of M,K,Ko,K’,Kb,S,Q,P, 
R - Ru, K$ are shown as well as the continuity of R, Ro resp. compactness of 
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R - Ro where R, R0 are regarded as operators mapping Coa(Tol to Toa( l-1. 
Setting 

F(x) = 2sX(yl grad,0,(x,yl ds(y1, x E coam, E XEG, 
l- 

we get 
1 

FE C2(GEl n Coa(cEl, 

curl F = 0 E in G , > 

nA F == RX. 

According to [l] we deduce 

Div (RX1 = Div (n A Fl = - n * curl FI, = 0 

and therefore 

In the same way we show ((RoX(lda,~= IIRoXIITa,~, so that R,Ro and R- Ro have 
the same properties as before if we replace Toa(P) by Tia(I’l. 

The compactness of Kbq r, Kbrq, R$ ’ is obvious. n 

Lemma 6 

HL, HE defined in Lemma 3, solve (61, if a, X, 6, x are a solution of the integral 
equation Av = b, 

f M-I R- Rn 
E 

A= pON uEU+K’l+uL 
-k2S 

R- R. 
uEU+K’l+uL 

-k2S 
pLK$r, 

P -*r 

(I-Kbl uEQ _ pLKfOr 

I-K 0 ’ 
0 uL(I +,Kb’l I 

v=( ;), b=2 (i). 

This is obvious from the definition of the operators and the representation of 
the values of HL, HE, &HE on the boundaries given in Lemma 4. n 



- 15 - 

To solve the above integral equation, we want to apply Fredholm theory. 

Lemma 7 

The operator A can be decomposed into A = B + C, 

-1 0 0 0 
B= i lIEON (pE+pL)I 0 0 

0 I 0 

\ 0 0 0 PLI 

R-R0 R-R0 P P 
pEK’- pLKb i,rEQ pEK’- pLKb i,rEQ 

-k’s -k’s -K -K 

P Ko P Ko 
L ,rJ-iJ L ,rq 0 0 

B, C map Yja into itself. B is continuously invertible, C is compact. 
The null space N(A) has dimension 1. 

The mapping properties of B and C follow directly from Lemma 5. To determine 
the nullspace of A, we proceed in two steps. We first show, that dim N(A) 5 1 and 
then dimN(A1 * 0. 

, 

(i) dim N(A) s 1 

Let v be a solution of ,the homogeneous equation Av= 0. Using v to define HL 
and HE according to Lemma 3, we know from Lemma 6, that HL, HE solve the 
homogeneous auxiliary problem (61. By Lemma 2, this problem possesses at most 
one solution and therefore HL = 0 in Gk. But HL was defined as 

HL(xl = grad,JX(yl @o(x,yl ds(y1 + grad,sx(yl Q)e(x,yl ds(y1, 
r Fl 

= grad, s x(y) @e(x,yl ds(y1, 
ruq 

i(x) = { ;I;;: XEr x E q E coa(r” r,, 

Applying the jump conditions (71 to HL on P u PO = aGk we get 

0 = 2 H: = 2 s x(y) &IOoo(x,yl ds(y1 + ‘j;(x) = (I + i;;b, “x on rur,, 
TUG 
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where n denotes the outer normal to Gk and kb : Coal r u rol + Coat I’ u rol is 
defined in analogy to Kl, on Coa (l7. But this is the integral equation for the 
solution of the interior harmonic Neumann boundary- value problem in, Gk with 
the help of a single layer potential ansatz. Since Gb is a bounded, connected 
domain, we have C4] 

N(I+K’0)=[~]:={11(71=z~, ZE@}, ijb coam r,) 
and 

X=,$1 G’ 

for some z E @. Substituting this result into the homogeneous integral equation 
Av= 0, we get 

R - R, P 
pE(I+K’)+pL(I-K;,) c,EQ 

-k2S I-K 

But according to [Sl, x is continuously invertible in X$a(13. Therefore a, X, 6 
are uniquely determined by x so that dim N(A) < 1. 

(ii) dim N(A) > 0. 

Now suppose that dim N(A) = 0. In this case, A would be continuously invertible 
in Yi” and the auxiliary problem (6) would be solvable for any choice of 
(c’, g, d, f lT E Yla. We consider (O,O, 0, fIT, f e Coa(raI arbitrary, and get 

0 = pL JdivHL dv t sn * (pL HLl ds -Jn * (pL HLl ds 
G,L G r 

=sf ds -Jn. (t.rE HE1 ds = sf ds - ‘irdiv HE dv, 
FJ I- r, 

where n is the outer normal to Go resp. GL. Since d = 0, ‘we know that divHE = 0 
in GE and thus 

s fds= 0 vfc coau- 0 3 1 
G 

which is of course not true. Therefore dim N(A) > 0. n 

Since A is noninjective, we have to determine the nullspace of the adjoint operator A’. 
Before we define A’, we introduce sume new notations. 
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Definition 

(M’b) (x1 = n(x) A (M(n A b)) (xl, 

(N’A)(x)= -2n(x) A (n(x) j A curl,(n(y) A(y) O(x,y)) ds(y)), 
I- 

XE l-, 

XC r, 

(P’ a) (xl = -2 n(x) *Jn(y) A a(y) @(x,y) ds(y), 
r 

(R’s)(x) = 2Jd. lv,(n(y) A a(y) Q(x,y))ds(y), 
r 

(K” x)(x) = 2jky) 3,gNx-,y) dsfy), 
5 

(Kr”=xHx) = 2sx(y) 3,$D(x,y) ds(y), 
G 

(K=q X)‘(x) = Zj%y) 3,yO(x,y) ds(y), 
r 

(R’rq a)(x) = 2Jd’ iv,(n(y) A a(y) @(x,y))ds(y), 
r 

XEl-, 

XC r, 

XC r,, 

XE r, 

XE ro, 

XE r,. 

We use again the subscript 0 to indicate that 0 is replaced by 00. 

Lemma 8 

For the operaters defined above we get 

M’ : ToaH + Toam , N': coam + Toam , 

P' : Toam --) coam , R',R'o: Toam -+ coam 9 

Ki : c""(ro) + coa(ro), 

~$5 coa(ro) + coam, K:% coam + coa(ro), \ 

RO 9% Toam+ coatro). 

N’, R’, Rb are continuous, M’, P’, R’ - R’o, Ki, K$=, Kiq, Rerq are compact. 
Moreover the operators B’, C’, defined by 

‘) $ :~~~~I ; j3. c9~[~~j~ 8j$o -+ dj..j 

0a :/ map Y into itself. B’ is continuously invertible, C’ is compact. 
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The operator 

A’= B’+ C’ : you+ yea, 

is the adjoint of A with respect to the dual system (Ydoa,Yoa, c . , . >). 

The mapping properties of the operators N’, R’, Rb, M’, P’, R’ - Rb are shown 
in [ 1,3,101. The results for Ki, K?=, Ktro, Rbrro are obvious. Together with 
Lemma 5 we immediately get the invertibility of B’ and the compactness of C’. 

That A’ is the adjoint of ‘A is shown by simple but lengthy calculations. 
I 

Lemma 9 

Define N(T) as 

N(T) = { J, I JI E C(T), 
K+ possesses continuous normal derivatives on both sides of I’}. 

Then 
T: N(r) + cm 

9. - 23”J Jl(y) B,$D(x,y) ds(y) 
r 

is well defined. Moreover C!“(T) C N(P), T: Cla(lY + Coa(I’l is continuous. 
+T: N(T) + C( I’1 maps the density of a double layer potential to its normal 
derivative and 

with <u,v>~= s u(y) v(y) ds(y1. 
r 

J+-oof 
See Cl]. 

I 
n 

Lmma 10 

NM’) = [ (O,l, d’, 11’1, d’=- 3 
(I - K’l-’ Tl. 
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From Lemma 7, Lemma 8 and the Fredholm alternative we know, that 
dim NM’) = 1. Therefore, NM’) = [b’], b’ E Yea. . 

Next we define the subspaces U = [ b’ ILL2 and W =[ b’ IAL2 n ?i” of L2 and 
consider an element b = (c, g, d, f )TE W. From the definition of W we know that 

<b,b’>=(b,b’),z=O, 

so that Av = b and therefore the auxiliary problem (6) is solvable. For the corre- 
sponding solution of (6) we get 

O=pLJdivHLdv =Jn*(p’H’)ds -Jn.(u’H’)ds 
G 

DE = div HE solves the scalar Helmholtz equation in GE with Dirichlet boundary- 
value d. Since b E ?ia we have d E Cla(13 and DEc C’a(EE) Cl]. Thus we 
deduce from (8) 

0 =sf ds +sg ds - uEJEdiv HE dv =sf ds +sg ds + 5 JADE dv 
r 

="I s 

r, r GE 

fds+ gds+>jb,DEds. 
GJ I- r 

But according to [ 11, DE may be represented as a double layer potential 

DE =,$$(y) d,,,O(x,y) ds(y) 

r 
in G E , 

4 = - 2 (I - K)-’ d E Cta(13. 

Since 9 E Cla(T) C N(T), we get with the help of Lemma 9 

d,DEIr= +TJI 

so that 

0 -sf ds +sg ds + g2 ST+ ds. 
G r r 

Using again Lemma 9 we conclude 

s TJlds=<TJ,,l>r=<J,,Tl>r=-2<(I-K)-’d,Tl~r 
l- 

= - 2 cd, (I - KY)-’ Tl >r = - 2 Jd ((I - K’)-’ Tl) ds 
r 
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since K’ is the adjoint of K with respect to the dual system (CoatI?), CoQ(Tl, < ., .>rl. 
So we have 

0 =sf ds +sg ds - > Jd ((I - KY’ Tl) ds = < 
G l- r 

0 

0 * (b, i> I,2 = 0, V bc W = Unv;Pa = [ b’]*L2”$a 
I 

It is easily shown, that W is dense in U = [ 6’ ]lL’. Therefore 

0 

(b, 
0 

d, IL? = 0 VbEU. 
1 

+ N(A’) = [ b’ ] = [ 

A direct consequence of the last Lemma is the following theorem. 

Theorem 4, 

The auxiliary problem (61 is uniquely solvable, if 

i 

0 
d E $a3 
f 

d’=- $I-K’)-‘Tl. 

Follows from the Lemmata 6, 7,8,10, the Fredholm alternative and Lemma 2. 

n 

i 

Lemma I1 

Consider Je E C1(lR31, div Je = 0, supp ( Jel C GJ. There exists a vector-field 
HJ E C’(iR3) with 

L 

curlHJ= Je, divHJ = 0. 
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J, E C*(R3) has compact support, so that J, E Coa(R3). Using some well known 
regularity results for Newtonian potentials [s], we get 

A =$J,(y) cDo(x,y) dy E C2(tR3). 

and defining HJ as HJ = curl A E C’(R3) we see that 

divHJ= 0, curl HJ = curl curl A = (grad div - A) A= J,. I 

Using Theorem 4 and Lemma 11, we are able to prove the main result of this paper. 

Theore?n 5 

Consider J, E C’(lR3), div Je = 0, supp(J,) c GJ, EJ C Gb, GJ bounded, f e CoafT,). 
The bounded problem (2) together with (3) is solvable if and only if 

s f ds = 0. 
r, 

HL, HE, EE are uniquely determined. 

Suppose (21, (3) is solvable. Then 

sf ds=Jn.(pLHL) ds 
r, Fl 

= sn * (uL HL) ds -sn. (uL HL) ds +Jn * (pL HL) ds 
G I- I. 

= p: Jdiv HL dv +Jn * (uE HEI ds 
G,L f 

= i~~n.curlEEds=O 
r 

by Stokes’ Theorem. 

For the “if ” part, we consider HJ, which is given by Lemma 11, and define 
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HZ = ,f (h;- hj) zbj, 
1-1 

where h 1 are the given circulations from (3). From the regularity properties of 
HJ and Zbj, we get 

c=nh(HJ+HZ) +ToaW), 

g=n.(pL(HJ + HZ))I, = n. (pLHJ)lr E Coa(17, 

?= f- ne(pLHJ)Ir, E Coa(To), 

Moreover, for the surface divergence of c on r holds 

Divc=Div(nh(HJ+HZ)lr)=-n.curl(HJ+HZ)lr=-n.~,Ir=0, 

so that c E Tia(I’). 
From the proof of Lemma 11 we know, that HJ may be represented by 

HJ = curl A, A E C2(lR3). 

Therefore, using Stokes’ theorem, we obtain 

~gds=~n*(~LHJ)ds=~L~n.curlAds=O, ,...,m, j=l 
? 5 q 

and 
J?ds=Jf ds-~n.(~LHJ)ds=-~L~n.curlAds=O. 
r, r, G r, 

From these considerations we deduce 

and according to Theorem 4, the auxiliary problem (6) 

c&IL= 0 L 

divfiL= 0 
in G , 

(A + k2) HE = 0 

k2 = iticsEpE 
in G E , 

( nAH E -rhfiL=c 

n+EHE)-n*(~L~L)=g 

divHE= 0 

on r, 

s r.tiLdl= 0 
Y; 

i=l ,--*, P9 
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. 

possesses a unique solution 

fiL E C’tGL) n CtGL), 

HE E C2(GEJ n CtGE), div HE E C(EEJ, curl HE E C(EE). 

Since divHE = 0 on p and Im(k) > 0, the divergence of HE vanishes identically 
in GE and HE, EE = -$ curl HE solve the time - harmonic Maxwell equations in GE 

E E with coefficients u , cs and o. 
On the other hand, for the field HL, 

HL = fiL + HJ + HZ E C’(GL) n-C(cL), 

we get, using curl HJ = J,, curl HZ = 0, 

curl HL = curl CfiL+ HJ+ HZ) = J, L in G . 

Moreover 

nAH E =nhfiL+c=nh(~L+HJ+HZ)=nAHL 
on p 

n.(uEHE)=n*(uLfiL)+g=n*(uL(fiL+HJ+HZ))=n*(~LHL) 

and 

j-r .HL dl =JT .CtiL +HJ+HZ)dl=Jr.HJdl+h;-h;=hk, 
Yf Y; Y; 

Applying Stokes’ Theorem we conclude 

iouL sn * HLds = itit.rEJn * HEds = uEJn * curl EEds = 0, j=l I-**, m, 
rJ ‘11 ‘II 

so that Lemma 1 guarantees the existence of EL E C’(GL) n CtEL) satisfying 

curlEL= itiuLHL, divEL= 0 in G L . 

Therefore HL, EL, HE, EE solve (2) with prescribed circulations h: for HL. 

n 

With the help of this theorem, we finally obtain existence results, which are 
similar to those of the unbounded problem. 

3 a 

-llmy 
1 

For Je E C1(lR3), div Je= 0, supp(J,) C GJ, EJ cG~ bounded, f E Coa(Fa), the 
bounded problem (2) is solvable if and only if 



- 24 - 

In the homogeneous case J, = 0 we get esactly p linear independent solutions 
HL, HE, EE. where p denotes the topological genus of GE resp. Gk. The different 

solutions are characterized by their circulations 

.I- r.HLdl= hk, i=l ,***9 PY 
y,’ 

along yf. 
? 

EL is not uniquely determined. ’ 
x 

proof 

The first part follows directly from the last theorem by choosing the circulations 
hk, i=l , . . . ,p arbitrarily. 

Using again Theorem 5, we get in the homogeneous case p solutions H:, Et, 
HF, EF, j =l,... , p, of (21, having circulations hh = 8ij, i = I,. . . ,p. According to the 

uniqueness results from Theorem 2, these solutions are linear independent. 
The nonuniqueness of EL is obvious. n 
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