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Abstract

The rising demand for machine learning (ML) models has become a growing concern for
stakeholders who depend on automatic decisions. In today’s world, black-box solutions
(in particular deep neural networks) are being continuously implemented for more and
more high-stake scenarios like medical diagnosis or autonomous vehicles. Unfortunately,
when these opaque models make predictions that do not align with our expectations,
finding a valid justification is simply not possible.

Explainable Artificial Intelligence (XAI) has emerged in response to our need for finding
reasons that justify what a machine sees, but we don’t. However, contributions in this
field are mostly centered around local structures such as individual neurons or single
input samples. Global characteristics that govern the behavior of a model are still
poorly understood or have not been explored yet. An aggravating factor is the lack of a
standard terminology to contextualize and compare contributions in this field. Such lack
of consensus is depriving the ML community from ultimately moving away from black-
boxes, and start creating systematic methods to design models that are interpretable by
design.

So, what are the global patterns that govern the behavior of modern neural networks,
and what can we do to make these models more interpretable from the start?

This thesis delves into both issues, unveiling patterns about existing models, and estab-
lishing strategies that lead to more interpretable architectures. These include biases
coming from imbalanced datasets, quantification of model capacity, and robustness
against adversarial attacks. When looking for new models that are interpretable by
design, this work proposes a strategy to add more structure to neural networks, based
on auxiliary tasks that are semantically related to the main objective. This strategy is
the result of applying a novel theoretical framework proposed as part of this work. The
XAI framework is meant to contextualize and compare contributions in XAI by providing
actionable definitions for terms like “explanation” and “interpretation”.

Altogether, these contributions address dire demands for understanding more about the
global behavior of modern deep neural networks. More importantly, they can be used as
a blueprint for designing novel, and more interpretable architectures. By tackling issues
from the present and the future of XAI, results from this work are a firm step towards
more interpretable models for computer vision.
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Preface

From the time I first embarked on my academic journey, all I wanted was to understand.
There is this magnificent feeling of awe and enlightenment once a seemingly complex
process has been turned apart and conceptualized into atomic pieces. I will never forget
that moment as an eager freshman in computer science, when I first understood the
phrase “a computer is nothing but zeros and ones.” I was sitting in a dusty old lab, just
large enough to accommodate about twenty students, while the professor explained how
mechanical relays were first used to control the flow of electricity. There was no clear
sign of where he was heading, but after a few minutes he had arrived at the development
of the transistor, and the way they can cleverly be wired to represent logic gates. At
that point, the slow cadence of his voice was no longer an issue, and I felt drawn to the
story that all the symbols and notes in the board were already telling me. I needed to
overcome my morning fatigue and stay focused because, soon enough, those logic gates
were going to be elegantly arranged to form ALUs—the heart of the central processing
unit—and finally, we were going to witness how gated latches turned into the firsts
Random-Access-Memory components.

That lecture ended without any major eventualities, but once outside the classroom, as I
was heading to the next appointment, I felt like the whole world was suddenly different.
There was nothing in particular that I could point to, but it felt as if a thick layer of fog
had abruptly lifted, giving me the chance to see further and more clearly. It took me just
a few seconds to realize that the clarity I was experiencing came from rejoicing in the
beauty of those emerging patterns we have just been taught; those same patterns that
were discovered years, or perhaps decades ago by the brilliant minds I would later have
to come back to for inspiration.

During the course of my bachelor studies at the “Escuela de Administración y Finanzas
Técnicas” (EAFIT), opportunities to dig deep and discuss even the smallest technicalities
opened up, conferring me a growing appreciation for all the ingenuity behind highly
complex ideas such as programming languages, computer networks, operative systems
and large databases. It was only when I arrived in Germany to specialize in artificial
intelligence, that I was confronted with a seemingly unsurmountable amount of new
information: multimedia retrieval algorithms, distance measures I have never heard
before and theories for doing document analysis or higher-order logics. Being over nine
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thousand kilometers away from home, mumbling just enough German to go grocery
shopping, I felt overwhelmed. A growing sense of insecurity had exacerbated my
impostor syndrome, to the point where I felt compelled to update my curriculum vitae
and start job hunting before my impending expulsion from academia. Luckily, none of
that was necessary. My early education as a software engineer allowed me to navigate
some of the most complicated topics by treating them as black boxes. These pieces of
mysterious and intricate mechanisms granted me gradual access to elegant solutions
for problems that I was just learning to love. However, as my involvement and passion
for the field grew, I quickly realized that I needed to understand more, to understand
better, and to brush up on concepts I was already supposed to know. The dynamic of
uncovering layers of complexity one at the time, served me well during the rest of my
master studies, which I proudly completed in the unusual warmth of October 2013.

Once employed as a full-time researcher at the German Center for AI (DFKI), and
motivated by the rewarding sense of conquering new problems, I found myself just a
few months later timidly agreeing to develop a course, from scratch, about the hottest
research topic at the time: Deep Learning. The catchy name had already grabbed
the attention of many, even though there was little overlap between Deep Learning
and anything considered state-of-the-art at that time. So there I was, barely getting
acquainted with the specifics of this miracle cure that was poised to reinvigorate the
otherwise sluggish advancements in multimedia retrieval. Luckily, the material I was
preparing allowed me to dissect all its moving parts, studying each piece individually,
and assembling them back into a coherent whole that students could assimilate. This
was a wonderful opportunity to appreciate the extent of the phrase “you don’t realize
whether you completely understand a topic until you are tasked to explain it to someone
else.” 1 I would use this maxim as the standard to craft every single graphic, every text,
and every table that ended up in the course material. The effort paid off quickly, not
only because of the flattering feedback or the five subsequent times I was asked to give
the lecture, but also because of the invaluable insights it granted me.

It came as no surprise that the topic of my PhD materialized shortly after, as a byproduct
of my continuous quest for further understanding. Despite being more comfortable
with the principles of Deep Learning, I would often find myself looking at a murky
horizon where changes in this or that hyperparameter lead to better results without any
convincing reason that could support it. The computer-vision community was elated
by the fast and steady progress that Deep Learning had brought to the scene. However,
programming a classifier that can reliably distinguish between images of Chihuahuas
and blueberry muffins was a borderline circus act. Claiming success simply because we

1This version came from neurologist Dr. Steven Novella but phrases with a similar sentiment are often
attributed to Albert Einstein or Ernest Rutherford.
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“show the model enough samples,” didn’t spark the same awe-inspiring feeling that got
me so infatuated when I first started my academic journey. Naturally, I felt compelled to
ask more. The ambition was growing with each new paper that crossed my desk, and
I savored the small victories from experiments that uncovered existing but unknown
properties. Soon enough I found myself drilling down layers of dense theories and
running experiments that would test my own hypotheses. I was finally working towards
answering my own questions!

These are the waters that I’ve navigated during my academic journey. Some of them
have been turbulent, like the time I set a one-year deadline to get a paper published or
start looking for a position in industry. Some of them have been surreal, like the time at
CVPR when I received the NVIDIA Pioneer Award from the CEO himself, Jensen Huang.
In retrospective, this whole adventure has been worthwhile, and as they say, the rest is
history. As I prepare to come ashore and mark the end of my doctoral adventure, the one
step remaining is to document the outcomes of this wonderful voyage through questions,
ideas, discussions, conferences, and lots of experiments.
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Introduction 1

“ The most exciting phrase to hear in science, the one
that heralds the most discoveries, is not “Eureka!”
(I found it!) but “That’s funny. . . ”

— Isaac Asimov

On the brisk night of June 15th 2019, a select group of renown computer scientists
left their screens and keyboards to gather at the exclusive San Francisco Palace Hotel.
That night, now as attendees to the ACM Awards Banquet, they would witness the
moment when Yoshua Bengio, Geoffrey Hinton, and Yann LeCun received the 2018
Alan M. Turing Award—the most prestigious distinction in the field of computer science.
The Association for Computer Machinery had chosen the trio “for conceptual and
engineering breakthroughs that have made deep neural networks a critical component
of computing.”1 These three professors had officially joined the likes of E. Dijkstra, D.
Knuth, J. McCarthy and R. Hamming in the Olympus of computer science. Through their
research, deep neural networks (DNNs) were now considered as fundamental to the
field as other technologies like computer networks, databases, and cryptography.

Despite being based on foundations that matured during the early 1990s, the impact
of “Deep Learning” has mostly been felt during the course of the last decade. However,
the growing enthusiasm around this technology has caused not only massive leaps
in scientific advancements, but it also precipitated its rapid adoption for all kinds of
problems. This branch of machine learning (ML) has shown to be more effective than
previous state-of-the-art technology, which used to rely on innate methods i.e., algorithms
that don’t require training.

Access to more powerful computers—especially to graphic processing units (GPUs)—
made it possible to train bigger and deeper networks. The particulars of the problem
became almost irrelevant as long as the right amount of data was available. In addition,
ingenious extensions to the backbone of neural networks facilitated their implementation
for problems where the number of operations were still prohibitively large. Prominent

1https://www.acm.org/media-center/2019/march/turing-award-2018
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contributions include depth-wise convolutions [32], residual connections [59] or in-
ception layers [142]. Notably, these technologies have been primarily showcased for
solving computer vision problems such as image similarity, scene classification or object
detection.

The overarching success of neural networks, propelled their usage for new domains and
under different constraints, leaping from niche academic circles to mainstream industrial
applications. Higher standards were required, as these models were gradually used
for more high-stake scenarios like credit assignment [171], criminal recidivism [1], or
medical diagnosis [56]. For some of these, privacy constraints or difficulties procur-
ing expert annotations results in data not being readily available. For example, the
International Skin Imaging Collaboration (ISIC) hosts one of the largest datasets for
melanoma prediction. For every single sample, they have to ensure that the patient’s
privacy is preserved, and confirm that the labels for classification are provided by medical
experts—arguably a scarce and expensive resource! Moreover, policymakers are passing
regulations to hold models (or rather, the organizations behind them) accountable for
their decisions [166]. The main goal is to enforce transparency for users whose lives are
affected by predictions coming from an automatic model.

The question that naturally arises is: Are there systematic ways to improve both perfor-
mance and transparency at the same time? In response to this question, eXplainable
AI (XAI) came into being. To understand why this is the case, we have to look back
at state-of-the-art AI from the previous decade. In the time before Deep Learning, ex-
tracting information and issuing predictions mostly followed a traceable pipeline, with
intermediate steps that had a direct relation to high-level semantics. Back then, the use
of innate methods such as blob detectors [12] or local texture descriptors [160] was
predominant in computer vision. Blobs were meant to select salient and stable points
of the image, while descriptors provided a compact representation of the most relevant
characteristics within each region. These set of features were aggregated into global
descriptors (one per sample), and used by powerful but straightforward classifiers like
decision trees (DT) or support vector machines (SVMs).

As Deep Networks started dethroning the most advanced models of the time, the field
of AI accepted the trade-off between traceability and performance. These networks
were now the ones deciding what to detect and what characteristics to represent. Their
complex web of interconnected parameters allowed them to find highly non-linear
patterns that proved effective even on the most challenging benchmarks. Unfortunately,
these patterns were no longer controlled by human experts, but were rather data-driven.
Even though traces of semantic relations can be drawn—after all, their components
are loosely inspired by the human brain—they are still somewhat accidental. Alex
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Kyrzhevsky’s seminal paper already noted that their neural network converged to color-,
frequency- and orientation-selective filters [76]; three mechanisms that have been widely
used in the past to detect and extract visual features.

XAI emerges as a conglomerate of efforts to claim back the traceability that got lost
with Deep Learning. Even without a formal definition, an eager community has recently
blossomed around the idea of developing AI that can be explained. In 2019, XAI
established itself as a field of its own after appearing at the top of Gartner’s AI Hype
Cycle [112, 20]. Advances in this area focus on three pillars for next-generation AI:
high-stake scenarios, legal requirements and scientific advancement. The most important
milestones for this community include the development of tools, theories, modifications,
strategies and experiments to bridge the gap between the opaque high-performance of
Deep Learning and traceable methods.

Somewhat unexpectedly, the field has faced a few obstacles that have slowed down
progress, taming expectations on what can be achieved. A predominant issue is the lack
of a unified, precise definition for what actually counts as “explainable.” Not having one
is especially troublesome for a field of research that is expected to provide standards
for governance, and across industries. We address this issue in Chapter 3, arguing why
standard definitions are urgently needed before any specific solution can be pushed
forward.

These are the origins and current state of XAI. But before we start talking about
the contributions that this thesis makes to the field, we first need to understand two
important properties that have been attributed to XAI. They will allow us to contextualize
the gap that every contribution in the field (including those in this thesis) addresses.

1.1 Unveiling the XAI Spectrum

Finding structure in the sea of contributions for XAI has been nothing short of a titanic
task. There are not only numerous survey papers for explainable methods, but there
are now reviews about survey papers as well! Two well-known meta-surveys have
been published by Vilone and Lungo [151], and more recently by Ras, Xie et al. [120].
Together, they have analyzed over 500 explainability-related papers published in the
span of two decades. Even though both meta-surveys consider the most foundational
algorithms in the field, each publication proposes a rather different taxonomy for
organizing XAI methods. Vilone and Lungo present a stratification where XAI methods
fall into one of three categories: visualization, distillation or intrinsic. In contrast, the
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structure proposed by Ras, Xie et al. tries to identify five fundamental characteristics
from each XAI method: stage, scope, problem type, input type and output format.

At first, it seems as if not even surveys can find a common pattern in the reviews they
conduct. However, there are two notions in common that can be extracted from both.

The first notion refers to the scope that explanations are meant to cover. By “scope”,
we refer to elements of the model that an explanation is addressing. Whenever an
explanation focuses on small parts of the model e.g., an individual neuron, or a single
input sample, we say that the scope of the explanation is local. Meanwhile, methods that
produce explanations pertaining to the whole model, or to the entire data distribution
are called global. For Vilone and Lungo the scope appears directly as one of their
main categorization points. Meanwhile, this distinction does not appear directly in
the taxonomy from Ras, Xie et al. However, they repeatedly refer to global and local
properties when highlighting important features of each method.

The second notion refers to the “stage”, or the moment in time when the explanation
method takes place. On one end, explanations may happen after the target model has
been already designed, trained, and fine-tuned. On the other end, we have explanations
that are defined before the model is ready to make predictions. These two notions are
commonly referred to as post hoc and ante hoc2 respectively. Once more, Vilone and
Lungo identify “stage” explicitly in their XAI taxonomy, drawing a clear line between the
two extremes. For Ras, Xie, et al. the distinction is embedded in the attributes of their
three categories: visualization and distillation is only comprised of post hoc methods,
while ante hoc methods belong exclusively in the intrinsic category.

Together, the notions of scope and stage convey some of the most fundamental properties
for XAI because they help determine where the explanation is focused, and when it
happens. However, this juxtaposition of local vs. global and post hoc vs. ante hoc
describes a discrete space that leads to a false dichotomy. While determining the stage
of a new explanation, focusing on a single neuron will clearly result in a local analysis.
But what about methods that concentrate on an entire layer? How about exploring
the behavior of an entire residual block or an inception module? What is the stage of
an explanation that looks into the deeper half of a 270-layer DenseNet? Clearly, these
questions cannot be answered with a simple binary decision.

Similarly, pinpointing the precise moment when an explanation kicks off, presents its
own set of challenges. In between ante hoc explanations and post hoc visualizations we

2The term ante hoc is preferred over pre hoc as the antonym for post hoc. Even though both refer
to something that happens “before this”, the prefix ante has a temporal connotation, similar to the
abbreviation A.M. when reading time. The root pre or prae on the other hand, denotes more of a spatial
relationship between objects.
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can find mechanisms that take place while the model is still forming. Think for example
about transfer learning. Here, a model has been fully trained already, but it then gets
one or more layers adjusted to fit data from another problem. An XAI method that relies
on transfer learning is therefore not going to fit into the definition of either ante hoc
or post hoc. This is also the case for other mechanisms like self-supervised learning,
test-time adaptation, model distillation or curriculum learning.

So, instead of adhering to this unaccommodating binary separation, we can think of
stage and scope as two continuous variables that are orthogonal to each other (see
Figure 1.1). This plane serves as a frame of reference for contributions made in the field
of XAI. The continuity in both axes reflects the countless options to define what the
explanation is focusing on, and when.

With this frame of reference, we can have a better overview of the contributions presented
in this work.

Fig. 1.1.: Notions of stage (post hoc vs. ante hoc) and scope (local vs. global) are extremes in
their own continuous spectrum. Various techniques used for explainability can be
placed along both axes.

1.2 Contributions of this Thesis

This work comprises one theoretical contribution, evaluations of three global properties
of DNNs, and one practical application. Each is discussed in a different chapter and
addresses a specific research question.

Chapter 3: Is there a unified way to compare advances in XAI? As the first contribution
of this work, we introduce the XAI Handbook: a framework to unify and compare XAI
methods. Recall from before, that a lack of unity when talking about fundamental
constructs such as “explanation” or “interpretation” leads to developments that end
up tackling different problems. Without a unified way to talk about XAI, it becomes
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impossible to establish standards for governance or industry. With the XAI Handbook
we provide the necessary tools that enable a universal and commensurable comparison
between XAI methods.

Chapter 4: Are classifiers negatively affected by relying on datasets with overrepre-
sented, and semantically related classes? Deep Networks are prone to exploit simple
patterns in the data, even when these patterns are not the ones that should be used.
One such common “shortcut” materializes when parts of the training data are overrepre-
sented, resulting in predictions that are biased towards classes that occur more often. We
study the effects of training a classifier under such circumstances in the domain of Visual
Question Answering (VQA). In particular, we look at the interaction between the set of
polar samples (i.e., yes or no questions) and non-polar counterparts. Results strongly
indicate that overrepresented polar classes play a reinforcing role for the remaining
classes, and not a detrimental one.

Chapter 5: What constitutes “model capacity” and how can we measure it? Across the
literature, we find countless references to the notion of “model capacity” when talking
about networks that represent more or less complex patterns. However, a precise
measure of “capacity” remains elusive. We propose a method to quantify model capacity
as the input information that a classifier takes in before making a prediction. This
method can be used to compare different high-performance classifiers in a way that is
not directly related to prediction accuracy, or to the number of trainable parameters.
Instead, this method reveals how much information is being used by a model. We study
the implications of our proposed metric and draw connections to prior findings that
remained unaccounted until now.

Chapter 6: Can our new understanding of “capacity” help improve any aspect of the
model? As a use case, we exploit our proposed method for measuring model capacity
to increase the robustness of image classifiers. In particular, we look at one of the
greatest challenges that Deep Learning is facing today: adversarial attacks. We evaluate
high-performance classifiers against standard but powerful adversarial attacks, and show
that these models can attain a high level of resiliency. This is possible thanks to the
proposed method for quantifying the input signal from Chapter 5, which can be used to
let the necessary information reach the classifier while filtering out everything else.

Chapter 7: Is it possible to convey structural knowledge without resorting to additional
labels? For creating models that are explainable by design, we need mechanisms that
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convey more information about the non-functional requirements of a task. As the last
contribution in this thesis, we design a neural network for solving two tasks based on
the input of only one task. For this, an existing dataset is extended with new classes by
grouping samples from different labels. The new groupings express a hierarchical context
with respect to the original classes. By training and evaluating using this strategy, we
show that these models can attain a consistently higher performance. More importantly,
the additional contextual outputs provide information to understand and justify why a
certain prediction has been made, be a correct or a wrong one.

As we can see, these five contributions cover a broad scope in terms of tasks, objectives
and domain of applicability. For an overview of where and when these contributions
fit in the spectrum of XAI, we can use the stage-scope axis we defined before, and plot
where each contribution falls:

Fig. 1.2.: XAI methods proposed in this thesis, and visualized in the stage-scope spectrum. We
propose two methods for explaining global properties (brown and yellow) and propose
a technique to create intrinsically explainable models (in blue). The number on each
point refers to the chapter where it is discussed.

From Figure 1.2, we can see that this work focuses more on the global patterns that
govern neural networks. At the same time, these methods cover the stage axis by making
contributions that apply to existing methods, while also demonstrating a general way to
design models that are explainable by design.

This leads us to the two underlying questions of this thesis:

1. What global patterns can we explain from existing state-of-the-art image classifiers?

2. Can we create explainable models by representing additional knowledge without
resorting to more annotations?

In the next chapter, we go over foundations that are necessary before diving into the
specifics of each contribution. These are meant to serve as a quick reference and offers
complementary details for concepts that are used in later chapters.

1.2 Contributions of this Thesis 7





Background 2
This chapter is aimed at giving succinct overviews about the methods and models that
have been used throughout this thesis. Background and theoretical foundations are split
into independent sections that can be used as a reference for concepts that are leveraged
in the following chapters.

2.1 Deep Neural Networks

“Deep Neural Networks” (or DNNs) became a popular term to refer to a broad variety
of artificial neural networks (ANNs) that can deal with large-scale problems. ANNs
in turn, can be generally described as a parametrized method for approximating non-
linear functions. The name “neural network” comes from the structure that is used
to approximate functions, namely with a series of simpler operations that are chained
together, forming a “network” of transformations.1 These individual functions are
referred to as “layers” in the context of ANNs.

This section reviews the core components of high-performance DNNs that play an
important role in this thesis. We will go over two types of network layers, as well as
additional operations that are often included as part of the network architecture.

2.1.1 Dense Layers

Also called feed-forward layers, these are one of the original functions that were used
to design neural networks. At their core, these layers are made of parametrized linear
functions f(x) = Wx + b = ẑ that are in turn, the input for a non-linear function σ(ẑ).
In this case, the parameters that determine how the function fits the data, are contained
in W and b. See Section 2.1.2 for more details about specific non-linear activations.

As mentioned before, these operations are then chained together to allow more complex
functions to be modeled. For example, an ANN made of three dense layers f (1), f (2), f (3)

1Also, because their first installments were loosely inspired by structures found in the brain.
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can be arranged as σ(f (1)(σ(f (2)(σ(f (3)(x)))))) = ŷ. In this case, each of the layers has
its own set of parameters W(ℓ), b(ℓ), ℓ ∈ {1, 2, 3}, which are collectively referred to as
model parameters, and are often denoted by the symbol θ.

2.1.2 Non-Linear Activations

Non-linear activations are functions that are non-linear, and are used in neural networks
to give them the ability to approximate intricate functions beyond the linear domain.
Which non-linear function is chosen depends on factors like to co-domain of the function
or properties of its derivative that makes it better suited for optimization problems.

Common non-linear operations include the Rectified Linear Unit (ReLU) [48], Exponen-
tial Linear Unit (ELU) [34], sigmoids or hyperbolic tangents.

Fig. 2.1.: Non-linear functions used for ANNs.

A variation used for sequence models such as LSTMs [61] or GRUs [31] is the gated
tanh. This function consists of applying a hyperbolic tangent (tanh) to a linear product,
and then doing an element-wise multiplication with values between 0 and 1. More
formally:

Gated-tanh(x) = tanh(Wx + b) ⊗ σ(Vx + c) (2.1)

where σ is the logistic function, V, W, b, c are trainable parameters, and ⊗ is the
element-wise product. Because the second term has a co-domain between zero and one,
we say that its values are coefficients that “gate” the result from the first term.

To constrain the properties of the output, so that it can be read as a probability distribu-
tion, a normalization function called softmax is used:

softmax(x)i = exi∑D
j=1 exj

(2.2)
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where D is the number of dimensions of x. This function is often used as the non-linear
operation of the last layer of a DNN.

2.1.3 Convolutional Layers

These are layers for ANNs that define an operation for grid-like structures. This is
especially useful for processing images, since they are represented as 2D or 3D tensors.
Similar to dense layers, convolutions are a weighted sum between an input I ∈ RH×W ×C

and weights in the form of a kernel K ∈ RH′×W ′×C . The main difference is that the
kernel is usually much smaller than the input i.e. H ′ ≪ H, and W ′ ≪ W (note that the
number of channels C remains constant). Considering the indices i, j relative to the
input, the result of a single convolutional operation is given by:

Si,j =
H′∑

h=1

W ′∑
w=1

Ii+h,j+wKh,w (2.3)

In order to apply the kernel to the full image, we say that the kernel “slides” over the
input. For Equation 2.3 it means that the indices i, j change, which will cause the
convolution to be applied to other areas of the image. In its most simple form, both i, j

increase monotonically by one until the area of the image has been covered at least once
by the kernel K. The result is a matrix S that is usually referred to as a “feature map” or
an “activation map”. Finally, the feature map passes though a non-linear function that is
applied element-wise.

A convolutional layer comprises a set of C ′ kernels with the same spatial dimensions
W ′, H ′. The corresponding 2D activation maps S1, S2, . . . , SC′

are concatenated along
a third dimension creating a new tensor with C ′ channels. This way, the convolution
operation can be applied again on this result, creating a chain of convolutions that are
commonly known as convolutional layers.

Note that this operation is slightly different from the original convolution defined for
signal processing.2 For a more detailed discussion on the particular differences and their
implications, please refer to the reference book by Goodfellow et al. [50].

2Strictly speaking, Equation 2.3 defines a convolution with a flipped kernel, and it is better known as a
“cross-correlation”.
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2.1.4 Pooling Layers

Pooling defines a family of operations that are designed to sub-sample a feature map.
This is useful to control the size of the intermediate activations as they get progressively
transformed by the layers of a DNN. The sub-sampling takes place by sliding a window
through the activation, and computing a summary statistic for the values of the activation
that fall into that window. This is similar to the way a convolutional layer works, but
without a trainable kernel.

Two of the most common pooling operations are known as max-pooling and average-
pooling. For max-pooling, the highest value in the window is reported, whereas for
average-pooling, as the name suggests, the average value from the region is computed.
Most modern networks apply pooling operations with windows that slide in a non-
overlapping fashion i.e., increments of the indices correspond to the size of the window
itself. This way, a 32 × 32 × 128 activation map gets reduced to 16 × 16 × 128 after
applying pooling with a window of 2 × 2 × 1. Note that pooling is usually applied along
the first two dimensions, as these are conveying spatial relations, whereas positions
along the third dimension (i.e., the channels) are independent of each other.

In some cases, a special kind of pooling is used to control the transition between
convolutional and dense layers. These are called global-pooling, and they work by using
the size of the current activation map as the size of the window. For an activation of size
32 × 32 × 128, applying a global pooling results in a 1 × 1 × 128 output. In general, an
activation of size H × W × C will get reduced to 1 × 1 × C. The most common operation
for pooling this way is the global-average pooling or GAP for short.

2.2 Supervised Classification

The problem of supervised classification for images can be defined as follows. Let
X = {x(i)}N

i=1 be a list of tensors that correspond to image samples, and let Y = {y(i)}N
i=1

denote the corresponding labels for each image in X . In a closed-world scenario, we as-
sume that the number of labels is finite and known i.e. y ∈ {1, 2, . . . , k}. The assignment
of x(i) to y(i) comes from sampling a distribution that is unknown, and that we want
to approximate. Therefore, the goal is to create a function f : Rdx → {1, 2, . . . , k} that
maps samples from X to their corresponding label in Y.

To find a suitable function f that can reproduce these mappings, we can define a generic
DNN architecture based on a mixture of convolutional, dense and pooling layers. The
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general architecture of an image classifier comprises convolutional and pooling layers at
the beginning of the network, and dense layers towards the deeper end of the model.

To make the architecture amenable to differentiable optimization (see Section 2.2.1),
ground-truth labels are represented as a one-hot encoded vector y⋆ = 1(y) = Iy,⋆ where
I is the k × k identity matrix and y, ⋆ denotes the y-th row of I . At the same time, the
last layer of the classifier is a dense layer with a k-dimensional output (known as the
logits), and instead of one of the usual non-linear activations, a softmax operation is
used (see Section 2.1.2). Mapping back a k-dimensional vector to the domain of Y is
possible through the arg max function on either the normalized output or the logits.

At the end, we are interested in finding values for all trainable parameters θ that are
defined in f , such that fθ(x(i)) yields the corresponding value y(i) ∈ Y.

2.2.1 Finding Values for θ

Finding values for θ that approximate the function fθ(x) ≈ y is achieved through
stochastic optimization methods.

The problem is set up as a cost-minimization function:

θ⋆ = arg min
θ

1
N

N∑
i=1

L(f(x(i);θ),1(y(i))) (2.4)

where L is a proxy for the empirical risk; usually the negative log-likelihood (NLL)
a.k.a. cross-entropy. This way, when dealing with single-label, multi-class classification
scenarios, the optimization problem becomes:

θ⋆ = arg min
θ

1
N

N∑
i=1

− log f(x(i);θ)y(i) (2.5)

For problems involving very deep networks and large datasets, computing the sum over
every sample is computationally prohibitive, in particular because of memory constraints.
To cope with this limitation an approximation of Equation 2.5 is computed over consecu-
tive, small batches of randomly sampled data called mini-batches. Computing the loss
over all mini-batches that make up the dataset is called an epoch.
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2.2.2 Optimizers

Common algorithms to minimize Equation 2.5 use first order derivatives of the loss w.r.t.
the trainable parameters θ. Since the loss is computed over several mini-batches, and
the solution space is highly non-convex, updates to the trainable parameters are kept
small via a coefficient known as the learning rate.

One of the most simple algorithms that is still widely used to train DNNs is called
stochastic gradient descent (or SGD). As mentioned earlier, the loss function is evaluated
on a mini-batch, and then the gradient w.r.t. trainable parameters is subtracted from the
current parameters, after being modulated by the learning rate:

θnew = θold − λ
∂LB

∂θold
(2.6)

where LB is the average of the cross-entropy over a mini-batch with B samples, and λ

is the learning rate. Equation 2.6 is computed for consecutive mini-batches, updating
θ until the loss reaches a certain stopping criterion. This criterion can be based on the
number of iterations, or the value of the loss over the last couple of batches.

There are two relevant additions to SGD that have been proven beneficial for the
optimization process. The first consists on adapting the value of the learning rate when
more iterations of SGD are computed. This temporal adaptation is known as a learning
rate schedule. Commonly used schedules for the learning rate include:

• Step-wise learning rate: The value of λ is updated after a fixed number of
iterations. For example, when training for 90 epochs, the update rule λnew =
0.2λold will be executed after epochs 30 and 60. Note that there is nothing special
about the values 0.2, 30 or 60; it is only important that the learning rate decays
over time.

• Linear decay: For each new epoch λe = λ0 − (1− e
E ), where e is the current epoch,

λ0 is the initial learning rate, and E is the total number of epochs that are planned
for training.

• Triangular rate: Similar to a linear decay schedule, only that during the first
few epochs, the learning rate grows linearly from zero to its highest value, before
starting to decay again.

Other strategies that are also used such as cosine annealing [94] or cyclical learning
rates [135] have shown to be helpful, but are out of the scope of this thesis.
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The second way to improve SGD is by using an exponentially decaying moving average of
previous gradients, resembling the physical notion of momentum. Because the gradients
are computed on small batches, they are often noisy and do not point exactly in the
direction that minimizes the loss for the entire distribution. The use of momentum helps
to mitigate variability that comes from noisy gradients. The way it is implemented is by
introducing an extra variable referred to as velocity:

vnew = α vold − λ
∂LB

∂θold

θnew = θold + vnew

(2.7)

where α ∈ [0, 1) controls how much of the previous gradients are preserved. When
talking about the value of the momentum, we refer to the value of α.

Optimizers with Variable Learning Rate

Instead of modulating the scale of gradients using a global learning rate, researchers
have looked into the effects of having individual values scaled independently, and adapt
automatically over time. One of the first versions of adaptive learning rates was proposed
by Duchi et al. [42] and was called AdaGrad. This method scales individual gradients by
the inverse of the squared root of the accumulated sum of squared gradients. That is,
for each individual parameter θi and its corresponding gradient of the loss ∇i:

θnew
i = θold

i − λ
∇i√

Gi + ϵ
(2.8)

where Gi is the sum of squared gradients computed so far, and ϵ is a small enough
value to prevent a division by zero. Note that the learning rate λ is still present in the
computation. This means that this method still depends on the choice of learning rate.
However, it has been empirically shown that the suggested default value of 1 × 10−3

works well for the vast majority of cases.

As summing over long training times quickly leads to small gradients and thus, very
small updates for the trainable parameters, Hinton et al. [60] propose changing the
accumulated sum by an exponential moving average. This method is known as RMSProp
and has shown to work better than AdaGrad for training neural networks, as the latter
is not well-equipped to work on non-convex surfaces. With RMSProp, early gradients
become less relevant which keeps the optimization moving further, and towards more
convex areas of the parameter space.
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Right after, Kingma et al. [73] proposed a family of optimization strategies that combines
RMSProp with momentum. Their adaptive moment estimation method (or Adam for
short) keeps an exponential moving average of both individual gradients and momentum
estimates. A generalization of this method was proposed in the same study, where the
root of the sum of squared gradients is replaced by the more general p−norm (i.e., the
n-th root of the sum of gradients to the power of n). A special case is known as Adamax,
which uses the infinity norm p = ∞.

Optimization methods for non-convex problems is a research field of its own, and most
of the details have been left out, as they fall out of the scope of this thesis. For more
information about the relation between these optimizers and many others that became
popular for training DNNs, refer to the excellent overview made by Sebastian Ruder.3

2.2.3 Metrics

Once a DNN has been trained, we are interested in evaluating if the learned parameters
can predict samples that have not been seen during training. In other words, we want to
evaluate if the learned function is representing features of the input distribution, and
not only to the sample that was used for training.

Independent of the specific metric, generalization is measured by splitting the available
dataset into two splits: one for training and one for testing. The model is then trained
using the training set, and once it has converged, the generalization performance is
measured on the test set.

During the process of designing a model, many hyperparameters (e.g., learning rate,
non-linear activation, number of layers, size of the convolutional kernels) have to be
adapted. To prevent biases in the evaluation coming from manually overfitting the
hyperparameters to the test set, the training data is split once more into two sets: one
for training, and one for measuring generalization while hyperparameters are still being
developed. The model is then trained using the training set, and evaluated on the
development set (also referred to as the validation set). If the model doesn’t need to
be adapted any further, the model is trained once more using both the training and
development set. Finally, the generalization performance is computed only once on the
test set.

For image classifiers, the most common metric is accuracy i.e., the average number of
correctly classified samples. Common variations of accuracy include the top-1 and top-5
accuracy. The main difference between the two is the number of predicted labels that

3URL: https://ruder.io/optimizing-gradient-descent/index.html
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are considered when establishing if the prediction is correct. For top-1 accuracy, only
the label with the highest probability (assuming the output can be read in a probabilistic
way e.g., when using a softmax operation) is compared to the ground-truth. For top-5
accuracy, we use the five predicted labels with the highest probability.

2.3 Autoencoders

Autoencoders are ANNs that learn to reproduce the information of the input. In other
words, they are trained to learn the identity f(x) = x. Apart from obvious, trivial
solutions to achieve this, autoencoders are useful to learn intermediate representations
that have more interesting properties such as sparseness or robustness to noise.

Typically, an autoencoder consists of an encoder and a decoder module, which are
designed as mirrored structures. The encoder compresses the input and produces a
code h which is smaller than the input. The code h enters the decoder, which scales it
back up to the size of the input. This structure is better known as an undercomplete
autoencoder.

One of the most interesting aspects about autoencoders, is that they can be trained in an
unsupervised way. This means, that training is based only on the samples x ∈ X , and
there is no need for additional annotations like in the supervised case (see Section 2.2).
A common loss function to train an autoencoder is the mean squared error (MSE)
between the original sample x, and the reconstructed sample f(x) = x̂:

MSE(x, x̂) = 1
D

D∑
i

(xi − x̂i)2 (2.9)

where D is the size of x and x̂.

In computer vision, autoencoders have been used for image denoising [97] or feature
representation [14]. A common architectural principle for autoencoders based on DNNs
is to pass features produced by the encoder directly to the mirrored section of the
decoder. Instead of an entire activation map, networks used for segmentation have
proposed using the indices of pooling layers as additional information to pass on to the
decoder. When the decoder is scaling up the current feature activation, these indices
have shown to improve the reconstruction quality. Using indices of a pool operation to
scale up an intermediate activation is known as unpooling [110].
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2.4 Visual Question Answering

The field of Visual Question Answering is a relatively new addition to the set of problems
for computer vision. Being fueled by the success of DNNs on computer vision and
natural language processing, researchers started looking for a way to tackle problems
that required both. The work of Antol et al. [7] has often been cited as the first to
propose this task in particular. Even though there have been others who had already
proposed similar ideas, it was the work of Antol and his colleagues who first proposed a
free-form, open-ended format to ask and answer questions about images.

The most popular benchmark for VQA is VQA 2.0 and consists of 658,111 triplets
(Q, I, A10) where Q is a string that corresponds to the question, I is one out of 123,287
images from MS-COCO [89], and A10 is a multiset with ten answers given by human
annotators. As the answers may not always have a 100% agreement, the authors of the
VQA challenge proposed an alternative way to measure accuracy:

acc(x̂, A10) = min
(

µ(x̂, A10)
3 , 1

)
(2.10)

where µ(x, X) is the multiplicity function (i.e. how many instances of x are in the
multiset X).

Most state-of-the-art solutions for the VQA problem use a classification architecture by
focusing on the K most popular answers, and treating them as independent classes.
It is common to consider only answers that appear at least eight times in the dataset.
Under these conditions, a model can be trained using standard metrics for classification
problems such as the negative log-likelihood.

For handling text, it is common to use word embedding techniques [95, 5, 148] based
on LSTMs [61], GRUs [31], and GloVe embeddings [115].

2.5 Adversarial Perturbations

Adversarial Perturbations are small, additive changes that are intentionally added to
cause a model to make a prediction mistake [49]. They were discovered in 2013 when
Szegedy et al. [144] were trying to find hard negative samples for training.

Formally, an adversarial perturbation is a tensor δ such that:

f(x) ̸= f(x + δ), ||δ||p ≤ ϵ (2.11)
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where f : Rdx → {1, 2, . . . , k} is a classifier and ϵ is a small bound with respect to the
p-norm being used. Intuitively, this problem looks for values of δ that are imperceptible
for humans. In practice, the most common norms used to measure δ are the 0-, 2- and
∞-norms, whereas attack algorithms focus on the last two. For images, perturbations
are usually between one and sixteen pixel values for these two norms.

Most attack mechanisms find perturbations by exploiting the differentiable nature of the
model, and use optimization processes that maximize or minimize a proxy function of
the training loss. To achieve this, they rely on gradients produced by the target model,
or even a surrogate one (in case the attacker doesn’t have access to gradients of the
original model). Note that, for adversarial attacks, gradients are computed w.r.t. the
input, and not the model parameters:

∇x = ∂L(f(x;θ), y⋆)
∂x (2.12)

Attacks trying to make the model predict any class other than the true label, attempt to
maximize the loss function of the model w.r.t. the original ground-truth y⋆. This setting
is known as an untargeted attack. In contrast, an attack aimed at making the model
predict a specific label yt ̸= y⋆, rely on minimizing the loss w.r.t. the adversarial target
yt.

A wide range of strategies to make models more robust against adversarial attacks have
proven to be ineffective again and again [8, 9, 23, 22]. Knowing that attackers will rely
on gradients that come from the model, defense mechanisms have focused on ways to
modify these gradients. However, Athalye et al. [9] showed that these attempts can be
circumvented by slight adjustments of the attacks hyperparameters.

For defenses based on non-differentiable methods, they proposed a counter-attack
mechanism called Backward Pass Differentiable Approximation (BPDA). BPDA exploits
the transferability of adversarial attacks i.e., that attacks created for one model, can
be successfully used to fool a second model. With this in mind, BPDA approximates
the part of the defense that is non-differentiable with a differentiable one (usually a
neural network). It then uses gradients from the differentiable replacement to construct
adversarial perturbations.

For defenses that use stochastic operations (e.g. random noise, GANs, VAEs), the Ex-
pectation over Transformation (EoT) can be used to circumvent them. The intuition is
simple: when crafting adversarial perturbations, an attacker can include knowledge
about the distribution of the perturbation, and optimize for a set of samples (instead of
just one).
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These two principles (non-differentiable modules and stochastic operations) account for
a large portion of defense strategies that have been proposed in the literature. Together,
these two patterns are referred to as gradient obfuscation, and are no longer considered
strong defense mechanisms.

Finally, Athalye and his colleagues made a list of conditions to tell if a defense strategy is
relying on gradient obfuscation. In brief, the defenses have to exhibit more vulnerability
to iterative attacks than to single-step variants. Attacks crafted on gradients from the
model itself should be more effective than those crafted on a different model. Random
sampling should not be more successful than any gradient-based attack. Lastly, an
increasing bound for ϵ should result in more effective attacks, and completely ignoring
the bounds, should yield a 100% attack success ratio.

2.6 Datasets for Computer Vision

One of the main factors that catapulted the success of Deep Learning for computer vision,
is the availability of large-scale datasets. For image classification, there are numerous
options with hundreds of thousands or even millions of images. In this thesis, we used
five of the most popular ones, where four of them have annotations for supervised
training.

• CIFAR100 [75]: contains 60,000 color images of size 32×32 that belong to one
of 100 different classes. The list of classes includes different kinds of animals,
furniture, vehicles, plants, people, etc. Standard splits consist of 50,000 samples
for training (500 images per class) and 10,000 for testing (100 per class).

• TinyImageNet [86]: comprises 110,000 color images of size 64×64. They are
split into 200 natural categories based on those from ImageNet e.g., animals, food,
furniture. They are divided into 100,000 samples for training and 10,000 for
validation. There is an official testing set, but it does not come with labels. Hence,
we use the official validation set as test set. For validation, we use a small portion
of the training set instead.

• ImageNet [124]: it is one of the largest image classification datasets available
with 1.2 million images across 1000 classes. The size of each image is variable, but
samples are commonly scaled down to 256×256 pixels. Similarly to TinyImageNet,
we use the 50,000 validation samples for testing and in turn, we take a small
portion of the training set for validation.
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• YFCC100m [149]: this dataset is one of the largest publicly available dataset
of multimedia content, with roughly 99.2 million photos and 0.8 million videos
hosted on Flickr, and shared under one of the various Creative Commons licenses.
The dataset comes with the meta-data of the original images, but no curated labels
or splits between training or validation of any sort. Images are mostly pictures
taken by people all over the world, with a wide variety of scenes, objects and
natural landscapes.

• VQA 2.0 [53]: one of the most popular datasets for Visual Question Answering
(VQA), and an extension of the VQA 1.0 dataset. It provides 658,111 tuples
consisting of a question, an image and a set of ten answers given by human
annotators. There are approximately 5.3 questions per image, with 123,287 images
in total taken from MS-COCO [89]. The official training set comprises 443,757
tuples based on 82,783 images. The validation set offers 214,354 questions
about 40,504 images. An official test set is available, albeit without any answers.
Therefore, we adopt the same strategy from ImageNet, where we use the validation
set as test set, and take a portion of the training set for validation.
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Unifying Concepts in
XAI

3

“ Users do not care about what is inside the box, as
long as the box does what they need done.

— Jef Raskin

As discussed earlier in Chapter 1, the field of XAI has grown rapidly, and in response to
growing demands for using Deep Learning on more and more scenarios. In particular,
high-stake use-cases such as bank loans [21], access to medical treatments [123] or
vehicular security [68] require automatic decisions to be backed up by some kind of
human-understandable reason. However, despite continuous efforts to fulfill these
demands, proposed solutions often end up focusing on entirely different problems. How
can this be happening? At its core, the confusion emerges from a lack of agreement for
fundamental terms like “explanation” or “interpretation”.

When surveying the corresponding literature, we are quickly confronted with multiple
definitions for these basic terms. Have a look at some definitions used throughout time
in Table 3.1. For some researchers an “explanation” refers to a model that makes (linear)
approximations of the decisions of the original model [129, 96]. For others, it represents
either a method through which causal responsibility is assigned [101] or a function that
maps opaque objects into “interpretable” ones [33]. This last example is of particular
interest because it highlights a second problem with some definitions. Quite often,
“explainability” is defined in terms of some other notion, in this case “interpretability”.
However, the second term is frequently left undefined, or worse, defined via a third
concept that in turn lacks a precise definition.

This problem is not new and, thanks to Miller et al. [102] it even has its own name:
“the inmates running the asylum.” In essence, everyone is trying to address a different
aspect in the broad field of XAI. And even though the contributions are legitimate and
unequivocally valuable, the overall goal of providing standard mechanisms to justify
an automatic decision remains unreachable. Without a unified view of the problem,
methods that address different issues cannot be compared [15, 90]. This is especially

23



Tab. 3.1.: Definitions of “explanation” and “interpretation” found in XAI literature.

Source Explanation Interpretation

[84] “someone who is in possession of
some information about the causal
history of some event (. . . ) tries to
convey it to someone else.”

—

[66] “assignment of causal responsibility” —
[92] “central to our sense of understand-

ing and the currency in which we ex-
change beliefs. Explanations often
support the broader function of guid-
ing reasoning.”

—

[16] — “the degree to which an observer can
understand the cause of a decision”

[96] “interpretable approximation of the
original [complex] model”

—

[104] “collection of features of the in-
terpretable domain, that have con-
tributed for a given example to pro-
duce a decision (e.g., classification or
regression)”

“mapping of an abstract concept (e.g.,
a predicted class) into a domain that
the human can make sense of”

[35] “measures the degree to which a hu-
man observer can understand the rea-
sons behind a decision (e.g., a predic-
tion) made by the model”

—

[41] — “to explain or to present in under-
standable terms to a human”

[78] — “quantifies how easy it is to under-
stand and reason about the explana-
tion. Depends on the complexity of
the explanation”

[151] “the collection of features of an inter-
pretable domain that contributed to
produce a prediction for a given item”

“the capacity to provide or bring out
the meaning of an abstract concept”

[126] “in human–human interaction, expla-
nations have the function to make
something clear by giving a detailed
description, a reason, or justification”

—

[129] “local approximation of a complex
model [by another model]”

—

problematic for standardization and governance. Imposition of legal requirements
for things like safety critical systems, depends on the existence of a well-established
standard.

In recent years, the European Union started passing regulations aimed at guarding end
users from unintended consequences of automatic decisions. The European General Data
Protection Regulation (GDPR) became popular as one of the first reforms that explicitly
mention the “right to an explanation” [44]. Despite all efforts that went into drafting
GDPR, it was quickly shown that the right to an explanation can be easily bypassed by
exploiting the vagueness of its terminology [127]. Even though this is only one example,
it is certainly not an isolated phenomenon. The most recent installment of the AI Index
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Report found that in 2021 there were fourteen AI-related bills that have been passed
into law just in Western Europe, the UK and the USA alone [166].

To highlight the importance of a standard definition, we can look at a young field in
ML that had a similar issue in the past. Adversarial attacks [144] studies imperceptible
perturbations that, when added to the input, can cause a high-performing model to
make arbitrary mistakes. Since its discovery back in 2013, a community formed around
this problem, exploring ways to attack and, more importantly, ways to defend against
such attacks. The problem for researchers was, that there were no standard, measurable
definitions for concepts like “imperceptible” or “adversarial”. Moreover, the setup for
evaluating such an attack (i.e., access to model internals, assuming knowledge about
the training set, etc.) was being re-defined for each new publication. This led to defense
strategies that were promptly deemed ineffective, mainly because of a poor definition of
the problem conditions [9, 22]. This community has since, pushed for more rigorous
definitions of their constraints for evaluating defense and attack methods.

Let us go back to XAI and its multiple definitions for “explanation” and “interpretation”.
Can’t we just pick one from the pool and make everyone stick to that one? Unfortunately,
this is not entirely straightforward. In recent years, these definitions have faced strong
criticisms arguing that they are too vague to be operational [41], not falsifiable [80],
or simply not adequate for high-stake scenarios [122]. Therefore, a new, concrete and
actionable basis is needed, allowing different XAI methods to be compared.

In this chapter, we propose that such basis starts with clear definitions of the two core
terms “explanation” and “interpretation”. Armed with these two concepts, we can build
a framework that encompasses all contributions in XAI, facilitating their comparison. We
show that this framework meets expected requirements regarding fidelity, grounding
and diversity [4], as well as social aspects such as contrast and selection [101].

In the next section we will have a deeper look at different initiatives to conceive sound
definitions for XAI. Then, we start building our proposed framework, laying out the
common vocabulary and discussing its scope. Finally, we analyze the completeness of
the framework and re-interpret examples from the state-of-the-art using our proposed
framework.

3.1 Limitations of Existing Definitions

There is no shortage on definitions for “explanation” or “interpretation”. However, a
fundamental issue with those, is that they are poorly defined, as they tend to appear on
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the margin of the actual contributions, in an effort to provide rudimentary context. Is
it possible to find a common ground between all of these definitions? To answer this
question, we need to have look at some recurring patterns throughout the history of XAI
definitions. Said patterns will allow us to consider the most prevalent properties that
these terms should convey.

Going back to early work done in the area of philosophy, we see that the notion of
“explanation” is always linked to causal information [84, 66]. However, more recent
research has shown that non-causal questions can, and should be the target of XAI
methods as well [92, 101]. Therefore, an XAI framework should accommodate both
causal and non-causal mechanisms.

More recently, research on explanations mostly focused on the creation of models that ap-
proximate the decisions of a more complex one [96, 121, 78]. Under this paradigm, the
“explanation” was the model that provided the approximations. Despite their popularity,
these models do not fulfill critical requirements that are expected from explanations. In
particular, these explanations have a distinct lack of faithfulness [122] which, according
to Alvarez-Melis and Jakkola, refers to the ratio between the relevance of features that
the explanation deems important, and their true relevance [4]. Furthermore, popular
approximation methods like LIME [121] or SHAP [96] have shown vulnerability to
malicious attacks. Concretely, a target model can be modified in order to cause explana-
tion methods to identify irrelevant features as relevant [133]. As a result, such linear
explanations won’t be aligned with the underlying feature representation of the target
model. Unsurprisingly, the use of non-linear approximations show similar shortcomings
as well [40, 47].

Parallel to these two trends, fundamental research in ML has also delved into the nature
and purpose of XAI. For most, the lack of precise definitions presents a challenge to
the research community [104, 90, 120]. However, they fall into the trap of defining
“explanation” and “interpretation” as vacuous collections for other terms like confidence,
transparency or trust [120, 35, 41]. For others, it is more important to define the
expected requirements (i.e., desiderata) of an explanation [120, 90] or the ways to
evaluate if a model is “explainable” or not [90, 41].

Even though all of these contributions add immense value to the field, they accentuate
the lack of cohesion and get in the way of making more impactful advances. In the next
section we start defining the context and building basic definitions from the ground up,
paying special attention to shortcomings from the literature that have been discussed so
far.
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3.2 Context and Core Definitions

A solid framework must be supported by strong principles in the right context. Even
though the name XAI implies that the framework must apply broadly to the field of
artificial intelligence, most of the XAI literature has been dealing with Deep Learning
almost exclusively. As discussed in Chapter 1, the ability to draw meaning between the
model and the task, has gotten more difficult with the advent of data-driven approaches
where Deep Learning reigns. It is therefore consequential that the context of XAI, and
the XAI framework focus on the opaqueness of these models.

For a more concrete idea of the context, let us start by thinking about how a classification
problem is solved using Deep Learning. We begin by defining the problem intuitively:
we want to correctly classify all pictures of a finite set of classes, say horses, and fish. A
more formal, yet general definition of the problem is to declare a function that maps
the domain of images to the co-domain of classes f : Rh×w×c → Rk. From here on, the
standard pipeline for supervised classification provides an effective scaffold to generate
such a model: defining a parametrized architecture, optimizing the cost function and
generating predictions through a normalization operation like the softmax function. A
high-level diagram of these interactions is shown in Figure 3.1.

Fig. 3.1.: General overview of an ML pipeline. An intuitive problem gets formalized at the cost
of under-specifying its requirements.

With this approach, and under the right conditions, a high-performance model can
be easily obtained. However, one problem that goes mostly unnoticed, is the gross
simplifications that take place, even before the model gets to train on the first sample.
Back in 2006, Lombrozo had already raised a word of caution when working with
under-specified problems [92]. More recently, D’Amour, Heller and Moldovan, together
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with thirty-seven colleagues at Google and MIT, wrote a more specific analysis on the
risks of deploying Deep Learning models trained on under-specified objectives.

Generally speaking, under-specification happens when critical aspects of the problem
are not explicitly accounted for. In our classification example, we can reasonably expect
that the class prediction should not be affected by the background of the picture. This
constraint may appear obvious in hindsight, but the model has not been trained to meet
this condition. With the right—or may we say the wrong—dataset, the training process
can generate a model that exploits biases from the background. For example, the model
could have learned that the color green is strongly indicative of an image of a horse. If
this “shortcut” is unknown to us, it would be hard to justify why we can’t get a correct
prediction from a picture of a fish swimming through algae.

There are many more general assumptions that a problem definition often forgo. Here
are three critical aspects that are usually not accounted for, and can lead to under-
specification. First, the gap between information contained in a picture of an object, and
the object itself a.k.a. the representation gap [134]. Second, the semantic gap or the
discrepancy between different semantics that can be drawn from a single sample, when
using two different representations [134]. Last, the general interaction between signs,
objects and interpreters, as defined in semiotic theory [137].

Here is where under-specification enters the XAI framework. Generally speaking, all
these unaccounted constraints define properties that the model either has or lacks.
Discrepancies between the expected behavior of the model and the actual outcomes
are justified by looking for inconsistencies with respect to said constraints. Thus, we
can reinterpret the role of XAI in terms of inconsistencies regarding under-specified
constraints. So, as it turns out, methods of XAI do nothing more than probing for
evidence that a trained model has learned this kind of constraints! For simplicity, we
borrow the term non-functional requirements from software engineering to refer to the
set of assumed constraints and properties that should be represented, even though they
are not explicitly modeled. We will circle back to the critical role of non-functional
requirements once we introduce the core terminology for the framework.

Defining Core Concepts

For the XAI framework, we need to define two concepts (explanation and interpretation)
without creating ambiguity or relying on additional, hollow terminology. At the same
time, we need to convey the properties that have been pushed forward in countless
attempts for providing viable definitions. Moreover, these terms must ideally preserve
their relation to the original, textbook definitions.
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We begin by referring to general English dictionaries and encyclopedic corpora for
both terms. As shown in Table 3.2, we can see that our target concepts do not have a
consistent definition. In fact, four out of five of these definitions reflect one of the main
problems discussed earlier: “interpretation” partially depends on the word “explanation”.
Does that mean that the two words work more like synonyms? As we will discuss in
the remaining of this chapter, this is not necessarily the case. There are significant
differences between the two, making it necessary to treat them as two separate notions,
albeit closely related ones.

Tab. 3.2.: Definitions of “explanation” and “interpretation” found in dictionaries. Explanations
appear as objects while interpretations are associated with an action. Accessed on
2021-01-05.

Source Explanation Interpretation

Merriam-Webster act of making plain or understandable action to explain or tell the meaning of
Cambridge the details or other information that someone

gives to make something clear or easy to un-
derstand

an explanation or opinion of what some-
thing means

Oxford a statement or account that makes something
clear

the action of explaining the meaning of
something

Dictionary.com statement made to clarify something and
make it understandable

explain; action to give or provide the
meaning of; explicate; elucidate

Princeton a statement that makes something compre-
hensible by describing the relevant structure
or operation or circumstances etc.

an explanation of something that is not im-
mediately obvious; a mental representation
of the meaning or significance of something

Wikipedia a set of statements usually constructed to de-
scribe a set of facts that clarifies the causes,
context, and consequences of those facts

A philosophical interpretation is the assign-
ment of meanings to various concepts, sym-
bols, or objects under consideration.

Let’s go back to Table 3.2. By contrasting the grammatical elements used to describe
both terms, we can quickly identify that explanations are defined in terms of nouns,
while interpretations are defined using verbs. In that sense, we can already think of
explanations as entities that have components or interact with other entities. More
concretely, explanations tend to be seen as statements about something else. With
this in mind, the next steps towards defining “explanation” are identifying the kind of
statements they are, and what they are targeting (i.e., what is the statement about).

Recall that XAI is looking for evidence about the non-functional requirements of a task.
This evidence is there regardless of whether we look for it or not. An XAI method is
therefore using elements from the task (including the model, data, hyperparameters,
etc.) to make statements about a certain non-functional requirement. At this point, we
can start to realize that the general purpose of an XAI method already fits the definition
we have for “explanation”! Though, to avoid circular arguments or leaving other terms
undefined, we can formally model what an “XAI method” is, namely a mapping between
existing, factual entities, and the output space of the statement. This idea aligns with
Esser et al. [43], who define XAI methods as translations between a source and target
domains.
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Once more, factual entities include all components defined in the pipeline that solves the
problem. These can be the model architecture, any hyperparameter used for training, the
dataset, intermediate activations, etc. The most important aspect about the input space,
is that it comprises objects that are axiomatically true i.e., their existence is unambiguous.
Properties of the output space (e.g., values, dimensionality) will depend on the method
itself and the kind of evidence it provides. For instance, feature importance methods
usually output a heatmap that has the same dimensions as the input space of the model.1

Perturbation methods like ROAR [62] focus on tracking changes in the accuracy, and
hence produce a series of scalar values as their output space. Armed with these new
insights, we can already draft a first definition for “explanation”:

Definition 3.2.1 (Explanation (draft)). An explanation is the process of describing facts
related to the non-functional requirements for a task.

Two subtleties to notice: First, we define the main entity as a process in order to convey
that, formally, an explanation is just a function. Second, instead of saying that the
outputs are “statements”, we further identify that those statements are descriptive in
nature, as opposed to normative ones.

The final aspect regarding explanations, deals with their purpose. Going back to the
definitions from Table 3.2, we see that the finality of an explanation is to make something
clear, understandable or comprehensible. But understandable to whom? This question
makes us evaluate who are (or who can be) the consumers of an explanation. Implicitly,
these textbook definitions are calling for the involvement of human actors. We can argue
that explanations are primarily meant for humans. Notwithstanding, there are functions
fitting our current definition of “explanation”, whose outputs can be passed on to other
machines, but these are considered to be just part of an automatic verification system,
and not an explainable system. There are proposals, like those made by Doshi-Velez
and Kim, for ways to evaluate explanations without the involvement of humans [41].
However, they also begin by noting that in ML, an “explanation” is a human-centric
concept. Both schools of thought seem to have opposing views, but they can indeed be
reconciled. An automatic evaluation for explanations—the kind that does not require
human involvement—is achievable through metrics that reflect their fitness regarding
human satisfaction.

To highlight the link between explanations and humans, we complement our initial
definition as follows:

1For image models, it is common to preserve only the spatial information, regardless of the number of
color channels.
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Definition 3.2.2 (Explanation). An explanation is the process of describing facts related
to the non-functional requirements for a task, such that it facilitates the understanding
of aspects related to said facts (by a human consumer).

To prevent confusion between the process (i.e., the explanation itself), the inputs and
outputs of an explanation, as well as the actors that are involved, we introduce the
following terminology:

• Explanation: process to describe non-functional requirements (see Definition 3.2.2).
Sometimes referred to as “explanation method” for additional clarity.

• Explanandum: input of the explanation.

• Explanans: output of the explanation.

• Explainer: actor who proposes the explanation.

• Explanee: actor who consumes the explanation.

Let us now look at the word “interpretation”. Recall from Table 3.1 and Table 3.2,
that this notion was often defined in terms of “explanation”. In order to resolve the
co-dependency in this definition we can focus on the other recurrent motif in some of
the entries: interpretations deal with the meaning of something. Looking at the pipeline
from Figure 3.1, we see that the output of the system (e.g., the softmax of the last
layer in a neural network) exists in the formal, low-level domain. However, the final
goal is to read back those outputs in terms of the high-level, semantic entities from the
original problem definition. For this, a specification needs to exist, allowing users to
assign meaning to those formal structures. In the classification example, the output from
the softmax operation can be read as a probability distribution, where the index of the
highest value corresponds to the class prediction. Similarly, for every formal output, a
contract needs to exist assigning semantic meaning to it.

Note that the Wikipedia entry for “interpretation” in Table 3.2 already talks about
an assignment of meaning. We adhere to this structure to sketch our definition for
“interpretation” in the XAI framework:

Definition 3.2.3 (Interpretation). Act of assigning semantic meaning to formal primi-
tives.

This definition is not exclusively tied to XAI. On the contrary, it is generic enough to
apply to the outputs of a classic ML pipeline. Nevertheless, we can exploit this definition,
as it is fully suitable to talk about the assignment of meaning for explanations. Here
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is where both “explanation” and “interpretation” meet. As part of a formal process, an
explanation yields results that live in the domain of mathematical primitives. In particular
the explanans can be, as discussed earlier, a tensor or a scalar value. Those outputs
alone lack a concrete link to the semantic realm where the non-functional requirements
originated. Therefore, an “interpretation” assigns meaning to the explanans so that it
can be read and evaluated in the high-level domain.

Having defined the context and core concepts, we arrive at the final version of the XAI
framework, shown in Figure 3.2. The task definition originates in the high-level domain
and gets characterized in terms of a low-level formal definition using a standard ML
pipeline. Limitations with defining a task formally, lead to under-specified models that
are exposed to learning shortcuts. Said shortcuts can be exploited to solve a task without
relying on patterns that are semantically related to the task, leading to inconsistencies
in the prediction process. To validate that the model adheres (or not) to solving the task
without relying on shortcuts, non-functional requirements from the task can be probed
using explanations. The output of these explanations is interpreted w.r.t. the semantics
of the non-functional requirement, and they establish if the model does indeed represent
the expected patterns.

We now have a self-containing framework, but does it work to analyze all kinds of
explanations? The next section discusses how this framework enables the study of both
existing and novel methods in XAI.

3.3 Testing the Universality of the XAI Framework

According to Lombrozo, explanations are a vehicle to contest existing beliefs about an
output, by setting constraints to the prediction process [92]. In other words, explanations
are methods that provide answers to questions about non-functional requirements. These
questions fall into one of three classes: what, how and why inquiries. We also know from
the work of Miller, that these three question types are an effective basis for selecting
which non-functional requirements can be answered by explanations [101].

To validate that the XAI Framework is suitable to analyze both existing and novel
methods, we need to show that all three kinds of questions can be addressed in terms of
entities that exist within the framework.

What questions: define the entities that are the subject of an explanation. More
concretely, these questions focus on the elements from the non-functional requirements
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Fig. 3.2.: Overview of our proposed framework. A task defined in the high-level domain
gets an under-specified characterization, leaving out non-functional requirements.
“Explanations” are methods that probe for said requirements. Interpretations are
mappings from the low- to the high-level domain.

that exist in the formal definition, and that are used as input to the explanation itself. It
also deals with the structures that are produced by the explanation i.e. the explanans.
An explanation therefore answers what elements from the formal domain are being used
as input to the explanation, and what structure is the result of the explanation.

How questions: describe the way an explanans is produced. These are the main
questions addressed by the XAI literature, and they focus on describing details of the
process that transforms an explanandum into an explanans. This is the question that
is usually thoroughly discussed in the literature, and it has already sparked all kinds
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of valuable discussions. For example, whether black boxes and linear approximations
count as valid explanations [122, 133].

Why questions: focus on causal factors of a non-functional requirement. Causal
analysis is one of the most powerful mechanisms to validate patterns learned by ML
models. With them, we can isolate the specific factors that bring about the behavior of a
model. Why questions are primarily addressed by the interpretation i.e., the contract
between the formal and the semantic domain. Formal causal methods can sometimes
be included in the explanation [93, 26]. In these cases, the resulting explanans has a
straightforward link to the semantic domain.

This is how all three questions can be addressed in terms of entities within the proposed
framework. What and how questions are addressed by the explanans, explanandum and
the explanation itself. Why questions are dealt with by providing causal elements for
the interpretation. Note that explanations with causal elements are not the only ones
that can be tackled. For instance, showing that a model has issued an unfair prediction
is already useful to discard said prediction, even if the cause remains unknown. While
what and how questions must be made explicit, causal interpretations are optional, albeit
preferred.

Knowing that the framework is suitable for a comprehensive array of questions, it is
important to validate how the expected properties of explanations can be expressed
within the framework.

3.4 Desiderata of Explanations within the XAI Framework

In the past, aside from searching for rigorous definitions, research has also tried to
establish what the main properties of explanations are, and what kind of metrics can be
used to compare them. This section discusses desiderata proposed by Miller [101], and
by Alvarez-Melis and Jakkola [4], and show how it can be framed within the proposed
XAI framework. Similarly, we will look into the properties for metrics that Doshi-Velez
and Kim have put forward [41], and frame them in the context of our framework.

In an effort to understand the principles of intrinsic explainability, Alvarez-Melis and
Jakkola define three main characteristics that explanations must have: fidelity, diversity
and grounding. In addition, they identify a set of quantifiable properties for evaluating
explanations, namely explicitness, faithfulness and stability. Let us go through each one
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and understand what these are, and how each characteristic is addressed in the XAI
framework.

Fidelity: dictates that an explanation must preserve relevant information. The source
of that information lies on both the problem and the model that is being explained,
but also on the non-functional requirements that are being considered. The XAI frame-
work enforces the preservation of relevant information by constraining the domain of
explanans to formal primitives that are factual and axiomatically true.

Diversity: indicates that an explanation must convey its meaning using a set of small,
non-overlapping semantic concepts. By grouping the misalignment between expected
and actual outputs with individual non-functional requirements, the framework promotes
explanations that focus on subsets of the ML pipeline. A guarantee that the concepts
do not overlap semantically, although not provided, is not hindered by elements in the
framework.

Grounding: states that explanations should be expressed in terms that a human can
understand. This notion is directly addressed in the definition of “interpretation” when
we identified that the assignment of meaning is intended for human consumers.

Explicitness: measures how understandable the provided explanations are. This prop-
erty refers to the number of assumptions that need to be made for explanans to be
mapped back to the semantic domain. More generally, an explanation is more explicit
if the interpretation follows straightforward from the structure of the explanans. The
prime example of high explicitness is to rely explanations based on causal theory. As long
as the causal graph is sound, the interpretation can be based on the semantic meaning
of the nodes in the graph.

Faithfulness: evaluates the true relevance of the features being selected for, or by the
explanation. There are two stages in the framework where faithfulness can be evaluated.
First, the relevance of the features can be measured with respect to the non-functional
requirement. In this case, the selection is being done by the explainer; she is in charge
of identifying features of the non-functional requirement that will come under scrutiny.
The explainer is also responsible for finding the corresponding features among existing
elements in the formal domain. Second, we can talk about the relevance of features
of the explanans, and their interpretation. At this stage, both the explainer and the
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explanee come into play: while the explainer needs to provide an interpretation, the
relevance is measured with the help of explanees.

Stability: estimates the consistency of an explanation when processing similar inputs.
Of course, the measurement must be done on the explanandum, and not on the expla-
nation itself. As this comparison takes place on the formal domain, any measure of
distance can be used.

Another set of desiderata has been proposed by Miller, who urges the ML community
to consider findings coming from philosophy and the social sciences, as they have been
investigating the properties of effective explanations for much longer [101]. Miller
concludes that explanations for XAI must exhibit these four fundamental aspects:

Contrastive aspects: Explanations must justify why a decision was taken instead of
another one. For the XAI framework, this contrast exists between the desired and the
actual prediction. When a mismatch takes place, it must be found by analyzing which
non-functional requirement is not being represented by the model.

Selective aspects: Explanations should focus on only the most important factors that
justify the output. Once more, constraining explanations to a non-functional requirement
forces the result to be selective.

Irrelevance of probabilities: It states that the best explanation for the average case is
not always the best explanation. This aspect is particularly important for local methods
where explanations have to deal with individual samples or single neurons. One must
be careful not to attribute failed predictions from two different samples to the same
non-functional requirement.

Social aspects: It points to the primary goal of explanations, namely that they are
meant to be understood by humans. This aspect is related to the notion of “grounding”
from Alvarez-Melis and Jakkola’s work. Again, this aspect is covered by the definition of
“interpretation” that we provide as part of the framework.

In addition to desiderata, Doshi-Velez and Kim have looked beyond the explanations
themselves, and discuss three strategies to measure explanations [41]. They argue that
explanans can be measured with automatic methods, but also through human interaction.
For fully-automatic evaluations Doshi-Velez and Kim suggest using a formal definition of
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interpretability as proxy task to evaluate the quality of explanations. However, a formal
definition is not trivial according to the authors themselves. Moreover, proxy tasks come
with their own list of caveats, as they end up falling into the contested scenario where a
simpler model explains the more complex one. In any case, all measurements of this
type will inevitably live in the formal domain and hence, require an additional (formal)
interpretation.

The remaining two options for measuring explanations include the involvement of human
actors who weigh in on either the original problem, or a simplified version of the task.
Either way, this kind of evaluation will be heavily dependent on the interpretation that is
given to evaluators, rather than on the explanation itself. Only when human evaluators
are well-versed in how the explanation works and how it relates to the non-functional
requirement, their judgment can include aspects from the formal domain.

We see how our framework offers a universal foundation to describe, and even to enforce
desiderata of explanations. Despite there being a long list of terms to describe different
aspects of explanations, we have discovered that many of them are actually referring
to the same properties. We show that “grounding” and “social aspects” are referring
to the involvement of humans. The commonality became evident once we described
both definitions in terms of our proposed framework. This review is encouraging as it
showcases the benefits of having a universal and well-defined framework to talk about
XAI.

Now that we know how to use the framework, what is the best way to start using it? In
the last section in this chapter, we consolidate the most important recommendations to
expedite progress in the field of XAI by using our framework.

3.5 Recommendations Moving Forward

With new contributions being made to XAI on a regular basis, we can exploit the XAI
framework to assure that novel methods are being compared and evaluated adequately.

The most common issue with new methods is that they focus all their effort to describe
the explanation itself. The downside being that the other elements (i.e., explanans,
explanandum, non-functional requirement, interpretation) don’t get analyzed in depth.
In particular, novel methods rarely discuss the link between the non-functional require-
ments of a task, and the explanation itself. Similarly, most publications neglect the
importance of providing a precise interpretation, or motivating the selection of the
explanandum.
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We argue that new contributions should address the full scope of the explanation,
including the interaction between the semantic and the formal domain. Efforts to define
standards for governance and high-stake scenarios will be more likely to succeed once
all methods can be compared. Having contributions that cover all elements around
explanations leads to more fruitful discussions, with modules that can be measured
using the same standards. An exception to this recommendation is when research is
being deliberately addressing one part of the pipeline. For example, when addressing
the limitations of an existing method w.r.t. their interpretation, explanans, etc.

Fortunately, there are contributions in the field that do pay attention to all elements in
the XAI framework as shown in the following example.

Case Study: Class Activation Latent Mapping

To illustrate how an XAI method can adhere to the XAI framework, we have a look at
the recent work by Kim, Choe et al. where they propose a feature attribution method
based on Class Activation Maps (CAM) [72].

In their paper, they observed that explanans produced by CAM violate several axioms
for explanations such as implementation-invariance, sensitivity or completeness [141].
These axioms ultimately relate to non-functional requirements that CAM fails to preserve,
even though they are present in the target model.

Next, the authors propose CALM: an explanation that produces feature attribution maps
i.e., a measure of how relevant each input feature (each pixel) is when making a predic-
tion. Being inspired on CAM, CALM relies on the same explanandum and assumptions
about the model (e.g., that the network is fully convolutional). The explanation on
the other hand, operates vastly different, and comprises a probabilistic representation,
together with a latent model of the location of semantically relevant features. For the
explanans, CALM produces a well-defined joint distribution between the predicted loca-
tions for semantic features and the class probabilities. The authors analyze advantages
of having such an explanans and contrast it to the one CAM produces.

Finally, the paper discusses the different interpretations that CAM and CALM have.
They start by noting that, originally, CAM did not provide an interpretation. Therefore,
aside from an interpretation for CALM, the authors try, to the best of their abilities, to
provide one for CAM as well. Armed with both interpretations, they proceed to identify
fundamental issues with the interpretation of CAM, and contrast it to that of CALM.

Without going into all the details of the paper, we see that Kim, Choe et al. have proposed
a new explanation that addresses all parts of the XAI framework. Despite using a slightly
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different language than the one we propose, the paper discusses (and motivates) their
findings in light of non-functional requirements and interpretations. We see this kind of
research as an encouraging example that others in the field can strive to follow. However,
we argue that using a standard language can help in communicating more effectively
the extent of their contribution.

In Summary

The field of XAI suffers from “the inmates running the asylum,” and it is hindering
progress in establishing standards for high-stake scenarios and governance. We propose
an XAI framework that allows for existing and new contributions in XAI to be measured
and compared. The framework is based on grounded and precise definitions for “expla-
nation” and “interpretation” complementing the classic ML pipeline. We discuss how
the framework is compatible with desiderata of explanations and provide an example of
how future research can describe their contributions more effectively by addressing all
stages of the XAI framework.

In the next chapter, we move to a more specific question regarding biases that arise from
training on datasets with overrepresented classes that are semantically related.
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P ≈ NP, at least in
Visual Question
Answering

4

“ Language serves not only to express thoughts, but
to make possible thoughts which could not exist
without it.

— Bertrand Russell

Neural networks are lazy. But not because they run slowly or because some neurons
refuse to run. They are lazy because they will try to exploit the simplest patterns they
can find. From an optimization perspective, this is of course efficient, but it is also often
problematic. Regardless of how semantically irrelevant some features are, a model will
rely on them as long as they show up consistently during training.

For large datasets—the kind you need for training deep networks—it is impossible to
track unintended biases that can end up in the training set. Part of the assumptions of
the ML pipeline is that the training set is a representative sample of the much larger
(often infinitely so) input space. Unfortunately, the sampling process is imperfect for very
complex tasks, resulting in datasets that are correctly annotated, but that also contain
patterns that don’t belong to the task.

This is especially true in computer vision where natural images are scraped from the
internet and evaluated by human annotators within a narrow scope. For example,
annotators of the ImageNet dataset were instructed to assess the presence of certain
target classes, regardless of the number of objects or surrounding clutter [124]. The
motivation to ignore these factors is to promote diversity in the sampling process.
However, this opens up the possibility for unforeseen biases to leak into the final dataset.
In the end we can’t know for sure if one class of ImageNet can be correctly identified
because it always contains the same number of objects, but also because of any other
unintended pattern that is consistent across samples of that one class.
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The problem for ML models arise when the spurious correlations end up being easier
to represent than the features of the target class. Borrowing again from ImageNet, we
find that most images for the class SIBERIAN HUSKY show the animal in front of a snowy
background. Thus, the brightness of the background becomes a feature that an ML
model can exploit to predict SIBERIAN HUSKY. A similar issue has been identified on the
image captioning dataset MS-COCO [89], which is known for having biases due to the
co-occurrence of objects and backgrounds (e.g., giraffes shown in front of grass [168]).

While these examples may seem harmless, critical situations arise when biases are linked
to societal standards for fairness. For example, a quantitative study by Stock and Cisse
concluded that image classifiers are exploiting biases related to racial stereotypes [138].
Zhao et al. also showed that models for video classification learn to reproduce and
amplify gender biases that are present in the imSitu dataset [169].

So far, it seems like the unintended biases that should be avoided heavily depend on the
application or the dataset. However, there is one common condition that can introduce
adverse biases into any kind of ML model. The performance of a model depends, in part,
on how well-represented (sampling-wise) each class is within the dataset. With no prior
information about each class, most common ML benchmarks rely on a uniform sampling
to form the dataset. Some of these datasets were described in Chapter 2, and we see
that they, in fact, adhere to a uniform sampling i.e., the number of images per target
class remains constant.

The motivation to stick to a uniform label distribution is straightforward. Imagine
training a neural network to classify horses and fish. Now, suppose that your training
data consists on one million horse images, but only ten samples showing a fish. Under
normal conditions, a model that trains using SGD on random mini-batches will quickly
learn to predict the class HORSE every time. From an optimization perspective, the
model can quickly minimize the loss function by making minimal changes to its weights.
Statistically, most mini-batches will have only horses, while fish will occur only once for
every one-hundred thousand images. By only predicting the class HORSE this model will
have an accuracy of over 99.9%. Even though the conditions of this example are extreme,
it illustrates the impact of using non-uniform sampling for classification problems.

If most modern datasets use uniform sampling, is there any reason to worry about this
issue? There are indeed several. The obvious incentive for studying this limitation
is that we cannot guarantee that future datasets will be compiled in the same way.
Sometimes, practical limitations will make it impossible to get uniformly sampled data.
For instance, data distributions with very long tails have been a major challenge for
training autonomous vehicles using ML. As this example suggests, another motivation is
that currently, some disciplines simply don’t have any uniformly sampled benchmarks.
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Staying within the realm of computer vision, the fascinating field of visual question-
answering (VQA) has suffered multiple setbacks that are ultimately linked to the data.
In this chapter we will study the effects of sampling biases for VQA, and evaluate the
impact that these have when training high-performance models. In particular, we will
focus on the confounding effects of including semantically related questions that have
different labels.

4.1 The Problem with VQA Datasets

A few years after the AlexNet network set a new record for image classification, Antol et
al. showed that similar models could be used to answer more specific questions about
images [7]. As one of the firsts to envision the problem, they called it Visual Question-
Answering, or VQA for short. In general, a VQA model works by predicting the answer
to an arbitrary question about an image. The twist: questions can be written in plain,
unstructured text, just as humans would. Models that predict answers for VQA have
to solve a complex objective that involves multiple data modalities (text and images),
while jointly representing patterns from natural language processing (NLP) and object
detection. For more details about the task, refer back to Section 2.4.

Despite the added complexity, advances in VQA showed that deep neural networks were
powerful enough to produce results that were not far from human performance [131,
161].1 As the field grew, so did the efforts to compile a comprehensive dataset that could
be used as gold standard. Two years after VQA was proposed, Kafle et al. reported an
evaluation on six large datasets for this task [67]. In the same paper, Kafle also showed
that at least five of those datasets suffered from some form of sampling bias.

Among the scrutinized datasets is one of the original, and most widely used sets at
the time—the one known as VQA 1.0. It has been reported that using the questions
alone (i.e., without the reference image) was already enough to attain non-trivial
performance [53, 67]. For example, always giving the answer TENNIS to all questions
starting with “What sport. . . ” results in an accuracy of well over 30% for sport-related
samples. Kafle et al. also noted that human annotators tend to ask questions about
objects that appear in the image. Hence, it is not surprising that questions starting with
“Do you see a. . . ” can be answered affirmatively 79% of the time!

Motivated by these shortcomings, Goyal et al. proposed a supplement for VQA 1.0 in
an effort to balance these exact same issues.2 Here is how they did it: Given a tuple

1For VQA 2.0, human performance is 85.01% while MCAN reportedly scored 70.9%.
2They estimated that affirmative questions starting with “Do you see a. . . ” were as high as 87%.
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(Q, I, A) corresponding to a question, an image and an answer; they find a second image
I ′ for which the original question Q results in a different answer Ā ̸= A. Thus, the
newly created tuple (Q, I ′, Ā) compensates biases in the question by having at least two
associated answers. A model that tries to solve the VQA task cannot rely on text alone
anymore, but it will be forced to condition the answer on the visual features. They called
the resulting, more balanced dataset VQA 2.0 [53].

VQA 2.0 soared in popularity, becoming one of the most competitive benchmarks with
its own dedicated workshop at CVPR between 2017 and 2021.3 However, the novel
dataset was still facing criticisms. Because it was based on VQA 1.0, critics like Kafle
questioned the limitations of having coarse categories with lots of samples [67]. For
example, he noted that questions about colors are much more frequent than those asking
about spatial relations. Therefore, a model that specializes in color—a feature that is
also easy to represent—will score higher than a more complex one that excels in spatial
reasoning.

Following Kafle’s argument, this chapter looks into another class disparity that, to our
surprise, has not been studied in depth despite comprising roughly 38% of the whole
dataset.

There are Too Many Polar Questions

Among the set of possible answers that VQA models can give (recall from Section 2.4 that
answers are represented as independent labels, and models follow a similar structure to
image classifiers) there are two labels that have by far the most samples per class. We
are talking about questions that can be answered with either “yes” or “no”. It is easy to
argue why these two labels define a category of their own, as questions that ask for a
“yes” or a “no” follow identical structures, and the answers are complementary to each
other (e.g. an object is present or not, something has a certain color or not, there are
exactly k objects in the image or not). We refer to questions that can be answered this
way as “polar questions”. Similarly, we use the term “polar answers” to refer to the label
set {YES, NO}. In contrast, everything that is neither a polar question nor a polar answer
is referred to as non-polar question and non-polar answer respectively. For simplicity, we
also use the notation P and NP to refer to polar and non-polar elements.

Figure 4.1 shows an overview of the class distribution of VQA 2.0 regarding polar and
non-polar samples. We see how, among the 3129 classes that comprise the dataset, polar
questions make up 38% of the dataset, or 19% per class. In contrast, the remaining
non-polar classes have just over 0.02% of samples per class, in average.

3https://visualqa.org/workshop.html. Accessed on 2022-04-01.

44 Chapter 4 P ≈ NP, at least in Visual Question Answering



Fig. 4.1.: Distribution of polar (P) and non-polar (NP) samples in VQA 2.0.

Critics of polar questions argue that they are too simple, and therefore, they have been
excluded from other datasets like Visual Genome [74] or Visual7W [172]. In stark
contrast, datasets like SHAPES [6], abstract VQA [168] or NVLR2 [140] have opted for
gathering data that focus exclusively on polar questions.

For datasets with both polar and non-polar samples, there are usually a notable, higher
number of polar questions than non-polar ones. Polar questions are easier to formulate
and verify in general (unless they are being purposely used to express complex boolean
expressions [139]). The research community has come up with different strategies to
cope with the disparity between polar and non-polar samples. Agrawal et al. propose
using alternative splits for VQA 1.0 and VQA 2.0 tailored towards measuring the ability
of a model for representing unknown composite concepts [3, 2]. For instance, a model
that is trained on samples about “green plates” and “white shirts” is later evaluated on
questions related to “white plates” and “green shirts”. Moreover, regularization methods
have been proven effective for mitigating the presence of biases that is being picked up
by language models [119, 2].

In addition to these ideas, reporting the accuracy for the polar questions separately has
now become a standard practice. However, this separation of evaluation metrics is only
done at test time. For training, models usually optimize on the entire dataset4, and rely
on uniform random shuffling.

As discussed at the beginning of the chapter, this training regime can be introducing un-
intended biases. Methods such as mini-batch re-sampling [88] can be used to counteract
the effects of overrepresented polar samples. But even then, it is still not guaranteed
that models don’t end up specializing in polar questions simply because they appear
more often. In fact, looking at results from the VQA challenge5, we can verify that polar
questions are correctly classified more often than their non-polar counterparts.

4One notable exception is the VGQA model by Agrawal et al. which consists of an architecture that process
polar questions separately [2].

5http://visualqa.org
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Can’t we just remove polar questions until they match the number of samples per class
of the non-polar set? Shouldn’t that be enough to eliminate any potential biases? At first
sight, it seems like a straightforward idea. However, there is another particularity about
polar questions that makes the answer more nuanced. Have a look at the example in
Figure 4.2. When asking a polar question like “Is there a white animal?”, the model needs
to represent features related to animals, and to the label WHITE to answer correctly.
Similarly, the non-polar question “What color is the horse?” requires that the model
represents the animal, and the color in question. In this case, we say that the polar
question relates to (or talks about) a non-polar concept.

Fig. 4.2.: Example of a polar (P) and a non-polar (NP) question. Sometimes, polar questions
convey information about a non-polar class. Here for example, both samples refer to
the color WHITE.

This last observation suggests that polar and non-polar samples are, in some cases,
strongly linked in the semantic space. With this idea in mind, we define the two main
questions in this chapter: Can we measure the impact of training with overrepresented
polar samples? Are the features of polar-questions interfering with those needed by
non-polar samples or are they complementary?

In the remaining of this chapter we define a series of experiments aimed at answering
these questions. The next section describes the experimental setup, which involves
a high-performance VQA classifier and the VQA 2.0 dataset. Next, we delve into an
ablation analysis of the training conditions to compare the effects of using polar and
non-polar samples on the feature space of the model. We then focus on the relationship
between polar questions that relate to non-polar concepts. Finally, we gather all the
results, and rule on whether the interaction of polar and non-polar samples is detrimental
or beneficial.
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4.2 Experimental Setup

In this section we describe the core components and notation for all experiments. First,
we motivate the selection of our baseline VQA classifier. Then, we discuss different
constraints that will be introduced as part of the ablation analysis, allowing us to quantify
potential biases coming from overrepresented polar questions.

4.2.1 The Model

To evaluate biases in VQA 2.0 we first need to pick a model that serves as a reference for
all experiments. Ideally, we need to strike a balance between simplicity and performance.
Models that rely on external data or pre-trained components add constrains to the
setup that are orthogonal to the problem we want to focus on. On the other hand,
choosing a model that is too simple could cap the diversity of feature representations
that are needed to solve the VQA task. For this reason we choose the model proposed
by Anderson et al. [5]. As the winner of the VQA challenge in 2017, the architecture
consists on a few simple modules that deliver a consistent high performance.6

Fig. 4.3.: Overview of the chosen VQA model. It consists of three modules: a CNN and an RNN
that produce a joint textual-visual embedding (VQA feature extractor or Φ), followed
by a shallow 2-layer output classifier (denoted as f).

An overview of the model in question is shown in Figure 4.3. There, we see that the
model consists of three main components. The first two are a Convolutional Neural
Network (CNN) and a Recurrent Neural Network (RNN). They are responsible for
processing the image and text information independently, projecting their features into
their own lower-dimensional space. The embeddings that result from each of these
components are multiplied element-wise with each other, forming a joint embedding of
the question and the image. We denote this joint embedding as φ. This embedding is

6Even though the model came out in 2017, performance of other architectures has improved by only
7.6p.p. in the following three years, according to Papers with Code (URL: https://paperswithcode.
com/sota/visual-question-answering-on-vqa-v2-test-std. Accessed on 2022-04-01).
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then passed on to the last component of the VQA architecture: the output classifier. The
architecture of the output classifier comprises two fully-connected layers with a softmax
operation at the end, resulting in an output vector of size N = 3129 when the entire
VQA 2.0 dataset is used.

To simplify the nomenclature when describing the upcoming experiments, we introduce
the following notation. The first part of the model i.e., up to the point where the joint
embedding φ is produced, is referred to as the VQA feature extractor, and is represented
by the Greek letter Φ. For referring to the remaining part of the model i.e., the one that
produces the output based on φ, we assign the letter f . Under this notation, a prediction
Â can be expressed as Â = f(φ) where φ = Φ(Q, I) and the tuple (Q, I) corresponds to
the question and the image of a VQA query.

When a module has been trained on only polar samples, we will use the sub-index P
for that module. This way, a VQA model that has been trained only on polar samples is
denoted as fP ◦ ΦP. Similarly, a model trained on just non-polar samples will have its
modules denoted with the sub-index NP. The sub-index Ω will be used to emphasize
that a module has been trained on both polar, and non-polar samples.

4.2.2 Overrepresentation Biases

The purpose of our experiments is to elucidate two main questions. The first one asks if
the overrepresentation of polar samples causes a model to prioritize them, sacrificing
performance on the non-polar ones. If this were the case, a model that only had to train
on non-polar queries, would show higher performance than a model trained on both
polar and non-polar samples. Thus, our first experiment examines precisely these two
scenarios and compares the accuracy of the model f ◦ Φ when trained on:

• The entire VQA 2.0 dataset (polar and non-polar) → fΩ ◦ ΦΩ

• Only polar samples → fP ◦ ΦP

• Only non-polar samples → fNP ◦ ΦNP

4.2.3 Interfering Feature Representations

For the second question, we want to establish if non-polar features worsen when they
are represented in the same space that polar samples occupy. To probe this feature space,
we propose the following setup. We start by training a model using only polar-samples
i.e., fP ◦ ΦP. Then, the resulting feature extractor ΦP is used to extract features from
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non-polar samples that, in turn, serve to train a non-polar classifier fNP. The resulting
hybrid model fP ◦ΦNP represents the alignment between the polar and non-polar spaces.
Evaluating the accuracy of this hybrid model will tell us whether a polar feature space
can be used to answer non-polar questions.

Finally, as discussed in the last part of Section 4.1, there are semantic relations between
polar and non-polar samples when the former asks about the presence of a non-polar
class. To study the impact of this semantic relation, we need to find a subset of polar
questions that have a semantic link to non-polar classes. Considering that VQA 2.0
provides over 650 thousand samples, a manual search for semantic links is unfeasible.
Instead, we define an automatic criterion that finds potential matches via syntactic
analysis.

For this, we gather all words from each non-polar label, and use those to find exact
matches within the list of all polar questions. For example, the non-polar class HORSE

will match to the polar sample with the question “Is there a white horse?”. This process
is repeated for all non-polar classes, and each question can be matched to any number
of non-polar classes. Finally, non-polar classes get sorted according to the number of
matching polar questions. Non-polar classes that had the most matches are considered
to be well-covered by polar questions. This expression simply means that there are many
polar questions that talk, in one way or another, about the matched non-polar class. A
toy example of the matching and sorting method is shown in Figure 4.4.

Fig. 4.4.: Matching non-polar classes to polar questions. At the end, non-polar classes get sorted
according to the number of matching polar questions.

The sorted list of well-covered non-polar classes can be used to evaluate the hybrid
model fNP ◦ ΦP. Here is the rationale behind this experiment. Recall that the polar
feature extractor ΦP has been already trained on all available polar samples. Within that
polar training set, concepts that relate to the non-polar classes are going to be conveyed
to the feature extractor. With enough polar samples mentioning a specific non-polar
concept, we can establish if non-polar concepts that are well-covered are also better
represented in the polar space of ΦP. If this is the case, the accuracy of the non-polar
classifier fNP that uses features from ΦP should be higher for those non-polar classes
that are well-covered.
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4.3 Implementation and Results

We begin by establishing the baseline performance of the reference model. Similar to
the original evaluation by Anderson et al. [5], we select samples from VQA 2.0 whose
answers occur at least eight times. This leaves us with 3129 classes, including the polar
labels YES and NO, resulting in the data distribution discussed earlier, and summarized in
Figure 4.1. In order to minimize the influence of orthogonal aspects in our experiments,
we choose not to pre-train on the Visual Genome dataset like Anderson et al. did.

For the CNN, a hyperparameter k plays an important role in determining the number of
sub-regions to use for computing the image embedding. Following the recommendations
from Teney et al. [148], we set k = 36. Additionally, we use ReLUs instead of GatedTanh
as non-linear operations, because they don’t suffer from vanishing gradients, are more
computationally efficient, and have a negligible impact in performance.

The model is optimized using Adamax [73] with an initial learning rate of 2 × 10−3 on
the full training set. After convergence, the standard VQA accuracy is reported on the
validation set, as done by Anton et al. [7]. Moreover, depending on the experiment, we
report the VQA accuracy w.r.t. polar questions, non-polar questions or all questions in
the validation set. These partitions are denoted with P, NP, and Ω respectively.

Tab. 4.1.: Experimental results. The first column corresponds to the trained model that results
from training on all (Ω), polar (P), or non-polar (NP) samples. The three following
columns report single-model VQA accuracy when the model is evaluated on all, polar
or non-polar samples in the validation set.

Model Accuracy (%) Description

Ω P NP
fΩ ◦ ΦΩ 62.4 80.4 51.4 Baseline

fP ◦ ΦP — 79.6 — Only polar
fNP ◦ ΦNP — — 51.6 Only non-polar

fNP ◦ ΦP — — 28.7 Hybrid model

Going back to the first question about the influence of overrepresented polar samples,
Table 4.1 already gives us some interesting insights. The results of the first two rows
indicate that the performance of a model trained with polar samples is almost identical
to the model that trains on the entire VQA 2.0. A similar result is observed when the
model is trained only on non-polar samples (first and third rows).

In general, the accuracy of the model is unaffected by the overrepresentation of polar
samples, even when training with the entire dataset. This result strongly indicates that
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training on a disproportionate high number of polar questions, does not trivially cause
the model to optimize for them. There is however, a small increment w.r.t. the baseline
in the accuracy of non-polar samples when the model is trained only on those (+0.2p.p.).
On the other hand, the baseline has done a better job at answering polar questions
i.e., when training on the entire dataset. This suggests that, if anything, the non-polar
samples have complemented the polar feature space when the model is trained on polar
and non-polar samples. However, these effects are small, and the overall outcome proves
that overrepresentation of polar questions in VQA 2.0 is not hindering performance.

In fact, we can quickly verify that the weighted average of the two exclusive models
(rows 2 and 3) would result in a lower accuracy than the baseline itself. We can think of
these two models as an ensemble. To estimate the accuracy of said ensemble, we need
to assume that the right model is used according to the polarity of the question i.e., all
polar questions are evaluated by fP ◦ ΦP and the non-polar samples are processed by
fNP ◦ ΦNP. Under this condition, the total accuracy of the ensemble can be estimated as
79.6%(11

29) + 51.6%(1 − 11
29) ≈ 62.22%, where 11

29 is the ratio between polar and non-polar
samples. This places the ensemble 0.2p.p. below the accuracy reported for the baseline.
Note that the assumption we make renders this scenario unrealistic, but it proves that
the baseline would be a better option than the theoretical ensemble. This result also
confirms that the baseline has not been negatively affected by training on the entire
dataset, albeit the disproportionate number of polar samples.

Delving into the second question, we have just established that the polar and non-polar
features don’t exert a strong negative influence on each other when represented within
the same space. This leaves us with two plausible alternatives. The first one is that polar
and non-polar features don’t overlap, and each one simply occupies a different, disjoint
area on the feature space. The second option is that the features do overlap, and the
overlap is complementary. In other words, training on polar questions helps the model
represent features that are needed to answer non-polar questions, and vice versa.

Based on the first experiments (rows 1 to 3 in Table 4.1), it is not possible to determine
if the features are indeed complementary or not. The difference between the accuracy
of the baseline model and the two versions that train exclusively on polar and non-
polar samples is small. Moreover, the training conditions for each model are invariably
different due to the total number of samples available for training.

This is where the last experimental setup comes into play. We use a polar feature
extractor ΦP on the set of non-polar samples. The result of training and evaluating a
non-polar classifier fNP on all features from ΦP is reported in the last row of Table 4.1.
We observe that even though the accuracy of the hybrid model is nowhere near that of
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the baseline (−22.7p.p.), the 28.7% true positive rate lies substantially above random
chance.

At this point, we suspect that the semantic link between polar questions and non-polar
classes may be playing a role. To verify if this is the case, we sort non-polar classes
by the number of matching polar questions, as described in Section 4.2.3. The hybrid
model is evaluated once more, only this time we compute the accuracy over subsets of
non-polar samples that are well-covered by polar questions.
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Fig. 4.5.: Non-polar classes after being sorted by the number of matching polar questions.

Figure 4.5 shows the histogram of non-polar classes after being sorted according to the
number of matching polar questions. As we can see, well over 70% of non-polar classes
have matched to at least one polar question. For this evaluation, we need to focus on
non-polar concepts that are well-covered by polar questions. Thus, we discard non-polar
classes that have less than thirty matching polar questions (shown in yellow). For the
remaining non-polar classes, we define three brackets that reflect how well-covered
they are: The first bracket [■] contains non-polar classes with 100 or more matching
polar questions. The second bracket [■] considers the top 500 well-covered non-polar
classes that are not in the first bracket. The third bracket [■] corresponds to non-polar
classes that have at least 30 matching polar questions, but are not in any of the first
two brackets. We refer to the these brackets by the interval of matching polar questions
that each one defines. This way, the first, second and third bracket are denoted by
the intervals [100, T ], [68, 99], and [30, 67] respectively, where T refers to the maximum
number of matches.
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Tab. 4.2.: Accuracy of the hybrid model fNP ◦ ΦP when considering non-polar classes falling
intro brackets with t0 ≤ t ≤ t1 matching polar samples.

Matching P questions [t0, t1]
[100, T ] [68, 99] [30, 67]

Accuracy (%) 40.8 31.7 21.4
Nr. of NP classes 352 148 317

Results of this evaluation are summarized in Table 4.2. We can verify that there is a
clear correlation between the accuracy of non-polar samples and how well-represented
they are in polar space. Recall from the experimental setup, that the features being used,
come from a feature extractor that has only been trained on polar samples! Looking at
a concrete case, the first bracket shows that for 352 non-polar classes, it was possible
to answer 40.4% of the samples in the validation set, based on a feature space that
has only been trained using “yes” and “no” questions. For reference, the baseline in
Table 4.1 indicates that this result is only 10.8p.p. below a model that has been trained
with non-polar questions exclusively!

Equally important are the result of the remaining two brackets. As the number of
matching polar questions decrease, the accuracy over those non-polar classes decreases
as well. The negative correlation strongly indicates that the semantic link between polar
and non-polar samples creates a feature space that is complementary. In other words,
training with polar samples that talk about non-polar classes, is enough to create a
feature space that conveys enough information to answer non-polar questions.

4.4 Conclusions

In light of the results presented in the previous section, we can gather enough evidence
to answer the two questions at the beginning of this chapter. We devised a strategy to
measure the potential biases that overrepresented polar questions could be introducing
on models that are trained on the entire VQA 2.0 dataset. Our experiments indicate that
having substantially more samples for polar classes does not have a negative effect when
training a model on both polar and non-polar samples concurrently. In fact, based on
the results for the second question, we also discovered that the effect between polar and
non-polar samples is complementary, in particular when polar questions have a semantic
link to the non-polar samples.
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For the second question, we were able to identify the relationship between features
extracted from polar and non-polar samples. Experiments reveal a clear correlation be-
tween the performance of non-polar classes and the number of matching polar questions,
showing that both polar and non-polar features complement each other.

4.4.1 Future Work

Results from this chapter are as exciting as they are promising. The synergetic relation
between polar and non-polar samples has the potential of redefining the way VQA
models can be trained. More exhaustive analyses of the link between samples of
different polarities will enable a better estimation of the limits that the polar space has
for expressing non-polar concepts. To explore further on this front, we see promise in
defining alternative methods to link polar questions to non-polar classes e.g., matching
lemmatized terms or filtering based on a part-of-speech analysis. Ideally, a curated
subset of VQA 2.0 that has validated semantic links, can shed more light into the limits
that a polar training may have for learning non-polar concepts.

In summary

Neural networks can easily exploit superficial biases in a dataset, especially if a class is
overrepresented w.r.t. the rest. This chapter discussed a scenario in the field of visual
question answering, where one of the most popular datasets, VQA 2.0 has substantially
more samples for two classes (YES and NO) than for the remaining 3127 categories. We
proposed a series of experiments to measure the interaction of this imbalance in an
intermediate feature space. Somewhat unexpectedly, findings indicate that polar and
non-polar questions can be projected into the same space without exerting a negative
influence on each other. In fact, both kinds of samples can complement each other when
there are enough polar samples bearing a semantic relation to the non-polar classes.

In the next chapter we look at the concept of “model capacity”; a term that has been
widely used in ML, but whose connotation is poorly understood.
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What do Deep
Networks Like to
See?

5

“ The eye sees only what the mind is prepared to
comprehend.

— Robertson Davies

Sometimes, powerful and deep neural networks don’t end up learning as much as we
expected them to. Some experts will think it’s the lack of data; there are also those who
will blame the training parameters, and others will say it was the model capacity. But
wait, what is “model capacity”?

This chapter delves precisely into this question, studying the extent by which we can
measure model capacity for large image classifiers.

5.1 What is Model Capacity

In their renown book “Deep Learning”, Goodfellow et al. [50] mention two special
cases of capacity. When considering a model in isolation, independent of data or
any specific learning algorithm, we can conduct a theoretical analysis on the kinds of
functions that the model is able to represent. For example, the model of order two
fθ(x) = θ0+θ1x+θ2x2 is well-equipped to fit all constant, linear, and quadratic functions.
This property is known as the representational capacity of the model.

In contrast, when the model is being trained on concrete data, and using a particular
learning algorithm, the number of functions that are representable decreases. How
much it decreases depends on the specific version of the learning algorithm and, of
course, the data. For example, if we train our previous toy model on data that is only
linearly dependent, the space of solutions will not include quadratic functions (i.e. only
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solutions where θ2 = 0). When talking about the solution space of a model used with
this additional context, we speak of effective capacity.

Unfortunately, the scientific literature will often refer to “model capacity” without
providing any precise definition. It is true that the role of this expression is also not
central to support any major claims, and an appeal to the reader’s common sense often
suffices to settle the confusion. In general, researchers have used this expression to give a
sense of scale, or how big a model is. We see the term being used by Szegedy et al. when
talking about inefficient use of (adding more) convolutional filters for their Inception
architecture [142]. Similarly, work on transfer learning and knowledge distillation has
been using the term “model capacity” this way [125, 158]. The general implication is
that a network with a larger capacity has more trainable parameters, more layers or
more convolutional filters. In short, they are all referring to representational capacity.

Between the lines, however, we see that most of them try to convey other factors that
go beyond counting the number of weights. This ambivalence is perfectly captured
by the work of Wang et al. [153]. In their paper about developmental networks, they
“explore . . . networks that grow in model capacity as new tasks [are] encountered.” Their
core contribution focuses on adding depth (or width) to maximize performance when
fine-tuning a model. While discussing the growth of these models, the authors describe
it in terms of model capacity. At one point, they even clarify that their work is aimed
at increasing the representational capacity of the model—something they are indeed
doing. However, their experiments are tailored to show performance improvements
after fine-tuning on a downstream task. By involving data and a learning algorithm
in their evaluation, the authors end up measuring effective capacity instead. Without
a distinction between representational and effective capacity, the authors imply that a
direct link exists between the number of trainable weights and the ability for the model
to represent more information.

If adding representational capacity improves performance, doesn’t it mean that the
representational capacity has also increased? As it turns out, some researchers have
been already questioning the link between the number of parameters a model has, and
its ability to solve a task. For some, controlling capacity clearly goes beyond adding
trainable parameters. For example, the early work of Neyshabur et al. [108] found that
“size does not behave as a capacity control parameter, and in fact there must be some
other, implicit, capacity control at play.”

Their ideas, even though they were empirically validated on small, single-layer percep-
trons, were fundamental for the analysis of Zhang et al. [165] on network generalization.
A central idea of this highly cited paper revolves around finding factors that control the
ability of models to represent information beyond the training set (i.e., generalization).
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Fig. 5.1.: Overview of the proposed method and model. A pre-trained AE is fine-tuned with
gradients flowing through a pre-trained image classifier whose parameters are fixed.
After fine-tuning the combined network, images reconstructed by the AE preserve
more information required by the classifier.

In a series of experiments, they challenged the idea of a straight link between effective
and representational capacity by showing that modern networks can easily memorize
large datasets without representing any actual information. Their main takeaway, similar
to Neyshabur’s, is that we still lack a precise formal measure to talk about represen-
tational capacity. This last statement was echoed again in 2021, after the authors
republished their work, and noted that, “despite significant progress on theoretical un-
derstanding of deep learning in the past few years, a full mathematical characterization
of the whole story [including model capacity] remains challenging” [164].

At this point, it seems as if not even fundamental research can elucidate on this matter.
Even though representational capacity is straightforward to manipulate, factors that
control effective capacity remain elusive. We seem to know more about what isn’t
effective capacity, but we still lack insights into the fundamental elements that control
what a model can learn.

Our idea is to start small. So, instead of characterizing all necessary conditions that con-
trol effective capacity, we concentrate on measuring one sufficient condition. Concretely,
we study the amount of information that is used by a model to make a prediction.

To this end, we propose a parametrized method that represents the input space by using
autoencoders. Starting from a pre-trained autoencoder, we then fine-tune its decoding
layers in order to represent the latent processes of the classifier which are responsible
for filtering out input information. An overview of this setup is shown in Figure 5.1.

We then compare image reconstructions to the original samples, and establish the
characteristics of the input space that different models rely on when making predictions.
This allows us to test several hypotheses w.r.t. the amount of information used for
classification. Is all information on each sample treated equally? Is information for
foreground objects more important than the one from the background? Are there
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differences between information at the center of the image and information found
towards the borders? By addressing these questions we can reveal important properties
of the processes that control effective capacity within a model.

Moreover, measuring the results in terms of information, allows us to approximate an
upper bound on the amount of information that the model uses for classification. In
doing so, we are essentially estimating an upper bound for the effective capacity that each
model has. Results show that high-performance image classifiers rely on just a fraction
of the information coming from the input space. These outcomes tell us that the effective
capacity of modern neural networks is drastically reduced w.r.t. their representational
capacity. Lastly, we show that the amount of information used by different architectures
varies substantially, and also that this variation is not correlated to representational
capacity nor performance.

The rest of this chapter is organized as follows: In the next section, we discuss theoretical
reasons that support the use of input information as a vehicle to probe and discover
properties of effective capacity. Then, we describe our proposed method including details
about the autoencoder, how the fine-tuning takes place, and what metrics are used to
compare reconstructions. Finally, we present and discuss the results of our experiments,
drawing links to previous work that can be re-interpreted using our results.

5.2 Input Information: a Sufficient Condition for
Controlling Effective Capacity

To understand our strategy, we need to clarify the constraints of the problem. First, we
are restricting our study to deep (convolutional) neural networks for large-scale image
classification problems. This means that we work with over-parametrized models i.e.,
having more trainable parameters than those needed by an optimal solution. In other
words, we consider models that have enough representational capacity. Moreover, as we
focus on the input space, we are assuming that the learning algorithm (e.g., optimization
algorithm, regularization, learning rate) remain constant.

Next, we lay out the reasons why manipulation of input information is a sufficient
condition to control effective capacity.

From Zhang’s work [164], we know that the notion of effective capacity is linked to
the generalization capabilities of a model. In turn, generalization is evaluated by how
well the feature extractors in the model correspond to characteristics of the underlying
data distribution, and not just to any peculiarities of the training sample. However,
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information represented by these feature extractors depends mainly on the data that
was used to train the model. In other words, the filters of the model only converge to
patterns that are present in the data. Therefore, learned feature extractors are bounded
by the amount of information that passes through them.

This last argument also implies that a model can’t represent more information than
that coming from the input distribution. Consequently, information of the training
set represents an upper bound for the amount of information that a model can learn.
Intuitively, a model that is trained on images of horses and fish will only have filters
that extract information related to either class; we don’t expect that these filters convey
information about elephants unless the features are identical.

The strong dependency between the input space and effective capacity can be exploited
to gain more insights about the latter. In particular, any process that defines a smaller
upper bound for the input information, will also be an upper bound for the amount of
information that the model is able to represent. Thus, we can say that this process is
limiting (or controlling) the effective capacity of the model. Note that said factor may
not account for all possible aspects that regulate model capacity. For that reason we
highlight that a process bounding the input information is only a sufficient condition to
control model capacity, not a necessary one.

The question at this point is: How low can the upper bound get?

5.2.1 How Low Can We Go?

For modern benchmarks like the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [124] the amount of information in the input space defines the kind of rich
and vast problem that makes effective solutions so fascinating. One of the first significant
constraints to the input space comes from the reduction in dimensionality applied to
samples that are used for training. For state-of-the-art classifiers, images are typically
projected into a 224 × 224 × 3 dimensional space, normally after the smallest dimension
of the original image is rescaled to 256 pixels. But even then, an upper bound defined
by just the number of input dimensions is still too high—particularly for this kind of
natural images that exist in a space with over 150 thousand dimensions.

Even though we haven’t even tried to measure how much information does the input
space of ImageNet have, we know it is possible to constrain it further. As part of a
follow-up work for the Inception architecture, Szegedy et al. [143] noted that input
dimensionality provides merely a rough estimate of information content. Moreover, sev-
eral dimensionality-reduction methods like t-SNE or UMAP have successfully exploited
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the low-dimensionality of the semantic manifold that is associated with this kind of
high-dimensional problems [150, 99].

By using autoencoders, we can steer reconstructions to only preserve information that a
classifier uses to make predictions. Our empirical evaluation from Section 5.4 shows
that a smaller upper bound can certainly be attained.

5.3 Methods

In this section we go over the modules and algorithms to control the input information
used by image classifiers. First we describe the architecture of the autoencoder, the
pre-training scheme and fine-tuning strategy. Second, we define information metrics
that operate on input and reconstruction spaces, helping us determine what information
is used for classification. Third, we compare the relationship between classifiers—and
how much information they use—by evaluating different classifiers on reconstructions
computed for other models.

5.3.1 Controlling the input space with Autoencoders

Our first goal is to gain control over the process that generates input data. Pure
generative approaches like GANs [51] can be unstable and hard to train, especially
for higher resolution samples like the ones comprising the ImageNet dataset. Instead,
we get around this issue by making use of autoencoders. They allow us to obtain an
approximation of the input space with learnable parameters that can be controlled and
optimized afterwards.

As we aim at measuring information for high-performance image classifiers, we are
interested in autoencoders that can encode and reconstruct large images. To this end, we
choose an architecture initially proposed for image segmentation, popularly known as a
SegNet.1 The network consists on an encoder-decoder structure based on two mirrored
copies of the VGG16 model from Simonyan et al. [130]. Besides the addition of batch-
normalization layers across the model [65], the decoder is equipped with transposed
convolutions, as well as unpooling layers that use the indices from the encoder (see
Section 2.3 for more details about unpooling). As SegNet was originally proposed for

1The ideas of SegNet were published independently by two research groups between late 2014 and
2015. Badrinarayanan et al. [10] introduced the name SegNet while Noh et al. [110] used the name
“unpooling” to refer to pooling indices used for upsampling.
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segmentation, limiting the output channels to three is the only required modification to
turn the original architecture into an autoencoder.

We implement the macro-architecture from Badrinarayanan et al. [10] that uses two
sets of thirteen convolutional layers for encoding and decoding. The use of pooling
operations and slow increase of the number of channels, creates a bottleneck in the
middle of the autoencoder that has a compression ratio of 6:1.

5.3.2 Pre-training

After the architectural details have been sorted out, we proceed to train the autoencoder
on the reconstruction task. This can be achieved by using an unsupervised loss func-
tion that punishes any differences between original samples and their reconstructions.
Consequently, a trained autoencoder will approximate the equality A(x) = x, where A
represents the autoencoder.

As labeled data is not needed at this point, we can leverage the more than 99 million
public domain images from the YFCC100m dataset [149] for training. Images that
are part of this curated collection share important characteristics with ImageNet: both
include mostly images of the real world, with indoor scenes, urban areas, natural
landscapes, etc. We train using the mean squared error (MSE) per sample as the
optimization function:

MSE(x, x̂) = 1
D

D∑
i

(xi − x̂i)2 (5.1)

where x̂ = A(x) is the reconstruction of the original sample x, and D is the total number
of sub-pixels of the input. Apart from the MSE loss, we optimize using stochastic gradient
descent (SGD) with momentum set to 0.9 and an initial learning rate λ = 0.01.

Due to the magnitude of the dataset, we observe that the autoencoder converges after
training for only one epoch. For comparison, in terms of forward-backward passes,
training for one epoch in the YFCC100m is roughly equivalent to training for 83 epochs
on ImageNet! In order to include a learning rate schedule for training, we check if the
MSE loss has not decreased after optimizing on two million images. If this is case, the
learning rate is reduced to λnew = λold/5. Note that after training, there is no need to
evaluate on a validation set, as the autoencoder has only seen all training images exactly
once. This means that the loss value of the last few training batches are a good estimate
of the generalization loss.
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5.3.3 Fine-tuning

Once the autoencoder can successfully reproduce information from the input space, we
can forward its reconstructions to a pre-trained image classifier. Just as with a classifier
alone f(x), the composite function f(A(x)) can work the same way, except that the
intermediate reconstruction is produced by the autoencoder. It is therefore possible to
pass an original sample x through the ensemble, and evaluate the loss that the classifier
used during training. During back-propagation, this allows the flow of gradients to
extend past the parameters of the classifier, and into those of the autoencoder.

More formally, we can divide the composite function into encoder, decoder and classifier,
each with its own set of parameters as follows:

f(x̂) = f(A(x)) = fθ(Dϕ(Eψ(x))) (5.2)

where ψ,ϕ,θ are the parameters of the encoder E , decoder D and classifier f respec-
tively.

We can update just the parameters of the decoder by calculating the derivative of the
classification loss w.r.t. the input of the classifier, and then applying the chain rule w.r.t.
the parameters of the decoder ϕ:

∇ϕ = ∂Lf

∂x̂ · x̂′ = ∂Lf

∂Dϕ(E(x)) · ∂Dϕ(E(x))
∂ϕ

(5.3)

Recall that our goal is to measure effective capacity i.e., how much information is a
model representing once it has been trained. For this reason, we assume that the
classifier has been already trained to convergence on ImageNet. Furthermore, we keep
the classifier frozen and enter a fine-tuning stage that updates only the decoder w.r.t. the
classification task. Fine-tuning can be done using SGD, the loss function of the classifier
i.e., cross-entropy, and back-propagating according to Equation 5.3.

We know that information at the bottleneck of the autoencoder already carries enough
information to let the decoder reconstruct the original input sample. Our proposed
fine-tuning stage lets the decoder learn what parts of the input have to be preserved,
and what parts can be ignored in order to maintain the performance of the classifier.

Once the fine-tuning has converged, we are left with an encoder-decoder architecture
that reconstructs information that a classifier uses to predict. For our experiments, we
fine-tune ensembles that correspond to a SegNet autoencoder followed by one of five
possible image classifiers: LeNet [82], AlexNet [76], VGG16 [130], Inception-v3 [143]
and ResNet50 [59]. Apart from the five obvious high-performance classifiers, we
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include a re-implementation of LeNet to compare the effects of using a model with low
representational capacity.

To prevent ambiguities when referring to different models, we add a subscript for
autoencoders that have been fine-tuned on one of these classifiers. The letter corresponds
to the first character of the classifier’s name. (We refer to the classifiers as [L]eNet,
[A]lexNet, [V]GG16, [I]nception-v3 and [R]esNet50.) For example, a SegNet that has
been fine-tuned on LeNet will be denoted AL; when fine-tuning with ResNet50, the
resulting encoder-decoder will be denoted as AR, etc. Similarly for classifiers, we use
subscripts with the letter of the specific model. That way, fI refers to an Inception-v3
and fA to AlexNet. Composite models will be denoted using the function composition
operator ◦ so, instead of fV (AV (·)), we write fV ◦ AV (·).

At this stage, we can consider three possible scenarios regarding information that the
decoder will preserve or discard:

1. Is the available information equally useful for the classifier? If this is the case, we
won’t see any major differences between the reconstructions of the autoencoder
before and after fine-tuning.

2. Is information going to be semantically discernible? In this case, we expect that
information for foreground objects will be preserved more than the information of
the background.

3. Is information in the center of the image more important than the contents around
the borders? It is well-known that image classification datasets suffer from center-
biases i.e. information relevant for prediction appears in the center of the image.
Therefore, it is possible that the classifier assigns a higher credence to information
that is closer to the center.

We will revisit these three questions after evaluating the results in Section 5.4.3.

5.3.4 Measuring Information

After fine-tuning the decoder of an ensemble f ◦ A, we can measure changes in the
amount of information between original and reconstructed images. As a measure of
information, we use the normalized mutual information (nMI):

nMI(X; Y ) =
∑
y∈Y

∑
x∈X

P(X,Y )(x, y) log

(
P(X,Y )(x, y)
PX(x)PY (y)

)
(5.4)
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This metric allows us to estimate how much information from a target sample can be
predicted based on a reference sample. For images, each reference sample is compared
on a sub-pixel level to the target sample. Note that this metric is invariant to translations,
which accounts for trivial shifts of the pixel values e.g. if the reconstruction is brighter
everywhere.

In order to address the three questions we asked in Section 5.3.3, we focus on nMI
comparisons that use the original input as a reference, but also different reconstructions
from the same ensemble. The following two metrics are based on nMI, and differ only
on the samples that are used as reference:

• In-Class nMI (IC-nMI): the nMI is calculated between the original sample, and the
reconstruction of a fine-tuned autoencoder (or also the reconstruction produced
by the pre-trained SegNet). A high IC-nMI means that most information from the
original input has been preserved, and therefore, it is necessary for the classifier.

• Between-Class nMI (BC-nMI): calculated between two random reconstructions of
the same fine-tuned autoencoder. In this case, each individual sample represents
its own class. This metric is expected to be low, as it is unlikely that two random
samples have any pixels in common. A high value indicates that a constant pattern
exists between two samples (assuming there are no identical images).

For both metrics, we report the average nMI and standard deviation over the validation
set of ImageNet. For BC-nMI, instead of evaluating every combination of two images,
we shuffle the validation set of ImageNet and draw consecutive pairs of samples totaling
25 thousand pairs. A graphic description of both metrics is presented in Figure 5.2.

5.3.5 Comparing Information Between Models

With fine-tuned autoencoders, we can convey the information that one classifier uses for
prediction. So far, the metric to evaluate information is relative to the classifier itself
i.e., how much information is dropped by one model. Given two classifiers that drop the
same amount of information, how can we establish if they end up relying on the same
information?

Thanks to the identical structure of the fine-tuned autoencoders, it is possible to ask if
information preserved by one classifier is the same for other models. We can achieve
this by evaluating the accuracy of pre-trained classifiers when being fed reconstructions
produced by a different fine-tuned autoencoder. For example, we evaluate acc(fR ◦ AA)
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Fig. 5.2.: Visual representation of the proposed nMI-based metrics. IC-nMI represents input
information preserved by one reconstruction. BC-nMI represents input information
that is constant across reconstructions.

i.e., the accuracy of ResNet50 when using reconstructions produced by an autoencoder
that has been fine-tuned for AlexNet.

In general, we evaluate the accuracy of ensemble models of the form fj ◦ Ai, where
i ̸= j. Once again, we report the accuracy on the validation set of ImageNet for every
valid pair of i, j ∈ {L, A, V, I, R}.

5.4 Results

Now that we have a plan for the experiments, this section goes over the results on each
stage of the general method. At the end of each subsection we discuss the meaning of
the results in the context of effective capacity, addressing the questions that were issued
during the description of the methodology.

5.4.1 Pre-training

The final MSE of the autoencoder converged to 7.77 × 10−4 after training over the
entire YFCC100m dataset. This value was stable for the last 8.5 million images, with
fluctuations of only ±1×10−6. Nonetheless, we confirm that this result applies to unseen
data by evaluating on the validation set of ImageNet. There, we obtain a reconstruction
error of 8.05 × 10−4.
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Fig. 5.3.: Reconstructions of the SegNet autoencoder after being pre-trained on the YFCC100m.

To get a better sense of scale, an error this small is equivalent to getting a perfect
reconstruction for 80% of the image, while the remaining 20% is off by only one pixel
value. Another way to think about it is if one of the three color channels changes by just
a single value every five pixels (4.85 to be more precise). This is arguably an error too
small to be even perceptible by the human eye, as it can be seen in Figure 5.3.

This reconstruction performance guarantees that almost all information from the input
space is being represented by the autoencoder.

5.4.2 Fine-tuning

We use five instances of the pre-trained autoencoder from Section 5.4.1 and fine-tune
the decoder with gradients from one of the following architectures: LeNet, AlexNet,
VGG16, Inception-v3 and ResNet50. We use the pre-trained classifiers provided by the
PyTorch project2, except for LeNet which we have re-implemented ourselves.

For fine-tuning, we use the 1.2 million images from the training set of ImageNet, and
report top-1 and top-5 validation accuracy. A summary of the fine-tuning results is
shown in Table 5.1.

Results show that fine-tuning the decoder, didn’t have a negative effect on the original
performance of the classifier. We see that the less accurate models, LeNet and AlexNet,
benefited the most from predicting on inputs that came from their fine-tuned autoencoder.
Inception-v3 on the other hand, shows a slight decrease in performance.

Overall, performance fluctuations are small, and indicate that the decoder has learned
to reconstruct information that is relevant for classification. We attribute changes in
performance to noise patterns that are being filtered out in the reconstruction (for
models whose performance improves). Conversely, for Inception-v3, small noise patterns

2https://github.com/pytorch/vision, commit 10a387a
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Tab. 5.1.: Top-1 and top-5 validation accuracy (%) of different composite models on ImageNet.

Network top-1 diff top-5 diff

fL 32.30 54.63
fL ◦ AL 34.85 +2.55 57.79 +3.61

fA 54.96 77.98
fA ◦ AA 56.13 +1.17 78.96 +0.98

fV 71.35 90.50
fV ◦ AV 71.65 +0.30 90.55 +0.05

fR 74.02 92.01
fR ◦ AR 74.94 +0.92 92.27 +0.26

fI 77.12 93.25
fI ◦ AI 76.71 -0.41 93.03 -0.22

can cause a few predictions to fail. For context, a decrease of 0.4p.p. on a set of 50
thousand images corresponds to a change in prediction for just 200 samples.

As we are ultimately interested in measuring the global patterns of each model, and how
much information it takes, we consider that the fine-tuned autoencoders are sufficiently
preserving the input signal that is used for classification. Next, we have a look at the
reconstructions, and see how much of the original information is left.

5.4.3 Measuring Information

Once we have fine-tuned all five autoencoders, we can proceed with the analysis of the
reconstructions. First, we have a look at the overall appearance of the samples produced
by each decoder, as well as by the pre-trained SegNet (see Figure 5.4). Reconstructions
from all fine-tuned decoders have suffered perceivable changes that cover the entire
area of each image.

More interestingly, we notice the appearance of checkerboard artifacts that seem consis-
tent across samples produced by the same autoencoder. We observe that reconstructions
for VGG16 and Inception-v3 appear to have more subtle patterns than those for ResNet50
and AlexNet. On the other hand, samples optimized for Inception-v3 have suffered a
global change of hue, similar to a gamma correction.
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Fig. 5.4.: Reconstructions of fine-tuned autoencoders. Checkerboard artifacts are consistent
across samples but different between models.

To verify the consistency of the checkerboard artifacts we use the information metrics
proposed in Section 5.3.4, namely IC-nMI [▲] and BC-nMI [▼]. Results for these two
metrics are shown in Figure 5.5.

These experiments provide support for some of our initial observations. We corroborate
through the BC-nMI that the checkerboard patterns are lower for Inception-v3 and
VGG16 samples. In contrast, the BC-nMI of reconstructions for AlexNet and ResNet50
are substantially larger, confirming that their artifacts are constant throughout the
dataset.

In terms of information, these constant patterns reveal that there are positions in
the images that carry no information for the model. This way, we can establish that
ResNet50 and AlexNet discard the most information, as the checkerboard artifacts are
more constant for their reconstructions.

The other aspect of information deals with the values that have been preserved w.r.t.
the original samples. We see that the original pre-trained SegNet preserves the most
information, according to its IC-nMI. Regarding classifiers, VGG16 and Inception-v3 are
again those that preserve most of the original input information, as shown by the higher
values in IC-nMI.

At this stage, we can revisit the hypotheses from Section 5.3.4 and answer them in light
of the results we have so far.

1. Is the available information equally useful for the classifier? As performance on all
classifiers remains stable when using samples that have filtered out a good portion
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Fig. 5.5.: Normalized mutual information for input samples reconstructed from different autoen-
coders. IC-nMI measures information between reconstructions of the same sample
while BC-nMI focuses on information between reconstructions from the same autoen-
coder.

of the information, we conclude that this is clearly not the case. Depending on
the classifier, some information is going to be important, while some is completely
irrelevant.

2. Is information going to be semantically discernible? Thanks to the BC-nMI, we
know that checkerboard artifacts are, to some degree, constant across images,
regardless of where the subject and background appear. We conclude that infor-
mation from the input is not discernible for the network at this stage.

3. Is information in the center of the image more important than the contents around
the borders? Similarly to the previous question, the constant positioning of the
artifacts indicates that there is no preference for information towards the middle
of the image compared to the contents towards the edges.

5.4.4 Comparing Information

We compare the fluctuations in validation accuracy when models rely on the input
reconstructions from other models. Results of this evaluation are shown in Table 5.2.

As we can see from these results, the accuracy varies drastically depending on the com-
bination of model and autoencoder. Notice that the accuracy of any given combination
depends strongly on the accuracy of the lowest performing classifier. In particular, for
every pair of models fi, fj , we observe that the accuracy of the composite alternatives
fj ◦ Ai or fi ◦ Aj is consistently limited by the classifier that had the lowest performance
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Tab. 5.2.: Top-1 validation accuracy (%) on ImageNet for classifiers using different fine-tuned
autoencoders.

fL fA fV fR fI

AL 34.84 30.77 4.16 47.30 43.52
AA 2.11 56.13 0.97 9.25 53.75
AV 29.29 53.62 71.63 73.00 74.00
AR 1.63 49.72 7.10 74.94 72.49
AI 18.29 30.24 45.55 45.40 76.71

on the original input. For example, evaluating fR on reconstructions from AA results in
an accuracy that is lower than the original AlexNet. The other way around also holds:
evaluating fR ◦ AA yields an accuracy that is still below the original performance of
AlexNet.

To capture this behavior, we define a normalized metric based on accuracy we call
the minimum classification ratio (CRmin). This metric is defined as the accuracy of the
ensemble divided by the lowest accuracy among the respective classifiers.

Formally, for the ensemble fj ◦ Ai, the CRmin metric is defined as follows:

CRmin(fj ◦ Ai) = acc(fj ◦ Ai)
min(acc(fi), acc(fj)) (5.5)

In Table 5.3 we present the CRmin values for all ensembles, based in the results from
Table 5.2. The rows of CRmin values show how much information can be extracted
from the signal that was tailored for that classifier i.e., the signal used to fine-tune the
autoencoder.

Tab. 5.3.: ImageNet CRmin (%) for classifiers using different fine-tuned autoencoders.

fL fA fV fR fI

AL 100.0 88.30 11.93 135.75 124.90
AA 6.06 100.0 1.74 16.47 95.75
AV 84.05 95.53 100.0 102.82 104.23
AR 4.67 88.57 9.99 100.0 96.74
AI 52.50 53.87 64.16 60.59 100.0

These metrics reveal interesting properties about the use of information from different
models. From the diagonal of Table 5.2, we see that the models perform best when
provided with information from their own fine-tuned decoder. Table 5.3 shows that
the signal from VGG16 can be used more effectively by other models, aligning with the
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nMI measurements from Figure 5.5. In contrast, the signal from Inception-v3, despite
preserving most of the information, cannot be used by other classifiers as effectively.

Even though the signal from VGG16 preserves the most information, the model itself
is not extracting as much as it could. According to Table 5.3 both ResNet50 and
Inception-v3 perform better with the signal from VGG16, than VGG16 itself. We can
conclude from this observation that VGG16 has less effective capacity than ResNet50 or
Inception-v3. Despite VGG16 having almost six times more parameters than ResNet50
or Inception-v3, the smaller networks manage to make a more effective use of the
information.

A similar dynamic can be observed between Inception-v3 and ResNet50. From Figure 5.5,
we see that ResNet50 introduces strong artifacts, leaving less original information to
process. However, Table 5.3 shows that Inception-v3 is capable of performing almost at
the same level of the original ResNet50. More interestingly is seeing that the opposite
does not hold. Even though there is more information available in the input space of
Inception-v3, ResNet50 cannot use it effectively.

By now, we see several cases where signals are compatible with other models, and some
where they are not. Intuitively, it seems as if some models “work” with other signals and
some don’t. More importantly, these interactions between models and signals are not
symmetric.

One way to capture this partial order is by using Formal Concept Analysis (FCA) [155].
In general, FCA provides a way to examine partial order relations between elements
w.r.t. a set of binary attributes. The output of FCA is a lattice that conveys a hierarchy
between elements and their attributes. Elements that are placed high in the lattice have
all the attributes connected below. Similarly, attributes that are placed lower are shared
among connected elements placed higher in the lattice.

In our case, we are interested in analyzing classifiers, and how well they work with
signals from other classifiers. Hence, we can let each classifier be an element, while the
attributes correspond to the signal from each fine-tuned autoencoder. The interpretation
of an element i having the binary attribute j is that “the signal for model j works well
for classifier i.” After building the intuition for applying FCA, we still need a more formal
method to define attributes, such that it can be represented as a binary function. For
this, we can use the CRmin metrics from Table 5.3 and define a threshold t such that
everything above t is set to one, and zero otherwise.

Since we want to convey the notion that a model works “well” with a given signal, we
set t = 90% which yields the lattice shown in Figure 5.6.
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Fig. 5.6.: FCA lattice using RCmin and a threshold t = 0.9.

The relations in the lattice confirm some of our previous observations. Starting from
the top, Inception-v3 is the classifier that “works well” with all other signals. (The
interpretation of “works well” is given by the RCmin with a threshold t = 90% and means
that “the model has an accuracy equal to the lowest performing one between itself and
the model used to fine-tune the signal”.) The signal for Inception-v3 is also the one that
does not convey enough information for any of the other models.

Looking at the lower nodes of the lattice, we see that signals from VGG16 and LeNet
are sufficient to make all the other high-performance classifiers work well. For LeNet,
this is partially because it has the lowest performance of all and hence, any other model
will only need to match its accuracy. It is therefore surprising that the more powerful
VGG16 doesn’t meet this criterion. Finally, signals from AlexNet and ResNet50 can only
be exploited effectively by Inception-v3, despite having the highest loss of information,
according to Figure 5.5.

5.5 Relation to Previous Work

Throughout the years, experimental results accumulate, but sometimes some results
remain unaccounted for. We found a few cases where the results either align or can be
explained through our findings regarding effective capacity.

Back in 2014, Zeiler et al. [163] reported that AlexNet was highly sensitive to local
structures. Knowing the magnitude and consistency of the checkerboard artifacts we
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have seen in the signal of AlexNet, it is reasonable to expect local changes to have a
large effect in the final prediction for this model.

Raghu et al. [118] have shown that parameters of the first layers have more impact on a
prediction than those found in deeper layers. If those changes are causing the model to
drop more information, we can expect them to have a stronger impact in performance
than deeper layers, where information already is limited.

Visualizations of input relevance done by Montavon et al. [103] show maps that are
coarser for CaffeNet—a model similar to AlexNet—than for an Inception-like architecture.
This phenomenon is consistent with the work of Lapuschkin et al. [79] and is in line
with the measures of information from Section 5.4.3.

While exploring the limits of AlexNet, Bau et al. [11] trained a variant of the model
that had wider layers and used global average pooling. They noted that the accuracy
was still similar to the original architecture, even after increasing by four and even by
eight the number of filters of the last convolutional layer. They hypothesize that the
effective capacity of the network had already been exhausted. In light of our results, we
know that the amount of information used by AlexNet is already quite small. It is likely
that information reaching the deeper end of the architecture is already too simple (i.e.
linearly separable), and cannot benefit from the additional representational capacity.

5.6 Conclusions

This chapter has tackled the challenging task of quantifying effective capacity. Because
the ML community still lacks a well-defined framework to talk about this issue, we
propose a strategy to measure model capacity by focusing on a sufficient condition:
input information.

We have discussed and measured input information that image classifiers use to make
predictions. We propose an architecture based on autoencoders that reconstructs the
input space, with the goal of tuning out all information that is not used for classification.
Metrics based on mutual information allow us to measure the reconstructed input, and
discover which architectures use more or less information. A comparison between
models is also possible thanks to an analysis of the partial order that exists between
models that can use the signal that other models are trained on.

Our results let us conclude that VGG16 has a lower effective capacity than both ResNet50
and Inception-v3, despite having more trainable parameters. Inception-v3 has the highest
effective capacity, as it is able to produce correct predictions based on signals from all
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other models. The strong and constant artifacts from reconstructions based on AlexNet,
lead us to conclude that its effective capacity is limited, despite having more than double
the number of parameters than ResNet50.

In Summary

What is model capacity? When referring to effective capacity, we still don’t have a good
idea. We lack the tools to identify what are the necessary conditions that control model
capacity. However, this chapter identifies one sufficient factor that let us measure the
effects that capacity has in high-performance classifiers. By modeling the input space
with autoencoders, we are able to measure how much of that information is used to
make predictions. Aggregating these measurements over a set of classifiers, allows us to
do a comparative analysis of the models that use more information and hence, which
models have more effective capacity than others.

In the next chapter, we exploit these insights, and the properties of fine-tuned autoen-
coders to tackle another pressing challenge in ML and computer vision: adversarial
attacks.

74 Chapter 5 What do Deep Networks Like to See?



Robustness against
Adversarial Attacks
by Limiting Capacity

6

“ All that I desire is to be enriched by intensely
exciting new thoughts.

— René Magritte

Barely one year after AlexNet set the new standard for image classification, Szegedy
et al. [144] found that neural networks were not as robust as initially thought. While
searching for hard negatives (i.e., samples that should be predicted with high probability,
but are given a lower one instead), their work showed that adding small perturbations
to any image, would cause a model to make a mistake. Methods that generate this kind
of perturbations are now known as adversarial attacks, and counteracting their effects
has proven to be an ambitious goal.

How are these attacks operating, and what can be done to mitigate their effects? This
chapter shows that we can leverage our new insights about the effective capacity from
Chapter 5 to make models more robust against adversarial attacks.

6.1 Introduction

The discovery of adversarial attacks sparked an immediate interest from the research
community. The idea of imperceptible changes throwing off a high-performance model,
was not only intriguing but also worrisome. As mentioned in Chapter 1, ML models are
proliferating into many high-stake scenarios, partly because of their perceived robustness,
and consistent track record. At the same time, numerous strategies to generate tiny
perturbations are prompting users, and developers alike, to question the reliability of
their models.
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Research on adversarial attacks can be grouped according to one of three main objectives.
In essence, most efforts are spent studying attack and defense mechanisms, but at the
same time, they try to understand why these attacks are so effective.

On the attack front, we have algorithms that generate adversarial perturbations under
different conditions. Most well-known attacks assume that the model is differentiable
and hence, can calculate how the output of the model gradually changes as the input is
slightly perturbed. In other words, they extract gradients from a target model in order
to calculate the smallest perturbation that can change the prediction. These principles
have been followed by popular gradient-based attacks like FGSM [52], DeepFool [105]
or C&W [24]. Other attacks that do not directly rely on gradients, design strategies that
probe the predicted output, and approximate the rates of change used by gradient-based
methods. Prominent examples of this strategy have been proposed by Brendel et al. [17]
and Papernot et al. [113].

Another concerning property of adversarial attacks, is how easy it is to re-use them for
different models. Liu et al. [91] showed they could easily craft attacks based on one
network, and then transfer them successfully to fool a different model. Others took
this idea even further and found that even a single adversarial perturbation could be
applied to an entire dataset and achieve a high misclassification rate [106, 116]. These
“universal” perturbations were later exploited by Brown et al. [18] to craft physical
perturbations that could be printed and used in the real world.

In contrast to attackers, efforts to counteract the effects of adversarial perturbations
have been more transient, but not for lack of trying. There are no shortage of ideas on
how to detect or suppress adversarial perturbations [46, 114, 136, 87, 100, 38, 157].
Moreover, prophylactic approaches have concentrated their attention in obfuscating the
gradients that attackers rely on [19, 55, 156, 152, 117]. The rationale is that gradients
that are small, or otherwise unstable can’t be used by attackers to craft adversarial
perturbations.

Unfortunately, these initiatives have been short-lived. Time and time again, attack-
ers have shown that they can overcome adversarial defenses without changing their
underlying method. In one of their most cited papers Athalye, Carlini and Wagner
showed that seven out of eight papers that were accepted at ICLR 2018 could be easily
circumvented [9].1 They showed that most defenses were rendered useless by simple
adjustments to a few hyperparameters, or by creating proxy functions to approximate
hard-to-get gradients. They repeated this exercise with two other ideas that appeared in
that year’s CVPR conference [8].

1Their publication gained popularity partly because it was uploaded to arXiv just a few hours after the list
of accepted papers at ICLR had been made public.
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The third area of research is centered on understanding the origins of adversarial attacks.
This is a highly debated arena where no real consensus has arisen. Initially, Goodfellow et
al. [52] challenged the original idea that non-linearities inside the model were the main
cause of adversarial vulnerability. Instead, they claimed that the linear parts of neural
networks (e.g., when using ReLUs) were in fact the culprits. Tackling the issue from
another angle, Nguyen et al. [109] showed that models were also vulnerable to synthetic
images. They were able to craft samples that do not resemble natural pictures, but are
nonetheless classified with high confidence. These findings are in line with Szegedy’s
who showed a similar behavior using random images, and optimizing them to get a
high prediction confidence. Other aspects like optimizers, and the structure of decision
boundaries have been considered as the possible cause of adversarial vulnerability [146,
45, 107]. All these ideas, have sparked heated debates, but no final verdict has come
out of them yet. Without a clear horizon, we are left with more somber outlooks like the
one made by Shafari et al. They argue that adversarial attacks are fundamental to the
feature space of modern ML models, and thus, inevitable [128].

6.1.1 Constructing a Defense Mechanism

Even though the community around adversarial attacks remains active, effective strate-
gies to guard against adversarial attacks are scarce. One prominent defense strategy that
remains undefeated to this day is known as “adversarial training”. Initially proposed
by Athalye et al. [8], the most effective way to defend against adversarial attacks is
simply to include perturbed samples in the training set. Similar ideas have been pushed
forward by Kannan et al. [69] or Sinha et al. [132], although the core strategy remains
the same. However, adversarial training comes with its own limitations. For instance, it
doesn’t work for pre-trained models, it becomes robust mostly to those attacks that are
included in the training set, and there is often a large trade-off in performance.

Is there anything else we can do? One advantage of results in XAI, is that they can
be often exploited for other purposes. We saw from Chapter 5 that it is possible to
measure model capacity by controlling information of the input space. At the same
time, adversarial attackers are confined to the input space when introducing malicious
perturbations. Thus, a common ground exists (i.e., the input space) where these two
forces meet when trying to modify the input that reaches the model.

One of the main findings from the previous chapter is that fine-tuning an autoencoder
with gradients from a classifier, produced reconstructions that had less information than
the original samples. In particular, we were able to establish that the missing information
corresponded to fixed positions in the image. These fixed positions are equivalent to
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having a function that sets certain features in a hyperdimensional space to a constant
value. In turn, this constancy can be interpreted as a projection from a high- into a
lower-dimensional plane.

Let us now think about the fine-tuning process that taught the decoder to fix those pixel
positions. During back-propagation, the gradient of the classifier w.r.t. the reconstruction
from an autoencoder had to be high in positions where the final reconstruction changed
the most. In other words, the decoder, as it was fine-tuning, was able to lower the loss—
and the gradient magnitudes—when it produced the constant checkerboard artifacts
at the output. Looking at how adversarial attacks rely on gradients, we can infer that
image positions that produce high gradients are those that have a bigger influence on
the model prediction if changed. Therefore, an attacker would be most likely to succeed
if it perturbs those positions.

So, knowing how fine-tuned autoencoders operate, and how adversarial attacks work,
we are interested in evaluating how much can our fine-tuned autoencoders mitigate the
effects of adversarial attacks. The setup for the robust model is similar to the one in
Chapter 5, with a fine-tuned autoencoder preceding a classifier as shown in Figure 6.1.

Fig. 6.1.: Overview of the proposed architecture. The use of a fine-tuned autoencoder mitigates
the effectiveness of adversarial attacks α when placed before a pre-trained classifier.

From the start, we identify two properties that makes this setup robust to potential
attacks. First, as discussed above, reconstructions from the autoencoder re-project posi-
tions of the image with high gradients. Now, the fine-tuned autoencoder is most certainly
not producing reconstructions whose gradients are exactly zero at those positions. This
means an attacker can still detect those vulnerable places, and create perturbations that
modify their values. However, for those cases, having an adversarial image reconstructed
through the fine-tuned autoencoder will set values at those positions back to a more
constant value.2

A second property that works against adversarial attackers is the two-stage training of
the autoencoder itself. Concretely, the part that corresponds to the encoder has only

2As reconstructions are based on imperfect approximations, there is still room—although arguably
smaller—for perturbations to leak, leading to an incorrect prediction.
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been trained on an unsupervised loss, and is not biased towards any class-relevant
information. We know that, for the reconstruction task, areas with sharp corners or
high color contrast are difficult to represent for autoencoders. These in turn, are the
areas of an image that still produce a high reconstruction error. We also know that an
attacker has to get gradients that pass through (and back from) the encoder. Even if
these gradients are computed on the classification loss, the function that the encoder
approximates is still most sensitive to areas that it can’t reconstruct well.

In consequence, we hypothesize that an attacker will get gradients that are more relevant
to the reconstruction task, and not to the classification objective. There are of course,
parts of the structure of an image (e.g., the outline of an object) that are relevant for the
classification task. However, these regions are much sparser, and are not necessarily the
ones that the classifier is most sensitive to.

Having analyzed the properties that our setup has in order to counter gradient-based
adversarial attacks, we run a comprehensive evaluation that measures the extent by
which a model can be defended using this paradigm.

In the remaining parts of this chapter we formalize and evaluate our proposed mechanism
to mitigate the effects of adversarial attacks. The next chapter gives a quick recap
of the defense architecture. Afterwards, we define the conditions under which the
attacks take place, including a description of the dataset, parameters of the attacks, and
evaluation metrics. Finally, we compare our results to vulnerable baselines and discuss
the advantages of our proposed approach.

6.2 Methods

In this section we present a brief overview of the model architecture but more importantly,
we describe the experimental setup to measure adversarial robustness. Furthermore,
we propose three ablation experiments to identify factors that make the ensemble more
resilient to adversarial perturbations.

6.2.1 Model Overview

As in Chapter 5, we build a composite architecture that consists of two main modules.
The first is a high-performance image classifier that is pre-trained on a large scale dataset.
Concretely, we use ResNet50 and Inception-v3 architectures trained on ImageNet as
base classifiers. The second module consists on an encoder-decoder architecture that
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precedes the classifier, with the goal of controlling the input signal that reaches the
classifier. This last part, starts as an undercomplete autoencoder based on the SegNet
architecture [10, 110], and pre-trained via an unsupervised reconstruction loss on the
YFCC100m dataset [149]. After, the decoder is fine-tuned by forwarding reconstructions
to the classifier, and back-propagating according to the supervised loss used originally
for the classifier. For more details about the architecture and its training process, please
refer to Chapter 5.

6.2.2 Threat Model

As part of the recommendations to assess adversarial robustness, Athalye et al. [9] insist
on the importance of defining all conditions under which attacks take place. Thus,
we compile a list with all relevant aspects for our evaluation of robustness against
adversarial attacks a.k.a. the threat model. The values for hyperparameters and choice
of algorithms are based on the setup used by Guo et al. [55], as they were one of the
firsts to run large-scale evaluations on ImageNet.

• Dataset: As mentioned above, we use ImageNet as the standard to train and
evaluate. The classifiers are all pre-trained using this dataset, as well as the fine-
tuned autoencoders. Adversarial attacks are computed on the full validation set
(50 thousand samples). Performance metrics are based on the average output of
this set.

• Image Classifiers: we report results on two high-performance image classifiers,
namely Inception-v3 and ResNet50. Both classifiers have been pre-trained on
ImageNet, with no special considerations regarding adversarial vulnerability. When
used alone, they are considered (vulnerable) baseline models. We use the notation
from Chapter 5 to refer to classifiers i.e., we add a subscript corresponding to
the first character of their names. This way, Inception-v3 and ResNet50 will be
denoted as fI and fR respectively.

• Defense Method: it comprises a pre-trained classifier that precedes a fine-tuned
autoencoder as described in Section 6.2.1 and illustrated on the right side of
Figure 6.1. We refer to the ensemble of autoencoder and classifier as a Structure-
to-Signal Networks or StSNet (pronounced es too es net) and denote it formally as
fi ◦ Ai where Ai is the autoencoder that has been fine-tuned on classifier fi. Note
that the autoencoder always corresponds to the classifier it is connected with. One
exception is a baseline mechanism consisting of just the pre-trained autoencoder
(without the fine-tuning step) followed by a ResNet50, which we denote as fR ◦AS .
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• Perturbation Magnitude: an important property of adversarial attacks is the
size of the perturbation that is being added to clean samples. The intuition is
that small perturbations are imperceptible and hence, difficult to detect; having
bigger perturbations leads to more noticeable artifacts. However, these larger
perturbations are more likely to cause a model to make a mistake, which is the
ultimate goal of an adversarial attack. Therefore, we can measure the effectiveness
of an adversarial attack (or the robustness of a model) by how predictions change
as the magnitude of perturbations grow. We report how imperceptible adversarial
attacks are by measuring the normalized L2 norm of the perturbation:

L̄2(x, x̂) = 1
N

N∑
n=1

||xn − x̂n||2
||xn||2

(6.1)

where samples that have not been perturbed are denoted as x (i.e. the clean
samples), adversarial samples are denoted as x̂ = x + δ, and N corresponds to the
total number of samples in the set.

• Defense Strength Metric: to measure how robust a model is against adversarial
attacks (as the attack strength increases), we plot accuracy against the average
perturbation magnitude. Note that only the set of true-positive samples is used
to compute the perturbation magnitude, as false-positives are already considered
adversarial samples with δ = 0.

• Attack Methods: all models (baseline and robust variants) are tested against three
well-known gradient-based attacks. These methods cover a range of attacks that
are both highly effective but also efficient to compute. After each perturbation is
applied to an image, some attacks may have added changes that do not correspond
to valid pixel values. Therefore, we make sure that perturbed images are being
cast back to valid pixel values before running the evaluation. We conduct all
experiments using untargeted adversarial attacks. Under this condition, an attack
is considered to be successful as soon as the ground-truth class y⋆ is no longer
the predicted class. This is in contrast to targeted attacks (which are harder for
attackers) where a preselected target class yt ̸= y⋆ has to be predicted for the
attack to succeed. The attacks used for evaluation are:

– Fast Gradient Sign Method (FGSM) [52]: an effective single-step method that
is shown to be transferable across different models. This method relies on
the sign of the gradient of the classification loss w.r.t. the input:

x̂ = Γ(x + ϵ sign(∇xLf )) (6.2)
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where Γ is a clipping function that makes sure that the perturbed image
remains in the range of valid images. For FGSM, we evaluate perturbations
with ϵ ∈ {0.5, 1, 2, 4, 8, 16}.

– Basic Iterative Method (BIM) [77]: also referred to as i-FGSM, it is an iterative
version of FGSM. The final adversarial sample is the result of iterating n

times over the following function:

x̂0 = x; x̂i = Γ(x̂i−1 + ϵ sign(∇x̂i−1Lf )) (6.3)

We use ϵ ∈ {0.5, 1, 2, 4, 8}, and a fixed number of iterations n = 10. Conse-
quently, perturbed images have changes that are at most 10ϵ big.

– Carlini-Wagner L2 (C&W) [24]: an optimization-based method that has
proven to be effective even when models are being equipped to handle
adversarial attacks. This method starts with the premise of finding a small
perturbation δ that causes a classifier to predict something other than the
ground-truth target y⋆. Formally, the attack finds a δ such that f(x + δ) = y

where y ̸= y⋆. To find such δ, the authors propose solving an optimization
problem based on the following proxy function:

arg min
δ

||δ||22 + c · ϕ(x + δ) s.t. x + δ ∈ [0, 1]n (6.4)

where ϕ(x) = max(max(Z(x)i ̸=y − Z(x)y), −κ) is the proxy function that
controls the confidence with which the classifier predicts the adversarial class
y instead of any other. The function Z(x) returns the logits of f(x) (i.e., the
last linear layer, before normalization), and κ controls the magnitude of the
confidence. For the optimizer, we use Adam[73] and let it run for up to 100
iterations with an initial learning rate of 1 × 10−3. To control ϵ we follow the
same strategy from Guo et al., and set the hyperparameters c = 10, κ = 0.
Once we have a perturbation δ ∈ [0, 1]n, we multiply it by ϵ ∈ {0.5, 1, 2, 4}.

• Other Considerations: even though we are not working under the assumption
that the model has to comply with real-world security standards, we assume that
the attacker has knowledge about the model architecture and training conditions.
This scenario is known in the literature as White-Box attacks, and it is the most
challenging setting to evaluate adversarial robustness. Cases where the attacker
has only partial (or no) knowledge about the model or how it was trained, are
referred to as Gray-Box and Black-Box respectively.
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With a full description of the threat model, running the experiments can already give
us strong evidence on whether our proposed mechanism is effective against adversarial
attacks. Nonetheless, we also do more analyses on the properties of the ensemble that
contribute the most to the defense.

6.2.3 Probing the Projection Space

Experiments form the previous section are designed to show that an ensemble fi ◦ Ai

causes an increase in robustness against adversarial attacks. However, there is no
evidence regarding the properties of the ensemble that are contributing the most to
said improvements. Most critically, we need to show that the increased robustness is
not caused by gradient obfuscation, something Athalye et al. [9] have systematically
circumvented.

Fig. 6.2.: Ablation experiments. Left: Craft adversarial attacks on the ensemble but forward the
perturbed sample directly to the classifier. Right: Use gradient information from the
classifier and feed the resulting adversarial sample through the ensemble.

To address this gap, we propose the following three additional experiments:

Feed-Forward Directly into the Classifier

In Section 6.1.1 we saw that the fine-tuned decoder acts as a projection mechanism
for pixels that appear fixed for all samples. Therefore, perturbations that modify those
positions won’t have a strong influence, as the decoder will project them back to a
constant value.

To measure this effect, we propose the following ablation experiment: We let the attacker
compute perturbations on the ensemble fi ◦Ai. Once the attack is ready, we feed-forward
the perturbed sample directly into the classifier fi. This way, the attack is not weakened
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by the projection of the decoder, and any changes to the pixel values that would end up
fixed otherwise, can directly affect the classifier.

Our hypothesis is that the attacker doesn’t exploit these positions, in part because of the
strict projection that the decoder imposes there. Therefore, small pixel adjustments for
those positions lead to no changes in classification, precisely because said adjustments get
squashed by the decoder. Overall, the results of this experiment should be comparably
robust to the original experiments that pass adversarial attacks through the whole
ensemble.

An illustration of this setup is shown in Figure 6.2 (left).

Adversarial Attacks on Gradients from the Classifier

To measure the extent by which the decoder squeezes values to a constant pattern, we
propose a second ablation experiment.

We assume that the attacker has access to the gradients from the classifier, and uses
those to produce adversarial perturbations. However, attacks are always feed-forwarded
through the entire ensemble. Figure 6.2 (right) shows an overview of this setup.

Gradients that come directly from the classifier should still be more robust than those
of the classifier alone. Recall that the sample that first reaches the classifier is being
projected by the fine-tuned autoencoder. Pixel positions that are projected to constant
values by the decoder will hence generate smaller gradients than if the original image
were used. However, we expect that the gradients coming from the classifier are still
exposing enough information to the attacker to craft effective perturbations. Even if the
autoencoder manages to dampen parts of the adversarial perturbations, these will still
be effective enough to cause large drops in performance.

Compare Gradients from the Encoder and the Classifier

An important factor that helps in counteracting adversarial perturbations lies on the
unsupervised pre-training of the encoder. We argued that, because the encoder is still
most sensitive to reconstruction artifacts, gradients will point at structural elements in
the image such as sharp edges or corners. These gradients are not directly related to
the classification task and therefore, adding perturbations on those areas won’t lead to
strong adversarial effects.
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To evaluate how different these changes are, we measure the similarity of the distribution
of gradients when these are computed for different parts of the ensemble model. In
particular, we extract gradients from an StSNet based on ResNet50 (fR ◦ AR) and
compare it to gradients from ResNet50 alone, as well as to an ensemble based on a
pre-trained autoencoder fR ◦ AS . Additionally, we compare gradients extracted from
just the autoencoders AS and AR using the unsupervised MSE reconstruction loss.

As a similarity measure, we use the structural similarity (SSIM) proposed by Wang et
al. [154]. This metric consists on a locally normalized mean squared error computed via
a sliding window over the spatial dimensions that correspond to the image.

According to our hypotheses, we expect more similar structures from gradients produced
by autoencoders, as opposed to those produced by the classifier alone. Large changes in
the gradients between the classifier and ensembles that have autoencoders will suggest
that an attacker is dealing with two different signals, even though they are produced by
the same input.

6.3 Results

This section presents the results of all experiments described in Section 6.2. First, the
robustness evaluation of the overall model is conducted, followed by three ablation
experiments that help in narrowing down the sources of robustness.

6.3.1 Robustness of StSNets

We compute the accuracy curves of two ensembles based on ResNet50 and Inception-v3
with their corresponding baselines on increasingly stronger adversarial attacks.

As we can see from Figure 6.3, our proposed defense mechanism consistently mitigates
the effects of all gradient-based attacks, even those with larger perturbation magnitudes.
Without any defense mechanism, Inception-v3 seems slightly more robust than ResNet50
(mostly noticeable with FGSM attacks). When paired with a fine-tuned autoencoder, this
tendency becomes larger, but overall, both StSNets perform substantially better than
their baselines.

Results based on the ensemble fR ◦ AS show that the autoencoder alone is already
providing some levels of robustness against adversarial attacks. These results are in-line
with observations by Meng et al. [100] and Liao et al. [87] who used specially trained
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Fig. 6.3.: White-Box attacks on ResNet50 (fR) and Inception-v3 (fI) as baseline (dashed) and
robust ensemble (solid). An ensemble with a pre-trained autoencoder fR ◦ AS is also
evaluated (light solid). Reported results for Adversarial logit pairing (ALP) [69] added
as reference.

encoder-decoder models, albeit at a smaller scale.3 We attribute these gains partly to
the bottleneck of the autoencoder, and to the self-supervised loss function that is used to
train these models.

For context, we add results for the state-of-the-art defense by Kannan et al. [69] on
White-Box settings called Adversarial Logit Pairing (ALP). We observe that the model is
on par with our fR ◦ AS baseline and is comfortably outperformed by both StSNets.

These results let us also verify that the robustness of the defense does not come from
obfuscated gradients. According to Athalye et al. [9], there are two characteristic
properties4 to spot defenses that rely on gradient obfuscation. The first sign of gradient
obfuscation is when single-step attacks are more effective than iterative methods. We
see that this is not the case for our experiments, with both iterative attacks (BIM and
C&W) being more effective than the simpler non-iterative FGSM. A second characteristic
of obfuscation is that attacks with larger budgets (in our case, increasing L̄2) are not
progressively harder to predict. This is again something we don’t see in our experiments,
with model accuracy dropping as the perturbation norm increases.

6.3.2 Ablation Analysis

We proceed to compute adversarial robustness on two controlled scenarios in order to
gather more evidence about factors that are making StSNets more robust.

3These defenses have been since shown to be weak against adaptive attacks [23, 8].
4The authors speak about five characteristics, but the other three refer to scenarios that do not apply to

our analysis; for example the performance of Black-Box and White-Box attacks, unbounded attacks i.e.,
values of ϵ that are arbitrarily large, and random sampling.
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Fig. 6.4.: Ablation analysis: perturbations are computed on gradients from the ensemble StSNet,
but are fed directly to the classifier.

Feed-Forward Directly into the Classifier

The first scenario is shown in Figure 6.2 (left) and consists of attacks that are fed
directly into the classifier. Results of this experiment on both ResNet50 and Inception-v3
ensembles is shown in Figure 6.4.

This ablation shows increased levels of robustness across all three attacks, and for both
classifiers. In contrast to our initial hypothesis, these results exceed our expectations,
with results that are better than in the regular adversarial setting. This indicates that
attacks are exploiting vulnerabilities of the autoencoder, and not so much those of
the classifier. As part of our initial assessment, we discussed that the structure of
gradients coming from autoencoders is different from gradients extracted directly from
the classifier. With this experiment, we find evidence suggesting that this is indeed the
case, and that the unsupervised loss used for pre-training helps in deflecting adversarial
attacks.

Adversarial Attacks on Gradients from the Classifier

As our second ablation experiment, we compute attacks based on gradients from the
classifier, while forwarding samples through the entire ensemble, as show in Figure 6.2
(right).

As expected, this scenario yields adversarial attacks that are almost as effective as they
are on the classifiers alone. There are two forces at play in this case: on one side, we
have reconstructed images A(x) with some of the original values being fixed during
decoding. Any perturbation introduced at these positions will have less of an impact
because the perturbed image will pass through the autoencoder during evaluation. This
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Fig. 6.5.: Ablation analysis: perturbations computed on gradients from the classifier, and
evaluated on the ensemble fi ◦ Ai.

phenomenon alone can already justify the slight improvement in performance w.r.t. the
baseline from Figure 6.3.

One aspect that is different, is the structure of the gradients that the attacker receives.
Through input gradients, the classifier can still reveal information about places that
the autoencoder is good at reconstructing such as blobs, solid colors, or low frequency
artifacts. Perturbations around these areas can pass through, and get reconstructed by
the fine-tuned autoencoder forcing a wrong prediction on the side of the classifier.

Compare Gradients from the Encoder and the Classifier

The last ablation analysis focuses on the different structures between gradients produced
by either autoencoders or classifiers. For this, we compare the structural similarity
between gradients from a ResNet50 baseline and several other autoencoder-based
models, as described in Section 6.2.3. Note that SSIM is symmetric, and thus we only
show values of the upper triangular side for clarity.

Tab. 6.1.: Pairwise mean SSIM of input gradient magnitudes for ResNet50 (fR) with and without
being passed through different autoencoders. SSIM values of fR are the least similar
to any autoencoder-based ensemble.

SSIM fR fR◦AR fR◦AS AR AS

fR 1.00 0.17 0.18 0.12 0.14
fR ◦ AR — 1.00 0.40 0.46 0.32
fR ◦ AS — — 1.00 0.37 0.36
AR — — — 1.00 0.36
AS — — — — 1.00
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Results from the structural similarity support our initial presumption about the nature of
gradients that can be computed through autoencoders. In Table 6.1, we see pairwise
comparisons between four ensembles based on autoencoders and the classifier alone.
The first row shows that there is a clear drop in structural similarity between gradients
from the classifier alone and any other combination of autoencoder-based ensembles. We
can conclude from these results that gradients coming from autoencoders are different
to those given by a vulnerable classifier. The structure of gradients from fine-tuned
autoencoders are even more similar to those produced by regular autoencoders despite
being computed on entirely different losses!

Figure 6.6 shows gradients from an image that is passed through all ensembles evaluated
at this point. We can visually confirm that gradients from autoencoder-variants are
higher around the outline of the object. In contrast, gradients from the classifier alone
are more scattered all over the image.

Fig. 6.6.: Visual evaluation of gradient distribution for ensembles based on ResNet50. Structural
similarity (SSIM) is high among ensembles that are based on autoencoders, and
smallest w.r.t. the classifier alone.

6.4 Conclusions

After conducting a wide array of experiments, we can conclude that fine-tuned au-
toencoders are an effective mechanism to increase robustness against gradient-based
adversarial attacks. Thanks to our ablation analysis, we were able to identify two con-
tributing factors to the emerging adversarial resilience. First, fine-tuned autoencoders
project reconstructions into a lower-dimensional manifold, preventing some vulnerable
pixel positions to be exploited. More importantly, the unsupervised pre-training of the
autoencoders makes input gradients sparser, and more focused on structural parts of
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the image. These gradients cannot be used effectively to craft adversarial attacks, in
comparison to gradients coming directly from the classifier. We can also conclude that
the defense mechanism does not exhibit signs of typical gradient obfuscation tactics.

This ensemble has also several advantages over other defense mechanisms, in particular
over adversarial training. Most notably, StSNets can be used to protect pre-trained
models, something that is not possible with adversarial training. Moreover, because
fine-tuned autoencoders don’t affect the original performance, StSNets don’t make
compromises between robustness and accuracy.

6.4.1 Future Work

These experiments originated as a case study for findings that came from the field of XAI.
However, we see adversarial attacks as a tool that can contribute back to XAI, shedding
light on unresolved issues about the behavior of modern ML models. In regard to
StSNets, we are interested in exploring the impact that the structure of the autoencoder
can have when reconstructing samples. In particular, we want to study factors that could
increase model robustness like the size of the bottleneck or the information contained in
the reconstruction.

We see these ideas as manifestations of the curse of dimensionality [13], and we would
like to explore ways to compress reconstructions even further. For example, Resizer
Networks, as proposed by Talebi and Milanfar[145] are promising architectures that can
manipulate the size of reconstructions without affecting performance.

In Summary

In this chapter, we had the opportunity to use findings regarding model capacity from
Chapter 5, and exploit them to increase the robustness of image classifiers. In particular,
we made use of fine-tuned autoencoders as filters to prevent adversarial attacks from
reaching the classifier. Robustness was evaluated for two high-performance classifiers,
and against three popular gradient-based attacks. In all scenarios, our proposed defense
strategy yielded robust results that even outperform alternative defenses. We were able
to show that our results are not caused by trivial gradient obfuscations, and that using
our method does not suppose a compromise in performance.

As the last contribution of this work, we move away from analyzing existing models and
tackle the challenge of designing architectures that are more explainable by design.
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Ante hoc
Explanations with
Self-Supervised
Auxiliary Objectives

7

“ . . . AI research is a way of thinking about thinking
that forces you to be specific. It calls your bluff if
you think you understand thinking, but don’t.

— David Chapman

So far, we have navigated the world of existing models, discovering ways to measure
and understand some of their characteristics. Moving forward, we have the opportunity
to come up with novel architectures that fulfill the need for more “interpretable” models.
But how can we achieve this?

This chapter explores a systematic way to build models that are more interpretable
without requiring additional data. We show that sticking to design principles that enrich
traditional models with more structure, results in methods that converge faster, perform
better, and whose predictions are easier to justify.

7.1 Introduction

What exactly makes a model more interpretable? At first, this question may seem too
generic to be answered in any actionable way. Luckily for us, we have already defined a
precise vocabulary to talk about XAI in Chapter 3 that we can use to us deconstruct this
question further.

According to our XAI framework, the models we are studying are just representations of
an oversimplified problem that originated in a high-level, semantic space. In this context,
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explanations emerge as a way to corroborate if the model is indeed representing the
non-functional requirements of the problem. With these two ideas in mind, a model can
become more interpretable if it can directly convey information about non-functional
requirements, without any additional steps. For instance, we could think of an image
classifier that is trained on images of horses and fish, but also learning about the different
backgrounds that these two classes can have: green grass, blue water, the beach, etc.
During prediction, such a classifier can produce two outputs that indicate what object
and what background has been identified. This result can be directly used to verify
whether the model is predicting the class because of the foreground or the background.

One logical step towards creating interpretable models would be to learn the features of
these additional requirements, using the same algorithms from the main model: defining
a supervised loss, training a differentiable module using gradient descent, etc. While
this is indeed an ideal option, it is certainly not a viable one. A critical bottleneck in this
case is finding a suitable set of labeled data. However, it is not viable to depend on more
and more annotations every time we want to include a new non-functional requirement.
Therefore, a more attainable goal is to find ways in which non-functional requirements
can be represented without resorting to new annotations.

What kind of additional objectives can be represented without more labels? While it is
true that not every aspect of a problem can be represented without relying on additional
ground-truth, there are still numerous strategies to exploit existing data.

One way is to use the training set as a reference basis, and offer example-based expla-
nations for unseen samples. Networks proposed by Hase et al. [57] or Chen et al. [27]
include layers that model characteristic parts of the classes they are representing. Ac-
tivations of these layers can be directly interpreted as evidence for a prototypical part
of an object. Alternatively, we can also find samples in the training dataset that are
prototypical or exceptional w.r.t. the input distribution. Kim et al. [71] showed that this
preselection can be used by a model to explain how typical or rare a test sample is (apart
from predicting which class it belongs to).

Several training objectives that don’t need labels have been proposed in the field of
self-supervised learning (SSL). These functions exploit the relationships that each sample
has with itself. For instance, Doersch et al. [39] extract a grid of patches from one image
and train a model to predict the relative position between two of the patches. Noroozi et
al. [111] extended this idea by predicting the correct order of an entire grid, similar to
solving a jigsaw puzzle. Another popular approach has been to generate two versions
of the same image by changing the illumination, scale, rotation, hue, etc., and then
train a model to generate similar features for both [29, 58, 54, 30]. In essence, the
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non-functional requirement behind these approaches is that a sample is more similar to
itself than to any other.

If the dataset has annotations, these can also be exploited to express additional non-
functional requirements. By knowing what class a sample belongs to, Deng et al. [36]
constructed a hierarchical exclusion graph that conveys the idea of exclusivity to refine
predictions: if a sample belongs to one class, then it doesn’t belong to any other. More
recently, Khosla et al. [70] have exploited labeled data to expand a self-supervised
objective that applies to samples of the same class: a sample is more similar to both
itself and to samples of the same class, but not to other samples.

Unfortunately, SSL methods suffer from a few drawbacks that make them unsuitable
as interpretable objectives. One of them, is that SSL objectives are mostly used as
a pre-training mechanism. Models that were trained using SSL, are later fine-tuned
on a supervised task, without any guarantee that the structure of the non-functional
requirement is being preserved. Furthermore, it is not clear how some SSL objectives
(e.g., jigsaw puzzles or self-similarity) can be interpreted to support a supervised task.

We draw inspiration from these approaches, and propose an objective that expresses
a different kind of non-functional requirement. Ideally, we want to leverage the effec-
tiveness and flexibility of SSL objectives, and the interpretability of prototype-based
models. In this chapter, we study relations of subsumption and grouping that emerges
from a set of independently labeled data. Modeling groups allows a classifier to learn the
property of subsumption; something that has already been used successfully to generate
explanations for formal verification systems [98]. We show that this kind of relationship
is useful to convey additional meaning for state-of-the-art ML models, adding more
interpretable structure to their output.

7.1.1 Finding Structure in Groups

We begin with a simple observation: given a set of apples, and a set of cherries, we can
create a larger set by simply joining all the apples and cherries together. Given that
each of the original sets had its own property, the resulting union now represents a
broader concept, which can be expressed as the union of the two original concepts. This
exercise has also left us with a hierarchical structure where the larger set subsumes the
two original ones.

This sort of hierarchy is usually present in ontologies or knowledge graphs, where a
general concept e.g., “fruit” subsumes the more specific ones like “apple” and “cherry”. In
this case, the relation between specific and general concepts is semantic (e.g., apples and
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cherries come from plants). However, we can create this kind of hierarchical relationship
based on other criteria that doesn’t rely on additional knowledge. Concretely, we want
to study groups of classes that have similar visual features.

How can we transfer this idea to ML and neural networks? We know that if a model
can correctly predict the class HORSE for a test sample, the same model should also be
able to succeed if the sample belonged to a set of classes that includes horses. This also
means that, to some extent, training with a group of classes that includes horses should
be beneficial to train a horse classifier. To test this, we first need to group labels that
define new, more generic classes (i.e., group classes) that can also be included during
training. Once we have these groups, we need a suitable architecture that can be trained
with both the original labels and the newly formed group classes.

Since the additional group labels serve a supporting role in solving the original task,
we can model the classification problem defined by the group annotations as auxiliary
tasks. These auxiliary tasks can then be solved in parallel with the original classification
problem as if they were independent of each other. However, as we know that both
main and auxiliary tasks share a strong semantic link, we can make them depend on
each other by using a shared feature space. Because we generate auxiliary tasks without
resorting to additional (external) annotations, we call this setup Self-Supervised Auxiliary
Learning or SSAL for short. Figure 7.1 shows a toy representation of the proposed
setup.

Fig. 7.1.: Overview of SSAL models. Starting from a shared feature space, a supervised task and
an auxiliary branch are used to train and predict. The auxiliary task stems from the
original labels following a mutually exclusive grouping.

The rest of this chapter will look into how can we find groups and adapt them to train
a neural network. The next section describes the grouping criterion and architectural
design of the model. Moreover, we identify a set of hyperparameters that emerge from
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this setting and explore their impact. Finally, we evaluate the new model on three
different image classification benchmarks and analyze the benefits that its structured
output has in terms of interpretability.

7.2 Methods

This section describes the methods we use for generating groups of classes, the model
architecture that supports the use of group classes, hyperparameters, and benchmarks.

7.2.1 Grouping Criterion

Our goal for the grouping criterion is two-fold. First, we want to have groups that
have a similar size i.e., each group has (whenever possible) the same number of labels.
Secondly, we want labels within a group to share as many visual features as possible.
More formally, given a set of k labels Yk = {y1, y2, . . . yk} we need to create a partition
YG that comprises G non-overlapping subsets of Yk.

To measure similarity between the original labels, we evaluate a pre-trained model on
the validation set of the data whose labels we want to group. Based on the results of
the evaluation, we construct a k × k confusion matrix C where entries ci,j correspond
to the number of samples with ground-truth yi ∈ Yk that got classified as yj ∈ Yk. This
matrix already gives us an initial idea of which labels are more similar to each other.
The intuition is that visually similar classes will be confused more often, than labels that
don’t share too many visual features.

However, values in the confusion matrix cannot be yet interpreted as a measure of
similarity. To do that, we transform values in C into a distance matrix as follows. First,
we subtract the values from the diagonal in C, and then divide all elements by the sum
of the remaining entries (Equation 7.1). Afterwards, we subtract the matrix of all-ones
1 from our partial result (Equation 7.2), and then we turn it into a distance score by
averaging the off-diagonals (Equation 7.3).

D̂ = C − CI

−tr(C) +∑
i,j ci,j

(7.1)

Ŝ = 1 − D̂ (7.2)

Dc = 1
2(D̂ + D̂T ) (7.3)
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Now that we have a measure of similarity thanks to the distances in Dc, we can proceed
to group labels using a greedy clustering. Similar to Yan et al. [159], the clusters
prioritize similarity between labels, but we add a constraint that keeps cluster sizes
balanced.

This is how it works. Clustering begins by defining G empty clusters, and a new set G
with a copy of all labels in YG. Next, the label in G with the highest average distance to
all other labels is removed from G, and assigned to an empty cluster. Once there are no
empty clusters, the element in G with the smallest average distance to a cluster of less
than k/g labels is removed from G and assigned to that cluster. In case of a tied metric
(i.e., the label can be assigned to more than one cluster), the label is assigned at random
to one of the clusters involved in the tie. Clustering concludes when there are no more
elements left in G.

Note that this algorithm can be easily adjusted to produce the opposite result i.e.,
generate clusters with visually distant labels. This can be achieved by skipping the
inversion of the normalized confusion scores in Equation 7.2.

The output of the clustering algorithm is a surjective mapping γ : Yk → YG assigning a
unique group class to each of the original ground-truth labels. This way, each sample in
a labeled dataset becomes as a triplet (x, y, γ(y)) that represents the input sample, the
original label from Yk, and the group label from YG.

For this clustering method, there is one important hyperparameter that can influence
its output, namely the number of groups G that are used for clustering i.e., the number
of elements in YG. We consider values in the range 2 ≤ G ≤ k/2 which guarantees
that there will be no empty clusters, and that each cluster has at least two associated
labels.1

When we consider only the pairs (x, γ(y)) in a dataset, we are talking about the auxiliary
task of the set. In contrast, tuples of the form (x, y) are referred to as the original task.
Note that, in isolation, the auxiliary task can be treated as a supervised problem, and
hence can be tackled by using the same methods that solve the original task.

7.2.2 Model Architecture

Once we have produced an auxiliary task, we need an architecture that can use both sets
of labels to train and predict. A flexible and well-known strategy is to rely on designs
used for multitask learning (MTL). The main idea of MTL is to design models that can

1Assuming there are four or more classes in the original task.
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somehow share what they learn while being trained in parallel. Even though these ideas
were already around during the early 90s, it was Caruana [25] who first showed that
neural networks were also suitable models for MTL.

Our proposed model follows the structure of a hard parameter-sharing architecture with
three components, as shown in Figure 7.1. The model starts with a low-level feature
extractor, whose output is shared between all modules that come after. Next, common
features from the shared space are passed on to branches with different objectives. One
branch is the original classification task with labels from Yk and denoted as f(·). The
second branch corresponds to the auxiliary task that is based on the group classes YG

and denoted as g(·). During prediction, the ensemble produces two outputs: one for the
original classification target f(x) = ŷ, where ŷ ∈ Yk, and another for the auxiliary task
g(x) = ȳ where ȳ ∈ YG.

Note that this architecture is not limited to having exactly one auxiliary branch. The
clustering method from Section 7.2.1 can be run several times with a different number
of groups, producing multiple mappings from Yk into different partitions YG1, YG2, etc.
In that case, we refer to a set of different groupings γ1, γ2, . . . , all based on the original
labels Yk. Every set of group classes γi will have a dedicated auxiliary branch gi(·) in
the ensemble. Correspondingly, each sample in the dataset gets represented by the tuple
(x, y, γ1(y), γ2(y), . . .).

For the implementation details, we base the architecture of the ensemble on a high-
performance classifier like ResNet50 [59], WRNs [162], SENets [63], or DenseNets [64].
The shared feature extractor consists on the first b blocks of the architecture2, and the
remaining parts of the model correspond to the branch that solves the original task.
The auxiliary branch also starts after the first b blocks of the model, and its precise
architecture will depend on hyperparameters like the number of group classes or the
point of attachment. For ensembles with more than one auxiliary branch, b corresponds
to the earliest attachment point among all branches. Subsequent branches are always
attached to the part of the model that solves the original task i.e., there are no auxiliary
branches that attach to other auxiliary branches.

As we can see, one important hyperparameter of this ensemble is the value of b i.e., the
point at which the (first) auxiliary classifier attaches to the original model. An early
point of attachment allows branches to process generic, lower-level features, but leaves
less shared parameters for all tasks to align and regularize each other. The second
hyperparameter of this setup is the number of auxiliary branches that can be attached,
and the point in the architecture at which they are placed.

2Blocks consist on a series convolution, batch-normalization and non-linear operations chained together;
depending on the depth of the network, these blocks change in size.
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7.2.3 Model Training

As the definition of MTL indicates, training of the main, and auxiliary tasks happens in
parallel. For an ensemble with multiple branches, each sample that is forwarded will
generate multiple outputs: one for the main task f(x), and one for each auxiliary branch
gi(x). Since annotations for each branch are available, we can use an independent clas-
sification loss function for each branch. They can be conveniently expressed together as
a sum of individual losses and hence, the entire network can be updated simultaneously,
including the shared parameters. The total loss LT for any given sample is given by:

LT = λf L(f(x), y) +
∑

i

λi L(gi(x), γi(y)) (7.4)

where L corresponds to the cross-entropy, and the coefficients λf and λi control the
relevance of each individual loss term.

7.2.4 Model Prediction

Multitask Learning does not directly stipulate how to join all predictions once the training
phase has completed. This is often not a problem, as tasks are not directly related, and
can be ignored during evaluation.

For our ensemble, we are interested in combining predictions from all branches into a
final joint prediction. To this end, we consider two ways in which we can achieve this:

Joint Probability: the final prediction is represented as the joint probability of the
original prediction and the auxiliary classifier, such that:

P (y|x) = softmax(f(x)i · gγ(i)(x)) (7.5)

where f(x)i represents the i-th output dimension of f(x), gγ(i)(x) is the output dimen-
sion of the auxiliary branch associated with the original label at f(·)i and · represents
a scalar product. When more than one auxiliary classifier is used, the output of each
auxiliary branches gi is raised to a power η ∈ (0, 1].

Learned Linear Combination: Predictions from f(x) and gi(x) are concatenated, and
then used to train a linear classifier whose output layer corresponds to the number of
labels of the original task. All branches (f and all gi) are assumed to be already trained,
and the linear classifier is hence trained in a secondary step.
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Baseline: We compare these methods with a naive baseline where the auxiliary branches
are discarded, and only the prediction of f(x) is evaluated. Comparing improvements
w.r.t. this baseline will help us establish the influence that auxiliary classifiers have for
solving the original task.

7.2.5 Ensemble Hyperparameters

Through the last three sections, we have identified hyperparameters that play a critical
role in the final performance of the model. To evaluate them in isolation, we define a
series of small-scale experiments, before moving on to evaluations on larger models and
large-scale datasets.

We begin by examining the number of clusters that can be used to generate an auxiliary
task, as well as the position at which the auxiliary branch is placed w.r.t. the original
model. In order to isolate the elements that are responsible for improvements in
performance, we conduct an ablation analysis on the optimization loss, prediction
method and model size.

Number of Groups

To assess the influence of using a branch with more or less group classes, we train an
ensemble based on ResNet18 [59] with one auxiliary branch attached before the first
residual block. We evaluate the accuracy of the ensemble when the auxiliary branch has
2, 4, 10, or 20 groups. We use two datasets with different number of classes: CIFAR100
(100 classes) and TinyImageNet (200 classes). Ensembles using CIFAR100 are trained
for 20 epochs, while those using TinyImageNet are trained for 30.

The architecture of the auxiliary classifier consists of four convolutional layers with batch-
normalization and ReLU activations, a global average pooling, two fully connected layers,
and a final linear combination with softmax normalization. The size and number of
convolutional filters, as well as the number of fully connected neurons were determined
via hyperparameter search.3 Predictions are based on the joint probability described in
Section 7.2.4.

3Optimization of the architectural hyperparameters is evaluated on a small portion of the training set
(10–15%).
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Fig. 7.2.: Positions where SSAL branches are being attached to the main network (red circles).

Branch Placement

Another important parameter of auxiliary branches is the point where it attaches along
the original model. In this case, we test three deeper models as the base architecture,
namely ResNet50, a Wide Residual Network (WRN 20-10) and a DenseNet (BC 100-12).
All three have a similar macro architecture with well-defined blocks, giving us ample
room to attach an auxiliary branch. We train and evaluate these networks on CIFAR100
while an auxiliary branch is attached at progressively deeper layers. These points of
attachment include paths that lie before, after and in-between macro-blocks, as shown
in Figure 7.2. The auxiliary branch has an output layer corresponding to 20 groups, and
the final prediction is computed using a joint probability.

Number of Branches

We evaluate the influence of having more than one auxiliary branch as part of the
MTL ensemble. For this, we train a ResNet18 on CIFAR100 with either one or two
auxiliary classifiers g1, g2 simultaneously attached. Both auxiliary classifiers consist of
two convolutional layers with batch-normalization and ReLUs, followed by an inception-
like layer, global average pooling, and a linear output layer with softmax normalization.

100 Chapter 7 Ante hoc Explanations with Self-Supervised Auxiliary Objectives



The auxiliary branch g1 has 20 groups, and it is attached after the first residual block
of the main network. The second branch g2 has 50 groups, and it is placed after the
second residual block. Predictions of the ensemble are based on the joint probability,
and a normalizing power η is set to a constant value for all branches.

We repeat this experiment with two more networks, namely ResNet50 and WRN 20-10.
For these two variants, we use up to three auxiliary branches that simultaneously attach
to the main architecture. The number of groups for each of the three branches is 20, 30
and 50, and their placement corresponds to the points g1, g2, g3 in Figure 7.2.

Ablation Baselines

SSAL ensembles add several components to an already high-performance neural network.
To understand what modules account for improvements in accuracy, we propose a series
of ablation experiments. In particular, we run tests that measure the influence of the
training loss, prediction method, and network size on the accuracy of the ensemble.

The use of auxiliary branches introduces additional representational capacity through
the extra trainable parameters of the auxiliary branches. We test whether performance
improvements can be simply be explained by the extra weights, or if the SSAL objective
has merits of its own.

To this end, we train modified versions of ResNet18 on TinyImageNet that add more
weights in various ways, matching or surpassing the number of parameters of a SSAL
model. Moreover, we compare models that have the same architectural design of SSAL
models, but are trained on a different objective.

• WideResNet18: has 50% more filters across all convolutional layers.

• DeepResNet18: adds four convolutional layers of 256 filters each with batch-
normalization and ReLU activations before the first residual block.

• DWResNet18: similar to DeepResNet18 but doubling the number of filters of the
additional convolutional layers.

• GapCatNoSSAL: based on a SSAL model with one branch but without the SSAL
loss. The output of the auxiliary branch is concatenated with the GAP activation of
the main classifier.

• CatFCNoSSAL: based on the SSAL architecture but without the SSAL objective.
The outputs of the SSAL branch and the original network are concatenated and
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passed through a fully-connected layer with 2048 neurons. The result is fed into a
linear classifier for the final prediction.

• LinearComb: replaces the joint prediction proposed for SSAL models. After
training, outputs from all branches are concatenated and passed through a linear
classifier that has as many outputs as the original task.

• SSAL: classifier ensemble proposed in this chapter. We train and evaluate two
variants with one or three auxiliary branches. For the variant with one auxiliary
classifier, the SSAL branch is attached after the first residual block (g2 in Figure 7.2).
The model with three SSAL branches uses attachment points corresponding to g1,
g2, and g3.

All models are trained for 20 epochs with a triangular learning rate peaking at epoch 8.
Each experiment is repeated three times to account for the small fluctuations caused by
random initializations.

7.2.6 Classification Performance

Based on the analysis of hyperparameters, we show that SSAL models can consistently
attain a higher accuracy than a variety of high-performance classifiers.

CIFAR100

For CIFAR100, we train SSAL models based on ResNet50, WRN, SENet and DenseNet.
For each of these original architectures, we attach three SSAL branches with 20, 33,
and 50 group classes. To guarantee uniformity on the evaluation conditions, we have
re-implemented all models, and trained them from scratch so that the only difference
between the original performance and the SSAL variant is the proposed surrogate
objective.

For each model, we include the original performance as reported in the literature
(org), results of our own re-implementation (ours), and the LinearComb setup from
Section 7.2.5 (+LC). For SSAL models, we also report the accuracy of the original
classifier i.e., using the SSAL branch during training but not for prediction (+TR), and
the full SSAL prediction using the joint probability (+JP).
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ImageNet

To test the effects of SSAL models on large scale problems, we train a ResNet50 on
ImageNet (ours), and compare it with a corresponding SSAL model equipped with three
auxiliary branches. Similar to the previous experiment, each branch has progressively
more groups, namely 200, 334, and 500. We report validation accuracy for SSAL models
that only use the main classifier for prediction (+TR), the joint prediction (+JP), and
the LinearComb setup from Section 7.2.5 (+LC). Moreover, a GapCatNoSSAL baseline
(GC) is added to verity whether the behavior observed in the ablation analysis is still
present in this large-scale setting.

7.3 Results

This section presents the results of experiments proposed in Section 7.2. Addition-
ally, we discuss the benefits of the model structure to justify and interpret individual
predictions.

7.3.1 Number of Groups
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Fig. 7.3.: Influence of the number of groups on the accuracy of CIFAR100 and TinyImageNet.

We test how the accuracy varies when an auxiliary branch has an increasing number
of group classes. We plot the validation accuracy on CIFAR100 and TinyImageNet for
the SSAL ensemble, and for the branch alone. Results in Figure 7.3 show a constant
improvement of the combined classification accuracy as the number of groups increases.
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SSAL models with an auxiliary branch trained on just two groups already provides a
signal that benefits the overall performance. With more group classes, auxiliary branches
can represent more complex features that are more directly related to those needed to
solve the main task.

On the other hand, there is a steady decrease in the raw accuracy of the auxiliary branch.
This behavior is expected, as the increasing number of group classes makes the task
more challenging. For a problem with a few classes, general features are already enough,
and even then, there is a high probability of issuing a correct prediction at random.
On the contrary, auxiliary branches have to represent more specialized features when
solving a problem with more group classes. However, these features are in turn more
beneficial for the original classification task.

7.3.2 Branch Placement
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Fig. 7.4.: Accuracy when the position of the auxiliary classifier (with 20 visually similar groups)
varies w.r.t. the main network.

We measure performance variations when an auxiliary branch is attached after the first
few layers of the main architecture, or later. Again, we plot validation accuracy for the
SSAL ensemble (left), and the performance of the auxiliary branch alone (right). Results
in Figure 7.4 show that the position of the auxiliary classifier w.r.t. the main model yields
better results when the auxiliary branch is attached at deeper layers. This behavior
is correlated with the performance of the SSAL branch itself, which shows higher
performance when it has been attached at a deeper stage within the architecture.

These results suggest that the relationship between the auxiliary branch and the model
is symbiotic, as both parts of the ensemble benefit when they converge. The auxiliary
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branch benefits most from having a large shared feature space, and receiving features
that are already close to solving the original task.

7.3.3 Number of Branches

The number of auxiliary branches that can be attached simultaneously is another im-
portant hyperparameter we need to evaluate. For that, we measure validation accuracy
on SSAL ensembles that have up to three auxiliary branches attached. Results are
summarized in Table 7.1.

Tab. 7.1.: Classification accuracy for models with ||gi|| SSAL branches on CIFAR100. Using
more branches, together with regularization, improves performance. However, the
computational footprint also increases.

||gi|| η Test Acc. (%) Parameters

ResNet18 0 — 75.67 11.23M
1 1.0 76.62 11.92M
2 1.0 78.23 12.83M

ResNet50 0 — 79.13 23.77M
1 1.0 79.70 25.07M
3 1.0 80.36 28.89M
3 0.3 80.69 28.89M

WRN 28-10 0 — 80.19 36.56M
1 1.0 80.96 38.19M
3 1.0 80.68 43.25M
3 0.4 81.08 43.25M

As expected, increasing the number of SSAL branches has a positive impact on perfor-
mance. Note that the maximum performance is achieved when the auxiliary branches
have a higher regularization term η. The role of SSAL branches is to complement the
decision of the main classifier, and having more auxiliary branches makes the prediction
more dependent on all of them being consistent. A lower value of η makes the output of
the original task the predominant signal used by the combined prediction.

7.3.4 Ablation Baselines

To test that the performance of SSAL models does not come from the additional rep-
resentational capacity, but from the grouping criterion itself, we run different ablation
experiments proposed in Section 7.2.5. Results from these models is reported in Ta-
ble 7.2.
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Tab. 7.2.: Baselines for SSAL models on TinyImageNet. Models that have a deeper architecture,
wider layers, or lack the SSAL objective fail to reach the level of accuracy of SSAL
models.

Val. Acc. (%) Diff (p.p.) Parameters

ResNet18 39.9 ± 0.3 0.0 11.2M
WideResNet18 42.3 ± 0.3 2.4 25.3M
DeepResNet18 43.1 ± 0.4 3.2 13.3M
DWResNet18 43.7 ± 0.1 3.8 19.0M

GapCatNoSSAL 40.2 ± 0.3 0.3 15.6M
CatFCNoSSAL 35.3 ± 0.8 -4.6 13.6M

LinearComb 44.1 ± 0.1 4.2 12.8M
SSAL x1 45.8 ± 0.2 5.9 12.6M
SSAL x3 50.0 ± 0.4 10.1 15.6M

Looking at the first four baselines, it is clear that adding more capacity has a positive
impact in accuracy. Concretely, having more capacity in the form of deeper layers shows
better results than using wider layers, while a combination of both yields the highest
overall improvement of up to 3.8p.p.

As the next two baselines show, using the same architecture of a SSAL models, but
without the SSAL objective (*NoSSAL), keeps or worsen performance w.r.t. the baseline.
This result discards the idea that the SSAL architecture alone is responsible for the
improvement in accuracy.

Finally, the last three rows of Table 7.2 show that the use of a SSAL objective yields
the highest performance, even before taking the prediction method into consideration.
We see that all SSAL variants outperform all other baselines with an improvement of
5.9p.p. to 12.7p.p. Note that this is already 8.9p.p. above the highest performing baseline
(DWResNet18), all while using fewer trainable parameters. We can also verify that
the use of joint predictions is consistently more beneficial than the more naive linear
combination.

Overall, ablations experiments strongly indicate that SSAL models profit from the MTL
architecture, the training objective, and prediction mechanism.

7.3.5 Classification Performance

Having explored the most important hyperparameters of SSAL models, we measure
how much can they push the state-of-the-art performance on a small and a large-scale
benchmark.
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CIFAR100

Tab. 7.3.: Classification accuracy for multiple high-performance architectures on CIFAR100.
Adding the SSAL objective consistently yields higher performance.

Val. Accuracy (%) Parameters

org ours +TR +JP +LC org SSAL

ResNet50 — 78.94 79.67 80.61 80.23 23.8M 28.9M
SE-WRN 16-8 80.86 79.02 79.02 80.20 80.03 11.1M 14.9M
WRN 28-10 80.75 80.08 80.65 80.97 80.68 36.6M 38.2M
DenseNet 190-40 82.82 81.06 81.85 83.24 83.10 26.1M 38.3M

A summary of the experiments for CIFAR100 are presented in Table 7.3. These results
indicate that training with the auxiliary classifier consistently yields better performance.
Looking at the (+TR) column, we see that the inductive bias of SSAL branches guides
the classifier even when the auxiliary output is not used for prediction. Performance
metrics improve even further when SSAL models use the auxiliary branches to issue
joint predictions. Note that for WRN and DenseNet, the SSAL version even outperforms
the original model (org), notwithstanding the slightly lower baseline they start from
(ours).

ImageNet

We run a large-scale evaluation using ImageNet on ResNet50 to measure the extent
by which SSAL improves state-of-the-art performance. Results are shown in Table 7.4.
Once again, training with the SSAL objective is already improving performance even if
the auxiliary branches are not used for prediction (+TR). Using a linear combination
of all the SSAL branches (+LC) pushes performance slightly higher, but issuing a joint
probability still works best (+JP).

Tab. 7.4.: Accuracy of SSAL models on ImageNet. Experiments are run 3 times.

ours (org) +TR +JP +LC GC

Top-1 75.5 ± 0.1 76.4 ± 0.1 76.9 ± 0.1 76.6 ± 0.2 75.7 ± 0.1
Top-5 92.7 ± 0.1 93.3 ± 0.1 93.7 ± 0.1 93.4 ± 0.1 92.7 ± 0.1

For context, we compile results reported in the literature for methods that also convey
contextual information in the loss function, use other kind of auxiliary classifiers or rely
on different hierarchical priors for training (Table 7.5). We see that the benefits of SSAL
lead to models that outperform the state-of-the-art in both benchmarks, CIFAR100 and
ImageNet.
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Tab. 7.5.: Top-1 accuracy of related state-of-the-art and SSAL models. Results for ImageNet are
based on ResNet50 except the ones marked with *. Top-5 shown in parentheses, if
available.

CIFAR100 ImageNet

HD-CNN [159] 65.64 68.66 (—)*
HydraNets [147] 76.25 73.20 (—)*
COT [28] 79.46 75.60 (—)
DSL [83, 85] 81.95 76.12 (92.93)
DHM [85] 82.80 76.57 (93.24)
Aux. Train [167] 80.84 74.14 (—)*
SSAL (ours) 83.24 77.00 (93.80)

7.3.6 Interpretable Outputs

So far, we have conducted an extensive evaluation showing that SSAL models perform
better than other high-performance models. From the perspective of XAI, these im-
provements can already be attributed to the modeling of a subsumption operation as a
meaningful non-functional requirement. However, we can further exploit SSAL predic-
tions to show that they are more interpretable than regular neural networks thanks to
the auxiliary grouping criterion.

We know that the use of heatmaps has been a popular but controversial mean to interpret
the output of a model. As Rudin [122] argues, heatmaps can only highlight the area
that was important, but say close to nothing about the underlying features that elicit
this response. We show that this gap can be addressed partly by SSAL models, thanks to
the criterion used for creating the clusters that define the group labels.

Let’s have a look at the samples in Figure 7.5:

Fig. 7.5.: CAM w.r.t. each auxiliary branch gi of the SSAL model. gf denotes the final classifi-
cation output of the SSAL model, and org is the CAM of a normal ResNet50. Labels
within predicted auxiliary groups are shown underneath each branch.
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On the left, we see an image of a centipede that has been incorrectly predicted by a
vanilla ResNet50 (org) and by a SSAL variant with three auxiliary branches. Below, we
show the Class Activation Maps [170] from the baseline and from all outputs of the
SSAL model.

For ResNet50, we are left with a heatmap and a class prediction DIAL PHONE that cannot
be justified beyond saying that, somehow, the features with high saliency resemble those
of a dial phone. For the SSAL model, we not only have more saliency maps where we
can look for consistencies, but we have also the labels associated with the predicted
group class. We see that most groups contain labels like SCREW, REVOLVER, or TOOLKIT

that share features such as metallic textures, specular reflections, and well-defined hard
edges. Thus, an interpretation of the image and its salient areas can be coupled with
the known, common properties that the group labels have, in order to narrow down the
underlying features that cause the prediction.

Moving on to the sample on the right, we see a slide-rule that has been correctly predicted
by both models. Once more, we recognize that individual labels in auxiliary groups like
PILL BOTTLE or NIPPLE (i.e., the mouthpiece of a baby bottle) often depict the uniform
markings that characterize a ruler. These correspondences are strong indications that
these markings are precisely the salient features that guided this particular prediction!

In general, we can justify the interpretation of auxiliary outputs thanks to the criterion
used to generate the clusters. Since each cluster has visually similar features, an auxiliary
branch that predicts a group does so because there is evidence corresponding to one of
the visually similar labels.

7.4 Conclusions

After a comprehensive set of experiments, we have gathered evidence that shows an
effective, systematic, and general way to create more interpretable models. We show
that it is possible to add more structure to an image classifier without the need for
more labeled data, by creating self-supervised auxiliary objectives based on existing
annotations.

These auxiliary tasks convey the notion of category subsumption and can be implemented
using architectures inspired by multitask learning. Both prediction and training can be
done in parallel, with predictions being combined using a probabilistic approach with
minimal overhead. An ablation analysis shows that the benefits of SSAL models don’t
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come from trivial changes to the architecture, and that more task-oriented features are
represented thanks to the SSAL objective.

Finally, a comparison of SSAL models with high-performance classifiers demonstrates
the superiority of the former for large-scale classification problems. Not only are SSAL
models more accurate, but their output has a richer structure that makes individual
predictions easier to interpret and justify.

7.4.1 Future Work

This work has focused on exploring one of many approaches to convey a single non-
functional requirement. As part of the future work, we are interested in measuring the
effects that different clustering algorithms can have for the grouping criterion. For our
experiments, we have limited the clustering to non-overlapping partitions. However,
visual similarities can occur at different levels, and are often asymmetric e.g., tree trunks
may often look like chairs, but not the other way around. At a more general level, we
want to investigate other non-functional requirements beyond grouping that could also
be conveyed in a self-supervised fashion.

In Summary

How can we make models more interpretable? The answer lies in the additional
structure we can add to a model. As long as that structure corresponds to a non-
functional requirement, we can bridge the interpretability gap and hence, get predictions
that are easier to justify.

In this chapter, we have explored “grouping” as promising non-functional requirement
that can even be represented without the need for additional annotations. We show how
an architecture for multitask learning can be leveraged for representing hierarchical
groups that comprise visually similar labels. By training and evaluating the output
of the ensemble, we show that these models consistently outperform a wide array of
high-performance classifiers. Most importantly, we establish how individual predictions
become more interpretable thanks to the output of auxiliary branches. At the same time,
the model is more interpretable, as decisions can be justified by contrasting feature
attribution heatmaps with the group classes in auxiliary branches.
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Conclusions 8
It’s been a long way since AI sprung out of its scientific niche, and became a foundation
to all kinds of industrial applications. What started as systems for automatic document
layout analysis [37], or optical character recognition [81], has grown into a prosperous
industry full of self-driving cars, medical diagnosis systems and satellites that help
prevent natural disasters.

Advancements in ML have brought unprecedented progress to society, and we slowly
start relying on machines to make high-stake decisions in our behalf. We have reached
a point where our dependence on machines cannot go unquestioned. This is the point
where we start making computers whose decisions we can understand.

As it turns out, peeking through the veil woven by millions of trainable parameters,
and compare latent representations with our own understanding of the world, is no
trivial endeavor. In this thesis, we have approached this challenge, by looking at current
pressing questions in the field of XAI. We defined two main questions that helped us
narrow down the cornucopia of fascinating challenges in this field.

Global Patterns of Existing Models

Our first question deals with current models; the ones that comprise the state-of-the-art,
and the same ones that we struggle to explain. Can we decipher what kind of global
patterns do they follow? We looked at three of those global patterns found in neural
networks, and the answer is encouraging.

In Chapter 4, we studied the effects of training a VQA classifier with a dataset that suffers
from a substantial overrepresentation of polar questions i.e., those that are answered
with either “yes” or “no”. Despite the obvious challenges of training with overrepresented
classes, we show that these conditions are not necessarily detrimental. In fact, we
discovered that the semantic relation between polar questions and the non-polar classes
is complementary. This dynamic allows a model to represent a shared feature space
where non-polar classes can be answered using only features from polar questions. This
kind of feature alignment improves the ability of the model to answer both polar and
non-polar questions, especially for queries that refer to the same semantic concept.
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Another global property that has eluded researchers for years, is the notion of model
capacity. In Chapter 5, we have shown that it is possible to measure the effective capacity
of a model by constraining the amount of information in the input space. This is possible
thanks to a specially trained encoder-decoder architecture that reconstructs only the
input information that is needed for classification. By measuring the information that
remains after reconstruction, we get an upper bound on the amount of information that
high-performance models are using. When coupled with model accuracy, these measures
reveal which models use more information, and which make more effective use of that
information.

These findings, it turns out, are also effective to mitigate the effects of adversarial attacks.
The extensive evaluation of gradient-based adversarial perturbations in Chapter 6,
shows that our proposed encoder-decoder architecture can counteract the effects of
adversarial perturbations. By projecting samples to a lower dimensional manifold, and
retrieving gradients from a self-supervised pre-trained encoder, our defense strategy
shields vulnerable models without affecting their baseline performance.

Creating Models that are Interpretable by Design

Looking past the inscrutable nature of today’s high-performance classifiers, we look at
the future ahead, and entertain the possibility of starting from scratch. What can we do
differently, if we had the chance to build more interpretable models from the ground
up?

First, we would need to define what is meant by “interpretable.” Taking a step back, we
identify the need to have a standard, general framework to open the discourse on XAI.
Chapter 3 delves into the limitations of working within the confines of a community that
cannot agree on what the problem is. This chapter introduces the XAI framework in
an effort to provide a standard context to compare and talk about contributions in the
field of XAI. We show that the framework is grounded and precise when defining core
concepts like “explanation” and “interpretation”.

It is precisely by leveraging the structure of this framework that we can identify the
conditions that make a model more interpretable. We show in Chapter 7 that embedding
additional structure into the architecture of neural networks leads to more interpretable
models. By using non-functional requirements that convey the relation of subsumption,
we can define auxiliary tasks that are related to the original task, and don’t require
additional annotations. Training and predicting with this novel ensemble leads to results
that consistently outperform state-of-the-art classifiers, all while issuing predictions that
are easier to justify.
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8.1 Future Work

Can we move towards more interpretable models? This work shows that it is indeed
possible. In fact, results presented in these pages can be extended in a number of ways
to keep moving in this direction.

Our benchmarks have been focused on classification: one of the most classic tasks in
computer vision. However, more constraints and additional structure can be leveraged
when considering related tasks such as object detection or instance segmentation. These
are setups where the output has already a stronger semantic link with the high-level task
i.e., it is easier to interpret. This proximity between formal and semantic domains could
play a key role in tracking more relevant non-functional requirements that can account
for a model prediction.

We also have to acknowledge that, in the quest for methods that can be tracked and
justified, we are implementing more inductive biases that reflect our own cognitive
processes. There is still a long way before machines can reach the computational
complexity and efficiency of a human brain. But in the meantime, we have to move away
from the kind of oversimplified problems we are still solving today. This means defining
tasks with context, using open world paradigms, and exploring efficient representations
of prior knowledge that go beyond a pre-trained model.

In the meantime, we still miss a concrete set of metrics for measuring advances in XAI.
How can we measure understanding? One could start by identifying a minimal set of
non-functional requirements for each task, and then benchmark how consistent they are
once a model has been already trained.

Are we going to reach a point where we have to abandon black-boxes altogether? Most
certainly not. These are highly effective mechanisms to solve virtually any problem, as
long as we can get our hands on enough training data. Many non-critical scenarios—
where explainability is not required—can profit from having automatic predictions:
finding what book to read next, fixing the light on an overexposed photo, etc. However,
finding out more about the processes behind these models, becomes an invaluable tool
to improve them, and to find new ways for solving other problems.

After all, the pace of scientific advancement will always be fueled by curiosity, and no
one can stop us from asking about the things we haven’t figured out yet.
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Appendix A
This chapter presents some additional details on additional experiments and results
discussed throughout this thesis.

A.1 Chapter 4

When evaluating the semantic link between polar and non-polar samples, we have
matched non-polar classes that occur within polar questions. For this matching, we used
the regular expression shown in Figure A.1:

Fig. A.1.: Regular expression to match non-polar classes in polar questions. Generated with
https://regexper.com.

Intuitively, we match strings that are not preceded nor followed by a letter, while
allowing other symbols around. Table A.1 shows the top 100 non-polar classes that have
been matched within polar questions.
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Tab. A.1.: List of non-polar classes with most matching polar questions.

NP class Nr. matches NP class Nr. matches NP class Nr. matches NP class Nr. matches

in 11936 day 733 white 536 raining 438
on 8292 girl 724 plate 532 bike 433
man 4643 toilet 717 kitchen 531 hair 430
picture 2990 sky 683 men 527 right 429
people 2469 happy 671 clean 510 clock 426
person 2199 sunny 643 sitting 506 full 425
photo 1944 plane 637 standing 501 road 421
woman 1699 bathroom 634 horse 490 healthy 415
water 1651 giraffe 628 car 483 window 414
can 1644 street 616 building 483 beach 411
s 1579 eating 603 outside 478 black 410
cat 1454 bear 601 grass 478 red 406
all 1413 both 596 real 477 old 405
train 1341 ball 587 eat 464 baby 401
room 1310 open 583 cold 461 camera 400
dog 1287 up 578 background 457 snow 400
animals 1053 ground 571 good 453 glasses 399
food 1000 looking 569 bird 452 clouds 396
animal 925 out 562 sign 451 holding 393
someone 906 table 561 light 450 flowers 387
pizza 888 trees 560 shirt 447 lights 385
bus 860 moving 557 boat 442 zoo 379
going 825 elephant 555 more 442 green 376
color 783 child 541 truck 441 down 375
boy 734 playing 540 bed 440 zebra 373

A.2 Chapter 5

In order to measure effective capacity, we have fine-tuned the decoder of a pre-trained
autoencoder with gradients from different classifiers. Figure A.2 shows additional
reconstruction examples based on the different fine-tuned decoders.

To get a better intuition of how constant the checkerboard artifacts are for reconstructed
samples, Figure A.3 and Figure A.4 show several enlarged areas within a single sample.

When comparing classifiers, and how well they work with signals from other classifiers,
we defined a threshold t for results based on the RCmin metric that convey the binary
notion of “working well”. Figure A.5 shows the resulting FCA lattices that use different
values of t.
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Fig. A.2.: Reconstructions of fine-tuned autoencoders.
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Fig. A.3.: Zooming in on different areas for the original sample, and reconstructions from
SegNet and AlexNet.
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Fig. A.4.: Zooming in on different areas for reconstructions of VGG16, ResNet50 and Inception-
v3.

Fig. A.5.: FCA lattices based on RCmin and different thresholds t.
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A.3 Chapter 7

We can verify that the SSAL objective has an aligned inductive bias by measuring the
rate of convergence when training a SSAL model. We train a baseline based on the SSAL
architecture, but without a SSAL objective, similar to CatFCNoSSAL for 20, 50 and 100
epochs. Then, we compare these results to a model with the same architecture that uses
the SSAL objective for 20 epochs worth of training. Figure A.6 (left) shows the validation
accuracy of these four setups. We can clearly see that the model using the SSAL objective
(in red) has achieved a higher accuracy in just 20 epochs; something that even the model
trained over 100 epochs could not reach. The accelerated rate of convergence is also
evident when comparing the training accuracy of a SSAL-based model against a baseline
implementation with no auxiliary branches (Figure A.6 right).

0 20 50 100
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SSAL Joint Prediction
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Fig. A.6.: Accuracy of a SSAL model based on Resnet18 (red) is higher than baselines using five
times more training time (purple), let alone the original Resnet18 (green).

Auxiliary Architectures

Auxiliary sub-networks used to create a SSAL model vary depending on the point of
attachment or the number of classes. They consist of different combinations of convo-
lutional layers, batch-normalization and ReLU activations, Inception-like blocks, and
fully connected layers. Architectural details have been determined via hyperparameter
search.

Table A.2 describes auxiliary networks used for experiments on Tiny ImageNet. Table A.3
shows the architecture of SSAL branches that were added to a ResNet18 when evaluating
CIFAR100. Table A.4, and A.5 present the architecture for branches attached to different
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WRNs and to a DenseNet when training on CIFAR100. Finally, Table A.6 shows the
architecture of the sub-networks used to train a SSAL model based on ResNet50 for
ImageNet.

Tab. A.2.: Architecture of auxiliary networks for Tiny ImageNet. When attaching an auxiliary
classifier to positions g1 or g2 of the main architecture, the AuxNet1 layout is used
(Figure 7.2 in the main document). The number of output units depends on the
number of groups used in the SSAL objective.

layer name AuxNet1 AuxNet2

AuxConv1 [3 × 3, 128] × 2 —

AuxConv2 [3 × 3, 256] × 2
GAP Global average pool

FC1 FC-256, ReLU

Output FC-200, softmax

Tab. A.3.: Architecture of auxiliary networks on Resnet50 for CIFAR100. The number of output
units for the last layer depends on the number of groups used in the SSAL objective.
For our main result, AuxNet1 is attached on position g2 (see Figure 7.2 on the
document), AuxNet2 on position g3 and AuxNet3 on position g4 of the main network.
The layout of the AuxInceptionE block is shown in Figure A.7.

layer name AuxNet1 AuxNet2 AuxNet3

AuxConv1 [5 × 5, 128 stride 2] [5 × 5, 128] [3 × 3, 128]
AuxConv2 [3 × 3, 128]
AuxConv3 AuxInceptionE

GAP Global average pool

Output FC-100, softmax

SSAL models issue more interpretable outputs thanks to the information conveyed by the
auxiliary branches. Figure A.8 shows additional examples of predictions based on SSAL
models. Each sample is passed to a pre-trained ResNet50 as the baseline, and the CAM
heatmap is additionally computed. Simultaneously, we also see the same image being
passed through a SSAL model which gives us access to the classes from each auxiliary
group and the heatmaps based on the output of each branch.
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Tab. A.4.: Architecture of auxiliary networks on WRN 16-8 for CIFAR100. The number of output
units for the last layer depends on the number of groups used in the SSAL objective.
The layout of the AuxInceptionE block is shown in Figure A.7.

layer name AuxNet1 AuxNet2 AuxNet3

AuxConv1 [5 × 5, 128 stride 2] [5 × 5, 128] [3 × 3, 128]
AuxConv2 [3 × 3, 128]
AuxConv3 AuxInceptionE — AuxInceptionE

GAP Global average pool

FC1 — FC-768, ReLU —

Output FC-100, softmax

Tab. A.5.: Architecture of auxiliary networks on WRN 28-10 and DenseNet models for CIFAR100.
The number of output units for the last layer depends on the number of groups used
in the SSAL objective. For our main result, AuxNet1 is attached on position g2 (see
Figure 7.2 on the document), AuxNet2 on position g5 and AuxNet3 on position g6 of
the original network. The layout of the AuxInceptionE block is shown in Figure A.7.

layer name AuxNet1 AuxNet2 AuxNet3

AuxConv1 [5 × 5, 128 stride 2] [5 × 5, 128] [3 × 3, 128]
AuxConv2 [3 × 3, 128]
AuxConv3 [3 × 3, 256] × 2 —

AuxConv4 AuxInceptionE ×2 — AuxInceptionE ×2
GAP Global average pool

FC1 — FC-768, ReLU —

Output FC-100, softmax
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Tab. A.6.: Architecture of auxiliary networks on Resnet50 for Imagenet. The layout of the
AuxInception blocks is shown in Figure A.7. For our main result, AuxNet1 is attached
on position g2 (see Figure 7.2 of the main document), AuxNet2 on position g3 and
AuxNet3 on position g4 of the original network.
*The final AuxInceptionE block has twice as many channels as the first AuxInceptionE
found in AuxConv4.

layer name AuxNet1 AuxNet2 AuxNet3

AuxConv1 [3 × 3, 256 stride 2] — —

AuxConv2 AuxInceptionC

AuxConv3 AuxInceptionD —

AuxConv4 AuxInceptionE —

AuxConv5 AuxInceptionD

AuxConv6 AuxInceptionE*

GAP Global average pool

Output FC-100, softmax

Fig. A.7.: Inception modules used for the auxiliary SSAL classifiers.
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Fig. A.8.: CAM samples with and without SSAL. The left column has incorrect predictions for
both models. The right column has correct predictions for both models. The last row
has mixed results (one model is correct, and the other one is not).
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