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A B S T R A C T

This thesis focuses on novel methods to establish the utility of wearable devices along
with Machine Learning (ML) and pattern recognition methods for formal education and
address the open research questions posed by existing methods. Firstly, state-of-the-art
(SotA) methods are proposed to analyse the cognitive activities in the learning process,
i.e., reading, writing, and their correlation. Furthermore, this thesis presents real-time
applications in wearable space as an experimental tool in Physics education and an air-
writing system.

There are two critical components in analysing the reading behaviour, i.e., WHERE
a person looks at (gaze analysis) and WHAT a person looks at (content analysis). This
thesis proposes novel methods to classify the reading content to address the WHAT AT
component. The proposed methods are based on a hybrid approach, which fuses the
traditional Computer Vision (CV) methods with Deep Neural Networks (DNNs). When
evaluated on publicly available datasets, these methods yield SotA results to define the
structure of the document images. Moreover, extensive efforts were made to refine and
correct the ICDAR2017 Page Object Detection (ICDAR2017-POD) dataset and a completely
new Figure and Formula Detection (FFD) dataset.

Traditionally, handwriting research focuses on character and number recognition with-
out looking into the type of writing, i.e., text, math, and drawing. This thesis reports mul-
tiple contributions for online handwriting classification. First, it presents a public dataset
for online handwriting classification OnTabWriter, collected using iPen and an iPad. In
addition, a new feature set is introduced for online handwriting classification to establish
the benchmark on the proposed dataset to classify handwriting as plain text, mathemati-
cal expression, and plot/graph. An ablation study is made to evaluate the performance of
the proposed feature set in comparison to existing feature sets. Lastly, this thesis evaluates
the importance of context for online handwriting classification.

Analysing reading and writing activities individually is insufficient to provide insights
to identify the student’s expertise unless their correlations are analysed. This thesis presents
a study where reading data from wearable eye-trackers and writing data from sensor pen
are analysed together in correlation to correlate the expertise of the users in Physics ed-
ucation with their actual knowledge. Initial results show a strong correlation between an
individual’s expertise and understanding of the subject.

Augmented Reality (AR) & Virtual Reality (VR) applications can play a vital role in
making classroom environments more interactive and engaging both for teachers and
learners. To validate the hypothesis, different applications are developed and evaluated.
First, smart glasses are used as an experimental tool in Physics education to help the
learners perform experiments by providing assistance and feedback on Head Mounted
Display (HMD) in understanding acoustics concepts. Second, a real-time application of
air-writing with the finger on an imaginary canvas using a single Inertial Measurement
Unit (IMU) as the Finger Air Writing System (FAirWrite) system is also presented. FAirWrite

system is further equipped with Deep Learning (DL) methods to classify the air-written
characters.
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1
I N T R O D U C T I O N

As you start to walk on the way, the way appears....

M. Rumi

1.1 motivation

Applications of wearable sensors vary from activity monitoring to ac-
tivity recognition and classification in various fields to assist the pro-
cess for improved performance and enhanced skills. These advances
in wearable technology open up a huge opportunity to reform formal
education with the vision toward smart and personalized classrooms
to formulate the instructions and interactions tailored to student’s
individual needs and strengths. This thesis explores the potential of
Artificial Intelligence (AI)-based methods for the classification of cog- AI plays a vital role

in reforming formal
education

nitive abilities to bridge the gaps in formal education. Furthermore,
Augmented Reality (AR) and Virtual Reality (VR) scenarios applica-
tions are considered to aid the learning process with the goal of bet-
ter engagement and enhanced learning experience to envision smart
classrooms.

Learning is a continuous process of stimulating cognitive abilities
by involving the learners in different activities, i.e., reading, writing,
and correlation between the two (observation). Reading activity is one
of the fundamental academic skills to instigate the analytical process,
which helps develop the mind. A recent research study [99] estab- Content analysis is

fundamental for
reading activity
evaluation

lished the importance of reading behaviour analysis as university-
level reading completely differs from school-level reading because
of requirements of deeper analysis, critical thinking, and problem-
solving skills. Reading activity depends on two important factors (i).
Reading content (WHAT you read) and (ii). Gaze (WHERE you look).
Traditionally, the reading behaviour is analysed by focusing only on
the WHERE AT component using gaze tracking methods [112, 117,
136] but completely neglecting the WHAT AT component. This thesis
focuses on the WHAT AT factor to signify the importance of con-
tent during reading activity and its relevance in reading behaviour
analysis. Combining content analysis with gaze tracking will help to
highlight the Point of Interests (PoIs) and their relevancy to analyse
the student’s progress for the given task. Automatic information ex-
traction from document page images requires the detection and un-
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derstanding of page objects such as tables, figures, formulas, etc. To
address the problem, state-of-the-art (SotA) and novel Deep Neural
Network (DNN) methods are leveraged to define the structure of read-
ing material, processed as document images (printed or digital), by
highlighting figures and formulas. Reading material is processed as
document images, whether in printed or digital form, and the content
is broadly categorised as text, mathematical expressions, and figures.
This thesis proposes novel and generic methods to define the struc-
ture of document images (printed or digital) by highlighting figures
and formulas.

Writing activity helps to keep the record/notes of an individual’sLooking into the type
of writing provides

useful insights about
writing activity

learning for future use. It stimulates the cognitive process to express
and convey the understanding of the task at hand. Traditionally, Writ-
ing activity analysis was limited to handwriting recognition [16, 146,
249], forgery detection [78, 153, 155], and verification [58, 122]. Only a
little has been done in the field of online handwriting classification to
look into the type of writing, i.e., writing text, producing mathemati-
cal formulas, and/or drawing plots/graphs. Online handwriting clas-
sification task is far from trivial, as it involves inter-person and intra-
person variations both in temporal and spatial domains. It is very im-
portant to evaluate the type of writing by looking into what is being
written, to process and investigate the handwriting activity to evalu-
ate learning progress in formal education. To fill the gap, this thesis
proposes a novel and comprehensive feature set for online handwrit-
ing classification with an ablation study on multiple Machine Learn-
ing (ML) and Deep Learning (DL) classifiers to establish the efficacy
of the proposed feature set. Furthermore, a completely new dataset is
made publicly available to enable the handwriting research commu-
nity to research and advances in the online handwriting classification
domain. Another important factor in online handwriting classifica-
tion is context information; using context information with ML classi-
fiers can significantly improve the outcome of the classification pro-
cess, an important contribution of this thesis for online handwriting
classification. Online handwriting classification is an important step
in evaluating handwriting activity from a formal education perspec-
tive for evaluation and feedback estimation for every learner. It can
also serve as a preliminary step for handwriting recognition systems
to assist them in better performance by filtering the input data for the
type of writing they are aimed for, i.e., text recognition and formula
recognition.

It has been established in multiple research studies that whenWearable sensors are
a way forward to

monitor classroom
activities

learners are provided with feedback on their performance during
learning activities results in substantial gains [25, 109, 280]. Incorpo-
rating modern technological developments in classrooms to innovate
the interactions and instructions to strengthen the feedback mech-
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Figure 1.1: Scope and research contributions of this thesis

anisms based on individual strengths and weaknesses is further em-
phasized. Recently different methods have been presented to estimate
the student’s self-confidence estimation to provide feedback based on
reading activity, handwriting activity, multiple choice questions, and
stress estimation using gaze tracking in literature [74, 111, 113, 170].
There is an open research area to estimate the feedback, expertise and
confidence estimation, and performance assessment in the classrooms
based on the correlation of cognitive abilities, i.e., reading and writ-
ing skills. A study is presented in this thesis to estimate the feedback
based on expertise and performance for the individual tasks and the
whole activity by assessing the reading behaviour, writing behaviour,
and correlation between the two. The presented study also helps to
highlight the strengths and weaknesses of the learners for given tasks.

The world is focusing on building meta-verse infrastructure with Mixed reality is
future of formal
education

the goal to connect human beings with new immersive and imaginary
worlds. These advancements open up the opportunity to develop ap-
plications to cater to the educational needs of the students and pre-
pare the teachers to connect the physical world with technological
leaps in AR and VR [63, 164, 171]. Multiple applications are presented
to establish the utility of AR and VR in classrooms, online learning,
in laboratories to assist the students in performing the learning ac-
tivities [23, 42, 189, 252], learning while interacting, and learning by
experience. This thesis uses the "gPhysics" application which uses
Google Glass to enable the students to perform experiments to un-
derstand the acoustic principles by providing real-time assistance and
feedback on Head Mounted Display (HMD) to evaluate the impact of
smart glasses on learning outcomes. Another application of Mixed
Reality (MR) in combination with AI in the classroom to air-write us-
ing finger gestures and then classifying these writing snippets onto
digits and characters using Deep Learning (DL) with the SotA results.

1.2 research questions

This dissertation focuses on the basic question of How to incorporate
the Artificial Intelligence (AI) in combination with wearable sen-
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sors in formal education with the goal to strengthen the teachers-
learners relationship by bridging the gaps between AI and formal
education. One possible way forward in this direction is by mon-AI can bridge the

gaps in
teacher-student

relationship

itoring the routine cognitive activities for deeper insights (learn-
ing analytics) and assisting them in performing these activities for
better engagement (applications & tools). These advancements will
contribute to an enhanced learning experience, improved learning
outcomes, and provide insights about the progress of learning activ-
ities. Figure 1.1 presents a brief overview of this dissertation’s scope
and research contributions in a broader spectrum. The main research
question can be further elaborated by decomposing it into the follow-
ing two sub-questions, each concerning the desired goals:

1. Question: How Artificial Intelligence (AI) be used to analyse
and evaluate the cognitive activities in the learning process?

Goal: Development and implementation ofAI-based methodsAI-based methods
can be used for

cognitive ability
classification

to enable the assessment of the cognitive activities, i.e., reading,
writing, and their correlation in the classroom. Proposing novel
hybrid methods to combine state-of-the-art (SotA) DNNs meth-
ods with traditional Computer Vision (CV) techniques to define
the structure of document images. Classification of page objects
structurally defines the documents, which enables to analyse
the reading behaviour by combing WHAT AT and WHERE AT
components of the reading activity. Propose methods for on-
line handwriting classification using machine-based knowledge
to provide insights about the writing activity. Finally, explore
the possibilities to correlate these cognitive activities for perfor-
mance evaluation and feedback estimation.

2. Question: How to integrate bearable computing in formal edu-
cation to aid the learning process?

goal: Exploring venues to use wearable sensors as interactiveWearable sensors
present great

potential as an
interactive tool in

classrooms

tools to assist the learners in performing cognitive activities for
better engagement and improve the overall learning experience.
Studying the utility of smart glasses and HMDs as an experimen-
tal tool in Physics education. Enabling the users to perform the
writing gestures in the air to incorporate AR and VR scenarios
in classrooms without affecting the natural cognitive process.

1.3 contributions

The following are the major contributions of this thesis.

1. Traditional reading behaviour analysis methods focus on gaze
data only without inspecting the content and its relevancy in



1.3 contributions 7

the reading text. This thesis presents methods to bridge this
gap by introducing Figure and Formula (Fi-fo) Detector to de-
tect the page objects from document images. In contrast to Figure and

Formula (Fi-fo)
Detector defines the
structure of
document images by
classifying page
objects

existing methods, the proposed method is based on a hybrid
approach that fuses the traditional Computer Vision (CV) based
image representation with state-of-the-art (SotA) Deep Neural
Networks (DNNs) to extract the figures and formulas from doc-
uments images. Fi-fo Detector helps to define the structure of
documents by detecting figures and formulas with an f1-score
of 0.954 and 0.922, to address the open research question in the
reading behaviour analysis. Defining the structure of the docu-
ment enables the existing methods to incorporate content analy-
sis techniques to highlight the Point of Interests (PoIs) and their
contextual relevancy.

2. It is important to have quality datasets to drive active research Quality datasets are
key to quality
methods

in content classification and analysis. However, during the eval-
uation of Fi-fo detector, several inconsistencies were found in
the original ICDAR2017-POD dataset. Therefore, in this thesis, ex-
plicit efforts were made to refine and correct the annotations of
ICDAR2017-POD dataset. Moreover, a new dataset named Figure
and Formula Detection (FFD) is also curated and made publicly
available for Page Object Detection (POD) to define the structure
of document images.

3. Writing is one of the most important and common activities in onTabWriter dataset
helps in online
handwriting
classification

the classroom (and much still needs to be done for handwrit-
ing classification). Online handwriting classification is a task
far from trivial, as it involves interpersonal and intra-personal
variations; online handwriting classification remains an open re-
search area. To bridge this gap, this work presents a newly col-
lected dataset onTabWriter using iPad 1 and Apple pencil 2, con-
sisting of 12, 139 natural handwriting sequences from 30 differ-
ent participants without any constraints. The collected dataset
is made available for the research community to contribute to
online handwriting classification,i.e., text, mathematical expres-
sions, graphs/drawings.

4. Distinct features are vital in the performance of Machine Learn- Classification results
rely on the quality of
features

ing (ML) classifiers; more refined features result in better classi-
fier performance. The research community has been adopting
handwriting recognition feature sets for handwriting classifica-
tion problems. This thesis presents a new feature set for on-
line handwriting classification for the very first time to the best

1 Ipad Pro
2 Apple Pencil

https://www.apple.com/de/ipad-pro/
https://www.apple.com/de/apple-pencil/
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of the author’s knowledge. Furthermore, this thesis covers a
deeper analysis to signify the relevance of every individual fea-
ture for online handwriting classification problems.

5. To validate the effectiveness of the proposed feature set, thisA comprehensive
ablation study
establishes the

efficacy of proposed
feature set

thesis presents an extensive ablation study and comparative
analysis with existing feature sets. We also investigate the sig-
nificance of context for the problem at hand. Ablation study
and comprehensive comparative analysis on onTabWriter re-
veals that the new proposed feature set can capture a rich rep-
resentation of handwritten sequences, which in turn results in
superior performance on the task of online handwriting classi-
fication.

6. This thesis presents proof of work to correlate the cognitiveOn-body sensor
set-up helps in

monitoring cognitive
activities in

classroom

activities in the learning process to provide insights about per-
formance and feedback estimation. The presented methods also
help in evaluating the expertise of the learner for a given task
by assessing the reading behaviour, writing behaviour, and their
correlations. The derived results from the evaluation will help
to identify the weaknesses and strengths in a particular area,
resulting in improvement of the overall learning process.

7. This thesis uses an Mixed Reality (MR) application "gPhysics" toSmart glasses
improve engagement

in interactive
learning activities

explore the potential of smart glasses as an experimental tool in
Physics education. gPhysics application helps the learners per-
form experiments by providing visual assistance and feedback
on HMD. It is observed that using smart glasses as an experimen-
tal tool increases curiosity and results in better engagement for
the whole experimentation time.

8. This thesis presents a real-time application of air-writing inFingers are ideal
replacement of pens
to write in AR and

VR

augmented/virtual reality using a single low-cost Inertial Mea-
surement Unit (IMU) as the Finger Air Writing System (FAirWrite)
system. The proposed system intuitively captures the finger mo-
tions in the air and reconstructs its trajectory as air-writing in
real-time. Despite system development, systematic evaluation
of the proposed system for reconstructing such noisy trajecto-
ries and classifying them into digits and characters exploiting
the potential of DNNs lays another major contribution of this
research work.

1.4 overview

This thesis is structured as follows:
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Starting with the motivation Section 1.1, followed by research Introductory part of
the dissertationscope in Section 1.2 and contributions in Section 1.3, and structure

of this thesis are defined in Chapter 1. Chapter 2 is divided into three
major parts. In Section 2.1, an overview of the recent technological de-
velopments and SotA methods related to Page Object Detection (POD)
are covered. A literature overview related to online handwriting clas-
sification is covered in Section 2.2. In Section 2.3, a detailed analysis
of wearable applications with regard to MR in formal education is
covered. The rest of this thesis is split into two major parts, one for
each of the main goals elaborated in Section 1.2: Cognitive Ability
Classification (Part ii) and Applications of wearable sensors in for-
mal education (Part iii).

In Part ii, Chapter 3 presents methods for content classification AI-based methods &
their applications for
cognitive ability
classification

using DL in combination with traditional CV techniques, comprehen-
sive evaluation of presented methods, and POD datasets. Chapter 4

presents a comprehensive analysis of online handwriting classifica-
tion, which includes data collection, data processing, feature extrac-
tion and a new feature set for online handwriting classification, evalu-
ation of features and dataset using Machine Learning (ML) and Deep
Learning (DL) classifiers, and importance of context in online hand-
writing classification. We also cover the importance and relevance of
context for online handwriting classification. POD and handwriting
classification can help to analyse the reading and writing activity in-
dividually, and it is very important to analyse and evaluate both activ-
ities in correlation to dive into performance evaluation and feedback
estimation based on the expertise of the learners, which is covered in
Chapter 5.

Part iii of this dissertation emphasizes on applications of wearable Applications of
Wearable sensors in
formal education

sensors and gadgets as an interactive tool to perform learning activi-
ties. Chapter 6 presents an air-writing toolFinger Air Writing System
(FAirWrite) presented with multi-dimensional applications. FAirWrite

system captures hand movement gestures as air-writing snippets in
AR VR using single IMU without requiring any reference surface.
FAirWrite system records the air-writing gestures and reconstructs the
trajectory in real time for visual feedback on writing progress. This
thesis also presents a large collection of data from independent users
to assist the research community in air-writing classification. The eval-
uation results of FAirWrite system, including quantitative results and
a qualitative error analysis using DL methods, are covered.

Associated Research is made part of this thesis in Part iv Deep Associated research

Stamp Recognition (dStaR) system is presented in Chapter 7, a novel
and generic approach to detect the stamps from administrative doc-
uments using FCN. Chapter 8, is divided into two parts, where re-
search outcomes are a part of collaborative work. First part Section 8.1
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presents a study on the influence of smart glasses on learning out-
comes while performing experimentation in a classroom environment.
In the later part Section 8.2, an innovative approach is presented to
sense the potential variations caused by disturbance or movements
using near-field electric field information.

The thesis is concluded in Part v with a summary, limitations of
proposed methods, and hints toward future work.



2
S TAT E O F T H E A RT

This chapter is dedicated to the foundations this work is built upon.
As this dissertation focuses on methods and applications to bridge
the gaps between formal education and Artificial Intelligence (AI),
this chapter is split into three major sections: Section 2.1 covers the
details of related work and state-of-the-art (SotA) methods for content
analysis, i.e., detection of key objects from document page images
and classification of online handwriting in Section 2.2, which serve
as basic components for bridging.Section 2.3 is further dedicated for
applications of wearables related to formal education keeping in view
the perspective of Augmented Reality (AR), Virtual Reality (VR), and
Mixed Reality (MR).

2.1 page object detection

Page objects on document images have very low inter-class variance Significance of POD
for content analysisand can easily be confused with each other. Hence, POD is a vital step

to define the structure of documents, which is inherent to structured
reading order, whether handwritten or printed. Once document struc-
ture is defined, it enables the eye-tracking research community to re-
late the relevancy and importance of reading text with PoIs using the
gaze information for deeper analysis to evaluate reading behaviour,
an essential activity in formal education. Different page objects are
possibly present on a document image, i.e., text, mathematical ex-
pressions (formulas), figures including plots and graphs, lists, tables,
etc. This work focuses on detecting figures and formulas from doc-
ument images, and the rest of the page objects are considered text.
POD from document images is a well-recognised problem and has re-
ceived noticeable attention of the document analysis community with
the surge of DL-based object detection methods. This section summa-
rizes relevant and SotA work for POD.

Page Objects like figures, formulas, and tables are an integral part POD methodologies
are broadly
categorised as
traditional & DNNs
approaches

of the document, as they preserve significant information in a con-
fined space. POD related work is mainly divided into two types in
this section depending on methodologies adapted to process the doc-
ument images. (i) Traditional approaches rely on commonly used CV

methods and a hand-crafted set of features to highlight the page
objects on a document image. (ii). DL based methods which utilize
the potential of DNNs to extract the page objects from document im-
ages relying on feature extraction using Convolutional Neural Net-
works (CNNs).
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2.1.1 Traditional Approaches

This section provides a history and brief overview of the techniquesCV techniques

based on traditional CV methods such as binarization, Connected
Component Analysis (CCA), distance transform, localization, and key-
word extraction methods to highlight the page objects present on doc-
ument images. Several different methods have been presented to pre-
form formula detection [50, 115, 186], figure detection [41, 92, 100],
and table detection [76, 123, 215].

Several different methods have been presented in the past to locateTable detection using
traditional methods tables from document images by employing traditional techniques.

Some prior methods [67, 76, 250] based on line definition and white
spaces were proposed to define the structure of tables in document
images. Some other techniques rely on open source Optical Char-
acter Recognition (OCR) based methods to detect tables from het-
erogeneous documents [215, 239]. Another method to detect tables
from non-raster Portable Document Format (PDF) files by applying
pdftottext Linux utility to extract feature vectors followed by Hidden
Markov Model (HMM) is presented by Silva et.al. [222]. The perfor-
mance of all these methods depends either on the structure of a docu-
ment, the location of tables on a document, or the format of the tables
themselves, a major limitation of traditional methods.

Figures are a significant part of document images. A famous Chi-Figure detection
using traditional

approaches
nese quote; "one picture is worth ten thousand words", highlights
the importance and information preserved in figures. Figures present
in document images are very diverse; hence a challenging task to
detect them using traditional methods. There are a few methods to
detect them from document images. Hirayama et al. [100] presented a
block segmentation method to detect the figure areas from document
images. The proposed method segments the whole page into blocks
based on border lines, and then blocks are unified using column in-
formation, followed by text and figure area detection using projection
profile methods. Ha et al. [92] presented a similar idea which also
uses projection profiles and CCA to segment images from document
page images using the XY-cut algorithm. These methods might look
very simple today, but they opened up a new research paradigm for
the document image analysis community to detect figures from doc-
ument images.

Formulas are a precise way to express relations as mathematicalformula detection
using CV techniques expressions, and detecting them is a complex task. Formula detection

is a key vehicle in transcribing document images into electronic form.
Kacem et al. [118] present a CCA and bounding box based method to
segment the formulas from document images. The formula segmen-
tation process is carried out in two separate steps based on global
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and local segmentation. Local segmentation processes the formulas
from plain text and global segmentation segments standalone formu-
las from text based on heuristics-defined primary labeling. Fateman
et al. [68] presented a parsing-based technique to extract the math-
ematical content from document images. The parsed information is
stored as latex expression for further use and processing. Iwattsuki
et al. [115] present a method to identify math zones by applying
Conditional Random Fields (CRFs) using a manually annotated cor-
pus from PDF documents. The proposed method uses layout (font
types) and linguistic features (context n-grams).

A major drawback of custom feature engineering and heuristics- Limitations of CV
techniquesbased approaches is that their outcome depends heavily on the qual-

ity of features, which also rely on domain knowledge. Dependence
on custom features also restricts the performance of traditional ap-
proaches to single-class object detection. Diversification in a single
class may also result in degraded performance of traditional approaches,
like in the case of figures which may include images, plots, graphs,
drawings, etc. Therefore, custom feature-based methods are not suit-
able for multi-object classification and with diverse datasets.

2.1.2 Deep Learning Approaches

As traditional approaches learn from the preprocessed features as DL for POD

input to the system based on defined heuristics, limiting their perfor-
mance to a specific scope. On the other hand, DNNs learn the patterns
and correlations of the representations from raw input data to extract
the features. These representation-based features broaden the canvas
of DNNs to various advanced problems to efficiently deliver accurate
and reliable results without the intervention of human expertise. With
the popularity of CNNs to classify multi-class objects with SotA results,
POD problem from document images also got the attention. This sec-
tion provides an overview of SotA techniques for tables, figures, for-
mulas, and multi-page object detection from document images.

Schreiber et al.[211] present a DL based approach utilizing Faster- Table detection using
CNNsRegion Based Convolutional Neural Networks (RCNN) method [197]

to detect tables from document images. They also employ the trans-
fer learning method to apply a pre-trained model from natural scene
images to document images domain. The proposed method detects
tables and also attempts to recognise the table structure. Gilani et
al. [79] also present a similar approach to detect tables from doc-
ument images by adding a preprocessing step to the input image.
They transform Red, Green, Blue (RGB) input image using different
distance transform methods, i.e., Euclidean distance transform [31],
linear distance transform [66], and max distance transform [194], to
each input image channel. A major shortcoming of the proposed work
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is that it does not provide any information on the advantages/dis-
advantages of using the image transformation process. A recent SotA

end-to-end method using CDeC-Net is proposed by Agarwal et al. [1]
detect tables from document images.

There are different ways to process formulas/mathematical expres-Formula detection
using DNNs sions, i.e., formula detection from document images, formula recog-

nition from offline handwritten expressions, and online formula de-
tection. Here, we emphasize only on SotA methods for formula detec-
tion from document images. Ohyama et al. [173] presented a CNN-
based image conversion technique for extracting mathematical ex-
pressions from page images. The proposed approach deploys a sim-
ilar architecture to U-Net [198] to convert the input page image to
a mathematical expressions only image as output. A Single Shot De-
tector (SSD)-based [145] method to locate formulas from page images
using a sliding window method is presented as ScanSSD by Mali et
al. [151]. Phong et al. [187] applied You only Look Once (YOLO) net-
work to detect formulas from page images followed by an end-to-end
method for recognition of detected formulas using Watch, Attend,
and Parse (WAP) network.

Saha et al.[204] present an end-to-end trainable neural networkGraphical object
detection using

CNNs
to detect graphical objects from document images. They employ two
SotA object detection networks: Faster-RCNN [197] and Mask-RCNN [97]
into page images domain. The evaluation process is carried out to
detect tables, figures, and formulas on ICDAR2017-POD [72], ICDAR-
2013 [81], and UNLV [216] datasets. The proposed method did not
include the current and even recent SotA in the evaluation process.

Xu et al. [263] utilize the Mask-RCNN architecture for POD from doc-POD using
Detectron ument page images. The proposed methods use Feature Pyramid Net-

work (FPN) [143] with Residual Network (ResNet)101 [98] as backbone
trained for document images. The proposed method is exhaustively
evaluated on six different datasets, including ICDAR2017-POD [72], along
with a synthetically generated dataset to detect tables, figures, and
formulas from document page images. The proposed method also
skips the recent SotA methods for POD in the evaluation process.

A very recent work by Bi et al. [20] presents a novel method,POD using
spatial-related

relation & vision
namely spatial-related relation and vision for POD. The proposed net-
work is a combination of three sub-networks: vision feature extraction
network, relation feature aggregation network, and result in refine-
ment network. These sub-networks enable the proposed methods to
use a combination of vision and spatial-relation features (context in-
formation). The proposed method covers a comprehensive ablation
study to establish the utility and effectiveness of each sub-network
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and extensive evaluation on three different datasets; ICDAR2017-POD,
Article regions [227], and PubLayNet [284].

The recent SotA method to detect page objects from document im- Recent SotA method
for PODages uses a combination of traditional CV methods, CNN, and cluster-

ing techniques presented by [140]. The proposed method detects the
tables, figures, and formulas from document images with SotA results
on ICDAR2017-POD dataset. The proposed method is a combination
of multiple sub-networks and relies on heuristics-driven processing
heads, which can limit its performance to generic scenarios.

In our work, we focus on the methods that create a balance between
commercially existing methods by addressing their limitation to im-
prove their scope of applications in real-life scenarios. Such as, com-
mercially available OCRs can detect text and tables from document
images, but methods to detect remaining page objects, i.e., figures
and formulas, are still missing. So this work presents the methods to
detect and segment the figures and formulas from document images
to improve the performance and reliability of existing systems.

2.2 on-line handwriting classification

Handwriting analysis is a vast field of research that includes the Applications of
handwriting
classification

applications areas in forensic sciences, postal services, education, the
banking sector, and e-commerce. There are two methods for hand-
writing data acquisition, i.e., offline and online. In the offline data
acquisition process, only spatial information in the form of an image
are conserved. In online data acquisition, temporal information with
spatial information are also considered, and data is stored and avail-
able for processing as time-series sequences. There are several ways to
process the handwriting data, such as handwriting recognition, a key
step to transform document images into digital documents, signature
verification to verify the authenticity of the documents, forgery detec-
tion, writer identification, writing mode detection, and handwriting
classification.

Cognitive ability classification in classrooms is one of the key con- Handwriting
classification for
cognitive ability
classification

tributions of this thesis, and handwriting is a fundamental activity
in the learning process. This section familiarizes the readers with
the background and SotA methods for online handwriting classifica-
tion. This section is further divided into two subsections. Section 2.2.1
provides details about the background knowledge and conventional
methods for handwriting classification. Section 2.2.2 covers the de-
tails of recent SotA methods and approaches applying DNNs for on-
line handwriting classification problem.
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2.2.1 Traditional Methods

The known history of handwriting analysis tracks back to the secondHandwriting
analysis has been

successfully used as
a biometric tool

quarter of 20th century before the start of the second world war when
handwriting samples were used as a forensic tool for person iden-
tification. Nottingham [167] and Milwauke [12] police adopted the
Lee and Abbey system of handwriting classification by collecting a
database of handwriting samples to keep the record of photographed
prisoners in order to reform the criminal investigation process. This
opened up new venues for the research community to systematically
investigate handwriting behavior by looking into the features and
characteristics of every individual’s handwriting. Smith et al. [226]
presented the first known feature set for handwriting classification
in 1954. The proposed feature set considered six factors as features
of an individual’s handwriting. The proposed feature set enabled the
person classification based on its handwriting samples by examining
the speed, size, slant, spacing, pressure, and form of the writing. The
first four features were categorised as developed characteristics and
the last two as unconscious behaviour that may vary for individuals.

In 1959, Livingston et al. [12] presented a new handwriting andHandwriting
classification system

to identify the law
violators

pen-printing classification system for criminal investigation to iden-
tify law violators. The proposed system investigates specific letter fac-
tors writing style of

{
e, r, ....,k,S

}
, and general writing factors

{
slant, capitalconnections, thecolorofthewriter,gender, skill

}
.

The proposed system was successfully put into search and identifica-
tion experience and approved by the Milwauke police department
into operation.

With the advent of computer-based pens and handwriting sys-Digital systems and
online handwriting

classification
tems in the last decade of 20th century, online handwriting process-
ing got a boost. Its analysis broadened to person identification, writ-
ing style classification, and handwriting classification. Schomaker et
al. [208] presented a method to classify the writers and writing styles
for online handwriting recognition. They used Kohonen neural net-
work method for the segmentation of words to obtain a stroke al-
phabet followed by the process of writer classification using a prob-
abilistic stroke transition network. They also present a comprehen-
sive database for online data exchange and recognizer benchmark as
UNIPEN dataset [91], a vastly used dataset for online handwriting
recognition problems.

A new set of synthetic parameters based on the fractal behaviourSynthetic
parameters for

handwriting
classification

of handwriting is presented by Bouletreau [26]. They present a set of
four parameters: the fractal dimension of writing computed from the
slope of the central zone, the secondary dimension based on the last
zone of writing, the legibility rating of the image based on an iterative
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division of the evolution graph, and the implication index computed
as a delta of first two features. Their synthetic parameters result in
improved performance in classifying handwriting into families than
conventional ones.

Willems et al. [254] presented a feature set for mode detection in Mode detection for
online pen inputsnatural online pen inputs. The presented feature set consists of six

global features length, area, compactness, eccentricity, circular vari-
ance, and closure, and two structural features, curvature and perpen-
dicularity, to classify pen trajectories into handwriting, lines, arrows,
and geometric shapes. The proposed feature set is evaluated using K
Nearest Neighbour (KNN) by achieving classification accuracy of 98.7
on unseen test data.

Jain et al. [116] present a hierarchical approach to extract homo- Homogeneous
regions classification
from handwritten
documents

geneous regions from online handwritten documents. Firstly, docu-
ments are segmented into regions of text and non-text strokes, fol-
lowed by text region classification into plain text and unruled ta-
bles, and non-text regions classified as drawings and ruled tables.
Rossignol et al. [200] present a preliminary system for distinct online
handwriting into text and different drawing classes. Bishop et al. [24]
present a system to separate the text from graphics from online hand-
written strokes using stroke information, gaps between two strokes,
and temporal characteristics of stroke to train a probabilistic classifier.

Willema et al. [253] presented a mode detection system for online Handwriting
classification in
crisis management

pen input in the crisis management domain. The presented method
employs a Bayesian belief network to combine the classification re-
sults with context information to improve the overall performance of
the system. The presented system distinguishes the different pen in-
puts as deictic gestures, handwritten text, and iconic objects with an
error rate of 4.0%.

Kumara et al. [135] proposed a novel system for the classification Using large margins
for handwriting
classification

of writer-independent online handwriting classification based on a
large margin approach. The proposed method starts with describing
a scheme for interpolation of time-series by the sum of polynomials
using Reproducing Kernel Hilbert Space. The derived interpolations
are processed by large margin formulation to achieve the SotA results
on multiple datasets.

Garlapati et al. [75] presented a classification system for offline Handwriting
classification to
assist OCRs

handwritten and printed text to improve the performance of Optical
Character Recognition (OCR) System. The proposed system mainly
consists of three sub-processes: text localization (binarization and
morphological operations), feature extraction(structural and visual in-
tensity features), and classification (State Vector Machine (SVM) clas-
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sifier). The proposed system achieves the SotA results for printed and
handwritten text classification on IAM dataset [157].

2.2.2 Deep Learning Methods

Deep Learning (DL) methods paved the new way to process hand-DL for on-line
handwriting
classification

writing analysis in multiple dimensions, from writing hand detection,
handwriting recognition, signature verification, writing mode detec-
tion, OCRs to handwriting classification. This section will cover details
of DNNs-based networks to provide an overview of the progress and
recent advancements in the online handwriting analysis domain.

Toselli et al. [235] presented an automatic handwriting recogni-n-grams & HMMs
for handwriting

classification
tion and classification method based on HMMs and n-grams. The
proposed system is based on two-stage finite-state models. The first
phase HMMs and n-gram language models are employed to recog-
nise the handwritten sequences, followed by n-gram text classification
models to classify the recognised text in the second phase.

Indermuhle et al. [108] presented the IAMonDo database onlineIAMonDo dataset
for online

handwriting
classification

handwritten documents for mode detection problem. The IAMonDO
dataset opened up a new research dimension in online handwrit-
ing processing. They also present a Bidirectional Long-Short Term
Memory (BLSTM) neural network-based approach to detect the writ-
ing mode in online handwritten documents [107]. The proposed ap-
proach is one of the earliest methods to utilise neural networks for
mode detection problem in online handwritten documents.

Delaye et al. [54] present a CRFs based method to classify text/non-Using CRFs for
text/non-text
classification

text classification from online handwritten documents. Using CRF en-
ables the authors to incorporate contextual information, i.e., spatial
and temporal relationships between the strokes. They also present
an improved version of their system in another work [55]. The pro-
posed method is evaluated on the IAMonDo dataset to classify text
and non-text strokes with state-of-the-art (SotA) results.

Ye et al. [267] present a graph attention networks base methodGraph Attention
Networks for

contextual stroke
classification

to classify the contextual strokes in online handwritten documents.
In graph networks, strokes are treated as nodes, and temporal and
spatial interactions between strokes represent edges and the whole
document as a graph. Graph convolutions are combined with atten-
tion mechanisms to dynamically aggregate neighborhood features to
enable the whole network to learn context-aware features. They eval-
uate the proposed method on the IAMonDo dataset to report the
superior efficacy of their methods.
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Polotskyi et al. [190] propose a neural network-based method to
classify online handwritten strokes as text and non-text without us-
ing context information. The proposed system adopts the features DNNs for on-line

handwritten stroke
classification

from the online handwriting recognition domain to the online hand-
writing classification domain. The proposed approach is tested on a
publicly available IAMonDO dataset and a Samsung Mobile Hand-
writing Document (MHWD, MHWD_M) dataset with impressive re-
sults. The authors further claim that online handwriting classification
results are better when no context information is used in comparison
to when using context information.

Grygoriev et al. [88] present a hierarchical approach using 1D Hierarchical
approach for online
stroke classification

Convolutional Neural Network (CNN) and Recurrent Neural Network
(RNN) for online handwritten stroke classification. The proposed ar-
chitecture used 1D CNN on a lower hierarchical level and RNN on an
upper hierarchical level. The authors claim the SotA performance of
the proposed model not only in terms of accuracy but also for com-
putation costs and memory consumption.

Digitisation is a key factor in storing information in modern-day
life. Digitising the handwriting activity in the classroom is a nearly
impossible task with existing systems because of diverse writing ac-
tivities in the classrooms, i.e., writing text, maths, drawing figures,
and plotting graphs with intra-personal variations. In our work, we
focus on addressing the problem of online handwriting classification
to address the shortcomings of existing systems. We proposed SotA

methods to classify the online handwriting sequences into text, for-
mulas, and plot/graphs. Classification of handwritten sequences re-
sults in defining the structure of handwritten documents, leading to
a systematic evaluation of handwriting activity.

2.3 applications of wearable’s in formal education

Technological advancements and the proliferation of affordable wear- Wearable’s have
huge potential in
formal education

able devices such as bracelets, rings, glasses, watches, and embed-
ded in clothing are introducing humankind to new immersive and
imaginary worlds. These advancements have made Augmented Real-
ity (AR) and Virtual Reality (VR) more viable and desirable in many
domains to perform routine activities as wearable devices become
ever more integrated into everyday life. This urges the need to take
advantage of advancements to educate the children and prepare the
teachers to capitalise on these opportunities. This section covers the
background knowledge and recent applications of Augmented Re-
ality (AR) and Virtual Reality (VR) used in classrooms, focusing on
classroom activities in formal education. In the first part, we focus on
background knowledge and commonly used devices for AR and VR
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scenarios to familiarise the reader with the topic. In the later part, an
overview of the applications is presented to make use of AR and VR

in formal education.

The term Virtual Reality (VR) and Augmented Reality (AR) got theOutlook

technological craze in the 1990s [63] but got the attention and adopted
by the masses in 2010s in multiple domains with the introduction of
Head Mounted Displays (HMDs) and wearable gadgets. These appli-
cations are in vast domains, including gaming, healthcare, real es-
tate, marketing and advertisement, fitness and training, manufactur-
ing, education, etc. It is essential to adapt AR and VR applications to
deploy them in educational programs so they best meet the require-
ments of learners and the scope of educational needs. Adopting these
technologies in education facilitates learning, knowledge acquisition,
lower cognitive load, and increased attention. Moreover, implement-
ing these technologies in classrooms results in improved engagement
compared to traditional learning methods. It enables the learners to
interact in an immersive world to understand abstract information
and complex representation learning.

AR and VR technologies enable the seamless connection of the dig-AR & VR in
education ital and physical domains that combine real and virtual information

to convey abstract information using unique visual and interactive ex-
periences. Recent studies and surveys [23, 43, 171] showed the encour-
aging trend to deploy these technologies in classrooms and their ac-
ceptability among the learners. Combining AR scenes with traditional
learning activities enhances the learner’s problem-solving skills, mo-
tivation, involvement, and engagement [172]. These technologies also
empower the instructors to adapt their instructions keeping in view of
the individual learners’ needs by analysing their preferences to help
them improve their performance [171]. A teacher observed, "AR text-
book provides a multi-sensory approach to learning that links text,
image, sound, and movement and is a highly motivational communi-
cation format ", which further adds, " no question that AR will prove
to be a highly effective medium both for entertainment and educa-
tion", after an AR-based storytelling workshop conducted for school
students [161].

Kapp et al. [119] present an AR experiment study for high schoolStudying Kirchhoff’s
law in AR students to understand Kirchhoff’s law in electric circuits. Students

first built the circuits and then performed real-time measurements
using smart glasses. The presented system enables students to un-
derstand the conceptual evaluation of the current and voltage rela-
tionship without requiring them to perform repetitive measurements
while working with real setup and data.
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Nguyen [171] presents a study to investigate the perception of AR

and VR applications from a student perspective, an essential ques-
tion considered by instructors and course designers. They designed AR & VR

applications improve
creativity among
students

16 weeks of AR/VR technologies course to examine the learning be-
haviour of students based on five activities: learning the basics, self-
learning, working with projects, scaffolding to support students, and
students’ evaluation. Study shows an encouraging trend among stu-
dents to adopt the necessary tools and create applications with vari-
ous topics of their interest.

Plunkett et al. [189] present a method to incorporate AR in the labo- Understanding
chemical reactions
using AR

ratory to perform chemistry experiments using a simple smartphone.
AR enables the projection of virtual information onto a real-world sce-
nario. The use AR notecards to demonstrate Organic Chemistry reac-
tions and mechanisms using the HP Reveal application. The physical
AR notecards contain a Quick Response (QR) code, reactants, chemi-
cal substrate, and reaction direction pointing to an unrevealed prod-
uct. Scanning the AR notecard using HP Reveal shows a simulation
displaying the product’s chemical structure along with electron move-
ments. This application enables chemistry students to understand the
chemical reaction process in classrooms and assists them in perform-
ing experiments in the laboratory.

Yu et al. [279] present a comprehensive study on evaluating the im- Students show
higher engagement
while learning
through AR

pact of AR in different experimental conditions. They explore the use
of AR learning tool to facilitate the students to understand magnetic
field concepts. The study also assesses the anxiety level of students,
learning motivation, and learning performance to investigate the im-
pact of AR while performing the learning activity. Results show that
the learners perform better in AR experiment setup compared to tra-
ditional material, understanding abstract and complicated concepts,
improved learning gains, and with higher concentration. Students in
AR setup also show higher motivation, positive attitude, and lower
cognitive load.

Our work on applications of wearable devices in formal education
mainly focuses on two main directions. Firstly, we present a study
on the use of HMDs to assist students while demonstrating practical
skills during science experiments, to help them perform the activity
more efficiently with a more profound and better understanding of
the topic. In another application, we present a wearable system to
interact within the classrooms to enable them to perform the writ-
ing activity in the air without needing a reference surface of visual
feedback. These applications encourage the research community for
deeper analysis and investigation to introduce the applications and
systems to enable the learners to interact with their learning environ-
ments in MR.
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Content classification is a fundamental step in document image pro- Content
classification is
fundamental in
document structure
understanding

cessing for downstream tasks such as intelligent document structure
definition, document editing, and content understanding. Documents
are classified into two types on an abstract level: handwritten and
printed documents, and there are different mediums for document
creation and acquisition, i.e., handwritten, text files, web documents,
Portable Document Format (PDF), images, etc. To cater to all the di-
verse methods to create and save documents using a single system re-
quires converting them to document images. Specialized algorithms
are needed to process and interpret information present in document
images. This chapter of the thesis focuses on methods to enable the
POD from document images to automate the process of document
segmentation and information extraction, an essential and vital step
in content analysis. There are several other advantages of document
structure definition besides content analysis, such as digitization, doc-
ument editing, data accessibility, and information retrieval. One of
the significant applications of content classification methods in for-
mal education is to evolve reading behaviour analysis techniques
with deeper insights. Content classification enables the existing gaze-
tracking methods to correlate the gaze information with the reading
text and their relevancy for further evaluation. Major contributions of
this chapter are highlighted as follows:

• Hybrid approaches that fuse traditional Computer Vision (CV)
methods with Deep Learning (DL) for refined representation
learning to detect heterogeneous objects in document images,
figures and formulas in particular.

• Detecting the problems in the ground truth of ICDAR2017 Page
Object Detection (ICDAR2017-POD) [73] dataset and refinement of
said dataset to eliminate disproportions and confusions.

• Curation of a new Figure and Formula Detection (FFD) dataset
for POD from document images to benchmark the proposed
methods and to assist the development of generic systems in
POD domain.

• Ablation study of the proposed method on a large publicly
available dataset ICDAR2017-POD to justify the efficacy of the pro-
posed approach.
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The Rest of the chapter is structured as follows. Section 3.1 states
the problem statement, challenges, and motivation for POD problem
from document images. Section 3.2 summarizes the recent develop-
ments and state-of-the-art (SotA) systems in POD domain. Section 3.3Structure of the

chapter covers the details of systems developed during this research work:
Fi-fo Detector and FFD, along with a detailed analysis of the method-
ology to detect figures and formulas from document images. Sec-
tion 3.4 presents an overview of the datasets and evaluation proto-
cols followed in furnishing the performance of the proposed meth-
ods. Section 3.5 covers the details of the obtained results, along with
a comprehensive discussion to feature the highlights and weaknesses
of the proposed methodologies.
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The author of this thesis has published the content, figures, and ta-
bles included in this chapter in the following publications. The author
of this dissertation has written all the text taken from the mentioned
publications and the text in this chapter itself. The publication list
included in this chapter refers as follows:

• Younas J. et al. (2020), Fi-fo Detector: Figure and Formula De-
tection using Deformable Networks. In: Applied Sciences 10.18

(2020)[276]

• Younas J. et al. (2019), FFD: Figure and Formula Detection from
Document Images. In: 2019 Digital Image Computing: Techniques
and Applications (DICTA), (2019)[275]
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3.1 motivation

Digitization of document images is a growing need for commercialWhy information
extraction is needed

from documents
and non-commercial entities, i.e., banks, industries, educational in-
stitutes, libraries, etc. Aside from record-keeping, it significantly im-
proves the availability of data just at a click and/or a tap from any-
where in the world, at any time. These digitized documents can be
processed in an automated fashion, given that the information con-
tained in those documents can be extracted reliably. Reliable extrac-
tion of information from documents has been a major focus of the
document analysis community for decades [3, 124, 219].

Figures are an integral part of a range of different types of doc-Significance of
figures and formulas

in documents
uments as they portray the maximum amount of information in the
least amount of space/time. On the other hand, formulas are the best
way to express these relations symbolically, leveraging the power of
mathematics at its core. Detection of formulas and figures from docu-
ment images is a challenging task as document images are composed
of multi-level information. The information encapsulated in a docu-
ment includes title, author details, corresponding text, figures, formu-
las, and many other related objects.

Figure detection from document images is a challenging and cru-Challenges

cial task. Figure detection is a prefatory step in document image pro-
cessing systems, enabling these systems to discriminate between tex-
tual and non-textual regions present in a document. Figures that are
usually present in document images include layout design, block di-
agrams, natural images, and plots/graphs. Decorative graphics, i.e.,
long lines and "rules," are not considered figures in this work. Sim-
ilarly, formulas are presented as a 2-dimensional arrangement, with
distinctive structural features compared to the plain text, which is
1-dimensional. They can portray complex inter-relationship between
different entities in a concise form. The advantages of the ability to
recognize formulas are twofold: (i) Formula detection eases the dis-
semination and retrieval of mathematical knowledge from document
images and (ii) enhances the performance of text recognition systems
like Optical Character Recognition (OCR) as the conventional text pro-
cessing pipeline should not be executed on those regions producing
counter-productive transcriptions [32, 225]. Figure and formula de-
tection from document images is a challenging task as figures and
formulas are usually spread widely across the document images at
varying locations. Likewise, figure and formula appearance rely mas-
sively on the document format, style layout, orientation, aspect ratio,
and other factors. Therefore, it is not easy to detect figures and for-
mulas directly from document images, which could be a potential
reason existing commercial and open-source tools lack support for
this functionality. Moreover, as table detection is already available in
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commercial OCRs [225], e.g., Tesseract, Abby, therefore table detection
is not considered for evaluation in this work.

Significant efforts have been made in the past to segment out Limitations of
existing POD
approaches

the different page-objects in document images. Most of the early
approaches heavily relied on heuristics-which are task-specific- and
thus fail to generalize to novel scenarios [50, 92]. Deep Learning (DL)
based models have been leveraged for this segmentation in the re-
cent past [79, 140, 211, 268]. All of these methods involve a significant
amount of pre or post-processing based on hand-designed heuristics.
A recent attempt has been made by Siddiqui et al. [219] to incorpo-
rate deformable CNNs for the analysis of document images. However,
the potential of DL methods in combination with traditional computer
vision approaches hasn’t been well explored in this context.

This chapter of the thesis presents generic, data-driven, and end- Highlights

to-end methods for the detection of figures and formulas in doc-
ument images. The proposed methods leverage the potential of a
combination of CV techniques to further boost the capabilities of the
DNNs. We particularly leverage a novel combination of traditional
approaches, which includes inverse distance transform, Connected
Component Analysis (CCA), and the gray-scale version of the raw
input image to strengthen the capabilities of the deep models fur-
ther, as color features are not particularly useful in telling these page-
objects apart. The transformed image representations are termed as
Fi-fo image representations. The first method,Figure and Formula De-
tection (FFD), employs faster-Region Based Convolutional Neural Net-
works (RCNN) [197] and mask-RCNN [97] as deep models in our ap-
proach to detect figures and formulas from document images. In the
second method, Figure and Formula (Fi-fo) Detector successfully uses
the Feature Pyramid Network (FPN) with deformable convolutions
to identify the figures and formulas occurring at different scales, ori-
entations, and aspect ratios. The proposed methods are evaluated on
the publicly available ICDAR2017-POD competition dataset and a newly
curated dataset FFD.

3.2 related work

Document image processing is an interesting topic among the Com- There are different
ways for POD from
document images

puter Vision (CV) research community. Significant progress has been
made in this domain, which includes heuristic-based, Convolutional
Neural Network (CNN) based, statistics-based-such as CRFs & Graph
trees, and\or combination of these methods [50, 92, 115, 121, 186].
Heuristics include color-based features, shape-based features, geo-
metric features, and key point descriptors. Deep Learning (DL) based
approaches use CNNs [121], Region Proposal Networks (RPN) [79],
and deformable CNN [219]. Tasks performed on document images
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include (but are not limited to) textual and non-textual region dis-
crimination, graphics, and page object detection, which includes text,
formulas, and figures.

Ha et al. [92] presented a fundamental method for image seg-X-Y cut algorithm
for image

segmentation
mentation based on the recursive X-Y cut algorithm. Their method
used a projection profile based on the spatial configuration of Con-
nected Component Analysis (CCA), which extracts columns from doc-
ument page images. It might appear a simple method today, but it
has opened up a new research direction in page object segmentation
and detection decades back.

Chiu et al. [41] presented an OCR based picture detection methodUsing OCR for
image segmentation from document images. OCR is applied to detect text regions, followed

by segmentation methods to mask them out, and finally, non-textual
regions are clustered together. Segmentation is further improved us-
ing caption information in post-processing. This approach depends
not only on the performance of the OCR but also on the subsequent
steps, which are to be executed precisely to achieve better results.

Kavasidis et al. [121] presented a saliency-based CNN for table andSaliency-based CNN
for table and chart

detection
chart detection from digitized images. They applied saliency detec-
tion on input images to preserve contextual information. FCN is used
as a base detector followed by fully-connected CRFs for localizing
tables and charts. They evaluated the presented method on the ex-
tended version of the ICDAR-2013 dataset. This approach is not only
multi-step but an extended version of the used dataset is not publicly
available to draw comparisons.

Yi et al. [268] presented a page object detection method using re-OCR in combination
with CNNs for

document image
segmentation

gion proposal CNNs, followed by a custom algorithm to refine pro-
posed regions along with a CNN classifier for object category classifi-
cation. It first pre-processes the input image by applying a component-
based region proposal algorithm customized for document images,
which extracts the rough region proposals at the initial stage and
prunes them later. The refined region proposals are fed to the CNN

model for classification. The results of CNN models are finally post-
processed by a dynamic algorithm to optimize the detected region
proposals. They evaluated their system on a private dataset and con-
sidered four-page objects for classification, i.e., text lines, figures, for-
mulas, and tables.

Iwatsuki et al. [115] presented a CRF based method to extract for-CRFs-based method
for POD from PDF

documents
mulas and mathematical zones from PDF documents. Their method
uses layout features like font, style, and linguistic features such as n-
gram context to build their CRF model. Phong et al. [186] developed a
new method for detecting mathematical expressions. They used OCR

to analyse layout, text lines, and expressions. Features are extracted
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from expressions using the Fast Fourier Transform (FFT) and Mean
Square Error (MSE). State Vector Machine (SVM) classifiers were ap-
plied on extracted features to classify mathematical expressions and
formulas.

Gao et al. [73] presented a combination of a Convolutional Neural Using a combination
of CNN & RNN for
formula detection

Network (CNN) and Recurrent Neural Network (RNN) models to de-
tect formulas from PDF documents. A combination of CNN and RNN

models enables this method to preserve both character and visual fea-
tures for formula detection. They applied bottom-up and top-down
strategies to generate formula region candidates, followed by feature
extraction networks (CNNs & RNNs) and post-processing for refined
formula region. However, this work can only be applied to PDF docu-
ments, which is a considerable limitation when discussing document
images.

Deep Learning (DL), in the recent past, has become the center Using DNNs for
document image
segmentation

of attention for research in the document analysis community. Gi-
lani et al. [79] and Schreiber et al. [211] leveraged Faster-RCNN for
table detection. Siddiqui et al. [219] additionally equipped the Faster-
RCNN model with deformable property to gain significant improve-
ments over prior state-of-the-art (SotA). National Laboratory of Pat-
tern Recognition (NLPR)-Pattern Analysis and Learning (PAL) [72] are
the winner of the ICDAR2017 Page Object Detection (ICDAR2017-POD)
competition. They presented a multi-stage approach for the classifi-
cation of figures, formulas, and tables from document images using
the connected components of the input image, SVM classifiers, CNN

based CRFs, Faster-RCNN, and normal CNNs. Finally, final results are
achieved by integrating the intermediate results of these stages.

A recent SotA POD system is proposed by Li et al. [140]. They Recent SotA system
for PODproposed a hybrid model, which is a combination of deep struc-

tured prediction and supervised clustering for page object detection.
First, they extract columns and then line regions of document im-
ages. They used Conditional Random Field (CRF) formulated Con-
volutional Neural Network (CNN) with unary and pairwise poten-
tials to classify and cluster primitive region proposals from line re-
gions. After classification, the same class clusters are merged to get
page objects. Their presented approach comprises partially trainable
networks with heuristics-driven pre-processing and post-processing
heads, which might limit its application in a generic scenario.

Saha et al. [204] presented the most recent method for Page Ob- Graphical object
detection from
document images

ject Detection (POD) in document images. Their approach is based on
mask-RCNN for figure, formula, and table detection in document im-
ages. Although the presented approach has no strings (pre and\or
post-processing) attached to it, the authors did not compare their ap-
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proach against the SotA methodology [140] in evaluation. Moreover,
they used different evaluation metrics rather than following the stan-
dards introduced in the ICDAR2017-POD competition for Page Object
Detection (POD). Thus their approach is not considered for compari-
son in this work.

Recently, systems have been presented for parsing, classifying, andFigure detection
from PDF documents localizing figures from PDF documents. Siegel et al. [220] presented

a method to parse figures from PDF documents, parsed figures are
then classified using graph-based CNNs. They also present a figure
classification dataset, namely "FigureSeer". Clark et al. [44] present
another method, "PDFFigures 2.0", to parse and classify figures from
PDF documents along with a new dataset. Siegel et al. [221] present
"DeepFigures", a deep neural method for detecting figures from PDF

documents. These methods deal with PDF documents but not docu-
ment images as in our case, so they are out of scope for comparison
in the presented work.

In this chapter, the author of this work considers the methodologyMethods chosen for
comparison proposed by Li et al. [140] for drawing comparisons being the state-

of-the-art (SotA) system at the time of publication, and with NLPR-
PAL [72], i.e., the winner of the ICDAR-2017 competition on Page Ob-
ject Detection (POD) from document images.

After the publication of the research work included in this chapter,POD using
meta-data from PDF

& DNNs
recent developments in POD domain are also made part of this the-
sis. Li et al. [138] presented a benchmark suite to train and evaluate
cross-domain POD models. Each dataset included in the benchmark
suite is composed of document images with bounding box annota-
tions for page objects, raw PDF files to preserve meta-data for addi-
tional information along with page images, and PDF rendering layers,
comprising of text, vector and raster layers, to preserve structural ab-
straction of the PDF pages. The proposed POD model is built on the
top of Feature Pyramid Network (FPN) object detection network with
three additional modules: feature pyramid alignment, region align-
ment, and rendering layer alignment modules to combine knowledge
of natural image domain with document image domain.

An ensemble-based methodology to use different Deep NeuralUsing ensemble of
DNNs for POD Network (DNN) for Page Object Detection (POD) task is presented

by Vo et al. [245]. The proposed methodology fuses the detection re-
sults of two Deep Learning (DL) models (Faster-RCNN and RPN) to
take advantage of the strengths of both networks and result in better
performance. The authors benchmark the proposed methodology on
ICDAR2017-POD dataset using Intersection over Union (IoU) and mean
Average Precision (mAP) as evaluation metrics. The authors of the
paper did not follow the standard evaluation metrics introduced in
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ICDAR2017-POD competition, and therefore evaluations are not directly
comparable to prior methodologies.

Li et al. [139] present SelfDoc, a self-supervised, task-agnostic rep- Self-supervised
learning for
document imaging

resentation learning framework for document images. The proposed
framework uses semantic components, such as text block, heading,
and figure, as building blocks making full use of linguistic, structural
layout, and visual information. The proposed framework implements
a cross-modality encoder to enable the cross-modal learning of tex-
tual and visual representations. SelfDoc framework learns generic
representations from unlabelled data and then, later, fine-tunes for
downstream tasks needing significantly fewer data, such as document
entity recognition, document classification, and document clustering.

3.3 methodology

Multiple Page Object Detection (POD) problems are first introduced Overview of
proposed
methodologies

in ICDAR2017-POD competition with a release of a public dataset of
document images annotating the page objects such as tables, figures,
and formulas. DNNs-based object detectors are mainly composed of
two main networks to perform the object classification. At the ini-
tial stage, CNNs is used as a base network to learn and extract the
features during the training phase, followed by a classification net-
work to segment the desired objects from the input image utilizing
the features learned in the last step. We also adopt the state-of-the-
art (SotA) object detecting methods to classify the page objects from
document images taking advantage of transfer learning for domain
adoption from the natural image classification networks to document
image classification networks. In the first approach, Figure and For-
mula Detection (FFD) leverage the mask-RCNN and Faster-RCNN as
deep models to detect figures and formulas from document images.
In the second approach, we introduce Figure and Formula (Fi-fo) De-
tector, an end-to-end data-driven deep model powered by deformable
Feature Pyramid Network (FPN) to extract figures and formulas from
document images. We use Fi-fo image representation (instead of the
raw image) as input to both networks. The Fi-fo image representation
uses distance transform, Connected Component Analysis (CCA), and
the original gray-scale image. We stack these three representations
together before feeding them to the network; for more details, refer
to Section 3.3.1. Detailed methodologies of proposed approaches are
explained in the following subsections.

3.3.1 Fi-fo image representation

Deep Neural Networks (DNNs) dominate the counterparts when it
comes to natural scene image processing, whether it is classification,
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Figure 3.1: Proposed Fi-Fo Detector Outline based on Deformable FPN

Figure 3.2: Fi-Fo Image representation

segmentation, or object detection. However, document images are
very different from natural scene images. Page objects appear at vary-
ing positions and differ among the documents depending on the doc-
ument’s format. Therefore, preserving the contextual informationImage

transformation helps
in document image

segmentation

is very important, aiding the classifier in learning the desired rep-
resentation more efficiently. Fi-Fo image representation transforms
the document image to appear as close as a natural scene image. It
preserves the original image information in the form of a gray-scale
image. Image transformation has already been used for Page Object
Detection (POD) and segmentation in the past. Ha et al. [92] used ver-
tical projection profiles to extract column regions and draw bounding
boxes around connected components. Bukhari et al. [34] used CCA for
document image segmentation, while Gilani et al. [79] used distance-
based profiles, which were fed to the final classifier to extract the table
structure from document images.

We use color transform, Connected Component Analysis (CCA),Fi-fo Image
representation uses
color, distance, and

CCA transforms

and distance transform to generate Fi-fo image representations. The
gray-scale image retains the original information of the input image
in a single channel. CCA is applied horizontally to identify regions
in the image. Distance transform conserves the precise distance be-
tween page objects and blank regions. Additionally, we also reverse
the distance transform, i.e., the maximum value occurs at the textual
regions and diffuses smoothly as a function of the distance to the
textual regions. We stack these representations together to feed them
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Figure 3.3: FFD pipeline with all its components.

to the network.Figure 3.2 shows the Fi-fo image representation with
intermediate information in every channel.

3.3.2 Figure and Formula Detection (FFD)

We adhere to faster-RCNN [197] and mask-RCNN [97] for FFD architec- CNNs used to
implement FFDture built upon the pre-trained Residual Network (ResNet)-50 [96] on

the ImageNet1 dataset. Using a pre-trained network enables the pro-
posed approaches of domain adaptation from natural scene images
to document images by taking advantage of transfer learning. Trans-
fer learning is a remedy to the need for extensive resources in the
training phase for DNNs data-driven nature. Transfer learning is an
important aspect of DNNs, as it avoids over-fitting along with better
resource utilization because of a useful initialization point.

3.3.2.1 Faster-RCNN

Faster-RCNN [197] has been successfully used for table detection from Faster-RCNN is one
of the earliest models
to solve complex CV
problems

document images in the recent past [79, 211, 245]. Faster-RCNN is a
combination of three networks: a feature extraction backbone, a Re-
gion Proposal Networks (RPN) to generate bounding boxes for po-
tential candidates present in an input image, and a region classifica-
tion network with bounding box regression to classify the Region of
Interest (RoI). We refer readers to [197] for further details of faster-
RCNN. In FFD, the transformed input image is fed to the feature ex-
traction backbone, which not only generates the feature map but
also preserves the shape and structure of the original image. Using
pre-trained weights from a state-of-the-art (SotA) image classification
network with final layers sheared off is a common practice to over-
come the large dataset requirements, as training on these large-scale
datasets transforms the initial layers of the network into a generic fea-
ture extractor. Pre-trained ResNet-50 [96] up to the final convolutional
layer of 4th-stage is used as the feature extractor in FFD.

Region Proposal Networks (RPN) predicts bounding boxes of all
possible candidate regions commonly termed as anchors and their
possibility of being foreground or background based on overlap. It

1 ImageNet

http://www.image-net.org/
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also refines the anchors. Input to RPN is a feature map, the outputRegion Proposal
Networks (RPN)

highlights the
potential candidates

regions

of the feature extraction backbone. RPN is a small convolutional net-
work, which transforms x× x spatial input into a lower-dimensional
features. These features are used for bounding box regression and
classification. In FFD, we used four different anchor scales along with
three aspect ratios, resulting in a total of 12 anchors. Multiple anchors
help the network overcome variability in terms of size present in real-
world objects.

RPN are followed by a detection or classification network, usually
known as RCNN. RCNN takes the input from both the feature network
and RPN to generate the final class label and bounding box offsets
for every input region. By doing so, the detection network crops the
features from the feature network using bounding boxes fed from
RPN to classify the object present inside the bounding box.

3.3.2.2 Mask-RCNN

Mask-RCNN [97] shares the same network of faster-RCNN as explainedMask-RCNN
performs both
detection and

segmentation task

in Section 3.3.2.1 with an additional module by implementing a Fully
Convolutional Network (FCN) in parallel to the last-stage classifica-
tion network to generate pixel-level binary masks for every Region
of Interest (RoI). Using FCN enables the mask-RCNN to encode input
objects in a spatial layout by mask representation. It also implements
RoI alignment to preserve explicit per-pixel spatial correspondence
of input RoI features. With an additional FCN module, mask-RCNN

segments the detected object by generating binary masks parallel to
bounding boxes and classification scores. Mask-RCNN is used for the
very first time to detect objects from document images to the best of
the author’s knowledge at the time of publication. We refer interested
readers to [97] for details of mask-RCNN.

3.3.2.3 Model Configuration

Input images are rescaled to the size of 1, 000× 1, 200 before feedingParameters are vital
for optimization of

DNNs
them to the network. A single image per batch is used. We used the
Detectron implementation [80] of both faster-RCNN and mask-RCNN,
including pre-trained weights of ResNet-50. Extracted features till the
final 4th-stage convolutional layer of pre-trained ResNet-50 is used as
the backbone in both models. 4 different anchor scales of [32×32, 64×
64, 128× 128, 256× 256] with 3 aspect ratios of [1:2, 1:1, 2:1] are used
in this implementation. All models are trained for 100 epochs with
a learning rate of 0.001 with the learning rate scheduling. A non-
maximum suppression (NMS) threshold of 0.3 in combination with a
class score is used on region proposals for bounding box regression.
The confidence threshold to retain the prediction is set to 0.6. All
models were trained on a single 1080Ti Graphical Processing Unit
(GPU).
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3.3.3 Figure and Formula (Fi-fo) Detector

3.3.3.1 Residual Network (ResNet)-101

We used pre-trained ResNet-101 [96] as the backbone of Fi-fo Detector. ResNet-101 forms the
backbone of Fi-fo
Detector

ResNet-101, as the name implies, consists of 101 convolution layers
stacked together in 33 residual blocks, where each block consists of
three convolutional layers. As our focus is on the implementation of
deformable CNNs for document images, regular ResNet-101 is trans-
formed into its deformable variant. To achieve deformable function-
ality in ResNet-101, regular higher-level convolution layers namely
res(5a, 5b, 5c)_branch2b are replaced with their deformable coun-
terparts. We initialized deformable layers with zero offsets to ben-
efit from transfer learning, making deformable convolutional layers
equivalent to their non-deformable counterparts.

3.3.3.2 Deformable Convolutional Network (DCN)

The proposed method is based on Deformable Convolutional Net- DCN use an adaptive
receptive field to
adapt to different
scales and
transformation

work (DCN) [48, 287]. Convolutional Neural Networks (CNNs) learn
the relevant feature representation depending on the task at hand [269].
These features are extracted in every layer using filters. Filters in
lower convolutional layers usually capture textures and preliminary
objects, which include gradients, textures, materials, and colors. In
contrast, filters in higher convolutional layers describe more abstract
objects and their parts [17]. In traditional CNNs, the convolutional
layer samples the input feature maps at fixed locations, which the
subsequent layers carry forward, resulting in a fixed and known ge-
ometric transformation. Using the fixed grid for the detection of ob-
jects occurring at different scales and different transformations is not
ideal. DCNs address these constraints of traditional CNNs by intro-
ducing two additional modules to existing Deep Neural Networks
(DNNs), namely (i) the deformable convolution and (ii) deformable
RoI-pooling. Regular convolutional layers are augmented with a 2D-
offset convolutional layer to form the deformable convolution layer.
Regular convolution operates on a uniform grid as its receptive field,
whereas deformable convolution leverages the additional offset layers
to augment the uniform grid conditioned on the input. The adaptive
receptive field allows filters in convolution layers to adapt to different
scales and transformations. Since objects like figures and formulas ap-
pear at vastly different scales, the deformable property significantly
helps cope with these intense input variations. The mathematical for-
mulation of deformable convolution is explained in [48] as:

y(p0) =
∑
pn∈R

w(pn)× x(p0 + pn +∆(pn)) (3.1)
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where R defines the offsets from the point under consideration (p0)Offsets are used for
sampling at

irregular locations
in DCN

in a regular-grid pattern, x represents the input, y represents the out-
put feature map while w represents the filter weights. Considering a
3× 3 convolutional layer, the set R = (−1,−1), (−1, 0), (−1, 1), (0,−1),
(0, 0), (0, 1), (1,−1), (1, 0), (1, 1) defines this regular-grid comprising of
the 9 positions within the receptive field of the filter. In deformable
convolution, sampling is done on irregular locations determined by
the offset. The offset is defined as ∆(pn), which augments the prede-
fined offsets to deform the receptive field of the filter arbitrarily. Both
the features as well as the offsets are learned by back-propagation of
gradients. Since these offsets are fractional, they are implemented via
bilinear interpolation. For simplicity, let us consider p = p0 + pn +

∆(pn). Hence, the operation can be represented as:

x(p) =
∑
q

G(q,p)× x(q) where G(q,p) = g(qx,px)× g(qy,py)

(3.2)
where q in Eq. (3.2) enumerates all the possible spatial locations on
the feature map x, G is the bilinear interpolation kernel and g is de-
fined to be g(a,b) = max(0, 1 − |a − b|). Region proposals are an
integral part of object detection methods, achieved using RoI-pooling,
which converts an arbitrary-sized input region into a fixed-size fea-
ture representation. Regular RoI-pooling divides the RoI into k × k
spatial bins. Similar to the deformable convolution, deformable RoI-
pooling introduces additional offsets to spatial bins. This can be math-
ematically written as Eq. (3.3).

y(i, j) =
∑

p∈bin(i,j)

x(p0 + p+∆pij)

nij
(3.3)

where bin(i, j) defines a bin over spatial locations for feature aggre-
gation (⌊iwk ⌋ <= px < ⌈(i+ 1)wk ⌉, ⌊jhk ⌋ <= py < ⌈(j+ 1)hk ⌉), and nij
represents the number of items in bin(i, j). We refer readers to [48,
287] for a comprehensive introduction to the deformable convolu-
tional layers.

3.3.3.3 Network architecture

The proposed Fi-fo detector is based on deformable Feature PyramidThree different
variants of DCN are

used to evaluate
their efficacy

Network (FPN) [143], which integrates features from multiple scales
within a single forward pass, transforming it into a faster variant
of multi-scale detection. This makes it capable of better-handling ob-
jects of small sizes. As a comparison, we also include results from
deformable Faster-RCNN [197] and deformable Region-based Fully
Convolutional Networks (RFCN) [49], which were the most dominant
architectures before FPN. All these models are augmented with de-
formable convolutions along with the replacement of conventional
RoI-pooling layer with deformable RoI-pooling.
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The deformable convolutions explicitly generate offsets for every
location in feature maps, making the process a memory-intensive op-
eration. Therefore, all the models used for our experiments are built
upon the ResNet-101, converted to a deformable network by replacing
3 higher level traditional layers into deformable counterparts to aid
multi-scale feature extraction. This adoption enables us to leverage a
deformable ResNet-101 as the base model for all the models used in
our experiments.

The performance of DNNs rely heavily on the amount of data avail- Transfer learning
helps to achieve
better results and
domain adaptation

able for training, making them data-hungry [230]. Since the initial
layers of the network are generic feature extractors, the initial layers
trained on a large corpus of images are adapted as the feature extrac-
tor in our case, which are fine-tuned for the document analysis task
during training. This is commonly referred to as transfer learning in
the literature, where the learned knowledge is transferred from one
problem to another [219].

3.3.3.4 Model Configuration

We used deformable ResNet-101 as the backbone of our deformable Network
configuration for
different variants of
DCN

detection models, along with model weights trained on the Image-
Net dataset as described previously. After deformable pooling, we
keep the rest of the object detection pipeline intact- including per-
region classification and bounding-box regression. Using pre-trained
weights enables the proposed approach for domain adaptation from
natural scene images to document images. We trained three differ-
ent variants of deformable models, which include deformable Faster-
RCNN, deformable FCN, and deformable FPN. We used three different
anchor ratios for all our models and were set to [0.5, 1, 2]. We used five
different anchor scales for RFCN and Faster-RCNN set to [2, 4, 8, 16, 32].
FPNs have built-in features for multi-scale detection because of their
top-down architecture, so only a single anchor scale of [8] is used.
We trained our models for 50 epochs with a learning rate of 0.000125
(with a learning rate schedule). We used aspect-aware image resizing
with a max image size of 1, 280× 800. All models were trained on a
single NVIDIA V-100 GPU.

3.4 datasets

This section covers the details of the datasets along with evaluation
protocols followed during this research. The following section famil-
iarises the reader of this thesis with the details of publicly available
POD datasets for document image processing. Moreover, this section
also covers the details of evaluation metrics followed as standard for
POD problem.
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Figure 3.4: Annotated examples from ICDAR2017 Page Object Detection
(ICDAR2017-POD) dataset (formulas are labeled as the brown color
and figures as green color).

3.4.1 ICDAR2017 Page Object Detection (ICDAR2017-POD)

We used the publicly available ICDAR2017 Page Object DetectionICDAR2017-POD is
benchmark dataset

for POD problem
from document

images

(ICDAR2017-POD) competition dataset [72] to benchmark the perfor-
mance of our model. ICDAR2017-POD was released recently for a com-
petition focused on the figure, formula, and table detection from
document images. The dataset is comprised of page document im-
ages from 1, 500 scientific papers available at CiteSeer2. This dataset
comprises 2, 417 document images in the English language, segre-
gated into 1, 600 train and 817 test document images. The dataset
exhibits high variability in terms of format and page layout. Page lay-
out styles include single-column, double-column, and multi-column
pages. Various formulas, figures, tables, and other page objects are
spread across the document images.

The page objects include textual content, page title, captions, head-
ings, etc., but only figures, tables, and formulas were annotated for
the task. Every document image is accompanied by a corresponding
.xml file in PASCAL-VOC format annotated ground-truth. Page ob-
jects are annotated by rectangular coordinates to generate bounding
boxes. Figure 3.4 shows some images from the ICDAR2017-POD dataset
along with the corresponding ground-truth information.

3.4.1.1 Faulty Annotations

Initial experiments led us to the discovery of the problems in an-Annotation issues of
ICDAR2017-POD

dataset
notations of the ICDAR2017-POD dataset. Some of these problems are
highlighted in Figure 3.5, where green, blue, and brown color anno-
tate figures, formulas, and tables, respectively. There were missing
annotations, which include formulas, figures, and tables, as shown
in Figure 3.5a. There were occasions where page objects were misla-
belled, i.e., formulas annotated as tables, text annotated as formulas,
and so on. As shown in Figure 3.5c, text lines are labeled as formulas,

2 CiteSeer

http://csxstatic.ist.psu.edu/
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(a) Missing labels
for formulas

(b) Formulas la-
belled as table

(c) Text labelled as
formula

(d) Problems with
figure labels

Figure 3.5: Problems with ICDAR2017-POD dataset (1st row) in comparison
to ICDAR2017-POD (corrected) dataset (2nd row) (green, blue, and
brown color represent figures, formulas, and tables, respectively,
thanks to Fi-fo detector

.

confusing the system to distinguish text from formulas. Similarly, in
Figure 3.5b, a block of formulas is labeled as a table, again creating
vagueness for the system. There were inconsistencies in the figure’s
annotation, as shown in Figure 3.5d. Common problems with figure
annotation include over-segmentation, under-segmentation, and in-
consistent labeling for multi-panel figures, i.e., in some instances, ob-
jects enclosed inside a solid boundary are annotated as a single figure
considering the outer bounding box. In contrast, the outer boundary
is neglected for other similar instances, and enclosed objects are an-
notated as individual figures. These irregularities in original annota-
tions penalized the data-driven systems, which resulted in overall per-
formance degradation. So, it is very important to cleanse the dataset
to avoid problems for the research community in the future.

3.4.1.2 ICDAR2017 Page Object Detection (ICDAR2017-POD) (corrected)

While evaluating the ICDAR2017 Page Object Detection (ICDAR2017-POD), Annotations are
corrected, updated,
and made publicly
available

Fi-fo Detector highlighted the problem in the ground truth of the
dataset such as missing, confused, and irregular labels. As Fi-fo Detec-
tor is a data-driven approach, it relies not only on the quantity of data
but also on the quality of data is very important. Confusions in the
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Table 3.1: Overview of ICDAR2017-POD (corrected) with class-wise compari-
son and modifications in ICDAR2017-POD dataset.

Class ICDAR2017-POD ICDAR2017-POD # of files
(corrected) modified

Figure 2939 2912 135
Formula 5427 5463 156
Table 1016 1053 30

given data penalize the system resulting in degrading performance,
as in the original ICDAR2017-POD dataset. Therefore, we manually in-
spected the entire dataset to update missing annotations and fine-
tune the confusing ones. While updating the ICDAR2017-POD dataset,
we did not add or remove any image from the dataset. Rather, we only
updated the annotations to minimize the ambiguities and inconsisten-
cies present in the dataset following the existing labeling conventions,
as shown in Figure 3.5. In the ICDAR2017-POD dataset, some decorative
graphics were annotated as figures, and the rest were ignored. So,
the only thing we completely changed is the removal of decorative
graphics as figures from the original dataset. Figure 3.10c is a perfect
example to demonstrate where the header-rule line was annotated as
a figure, but the footer-rule line was ignored. All these problems con-
tribute to the performance degradation of any data-driven system.

Bringing consistency and clarity in the annotations will help in
achieving generalized systems for POD problem. 273 annotation files
were updated in total. The updation included the removal of false
labels, updating missing labels, and bringing uniform labeling con-
ventions. An overview of the ICDAR2017-POD (corrected) dataset along
with the ICDAR2017-POD dataset is presented in Table 3.1. The updated
annotations have been publicly released as the ICDAR2017-POD (cor-
rected) dataset to aid future research in this direction3.

3.4.2 Figure and Formula Detection (FFD) Dataset

ICDAR2017-POD competition dataset [72] was the largest publicly avail-Multiple datasets
help in the

cross-evaluation of
data-driven systems

able dataset for Page Object Detection (POD) to the best of the au-
thors’ knowledge during the course of this research work. There is a
real need for a publicly available dataset for cross-evaluation and to
achieve generalization for data-driven systems, in particular. There-
fore, we collected and manually annotated a dataset named FFD, par-
ticularly targeted toward formulas and figure detection. The dataset
consists of 680 document images from 100 scientific papers in the
English language available at arXiv4. The collected document images
were taken from journals and/or conferences of different disciplines
to cover a variety of page formats, layouts, and styles. Page objects
present in every document image also show diversity and variability.

3 ICDAR2017-POD (corrected)
4 Arxiv

https://bit.ly/2AUSlzI
https://arxiv.org/
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Table 3.2: Dataset content details including numbers of objects present in
training and test set

Split document images figures formulas

Train 480 681 1,212
Test 200 308 708
Total 680 989 1,929

Figure 3.6: Examples of annotated document images from the FFD dataset;
green colour annotates formulas, brown colour represents fig-
ures

We manually annotated only two classes, i.e., figures and formulas.
Example document images from FFD dataset are visualized in Fig-
ure 3.6. The 1, 929 formulas and 993 figures are in the FFD dataset.
Every document image carries a corresponding .xml with annotated
ground-truth information in PASCAL-VOC format. Out of 680 docu-
ment images, 70% are used in the training set, and the remaining 30%
are placed in the test set. FFD dataset will be made publicly available
for the research community to aid research in this direction5.

3.4.3 PublayNet

Zhong et al. [284] publish the largest dataset for document layout PubLayNet is the
largest publicly
available POD
dataset

analysis called PubLayNet. The dataset consists of over 360K auto-
matically annotated page images. The dataset annotates five page
objects, i.e., text, title, list, figure, and table. One of the major an-
notations missing in the PubLayNet dataset is "formula" objects. The
availability of a large dataset for document layout analysis is a key
performance factor in data-driven methods to automate the process
of Page Object Detection (POD). PubLayNet dataset is published dur-
ing or after the publication of this work. Therefore, it is not included
in the evaluation.

5 ]acFFD Dataset

http://bit.ly/2lNvWfL
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3.4.4 Evaluation Protocol

We follow the evaluation protocol defined for all our presented meth-Following standard
evaluation protocols

helps in fair
comparison

ods in the ICDAR2017-POD competition. We compute true positives (TP),
false positive (FP), and false negatives (FN) during the testing phase.
These results are computed by evaluating the test set on Intersection
over Union (IoU) threshold of 0.6, & 0.8 for calculation of the given
metrics, which means at least 60% of the object is correctly detected in
prior and 80% in later threshold settings. Results are reported using
the metrics of precision, recall, f1-score, Average Precision (AP), and
mean Average Precision (mAP).

The precision metric evaluates how accurate are the system’s pre-Precision

dictions. It is calculated as follows:

Precision =
correct detection

total detection
(3.4)

The recall metric is the measure of how well a system performs in
Recall

finding all positive examples (TPs) given in the test set. It is given by,

Recall =
correct detection

total ground-truth annotations
(3.5)

mean Average Precision (mAP) is computed as an average of max-
mean Average

Precision (mAP) imum precision at different recall levels. The mathematical formula-
tion of mean average precision is given as:

mAP =
1

|Q|

Q∑
r=1

APr (3.6)

All of the results reported in this thesis chapter are generated using
the official evaluation code provided by the ICDAR2017-POD competi-
tion organizers.

3.5 results and discussions

This section covers the comprehensive evaluation results of the pro-
posed approaches in this chapter. Moreover, this section also dis-
cusses the merits and weaknesses of the proposed methods, along
with a detailed comparison of existing SotA methods.

3.5.1 Results of FFD approach

We evaluate the presented approach using faster-RCNN and mask-
RCNN on FFD (our collected dataset) and the publicly available ICDAR2017-POD
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Table 3.3: Comparison of FFD approach with existing state-of-the-art (SotA)
methods using ICDAR2017-POD and FFD dataset

Method Class
IoU = 0.6 IoU = 0.8

Precision Recall f1-score AP Precision Recall f1-score AP

NLPR-PAL [72]
ICDAR2017-POD

Formula 0.901 0.929 0.915 0.839 0.888 0.916 0.902 0.816
Figure 0.920 0.933 0.927 0.849 0.892 0.904 0.898 0.805

Li et al. [140]
ICDAR2017-POD

Formula 0.930 0.953 0.942 0.878 0.921 0.944 0.932 0.863
Figure 0.948 0.940 0.944 0.896 0.921 0.913 0.917 0.850

Faster-RCNN

ICDAR2017-POD

Formula 0.894 0.889 0.897 0.873 0.760 0.570 0.650 0.671
Figure 0.894 0.900 0.897 0.862 0.811 0.801 0.806 0.787

Mask-RCNN

ICDAR2017-POD

Formula 0.894 0.921 0.907 0.897 0.788 0.835 0.811 0.776
Figure 0.894 0.918 0.905 0.886 0.805 0.828 0.816 0.794

Faster-RCNN

FFD dataset
Formula 0.916 0.89 0.903 0.875 0.596 0.577 0.591 0.448
Figure 0.890 0.899 0.894 0.851 0.770 0.781 0.776 0.750

Mask-RCNN

FFD dataset
Formula 0.898 0.913 0.905 0.892 0.711 0.723 0.717 0.621
Figure 0.908 0.905 0.906 0.894 0.809 0.814 0.811 0.791

dataset for Page Object Detection (POD). We report results on the stan-
dard IoU threshold of 0.6 and 0.8 defined for the ICDAR2017-POD com-
petition. Mask-RCNN delivers the best results for figure detection on
IoU threshold of 0.6, f1-score of 0.906 with a precision of 0.908 and
recall of 0.905.

Faster-RCNN detected figures on the IoU threshold of 0.6 with the Faster-RCNN results

precision and recall of 0.89 and 0.899, which translated into f1-score of
0.894 while evaluating on the FFD dataset. On the IoU threshold of 0.6,
formulas are detected with the precision of 0.916, recall of 0.89 and
f1-score of 0.903. When IoU threshold is increased to 0.8, numbers for
faster-RCNN on formulas detection dropped to the f1-score of 0.591
with a precision and recall of 0.596 and 0.577, respectively. Similarly,
results for figure detection also drop to 0.77, 0.781, and 0.776 in terms
of precision, recall, and f1-score, respectively. Average Precision (AP)
for formula detection is 0.875 and 0.851 for figure detection.

Mask-RCNN produced better results in comparison to faster-RCNN Mask-RCNN results

for both figure and formula detection, as shown in Table 3.3. Figures
are detected with a precision of 0.908, and recall is translated into
numbers as 0.905 and f1-score measures to 0.906 on the IoU thresh-
old of 0.6. Formulas are detected with a precision of 0.898, and recall,
and f1-score are 0.913 and 0.905, respectively. Precision for figure de-
tection on IoU 0.8 is calculated as 0.809 with a recall of 0.814 and
f1-score of 0.811. Numbers for formula detection realized to 0.711,
0.723, and 0.717 as precision, recall, and f1-score, respectively. AP for
figure detection comes as 0.894 and that for formulas is 0.892.

On the ICDAR2017-POD dataset, FFD approach performed equally FFD results on
ICDAR2017-POD
dataset

well as the results show in Table 3.3. On the IoU threshold of 0.6,
both faster-RCNN and mask-RCNN were competitive in terms of per-
formance. When IoU threshold is increased to 0.8, a significant drop
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(a) Positive formula
detection

(b) Correct figure
detection

(c) Figures not cor-
rectly detected

(d) Formulas mis-
classification

Figure 3.7: Analysis of results generated by FFD detector using Faster-Region
Based Convolutional Neural Networks (RCNN) on FFD dataset,
red colour annotates ground truth and false negatives (FN), green
colour highlights true positives (TP), cyan annotates false positive
(FP) for figures and blue colour represents false positive (FP) for
formulas.

(a) Positive formula
detection

(b) Correct figure
detection

(c) Figures not cor-
rectly detected

(d) Formula mis-
classification

Figure 3.8: Analysis of results generated by FFD detector using mask-RCNN

on FFD dataset, red colour annotates ground truth and false neg-
atives (FN), green colour highlights true positives (TP), cyan an-
notates false positive (FP) for figures and blue colour represents
false positive (FP) for formulas.
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Table 3.4: Comparison of Fi-fo Detector with existing state-of-the-art (SotA)
methods using ICDAR2017-POD annotations both for training and
testing.

ICDAR2017-POD

Method Class
IoU = 0.6 IoU = 0.8

Precison Recall f1-score AP Precision Recall f1-score AP

NLPR-PAL [72]
Formula 0.901 0.929 0.915 0.839 0.888 0.916 0.902 0.816
Figure 0.920 0.933 0.927 0.849 0.892 0.904 0.898 0.805

Li et al. [140]
Formula 0.93 0.953 0.942 0.878 0.921 0.944 0.932 0.863
Figure 0.948 0.940 0.944 0.896 0.921 0.913 0.917 0.85

Deformable
Faster-RCNN

Formula 0.882 0.738 0.803 0.660 0.638 0.534 0.582 0.337
Figure 0.929 0.872 0.899 0.660 0.855 0.802 0.828 0.720

Deformable RFCN
Formula 0.914 0.918 0.916 0.915 0.832 0.836 0.834 0.826
Figure 0.904 0.920 0.912 0.903 0.86 0.875 0.867 0.864

Fi-fo detector
Formula 0.909 0.927 0.918 0.911 0.856 0.878 0.867 0.854
Figure 0.918 0.883 0.90 0.894 0.871 0.838 0.854 0.861

in numbers for formulas detection using faster-RCNN is observed in
comparison to mask-RCNN. On the IoU threshold of 0.6, mask-RCNN

recognized figures with a precision of 0.894 against the recall of 0.918,
and f1-score is computed as 0.905. Formulas are detected with pre-
cision, recall, and f1-score of 0.894, 0.921, and 0.907, respectively. On
the IoU threshold of 0.8, figures and formulas are detected with the
f1-score of 0.816 and 0.811, respectively.

3.5.2 Results of Fi-fo Detector approach

Detailed results of the Fi-fo detector are furnished in the Table 3.4 Fi-fo detector
provides SotA results
for figure & formula
detection

and Table 3.5. We evaluate the deformable variants of Faster-RCNN,
RFCN, and FPN using both the original and updated annotations of
ICDAR2017-POD dataset. Feature Pyramid Network (FPN) forms the ba-
sis of the Fi-fo detector as it outperformed other deformable variants
for object detection problems, owing to its multi-scale detection ca-
pabilities. On IoU threshold of 0.6, formulas were detected with the
precision and recall of 0.909 and 0.927, along with an f1-score and
Average Precision (AP) of 0.918 and 0.911, respectively. Once the IoU

threshold was increased to 0.8, precision and recall dropped to 0.856
and 0.878 with f1-score and AP of 0.867 and 0.854, respectively. Con-
sidering figures, the obtained numbers were 0.918, 0.883, 0.90, and
0.894 in terms of precision, recall, f1-score, and AP, respectively. For
the IoU threshold of 0.8, precision, recall, and f1-score went down
to 0.871, 0.838, and 0.854, respectively. Using ICDAR2017-POD dataset,
visual results looked convincing, as both formulas and figures were
detected properly, but numbers were surprisingly not up to the ex-
pectations keeping in mind the potential of FPN implemented with
deformable convolution, as shown in Table 3.4.

Results produced by Fi-fo detector on ICDAR2017-POD (corrected) out-
performed the existing SotA system by a large margin. On IoU thresh-
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Table 3.5: Comparison of Fi-fo Detector with existing SotA

methods using ICDAR2017-POD in training and
ICDAR2017-POD (corrected) for testing.

Trained:ICDAR2017-POD, Tested:ICDAR2017-POD (corrected)

Method Class
IoU = 0.6 IoU = 0.8

Precison Recall f1-score AP Precision Recall f1-score AP

Li et al. [140]
Formula 0.935 0.331 0.489 0.312 0.877 0.310 0.459 0.274
Figure 0.918 0.292 0.443 0.271 0.888 0.283 0.429 0.253

Fi-fo detector
Formula 0.949 0.945 0.947 0.967 0.897 0.893 0.895 0.941
Figure 0.930 0.932 0.931 0.97 0.899 0.900 0.899 0.952

old of 0.6, Fi-fo detector achieved the f1-score of 0.947 with the Aver-
age Precision (AP) of 0.967 in comparison to Li et al. [140] system’s
f1-score of 0.489 and AP of 0.312, for formula detection. Similarly,Comparison of Fi-fo

detector with
existing SotA

approaches

there is an enormous difference in the results of figure detection pro-
duced by Fi-fo detector and Li et al. [140] on ICDAR2017-POD (corrected).
Fi-fo detector detected the figures with f1-score of 0.931, whereas Li
et al. methods results in f1-score of 0.271, as shown in Table 3.5. On
IoU threshold of 0.8, AP for Li et al. was computed to 0.253 and 0.274
in comparison to Fi-fo detector’s Average Precision (AP) score of 0.941
and 0.952 for figure and formula detection, respectively.

3.5.3 Ablation Study

We present an ablation study, which covers the potential of Fi-foFi-fo image
representation helps

DNNs learn better
image representation compared to raw image representation, along
with an analysis of deformable networks concerning non-deformable
counterparts. Starting with Red, Green, Blue (RGB) images, we no-
ticed the problems in annotations. Fixing the annotations resulted
in minor improvements but was still not impressive, as highlighted
in Table 3.6, which took us to image information processing, which
resulted in significant improvement in performance. Moreover, we
present a comparative analysis to establish the utility and effective-
ness of the ICDAR2017-POD (corrected) dataset with the existing state-
of-the-art (SotA) systems.

To further validate the performance and potential of Fi-fo detector,Fi-fo image
representation in
combination with
deformable neural

networks

the proposed ablation study also covers a comparative analysis of the
potential of deformable and non-deformable neural networks. We ob-
served a clear performance boost from raw image representation to
Fi-fo image representation and non-deformable neural networks to de-
formable neural networks; results are furnished in Table 3.6. The SotA

performance is achieved using the combination of Fi-fo image repre-
sentation with deformable neural networks. Using an IoU threshold of
0.6 as per ICDAR2017-POD competition standards, we achieved SotA for
formula detection with a precision of 0.957 and recall of 0.952 which
translates to f1-score of 0.954. Results with an IoU of 0.8 are 0.913,
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(a) Figure & Formula
Detection

(b) Grid figure Detec-
tion

(c) Misclassification
of figures

(d) Misclassification
for formulas

Figure 3.9: Analysis of results generated by Fi-fo Detector using
ICDAR2017-POD (corrected) dataset, green colour highlights
true positives (TP), blue colour signifies false positive (FP) for
formulas, magenta color flags false positive (FP) for figures, and
red color annotates false negatives (FN) for both classes.

Table 3.6: An ablation study on the performance of Fi-fo detector using raw
image representation, Fi-fo image representation, using non de-
formable Feature Pyramid Network (FPN), and deformable FPN,
both for ICDAR2017-POD and ICDAR2017-POD (corrected).

ICDAR2017-POD

Method
Image

Representation
Class

IoU = 0.6 IoU = 0.8
Precison Recall f1-score AP Precision Recall f1-score AP

Fi-fo detector
Deformable

Raw
Formula 0.867 0.918 0.892 0.893 0.780 0.826 0.802 0.780
Figure 0.860 0.869 0.864 0.847 0.818 0.827 0.822 0.799

Fi-fo detector
Non Deformable

Fi-fo
Formula 0.867 0.874 0.871 0.917 0.712 0.694 0.703 0.837
Figure 0.856 0.821 0.838 0.929 0.801 0.739 0.769 0.889

Fi-fo detector
Deformable

Fi-fo
Formula 0.909 0.927 0.918 0.911 0.856 0.878 0.867 0.854
Figure 0.918 0.883 0.90 0.894 0.871 0.838 0.854 0.861

ICDAR2017-POD (corrected)
Fi-fo detector
Deformable

Raw
Formula 0.949 0.945 0.947 0.973 0.897 0.893 0.895 0.967
Figure 0.930 0.932 0.931 0.971 0.897 0.90 0.899 0.959

Fi-fo detector
Non Deformable

Fi-fo
Formula 0.910 0.927 0.918 0.953 0.860 0.877 0.868 0.928
Figure 0.879 0.822 0.850 0.948 0.847 0.792 0.819 0.958

Fi-fo detector
Deformable

Fi-fo
Formula 0.957 0.952 0.954 0.949 0.913 0.908 0.910 0.898
Figure 0.931 0.913 0.922 0.905 0.901 0.885 0.893 0.870

0.908, and 0.91 in terms of precision, recall, and f1-score for formula
detection, respectively. In figure detection, at IoU threshold of 0.6, Fi-fo

detector achieved a precision of 0.931, recall of 0.913 along with an
f1-score of 0.905. Setting the IoU threshold to 0.8 translated into a
precision of 0.901, recall of 0.885, and f1-score of 0.893. In terms of
Average Precision (AP), Fi-fo detector outperformed other methods by
a significant margin. At IoU=0.6, Average Precision (AP) of figure and
formula detection was found to be 0.949 and 0.905, while at IoU=0.8,
the AP of 0.898 and 0.870 for formulas and figures was achieved, re-
spectively.



50 content classification :off-line modality

3.5.4 Discussions

The proposed approaches FFD and Fi-fo detector in this chapter present
promising results and encourage the need for end-to-end and data-
driven approaches for POD problem. Both approaches establish the
connotation of object detection deep models for document images. In
the case of the FFD approach, a comprehensive and detailed evalu-
ation is presented using different object detection networks across
multiple datasets. Results furnished in Section 3.5.1 demonstrateEnd-to-end and

data-driven
approaches perform

better for POD
problem

the convergence strength of FFD, as it achieves competitive results
on the FFD dataset in comparison to the ICDAR2017-POD (about three
times larger) dataset, keeping in mind DNNs are data-driven methods.
Moreover, FFD approach can be adapted to any real-world scenario
for figure and formulas detection with minimal efforts, such as re-
training the proposed with a small number of examples enabling the
system adoption to multiple scenarios, validated by results furnished
in Section 3.5.1. The results of FFD approach are further improved by
Fi-fo detector approach, as discussed in Section 3.5.2 and Section 3.5.3,
which is still state-of-the-art (SotA) approach for figure and formula
detection from document images upto the best of authors knowledge.
In this section, we will discuss the merits and demerits of Fi-fo detec-
tor further.

As exhibited in Figure 3.10, Fi-fo detector works fine, correctlyStrengths of Fi-fo
detector detecting the page objects, i.e., figures and formulas in particular,

but the same is not reflected in terms of numbers. Upon investigat-
ing the results, we discovered the irregularities and inconsistencies
in the original annotations available for the ICDAR2017-POD dataset.
There were clear examples of missing annotations for page objects,
as the case in Figure 3.10b- where annotations for formulas were
missing. Confusions between figure and table annotations are briefly
shown in Figure 3.10d. Figure 3.10c establishes the case of inconsis-
tent labelling for figure annotations. There were examples of over-
segmented ground truth where captions or text lines were annotated
along with a figure or table, as shown in Figure 3.5c. These inconsis-
tencies have been discussed in detail in Section 3.4.1.2.

Problems in the original annotations of the ICDAR2017-POD datasetData-driven
approaches have a

clear edge over
heuristic-defined

methods

led us to update the annotations, which included removing discrepan-
cies, confusion, and adding missing labels. After addressing the prob-
lems found in ICDAR2017-POD dataset, a clean dataset is presented as
ICDAR2017-POD (corrected). To establish a fair comparison with exist-
ing SotA methods, it is necessary to present their results on ICDAR2017-POD

(corrected). As Li et al. [140] method is not an end-to-end system, it
combines trainable and heuristic-based parts. Upon request, the au-
thors [140] excused themselves from providing us with their system
because of its complexities but provided the result files on ICDAR2017-POD
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(a) Correct detection (b) Formula labels
missing

(c) Inconsistent
labelling

(d) Figure label miss-
ing

Figure 3.10: Fi-fo detector evaluation results on ICDAR2017-POD dataset with
original annotations (green color represents annotated objects;
while red color highlights the detection by Fi-fo detector but
missing in original annotations.

dataset for comparison. It limits the scope of comparison on the cor-
rected dataset, as both the system and results on a corrected dataset
from the Li et al. [140] were not accessible. So, in the given circum-
stances, we opted for the best possible way to establish a fair com-
parison with the existing SotA system. We trained Fi-fo detector using
ICDAR2017-POD dataset. At the same time, evaluation is performed on
ICDAR2017-POD (corrected) for both Fi-fo detector, and Li et al. [140],
and the results are furnished in Table 3.5. One of the potential reasons
for a significant decline in the performance of the Li et al. method
on updated annotations might be its inability as an end-to-end sys-
tem. Since the dataset had inconsistencies, SotA methods had to lever-
age hand-defined heuristics, which catered for these inconsistencies.
Upon removal of these inconsistencies from the dataset, the heuris-
tics themselves had to be adapted and updated, which is a major
shortcoming of heuristics-based systems. Given results establish the
weakness of the existing SotA system both on the ICDAR2017-POD as
well as the ICDAR2017-POD (corrected) dataset. Using ICDAR2017-POD,
their system failed to detect and highlight the missing or wrong la-
bels. Similarly, it failed to capitalize on the ICDAR2017-POD (corrected).
It is worth emphasizing again that all the reported results on the orig-
inal and updated annotations in this chapter are generated using the
official evaluation code released by organizers of the ICDAR2017-POD

competition [73].

Despite reporting significantly high metric scores, Li et al. [140] Fi-fo detector has
clear edge over
existing SotA method

method could not find any inconsistencies in the ICDAR2017-POD dataset.
Their approach relies heavily on heuristics and pre/post-processing,
specifically tuned to the inconsistencies in the dataset. This is one
of the primary reasons why purely data-driven techniques were not
found to be very effective for this dataset compared to hand-defined
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heuristics. This provides a clear edge to Fi-fo detector over Li et al. [140]
method, the existing state-of-the-art (SotA) method for Page Object De-
tection (POD), in terms of generalization. Fi-fo Detector demonstrated
to be a generic network by pointing out discrepancies in the ICDAR2017-POD

dataset, highlighted in Figure 3.10. Secondly, Fi-fo detector does not
rely on any pre/post-processing, rather simple image transforms pro-
viding a clear edge not only in terms of efficiency and computation
costs but also delivering the SotA results, as shown in Figure 3.9a &
Figure 3.9b. We also report results from the ablation study where we
removed components from the Fi-fo detector to identify the contribu-
tion of the individual components to the system.

The obtained results highlight the superiority of the deformableDeformable
networks results in
better performance

for POD from
document images

model family for Page Object Detection (POD) task, where the models
either outperformed or achieved performance on par with heuristic-
based methods. Moreover, it is also demonstrated that the Fi-fo de-
tector shows progressive performance moving from ICDAR2017-POD

to ICDAR2017-POD (corrected) at every subsequent step. In contrast,
existing SotA failed to do so, as shown in the Table 3.6. Since Fi-fo de-
tector is a data-driven approach, significant improvements in perfor-
mance could be achieved by increasing the amount of training data.
Results can further be boosted by post-processing particularly for the
detected figure regions using Computer Vision (CV) approaches, con-
sidering the case of Figure 3.9c into account.

In this chapter we proposed multiple approaches to detect fig-Fi-fo detector still
remains SotA for

figure & formula
detection

ures and formulas from document images using a novel combination
of Fi-fo image representation and DNNs. The SotAs results made part
in this chapter establish the utility of Fi-fo image representations to
complement the performance of Deep Learning (DL) models. We did
fine-tune the annotations of ICDAR2017-POD and make them publicly
available as ICDAR2017-POD (corrected) along with a complete newly
curated FFD dataset to demonstrate the generic behaviour of the pro-
posed approaches. Moreover, few approaches [95, 245] have been pre-
sented after the publication of Fi-fo detector, but Fi-fo detector still
remains the state-of-the-art (SotA) performer in detecting page objects
from document images, figures and formulas in particular at the time
of writing this thesis.
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C O N T E N T C L A S S I F I C AT I O N : O N L I N E M O D A L I T Y

During the 21st century, Machine Learning (ML) and Deep Neural Importance of
classifying of
writing into
multiple types

Networks (DNNs) showed a phenomenal stride in various fields of
life. These methods are widely adopted to use technological break-
throughs to innovate common practices in formal education. Using
Artificial Intelligence (AI) methods in formal education can lead to
better data analysis and foresight to assist and improve learning and
teaching experiences. Writing is one of the fundamental classroom ac-
tivities, and it is very important to investigate the writing behaviour
of the learners to evaluate the learning process. Students in general,
and Science, Technology, Engineering, and Mathematics (STEM) ed-
ucation in particular, are required to understand and express their
knowledge skills to interpret complex relationships using different
writing types such as text, formulas, and drawing plots/graphs. Exist-
ing systems such as Optical Character Recognitions (OCRs) and other
handwriting recognition tools commonly used to process handwrit-
ing information work well with a single type of writing, such as text
or math, but they fail when input is a combination of different writ-
ing types. This dissertation chapter focuses on the methods to classify
writing into text, mathematical expressions, and plot/graph classes.
The proposed methods can serve as a preliminary step for handwrit-
ing recognizers. Furthermore, the proposed methods can be used to
analyse the writing behaviour of students to look into the individual’s
progress and to provide customized feedback based on the individ-
ual’s strengths and weaknesses.

The major contribution of this chapter to the classification of online
written sequences is highlighted as follows:

• Curation of a novel online handwriting dataset "onTabWriter"
captured using a digital/sensor pen (Apple pencil) and digi-
tal/sensor screen (iPad). The captured data are continuous streams
of multi-dimensional points analysed and processed to classify
handwritten sequences into plain text, mathematical expressions,
and plots/graphs.

• Presentation of a new feature set for online handwritten se-
quence classification. The proposed feature set consists of 49
features incorporating the writing style, shape, size, speed, and
variations factor. To the best of the authors’ knowledge, the pre-
sented feature set has not previously been used for handwriting
classification.
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• Benchmarking the proposed feature set using sense the pen
dataset on various Machine Learning (ML) and Deep Learn-
ing (DL) classifiers along with the comprehensive comparisons
with existing state-of-the-art (SotA) methods for online hand-
written sequence classification.

• An ablation study is performed to examine the impact and per-
formance of the proposed feature set compared to the existing
feature sets on multiple evaluation metrics for online handwrit-
ten sequence classification.

• Evaluation of using context information in combination with ML

methods and its impact on online handwriting classification.

The rest of the chapter is structured as follows. Section 4.1 intro-Chapter outline

duces the readers of this to the problem of online handwriting clas-
sification, challenges and recent advances in the domain. Section 4.2
presents an overview of recent work and state-of-the-art (SotA) meth-
ods for the problem of online handwriting classification. In Section 4.3,
precise information about the presented feature set and details about
ML and DL classifiers are covered. Section 4.4 covers the methodol-
ogy of collecting the database and presents salient features of data,
followed by evaluation protocol and parameters to tune the ML and
DL classifiers for optimal performance. Results are furnished and dis-
cussed in Section 4.5, which also covers the strengths and weaknesses
of the presented feature set along with a comprehensive ablation
study on the impact of features included in the proposed feature set.
A detailed comparison of the proposed feature set with the existing
feature sets is also part of Section 4.5.
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The author of this thesis has published the content, figures, and ta-
bles included in this chapter in the following publications. The author
of this dissertation has written all the text taken from the mentioned
publications and the text in this chapter itself. More details about the
publications included in this chapter are as follows:

• Younas J. et el., What am I Writing: Classification of online hand-
written sequences. In: Intelligent Environments, 2018 [271]

• Younas J. et al., Sense the pen: Classification of online hand-
written sequences (text, mathematical expression, plot/graph).
Expert Systems with Applications, 172:114588, 2021 [272]
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4.1 motivation

We live in a digital age where different sensors or sensor-based de-Sensor-based
systems result in

enhanced
interactions while

performing routine
tasks

vices surround us. Display and sensor technologies, when combined,
provide new ways for users to interact with their surroundings to
perform routine activities. For handwriting, in particular, the increas-
ing influence of digital devices (e.g., digital ink and mobile devices
like cellphones, iPad, tablets, etc.) has attracted the research commu-
nity’s attention [61, 83, 104, 127, 240, 266]. Use of these devices paved
the way for writing-behaviour analysis like handwriting classification
(classifying the handwritten samples/sequences into text, graphics,
or formulas, etc.) [15, 53, 107, 271], handwriting recognition (recog-
nizing what is written - Optical Character Recognition (OCR)) [146,
147, 156], and writer identification(identifying the writer of handwrit-
ten text/signature) [122, 148, 205, 213].

Handwriting is broadly categorized as (a) offline and (b) online.Handwriting
analysis is broadly

categorized into two
types

Offline handwriting is usually produced on paper with a normal ink
pen. In offline handwriting, only spatial information is stored, and
temporal information is not available. So, offline handwriting pro-
cessing systems are provided with handwriting information in the
form of images. Writing on digital displays or writing with digital
pens on special/ordinary paper is termed online handwriting. In
online handwriting, pen movements are recorded as a continuous
stream of points; therefore, temporal information about handwriting
is also available with spatial information. Online handwriting is pro-
cessed in the form of time-series sequences. Note that every person
has a specific writing style, which may vary when they write differ-
ent modalities, like plain text, mathematical expression, plots/graphs,
etc. This makes handwriting classification, whether online or offline,
quite challenging and interesting.

Handwriting classification is important from a historical perspec-Historical
perspective of
handwriting
classification

tive as well. During the first half of the 20th century, handwriting
classification systems were developed as a biometric tool. For ex-
ample, Milwauke police [12] and Nottingham police [167] adopted
handwriting classification systems to assist in the criminal investiga-
tion process and to keep records of citizens. Furthermore, German
police used handwriting as a biometric feature during the second
world war [167]. Till the 90’s, mostly handwritten templates were
used for writing classification and writer identification based on a
predefined feature set [12, 226]. Later, traditional handwriting devices
are coupled with sensors to broaden the research scope, particularly
for online handwriting, and commercial systems for online handwrit-
ing analysis (classification and recognition) were reported [53, 206,
271].
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Today, handwriting classification systems find applications in edu-
cation, banking, postal services, and forensic science. For example, Applications of

handwriting
classification are
widespread

online handwriting classification systems serve as a basis to anal-
yse the performance of students while attempting solutions to dif-
ferent tasks (writing mathematical expressions, plain text, or plotting
graphs) [61, 104, 127, 240, 266]. Similarly, in the banking sector and
forensic science, automatic handwriting classification systems can fa-
cilitate segmentation/extraction of different modalities (like hand-
written text or mathematical expressions) from documents which could
further facilitate experts in performing document verification [58, 152,
155, 217]. Moreover, handwriting classification can serve as an im-
portant step to improve the performance of handwriting recognition
systems by classifying data first and then passing it to handwriting
recognition systems.

This work focuses on classifying the online handwritten sequences Looking into the
type of handwritingto automatically look into the type of writing before any subsequent

processing to address the limitations of existing systems. First, we col-
lect a novel database for online handwriting classification and recog-
nition recorded. The collected data is processed into sequences and
annotated with labels as plain text, mathematical expressions, and
plots/graphs. Each sequence is transformed into the 49-dimensional
vector using a novel feature set proposed in this work for online hand-
written sequence classification problems in particular and can also be
adapted for other online handwriting processing methods. We also
demonstrate its significance in developing a novel approach to clas-
sify handwritten sequences in plain text, mathematical expressions,
and plots/graphs. These feature vectors train the ML and DL classi-
fiers to classify the input sequences into text, math, and plot/graph
class. Classification of handwriting type enables the teachers with
deeper insights into students’ progress during the exposition of com-
plex tasks and concepts, which further helps them provide person-
alised feedback based on individual weaknesses and strengths.

We note that a few datasets, originally collected for online hand- Significance of
collected datasetwriting recognition, have been used for handwriting classification [108,

146]. These datasets, however, are either better suited to recognition,
e.g., IM-OnDB - collected as handwritten notes of English text on
a whiteboard, or for mode detection, i.e., identifying handwritten
strokes at every point in document creation (e.g., IM-OnDo). The
dataset presented in this chapter contains handwritten sequences that
could be readily used for online classification of handwritten modali-
ties into text, mathematical expressions, and/or plots/graphs.
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4.2 related work

This section presents a historical perspective and a detailed overview
of the recent developments in online handwriting classification, in-
cluding features, datasets, and methodologies with their strengths
and weaknesses. Smith et al. [226] presented a feature set to classifyFeatures play a vital

role in handwriting
classification

handwriting for the first time to the best of the author’s knowledge
in 1954. The presented feature set is a combination of developed and
unconscious behavior: speed, size, slant, and spacing are the four fea-
tures to incorporate the developed factors and handwriting, whereas
pressure and form (defined as idiosyncrasies of handwriting) are
the two features from unconscious behaviour. In 1959, Livingston et
al. [12] presented a handwriting and pen-printing classification sys-
tem to identify law violators. They highlighted 12 factors of printed
style lettering done with pencils, pens or other writing instruments,
which can be used to classify an individual’s handwriting.

Bouletreau et al. [26] presented a new family of synthetic param-Synthetic
parameters for

handwriting
classification

eters to classify handwriting into different families. The proposed
synthetic parameters are based on the fractal analysis of writing be-
haviours. The proposed fractal behaviours of an individual’s hand-
writing are appearance, implication, rapidity, juxtaposition, and di-
rection. The proposed approach serves as a preliminary step in hand-
writing recognition.

Delaye et al. [53] presented a flexible framework to segment onlineA flexible framework
for online

handwriting
segmentation

handwritten documents, i.e., text lines, non-text objects, and mathe-
matical symbols. Their proposed approach is based on single-linkage
agglomerate clustering built upon a feature set for pairwise distance
definition. They also present a combination of features to improve
online handwritten document segmentation.

Schomaker et al. [208] present a ML-based approach to identifyWriter classification
using Kohonen

network
and classify the writers based on their writing style. The proposed
approach records the pen-tip displacement data, which then, based
on velocity, is segmented into strokes. A 1-d feature vector represents
each stroke. These feature vectors are used to train the Kohonen net-
work to classify writers. They used discriminant analysis and cluster-
ing techniques to classify writing styles into different families.

Bahlmann et al. [15] present a new Gaussian Dynamic Time Warp-Handwriting
classification based
on discrimination

ing (GDTW) kernel by combining State Vector Machines (SVMs) and
Dynamic Time Warping (DTW) for the classification of online hand-
writing. The proposed approach creates class boundaries based on
discrimination rather than relying on modeling assumptions. They
evaluated their approach on the UNIPEN handwriting dataset [91].
Ahmad et al. [2] presented the development of a hybrid model for
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online handwriting classification. Their system can classify digits,
lower-case, and upper-case letters using State Vector Machines (SVMs)
withRadial Basis Function (RBF) kernel. They reported results on UNIPEN
and IRONOFF [244] handwriting datasets.

Delaye et al. [52] presented an automatic handwritten document Text/non-text
classification using
CRFs

segmentation method to extract graphical objects from online hand-
written documents. Their method is based on hierarchical Condi-
tional Random Fields (CRFs). The proposed methodology is evalu-
ated using the IAM-onDo dataset [108]. Delaye et al. [56] presented
a text/non-text classification system based on CRFs for online hand-
written documents. They first calculated the CRFs for text and non-text
strokes, then integrated context information to improve the classifica-
tion results.

Phan et al. [185] presented a Deep Learning (DL) based classifier
for classifying online handwritten documents into text and non-text
parts. They used Recurrent Neural Networks (RNNs) and Long-Short
Term Memory (LSTM) networks to evaluate their system on the Japanese
ink documents database Kondate [160] and IAM-OnDo database. Inatani Using RNNs & LSTM

for handwritten
document
classification

et al. [106] present a comparison of Markov Random Fields (MRFs)
and Conditional Random Fields (CRFs) to separate text versus non-
text strokes from online handwriting Japanese documents. The pro-
posed approach also evaluates the impact of context information on
the Kondate Japanese ink dataset.

Weber et al. [206] presented a system to classify ink traces into Classification of ink
traces for mode
detection

either text or graphics for mode detection. They also presented a
set of features for online handwriting classification and recognition
tasks. They benchmark their presented feature set using Machine
Learning (ML) classifiers on the IAM-OnDo database. Indermuele et
al. [107] presented a Bidirectional Long-Short Term Memory (BLSTM)
based neural network approach for text and non-text stroke detec-
tion. Individual strokes are transformed into feature vectors to train
and test the presented model. They also reported results on the IAM-
OnDo database.

In this section, we will also introduce the readers to the publicly Datasets for online
handwriting
analysis

available datasets for online handwriting analysis, including hand-
writing recognition, handwriting mode detection, and handwriting
classification. IAM-onDo dataset [108] is the widely used and most
popular publicly available dataset for mode detection. With the in-
troduction of the IAM-onDo dataset, text and non-text classification
tasks got the attention of the research community, as this database
contains contents with formal and informal text, diagrams, tables,
drawings, and figures. IAM-onDo dataset content is collected from
189 writers in the form of 941 online handwritten documents. Kon-



60 content classification : online modality

F
e
a
tu

re
 E

x
tra

c
to

r

C
la

s
s
ifie

r

feature vectorinput
output

text, cal, plot

data-stream {f1,f2,f3,...,fn}{f1,f2,f3,...,fn}

0
10

20
30

40
50 20

10
0

10
20

30
40

50

15

10

5

0

5

10

15

Feature Representation in 3D text

cal

plot

Figure 4.1: System overview

date is another publicly available dataset of online handwritten pat-
terns of mixed objects such as text, figures, tables, maps, and dia-
grams in the Japanese language. The dataset contains the handwrit-
ing traces with ground-truth tags from 100 writers.

Ott et al. [175] presented a set of new datasets for online hand-Multiple datasets for
online handwriting

analysis using
sensor pen

writing processing, such as handwriting recognition (character recog-
nition), mathematical expression recognition (digit recognition), and
sequence classification (word recognition). These datasets preserve
the natural writing behaviour of the writers as the data are collected
using a sensor pen with normal/traditional paper to write on. The
proposed datasets can be used for various tasks in the online hand-
writing domain.

4.3 methodology

This section presents a detailed overview of data collection, whichOverview of
proposed

methodology
later contributed to the compilation of the dataset. Feature extractors
transform input sequences into feature vectors, which are then used
to train the machine-learning classifiers. An overview of the method-
ology followed in the current work is shown in Figure 4.1.

4.3.1 Data Collection and Pre-processing

The data collection process starts with an iOS-based application forData is collected by
using Apple pencil

& iPad
iPads, which provides the functions for creating new documents, stor-
ing data, managing, and exporting existing documents to other de-
vices for further processing. Document templates are used to create
new documents, which predefine the document’s structure. Each new
document is assigned a unique ID, thus allowing multiple copies of a
single template. Tasks are distributed along the pages depending on
the nature of the task (text, mathematical expressions, or plots), allow-
ing users to navigate back and forth. Apple pencil is used to perform
these tasks, as shown in Figure 6.4. Writing data is recorded at a rate
of 240 points per second. These points contain information about the
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(a) Experimental
set-up.

(b) Processed output data.

Figure 4.2: Data collection set-up

pencil’s location on the touch-screen, the force of the touch, altitude
& azimuth angle, and time1. The writing of a user is rendered in view
by linear interpolation between successive points. There is an option
to use the eraser, which enables the user to undo writing mistakes.

We also discuss steps to refine the collected data into a proper Pre-processing
transforms raw
sensor data into
meaningful
information

dataset for further use by the research community without reinvent-
ing the wheel. When a person writes, data are stored as a continuous
stream of points in a .csv file. In addition to handwritten sequences,
data contain document identifiers and page identifiers. So, prepro-
cessing was done to cleanse the data, segment it into strokes and
sequences, and remove the structural information of the document
and pages. Every segmented sequence represents a single word or
expression. Stroke is the term used in handwriting processing to re-
fer to the data written and collected during a single pen-down and
pen-up action. Successive strokes are gathered to form a sequence,
which refers to a piece of meaningful information such as a word,
mathematical expression, or plot/graph. The sequences may vary in
length and compose of single or multiple strokes. After preprocess-
ing, the data look the same as was written on the iPad, as shown in
Figure 4.2b.

4.3.2 Feature Extractor

Different features have been presented in the literature [16, 147, 148, Features aid ML
methods to perform
better

176] for handwriting recognition and classification. We present a new
feature set, which includes some of the existing features along with
a variety of new features to interpret vast handwriting behaviours
and writing types into meaningful information for Artificial Intelli-
gence (AI) classifiers. A detailed comparison of existing and newly
proposed features is presented in Table 4.1. The proposed feature set

1 See https://developer.apple.com/documentation/uikit/uiview documentation
of the UIView class

https://developer.apple.com/documentation/uikit/uiview
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is used to transform online handwritten sequences into feature vec-
tors. Sequences are recorded at the rate of 240Hz, where at every
point, pi is recorded with information of time-stamped (x,y) coordi-
nates, angles, and force, defined as pi = (xi,yi, fi, ....., ti).

A stroke starts with the pen-down movement of the Apple pen-Transforming data
into features cil writing on the iPad and ends with the next pen-up movement.

Thus, a stroke is defined by a sequence of points, si = [p1,p2, ....,pn],
for a time interval, ti = [t1, t2, ....., tn], when the pencil-tip is in con-
tact with iPad, whereas a sequence refers to a meaningful expression.
A sequence can be composed of single or multiple strokes, seqi =

[s1, s2, s3, ...., sn]. Every sequence is considered an independent entity
and is transformed into feature vectors, vi = [f1i , f2i , f3i , ...., fni ] ∈ Rf,
which were later used to train ML and DL classifiers. Our presented
feature set consists of the following 49 features contributing to achiev-
ing state-of-the-art (SotA) performance.

• The sequence length, Ls (1), is the total length of strokes present
in a sequence.

Ls =

n∑
i=1

len(si) (4.1)

• Time of a sequence, Ts (2), total time in seconds taken to com-
plete a sequence.

Ts = [tn − t1]s (4.2)

• Sequence displacement, ∆s (3), the shortest possible distance in
pixels of pencil movement for a given segmented sequence.

∆s =
√
∆x2 +∆y2 (4.3)

• Sequence distance, D (4), the sum of displacement of consecu-
tive points present in a sequence.

• Sequence height and width, (5), (6), sequence height is defined
by the difference of the maximum and minimum value of y-
values present in the sequence, height = max[yi] −min[yi],
while sequence width is the difference of x-values, width =

max[xi] −min[xi].

• Sequence slope or gradient, m (7), slope or gradient is a mea-
sure of steepness and direction of the line.

m =
∆y

∆x
(4.4)

• Speed (8), the rate at which a given sequence is produced.

• Velocity (9), rate of change of the displacement for a given se-
quence.
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• Strokes count (10), number of times the pen made contact with
the screen to complete a sequence.

• Average stroke distance (11), average stroke distance is calcu-
lated by averaging the total distance with the number of strokes
in sequence.

• Maximum and minimum distance of stroke (12), (13), a maxi-
mum and minimum distance of strokes, which are present in a
given sequence.

• Maximum and minimum stroke length (14), (15), maximum and
minimum length of strokes that are present in a given sequence.

• Maximum and minimum stroke time (16), (17), the maximum
time taken to produce a stroke in sequence as well as the mini-
mum time for a stroke.

• Mean stroke length (18), average length of strokes present in a
sequence.

• Mean stroke time (19), average time taken to produce strokes of
a sequence.

• Mean slope (20), average slope of strokes present in a sequence.

• Vicinity aspect (21), the aspect of the trajectory of a given se-
quence.

∆y−∆x

∆y+∆x
(4.5)

• Vicinity curliness (22), the length of given sequence divided
by max(∆x,∆y).

• Linearity (23), we define the linearity of a sequence by the aver-
age squared distance of strokes present in the sequence to the
straight line.

• Maximum and a minimum of force (24), (25), maximum and
minimum of the pen force used to produce a given sequence.

• Range of force (26), the difference between maximum and min-
imum force values for a given sequence.

• Mean force (27), average force applied for a given sequence.

• Variance and standard deviation of force (28), (29).

• Variance and standard deviation (30), (31) of the rate of change
during segmented sequence ∆t.

• x,y-skew (32), (33), skewness is a measure of the amount and
direction of departure from horizontal symmetry for a given
sequence.
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Table 4.1: Overview of the proposed feature set.
Liwicki et al. [146] Additional features (Phase-I) Additional features (Phase-II)
Speed Sequence length Sequence distance
Vicinity aspect Sequence time Sequence height & width
Vicinity curliness Sequence displacement Stroke count
Slope Velocity Average stroke distance
Linearity Force range Max. & Min. stroke distance

Mean force Max. & Min. stroke length
Force variance Max. & Min. stroke time
Variance & Std. ∆t Mean stroke length
x,y skew Mean stroke time
x,y kurtosis Mean slope
Variance & Std. ∆x,∆y Max. & Min. force
Variance & Std. of direction angles Force std.
Variance & Std. of slope Variance & Std. x-values

Variance & Std. y-values

• x,y-kurtosis (34), (35), kurtosis is a measure of height and sharp-
ness of the central peak for a given sequence.

• Variance of ∆x, ∆y (36), (37), the rate of change of pixels in both
horizontal and vertical direction.

• Variance and standard deviation (38), (39) of x-values.

• Variance and standard deviation (40), (41) of y-values.

• Standard deviation of ∆x, ∆y (42), (43).

• Variance of direction angles of a given sequence (44), (45), mea-
sure of variance sin and cosine angles between consecutive
pixel for a given sequence.

• Standard deviation of direction angles (46), (47).

• Variance and standard deviation of gradient of a given sequence (48), (49).

4.3.3 Classifiers

This section covers a detailed analysis of ML and DL classifiers usedMultiple bagging
and boosting

classifiers are used
for evaluation. We used different classifiers based on bagging and
boosting algorithms. Bagging algorithms are simple ensemble tech-
niques that merge various classification models using voting strate-
gies like average voting, majority voting, etc. Observations are chosen
differently for individual models using the bootstrap process, which
helps achieve better generalization. Bagging classifiers are elaborated
generically in Figure 4.3. On the other hand, boosting algorithms are
ensemble techniques that build models using a sequential learning
process where observations are chosen based on classification error.
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Figure 4.3: Bagging classifier

This results in better performance at every subsequent step. The fol-
lowing subsections explain various classification models used in this
ablation study.

4.3.3.1 Random Forest (RF)

Random Forest (RF) is considered a very effective Machine Learning Uses Decision
Trees (DTs) &
random sub-samples
to learn

(ML) algorithm for predictions. RF is a meta estimator [30] that follows
the bagging technique. It uses Decision Trees (DTs) as a basic building
block. Multiple DTs are combined to form a forest named RF. Each DT

in the forest uses random sub-samples of training data and is built
independently. Distribution is the same for all the trees present in the
forest. For classification results, RF uses the majority vote method to
produce more diverse and robust results.

4.3.3.2 Bagging Classifier

A bagging classifier [29] is an ensemble algorithm that fits base clas- Majority voting to
aggregate individual
predictions

sifiers, each on a random subset of data. It aggregates averages of
individual predictions using a popularity vote method to estimate
the final result. A bagging classifier is a way to reduce the variance of
base estimators by introducing randomization, resulting in a signifi-
cant performance boost.

4.3.3.3 Extra Tree (ET)

An Extra Tree (ET) classifier [77] is a meta-estimator based on the
bagging technique. It builds an ensemble of unpruned decision or
regression trees. The main difference of ET classifier with other en- Bootstrap

aggregation for
regression &
classification

semble methods is that rather than using a random subset of data,
it uses complete data to build individual trees. Secondly, it splits the
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nodes by choosing cut points entirely at random. The final predic-
tion is achieved by aggregating the individual outputs using majority
voting in classification problems and averaging them in regression
problems.

4.3.3.4 Gradient Boosting Machine (GBM)

Gradient Boosting Machines (GBMs) [71] is an ensemble machine-Sequential forward
learning model learning algorithm using the boosting technique. GBM is a sequential

learning model that builds an additive model forward stage-wise. Ev-
ery model in the subsequent step learns from the model’s errors in
the previous step. Error is minimized by defining loss functions, i.e.,
Mean Square Error (MSE). Predictions are updated by using gradi-
ent descent and applying a learning rate. Final predictions are made
where the error is minimum and predicted values are close to actual
ones.

4.3.3.5 Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs) are known for sequence data han-RNNs are ideal for
including temporal

dynamics in
sequence data

dling because of their ability to handle temporal information using
self-connected hidden layers. The hidden layer implements input, for-
get, and output gates to regulate the dependencies. LSTMs [102] and
Gated Recurrent Units (GRUs) [89] are commonly used RNNs for hand-
writing recognition and classification. LSTM units implement memory
gates to store the memory at different stages, enabling them to carry
the early-stage features to later stages, allowing longer-distance de-
pendencies. Gated Recurrent Units (GRUs) also keep the temporal in-
formation without implementing memory gates, making them adap-
tive to different time scales to store the dependencies. Memory gates
solve the problem of vanishing gradients in back-propagation, result-
ing in improved performance. We implement the GRUs based neural
network for this work.

4.4 dataset & evaluation protocol

4.4.1 Overview

20 participants (14 males, 6 females) took part in the study. 18 par-Details of data
collection process ticipants were right-handed, and 17 participants (12 males, 5 females)

had first-time writing experience on digital devices, iPads in this case.
These participants were students from different disciplines and ge-
ographical regions, i.e., Germany, Pakistan, India, Cuba, Venezuela,
and the United State of America (USA). The data collection was constraint-
free as there were no time restrictions, and all participants were free
to write text, mathematical expressions, and/or plot graphs the way
they wanted. Constraint-free writing enabled the students to write
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with their natural writing behaviour, which brings diversity to data
collection, as there are intra-personal writing variations as well as
inter-personal writing variations.

During experiments, participants solved different exercises based Dataset can be used
to differentiate
creative writing &
copying

on the instruction material provided to them. Exercises include text
reproduction, creative writing, copying mathematical expressions, solv-
ing fundamental calculus problems, and drawing easy graphs. Exer-
cises were kept simple and elaborated so that every participant could
understand them. The difficulty level increased as participants pro-
gressed with the solutions.

4.4.2 Dataset

Considering the classroom environment, note creation is a common Contents of collected
datasetactivity, and the best way to monitor and track the progress is by on-

line handwriting analysis. These notes mostly consist of plain text,
whether structured, i.e., list, caption, and part of a table, or unstruc-
tured, i.e., normal text, mathematical expressions that include numer-
ical representation, formulas, axis-markers, and graphs/plots. First
of all, strokes are extracted from raw sequences. Every stroke is vi-
sualized individually, and then sequences are created out of these
strokes manually to minimize the influence of segmentation errors.
To generate the ground truth, every sequence is annotated as text,
mathematical expression, and plot/graph. Our presented dataset con-
sists of 12, 139 labeled sequences, as content breakdown is presented
in Figure 4.4a. 65% of sequences belong to text class, 25% of the
sequences from mathematical expression class, and remaining 10%
from plot/graph class. Class-wise spread of both train and test set
using t-Distributed Stochastic Neighbour Embedding (SNE) visualiza-
tions are shown in Figure 4.4b and Figure 4.4c. The dataset, namely
onTabWriter, containing stroke information and labeled sequence in-
formation, is publicly available for the research community to explore
the online handwriting classification venue further.2.

4.4.3 Feedback

After completing writing tasks, participants were requested to fill out
a feedback form. Based on feedback, 75% of participants found at-
tempting solutions to calculus problems the most difficult. In com-
parison, 60% of participants felt more stressed solving mathemati-
cal expressions than producing text and drawing graphs. 70% of Experience of using

digital devices for
handwriting

participants felt more comfortable while copying text and solutions
while remaining like creative tasks. We also asked participants about
their preferences and provided regular writing notebooks or digital

2 OnTabWriter Dataset

http://bit.ly/2KWNEue
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text

65.1%

cal
25.0%

plot

9.9%

(a) Class distribution
in dataset

(b) Class-based spread
of train data

(c) Class-based spread
of test data

Figure 4.4: Contents present in a dataset with their representation and dis-
tribution in train and test set

Table 4.2: Personal preference to write on traditional notebooks versus
tablets

Task Traditional Notebook (%) Tablets(%)

All 30 70

Text writing 35 65

Mathematical expressions 40 60

Graphs 50 50

devices. As depicted, for every task, most writers preferred writing
on tablets, and statistics are presented in Table 4.2. Besides, almost ev-
ery first-time user reported gradual improvement in writing ease and
comfort with more writing practice and showed interest in adopting
digital devices for writing in the future.

4.4.4 Evaluation Protocol

In this section, we will discuss the data split used to train and testData split for
training and testing Machine Learning (ML) and Deep Learning (DL) classifiers, along with

the introduction of evaluation metrics to report results. The dataset
is analysed in person-dependent settings where train and test data
are split in a way that both contain writing data from all participants.
We also report results in a person-independent set-up where data is
split into train and test sets so that a participant’s data can be used
either in the training phase or testing it but cannot in both. Person
independent set-up helps to establish the generalization of our pre-
sented approach by reporting results on totally unseen writing data.
4:1 split transforms the dataset into train and test sets. 80% of data is
used in the training and optimization phase and the rest 20% is used
to test the model and report results.

We used the sci-kit library [183] to train and test our MachineEvaluation metrics

Learning (ML) classifier and Pytorch library [182] to implement and
evaluate Deep Neural Networks (DNNs). Accuracy defines the cor-
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rectness of a model and the most commonly used metric to report
the results. When input data is biased or polarised, precision and re-
call become more relevant metrics. Therefore, we report results as the
most relevant metrics in the online handwriting research community,
i.e., accuracy, precision, recall, and f1-score. Precision is defined as
the ability of a system to distinguish a positive sample from a nega-
tive one. In contrast, recall is the competence of a system to classify
positive samples, mathematically defined as follows:

Precision =
correctDetections

totalDetections
(4.6)

Recall =
correctDetections

totalSamples
(4.7)

As we have close numbers for precision and recall for different classi-
fiers, the f1-score represents the results, the harmonic mean of preci-
sion and recall. f1-score is mathematically defined as:

f1-score = 2× Precision× Recall
Precision+ Recall

(4.8)

4.4.5 Optimization Parameters

Random Forest (RF), Extra Tree (ET), bagging classifier, and Gradient Empirical evaluation
of network
parameters for
optimization

Boosting Machine (GBM) classifiers are used in this study to establish
the significance of the proposed feature set. Decision Trees (DTs) are
used as a base estimator. All parameters are found after empirical
evaluation. The number of trees is set to 199. We used the maximum
available features to train and test all of our models. Criterion used
for RF is ’entropy’, for ET ’gini’, and for GBM ’MSE’. ’balanced’ weight
mode is used to address the partiality and bias in the data. We tried
different variants of LSTM and GRU networks. Both networks are three
layers deep and [64, 128, 256] hidden units for each layer. A learning
rate of 0.001 is used with a batch size of 100. All networks are trained
for 30 epochs.

4.5 results and discussion

4.5.1 Results

This section presents a comprehensive comparison of the efficacy of Person-dependent
results in a nutshellfeature sets proposed for online handwriting recognition and classi-

fication for person-dependent and person-independent setups. More-
over, an ablation study on the impact of individual and combination
of features present in the proposed feature set is also part of this
section along with the evaluation of using the context information
for online handwriting classification. In person-dependent data split
and using a bagging classifier, a successful classification rate of 90.0%
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Table 4.3: Comparison of person dependent performance of ML & DL classi-
fiers on different feature sets

Feature set Classifiers Overall result %
Accuracy Precision Recall f1-score

Liwiki et al. [146]

Bagging classifier 86.4 86.2 86.4 86.3
Extra Tree (ET) 85.5 85.2 85.5
Gradient Boosting Machine (GBM) 85.2 85.1 85.2 85.3
Random Forest (RF) 85.5 85.5 85.5 85.5

Phase-I results

Bagging 79.4 79.1 79.4 79.2
Extra Tree (ET) 80.2 79.9 80.2 80.5
Gradient Boosting Machine (GBM) 79.8 79.6 79.8 79.7
Random Forest (RF) 77.9 78.5 77.9 78.2

Final Results(Phase-II)

Bagging classifier 90.0 89.8 90.0 89.9
Extra Tree (ET) 90.3 90.2 90.3 90.2
Gradient Boosting Machine (GBM) 90.5 90.4 90.5 90.4
Random Forest (RF)t 90.1 89.9 90.1 90.0
Gated Recurrent Unit (GRU) 89.7 89.1 89.7 89.1

is achieved with precision 89.8 and recall of 90.0, as reported in Ta-
ble 4.3. The bagging classifier produced the highest score for the text
class by correctly classifying 95.9% sequences with the precision and
recall of 92.0 and 95.9. Mathematical expressions are classified with
a precision of 86.2, recall is 79.4, and classification accuracy is 79.4.
Numbers reported for plot/graph using bagging classifier are 78.4,
84.6, and 78.4 percent in terms of accuracy, precision, and recall, re-
spectively, as shown in Table 4.5.

When it comes to RF classifier, overall accuracy, precision, and re-Detailed
classification results

of ML classifiers
call, each calculates to 90.1, 89.9, and 90.1. Class-wise accuracy is 96.3,
78.9, and 79.9 percent, as shown in Table 4.5. The precision score
is 92.4, 86.7, and 82.5 with a recall of 96.0, 78.9, and 79.9 for text,
mathematical expressions, and plot/graph class, respectively. Extra
Tree (ET) classifier shows marginally lesser performance than GBM

classifier with the accuracy, precision, and recall score of almost 90.3.
Text classification score is the best for ET classifier with the accuracy
of 97.2%, while results for mathematical expressions class are the low-
est with the accuracy of 77.7%, and graph/plot class is classified with
the accuracy of 79.5%. Precision & recall scores for text, mathematical
expressions, and graph class are 91.1 & 97.2, 90.4 & 77.7, and 86.9 &
79.5, respectively.

GBM produces the overall best results with an accuracy score ofGBM outperforms its
counterparts in

person-dependent
data split

90.5% and outperforms all its counterparts. The precision and recall
score for GBM is 90.4 and 90.5. Mathematical expressions and plot/-
graph class are predicted with the classification accuracy of 81.3 and
79.9 percent, the precision of 86.1 and 84.5, and recall of 81.3 and 79.9.
The classification rate of 95.8 is achieved by GBM for text classification
with the precision & recall of 93.0 & 95.8.

In a person-dependent set-up, all classifiers perform convincinglyResults in
comparison to

existing feature sets
well, producing overall classification results with overall accuracy and
f1-score in the range of 90 ±0.5. Gradient Boosting Machine (GBM)
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(a) Bagging
Classifier

(b) Random
Forest

(c) Extra Tree (d) Gradient
Boosting

(e) LSTM

Figure 4.5: Normalized confusion matrices for person dependent results

Table 4.4: Comparison of person-independent performance on different fea-
ture sets

Feature set Classifiers Overall result %
Accuracy Precision Recall f1-score

Liwiki et al. [146]

Bagging classifier 82.0 82.0 82.0 82.0
Extra Tree (ET) 80.8 80.7 80.8 80.7
Gradient Boosting Machine (GBM) 82.5 82.3 82.5 82.4
Random Forest (RF) 81.2 81.4 81.2 81.3

Phase-I results

Bagging 78.1 77.7 78.1 77.9
Extra Tree (ET) 78.2 78.0 78.2 78.1
Gradient Boosting Machine (GBM) 77.0 76.4 77.0 76.7
Random Forest (RF) 78.3 77.8 78.3 78.0

Final Results(Phase-II)

Bagging classifier 81.0 83.1 81.0 82.0
Extra Tree (ET) 88.9 88.7 88.9 88.8
Gradient Boosting Machine (GBM) 87.3 87.4 87.3 87.3
Random Forest (RF) 88.6 88.5 88.6 88.5
Gated Recurrent Unit (GRU) 87.4 87.7 87.4 87.5

classifier produced overall the state-of-the-art (SotA) results, as re-
ported in Table 4.3. Similarly, Gradient Boosting Machine (GBM) out-
performs its counterparts with the highest success rate in classifying
individual classes i.e., text, and mathematical expressions with the
f1-score of 94.1, and 83.6 as shown in Table 4.5. All of our presented
models produce results with the f1-score of 90± 0.5 compared to the
best results with f1-score of 86.3 achieved by Liwicki et al. [146] fea-
ture set using extra tree classifier. Our presented approach also out-
performs their method in per-class computed results, as shown in
Table 4.5.

In person-independent data split, Extra Tree (ET) classifier pro- ET classifier
produced SotA
results in person
independent data
split

duced the best results with an overall accuracy of 88.9% and f1-score
of 88.8. The precision score of the ET classifier is 88.7 with a recall
of 88.9. The bagging classifier surprisingly doesn’t perform well in
a person-independent set-up with overall classification accuracy and
f1-score of 81.0 and 82.0. The overall precision and recall score for the
bagging classifier is 83.1 and 81.0. Accuracy, precision, recall, and f1-
score of Random Forest (RF) is 88.6%, 88.5, 88.6, and 88.5, respectively.
With GBM, the same is not true as in a person-dependent set-up, as
shown in Table 4.4. 87.3% of the sequences were predicted correctly
with the precision of 87.4, recall of 87.3 and f1-score of 87.3. Liwicki
et al.’s [146] best results are 82.5 and 82.4 for accuracy and f1-score
using Gradient Boosting Machine (GBM) classifier.
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Table 4.5: Class-wise detailed results of different feature sets on various clas-
sifiers in person dependent set up on newly proposed dataset.

Feature set Classifiers Text % Mathematical expressions% Graph%
Accuracy Precision Recall f1-score Accuracy Precision Recall f1-score Accuracy Precision Recall f1-score

Liwiki et al. [146]

Bagging classifier 93.7 89.9 93.7 91.8 71.9 81.5 71.9 76.4 74.8 73.0 74.8 73.9
Extra Tree (ET) 94.4 88.1 94.4 91.1 66.5 82.3 66.5 73.6 74.8 73.3 74.8 74.0
Gradient Boosting Machine (GBM) 92.0 89.8 91.8 90.8 73.2 78.1 73.2 75.6 72.8 71.3 72.8 72.0
Random Forest (RF) 92.6 90.1 92.6 91.3 70.9 79.8 70.9 75.1 76.0 68.7 76.0 72.2

Phase-I results

Bagging 88.7 85.6 88.7 87.1 68.2 68.8 68.5 68.2 67.1 74.4 67.1 70.6
Extra Tree (ET) 90.9 84.6 90.9 87.6 67.6 71.5 67.6 69.5 66.1 77.3 66.1 69.4
Gradient Boosting Machine (GBM) 88.6 86.1 88.6 87.3 70.0 69.7 70.0 69.8 67.3 74.4 67.3 70.7
Random Forest (RF) 83.8 88.0 83.8 85.8 70.0 65.9 70.0 67.9 71.3 67.6 71.3 69.4

Final Results(Phase-II)

Bagging classifier 95.9 92.0 95.9 93.9 79.4 86.2 79.4 75.1 78.4 84.6 78.4 72.2
Extra Tree (ET) 97.2 91.1 97.2 94.1 77.7 90.4 77.7 82.7 79.5 86.9 79.5 81.4
Gradient Boosting Machine (GBM) 95.8 93.0 95.8 94.1 81.3 86.1 81.3 83.6 79.9 84.5 79.9 83.0
Random Forest (RF) 96.0 92.4 96.0 94.1 78.9 86.7 78.9 82.6 79.9 82.5 79.9 81.2
Gated Recurrent Unit (GRU) 95.2 91.7 95.2 93.4 77.0 95.2 77.0 85.1 82.2 93.4 82.2 86.9

(a) Bagging
Classifier

(b) Random
Forest

(c) Extra Tree (d) Gradient
Boosting

(e) LSTM

Figure 4.6: Normalized confusion matrices for person independent results

Text class is 94.4 times correctly classified by ET classifiers with thePerson independent
results using ML

classifiers
precision of 90.8 and recall of 94.4. RF classifier predicts text class with
numbers 92.9, 92.0, and 92.9 in terms of accuracy, precision, and recall,
respectively. There is a significant decrease in the number of text class
predictions for the bagging classifier, as reported in Table 4.6.

Text classification accuracy is 82.3%, with precision and recall scores
of 90.3 and 82.3, respectively. GBM produced results with the accuracy
of 91.2%, and precision & recall is 92.3 & 91.2 for text class. Mathemat-
ical expression class is correctly classified at the rate of 76.6, 77.5, 76.4,
and 79.0 with a precision of 73.8, 80.7, 81.4, and 75.9 for bagging clas-
sifier, RF, ET, and GBM, respectively. The recall rate of mathematical
expressions is 76.6, 77.5, 76.4, and 79.0, respectively. Plot/graph class

(a) Ground truth. (b) Output

Figure 4.7: A perfect classification result (green color annotates plot, while
blue color is labeled as mathematical expressions).
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is classified by bagging classifier with the accuracy of 79.4, precision
& recall score is 51.6 & 79.4, results for RF classifier are 84.9, 82.7, and
84.9, respectively. Accuracy of GBM and ET classifier to predict plot
class is 80.0% and 79.0% with the precision & recall of 81.0 & 80.0
and 88.3 & 79.0.

We also evaluated the presented feature set using Deep Learn- Results of Deep
Learning (DL)
approaches for
on-line handwriting
classification

ing (DL) methods. LSTM and GRU models were trained and tested for
person-dependent and person-independent setups. The best results
are achieved by using 256 hidden units with GRU network. In person-
dependent set-up, overall accuracy of 89.7% with the precision, re-
call, and f1-score of 89.1, 89.7, and 89.1, respectively. Results are 87.4,
87.7, 87.4, and 87.5 for accuracy, precision, recall, and f1-score, respec-
tively, for person-independent set-up. In a person-dependent set-up,
GRU network achieved the best results among all the graph/plot class
classifiers with an f1-score of 86.9. Similarly, in person-independent
set-up GRU delivered the best results for the mathematical expression
class with the f1-score of 85.0. Results furnished in Table 4.5 & Ta-
ble 4.6 demonstrate the competitive results for both ML compared to
DL method, which establishes the relevance and importance of the
presented feature set for online handwriting classification.

4.5.2 Discussion

We trained the same classifiers on Liwicki et al. [146] proposed fea- Fair comparison is
essential for the
efficacy of proposed
approaches

ture sets using the proposed dataset for a detailed and fair com-
parison. Our proposed feature set achieved the best results in both
person-dependent and person-independent setups and outperformed
its counterparts in all metric scores. The computational load is also
minimal, which makes it ideal for real-time use in low-cost systems.
Moreover, results achieved by our proposed feature set are also supe-
rior for every class, i.e., text, mathematical expressions, and plotting
graphs classification by a margin.

When there is a clear pattern and structure in the writing of a Clear writing
patterns help the
network to learn
better

participant, ideal results, regardless of the sequence class, are pro-
duced, as shown in Figure 4.7b, with ground truth file in Figure 4.7a.
Figure 4.5 shows that every classifier performed distinctly on clas-
sifying text because writing text exhibits a clear pattern and distin-
guished writing behavior. Few text sequences produced by writing
single or few strokes are confused either with mathematical expres-
sions or plot/graph, classification results compared to ground-truth
file, as shown in Figure 4.9a & Figure 4.9b.

Considering segmented sequences composed of individual strokes,
it is very hard to tell whether they belong to text or calculation class
without looking into context,i.e., considering neighboring strokes and
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Table 4.6: Class-wise detailed results of different feature sets in person inde-
pendent set up on new proposed dataset.

Feature set Classifiers Text % Mathematical expressions% Graph%
Accuracy Precision Recall f1-score Accuracy Precision Recall f1-score Accuracy Precision Recall f1-score

Liwiki et al. [146]

Bagging classifier 88.4 87.2 87.8 88.4 70.1 68.8 70.1 69.4 65.3 76.1 65.3 70.3
Extra Tree (ET) 88.2 85.7 88.2 86.9 66.6 65.9 66.6 66.2 62.7 81.1 62.7 70.7
Gradient Boosting Machine (GBM) 89.3 87.5 89.3 88.4 71.1 69.6 71.1 70.3 61.7 76.0 61.7 68.1
Random Forest (RF) 86.5 87.7 86.5 87.1 70.4 67.3 70.4 68.8 69.6 70.3 69.6 69.9

Phase-I results

Bagging 91.9 80.0 91.9 85.5 57.8 73.6 57.8 64.7 69.5 77.1 69.5 73.1
Extra Tree (ET) 94.7 78.6 94.7 85.9 55.5 75.8 55.5 64.1 65.5 79.7 65.5 71.9
Gradient Boosting Machine (GBM) 90.0 80.4 90.0 84.9 57.6 71.4 57.6 63.8 69.1 72.7 69.1 70.9
Random Forest (RF) 89.8 82.7 89.8 86.1 60.7 72.6 60.7 66.1 72.1 71.8 72.1 71.9

Final Results(Phase-II)

Bagging classifier 82.3 90.3 82.3 86.1 76.6 73.8 76.6 75.2 79.4 51.6 79.4 62.5
Extra Tree (ET) 94.4 90.8 94.4 92.6 76.4 81.4 76.4 78.8 79.0 88.3 79.0 83.4
Gradient Boosting Machine (GBM) 91.2 92.3 91.2 91.7 79.0 75.9 79.0 77.4 80.0 81.0 80.0 80.5
Random Forest (RF) 92.9 92.0 92.9 92.5 77.5 80.7 77.5 79.1 84.9 82.7 84.9 83.8
Gated Recurrent Unit (GRU) 90.5 92.8 90.5 91.6 80.1 90.5 80.1 85.0 83.1 91.6 83.1 87.1

Table 4.7: Evaluation of using context information in on-line handwriting
classification

Classifier Overall Text Calculation Graph
Accuracy(%) (%) (%) (%)

Classifier 80 87 70 73

Classifier+Context information 92 98 86 78

sequences or by a specific symbol associated with a particular class.
Most of the sequences in the calculation are very short and composedUsing contextual

information helps to
improve the

classification process

of few characters, very similar to text. However, when combined with
mathematical symbols, there is a significant difference between text
and calculation. This can be achieved by retaining information about
neighbouring individuals, which means if preceding and following
sequences belong to the same class, the probability of a specific se-
quence belonging to that class is much higher. Therefore, this work
also investigates the importance and effectiveness of context informa-
tion for online handwriting classification and results show a signifi-
cant boost for text and calculation class in particular. Overall results
are improved by 12%. Results for text class are improved to 98%, and
for calculation class increment of 16% is noticed, as shown in Table 4.7.

The proposed feature set makes every classifier capable of clas-Proposed feature set
delivers SotA results sifying free-style and constraint-free online handwritten sequences

into text, mathematical expressions, and/or plots/graphs. Further-
more, it can classify minority class sequences among the majority
class sequences, i.e., a single mathematical expression correctly classi-
fied within a text block, as shown in Figure 4.9b. As discussed earlier,
every sequence is considered an individual sequence despite its po-
sition or context in the text. Results establish the significance of the
presented feature set for online handwritten sequences. Every classi-
fier in an ablation study performs equally well to produce the state-
of-the-art (SotA) results in person-dependent and person-independent
data split.

Producing mathematical formulas, their derivations, and solutionsMath class often
gets confused with

Text class
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(a) Ground truth. (b) Classifier’s result.

Figure 4.8: An example of plot classification with annotated ground-truth
(complex scenario) (green color annotates plot and blue color is
for mathematical expressions, while black color highlights text).

(a) Ground truth. (b) Classifier’s result.

Figure 4.9: An example of text classification along with ground-truth (black
color annotates text, while blue color is labeled as mathematical
expressions).

(a) Ground truth. (b) Classifier’s result.

Figure 4.10: Classification of mathematical expressions class in complex sce-
nario (blue color annotates mathematical expressions and green
color annotates plot, while the black color is labeled as text.
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(b) Feature impact evaluation based
on their ranking

Figure 4.11: Ablation study of our presented feature set.

have a very close resemblance to text. Therefore, the mathematical
expressions class gets confused with the text class, as shown in Fig-
ure 4.10a & Figure 4.10b. Mathematical expressions and text writing
are very different from plot classes; therefore, there is lesser confu-
sion between these classes, as results also demonstrate. The plot/-
graph sequence visually shows a clear pattern, but markers and ticks
are single-stroke sequences and are treated as independent sequences.
Some confusions between text and/or mathematical expressions are
shown in Figure 4.8a & Figure 4.8b.

The feature set presented by Liwicki et al. [146] was mainly forAblation study for
comparison with

existing feature sets
handwriting recognition but has been adopted for handwriting classi-
fication. Meanwhile, the paraphernalia for online handwriting record-
ing has advanced much over the last decade, i.e., the introduction of
sensor pens, and smart pens to write on paper and digital screens.
These devices record pen pressure, force, time, and angles along with
(x,y) coordinates, which can help develop better handwriting classi-
fication systems. The ablation study results on the presented feature
set, a combination of existing and new features, institute a better un-
derstanding of the problem, as shown in Table 4.3 & Table 4.4. Fur-
thermore, the relevancy of features in the presented feature set is
also demonstrated by the Machine Learning (ML) classifier’s results
compared to the Deep Learning (DL) classifier. As handwriting classi-
fication is a very different task than handwriting recognition, a new
feature set focused on online handwriting classification will help the
research community further push the boundaries in this direction.

We also discuss the significance of features present in our featureExploring the
significance of

individual features
set. First, individual features are evaluated for their impact as a whole
and for every class, as shown in Figure 4.11a. By evaluating individ-
ual features, we get an insight into the performance and importance
of individual features along with in-class comparison. Moreover, we
also rank the features based on their importance and significance in



4.5 results and discussion 77

Table 4.8: Selected features based on their relevance.
Liwicki et al. [146] Newly proposed features
Speed Sequence displacement Sequence distance
Vicinity aspect Velocity Sequence height
Vicinity curliness Mean force Max. & Min. stroke distance
Slope Variance & std. ∆t Max. & Min. stroke length

x,y skew Max. stroke time
x,y kurtosis Mean slope
Variance ∆x,∆y Max. force
Variance of direction angles Force std.
Variance & std. y-values Variance x-values

the given set, starting from the maximum and dropping the least im-
portant feature at every subsequent step, as shown in Figure 4.11b.
The most important features in the proposed feature set are maxi-
mum stroke distance, the variance of ∆y, vicinity curliness, a variance
of y-values, etc. The least important features in the rankings are min-
imum force, sequence time, the average change in directional angles,
etc.

Once we have insights about the impact of individual features that Important features
for every individual
data class

can be further utilized to evaluate and find out important features
for individual classes, as shown in Figure 4.12. Simple peaks in the
individual feature impact graph provide information on overall im-
portant features along with important features for text, calculation,
and plot class. Ten features found to be most contributing to text clas-
sification, which include stroke, sequence, and time-related features
and results are visualized in Figure 4.12a. Similarly, 14 features in-
fluenced most in the classification of mathematical expressions and
results are shown in Figure 4.12b. For plot/graph class classification,
12 features are marked as high impact and results are shown in Fig-
ure 4.12c. Common features in all the classes are stroke and sequence
distance, length, time, and standard deviation and variance along a
horizontal and vertical axis. We combine these individual features to
form a superset of important features, and results are presented in
Figure 4.12d. We achieved nearly the same performance as the full
feature set by using selected features based on their rankings. Details
of selected features are provided in Table 4.8, which contains a few
features from Liwicki et al. [146] and newly proposed features.

We also evaluate existing feature sets on our proposed dataset to Proposed feature set
outperforms for
every individual
metric

establish the utility, superiority, and fair comparison with our pre-
sented feature set. Although the feature set presented by Liwiki et
al. [146, 148] focused on handwriting recognition, even then, our pro-
posed feature set yields not only overall superior results but also sur-
passes their results for text detection. It also outperforms results pro-
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(a) Top performing features for
Text
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(b) Top performing features for
Calculation
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(c) Top performing features for
Plot
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(d) Top performing features com-
bined

Figure 4.12: Evaluation of top performing features from the proposed fea-
ture set.

duced using existing feature sets to classify mathematical expressions
and plot/graph class by a margin. We evaluate the existing feature
set on the best-performing classifier in this study, yet every classifier
produced better results on the newly proposed feature set.
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C O G N I T I V E A B I L I T I E S : A P E R F O R M A N C E
A N A LY S I S

The foundation of this thesis lies in the two basic concepts for tech- Cognitive ability
analysis using
on-body sensor
information

nological inclusion in formal education, i.e., analysis of cognitive abil-
ities and applications to perform the activities to assist the learning
process with an improved learning experience. Chapter 3 and Chap-
ter 4 present the methods to evaluate and investigate cognitive activ-
ities, i.e., reading and writing, of the learning process on their own.
Although reading and writing are individual activities for cognitive
ability analysis, there is a dire need for methods to analyse and inves-
tigate these activities in correlation to each other. This chapter of the
dissertation presents some inceptive research along with preliminary
findings to evaluate the behaviour of understanding the problem and
concepts while performing cognitive activities during the tasks as-
signed to them based on prior skills and knowledge about the topic.
The process starts with the data collection from learners during cogni-
tive activities using different on-body sensors. On-body sensors track
the progress while processing the physical content and working on
problem-solving. Combining the information collected from multiple
sources and processing them using data science and Artificial Intel-
ligence (AI) tools to analyse and study the individual’s approach to
attempt the solutions while learning and producing representations
and interacting with them. These tools help to improve the overall
learning process by providing insights about the individual’s cogni-
tive and affective requirements, such as behaviour analysis, feedback
estimation, and performance evaluation, a major step in the direction
of need-based learning and teaching systems.

The major contributions of this chapter are as follows:

• Collection of data using multiple on-boy sensors while work-
ing on introductory Physics course problems, varying difficulty
level of the tasks to investigate the behaviour while attempting
solutions based on the understanding of the topic and expertise
in the domain.

• Presentation of a feature set for evaluating the cognitive pro-
cess while attempting solutions to the tasks during the cognitive
activities and attempting the solution in a ubiquitous environ-
ment.

• Insights about the learners’ performance based on their cogni-
tive abilities while problem-solving by looking deeper into the
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cognitive activities such as reading and writing and the cor-
relation between the two. These findings provide information
about the student’s understanding of the problem, confidence
level while attempting solutions, cognitive load while problem-
solving and expertise.

The composition of this chapter is as follows: Section 5.1 intro-Structure of this
chapter duces its readers to the problem, challenges, motivation, and solution

to evaluate the cognitive activities and their correlations for insights
about the progress of learners during classroom activities. Recent de-
velopments and advances to evaluate the reading behaviour, writing
behaviour, performance evaluation and feedback estimation based on
these cognitive activities are made part of Section 5.2. Section 5.3
covers the methodology followed in this work with brief details of
individual components. Section 5.4 presents the data collection and
organization process along with the feature set details for cognitive
ability classification. Results are furnished in Section 5.5 with discus-
sions about the methodology followed, its strengths, weaknesses, and
prospects.
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The author of this thesis has published the content, figures, and ta-
bles included in this chapter in the following publications. The author
of this dissertation has written all the text taken from the mentioned
publications and the text in this chapter itself. The publication list
included in this chapter refers as follows:

• Younas J. et al. (2022), Cognitive Ability Classification using On-
body Sensors In: Proceedings of the 2022 ACM International
Joint Conference on Pervasive and Ubiquitous Computing (Ubi-
Comp/ISWC ’22 Adjunct), September 11–15, 2022, Cambridge,
United Kingdom[277]



82 cognitive abilities : a performance analysis

5.1 motivation

One of the main objectives of formal education is to instigate the cu-learning helps to
develop cognitive

abilities
riosity to learn new things and stimulate the cognitive abilities of the
students to develop problem-solving skills. Cognitive abilities are de-
fined as the capacity of an individual: "to learn, plan, solve problems,
think abstractly, comprehend complex ideas, learn quickly, and learn
from experience"[188]. Humankind has been learning since its exis-
tence through different means, and the key sources to acquire knowl-
edge are observation, reading, and writing activities. The methods to
acquire knowledge and learn are also evolving since then. Similarly,
methods to monitor and evaluate the learning progress are required
to develop and updated as per needs and requirements to facilitate
the enhanced learning experience and outcomes.

The learning habits of every individual vary based on his cogni-Technological
interventions can be

used as a bridge in
student-teacher

relationship

tive abilities, interests, and preferences. Even within a person, learn-
ing behaviours differ for cognitive activities such as reading, writing,
and observation. These cognitive activities help students to develop
how to effectively read, write, think, analyse, remember, solve, under-
stand, and enable themselves to make these skills function together to
develop intellect and achievement. On the other side of the learning
process, teachers/instructors are equally important and play a vital
role in steering the cognitive potential in the learning contexts by de-
ciding what to teach and how to teach it. Teachers also play an impor-
tant role in students’ future academic careers and lives by influencing
expectations, grading, and contributing toward self-conception and a
sense of achievement. It is very hard for a teacher to track and monitor
the progress of every student to cater to his/her individual needs and
preferences using the same static and traditional teaching approaches.
To achieve the goal, technological interventions can act as a bridge in
a student-teacher relationship by assisting in performing and track-
ing the activities and evaluating the behaviours and performance in
a better and improved way.

Smart gadgets and technological aids have significantly assistedOn-body sensors
have huge potential

to assist the learning
process

cognitive functioning in learning, becoming increasingly important
in the educational domain. Major developments have been observed
in the recent past to integrate technological developments and smart
gadgets in formal education to aid learners and teachers to strengthen
the student-teacher interaction bonding [110, 130, 132]. History of
reading activity monitoring by tracking eye movements to analyse
the reading behaviour tracks back to 19th century [246]. With the
advent of eye-tracking tools, the focus of the gaze-tracking commu-
nity shifted to evaluate the cognitive aspects. The concept of intel-
ligent and interactive documents has been presented recently [114],
where the reading documents on digital display are changed dynami-
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cally based on the reader’s interest. Dynamic handling of documents
results in better engagement and focus during the reading activity.
Another work classifies the comprehension levels using eye-tracking
methods to evaluate their reading behaviour and problem-solving
skills [110]. Similarly, other gaze-tracking methods are used to clas-
sify the visual attention to understand concepts in Science, Technol-
ogy, Engineering, and Mathematics (STEM) education [130], attention
analysis and performance evaluation for the same activities using dif-
ferent modes of instructions [202], and visual attention to monitoring
performance while Physics experimentation [18, 125, 131]. Another
study [101] uses video analysis to evaluate the cognitive load for mul-
tiple representation learning. Most gaze tracking methods focus on
reading activity only after looking deeper into writing activity, a ma-
jor limitation of these methods. Using implicit sensor information for
cognitive ability classification to foster representational competence
for teachers and learners is still an open research area to the best of
the author’s knowledge.

The work presented in this chapter focuses on cognitive ability Cognitive ability
classification using
on-body sensor
information

classification analysing cognitive activities in correlation using an on-
body sensor platform. The primary motivation behind our work is us-
ing a combination of on-body sensors to record the cognitive activities
in the classroom, such as reading, writing, and problem-solving. Par-
ticipants (Physics students) of different comprehension levels were
presented with information material to familiarize themselves with
typical introductory Physics concepts and then attempt a solution to
the related tasks. Reading and writing data are processed separately
and in correlations for insights about the behaviour and progress of
learners while attempting the solutions to the tasks, such as short
questions, numericals, drawings, and explanations. Initial results pro-
vide useful insights into the problem-solving skills and behaviour
of participants, such as confidence-score, cognitive load, and exper-
tise. The insights extracted implicitly using sensor data are similar
to the prior classification of individuals as experts and novices based
on their understanding of the subject. Teachers can use the derived
insights to indicate the weaknesses and strengths of an individual
student to help them give feedback to the learners based on their
cognitive and affective requirements.

5.2 related work

Using on-body sensors is a common approach in human activity There are multiple
ways of using
wearable sensors in
learning activities

recognition. These activities cover a wide range of applications in
health, fitness, education, automation, education, and various other
fields of life. Mobility, low-power consumption, readily available at
a low price, and embedded inside daily-use gadgets make these sen-
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sors ideal for data collection and activity recognition tasks, particu-
larly for cognitive ability classification in the classroom. Eye-tracking
tools are a way to go for the research community to capture the in-
formation about the gaze of students while performing the activi-
ties such as reading, scanning information, problem-solving, and per-
forming physical tasks [110, 130, 132, 202]. Similarly, some methods
focused on visual attention while reading activity to detect stress level
and attention estimation [18, 114, 125]. Recently, on-body sensors and
smart gadgets have been employed to explore the potential of per-
forming cognitive activities in Augmented Reality (AR) and Virtual
Reality (VR) scenarios [119, 132, 234, 260]. There are methods for hand-
writing recognition and classification [235, 267, 283], which can also
be used to track the writing progress but a combination of cognitive
activities, i.e., reading and writing, are not explored at best.

Nguyen et al. [170] present a gaze-based note-taking system whileGaze-tracking helps
in the note-taking

process by
highlighting key

points

attending online lecture videos without diverting attention from the
content. The proposed system combines offline video analysis with
online gaze monitoring functionality. Offline video analysis identi-
fies and annotates the important contents in the videos, whereas on-
line gaze monitoring part highlights the key content for note-taking.
Moreover, the system automatically controls the video speed or pauses
it by analysing the user’s attention while taking notes. The result sup-
ports the system’s utility for online education, enabling users to take
notes with lower cognitive load and better concentration levels.

D’Mello et al. [47] present an intelligent tutoring system usingGaze analysis to
reorient student’s

attention
gaze information. The proposed system aims to promote engagement
and dynamically detect the students’ interest levels. They used eye-
tracking information to monitor the period of disengagement and
gaze-reactivity methods to reorient the student’s attention. Whenever
the tutor found any disengagement in the gaze tutor, he used one
of the predefined statements to regain the attention of students. The
results show that using the gaze-reactivity technique improves en-
gagement during the lessons, learning gains, and minimal impact on
student’s motivation.

Mozaffari et al. [38] presented a study on representational compe-Analysing
representation

learning skills to
assess expertise

tence in Physics using gaze-tracking. Students were presented with
the metainformation using vectorial representation and data repre-
sentation in tables and diagrams. Students were instructed to solve
the Physics problems using metainformation. Students were also cat-
egorized as experts, intermediates and novices. The study assessed
the effectiveness of different representation learning to analyse the
problem-solving skills based on students’ expertise.

Ishimaru et al. [111] present a study using eye-tracking glasses toEvaluate
comprehension levels
by analysing reading

behaviour
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foster the concept of an intelligent book. They present the meta in-
formation and related task to observe the behaviours of the students
while reading activity and then attempt a solution to the given tasks.
The findings of the study confirm that the reading behaviour of the
students is directly related to their comprehension levels, as students
with higher comprehension do not look for hints for solutions during
problem-solving. They also categorized the learner into three classes,
i.e. novice, intermediate, and expert, based on reading time and at-
tempting solution time in combination with scores of the task.

Dinehart et al. [59] presented important research on handwriting Importance of
writing activity in
childhood learning

analysis in early childhood education. They explore the role of hand-
writing in the early educational development of young children and
improvements in teaching practices to improve ’readiness’ handwrit-
ing skills.

Another method uses document summarization techniques to as- Intelligent systems
to assist cognitive
abilities

sist reading activity [242]. The authors proposed an intelligent read-
ing assistant system that can help to improve the cognitive capability
of students while reading digital documents. Klein et al. [125] used
gaze-tracking methods to explore visual attention behaviour while
taking the test of understanding kinematics graphs in school students.
The study further reveals that deeper analysis of gaze data highlights
the discrimination between correct and incorrect answers solutions.
Similar findings in a predict-observe-explain setting are reported in
[131]; a low confidence rating requires more time to complete the task
than confident students.

5.3 system overview

Research studies have established that aiding human activities with On-body sensor
information helps to
look into
problem-solving
skills

technological interventions improves performance [64]. Schneider et
al. [207] presented a review and use of sensors and their application
in learning. Our presented system is centered around the students
aided with on-body sensors, i.e., eye tracker, sensor pen, and meta
information, to track their performance while performing cognitive
activities. On-body sensor information enables the teachers to look
deeper into the behaviours of the students and then assist the teachers
with useful insights to interact and address individual requirements
effectively to foster the concept of adaptive and need-based learn-
ing. The complete system with its components is shown in Figure 5.1.
Details of individual components are explained in the following sub-
sections:
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Subject Feature ExtractionSensor Data Performance
Evaluation

Cognitive 
Ability
Classification

Figure 5.1: System overview: Using on-body sensors during cognitive activ-
ities for performance evaluation.

5.3.1 Meta information

Multiple representations help people in effective learning of com-Refers to printed
document used in

collecting data
plex ideas [6]. Meta information consisted of instructional material
in the document presented to participants. Instructional material de-
fines the structure of documents and includes reading material and a
set of exercises to be worked out by participants for evaluation. Read-
ing material introduces the participants to the topic with background
knowledge such as descriptive text, mathematical equations, and fig-
ures/graphs. The aim of presenting meta-information is to assist par-
ticipants to understand the problem by providing relevant and useful
information and evaluating their cognitive abilities while attempting
solutions.

5.3.2 Digital pen

There is a strong relationship between cognitive load and handwrit-Digital pens are an
ideal tool for

collecting natural
handwriting data

ing production [13, 14]. Yu et al. [278] present a study on the anal-
ysis of writing features to evaluate cognitive load. Sensor pens and
graphics tablets are standard means to capture handwriting progress.
Stabilo digi-pen is a commercially available tool for the research com-
munity to capture handwriting progress using multiple embedded
sensors without disturbing cognitive process. Stabilo digi-pen is a
sensor pen equipped with an Inertial Measurement Unit (IMU) to
record the writing progress by capturing the pen’s orientation, ac-
celeration, gyroscope, and compass information. The raw accelera-
tion signal recorded is shown in figure 5.2a. IMU capture data tracks
the pen movement, a vital step to reconstruct the handwriting. It is
also mounted with an internal pressure sensor to record pressure
data while handwriting. Figure 5.2b shows the significance of pres-
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(a) Pressure signal from Sensor Pen
highlighting text, calculation and
drawing/plot.

time (sec)

pr
es
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re

text calculation plot

(b) Pressure signal from Sensor Pen
highlighting text, calculation and
drawing/plot.

Figure 5.2: Pen sensors data

sure signal while producing normal text, equation or drawing fig-
ure. Pressure signals can also be used to track pen-up and pen-down
movement. IMU signals, in combination with pressure signals, can be
used to reconstruct handwriting. Its major advantage over other digi-
tal handwriting apparatuses is that it can be used to write on normal
papers, allowing users to produce natural handwriting snippets. Pen
data is updated at every 5ms. Motion and pressure data of the pen is
transferred using a micro-[! ([!)3]USB port at the rear end of the pen
in real-time.

5.3.3 Eye-tracker

Reading behaviour is a very important aspect of cognitive ability Eye-tracking tools
help to monitor gaze
movement in
correlation to
real-world data

classification to look into details of reading behaviours of experts
and novices [141, 196]. Capturing eye movements to understand be-
haviour while performing cognitive activities is promising, as the
eyes play a vital role during these activities. In formal education, gaze
analysis can tell a lot about the student’s approach and behaviour
while performing tasks such as reading, writing, and problem-solving
[38, 111, 125]. Eye-tracker are commonly used devices to capture
and track the eye-movement. Two types of eye-tracking tools are
commercially available and readily used by the research community
for gaze analysis: Remote eye-trackers and mobile eye-trackers. Mo-
bile eye trackers are wearable devices used as headsets or glasses,
whereas eye trackers fixed on/inside a remote display or a screen are
called remote/ stationary eye trackers. Nowadays, modern Virtual
Reality (VR) and Augmented Reality (AR) tools also come with eye-
tracking functionality without requiring any specific or additional
hardware and are termed software-based eye-tracking tools. In this
study, Pupil [120] monocular mobile eye-tracker is used, as shown
in figure 5.3a. It is a head-mounted, lightweight and plug and play
USB device. The pupil eye-tracker embeds a pupil camera with a real-
world scene camera. The pupil camera is an infrared device that cap-
tures eye movement, and the scene camera records the point of in-
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Eye Tracker

Eye camera

Real world
Camera

(a) Pupil Eye tracker with real-
world camera view and eye
camera view.

(b) Gaze tracking with an eye
tracker(Green circles repre-
sent fixation, and the red line
shows the gaze shifts).

Figure 5.3: Data collection using eye trackers

terest of participants. Pupil eye tracker can detect pupils, track pupil
movement, real-time gaze mapping, and perform many other func-
tions. Gaze mapping of the pupil eye tracker used in our study is
shown in Figure 5.3b.

5.4 data collection and organization

5.4.1 Data Collection

Six participants (4 males and 2 females) volunteered for the study.Dynamics of data
collection Out of six participants, 2 were students and 4 were researchers from

the Physics department. Before attempting solutions, based on their
understanding and self-assessment of the topic, three participants
were categorized as novices and rest three as experts.

Participants were presented with instructional material containingData is collected
while solving

complex
representation tasks

reading material and related tasks for problem-solving. The reading
material provided information related to gravitational field theory to
familiarize the participants with the topic. Exercises were designed to
test factual knowledge and knowledge transfer skills. Exercises were
kept simple with the increased difficulty at every subsequent step to
challenge the advanced problem-solving skills in the field. Solutions
to the exercises required hand-written explanatory answers, mathe-
matical calculations, and complex representations such as drawing
figures and plots.

5.4.2 Data Organization

Once data is collected, the first step toward data organization is syn-Processing raw
sensor data into

useful information is
a critical step

chronizing the data stream from multiple on-body sensors. Hand-
writing progress is captured by using IMU and pressure sensor in
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Stabilo digi-pen. Eye movements are recorded with the aid of a head-
mounted Pupil eye-tracker. Once data are synchronized, data is pre-
processed and segmented into multiple parts for deeper analysis and
insights. For handwriting data term "sketched segment" is used to
represent a sequence, as producing data includes hand-written text,
mathematical calculations, and drawings of figures and/or plots. Hand-
writing data is processed and segmented using pressure sensor infor-
mation.

5.4.3 Feature Extraction

A common approach followed to analyse the on-body raw sensor Features help to
understand the key
points of data

data is processing it into meaningful representations. In this work, we
present a novel set of 12 features to analyse the behaviours for cogni-
tive ability classification. Our proposed workflow consists of multiple
on-body sensors to capture the progress while performing cognitive
activities in the learning process. Pen’s sensor data are used to ex-
tract the features providing insights about handwriting progress and
can be used to analyse the writing activity. Eye-trackers data are used
to extract the eye-gaze information while performing both the Read-
ing and writing activity. Some other features are extracted with the
combination of both sensors’ data. These features enable and assist
the teachers by providing insights about the progress of individual
activities and the whole cognitive process involved during problem-
solving. Fixations and saccades are two commonly used metrics to
interpret and process eye- tracking data. A fixation is defined as the
period for which gaze is engaged to a specific object or point of in-
terest. The normal period for fixation is between 60 to 1000ms. Fol-
lowing are the details to describe individual features included in the
proposed feature set:

• Total fixations, the total number of fixations that occurred for a
participant during the whole time of the study, whether he/she
is reading, writing or thinking.

• Reading fixations, number of fixations that occurred while read-
ing or thinking process during the whole time of the study.

• Writing fixations, a number of fixations happened only during
the writing activity while attempting solutions to the problems
included in the study.

• Average consecutive read fixations, the average fixation count
while reading or thinking before switching to writing.

• Average consecutive write fixations, the average number of con-
secutive fixations when the pen tip is in contact with the paper
to produce writing before switching back to reading activity or
thought process.
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• Total time, time taken in seconds by a participant to complete
the given tasks.

• Reading time, time in seconds consumed by a participant for
reading, thinking and understanding the problem.

• Writing time, time in seconds consumed by a participant for
writing activity.

• Sketched segments, count of written segments produced as text,
mathematical calculation, plots and diagrams.

• Shift between read and write, number of times a participant was
engaged in cognitive process or consulting instruction material
while producing solutions.

• Average time difference between strokes, the average time a par-
ticipant takes between two consecutive pen usages.

• Writing pressure is a key factor in estimating stress while per-
forming writing activities. Stabilo diig-pen measures the writ-
ing pressure by force exerted on the pen-tip while writing.

The feature set presented in this study uses eye tracker information,
pen sensor data and a combination of both to represent raw sensor
information into a substantial feature vector.

5.5 initial data exploration

Tchalenko et al. [233] present a study on an "eye-hand" strategy to
copy and produce drawings for experts and novices. Alamargot et
al. [8] presented an "Eye and Pen" method for looking into the dy-
namics of the writing process based on visual attention. We employ
the proposed feature set to evaluate its effectiveness and relevance in
cognitive ability classification. Figure 5.4 highlights observable differ-
ences in behaviours of experts and novices for cognitive activities.

confidence score Self-confidence is an essential factor in learn-
ing. Feedback based on self-confidence during cognitive activitiesHigher confidence

level helps to show
better performance

& results

helps the learners improve performance [158]. Figure 5.4c shows that
experts need lesser time to think while attempting solutions. They
also provide precise and compact solutions to problems, indicating
higher self-confidence. Similarly, Figure 5.4c provides valuable in-
sights about initial cognition, as novices spent not only more time
completing the task but also understanding the task, as compared to
experts.
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cognitive load Hochberg et al. [101] conducted a study to demon-
strate that lower cognitive load results in higher learning achieve-
ments. Figure 5.4a shows that the novices need more time between Novices experience

higher cognitive load
for complex
representation
learning

pen usage. It means they experienced a higher cognitive load for at-
tempting solutions to exercises. It is also observed that the novices
consulted more often to information material while attempting solu-
tions to exercise as shown in Figure 5.4b. Also indicates they needed
help recalling the necessary information. During the reading activity,
we found out that experts go through the abstract-level details of the
topics without going into much detail. When they consult the reading
material while attempting solutions, they directly focus on the Point
of Interests (PoIs), as shown in Figure 5.4c. On the other hand, novices
tried to read and understand every detail present in the material, and
while attempting solutions, they had to search through the reading
material to find the related information, so they needed more time to
process the information with higher cognitive loads.

expertise defines one’s understanding and knowledge in a par-
ticular field. Brueckner et al. [33] explored the influence of expertise
on representation learning across multiple domains in a recent study.
In this work, we also explore the difference in behaviours of novices Experts show higher

expertise during
problem-solving &
understanding

and experts based on their expertise. Figure 5.4 shows notable dif-
ferences in the behaviours of experts and novices in attempting so-
lutions, recalling concepts, required lesser time to understand and
produce solutions for complex representation learning. Figure 5.4d
shows the visible difference in results of experts and novices, even
when the normalised sum of all features in the feature set is used.
When the problem is difficult to understand, the participant requires
more time to process the information, which results in more reading
fixations. We also analyse the time to process the reading material
and the number of fixations. As mentioned in [196], there is a clear
difference between the reading time of novices and experts. Expert
participants require much less time than novices; this study validated
the same, as shown in Figure 5.4c.

We present a feature set to explore the difference between the Proposed features
help to differentiate
learners based on
their
problem-solving
skills

behaviour of experts and novices when they are exposed to factual
and knowledge transfer-based exercises. The proposed features give
teachers meaningful insights about differences in behaviours for anal-
ysis, understanding, and approach to attempting tasks for experts
and novices. Experts exhibit different behaviour right from the be-
ginning, whether analysing the problem, understanding the problem
and/or formulating the solutions, taking less time and producing
quick solutions skipping intermediate steps and producing abstract
solutions. It is also observed that novices require more effort, time
and cognitive load from analysing the task to translating their under-
standing on paper. Novices go through details and process every in-
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Figure 5.4: Cognitive ability comparison for experts and novices.
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termediate step on paper. As results presented in this study, whether
it is reading time, writing time, reading fixations, writing fixations
or time difference between consecutive pen usages, novices’ behavior
differs from that of experts. These insights are helpful for both learn-
ers and teachers to analyse the performance based on an individual’s
strengths and weaknesses and address them accordingly, which helps
improve the overall learning process.

On-body sensors enable the teachers to look deeper into the be- On-body sensors
present a great
opportunity for
cognitive ability
classification

haviours of the students, assist them in interacting and addressing
the individual’s requirements, and foster the concept of need-based
learning. Initial data exploration reveals that implicit sensor informa-
tion can be used as an aid for the teachers to provide needs-based
individual feedback. The encouraging results and findings demand
further research to develop mental models using on-body sensors for
adaptive teaching and learning analytic systems. It is also encouraged
to utilize the Artificial Intelligence (AI)-based methods for assistance
and deeper insights about the learning progress and activities to as-
sist the teachers in better formulating their instructions and interac-
tions addressing the needs and preferences of each student. These
technological interventions and assistance can help to improve the
overall learning process by delivering personalized-focused interac-
tions and education.





Part III

A P P L I C AT I O N S O F W E A R A B L E S E N S O R S I N
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FA I RW R I T E : F I N G E R A I R - W R I T I N G S Y S T E M

This dissertation is built around two main research areas, i.e., meth-
ods to analyse cognitive activities in the classroom and applications of
smart and wearable systems in performing cognitive tasks, to incorpo-
rate technological developments in formal education. This part of the
thesis focuses on applications of Mixed Reality (MR) in a combination
of Artificial Intelligence (AI) to enhance the learning environment.

Handwriting is a common and vital activity in the classrooms, air-
writing enabling systems deemed a default choice to induct techno-
logical developments and smart gadgets in classrooms. Air-writing
systems can be a handy tool for daily classroom activities. For ex-
ample, instructors can interact with content to elaborate the com-
plex concepts on digital display without interrupting the momentum
of instructions/lectures by simple air-writing motions. Similarly, stu-
dents can create notes of important points that can be transcribed and
stored on their smart devices using air-writing without affecting the
cognitive process. The second section of this chapter presents Finger Air-writing systems

have applications in
various fields

Air Writing System (FAirWrite), a novel air-writing system with appli-
cations for VR and AR scenarios such as education, construction sites,
offices etc. The proposed system uses a single Inertial Measurement
Unit (IMU) to capture the finger air-writing motions without requir-
ing a reference surface and then reconstruct the captured motions as
writing trajectories in real time. The proposed system leverages the
potential Deep Neural Networks (DNNs) to recognise and classify the
written numerics (0-9) and characters (A-Z). The main contributions
of the presented work are as follows:

• Finger Air Writing System (FAirWrite) system development to
intuitively record the casual motions in the air with a finger.
The captured motions track the air-writing trajectory using a

Figure 6.1: FAirWrite system at use. (a). Writing on an imaginary canvas imi-
tating intermediate steps (b). Trajectory reconstruction and recog-
nition in real-time.
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single low-cost Inertial Measurement Unit (IMU) worn on the
index finger without requiring a reference surface.

• Development of a simple and real-time handwriting trajectory
reconstruction algorithm to extract the air-writing motions and
project them onto a 2-D digital canvas in a human-readable for-
mat.

• Collection of air-writing dataset from 100 participants that can
be used to recognize and segment the air-writing motions from
various other activities. Moreover, the collected dataset consists
of numerals (0-9), lowercase letters (a-z), and upper-case letters
(A-Z) that can be used for various air-writing recognition and
classification tasks.

• A Graphical User Interface (GUI) to interact with the system and
control the functionalities of the system.

• Along with the qualitative evaluation, a systematic evaluation
based on Deep Neural Networks (DNNs) to recognise and clas-
sify the air-writing mappings onto numerics (0-9) and letters
(A-Z), delivering state-of-the-art (SotA) results.

Structure of this
chapter Rest of the Chapter 6 is structured as follows: Section 6.1 intro-

duces the readers to the problem, the need for an air-writing system,
challenges in the domain, and motivation for developing FAirWrite sys-
tem. Section 6.2 covers the literature review and recent developments
in trajectory reconstruction of air-writing using vision- and sensor-
based systems. Section 6.3 explains the working of the FAirWrite sys-
tem and methods to reconstruct the trajectory of air-writing in real-
time along with the introduction of Deep Learning (DL) classifiers
used in this work for classification of air-writing trajectories. Sec-
tion 6.4 of this chapter describes the data collection process, features
of the collected dataset, and evaluation protocol to train and test the
proposed classifiers. Results are furnished in Section 6.5 in addition
to discussing the strengths and weaknesses of the proposed system
and classification models.
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The author of this dissertation has published the content, figures,
and tables included in this chapter in the following publications. The
author of this dissertation has made major or partial contributions
to the work published in the following publications. Content, figures,
and tables might be reproduced in this chapter. More details about
the publications included in this chapter are as follows:

• Younas J. et al., Finger air writing - movement reconstruction
with low-cost IMU sensor. In: 17th EAI International Confer-
ence on Mobile and Ubiquitous Systems: Computing, Network-
ing and Services, MobiQuitous ’20, page 69–75, New York, NY,
USA, 2020. [273]

• Younas J. et al., Fairwrite - movement reconstruction and recog-
nition using a low-cost IMU. In: 2022 IEEE International Confer-
ence on Pervasive Computing and Communications Workshops
(PerComWorkshops), 2022 [274]
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6.1 motivation

The notion of seamlessly embedding digital interactions in every-IMUs are ideal tool to
capture activities day activities is a central concept of ubiquitous computing. Activ-

ity and context recognition mapping physical actions, particularly
motions and postures, onto digital information is a key component
of such seamless interactions. These digital interactions enable end
users to use their daily wearable gadgets, i.e., smartphones, smart-
watches, smart glasses, and ear-pods, to interact with the surround-
ing environments with improved user experiences. Inertial Measure-
ment Units (IMUs) are an integral part of such smart and wearable
gadgets, with the applications spread widely. Their applications in-
clude the area of sports training and bio-mechanics [90, 166], health-
care [285], education [236, 248, 271], position estimation [position1],
activity recognition [232, 259], gesture recognition [218, 281], Virtual
Reality (VR) [257], and Augmented Reality (AR) [169] to almost every
field of life.

Air-based gesture recognition and trajectory reconstruction is notThere are multiple
ways to capture

air-writing motions
a new problem, and substantial work has been done in the last two
decades, particularly, which included vision-based systems [37, 165,
174], sensor-based systems [9, 51, 134, 179] and depth-based vision
systems [7, 37]. Vision-based systems were first used by Oka et al. [174]
to track fingertip movement and recognise the geometric shapes tra-
jectories by using an infra-red camera and color sensors. Similarly,
Mukherjee et al. [168] used webcam videos to track fingertip detec-
tion and recognise air-writing. Vision-based systems limit the mobil-
ity, range, and canvas, limiting the concept of air-writing, such as
restricted mobility and writing within the camera’s range. On the
other hand, sensor-based systems commonly use IMUs and leap mo-
tion sensors to track and reconstruct the air-writing trajectories. This
work focuses on a specific type of motion tracking and recognition:
finger-ring-based "air-writing" that mimics a "sticky note" interaction
paradigm. Thus, people can casually write a short note by moving
their finger "in the air" when passing by a location. Such a note is
then virtually attached to the location and is shown as text to an ap-
propriate person when they pass the same location.

Finger-based air-writing systems are encouraged in recent researchFinger air-writing
poses multiple

challenges
work [237], establishing that finger-drawn gestures appear similar to
pen-drawn gestures in multiple aspects. The problem with the most
sensor-based system either limits mobility, requiring a real surface
to write on or poses challenges for general users to adapt them to
their natural handwriting patterns, i.e., glove-based handwriting sys-
tem [9] or holding a mobile phone in their hands for writing [179]. Air-
writing systems pose multiple challenges regarding virtual boundary
definition, catering to spatio-temporal variability and segmentation
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Figure 6.2: Examples of Air-writing highlighting the variations for same
user in repeated cycles

ambiguities and making them easier to adapt to and write in the air.
Trajectory reconstruction is a very complicated task as every user has
their specific writing style, speed, and orientation, resulting in dif-
ferent trajectories for the same text by the same user as shown in
Figure 6.2. Sensor internal errors and inaccuracies accumulate over
time, which commonly result in drift for trajectory reconstruction,
making the task far from trivial. We address these crucial compo-
nents of the idea: the ability to extract 2-D trajectories from casual fin-
ger motion using a single low-cost Inertial Measurement Unit (IMU)
without requiring any reference surface and catering to the sensor’s
internal errors. The extracted trajectories are reconstructed on the re-
mote display to provide the real-time experience/feedback to interact
with the system making it very usable and easier to adopt, as in tra-
ditional handwriting methods. Finger Air Writing System (FAirWrite)
system focuses on the challenges such as mobility, virtual boundary-
free screen, system to be easily worn on a finger for air-writing, and
real-time applications, along with addressal of several other limita-
tions posed by vision-based and sensor-based systems

6.2 related work

Wearable gadgets have been widely used to evaluate hand move-
ments for activity recognition, gesture recognition, and air-writing
acquisition. This includes various air-writing systems not requiring
any real surface using wearable devices, i.e., smart-watch [264], Myo-
armband [51], IMU-based systems [9, 179]. This section covers a brief
and comprehensive overview of recent developments and systems for
online handwriting acquisition and recognition.

Digital pens are the commonly used and commercially available Sensor pens are
commonly used for
digital writing
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tools to record handwriting progress and make them digitally avail-
able for processing. These digital pens use Micro Electro Mechanical
Systems (MEMSs) to record and store the pen movements during the
writing process on normal or special paper. The MEMS based digital
pens [210, 247] mainly use IMUs (accelerometer, gyroscope, and mag-
netometer), and some use pressure sensors to record the pen up and
pen down activities as well. A few are commercially available for re-
search purposes exclusively, i.e., stabilo-digipen 1. Although digital
pens are very easy to adopt and used for handwriting cannot be used
for air-writing.

Vision-based systems are theoretically the most appropriate appa-Vision-based systems
have their

limitations to
capture air-writing

ratus to perform and record air-writing trajectories, as they do not
put any constraint on the user to hinder the natural writing process.
Studies established the utility of a vision-based system to track the
air-writing by capturing the finger movements using 2-D cameras [37,
165, 168] and depth cameras [7]. Vision-based systems address the
limitation of digital pens but put the mobility and range constraint
on the end-user when it is out of the camera’s range or dealing with
an obscure environment.

The answer to the range limitation of the camera lies in the use ofIMUs are ideal tool to
capture air-writing

gestures
IMU-based wearable devices [9, 60, 178] to enable the end-user to air-
write without requiring additional equipment, i.e., additional sensor
set-ups, displays, screens, etc. Smartwatches [264] is the most com-
monly used wearable gadget for arm, hand, and finger gesture recog-
nition using a built-in accelerometer and gyroscope. Myo-armband-
based solution [51] for handwriting recognition in the air has been
presented recently with its scope limited to digits recognition only.
A MEMS-based handwriting system for flat surfaces using IMUs is in-
troduced in [60]. A single trajectory reconstruction method for lower-
case English alphabets is introduced in [179], further improved with
a handwriting recognition module in [178]. Some discussed systems
are limited to numerics recognition, few are for the lowercase English
alphabet only, and others must be intact with a surface to produce
handwriting. This opens up an opportunity for a wearable sensor-
based handwriting system, which can be used in real-time and mul-
tiple scenarios, i.e., real life, VR and AR.

A proof-of-concept is presented in [9] to enable its users to air-Using ML to capture
& recognise writing

gestures
write on an imaginary blackboard. The proposed two-staged approach
spots and recognizes text from continuous character gestures using
IMUs. State Vector Machines (SVMs) are used in the spotting stage to
identify the data segments containing the writing activity. They used
Hidden Markov Model (HMM) in conjunction with a statistical lan-
guage model for the recognition stage. The presented method does

1 Stabilo Digi-Pen

https://stabilodigital.com/digipen/
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not involve trajectory reconstruction but directly uses the Machine
Learning (ML) algorithms for spotting and recognition.

Dash et al. [51] present a real-time Myo-armband-based air-writing Myo-armbands can
be used to air-write
digits

system to write digits on a virtual screen. They also present a "dif2viz"
method to map the air-writing trajectory on a 2-D plane using orien-
tation angle information from built-in IMU in Myo-armband. They
used a combination of Convolutional Neural Networks (CNNs) and
Gated Recurrent Units (GRUs) to recognise the air-written digits. The
presented work’s scope and applications are limited to being used for
digits only.

Pan et al. [179] recently presented a smartphone-based air-writing Using smartphones
as air-writing tooland trajectory reconstruction system. It reconstructs the single-stroke

lowercase English letters using a built-in IMU sensor in a smartphone.
The proposed system is further improved in [178] along with the ad-
ditional Machine Learning (ML) module for handwriting recognition
using Dynamic Time Warping (DTW) and Convolutional Neural Net-
works (CNNs). Their approach is limited to single-stroke characters.
It requires a precise and complex calibration process every time the
system is put in use, a common practice for low-cost IMU sensors
to compensate for system-induced errors. The proposed trajectory re-
construction algorithm is complex, and trajectory reconstruction is
in multiple stages, and limitation of its working for the single-stroke
letter only limits its scope as a real-time system.

In summary, every system has its own merits and demerits, lim- There is still room to
improve air-writing
tools

iting their suitability to air-writing because of their size [178], place-
ment [9], complexity [51], and functionality limited to numerics recog-
nition, lowercase English alphabets only, requiring a surface to pro-
duce handwriting. This opens up an opportunity for a wearable sensor-
based handwriting system, which can be used in real-time and mul-
tiple scenarios, i.e., real life, VR and AR. FAirWrite system bridges the
gaps. It overcomes the limitation of existing air-writing systems by
equipping end users with a system apparent to use and adapt to
without affecting the natural writing behaviour.

6.3 fairwrite system

This section covers the details of a finger-worn air-writing system, Overview of
FAirWrite systembuilt using a single IMU as Finger Air Writing System (FAirWrite), a

complete system imitating real-world application is shown in Fig-
ure 6.1. The proposed system architecture is elaborated by decompos-
ing it into three parts (i) The hardware part, to develop a finger-worn
sensor using a low-cost IMU to record the air-writing motions of a
user during the process of producing the writing snippets. (ii) A tra-
jectory reconstruction algorithm to project air-writing on a 2-D plane
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Figure 6.3: FAirWrite system architecture

in real-time, which includes calibration, error compensation, and vi-
sualization to provide real-time feedback. (iii) A classifier/recogniser
based on Deep Learning (DL) approach to classifying the air-written
trajectories as words and digits and then recognizing the individual
sequences.

Complete FAirWrite system architecture is shown in Figure 6.3 with
details of individual components in the following subsections.

6.3.1 Finger-worn Sensor Design

The finger-worn sensor is an embedded device comprising of a low-
cost MEMS IMU 2, a control unit 3, and a Bluetooth transmitter powered
by 3.7V power supply. The IMU sensor is mounted on an AdafruitConstruction of

Finger-worn sensor board 4 that interacts with the sensor’s registers to convert the sensor
output data to International System of Units (SIs). The IMU sensor is a
9-Degrees of Freedom (DoF) device equipped with a tri-axial 14-bit ac-
celerometer and a tri-axial 16-bit gyroscope. This way, the output sig-
nal obtained from the set of Application Programming Interface (API)
provides an acceleration vector [ax,ay,az] in m/s2, the angular ve-
locity vector [wϕ,wθ,wψ] from the gyroscope in degree/s, and mag-
netic field strength vector [mx,my,mz] in uT . For the control unit,
the finger-worn sensor uses an Arduino Pro Mini 3.3V 5 with an AT-
Mega328P 6 micro-controller. Arduino unit gets the data vectors from
Adafruit, encodes them in American Standard Code for Information
Interchange (ASCII) format, and transmits the data via Bluetooth sen-
sor at the sampling rate of 30Hz. For trajectory reconstruction on re-
mote systems keeping the mobility of the user in mind, Bluetooth con-
nectivity ensures uninterrupted data transmission while air-writing
along with data transmission to remote display in real-time, keeping
in view the real-life applications. The composition of the finger-worn
sensor is elaborated in Figure 6.4.

2 Bosch IMU Sensor
3 Arduino Pro
4 Adafruit board
5 Arduino Pro
6 ATMEGA328P

https://www.bosch-sensortec.com/products/smart-sensors/bno055.html
https://store.arduino.cc/arduino-pro-mini
https://www.adafruit.com/category/17
https://store.arduino.cc/arduino-pro-mini
https://www.microchip.com/wwwproducts/en/ATMEGA328P
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Figure 6.4: Finger-Worn Sensor design

(a) Sensor rotation versus air mo-
tions

(b) Coordinates of the
sensor with respect to
the real world

Figure 6.5: Sensor motion with respect to air motions for trajectory recon-
struction.

6.3.2 Trajectory Reconstruction

Each data sample consists of a time-series Di = {M1
i ,M2

i , ...,Mτi
i } Trajectory

reconstruction is
done in two main
parts

consisting of τi time steps, each element is Mt
i =

[
atig

t
im

t
i

]
where

the ati , g
t
i , and mti are the three-axis vector of the accelerometer, gyro-

scope and magnetometer, respectively. In order to reconstruct the air-
writing trajectory in real-time on a remote display for visual feedback,
the FAirWrite system uses the angular velocity vector information, i.e.,
roll, pitch, and yaw. The trajectory reconstruction process is simple
and divided into two steps.

• Attitude Estimation: To map the data from the sensor’s frame
of reference to a real world’s frame of reference using sensor
fusion algorithm Figure 6.5b.

• Visualization on a Projection Screen: Transformation of data
into real-world coordinate sequences for projection on display
to facilitate real-time feedback on the progress of air-writing.

Attitude Estimation

When the user holds the sensor on the finger, the coordinate sys- Conversion from
sensors coordinates
to real-world
coordinates

tem of the device is different from the coordinate system in the real
world shown in Figure 6.5a. This makes the change of rotation mea-
sured by the sensor directly incompatible with the real world’s frame
of reference. To be able to make a trajectory reconstruction from the
displacement of the sensor, it is necessary to obtain the absolute orien-
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Figure 6.6: The canvas size in pixels and x & y coordinates limits in degrees
to plot in screen

tation of the sensor in coordinates of the real world. For this purpose,
an accurate, computationally efficient, and custom sensor-fusion algo-
rithm based on Madgwick filter [150] is proposed to transform sensor
orientation to real-world coordinates along with removal of noise in-
terference and sensor drift. This filter applies quaternion representa-
tion to the orientation angles obtained from angular rate, acceleration,
and earth’s magnetic field.

The resulting quaternion q(est) is the estimated orientation in the
real-world frame and is represented as:

qest = qw + qx + qy + qz (6.1)

where qx,qy,qz is the vector part of qest, while qw is the scalar part
of the vector.

The quaternion can represent any arbitrary orientation in 3-D space,
but we are only interested in the 2-D space represented by Euler an-
gles. The Conversion between quaternion to Euler angle is obtained
by: ϕθ

ψ

 =


arctan

2(qwqx + qyqz)

1− 2(q2x + q
2
y)

arcsin(2(qwqy − qzqx)

arctan
2(qwqz − qxqy
1− 2(q2y + q

2
z)

 (6.2)

where ϕ, θ, and ψ are the roll, pitch, and yaw, respectively. Figure
6.5b shows the relationship of IMU coordinates Xs, Ys, and Zs to the
real-world coordinates Xr, Yr, and Z.

Visualization to a 2D canvas

In 2nd phase of the trajectory reconstruction algorithm, visualizationTranslating
real-world

coordinates for
display on screen
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of air-writing to a 2-D screen is done based on the rate of change of
the finger-worn sensor’s orientation is proposed. This rate of change
is translated to a series of X and Y coordinates and updates the screen
at a speed imperceptible to the human eye, which makes it ideal for
real-time visualization. We use the Euler angles obtained in (6.2) to
plot the trajectory on screen. Pitch(θ) is used to estimate the X coor-
dinates on screen, and yaw(ψ) for Y coordinates. Whenever the user
starts writing, the center of the screen is set as an initial point. After
initialization, we calculate gain to relate the finger movement in the
air to a 2-D display regardless of size and resolution. The gain is a
fixed value for both X and Y.

GainX =
CanvasLENGHT

xmax − xmin
(6.3)

GainY =
CanvasHEIGHT

ymax − ymin
(6.4)

where xmax = 80, xmin = −80, ymax = 70, ymin = −70 degrees.
In the second step, the difference in the current angle and the pre-

vious angle is calculated and multiplied by a gain to determine how
many pixels the cursor is moved with reference to the previous data
sample to calculate the current position of the cursor on the screen:

anglex(t) = (θ(t) − anglex(t− 1)) ∗GainX (6.5)

angley(t) = (ψ(t) − angley(t− 1)) ∗GainY (6.6)

where anglex(t) and angley(t) estimate the difference in angles from
the previous value with a gain defined by the min and max values on
the screen.

Lastly, the obtention of X and Y coordinates to plot the trajectory
reconstruction on the screen.

screenPosx(t) = anglex(t) + screenPosx(t− 1) (6.7)

screenPosy(t) = angley(t) + screenPosy(t− 1) (6.8)

6.3.3 Classifier

FAirWrite system implements the Omni-scale (OS)-CNN [231] Deep Learn-
ing (DL) model to classify the air-written digits and characters. OS-
CNN rethinks the time series classification by learning the classifier
and kernel size simultaneously by implementing a special design of
kernel size configuration to enable the system to cover all possible
scales of the receptive fields using a limited number of kernel sizes.
In our proposed approach, we implemented the OS-CNN comprising OS-CNN are SotA for

time series
classification

of three convolutional layers, where the kernel size is prime numbers
from 1 to N in the first two layers, to cover all possible receptive fields
of any odd numbers in (0, 2N). 3rd convolution layer has the kernel
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Figure 6.7: Omni-scale (OS)-Convolutional Neural Network (CNN) model ar-
chitecture.

size of one and two to cover receptive fields of any integer in (0, 2N),
followed by a global average pooling layer and a fully connected layer.
The OS-CNN model architecture is shown in Figure 6.7. The input se-
quences are re-sampled with the median of the dataset to address the
problem of varying length sequences. A batch size of 200 learning
rate of 1e−4 is used with the gradient descent loss function and the
model was trained for 50 epochs.

6.3.4 Finger Air Writing System (FAirWrite) User interface

FAirWrite user interface is a Graphical User Interface (GUI) applica-It is very important
to interact with the
system in real-time

tion developed using PyQT framework [193] to enable the end user
to interact with the finger-worn system in real time. Its functionalities
include receiving the sensor data, constructing the air-writing trajec-
tories, providing visual feedback, and other control functionalities, as
shown in Figure 6.8. FAirWrite user interface utilizes simple image pro-
cessing algorithms to enable the user to write words and sentences,
as shown in Pan 1 of the Figure 6.8. Users can toggle between the
writing modes. Pan 2 represents the canvas to display the current air-
writing character. Pan 3 shows the raw sensor information, with Pan
4 displaying the sensor’s calibration status. Lastly, pan 5 is the control
panel of the system’s functionalities.

6.4 experiment set-up

6.4.1 Data Collection

A dataset from 100 participants (61male, 39 female) is collected using
FAirWrite system with complete freedom to keep the writing process
as natural as possible for every individual. The participants cameA wide-spread of

participants
contributed to data

collection

from different geographical regions, i.e., Europe, America, Asia, and
the African continent; most participants belonged to India, Germany,
Mexico and other regions. Including participants from different ori-
gins brought diversity and variation to the dataset regarding writing
habits, e.g., speed, size, and style. Most of the participants were uni-
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Figure 6.8: FAirWrite user interface to interact with the system.

versity students depict higher education levels. The age of the partic-
ipating individuals ranged from 20 to 35 years, and most were right-
handed. Left-handed participants also preferred wearing the sensor
on their right hand to write with and reported no difficulties using it.
Initially, it took time for most participants to adapt to the air-writing.
However, after a few writing strokes, most participants got comfort-
able writing with it and reported their ease of using the system.

FAirWrite system provides us 9-Degrees of Freedom (DoF) data from How to understand
the collected dataan accelerometer, gyroscope, and magnetometer in m/s2 , degrees/s,

and µT , respectively. The used system provides the continuous data
stream at the rate of 30Hz and is transmitted to a remote display via
Bluetooth. Before actual data collection, participants were given time
to use the system to adapt to the system’s working and understand its
functionality. Participants were advised to use the FAirWrite system on
the index finger. Every participant was asked to write numerals (0-9),
lowercase alphabets (a-z), and upper-case alphabets (A-Z). Trajectory
reconstruction of collected data symbols is shown in Figure 6.9 The
FAirWrite is calibrated for every new data recording by placing it on a
flat surface for a few seconds to minimize internal errors.

We also requested participants to contribute to data collection for Air-writing dataset
includes both intra-
& inter-person
writing variations

multiple repeated cycles. Repetitions allowed the system to incorpo-
rate the intra-person along with inter-person handwriting variability
as shown in Figure 6.2, different writing trajectories for the same char-
acters in different repetitions, writing speed, writing stroke order, and
writing style to bring the diversity in the collected dataset. In total,
the dataset included about 15000 air-writing sequences. Every sam-
ple is visualized manually to remove human errors in the collection
process.
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Label Trajectory Label Trajectory Label Trajectory Label Trajectory

0 1 2 3

4 5 6 7

8 9 A B

C D E F

G H I J

K L M N

O P Q R

S T U V

W X Y Z

Figure 6.9: Examples of trajectory reconstruction of characters and digits
present in FAirWrite dataset.

6.4.2 Evaluation Protocol

FAirWrite system is aimed to be a real-time air-writing trajectory re-Two different
evaluations are used

to test the
performance of

FAirWrite system

construction and recognition system; we follow more than one eval-
uation protocol, i.e., user quality appreciation (human-based) and
model-based evaluation. In user quality appreciation, participants
were shown random samples from data collection. They were re-
quested to recognise them and label trajectory reconstruction as good,
normal, and bad based on the character’s appearance.

In model-based evaluation, we used Machine Learning (ML) andData split and
evaluation metrics Deep Learning (DL) algorithms to classify and recognise the air-written

characters. At the time of publication of the paper [274], data from 30

participants were available, and the rest of the participant’s data was
collected afterward. The collected dataset is divided into train and
test sets for model-based evaluation. The upper-case and lowercase
alphabet labels are merged to avoid misclassification due to similar-
ities in their shapes. The dataset is split using person independent
mechanism so that the participant’s data is either used in the train
set or the test set but not in both to establish the system’s generic be-
haviour and robustness. Train-set consists of the data from 21 partic-
ipants and the rest of the 9 participant’s data in test-set. We evaluate
the system on K Nearest Neighbours (KNNs) in combination with Dy-
namic Time Warping (DTW), OS-CNNs, and Bidirectional Long-Short
Term Memory (BLSTM) models. Overall results are reported regard-
ing classification accuracy, and individual results are shown using
the confusion matrix metric.
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Table 6.1: User Quality appreciation results
Symbol Recognized (%) Good (%) Normal (%) Bad (%)
Numerics (0-9) 95.91 79.55 14.81 5.64
Lower-case letters(a-z) 89.93 81.22 13.27 5.51
Upper-case letters(A-Z) 93.04 78.49 14.66 6.85

6.5 results and discussions

The main intent of any writing system, whether handwriting or air-
writing, is the human beings, so we evaluated the performance of
FAirWrite system on human feedback along with model-based evalua-
tion using intelligent models.

6.5.1 User Quality Appreciation

In human-based evaluation, at the end of the activity, the participants
were shown random images of air-written digits and characters for
recognition. After recognition, we also asked them to label the quality Human-based

evaluation of
trajectory
reconstruction

of trajectory reconstruction as good, normal, and poor. The complete
results are furnished in Table 6.1. Most of the participants were able
to recognize the numerals with the highest overall accuracy of 95.91%,
out of which 79.55% as good, 14.81% as normal, and only 5.64% of all
the recognised sequences are labeled as bad. Upper-case letters are
recognized with the accuracy of 93.04%, where 78.49% of characters
are labeled as good, 14.66% as normal and 6.85% are marked with
poor labels. Lowercase letters are recognized with the accuracy of
81.22, 13.27, and 5.51 percent as good, normal, and poor, respectively,
with an overall recognition rate of 89.93.

6.5.2 Model-based evaluation

In model-based evaluation, we evaluated the FAirWrite system using Performance of ML
& DL classifiers for
classification

multiple Machine Learning (ML) and Deep Learning (DL) models, and
results are furnished in Table 6.2. The best results are achieved by
using the combination of two Machine Learning (ML) techniques, the
combination of KNN with DTW results in overall recognition accuracy
of 94%, where digits and letters are recognized at the rate of 85.4
and 95.5, respectively. In the case of Deep Learning (DL) models OS-
CNN achieved the overall accuracy of 88% with class-wise accuracy
of 81.8% and 91.3% for numerals and alphabet recognition. We also
evaluate the FAirWrite performance on BLSTM models with the overall
accuracy of 67%, the digit recognition accuracy of 63.5% and letter
recognition accuracy of 68%, which to our surprise, is on the lower
side.
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Figure 6.10: Confusion matrix of individual classification results of OS-CNN

classifier.

Table 6.2: Model-based Evaluation Results

Classifier
Accuracy(%)

Overall Numerics (0-9) Letters(A-Z)
1D-CNN 88 81.8 91.3
BLSTM 67 63.5 68
DTW+KNN 94 85.4 95.5
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Ground Truth
Reconstruction of
Correct Prediction

Incorrectly Predicted
Label

Reconstruction of
Incorrect Prediction

0 O

H A

G 6

P D

2 Z

Figure 6.11: Examples of trajectory reconstruction of obvious confusions in
model-based evaluation. Black trajectory reconstruction repre-
sents the ground truth, and trajectory reconstruction in red rep-
resents the incorrectly classified samples.

6.5.3 Discussion

Based on user quality appreciation, we infer that numbers and let- Trajectory
reconstruction
performance for
individual characters
& numbers

ters, both uppercase and lowercase, that are neither too short nor too
long to write are more likely to produce better results after trajec-
tory reconstruction. For numerics, 3, 4, and 7 are the most recognized
against 8, 9, and 5 as unrecognised. In upper-case letters, L, V, and C
are mostly recognized, whereas I, E, and H recognition rates are not
as expected. In lowercase letters, m, w, and v are recognized with the
highest rate and i, j, and t are recognized at the lowest rate. A few
examples of trajectory reconstruction of each class, which users find
hard to recognize, are shown in Figure 6.12.

In model-based evaluation, the recognition results for most char- Detailed results of
model-based
evaluation

acters are encouraging, as shown in Figure 6.10. The digits (0-9) are
correctly classified with the accuracy of 86.7 percent, lowercase letters
with 87.9%, and upper-case letters with 88.6%. We merged the labels
of uppercase and lowercase letters to minimize the confusion as most
are of the same shape, which results in improved letter recognition at
the accuracy of 91.3%. In digits, 3, 7, and 9, and in letters, L, M, and R
are recognised with higher rates. The letter’ O’ and ’0’, ’6’ and ’G’, ’p’
and ’D’, and ’Z’ and ’2’ are mostly confused, as they look the same in
appearance, as shown in Figure 6.11. This problem can be addressed
using the context information of the previous and next characters.
Moreover, a combination of DTW with KNN delivered the best results,
but the costs of the system (about 6.3sec/sample) are on the higher
side. Therefore it is not recommended for real-time evaluation. On
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(A)

(B)

(C)
Figure 6.12: Failed examples for digits, lowercase letters, and uppercase tra-

jectory reconstruction. (A) shows results of ’8’, ’9’, and ’3’. (B)
shows letters ’E’, ’G’, and ’S’. (C) show results of ’f’, ’z’, and ’k’.

the other hand, OS-CNN processes 5 samples per second, making it
ideal for real-time use despite slightly lesser results.

IMU sensors are known for internal errors, i.e., noise and drift, accu-
mulating over time. To evaluate the problem, we asked participants
to vary the writing speed in repeated cycles to evaluate its impact on
trajectory reconstruction. If the person writes too fast or otherwise,Exploring

functioning
limitations of IMUs

the results are not as good as expected, whereas better trajectory re-
construction is achieved at normal and slow writing speed. A com-
parative analysis of the results for the same character produced by
the same user at varying speed is presented in Figure 6.2. Moreover,
we also present a simple mechanism to air-write words and sentences
using the FAirWrite system by taking advantage of simple image pro-
cessing algorithms, a major lacking functionality in existing systems.

To draw a fair comparison with the existing system, Airscript sys-Comparison with
existing methods tem [51] presented by Dash et al. and Smartphone IMU system [179]

are selected. Airscript uses Myo-armband, and its functionality is lim-
ited to writing and recognizing the numerals only (0-9). It requires
full arm movement to air-write, as the sensor is worn on the forearm
and requires a complicated calibration process every time before the
system is used. The smartphone IMU base system for air-writing was
presented in [179], which was further improved in [178]. This system
is also limited to a single trajectory lowercase letter only, and carrying
smartphones in hands to write with affects the natural writing pro-
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cess. On the contrary, FAirWrite is worn on a finger, making it ideal for
air-writing on an imaginary canvas because of its size and placement,
as explained in [237]. Moreover, it offers complete functionality to
write the numerals (0-9) and letters (A-Z), along with a classification
module to classify the air-written characters into digits and alphabets.
The simplified approach for trajectory reconstruction in combination
with cost-effective Deep Learning (DL) models OS-CNN for the clas-
sification of air-written characters gives it a clear edge and makes it
ideal for real-time use.

We introduce a novel and generic method called FAirWrite system to Strengths &
limitations of
FAirWrite system

create the documents by air-writing with a finger on a virtual screen
and with no limits of spatio-temporal boundaries. The proposed sys-
tem is based on a single low-cost IMU with the applications to write in
Virtual Reality (VR) and Augmented Reality (AR) scenarios. We also
present a simple and real-time method to reconstruct the air-written
trajectories on a 2-D display. An enhanced FAirWrite user interface en-
ables the users to interact with the system and for real-time feedback.
We evaluated the performance of FAirWrite system by user quality ap-
preciation and exploring deep-learning methods to report the state-
of-the-art (SotA) results. Both recognition methods achieved an overall
accuracy of about 95%. The collected dataset from 100 participants is
made publicly available for the benefit of the research community.
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7
D S TA R

Documents play a key role in the administrative functioning of an Stamps highlight the
significance of
documents

organisation. Documents are also one of the major forms of com-
munication and exchange of information between organisations and
within the organisations. Contracts, wills, invoices, certificates, and
other documents used by organisations are often signed and stamped
to ensure their authenticity. The attachment of stamps to the doc-
uments signifies their relevance and authenticity. Stamp detection
and recognition is important to the automated processing and under-
standing of administrative documents. Stamp segmentation demands
semantic analysis of the document images as stamps on documents
may contain complex backgrounds and surround by unwanted data.
This chapter of the dissertation focuses on stamp segmentation from
scanned document images, isolating them from background data and
other information present in document images.

The major contributions of this work are as follows:

• A stamp segmentation approach Deep Stamp Recognition (dStaR)
is presented in this chapter. dStaR is the first end-to-end and
trainable approach for stamp segmentation from various docu-
ment images. The proposed approach uses Fully Convolutional
Network (FCN) for semantic analysis of documents to extract
stamps, the first methodology to adopt Deep Neural Networks
(DNNs) for stamp detection problem.

• The proposed approach is evaluated on a publicly available
stamp dataset. Evaluation results show that the presented ap-
proach outperforms the state-of-the-art (SotA) methods for stamp
segmentation and achieves pixel-based precision and recall of
87% and 84%, respectively.

The rest of the chapter is structured as follows: Section 7.1 presents Structure of this
chapterthe problem statement, motivation to solve the problem, and pro-

posed solution to address the mentioned problem. Section 7.2 sum-
marizes not only the previous work done for stamp detection and
verification domain but also provides an overview of the methodolo-
gies proposed after the publication of this work. Section 7.3 elaborates
the dStaR approach for stamp segmentation and detection with the de-
tails for the networks adopted for the proposed approach. Section 7.4
presents the evaluation methodology, details of the publicly available
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stamp segmentation dataset, evaluation criterion, results of the pro-
posed approach, and a detailed comparison with existing methods.
The author of this dissertation has partially published the contents,
figures, and tables in the following publications. The author originally
wrote all the text, figures, and tables in the mentioned publications
and this dissertation. More details about the publications included in
this chapter are as follows:

• Younas J. et al., D-star: A generic method for stamp segmen-
tation from document images. In: 14th IAPR International Con-
ference on Document Analysis and Recognition (ICDAR), pages
248–253, 2017 [270]
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Figure 7.1: Textual, graphical, official and fun purpose stamps

7.1 motivation

Stamps are considered a mark of authenticity and originality of Stamps are of gross
importance in
documents

documents. Stamps mark the documents with creation, distribution,
and storage information. Large organizations receive and send thou-
sands of documents (including legal, financial, and security docu-
ments, bank receipts, checks, and utility bills) daily. These documents
have single or multiple stamps on them. Every stamp on a document
highlights the significance and purpose of the document. Stamps
largely vary in shape, size, and color from organization to organi-
zation as well as within departments of an organization. In general,
stamps appear in textual, graphical, regular (official), and irregular
(fun purposes) shapes, as shown in Figure 7.1.

Stamp segmentation is an important part of the automated classifi- Stamp segmentation
is a challenging taskcation and verification of documents. Stamps, however, may overlap

text, logos, and/or other information in documents. Furthermore, the
orientation of stamps varies from document to document, and differ-
ent scanning environments also add their overhead. Hence, proper
and correct stamp segmentation from scanned documents is a chal-
lenging problem.

In the past, various approaches have been presented for stamp de- Limitations of
existing stamp
detection methods

tection [5, 162]. Most of these approaches used different sets of stamp
features, including color [162, 241], shape [19], and local keypoint de-
scriptors [5, 57, 70] to separate stamps from logos, text, and other
information present in scanned document images. These approaches
may serve specific organizations which use a predefined set of stamps
based on color, shape, or features. However, none of these approaches
can be applied to develop a generic system for stamp detection and
segmentation applicable to a vast majority of stamps with different
colors, shapes and textures, especially for overlapping stamp segmen-
tation. There are a few approaches published after the publication of
mentioned work in this chapter [62, 195], we will discuss them in
Section 7.2 and the possible comparison in Section 7.4.3.

Deep Learning (DL) has been successfully applied for object clas-
sification and detection [129, 223, 286]. While DL has seen success FCNs are tailor-made

for semantic analysis
of document images
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with a breakthrough paper by Krizhevsky et al. [129], the history of
successful Deep Learning (DL)-based methods for handwriting recog-
nition [82] is rather old. For pixel-level image labeling, DL methods
have been applied for binarisation and layout analysis [39, 181, 214].
However, Fully Convolutional Networks (FCNs) remains unexplored
in this context. A closely related work [282] uses FCNs for detecting
text in natural scenes. Stamps are not location-specific or content-
specific objects in the document images. Therefore, stamp segmen-
tation requires the semantic analysis of document images to segment
them from overlapping objects or surrounding document objects such
as text, figures, tables, and logos. FCN is the SotA approach for seman-
tic analysis in natural-scene images, and their potential for semantic
analysis of documents is still unexplored to the best of the author’s
knowledge(at the time of publication).

Based on FCNs, we present a generic approach to segment stampsdStaR uses FCNs for
stamp segmentation from scanned document images. The presented approach, named

dStaR, can detect unseen stamps of any shape, color, size, and ori-
entation. Moreover, dStaR can detect overlapping stamps. This is the
first method to use deep learning for stamp detection. We used a
Fully Convolutional Network (FCN) to segment stamp masks from
scanned document images. Contour refinement is applied to the pre-
dicted masks for pixel-based evaluation and reforming the original
stamps. The proposed method is evaluated on a publicly available
stamp detection and verification dataset [162] where it yields pixel-
based precision and recall of 87% and 84%, respectively.

7.2 related work

Different methods have been proposed to detect the stamps fromHeuristic-base
approaches document images in the past. Most of these methods used heuristics-

based approaches to detect and classify stamps. Some approaches
used color-based features to segment stamps, while other approaches
used geometric features with key-point descriptors to extract the stamps
from scanned document images.

One of the earliest methods to detect seal imprints and signaturesColor profiles for
stamp detection from checks of Japanese banks was proposed by Ueda et al. [241],

assuming signatures, seal imprints and backgrounds to be different
from each other. It uses the color information RGB 3D to detect stamps
and signatures from images. The proposed technique fails when any
of the three clusters is not monochromatic.

Micenkova et al. [162] present an automatic segmentation and ver-XY-cut algorithm for
stamp detection ification system to detect and verify the stamps from scanned docu-

ment images. This approach is based on color segmentation of docu-
ments in Y Cb Cr color space. Candidate solutions are extracted using
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XY-cut algorithm [128]. Candidate solutions are further processed us-
ing geometrical and color-based features to extract the stamp region.
This approach does not address black stamp detection. It also fails to
detect the stamp when the stamp background matches the color of
the stamp. The extended model with stamp verification is presented
in Micenkova et al. [163] .

Ahmed et al. [5] presented a part-based feature extraction method. Part-based feature
extraction methodIt uses a two-step approach to classify stamps from non-stamp re-

gions using geometrical features. First, it computes the key points and
then descriptors from these key points. Their presented approach out-
performs other methods in detecting black stamps, while the results
reported for colored images in [5] are on the lower side.

An outliers-based approach has been presented to detect the stamps Considering stamps
as outliers for
detection

and logos from scanned document images by Dey et al. [57]. This ap-
proach assumes that the documents only consist of text, stamps and
logos. Considering stamps and logos as outliers, it divides the doc-
ument into foreground and background using Principal Component
Analysis (PCA) and color information, treating both as separate im-
ages. These images are then individually processed further for pixel-
level evaluation to segment out the stamps and logo regions from
document images.

Another shape-specific segmentation approach is presented in For- Shape descriptors for
stamp detectionczmański et al. [70]. This approach uses color space transformation

to look for potential color stamps, followed by different object de-
tection algorithms to compute the shape descriptors. Isolated regions
are extracted from scanned documents and classified using computed
shape descriptors. This approach potentially addresses the detection
of well-defined shapes (official stamps) regardless of stamp color.

Bhalgat et al. [19] proposed a shape-specific stamp segmenting Exemplar features &
supervised learning
approach for stamp
detection

approach using exemplar features. This approach uses unsupervised
learning methods to extract the dictionary items for stamp shapes.
Feature vectors are extracted using a single Convolution layer with
4 × 4 quadrant max-pooling. A dictionary ranking item scheme is
used for the recognition of stamps. This approach produces excellent
results for only oval-shaped stamps.

Note that Dey et al. [57] also presented an outliers-based approach Limitation of
outliers-based
approach

to detect stamps and logos from scanned document images. It is a
highly fragile and prone to error approach as it is explicitly based on a
large set of experimentally computed parameters generated from the
whole dataset. These computed parameters are then applied to the
same dataset for evaluation. Hence, the comparison does not stand
valid with this approach.
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Figure 7.2: dStaR architecture with input image and pixel-level segmenta-
tion result of FCN

The discussed methods use heuristic approaches and have theirRelated work
published after
presented work

constraints in particular scenarios. Deep Learning (DL) approach has
not been used to detect the stamps from the images until time up
to the best of author’s knowledge. Rajab et al. [195] presented a
method to segment the stamps from document images using local
k-means and Iterative Self-Organizing Data Analysis Technique Al-
gorithm (ISODATA) algorithms. The proposed methodology uses clus-
tering techniques to isolate stamp clusters from background clusters
and then refine those clusters to extract the binary mask for the
stamp area. The evaluation protocol and dataset used to evaluate the
proposed approach rule out the fair comparison with our proposed
methodology.

Duy et al. [62] present an approach for stamp segmentation andCombining
supervised &
unsupervised

learning for stamp
detection

verification. The proposed approach is a combination of unsuper-
vised learning methods and State Vector Machines (SVMs). An un-
supervised learning machine method detects all the objects on the
document image, followed by an SVM model to classify stamp and
no stamp regions. At the last step of the proposed methodology, sec-
ond SVM classifiers are used to verify the authenticity of the classified
stamps at the prior step as forged or authentic stamps.

7.3 dstar : the presented system

This section details the presented approach Deep Stamp Recogni-Overview of
proposed approach tion (dStaR) for stamp segmentation in document images. Figure 7.2

shows architecture of dStaR, which uses a FCN to generate semantic
segmentation of input images. The generated segments are pixel-level
maps of stamp location in the original scanned document images.
The FCN’s generated stamp maps are then post-processed using con-
nected component analysis to detect the exact stamp pixels from the
input image. Usually, DL based approaches require a lot of training
data. However, the publicly available "Stamp Detection and Verifica-
tion" dataset we used contains only 400 scanned document images.
Therefore, to resolve this problem, we used the concept of domain
adaptation and transfer learning to train the Fully Convolutional Net-
work (FCN).
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7.3.1 Domain Adaptation and Transfer Learning

In this paper, we adapted the domain of general-purpose object detec- Domain adaptation
enhances the
performance of DNNs

tion and segmentation from natural scene images to the segmentation
of stamps in document images. Both of these domains are different.
Furthermore, to compensate for the problem of the non-availability
of a large dataset, we used the concept of transfer learning. Trans-
fer learning is defined as a transfer of knowledge from a learned
task to a new task [177]. In Convolutional Neural Networks (CNNs),
transfer learning refers to using learned features from a pre-trained
network for a new task. Pre-trained network is particularly useful
when we need more data to train a new network. In dStaR, we used
a pre-trained VGG-Net16 [223] for transfer learning. The VGG-Net16

was trained on PASCAL-VOC-2011 dataset [65]. VGG-Net16 was pre-
ferred as the backbone because it produced better segmentation re-
sults despite inference time on the higher side [19].

7.3.2 VGG-Net

VGG-Net is runner up for ImageNet Large Scale Visual Recognition VGG-Net is used as
backbone of dStaRChallenge (ILSVRC) 2014. It is an advance CNN architecture, which

takes the fixed size input of 224× 224 RGB images. The filter size used
in VGG-Net convolution layers is 3× 3, the smallest possible recep-
tive field size to capture the features. The convolution stride is fixed
to 1 pixel. After convolution, spatial pooling is carried out by 5 max-
pooling layers with a 2× 2 pixel window, with a stride of 2. Input
images are processed through a stack of these convolution layers fol-
lowed by three Fully Connected (FC) layers. For detailed information,
we refer our readers to [223].

To adapt the pre-trained VGG-Net to the problem of stamp seg-
mentation and to improve the performance of FCN, we removed the
FC layers and used the output of 5th max-pool layer for fully convo-
lution processing. Figure 7.2 provides an overview of the architecture
of pre-trained VGG-Net used in dStaR. By removing FC layers from
VGG-Net, we can process input images of arbitrary size.

7.3.3 Fully Convolutional Networks (FCNs)

Fully Convolutional Networks (FCNs) can process arbitrary-sized im- FCNs are widely used
for semantic analysisages due to the absence of Fully Connected (FC) layers in the network

at the end, which requires fixed size input.FCNs are mainly used for
semantic segmentation of images in which pixel-level output is gener-
ated by combining context from higher layers and information from
lower layers while retaining spatial information. Deconvolution layers
are used for decoding the embeddings generated by the encoder. No
learning is needed for deconvolution layers as these are initialized as
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Figure 7.3: dStaR overview, (a) Two different input images, one containing
graphical and colored stamp, while the other input image with
a black and textual stamp on it, (b) shows the results for both
scanned document images for pixel-level predictions, (c) shows
the processed predicted masks from FCN, and (d) shows the de-
tected and segmented binary stamps.

bilinear up-sampling layers. FCNs are given priority over conventional
CNNs because of following advantages [149]:

• Highly computational efficient networks. It takes about 100 mil-
liseconds to process 1000× 1000 image in the training phase.

• FCN generates pixel-level masks for every corresponding classBenefits of FCNs over
traditional CNNs because of their ability to perform segmentation at higher levels.

• FCN can be built on any state-of-the-art (SotA) CNN, e.g., Alex-
net, ResNet, Image-Net, Google-Inception models, rendering vast
scope of adaptability. Using pre-trained networks significantly
boost and fine-tunes the performance of FCNs, helping in very
fast convergence even on very small datasets.

As FCN processing is on pixel-level, it needs per-pixel annotations
for training. Our focus in the scanned document images is stamp
regions. So, we used the annotations containing only the pixel-level
stamp masks, resulting in a binary classification task for FCN.

We used convolution layers from pre-trained VGG-Net. Three fullydStaR network
architecture convolution layers on top of VGG-Net were added to perform FCN

functionality. The kernel size for the first, second and third FC lay-
ers are 7 × 7, 1 × 1, and 1 × 1, respectively. The output of size 512
generated by the fifth max-pool layer of VGG-Net served as input of
the first fully convolution layer. The output of the first fully convo-
lution layer of size 4096 is the input of the second fully convolution
layer, which generates the same output as the input. The output of
the second fully convolution layer is then processed in the last fully
convolution layer for pixel-level prediction of every class.
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As we used the FCN8-s, it means 3 levels upscaling or deconvolu-
tion are done to produce per pixel classification at stride 8. FCN8-s
uses predictions from max-pooling layer 5, 4 and 3 respectively, of
stride at 8 to generate the pixel-level predictions as shown in Fig-
ure 7.2.

We tried images of different sizes as input of FCN for optimal per- Network parameters
for optimized
performance

formance because the number of scanned document images is very
less in the context of Deep Learning (DL). We used RGB images of
size 1000× 1000 as input to our FCN. FCN was trained with pixel-level
binary masks, marking stamps only as Point of Interests (PoIs). The
training was done for 10 epochs. We used the batch size of 2 in the
training phase. To fine-tune the network parameters and optimize the
performance, the learning rate of .0001 was used.

FCN generates the pixel-level predictions for stamp regions. Fig- Refinement of
network outputure 7.3 shows the complete work-flow of the dStaR with intermediate

results on each step. The pixel-level predictions are post-processed
using Connected Component Analysis (CCA) to generate FCNs masks
for stamp segmentation. These predicted masks are used to extract
stamp pixels from the input image. The stamp-segmented images are
then converted to binary images for evaluation purposes.

7.4 evaluation

7.4.1 Dataset

For evaluation of dStaR, we used a publicly available stamp detection Stamp detection
datasetand verification dataset1 [19]. This dataset contains 400 document im-

ages scanned at 200, 300, and 600 dpi resolution. The scanned docu-
ment images contain printed text, stamps (textual and non-textual),
logos, and signatures. The dataset contains stamps of varying sizes,
shapes, and colors. 341 (out of 400) scanned document images contain
single or multiple stamps; the remaining 59 images have no stamps.
Out of 341 scanned document images, 80 contains black stamps, and
241 contains colored stamps. In 55 scanned document images, stamps
are overlapped with text, logos, and/ or signatures. For every scanned
image, there are two ground-truth images available; one containing
the pixel-level information and the other containing the bounding
box information for each stamp. So, this dataset can be used for re-
gion classification and pixel-level evaluation.

7.4.2 Evaluation Protocol

For the Evaluation of dStaR, the dataset has been split into train Test & train split for
evaluationand test sets with different configurations. We used document images

1 Stamp segmentation and verification dataset

vhttp://madm.dfki.de/downloads-ds-staver
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scanned at 200 dpi resolution. The train set contains 90% of scanned
document images, and the remaining 10% are used to evaluate the
proposed approach. As we evaluate dStaR for three different cate-
gories of scanned document images, we customized the test sets with
only colored, black, and overlapping stamps, respectively. Further-
more, we evaluated our presented approach with a system-generated
random test set and class-balanced data (equally distributed samples
from every category) for overall performance evaluation.

We evaluated the dStaR for pixel-level detection of stamps, and
therefore, the most relevant evaluation metrics are precision and re-
call [184]. Precision is the intuitive ability of a classifier to distinguish
a negative sample from a positive one. It is computed as:

Precision =
tp

tp+ fp
(7.1)

The recall is the ability of a classifier to classify all the positive
samples. It is computed as:

Recall =
tp

tp+ fn
(7.2)

In equations 7.1 & 7.2, tp, fp, and fn denote the true positives,Evaluation metrics

false positives, and false negatives, respectively. True positives refer
to the predicted number of pixels belonging to stamps. False positives
refer to the number of pixels predicted as stamps but do not belong
to stamps. False negatives specify the number of stamp pixels the
system fails to predict.

7.4.3 Results and Discussion

We present a detailed comparison of our presented approach, consid-Results are compared
considering different

aspects
ering different aspects (segmentation of colored, monochrome, and
overlapping stamps) with the SotA approaches. Our presented ap-
proach is independent of the shape, size, color, and orientation of
stamps with regard to text or logos present in scanned document im-
ages. Results used for the comparisons are computed when only the
mentioned stamp category was present in the test set, with the rest of
the scanned document images in the training set.

Segmentation of overlapping information is a very difficult task inResults for
segmentation of

overlapping stamps
information segmentation and classification [4, 154]. Table 7.1 shows
the results when dStaR is tested on overlapping stamps. These stamps
overlap with the background text and/or logos at different positions.
dStaR outperforms the SotA in segmenting overlapping stamps by a
large margin. It correctly segments the overlapping stamps with pixel-
level precision of 74% and recall of 77%. Figure 7.4 shows some
overlapped stamps and their binary segmented results by dStaR. Mi-
cenkova et al. [162] reported the pixel-level recall and precision of 69%
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Table 7.1: Performance Evaluation of dStaR on overlapping stamps

Approach Precision(%) Recall(%)

dStaR 74 77
Micenkova et al. [162] 68 69

Ahmed et al. [5] Not Reported

(a) Cropped input (b) Segmented binary
output

(c) Cropped input (d) Segmented
binary out-
put

(e) cropped input (f) Segmented bi-
nary output

Figure 7.4: Overlapping stamps detected by dStaR successfully (Overlap-
ping images with predicted binary outputs)

and 68%, respectively, for overlapping stamps. Ahmed et al. [5] did
not present results for overlapping stamps in the dataset but men-
tioned that their approach fails to detect the severely overlapping
stamps.

Furthermore, we also evaluate dStaR from another dimension, i.e., Evaluating dStaR for
coloured stampscolored stamp detection and segmentation. Table 7.2 provides results

of colored stamp detection. For colored stamps, the presented ap-
proach reports the pixel-level precision and recall of 92.7% and 84.3%,
respectively. Micenkova et al. [162] reported pixel-level precision and
recall of 82.7% and 82.8%, respectively. Their approach fails to detect
the stamps when their color matches the background, whereas dStaR

can also be used successfully in such scenarios. Ahmed et al. [5]
approach is, although independent of color and shape of stamps, as
it uses part-based key points and feature descriptors for stamp detec-
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Table 7.2: dStaR in comparison with the SotA approaches for coloured
stamps

Approach Precision(%) Recall(%)

dStaR 92.7 84.3
Ahmed et al. [5] 62 57

Micenkova et al. [162] 82.7 82.8

Figure 7.5: Stamps dStaR failed to segment out.

tion, logos are also misclassified as stamps [5]. Therefore, their results
are on the lower side with pixel-level precision and recall of 62% and
57%, respectively.

Table 7.3 elaborates the precision and recall comparison of dStaREvaluating dStaR for
monochrome stamps with the existing SotA approaches for black stamps in scanned doc-

ument images. Micenkova et al. [162] approach assumes the stamps
as colored objects only by processing the stamps document images
for YCb Cr color clusters. These color clusters are used for the seg-
mentation and detection of stamps. When it comes to black stamps,
this approach does not stand valid (applicable). Ahmed et al. [5] ap-
proach report the pixel-level precision and recall of 83% and 73%,
respectively, in comparison to the dStaR 93.75% and 50.2%, for black
stamps.

Table 7.4 reports the overall stamp segmentation results of dStaR.Overall results on
randomly generated

test-set
The SotA approaches do not report their overall results. dStaR, however,
achieve pixel-level precision and recall of 87% and 84%, respectively.
Note that the test and training set division for evaluations (presented

Table 7.3: dStaR evaluation for black stamps w.r.t the SotA approaches

Approach Precision(%) Recall(%)

dStaR 93.75 50.2
Ahmed et al. 83 73

Micenkova et al. Not Applicable
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Table 7.4: Overall performance of dStaR on randomly generated test set

Approach Precision(%) Recall(%)

dStaR 87 84
Micenkova et al. [162] Not Reported

Ahmed et al. [5] Not Reported

in Table 7.4) have been made the system randomly and autonomously
without any human intervention.
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A P P L I C AT I O N S O F W E A R A B L E S : G P H Y S I C S &
W R I S T S E N S E

This dissertation chapter is divided into two parts, each as an out-
come of collaborative work. The first part focuses on applying wear-
able glasses to study and analyse their impact on learning outcomes
while performing Physics experiments. The second part focuses on
another application of wearable sensors for indoor activity sensing us-
ing near-field electric field principles. Consumer-friendly hardware Wearable devices

present a vast
application
paradigm to assist
the learning process

of smart gadgets results in growing reliance on and frequent use of
them in everyday life activities. Smart gadgets are gaining great atten-
tion to develop applications in the field of medicine, sports, heritage,
gaming, entertainment and many other research areas using Virtual
Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) in a
combination of AI. This increased influence of smart gadgets and their
applications urges the need for their adoption in formal education to
benefit learners and instructors and enhance the overall learning ex-
perience. Smart glasses are a great platform to use as an assistive tool
to experiment and interactively learn complex concepts. The first sec-
tion of this chapter presents a study evaluating the impact of Google
Glass on learning outcomes for performing Physics experiments. Con-
tributions of the author of this thesis in this regard are summarised
as follows:

• Evaluating the impact of smart glasses on learning outcomes
during Physics experimentation using gPhysics application. The
study evaluates wondering, curiosity, learning achievement, cog-
nitive load, and experimentation time among the students dur-
ing the task to study the relationship between the frequency of
the sound generated by hitting a glass of water and the amount
of water in the glass.

Smart wearable systems are referred to as a set-up of number of Exploring wearable
for activity sensingsensors attached to the human body to collect data and receive com-

mands from the user. Different Smart wearable systems employ multi-
ple sensors to measure the proportion of the human body for human
activity detection and recognition. Human activity recognition plays
a significant role in the advancements of human-interaction applica-
tions in healthcare, personal fitness, and smart devices. Given smart
watches’ wide and increasing popularity, the wrist is a compelling lo-
cation for placing sensors. On the other hand, only specific informa-
tion, such as hand/arm motions and selected physiological signals,
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are readily available at the wrist. In this dissertation chapter, we ex-
plore a novel wrist-worn sensing approach that allows information
not typically associated with the wrist or the arm to be acquired by
exploring the ubiquitous near-field electric phenomena. Major contri-
butions of this work are as follows:

• A use case to demonstrate the collaborative work by two people
is recorded by deploying our prototypes both at surrounding
objects and on wrists, presenting the feasibility of collaborative
work monitoring by sensing the variation of the near-field elec-
tric field.

The rest of the chapter is divided into two major parts; Section 8.1
covers the details of a study to evaluate the impact and effectiveness
of using Google Glass as an experimentation tool in Physics educa-
tion. Section 8.1.1 presents the case for using smart glasses, Google
glass in our case Experimentation and study design is part of Sec-
tion 8.1.2. Finally, results are presented in Section 8.1.3. Section 8.2Structure of

Chapter 8 covers the details of the WristSense application. Section 8.2.1 states
the problem, motivation along with possible solutions, and proposed
solution to use wrist-based sensors for human activity recognition.
Section 8.2.2 familiarizes the readers of this dissertation with the re-
cent developments for wrist-based sensing devices and their applica-
tions. Background knowledge and details about the proposed sensing
prototype are provided in ??. Section 8.2.3 explores the possible appli-
cations of the proposed prototype, such as touch sensing, proximity
sensing, and activity sensing.
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For the First part, the author of this dissertation has contributed
to the experiment conducted for the study and evaluation of results
related to the gPhysics application using Google Glass only. For the
second part, the author of this dissertation has contributed to brain-
storming, performing the experiments, and content-writing, with the
major contributions of the first author, Sizhen Bian, in the publication.
Content such as text, figures, and tables included in this chapter are
taken from the mentioned publication. More details about the publi-
cations included in this chapter are as follows:

• Kuhn J. et al., gPhysics—Using smart glasses for head-centered,
context-aware learning in physics experiments. In: IEEE Trans-
actions on Learning Technologies, 9(4):304–317, 2016 [132]

• Bian S et al., Wrist-worn capacitive sensor for activity and phys-
ical collaboration recognition. In: IEEE International Conference
on Pervasive Computing and Communications Workshops(PerCom
Workshops), pages 261–266, 2019 [22]
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8.1 gphysics

8.1.1 Motivation

Smart glasses such as Google Glass [228] are a new class of wear-Smart glasses can be
used to present data

in multiple
representations

able computers combining classical HMDs with multiple sensors for
head-centered, contact-free, sensor-based, and context-aware interac-
tions. Google Glass combines an HMD, a headphone, a multi-touch
track-pad, head motion sensing, eye-blink detection, a microphone,
a first-person camera, storage, and communication capabilities. The
use of smart glasses enables its users to seamlessly blend their inter-
actions in physical and digital worlds, presenting an ideal ground to
prosper in the direction of MR applications. Smart glasses allow the
analysis of physical data that can be presented to the user with dif-
ferent kinds of representation, i.e., explanatory text, tables, graphs,
pictures, and equations. These advantages of smart glasses present a
compelling case for their applications in smart experimentation and
problem-solving in science education.

The educational properties of wearable technologies are widespreadApplications and
educational

properties of
wearable glasses

[27] in literature across different fields. Google Glass has been used
in medical training role-play activities using simulations to train in
AR, first-person viewpoint, and recording for analysis and observa-
tion [261]. Other applications of Google Glass in the medical field
are broadcasting a procedure on HMD [126], video recording stu-
dents during standardized patient encounters [238], evaluating their
interpersonal communication skills and non-verbal behaviours [238],
and tele-montoring trainees for ongoing procedures such as should
surgery [144] and cardiac ultrasonography [203]. An application of
Google Glass to augment information about paintings in an art gallery
is present in [137]. Smart Glass implementations of smart glasses have
focused more on traditional and general applications in an educa-
tional setting, such as recording actions and presenting and sharing
information. However, there is little progress or work concerning the
use of wearable technologies in education to examine implementation
in a regular context(at the time of publication, leaps of progress have
been observed since then).

Wearable technologies, in general, and smart glasses, in particular,Google glasses can
help students

through interactive
learning

present a huge opportunity for interactive and engaging educational
tools helping students learn complex concepts in STEM education.
When aided with multiple representations, students can perform bet-
ter in learning outcomes and problem-solving in Physics education
[6]. This sets an ideal stage to explore their potential for the topic of
acoustics, as multiple representations are important for learning con-
tent with oscillograms, frequency spectra, etc. "gPhysics" presents a
MR application of Google glass as an experimental tool for students as-
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Figure 8.1: An overview of performing experimentation steps using
gPhysics application on Google glass

sisting them in performing the physics experiments to perform acous-
tic related experiments [133]. This work uses the gPhysics application
to study the effectiveness of smart glasses in smart experimentation in
learning outcomes. Outcomes of the study reveal that smart glasses
help to foster wondering, curiosity, and learning achievement and
reduce cognitive load and experimentation time. Further details are
provided in the following subsections.

8.1.2 Experimentation & Study Design

In this work, students use the gPhysics application to study the re- Experimental design
and processlationship between the fill level in the glass and the frequency of the

generated tone and the relationship between the water fill level in the
glass and the frequency of the induced tone by damping the vibra-
tion of the glass while hitting the glass with a wooden peg. Figure 8.1
shows the complete experimentation process imitating intermediate
steps using the gPhysics Google Glass application. The first activity of
the design experimentation is to adjust the initial fill level of the wa-
ter glass using a double blink of the right eye or tap on the touchpad.
Then participants filled the glass to the desired mark and confirmed
the water level shown on the Google glass display with the possibil-
ity to adjust it. After confirmation, participants were directed to the
measuring menu and asked to measure the frequency value by hit-
ting the water-filled glass with a wooden peg. The tone frequency is
recorded automatically, and after confirmation, a graph is displayed
to show the relationship between the current frequency and water-fill
level. The same procedure is repeated for given filled levels to com-
plete the experiment. The whole experiment is repeated after fixing
the hair tie to the top of the water glass.

Participants were 8th-grade students from a German high school Study design

divided into three groups based on smart gadgets they used to per-
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form experimentation. Students who performed the experiments with
Google Glass were placed in Intervention Group (IG), android tablet
group as Control Group (CG)-1, and participants who used the Spec-
trumView application on iOS tablets were placed in CG-2. IG and
CG-1 group were assisted by respective gadgets to perform activities
and tasks, e.g., measuring frequency, fill-level, and plotting graphs,
whereas CG-2 performed these activities manually. In total, 46 stu-
dents participated in the study; out of them, 19 students were placed
in IG, 13 in CG-1, and 14 in CG-2. Before starting the study, students
grades in Physics, Mathematics, and German were gathered, and pre-
test measures were to evaluate their familiarity with the use of smart-
phones and tablets and curiosity concerning smartphones, tablets,
and Google Glass. A training session was also conducted for stu-
dents to familiarize them with using smart devices and applications.
After experimentation, post-test measures were administered on par-
ticipants state of curiosity about the learning experience, use of the
device (based on which group they belong to), wondering, cognitive
load, and learning achievement for comparison with the pre-test mea-
sures. Analysis of Covariance (ANCOVA) technique is used to analyse
the results of the study where wondering, cognitive load, curiosity,
experimentation time, and learning achievement in Physics were con-
sidered as dependent variables. Treatment group (IG, CG-1 or 2) and
gender were considered as independent variables; covariates of the
study were curiosity, trait, grades from current school results in Math-
ematics, Physics, and German along with the familiarity of students
with mobile devices and the pre-test data on learning achievements.
η2p is used as measure of effect size.

8.1.3 Results

The three groups differed significantly with large effect sizes con-Google glass fosters
the wondering and

curiosity
cerning the variables wondering: (F(2, 46) = 6.02;p < .01;η2p = 0.23);
curiosity state(total): (F(2, 46) = 10.17;p < .001;η2p = 0.36); curiosity
state(formal): (F(2, 46) = 6.94;p < .05;η2p = 0.27), curiosity state (in-
formal): (F(2, 46) = 8.11;p < .01;η2p = 0.31). The effects in total as
shown in Figure 8.2 are related to a higher value of each dependent
variable in the IG reveals that using gPhysics application fosters both
the wondering, curiosity in total and curiosity state with regard to
informal learning. The curiosity state in formal learning remains con-
sistent among the gPhysics users but differs for CG-2 (SpectrumView
tablet) group.

In terms of cognitive load, it is observed that IG using gPysics onStudents using
Google Glass for
experimentation

experience higher
cognitive load

Google Glass experienced higher cognitive load in comparison to CG-
1 & CG-2, as shown in Figure 8.3. The total cognitive load variable:
(F(2, 46) = 4.12;p < .05;η2p = 0.17); cognitive load specific to device:
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Figure 8.2: Wondering & curiosity state in terms of mean values & standard
error

Figure 8.3: Cognitive load in terms of mean values & standard error

(F(2, 46) = 14.46;p < .001;η2p = 0.47). It is also observed that grades
in Mathematics also had a significant influence on the dependent vari-
able; (F(1, 46) = 7.45;p < .05;η2p = 0.17). Therefore, besides the cor-
relation of the grade in Mathematics trait with learning achievement
in this topic, it shows the difference between the groups regarding
their grades in Mathematics explained 17% of the variance of learn-
ing achievement in acoustics.

The same trend has been observed for differences in experimen- Using Google Glass
for experimentation
indicates positive
learning effects

tation time and cognitive load variables. The three groups differed
significantly with large effect sizes concerning the experimentation
time for all three repetitions. Figure 8.4 shows that the IG was faster
than CG-2 group but slower than CG-1 group. For both the CG-1 and
IG group, the execution time significantly decreases between the first
and second experiments. This is a clear indication of learning associ-
ated with the device. However, between the second and third experi-
ment, the execution time decrease for IG and increases for CG-1. This
indicates a much stronger learning effect for IG.
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Figure 8.4: Experimentation time (mean values & standard error) of three
groups for three experimental procedures

8.2 wristsense

8.2.1 Motivation

An ambient electric field is ubiquitous as every subject carries a cer-Electric field
information can be

used for activity
sensing

tain amount of charge, even an insulator [229]. For example, when a
human body moves on the ground, the tribological interaction [36]
between body and ground will generate an electrostatic charge on
the human body, thus setting up a static electric field between the hu-
man body and ground [69]. Appliances at home also radiate electric
fields [191]. Those fields could be distorted by surrounding distur-
bances or self-movement. For example, a refrigerator, as a radiator of
an electric field, its field can be distorted by an intruder like a hu-
man body. Walking can cause the variation of potential on the body,
namely the variation of an electric field from the body to the ground,
which could also be described by variation of Human Body Capaci-
tance (HBC).

Vision-based systems use cameras that restrict the mobility andLimitations of
vision-based systems

in ambient
environment

freedom of users [201, 262]. To address the limitation of vision-based
systems, on-body sensors such as motion sensors [45, 85, 180] and
capacitive sensors [40, 192] are widely used for proximity sensing
in ambient environments. Capacitive sensing techniques analyse the
variations in capacitance (near-field) caused by human body inter-
vention for activity sensing in ubiquitous environments. Moreover,
this work can use capacitive sensing remotely, on-body as wearable,
and/or hybrid.

The core idea behind the presented work is that electric field andPhysical activity
sensing using

finger-worn sensor
capacitance changes related to the body can be sensed at any cho-
sen body location, including the wrist, thus significantly enhancing
the information that can be extracted from a wrist-worn device. Since
such information includes not just the activities of the user her/him-
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self but also changes in the environment, a key application that we
explore is performing physical activity-related tasks in collaboration,
which is difficult to capture using other sensors [87]. Furthermore,
we demonstrate how the proposed prototype can detect motions of
various body parts beyond the wrist, such as touch and proximity
between users and objects.

8.2.2 Related Work

Different types of sensors are ubiquitous for human activity recog- Different sensors
have applications for
human activity
recognition

nition for several reasons, such as low power consumption, mobility,
readily availability, low price, and ease of wearing/attach to the body.
There is a growing acceptance of capacitance-based sensing to mon-
itor and recognise human activity among the research community.
Thus by sensing the variation of the human body-related near-field
electric field, a wide range of applications can be covered[105, 142,
224]. Zimmerman et al. [288] presented a use case of on-body capac-
itive sensing for user interfaces for the very first time. Afterwards
application of capacitive sensing are explored for activity monitoring
[40, 93], proximity sensing [86, 103], and touch sensing [192, 199].

Harland et al. [93] proposed remote, off-body sensing of the elec- Human activity
sensingtrical activity of the heart at distances up to 1m from the body to

high-resolution electrocardiograms. Pouryazdan et al. [192] used elec-
tric potential sensors to sense hair touch and restless leg movement.
Grosse-Puppendahl et al. [86] developed a Platypus system to local-
ize and identify people by remotely and passively sensing changes
in their body electric potential. Cheng et al. [40] presented an on-
body capacitive sensing approach to monitor human activities and
physiology-related information at multiple body locations.

Wimmer et al. [255] present a "CapToolKit" for realizing capacitive Toolkit & activity
sensing furnituresensing applications for Human Computer Interaction (HCI). The pro-

posed system is very easy to install, cheap to build, and easy to adopt
for multiple applications. In another work, Wimmer et al. [256] intro-
duced two pieces of activity-sensing furniture, CapTable and Cap-
Shelf, using networked capacitive sensors. The proposed hardware
can extract activity patterns based on hand and body motion infor-
mation.

Valtonen et al. [243] proposed a system that uses capacitive sensing Capacitive sensing
for indoor
positioning &
activity recognition

information for indoor positioning and activity recognition in smart
homes. The proposed system is capable of positioning a person at
floor level and monitoring its interaction with the surrounding items
in smart homes. The proposed system relies on the conductivity of
the human body and the capacitive coupling of low-frequency signals
between electrodes from the floor and the environment. The authors
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demonstrated the efficacy of the proposed system to monitor a person
unobtrusively without compromising an individual’s privacy.

After the publication of this work, Bian et al. [21] presented anGym workout
counting &
recognition

approach for full-body gym workout counting and recognition using
the prototype presented in this work. The results show that capaci-
tive sensing can recognise human body activity when the sensor is
attached to a body part not directly engaged in activity movement.
The proposed method achieved the average counting accuracy com-
petitive with motion sensors attached directly to the part of the body
involved in activity movement.

8.2.3 Capability Exploration

To explore the capability of our sensing modality, we deployed ourPerformance
exploration for

real-world use-cases
prototypes on various objects involved in the human body’s action to
monitor collaborative work. Plenty of the related capacitive coupling-
based works, developed for an ambient intelligence scenario, focused
on single side context, either perceiving information from the actua-
tor of action [45, 46, 85] or from the reactor of an action [10, 11, 28].
For example, Cohn et al. [45] mentioned the ability of capacitive sens-
ing by recording the repetitive motion of the body, and Arshad et
al. [10] developed a floor-sensing model for elderly tracking and fall
detection. However, integrating our sensor both in the actuator side
and reactor side in the environment will provide complete informa-
tion and thus provide a better understanding of the interaction of the
individuals with the environment, as both the source and receiving
end action will generate signals. Thus we set up a simple collabora-
tive task in which two participants are involved and interact with the
ambient environment. First, we describe the basic sensing ability and
the background principle of our prototype in the following sections,
which enable the monitoring of a whole group work process.

8.2.3.1 Touch Sensing

Touch is one of the basic interactions between people and their sur-When touch happens,
capacitance changes roundings. Sensing approaches like infra-red camera [159], pressure

sensor [199], acoustic signal [94], etc., are used to detect this action.
The basis of touch sensing of our prototype is that when touch hap-
pens, the human body will supply a different path for the charge on
the object to flow to a lower potential plate(sinking charge [288]) un-
til the potential difference disappears. Once the charge flow-caused
voltage variation is observed, a touch event can be detected.

Figure 8.5 shows the potential variation of two related prototypes,WristeSense can
detect touch action one is attached to a chair with an internal metal structure and paint

on the surface, and another is attached to a person’s wrist. The po-
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Figure 8.5: Touch a chair with prototypes at a chair and on wrist

tential variation happens at the same time but in the opposite direc-
tion. Before the touch, the potential of the touch point at the chair
side is higher than the potential at the human body’s hand side. The
charge will stop flowing when the touch position at both sides shares
the same potential. Then, the potential will be balanced to its former
level at each electrode position. Taking the hand away from the chair
will not cause charge flow anymore because there is no potential dif-
ference on both sides. That is to say, the prototype can detect touch
action, but the ’remove’ action is beyond the sensor’s capability.

8.2.3.2 Proximity Sensing

Proximity detection is a primary sensing approach in Ambient Intel- Capacitance-based
proximity sensingligence scenarios. Unlike camera [201], light [35], capacitance-based

proximity has the advantage of low power consumption and effortless
system establishment. The basic background of this sensing approach
resides in the proximity caused by dielectric or distance variation in
a capacitor. Capacitive proximity sensing allows not only detection
when an object is approaching but also distance estimation, as the
scale of capacitance variation is strictly related to the proximity dis-
tance.

Figure 8.6 shows the process when a participant walks to a door Capacitance
information can be
used for distance
estimation

from a 1.5 meter distance, touches the doorknob, and returns to his
original spot. An accelerometer is attached to the right calf of the
participant. The potential variation of the prototype at the doorknob
shows the proximity of a human body, which implies that the dis-
tance could also be estimated by its variation scale. The arrows showed
when the participant touched the doorknob, causing charge flow. The
potential variation direction implies that the human body was sinking
charge from the doorknob. Figure 8.7 shows a potential variation on
the wrist when P2 walked by P1 two times with the nearest distance
of 1m and 0.5m, where P1 just stood still.
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Figure 8.6: Approaching a door with prototype attached at the doorknob
and on wrist

Figure 8.7: Walking by detection with prototypes attached on wrists
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8.2.4 Collaborative Work Monitoring

Based on the sensing capability described above, monitoring collab- Capacitive sensing
for collaborative
work

orative work with a capacitance-based sensing approach is thus fea-
sible. Event and motion from a human body can be obtained by dis-
tributing our prototypes at the working site and on moving bodies.
Traditionally, multiple-person activity monitoring was fulfilled using
a vision-based system [84], which can collect very detailed informa-
tion about group content, but requires a high computational demand
and may raise privacy concerns. We set up a simple collaborative task
where two people must move a shelf from one spot to another and
assemble two shelves. Figure 8.8 illustrates the working place, where
prototypes are attached to two shelves, one doorknob, a toolbox, and
on the wrists of two involved participants. Those objects will assist in
having a better understanding of participants’ actions. One common
feature of those objects is their interior metal structure and paint on
the surface. Each Participant was wearing an accelerometer on the
calf.

Figure 8.9 depicts the process of this collaborative work. Arrows la- Use-case for
collaborative work
monitoring

bel the event actions, and straight lines label the motion actions. Here
are the fundamental steps: 1; for the beginning, P1 and P2 lift their
legs 10 times (P11, P12, P21, P22); 2, P1 walks to P2 (P13), and they
shake their hands (P1a, P2a); 3, P1 walks to shelf one (P14), walking
by the door (Da), touches shelf one (P1b, S1a) and tries to lift it; 4,
P1 finds it too large and not convenient for one person to carry, and
calls P2 to help. P2 walks to P1 (P23), also walking by the door (Db),
touches shelf one (P1c, P2b, S1b); 5, P1 and P2 lift shelf one, go to shelf
two (P15, P24, S11, S21), walking by the door again (Dc, Dd); 6, They
drop down shelf one, P1 manages to keep shelf one and two together
(P1d, S1c, S2a); 7, P2 goes to the toolbox (P25) and takes it (P2c, Ta),
then goes back to P1 (P26, T3); 8, P2 hands over the toolbox to P1 (P1e,
P2d, Tb, S1d, S2b), and walks away (P27); 9, P1 uses some wire from
toolbox to tie shelf one and two together, leaving the toolbox on the
ground, and moves the shelves to another nearby spot (P16, S11, S22);
10, P1 walks to the toolbox (P17), takes it (P1f, Tc), then returns it back
to its original place (P18, T4, Td); 11, P1 returns back to his original
place (P19), walking by P2, and they lift leg for several times to fin-
ish the whole task(P110, P28). During the whole procedure, there are
several signals to be declared. First, because the Toolbox is near the
original spot of P2, P2’s lift leg action can be perceived by the Toolbox
(T1, T2, T5). Second, when P1 and P2 are coupled strictly by shelf one,
their entire capacitance to ground is approximately doubled, so the
Walking caused capacitance variation ratio with the total capacitance
decreased (P15, P24, S11, Dc, Dd). Third, some gradually changing
signals implies the approaching or leaving of a participant, like the
potential variation before Ta, Tc, P2a, after P2a and during S21.
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Figure 8.8: Collaborative work site

The above-described potential variations from a simple collabora-Capacitive sensing
applications are

widespread
tive work show a feasible human activity monitoring access, with ex-
act time synchronization of all the prototypes, actions from involved
participants, like touch, motion and approximate position, could be
detected. This could be used in a wide range of ambient intelligence
scenarios, like ambient assistive living, factory works, etc.
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Figure 8.9: process of the collaborative work
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9
S U M M A RY

Every beginning has an end and every end has a new
beginning....

Santosh Kalwar

The journey of this dissertation started with working on conduct- Conception of the
research topicing experiments using the "gPhysics" application for Google Glass in

collaboration with the Physics department at the University of Kaiser-
slautern. I contributed in conducting experiments, gathering the data,
and processing it to drive the results with other group members.
Meanwhile, Google Inc. decided to shelve the Google Glass project,
but at the same time, DNNs started evolving at a tremendous pace.
The impressive performance of DNNs delivering SotA results for the
problems varying from simple image classification to object detection,
segmentation, and activity recognition tasks tabled opportunities for
research communities to explore venues and their applications in vari-
ous fields of life. The growing paradigm of DL-based methods opened
up a new door to looking for methods and domains to incorporate
the AI in formal education to improve the learning environment; the
key research question of this dissertation defined in Chapter 1.

Formal education is a vast field and is evolving day by day, in- Outline

corporating technical advances, this dissertation touches on multiple
aspects of cognitive ability classification and applications of wearable
sensors in the context of formal education in limited scope yet in the
best possible ways. Section 9.1 discusses the strengths of proposed
methodologies and pens down the achievements of this dissertation
while answering the research questions raised in Section 1.2. The
beauty of the research is that it is never-ending, but the scope and
research questions keep evolving with time to cater to the demands
of the ever-growing world; a full stop or end of research kills the pur-
pose and idea itself. As there is always room for improvement, sim-
ilar is the case of not only this dissertation but should be for every
dissertation. Limitations of the work presented in this thesis along
with hints laying a roadmap of what can be done in the future are
discussed in Section 9.2.
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9.1 achievements and discussion

This dissertation explores the use of AI-based methods to assist the
process of formal education. Traditionally, students and instructors
have direct relations and connections with each other. InstructorsSummary of

contributions convey the information to learners in the form of instructions mostly
verbally, relying on literature such as books and, lately, digital content
and videos as well. Learners absorb these instructions and further
aid themselves with reading and writing activities to understand the
elaborated concepts and develop knowledge skills. Besides, instruc-
tors perform another very important role in the learners’ lives, mon-
itoring the learning progress, evaluating the knowledge-developing
skills, and an advisory role that might be pivotal for shaping their
future lives. Monitoring, analysing, and assisting them in perform-
ing these two-way interactions are the major areas constituting the
contributions of this dissertation. Part ii of this dissertation discusses
the approaches for content classification, handwriting classification,
and correlation between the reading and writing behaviour for feed-
back and performance evaluation. In Part iii, details of applications
of wearable and smart gadgets are presented to assist the learners in
performing classroom activities for enhanced experience are the ma-
jor research areas touched on in this dissertation. As discussed, both
AI and formal education are such vast fields that the laid contribu-
tions are just the tip of the iceberg.

Content is where formal education starts with, instructors rely onDefining the
structure of the

document can help
largely to analyse

the reading activity

it for teaching, and students need to keep learning. Educational con-
tent comes in multiple forms, such as books, essays, blogs, videos,
presentations, etc. There are multiple ways to analyse the content in
formal education, and the most common of them is using gaze infor-
mation to track the progress during the reading activity [109]. Gaze
information provides information about the eye-movement but does
not consider the relevancy of reading content during the reading ac-
tivity. This thesis explores another direction to analyse the content us-
ing DNNs. The area/form of content is limited to printed documents
in digital format from publicly available POD datasets. We consider
two main classes,i.e., figures and formulas for classification and the
rest of the content on document images are considered as text. We
present a novel combination of Fi-fo image representation and DNN

to detect figures and formulas from document images. Fi-fo image
representation utilizes traditional CV techniques to transform input
image to complement the performance of DL models. The presented
approach is generic, as it can detect page objects, i.e., figures and
formulas, despite varying page formats and layouts. During the eval-Fi-fo detector

achieves the SotA
performance for POD

uation of Fi-fo detector, it is revealed that there are many confusions
and inconsistencies in the ICDAR2017-POD dataset ground-truth. DNNs

does not rely only on the quantity of the data; the data quality is also
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key in performance. We fine-tuned the dataset to remove inconsis-
tencies and confusion and presented it as the ICDAR-2017 POD (cor-
rected) dataset. During the course of this work, no other POD datasets
were publicly available, so we also propose a new publicly available
FFDdataset for figure and formula detection for cross-validation of
proposed methods. The SotA results furnished in Section 3.5 establish
the efficacy of proposed approaches for content classification from
document images. Our proposed approaches FFD or Fi-fo detector,
when combined with existing methodologies such as gaze tracking,
will result in deeper and more meaningful insights about the reading
activity and help in a better understanding of reading behavior.

Writing is another daily practice activity in the classrooms with Classifying
handwriting into its
types helps to
monitor the writing
activity

manifold importance; it is a basic form of communication in formal
education, it capitulates the learning process, helps learners to dis-
play critical thinking skills, and provides them a foundation to ex-
press themselves. Moreover, written assignments and exams are the
long-established way to gauge the outcomes and performance of the
learning process. The second major contribution of this dissertation
is in the online handwriting classification domain, to classify the writ-
ing into text, mathematical expression, and/or plot/graphical expres-
sions. In Chapter 4, we propose a novel feature set to classify online
handwritten sequences into text, mathematical expressions, and plot-
s/graphs. The presented feature set is evaluated using various ML

and DL classifiers yielding the SotA results on unseen data. Data itself
is very critical for representation learning of both ML and DL classi-
fiers and a scarce resource during the conception of this work. We onTabWriter dataset

will help in
evaluating complex
representation
learning

present a new public dataset for constraint-free online handwriting
classification using a sensor pen and touch display collected in class-
room set-up. Additionally, data collection involves reproducing sim-
ple representation learning with a lower cognitive load and produc-
ing complex representation with a higher cognitive load. This dataset
is challenging as the contributors were allowed to write in freestyle -
where sequences lack clear patterns- causing difficulty for classifiers.
Classification of handwriting into different writing types enables the
tracking and monitoring of the progress of writing activity, which can
be further used to analyse the behaviour of learners during producing
complex representations for performance evaluation and feedback es-
timation to foster the idea of personalised and need-based learning.

"Reading and writing are intricately intertwined. One is the in- performance
evaluation using
correlation of
reading & writing
activity

verse of the other: Reading is the inhale; writing is the exhale. They
depend on each other, and when we find time to practice both, the
students are winners," states Mary K. Tedrew in her book, "Write,
Think, Learn". In formal education, reading and writing activities
happen simultaneously, and it can be inferred that both have strong
correlations, as one activity complements the other along with overall
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growth in learners’ creative skills of learners[209, 212]. Performance
evaluation and knowledge skills are predominantly assessed by de-
signing the tasks, which combine reading and writing activities and
involve the cognitive process. Chapter 5 presents a study’s initial find-
ings among Physics students to correlate their expertise based on
their reading and writing behaviours during the complex representa-
tion learning. We used multiple on-body sensors to enable the teach-
ers for deeper insights into the behaviours of the students, assist them
in interacting and addressing the individual’s requirements, and fos-
ter the concept of need-based learning. We also present a featureImplicit sensor

information helps to
look into knowledge

skills

set to explore the difference between the behaviour of experts and
novices when they are exposed to factual and knowledge transfer-
based exercises. The proposed features lend a hand to the teachers
with meaningful insights about differences in behaviours for analy-
sis, understanding, and approach to attempt the tasks for experts in
contrast to novices. Experts exhibit different behaviour from the be-
ginning, whether analysing the problem, understanding the problem
and/or formulating the solutions, taking less time, producing quick
answers, skipping intermediate steps and producing abstract solu-
tions. Initial data exploration reveals that implicit sensor information
can be used as an aid for the teachers to provide needs-based individ-
ual feedback.

Applications of smart and wearable systems are the other majorApplications of
wearable systems in
combination with AI
for formal education

area that accounts for the contribution of this dissertation. Due to the
advantages smart wearables offer to make them a default choice for
multiple applications in healthcare, biomedicine, workplaces, educa-
tion, and other fields of life [265]. Two areas are touched on in this
dissertation to explore the application of wearable systems in formal
education; the influence of smart glasses in cognition and a finger-
worn prototype for air-writing without requiring any additional tool.
An application of Google Glass, "gPhysics", is introduced to exploreSmart glasses can

positively influence
the learning

outcomes

the efficacy of smart glasses as an experimental tool in Physics edu-
cation [251]. The author of this dissertation contributes in collabora-
tion with the authors of "gPhysics" to evaluate the influence of smart
glasses while performing experimentation in terms of engagement,
curiosity, execution time, and cognitive load. gPhysics application en-
ables the students to perform automated measurements and plots
them to understand acoustic principles visually. Overall results of
the study reveal the positive impact and encourage the use of smart
glasses in education. IMUs are now integral to almost smart and wear-
able devices such as smartphones, smart watches, earables, and wrist-
bands. Chapter 6 presents an IMU-based application for AR and VRRealtime air-writing

application scenarios by writing with a finger in the air without requiring any ref-
erence surface. The proposed methodology is named FAirWrite, which
fosters document creation by air-writing on a virtual screen without
any constraints of spatio-temporal boundaries. FAirWrite also presents
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a sensor-fusion algorithm to reconstruct the air-written trajectories
on a 2-D display in real time. An enhanced GUI enables users to in-
teract with the system and for real-time feedback. FAirWrite system is
evaluated for user quality appreciation and exploring deep-learning
methods to report SotA results. Both recognition methods achieved an
overall accuracy of 95%. The collected dataset is made publicly avail-
able for the benefit of the research community. FAirWrite system can
improve classroom interaction between teachers and students, par-
ticularly during lectures on digital displays. It also enables them to
capture and record random thoughts and important points by writing
in the air with their fingers only.

Part iv covers the details of projects I did during this course but Research
contributions not
directly relating to
main research
questions

are not directly contributing to the main research question of this dis-
sertation. Chapter 7 presents a novel and generic approach dStaR for
stamp detection using DNNs for the very first time. dStaR can detect
unseen stamps of any shape, size, and color. The major advantage
dStaR owes over previously presented approaches is that it can de-
tect and segment the overlapping stamps from other information in
scanned document images. It also outperforms the SotA approaches
by successfully differentiating between stamps and logos, despite of
huge similarity between the two. Chapter 8 presents an ultra-low
power, capacitance-based prototype capable of sensing human touch,
proximity and body activities. We demonstrated its capability with a
simple collaborative task, in which the actions of participants were
recorded by our prototypes worn on wrists, and assisted by attach-
ing prototypes to other involved objects, that the participants interact
with.

9.2 scope and outlook

The foundation of this dissertation lies in the conjuncture of two im- Limitations

portant aspects of formal education, i.e., applications to assist in per-
forming cognitive activities in the learning environment and method-
ologies to analyse these activities for deeper insights, performance
evaluation, and feedback estimation. The research conducted in the
scope of this dissertation has such a broad spectrum that every re-
search question can be interpreted and addressed in multiple ways, as
there is always room for improvement in an ever-changing and evolv-
ing world. AI-based methods can be incorporated into formal educa-
tion addressing various aspects and directions of research. Like every
research work, the work presented in this dissertation has its limita-
tion beyond the scope of contributions presented in Section 1.3. Differ-
ent methodologies presented in this dissertation can be deployed for
corresponding real-world applications in their defined scope. How-
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ever, a larger framework is needed to incorporate all these entities to
function together to achieve the goals in a larger perspective.

This thesis touches on multiple aspects of incorporating technologi-
cal interventions in formal education to function together to improve
the overall learning experience. At the same time, every chapter of
the thesis is self-contained in itself and has been and could be further
worked on as an independent topic to fill their own dissertation. It
is possible to dig deeper into the topics of every chapter for further
elaboration of questions in hand; we will discuss the limitation and
prospects of every problem addressed in individual topics along with
what is next for the dissertation topic itself.

Chapter 3 present the methods of POD for content analysis usingWhat can be done for
POD & possible

applications
DNNs. The proposed methodologies classify page objects such as fig-
ures and formulas from document images, and the rest of the content
is considered as text. DNNs have shown headlong progress in the last
decade, opening new ways to address the problem. A recent and new
Publay dataset [284] could be an important avenue for pushing the
SotA in this direction. Using attention-based region proposal networks
in the current setup can generate improved and better region propos-
als. Lately, introduced weakly-supervised and self-supervised learn-
ing techniques can lead to achieving the goal of generic systems for
POD problem using ample amounts of online data with minimal effort.
Considering the scope of this thesis, proposed approaches can be put
in real-world applications in combination with gaze-tracking meth-
ods to relate the PoIs with the content for relevancy to look deeper
into the reading behaviours.

Chapter 4 registers considerable contribution for online handwrit-prospects of online
handwriting
classification

ing classification. A future direction in this regard could be compar-
ing the presented features in this work with the features learned by
DNNs, which will be very interesting and highly encouraged. We also
recommend exploring ways to embed context information within the
classifier, which could significantly improve the classification results.
In Section 4.4, the proposed dataset can be extended further with
multi-labeled sequences, i.e., current classification labels along with a
copy or creative writing labels to differentiate between copying text,
creative writing and attempting solutions. Our presented dataset can
also be used to analyse the writing behaviour and classroom perfor-
mance of students. Online handwriting classification systems could
broaden to incorporate gaze-tracking while writing activities for cog-
nitive measurements such as stress level monitoring, expertise, com-
fort, etc. These measures can help instructors to analyse the process
of the writing activity to address personal strengths and weaknesses,
a substantial aspect of adaptive and need-based learning models.
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Chapter 5 presents a use-case of using an on-body sensor set-up
to evaluate cognitive abilities during representation learning. The en-
couraging results demand further research to develop mental models
using on-body sensors for adaptive teaching and learning systems. A On-body sensors

paradigm & AI for
learning analytic
framework

future direction in this regard is to explore AI-based methods to visu-
alise cognitive ability classification systems using sensor information.
We recommend incorporating the handwriting classifiers presented
in Chapter 4 and content classifiers Chapter 3 for deeper insights into
respective cognitive activities. These amplification will help achieve a
comprehensive framework to comprehensively record, monitor, anal-
yse, and evaluate learners’ cognitive activities and abilities. In this
area, AI-based system can help instructors. It is also encouraged to
involve domain experts in the process of assimilating the demands
and requirements of real-world systems. It is also encouraged to ex-
plore the venues to employ and test the efficacy of proposed systems
in classrooms.

Part iii presents the contributions of applications of wearable sys- FAirWrite system
presents opportunity
for exploration for
different use-cases

tems to assist learners in performing cognitive activities. gPhysics
application offers a huge stage to investigate the VR, AR, and MR

venues for incorporation in formal education. These applications will
help achieve an enhanced learning experience, better engagement, im-
proved cognition, and boost motivation during the learning activi-
ties. As future work for improving FAirWrite, the functionality of the
proposed system should be extended to distinguish between writing
and not-writing activity using DNNs. It is also recommended to incor-
porate the context knowledge to the FAirWrite system for words and
sentences for improved performance. There are multiple grounds to
explore the use-cases of FAirWrite systems such as education, offices,
construction sites etc. In education, it can be used to explore its po-
tential and efficacy for different sign languages and its applications
for differently-abled students.

Finally, I want to conclude this dissertation chapter by summa- A personal note on
this journeyrizing my personal views. I’ll be concluding an important phase of

my life and my journey to higher education in Germany. I will be
moving on to a new journey, and a new phase of my life might be
with a new role, but it does not mean that all these efforts and learn-
ing experiences will remain behind. These experiences gathered over
the past decade have positively influenced my life, helping me grow
mentally and socially and into a mature person who can see things
in broader scope and context. I will try to practice and spread them
while passing through different phases of my life ahead.
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