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We consider a transmission boundary - value problem for the time harmonic Maxwell
equations without displacement currents. As transmission conditions we use the continuity
of the tangential parts of the magnetic field H and the continuity of the normal com-
ponents of the magnetization B = pH. This problem. which is posed over all |R3. is then
restricted to a bounded domain by introducing artificial boundary conditions.

We present uniqueness and existence proofs for this problem using an integral equation

approach and compare the results with those obtained in the ubounded case.

1. Introduction

A large number of different problems in electrical enigneer-
ing lead to transmission boundary value problems for the time -
harmonic Maxwell equations :

Consider a bounded domain of conductive material GE ¢ [R3,
which is surrounded by air. In GY'=R3\GE® (GE denotes
the closure of GE) a given, time - harmonic current density
Te(x,t) = Jo(x) e 1! induces electromegnetic fields in Gt
(Fig.1). We are interested in computing the current densities . Fig.1
in GE which are due to the induced fields.

The resulting classical transmission boundary - value problem
curl H' Je - iwet EL curl HE = (o - jwef) EE

. L . E
in G, in G-,
curl EL = jopt Ht curl EE = iouE HE ‘

nAHE=nAHL
E . on r=aGF-ach,
naE-"=naE



with Silver - Miiller radiation condition

H A EL-oq,)

lxl

and coefficients

w20 frequency,

sL, >0 electric permittivity in GL‘, GE,

ukL,uEéO magnetic permeability in GL,GE,
oF >0 electric conductivity in GE

is well mvestlgated Under certain regularity assumptlons thIS problem is umquely
solvable [7,10]. ‘

For devices working at low frequencies, the above problem 1s modxfled The
displacement currents are neglected the boundary condition na El-uAEF on T is
changed to n- (u HE) =n- (u Hh on I and the radiation condition is substituted
‘by HY(x) = o(1), EL(x) = 0(1) uniformly for |x|— co. This new problem

curl HE = Je L curlHE = FEE E
. L in G , - E E in G B
curl EL = jopt HY curl EE = iwpF HE
naHE=nant | - (D
‘ on I.

n- (@ HE) = n- " HY)

H (%) = o(1), EL(x) = ol1) uniformly for |x|=> oo.

‘was investigated in [8]. ‘

For the application of certain numerlcal tech—'
niques (finite difference or finite volume schemes)
to () G' is cut off {Fig. 2). Instead of the un- -
bounded domain G* we now consider a bounded
domain G&. On the new boundary Iy, the values
of n-(uL HY) are prescribed. The corresponding
data is given by measurements or is estimated.

In this paper, we consider (1) together with
this artificial boundary condition : '

curlHY = 7, ‘ L curl HE = F EF E
. ., in GG, . .. inGE (2)
curlE-=iwp~H curlEX =iwg™ H ‘



LY

nAHE=nAHL ‘
on [,

n-(wEHE) =n-tHD) 2)
n-(uL HY) = £ on I.

We show existence and uniqueness theorems for (2) and compare them with the
corresponding results for (1). '

2. Preliminaries

Before we start with the main part, we have to define the class of admissible
domains GF, G(')'. ‘

Let C(G) (CX(G)) denote the space of continuous (k times continuously
differentiable) functions on G. '

GEcR?® is an open, bounded domain with c? boundary. The complement
Gl= R3\GF should be connected (GE denotes the closure of GE). GE is the
union of m connected components GJE, j=1,...,m having the topological genus p;.

The boundaries- L= anE are closed surfaces, which should be disjoint. Setting

r=UJ r we get I-aGF-aGh

i=t m .
The topological genus of GE resp. Gl is p=ij. There exist p surfaces
j=1

P P
ZFCGE resp. ZE‘CGL, i=1,...,p, such that GE\U|ZF resp. GL\L_,l,ZE’ are

simply connected. The boundary curves Y;L = az? and YiE= aZf‘ lie on T.
Moreover, let Gy be a simply connected, open, bounded domain in IR3, such
that

~E <L
G s Zi CGo.

The boundary I[:= 3dGp is assumed to be c
G(l)‘ is now defined as

G§ = G\ GE.

' P
Therefore, the topological genus of G(l)‘ is p and Gf)‘ \u Z{' is simply connected



Example

Let GE be a torus, Gy
be a sphere containing GE
in' its- interiour. In this case
we have m=>p=1. The sur-
faces ZF,,Z{‘ and the curves
YIL,YIE are shown in Fig. 3.

Fig. 3

Since GE and Gg)' both have topological genus p, there exist p linear independent
Neumann fields ZliE resp. Z(l)'i, i=1,...,p, in GE resp. G(%, fulfilling

curl ZliE =0, div Zl{:= 0 in GE, ~ 'n- Z? =0 onI'= aGE,
Ccurlzbi=0,  divzb-0, in G, n-Z=0 onCuly= 9GS},
E E ;,_ L .1_ L -
Jozidi-sy, o Zfa-0, J=- zg; a1- s, J=- zg; a1-o,
i Y RS Yi ‘

As a consequence of the regularity assumptions on GE and G(l)‘ we get

zF e c®(GE) n C'%GEy, 25 € C®(Gh) n CO4TH).

For the prescribed data in (1) reép. (2) we suppose
Joe CHRY), div)o=0, supptJ.) cG’,  G'cG§ bounded,
resp. ‘ S : C
fe CO%T).

\

Moreover, we are looking for classical solutions of (2) satisfying

HY EYecliGh nc(@f),  HE EEeclchrnc(@h).

In the subsequent analysis we make use of the following Banach spaces :

Let O<a<l ‘ ;
CO%G), Nullgeg = sup lulx)] + sup X
XEG xoy [X-y| X
x.y G

is the space of Holder continuous functions on G.



[

| Zulx) - Zuly)
c'*(G). Ilull,o((;=suplu(>\')|+sup|Vu(x)l+sup|——&—::l—y—-|
T xeG xeG Xey Ix-yl

x.yeG
is the space of continuously differentiable functions on G with Holder continuous
derivatives.
VoD = (C®m)®,  llallyar = max (lailloar),
1*1.Z,

is the space of Holder continuous vector fields on T.

TO(M) ={ae V') In-a=0}, lalter=lalver

is the space of Holder continuous tangential fields on T.

TI*(T) = {ae T'UT) | Divac oy}, lullge.r = max (llullte,r, IDivullge ),

is the space of Holder continuous tangential fields on I' having Holder continuous
surface divergence. ‘

X3%(r) = TY*(r) xC%%(r) x C0%(T),

flu "Xda =max (lullge s luzlloers luslloa.r-

Y%= T2y x0T« O x 2%y ),

”ll "Ya= max ( ||u1|| To.T> "le”oq,r, ||U3||oa_r, ||u4||0a,r6)-
Y%= TO%T) x C0%(1) x 0%y x ¢ 0%(Ty),

lu "Ydof max ( "ul"da.l" "UZHOa,I": ||U3 "oq,r, ||U4||0a,13)-

Y%= %) x 0% x 1) x "%y,

||ll"?da= max { ||U1"da.f‘: "“2"00(,1" ||U3 |||a,r, ||U4 "0&,]3)-

Moreover we define

the bilinear form

<, YY) <u,v> = f(u,-v|+u2v2+u3V3) ds +fu4V4ds,
r I

which is nondegenerated on YfaXYoa.

the dual system (Yfa,Yoa;<-,->).



- the Hilbert space L% (D) of L tangential fields on T.

- the Hilbert space
L%= 15 () x LA(T) x LA(T) x LTy,
équipped with the natural scalar product
(U, vlz=<u,v>.

eiklx-yl
Ix-yl

1

- the functions ® and ®y as O(x,y) - = , ‘<I‘>0(x,y) - =
0 41t ) 4 |x-yl

- [v] as the span of v, [vl={x|x=zv, zeC}.

3. Uniqueness

. . Taking a closer look at (2) we see, . that EL is ‘hot uniquely determined,
" because adding a suitably chosen gradient field does not change the equations.

This is also true for the unbouded problem. Moreover, in the unbounded case
we have to prescribe some additional data to make H" HE EE unique [8]:

Theorem 1.
For the unbounded problem, together with the additional condition

fc-HYd1=hf,  i=1,...p,
'YiL .

h%’e C given, t being the unit tangent to YiL, the fields HL, HE, EE are uniquely

determined.

 Problem (2) exhibits the same behaviour, as is shown in the next theorem.

Theorem 2
For the bounded problem 2) together with

fv-HYa1=n}, - i=1,..p, (3)
vt :

the fields HY, HE, E® are uniquely determined.



-7 -

Proof

We consider the homogeneous problem with' J,=0 and hil'=0, i=1,...,p, and
show that the fields H', HE, EF vanish identically.

From the second transmission condition n- (uL HL) = n-(p;E HE) on I', we con-
_clude that for any surface element S CT holds

Jo-(EE-EMdl=[n-curl(EE- EM ds = iofn- wFHE-u"HYY ds =0,
oS S S.

so that the tangential components of EE-El on T are of the form

. p 4
(EE- EL)i,an =Grad @ + ZeI;'Z(')’i + Ze?ZF,
i=}] i*l

where Grad ¢ denotes the surface gradient of ¢ on I' and el{,e'ise C, i=1,...,p, are
complex numbers. ’
In the same way, we derive from

~curlH'-=0 in Gh, Jr-H"a1-0, i=1,...,p,
L

Yi

that the tangential components of H'Y on ' can be written as a surface gradient
Hthan = Grad ¢.
Therefore,

— _ p p
fn (HY A EF) ds =fn -(Grad § A (E' +Grad ¢ +.Zi eli'Z(l)'i +.Zi eli:‘ Z'ii)) ds,
r r " "

where F denotes the complex conjugate of a field F. By Stokes’ theorem we
deduce for the terms on the right hand side "

fn -(Grad ¢ A Grad @) ds = 0,
r

fn-(Grad$AZE)'i) ds =0,

r

fn-(Grad?l)_AZl{:) ds=0

r

and thus
Jn-H"4EByds = [n-(H'AED) ds. | (4)
r r
Using the homogeneous boundary condition n- (ul‘ HY) =0 on I, we get for any
surface element S CI

ft-Eldl=fn-rotEL ds = iofn- (u' HY) ds= 0,
oS S S



so that
L
E'\an-Gradey  on I,

since [ is the boundary of the simply connected domain Gy.
With the same reasoning as above we have

HY (a0 =Gradgy  on I
and a simple applicatioh of Stokes’ Theorem shows

Jn-(HExEY) ds = [n- (Grad § x Grad ) ds = 0. | (s
L f |

‘Using the first transmission condition naHE=naHY on T together with (4)
and the Gaussian theorem we get

~ fo-H"AEY ds = [n- (AEAEF) ds = [(eFEE-EF-iwe®HE-HD) av.
r r . GE

From the application of the Gaussian theorem to the fields in G(l)‘ follows

[n-(H"xEY ds - [n- (A" xEY) ds = [ng- (H*xEY) ds
L r ruly

- [div(H"xEM dv=-iop" [H" - H" dv,
G5 Gy
where n is the outer normal to GE resp. Gy and 'ng is the outer normal to GB’.
Adding the last two equations, we get with the help of (5)

of [EE-EF dv- iw(¢® [HE-HE dv+ " [H"-H"av) -0.
E : E L
G G Gs ,

Since the coefficients o, u", uE and oF are positive we finally conlcude

Hl=0, HE=0, EF=0. | , .

4. Existence
For the unbounded problem holds [8]:

Theorem 3

For J,¢ CYR®), div],=0, supp(J.) cG’, G'cG' bounded, the unbounded
problem (1) is solvable. g

In the homogeneous case Jo=0 we get exactly p linear indepehdent solutions -
HL,HE;EE, where p denotes the topological genus of GE resp. Gt



The different solutions are characterized by their circulations

[ -HNdl=np, i=1,...,p,
i
along -yil'.

ELiis not uniquely determined.

To show existence for (2) we consider the following auxiliary problem
Find HY ¢ c(G§) n C(GD), | .
HEe c2(GE)nC(GE), divhHEeC(GE), curtHEeC(GH)

solving
curlH'=0 | (a+k)HE=0 |
L in Gy, - ) EE in G-,
divH =0 k" =iwopu

nAHE—nAHL=c

n-(pEHE)-n-(uLHL)?g. on I, (6)
divHE = d
n-(uLHL)=f on I,
Jr-Hhdi-0 i=1,...,p,
JL

where we choose k so that Im(k)>0.

We show that (6) is uniquely solvable for sufficiently ‘smooth data c,g8.d,f.
Using the solutions of (6), we solve our original problem (2). In this process, the
following Lemma, which is shown in [9], plays an important role.

Lemma 1
‘Let He CH(GH) n C(GY) satisfy divH=0 in G§ and

fn-Hds=0, j=1,...,m
I
for any connected component I of I'. There exists a field Field E € Cl(G% }n C(ﬁ(l)‘ )

such that

curlE=iwptH, divE=0 in G§.
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With the help of this Lemma, we prove uniqueness for (6).

Lemma 2

Problem (6) has at most one solution.

Proof

Let HL,HE be solutions of the homogeneous problem. The divergence of HE
vanishes identically in GE, because div HE r=0, Im(k) >0 and div HE is a solution

of the scalar Helmholtz equation in GE with wave number k [1]. Therefore, HE
‘and EE- ;'g curl HE solve the Maxwell equations in GE. Moreover from g=0 we
get
: u]'fn -HL ds =fn . (ul‘ HY) ds =fn . (uE HE) ds
¥ L L

: w

fn . (imuE HE) ds - i%) fn -curl EE ds = 0,
L L

'so that Lemma 1 can be applied to He. Lemma 1 guarantees the existence of EL,
curlEL = iop HE  in GJ.

But nbw, the f‘ields‘HL, EL, HE,EE are solutions of (2) with homogeneous cir-

culations (3). Using Theorem 2, we get "

H" =0, HF =0. ‘ o . =
For the solution of the auxiliary problem (6), we make the following ansatz:

Lemma 3
Define H- and HE as "

H (x) = gradx-fk(y) Dolx,y) dsly) + gradxfx(y) D4 (x,y) dsly),
r \ : I ‘
HE(x) = curl, [aly) @(x,y) dsly) + grady [ Aly) @(x,y) ds(y)
r . ‘ r
+ [nty) 8(y) ®(x,y) ds(y),
r . .

ae TIUD), AeC™D),  3eCn),  xeC'N).
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Then
HY e C®(G§) 0 COUGH),
HE ¢ C2(GE) n CO%GE), divHE e CO%GE), curlHE € CO%(GE),

curlH* =0 (a+kHHE=0 |
in Gg, in G7,
divHY =0 K% = ionuE

fr-Hbdai-0 i-1,..p.
~

Proof

The regularity properties of H' and HE follow from corresponding theorems
about single and double layer potentials in [1]. HY and HF obviously solve the
required differential equations. Since H' is a gradient field, the circulations along
Y!' vanish.  m

For the values of HL, HE on the boundaries follows

Lemma 4

Defining F, as F.(x) =,l‘i\r‘r(}F(xt hn(x)} for xeT or xe [, we get
HE(x) = [A(y) grad,®o(x,y) ds(y) - +n(x) Ax) + [xly) grad, ®o(x,y) ds(y),‘
r I
HE(x) - fcurlx(a(y) O(x,y)) dsly) + %n(x) A alx)
. r
+ f)\(y) grad,®(x,y) dsly) + -é—n(x) Ax)
r
+ fn(y) 3y) @(x,y) ds(y),
r
(divHE)_(x) = - k? [ My) ©(x,y) dsly)
r
- [3(y) 00,@(x,y) ds(y) + 7 5(x)
r

on I resp.



- 12 -

HY (x) = f)\(y)‘gradx‘(bo(x,y) ds(y) + fx(y) grad, @o(x,y) ds(y) + —zl-n(x)‘x(x) |
r o)

on [y, where n is the outer normal to GE resp. Gg. .

‘ Proof
The jump conditions for single and double layer potentials and. their derivatives

are given by [1]:

. curlea(y) ®(x,y) dsly)|. = fcurlx(a(y) O(x,y)) dsly) * %n(x) A alx),
‘ T ‘ r , ’ ‘

grad,“(f)\(y) O(x,y)dsly)|: = fl(y) grad,®(x,y) ds(y) z %n(x) A(x),
r r

[ty sly) dix,y) ds(y)], = [nly) s(y) (x,y) ds(y), | ; (N
r ’ ' r o

[ty otx,y) dsty)]. = ay) @x,y) dsty),
r r

[5(y) 00, @(x.y) dsly)]: = [8(y) 0, ®(x,y) dsly) * 7 8(x).
r r ‘ .

They do not change if we replace ® by @, or I' by I;.

Thus we immediately get the representation of -HE’,H? on T and HLY on Ip.

For (divHE)- on ' we use

(divHE)(x) = A [Ay) @(x,y) dsly) + [divy(nly) 8(y) ®(x,y)) ds(y)
r ‘ r ‘
2 ‘
- - K2 Aly) @(x,y) ds(y) + [3(y) nly) - grad, ®(x,y) ds(y)
r r ‘
) |
=-k fl(y) O(x,y)dsly) -fS(y) 9, @(x,y) dsly). ]
r . r
Thus our ansatz solves thé differential equations of (6), so. that only the

boundary conditions on T resp. [ have to be adjusted. This' leads to a boundary

integral equation on ['u Ij.
In the subsequent Lemmata we make use of the following operators

Definition
 (Ma)(x) - 2n(x) ~ feurly(aly) Ox,y) dsly),  © xeT,
(Na)(x) = 2 n(x) - [curl,(aly) @(x,y)) dsly), xeT,

"



.
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(K2 (x) = 2 [X(y) 8, ®lx,y) dsly), | xeT,
r

(K' 2 (x) = 2 [ A(y) 3,5, @(x,y) dsly), x €T,
r
(S ) (x) =2 [xy) 0(x,y) ds(y), xeT,
r
(P 2} (x) = 2n(x) Afn(y) Ay) @(x,y) dsly), xeT,
r
(QX)(x) = 2n(x) - [nly) My) ®lx,y) dsly), x €T,
: r
(R (x) = 2n(x) a [ My) grad,®(x,y) ds(y), xeT,
r
(K05 (x) = 2 [xly) 0, lx,y) dsly), : x € Ty,
. 5
(KB (x) = 2 [xly) 9, ®x,y) ds(y), xel,
I3
(K%M (x) = Z}X(y) dp, O(x,y) dsly), - x €T,
r
(RB D) (x) = 2 n(x) ~ [ xly) grad, @(x,y) ds(y), xeT.
I

If @ is replaced by (Do‘, the operators are marked with a lower index 0-

Lemma 5

The integral operators defined above have the following mapping properties

M: T°T) - TO%(T) resp. TYH(T) > TgXT), N: TO*(T) - (D),

K,Ko,K’,Kp,S,Q : ¢%*(r) - (), P: C'*r) - T3*(r),
R,Ro: C'™M - Ty, KQ: C'%ry) - %K),
KBT: %) - O, KEB: o) - %),

ROT: %%y - T9*(I).

N,R,Ro are continuous, M,K,K,K’K},S,Q,P,R-Ro, Ky, Kol , Ky B, R’ are
compact.

Proof

In [1,2,3,10] the continuity of N, the compactness of M,K,K(,K’,Kjy,S,Q,P,
R- RO,K’OO are shown as well as the continuity of R,Rp resp. compactness of
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R- Ry where R,Rq are regarded as operators mapping Coa(I“O) to TO*(I).
Settiﬁg ‘ 7

F(x) - 2 [ Ay) grad,@(x,y) ds(y), reCo%r),  xeGE

we get 1" ‘ |
Fe C2(GE) n CO%(GE),
curlF=0  in G,

naF|.= RA.
According  to [1] we deduce

Div(RX) = Div(naF)=-n-curl F|.= 0
~and therefore ’
IRMgor = IRM M p

In the same way we show [RoAlger=IRoXTor o that R,R and R- Ry have
the same properties as before if we replace %) by Té)a(l")
The compactness of Kr{,r" K’FQ’,R(F’ is obvious. [ ]

Lemma 6

‘ HL, HE defined in Lemma 3, solve (6), if a, A, 8,% are a solution of the integrali

‘equation Av=Db,

M-I R-Ro. | p -RPT
A ENF (I+K’)+u (I-K3 ofFQ  -utrpr
0 -k%S I-K 0 ’
0 utKF 0 wH 1+ KD
a [+
- YL
2 f
Proof

This is obvious from the definition of the operators and the representatlon of
the values of HL H , div HE on the boundaries given in Lemma 4. ]



To solve the above integral equation, we want to apply Fredholm theory.

Lemma 7

The operator A can be deéomposed into A=B+C,

-1 0 0 0
BN wFedhr 0 0o |
0 0 I 0
0 0 0 ub1
M R- R, P -RPpT
c- |0 WKWKy WtQ -uKET)
0 -k’s -K 0
0 LR TS 0 LKy

B, C map Ydoa into itself. B is continuously invertible, C is compact.
The null space N(A} has dimension 1. '

Proof
The mapping properties of B and C follow directly from Lemma 5. To determine

the nullspace of A, we proceed in two steps. We first show, that dimN(A) <1 and
then dim N(A) # 0.

i) dimN(A) s 1

Let v be a solution of the homogeneous equation Av=0. Using v to define HY
and HE according to Lemma 3, we know from Lemma 6, that HL, HE solve the
homogeneous auxiliary problem (6). By Lemma 2, this problem possesses at most
one solution and therefore H' =0 in Gf,’. But H' was defined as

"HMx) = grad, [x(y) @o(x,y) dsly) + grad, [x(y) ®(x,y) ds(y),
r 5

~ v, Alx), r
= grad;flal(y) Qolx,y) dsly), Ax) = x(:)' i: L
v

Applying the jump conditions (7) to H  on Tvu Ih= aG% we get

eCO%Tury)

0=2HY=2 [ Xty) 9,5, 00(x,y) dsly) + Xx) = (1+Kp) X on Tuly,
vl )
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where n denotes the outer normal to G(% and ﬁ’o: Coa(l"u L) c'%ry I‘ol) is
defined in analogy to Ky on C°*(I). But this is the integral equation for the
solution of the interior harmonic Neumann boundary - value problem in. GO with
‘,the help of a single layer potential ansatz. Since GO is a bounded, connected
domain, we have [4] ‘

NU+Kp) =[§1={nln-23 zec), TeCcO%ru L)
and |
x=z$,16s

for some ze€ C. Substituting this result into the homogeneous integral equation

Av=0, we get

LT -

s ~LR0° x o L /M-T R-R, P
A()= [ut kP X3, A= WEN  WEIK)euli-Kp)  uEQ
0 o R 1-K

But according to (8], A is continuously invertible - in x‘j“(r).‘ Therefore a, X\,
are uniquely determined by x so that dimN(A) 1.

(ii) dimN(A)> 0.

Now suppose that dim N(A) = 0. In this case, A would be continuously invertible
in Ydoa and the auxiliary problem (6) would be solvable for any choice of
(c,g d, )T e Y ¥ We consider (0,0,0,f)T, fe CO%(Iy) arbitrary, and get

0= podlvH dv‘=fn (u H )ds fn (u HY) ds
Gg
ff ds -fn (u HE) ds -ff ds - uE fdlvH dv,
b I ,
where n is the outer normal to Gq resp. GL Since d =0, we know that divHE =0
in GE and thus

Jtds =0  viecry,

which is of course not true. Therefore dim N(A) > 0. ’ m

Since A is nomnjectWe, we have to determine the nullspace of the adjoint operator A
Before we define A’, we introduce some new notations.
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Definition
(M’b)(x)=n{x) »(M(n a b)) (x),
(N’ ) (x) = =2 n(x) a (n(x) 2 [ curl (n(y) Aly) @(x,y)) ds(y)),
r

(P’a)(x) = -2n(x) -fn(y) ~ aly) @(x,y) ds(y),
r
(R a) (x) = 2 [div,(nly) » aly) @(x,y) ds(y),
r
(K®5) (x) = 2 [ly) 9, ®(x,y) dsly),
5
(KBT) (x) = 2 [x(y) 04, @(x,y) dsly),
5

(KTB A (x) =2 [A(y) 00, O(x,y) ds(y),
r

(RTT a)(x) = 2 [div,(nly) raly) ®lx,yNds(y),
r

xeTl,

xeT,

xeT,

X € Fo,

XE€E ro.

We use again the subscript o to indicate that @ is replaced by .

Lemma 8

For the operaters defined above we get

M : TO%r) - T%D), N’: ¢%%r) - T°%),

P T - %), R’,Rp: T'*(I) - (D),

K : %)~ %1y,

KHT: %1y - ¢, KED: c%%r) - c®ry),

RE%: T4 - c%%ry).

N’, R’, Ry are continuous, M’, P’, R’ - Ry, Kg, K(F’ r K§13, R»OI'IB are compact.

Moreover the operators B’,C’, defined by

-1 N 0 0 , M’ 0 0 0
gl 0 (w+uB1r 0 o oo | R-Ro wBK-utKy -k%S  uPKPT
0" 0 1 o | P’ uFQ -K’ 0

0 0 0 w1 -Ry % -ptKES 0 u'Kg

map Y%% into itself. B’ is continuously invertible, C’ is compact.
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The operator
A! = B! + C) : Yoa ‘% YOCX,

is the adjoint of A with respect to the dual system (Ydoa,Yoa,<-,,->).

Proof ‘
The mapping‘ properties of the operators N’,R’,Rj, M’,P’,R’- R} are shown

in [1,3,10]. The results for KJ,KHPT,KE®, RyE ™ are obvious. Together with

Lemma S we immediately get the invertibility of B’ and the compactness of C’.

That A’ is the adjoint of A is shown by simple but lengthy calculations.
a

Lemma 9
Define N(If) as

N(D)Y = { ] e CD),
- K¢ possesses continuous normal derivatives on both sides of r'}.
Then
T: N(I') = C(T)

b= 20, [bly) 0, O(x,y) dsly)
, r ) :

is well defined. Moreover C!™r)cNI), T: C'™I) - ¢®*(I) is continuous.
%‘T: N(I') = C(I') maps the density of a double layer potential to its normal
derivative and ' ‘

C<Te,$>r=<,T>r  Ve,pe N(D),

with <u,vsp= fu(y) viy) dsly).
r

Proof
See [1]. . m

Lemma 10

N(A) = [(0,1,d%, DT, @=-5 (1-K)' T
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Proof

From Lemma 7, Lemma 8 and the Fredholm alternative we know, thét
dim N(A’) = 1. Therefore, N(A’) =[b'], beY’®

Next we define the subspaces U=[b]'*" and W=[B’]1‘2n§d°°‘ of L% and
consider an element b=(c,g,d,f )TE W. From the definition of W we know that

<b,b’>=(b,b).2=0,

so that Av=Db and therefore the auxiliary problem (6) is solvable. For the corre-
sponding solution of (6) we get

0= ul'fdlvHLdv fn (u HY) ds fn (u HY) ds

ol
=ff ds —f(n . (u HE) - g)ds (8)
L r
=ff ds +fg ds - uEfdiv HE dv.

L r Gt

DE - divHE solves the scalar Helmholtz equation in GE with Dirichlet boundary -
value d. Since beYy* we have de C'*() and DFeC'™(GE) [1]. Thus we
.deduce from (8)

0=Jfds +fgds— Efde dv = ffds+fgds+—fAD dv

L Iy
=I{fds +!gds+k—21!anD ds.

But according to [1], DE may be represented as a double layer potential

DF = fo(y) 9, ®(x,y) dsy) in GE,
r

=-20-K)td e ).
Since ¢ clr) C N(I'), we get with the help of Lemma 9

d DE|F=% o
so that
0= ffds+fgds+ fT¢ds
g

 Using again Lemma 9 we conclude

JTeds =<T¢,15p=<¢,TI>p =-2<U-K)'d, T1>1
r

=-2<d,U-K) ' T1>£=-2 [a(1-K) ' TDds
r



- 20 -

So we have , ‘
\ | c
0-Jfds +fgds-E—Zfd(a—K’)“T1)ds=<<§),(
‘ r r f

— e O

[ 0
1
v)):((i),(&u))LZ
I f 1

0 ‘
> (b,<§,,>)12=0,' VbeW = UnY %= [ b I' Y0
1

It is easily shown, that W is dense in U=[b’ 1't°. Therefore

oy
(b,(&-))Lz=0 ¥beU.
l .

0 ‘ : ‘
> (&) e U= ([ D1 =[ B ]
1 | \

, 70
> N(A’)=[b’]=[<;,>]. - :

1

A direct consequence of the last Lemma is the following theorem.

Theorem 4 |
The auxiliary problem‘ (6) is uniquely solvable, if
c c 0 .
(ﬁ)eyd"“, <<§),<;.)>=0, @=- 5 (1-K)TL
f f 1 ‘ .
Proof

Lemma 11 ‘
Consider J. € chr?Y), div Je =0,
H'e CY(R3) with
curlH'=J,, divH'=0.

since K’ is the adjoint of K with respect to the dual system (Coa(l"), Coa(l")‘, <, e>p).

Follows from the Lemmata 6, 7,8,;10, the Fredholm alternative and Lemmé 2.

supp (J,) € G”. There exists a vectorfield
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Proof

Je € Cc!(R?) has compact support, so that J € CO%(R). Using some well known
regularity results for Newtonian potentials [5], we get

A=fJJe(y) Dolx,y)dy € CAHRY).
G

and defining H' as H' = curlAce Cl([R3) we see that

divH’=0,  curlH’= curlcurl A= (grad div - A) A= J,. =
Using Theorem 4 and Lefnma 11, we are able to prove the main result of this paper.

Theorem 5

Consider J, € CHR®), div J, = 0, supp(J,) cG’, G' G}, G’ bounded, fe CO%Tp).
The bounded problem (2) together with (3) is solvable if and only if

[fdas-o.
G

HY, HE, EE are uniquely determined.

" Proof

Suppose (2}, (3) is solvable. Then
Jtds=n-w"HY as
I L
= fn - HY ds - fn- (" HY ds + [n- (P HD as
L r r
= p‘f fdiv HY dv +fn . (uE HE) ds
- G§ r

= i%,fn-curlEE ds=0
r

by Stokes’ Theorem.
For the ”if ” part, we consider HJ, which is given by Lemma 11, and define

h{=th-H’cn, i=1,...,p,

Yi
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‘ z_“’ L, J L
- HT= 2 (hi-hj) Zg;,

where hi[' are the given circulations from (3). From the regularity properties of
H' and Zldj, we get
c=na(H'+ H?)| e TO%D),
g=n-(ub(H + HD) | = n- (P HY)[p e €%,
Fefon- (et HD)| e ™).
Moreover, for the surface divergence‘of c on I' holds | ‘
Div e = Div(na (H'+ H?>|f)= n-curl(H'+ HZ)|p = - n- Je|r=0,
so that ce Té)a(l")'. |
_ From the proof. of Lemma 11 we know, that HY may be represented by
H'=curlA,  AeCUR?).

Therefore, using Stokes’ theorem, we obtain

o gds=fn-(uLHJ)ds=uLfn-curlAds=0, j=1,...,m,
5oL 5 :

and
f?ds=ffds-fn-(uLHJ)ds=—uLfn-curlAds=0.‘

i i 5o ok

From these considerations we deduce

c : c 0

g 0 g 1
(O)Eyda: -<(0>’<d'>>=03’

T T 1

and according to Theorem 4, the auxiliary problem (6)

curl H = 0 . (A+kH HE=0 E
N in G-, ‘ in G-,
divHt-=0 K= iwc®uF ’
nAHE'n‘AﬁL"‘C
n-(uEHE)-n-(uLﬁL)=g on T,
divHE=0
n‘-(uLI?IL)=‘F on [,
t-HMd1-0 i=1,...,p,

L
Y



possesses a unique solution
Hle cltchnc@h,
HE e c?(GE) nC(GE), divHEe C(GE),  curtHEe C(GF).

Since div HE - 0 on T and Im(k) >0, the divergence of HE vanishes identically
in GE and HE, EE- OLE curl HE solve the time - harmonic Maxwell equations in GE
with coeff‘icient‘suE,t:sE and ©.

On the other hand, for the field HL,

HY =AY+ H'+ HZ € clich @Y,

we get, using curl H' = J,, curlH?=0,

curl H = curl (H+ HY+ HZ) = ], o in GL.
Moreover
naHE=naH+ c=na(AL+ Hv H?) = nant
‘ onT
n-(@EHE) =n- @AY + g=n- (WA B HED =0 (P HY)
and ‘ ‘
fv-HYdr=fo- (@Y v+ HY di= [« H d1+ hE-hi =], i=1,...,p.
vt v} ‘ vt
Applying Stokes’ Theorem we conclude
iwuLfn -Hds - imuEfn -HEds - uEfn - curl EBds = 0, j=1,...,m,
L L r,

3 . )

so that Lemma 1 guarantees the existence of Ele clichac@h satisfying
curl EL = iwpt HY, divEl-0 in G

Therefore H", EL, HE,EE solve (2) with prescribed circulations h}' for HL.
| .

‘With the help of this theorem, we finally obtain existence results, which are
similar to those of the unbounded problem.

Corollary

~ For JoeCYRY), divJ.=0, supp(l.) cG’, G'c Gl bounded, feCO*Iy), the
bounded problem (2) is solvable if and only if

ffds=o0.
G



In the homogeneous case J.=0 we get exactly p hnear mdependent solutions

HE H EE. where p denotes the topological genus of GE resp. GO The different
solutions are characterized by their circulations ~

3t

Je-HEd1-n}, i=1,...,p,
along YiL.

EL is not uniquely determined.

Proof

The first part follows dlrectly from the last theorem by choosmg the C1rcu1at10ns
h}‘, i=1,...,p arbitrarily. :

Usmg again Theorem 5, we get in the homogeneous case p solutions HJ,EjL,
H EJ, j=1,...,p, of (2), having circulations hJl ij» 1=1,...,p. According to the
uniqueness results from Theorem 2, these solutions are linear independent.

The nonuniqueness of E' is obvious. : m

- -
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