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Abstract

The paper presents the shuffle algorithm proposed by Baganoff, which can
be implemented in simulation methods for the Boltzmann equation to simplify
the binary collision process. It is shown that the shuffle algorithm is a discrete
approximation of an isotropic collision law. The transition probability as well
as the scattering cross section of the shufflle algorithm are opposed to the corre-
sponding quantites of a hard-sphere model. The discrepancy between measures
on a sphere is introduced in order to quantify the approximation error by using
the shuffle algorithm.
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1 Baganoff’s Shuffle Algorithm

Numerical methods for the Boltzmann equation, which are available for realistic prob-
lems like the reentry of a space vehicle, are first of all particle methods. The numerical
effort of these particle methods, as for example the Bird algorithm [?] or the Finite-
Pointset-Method [?], [?], grows rapidly with each step approximating reality. The
most extensive part of the simulation process for the Boltzmann equation is, however,
the collision process.

The shuffle algorithm proposed by Baganoff [?] provides a method of approximating
the probability distribution of the collision parameters in order to achieve a very sim-
ple numerical scheme.

To explain the idea of the algorithm we first give a brief description of the collision
process in a particle method for the Boltzmann equation. The collision of two par-
ticles is based, as in nature, on the conservation of momentum and energy. Having
detected a colliding pair of particles with equal mass and velocities v and w, the
post—collision velocities v’ and w’ are given by

1

o= G+ §gn’ (1)
1

w = G—§gn’ (2)

where (G = (v + w)/2 defines the center—of-mass velocity and ¢ = |v — w| the magni-
tude of the relative velocity. The collision parameter n’ € S? (the sphere in IR%) is a
random variable with a density distribution dependent on the scattering cross section.
Normally the collision law can be assumed to be isotropic (see for example the vari-
able hard-sphere model), i.e. the collision parameter rn’ is uniformly distributed on
the sphere S?. Choosing a collision parameter n’ simply means to rotate the relative
velocity vector.

Another way of changing the direction of the relative velocity which is very sim-
ple from a computational point of view is an arbitrary permutation of the three
components of the vector n (n denoting the direction of the relative velocity, i.e.
n = (v—w)/|v —wl|). Furthermore, a different sign in front of one component leads
to a new direction n’ € S? too.

Example of a possible transformation:

n = (ny,nz,ng) —Collision n' = (ng, —ny,n3)
The set of all possible transformations, i.e. permutations of the components and
changing the sign of one component, is a finite subgroup Q in the orthogonal group
O(3) in IR*. Baganoff’s shuffle algorithm chooses a uniformly distributed transfor-
mation 7' € Q (instead of T € O) and performs the rotation of the relative velocity
to obtain n’ = Tn. It is obvious that the shuffle algorithm represents a discrete ap-
proximation of an isotropic collision law.



From a numerical point of view it is reasonable to apply such a ’Baganoft’ transfor-
mation directly to the vector v — w, the vector of the relative velocity, because it
makes then the calculation of the magnitude of v — w unnecessary.

Using the shuffle algorithm instead of an isotropic collision law also means to change
the differential cross section in the Boltzmann equation.

In order to obtain the scattering kernel belonging to the Baganoff model we will first
consider the transition probability of the relative velocity directions during a collision.
For an isotropic collision law this transition probability is given by

Wg(n — n')dw(n') = dw(n') (3)

where w denotes the normalized surface measure on S2.
The following transition propability can be directly related to Baganoff’s shuffle
model:

Wg(n — n')dw(n Z 6(Tn) (4)

|Q| feo
The differential cross section for the variable hard-sphere model (VHS-model) is
given by
sl — wl, W) () = (o — w)Wr(n — ')do(r)

with a total cross section o4.(|v — w|) prescibing the collision frequency of the model.
Hence

ovis([v —wl,n') = o (v — wl) (5)
Analogous to the VHS—model a variable Baganoff scattering cross section can be
defined with the same total scattering cross section.

oyvps(|v — w|,n')dw(n’) = o1u(jv — w|)Wa(n — n')dw(n’)

Now we can write the differential cross section for the variable Baganoff model:

oves(jv —w|,n') = oru(|v — > 8(Tn) (6)
|Q| feo

Here and in the following we also use the notation of densities for discrete measures.

The subject of this paper is an analysis of the shuffle algorithm with the use
of the mathematical description given above. For a theoretical investigation of the
approximation error it is necessary to introduce a distance between measures on the
sphere, which will be described in the following section. The comparison of the
variable Baganoff model and the variable hard—sphere model with same total cross
sections is subdivided into three parts. In section 3 we derive the distribution of the
deflection angle and compare the result with numerical investigations performed by
Feiereisen [?]. Section 4 studies the error obtained by the Baganoff model for a given
velocity distribution. Finally we calculate the residuum of the Boltzmann equation
for the two models.



2 The discrepancy on a sphere

The discrepancy is a usual distance in particle simulation methods. In the sequel we
show that an analogous definition on the sphere S? is helpful for comparing different
scattering cross sections. Before introducing the spherical discrepancy we review the
notation of discrepancy on a closed interval [?].

Definition 1: Let p and v be normalized measures on [a,b]. Then we define for all
p € [a,b] the local discrepancy R,(u,v) by

R,(p,v) : = p([~1,p)) —v([~1,p))

Diapy(p,v) = sup |R,(p,v)]
pe[a,b]

Dy (e, v) is called the (extreme) discrepancy of p and v.

The following theorem (proved for example in [?]) shows that the discrepancy is a
meanigful distance.

Theorem 2: Let (p,)nen be a sequence of normalized measures and v an absolut
continuous normalized measure on [a,b]. Then (u,) converges weakly to v if and only

if

nh_}rgo Dy (ptr,v) =0
Now we introduce the discrepancy on the sphere S* using sherical caps. A set
C(p,p) ={z € S*| <p,x > € (p,1]} is called a (spherical) cap with center p € S*
and height 1 — p, p € [—1,1].
Definition 3: Let u and v be normalized measures on S*. Then we define for all
p € 5% and all p € [—1,1] the local discrepancy Ry, (p, ) on S* by

Ry (1, v) 1= p(C(p, p)) — v(Clp,p))

Dg2 (Na V) S sSup |R(p7p)|
p€S?,pe[—1,1]

Ds2(p,v) is called (extreme) discrepancy on S* of p and v.
With the measurable mapping P, : S* — [—1, 1] defined for all p € S? by
P,(z)=<p,xz>
the discrepancy reads
Dgz(p,v) = sup D1y (P[], Bo[v]) (7)

where P,[u] is the image of g under the mapping P,.

Many properties of the discrepancy on S? result directly from the one-dimensional
discrepancy on [—1, 1] with equation (??). To prove the next theorem, which is the
analogon of Theorem ??, we additionally need the following lemma proved by Gerl

7).



Lemma 4: FEvery polynomial g(x1,xq,x3) over S? can be represented as a linear
combination of functions < p',x >0 k(i) € IN with a suitable sequence (p')ien on
S2.

Theorem 5: Let (pn)nen be a sequence of normalized measures and v an absolut
continuous normalized measure on S*. (u,) converges weakly to v if and only if

lim Dgz(pn,v) =0
Proof: First we assume

lim Dg2(pin,v) =0

n—oo

or equivalent
Tim Dy (Bylpa), Polv]) = 0 for all p € 57
Then, as a consequence of Theorem 77,
Py, — P,[v] for all p € S?

where w denotes the weak convergence of measures [?]. This means, by definition,
that for all continuous, bounded ¢ : [—1,1] — IR the following equation holds

tim [ gdpy ) = [ gab, v

n—oo

With the use of the transformation rule, we obtain for all p and all ¢

lim [ (< p,x>)dpn () = /52 H(< p,x >)dv(z)

n—oo Jg

Application of Lemma ?? yields to

lim [ g(@)dun(x) = [ gla)dv(a)

for all polynomials g(x1,x2,x3) on S?. Since the polynomials are dense in the set of
the continuous functions, we obtain by definition of the weak convergence
fy, —5 U

The conversion is trivial. ]

Remark 6: 1t is obvious that we can also generalize the definition of the spherical
discrepancy to the n-dimensional case. All statements above are true replacing 5*
by S™.

In this paper we only need the discrepancy in the case where v is the normalized
Borel-Lebesgue measure. To simplify the notation we omit the second argument in
R and D and write for example

Ds:(p) = Ds2(p,w)



Finally we note a lemma which is necessary to prove Theorem ?7 in section 4.

Lemma 7: Let(x;)i=1..n, a finite sequence on the sphere S?. Then the local discrepancy
Rip.oy (£ 3 6(x;)) takes all intermediate values in the open interval (m, M) with

1

"= pES{lgg[_Ll] R(p,p)(g Z 5($2))
1

M= sup  Ryp(=3 6(x))
pES?,pe[-1,1] n

The proof follows immediately considering the function R, (£ 6(x;)) for fixed
pe S2

3 The deflection angle

First we compare functionals of the velocities before and after collision. In the center—
of—mass system there can only be a difference in the direction of the relative velocity,
because momentum and energy are conserved in a collision. A physically meaningful
functional is the angle between the direction of the relative velocity n € S? before
and n' € S? after collision. This angle is called deflection angle and is defined by

cosd:= <n,n >

with ¢ € [0,7]. With the knowledge of the transition probability (??) respectively
(??), it is possible to compare the probability densities of the deflection angles in
both cases.

Theorem 8:The density @y of the deflection angle ¢ in the hard-sphere model is
given by

Bu(¢) = 5 sin ¢

for all ¢ € [0, 7). Therefore the cosine of the deflection angle denoted by v :=<n,n’ >
is uniformly distributed on [—1,1].

Proof: n' is uniformly distributed on S%. Let n be the polar axis of a spherical
coordinate system (x,€). Then we have

1
dw(n') = yp sin ydyde
T

and
cos¢p = <n,n > =cosy

Hence ¢ = x and integration with respect to e finishs the proof. [ ]



Feiereisen [?] approximates the distribution of the deflection angle for Baganoff’s
model by using a numerical simulation. He stated that remarkable differences to the
hard-sphere model were observable in five discrete points, ¢ = 0, %, 7, 2;, 7. The
following theorem verifies this experiment analytically.

Theorem 9: In the Baganoff model the density ®g of ¢ is

s(@)ds = —=(6(0)+¢(r)

3 1 1 i

* 32V/2 <\/1—|-COS¢>+\/1—COS¢>) sin $d¢
1 1 1 .

* 6v/3 (\/1+2COS¢>+\/1—2COS¢)Sln¢d¢
1 1

+ ———=sin¢do
16 flcosa

. . . 1 o
with the abbreviation Varks 0 fora>0.

Proof: For fixed n € S? n' is prescribed by the measure

6(Tn)
P>
Then v = < n,n’ > is for fixed n distributed as
(< n,Tn>)
|2| 1%39

For the density I'g of 4 we obtain by integration over all n:
I'p(y)dy = / (<n,Tn >)dw(n)
Q| Teo’S?

The integrals
/ 6(< n,Tn >)dw(n)
S2

can be easily computed for every T' € Q.
In summary

Ca()dr= 35(6(01)+6(-1)

3 dvy dry
32V2 (W m)

¢ (o)
(B

7



with the abbreviation ﬁ =0 for a > 0.
The substitution v = cos ¢ completes the proof. [ ]

Figure 1: Continuous part of I'g(y) and I'y(7)

Figure 1 shows the continuous part of I's(y)dy and I'y(y)dy. In contrary to the
statement of Feiereisen important differences can be observed not only at the five
values v = 0, :I:%, +1. With the aid of the discrepancy it is possible to describe this
error qualitatively (see figure 2).

Lemma 10:

(i) For pe[—1,1]:

RTs)d) = g+ == /1=2 =T+ 2)

1;’_\/5(\/1 —p—/1+p) - ésign(ﬂ) ol

with the abbreviation \/—a = 0 for a > 0.

+

(it) The extreme discrepancy of I'g is given by
D y(Ta(y)dy) = Ryi(Ua(v)dy) ~ 0.0431



Figure 2: Local discrepancy of R,(I'p(v)dy)

4 The distribution of the direction of the relative
velocity

Now we consider the consequences of the collision process in both models for a given
velocity distrbution. Let f(v) be the velocity distribution of a particle system with

the normalization
[, fw)dv =1 (8)

With the same argument as in the last chapter it is sufficient to consider the distri-
bution of the direction of the relative velocity

F(n) = /0 b /R Ang* (G + Sn) (G = Sn)dGdg (9)

We obtain the post—collision distribution F” for the relative velocity direction depen-
dent on the corresponding transition probability W(n — n') by

F(w') = [ F)W(n — n')de(n) (10)



With the usual notations we get

Fi(n)y=1 (11)
and |
Fg(n') = @%F(Tn) (12)

To prove the second equation, we consider for all Q@ C S? the following term and make
use of the group property of Q.

/Q Fy(n)dw(n) = — 3 /S Xo(Tn)F(n)dw(n)

Hence

L Z F(Tn")

1 no__
FB(n) - |Q|TGQ

For any velocity distribution we can define the error between the two models with
the discrepancy on S?, because Fj; = 1 by (?7).

Definition 11:
Ber(f) : = Ds2(Fdw)

is called the Baganoff error according to the relative velocity distribution.

An estimation of the Baganoff error, i.e. the deviation from Fj to the uniform
distribution, is given by

Berr(f) < D2 (Fduw) (13)

because

1
B, (f) = N B(Tn)—1)d
(f) sup_m] C(Zp) (|Q|TXE:Q (Tn) ) w(n)

pES?,p€|

1
: QZ( / <F<”>”d”<">)

C(T'pp)
= D52 (qu))

10



Example 12: The distribution #*)(n) of a Maxwellian

M) (y) = ! ex —w)
f ( ) (2%)% p( 5

is uniformly distributed on S?. This property is invariant under collisions such that
M (ny=1= FEM) (n')

We note here an alternative interpretation of the discrepancy Dg:(Fdw). Dgz(Fdw)
can be regarded as a measure for the deviation of a distribution F' from the Maxwell
distribution. Accordingly the meaning of equation (??) is, that in the Baganoff case
the deviation after a collision is bounded by the deviation before.

An upper bound for all velocity distributions is a consequence of the following esti-
mation. As in the proof of equation (?7?), we obtain

1
Bor(f) =  sup /QF(n) = 3" X (T) - /dw(n/) dwo(n)
pES?,pe[-1,1] |/ S |~2|TeQ Clop)
< sup [ F(0) [y (Tn)reo)| defn)
p€S?,pe[-1,1]7/5°
< /S F(n)Dsa((Tn)reg)dw(n)
< sup Ds:((Tn)reo)

neS?2
With the fact, that
1
|R(p,p)((Tn)T€Q)| < |R(po,0)((Tp0)T€Q)| = g
with po = (0,0, 1), we obtain the inequality

0 g Berr(f) S

Lo | —

5 The residuum in the Boltzmann equation

In this part we compare the Boltzmann equation with the two different collision cross
sections for the hard—sphere and the shuffle model. This leads to a quantity similar
to the Baganoff error.

For simplicity we only consider the homogeneous Boltzmann equation

of

ot (t7 'U) = J(fa f)(tv 'U)

11



with
J(f, v /RS/ v — wlo(|Jv — w|,n’) (f(v")f(w") — f(v)f(w)) dw(n)dw

where v" and w’ are given by relation (1) and (2). The inhomogeneous case can be
treated in the same way.

The two Boltzmann equations with oygs and oy gs only differ in the first term of the
collision operator:

/R L T = wlo(lo = wl,n) () (') deo(' o

From a weak formulation of the Boltzmann equation we obtain naturally a meaningful
error restricting the class of test functions. Here we use characteristic functions on
open balls.

Definition 13: Let B,(q) := {z € IR?| |x — q| < r} the open ball with center q € IR®
and radius r > 0. Then we define

/Rs /Rs /52 lv —wlovps(lv —w|,n') —ovus(lv — w|,n'))

X X (p(0) F(0) F(w' Yo'y drodo

the Baganoff residuum with respect to the Boltzmann equation.

Bres(f = sup

geR3,r>0

The analogy to the Baganoff error is shown in the next theorem.

Theorem 14:

B,s(f) = sup . C(Zp (@ Z F,(Tn) — /52 Fg(n’)dw(n’)) dw(n)

p€S?,pe[-1,1

with

for all n € S*.
Proof: The substitution

1 2y
G=v+w, g=§|v—w|, n v v

T lo—wl

yields to the equation

Bros(f) = L[ a0 Xe(G + n) (G +
(f) LN Sy oy e B,(o)(G + 5n)f(G + )

< f(G - %n/) (oves(g,n') — ovms(g,n)) dw(n')dw(n)dGdg

12



For any function h(g,G,n) we have obviously
/52 X, ()(G + gn)h(g, Gyn)dw(n) = . Xe,n(n)h(g, G, n)dw(n)

with the center and the height of the cap C(p, p) given by

_ -G
PEE
and
0 for 2l¢—G|>2r+g
l—p= % for 2r—g¢g<2l¢q—G|<2r+yg
2 for 2l¢g—G|<2r—g

In summary we can write

i) = g L[y oo
Ko (Tn) dw(n') | dGdgdw
(Q 1%:9 Cp/) / ) g ( )

By definition of F, and the local discrepancy R(%p), we obtain with a mean value
theorem for integrals

Bres(f) = sup

geR3 r>0

[, Fo(mn,q.r)deo(n)

where p(n,q,r) denotes a suitable intermediate value of R, \((1'n)reo).
The application of Lemma ?? causes the existence of G* € IR® and ¢* > 0, such that
with p*(q, G*) and p*(¢,r, G*,¢*) holds

Bo(f) = sup / Fy o (Tn)reg)dw(n)
geR3,r>0
= sup C /F n)Xo oy (Tn)dw(n /F dw(n') /dw(n)
geR?r>0 -2| TeQg Cp* p*
= sup / > F,(I'n) /F (n")dw(n') | dw(n)
geR3,r>0 Clo* o |Q| TeQ

Substitution of the supremum with respect to ¢ and r by the supremum over p and
p completes the proof. [ ]

13



Remark 15: In general, the integral [ F,(n')dw(r') is not equal to one. If we take
another normalization condition, namely [ [|v — w|ow:(|v — w]) f(v) f(w)dwdv =1
instead of the normalization [ f(v)dv =1, we get

/52 Fg(n')dw(n') =1

and hence a modified Baganoff residuum

1 By
Bmod(f) ¢ = sup (— FG(n) - 1)dw(n)
" O<Zp> 9l
1 3
Dg | — F (T'n)dw(n

So the similarity to the Baganoff error is obvious. The modified Baganoff residuum
and the Baganoff error only differ in the function F, respectively F'. In the case

1 the two quantities B,., and B.,, agree.

of Maxwell molecules, i.e. o:1(g) = ¢~
Therefore the statements and estimations discussed in the last section are also true
for the Baganoff residuum with any oy, which can be directly seen by substituting

F by F,.

Example 16: Let again f(™) be a Maxwellian, then it is easy to see, that for every
oot We have

Bres(F™M) = Bpooa(f™) = 0

Numerical calculations with the Finite-Pointset-Method [?] show that using the
shuffle algorithm the reduction in the computational time is relatively small. One
reason for this is that the choice of collision partners and the calculation of the colli-
sion probabilities is much more time—consuming and has to be done for every particle
in every time step, whereas the shuffle algorithm is only executed if a collision oc-
curs. Moreover it is necessary to compute the magnitude of the relative velocity to
get the collision probability. Therefore there is no gain to rotate v — w instead of
(v —w)/Jo — wl.

The computational results coincide with the statements of the previous and this sec-
tion. There are differences in the velocity distributions for the Baganoff and the
hard—sphere model which decrease approaching the equilibrium state (for a detailed
description see [?]). On the other hand, no relevant errors can be detected for the
low moments of the velocity distribution being alone important for the applications.

14



Conclusion

Baganoft’s shuffle algorithm has been compared with the variable hard—sphere model
under different aspects. The comparison represents the analytical confirmation of the
numerical results obtained by Feiereisen, but by using an analytic solution technique
a more detailed analysis of the differences is possible.

The application of the discrepancy on the sphere leads to an explicit error for the
differences between the Baganoff and the hard—sphere model as a function of the
relative velocity distribution. The residuum of the Boltzmann equation with the
scattering cross sections for both models is reduced to the Baganoff error. Baganoff
error and residuum vanish for a Maxwell distribution.

The theoretical investigation proposed in this paper provides a tool, which can be
directly extended to a more general analysis of any scattering cross section.
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