
Programmatic Interfaces for
Design & Simulation

Thesis approved by
the Department of Computer Science
University of Kaiserslautern-Landau
for the award of the Doctoral Degree

Doctor of Engineering (Dr.-Ing.)

to

Aman Shankar Mathur

Date of Defense: February 9, 2023
Dean: Prof. Dr. Christoph Garth
Reviewer: Prof. Dr. Eva Bruggisser (née Darulova)
Reviewer: Prof. Dr. Rupak Majumdar
Reviewer: Dr. Damien Zufferey

DE-386

Abstract

Though Computer Aided Design (CAD) and Simulation software are mature, well-
established, and in wide professional use, modern design and prototyping pipelines are
challenging the limits of these tools. Advances in 3D printing have brought manufacturing
capability to the general public. Moreover, advancements in Machine Learning and sensor
technology are enabling enthusiasts and small companies to develop their own autonomous
vehicles and machines. This means that many more users are designing (or customizing)
3D objects in CAD, and many are testing machine autonomy in Simulation. Though
Graphical User Interfaces (GUIs) are the de-facto standard for these tools, we find that
these interfaces are not robust and flexible. For example, designs made using GUI often
break when customized, and setting up large simulations can be quite tedious in GUI.
Though programmatic interfaces do not suffer from these limitations, they are generally
quite difficult to use, and often do not provide appropriate abstractions and language
constructs.

In this Thesis, we present our work on bridging the ease of use of GUI with the robust-
ness and flexibility of programming. For CAD, we propose an interactive framework that
automatically synthesizes robust programs from GUI-based design operations. Addition-
ally, we apply program analysis to ensure customizations do not lead to invalid objects.
Finally, for simulation, we propose a novel programmatic framework that simplifies build-
ing of complex test environments, and a test generation mechanism that guarantees good
coverage over test parameters.

Our contributions help bring some of the advantages of programming to traditionally
GUI-dominant workflows. Through novel programmatic interfaces, and without sacrificing
ease of use, we show that the design and customization of 3D objects can be made more
robust, and that the creation of parameterized simulations can be simplified.

iii

Contents

Acknowledgments xiii

1. Introduction 1
1.1. Summary of Challenges and Contributions 2

1.1.1. Design . 2
1.1.2. Simulation . 5
1.1.3. Why programmatic Interfaces? . 6

1.2. Organization of Content . 7
1.3. Publications . 7

I. Design 9

2. Bridging GUI and Programming 11
2.1. Introduction . 11

2.1.1. Motivation . 12
2.1.2. Contributions . 14

2.2. Preliminaries and Overview . 15
2.2.1. CAD Representation and Operations 15
2.2.2. Towards Interactive Programming for CAD 17

2.3. The Synthesis Framework . 21
2.3.1. Syntax of Synthesized Programs 22
2.3.2. Synthesis Algorithm . 22
2.3.3. Querying objects in a loop or collection 26

2.4. Evaluation . 26
2.4.1. Implementation . 26
2.4.2. Synthesis robustness and runtime 27
2.4.3. Synthesis Scalability . 36
2.4.4. Feature specific experiments . 36
2.4.5. User Study . 38

2.5. Conclusion . 40

3. Synthesis of Parameter Constraints 41
3.1. Introduction . 41
3.2. Contributions . 43
3.3. Preliminaries and Overview . 43

3.3.1. B-rep, CAD Operations, and Constraints 43
3.3.2. Validity of Operations . 45
3.3.3. Program Analysis for CAD . 46
3.3.4. Learning Constraints . 48

v

Contents

3.4. Framework . 49
3.4.1. Validity of CAD Operations . 49
3.4.2. Static Rules . 49
3.4.3. Constraint Synthesis Algorithm . 50

3.5. Evaluation . 54
3.5.1. Implementation . 54
3.5.2. Experiments . 54

3.6. Conclusion . 59

4. Related Work 61
4.1. Robustness of CAD . 61
4.2. Parametricity in CAD . 61
4.3. Synthesis of CAD Programs . 61
4.4. Constraining CAD Parameters . 62

II. Simulation 65

5. Paracosm Interface 67
5.1. Introduction . 67

5.1.1. Contributions . 69
5.2. Paracosm Language Interface . 69
5.3. Test Inputs and Coverage . 76

5.3.1. Test Cases . 76
5.3.2. Coverage . 76
5.3.3. Test Generation . 77

5.4. Conclusion . 78

6. Paracosm: Evaluation 79
6.1. Introduction . 79

6.1.1. Contributions . 79
6.2. Runtime System and Implementation . 79
6.3. Experiments & Case Studies . 80

6.3.1. Evaluation on Common Testing Tasks 81
6.3.2. Testing Systems Trained on Standard Datasets 87
6.3.3. Experiments Demonstrating Specific Paracosm Features 90

6.4. Conclusion . 95

7. Related Work 97
7.1. Reactive Programming Models . 97
7.2. Testing Cyber-Physical Systems . 97
7.3. Test Strategies . 98

vi

Contents

III. Discussion 101

8. Discussion 103
8.1. Future Work . 103
8.2. Concluding Remarks . 105

Bibliography 107

Curriculum Vitae 123

vii

List of Figures

1.1. A simple operation that gives an unexpected result on modern CAD tools 3
1.2. Overview of our programmatic interfaces for Design 4
1.3. Simple parametric design with some variations 4
1.4. Overview of the Airsim simulation interface 6
1.5. Overview of our programmatic interface for Simulation (Paracosm) . . . 7

2.1. Teaser: a technique to bridge GUI and programmatic interfaces for CAD . 11
2.2. Design fails to fillet intended edges . 12
2.3. Dowel end-cap design with narrowed base in various popular CAD tools . 13
2.4. Some CadQuery selection predicates . 17
2.5. Design in a GUI-based interface (FreeCAD) 18
2.6. Designing a bottle in CAD . 18
2.7. Using program structure in synthesis . 20
2.8. Modification/debugging of a complicated program 21
2.9. CadQuery designs (default parameters). 28
2.10. Examples of logically and experimentally equivalent queries 30
2.11. Thingiverse designs (default parameters). 31
2.12. Mesh error on the Thingiverse examples 32
2.13. Thingiverse examples with the highest mesh errors 33
2.14. Evaluated complex designs . 36
2.15. Selection of inner faces of a Turner’s Cube 37
2.16. Interface presented to user study participants 39

3.1. Teaser: a technique for the automatic synthesis of constraints to CAD
parameters . 41

3.2. Some common CAD operations, and their parameters 44
3.3. Overview of our dynamic synthesis algorithm 50
3.4. Objects from the Fusion 360 Segmentation dataset 55
3.5. Precise (non-linear) constraints not possible 59
3.6. Approximate constraint synthesized . 60

5.1. Teaser: a programmatic interface for designing autonomous vehicle tests . 67
5.2. Reactive streams in simulation . 71
5.3. Simulating different sensors . 74
5.4. Output to OpenDRIVE . 74
5.5. Grid world . 76

6.1. Road segmentation case study . 82
6.2. Comparison of the various test generation strategies 84
6.3. Plots of continuous test parameters of the Adaptive Cruise Control study 85
6.4. Road segmentation test on systems trained on standard datasets 88

ix

List of Figures

6.5. Results: road segmentation . 89
6.6. Vehicle detection test . 89
6.7. Vehicle detection rates . 90
6.8. Random vs. Halton sampling . 91
6.9. Distance covered in changing fog and light conditions 92
6.10. Effect of features of geometric components 93

x

List of Tables

2.1. Analysis of CadQuery experiment . 30
2.2. Analysis of Thingiverse experiment . 31
2.3. Summary of CadQuery examples . 34
2.4. Summary of Thingiverse examples . 35
2.5. Query size and run-time analysis on models without a programmatic

representation . 37
2.6. User performance on Programmatic vs. Our interface 38
2.7. Opinions from the user study . 40

3.1. Some static constraints . 47
3.2. Rough constraints that evaluation via dynamic analysis 48
3.3. Summary of results for constraint synthesis 57
3.4. Complexity of synthesized constraints in dynamic analysis 58

6.1. Overview of experiments on common testing tasks 81
6.2. Summary of results of the road segmentation case study 82
6.3. Results of the jaywalking pedestrian experiment 83
6.4. Summary of results of Adaptive Cruise Control test 86
6.5. Random vs. Halton sampling for pedestrian crossing experiment 91
6.6. Different training schemes: comparison of failing cases 94

xi

Acknowledgments

This Thesis would have not been possible without the help and support of my advisors,
Damien Zufferey and Rupak Majumdar. I feel incredibly lucky to have got an opportunity
to work and learn from them. I started working with Rupak when I was still a Master
student, and his dedication, motivation, approachability, and kindness have been incredibly
influential in my development. Likewise, Damien went above and beyond in his support
for me. I will always cherish our long, deep, and insightful conversations. His knack for
seeing the big picture, while still being able to provide concrete and practical advice has
been invaluable. All in all, I could not have asked for better mentors.

I am also grateful to Laura Stegner and Marcus Pirron, my collaborators on some of
the work included in the Thesis. Working with them was a pleasure, and it felt great
knowing that I could count on them.

Our work benefited from many wonderful open-source projects and communities. I
would especially like to thank the CadQuery community, and Jeremy Wright in particular
for our conversations about CAD, and for supporting our work, as well as many others.

I thank the Thesis reviewers, especially Eva Bruggisser (née Darulova) for the helpful
suggestions for improvement, and Anthony Lin for being a great Chair to the Thesis
Committee.

Last, but not the least, I’d like to thank everyone at the Max Planck Institute for
Software Systems (MPI-SWS). The support I received at MPI-SWS was instrumental
in whatever I achieved during my stay here. I not only experienced great personal and
professional growth, but also had tons of fun! I would like to thank all my wonderful
colleagues at MPI-SWS for the lively conversations, unconditional help, and the wonderful
(and hopefully lasting) friendships.

Aman Shankar Mathur
Heilbronn, May 2, 2023

A display connected to a digital computer gives
us a chance to gain familiarity with concepts
not realizable in the physical world. It is a
looking glass into a mathematical wonderland.

— Ivan Sutherland [143]

1
Introduction

Many years ago, in 1963, Ivan Sutherland developed Sketchpad [142], an invention
that has proven to be a major milestone in the way we use and interact with computers.
Sketchpad (among other things) introduced two powerful ideas: (a) everyday object-
s/geometry can be modelled and simulated using computers, and (b) a display and a
pointer enable an intuitive human-computer interaction.

Sketchpad was the first project to demonstrate the utility of designs made on a
computer, and was a precursor to the many subsequent breakthroughs in Computer
Graphics. Sketchpad also inspired modern Graphical User Interfaces (GUIs). These
interfaces are ubiquitous today, and are not just popular for modelling and simulation,
but in almost every popular software we use today: from calculators to social networks.
From humble beginnings in the form of the Sketchpad proof-of-concept, Computer
Aided Design (CAD) and Simulation tools have moved on to form a mature and well-
established industry today. They are virtually indispensable in many professional domains—
architecture, engineering, and entertainment, to name a few. Even still, recent advances
in 3D printing and machine autonomy are expanding their user base.

Traditionally, CAD software has catered to a professional audience. However, with the
recent advent of cheap and good quality 3D printing, this is quickly changing. Whereas
before professional designers worked on a single final object for large-scale production,
3D printing has brought manufacturing capability closer to everyday users. Anyone with
access to a sufficiently capable 3D printer can manufacture objects or components that
would have previously required specialized expertise and tooling. As a result, many people
today are using CAD software to design, customize, and 3D print their own objects.
Moreover, platforms such as Thingiverse [96] are enabling users all over the world to
share their designs, customize these, and download or 3D print the results.

A similar transformation is also happening with Simulation. Whereas traditionally
simulation tools were used to model and test machines in fixed environments, simulations
are now being used to test autonomous systems operating in complex and ever-changing

1

1. Introduction

real-world scenarios [134, 40, 149, 42, 152]. Autonomous agents such as self-driving cars,
drones, and robots are expected to soon become ubiquitous in many critical domains such
as transportation, search and rescue, medicine, etc. As these agents interact more and
more with humans, there are obvious risks of accidents. Autonomous agents have already
been at the centre of several serious incidents involving damage to life and property
[156, 14]. Therefore, there are many well-founded concerns regarding the reliability and
safe operation of these machines, and ensuring this is an important problem. Consider the
example of self-driving cars. Some estimates suggest that guaranteeing their safety may
take hundreds of billions of kilometres of driving data [77]. Real-world testing is costly and
time consuming. Moreover, if problematic cases are found, it is difficult to recreate them.
Simulations have therefore emerged as a low-cost alternative for quick, early, and frequent
testing. They allow precise control over all aspects of the environment, such as the light
and weather conditions, as well as test components like road segments, traffic lights, other
vehicles, pedestrians etc. There is no need for finished vehicles, expensive measurement
devices, and lengthy a test approval process. This is enabling even small companies and
enthusiasts to prototype and test their autonomous machine implementations.

1.1. Summary of Challenges and Contributions

Almost all major CAD and 3D Simulation tools are GUI-based. In contrast to text-
based programming, GUI enables users to directly modify what they want, and provides
immediate visual feedback. This is especially helpful for Design and Simulation due to the
visual and 3-dimensional (3D) nature of these workflows. GUI-based interfaces, although
incredibly easy to learn and use, also have some serious limitations. In our research, we
find that these limitations are especially compounded by the newer use-cases of these
tools, i.e., customization-heavy designs, and simulation of complex worlds. The focus of
this Thesis is on novel program interfaces that help alleviate these limitations, while still
retaining simplicity and ease of use. We now briefly discuss some of the limitations of
GUI, and introduce our contributions.

1.1.1. Design

Most popular CAD tools, such as Autodesk Fusion 360, SolidWorks, PTC Creo,
OnShape, FreeCAD, etc., share similar (GUI-based) interfaces, and follow the same
modelling paradigm (parametric CAD). Objects are represented by the sequence of
operations in their design, rather than their final form. This enables users to change
design parameters, which in turn re-executes the sequence of operations, and produce a
(slightly) different final object. In principle, this allows great flexibility: a single design
can represent a wide-variety of final objects. Instead of designing custom-fitting objects
from scratch, end-users can simply adjust parameters of existing designs. In practice,
however, this flexibility does not pan out.

2

1.1. Summary of Challenges and Contributions

(a) Initial design. (b) Expected (after
modification).

(c) After modification
(GUI-based tool).

Figure 1.1.: A simple design consisting of a hollow tube mounted on top of a rectangular
base with the mounting edge filleted (smoothed). When this design is modified
(base is made narrower), we expect all edges connecting the tube and the base
to continue to be filleted. However, we get a different (unexpected) result.

Bridging GUI and Programming for CAD

GUI-based CAD interfaces allow users to directly select elements they want to modify,
and then apply operations to these. The specification of which elements users select,
however, is latent. Users directly make selections in the GUI, rather than encoding the
logic behind their selection.

Consider the example presented in Figure 1.1. Here, as depicted in Figure 1.1b,
initially one circular edge is selected and filleted (rounded). As the design is parametric,
its parameters can be changed. When this happens, (ideally) the CAD tool needs to
recompute the design and present a new final object reflecting the design intent. However,
as there are more (and different) edges in the design now, it is difficult for the GUI-
based tool to know which edge(s) to apply the fillet operation to. There is no semantic
information for this. Therefore, as depicted in Figure 1.1c, GUI-based CAD interfaces
often end-up with modifications that do not match the design intent.

Program-based designs, on the other hand, are more precise. Users explicitly state, for
all valid parameter values, which element(s) they want to select and modify. Therefore,
in comparison to their GUI-based counterparts, program-based designs are robust to
parameter changes. Many programmatic CAD interfaces exist, for example OpenSCAD,
Open CASCADE and CadQuery. However, due to the complexity of writing code and
the missing visual feedback, these programmatic interfaces are much less popular than
GUI.

We propose bringing together the ease of use of GUI with the robustness of programming.
As depicted in Figure 1.2a, we present a system that uses GUI interactions to automatically
synthesize code. We use a novel Decision Tree algorithm for this, which prefers short
programs that generalize. Moreover, we use techniques from program analysis to synthesize
sub-programs at the relevant line number, and using the relevant intermediary object and

3

1. Introduction

SynthesisRendering

(a) Interactive design

CAD tool

d h

l

polygon(L) -> extrude(h) -> chamfer(l) -> hole(d)

L
h
l
d

Evalu
atio

ns
L

L
h
l
d

Runtime

error!

L
h
l
d

L
h
l
d

L
h
l
d Empty!

Static analysis

L
h
l
d

Dynamic analysis

L
h
l
d

...
(b) Design exploration

Figure 1.2.: We apply program language techniques to the design of objects. As depicted
in (a), we automatically synthesize robust program segments from GUI-based
design operations. This enables interactive design with a programmatic
back-end. As depicted in (b), we also apply static and dynamic program
analysis techniques to parametric designs, and help in the design parameter
space exploration by automatically eliminating invalid configurations.

l
w

h

f1

f2

...

Figure 1.3.: A simple parametric design with 5 parameters, and some valid variations.

scope. Based on experimental evidence, we find that our technique synthesizes robust
code, and that we do so almost instantaneously, enabling users to continue designing on a
GUI, while still benefiting from a robust programmatic back-end.

Synthesis of CAD Parameter Constraints

The power of parametric design enables designers, with just a few CAD operations, to
represent a large family of objects. However, even when the design is robust, there
may be parameter values that lead to invalid results, for example run-time errors, or
empty/broken objects. As the number of parameters and corresponding CAD operations
increase, finding out which parameter values lead to valid results, and which do not,
becomes difficult. For example, consider the design in Figure 1.3. The design consists
of a box with its top-most edges, and edges orthogonal to these filleted. We have 3

4

1.1. Summary of Challenges and Contributions

parameters for the dimensions of the box, and 1 each for the two fillets. By varying these
5 parameters, as depicted in Figure 1.3, a large variety of final objects can be obtained.
However, for this design, only 3.1% of randomly chosen parameter configurations lead to
valid results. If the fillet radii are too large, the operation cannot be accommodated in
the base object, and fails with a runtime error. In this design, if we constrain the two
fillet radii to f1 < 0.5*min(w,l), and f2 < min(0.5*w,0.5*l,h), all parameter configurations
shall be valid. Such constraints are quite useful as they ensure end-users always choose
valid parameter values. They also provide a high-level perspective on designs, and the
diversity of final objects they support. However, coming up with these constraints is
difficult. Therefore, though public design repositories such as Thingiverse encourage
designers to also provide relevant parameter constraints, very few uploaded designs have
this information.

As depicted in Figure 1.2b, we propose an approach for synthesizing CAD parameter
constraints automatically. We do this by using a mix of static and dynamic analysis. As
each design consists of a sequence of CAD operations, we first collect constraints that
must hold due to the kind of operations used in the design. This is the static analysis
step. Once we have an initial set of constraints, we move on to dynamic analysis. Here,
we sample the design using many different parameter values and observe the results.
Correspondingly, we propose hypotheses and check if these hold. Once we arrive at a
hypothesis that explains the observed results, this becomes our parameter constraint. We
evaluate our technique on designs from an open-source dataset, and find that we can
accurately and quickly synthesize parameter constraints for a wide variety of designs.

1.1.2. Simulation

Modern simulation tools such as AirSim [134] and Carla [40] enable engineers to test
their autonomous vehicle implementations in realistic urban scenarios. Typically via
a GUI-based interface (see Figure 1.4), users can add, tweak, or remove components
in the simulation, and create a large variety of test cases. Though such an interface
is incredibly easy to use, it becomes tedious for large and complex simulations with
many test parameters. Building test scenarios requires each component, such as road
segments, vehicles, trees, light sources, etc., to be placed by hand. Each scenario,
therefore, is a bespoke configuration requiring significant human effort for its design. As
autonomous agents require testing in large varieties of different settings and environments,
comprehensive tests can require many different test environments to be designed. Moreover,
each test environment can have several parameters. These parameters can control
environment variables (e.g. weather conditions), visual features (e.g. colors of vehicles
on the road), as well as behaviors of other components (e.g. speeds of other vehicles).
Though such parameters can be changed quite easily in simulation, as the number of test
parameters increase, navigating the test parameter space systematically can become quite
challenging.

To solve these issues, we propose Paracosm, a high-level language for programmatically
constructing parameterized environments and test cases. A Paracosm program represents
a family of tests, where each instantiation of the program’s parameters is a concrete test

5

1. Introduction

Assets

Property
Inspector

Scene

Figure 1.4.: Overview of the Airsim interface. Assets can be dragged and dropped on
to the Scene. Their properties may be changed via the Inspector. Building
a complex simulation in this way involves the arrangement of many Assets
such as roads, other vehicles, pedestrians, buildings etc., and the setting of
their properties.

case. A Paracosm configuration consists of a composition of several components. Using
a set of system-defined components (road segments, cars, pedestrians, etc.) combined
using expressive operations from the underlying reactive programming model, users can
set up complex and temporally varying driving scenarios. To navigate possibly large
test parameter spaces systematically, Paracosm uses a novel test generation strategy
that guarantees good coverage. Our strategy essentially ensures that there are no large
unexplored regions in the parameter space, and that all sub-regions are equally well
explored. As depicted in Figure 1.5, using a single Paracosm program and a few test
parameters, several test cases can be easily produced. Using the Paracosm interface, we
have been able to test autonomous vehicle implementations in many different environments,
and detect incorrect behaviors and degraded performance.

1.1.3. Why programmatic Interfaces?

In this Thesis, we propose novel program interfaces and techniques for the design and
customization of 3D objects (see Figure 1.2), as well as the systematic testing of au-
tonomous agents (see Figure 1.5). GUI-based interfaces have dominated these domains.
We find that though GUI-based interfaces are easy to get started with, they have two
critical limitations: (a) they cannot encode semantics (for example representing a family
of designs or simulations via a few exposed parameters), and (b) they are tedious for
large projects with repetition and structure.

Clearly, programming shines in both these concerns. Programs are essentially explicit
semantics. Via parameters, they can encode a wide variety of output configurations, be

6

1.2. Organization of Content

...3D simulation
Test

configurations

Dynamic behavior
 & Events

Paracosm program

Figure 1.5.: We propose Paracosm, a programmatic interface that enables the systematic
testing of autonomous agents.

it different 3D objects, or simulation environments. Moreover, via loops and functions,
programs support repetition and structure, enabling the creation of complex components
with just a few lines of code. This is the intuition behind our contributions.

As GUI-based CAD suffers from robustness issues, we propose automatically synthe-
sizing robust programs to represent designs. To uncover the space of valid parameter
configuration of designs, we treat designs as programs, with invalid configurations being
‘bad’ states that need to be characterized. Finally, to simplify the testing of autonomous
vehicles, we propose a high-level language interface that enables the construction of
parameterized environments and behaviors. We then use ideas from program testing to
navigate this parameter space efficiently.

1.2. Organization of Content

The Thesis is divided into three parts.
Part I, entitled ‘Design’ contains our work on parametric CAD. Here, Chapter 2 provides

details on our proposed interface for bridging GUI and programming for CAD. We also
present various case studies and examples of our technique in action. Chapter 3 describes
our analysis and constraint synthesis approach for parametric CAD. In Chapter 4, we
summarize some related work.

Part II, entitled ‘Simulation’ contains our work on simulation design and testing. In
Chapter 5, we provide an overview of the Paracosm language interface, and explain our
test generation strategy. Then, in Chapter 6, we evaluate the Paracosm interface on
different test scenarios and autonomous agent implementations. Chapter 7 summarizes
the related work.

Finally, in Part III (Chapter 8), we discuss some interesting directions for future work,
and conclude.

1.3. Publications

The content described in this Thesis has appeared in the following peer-reviewed publica-
tions:

7

1. Introduction

(i) A. Mathur, M. Pirron, and D. Zufferey. Interactive Programming for Parametric CAD.
In Computer Graphics Forum. © 2020 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd, 2020. doi: 10.1111/cgf.14046

(ii) A. Mathur and D. Zufferey. Constraint Synthesis for Parametric CAD. In S.-H. Lee,
S. Zollmann, M. Okabe, and B. Wünsche, editors, Pacific Graphics Short Papers,
Posters, and Work-in-Progress Papers. The Eurographics Association, 2021. ISBN
978-3-03868-162-5. doi: 10.2312/pg.20211396

(iii) R. Majumdar, A. Mathur, M. Pirron, L. Stegner, and D. Zufferey. Paracosm: A Test
Framework for Autonomous Driving Simulations. In E. Guerra and M. Stoelinga,
editors, Fundamental Approaches to Software Engineering, pages 172–195, Cham,
2021. Springer International Publishing. ISBN 978-3-030-71500-7

8

Part I.

Design

2
Bridging GUI and Programming

GUI-based
operation

3D representation

Synthesized
program

Programmatic
representation

Rendering

Programmatic
representation

Rendering

Programmatic
representation Synthesized

program
3D representationGUI-based

operation

r = 5.0
h = 20.0
cyl1 = cylinder(r, h)
cyl2 = cyl1.faces(">Z").cylinder(r/2, h/2)
bottle = cyl1.union(cyl2)
bottle = bottle.edges("%CIRCLE and (not >Z) and (not <Z)")
 .fillet(0.2 * r)

r = 5.0
h = 20.0
cyl1 = cylinder(r, h)
cyl2 = cyl1.faces(">Z").cylinder(r/2, h/2)
bottle = cyl1.union(cyl2)

r = 5.0
h = 20.0
cyl1 = cylinder(r, h)
cyl2 = cyl1.faces(">Z").cylinder(r/2, h/2)
bottle = cyl1.union(cyl2)
bottle = bottle.edges("%CIRCLE and (not >Z) and (not <Z)")
 .fillet(0.2 * r)

bottle = bottle.faces(">Z").shell(-0.1 * r)

Figure 2.1.: We present a technique to bridge GUI and programmatic interfaces for
CAD. With the insight that GUI interfaces are intuitive but brittle, and
programming is robust but difficult, we synthesize robust program segments
from intuitive GUI-based selections and operations.

2.1. Introduction

As already introduced in Chapter 1 (Section 1.1.1), parametric CAD is a modelling
paradigm where objects are represented by the sequence of operations in their design,
rather than their final forms. This enables users to change design parameters, which
re-executes the sequence of operations, and results in a new final object fitting a different
use case. Since its introduction in PTC Pro/ENGINEER in 1988 [160], parametric CAD
has become the industry standard. Though most popular CAD tools employ parametric
design methodology, in practice, changing design parameters often leads to broken results.

There are two interfaces to parametric design: programming, and GUI. Though most
popular CAD tools (such as Autodesk Fusion 360, OnShape, SolidWorks, PTC
Creo, and FreeCAD) are GUI-based, these interfaces are far from perfect. GUI
interfaces are interactive: users can directly manipulate vertices, edges, and faces in the

11

2. Bridging GUI and Programming

(a) Initial design. (b) After perturbation.

Figure 2.2.: The side bracket design fails to fillet the intended edges (see black rectangle)
after the length of the top-most edges is increased.

design. This interactivity, however, is a double-edged sword. The exact specification of
which elements users manipulate is not explicit. For many computer applications, this is
an acceptable compromise. For parametric CAD, however, this is a severe limitation. For
instance, what happens when a designer modifies 1 of 18 edges in a design, and then due
to a parameter change, the design needs to be re-evaluated with 36 edges? The new result
needs to reflect the ‘design intent’. However, due to the underspecification of GUI, this is
an impossible task. Therefore, GUI-based CAD tools often end-up with modifications
that do not match the design intent. This problem is well-known and many heuristics
have been proposed in prior work [28, 29, 26, 81, 3]. In our observations, we find that
robustness issues are still quite ubiquitous.

Programs, on the other hand, do not have this issue. Programs clearly identify which
elements need to be modified, for all valid combinations of parameter values. Depending on
the API, this is done by semantically selecting elements that possess explicit features, using
loops (OpenSCAD [80] and Open CASCADE [112]), or declarative queries (CadQuery
[115], FeatureScript [49] and Scadla [161]). However, writing complicated semantics
representative of simple GUI interactions has proven to be an unfortunate barrier-to-
entry. As a result, programmatic interfaces are much less popular than their GUI-based
peers. In this Chapter, we propose bringing the ease of use of GUI with the robustness of
programming, and present a system that uses GUI interactions to automatically synthesize
code.

2.1.1. Motivation

We now motivate towards the need for a better resolution to GUI-based CAD’s robustness
problem, and why our technique offers a tangible solution.

12

2.1. Introduction

(a) Initial design. (b) After perturbation:
CadQuery.

(c) After perturbation:
FreeCAD.

(d) After perturbation:
Autodesk Fusion 360.

(e) After perturbation:
OnShape.

Figure 2.3.: A simple dowel end-cap design and results of changing dimensions of the base
in various popular CAD tools.

Design intent

GUI-based CAD tools often fail in capturing design intent. This is true even for curated
designs on professional-grade CAD software. We present an example from Project
Egress [13], a large collaborative project for building a replica of the Apollo 11 space
hatch, designed in Autodesk Fusion 360. Figure 2.2 shows a simple perturbation on
the capsule side bracket module. The perturbation causes more edges to appear in the
resulting object as before, which in turn causes the fillet (rounding) operation to fail.
Clearly, the CAD tool fails to capture design intent (the top-left edge is not filleted any
more).

Different and unknown heuristics

Different tools use different heuristics to try and resolve ambiguity. Unfortunately, these
heuristics are usually not known a priori, and designers often observe different unexpected
results on different tools. Consider the simple design in Figure 2.3 (inspired by a dowel-

13

2. Bridging GUI and Programming

end cap design [23] on Thingiverse, an online repository of several CAD projects).
We re-designed this example on CadQuery, a programmatic interface for a baseline
specification of what we want. Using the same steps, we also designed this on FreeCAD,
Autodesk Fusion 360 and OnShape, all of which are GUI-based. On the initial design,
we change the dimensions of the rectangular base. All tools under test yield different
results. FreeCAD fillets one edge on the right of the connection between the hollow
rod and the base. Autodesk Fusion 360 fillets two opposite sides of the connection.
OnShape changes the shape of the hollow rod. Reducing the width of the rectangular
base leads to there being more edges than before while performing the fillet operation.
FreeCAD does not use complex heuristics. Internally, it uses names for all elements in
the design, and operations are applied to elements by name. So, when the design changes,
the names are re-evaluated and the fillet is applied to the element(s) with the same name.
As is evident, this often does not work well. Unfortunately, due to the closed-source
nature of Autodesk Fusion 360 and OnShape, we cannot be certain of their ambiguity
resolution heuristics.

Programming and GUI

In the context of the two examples provided above, writing a programmatic specification
for each step in the design process has two advantages: (a) it makes the design intent
explicit, and (b) it removes the need for ambiguity resolution heuristics. Current GUI-
based CAD tools already recognize some other advantages of programming. For example,
most tools support Macros, which encapsulate GUI operations into executable chunks.
Additionally, the popularity of procedural design has introduced dataflow programming
[74] to CAD (examples are Grasshopper3D and Dynamo by Autodesk), where
GUI-based designs are connected to dataflow components. Though these extensions offer
some benefits of programming, they ultimately link to the GUI and therefore suffer from
the same robustness issues. Invariably, increasing intuitiveness leads to lower robustness.
However, most major CAD tools today offer an exclusively GUI-based design interface,
backed by opaque heuristics for capturing design intent and for ambiguity resolution.

Inspired by recent work on integration of programming and direct manipulation for
vector graphics [30], we propose bridging programmatic and GUI-based CAD. We do
this by synthesizing programmatic queries representative of designers’ GUI selections
and operations. We use a modified Decision Tree algorithm for this, which prefers short
queries that generalize. Moreover, we use techniques from program analysis to synthesize
queries at the relevant line number, using the relevant intermediary object, and when
applicable, using program variables and scope. Based on experimental evidence, we find
that our technique synthesizes queries that are robust, and it does so fairly quickly (taking
at most a tenth of a second) for various samples. A user study reveals that our interface
is faster, more accurate and preferable to a programming-alone interface.

2.1.2. Contributions

The main contributions of this Chapter are:

14

2.2. Preliminaries and Overview

(i) We identify bridging programming and GUI (direct manipulation) interfaces as a
possible solution to brittleness of GUI-based interfaces for parametric CAD.

(ii) We propose an algorithm for automatic synthesis of relevant selection queries from
GUI-based interactions.

(iii) We validate our approach using various designs, application scenarios, and a user
study.

2.2. Preliminaries and Overview

In Section 2.1.1, we discussed robustness issues in GUI-based CAD and proposed bridging
GUI with programming to remedy this brittleness. We now provide a quick overview of
modern CAD interfaces and representations, and how our proposed system addresses the
limitations of both, GUI-based, and programmatic CAD.

2.2.1. CAD Representation and Operations

Boundary representation (B-rep) is a versatile and widespread representation that keeps
track of the features in a shape, as well the topology and geometry of each element. A
vertex is described by its x, y and z coordinates in 3D Cartesian space. An edge is a
curve bounded by two vertices. A curve can be a straight line, a circle or even something
complicated like a Bezier curve or B-spline curve. A face is a list of edges with an enclosed
surface. The surface can be planar, conical, toroidal or even a B-spline surface. Finally, a
solid consists of a closed list of faces. Once an object is roughly built, users can modify
sub-parts of the object by selecting features (edges, faces, etc.) and applying operations
on them. The following is an abstract view of some common operations available in CAD
tools:

⟨Solid⟩ |= ⟨Primitive⟩ | ⟨Affine⟩ | ⟨Boolean⟩ |
⟨PointOp⟩ | ⟨EdgeOp⟩ | ⟨FaceOp⟩

⟨Affine⟩ |= (Translate | Rotate | Scale | Mirror)
⟨Solid⟩

⟨Boolean⟩ |= (Union | Intersection | Difference)
⟨Solid⟩ ⟨Solid⟩

⟨PointOp⟩ |= (Hole | CounterSink | CounterBore)
⟨Solid⟩ ⟨Face⟩ ⟨(x,y,z)⟩*

⟨EdgeOp⟩ |= (Fillet | Chamfer) ⟨Solid⟩ ⟨Edge⟩*
⟨FaceOp⟩ |= (Shell) ⟨Solid⟩ ⟨Face⟩*

The choice of a B-rep implementation fixes the set of primitive operations which can be
used in the language. Most open-source projects use Open CASCADE, and therefore,
support similar operations.

15

2. Bridging GUI and Programming

CadQuery programmatic interface

CadQuery is a flexible and high-level domain specific language based on Open CAS-
CADE. CadQuery is implemented as a shallow embedding in Python, and therefore
inherits its control structure and module system. There are two types of domain specific
operations in CAD: (a) algebraic, and (b) query operations.

Algebraic operations have an algebraic structure, for example, affine transformations
and boolean operations. These operations map directly to operators or methods in the
underlying language. A distinct feature of algebraic operations is that these are often
total, i.e., they are well-defined for all possible inputs, and are therefore robust. Query
operations, on the other hand, modify specific features of objects. For example, a chamfer
is applied to a specific edge. Therefore, to apply such operations, there is a need of
identifying features on which the operation applies (recall that GUI-based tools use name).
Programmatic interfaces such as CadQuery (as well as FeatureScript and Scadla)
provide a small query language to perform such selections. A query on an object first
specifies a type, and then a property. The query returns elements of the specific type
which satisfy the property. Coming back to the dowel end-cap example presented in
Section 2.1.1, the following code segment (in CadQuery) generates a design that is
robust to parameter changes:
1 # Make the base
2 base = box(base_l , base_w , base_h)
3 # Make the tube
4 tube = base.faces(">Z").circle(tube_r).extrude(tube_h , combine=False)
5 tube = tube.faces(">Z").shell(tube_shell)
6 # Union the base and the tube
7 result = base.union(tube)
8 # Fillet relevant edge(s)
9 result = result.edges("%CIRCLE").edges("<Z").fillet(fillet_r)

Line 7 performs an algebraic operation, which is robust, even when done via GUI. Lines
4, 5 and 9 perform query operations, which cannot be robustly specified via GUI. Line 4
creates a solid cylinder on the maximal face in the Z-axis of the base. Line 5 transforms
the solid cylinder into a shell of thickness tube_shell by removing the top-most face. Line
9 first selects all circular edges in the design, and then fillets the minimal edges in the
Z-axis.

The selection API in CadQuery includes several selection predicates (see Figure 2.4
for some examples). These predicates can be categorized on the basis of whether they
depend on intrinsic properties or relative properties over multiple elements, and whether
the predicates take parameters. For instance, an intrinsic predicate can select all the
edges parallel to the Z-axis (Figure 2.4a), or, non-circular edges (see Figure 2.4b). A
relational predicate can select the face(s) with the maximal Z-coordinate (see Figure 2.4c).
Note that in addition to the standard axes, the selection predicates can be defined over
any arbitrary vector. Another parametric predicate is a bounding box, which selects all
the elements within it. Predicates can also be chained (using .), and combined as boolean
formulae (using and, or, and not).

In addition to the predicates we have already seen, there are also predicates for paral-

16

2.2. Preliminaries and Overview

(a) Edges parallel to the Z-
axis (some selections hid-
den due to occlusion).

(b) Non-circular edges (some
selections hidden due to
occlusion).

(c) Faces with the maximum
Z-coordinate.

Figure 2.4.: Some selection predicates supported by CadQuery.

lelism ("|Z"), orthogonality ("#Z"), and other special geometry ("%CYLINDER"). Common
predicates are written as strings. Predicates can also be objects in the programming
language. This allows them to take expressions as parameters. For instance, BoundingBox
((0,0,0), (s,s,s)) selects all elements inside a box, whose dimensions depend on the
variable s.

Semantic queries versus direct manipulation

As an alternative mode of selection, writing queries requires thinking semantically. While
it is usually harder to write a query than select elements in the GUI, a query carries
more meaning. For instance, consider line 9 of the dowel end-cap code presented before.
To do the same operation in GUI, users need to select the relevant edge, and choose
the fillet operation, as demonstrated in Figure 2.5. We show FreeCAD here, but other
popular CAD applications also have similar interfaces. The selection mechanism in GUI
is intuitive and quick. However, notice that the GUI in Figure 2.5 uses a name identifier
for the selected edge (Edge10). This is the source of brittleness. If this identifier changes
because the shape is modified, the fillet operation would either fail, or worse, modify the
object in some other way (due to unknown ambiguity resolution heuristics).

2.2.2. Towards Interactive Programming for CAD

Programming languages offer variables for parameter management, control flow structures,
precision, modularity and re-usability. On the other hand, GUI interfaces shine when it
comes to selection mechanisms and getting immediate feedback on operations. Though
writing selection queries can be a challenging task, due to the implicit structure to most
parametric designs, it is clearly meaningful to do so. We show that a tight integration
of direct manipulation and programming can help designers get the best of both worlds.
The focus of our work is on achieving this by enabling designers to use GUI interfaces for
easy selection, and automatically synthesizing sub-programs that represent their actions.

17

2. Bridging GUI and Programming

Figure 2.5.: Filleting the edge connecting the rectangular base and the cylindrical tube
in FreeCAD. The edge selected in green is to be filleted. This involves
selecting the edge and then choosing the ‘Fillet’ option in the toolbar (marked
in blue). The red boxes show the corresponding edge reference and the fillet
parameter.

(a) Union of two offsetted
cylinders.

(b) Sharp edges at the neck
smoothed.

(c) Shell created (final de-
sign).

Figure 2.6.: Some intermediary steps for designing a bottle in CAD.

18

2.2. Preliminaries and Overview

We now present a simple design example to demonstrate the capabilities of our approach.
Suppose we want to design a bottle as in Figure 2.6. Designers start with a blank sketch
and program. They fill in some environment variables, such as the radius and height of
the bottle:

radius = 5.0
height = 20.0

They then create a cylinder, which serves as the body of the bottle. This operation can
be directly translated to code as a one-to-one mapping from the GUI (first create a circle,
and then extrude it):

cyl1 = circle(radius).extrude(height)

As no user selections are made, this translation is robust. Now that the body is complete,
the designers move on to the neck of the bottle, which is another cylinder. However, this
new cylinder needs to be created on top of the existing one. In the GUI, users select the
face on top of which they want to create the new cylinder. Our system can automatically
synthesize the query that selects this face, and performs the relevant operation:

cyl2 = cyl1.faces(">Z").circle(radius /2).extrude(height/2, combine=
False)

The next step is to union the two cylinders together. Designers can perform the operation
in the GUI, and the corresponding code can be directly obtained:

bottle = cyl1.union(cyl2)

So far, we have a design as in Figure 2.6a. Next, the designers want to smooth the edges
at the neck of the bottle (as in Figure 2.6b). They perform this operation in GUI, and
the relevant selection query is automatically synthesized:

bottle = bottle.edges("%CIRCLE and (not >Z) and (not <Z)").fillet (0.2
* radius)

Finally, they create an empty shell by removing the top most face of the bottle and
specifying a thickness. The query is automatically synthesized:

bottle = bottle.faces(">Z").shell (-0.1 * r)

This completes the design process and we have the final design as in Figure 2.6c.
Notice that this workflow shields designers from the complexity of the semantics of their

GUI selections, and at the same time, benefits them due to a generalizable underlying
program. Such workflows are enabled by our system. In addition to such interactive
synthesis of queries, we also keep track of environment variables and the program structure
(loops, if-else blocks, and collections). This helps us synthesize more relevant queries and
support interactive local modifications and debugging. We now present two examples
based on samples from CadQuery’s public repository to demonstrate this.

Using program structure

Consider the example of making a plate of Braille text (Figure 2.7). The following code
segment generates this with cylindrical bumps:

19

2. Bridging GUI and Programming

Select one
circular edge Synthesized

sub-program

Figure 2.7.: Using the program’s structure to synthesize more relevant queries. A program
generates a Braille plate with several extruded circles that are created together
in a collection. Selecting any one (or more) of these circles would generate a
formula for all the circles in this collection. Therefore, the rounding is applied
to all the extruded circles to get the final design.

1 # Make the base plate
2 base = box(get_length (), get_width (), height)
3 # Get points of the braille and extrude them from the base plate
4 braille = base.faces(">Z").get_points(uvCoords) \
5 .circle(radius) \
6 .extrude(bump , combine=False)

Now, let’s say we want to round the cylinders created in line 6 so as to resemble hemispheres.
In a traditional GUI-based interface, this would entail selecting each of the extruded
edges and rounding them. In our system however, selecting any one of these edges helps
us identify the programmatic context in which the edge was created. In this example, all
of these edges were created together in line 6. Therefore, our system generates a query
for all the edges created in the same context:

result = braille.edges(">Z").fillet(radius)

Local modifications and debugging

The way designers typically debug and perform local modifications on their design is by
selecting the specific feature of the design in GUI, and analyzing/modifying its attributes.
However, this can be considerably more difficult in a programmatic interface. For example,
consider a storage box design (Figure 2.8). The programmatic representation (48 lines
of code) is parametric, and uses a loop and several if-else blocks. It is difficult to follow
the program logic due to interdependencies between several operations. Such use cases
can be drastically simplified by our system. As we track how the design changes in each
successive line of code, given a specific feature in the design, using reflection, we can
identify the line of code responsible for it. Users can then analyze attributes or make

20

2.3. The Synthesis Framework

Rendering

Selections in
GUI

Relevant line of code returned

Figure 2.8.: Modification/debugging of a complicated program. As we track intermediary
states of the design, selecting an element or feature in the direct manipulation
interface takes us to the relevant line of code responsible for it. This aids in
local modifications and debugging.

modifications there. Figure 2.8 shows two examples of user selections in the GUI and the
relevant line of code returned by our system.

In the context of CAD, two important parts we do not cover in this work are 2D
sketching, and algebraic operations and affine transformations. Both of these have
been covered in the sketch-n-sketch framework for vector graphics [67, 30], and these
techniques can be directly applied to CAD. Our focus is on the synthesis of queries from
user selections in direct manipulation interfaces. Our implementation is based on the
FreeCAD GUI and CadQuery programmatic back-end. We synthesize selection queries
using a modified Decision Tree algorithm. Decision Trees are quite efficient at building
such formulae. Moreover, due to their white-box nature, it is easy to understand why
the synthesis procedure comes up with a certain formula rather than another one (in
cases where more than one formula is possible). Our Decision Tree procedure essentially
chooses a predicate to add to the formula in a greedy fashion. Doing so incrementally
gives us the complete and correct-by-construction formula. That is, applying the resulting
formula to our design is sure to lead us to our desired selection. Though the Decision Tree
procedure cannot guarantee synthesis of the shortest formula, we find that in practice,
these formulae are quite small, readable and quickly computed.

2.3. The Synthesis Framework

Abstractly, our method learns code from examples. Given an example (a shape and a
GUI operation), the goal is to learn code that produces the same result as the direct
manipulation when run on the shape. Furthermore, we want the code to generalize to
other shapes obtained by changing parameters of the design. Since we look at selection,
our problem is also a classification problem, i.e., learning a classifier where the selected
elements are the positive instances. However, as we generate code corresponding to the
classifier, we use white-box learning, which provides models that can be interpreted by
humans. Furthermore, our algorithm needs to be fast and complete (i.e., able to generate
a selector for any direct manipulation operation) for a predictable user experience. Finally,

21

2. Bridging GUI and Programming

our method needs to already work on a single example.
We use Decision Trees as they satisfy the constraints stated above. We can generate

code by traversing learned trees and we can have enough predicates for selection so that
our method is complete. To generalize from a single example, we rely on Occam’s razor.
We search for small Decision Trees and expect them to generalize better. However, our
method can be easily extended to search according to other cost functions.

The core of our method is a Decision Tree algorithm modified in two important ways.
First, Decision Trees usually make decisions using unary predicates (intrinsic properties
of elements). However, we also include relational predicates, that depend on context. For
instance, element(s) with the maximal X-coordinate in a shape may change if we first
filter this shape with another selector. Second, in our case, the set of predicates available
to the algorithm is not fixed in advance. We can also select elements based on values
in the program. For instance, we can select elements located within a range, where the
values for this range can be constant literals, or come from variables in scope.

We now describe the general framework of our technique. Given the program, we
analyze objects at each line of code to decide which line number and object to synthesize
a query for, i.e., for Ō as the ordered set of objects at each successive line of code, we find:
min({i | Oi ∈ Ō ∧ T ⊆ Oi}), where T is the target set of elements. If O is the object at
this line of code, our objective is to synthesize a sub-program that when applied to O,
gives T .

2.3.1. Syntax of Synthesized Programs

The following is the abstract syntax of the programs we synthesize:

⟨Selection Query⟩ |= ¬⟨Predicate⟩ | ⟨Primitive Predicate⟩ |
⟨Predicate⟩ ⟨Binary_Op⟩ ⟨Predicate⟩

⟨Binary_Op⟩ |= ∧ | ∨ | .

A selection query is essentially a combination of primitive predicates selecting elements
in a shape (i.e. vertices, edges, or faces). We have two modalities for combining predicates:
boolean operations, and sequence (‘.’). Boolean combinations behave as set intersection,
union, and complement over sets of elements. The sequence operation is related to
predicates that work on groups of features. For instance, minimum and maximum falls
into this category. Sequencing involves re-evaluating these predicates on the current set
of features. Primitive predicates are predicates directly supported by the underlying
language (CadQuery in our case).

2.3.2. Synthesis Algorithm

Decision trees are popular in Machine Learning for solving classification and regression
tasks. Unlike other techniques like neural networks, Decision Tree learning is a white-box
approach. It is possible to understand the logic behind decision procedures of these trees.
Moreover, due to their simple design, this logic is also human readable. We use this

22

2.3. The Synthesis Framework

ALGORITHM 1: Modified Decision Tree algorithm for synthesizing a query representative
of a GUI selection.

SynthQuery(C, T , Scurr, S)
Parameters: t: threshold for information gain
Input: C: Current set of elements, initially all elements,

T : Target set, i.e., the selected elements,
Scurr: Pre-computed set of predicates,
S: All available selection predicates

Output: Decision Tree,
Flag for recomputation, ignore for last return

if C ⊆ T then
return True

else if C ∩ T = ∅ then
return False

else
Evaluate the relational selection predicates in S on C and store the result in Snew.
Calculate information gain for each selection predicate in S and Snew.
Let s ∈ Snew ∪ Scurr be the selection predicate with the highest information gain,
and ∅ ⊂ s ∩ C ⊂ C.

if s information gain < t then
Use C and program context to generate a new selection predicate
(Section 2.3.2).

return SynthQuery(C, T , Scurr, S ∪ {s})
else

if s ∈ Snew then

Scurr :=

{
x | (x intrinsic ∧ x ∈ Scurr)∨

(x relational ∧ x ∈ Snew)

}
LT , LC := SynthQuery(C ∩ s, T , Scurr \ {s}, S)
RT , RC := SynthQuery(C \ s, T , Scurr \ {s}, S)
L := LC ? (s.LT) : (s ∧ LT)
R := RC ? (¬s.RT) : (¬s ∧RT)
return L ∨R, s ∈ Snew

feature of Decision Trees to synthesize code snippets for selection queries. For the sake of
simplicity, we use a selection predicate and the set of elements it selects interchangeably.

Description of the algorithm

Our synthesis algorithm is based on the popular ID3 Decision Tree learning algorithm
[120]. Given the relevant top-level object O, we start with all the elements that can
possibly be selected, O = {o1, o2, o3, . . .}. We also have the set of selected elements we
want to derive a selection query for, T = {t1, t2, t3, . . .} ⊆ O. We maintain the notion
of a current set, C, which is the set we are currently working with in the Decision Tree
procedure. In the beginning of the procedure, C = O. We then follow the algorithm as in
Algorithm 1. First, we check if the current set C is a base case. Set C is a base case if
C ∩ T = ∅ or if C ∩ T = C. In either case, we do not need further decision steps, as C

23

2. Bridging GUI and Programming

contains only positive or negative examples. If C is not a base case, we perform further
decision steps until we reach a base case. At each decision step, we choose the selection
predicate with the highest information gain (and that does not lead to selecting C or ∅).

When the rate of progress decreases, we add a new candidate selection predicate by
looking at the program context. The selection predicate can either be from a pre-calculated
selector set Scurr, or from a newly calculated predicate set Snew. Re-calculating (Snew)
means we combine the predicate with ‘.’ and using a pre-calculated predicate (Scurr)
means we combine it with ‘∧’. The recursive call of the algorithm returns a flag to indicate
whether to use ‘.’ or ‘∧’ when connecting the sub-tree to its parent.

The formulation of entropy and information gain is the same as in the standard ID3
Decision Tree algorithm: H(C) = −

∑
x∈X p(x) log2p(x), where H(C) is the entropy of

the current set C. X is the set of classes in C. In our case, X has two classes, elements that
are in the target set (positive examples) and elements that are not (negative examples).
p(x) is the proportion of elements in a class x to the total number of elements in C. The
information gain for the predicate s when applied to C is IG(C, s) = H(C)−H(C|s) =
H(C)−

∑
k∈{C∩s,C\s} p(k) H(k). The selection predicate s partitions C into two subsets,

one for s and the other for ¬s. p(k) is the proportion of elements in subset k to the total
number of elements in C.

Correctness and Completeness

Our algorithm is correct-by-construction. On the other hand, completeness critically
relies on the availability of selection predicates, and the threshold t on the information
gain to be low enough for all nodes in the Decision Tree to have an information gain
larger than t. Our algorithm is relatively complete (depending on t).

For trivial completeness, we can examine each o ∈ O and generate a predicate for each
one (structural equality). However, this would slow down the algorithm and likely degrade
the quality of the synthesized queries (over-fitting). Therefore, our algorithm starts
with fewer, more general predicates, and if these are not enough, adds more specialized
predicates lazily. This process is bound to complete (given a low enough threshold) as
there are finitely many properties that elements possess, and in each successive decision
step, the size of the current set C reduces monotonically until a base case is reached.

Practical adjustments for efficiency

The aim of our technique is to provide an interactive programming environment that can
work with arbitrarily complex shapes and GUI selections. The algorithm already handles
intrinsic and relational predicates differently to avoid needless re-evaluation of intrinsic
predicates. We now suggest some further adjustments to the algorithm.

(i) To re-evaluate selection predicates that depend on the set of features (like maximum
and minimum), we need to create a temporary object Onew and evaluate the
predicates on this to generate Snew. This is an expensive process, especially when
the set of selection predicates and elements in the object is large. Therefore, we

24

2.3. The Synthesis Framework

propose only calculating this if the maximum information gain from predicates in
Scurr is less than a certain threshold.

(ii) The calculation of Snew can be done in a smart way. Predicates such as largest
or smallest in a particular coordinate axis depend on the elements in our current
set C. However, there are certain predicates which do not need to be explicitly
re-calculated, such as orthogonality and parallelism to a coordinate axis. These can
be directly inferred from Scurr.

Generating Selection Predicates

Selection predicates, typically the intrinsic ones, may depend on parameters. This enables
the generation of new predicates on-the-fly.

Non-parametric predicates

The simplest predicates are non-parametric. There are a finite number of them and they
capture the most common use cases. Our algorithm starts with these predicates. These
predicates include maximal or minimal elements in each coordinate axis, elements parallel
or orthogonal to each coordinate axis, types of geometry, etc. Extremal elements are
quite intuitive for humans to understand and use as there is a direct mapping from these
to natural language ("top-most", "left-most" etc). This is also the case for parallelism
and orthogonality predicates. Predicates based on geometry enable selections such as
round edges, planar faces, etc.

Parametric predicates

The second category of predicates take parameters. By giving different values to these
parameters, we get different selections. To generate these selection predicates, we use
values from the elements selected, and variables in scope where the query is to be generated.
We prioritize use of variables as they are more likely to be robust to program changes.

We have implemented selection based on bounding boxes. Though the bounds can
be generated using constant literals, we try to fit variables in scope to the constraints
so as to have more readable and likely-to-generalize queries. If V = {v1, v2, v3 . . .} are
environment variables in the program, and [a, b] is the bounding constraint for a particular
selection set, we try to find vi ∈ V with minimum distance to a and vi ≤ a. Similarly, for
the upper bound, we try to find vi with minimum distance to b and vi ≥ b.

However, there are many more parametric selectors which can be added. For instance,
the length of edges, the area of faces, or the volume of solids can be used. Our algorithm
is extensible and it is easy to add more selection predicates. More predicates may lead
to synthesis of shorter queries. However, in order to understand what these queries do,
designers would need to know a larger list of predicates. A decision on which direction is
better in this trade-off requires further study.

25

2. Bridging GUI and Programming

2.3.3. Querying objects in a loop or collection

Very often, programs operate on collections of objects. An obvious example is the map
function, which takes as input a collection of objects and returns a collection with some
transformation applied to each element. In CAD, this is fairly common as well (an
example was presented in Section 2.2.2). As we maintain a snapshot of program state at
each line number, given a set of elements selected using direct manipulation, we check if
the selected element(s) are part of a collection. If this is the case, we generate a query
fitting the whole collection. Algorithm 2 shows how this is done.

ALGORITHM 2: Synthesizing queries on collections

SynthQueryCollection([O1, . . . , On], T)
Input: [O1, . . . , On]: Collection of objects, T : Target set
Output: Query
L := [O1, . . . , On].filter(λo. T ⊆ o)
C := |L| = 1 ? head(L) :

⋃
i Oi

Evaluate the predicates in S on C, store results in Scurr.
return SynthQuery(C, T , Scurr, S)

2.4. Evaluation

We now present implementation details, and provide experimental evidence to demonstrate
the applicability of our approach to modern parametric CAD workflows. Section 2.4.1
provides implementation details. Section 2.4.2 provides evidence of our approach working
well in practice. In Section 2.4.3, we show that even when dealing with complex designs
that do not have a programmatic representation, our technique can synthesize selection
queries fairly quickly. Section 2.4.4 presents experiments demonstrating the utility of
range queries and support for design modifications. Finally, in Section 2.4.5, we present a
user study that evaluates the ease of use of our proposed interface.

Wherever we report number of lines of code, we exclude blank lines and comments.
Wherever we report runtime, the experiments are done on a machine with an Intel Core
i3-8100T processor, 8GB RAM, and an Intel UHD Graphics 630 graphics card.

2.4.1. Implementation

Our implementation is available at https://gitlab.mpi-sws.org/mathur/ipcad (around
1100 lines of Python code). We build on top of FreeCAD (version 0.17), a popular
open-source GUI-based CAD application, and CadQuery (version 1.2.0), an open-source
programmatic interface. These two interfaces are bridged together. Though CadQuery
offers a set of tools for integration with FreeCAD, this is restricted to displaying the
program’s output on the FreeCAD GUI. There is no interactivity during the design
process and no programming-specific debug features. Our implementation brings this.

26

https://gitlab.mpi-sws.org/mathur/ipcad

2.4. Evaluation

GUI interface The FreeCAD API enables listening to GUI events. Our implementation
listens to events that correspond to selection of elements in the design and performing of
operations. Once a selection in the GUI is made, we map the selected elements in the
GUI to elements in the design’s programmatic representation.

Programming interface The programming interface is unaware of the GUI interface
except for its use as the output device (as is usually the case). However, we instrument
the program so as to track intermediate states of the design with the help of Python’s
reflection API (inspect module). Tracking intermediate states helps understanding the
control structure of the program, as well as identifying which elements were created
together, for example in a loop or in a collection (for example, see Figure 2.7 in Sec-
tion 2.2.2). Moreover, it helps us determine which line of code led to a particular selected
element being modified. This enables interactive local modifications and debug features
(for example, see Figure 2.8 in Section 2.2.2). In addition to tracking the state of the
design and control flow, we also maintain a list of variables in scope. This is done so as
to include these as parameters in the synthesized queries, especially range-based queries.

Initial predicates in the synthesis procedure The choice of initial set of selection
predicates is important for generating quick and human-readable queries. The following
are the set of initial selection predicates we use in our experiments (and that we use as
default):

(i) Intrinsic: parallelism and orthogonality to the three coordinate axes (X-, Y-, and
Z-axis), centre in the positive or negative direction for each coordinate axis, and the
type of edge (straight line, circle or arc), or face (flat plane, cylindrical or spherical).

(ii) Relative: maximal and minimal elements in each coordinate axis.

All of these predicates are available in CadQuery, and our synthesized queries can
therefore directly be used in a CadQuery program. This initial set of selection predicates
is kept the same throughout the various case studies.

The threshold on the information gain is set to 0 for our case studies. This guarantees
the synthesis of a selection query for any possible user selection. However, this also has
the side-effect of sometimes leading to very long selection queries. An example of this is
presented later, in Section 2.4.4.

2.4.2. Synthesis robustness and runtime

We now evaluate our technique on several important metrics like robustness of the
synthesized queries, and run-time of the algorithm. The evaluation is based on a wide
variety of designs, both simple and complex, and encompasses a large variety of application
areas. There is a need for ground truth to appropriately assess the quality of our
synthesized queries. Our examples are therefore based on designs whose source code
is also available. We discuss two sets of examples: (a) experiments on CadQuery
samples, where we use example programs from the CadQuery public repository [116],

27

2. Bridging GUI and Programming

Figure 2.9.: CadQuery designs (default parameters).

28

2.4. Evaluation

and (b) experiments on Thingiverse samples, where we use some parametric designs
available on Thingiverse’s customizable section [96].

CadQuery examples

There are 22 designs in CadQuery’s repository that use selection queries. We include
all of them (see Figure 2.9 for a snapshot of the designs) for this experiment. The aim is
to evaluate the run-time of our system’s synthesis procedure, as well as examine whether
the synthesized queries are correct (or, as intended by the original authors of the design).
The experimental procedure is as follows:

(i) For each CadQuery example, we start with a blank program, and copy the example
until a selection query occurs.

(ii) We use the FreeCAD GUI to display the output until this line.

(iii) In the FreeCAD GUI, we manually select the elements selected by the ground
truth query.

(iv) We append the query returned by our automatic synthesis procedure to the program,
and carry on until the next selection query, or the end of the design.

In Table 2.1, we report run-time and query size (number of predicates in the query)
for these examples. The number of vertices, edges and faces in the examples, as well
as lines of code (LOC) are also reported to get a better sense of the complexity of the
underlying designs. To evaluate the correctness of the synthesized queries, we compare the
synthesized queries to the ground truth queries. Two corresponding queries can either be
equal, logically equivalent or different. Equality and logical equivalence ensure correctness
of the synthesized query. However, if the synthesized query is different from the ground
truth query, it does not necessarily mean it is incorrect (existence of multiple semantically
equivalent queries). For synthesized queries that are different from the ground truth
query, we randomly sample over the programs’ parameter space and compare the resulting
meshes. We sample parameters randomly as automatically finding ‘intended’ parameter
values is known to be difficult [71]. We compare meshes by calculating the Hausdorff
distance [124] between them using MeshLab [31]. If the resulting meshes are the same
over 50 random samples, we mark these queries as experimentally equivalent. Figure 2.10
provides a visual example of the difference between logically and experimentally equivalent
queries. We report the results on our synthesized queries in Table 2.1. Table 2.3 gives
specific details on each example in the experiment.

Thingiverse examples

The set of ground truth examples we use here are obtained from Thingiverse’s section
of customizable designs. We chose 12 customizable designs representative of different
application areas and of varying complexity. Figure 2.11 provides a snapshot of the chosen
designs. The examples in Thingiverse’s customizable section are constructed using

29

2. Bridging GUI and Programming

Z

Y

X

(a) Logically equivalent: we synthesized ‘‘(>Z and (not >X and (not >Y and (not <X and (not
<Y)))))" vs. ground truth ‘‘(>Z). (not (<X or >X or <Y or >Y))’’.

Z

XY

(b) Experimentally equivalent: we synthesized ‘‘(>Y and (not >X and (not >Z)))’’ vs. ground
truth ‘‘(<Z). (>Y). (<X)’’.

Figure 2.10.: Examples of logically and experimentally equivalent queries (edges/vertex
in green selected).

Table 2.1.: Analysis of query size, synthesis run-time and robustness for the CadQuery
examples.

CadQuery examples

Min. Avg. Max.

LOC 3 23.40 127
Vertices 8 33.27 172
Edges 12 51.72 252
Faces 6 24.81 113
Queries 1 2.41 13
Query size 1 1.64 7
Time (s.) 0.001 0.008 0.089

Robustness of 55 synthesized queries

Equal 43
Logically equivalent 4
Experimentally equivalent 8

30

2.4. Evaluation

Figure 2.11.: Thingiverse designs (default parameters).

Table 2.2.: Analysis of query size and synthesis run-time for the Thingiverse examples.

Thingiverse examples

Min. Avg. Max.

Vertices 4 74 234
Edges 6 89 339
Faces 6 26 83
Queries 1 4 19
Query size 1 1 1
Time (s.) 0.001 0.001 0.001

31

2. Bridging GUI and Programming

Figure 2.12.: % Mesh error on the Thingiverse examples (total 51 synthesized queries),
enumerated on the X-axis (ordered as in Figure 2.11). Black dots represent
mesh errors of each random sample. Red dots represent the average mesh
error of each example.

OpenSCAD [80] and have a programmatic representation in CSG. For each example,
we start with a blank program, and re-construct the design in our system. Note that a
direct translation of the ground truth program is not possible due to a difference in the
underlying CAD representation and available operations. We then use the same procedure
as in Section 2.4.2, and synthesize a selection query wherever possible.

We report run-times of the synthesis process along with the complexity of the designs
in Table 2.2. As OpenSCAD does not have a query language, an analysis of correctness
of the synthesized queries is done using random sampling of the parameter space of
the ground truth design and comparing the resulting mesh to the one generated using
synthesized selectors (50 random samples). Like before, we compare meshes by calculating
the Hausdorff distance between them. As parameter values often change the size of
the overall design, we divide the Hausdorff distance by the length of the diagonal of
the bounding box of the ground truth model. This is our mesh error metric. We plot
errors for each example in Figure 2.12. The small error values here indicate that the
synthesized selectors are robust, and there are no unexpected side-effects. Indeed, most of
the errors here are caused due to the difference in the underlying CAD libraries. This can
be confirmed by visually inspecting the meshes with the most error (> 1%) in Figure 2.13.

32

2.4. Evaluation

(a) Bolt cap. Mesh error 3.39 % (b) GoPro Screw. Mesh error 2.88 %

(c) Lock Shaft. Mesh error 1.33 % (d) Setup block. Mesh error 1.79 %

(e) Speaker Grill. Mesh error 3.78 %

Figure 2.13.: Thingiverse examples with the highest mesh errors (our mesh vs. ground
truth mesh on the right). Clearly, the differences are either negligible, or
very small.

33

2.
B

ridging
G

U
I

and
P

rogram
m

ing

Table 2.3.: A summary of various CadQuery examples run on our system. We report the complexity of the model, the
number of queries in the example, the number which were equal/experimentally equal, the average size of each
synthesized query, and the time it took to synthesize it.

Model Vertices Edges Faces # Queries # Equal # Exp. Eq. Avg. size Avg. time (s.)
Block with Bored Center Hole 10 15 7 1 1 0 1 0.001
Pillow Block With Counterbored Holes 26 39 19 2 2 0 1 0.001
Creating Workplanes on Faces 10 15 7 1 1 0 1 0.001
Locating a Workplane on a Vertex 10 15 7 1 0 1 3 0.001
Offset Workplanes 10 15 9 1 1 0 1 0.001
Rotated Workplanes 20 30 10 1 1 0 1 0.0001
Using Construction Geometry 16 24 10 1 1 0 1 0.001
Shelling to Create Thin Features 8 12 6 1 0 1 1 0.001
Lofts 18 27 12 1 1 0 6 0.049
Counter Sunk Holes 20 32 14 1 1 0 2 0.001
Rounding Corners with Fillets 8 12 6 1 1 0 3 0.001
Splitting an Object 12 18 8 2 2 0 1 0.001
Classic OCC Bottle 14 21 10 2 2 0 3 0.001
Parametric Enclosure Filleting 124 192 90 7 6 1 1 0.089
FreeCAD Solids as CQ Objects 10 15 8 1 1 0 1 0.001
Lego Brick 16 24 11 3 3 0 1 0.001
Remote Enclosure 64 112 51 5 4 1 1 0.001
Numpy 13 22 11 1 1 0 1 0.001
Braille 110 182 108 2 2 0 1 0.001
3D Printer Extruder Support 172 252 113 13 7 5 1 0.014
Shelled Cube Inside Chamfer 16 24 11 2 2 0 2 0.001
Reinforce Junction Using Fillet 25 40 18 3 3 0 1 0.015

34

2.4.
E

valuation

Table 2.4.: A summary of various Thingiverse examples run on our system. We report the complexity of the model, the
number of queries required to be synthesized, the average size of each synthesized query, the time it took to
synthesize it, and error metrics on the meshes generated using random sampling.

Model Vertices Edges Faces # Queries Avg. size Avg. time (s.) Max. error Avg. error
Air Mattress Plug 18 27 11 1 1 0.001 0% 0%
Bolt cap 26 43 20 4 1 0.001 3.39% 0.55%
Electronics Bay 50 90 24 2 1 0.001 0% 0%
Eyepiece Holder 35 53 19 3 1 0.001 0.32% 0.13%
Funnel 11 7 7 2 1 0.001 0% 0%
GoPro Screw 36 54 23 3 1 0.001 2.88% 0.41%
Hose Adapter 8 14 8 3 1 0.001 0% 0%
Lock Shaft 4 6 6 5 1 0.001 1.33% 0.43%
Setup block 234 339 83 3 1 0.001 1.79% 0.01%
Speaker Grill 124 186 52 2 1 0.001 3.78% 1.79%
Turner’s cube 116 210 42 19 1 0.001 0.01% 0%
Wire End Clamp 220 34 14 2 1 0.001 0% 0%

35

2. Bridging GUI and Programming

(a) A propeller with edges
of the blades selected.

(b) A glider with rear
wings’ front edges

selected.
(c) A whiffle ball with

inner faces selected.

Figure 2.14.: Some complex designs without a programmatic representation. We synthe-
sized queries for the elements colored in green.

Results

Results from these two sets of examples show that our technique is useful in a practical
interactive programming setting. We find that the synthesis procedure is quick to
synthesize queries. In fact, the longest running time for these examples is less than a
tenth of a second, which is quite acceptable in an interactive setting. We are also able
to synthesize a wide-variety of queries, going from a size of 1, up to a size of 7 in these
examples. The synthesized queries are also robust. We find that our technique often
synthesizes queries that users themselves would come up with, or something equivalent.

2.4.3. Synthesis Scalability

The queries generated in the previous experiments are usually small as we utilize the
underlying programmatic representation of the design. We now show that our algorithm
can also scale to more complicated and artistic designs that do not have an underlying
programmatic representation. A typical use case for this is when designers only have
access to the final object, and want to make robust modifications on these. The models
for this case study are taken from the public repository of FreeCAD’s official tutorials
[22]. The models we used and the selections for which we synthesize queries are depicted
in Figure 2.14. The results of the corresponding synthesis procedure are summarized
in Table 2.5. Though it is not surprising that the query sizes are quite large for these
examples, we find that our algorithm can still cope with this in a reasonable amount of
time.

2.4.4. Feature specific experiments

We now present two small experiments, each demonstrating the utility of a specific feature
of our technique that could not be covered in earlier experiments.

36

2.4. Evaluation

Table 2.5.: Analysis of query size and synthesis run-time on models without a program-
matic representation.

Model Vertices Edges Faces Query size Time (s.)

Propeller 42 61 27 106 1.130
Glider 136 219 88 54 5.133
Whiffle ball 60 90 26 14 1.355

Figure 2.15.: A Turner’s Cube with the inner-most faces selected.

Range queries

The following example demonstrates the utility of range queries, specifically the parametric
bounding box selector. Consider the model of a Turner’s cube as in Figure 2.15. For
the sake of this example, let us assume that this model does not have a programmatic
representation. If we start with the usual selection predicates and 0 threshold on the
information gain, we get an extremely large selection query with 56 selection predicates.
Due to the layered structure of the design, our algorithm has a hard time coming up with
a selector for the inner faces. It tries to select the inner faces by removing faces from the
top-level object layer-by-layer. A remedy to this can be a concise parametric selector.

For example, if the inner-most cube’s edge length, s is made available to the algorithm,
the synthesized query is: faces(BoxSelector((0,0,0), (s,s,s))). This is an example of a
range query in which all faces inside the bounding box defined by the range are selected.
Not only is this query shorter, but it is also synthesized quicker: it takes only 0.05 seconds
to synthesize, as compared to 23.29 seconds for the larger query.

Local design modifications

In Section 2.2.2, we discussed how our system can be used to discover which line of code is
responsible for a particular feature in the design. We now demonstrate a slightly different
experiment, based on the same example, wherein instead of just debugging or changing of
some parameters, we change the design itself. We use the same example as before, i.e., a
storage box. Figure 2.8 shows our storage box. Let us remove the fillet from the bottom

37

2. Bridging GUI and Programming

Table 2.6.: User performance on Programmatic only vs. Programmatic + GUI (our)
interface. We report the percentage of queries attempted and correctness over
all participants.

Programmatic only Programmatic + GUI

Min. Avg. Max. Min. Avg. Max.
% Attempted 48 77.5 100 64 94 100
% Correct 58.3 84.5 95.8 93.8 98.3 100

part of this box. To do this, we can select any of the rounded faces (or edges) that we
wish to modify (see Figure 2.8), and ask our system to return the line of code responsible
for this. Our system returns the following line of code:

oshell = oshell.edges("#Z").fillet(topAndBottomRadius)

During the process of creating our storage box, we round all edges that are orthogonal to
the Z-axis. We can now delete this operation and ask our system to generate a selector
for only the upper edges. This gives us the following sub-program:

oshell = oshell.edges(">Z").fillet(topAndBottomRadius)

Replacing this with the previous line of code gives us the requisite modification.

2.4.5. User Study

To evaluate the usability of our proposed interface, we conducted a user study with 6
participants (all male, 20 - 35 years of age). They had varying degrees of experience with
CAD, with some being beginners with less than 1 year of experience, some with more
than 3 years of experience, and some who fell in-between. Each study was approximately
60 minutes long: 20 minutes for a short tutorial and feedback, 20 minutes using a
Programmatic system, and 20 minutes using Programming + GUI (our system). Users
were asked to write queries for 14 selected designs (total 49 queries), which contained
CadQuery examples after removing redundant designs (designs with only one query,
which occurs in a similar way in other designs), and adding the dowel-end cap and
bottle examples presented earlier in this Chapter. The interface they were presented
with is depicted in Figure 2.16. Participants were counter-balanced between doing the
Programmatic interface and the Programatic + GUI interface first. All the designs that
they had to complete were also counter-balanced and shuffled randomly. Participants
were free to do the designs in any order or skip some if they did not want to finish them.
Participants were not warned when their selection in the GUI or the query they wrote
was incorrect, but were generally aided through questions about the interface and any
technical queries they had. In the end, they filled-out a post study questionnaire, where
they were asked questions about their experience on the two interfaces. The aim of the
study was to collect quantifiable user data on efficiency and accuracy of our interface in
comparison to baseline (programming alone).

38

2.4. Evaluation

(a) Screenshot of the element(s) to be selected and the relevant line number for the query.

(b) The program representation of the design with the relevant line of code.

(c) GUI representation (when applicable), where the relevant element(s) can be directly selected
and the query automatically synthesized.

Figure 2.16.: Participants were presented 2 or 3 tabs depending on whether they were
using the Programmatic or the Programmatic + GUI interface.

39

2. Bridging GUI and Programming

Table 2.7.: A summary of qualitative opinions from the user study, reported on the Likert
scale (1- Strongly agree, 5- Strongly disagree).

Opinion Min. Max. Median Avg.

Writing selection queries yourself (without aid from GUI)
is difficult.

1 4 3 2.8

Generating selection queries using the GUI simplifies the
process of writing selection queries.

1 2 1 1.3

Queries generated by the GUI are what users/program-
mers would write themselves.

1 3 2 2.0

In Table 2.6 we report how fast and how accurate the participants were in the two
interfaces. Using the GUI to synthesize programmatic queries significantly improved
user speed, going from only attempting 77.5% of design tasks on average, to 94% with
our technique. They were also more accurate, going up from 84.5% accuracy to 98.3%
accuracy. In fact, there were just two instances in which interface did not give the correct
result: one, where the user gave up because they needed to select several edges (whereas
the query was relatively straightforward), and second, where the user selected the wrong
element in a symmetric design.

Participants also filled a post study questionnaire. Table 2.7 aggregates their answers
to questions based on a Likert scale . The questionnaire also asked which interface the
participants preferred. Everyone preferred the GUI + Programmatic interface. When
asked why they preferred this interface, the most recurring opinion was that using the
GUI was faster. The participants especially preferred GUI when the selections were non-
standard (more than one selection predicate, or when the object was not parallelepiped).

2.5. Conclusion

We identified bridging GUI and programming as a possible solution to getting the best of
both worlds for parametric CAD, i.e., intuitiveness and ease of use of GUI, and, robustness,
generalizability and modularity of programming. To this end, we presented a Decision
Tree based approach that synthesizes semantics of selections made in a GUI (or direct
manipulation) interface. We demonstrated how the queries thus generated can be used
for interactive programming of CAD and that our technique works on many different
examples. Our proposed technique is quick, and the queries we synthesize are robust. A
user study confirms that our interface is faster, less error-prone, and generally preferable
over plain programming.

40

3
Synthesis of Parameter

Constraints

CAD tool

Static
analysis

Dynamic
analysis

d
h

l

polygon(L) -> extrude(h) -> chamfer(l) -> hole(d)

L, h > 0 l < min (0.43 * L, h)
d < (0.87 * L)

L
h
l
d

L
h
l
d

Runtime

error!

L
h
l
d

L
h
l
d

L
h
l
d

L
h
l
d

L
h
l
d

Empty!

0

L
h
l
d

Runtime

error!

Our contribution

Sampling

L
h
l
d

L

L
h
l
d

L
h
l
d

Empty!

...
Figure 3.1.: We propose a technique for the automatic synthesis of constraints to CAD

parameters. Using a mix of static and dynamic program analysis, we restrict
the parameter space of designs to only those configurations that produce
valid final objects.

3.1. Introduction

Parametric design is a popular design methodology in which designers encode their design
intent by specifying the sequence of operations in the design. This enables end-users to
change parameters of the design, which after a re-evaluation of the sequence of operations,
results in different variations of final objects. Parametric design tools such as Autodesk
Fusion 360, Solidworks, PTC Creo, OpenSCAD, and FreeCAD are ubiquitous in
the industry and ‘maker’ community.

Moreover, websites such as Thingiverse, where users share, remix, and customize
parametric designs, are extremely popular. A serious limitation of current customization
pipelines is that the relationship between CAD parameters is often unknown. In practice,
only a small subset of parameter values lead to valid final objects. Unfortunately,
this information is usually not conveyed in shared designs. Inferring this information
automatically is difficult because designs can have many parameters, each of which

41

3. Synthesis of Parameter Constraints

influences the validity of the final object. This complexity grows as designs involve more
CAD operations and parameters. At the same time, constraints on design parameters are
extremely valuable to end-users. It provides them a high-level perspective on how the
parameters interact, and guides them towards valid final objects.

Thingiverse, a popular online repository of CAD projects encourages designers to
provide information on the range of supported parameter values. To illustrate how
valuable this information is, we did a small experiment. On May 7th, 2021, we examined
the front page of Thingiverse’s parametric designs. Sorting by the newest designs, we
observed that only 7 of the top 20 designs had (partial or full) information on constraints
to the design parameters. Then, sorting by popularity, we observed that significantly
more, 13 of the top 20 designs had this information. Though our sample set is small,
it paints a believable picture: coming up with constraints on parameters of designs is
difficult, and most designers therefore do not provide them. At the same time, end-users
find these constraints extremely useful, as it provides them with high-level context on the
design, as well as the variability of final objects it supports.

In many research and industrial use cases, parameters of designs are sampled to find
optimal (according to metrics like weight, strength, stability, etc.) or otherwise unique
final objects [133, 95]. Depending on the design under test, a significant proportion
of these samples lead to invalid final objects, and are therefore wasted. This can be
drastically improved if information on the constraints to design parameters is available.

In this Chapter, we present an approach for synthesizing CAD parameter constraints
automatically. The central intuition behind our technique is treating parametric designs as
traditional programs, and applying ideas from program analysis for synthesizing parameter
constraints. Each design can be broken down into its constituent CAD operations, and
each operation provides us with some information on constraints to its parameters. Some
of this information can be collected statically, i.e., without evaluating the design on any
concrete parameter value. For example, when constructing a circle, we can be sure that
its diameter is > 0; when making a counter-bore hole, we can be sure that the inner hole
depth is ≥ outer hole depth, and that this depth is < the diagonal of the bounding box
of the intermediate object on which the operation is performed.

After a static analysis pass, if there are still parameters without known constraints,
we move to dynamic analysis, i.e., we try to infer constraints based on evidence from
evaluating the design on many concrete parameter values. Such a two-pronged approach
(static & dynamic analysis) has been successful at finding bugs and program invariants
in traditional computer programs (for example, see [45]). We adapt these ideas for
parametric CAD, first by defining what it means for a CAD operation to fail, or for an
object to be invalid. Then, we describe a few inference rules that help synthesize some
parameter constraints statically. Finally, we present a novel guess-and-check algorithm
for dynamically synthesizing constraints.

Let us present a concrete example of our technique in action. Consider the design in
Figure 3.1. The design consists of first making a hexagon of diameter L. Then, this is
extruded to a height h. Next, the 6 top-most edges are chamfered using a length of l.
Finally, a hole of diameter d is drilled on the top-most face.

42

3.2. Contributions

Now, our technique can statically infer the following: (i) as L and h create new geometry,
they should be > 0, (ii) the chamfer operation cannot succeed (run-time failure) if the
value of l is very high, (iii) if the hole diameter d is very large, then the final object may
be empty, or fractured (segmented into unconnected components). Additionally, we have
rough constraints for l and d. They should both be less than the bounding box diagonal
of the intermediate object on which they operate. Precise constraints for l and d need to
be found, for which we move to dynamic analysis.

Our dynamic analysis algorithm samples the design over many parameter values, and
tries to construct and fit hypotheses based on the observed runs. Our hypothesis generator
proposes hypotheses of increasing complexity. To check whether the hypothesis fits, and
to synthesize a precise constraint, we use mixed integer linear programming. For our
current example, this technique synthesizes correct constraints for both, l and d: l < min

(0.43*L, h), and d < 0.87*L. Our automated technique finds these constraints in just 48
seconds. Clearly, coming up with these constraints by hand would be challenging.

3.2. Contributions

The main contributions of this Chapter are:

(i) We identify uncovering implicit assumptions in code statically, followed by learning
constraints via concrete evaluations of the design as a useful strategy for synthesizing
constraints.

(ii) We propose static inference rules, as well as a dynamic hypothesis generation and
checking strategy for learning CAD parameter constraints.

(iii) We evaluate our system on a variety of publicly available designs and demonstrate
that our technique synthesizes constraints efficiently and accurately.

3.3. Preliminaries and Overview

We now provide an introduction to CAD representations (specifically B-rep), and a short
background on program analysis. Then, we present an overview of our proposed technique.

3.3.1. B-rep, CAD Operations, and Constraints

Simple representations based on Constructive Solid Geometry (CSG) [83] are still common
in some CAD libraries (e.g. OpenSCAD) and web portals (e.g. Thingiverse). Most
modern tools, however, use Boundary Representation (B-rep) [140]. B-rep offers a rich
collection of high-level operations to create and modify 3D shapes, and we already
introduced it in Section 2.2.1. Figure 3.2 provides a snapshot of some common operations
available in B-rep, and the parameters they take.

The most popular open-source implementation of B-rep is Open CASCADE [113].
We use the CadQuery [115] interface, based on top of the Python embedding of Open

43

3. Synthesis of Parameter Constraints

d

(a) Operation circle with param [d: diam-
eter of the circle].

l

(b) Operation extrude with param [l:
length of the extrude].

l w

h

(c) Opreation box with params [l: length of
box, w: width, h: height].

t

(d) Operation shell with param [t: thick-
ness of the shell].

r

(e) Operation fillet with param [r: fillet
radius].

l

(f) Operation chamfer with param [l:
length of the chamfer]

h

d

(g) Operation hole with params [d: diame-
ter of the hole, h: depth (optional)].

hin

hout
din

dout

(h) Operation countersinkHole with
params [din: diameter of the hole, dout:
diameter of the countersunk hole, hout:
depth of the countersink, hin: depth of
the hole (optional)].

Figure 3.2.: Some common CAD operations, and the parameters they take.

44

3.3. Preliminaries and Overview

CASCADE. Though the CAD interface we use here is text-based, this is not a limiting
assumption. Indeed, any CAD project can be translated to code, and most CAD tools
support text-based macros as an alternative to GUI.

Parametric CAD requires designers to think somewhat abstractly about the design.
The challenge comes from the fact that designers do not know what concrete values
their design parameters will take. An important tool in improving the productivity
of parametric design has been geometric constraints [144, 24]. Most major CAD tools
support constrained sketching. Designers can, for example, specify if certain edges need
to be of equal length, or parallel or orthogonal. The ability to do this, however, does
not extend to high-level domain specific CAD operations such as fillet, shell, counterbore
hole, etc. These operations often fail, or result in an invalid design when passed an
unexpected parameter value. Naturally, as designs get larger, with more and more
operations involved, it becomes increasingly difficult for designers (and consequently, for
end-users) to understand how the design parameters should be constrained, i.e., how to
minimally restrict the parameter space, while still avoiding invalid configurations. The
focus of our work is on the automatic synthesis of such constraints.

3.3.2. Validity of Operations

Unique parameter values to a design result in unique final objects. As the number of
operations (and correspondingly, the number of parameters) grows, the choice of values
grows exponentially. However, many combinations of parameter values lead to invalid
designs. We now elaborate on what this means. Abstractly, invalidity can be defined as
not useful, or bad. Concretely, we define final objects, and parameter configurations that
evaluate them as invalid, if either:

(i) an error during evaluation occurs,

(ii) the final (or an intermediary) object is empty,

(iii) the final (or an intermediary) object has unconnected components, or

(iv) an operation specific assumption is not satisfied.

Let us look at these criteria one by one. The first one is relatively straightforward.
Parameter configurations leading to runtime errors are obviously invalid. In addition
to runtime errors, operations can also be classified as failing in some other situations.
Operations fail when they return a non-manifold object, or when the topology of the
returned object is broken. Such errors can manifest in many CAD tools, especially those
based on Open CASCADE. We therefore check for such errors at the end of each
operation.

The next two criteria are not errors in the traditional sense of the word. They capture
implicit assumptions of designers and end-users. It is fair to assume that users do not
want an empty object. Moreover, the object must be a connected entity. Objects become
empty or unconnected when, due to a CAD operation, an intermediary object cuts the
main object more than expected. Unconnected objects are unwanted, as they have lost

45

3. Synthesis of Parameter Constraints

the topology designers intended for them. They are segmented into multiple pieces, and
the object that was intended to be one entity, is broken-up. Our criteria are not just
restricted to the final object, but extend to intermediate objects in the design as well.
This is because these are implicit assumptions for each CAD operation. For example, if in
an intermediary step the designer wants object A to cut object B and return object C, it
is fair to assume that neither of these objects is expected to be empty. Moreover, if these
criteria are not fulfilled at the end of one operation, they are unlikely to be fulfilled later
on. In the fields of program analysis and debugging, this is called root cause analysis, i.e.,
finding and blaming the operation that leads to an error.

The final criterion ensures that certain implicit assumptions of designers when perform-
ing operations are satisfied. For example, if a designer chooses a vertex to drill a hole on
an intermediary object, the implicit assumption is that this vertex must lie on one of the
faces of the object.

3.3.3. Program Analysis for CAD

Program analysis is an active area of research in the fields of Program Languages and
Software Engineering. It involves examining programs so as to discover interesting
properties of the code [109]. This has enabled automated techniques for detecting bugs
and vulnerabilities in code, and even verification of computer programs. We propose
applying ideas from the field of program analysis to CAD. In standard programming, it is
common to have a set of preconditions, say pre, and a set of postconditions, say post,
such that for a given operation op, if the pre-conditions hold, then after the operation
the post-conditions also hold. This is usually written in the form of a Hoare triple [70]:
{pre}op{post}.

In our setting, the post-conditions are the validity properties presented in the previous
section (Section 3.3.2). Our aim is to synthesize the pre-conditions. In fact, we want to
synthesize the weakest pre-condition pre, which means, ∀pre′. {pre′}op{post} ⇒ (pre′ ⇒
pre). All parameter configurations that satisfy our constraints lead to valid designs,
and those that do not, result in invalid designs. We focus our explanation on specific
operations and consider the operation’s input to be parameters. However, in general,
these can be complex expressions computed from the design’s input parameters. To
handle such cases, we can propagate the constraints to the input [38].

Our setting is a little different from the traditional program analysis set-up. Analytical
solutions are not possible due to the complexity of CAD operations and topological
structures. We therefore use a mix of custom white-box and black-box strategies. White-
box strategies involve looking at code and making inferences based on it. These already
provide some context on the parameters involved. Black-box strategies (sampling in our
case) do not care about the underlying code, and can help come up with useful inferences,
even when the underlying code is large and complex. This is certainly the case for most
CAD operations. Program analysis techniques are typically divided into static analysis
and dynamic analysis. Our method uses a mix of both, and we now provide an overview
of both these parts.

46

3.3. Preliminaries and Overview

Table 3.1.: Static constraints that must hold for valid designs. geom represents any oper-
ation that makes new geometry, like circle, polygon, sphere, box, etc. cskHole

stands for countersinkHole, and cboreHole stands for counterboreHole.

Operation Constraints

geom(p,...) p,... > 0

extrude(h) h > 0

offset(h)...loft() h > 0

union(A, B) Params of geom of A and B > 0

cskHole(d_in, d_out, h_out, h_in) d_in < d_out and h_out < h_in

cboreHole(d_in, d_out, h_out, h_in) d_in < d_out and h_out < h_in

Static Analysis

The idea of static analysis is to capture the designer’s intent by looking at the way certain
operations and parameters are used, or meant to be used. This is done without executing
the design on any concrete parameter value (hence the term static analysis). Just looking
at a CAD sequence of operations, we can make several inferences about the parameters
involved. We summarize these inferences in Table 3.1.

Dynamic Analysis

Dynamic analysis requires evaluating the design on many concrete parameter values. This
is effective at revealing dependencies between the parameter values and their validity.
CAD operations already provide some hints to what their constraints may look like. For
example, consider the operation of boring a hole. It is clear that the hole diameter cannot
be arbitrarily large. After some limit, the hole will start fragmenting the base object,
or give an empty result. As the base object can be arbitrarily complex, and depend on
some other parameter values, we do not know what this limit is. Our aim, through many
concrete executions, is to learn this expression. Moreover, we need not sample blindly. We
know that no matter what the exact constraint to the hole diameter is, the hole diameter
must be less than the length of the diagonal of the bounding box of the base object.

In Table 3.2, we present some rough constraints. The exact expressions (expr) of these
rough constraints need to be learnt. Not only are the CAD operations here complex, but
they often also operate on complex topologies. Therefore, static analysis cannot evaluate
these. We need concrete runs of the design on many different parameter values to learn
them.

On top of these rules, we use some practical strategies to synthesize constraints more
efficiently. We now describe some of these. For operations such as hole, if constraints
for the optional parameter (depth of the hole) also need to be synthesized, we set the
depth to a value > BoundingBox().Diagonal. The constraint synthesized for the depth is
> 0, and by setting this to a high value, we ensure that samples that fail, fail because of
the diameter of the hole. This is also in line with how the hole operation executes in the

47

3. Synthesis of Parameter Constraints

Table 3.2.: Rough constraints that need to be discovered via dynamic analysis.

Operation Constraints

fillet(r) r < expr < BoundingBox().Diagonal

chamfer(l) l < expr < BoundingBox().Diagonal

shell(t) t > 0 or t > -expr; expr < BoundingBox().Diagonal

hole(d) d < expr < BoundingBox().Diagonal

vert(o) Vertex lies on a face

cskHole(d_in,_,_,_) d_in < expr < BoundingBox().Diagonal

cboreHole(d_in,_,_,_) d_in < expr < BoundingBox().Diagonal

cut(A,B) Params of geom of B < expr < A.BoundingBox().Diagonal

absence of a specified depth. Next, because we do not support complex curves, the upper
limit for parameters to fillet and chamfer can be reduced to BoundingBox().Diagonal / 2.
This does not affect the quality of our synthesized constraints. However we can save a
few sampling cycles, as for the operations we support, this is a tighter upper bound.

3.3.4. Learning Constraints

The static analysis already gives us some constraints on parameter values. The dynamic
analysis involves many expr, which need to be learnt. Our choice of the synthesis technique
is driven by the following requirements:

(i) We want the synthesized constraints to be human-readable. This is important for
the constraints to make sense to designers, and to end-users who customize and
3D-print results.

(ii) We want to synthesize accurate constraints. Over-constraining the parameter space
can be detrimental to the performance of optimization and generative techniques.
Under-constraining can be annoying for human end-users.

(iii) We want the technique to make inferences from just a few samples, and have a small
runtime overhead.

We employ an enumerative approach for the synthesis of the missing (or rough)
constraints. This involves starting with short hypotheses, and then moving to more
complex hypotheses if these do not fit. The hypotheses come from domain-specific
knowledge of how constraints in CAD typically look like. Each hypothesis is formulated as
a linear programming problem. If a solution to the problem is found, then the hypothesis
is a possible constraint. If no feasible solution is found, then the hypothesis is rejected.
Incrementally, over many iterations and with many runs of the CAD representation, we
can settle-in on a hypothesis with a feasible solution, and fine-tune it.

48

3.4. Framework

3.4. Framework

We now provide details of our constraint synthesis technique. We first define what it
means for CAD objects to be valid or invalid. Then, we present some rules for statically
inferring constraints. Finally, we discuss our dynamic constraint synthesis technique.

3.4.1. Validity of CAD Operations

We define objects, and the parameter configurations that evaluate them as invalid, if
either: (a) an error during evaluation occurs, (b) the final (or an intermediary) object is
empty, (c) the final (or an intermediary) object is fractured (unconnected components),
or (d) an operation specific assumption is not satisfied. The first criterion is a clear flag
for invalidity. The next two capture implicit assumptions of designers, i.e., not to have an
empty object, or an object with a broken topology. The final criterion captures operation
specific assumptions. For example, if a vertex is chosen for drilling a hole, the implicit
assumption is that this vertex must lie on one of the faces of the object.

In standard programming, it is common to have a set of preconditions, say pre, and a
set of postconditions, say post, such that for a given operation op, if the pre-conditions
hold, then after the operation the post-conditions also hold. This is usually written in the
form of a Hoare triple [70]: {pre}op{post}. In our setting, the post-conditions are the
validity conditions as presented before. Our aim is to synthesize the weakest pre-condition
pre, which means, ∀pre′. {pre′}op{post} ⇒ (pre′ ⇒ pre). All parameter configurations
that satisfy our constraints lead to valid designs, and those that do not, result in invalid
designs.

3.4.2. Static Rules

The static analysis part of our technique looks at the sequence of operations in the design,
and comes up with an initial set of parameter constraints. The following inference rules
capture most of our statically inferred constraints:

pi, pii, piii, > 0

CreateGeometry(pi, pii, piii,)

din ≤ dout, hout ≤ hin

CounterSink/BoreHole(din, dout, hout, hin)

p < BB().Diagonal

F illet/Chamfer/Hole(p)

t > −BB().Diagonal

Shell(t)

The first rule captures CAD operations that are responsible for creating new geometry
(excluding geometry that is later used for a cut or difference operation). Operations such
as creating a circle, box, extrude, etc. are constrained using this rule, so are intermediary
operations such as offsets, which later create geometry using lofts, for example. The
second rule captures easily encoded constraints that must hold for these operations to
succeed. The last two rules capture rough constraints. These rough constraints can be used
later by the dynamic analysis to more effectively find precise constraints. BB().Diagonal
stands for the bounding box diagonal of the intermediate object on which these operations

49

3. Synthesis of Parameter Constraints

Hypothesis
Generator

Sampler

Solver
Infeasible

Feasible +
solution

Samples +
new sample

New
hypothesis

Parameter Constraint
or fail

Figure 3.3.: Overview of our dynamic synthesis algorithm. We take the parameters
for which constraints need to be synthesized. The Hypothesis Generator
generates hypotheses of increasing complexity for these. The Sampler samples
the parameter space, and evaluates the design/operations. The Solver uses
samples from the Sampler to formulate each hypothesis into a linear program.
If a solution to this is feasible, then more samples are collected to check and
refine the constraint derived from the hypothesis (until a fixed threshold of
samples is reached). Else, the hypothesis is rejected, and the Hypothesis
Generator generates a new one.

are applied. Though the exact value of this expression would require evaluating the design
on concrete parameter values, it is an over-approximated bound that would surely hold
for any valid evaluation.

3.4.3. Constraint Synthesis Algorithm

The main algorithm of our framework is depicted in Algorithm 3. The algorithm takes as
input a design for analysis, and a threshold for the amount of sampling to do. Internally,
the algorithm maintains the constraints that have been found, sets of valid and invalid
samples, and the parameters. First, the static analysis is run to get an initial set of
constraints. This is shown in Algorithm 4. Basically, the static analysis traverses the
design, and generates constraints according to the rules in Table 4. The static analysis is
cheap, but only works for a few types of constraints. Still, the constraints found in this
phase can be useful for restricting the sampling space of the dynamic analysis.

The dynamic analysis, at a high level, uses linear programming to fit the parameters of
a hypothesis until enough supporting samples are found. An overview of our dynamic
analysis approach is provided in Figure 3.3. When generating new samples, we use the
current hypothesis, and target our sampling toward its boundary. The idea is that such
samples help refine the hypothesis. The sampling threshold is given by the user.

If the space of valid configurations is very sparse, then the threshold needs to be
high enough for the initial sampling to find a mix of valid and invalid parameter values.
For each new operation, the previous invalid samples are discarded, as they are already
rejected by the current set of constraints. The valid samples are reused on the new
operation. Reusing samples is done to increase the efficiency of the analysis. As the
discovered constraints get more restrictive, finding new samples gets more difficult.

50

3.4. Framework

ALGORITHM 3: Synthesizing CAD parameter constraints
Input: D: CAD program being analyzed,
t: sampling threshold.
Result: constr: constraints.
begin

/* Initialization */
constr = ∅;
S+ = ∅ ; /* Valid samples */
S− = ∅ ; /* Invalid samples */
P = ∅ ; /* Seen parameters */
/* Get some constraints statically */
constr += StaticAnalysis(D);
foreach op in D do

S− = ∅ ; /* discard already rejected samples */
foreach s in S+ do /* retest valid samples */

if op(s) is not valid then
S+ -= s;
S− += s;

end
end
P = P ∪ parameters(op);
h = GenerateHypothesis(P);
while h ̸= null do

if LP(H,S+,S−) is feasible then /* Section 3.4.3 */
if |S+|+ |S−| ≤ t then

(s+, s−) = DirectedSampling(op, constr, H);
S+ = S+ ∪ s+;
S− = S− ∪ s−;

else
constr += h;
h = null;

end
else

/* exception if no more hypothesis */
h = GenerateHypothesis(P);

end
end

end
return constr;

end

51

3. Synthesis of Parameter Constraints

ALGORITHM 4: StaticAnalysis
Input: D: CAD program being analyzed.
Result: constr: Synthesized static constraints.
begin

constr = ∅;
foreach op in D do

constr += constraints on op from rule(s) ; /* Table 3.1 */
end
return constr;

end

ALGORITHM 5: DirectedSampling
Input: op: Operation,
constr: Constraints that must hold,
h: Current hypothesis.
Result: (s+, s−): valid/invalid samples.
begin

while True do
s = randomly sampled list of all the parameters;
if constr(s) then

if op(s) is valid then
s+ = {s};
s− = ∅;

else
s+ = ∅;
s− = {s};

end
/* sample the boundary of h */
P = parameters(h);
assume h is

∑
q∈P cq · q ≥ d;

foreach p in P do
b =

d−
∑

q∈P\{p} cq·q
cp

;
s′ = s[p← random(b− ε, b+ ε)];
if op(s′) is valid then

s+ += s′;
else

s− += s′;
end

end
return (s+, s−)

end
end

end

52

3.4. Framework

Hypothesis Generator

Algorithm 3 depends on the generation of hypotheses. Here, we follow the approach of
enumerative program synthesis [7], and generate expressions of increasing complexity
according to the grammar presented earlier (Section 3.4.3). The following is the grammar
of a hypothesis h in our system:

⟨H⟩ |= ⟨expr⟩ ⟨op⟩ ⟨expr⟩ | ⟨H⟩ ∧ ⟨H⟩
⟨expr⟩ |= ⟨expr⟩+ ⟨expr⟩ | min(⟨atom⟩, ⟨atom⟩)

| max(⟨atom⟩, ⟨atom⟩) | ⟨atom⟩
⟨atom⟩ |= ⟨c⟩ | ⟨c⟩ · ⟨p⟩
⟨op⟩ |= < | ≤

where c denotes a constant in R, and p denotes a parameter of the design. Our hypotheses
are essentially linear expressions augmented with min and max. We start with simpler,
or likelier hypotheses, and then move to more complicated ones if these do not fit.

In addition, we can also use the context, and generate different hypotheses depending
on the operation. The context in which the parameters are used can guide us towards
certain kinds of hypotheses. For example, fillet and chamfer act in at least 2 dimensions
concurrently. This can therefore eliminate hypotheses where the parameter for fillet or
chamfer is constrained by only one other parameter.

Sampler

Our hypothesis directed sampling method is described in Algorithm 5. The algorithm
takes as input the current operation, the already synthesized constraints, and the current
hypothesis. The operation is used to categorize the new samples into valid or invalid
samples. The new samples must respect the existing constraints. We randomly sample
until we find such a sample. Then we use that sample as a seed to find similar samples,
but close to the boundary of the current hypothesis. Algorithm 5 shows this for linear
constraints. In the case of more complex hypotheses, we reduce them to linear problems,
as explained next.

Solver

Each proposed hypothesis needs to be checked, and the missing coefficients need to be
found. For this, we use mixed integer linear programming. We have a set of samples
from the Sampler, and we also know, for each operation, if these samples are valid or
invalid. Our hypotheses can be converted into a conjunction of n linear inequalities over
the parameters P . Then for a valid sample s+, we simply substitute the sample values:

n∧
i=1

∑
p∈P

ci,p · s+[p] ≥ di

53

3. Synthesis of Parameter Constraints

where ci,q and di are the constants whose values need to be determined. For an invalid
sample s−, we need the following inequality:

n∨
i=1

∑
p∈P

ci,p · s−[p] < di

However, this introduces disjunctions, which are not natively supported in linear pro-
gramming. To get rid of these, we use a variation of the Big-M method [34] to generate
the following inequalities:

n∧
i=1

∑
p∈P

ci,p · s−[p] < di −M ·mi

n∧

i=1

mi ∈ {0, 1}, 0 ≤
n∑

i=1

mi < n

where M is a sufficiently large constant that overpowers the rest of the inequality, and
the mi act as switches that ensure at least one disjunct holds.

Hypotheses that use min and max can be turned into linear inequalities by:
e ≤ min(e1, e2) ⇔ (e ≤ e1 ∧ e ≤ e2)
e ≤ max(e1, e2) ⇔ (e ≤ e1 ∨ e ≤ e2)

and removing the disjunction as explained above.

3.5. Evaluation

We now provide some implementation details, and present experimental evidence on the
efficacy of our technique for synthesizing CAD parameter constraints.

3.5.1. Implementation

Our implementation consists of approximately 2000 lines of Python code. The source
code of our project, as well as the experiments in the evaluation are available at: https:
//gitlab.mpi-sws.org/mathur/constraints-cad. We use CadQuery (version 2.0)
as our CAD interface. CAD validity checks are performed using pythonOCC, which
provides access to most of the underlying Open CASCADE structures. The synthesis
procedure uses PuLP as the mixed integer linear programming library, and GLPK as
the solver.

3.5.2. Experiments

We now evaluate our technique on some real-world designs from the recently released,
and publicly accessible Fusion 360 Segmentation Dataset [84]. The dataset consists of

54

https://gitlab.mpi-sws.org/mathur/constraints-cad
https://gitlab.mpi-sws.org/mathur/constraints-cad

3.5. Evaluation

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u)

Figure 3.4.: Objects from the Fusion 360 Segmentation dataset used in the experiment
(some views clipped to show prominent features).

55

3. Synthesis of Parameter Constraints

35,858 final objects. Due to practical considerations, we can only consider a small portion
of it. We first sort the dataset folder alphabetically (the object names are nondescript
hashes). Then, we open and check the first 82 objects. We eliminate:

(i) Trivial objects. These are either primitives, or very close to primitives in the CAD
library. This eliminates 3 objects.

(ii) Objects that require the use of unsupported, or non-straightforward CAD operations
(including complex sketching) in CadQuery. This eliminates 35 objects.

(iii) Objects using spheres. We found that CadQuery was not stable when working
with spheres, and produced unexpected errors. This eliminates 5 objects.

(iv) Duplicate objects (the same object can be obtained by changing parameter values
of an already included design). This eliminates 18 objects.

After this filtering, we are left with 21 objects. The objects are re-designed in CadQuery
to get an equivalent B-rep with sequence of operations in the CadQuery syntax. These
designs are connected to our system, and used for the experiments.

Experimental Procedure

The designs we use for our evaluation are presented in Figure 3.4, labelled (a) - (u). The
number of parameters in these designs range from 3 to 12, with an average of 5.5. For our
dynamic analysis, we set the threshold of maximum number of samples for each constraint
to 320 samples; the Hypothesis Generator generates hypotheses with at most 3 atomic
predicates. The experiments are performed on a computer with an Intel Core i7-7820HK
processor, 32 GB of RAM, and running on Windows 10.

Results

The results of our evaluation are summarized in Table 3.3. In Table 3.4, we summarize how
complex these constraints are, in terms of the number of atomic predicates they contain.
As the complexity of constraints is only an issue with dynamic analysis, we only address
these. We find that we are able to synthesize constraints for almost all the designs under
test. For a significant majority of the designs, we synthesize correct constraints for all the
parameters involved, thereby segmenting the space of valid designs with a high degree of
accuracy. There are also some designs for which we cannot synthesize constraints for all
design parameters. In such cases, we synthesize constraints for some parameters, and are
still able to segment the space of valid designs fairly well. There is just one design for
which we cannot synthesize any constraints. For this design, we still do better than naive
sampling of the parameter space because we can identify samples that have no chance of
passing (restricting fillet radius to < bounding box diagonal). Our technique is reasonably
fast (median: 21.2 s, average: 36.1 s, max: 176.4 s). We are also able to reasonably restrict
the space of invalid parameter configurations. The sampling success rate (percentage
of randomly generated samples that lead to valid results) increases dramatically from

56

3.5. Evaluation

Table 3.3.: Synthesis of constraints, and runtimes for the various designs under test. For
each design, we report the total number of parameters, and for how many we
can synthesize constraints through static or dynamic analysis. The Success
corresponds to how many random samples (out of 1000) lead to valid designs
without constraints (Before) or with the synthesized constraints (After).

Parameters Success

Id. Total Static Dynamic Runtime Before After

Fully solved; statically (14%)

(a) 3 3 0 0.1 s 100% 100 %
(b) 6 6 0 0 s 100 % 100 %
(c) 4 4 0 0 s 100 % 100 %

Fully solved; statically & dynamically (52%)

(d) 3 2 1 7.6 s 19.6% 99.4 %
(e) 4 2 2 48.0 s 10.6% 98.7 %
(f) 3 2 1 7.4 s 46.2 % 100%
(g) 4 3 1 6.8 s 15.5 % 98.2%
(h) 5 3 2 45.6 s 3.1% 98.6 %
(i) 3 2 1 5.9 s 19.8 % 99.2 %
(j) 4 3 1 176.4 s 14.8% 97.7 %
(k) 8 6 2 48.8 s 17.6 % 83.9 %
(l) 3 2 1 7.3 s 15.7 % 98.4 %
(m) 4 2 2 22.4 s 4.2 % 83.1%
(n) 4 3 1 8.4 s 16.3% 98.2 %

Partially solved (33%)

(o) 12 7 3 121.3 s 4.8 % 86.3 %
(p) 4 3 0 3.0 s 22.6% 40.4 %
(q) 11 9 1 44.8 s 18.2 % 79.8 %
(r) 7 3 3 54.9 s 1.3 % 9.4 %
(s) 6 2 2 44.2 s 10.4% 28.0 %
(t) 8 3 2 21.2 s 4.2 % 86.0%
(u) 10 6 4 67.5 s 0.1% 71.3 %

Medians

4 3 1 21.2 s 15.7% 98.2 %

Averages

5.5 3.6 1.4 36.1 s 26 % 83.6 %

57

3. Synthesis of Parameter Constraints

Table 3.4.: A summary of the complexity of synthesized constraints (captured by Size) in
dynamic analysis. The complexity is the number of atomic predicates involved
in the constraint.

Constraints

Id. Size Num.

(d) 2 1
(e) 1 1

2 1
(f) 1 1
(g) 2 1
(h) 2 1

3 1
(i) 2 1
(j) 3 1
(k) 1 2
(l) 2 1
(m) 1 1

3 1

Constraints

Id. Size Num.

(n) 2 1
(o) 1 1

2 2
(q) 2 1
(r) 2 2
(s) 1 1

2 1
(t) 1 1

2 1
(u) 1 1

2 2
3 1

26% to 83.6% on average. We organize further discussion by how the constraints are
generated.

Fully solved statically There are 3 designs where the static analysis finds all the
constraints. Our method has a negligible runtime for these cases. Let us consider the
design (a) as in Figure 3.4. It consists of a union of a cylinder and a box, and the
parameters for the dimensions of the box fully specifies the whole design. The parameter
used for the length, for example gives the offset at which the cylinder is created, the
width gives the diameter of the base, and the height is the height of the cylinder. All
three parameters take values from the open interval (0,∞).

Fully solved statically and dynamically There are 11 designs that can be solved fully
via a combination of static and dynamic analysis. Though the solved constraints fall shy
of 100% accuracy, they are in-fact correct (verified manually). The small errors noticed
here show up when working with curved shapes, and are due to numerical instabilities in
the underlying CAD kernel. As depicted in Table 3.3, the designs here have a uniformly
low success rate when sampling naively. With just a small runtime overhead, we are able
to synthesize accurate constraints for all parameters of these designs.

We already discussed (e) from this segment in Section 3.1. Let us now look at our
solution for the design (h), as depicted in Figure 3.4. A detailed view of its parameters
and variations of final objects was presented earlier, in Figure 1.3. The design consists
of the following sequence of operations: (i) a box with dimensions l, w, and h is created,
(ii) the 4 edges parallel to the Y-axis are filleted with radius f1, (iii) the 4 edges on

58

3.6. Conclusion

h

d1

d2

h'

f

h

d2

d1

h'

f

Figure 3.5.: Two variations of the design (p). The parameter f depends on d1 and d2, as
well as h’. However, h’ is not an exposed parameter, but h (the offset between
the two circles) is. We know that f must be less than the bounding box
diagonal. However, the precise constraint cannot be synthesized, as doing so
would require non-linear hypotheses with geometric functions.

top in the Y-axis are filleted with radius f2. Our static analyzer quickly comes up with
constraints for l, w, and h. Then, our dynamic analyzer is asked to find constraints for
f1 and f2. They cannot take any arbitrary values, and must take values less than the
bounding box diagonal of their respective intermediate objects. We enumeratively build
hypotheses for both, f1, and f2. The simplest inequalities do not work out. We first find
a solution for f1 of the form: f1 < c * min(l, h), with c = 0.478 initially. This is later
refined to c = 0.499. Similarly, we find a constraint for f2 as: f2 < 0.5 * min(l, w, h).

Partially solved For 7 designs in the experiment, we are only able to synthesize con-
straints for some of the parameters involved. For the rest, our hypothesis generator
cannot construct correctly fitting hypotheses. As shown in the final segment of Table 3.3,
our technique still significantly improves the sampling success rate vis-á-vis random
sampling. This is because in addition to finding correct constraints for at least some
of the parameters involved, we can often eliminate configurations that fail for sure (for
example, see Figure 3.5), or find an approximate constraint (see Figure 3.6).

3.6. Conclusion

The power of parameterization is foundational to many modern applications of CAD. The
flexibility it offers, however, comes at the cost of simplicity. Parameters in CAD depend
on each other, and many combinations of parameter values lead to invalid final objects.
Our proposed technique uses a mix of novel static and dynamic analysis to synthesize
parameter constraints for a wide variety of designs. We evaluated this technique on designs
from an open-source dataset, and found that our technique was able to significantly reduce
the space of invalid parameter values via synthesized parameter constraints. Moreover, our
technique was quick, taking an order of seconds for most designs. Our current approach

59

3. Synthesis of Parameter Constraints

s

xf1

f2

Figure 3.6.: Incomplete top-view of the design (u). We synthesize correct constraints
for f1, f2, and x. For s, we obtain s < 3.31 * max(l, w, h), which is an
approximation.

does not support non-linear (or geometric) constraints. Supporting these would be the
obvious next step, and could be achieved by generating richer hypotheses in the dynamic
analysis step. This, however, is left for future work.

60

4
Related Work

4.1. Robustness of CAD

GUI-based CAD tools initially suffered from a severe robustness challenge of not being
able to persistently and uniquely identify geometric entities of a design. This led to
research on heuristics to resolve this, both, during design time [28, 29, 26], and during
re-evaluation (under changed parameter values) [81, 3]. Robustness in design has been
explored using geometric constraints [17], and explicit user input [62, 118]. These
works successfully provide persistent and unique names to geometric entities. However,
due to underspecification of GUI-based operations, these techniques cannot resolve
ambiguity. Ambiguity resolution is done differently on different CAD tools, and because
this information is usually opaque to users, interchange of designs between different CAD
tools is also difficult [103]. No prior work has tried to bridge programming and GUI as a
solution to the robustness problem.

4.2. Parametricity in CAD

Due to the modern design and fabrication landscape, the importance of parametricity
in CAD has greatly increased. There has been work on systematic exploration of large
parametric design spaces [88, 132, 135], using parameters for quality control [154], and
interactive modification of designs [111]. There are extensions to the original idea of
modelling by example [56] to ensure that the resulting design is fabricable [131], and on
generation of fabrication constraints at design time [85]. Interestingly, research focussed
on exploring parametricity of designs have either chosen programmatic back-ends, or
highly curated designs. This is also true for the industry. Thingiverse [96], for example,
only supports designs with a programmatic back-end for its customizable designs section.
Our work enables designs made using a GUI to also benefit from the robust parametricity
offered by programmatic back-ends.

4.3. Synthesis of CAD Programs

For modelling based on CSG, which involves creation of shapes using binary operators on
solids, there has been recent work on synthesizing the underlying CSG-tree or program-
matic representation [43, 104, 105]. Though these techniques can synthesize CSG-trees

61

4. Related Work

(or programs) of various 3D models, CSG representation is less expressive than Boundary
Representation (B-Rep) [140], the representation we and several modern CAD tools use.
We view these works as complementary to the approach we present in Chapter 2 in that
these try to uncover the underlying semantic representation of a tessellated 3D model,
whereas we try to uncover the semantic representation of user activity during the design
process.

Though several recent works have been looking into bridging GUI and programmatic
representations for design and animation, these works have basically focussed on syn-
thesizing small program modifications [30, 99, 100]. Our focus, on the other hand, is
on synthesizing new code for the design of 3D objects. A unique problem we tackle
in our synthesis technique is, unlike some other programming-by-example [65] based
approaches, we only have one example (i.e., a user’s direct manipulation action). Our
underlying synthesis approach needs to be fast enough to be unobtrusive to the GUI-based
interaction. In this context, we borrow ideas from Syntax-Guided Synthesis (SyGuS)
[138, 6], as our abstract grammar restricts the syntax of the programs we synthesize. In
SyGuS terminology, we use a compositional technique on top of an enumerative approach,
i.e., we enumerate small programs and combine them to create more complex programs.
However, unlike the SyGuS setting, we do not have a complete specification of what the
synthesized program should do.

Our synthesis approach is based on a modified Decision Tree algorithm. Decision Trees
have already been used in the context of program analysis and synthesis. For example,
these have been applied to the learning of program invariants [60], and for tying-together
small programs in a divide-and-conquer synthesis approach [106, 8].

4.4. Constraining CAD Parameters

We are not the first to propose the idea of synthesizing CAD parameter constraints.
Fab Forms [136] employs user-specified validity conditions to synthesize constraints
for design parameters. These constraints are then embedded in an interactive design
explorer that enables a quick preview of the various (valid) final objects. Fab Forms,
however, takes between several hours to several weeks for pre-computation. Part of this
is because they, like other similar techniques [159, 146], work (albeit indirectly) with
meshes. Moreover, many of Fab Forms validity checks are costly (e.g. finite element
method). Our work uses the higher-level, and widely popular Boundary Representation
(B-rep). We perform validity checks within the representation, which is much more
efficient than similar checks on meshes. The use of B-rep and its operations also enables
us to support more designs, and more design workflows than specialized constrained
editing tools [21, 130]. Our validity conditions come from implicit assumptions of CAD
operations and design methodology. We can therefore quickly eliminate many designs
that are generally accepted to be invalid. Then, if more complicated checks are required,
these can be performed on a much smaller subset of final objects.

Generative design in the context of 3D CAD has gained widespread prominence in
research and industry. The idea is to generate a large number of objects based on

62

4.4. Constraining CAD Parameters

some abstract metric, such as user choice [158, 51], or physical properties by sampling
parametric designs [133]. Neural networks have also be used to generate programmatic
representations of designs [75, 76]. Our work can be viewed as complimentary to these
prior works. We constrain the parameter (or latent) space of designs, so as to eliminate
invalid configurations.

Our research is inspired by other works on synthesizing easy to understand program
invariants [46, 52, 59]. We basically analyze designs as conventional programs [108],
and use implicit assumptions [45] from CAD-specific operations to come up parameter
constraints.

63

Part II.

Simulation

5
Paracosm Interface

System
Under
Test
(SUT)

Paracosm	program

Collision
Monitor

Simulation

Controller

Visual	model Physical	model

Test	Vehicle

... ...

World

Behavior

Visual	model Physical	model

Pedestrian

Road
Segment

Test	Input
Generator

...

Figure 5.1.: A Paracosm program consists of parameterized reactive components such
as the test vehicle, the environment, road networks, other actors and their
behaviors, and monitors. The test input generation scheme guarantees good
coverage over the parameter space. The test scenario depicted here shows a
test vehicle stopping for a jaywalking pedestrian.

5.1. Introduction

Building autonomous driving systems requires complex and intricate engineering effort.
At the same time, ensuring their reliability and safety is an extremely difficult task. There
are serious public safety and trust concerns, aggravated by the many recent accidents
involving autonomous cars [139, 25]. Software in such vehicles combine well-defined tasks
such as trajectory planning, steering, acceleration and braking, with underspecified tasks
such as building a semantic model of the environment from raw sensor data and making
decisions using this model. Unfortunately, these underspecified tasks are critical to the
safe operation of autonomous vehicles. Therefore, testing in large varieties of realistic
scenarios is the only way to build confidence in the correctness of the overall system.

67

5. Paracosm Interface

Running real tests is a necessary, but slow and costly process. It is difficult to
reproduce corner cases due to infrastructure and safety issues; one can neither run
over pedestrians to demonstrate a failing test case, nor wait for specific weather and
road conditions. Therefore, engineers test autonomous systems in virtual simulation
environments [53, 134, 40]. Simulation reduces the cost per test, and more importantly,
gives precise control over all aspects of the environment, so as to test corner cases.

A major limitation of current tools is the lack of customizability: they either provide a
GUI-based interface to design an environment piece-by-piece, or focus on bespoke pre-
made environments. This makes the setup of varied scenarios difficult and time consuming.
Though exploiting parametricity in simulation is useful and effective [16, 42, 149, 63],
the cost of environment setup, and navigating large parameter spaces, is quite high [63].
Prior works have used bespoke environments with limited parametricity. More recently,
programmatic interfaces have been proposed [54] to make such test procedures more
systematic. However, the simulated environments are largely still fixed, with no dynamic
behavior.

In this work, we present Paracosm, a programmatic interface that enables the design of
parameterized environments and test cases. Test parameters control the environment and
the behaviors of the actors involved. Paracosm supports various test input generation
strategies, and we provide a notion of coverage for these. Rather than computing coverage
over intrinsic properties of the system under test (which is not yet understood for neural
networks [86]), our coverage criteria is over the space of test parameters. Figure 5.1
depicts the various parts of a Paracosm test. A Paracosm program represents a family
of tests, where each instantiation of the program’s parameters is a concrete test case.

Paracosm is based on a synchronous reactive programming model [153, 73, 27, 87].
Components, such as road segments or cars, receive streams of inputs and produce streams
of outputs over time. In addition, components have graphical assets to describe their
appearance for an underlying visual rendering engine and physical properties for an
underlying physics simulator. For example, a vehicle in Paracosm not only has code
that reads in sensor feeds and outputs steering angle or braking, but also has a textured
mesh representing its shape, position and orientation in 3D space, and a physics model for
its dynamical behavior. A Paracosm configuration consists of a composition of several
components. Using a set of system-defined components (road segments, cars, pedestrians,
etc.) combined using expressive operations from the underlying reactive programming
model, users can set up complex temporally varying driving scenarios. For example, one
can build an urban road network with intersections, pedestrians and vehicular traffic,
and parameterize both, environment conditions (lighting, fog), and behaviors (when a
pedestrian crosses a street).

Streams in the world description can be left “open” and, during testing, Paracosm
automatically generates sequences of values for these streams. We use a coverage strategy
based on k-wise combinatorial coverage [32, 82] for discrete variables and dispersion for
continuous variables. Intuitively, k-wise coverage ensures that, for a programmer-specified
parameter k, all combinations of values of any k discrete parameters are covered by tests
(instead of covering all combinations of all discrete parameters). Low dispersion [125]

68

5.2. Paracosm Language Interface

ensures that there are no “large empty holes” left in the continuous parameter space.
Paracosm uses an automatic test generation strategy that offers high coverage based on
random sampling over discrete parameters and deterministic quasi-Monte Carlo methods
for continuous parameters [125, 107].

Like many of the projects referenced before, our implementation performs simulations
inside a game engine. However, Paracosm configurations can also be output to the
OpenDRIVE format [11] for use with other simulators, which is more in-line with the
current industry standard. Implementation details, as well as case studies demonstrating
Paracosm are provided later, in Chapter 6.

5.1.1. Contributions

The main contributions of this Chapter are the following:

(i) We present an expressive framework for programmatically modeling complex and
parameterized scenarios to test autonomous driving systems. Using Paracosm users
can specify the environment’s layout, behaviors of actors, and expose parameters to
a systematic testing infrastructure.

(ii) We define a notion of test coverage based on combinatorial k-wise coverage in discrete
space and low dispersion in continuous space. We show a test generation strategy
based on fuzzing that theoretically guarantees good coverage.

5.2. Paracosm Language Interface

We now provide a walkthrough of Paracosm through a testing example.
Suppose we have an autonomous vehicle to test. Its implementation is wrapped into a

parameterized class:

AutonomousVehicle(start , model , controller) {
void run (...) { ... } }

where the model ranges over possible car models (appearance, physics), and the controller
implements an autonomous controller. The goal is to test this class in many different
driving scenarios, including different road networks, weather and light conditions, and
other car and pedestrian traffic. We show how Paracosm enables writing such tests as
well as generate test inputs automatically.

A test configuration consists of a composition of reactive objects. The following is an
outline of a test configuration in Paracosm, in which the autonomous vehicle drives on a
road with a pedestrian wanting to cross. We have simplified the API syntax for the sake
of clarity and omit the enclosing Test class. In the code segments, we use ‘:’ for named
arguments.

1 // Test parameters
2 light = VarInterval (0.2, 1.0) // value in [0.2, 1.0]
3 nlanes = VarEnum ({2 ,4 ,6}) // value is 2, 4 or 6
4 // Description of environment

69

5. Paracosm Interface

5 w = World(light:light , fog :0)
6 // Create a road segment
7 r = StraightRoadSegment(len:100, nlanes:nlanes)
8 // The autonomous vehicle controlled by the SUT
9 v = AutonomousVehicle(start :..., model :..., controller :...)

10 // Some other actor(s)
11 p = Pedestrian(start:.., model :..., ...)
12 // Monitor to check some property
13 c = CollisionMonitor(v)
14 // Place elements in the world
15 run_test(env: {w, r, v, p}, test_params: {light , nlanes},

monitors: {c}, iterations: 100)

An instantiation of the reactive objects in the test configuration gives a scene—all the
visual elements present in the simulated world. A test case provides concrete inputs to
each “open” input stream in a scene. A test case determines how the scene evolves over
time: how the cars and pedestrians move and how environment conditions change. We go
through each part of the test configuration in detail below.

Reactive objects

Paracosm is built around the synchronous reactive programming model [73, 27]. The
core abstraction of Paracosm is a reactive object. Reactive objects capture geometric and
graphical features of a physical object, as well as their behavior over time. The behavioral
interface for each reactive object has a set of input streams and a set of output streams.
The evolution of the world is computed in steps of fixed duration which corresponds to
events in a predefined tick stream. For streams that correspond to physical quantities
updated by the physics simulator, such as position and speeds of cars, etc., appropriate
events are generated by the underlying physics simulator.

Input streams provide input values from the environment over time; output streams
represent output values computed by the object. The object’s constructor sets up the
internal state of the object. An object is updated by event triggered computations.
Paracosm provides a set of assets as base classes. Autonomous driving systems naturally
fit reactive programming models. They consume sensor input streams and produce
actuator streams for the vehicle model. We differentiate between static environment
reactive objects (subclassing Geometric) and dynamic actor reactive objects (subclassing
Physical). Environment reactive objects represent “static” components of the world, such
as road segments, intersections, buildings or trees, and a special component called the
world. Actor reactive objects represent components with “dynamic” behavior: vehicles or
pedestrians. The world object is used to model features of the world such as lighting or
weather conditions. Reactive objects can be composed to generate complex assemblies
from simple objects. The composition process can be used to connect static components
structurally–such as two road segments connecting at an intersection. Composition also
connects the behavior of an object to another by binding output streams to input streams.
At run time, the values on that input stream of the second object are obtained from
the output values of the first. Composition must respect geometric properties—the

70

5.2. Paracosm Language Interface

2 4

.2 .9

nlanes

light

camera

Figure 5.2.: Reactive streams represented by a marble diagram. A change in the value
of test parameters nlanes or light changes the environment, and triggers a
change in the corresponding sensor (output) stream camera.

runtime system ensures that a composition maintains invariants such as no intersection
of geometric components. We now describe the main features in Paracosm, centered
around the test configuration above.

Test parameters

Using test variables, we can have general, but constrained streams of values passed into
objects [128]. Our automatic test generator can then pick values for these variables,
thereby leading to different test cases (see Figure 5.2). There are two types of parameters:
continuous (VarInterval) and discrete (VarEnum). In the example presented, light (light
intensity) is a continuous test parameter and nlanes (number of lanes) is discrete.

World

The World is a pre-defined reactive object in Paracosm, with a visual representation
responsible for atmospheric conditions like the light intensity, direction and color, fog
density, etc. The code segment

w = World(light:light , fog :0)

parameterizes the world using a test variable for light and sets the fog density to a
constant (0).

Road Segments

In our example, StraightRoadSegment was parameterized with the number of lanes. In
general, Paracosm provides the ability to build complex road networks by connecting
primitives of individual road segments and intersections (an example is presented later
in this Section). It may seem surprising that we model static scene components such as
roads as reactive objects. This serves two purposes. First, we can treat the number of
lanes in a road segment as a constant input stream that is set by the test case, allowing
parameterized test cases. Second, certain features of static objects can also change over
time. For example, the coefficient of friction on a road segment may depend on the
weather condition, which can be a function of time.

71

5. Paracosm Interface

Autonomous Vehicles & Systems Under Test (SUTs)

AutonomousVehicle, as well as other actors, extends the Physical class (which in turn
subclasses Geometric). This means that these objects have a visual as well as a physical
model. The visual model is essentially a textured 3D mesh. The physical model contains
properties such as mass, moments of inertia of separate bodies in the vehicle, joints, etc.
This is used by the physics simulator to compute the vehicle’s motion in response to
external forces and control input. In the following code segment, we instantiate and place
our test vehicle on the road:

v = AutonomousVehicle(start:r.onLane(1, 0.1), model:CarAsset
(...), controller:MyController (...))

The start parameter “places” the vehicle in the world (in relative coordinates). The
model parameter provides the implementation of the geometric and physical model of
the vehicle. The controller parameter implements the autonomous controller under test.
The internals of the controller implementation are not important; what is important
is its interface (sensor inputs and the actuator outputs). These determine the input
and output streams that are passed to the controller during simulation. For example,
a typical controller can take sensor streams such as image streams from a camera as
input and produce throttle and steering angles as outputs. The Paracosm framework
“wires” these streams appropriately. For example, the rendering engine determines the
camera images based on the geometry of the scene and the position of the camera and the
controller outputs are fed to the physics engine to determine the updated scene. Though
simpler systems like openpilot [33] use only a dashboard-mounted camera, autonomous
vehicles can, in general, mix cameras at various mount points, LiDARs, radars, and GPS.
Paracosm can emulate many common types of sensors which produce streams of data.
It is also possible to integrate new sensors, which are not supported out-of-the-box, by
implementing them using the game engine’s API.

Other actors

A test often involves many actors such as pedestrians, and other (non-test) vehicles.
Apart from the standard geometric (optionally physical) properties, these can also have
some pre-programmed behavior. Behaviors can either be only dependent on the starting
position (say, a car driving straight on the same lane), or be dynamic and reactive,
depending on test parameters and behaviors of other actors. In general, the reactive
nature of objects enables complex scenarios to be built. For example, here, we specify a
simple behavior of a pedestrian crossing a road.The pedestrian starts crossing the road
when a car is a certain distance away. In the code segments below, we use ‘_’ as shorthand
for a lamdba expression, i.e., “f(_)” is the same as “x => f(x)”.

Pedestrian(value start , value target , carPos , value dist , value
speed) extends Geometric {

... // Initialization
// Generate an event when the car gets close
trigger = carPos.Filter(abs(_ - start) < dist)

72

5.2. Paracosm Language Interface

// target location reached
done = pos.Filter(_ == target)
// Walk to the target after trigger fires
tick.SkipUntil(trigger).TakeUntil(done).foreach(... /* walk

with given speed */)
}

Monitors and test oracles

Paracosm provides an API to provide qualitative and quantitative temporal specifications.
For instance, in the following example, we check that there is no collision and ensure that
the collision was not trivially avoided because our vehicle did not move at all.

// no collision
CollisionMonitor(AutonomousVehicle v) extends Monitor {

assert(v.collider.IsEmpty ()) }
// cannot trivially pass the test by staying put
DistanceMonitor(AutonomousVehicle v, value minD) extends

Monitor {
pOld = v.pos.Take (1).Concat(v.pos)
D = v.pos.Zip(pOld).Map(abs(_ - _)).Sum()
assert(D >= minD)

}

The ability to write monitors which read streams of system-generated events provides an
expressive framework to write temporal properties, something that has been identified
as a major limitation of prior tools [63]. Monitors for metric and signal temporal logic
specifications can be encoded in the usual way [69, 36].

Sensors

Simple autonomous systems like openpilot [33] use only a dash-cam, but more complex
ones mix cameras, LiDARs, radars, and GPS. Paracosm can emulate common types
of sensors which produce streams of data. In Figure 5.3, we show data coming from a
few sensors. Normal cameras can be mounted at specific points on the vehicle and it is
possible to vary parameters like the focal length. The camera can be ideal or include
imperfections like blur or noise. During the rendering process for RGB images we can also
extract depth maps (Figure 5.3b) to cheaply emulate LiDAR. 1 In general, it is possible
to provide new sensors which are not supported out-of-the-box by Paracosm. However,
new types of sensors need to be implemented directly on top of the rendering engine’s
API.

73

5. Paracosm Interface

(a) Standard RGB camera view. (b) Depth map (distance mapped to hue in
the HSV color space).

(c) Car mounted camera with long focal
length.

(d) Car mounted camera with short focal
length.

Figure 5.3.: Simulating different sensors in Paracosm.

(a) T-Intersection with 2 lanes, long road seg-
ments, and traffic and pedestrian lights.

(b) T-Intersection with 4 lanes, short road seg-
ments, and no traffic or pedestrian lights.

Figure 5.4.: Parameterized road segments outputted to OpenDRIVE. Options to cre-
ate vehicular and pedestrian traffic lights can also be arguments to the
TIntersection interface.

74

5.2. Paracosm Language Interface

Road networks

Road elements can be composed using the connect operation. Paracosm supports
complex road elements such as cross-intersections, T-intersections, and roundabouts.
Connections can be established using the connect method, that takes physical connection
identifiers and road elements as arguments. The connections are directed in order to
compute the positions of the elements. One road element becomes the parent and
its children are positioned relative to its position and the specified connection points.
After an object is connected, a new composite road element which encapsulates all road
elements along with requisite transformations (rotations and translations) is returned.
The following example shows how road segments can be connected into a road network.

1 len = VarInterval (5, 100)
2 nlanes = VarInterval ({2, 4})
3 // Create a parameterized T-intersection and three straight

road elements (east , south , west)
4 t = TIntersection(nlanes:nlanes)
5 e = StraightRoadSegment(len:len , nlanes:nlanes)
6 s = StraightRoadSegment(len:len , nlanes:nlanes)
7 w = StraightRoadSegment(len:len , nlanes:nlanes)
8 // connect and get new composite object
9 net = t.connect ((t.ONE , e, e.TWO),

10 (t.TWO , s, s.ONE),
11 (t.THREE , w, w.ONE))

In this example, the T-intersection is not given a specific position or orientation. It is
therefore instantiated at the origin. Road elements connecting to it are then positioned
with respect to it. After connection, the composite road element net can be used for
tests in simulation or to a standardized format (OpenDRIVE). Figure 5.4 shows some
samples in the OpenDRIVE viewer.

Connecting elements has two purposes. First, it allows Paracosm to perform sanity
checks like proper positioning of road elements. Second, it creates an overlay graph of the
road networks which can easily be followed by environment controlled vehicles. When
a road network is created, the runtime system of Paracosm checks that compositions
of road elements and intersections are topologically and geometrically valid. All road
elements must be connected to a matching road correctly (for example, a 2-lane road
segment cannot be connected to a 6-lane road segment directly), there can be no spatial
overlaps between road segments, and the positions of the connection points must match.

In general, Paracosm inherits all programming features of the underlying imperative
programming model as well as reactive programming with streams. Thus, one can build
complex urban settings through composition and iteration. For instance, the grid world
shown in Figure 5.5 was created by iterating a simple road network.

1It is also possible to use ray casting techniques to more accurately simulate a LiDAR but the
computational cost is significantly higher.

75

5. Paracosm Interface

Figure 5.5.: A large grid world with several connected road elements viewed in our default
3D simulator.

5.3. Test Inputs and Coverage

Worlds in Paracosm directly describe a parameterized family of tests. The testing
framework allows users to specify various strategies to generate input streams for both,
static, and dynamic reactive objects in the world.

5.3.1. Test Cases

A test of duration T executes a configuration of reactive objects by providing inputs to
every open input stream in the configuration for T ticks. The inputs for each stream must
satisfy const parameters and respect the range constraints from VarInterval and VarEnum.
The runtime system manages the scheduling of inputs and pushing input streams to the
reactive objects. Let In denote the set of all input streams, and In = InD ∪ InC denote
the partition of In into discrete streams and continuous streams respectively. Discrete
streams take their value over a finite, discrete range; for example, the color of a car, the
number of lanes on a road segment, or the position of the next pedestrian (left/right) are
discrete streams. Continuous streams take their values in a continuous (bounded) interval.
For example, the fog density or the speed of a vehicle are examples of continuous streams.

5.3.2. Coverage

In the setting of autonomous vehicle testing, one often wants to explore the state space
of a parameterized world to check “how well” an autonomous vehicle works under various
situations, both qualitatively and quantitatively. Thus, we now introduce a notion of
coverage. Instead of structural coverage criteria such as line or branch coverage, our goal is
to cover the parameter space. In the following, for simplicity of notation, we assume that
all discrete streams take values from {0, 1}, and all continuous streams take values in the
real interval [0, 1]. Any input stream over bounded intervals—discrete or continuous—can
be encoded into such streams. For discrete streams, there are finitely many tests, since
each co-ordinate is Boolean and there is a fixed number of co-ordinates. One can define
the coverage as the fraction of the number of vectors tested to the total number of vectors.

76

5.3. Test Inputs and Coverage

Unfortunately, the total number of vectors is very high: if each stream is constant, then
there are already 2n tests for n streams. Instead, we consider the notion of k-wise testing
from combinatorial testing [82]. In k-wise testing, we fix a parameter k, and ask that
every interaction between every k elements is tested. Let us be more precise. Suppose
that a test vector has N co-ordinates, where each co-ordinate can get the value 0 or 1. A
set of tests A is a k-wise covering family if for every subset {i1, i2, . . . , ik} ⊆ {1, . . . , N}
of co-ordinates and every vector v ∈ {0, 1}k, there is a test t ∈ A whose restriction to the
i1, . . . , ik is precisely v.

For continuous streams, the situation is more complex: since any continuous interval
has infinitely many points, each corresponding to a different test case, we cannot directly
define coverage as a ratio (the denominator will be infinite). Instead, we define coverage
using the notion of dispersion [125, 107]. Intuitively, dispersion measures the largest
empty space left by a set of tests. We assume a (continuous) test is a vector in [0, 1]N :
each entry is picked from the interval [0, 1] and there are N co-ordinates. Dispersion over
[0, 1]N can be defined relative to sets of neighborhoods, such as N -dimensional balls or
axis-parallel rectangles. Let us define B to be the family of N -dimensional axis-parallel
rectangles in [0, 1]N , our results also hold for other notions of neighborhoods such as balls
or ellipsoids. For a neighborhood B ∈ B, let vol(B) denote the volume of B. Given a set
A ⊆ [0, 1]N of tests, we define the dispersion as the largest volume neighborhood in B
without any test:

dispersion(A) = sup {vol(B) | B ∈ B and A ∩B = ∅}

A lower dispersion means better coverage.
Let us summarize. Suppose that a test vector consists of ND discrete co-ordinates and

NC continuous co-ordinates; that is, a test is a vector (tD, tC) in {0, 1}ND × [0, 1]NC . We
say a set of tests A is (k, ε)-covering if

(i) for each set of k co-ordinates {i1, . . . , ik} ⊆ {1, . . . , ND} and each vector v ∈ {0, 1}k,
there is a test (tD, tC) ∈ {0, 1}ND × [0, 1]NC such that the restriction of tD to the
co-ordinates i1, . . . , ik is v; and

(ii) for each (tD, tC) ∈ A, the set {tC | (tD, tC) ∈ A} has dispersion at most ϵ.

5.3.3. Test Generation

The goal of our default test generator is to maximize (k, ϵ) for programmer-specified
number of test iterations or ticks.

k-wise covering family

One can use explicit construction results from combinatorial testing to generate k-
wise covering families [32]. However, a simple way to generate such families with high
probability is random testing. The proof is by the probabilistic method [4] (see also [93]).
Let A be a set of 2k(k logN − log δ) uniformly randomly generated {0, 1}N vectors. Then
A is a k-wise covering family with probability at least 1− δ.

77

5. Paracosm Interface

Low dispersion sequences

It is tempting to think that uniformly generating vectors from [0, 1]N would similarly
give low dispersion sequences. Indeed, as the number of tests goes to infinity, the
set of randomly generated tests has dispersion 0 almost surely. However, when we
fix the number of tests, it is well known that uniform random sampling can lead to
high dispersion [107, 125]; in fact, one can show that the dispersion of n uniformly
randomly generated tests grows asymptotically as O((log logn/n)

1
2) almost surely. Our

test generation strategy is based on deterministic quasi-Monte Carlo sequences, which
have much better dispersion properties, asymptotically of the order of O(1/n), than the
dispersion behavior of uniformly random tests. There are many different algorithms for
generating quasi-Monte Carlo sequences deterministically (see, e.g., [107, 125]). We use
Halton sequences. For a given ϵ, we need to generate O(1ϵ) inputs via Halton sampling. In
Chapter 6 (Sections 6.3.1 and 6.3.3), we provide an experimental comparison of uniform
random and Halton sampling.

Cost functions and local search

In many situations, testers want to optimize parameter values for a specific function. A
simple example of this is finding higher-speed collisions, which intuitively, can be found
in the vicinity of test parameters that already result in high-speed collisions. Another,
slightly different case is (greybox) fuzzing [9, 121], for example, finding new collisions
using small mutations on parameter values that result in the vehicle narrowly avoiding a
collision. Our test generator supports such quantitative objectives and local search. A
quantitative monitor evaluates a cost function on a run of a test case. Our test generation
tool generates an initial, randomly chosen, set of test inputs. Then, it considers the scores
returned by the Monitor on these samples, and performs a local search on samples with
the highest/lowest scores to find local optima of the cost function.

5.4. Conclusion

Deploying autonomous systems like self-driving cars in urban environments raises several
safety challenges. The complex software stack processes sensor data, builds a semantic
model of the surrounding world, makes decisions, plans trajectories, and controls the car.
The end-to-end testing of such systems requires the creation and simulation of whole
worlds, with different tests representing different world and parameter configurations.
Paracosm tackles these problems by (i) enabling procedural construction of diverse
scenarios, with precise control over elements like road layout, physical and visual properties
of objects, and behaviors of actors in the system, and (ii) using quasi-random testing to
obtain good coverage over large parameter spaces. In the following Chapter, we evaluate
Paracosm, and provide experimental evidence of the utility of our language interface
and test generation strategies.

78

6
Paracosm: Evaluation

6.1. Introduction

In the previous Chapter, we described the Paracosm language interface and proposed
test generation strategies for systematic exploration of large parameter spaces. Most real-
world autonomous driving agents are implemented using deep neural networks, which are
known to be notoriously difficult to debug. The Paracosm language interface simplifies
the process of designing complex real-world environments and behaviors. Additionally,
the Paracosm test generator ensures good coverage of the test parameter space, en-
abling testers to understand how different test parameters affect the performance of the
autonomous agent.

Paracosm is a complex project, involving a language interface, test generator, and a
simulation interface. In this Chapter, we discuss how the Paracosm language, test, and
simulation interface are implemented. We also evaluate Paracosm, and demonstrate
its utility in the design of test environments, exploration of large parameter spaces, and
detection of faulty autonomous agent behavior. Through various case studies, we show
that Paracosm can be an effective testing framework for both qualitative properties
(crash) and quantitative properties (distance maintained while following a car, or image
misclassification).

6.1.1. Contributions

The main contributions of this Chapter are the following:

(i) We provide implementation details of Paracosm, discussing the various components,
and the technology behind them.

(ii) We present several experiments and case studies demonstrating the utility of Para-
cosm’s language interface for designing parameterized simulations, and for finding
faults in autonomous driving systems.

6.2. Runtime System and Implementation

Paracosm uses the Unity game engine [151] to render visuals, do runtime checks and
simulate physics (via PhysX [110]). Reactive objects are built on top of UniRx [78], an

79

6. Paracosm: Evaluation

implementation of the popular Reactive Extensions framework [122]. The game engine
manages geometric transformations of 3D objects and offers easy to use abstractions for
generating realistic simulations. Encoding behaviors and monitors, management of 3D
geometry and dynamic checks are implemented using the game engine interface. The
project code is available at: https://gitlab.mpi-sws.org/mathur/paracosm.

A simulation in Paracosm proceeds as follows. A test configuration is specified as
a subclass of the EnvironmentProgramBaseClass.Tests are run by invoking the run_test
method, which receives as input the reactive objects that should be instantiated in the
world as well as additional parameters relating to the test. The run_test method runs the
tests by first initializing and placing the reactive objects in the scene using their 3D mesh
(if they have one) and then invoking a reactive engine to start the simulation. The system
under test is run in a separate process and connects to the simulation. The simulation
then proceeds until the simulation completion criteria is met (a time-out or some monitor
event).

Physics For practical purposes, game engines typically treat physics and rendering
pipelines separately. The physics engine is informed about the physical components
(subclasses of Physical). Physics simulations in Paracosm work on rigid bodies, i.e.,
solid bodies with an assumption of no deformation. This enables accurate detection of
collision, but not deformations caused by the collision. This is an acceptable limitation
as a collision typically marks the end of a test case.

Output to standardized formats There have been recent efforts to create standardized
descriptions of tests in the automotive industry. The most relevant formats are Open-
DRIVE [11] and OpenSCENARIO [12]. OpenDRIVE describes road structures, and
OpenSCENARIO describes actors and their behavior. Paracosm currently supports
outputs to OpenDRIVE. Producing these files requires the same machinery as a simula-
tion in the game engine to initialize the world. However, instead of running the simulation
in the game engine, the internal representation is serialized into the OpenDRIVE format.
Due to the static nature of the specification format, a different file is generated for each
test iteration/configuration.

6.3. Experiments & Case Studies

We now present several experiments and case studies performed using Paracosm. In
Section 6.3.1, via some common testing tasks, we evaluate Paracosm on criteria such as
ease of use, efficacy of test generation strategies, and the ability of finding problematic
cases. In Section 6.3.2, we test some autonomous driving components trained on real-world
data. Finally, in Section 6.3.3, we provide even more experiments that test autonomous
driving behavior.

80

https://gitlab.mpi-sws.org/mathur/paracosm

6.3. Experiments & Case Studies

Table 6.1.: An overview of experiments on some common testing tasks, and the corre-
sponding coverage (as in Section 5.3.3) we achieved. Note that even though
the Adaptive Cruise Control study has 2 discrete parameters, we calculate
k-wise coverage for 3 as the 2 parameters require 3 bits for representation.
Road segmentation Jaywalking pedestrian Adaptive Cruise Control

SUT VGGNet CNN [137] NVIDIA CNN [20] NVIDIA CNN [20]
Training 191 images 403 image & car control

samples
1034 image & car control
samples

Test
params

3 discrete 2 continuous 3 continuous & 2 discrete

Test iters 100 100, 15s timeout 100, 15s timeout
Monitor Ground truth Scored Collision Collision & Distance
Coverage k = 3 with probability ∼ 1 ϵ = 0.041 ϵ = 0.043, k = 3 with prob-

ability ∼ 1

6.3.1. Evaluation on Common Testing Tasks

We now perform some common testing tasks in Paracosm so as to evaluate our tool. We
test various deep neural networks trained for road segmentation, safety against jaywalking
pedestrians, and for Adaptive Cruise Control. Our evaluation aims to answer the following
questions:

(i) Ease of use: does Paracosm’s programmatic interface enable the easy design of
test environments and worlds?

(ii) Efficacy of test generation: do the test input generation strategies discussed in
Section 6.1 effectively explore the parameter space?

(iii) Ability to find problems: can Paracosm help uncover poor performance or bad
behavior of the SUT in common autonomous driving tasks?

To answer (i), we develop three independent environments rich with visual features
and other actors, and use the variety generated with just a few lines of code as a proxy
for ease of design. To answer (ii), we use coverage maximizing strategies for test inputs
to all the three environments/case studies. We also use and evaluate cost functions and
local search based methods. To answer (iii), we test various neural network based systems
and demonstrate how Paracosm can help uncover problematic scenarios. A summary of
these experiments is available in Table 6.1.

Testing task 1: Road segmentation

Using Paracosm’s programmatic interface, we design a long road segment with several
vehicles. The vehicular behavior is to drive on their respective lanes with a fixed maximum
velocity. The test parameters are the number of lanes ({2, 4}), number of cars in the
environment ({0, 5}) and light conditions ({Noon, Evening}). Noon lighting is much
brighter than the evening. The direction of lighting is also the opposite. We test a deep

81

6. Paracosm: Evaluation

(a) A good test with all parameter values same
as the training set (true positive: 89%, false
positive: 0%).

(b) A bad test with all parameter values dif-
ferent from the training set (true positive:
9%, false positive: 1%).

Figure 6.1.: Example results from the road segmentation case study. Pixels with a green
mask are segmented by the SUT as a road.

Table 6.2.: Summary of results of the road segmentation case study. Each combination of
parameter values is presented separately, with the parameter values used for
training in bold. We report the SUT’s average true positive rate (% of pixels
corresponding to the road that are correctly classified) and false positive rate
(% of pixels that are not road, but incorrectly classified as road).

lanes # cars Lighting # test iters True positive (%) False positive (%)

2 5 Noon 12 70% 5.1%
2 5 Evening 14 53.4% 22.4%
2 0 Evening 12 51.4% 18.9%
2 0 Noon 12 71.3% 6%
4 5 Evening 10 60.4% 7.1%
4 5 Noon 16 68.5% 20.2%
4 0 Evening 13 51.5% 7.1%
4 0 Noon 11 83.3% 21%

CNN called VGGNet [137], that is known to perform well on several image segmentation
benchmarks. The task is road segmentation, i.e., given a camera image, identifying which
pixels correspond to the road. The network is trained on 191 dashcam images captured
in the test environment with fixed parameters (2 lanes, 5 cars, and Noon lighting),
recorded at the rate of one image every 1/10th second, while manually driving the vehicle
around (using a keyboard). We test on 100 images generated using Paracosm’s default
test generation strategy (uniform random sampling for discrete parameters). Table 6.2
summarizes the test results. Tests with parameter values far away from the training set
are observed to not perform so well. As depicted in Figure 6.1, this happens because
varying test parameters can drastically change the scene.

Testing task 2: Jaywalking pedestrian

We now test over the environment presented in Section 5.2. The environment consists
of a straight road segment and a pedestrian. The pedestrian’s behavior is to cross the

82

6.3. Experiments & Case Studies

Table 6.3.: Results of the jaywalking pedestrian test, comparing dispersion (as in Sec-
tion 5.3.3), failure rates (due to a collision), and the maximum speed of
collision for various sampling strategies.

Testing strategy Dispersion (ϵ) % fail Max. collision

Random 0.092 7% 10.5 m/s
Halton 0.041 10% 11.3 m/s
Random+opt/collision 0.109 13% 11.1 m/s
Halton+opt/collision 0.043 20% 11.9 m/s
Random+opt/almost failing 0.126 13% 10.5 m/s
Halton+opt/almost failing 0.043 13% 11.4 m/s

road at a specific walking speed when the autonomous vehicle is a specific distance away.
The walking speed of the pedestrian and the distance of the autonomous vehicle when
the pedestrian starts crossing the road are test parameters. The SUT is a CNN based
on NVIDIA’s behavioral cloning framework [20]. It takes camera images as input, and
produces the relevant steering angle or throttle control as output. The SUT is trained
on 403 samples obtained by driving the vehicle manually and recording the camera and
corresponding control data. The training environment has pedestrians crossing the road at
various time delays, but always at a fixed walking speed (1 m/s). In order to evaluate the
efficacy of our proposed test generation strategies completely, we test the default coverage
maximizing sampling approach, as well as explore two quantitative objectives: first,
maximizing the collision speed, and second, finding new failing cases around samples that
almost fail. For the default approach, the CollisionMonitor as presented in Section 5.2
is used. For the first quantitative objective, this CollisionMonitor’s code is prepended
with the following calculation:

// Score is speed of car at time of collision
coll_speed = v.speed.CombineLatest(v.collider , (s,c) => s).

First()

The score coll_speed is used by the test generator for optimization. For the second
quantitative objective, the CollisionMonitor is modified to give high scores to tests where
the distance between the autonomous vehicle and pedestrian is very small:

CollisionMonitor(AutonomousVehicle v, Pedestrian p) extends
Monitor {

minDist = v.pos.Zip(p.pos).Map(1/abs(_-_)).Min()
coll_score = v.collider.Map (0)
// Score is either 0 (collision) or 1/ minDist
score = coll_score.DefaultIfEmpty(minDist)
assert(v.collider.IsEmpty ())

}

We evaluate the following test input generation strategies: (a) Random sampling,
(b) Halton sampling, and (c) Random or Halton sampling with local search for the two

83

6. Paracosm: Evaluation

(a) Random sampling (no
opt.)

(b) Random + opt. / maxi-
mizing collision.

(c) Random + opt. / almost
failing.

(d) Halton sampling (no
opt.)

(e) Halton + opt. / maxi-
mizing collision.

(f) Halton + opt. / almost
failing.

Figure 6.2.: A comparison of the various test generation strategies for the jaywalking
pedestrian case study. The X-axis is the walking speed of the pedestrian (2 to
10 m/s). The Y-axis is the distance from the car when the pedestrian starts
crossing (30 to 60 m). Passing tests are labelled with a green dot. Failing
tests (tests with a collision) are marked with a red cross.

quantitative objectives. We run 100 iterations of each strategy with a 15 second timeout.
For random or Halton sampling, we sample 100 times. For the quantitative objectives, we
first generate 85 random or Halton samples, then choose the top 5 scores, and finally run 3
simulated annealing iterations on each of these 5 configurations. Table 6.3 presents results
from the various test input generation strategies. Clearly, Halton sampling offers the
lowest dispersion (highest coverage) over the parameter space. This can also be visually
confirmed from the plot of test parameters (Figure 6.2). There are no big gaps in the
parameter space. Moreover, we find that test strategies optimizing for the first objective
are successful in finding more collisions with higher speeds. As these techniques perform
simulated annealing repetitions on top of already failing tests, they also find more failing
tests overall. Finally, test strategies using the second objective are also successful in
finding more (newer) failure cases than simple Random or Halton sampling.

Testing task 3: Adaptive Cruise Control

We now create and test in an environment with our test vehicle following a car (lead car)
on the same lane. The lead car’s behavior is programmed to drive on the same lane as the
test vehicle, with a certain maximum speed. This is a very typical driving scenario that
engineers test their implementations on. We use 5 test parameters: the initial lead of the

84

6.3. Experiments & Case Studies

(a) Initial offset (X-axis) vs.
max. speed (Y-axis).

(b) Initial offset (X-axis) vs.
fog density (Y-axis).

(c) Max. speed (X-axis) vs.
fog density (Y-axis).

Figure 6.3.: Continuous test parameters of the Adaptive Cruise Control study plotted
against each other: the initial offset of the lead car (8 to 40 m), the lead
car’s maximum speed (3 to 8 m/s) and the fog density (0 to 1). Green dots,
red crosses, and blue triangles denote passing tests, collisions, and inactivity
respectively.

lead car to the test vehicle ([8m, 40m]), the lead car’s maximum speed ([3m/s, 8m/s]),
density of fog1 in the environment ([0, 1]), number of lanes on the road ({2, 4}), and
color of the lead car ({Black, Red, Y ello, Blue}). We use both, CollisionMonitor2 and
DistanceMonitor, as presented in Section 5.2. A test passes if there is no collision and
the autonomous vehicle moves atleast 5 m during the simulation duration (15 s).

We use Paracosm’s default test generation strategy, i.e., Halton sampling for continuous
parameters and Random sampling for discrete parameters (no optimization or fuzzing).
The SUT is the same CNN as in the previous case study. It is trained on 1034 training
samples, which are obtained by manually driving behind a red lead car on the same lane
of a 2-lane road with the same maximum velocity (5.5 m/s) and no fog.

The results of this case study are presented in Table 6.4. Looking at the discrete
parameters, the number of lanes does not seem to contribute towards a risk of collision.
Surprisingly, though the training only involves a Red lead car, the results appear to be
the best for a Blue lead car. Moving on to the continuous parameters, the fog density
appears to have the most significant impact on test failures (collision or vehicle inactivity).
In the presence of dense fog, the SUT behaves pessimistically and does not accelerate
much (thereby causing a failure due to inactivity). These are all interesting and useful
metrics about the performance of our SUT. Plots of the results projected on to continuous
parameters are presented in Figure 6.3.

10 denotes no fog and 1 denotes very dense fog (exponential squared scale).
2the monitor additionally calculates the mean distance of the test vehicle to the lead car during the test,

which is used for later analysis.

85

6.
P
aracosm

:
E

valuation

Table 6.4.: Parameterized test on Adaptive Cruise Control, separated for each value of discrete parameters, and low and high
values of continuous parameters. A test passes if there are no collisions and no inactivity (the overall distance
moved by the test vehicle is more than 5 m. The average offset (in m) maintained by the test vehicle to the lead
car (for passing tests) is also presented.

Discrete parameters Continuous parameters

Num. lanes Lead car color Initial offset (m) Speed (m/s) Fog density

2 4 Black Red Yellow Blue < 24 ≥ 24 < 5.5 ≥ 5.5 < 0.5 ≥ 0.5

Test iters 54 46 24 22 27 27 51 49 52 48 51 49
Collisions 7 7 3 3 6 2 6 8 8 6 12 0
Inactivity 12 4 4 4 6 2 9 7 9 7 1 15
Offset (m) 42.4 43.4 46.5 48.1 39.6 39.1 33.7 52.7 38.4 47.4 36.5 49.8

86

6.3. Experiments & Case Studies

Results and analysis

We now summarize the results of our experiments with respect to our original evaluation
criteria:

Ease of use: All the three case studies involve varied, rich and dynamic environments.
They are representative of tests engineers would typically want to do [63], and we param-
eterize many different aspects of the world and the dynamic behavior of its components.
These designs are at most 70 lines of code. This provides confidence in Paracosm’s
ability of providing an easy interface for the design of realistic test environments.

Efficacy of test generation: Our default test generation strategies are found to
be quite effective at exploring the parameter space systematically, eliminating large
unexplored gaps, and at the same time, successfully identifying problematic cases in all
the three case studies. The jaywalking pedestrian study demonstrates that optimization
and local search are possible on top of these strategies, and are quite effective in finding
the relevant scenarios. The adaptive cruise control study tests over 5 parameters, and we
observe good coverage, even with such a large parameter space. Therefore, it is amply
clear that Paracosm’s test input generation methods are useful and effective.

Ability to find problems: The road segmentation case study uses a well-performing
neural network for object segmentation, and we are able to detect degraded performance
for automatically generated test inputs. Whereas this study focuses on static image
classification, the next two, i.e., the jaywalking pedestrian and the adaptive cruise control
study uncover poor performance on simulated driving, using a popular neural network
architecture for self driving cars. Therefore, we can safely conclude that Paracosm can
find bugs in various different kinds of systems related to autonomous driving.

6.3.2. Testing Systems Trained on Standard Datasets

The experiments in the previous Section involved systems trained inside a simulation
environment. However, many image segmentation and classification systems are trained
on real-world data. We now test some such systems.

We design a highly parameterized environment using Paracosm’s programmatic inter-
face. The environment consists of 4 StraightRoadSegments connected by a CrossIntersection
. The test has three discrete parameters and three continuous parameters:
Discrete: (a) the number of lanes is either 2 or 4, (b) the light condition corresponds to
a morning, noon, or evening, (c) number of other cars on the road range from 2 to 9,
Continuous: (d) the camera focal length takes any value between 18 mm and 22 mm,
(e) the height of the mounting point of the camera takes values between 1.9m and 2.2m,
and finally, (f) the camera is angled slightly down with a pitch angle between −12◦ and
−10◦.

Many of these parameters correspond to the vehicle’s camera. These were chosen because
in preliminary tests, small perturbations to the camera’s properties led to drastically
different results (see Figure 6.4). We perform 100 test iterations using Paracosm’s
default test generation scheme.

87

6. Paracosm: Evaluation

Figure 6.4.: Sample output from a road detection system. Green pixels represent correctly
identified road, red pixels represent pixels incorrectly identified as road. A
longer focal length (34mm) results in better road detection in comparison to
a shorter focal length (10mm).

Road segmentation

The SUTs here take RGB images as input and return those pixels that are estimated to
be a part of the road. We tested: (a) the convolutional neural network from Simonyan
and Zisserman (popular as VGGNet) [137], (b) Multinet from Teichmann, Weber et al.
[147], a top performer on the KITTI Road Estimation Benchmark, and (c) the fully
convolutional network by Long, Shelhamer and Darrell [90]. All three are trained on the
KITTI road segmentation dataset [55] (289 images). The first and third networks do not
have a name, so we use initials of the authors’ names, SZ and LSD, respectively. Figure 6.5
shows the results for the 100 test iterations (x-axis). We plot results in the order in
which the tests were performed. The y-axis shows the percentage of the “ground truth”
road identified as road by the method. A cursory look did not reveal any correlation
between road segmentation performance and parameter choice. We observe that SZ is
the best performer overall. What is quite striking is the results of LSD: in these tests, it
either performs well, or not at all. Except for the poorly performing examples of LSD,
false positives are not an issue, generally. Our hypothesis is that the networks do not
generalize sufficiently from the limited training data and images that are too different
from training lead to poor results.

88

6.3. Experiments & Case Studies

Figure 6.5.: Road segmentation rates (% of the ground truth) for three SUTs (SZ, LSD,
and Multinet).

Figure 6.6.: Sample outputs of a vehicle detection system. Small changes to the environ-
mental condition lead to missed cars.

89

6. Paracosm: Evaluation

Figure 6.7.: Vehicle detection rates for the two SUTs (SSD and Multinet).

Vehicle detection

The SUTs here take RGB images as input and return bounding boxes around pixels that
correspond to vehicles. Figure 6.6 shows an example of a vehicle detection system’s output.
To detect other vehicles in the vicinity of the autonomous car, we used: (a) the single
shot multibox detector (SSD), a deep neural network [89], trained with the Pascal Object
Recognition Database Collection [47], (b) Multinet [147] like in the previous experiment.
Figure 6.7 summarizes the results. The results are again in the order of the tests. In this
experiment, we did not observe any false positives. Overall, Multinet performs better
than SSD but these systems are much closer than in the previous experiment. While the
detection rates may look disappointing, factors like occlusion as seen in Figure 6.6 make
it difficult to detect all the cars. The two experiments presented here highlight the fact
that even with quite narrow parameter ranges (especially for the camera), the quality of
results can vary widely.

6.3.3. Experiments Demonstrating Specific Paracosm Features

In the experiments that follow, we highlight specific testing features of Paracosm to
demonstrate their utility in practice. The SUT in these experiments is the NVIDIA
behavioral cloning framework [20] as we saw before, trained inside Paracosm’s simulation
environment.

Low-dispersion sequences vs. random sampling

This experiment is similar to the jaywalking pedestrian experiment presented earlier,
in Section 6.3.1. We now present experimental evidence underlining the importance of
low-dispersion sequences, and how coverage improves with more test iterations. Note
that the parameter ranges here are different (wider) than the study presented before.
However, the SUT is the same. Figure 6.8 demonstrates the advantage of low-dispersion

90

6.3. Experiments & Case Studies

(a) Random (dispersion is 0.105) (b) Halton (dispersion is 0.041)

Figure 6.8.: Random vs. Halton sampling for 100 test iterations. The purple area is the
largest axis-parallel rectangle without a test. X axis is the walking speed
of the pedestrian ([0.5m/s, 10m/s]). Y axis is the distance from the car
when the pedestrian starts crossing ([5m, 60m]). Failing tests (collisions) are
marked with a red cross, passing tests are labelled with a green dot.

Table 6.5.: Random vs. Halton sampling for the pedestrian crossing experiment over
various test iterations. The test parameters are the walking speed of the
pedestrian ([0.5m/s, 10m/s]) and distance from the car when the pedestrian
starts crossing ([5m, 60m]).

Dispersion values Failing tests

tests Random Halton Random Halton

50 0.200 0.083 6% 8%
100 0.105 0.041 6% 8%
200 0.051 0.029 7% 8%
400 0.025 0.011 8.75% 8.25%

91

6. Paracosm: Evaluation

Figure 6.9.: Distance covered (Z-axis, [0m, 120m]) in changing fog (X-axis, [0, 1]) and light
(Y-axis, [0, 1]) conditions tested with 400 iterations of the Halton sequence.
Green dots and red crosses denote the absence or presence of a collision. The
car is trained with a fog density of 0 and light intensity of 0.5.

sampling over random sampling. Samples are more spread out for the Halton sequence
(low-dispersion). In Table 6.5, we report the difference between random and Halton
sampling for various numbers of test iterations. Halton sampling gives much better
dispersion and even leads to more failure cases being revealed (especially for fewer test
iterations).

Changing environmental settings

Reactive variables in Paracosm can be used to parameterize environment settings so
as to describe a large class of environmental settings. To demonstrate the utility of
parameterized environmental settings, we train a model at fixed light intensity and no fog.
The experiment set-up is similar to the Adaptive Cruise Control case study presented
earlier in Section 6.3.1. We now analyse the autonomous vehicle’s performance when
the light intensity and fog density are varied. We report the overall distance covered,
and whether a collision happened. Each test lasts 15 seconds. Parameter values for light
and fog are generated using the Halton sequence. Our results are depicted in Figure 6.9.
Perhaps unsurprisingly, the car performs best around the parameter values it was trained
on. The car acts extremely conservatively in the presence of fog, not covering much
distance. On the other hand, perturbations to light intensity often lead to scenarios with
collisions.

92

6.3. Experiments & Case Studies

(a) Test vehicle braking on seeing a red car coming from the opposite direction, even though
there is a large distance to the lead car (car on the same lane).

(b) Speed (X-axis, [0km/h, 40km/h]) over time (Y-axis, [0s, 8s]) of car trained to follow a red
car in the presence of another car coming from the opposite direction. Depending on the
color of the incoming car, the speed of the car changes vis-à-vis the baseline driving with no
other car.

Figure 6.10.: Effect of features of geometric components (other cars).

93

6. Paracosm: Evaluation

Table 6.6.: Comparison of failures (due to collision) and distance covered relative to the
training data (no collision) for various training strategies (100 test iterations).

Training setup Failing tests Distance covered

Default 68% 62.7%
Randomized 5% 20.6%
Depth map 36% 89.0%

Geometric components and their features

In the previous case study, the SUT was trained to follow a red lead car driving in front
of it on a two-lane road. Under ideal conditions (conditions under which the SUT is
trained), it is observed that the autonomous vehicle indeed follows the red lead car while
maintaining a safe distance and not colliding with it. We now test how the SUT reacts to
cars coming from the other direction. The test vehicle’s throttle should not be affected
by cars coming from the other direction. However, our hypothesis is that perhaps the
SUT simply learns to slow the car down when there are several red pixels in the camera
image. Our experiment confirms that this indeed is the case. When we test with a red car
coming from the other direction, our autonomous vehicle slows down in response to this
car being close (see Figure 6.10a). Speed is picked up again once this car passes. Perhaps
more surprisingly, we find that the vehicle also slows down when the car coming from the
other direction is yellow or green, but has no affect when the car is blue. Figure 6.10b
has plots of speed vs. time for these various cases (with the baseline being no car coming
from the other direction).

Different sensor models

We now demonstrate the utility of Paracosm for testing in complex environments,
and under various sensor models. We program a scenario with five cross-intersections,
traffic in both directions, and buildings and trees on both sides of the roads. Three
training strategies are used: (a) Default, where the traffic only consisted of red cars,
(b) Randomized, where cars are given random colors, and (c) Depth map, where depth
information is used instead of an RGB camera (a depth sensor can be easily simulated in
Paracosm).

During testing, cars can take any color. More specifically, there are 8 cars in total, each
of which can take one of 3 colours. This gives 38 different vehicle color configurations. For
100 test iterations, the probability of getting k-wise coverage for k = 2 is almost 1, and
for k = 3, it is atleast 0.29. Table 6.6 summarizes the results of this experiment. We find
that the use of a Depth map is quite useful: it leads to fewer failing tests in comparison
to the Default case, and it covers more distance than both, the Default and Randomized
cases on average.

94

6.4. Conclusion

6.4. Conclusion

In this Chapter, we provided practical implementation details, and evaluated Paracosm’s
language and test interface. The various case studies presented here demonstrate the wide
variety of realistic, complex, and useful simulation environments that can be constructed
using Paracosm’s language interface. These case studies also used Paracosm’s novel
test generation strategies to systematically explore large test parameter spaces. As
demonstrated by the results of these experiments, Paracosm was able uncover poor
performance and incorrect behavior in all the different systems we tested.

95

7
Related Work

7.1. Reactive Programming Models

Paracosm’s programming model follows a synchronous reactive style for dataflows,
similar to functional reactive programming (FRP) [153] or to synchronous dataflow
languages like Lustre [27]. FRP has been applied to control robotic and embedded
systems [73], including cars [50]. In Paracosm, rather than using reactive programming
to control the SUT, we use reactive elements to build and control the world around the
system under test. Our programming model shares elements found in automata-based
models like reactive modules [5]. In contrast to these languages, Paracosm natively
supports geometric and physical properties of components and integrates with a game
engine. Reactive programming has gained popularity in recent years as a way to build
asynchronous distributed applications [87]. Our model is synchronous because we wish to
test physical systems with a global time.

Traditionally, test-driven software development paradigms [15] have advocated testing
and mocking frameworks to test software early and often. Mocking frameworks and mock
objects [92, 102] allow programmers to test a piece of code against an API specification,
even when the implementation of the API is not available. Typically, mock objects are
stubs providing outputs to explicitly provided lists of inputs of simple types, with little
functionality of the actual code. Thus, they fall short of providing a rich environment
for autonomous driving. Paracosm can be seen as a mocking framework for reactive,
physical systems embedded in the 3D world. Our notion of constraining streams is inspired
by work on declarative mocking [128].

7.2. Testing Cyber-Physical Systems

There is a large body of work on automated test generation tools for cyber-physical
systems through heuristic search of a high-dimensional continuous state space. While
much of this work has focused on low-level controller interfaces [10, 48, 39, 35, 129, 37]
rather than the system level, specification and test generation techniques arising from this
work—for example, the use of metric and signal temporal logics or search heuristics—can
be adapted to our setting. Though many test generation frameworks have been proposed,
very few among these employ a notion of coverage of the test parameter space [141]. In
fact, we are the first to propose dispersion as a coverage criteria.

97

7. Related Work

More recently, test generation tools have started targeting autonomous systems with
machine learning components, under a simulation-based semantic testing framework
similar to ours [41, 16, 2, 54, 149, 150, 1]. In most of these works, an underlying
visual scenario is fixed by hand, and test generation explores plausible perturbations
to the nominal scenario to detect bugs. Such analyses are shown to be preferable to
the application of random noise on the input vector. Moreover, a simulation-based
approach filters benign misclassifications from misclassifications that actually lead to bad
or dangerous behavior [66]. Our work extends this line of work and provides an expressive
language to design parameterized environments and tests. AsFault [58] uses random
search and mutation for procedural generation of road networks for testing. Scenic
[54] is a probabilistic language to define geometric configurations of objects in fixed
environments (such as the GTA V environment [127]). In comparison, our reactive-style
language enables specification of parameterized environments and actor behaviors. AC3R
[57] follows a directed approach and reconstructs test cases from accident reports.

To address problems of high time and infrastructure cost of testing autonomous systems,
several simulators have been developed. The most popular is Gazebo [53] for the ROS
[119] robotics framework. It offers a modular and extensible architecture, however falls
behind on visual realism and complexity of environments that can be generated with it.
To counter this, game engines are used. Popular examples are TORCS [157], CARLA
[40], and AirSim [134] Modern game engines and support creation of realistic urban
environments. Though they enable visually realistic simulations and enable detection of
infractions such as collisions, the environments themselves are difficult to design. Designing
a custom environment involves manual placement of road segments, buildings, and actors
(as well as their properties). Performing many systematic tests is therefore time-consuming
and difficult. While these systems and Paracosm share the same aims and much of
the same infrastructure, Paracosm focuses on procedural design and systematic testing,
backed by relevant coverage criteria.

7.3. Test Strategies

Adversarial examples for neural networks [64, 145] introduce perturbations to inputs that
cause a classifier to classify “perceptually identical” inputs differently. There has been a
lot of work focused on finding adversarial examples in the context of autonomous driving,
as well as on training a network to be robust to perturbations [114, 18, 155, 101, 61].
Tools such as DeepXplore [117], DeepTest [148], DeepGauge [91], and SADL [79]
define a notion of coverage for neural networks based on the number of neurons activated
during tests compared against the total number of neurons in the network and activation
during training. However, these techniques focus mostly on individual classification tasks
and apply 2D transformations on images. In comparison, we can also test the closed-loop
behavior of the system, and our parameters directly change the world rather than apply
transformations post facto. We can observe, over time, that certain vehicles are not
detected, which is more useful to testers than a single misclassification [63]. Furthermore,
it is already known that structural coverage criteria may not be an effective strategy for

98

7.3. Test Strategies

finding errors in classification [86]. We use coverage metrics on the test space, rather
than the structure of the neural network. Alternately, there are recent techniques to
verify controllers implemented as neural networks through constraint solving or abstract
interpretation [61, 72, 126, 155, 44]. While these tools do not focus on the problem of
autonomous driving, their underlying techniques can be combined in the test generation
phase for Paracosm.

99

Part III.

Discussion

8
Discussion

GUI-based interfaces, owing primarily to their ease of use, have dominated the domains
of CAD and Simulation. In our Thesis, we highlight some of the advantages programming
offers over GUI. We propose techniques that bridge the gap between the ease of use offered
by GUI, and robustness, ease of analysis/testing, and flexibility offered by programming.

8.1. Future Work

The idea of bringing together the best of both, interactive GUI and programming, is rather
grand. A lot more work can be done in this direction, even when focussing exclusively
on Design and Simulation. This Thesis lays the groundwork for many such avenues for
future work. We now summarize some of these ideas.

Support for modifications

The synthesis technique we introduce in Chapter 2 only generates new code snippets, and
does not modify existing code. For an even tighter integration of GUI and programming
for CAD, the ability to modify underlying code can be useful. As we demonstrate in
Section 2.2.2, it is already possible to track geometric features through code and pinpoint
which line(s) of code each feature comes from. This infrastructure can be merged with
prior work such as value trace equation solving [30] and lenses [99] to enable modifications
to code.

Arithmetic expressions in synthesis

The synthesis procedure we present in Chapter 3 can use program variables in scope for the
synthesis procedure. However, our technique currently only uses these variables directly.
Sometimes, arithmetic expressions over program variables are needed to synthesize better
queries. For example, to select the coordinate of the side of a cube, we can use the sum
of one corner’s position and the width (if these are available). Existing work on program
synthesis [8] can be used to generate such arithmetic expressions over program variables,
and then be used in our synthesis procedure.

103

8. Discussion

Synthesizing complex CAD constraints

Our proposed technique is successful at synthesizing constraints for CAD parameters
accurately and efficiently for a wide-variety of designs. However, designs can get arbitrarily
complex, and we cannot directly synthesize many non-linear and geometric constraints. In
a similar vein, we also do not support complex sketching and splines. This excludes many
designs (or operations within a design). Supporting these would be an obvious next step,
but this would also make the synthesis procedure significantly more complex. We may
need to settle for predictors, rather than accurate constraints. In initial experiments, as is
typical with machine learning, we also found an obvious trade-off between readability and
accuracy. If knowledge about the valid space of designs is not human readable, it becomes
useless for many end-users. Though such predictors may still be useful for optimization
and generative techniques, misclassifications would be difficult to debug.

Accommodating user preferences in synthesis

The synthesis techniques we present in this Thesis do not take individual user preferences
into account. For example, in Chapter 2, we discuss how we synthesize short code
segments from GUI-based CAD interactions. By default, this algorithm uses information
gain to decide which selector to use to expand its decision tree. However, we could use
other heuristics, as long as they avoid non-trivial selectors that do not split the feature
set. In particular, we can define an extra term which weighs selectors differently and use
a modified information gain:

IG′(C, s) = w(s) · IG(C, s)

where w is a function that gives a weight to the selector s. As selectors are not unique, the
w function can be tailored to a user’s preferences. Our algorithm can generate multiple
trees by expanding multiple alternatives with roughly similar information gain, and let
users select which is best. Selections can be recorded, and over time, we could learn a w
function.

Similarly, for the synthesis of parameter constraints as presented in Chapter 3, we
can weigh terms in the Hypothesis Generator (Section 3.4) differently so as to prefer
hypotheses that users find easier to understand or better for a particular domain.

Richer training data through simulation

Paracosm’s test infrastructure can be extended to aid in the training of deep neural
networks that require large amounts of high quality training data. Generating data is
typically time consuming and expensive. Paracosm can easily generate labelled data
for static images. For driving scenarios, we can record a user manually driving in a
parameterized Paracosm environment and augment this data by varying parameters
that should not impact the vehicle’s behavior. For instance, we can vary the color of
other cars, positions of pedestrians who are not crossing, or even the light conditions and
sensor properties (within reasonable limits). The new data could be generated completely
automatically to augment the learning dataset.

104

8.2. Concluding Remarks

Reducing Sim-to-Real gap

Though modern game engines offer very realistic rendering capability, there are still many
perceivable differences between simulation and the real-world. These differences between
rendered images vs. real-world data are collectively termed the sim-to-real gap. If the
sim-to-real gap is large, autonomous machines may behave differently in simulation and
in the real world. Because of this, some techniques have been recently proposed to make
simulated images more realistic [123, 68].

Though Paracosm can greatly benefit from these techniques, they may not be suited
for every use case. These enhancement techniques are learning-based, and their outputs
depend heavily on the training data. For example, when trained on real-world images
from a green region in Germany, and then tested on a simulation depicting a dry region
in California, they transform barren hills into green spaces [123]. This may be counter-
productive when users want to test in specific environments and don’t want the underlying
scene to be changed.

Version control for CAD and Simulation

A significant advantage programming has over its GUI-based counterparts is the availability
of good version control. Tools such as Git enable users to track various versions of a
project, and to collaboratively make and compare changes. These tools, however, are
text-based. All changes are tracked, compared and integrated in text format. This
modality is not suitable for CAD and Simulation, both of which are highly visual domains.
An interesting direction for future work would be to develop version control tools for
these domains that enable tracking changes in a visual format.

Effect of interface choice on productivity and quality

The question of productivity of users in various design interfaces is quite old [19], and still
very relevant. CAD and Simulation tools are being used in new ways, and by many new
and non-traditional users. We would like to study the impact of interface choice on user
productivity, and the quality of designs/simulations created, considering many different
kinds of users and use cases. Robustness and flexibility would be important metrics, and
so would ease of use, learning and time required to accomplish certain tasks. In Chapter 2
(Section 2.4.5), we present a user study comparing traditional programming, and our
proposed integration of GUI and programming for parametric CAD. A larger and longer
user study would give us insight into what different interfaces are especially good at, and
how user productivity and the quality of designs and simulations can be improved.

8.2. Concluding Remarks

This Thesis presents unique programmatic interfaces that improve modern CAD and
Simulation workflows. For parametric CAD, we propose an interactive, yet robust design
interface wherein users use the GUI to perform CAD operations, and the corresponding

105

8. Discussion

code is automatically synthesized for them. We show that this interface works well for a
wide variety of designs, and that designers prefer our interface over plain programming.
Also for parametric CAD, a useful piece of information often missing from shared designs
is the range of valid parameter values. We propose an algorithm, inspired by work
on program analysis, that synthesizes constraints on design parameters such that the
resulting final object is valid. We evaluate our technique on designs from a public dataset,
and synthesize accurate parameter constraints for most of them in an order of seconds.
Finally, for Simulation, we propose a high-level programmatic interface called Paracosm,
which simplifies the process of creating parameterized autonomous vehicle tests. We also
propose test generation strategies that ensure good coverage of the test parameter space.
Through various case studies, we demonstrate that Paracosm enables the specification
of various complex driving scenarios, and the detection of problematic cases.

Though a lot of work still remains to achieve the dream of a fully-integrated GUI and
programmatic interface, we believe the work presented in our Thesis already demonstrates
the power and utility of such an interface. As our work supports standard CAD represen-
tations, as well as a wide variety of common simulation tasks, we believe our proposed
techniques can already have an impact on how users interact with these all-important
tools.

106

Bibliography

[1] H. Abbas, M. O’Kelly, A. Rodionova, and R. Mangharam. Safe at any speed: A
simulation-based test harness for autonomous vehicles. In 7th Workshop on Design,
Modeling and Evaluation of Cyber Physical Systems (CyPhy17), October 2017.

[2] R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. Testing vision-based
control systems using learnable evolutionary algorithms. In Proceedings of the 40th
International Conference on Software Engineering, ICSE ’18, page 1016–1026, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450356381.
URL https://doi.org/10.1145/3180155.3180160.

[3] D. Agbodan, D. Marcheix, and G. Pierra. Persistent naming for parametric models.
2000.

[4] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience series in
discrete mathematics and optimization. Wiley, 2004. ISBN 9780471653981.

[5] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999. URL https://doi.org/10.1023/A:1008739929481.

[6] R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
2013 Formal Methods in Computer-Aided Design, pages 1–8. IEEE, 2013.

[7] R. Alur, R. Bodík, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-Gazit,
P. Madhusudan, M. M. K. Martin, M. Raghothaman, S. Saha, S. A. Seshia, R. Singh,
A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In M. Irlbeck,
D. A. Peled, and A. Pretschner, editors, Dependable Software Systems Engineering,
volume 40 of NATO Science for Peace and Security Series, D: Information and
Communication Security, pages 1–25. IOS Press, 2015. URL https://doi.org/10.
3233/978-1-61499-495-4-1.

[8] R. Alur, A. Radhakrishna, and A. Udupa. Scaling Enumerative Program Synthesis
via Divide and Conquer. In A. Legay and T. Margaria, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 319–336, Berlin, Heidelberg,
2017. Springer Berlin Heidelberg. ISBN 978-3-662-54577-5.

[9] American Fuzzy Loop. Technical “whitepaper" for afl-fuzz. URL http://lcamtuf.
coredump.cx/afl/technical_details.txt. Accessed: 2019-08-23.

[10] Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan. S-TaLiRo: A
tool for temporal logic falsification for hybrid systems. In TACAS 11, volume 6605
of Lecture Notes in Computer Science, pages 254–257. Springer, 2011.

107

https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1023/A:1008739929481
https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.3233/978-1-61499-495-4-1
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

Bibliography

[11] Association for Advancement of international Standardization of Automation and
Measuring Systems (ASAM). Opendrive, 2018. URL http://www.opendrive.org/
index.html. Accessed: 2019-08-21.

[12] Association for Advancement of international Standardization of Automation and
Measuring Systems (ASAM). Openscenario, 2018. URL http://www.opendrive.
org/index.html. Accessed: 2019-08-21.

[13] A. Barth. Learnable Programming, 2019. URL https://dpo.si.edu/blog/
project-egress.

[14] BBC. Tesla Autopilot: US opens official investigation into self-driving tech, 2021.
URL https://www.bbc.com/news/technology-58232137.

[15] K. L. Beck. Test Driven Development: By Example. Addison-Wesley Professional,
2002. ISBN 978-0321146533.

[16] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. Testing advanced driver
assistance systems using multi-objective search and neural networks. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 63–74, 2016.

[17] B. Bettig and C. M. Hoffmann. Geometric Constraint Solving in Parametric
Computer-Aided Design. Journal of Computing and Information Science in Engi-
neering, 11(2), 2011. doi: 10.1115/1.3593408. URL https://dx.doi.org/10.1115/
1.3593408.

[18] A. N. Bhagoji, W. He, B. Li, and D. Song. Exploring the space of black-box attacks
on deep neural networks. CoRR, abs/1712.09491, 2017. URL http://arxiv.org/
abs/1712.09491.

[19] S. K. Bhavnani and B. E. John. Exploring the Unrealized Potential of Computer-
aided Drafting. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’96, pages 332–339, New York, NY, USA, 1996. ACM.
ISBN 0-89791-777-4. URL http://doi.acm.org/10.1145/238386.238538.

[20] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

[21] M. Bokeloh, M. Wand, H.-P. Seidel, and V. Koltun. An algebraic model for
parameterized shape editing. ACM Trans. Graph., 31(4), July 2012. ISSN 0730-
0301. URL https://doi.org/10.1145/2185520.2185574.

[22] BPLRFE. Youtube-Tutorial-Models, 2016. URL https://github.com/BPLRFE/
Youtube-Tutorial-Models.

108

http://www.opendrive.org/index.html
http://www.opendrive.org/index.html
http://www.opendrive.org/index.html
http://www.opendrive.org/index.html
https://dpo.si.edu/blog/project-egress
https://dpo.si.edu/blog/project-egress
https://www.bbc.com/news/technology-58232137
https://dx.doi.org/10.1115/1.3593408
https://dx.doi.org/10.1115/1.3593408
http://arxiv.org/abs/1712.09491
http://arxiv.org/abs/1712.09491
http://doi.acm.org/10.1145/238386.238538
https://doi.org/10.1145/2185520.2185574
https://github.com/BPLRFE/Youtube-Tutorial-Models
https://github.com/BPLRFE/Youtube-Tutorial-Models

Bibliography

[23] A. Britt. Filament storage dowel end cap, 2019. URL https://www.thingiverse.
com/thing:3324110.

[24] B. Brüderlin and D. Roller. Geometric constraint solving and applications. Springer
Science & Business Media, 2012.

[25] B. Canis. Issues in autonomous vehicle testing and deployment. Technical report,
Congressional Research Service, 2021. URL https://crsreports.congress.gov/
product/pdf/R/R45985.

[26] V. Capoyleas, X. Chen, and C. M. Hoffmann. Generic naming in generative,
constraint-based design. Computer-Aided Design, 28(1):17–26, 1996.

[27] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative language for
programming synchronous systems. In Conference Record of the Fourteenth Annual
ACM Symposium on Principles of Programming Languages, Munich, Germany,
January 21-23, 1987, pages 178–188, 1987.

[28] X. Chen. Representation, evaluation and editing of feature-based and constraint-based
design. PhD thesis, Purdue University, 1995.

[29] X. Chen and C. M. Hoffmann. Towards feature attachment. Computer-Aided
Design, 27(9):695–702, 1995.

[30] R. Chugh, B. Hempel, M. Spradlin, and J. Albers. Programmatic and Direct
Manipulation, Together at Last. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’16, pages
341–354, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4261-2. URL http:
//doi.acm.org/10.1145/2908080.2908103.

[31] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia.
MeshLab: an Open-Source Mesh Processing Tool. In V. Scarano, R. D. Chiara,
and U. Erra, editors, Eurographics Italian Chapter Conference. The Eurographics
Association, 2008. ISBN 978-3-905673-68-5. doi: 10.2312/LocalChapterEvents/
ItalChap/ItalianChapConf2008/129-136.

[32] C. J. Colbourn. Combinatorial aspects of covering arrays. Le Matematiche, 59
(1,2):125–172, 2004. ISSN 2037-5298. URL https://lematematiche.dmi.unict.
it/index.php/lematematiche/article/view/166.

[33] comma.ai. openpilot: open source driving agent, 2016. URL https://github.com/
commaai/openpilot. Accessed: 2018-11-13.

[34] G. B. Dantzig and M. N. Thapa. The Simplex Method, pages 63–111. Springer New
York, New York, NY, 1997. ISBN 978-0-387-22633-0. URL https://doi.org/10.
1007/0-387-22633-8_3.

109

https://www.thingiverse.com/thing:3324110
https://www.thingiverse.com/thing:3324110
https://crsreports.congress.gov/product/pdf/R/R45985
https://crsreports.congress.gov/product/pdf/R/R45985
http://doi.acm.org/10.1145/2908080.2908103
http://doi.acm.org/10.1145/2908080.2908103
https://lematematiche.dmi.unict.it/index.php/lematematiche/article/view/166
https://lematematiche.dmi.unict.it/index.php/lematematiche/article/view/166
https://github.com/commaai/openpilot
https://github.com/commaai/openpilot
https://doi.org/10.1007/0-387-22633-8_3
https://doi.org/10.1007/0-387-22633-8_3

Bibliography

[35] J. Deshmukh, X. Jin, J. Kapinski, and O. Maler. Stochastic local search for
falsification of hybrid systems. In ATVA, pages 500–517. Springer, 2015.

[36] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A. Seshia. Robust
online monitoring of signal temporal logic. Formal Methods in System Design, 51
(1):5–30, 2017. doi: 10.1007/s10703-017-0286-7. URL https://doi.org/10.1007/
s10703-017-0286-7.

[37] J. V. Deshmukh, M. Horvat, X. Jin, R. Majumdar, and V. S. Prabhu. Testing cyber-
physical systems through bayesian optimization. ACM Trans. Embedded Comput.
Syst., 16(5):170:1–170:18, 2017. URL https://doi.org/10.1145/3126521.

[38] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, 1975. URL https://doi.org/10.1145/
360933.360975.

[39] A. Donzé. Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid
Systems, pages 167–170. Springer, 2010.

[40] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open
urban driving simulator. In Proceedings of the 1st Annual Conference on Robot
Learning, pages 1–16, 2017.

[41] T. Dreossi, A. Donzé, and S. A. Seshia. Compositional falsification of cyber-physical
systems with machine learning components. In NASA Formal Methods - 9th
International Symposium, NFM 2017, volume 10227 of Lecture Notes in Computer
Science, pages 357–372. Springer, 2017.

[42] T. Dreossi, S. Jha, and S. A. Seshia. Semantic adversarial deep learning. 10981:
3–26, 2018. URL https://doi.org/10.1007/978-3-319-96145-3_1.

[43] T. Du, J. P. Inala, Y. Pu, A. Spielberg, A. Schulz, D. Rus, A. Solar-Lezama, and
W. Matusik. InverseCSG: Automatic conversion of 3D models to CSG trees. In
SIGGRAPH Asia 2018 Technical Papers, page 213. ACM, 2018.

[44] S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari. Sherlock - A tool
for verification of neural network feedback systems: demo abstract. In N. Ozay and
P. Prabhakar, editors, Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada,
April 16-18, 2019., pages 262–263. ACM, 2019. URL https://doi.org/10.1145/
3302504.3313351.

[45] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior:
A general approach to inferring errors in systems code. In Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles, SOSP ’01, page
57–72, New York, NY, USA, 2001. Association for Computing Machinery. ISBN
1581133898. URL https://doi.org/10.1145/502034.502041.

110

https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1145/3126521
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1007/978-3-319-96145-3_1
https://doi.org/10.1145/3302504.3313351
https://doi.org/10.1145/3302504.3313351
https://doi.org/10.1145/502034.502041

Bibliography

[46] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting
relevant program invariants. In C. Ghezzi, M. Jazayeri, and A. L. Wolf, editors,
Proceedings of the 22nd International Conference on on Software Engineering,
ICSE 2000, Limerick Ireland, June 4-11, 2000, pages 449–458. ACM, 2000. URL
https://doi.org/10.1145/337180.337240.

[47] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man. The PASCAL Visual Object Classes Challenge 2011 (VOC2011) Results.
http://host.robots.ox.ac.uk/pascal/VOC/voc2011/index.html.

[48] G. Fainekos. Automotive control design bug-finding with the S-TaLiRo tool. In
ACC 2015, page 4096, 2015.

[49] FeatureScript. Welcome to FeatureScript, 2020. URL https://cad.onshape.com/
FsDoc/.

[50] B. Finkbeiner, F. Klein, R. Piskac, and M. Santolucito. Vehicle platooning simula-
tions with functional reactive programming. In Proceedings of the 1st International
Workshop on Safe Control of Connected and Autonomous Vehicles, SCAV@CPSWeek
2017, Pittsburgh, PA, USA, April 21, 2017, pages 43–47. ACM, 2017. URL
https://doi.org/10.1145/3055378.3055385.

[51] M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Hanrahan. Example-based
synthesis of 3d object arrangements. ACM Trans. Graph., 31(6), Nov. 2012. ISSN
0730-0301. URL https://doi.org/10.1145/2366145.2366154.

[52] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ES-
C/Java. In J. N. Oliveira and P. Zave, editors, FME 2001: Formal Methods
for Increasing Software Productivity, International Symposium of Formal Meth-
ods Europe, Berlin, Germany, March 12-16, 2001, Proceedings, volume 2021
of Lecture Notes in Computer Science, pages 500–517. Springer, 2001. URL
https://doi.org/10.1007/3-540-45251-6_29.

[53] O. S. R. Foundation. Vehicle simulation in gazebo. URL http://gazebosim.org/
blog/vehicle%20simulation. Accessed: 2019-08-23.

[54] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, and
S. A. Seshia. Scenic: A language for scenario specification and scene generation.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, pages 63–78, New York, NY, USA, 2019.
ACM. ISBN 978-1-4503-6712-7. URL http://doi.acm.org/10.1145/3314221.
3314633.

[55] J. Fritsch, T. Kuehnl, and A. Geiger. A new performance measure and evaluation
benchmark for road detection algorithms. In International Conference on Intelligent
Transportation Systems (ITSC), 2013.

111

https://doi.org/10.1145/337180.337240
https://cad.onshape.com/FsDoc/
https://cad.onshape.com/FsDoc/
https://doi.org/10.1145/3055378.3055385
https://doi.org/10.1145/2366145.2366154
https://doi.org/10.1007/3-540-45251-6_29
http://gazebosim.org/blog/vehicle%20simulation
http://gazebosim.org/blog/vehicle%20simulation
http://doi.acm.org/10.1145/3314221.3314633
http://doi.acm.org/10.1145/3314221.3314633

Bibliography

[56] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal, S. Rusinkiewicz,
and D. Dobkin. Modeling by Example. In ACM SIGGRAPH 2004 Papers,
SIGGRAPH ’04, pages 652–663, New York, NY, USA, 2004. ACM. URL
http://doi.acm.org/10.1145/1186562.1015775.

[57] A. Gambi, T. Huynh, and G. Fraser. Generating effective test cases for self-driving
cars from police reports. In M. Dumas, D. Pfahl, S. Apel, and A. Russo, editors,
Proceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26-30, 2019., pages 257–267. ACM, 2019. URL
https://doi.org/10.1145/3338906.3338942.

[58] A. Gambi, M. Müller, and G. Fraser. Automatically testing self-driving cars with
search-based procedural content generation. In D. Zhang and A. Møller, editors,
Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019., pages 318–
328. ACM, 2019. URL https://doi.org/10.1145/3293882.3330566.

[59] P. Garg, C. Löding, P. Madhusudan, and D. Neider. Ice: A robust framework for
learning invariants. In International Conference on Computer Aided Verification,
pages 69–87. Springer, 2014.

[60] P. Garg, D. Neider, P. Madhusudan, and D. Roth. Learning invariants using decision
trees and implication counterexamples. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’16, pages 499–512, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3549-2.
URL http://doi.acm.org/10.1145/2837614.2837664.

[61] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. T.
Vechev. AI2: safety and robustness certification of neural networks with abstract
interpretation. In 2018 IEEE Symposium on Security and Privacy, S&P 2018, pages
3–18. IEEE, 2018.

[62] P. Girard. Your Wish is My Command. chapter Bringing Programming by Demon-
stration to CAD Users, pages 135–162. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2001. ISBN 1-55860-688-2. URL http://dl.acm.org/citation.
cfm?id=369505.369514.

[63] C. Gladisch, T. Heinz, C. Heinzemann, J. Oehlerking, A. von Vietinghoff, and
T. Pfitzer. Experience paper: Search-based testing in automated driving control
applications. In Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 26–37, 2019.

[64] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. CoRR, abs/1412.6572, 2014. URL http://arxiv.org/abs/1412.6572.

112

http://doi.acm.org/10.1145/1186562.1015775
https://doi.org/10.1145/3338906.3338942
https://doi.org/10.1145/3293882.3330566
http://doi.acm.org/10.1145/2837614.2837664
http://dl.acm.org/citation.cfm?id=369505.369514
http://dl.acm.org/citation.cfm?id=369505.369514
http://arxiv.org/abs/1412.6572

Bibliography

[65] S. Gulwani. "Programming by Examples: Applications, Algorithms, and Ambiguity
Resolution". In N. Olivetti and A. Tiwari, editors, Automated Reasoning, pages
9–14, Cham, 2016. Springer International Publishing. ISBN 978-3-319-40229-1.

[66] F. U. Haq, D. Shin, S. Nejati, and L. C. Briand. Comparing offline and online
testing of deep neural networks: An autonomous car case study. In 2020 IEEE 13th
International Conference on Software Testing, Validation and Verification (ICST),
pages 85–95. IEEE, 2020.

[67] B. Hempel and R. Chugh. Semi-Automated SVG Programming via Direct Manipu-
lation. In Proceedings of the 29th Annual Symposium on User Interface Software
and Technology, UIST ’16, pages 379–390, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4189-9. URL http://doi.acm.org/10.1145/2984511.2984575.

[68] D. Ho, K. Rao, Z. Xu, E. Jang, M. Khansari, and Y. Bai. Retinagan: An object-
aware approach to sim-to-real transfer. CoRR, abs/2011.03148, 2020. URL https:
//arxiv.org/abs/2011.03148.

[69] H. Ho, J. Ouaknine, and J. Worrell. Online monitoring of metric temporal logic. In
Runtime Verification RV 2014, volume 8734 of Lecture Notes in Computer Science,
pages 178–192. Springer, 2014.

[70] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969. URL https://doi.org/10.1145/363235.363259.

[71] C. M. Hoffmann and K.-J. Kim. Towards valid parametric CAD models. Computer-
Aided Design, 33(1):81–90, 2001.

[72] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of deep neural
networks. In R. Majumdar and V. Kuncak, editors, Computer Aided Verification
- 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part I, volume 10426 of Lecture Notes in Computer Science,
pages 3–29. Springer, 2017. doi: 10.1007/978-3-319-63387-9_1. URL https:
//doi.org/10.1007/978-3-319-63387-9_1.

[73] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots, and functional
reactive programming. In Advanced Functional Programming, 4th International
School, AFP 2002, Oxford, UK, August 19-24, 2002, Revised Lectures, volume
2638 of Lecture Notes in Computer Science, pages 159–187. Springer, 2002. URL
https://doi.org/10.1007/978-3-540-44833-4_6.

[74] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in dataflow program-
ming languages. ACM Comput. Surv., 36(1):1–34, mar 2004. ISSN 0360-0300. doi:
10.1145/1013208.1013209. URL https://doi.org/10.1145/1013208.1013209.

[75] R. K. Jones, T. Barton, X. Xu, K. Wang, E. Jiang, P. Guerrero, N. J. Mitra, and
D. Ritchie. ShapeAssembly: Learning to generate programs for 3D shape structure
synthesis. ACM Transactions on Graphics (TOG), 39(6):1–20, 2020.

113

http://doi.acm.org/10.1145/2984511.2984575
https://arxiv.org/abs/2011.03148
https://arxiv.org/abs/2011.03148
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1145/1013208.1013209

Bibliography

[76] R. K. Jones, D. Charatan, P. Guerrero, N. J. Mitra, and D. Ritchie. Shapemod:
Macro operation discovery for 3d shape programs. arXiv preprint arXiv:2104.06392,
2021.

[77] N. Kalra and S. M. Paddock. Driving to safety: How many miles of driving would
it take to demonstrate autonomous vehicle reliability? Transportation Research
Part A: Policy and Practice, 94:182–193, 2016.

[78] Y. Kawai. Unirx: Reactive extensions for unity, 2014. URL https://github.com/
neuecc/UniRx. Accessed: 2018-11-13.

[79] J. Kim, R. Feldt, and S. Yoo. Guiding deep learning system testing using surprise
adequacy. In Proceedings of the 41st International Conference on Software Engi-
neering, ICSE ’19, pages 1039–1049, Piscataway, NJ, USA, 2019. IEEE Press. URL
https://doi.org/10.1109/ICSE.2019.00108.

[80] M. Kintel. OpenSCAD: the programmers solid 3D CAD modeller, 2019. URL
http://www.openscad.org/.

[81] J. Kripac. A mechanism for persistently naming topological entities in history-
based parametric solid models. In Proceedings of the Third ACM Symposium on
Solid Modeling and Applications, SMA ’95, page 21–30, New York, NY, USA,
1995. Association for Computing Machinery. ISBN 0897916727. URL https:
//doi.org/10.1145/218013.218024.

[82] D. R. Kuhn, R. N. Kacker, and Y. Lei. Combinatorial testing. In P. A. Laplante,
editor, Encyclopedia of Software Engineering, pages 1–12. CRC Press, Nov 2010.
ISBN 978-1-4200-5977-9.

[83] D. H. Laidlaw, W. B. Trumbore, and J. F. Hughes. Constructive solid geometry for
polyhedral objects. SIGGRAPH Comput. Graph., 20(4):161–170, Aug. 1986. ISSN
0097-8930. URL https://doi.org/10.1145/15886.15904.

[84] J. G. Lambourne, K. D. Willis, P. K. Jayaraman, A. Sanghi, P. Meltzer, and
H. Shayani. Brepnet: A topological message passing system for solid models. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[85] D. Leen, T. Veuskens, K. Luyten, and R. Ramakers. JigFab: Computational Fabri-
cation of Constraints to Facilitate Woodworking with Power Tools. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19,
pages 156:1–156:12, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-5970-2.
URL http://doi.acm.org/10.1145/3290605.3300386.

[86] Z. Li, X. Ma, C. Xu, and C. Cao. Structural coverage criteria for neural networks
could be misleading. In A. Sarma and L. Murta, editors, Proceedings of the 41st
International Conference on Software Engineering: New Ideas and Emerging Results,
ICSE (NIER) 2019, Montreal, QC, Canada, May 29-31, 2019, pages 89–92. IEEE /
ACM, 2019. URL https://dl.acm.org/citation.cfm?id=3339171.

114

https://github.com/neuecc/UniRx
https://github.com/neuecc/UniRx
https://doi.org/10.1109/ICSE.2019.00108
http://www.openscad.org/
https://doi.org/10.1145/218013.218024
https://doi.org/10.1145/218013.218024
https://doi.org/10.1145/15886.15904
http://doi.acm.org/10.1145/3290605.3300386
https://dl.acm.org/citation.cfm?id=3339171

Bibliography

[87] J. Liberty and P. Betts. Programming Reactive Extensions and LINQ. Apress, 2011.

[88] M. Lipp, M. Specht, C. Lau, P. Wonka, and P. Müller. Local Editing of Pro-
cedural Models. Computer Graphics Forum, 38(2):13–25, 2019. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13615.

[89] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg.
SSD: single shot multibox detector. CoRR, abs/1512.02325, 2015. URL http:
//arxiv.org/abs/1512.02325.

[90] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation. CoRR, abs/1411.4038, 2014. URL http://arxiv.org/abs/1411.
4038.

[91] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li, Y. Liu,
J. Zhao, and Y. Wang. Deepgauge: Multi-granularity testing criteria for deep
learning systems. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, pages 120–131, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-5937-5. URL http://doi.acm.org/10.1145/
3238147.3238202.

[92] T. Mackinnon, S. Freeman, and P. Craig. Endo-testing: Unit testing with mock
objects. In eXtreme Programming and Flexible Processes in Software Engineering -
XP2000, 2000.

[93] R. Majumdar and F. Niksic. Why is random testing effective for partition tolerance
bugs? PACMPL, 2(POPL):46:1–46:24, 2018.

[94] R. Majumdar, A. Mathur, M. Pirron, L. Stegner, and D. Zufferey. Paracosm: A Test
Framework for Autonomous Driving Simulations. In E. Guerra and M. Stoelinga,
editors, Fundamental Approaches to Software Engineering, pages 172–195, Cham,
2021. Springer International Publishing. ISBN 978-3-030-71500-7.

[95] L. Makatura, M. Guo, A. Schulz, J. Solomon, and W. Matusik. Pareto gamuts:
exploring optimal designs across varying contexts. ACM Trans. Graph., 40(4):
171:1–171:17, 2021. URL https://doi.org/10.1145/3450626.3459750.

[96] MakerBot Industries, LLC. Thingiverse: digital designs for physical objects, 2021.
URL https://www.thingiverse.com/.

[97] A. Mathur and D. Zufferey. Constraint Synthesis for Parametric CAD. In S.-H. Lee,
S. Zollmann, M. Okabe, and B. Wünsche, editors, Pacific Graphics Short Papers,
Posters, and Work-in-Progress Papers. The Eurographics Association, 2021. ISBN
978-3-03868-162-5. doi: 10.2312/pg.20211396.

[98] A. Mathur, M. Pirron, and D. Zufferey. Interactive Programming for Parametric
CAD. In Computer Graphics Forum. © 2020 Eurographics - The European

115

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13615
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13615
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
http://doi.acm.org/10.1145/3238147.3238202
http://doi.acm.org/10.1145/3238147.3238202
https://doi.org/10.1145/3450626.3459750
https://www.thingiverse.com/

Bibliography

Association for Computer Graphics and John Wiley & Sons Ltd, 2020. doi: 10.
1111/cgf.14046.

[99] M. Mayer, V. Kuncak, and R. Chugh. Bidirectional Evaluation with Direct Manip-
ulation. Proc. ACM Program. Lang., 2(OOPSLA):127:1–127:28, Oct. 2018. ISSN
2475-1421. URL http://doi.acm.org/10.1145/3276497.

[100] E. Michel and T. Boubekeur. Dag amendment for inverse control of parametric
shapes. ACM Transactions on Graphics (TOG), 40(4):1–14, 2021.

[101] M. Mirman, T. Gehr, and M. Vechev. Differentiable abstract interpretation for
provably robust neural networks. In International Conference on Machine Learn-
ing (ICML), 2018. URL https://www.icml.cc/Conferences/2018/Schedule?
showEvent=2477.

[102] Mockito. Tasty mocking framework for unit tests in java. URL http://site.
mockito.org. Accessed: 2019-08-23.

[103] D. Mun and S. Han. Identification of topological entities and naming mapping for
parametric cad model exchanges. International Journal of CAD/CAM, 5(1):69–82,
2005.

[104] C. Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, and Z. Tatlock.
Functional programming for compiling and decompiling computer-aided design.
Proceedings of the ACM on Programming Languages, 2(ICFP):99, 2018.

[105] C. Nandi, M. Willsey, A. Anderson, J. R. Wilcox, E. Darulova, D. Grossman,
and Z. Tatlock. Synthesizing structured cad models with equality saturation and
inverse transformations. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 31–44, 2020.

[106] D. Neider, S. Saha, and P. Madhusudan. Compositional Synthesis of Piece-Wise
Functions by Learning Classifiers. ACM Trans. Comput. Logic, 19(2):10:1–10:23,
May 2018. ISSN 1529-3785. URL http://doi.acm.org/10.1145/3173545.

[107] H. Niederreiter. Random number generation and quasi-Monte Carlo methods. SIAM,
1992.

[108] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis. Springer
Science & Business Media, 2004.

[109] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis. Springer,
2015.

[110] NVIDIA Coporation. Physx, 2008. URL https://developer.nvidia.com/
gameworks-physx-overview. Accessed: 2018-11-13.

116

http://doi.acm.org/10.1145/3276497
https://www.icml.cc/Conferences/2018/Schedule?showEvent=2477
https://www.icml.cc/Conferences/2018/Schedule?showEvent=2477
http://site.mockito.org
http://site.mockito.org
http://doi.acm.org/10.1145/3173545
https://developer.nvidia.com/gameworks-physx-overview
https://developer.nvidia.com/gameworks-physx-overview

Bibliography

[111] Y. Okuya, N. Ladeveze, C. Fleury, and P. Bourdot. ShapeGuide: Shape-Based
3D Interaction for Parameter Modification of Native CAD Data. Frontiers in
Robotics and AI, 5:118, 2018. ISSN 2296-9144. URL https://www.frontiersin.
org/article/10.3389/frobt.2018.00118.

[112] OPEN CASCADE SAS. Open cascade technology, 2019. URL https://dev.
opencascade.org.

[113] Open CASCADE Technology. Open cascade technology, May 2021. URL https:
//dev.opencascade.org/.

[114] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami.
Practical black-box attacks against machine learning. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security - ASIA CCS
17. ACM, 2017. URL https://doi.org/10.1145/3052973.3053009.

[115] Parametric Products Intellectual Holdings, LLC. CadQuery: a parametric cad
script framework, 2019. URL https://github.com/dcowden/cadquery.

[116] Parametric Products Intellectual Holdings, LLC. CadQuery examples, 2019. URL
https://github.com/CadQuery/cadquery/tree/master/examples.

[117] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox testing of
deep learning systems. In Proceedings of the 26th Symposium on Operating Systems
Principles, Shanghai, China, October 28-31, 2017, pages 1–18. ACM, 2017. doi:
10.1145/3132747.3132785. URL https://doi.org/10.1145/3132747.3132785.

[118] G. Pierra, J.-C. Potier, and P. Girard. "The EBP System: Example Based Program-
ming System for Parametric Design". In J. C. Teixeira and J. Rix, editors, Modelling
and Graphics in Science and Technology, pages 124–140, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg. ISBN 978-3-642-61020-2.

[119] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Ng. Ros: an open-source robot operating system. In ICRA workshop on open
source software, 2009.

[120] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, Mar. 1986.
ISSN 0885-6125. URL http://dx.doi.org/10.1023/A:1022643204877.

[121] S. Rawat, V. Jain, A. J. S. Kumar, L. Cojocar, C. Giuffrida, and H. Bos. Vuzzer:
Application-aware evolutionary fuzzing. In NDSS, 2017.

[122] ReactiveX. Reactivex. URL http://reactivex.io/. Accessed: 2019-08-23.

[123] S. R. Richter, H. A. Alhaija, and V. Koltun. Enhancing photorealism enhancement.
CoRR, abs/2105.04619, 2021. URL https://arxiv.org/abs/2105.04619.

[124] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317. Springer
Science & Business Media, 2009.

117

https://www.frontiersin.org/article/10.3389/frobt.2018.00118
https://www.frontiersin.org/article/10.3389/frobt.2018.00118
https://dev.opencascade.org
https://dev.opencascade.org
https://dev.opencascade.org/
https://dev.opencascade.org/
https://doi.org/10.1145/3052973.3053009
https://github.com/dcowden/cadquery
https://github.com/CadQuery/cadquery/tree/master/examples
https://doi.org/10.1145/3132747.3132785
http://dx.doi.org/10.1023/A:1022643204877
http://reactivex.io/
https://arxiv.org/abs/2105.04619

Bibliography

[125] G. Rote and R. Tichy. Quasi-Monte-Carlo methods and the dispersion of point
sequences. Mathematical and Computer Modelling, 23:9–23, 1996.

[126] W. Ruan, X. Huang, and M. Kwiatkowska. Reachability analysis of deep neural
networks with provable guarantees. In J. Lang, editor, Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden., pages 2651–2659. ijcai.org, 2018. doi: 10.24963/
ijcai.2018/368. URL https://doi.org/10.24963/ijcai.2018/368.

[127] A. Ruano. DeepGTAV: A plugin for gtav that transforms it into a vision-based
self-driving car research environment. https://github.com/aitorzip/DeepGTAV,
2017.

[128] H. Samimi, R. Hicks, A. Fogel, and T. Millstein. Declarative mocking. In ISSTA
2013, pages 246–256. ACM, 2013.

[129] S. Sankaranarayanan and G. Fainekos. Falsification of temporal properties of hybrid
systems using the cross-entropy method. In HSCC 12, pages 125–134. ACM, 2012.

[130] A. Schulz, A. Shamir, D. I. W. Levin, P. Sitthi-amorn, and W. Matusik. Design
and fabrication by example. ACM Trans. Graph., 33(4), July 2014. ISSN 0730-0301.
URL https://doi.org/10.1145/2601097.2601127.

[131] A. Schulz, A. Shamir, D. I. W. Levin, P. Sitthi-Amorn, and W. Matusik. Design and
Fabrication by Example. ACM Transactions on Graphics (Proceedings SIGGRAPH
2014), 33(4), 2014.

[132] A. Schulz, H. Wang, E. Grinspun, J. Solomon, and W. Matusik. Interactive
Exploration of Design Trade-offs. ACM Trans. Graph., 37(4):131:1–131:14, July
2018. ISSN 0730-0301. URL http://doi.acm.org/10.1145/3197517.3201385.

[133] A. Schulz, H. Wang, E. Grinspun, J. Solomon, and W. Matusik. Interactive
exploration of design trade-offs. ACM Transactions on Graphics (TOG), 37(4):1–14,
2018.

[134] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-fidelity visual and physical
simulation for autonomous vehicles. In Field and Service Robotics, 2017. URL
https://arxiv.org/abs/1705.05065.

[135] M. Shugrina, A. Shamir, and W. Matusik. Fab forms: customizable objects for
fabrication with validity and geometry caching. ACM Trans. Graph., 34(4):100:1–
100:12, 2015. doi: 10.1145/2766994. URL https://doi.org/10.1145/2766994.

[136] M. Shugrina, A. Shamir, and W. Matusik. Fab forms: Customizable objects for
fabrication with validity and geometry caching. ACM Trans. Graph., 34(4), July
2015. ISSN 0730-0301. URL https://doi.org/10.1145/2766994.

118

https://doi.org/10.24963/ijcai.2018/368
https://github.com/aitorzip/DeepGTAV
https://doi.org/10.1145/2601097.2601127
http://doi.acm.org/10.1145/3197517.3201385
https://arxiv.org/abs/1705.05065
https://doi.org/10.1145/2766994
https://doi.org/10.1145/2766994

Bibliography

[137] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[138] A. Solar-Lezama. Program Synthesis by Sketching. PhD thesis, Berkeley, CA, USA,
2008. AAI3353225.

[139] L. Stewart, M. Musa, and N. Croce. Look no hands: self-driving vehicles’
public trust problem, 2019. URL https://www.weforum.org/agenda/2019/08/
self-driving-vehicles-public-trust/. Accessed: 2021-01-18.

[140] I. Stroud. Boundary representation modelling techniques. Springer Science &
Business Media, 2006.

[141] J. Sun, H. Zhang, H. Zhou, R. Yu, and Y. Tian. Scenario-based test automation
for highly automated vehicles: A review and paving the way for systematic safety
assurance. IEEE Transactions on Intelligent Transportation Systems, 2021.

[142] I. E. Sutherland. Sketchpad, a man-machine graphical communication system. PhD
thesis, 1963.

[143] I. E. Sutherland. The ultimate display. In Proceedings of the IFIP Congress, pages
506–508, 1965.

[144] H. Suzuki, H. Ando, and F. Kimura. Geometric constraints and reasoning for
geometrical cad systems. Computers & Graphics, 14(2):211–224, 1990.

[145] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2013.

[146] C. Tang, X. Sun, A. Gomes, J. Wallner, and H. Pottmann. Form-finding with
polyhedral meshes made simple. ACM Trans. Graph., 33(4), July 2014. ISSN
0730-0301. URL https://doi.org/10.1145/2601097.2601213.

[147] M. Teichmann, M. Weber, J. M. Zöllner, R. Cipolla, and R. Urtasun. Multinet:
Real-time joint semantic reasoning for autonomous driving. CoRR, abs/1612.07695,
2016. URL http://arxiv.org/abs/1612.07695.

[148] Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated testing of deep-
neural-network-driven autonomous cars. In Proceedings of the 40th International
Conference on Software Engineering, pages 303–314. ACM, 2018.

[149] C. E. Tuncali, G. E. Fainekos, H. Ito, and J. Kapinski. Sim-atav: Simulation-based
adversarial testing framework for autonomous vehicles. In Proceedings of the 21st
International Conference on Hybrid Systems: Computation and Control (part of
CPS Week), HSCC 2018, Porto, Portugal, April 11-13, 2018, pages 283–284. ACM,
2018. URL http://doi.acm.org/10.1145/3178126.3187004.

119

https://www.weforum.org/agenda/2019/08/self-driving-vehicles-public-trust/
https://www.weforum.org/agenda/2019/08/self-driving-vehicles-public-trust/
https://doi.org/10.1145/2601097.2601213
http://arxiv.org/abs/1612.07695
http://doi.acm.org/10.1145/3178126.3187004

Bibliography

[150] C. E. Tuncali, G. Fainekos, D. Prokhorov, H. Ito, and J. Kapinski. Requirements-
driven test generation for autonomous vehicles with machine learning components.
arXiv preprint arXiv:1908.01094, 2019.

[151] Unity3D. Unity game engine. URL https://unity3d.com/. Accessed: 2019-08-23.

[152] K. Viswanadha, F. Indaheng, J. Wong, E. Kim, E. Kalvan, Y. Pant, D. J. Fremont,
and S. A. Seshia. Addressing the IEEE AV test challenge with Scenic and VerifAI.
In IEEE International Conference on Artificial Intelligence Testing (AITest), pages
136–142. IEEE, 2021.

[153] Z. Wan and P. Hudak. Functional reactive programming from first principles. In
Proceedings of the 2000 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Vancouver, Britith Columbia, Canada, June
18-21, 2000, pages 242–252. ACM, 2000. URL https://doi.org/10.1145/349299.
349331.

[154] W. I. Wan Din, T. T. Robinson, C. G. Armstrong, and R. Jackson. "Using CAD
parameter sensitivities for stack-up tolerance allocation". International Journal on
Interactive Design and Manufacturing (IJIDeM), 10(2):139–151, May 2016. ISSN
1955-2505. doi: 10.1007/s12008-014-0235-2. URL https://doi.org/10.1007/
s12008-014-0235-2.

[155] M. Wicker, X. Huang, and M. Kwiatkowska. Feature-guided black-box safety
testing of deep neural networks. In D. Beyer and M. Huisman, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 24th International
Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, Part I, volume 10805 of Lecture Notes in Computer Science, pages 408–
426. Springer, 2018. URL https://doi.org/10.1007/978-3-319-89960-2_22.

[156] A. F. T. Winfield, K. Winkle, H. Webb, U. Lyngs, M. Jirotka, and C. Macrae. Robot
accident investigation: a case study in responsible robotics. CoRR, abs/2005.07474,
2020. URL https://arxiv.org/abs/2005.07474.

[157] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and A. Sumner.
TORCS, The Open Racing Car Simulator. http://www.torcs.org, 2014.

[158] K. Xu, H. Zhang, D. Cohen-Or, and B. Chen. Fit and diverse: Set evolution for
inspiring 3d shape galleries. ACM Trans. Graph., 31(4), July 2012. ISSN 0730-0301.
URL https://doi.org/10.1145/2185520.2185553.

[159] Y.-L. Yang, Y.-J. Yang, H. Pottmann, and N. J. Mitra. Shape space exploration of
constrained meshes. ACM Trans. Graph., 30(6):124, 2011.

[160] E. Yares. The failed promise of parametric CAD part 1:
From the beginning, 2013. URL https://www.3dcadworld.com/
the-failed-promise-of-parametric-cad/.

120

https://unity3d.com/
https://doi.org/10.1145/349299.349331
https://doi.org/10.1145/349299.349331
https://doi.org/10.1007/s12008-014-0235-2
https://doi.org/10.1007/s12008-014-0235-2
https://doi.org/10.1007/978-3-319-89960-2_22
https://arxiv.org/abs/2005.07474
https://doi.org/10.1145/2185520.2185553
https://www.3dcadworld.com/the-failed-promise-of-parametric-cad/
https://www.3dcadworld.com/the-failed-promise-of-parametric-cad/

Bibliography

[161] D. Zufferey. Scadla rendering backend based on open cascade, 2019. URL https:
//github.com/dzufferey/scadla-oce-backend.

121

https://github.com/dzufferey/scadla-oce-backend
https://github.com/dzufferey/scadla-oce-backend

Curriculum Vitae

Research Interests

Computer Aided Design (CAD), 3D Simulation, Interactive 3D (Virtual/Augmented
Reality), and Program Analysis/Synthesis.

Education
[2017–] Doctoral Researcher,

Max Planck Institute for Software Systems, Germany.
Advisors: Damien Zufferey and Rupak Majumdar.

[2015–2018] M.Sc. in Computer Science,
University of Kaiserslautern, Germany.

[2010–2014] B.Tech in Computer Science & Engineering,
Rajasthan Technical University, India.

123

	Acknowledgments
	Introduction
	Summary of Challenges and Contributions
	Design
	Simulation
	Why programmatic Interfaces?

	Organization of Content
	Publications

	Design
	Bridging GUI and Programming
	Introduction
	Motivation
	Contributions

	Preliminaries and Overview
	CAD Representation and Operations
	Towards Interactive Programming for CAD

	The Synthesis Framework
	Syntax of Synthesized Programs
	Synthesis Algorithm
	Querying objects in a loop or collection

	Evaluation
	Implementation
	Synthesis robustness and runtime
	Synthesis Scalability
	Feature specific experiments
	User Study

	Conclusion

	Synthesis of Parameter Constraints
	Introduction
	Contributions
	Preliminaries and Overview
	B-rep, CAD Operations, and Constraints
	Validity of Operations
	Program Analysis for CAD
	Learning Constraints

	Framework
	Validity of CAD Operations
	Static Rules
	Constraint Synthesis Algorithm

	Evaluation
	Implementation
	Experiments

	Conclusion

	Related Work
	Robustness of CAD
	Parametricity in CAD
	Synthesis of CAD Programs
	Constraining CAD Parameters

	Simulation
	 Paracosm Interface
	Introduction
	Contributions

	Paracosm Language Interface
	Test Inputs and Coverage
	Test Cases
	Coverage
	Test Generation

	Conclusion

	 Paracosm: Evaluation
	Introduction
	Contributions

	Runtime System and Implementation
	Experiments & Case Studies
	Evaluation on Common Testing Tasks
	Testing Systems Trained on Standard Datasets
	Experiments Demonstrating Specific Paracosm Features

	Conclusion

	Related Work
	Reactive Programming Models
	Testing Cyber-Physical Systems
	Test Strategies

	Discussion
	Discussion
	Future Work
	Concluding Remarks

	Bibliography
	Curriculum Vitae

