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Abstract

From industrial fault detection to medical image analysis or financial fraud preven-
tion: Anomaly detection—the task of identifying data points that show significant
deviations from the majority of data—is critical in industrial and technological
applications. For efficient and effective anomaly detection, a rich set of semantic
features are required to be automatically extracted from the complex data. For exam-
ple, many recent advances in image anomaly detection are based on self-supervised
learning, which learns rich features from a large amount of unlabeled complex image
data by exploiting data augmentations. For image data, predefined transformations
such as rotations are used to generate varying views of the data. Unfortunately,
for data other than images, such as time series, tabular data, graphs, or text, it is
unclear what are suitable transformations. This becomes an obstacle to successful
self-supervised anomaly detection on other data types.

This thesis proposes Neural Transformation Learning, a self-supervised anomaly
detection method that is applicable to general data types. In contrast to previous
methods relying on hand-crafted transformations, neural transformation learning
learns the transformations from data and uses them for detection. The key ingredient
is a novel objective that encourages learning diverse transformations while preserving
the relevant semantic content of the data. We prove theoretically and empirically
that it is more suited than existing objectives for transformation learning.

We also introduce the extensions of neural transformation learning for anomaly
detection within time series and graph-level anomaly detection. The extensions
combine transformation learning and other learning paradigms to incorporate vital
prior knowledge about time series and graph data. Moreover, we propose a general
training strategy for deep anomaly detection with contaminated data. The idea is to
infer the unlabeled anomalies and utilize them for updating parameters alternatively.
In setups where expert feedback is available, we present a diverse querying strategy
based on the seeding algorithm of K-means++ for active anomaly detection.

Our extensive experiments and analysis demonstrate that neural transformation
learning achieves remarkable and robust anomaly detection performance on various
data types. Finally, we outline specific paths for future research.
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1 Introduction and Overview

Anomaly detection is the task of automatically identifying instances that significantly
deviate from the majority of the data. It is critical in a variety of applications
from various domains, including intrusion detection in cybersecurity [1, 2], fraud
detection in finance [3, 4], industrial fault detection [5, 6], and medical diagnosis [7, 8].
Anomaly detection has been actively studied in various research communities for
several decades. The classical anomaly detection methods include robust Principal
Component Analysis (PCA) [9, 10], Kernel Density Estimation (KDE) [11, 12], One-
Class Support Vector Machine (OCSVM) [13], Local Outlier Factor (LOF) [14], and
Isolation Forest (IF) [15, 16]. These shallow methods perform well on low-dimensional
data, and their success relies on effective feature engineering.

As data becomes more complex and the size of the dataset goes larger, deep
anomaly detection has been rapidly developed in the past years, where the features
are learned from data automatically [17]. Related work on deep anomaly detection
includes deep autoencoder variants [18, 19, 20], deep one-class classification [21, 22,
23], multi-sphere deep one-class classification [23, 24, 25, 26], deep generative models
[27, 28], deep distance-based methods [29, 30], and outlier exposure [31].

Although deep neural networks are universal approximators [32] and have shown
impressive performance on various tasks, such as image classification [33], time series
analysis [34], and natural language processing [35], it is universally acknowledged that
deep learning algorithms are data-hungry [36]. In anomaly detection, the anomalies
are often very rare, and the dataset is most of the time unlabeled. The imbalance
between normal and abnormal samples and the scarcity of labeled data make the
learning of deep anomaly detectors difficult. Many existing deep anomaly detection
methods do not learn rich semantic features as supervised learning methods do [37].
Currently, this becomes one of the major bottlenecks inhibiting the improvement of
deep anomaly detection methods.

Self-supervised methods are proposed to learn useful features from unlabeled
datasets efficiently. The model parameters and features are learned from optimizing
the model to solve the designed pretext tasks with data augmentations. The learned
features significantly improve the model performance on various downstream tasks.

1



1 Introduction and Overview

Recently, there has been a surge of interest in developing self-supervised approaches for
anomaly detection. Self-supervised anomaly detection has led to drastic improvements
in detection accuracy [37, 38, 39, 40, 41, 42]. Many recent advances in self-supervised
anomaly detection rely on the paradigm of data augmentation. Most of the existing
self-supervised anomaly detection methods focus on image data since we know what
effective data transformations for image data are. However, for data other than
images, such as time series, tabular data, graphs, or text, it is much less well-known
which transformations are useful, and it is hard to design these transformations
manually. It is not clear how to generalize the success of self-supervised anomaly
detection on images to other data types.

Motivated by this, this thesis proposes a self-supervised anomaly detection method
with learnable data transformations that is applicable to general data types and
applications. The approach, which we call Neural Transformation Learning, learns
a variety of diverse and semantically meaningful transformations from data and
exploits the learned transformations for anomaly detection.

1.1 The Thesis
This thesis studies how to apply self-supervised anomaly detection to general data
types and applications. We summarize the main contributions, the list of publications,
and the organization of the thesis in the following.

1.1.1 Contributions

The main contributions and findings of this thesis are the following:

• We introduce Neural Transformation Learning (NTL), a self-supervised anomaly
detection method with learnable transformations. The key idea is to learn a
variety of diverse and semantically meaningful transformations. This unleashes
the power of self-supervised anomaly detection to general data types. To do so,
we propose a novel contrastive loss that encourages the transformed samples
to share semantic information with their original form while different views are
easily distinguishable. We theoretically demonstrate that the proposed loss is
better suited than existing self-supervised losses for transformation learning
and anomaly detection. Our extensive empirical study finds that NTL achieves
impressive anomaly detection results on various data types.

• We introduce an extension of NTL for detecting anomalies within time series,
called Local Neural Transformations (LNT), which learns local transformations
at each time step from data and produces an anomaly score for each time step.

2



1.1 The Thesis

The key ingredient is a novel training objective combining time series represen-
tation learning and transformation learning. We demonstrate theoretically and
empirically that both learning paradigms complement each other, yielding a
strong time series anomaly detection model.

• We introduce two extensions of NTL for graph-level anomaly detection, which
refers to detecting entire abnormal graphs in a set of graphs. One-Class
Graph Transformation Learning (OCGTL) combines the best of deep one-class
classification and transformation learning through a joint loss with two loss
terms, respectively. Multi-view One-Class Classification (MOCC) generalizes
deep one-class classification by involving multiple learnable transformations.
Both extensions raise the graph-level anomaly detection accuracy significantly.

• We introduce Latent Outlier Exposure (LOE), a general strategy for training
deep anomaly detection models (including NTL) on unlabeled contaminated
data. The idea is to jointly infer binary labels to each datum (normal vs.
anomalous) while updating the model parameters. We use a combination of
two losses that share parameters: one for the normal and one for the anomalous
data. We then proceed with block coordinate updates on the parameters and
the most likely (latent) labels. Our experiments reveal improved performance
over established baselines on image, tabular, and video data.

• We introduce Active Latent Outlier Exposure (ALOE): an active learning
approach for deep anomaly detection models, including NTL. ALOE relies on
a diversified querying strategy based on the seeding algorithm of K-means++
and a combination of two losses for queried and unqueried samples. Based
on a simple heuristic for weighting the losses relative to each other and by
estimating the unknown contamination rate from queried samples, we were able
to make our approach free of its most important hyperparameters. We showed
on a variety of datasets from different domains that the approach results in a
new state-of-the-art in active anomaly detection.

Overall, the contributions and findings above demonstrate that NTL is a powerful
and robust self-supervised anomaly detection method that is applicable to various
data types and applications.

1.1.2 List of Publications

The primary contributions and findings of this thesis are based on the following
peer-reviewed publications:
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1 Introduction and Overview

Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan Mandt, and Maja Rudolph.
Neural Transformation Learning for Anomaly Detection beyond Images. In
Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 8703–8714. PMLR,
18–24 Jul 2021.

Tim Schneider, Chen Qiu, and Maja Rudolph. Anomalous Region Detection
in Time Series with Local Neural Transformations. In ICML 2021 Workshop:
Self-Supervised Learning for Reasoning and Perception, 2021.

Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. Raising the
Bar in Graph-level Anomaly Detection. In In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI-22, pages 2196–2203.
International Joint Conferences on Artificial Intelligence Organization, 7 2022.
Main Track.

Chen Qiu*, Aodong Li*, Marius Kloft, Maja Rudolph, and Stephan Mandt.
Latent Outlier Exposure for Anomaly Detection with Contaminated Data. In
Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages 18153–18167. PMLR,
17–23 Jul 2022.

Aodong Li*, Chen Qiu*, Padhraic Smyth, Marius Kloft, Stephan Mandt, and Maja
Rudolph. Diverse Querying Improves Deep Active Anomaly Detection. Preprint
(under review), 2022.

Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. Self-Supervised
Anomaly Detection with Neural Transformations. Preprint (under review), 2022.

We note that all co-authors of these works have agreed to borrow ideas, figures, and
results from the works above for this thesis.

1.1.3 Organization of the Thesis

This thesis comprises three main chapters:

Chapter 2 (Neural Transformation Learning) introduces NTL, an end-to-end
self-supervised anomaly detection approach for general data types. We first present
the algorithm for learning diverse and semantically meaningful transformations from
data. We then provide theoretical results proving that NTL is better suited for
transformation learning than existing work. In the experimental evaluation, we find
that NTL achieves superior detection accuracy on various data types, including time
series, images, tabular data, and text.

*Equal contribution
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1.2 Background and Challenges

Chapter 3 (Extensions of Neural Transformation Learning) introduces extensions
that improve NTL for specific applications, including anomaly detection within time
series and graph-level anomaly detection. We first introduce LNT for detecting
anomalies within time series, which learns local transformations at each time step by
combining transformation learning and representation learning. We show that LNT
outperforms many strong baselines on challenging time series anomaly detection
tasks. We then introduce OCGTL and MOCC for graph-level anomaly detection,
which refers to detecting entire abnormal graphs in a set of graphs. Both OCGTL
and MOCC combine NTL and deep one-class classification. In the experimental
evaluation, we show that OCGTL and MOCC raise the bar in graph-level anomaly
detection.

Chapter 4 (Neural Transformation Learning with Contaminated Data) introduces
two learning paradigms for deep anomaly detection that improve the robustness of
NTL to contaminated training data. We first present LOE for training deep anomaly
detectors on unlabeled contaminated data. LOE jointly infers the anomaly labels and
learns the model parameters during training. The experimental evaluation demon-
strates its benefits in learning deep anomaly detectors with unlabeled contaminated
data. We then introduce ALOE for setups where expert feedback is available in
training. ALOE queries samples that are diverse in the embedding space and uses a
combination of two losses for queried and unqueried samples. We empirically show
that ALOE achieves a new state-of-the-art in active anomaly detection.

We conclude the thesis and provide detailed paths for future research in Chapter 5.
Before we turn to the main chapters of the thesis, we complete this introduction and
overview with a survey of the existing self-supervised anomaly detection methods.

1.2 Background and Challenges
This section provides an overview of self-supervised anomaly detection. In Sec-
tion 1.2.1, we briefly review the development of self-supervised learning. In Sec-
tion 1.2.2, we discuss the existing self-supervised anomaly detection methods and
categorize them into end-to-end methods and two-stage methods. We finally highlight
the notable challenges in self-supervised anomaly detection.

1.2.1 Self-Supervised Learning in a Nutshell

Self-supervised learning learns semantic features from unlabeled data without time-
consuming and expensive data annotations [43]. Self-supervised learning typically
designs pretext tasks with automatically generated pseudo labels as the learning
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1 Introduction and Overview

problem for the model. The model is optimized to solve the pretext task. Effective
pretext tasks ensure that meaningful semantic features are learned during the training.
For example, in the work of learning representations by predicting image rotations
[44], images are rotated with four different angles to generate data augmentations.
The rotation angles serve as pseudo labels. In training, the neural networks are
optimized to predict the rotation angle of the input image. The training forces
the networks to learn semantic features useful for solving the task. The learned
representations are then used in downstream tasks that require semantic features,
such as image classification, object detection, and semantic segmentation.

Following a similar pipeline, a variety of self-supervised learning methods have
been developed for various data types. For images, the networks are trained on pretext
tasks, such as patch prediction [45], image colorization [46], image inpainting [47],
solving jigsaw puzzles [48, 49], cross-channel prediction [50], or rotation prediction
[44]), to learn semantic visual features. Temporal structure-based pretext tasks
are shown to be effective for learning video representations [51, 52, 53, 54]. For
learning rich language representations, BERT [55] and its variants [56, 57] train
transformers [58] to predict the randomly masked words. Xie et al. [59] provide
a unified review of self-supervised learning on graphs, including generation-based,
property prediction-based, and contrastive-based methods.

Contrastive-based self-supervised methods relying on the InfoMax principle
[60, 61] received a lot of attention recently. These methods are trained on the task
to maximize the mutual information between the data and their context [62, 63, 64]
or between different “views” of the data [65]. Computing the mutual information in
these settings is often intractable, and various approximation schemes and bounds
have been introduced [66]. By using noise contrastive estimation [67, 68] to bound
mutual information, Oord et al. [62] bridge the gap between contrastive losses for
mutual information-based representation learning and the use of contrastive losses in
discriminative methods for representation learning [65, 69, 70, 71, 72, 73]. Moreover,
Grill et al. [74], Chen and He [75] show that just aligning the different views of
the same sample with Siamese network can learn meaningful representations even
without using negative samples.

Self-supervised learning learns rich semantic features useful for various down-
stream tasks, including image classification [72], object detection [76], machine trans-
lation [77], and also anomaly detection. Next, we review the existing self-supervised
anomaly detection methods.

1.2.2 Self-Supervised Anomaly Detection

Self-supervised methods have also been successfully applied to anomaly detection.
The essence of an anomaly detection algorithm is to produce a score function

6



1.2 Background and Challenges

s(x) : X → R, which measures the degree of abnormality of each sample in the data
space X . The score function is used at test time to detect anomalies by evaluating
whether the score is above a threshold,

ỹ =

1, if s(x) ≥ threshold meaning x abnormal
0, otherwise meaning x normal.

(1.1)

The threshold is calibrated for the specific application (e.g., using a labeled validation
set). Since the anomalies are often very rare and annotations are not available in
general, a data-driven anomaly detection algorithm relies on the unlabeled training
dataset D = {x1, · · · ,xN} ⊂ X to learn a score function. Here we consider methods
that learn the score function or/and its associated model with self-supervised learning.
We categorize the self-supervised anomaly detection methods into two types: end-to-
end methods and two-stage methods.

1.2.2.1 End-to-End Self-Supervised Anomaly Detection

Self-supervised learning was pioneered for end-to-end anomaly detection by Golan
and El-Yaniv [38] and put forward in Hendrycks et al. [39], Wang et al. [40], Tack et al.
[42]. They proposed various pretext tasks with hand-crafted data transformations
for learning model parameters and semantic features. The anomaly score function
can be constructed based on the model performance on the pretext task, such as the
loss function [31, 38, 40]. The anomalies can also be detected by shallow anomaly
detectors (e.g., OCSVM and KDE) built upon the learned representations [42].

In Golan and El-Yaniv [38], Wang et al. [40], a set of hand-crafted image aug-
mentations such as rotations, shifting, and flipping are applied to each input image.
A classifier is learned with a multi-class classification loss to predict which transfor-
mation has been applied to the input image. At test time, all generated views of the
test image are fed into the trained classifier. The prediction accuracy is shown to be
an effective anomaly score. Wang et al. [40] studied why the model performance on
the pretext task can reflect the normality of samples and proposed the principle of
inlier priority. Since most training samples are inliers, the training will promote the
model to generalize better to held-out normal samples than anomalies. Therefore,
the anomalies have higher loss/score values than the normal samples. Besides that,
they empirically show that the transformation prediction-based anomaly detection
methods are robust to a contaminated training set.

Hendrycks et al. [39] improve the transformation prediction-based detection by
learning a multi-head classifier for transformation prediction. The test images are
scored by the model performance on multiple classification tasks. Specifically, the
model learns to solve three different tasks: one for predicting rotation, one for
predicting vertical shift, and one for predicting horizontal shift. The model has three

7



1 Introduction and Overview

softmax heads, each for a classification task. By involving three tasks in the learning
problem and anomaly detection, the model is more sensitive to abnormal images and
achieves better detection accuracy.

Tack et al. [42] first applied contrastive learning [73] to image anomaly detection.
Contrastive learning learns representations by aligning different views of the same
data and contrasting them to other samples. The anomalies are scored by the cosine
similarity of their representations to the nearest training sample’s representation and
the norm of their representations. They found that the rotated images can serve as
synthetic anomalies in training. By contrasting to rotated images, they learn a better
anomaly detector than other self-supervised anomaly detection methods. Similarly,
Chen et al. [78] utilize negative data augmentations, including rotation, clipping, and
color jitter, to simulate novelty-like samples and learn an encoder-decoder framework
via contrastive learning for novelty detection. Song et al. [79], Zavrtanik et al.
[80] learn anomaly segmentation models following the idea of contrasting to views
generated by various hand-crafted negative transformations. Apart from designing
negative samples, Goyal et al. [81] learn to generate negative samples for a robust
deep one-class classification. The generated negative samples are outside a small
hypersphere centered around a normal sample in the embedding space.

The above-mentioned self-supervised anomaly detection methods focus on image
data and rely on well-designed image transformations. There are also pretext tasks
and data transformations designed specifically for anomaly detection on data types
beyond images. For detecting anomalies within time series, Deldari et al. [82]
adopt contrastive predictive coding, which learns representations maximizing the
mutual information between consecutive time windows [62], while Carmona et al.
[83] contrast the representations of two overlapped time series windows and design
various types of synthetic time series anomalies. Bergman and Hoshen [41] generalize
the transformation prediction-based detection method to tabular data by using
random-affine transformations, while Zhang et al. [84] further improve the idea by
modeling the feature distribution of normal samples with neural autoregressive flows
and enabling an active learning scheme for querying informative samples in training.
However, the random-affine transformations are apparently noisy and not optimal
for tabular data.

1.2.2.2 Two-Stage Self-Supervised Anomaly Detection

The learned representations in self-supervised learning are useful in various down-
stream tasks, including anomaly detection [37, 85, 86, 87, 88]. Typically, two-
stage self-supervised anomaly detection methods learn a feature extractor with
self-supervised learning in the first stage and build an anomaly detector upon the
representations in the second stage. For example, in Sehwag et al. [85], the feature
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1.2 Background and Challenges

extractor is learned by minimizing a contrastive loss [73]. For detection, they first
partition the learned representations of training data into clusters. The anomalies
are then scored by the Mahalanobis distance to the nearest cluster center in the
feature space.

Sohn et al. [37] learn representations that are more suitable for anomaly detection
by treating the rotated images as negative samples in contrastive learning. Given
the learned representations, the detection can be easily done with shallow anomaly
detectors such as OCSVM [13] and KDE [11]. Furthermore, Reiss and Hoshen
[87] proposed a mean-shifted contrastive loss for learning representations for the
downstream anomaly detection task. The mean-shifted contrastive loss combines the
contrastive loss [73] with the center loss [89] to pull the representation of normal sam-
ples to a center. The anomalies are scored by the cosine distance of their features to
the k-nearest training samples’ features. Cho et al. [86] proposed masked contrastive
learning for anomaly detection and showed that the learned representations could be
even better when additional class information is available.

Similar two-stage frameworks are also proposed to localize the anomalous regions
of the image. For example, Li et al. [88] learn an encoder to extract representations
for each image patch. The key novelty is the proposed CutPaste augmentations for
creating irregular local patterns. The CutPaste augmentation cuts a small rectangular
area from a normal sample and then pastes the rotated patch back to an image at a
random location. The encoder is trained to predict if the image patch is irregular
due to the CutPaste augmentation and therefore learns representations capturing
local patterns. In the second stage, a Gaussian density estimator is built upon the
patch representations to compute the anomaly score of each patch.

1.2.3 Challenges

We conclude this introduction by highlighting the notable challenges in self-supervised
anomaly detection, which also motivate this thesis. Since the transformed views
share semantic information (a human still recognizes a rotated cat as a cat), the
model starts memorizing salient features of normal samples in learning to solve the
pretext tasks and can later be used for anomaly detection. This idea has led to strong
anomaly detectors based on either transformation prediction [38, 39, 40] or using
representations learned using these views [73] for downstream anomaly detection
tasks [37, 85, 87]. We can see that the advances in self-supervised anomaly detection
rely on the paradigm of data augmentation.

For applying self-supervised learning to each data type, the domain-specific data
transformations are carefully designed by experts [90]. For image data, predefined
transformations such as rotations, reflections, and cropping are used to generate
various views of the data. Unfortunately, for data other than images, such as time
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series, tabular data, text, and graphs, it is much less well-known which transformations
are useful. Also, the pretext tasks are often specified for one application and are not
effective for other tasks. For example, contrasting between sequence windows yields a
good model for detecting anomalies within time series [82, 83], but is not appropriate
for image anomaly detection. Therefore, one major obstacle to generalizing the
principles of self-supervised anomaly detection to other data types and applications
is designing proper transformations for various data types.

This motivates one of the main contributions of this thesis, NTL, which follows
the principles of self-supervised anomaly detection and learns the transformations
from data. In Chapter 2, we will dive into the algorithm, theory, and applications
of NTL in self-supervised anomaly detection. NTL is the first method to learn
transformations for self-supervised anomaly detection. Thanks to the flexibility
of learnable transformations, NTL is the first self-supervised anomaly detection
method applicable to various data types, including images, time series, tabular data,
and text. In Chapter 3, we will introduce the extensions of NTL. By combining
with time series representation learning, NTL detects anomalies within time series
effectively. By combining with deep one-class classification, NTL achieves state-of-
the-art performance in graph-level anomaly detection.

Besides the generalization of self-supervised anomaly detection methods, one
other challenge is the robustness of the methods to data contamination. A common
assumption in many (self-supervised) anomaly detection methods is that a “clean”
training set (free of anomalies) is available to teach the model the features of normal
samples. However, the training set could contain unnoticed anomalies already. For
example, a dataset of medical images may already contain cancer images, or datasets
of financial transactions could already contain unnoticed fraudulent activities. Naively
training an anomaly detector on such data suffers from degraded performance [40, 91].
We address the robustness challenge in Chapter 4. We will introduce a novel training
strategy, LOE, that infers unlabeled anomalies while updating the model parameters.
Furthermore, we will study the training and query strategies in active anomaly
detection and introduce ALOE, which queries diverse and informative samples and
optimizes the model on both labeled and unlabeled samples.
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2 Neural Transformation Learning

In this chapter, we introduce Neural Transformation Learning (NTL): an end-to-end
self-supervised method for anomaly detection with learnable transformations. Instead
of manually designing data transformations to construct auxiliary prediction tasks
that can be used for anomaly detection, we derive a single objective function for
both learning useful data transformations and anomaly scoring. The idea is to
learn a variety of transformations such that the transformed samples share semantic
information with their original form while different views are easily distinguishable.

We first introduce the algorithm and methodology of NTL in Section 2.1. NTL
has a set of learnable transformations which are jointly trained on a Deterministic
Contrastive Loss (DCL) designed to learn faithful transformations. In Section 2.2,
we then provide several theoretical arguments for why DCL is better suited for
transformation learning than alternative loss functions. We prove that optimizing
existing losses for self-supervised learning w.r.t. the transformations leads to trivial
edge-cases, while these edge-cases are not optimal solutions under our objective
DCL. Therefore, we can use DCL for transformation learning and anomaly detection.
In Section 2.3, we find that our approach achieves impressive results in anomaly
detection on various data types. For time series, tabular data, and text, NTL
significantly improves the accuracy of anomaly detection. In terms of images, NTL
generalizes self-supervised anomaly detection/segmentation to image features and
achieves comparable results to state-of-the-art methods.

2.1 Algorithm and Methodology of NTL
NTL learns an anomaly detector which contains K+1 learnable transformations. Each
transformation is a parameterized function (e.g., a neural network) T θ

k (·) : X → Z
that maps samples into an embedding space Z. These embeddings include one
reference embedding T θ

0 (x) and K transformed embeddings T θ
k (x) for k = 1, . . . , K.

We assume that all transformations are learnable, i.e., they can be modeled by
any parameterized function whose parameters θ are accessible to gradient-based
optimization. A schematic of NTL is in Figure 2.1. Each sample is transformed by a
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Figure 2.1: NTL is an end-to-end procedure for self-supervised anomaly detection
with learnable neural transformations. Each sample is transformed by a set of neural
transformations and then embedded into a semantic space. The transformations and
the encoder are trained jointly with a contrastive objective (Equation (2.2)), which
is also used to score anomalies. Note that the figures of Marilyn Monroe [92] are
only used for illustration purposes.

set of learnable transformations and then embedded into a semantic space such that
(1) all transformed embeddings preserve some semantic information about the input
sample, while (2) all transformations remain distinct from another. As follows, we
motivate NTL’s loss function and its usage in anomaly scoring. For convenience, we
list the basic notations in Table 2.1.

2.1.1 Loss Function and Optimization

A key ingredient of NTL is a new loss function that we call Deterministic Contrastive
Loss (DCL), explained below. This loss is constructed to encourage the transforma-
tions to learn salient features of the training data (which are assumed to belong to
the normal class). The DCL encourages each transformed embedding to be similar to
the reference embedding while encouraging it to be dissimilar from other transformed
embeddings of the same sample. We define a kernel function [93] for measuring the
similarity of two embeddings a, b ∈ Z as

h(a, b) := exp(a
⊤b/∥a∥∥b∥

τ
), (2.1)
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Table 2.1: Basic notations

Indices:
K number of transformations (k ∈ {1, ..., K})
N number of data samples (i ∈ {1, ..., N})
N number of data classes
Variables:
x data sample
y ground-truth label of being an anomaly
ỹ predicted label of being an anomaly
X data space
Z embedding space
Parameters:
θ learnable parameters of the model
τ temperature controlling the sensitivity of the similarity measure
Functions:
ϕk(·) transformation function X → X
ϕθ

k(·) learnable neural transformation function X → X
T θ

k (·) learnable neural transformation function X → Z
fθ(·) trainable encoder network X → Z
h(·, ·) similarity function between two variables Z → R
ℓ(·) loss function X → R
s(·) anomaly score function X → R

where τ denotes a temperature parameter. By plugging all transformations and
averaging over all data samples, DCL is defined using the function h(a, b) as

Lθ
NTL = 1

N

N∑
i=1

ℓ(xi; θ) with ℓ(x; θ) := −
K∑

k=1
log h(T θ

k (x), T θ
0 (x))∑

l∈{0,...,K}/{k} h(T θ
k (x), T θ

l (x))
.

(2.2)

Each summand selects one transformed embedding as the anchor. The reference
embedding is the positive sample, and the other transformed embeddings are the
negative samples. Intuitively, the term in the nominator pulls the transformed em-
beddings close to the reference embedding, encouraging the transformed embeddings
to preserve relevant semantic information of the reference embedding. The denomi-
nator pushes all transformed embeddings away from each other, thereby encouraging
diverse transformations.

The parameters of all transformations θ are optimized jointly with stochastic
gradient descent or its variants (e.g., Adam [94]). The optimal parameters θ∗ are
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2 Neural Transformation Learning

computed by minimizing Equation (2.2) on the training samples as

θ∗ = arg min
θ
− 1

N

N∑
i=1

K∑
k=1

log h(T θ
k (xi), T θ

0 (xi))∑
l∈{0,...,K}/{k} h(T θ

k (xi), T θ
l (xi))

. (2.3)

This training objective leads to neural transformations that produce diverse views of
each sample. Next, we describe how NTL is used to detect anomalies.

2.1.2 Score Function

One advantage of our approach over other methods is that our loss function is also
our anomaly score. We define an anomaly score s(x) as

s(x) := ℓ(x; θ). (2.4)

By minimizing the DCL (Equation (2.2)), we minimize the anomaly score for training
samples (inliers). The transformations learn to highlight salient features of the data
such that a low loss value can be achieved. After training, samples from the normal
class have low anomaly scores, while anomalies are handled less well by the model
and thus have high scores. The higher the anomaly score, the more likely that a
sample is an anomaly. Unlike most other contrastive losses in representation learning
[68, 73] and image anomaly detection [37, 42], the negative samples are not drawn
from a noise distribution (e.g., other samples in the minibatch) but constructed
deterministically from x in our loss and score function. Dependence on the minibatch
for negative samples would need to be accounted for at test time. Drawing negative
samples from the test data is biased, and using the training data is infeasible in
practice. In contrast, the deterministic nature of our score function makes it a simple
choice for anomaly detection.

This concludes the proposed method NTL, an end-to-end procedure for trans-
formation learning and anomaly detection. The detailed training process and test
process of NTL are in Algorithm 1. We stress that it is simple and effective without
the need of any additional regularization. However, it is not trivial to see why NTL
is suited for transformation learning and anomaly detection. To this end, we analyze
the theoretical properties of NTL.

2.2 Theoretical Properties of NTL
We provide theoretical considerations on what makes the DCL suitable for trans-
formation learning, especially in comparison to other popular self-supervised losses.
We start by introducing two requirements that allow machine learning algorithms to
learn useful transformations. We then show that the requirements are not met for
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Algorithm 1: Algorithm of NTL
Data: training dataset D, test data xtest
Model: neural transformations T θ

0,...,K

// Training process
foreach epoch do

foreach Mini-batch M⊂ D do
Transform each training sample T θ

0 (x), · · · , T θ
K(x)← x ∈M

Minimize the loss Lθ
NTL in Equation (2.2) to update θ

end
end
// Test process
Transform the test data T θ

0 (xtest), · · · , T θ
K(xtest)← xtest

Calculate the anomaly score according to s(xtest) in Equation (2.4)

existing related self-supervised methods, preventing these loss functions from being
useful for transformation learning. In contrast, we demonstrate that NTL can learn
useful transformations that satisfy both requirements and lead to a powerful and
flexible self-supervised anomaly detection method.

2.2.1 When Can Transformations be Learned from Data?

We discuss the fundamentals for transformation learning in the following. Data
transformations play an important role in auxiliary tasks for self-supervised learning.
Here we provide considerations for what properties make the transformations useful.
These considerations guide our analysis of various self-supervised losses to decide if
they are suitable for learning transformations from data.

Current transformation prediction methods are based on the following human
intuition: we can recognize and thereby describe transformations applied to data we
know. For example, we can recognize a rotated car or tree. However, assume an
image of a strange shape that we have never encountered before: since we would
not recognize it, we could also not tell if a transformation (e.g., rotation) has been
applied to it. This explains why transformation prediction on normal data is easier
than predicting which transformation has been applied to an anomaly.

It is natural to ask how transformations are typically chosen. On the one
hand, the transformations typically do not render the input unrecognizable. A
rotated/blurred/cropped cat is still recognizable as a cat. Training a transformation
predictor with such transformations gives us an effective feature extractor. On the
other hand, when applying more transformations, the transformation prediction task
becomes harder, and the model needs to become more sensitive to the characteristic
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2 Neural Transformation Learning

features of the data to solve the learning task well. To make this task meaningful,
one typically chooses a diverse set of transformations.

Since the machine learning framework of transformation prediction draws on
the same principles, one may wonder which properties one can define as practical
necessities for learnable transformations. We argue that loss functions for learning
useful transformations for downstream tasks need to meet two fundamental goals:

Requirement 1 (Semantics). Learned transformations should produce views that
share relevant semantic information with the original data.

Requirement 2 (Diversity). Learned transformations should produce diverse views of
each sample.

A valid loss function for transformation learning should avoid solutions that
violate either of these requirements. There are plenty of transformations that would
violate Requirement 1 or Requirement 2. For example, a constant transformation
that does not depend on x would violate the semantics requirement, whereas identical
transformations that produce the same views violate the diversity requirement.

We argue thus that for self-supervised anomaly detection, the learned transfor-
mations need to negotiate the trade-off between semantics and diversity with the
two examples as edge cases on a spectrum of possibilities. Without semantics, i.e.,
without dependence on the data, an anomaly detection method cannot decide whether
a new sample is normal or anomalous. And without variability in transformations,
the benefit from self-supervised learning is gone in anomaly detection.

2.2.1.1 Are Existing Losses Suited for Transformation Learning?

Before discussing NTL in detail, we compare the approach with two other self-
supervised approaches using data transformations. We will prove that these popular
frameworks do not meet one of the two goals discussed above and therefore do not
allow the data transformations to be learned. These frameworks are discussed next.
1. The first approach is the transformation prediction approach by Golan and El-

Yaniv [38]. It requires a set of hand-crafted transformations {ϕ1, ..., ϕK | ϕk(·) :
X → X}. Given a transformed view ϕk(x) ∈ X , a classifier fθ(·) : X → RK that
outputs K values fθ(ϕk(x))1 . . . fθ(ϕk(x))K proportional to the log-probabilities
of which transformation was used to produce the view. The transformation
prediction loss is a softmax classification loss formulated with T θ

k = fθ ◦ϕk, where
◦ denotes the composition of functions.

Lθ
P :=− 1

N

N∑
i=1

K∑
k=1

log exp T θ
k (xi)k∑

l=1:K exp T θ
k (xi)l

. (2.5)
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2. We also consider Chen et al. [73], who define a contrastive loss on each minibatch
of data M ⊂ D. For each gradient step, they sample a minibatch and two
hand-crafted transformations ϕ0, ϕ1 from the family of transformations, which are
applied to all the samples. Here fθ(·) : X → Z is an encoder that maps data to
the embedding space. Using T θ

k = fθ ◦ ϕk, the loss function is given by

Lθ
C := (2.6)

− 1
|M|

|M|∑
i=1

1∑
k=0

log
h(T θ

k (xi), T θ
1−k(xi))∑

xj∈M/{xi} h(T θ
k (xi), T θ

k (xj)) +
∑

xj∈M h(T θ
k (xi), T θ

1−k(xj))

With hand-crafted, fixed transformations, these losses produce excellent anomaly
detectors for images. Specifically, Golan and El-Yaniv [38], Wang et al. [40], Tack
et al. [42] use the self-supervised loss function also as the score function to detect
anomalies in an end-to-end manner. Sohn et al. [37], Sehwag et al. [85] present a
two-stage framework for anomaly detection. In the first stage, they learn high-level
data representations by minimizing the contrastive loss. In the second stage, a
shallow anomaly detection method, such as an OCSVM [13], or a distance metric,
such as Mahalanobis distance, is applied to the representations from the first stage.
Since it is not always straightforward to design transformations for new application
domains, we study their suitability for learning data transformations.

We prove that Lθ
P and Lθ

C are less well-suited for transformation learning than
Lθ

NTL (Equation (2.2)). We start by arguing that Lθ
P has a trivial solution when

trying to optimize the transformations. For this reason, the transformations have to
be hand-crafted, and the transformation prediction approach can only be used for
data where enough intuition exists to do so.

Proposition 1. The ‘constant’ edge-case T θ
k (x) = σck for k = 1, . . . , K, where ck is a

one-hot vector encoding the kth position (i.e., ck,k = 1), tends towards the minimum
of Lθ

P (Equation (2.5)) as the constant σ goes to infinity.

Proof. As a negative log probability, Lθ
P ≥ 0 is lower bounded by 0. We want to

show that with T θ
k (x) = σck, where ck is a one-hot vector and σ is a constant, Lθ

NTL
goes to 0 as σ goes to infinity. Plugging T θ

k (x) = σck into Lθ
P and taking the limit

yields

lim
σ→∞

Lθ
P = lim

σ→∞
− 1

N

N∑
i=1

K∑
k=1

log exp σ

exp σ + K − 1 = lim
σ→∞

−K log exp σ

exp σ + K − 1

= lim
σ→∞

−Kσ + K log(exp σ + K − 1) = 0.

Therefore, Proposition 1 is proven.

The constant transformations violate the semantics requirement and therefore
cannot be used for anomaly detection. Proposition 1 implies that Lθ

P cannot be
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used to learn transformations. An alternative popular self-supervised loss Lθ
C is

not suitable for transformation learning either. We next show that Lθ
C is trivially

optimized by identity transformations.

Proposition 2. The ‘identity’ edge-case ϕ0(x) = ϕ1(x) = x with an adequate encoder
is a minimizer of Lθ

C (Equation (2.6)).

Proof. Lθ
C can be written as Lθ

C = Lθ
alignment + Lθ

uniformity, where

Lθ
alignment = − 1

|M|

|M|∑
i=1

1∑
k=0

log h(T θ
k (xi), T θ

1−k(xi)) ,

Lθ
uniformity = 1

|M|

|M|∑
i=1

1∑
k=0

log
∑

xj∈M/{xi}
h(T θ

k (xi), T θ
k (xj)) +

∑
xj∈M

h(T θ
k (xi), T θ

1−k(xj)) .

A sufficient condition of min(Lθ
C) is both Lθ

alignment and Lθ
uniformity are minimized.

min(Lθ
C) ≥ min(Lθ

alignment) + min(Lθ
uniformity) .

Given an adequate encoder fθ∗ , that is flexible enough to minimize both Lθ
alignment

and Lθ
uniformity for all transformation pairs ϕ0 and ϕ1, we will show we can construct

another solution to the minimization problem that relies only on identity transforma-
tions. The alignment term is only minimized for all ϕ0, ϕ1, if fθ∗◦ϕ0(xi) = fθ∗◦ϕ1(xi)
for all xi ∼M. So we know for fθ∗ that

fθ∗ = arg min
fθ

Lθ
alignment ⇐⇒ fθ∗ ◦ ϕ0(xi) = fθ∗ ◦ ϕ1(xi) ∀xi ∼M.

Define f̃ = fθ∗ ◦ ϕ0. Since fθ∗ ◦ ϕ0(xi) = fθ∗ ◦ ϕ1(xi),

f̃ ◦ I(xi) = fθ∗ ◦ ϕ0(xi) = fθ∗ ◦ ϕ1(xi) ∀xi ∼M.

Using only the identity transformation I(x) = x for ϕ0 and ϕ1, and f̃ as the encoder
in LC yields the same minimal loss as under ϕ0, ϕ1 and fθ∗ .

A consequence of this result is that Lθ
C with learnable transformations results

in a data-independent loss function resulting in an anomaly score constant across
samples. Plugging in ϕ0(x) = ϕ1(x) = x cannot be used for anomaly detection as all
samples (normal or not) achieve the same loss and anomaly score.

These propositions highlight a serious issue with using Lθ
P or Lθ

C for transformation
learning and anomaly detection. Should the optimization reach the edge-cases of
Propositions 1 and 2, Lθ

P and Lθ
C incur the same loss irrespective of whether the

inputs are normal or abnormal data. Next, we prove that these edge-cases do not
minimize DCL (Equation (2.2)).
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2.2.1.2 Is DCL Suited for Transformation Learning?

Intuitively, the numerator of DCL (Equation (2.2)) encourages transformed em-
beddings to resemble their reference embedding (i.e., it encourages the semantics
requirement), and the denominator encourages the diversity of transformations. The
result of optimizing the DCL is a heterogeneous set of transformations that model
various aspects of the data. We prove that the ‘constant’ edge-case and the ‘identity’
edge-case do not minimize DCL (Equation (2.2)).

Proposition 3. Let cl ∈ Z be a one-hot vector encoding the kth position, and let
σ ∈ R be a non-zero constant. The ‘constant’ edge-case T θ

k (x) = σck for k = 1, . . . , K

does not minimize ℓ(x; θ) (Equation (2.2)) for any σ.

Proof. For simplicity, we define the embeddings obtained by the transformations as
zk := T θ

k (x) for k = 0, . . . , K. We prove that the gradient of ℓ(x; θ) (Equation (2.2))
with respect to these embeddings evaluated at the ‘constant’ edge-case is nonzero, i.e.,
∇ℓ(x; θ) = [∂ℓ(x;θ)

∂z0
, . . . , ℓ(x;θ)

∂zK
]⊤ ̸= 0 at z1:K = σc1:K , where ck is a one-hot vector

encoding the kth position (i.e. ck,k = 1). Using the chain rule, the partial derivative
∂ℓ(x;θ)

∂zu
∀u ∈ {0, . . . , K} can be factorized as

∂ℓ(x; θ)
∂zu

=
K∑

k=1

∑
l∈{1,...,K}/{k} h(zk, zl)

∂(
z⊤

k
zl

∥zk∥∥zl∥ −
z⊤

k
z0

∥zk∥∥z0∥ )
∂zu/∥zu∥∑

l∈{0,...,K}/{k} h(zk, zl)
I − zuz

⊤
u /∥zu∥2

∥zu∥
. (2.7)

We plug in z1:K = σc1:K and then get

∂ℓ(x; θ)
∂zu
|
z1:K=σc1:K

= (2.8)

∑
k∈{1,...,K}/{u}

(
c⊤

k − z⊤
0 /∥z0∥

h(σcu, z0) + K − 1 + c⊤
k

h(σck, z0) + K − 1

)
I − zuz

⊤
u /∥zu∥2

∥zu∥
.

The strategy of this proof is to show that the partial derivatives cannot all be zero.
We will assume that the partial derivatives are zero and reach a contradiction through
algebraic manipulation.

As σ is finite, by assuming the kth (k ∈ {1, . . . , K}/{u}) entry of ∂ℓ(x;θ)
∂zu

equals
zero at z1:K = σc1:K we get the kth entry of z0

z⊤
0,k = ∥z0∥

K − 1

(
c⊤

k,k + c⊤
k,k

h(σcu, z0) + K − 1
h(σck, z0) + K − 1

)
. (2.9)

Similarly, by assuming kth entry of ∂ℓ(x;θ)
∂zv

equals zero at z1:K = σc1:K with v ̸= u

and v ̸= k we have

z⊤
0,k = ∥z0∥

K − 1

(
c⊤

k,k + c⊤
k,k

h(σcv, z0) + K − 1
h(σck, z0) + K − 1

)
. (2.10)
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As Equation (2.9) and Equation (2.10) are equal, we have h(σcu, z0) = h(σcv, z0).
Since this should hold for setting any of the entries of any of the partial derivatives,
we get

h(σck, z0) = r, z⊤
0,k/∥z0∥=

2
K − 1 ∀ k ∈ {1, . . . , K}. (2.11)

By plugging in h(σck, z0) = r and z1:K = σc1:K to ∂ℓ(x;θ)
∂z0

we have

∂ℓ(x; θ)
∂z0
|

h(σck,z0)=r,z1:K=σc1:K
= 1−K

r + K − 1

K∑
k=1

c⊤
k

I − z0z
⊤
0 /∥z0∥2

∥z0∥
. (2.12)

Equation (2.12) equals zero, if and only if every entry in the resulting vector equals
zero. By assuming the kth (k ∈ {1, . . . , K}) entry of ∂ℓ(x;θ)

∂z0
equals zero at Equa-

tion (2.11) and z1:K = σc1:K , we have

1−K

( 2
K − 1

)2
= 0 , (2.13)

which leads to a non-integral value of K. Since K is the number of transformations
and is defined as an integer, we must conclude that Equation (2.12) cannot be zero.
Therefore, ∇ℓ(x; θ) = [∂ℓ(x;θ)

∂z0
, . . . , ℓ(x;θ)

∂zK
]⊤ ̸= 0 at z1:K = σc1:K and Proposition 3 is

proven.

This result is expected as the DCL encourages the learned transformations
to produce views that are predictive of the untransformed data. Specifically, the
numerator of the DCL aims to align transformed views with the reference embedding
of the same sample. The ‘constant’ edge-case violates this. The fact that the
‘constant’ edge-case is not a minimizer of the DCL makes DCL advantageous for
transformation learning over the transformation prediction loss Lθ

P (Proposition 1).
Next, we prove that the DCL also has an advantage over the contrastive learning

loss Lθ
C . We show that (unlike Lθ

C , Proposition 2) the DCL is not minimized by
identical transformations.

Proposition 4. The ‘identity’ edge-case ∀k,l T θ
k (x) = T θ

l (x) does not minimize ℓ(x; θ)
(Equation (2.2)).

Proof. By plugging in T θ
0:K(x) = z to ℓ(x; θ), we have

ℓ(x; θ)|T θ
0:K(x)=z

= −
K∑

k=1
log h(z, z)

Kh(z, z) = K log K. (2.14)

It is sufficient to construct a set of transformations that have a smaller value of the
loss. Assuming that the embedding space Z has enough dimensions, it is always
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2.2 Theoretical Properties of NTL

possible to arrange them such that the first K transformations result in mutually
orthogonal embeddings, while the last embedding is anti-aligned with the previous
one:

T θ
k (x) ⊥ T θ

l (x) ∀k, l = 0, ..., K − 1 and k ̸= l, (2.15)
T θ

K(x) = −T θ
K−1(x). (2.16)

By plugging this set of transformations into the loss function ℓ(x; θ) (Equation (2.2))
yields

ℓ(x; θ) = (K − 1) log K + log(K − 1 + exp(−1)) < K log K. (2.17)

Hence, the constructed example achieves a lower loss value than the ‘identity’ edge-
case for any K. The ‘identity’ edge-case is therefore not minimizing ℓ(x; θ).

This result shows that the ‘identity’ edge-case (or any other set of transformations
that violates the diversity requirement) does not minimize the DCL, which makes
the DCL superior to the contrastive learning loss Lθ

C in learning transformations.
The intuition behind this result is that the denominator of the DCL aims to push
different transformations away from each other and assures that the transformed
views are not identical.

Together Propositions 1 to 4 show that our proposed DCL is better suited for
transformation learning than existing self-supervised losses that rely on transforma-
tions. However, in theory, we can still construct two possible failure cases of NTL in
transformation learning or anomaly scoring.

2.2.2 Theoretical Limitations

NTL is not perfect. Even though NTL does not suffer from the failure cases in
Propositions 3 and 4, it can, in theory, fail in learning transformations when the
reference embeddings T θ

0 (x) for all x collapse to the same constant, as shown in
Proposition 5. We also theoretically show that it can fail in learning a data-dependent
anomaly score even if the learned transformations are diverse and semantically
meaningful in Proposition 6. To address these theoretical limitations, we provide
practical recommendations on model implementation.

First, we construct a failure case for NTL in learning transformations when all
the reference embeddings T θ

0 (x) for all x collapse to the same constant, although we
never observed this in practice. With constant reference embeddings, the model can
end up with transformations that violate the semantics requirement.

Proposition 5. Assume the reference embeddings are collapsed to a constant on
the unit hypersphere for all samples, namely, T θ

0 (x)/∥T θ
0 (x)∥= c, where c is a
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2 Neural Transformation Learning

constant vector. If there is any layer in the network of T θ
k with k ∈ {1, . . . , K}

having a bias term bk, there exists an optimal constant solution, T θ
k (x) = bk, of

Lθ
NTL (Equation (2.2)).

Proof. Assume the parameters of T θ
k consist of the weights wk and one bias term bk.

By zeroing out the weights wk, we have ∀x ∈ X , T θ
k (x) = bk. Given a sample x and

its reference embedding T θ
0 (x)/∥T θ

0 (x)∥= c, we can find the optimal transformed
embeddings bk for k = 1, . . . , K by minimizing Lθ

NTL. Since by assumption ∀x ∈
X , T θ

0 (x)/∥T θ
0 (x)∥= c, we have bk for k = 1, . . . , K as the optimal transformed

embeddings for all samples. Therefore, Proposition 5 is proven.

The assumption that the reference embeddings are collapsed to a constant can
happen if the weights w0 in the network of T θ

0 are all zero. Put differently, Propo-
sition 5 implies that the collapse of the reference embedding should be prevented,
and the bias terms should be removed in the networks of transformations since the
networks can learn the constant functions to minimize Lθ

NTL (Equation (2.2)).
We recommend the following parametrization of the transformations for preventing

this in practice. We model T θ
0 with an encoder fθ(·) : X → Z which is parameterized

by a network. The transformations T θ
k with k ∈ {1, . . . , K} are modeled by a

composition of a bias-free network ϕθ
k(·) : X → X and the encoder fθ. The encoder

fθ serves as the shared feature extractor for all transformations. The weights
in the network of fθ cannot be all zero since a low DCL can only be achieved
with distinguishable views. The data space transformation functions ϕθ

k(·) (for
k = 1, . . . , K) modeled by bias-free networks are optimized to be diverse and thus
will not all collapse to constant solutions.

Second, we construct a failure case for NTL in learning a data-dependent anomaly
score in theory, even if the learned transformations are diverse and semantically
meaningful. The success of the scoring of self-supervised anomaly detection methods
is based on the concept of “inlier priority” [40], where the model is generalized better
to unseen normal data than anomalies as the majority of the training data is normal.
At test time, the model is expected to perform differently on normal and abnormal
data. We argue that a generalization gap is required in self-supervised anomaly
detection.

Requirement 3 (Generalization Gap). The model should have a generalization gap
between unseen inliers and outliers in solving the auxiliary task; namely, it performs
on inliers and outliers differently.

Here we show a failure case of NTL in anomaly scoring even though the learned
transformations are diverse and semantically meaningful.
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Proposition 6. Using any rotation matrices as the transformations T θ
k (x) = Rkx for

k = 1, . . . , K and using the identity transformation as T θ
0 (x) = x leads to a constant

data-independent score function (Equation (2.4)).

Proof. Rk rotates the vector by an angle ρk counterclockwise. Plugging the trans-
formed embeddings Rkx and the reference embedding x in the anomaly score function
(Equation (2.4)) leads to

s(x) = −
K∑

k=1
log exp(cos ρk)

exp(cos ρk) +
∑

l∈{1,...,K}/{k} exp(cos ρk − ρl)
,

which is a constant function independent of the input sample x.

Proposition 6 implies that parameterizing the neural transformations as linear
affine transformations has the risk of leading to a constant score function independent
of the input samples. A practical solution to avoid this is to learn non-linear
transformations by including non-linear activations (e.g., ReLU activation) in the
network of transformations.

2.3 Applications of NTL
NTL is applicable to a variety of domains: it can be used to detect abnormal time
series, and it is applicable to anomaly detection on tabular data. The advantages
of NTL include that it outperforms other deep anomaly detection methods (as
our experimental results in this section will show) and that it does not require
hand-crafted data augmentation schemes for specialized domains. Since the neural
transformations are learned together with the other architecture components, they
automatically lead to an appropriate data augmentation scheme. In fact, since the
transformations do not need to be hand-crafted, they can even be applied to data
representations that are not easily accessible to human intuition, such as image
features that are extracted from an image using a pre-trained neural network, or to
word embeddings from a language model. This allows us to use NTL to also perform
anomaly detection on images and on text.

In this section, we present the following applications of NTL: (i) Section 2.3.2:
Anomaly detection on time series. We evaluate NTL on identifying whole abnormal
sequences. We find that it can effectively find anomalies in audio signals, health care
signals, as well as motion signals. (ii) Section 2.3.3: Anomaly detection on tabular
data. We find that NTL is the most effective method for detecting anomalies in four
real-world datasets from the medical and cyber security domains. (iii) Section 2.3.4:
Anomaly detection on image data. We study NTL on raw images and image features.
(iv) Section 2.3.5: Anomaly segmentation on image data. We study NTL on localizing
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2 Neural Transformation Learning

anomalous regions of an image. (v) Section 2.3.6: Anomaly detection on text. We
build NTL on word embeddings to detect whole abnormal sentences. For each
application, we specify the choice of neural transformations T θ

k . We present an
extensive empirical evaluation in comparison with other successful approaches for
anomaly detection and discuss the results and their implications. We also provide
an analysis of NTL on synthetic data to visualize the learned transformations and
their contributions to the anomaly score in Appendix A.1 and a sensitivity study of
transformation design choices in Appendix A.2.

2.3.1 Evaluation Protocol

An anomaly detection method is useful if it is good at detecting anomalies in unseen
test data. To test this, we follow the standard evaluation protocol for anomaly
detection in the literature [e.g., 22, 28, 37, 38, 39, 41, 42, 89, 95, 96, 97, 98, 99]. Since
it is hard to find labeled test sets for anomaly detection in many domains, a common
approach for setting up an evaluation pipeline is to repurpose classification datasets.
We consider two such evaluation protocols: the standard ‘one-vs-rest’ and the more
challenging ‘n-vs-rest’ evaluation protocol. Both settings turn a classification dataset
into a quantifiable anomaly detection benchmark.

One-vs-rest. This evaluation setup has been used in virtually all recent papers on
deep anomaly detection published at top-tier venues [e.g., 22, 28, 37, 38, 39, 41, 42,
89, 95, 96, 97, 98, 99]. For ‘one-vs.-rest’, the dataset is split by the N class labels,
creating N one-class classification task, in each of which one class is considered
normal, and only samples drawn from this class are used as training data. All other
classes are considered abnormal. The test and validation sets contain samples from
all classes, including the normal class. The samples from the other classes should
be detected as anomalies. By iterating over the classes and changing which class is
considered normal, we obtain N separate anomaly detection tasks for evaluation.

N-vs-rest. An alternative evaluation protocol we also consider follows the insight
that it is more realistic in practice that the “normal distribution” is more diverse
than a single class (i.e., it is more realistic that it contains multiple classes [100, 101]).
So we also evaluate methods on the more challenging n-vs.-rest protocol, where n

classes (for 1 < n < N ) are treated as normal, and the remaining classes provide
the anomalies in the test and validation set. By increasing the variability of what is
considered normal data, anomaly detection becomes more challenging.
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2.3 Applications of NTL

2.3.2 Anomaly Detection on Time Series

Our goal is to detect abnormal time series on a whole-sequence level. This is a
different set-up than anomaly detection within time series but equally important
in practice. For example, one might be interested in detecting abnormal sound
or finding production quality issues by detecting abnormal sensor measurements
recorded over the duration of producing a batch. Other applications include sports
and health monitoring; e.g., finding abnormal movement patterns during sports can
be indicative of fatigue or injury.

In this section, we first present the datasets and baselines we use to study NTL.
We then present the implementation details and finally describe the empirical results.
We find that NTL learns semantically meaningful and diverse transformations and
detects anomalous time series successfully.

2.3.2.1 Datasets and Baselines

Time series datasets. We select datasets from various domains. The datasets come
from the UEA multivariate time series classification archive1 [103]. We evaluate NTL
on them with both one-vs-rest setting and n-vs-rest setting.
• Spoken Arabic Digits (SAD): Sound of ten Arabic digits, spoken by 88 speakers.

The samples are stored as 13 Mel Frequency Cepstral Coefficients. We select
sequences with lengths between 20 and 50 and get a dataset of 7824 samples. The
sequences that are shorter than 50 are zero-padded to have a length of 50.

• Naval Air Training and Operating Procedures Standardization (NATOPS): The
data is from a motion detection competition of various movement patterns used
to control planes in naval air training. The data has six classes of distinct actions.
The dataset has 360 samples, each being a sequence of x, y, z coordinates for eight
body parts of length 51.

• Character Trajectories (CT): The data consists of 2858 character samples from 20
classes. Each instance is a 3-dimensional pen tip velocity trajectory. The data is
truncated to the length of the shortest, which is 182.

• Epilepsy (EPSY): The data was generated with healthy participants simulating
four different activities: walking, running, sawing with a saw, and seizure mim-
icking whilst seated. The dataset has 275 samples, each being a 3-dimensional
sequence of length 203.

• Racket Sports (RS): The data is a record of university students playing badminton
or squash. The data records the x, y, z coordinates for both the gyroscope and
accelerometer. Sport and stroke types separate the data into four classes. The
dataset has 303 samples, each being a 6-dimensional sequence with a length of 30.
1We selected datasets on which supervised multi-class classification methods achieve strong results

[102]. Only datasets with separable classes can be repurposed for anomaly detection.
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2 Neural Transformation Learning

Time series baselines. We study NTL in comparison to unsupervised and self-
supervised anomaly detection methods. They include three anomaly detection
baselines: OCSVM [13], IF [15], a tree-based model which aims to isolate anomalies,
and LOF [14], which uses density estimation with K-Nearest Neighbor (KNN).

Next, we include two deep anomaly detection methods, Deep Support Vector
Data Description (DSVDD) [89], which fits a one-class classification in the feature
space of a neural net, and Deep Autoencoding Gaussian Mixture Model (DAGMM)
[104], which estimates the density in the latent space of an autoencoder. We also
include two baselines that are specifically designed for time series data: RNN-based
Model (RNN) directly models the data distribution p(x1:T ) =

∏
p(xt|x<t) and uses

the log-likelihood as the anomaly score. LSTM-based Encoder-Decoder (LSTM-ED)
[105] is an encoder-decoder time series model where the anomaly score is based on
the reconstruction error.

Finally, We choose two self-supervised baselines, which are technically also deep
anomaly detection methods. GOAD [41] is a distance-based classification method
based on random affine transformations. Golan and El-Yaniv [38] is a softmax-based
classification method based on hand-crafted transformations, which show impressive
performance on images. We adopt their pipeline to time series here by crafting
specific time series transformations (fixed Ts). Their implementation details are
provided in Appendix B.1.

2.3.2.2 NTL on Time Series

We consider a dataset of time series x ∈ Rd×T , where d is the data dimension and T is
the time series length. T θ

0 is modeled by an encoder fθ. The transformations T θ
k with

k ∈ {1, . . . , K} are modeled by composing data space transformation functions ϕθ
k

with the shared encoder fθ. We consider two parametrizations of the transformation
function ϕθ

k: residual ϕθ
k(x) := M θ

k (x) + x with M θ
k (x) ∈ Rd, and multiplicative

ϕθ
k(x) := M θ

k (x)⊙x with M θ
k (x) ∈ (0, 1)d. Both M θ

k and the encoder fθ are modeled
by convolutional neural networks.

Implementation details. M θ
k is a neural network that consists of one 1D convolu-

tional layer on the bottom, a stack of three residual blocks of 1D convolutional layers
with affine-free instance normalization layers and ReLU activations, as well as one
1D convolutional layer on the top. All bias terms in the network are fixed as zero.
The network of the encoder fθ consists of several residual blocks of 1D convolutional
layers with a hidden dimension of 32, as well as one final linear layer to extract
the embeddings. The number of residual blocks depends on the data dimension.
Specifically, we use four residual blocks in the encoder for RS, five residual blocks for
SAD and NATOPS, seven residual blocks for CT and EPSY. The output dimensions
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Table 2.2: Average AUC (%) with standard deviation for one-vs-rest anomaly
detection on time series datasets. NTL achieves the best results on 4 of 5 datasets.

SAD NATOPS CT EPSY RS Avg.
OCSVM 95.3 86.0 97.4 61.1 70.0 82.0
IF 88.2 85.4 94.3 67.7 69.3 81.0
LOF 98.3 89.2 97.8 56.1 57.4 79.8
RNN 81.5±0.4 89.5±0.4 96.3±0.2 80.4±1.8 84.7±0.7 86.5
LSTM-ED 93.1±0.5 91.5±0.3 79.0±1.1 82.6±1.7 65.4 ±2.1 82.3
DSVDD 86.0±0.1 88.6±0.8 95.7±0.5 57.6±0.7 77.4±0.7 81.1
DAGMM 80.9±1.2 78.9±3.2 89.8±0.7 72.2±1.6 51.0±4.2 74.6
GOAD 94.7±0.1 87.1±1.1 97.7±0.1 76.7±0.4 79.9±0.6 87.2
fixed Ts 96.7±0.1 78.4±0.4 97.9±0.1 80.4±2.2 87.7±0.8 88.2
NTL 98.9±0.1 94.5±0.8 99.3±0.1 92.6±1.7 86.5±0.6 94.4

of the encoders are 32 for SAD, 128 for EPSY, and 64 for others. On all time series
datasets, we set the number of transformations K = 11 and the temperature τ = 0.1.
More implementation details are provided in Appendix B.1.

2.3.2.3 Empirical Results

The results of NTL in comparison to the baselines on time series datasets from
various fields are reported in Table 2.2. NTL improves the detection accuracy over
existing baselines in terms of AUC by 7.2% on average. NTL outperforms all shallow
baselines in all experiments and outperforms the deep learning baselines in 4 out of 5
experiments. Only on the RS data, it is outperformed by transformation prediction
with fixed transformations, which we designed to understand the value of learning
transformations with NTL vs. using hand-crafted transformations. The results
confirm that designing the transformations only succeeds sometimes, whereas with
NTL we can learn the appropriate transformations. The learned transformations also
give NTL a competitive advantage over the other self-supervised baseline GOAD,
which uses random affine transformations. The performance of the traditional
anomaly detection baselines hints at the difficulty of each anomaly detection task;
the traditional methods perform well on SAD and CT, but perform worse than the
deep learning-based methods on other data.

What does NTL learn? For visualization purposes, we train NTL with the learnable
transformations on the SAD data. Figure 2.2 shows the structure in the data space
X and the embedding space of the encoder Z after training. Held-out data samples
(blue) are transformed by each of the learned transformations with the multiplicative
transformation function ϕθ

k(x) = M θ
k (x) ⊙ x to produce K = 4 different views of
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(a) normal data on X (b) normal data on Z

(c) anomalies on X (d) anomalies on Z

Figure 2.2: 3D visualization (projected using PCA) of how the original samples (blue)
from the SAD dataset and the different views created by the neural transformations
of NTL (one color per transformation type) cluster in data space (Figures 2.2a
and 2.2c) and in the embedding space of the encoder (Figures 2.2b and 2.2d). The
crisp separation of the different transformations of held-out inliers (Figure 2.2b) in
contrast to the overlap between transformed anomalies (Figure 2.2d) visualizes how
NTL is able to detect anomalies.

each sample (the transformations are color-coded by the other colors). Projection to
three principal components with PCA allows for visualization in 3D. In Figures 2.2a
and 2.2c, we can see that the transformations already cluster together in the data
space, but with the help of the encoder, the different views of inliers are separated from
each other (Figure 2.2b). In comparison, the anomalies and their transformations
are less structured in Z (Figure 2.2d), visually explaining why they incur a higher
anomaly score and can be detected as anomalies.

The learned masks M θ
1:4(x) of one inlier x are visualized in Figure 2.3. We can

see that the four masks are dissimilar from each other and have learned to focus
on different aspects of the spectrogram. The masks take values between 0 and 1,
with dark areas corresponding to values close to 0 that are zeroed out by the masks,
while light colors correspond to the areas of the spectrogram that are not masked
out. Interestingly, in M θ

1 , M θ
2 , and M θ

3 , we can see ‘black lines’ where they mask
out entire frequency bands at least for part of the sequence. In contrast, M θ

4 has a
bright spot in the middle left part of the spectrogram; it creates views that focus on
the content of the intermediate frequencies in the first half of the recording.
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Mθ
1 (x) Mθ

2 (x) Mθ
3 (x) Mθ

4 (x)

Figure 2.3: NTL learns dissimilar masks for SAD spectrograms (whose x-axis repre-
sents time and the y-axis represents frequency). Dark horizontal lines indicate where
M θ

1 and M θ
2 mask out frequency bands almost entirely, while the bright spot in the

middle left part of M θ
4 indicates that this mask brings the intermediate frequencies

in the first half of the recording into focus.
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Figure 2.4: AUC results of n-vs-all experiments on SAD and NATOPS for varying n.
NTL outperforms all baselines on NATOPS and all deep learning baselines on SAD.
LOF, a method based on KNN, outperforms NTL, when n > 3 on SAD.

How do the methods cope with increased variability of inliers? To study this
question empirically, we increase the number of classes n considered to be inliers. We
test all methods on SAD and NATOPS under the n-vs-rest setting with varying n.
Since there are too many combinations of normal classes when n approaches N − 1,
we only consider combinations of n consecutive classes. From Figure 2.4 we can
observe that the performance of all methods drops as the number of classes included
in the normal data increases. This shows that the increased variance in the nominal
data makes the task more challenging. NTL outperforms all baselines on NATOPS
and all deep-learning baselines on SAD. It is interesting that LOF, a method based
on KNN, performs better than our method (and all other baselines) on SAD when n

is larger than three.
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Table 2.3: Average AUC (%) with standard deviation for n-vs-rest (n = N − 1)
anomaly detection on time series datasets. NTL outperforms all deep methods and
achieves the best performance on average.

SAD NATOPS CT EPSY RS Avg.
OCSVM 60.2 57.6 57.8 50.2 55.9 56.3
IF 56.9 56.0 57.9 55.3 58.4 56.9
LOF 93.1 71.2 90.3 54.7 59.4 73.7
RNN 53.0±0.1 65.6±0.4 55.7±0.8 74.9±1.5 75.8±0.9 64.9
LSTM-ED 58.9±0.5 56.9±0.7 50.9±1.2 56.8±2.1 63.1±0.6 57.3
DSVDD 59.7±0.5 59.2±0.8 54.4±0.7 52.9±1.4 62.2±2.1 57.7
DAGMM 49.3±0.8 53.2±0.8 47.5±2.5 52.0±1.0 47.8±3.5 50.0
GOAD 70.5±1.4 61.5±0.7 81.1±0.1 62.7±0.9 68.2±0.9 68.8
fixed Ts 74.8±1.3 70.8±1.3 63.0±0.6 69.8±1.6 81.6±1.2 72.0
NTL 85.1±0.3 74.8±0.9 87.4±0.2 80.5±1.0 80.0±0.4 81.6

We also include quantitative results for n = N − 1 under the n-vs-rest setting
for all time series datasets, where only one class is considered abnormal, and the
remaining N − 1 classes are normal. The results are reported in Table 2.3. NTL
raises the detection accuracy in terms of AUC by 7.9% on average and outperforms
other deep learning methods on 4 out of 5 datasets. On RS, it is just outperformed
by transformation prediction with hand-crafted transformations. The traditional
method LOF performs better than deep learning methods on CT and SAD.

2.3.3 Anomaly Detection on Tabular Data

Tabular data is another important application area of anomaly detection. For
example, many types of health data come in tabular form. To unleash the power
of self-supervised anomaly detection for these domains, Bergman and Hoshen [41]
suggest using random affine transformation. Here we study the benefit of learning the
transformations on tabular data with NTL on four datasets, Arrhythmia, Thyroid,
KDD, and KDDRev.

2.3.3.1 Datasets and Baselines

Tabular datasets. We base our empirical study of tabular anomaly detection on
previous work [41, 104] and follow their choice of datasets as well as their precedent of
reporting results in terms of F1-scores. The datasets include the small-scale medical
datasets Arrhythmia and Thyroid as well as the large-scale cyber intrusion detection
datasets KDD and KDDRev. We follow the configuration of Bergman and Hoshen
[41] to train all models on half of the normal data and test on the rest of the normal
data as well as the anomalies.
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• Arrhythmia: A cardiology dataset from the UCI repository contains 274 continuous
attributes and five categorical attributes.

• Thyroid: A medical dataset from the UCI repository contains attributes related
to hyperthyroid diagnosis.

• KDD: The KDDCUP99 10 percent dataset from the UCI repository contains 34
continuous and seven categorical attributes.

• KDDRev: It is derived from the KDDCUP99 10 percent dataset. The non-attack
samples are considered normal, and the attack samples are considered abnormal.

On all datasets, we use the same preprocessing steps as Bergman and Hoshen [41].

Tabular baselines. We compare NTL to shallow anomaly detection baselines, in-
cluding OCSVM [13], IF [15], and LOF [14], and to deep anomaly detection methods
DSVDD [89], DAGMM [104], GOAD [41], and Deep Robust One-Class Classifica-
tion (DROCC) [81]. The results of OCSVM, LOF, DAGMM, and GOAD are from
Bergman and Hoshen [41]. We obtained the results for DSVDD and DROCC using
the implementation provided with the respective publications.

2.3.3.2 NTL on Tabular Data

We consider a dataset of tabular data x ∈ Rd. T θ
0 is modeled by an encoder

fθ. The transformations T θ
k with k ∈ {1, . . . , K} are modeled by composing data

space transformation functions ϕθ
k with the shared encoder fθ. We consider two

parametrizations of the transformation function ϕθ
k: residual ϕθ

k(x) := M θ
k (x) + x

with M θ
k (x) ∈ Rd, and multiplicative ϕθ

k(x) := M θ
k (x)⊙x with M θ

k (x) ∈ (0, 1)d. M θ
k

and the encoder fθ are both modeled by feed-forward neural networks.

Implementation details. The neural network of M θ
k consists of two bias-free lin-

ear layers with an intermediate ReLU activation. When using the multiplicative
parametrization, it has a sigmoid activation on the final layer. We use the residual
parametrization for the neural transformations on Thyroid and Arrhythmia, and use
the multiplicative parametrization on KDDCUP, and KDDCUP-Rev. The neural
network of the encoder fθ consists of five bias-free linear layers with ReLU activations.
The output dimensions of the encoder are 24 for Thyroid and 32 for the other datasets.
We set the number of neural transformations K = 11 and the temperature τ = 0.1
on all tabular datasets.

2.3.3.3 Empirical Results

In line with prior work, we use the average F1-score (%) with standard deviation as
the evaluation metric and report the results in Table 2.4. The results of OCSVM,
LOF, DAGMM, and GOAD are taken from Bergman and Hoshen [41]. For DSVDD
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Table 2.4: F1-score (%) with standard deviation for anomaly detection on tabular
datasets (choice of F1-score consistent with prior work). NTL achieves the best
results on all datasets.

Arrhythmia Thyroid KDD KDDRev Avg.
OCSVM 45.8 38.9 79.5 83.2 61.9
IF 57.4 46.9 90.7 90.6 71.4
LOF 50.0 52.7 83.8 81.6 67.0
DSVDD 53.9±3.1 70.8±1.8 99.0±0.1 98.6±0.2 80.6
DAGMM 49.8 47.8 93.7 93.8 71.3
GOAD 52.0±2.3 74.5±1.1 98.4±0.2 98.9±0.3 81.0
DROCC 47.5±0.7 75.6±1.8 92.9±0.4 95.2±1.0 77.8
NTL 60.3±1.1 76.8±1.9 99.3±0.1 99.1±0.1 83.9

and DROCC, we run their official implementations and report the results. NTL
outperforms all baselines on all tabular datasets. In particular, NTL raises the
F1-score on Arrhythmia by 3.7% and on Thyroid by 2.4%. Compared with the
self-supervised baseline GOAD with random affine transformations, the neural
transformations learned from data lead to better detection accuracy. In addition, we
find that NTL needs fewer transformations than GOAD. On the medical datasets, for
example, GOAD uses 256 transformations, while NTL achieves superior performance
with only 11 transformations.

2.3.4 Anomaly Detection on Image Data

Anomaly detection on images is important for many applications and has received
a lot of attention in the last few years. Recent works [29, 30, 37] employ shallow
anomaly detectors (KNN or OCSVM) upon the image features obtained from a
pre-trained model, often achieving better detection accuracy than self-supervised
anomaly detection on raw images. This raises the question of how to apply self-
supervised anomaly detection to image features which might lead to an additional
performance boost. However, applying self-supervised anomaly detection methods
(such as Golan and El-Yaniv [38], Wang et al. [40], Bergman and Hoshen [41]) to
image features is difficult since all of them rely on hand-crafted data augmentations
designed for raw images. Designing transformations manually requires intuitions
about image invariances (e.g., humans still recognize dogs in rotated images of dogs).
These intuitions do not readily generalize to image features. In contrast, NTL learns
transformations and hence requires no intuition. For this reason, it can be directly
used with image features.

In this section, we first present the datasets and baselines used to study NTL. We
then present how to apply neural transformations to raw images and image features.
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We finally show that when applying NTL on image features, we learn semantically
meaningful and diverse transformations and achieve competitive detection accuracy.

2.3.4.1 Datasets and Baselines

Image datasets. We study three image datasets, FashionMINST, CIFAR10, and
CIFAR100, which are commonly used in previous works [e.g., 29, 30, 37, 38, 89].
On FMNIST, we study the one-vs-rest setting. On the more challenging datasets,
CIFAR10 and CIFAR100 2, we consider both the one-vs-rest setting and the n-vs-rest
setting with n = N − 1 (the number of classes N ).

Image baselines. We compare NTL with modern baselines based on different
techniques. We include one deep anomaly detection baseline, DSVDD [89], which
learns a compact boundary of normal data in the embedding space to detect anoma-
lies. We also include Geometric Transformation Classification (GEOM) [38] as the
self-supervised baseline, which proposes an auxiliary transformation classification
task for anomaly detection. Next, we include three baselines, which build anomaly
detectors upon image features. They are Distribution-Augmented Contrastive Learn-
ing (Contra-DA) [37], which applies shallow anomaly detectors (e.g., OCSVM) on
features from an encoder pre-trained with a contrastive loss, Deep Nearest-Neighbors
(DN2) [29], which uses a KNN-based detector on features obtained from a pre-
trained ResNet, and Pretrained Anomaly Detection Adaptation (PANDA) [30], the
state-of-the-art method improves over DN2 by fine-tuning the pre-trained ResNet.

2.3.4.2 NTL for Image Anomaly Detection

NTL learns data-dependent transformations automatically. Therefore, we can apply
neural transformations to raw images or semantic features obtained from existing
pre-trained feature extractors. For both variants, we set the temperature τ = 0.1.
T θ

0 is modeled by an encoder fθ. The transformations T θ
k with k ∈ {1, . . . , K} are

modeled by composing transformation functions ϕθ
k with the shared encoder fθ.

NTL on raw images (NTL-I). We consider a dataset of images x. The data space
transformation function is parametrized multiplicatively as ϕθ

k(x) = x⊙M θ
k (x), where

M θ
k (x) is an attention mask (with values between 0 and 1) and the multiplication

is applied element-wise. M θ
k is modeled by a residual convolutional network with

affine-free batch normalization layers and a sigmoid activation on the top. All bias
terms in the network are fixed as zero. We set the number of neural transformations
K = 15 for all image datasets. As in Bergman and Hoshen [41], we use a ResNet
architecture as the encoder fθ with the output dimension of 64.

2For CIFAR100, we use 20 super-class labels.

33



2 Neural Transformation Learning

Table 2.5: Average AUC (%) with standard deviation on image datasets. NTL-F
performs comparably to the state-of-the-art method, PANDA, which relies on the
fine-tuning of the large pre-trained feature extractor and a costly detection.

Datasets DSVDD GEOM Contra-DA DN2 PANDA NTL-I NTL-F
FMNIST 92.8 93.5 94.8±0.3 94.4 95.6 94.5±0.1 94.9±0.04
CIFAR10 64.8 86.0 92.5±0.6 92.5 96.2 69.6±0.3 95.3±0.06
CIFAR100 - 78.7 86.5±0.7 89.3 94.1 68.1±0.1 93.2±0.12
Avg. rank 7.0 5.3 3.3 3.7 1.0 5.3 2.0

NTL on image features (NTL-F). We process images with a pre-trained ResNet and
obtain a dataset of image features x ∈ R2048 as in Bergman et al. [29]. We consider
two parametrizations of the transformation function: forward ϕθ

k(x) := M θ
k (x) with

M θ
k (x) ∈ R2048, and multiplicative ϕθ

k(x) := M θ
k (x) ⊙ x with M θ

k (x) ∈ (0, 1)2048.
M θ

k (x) is computed by three bias-free linear layers with affine-free batch normalization
layers and ReLU activations. A sigmoid activation is applied on the final layer of
M θ

k when using the multiplicative parametrization. We set the number of neural
transformations K = 15. The encoder fθ is modeled by two linear layers with an
intermediate ReLU activation. The output dimension of the encoder is 256.

2.3.4.3 Empirical Results

The results of NTL in comparison to the baselines on image datasets with the one-vs-
rest setting are reported in Table 2.5, where the results of baselines are taken from
Reiss et al. [30], Sohn et al. [37], Golan and El-Yaniv [38], Ruff et al. [89]. When
neural transformations are applied to raw images directly, NTL-I performs better
than DSVDD but worse than GEOM using hand-crafted transformations. It turns
out that learning good transformations from noisy raw images is still hard, and the
learned transformations are not competitive with transformations selected by human
experts on raw images. One reason for the poor performance on raw images could be
that the learned transformations affect mostly low-level features and do not interact
with higher-level semantic features, as would be desired for a strong self-supervision
task. This motivates applying NTL to pre-trained image features.

The detection results of NTL-F on image features (obtained with a ResNet
pre-trained on ImageNet) are reported in Table 2.5. NTL-F outperforms DN2 using
the same pre-trained feature extractor, and all baselines with no access to a feature
extractor are pre-trained on ImageNet. PANDA outperforms NTL-F but also requires
a careful fine-tuning of the large pre-trained ResNet and has a risk of performance
degradation caused by catastrophic forgetting [30]. Moreover, using PANDA at test
time is expensive; the KNN-based detection is slower than the forward-pass of the
other methods in Table 2.5, and it requires memorizing the entire training data for
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feature x transformed features x1, x2 feature x transformed features x1, x2

p(car|x) p(car|x1) p(car|x2) p(horse|x) p(horse|x1) p(horse|x2)
= 0.94 = 0.91 = 0.93 = 0.93 = 0.96 = 0.91

Figure 2.5: Visualization and semantics checking examples from CIFAR10. By
inverting the original and transformed image features, we visualize the features in
the image space in the first row. In the second row, we plot their class prediction
results from a downstream classifier. The transformed features are diverse and still
preserve semantic information.

test time. Our method achieves the highest performance among all methods that do
not suffer from this drawback. When using PANDA with a more efficient distance
for detection, the results will be 2% lower (e.g., CIFAR10: from 96.2% to 94.2%)
[30], which is outperformed by NTL-F (95.3%). It is even hard for human experts to
design good transformations on the feature vectors, while NTL can learn them from
data automatically. NTL offers a convenient way to perform self-supervised anomaly
detection on the image features to utilize the powerful existing pre-trained models
continuously being developed and improved by the vision community.

What do the transformed features look like? For an interpretable visualization of
the transformed features learned by NTL-F, we follow Mahendran and Vedaldi [106]
to invert them back to the image space by seeking an image that best matches the
source representation. From the resulting images shown in the first row of Figure 2.5,
we can see that the transformations disrupt different local regions and textures of
the image but preserve the global shape of the object. The learned local disruptions
preserve global semantics and vary, thereby satisfying the diversity requirement.

Furthermore, we analyze the semantic information contained in the transformed
features by checking the class prediction of a downstream classifier3 trained on the
raw features and ground truth class labels. In the second row of Figure 2.5 we
can see that the predictions given transformed features (blue) perfectly match the

3The classifier consists of two linear layers of units [128,10] with an intermediate ReLU activation.
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predictions given the raw features (orange)4. This confirms the claim that the learned
transformations manipulate the image without changing the global semantics as
encoded by the class label.

How do the methods cope with increased variability of inliers? To study how
sensitive NTL-F is to the variability of inliers, we also consider the n-vs-rest setting
with n = N − 1. As shown in Table 2.6, NTL-F outperforms baselines on CIFAR10
but performs worse than DN2 on CIFAR100. This is consistent with the results in
time series anomaly detection in Table 2.3, where the KNN-based methods (DN2
in vision and LOF in sequences) have an advantage in anomaly detection when the
normal distribution contains multiple modes.

Table 2.6: Average AUC (%) with standard deviation on CIFAR10 and CIFAR100
under n-vs-rest setting with n = N − 1. NTL outperforms the baselines on average.

Datasets GEOM DN2 NTL-F
CIFAR10 61.7 71.7 77.7±0.4
CIFAR100 57.3 71.0 68.0±0.2

2.3.5 Anomaly Segmentation on Image Data

Anomaly detection on images predicts one anomaly score for each image. Anomaly
segmentation on images is a more complex problem that requires pixel-level predic-
tions. The predicted anomaly heatmap provides reasonable explanations of why the
model detects an image anomalous.

In this section, we first present the dataset and baselines used to study NTL
for anomaly segmentation. We then present how to apply neural transformations
for segmenting anomalous image regions. We finally show the quantitative and
qualitative results of NTL on anomaly segmentation.

2.3.5.1 Datasets and Baselines

Image datasets. We evaluate the anomaly segmentation performance of NTL on
MVTEC. MVTEC [107] is an industrial anomaly segmentation dataset. It contains
images from ten object classes and five texture classes. The abnormal images have
pixel-level annotated defective regions. Many recent works [88, 108, 109, 110, 111]
build an anomaly segmentation benchmark on MVTEC.

4Note that the transformed features have not been used to train the classifier

36



2.3 Applications of NTL

Figure 2.6: Visualization of anomaly segmentation on MVTEC. For each class, from
left to right we show one anomalous image, its ground-truth map, and the predicted
anomaly heatmap with anomalies highlighted in red. NTL localizes the anomalous
regions successfully.

Anomaly segmentation baselines. We compare NTL with five recent anomaly
segmentation baselines. They are (i) Patch SVDD [108] that learns DSVDD on the
image patches, (ii) CutPaste [88], a self-supervised anomaly segmentation method
with hand-crafted local transformations, (iii) Fully Convolutional Data Description
(FCDD) [109] that learns one-class spatial features by fine-tuning a pre-trained
network, (iv) Semantic Pyramid Anomaly Detection (SPADE) [110] that scores
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Table 2.7: Average AUC (%) with standard deviation for anomaly segmentation on
MVTEC. NTL achieves the best anomaly segmentation performance on average.

Class FCDD Patch SVDD CutPaste SPADE PaDIM NTL
Te

xt
ur

e

Carpet 96 92.6 98.3±0.0 97.5 99.1 98.6±0.01
Grid 91 96.2 97.5±0.1 93.7 97.3 98.4±0.05

Leather 98 97.4 99.5±0.0 97.6 99.2 99.3±0.05
Tile 91 91.4 90.5±0.2 87.4 94.1 94.8±0.11

Wood 88 90.8 95.5±0.1 88.5 94.9 94.1±0.12
Average 93 93.7 96.3 92.9 96.9 97.0

O
bj

ec
t

Bottle 97 98.1 97.6±0.1 98.4 98.3 97.9±0.03
Cable 90 96.8 90.0±0.2 97.2 96.7 97.2±0.07

Capsule 93 95.8 97.4±0.1 99.0 98.5 98.5±0.01
Hazelnut 95 97.5 97.3±0.1 99.1 98.2 98.3±0.05
Metal nut 94 98.0 93.1±0.4 98.1 97.2 98.3±0.14

Pill 81 95.1 95.7±0.1 96.5 95.7 98.3±0.11
Screw 86 95.7 96.7±0.1 98.9 98.5 98.6±0.04

Toothbrush 94 98.1 98.1±0.0 97.9 98.8 98.4±0.03
Transistor 88 97.0 93.0±0.2 94.1 97.5 94.1±0.09

Zipper 92 95.1 99.3±0.0 96.5 98.5 98.8±0.05
Average 91 96.7 95.8 97.6 97.8 97.8

Average 92 95.7 96.0 96.0 97.5 97.6

anomalies with Euclidean distance to the normal patch-level features from a pre–
trained model, (v) and Patch Distribution Modeling (PaDIM) [111] that fits Gaussian
distributions for the patch-level features from a pre-trained model.

2.3.5.2 NTL for Image Anomaly Segmentation

We first process images with a WideResNet50 pre-trained in ImageNet as in previous
works [110, 111]. The image features are extracted from the second and third blocks
and then concatenated as the patch-level features x ∈ R1536. The pre-trained feature
extractor is frozen. Neural transformations are applied to the patch-level features.
T θ

0 is modeled by an encoder fθ. The transformations T θ
k with k ∈ {1, . . . , K} are

modeled by composing transformation functions ϕθ
k with the shared encoder fθ.

We use the multiplicative parametrization for the transformation function, namely,
ϕθ

k(x) := M θ
k (x)⊙ x with M θ

k (x) ∈ (0, 1)1536. M θ
k (x) is computed by three bias-free

linear layers with affine-free batch normalization layers and ReLU activations. A
sigmoid activation is applied to the final layer of M θ

k . We set the number of neural
transformations K = 15. The encoder fθ is modeled by one linear layer with the
output dimension of 256. We set the temperature τ = 0.1.

NTL outputs the anomaly score for each patch-level feature. We resize the
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anomaly heatmap to the image size with the bilinear interpolation and then smooth
the resized anomaly heatmap with a Gaussian kernel of the width 4.

2.3.5.3 Empirical Results

We report the results in terms of pixel-level AUC (%) in Table 2.7. The results of
baselines are taken from their original publications [88, 108, 109, 110, 111]. NTL
achieves the best anomaly segmentation performance on average. Recent work builds
shallow anomaly detection mechanisms, such as KNN and KDE, upon patch-level
features from pre-trained models [110, 111]. However, generalizing self-supervised
approaches to image features is not straightforward. To this end, NTL applies
learnable transformations on patch-level features, yielding better results than existing
baselines using pre-trained models [109, 110, 111]. Compared to CutPaste [88], the
self-supervised baseline, NTL learns the transformations from data rather than designs
them manually. This allows for the application of NTL directly on image features.
Consequently, NTL outperforms CutPaste with hand-crafted transformations and
saves the cost of designing the transformations and training the model from scratch.

We also visualize the predicted anomaly heatmaps in Figure 2.6. NTL outputs
anomaly heatmaps (right) that match the ground-truth maps (middle) very well.
Even though some anomalous regions, such as in the images of pill and capsule, are
even hard for humans, NTL localizes them successfully.

2.3.6 Anomaly Detection on Text

There are many beneficial applications of anomaly detection on text, such as detecting
spam emails, fake tweets, or other anomalous content on the web. Here we present
NTL for text anomaly detection and compare it with recent approaches for sentence-
level anomaly detection. NTL on text uses a pre-trained language model to preprocess
the text. To create different views of each sentence, neural transformations are then
applied to the list of word embeddings comprising each sentence. Below, we describe
how the individual word embeddings are transformed and how an attention mechanism
is used to aggregate word embeddings to create the different views of each sentence
needed for the NTL loss.

2.3.6.1 Datasets and Baselines

Text datasets. We study NTL on the Reuters-21578 dataset, which is commonly
used in previous text anomaly detection works [13, 23, 26]. We use the same
preprocessing as in Ruff et al. [23], including lowercasing, removing stopwords, and
tokenization. As in Ruff et al. [23], we select seven classes that have exactly one
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label. They are earn, acq, crude, trade, money-fx, interest, and ship. We evaluate
NTL on them with the one-vs-rest setting.

Text baselines. The text anomaly detection baselines include OCSVM [13] and
DSVDD [89], which aim to encompass normal data within a hypersphere in the
embedding space, and Multi-modal Deep Support Vector Data Description (mSVDD)
[26] which extends the idea of DSVDD to multiple hyperspheres. Further, the
baselines include Deep Multi-sphere Support Vector Data Description (DMSVDD)
[25], a hard version of mSVDD, and Context Vector Data Description (CVDD) [23],
which augments DSVDD for text with multiple attention heads to reflect that there
are multiple normal semantic contexts for each word. All baselines are built upon
the same pre-trained language model GloVe 6B [112].

2.3.6.2 NTL on Text

NTL on text uses a pre-trained language model to preprocess the text. To create
different views of each sentence, neural transformations are then applied to the list of
word embeddings comprising each sentence. Below, we describe how the individual
word embeddings are transformed and how an attention mechanism is used afterward
to aggregate the word embeddings to create the different views of each sentence.

As in previous work [23, 25, 26], we preprocess the data with a language model
such that each sentence x is represented by a sequence of word embeddings x =
[e1, . . . , eT ] ∈ Rd×T . The length T of the sentences varies from sentence to sentence.
T θ

0 is modeled by an encoder fθ. The transformations T θ
k with k ∈ {1, · · · , K} are

modeled by composing transformation functions ϕθ
k with the shared encoder fθ. The

transformation function ϕθ
k is applied to the individual word embeddings, producing

the transformed embeddings,

xk = ϕθ
k(x) = M θ

k (x)⊙ x,

where M θ
k is a feed-forward neural network with a sigmoid activation on the

top. It is applied to each embedding in the sentence separately, i.e., M θ
k (x) =

[M θ
k (e1), · · · , M θ

k (eT )] ∈ (0, 1)d×T . After the element-wise multiplication with word
embeddings, we have the transformed embedding xk = [M θ

k (e1)⊙ e1, · · · , M θ
k (eT )⊙

eT ] ∈ Rd×T . The embeddings are aggregated using attention Aθ(x) ∈ (0, 1)T and
are then encoded. In summary,

fθ(xk) = gθ(xkAθ(x)) with Aθ(x) = sigmoid(tanh(x⊤w1)w2), (2.18)

where w1 and w1 are learnable weights, and gθ is a feed-forward neural network that
maps the aggregated embeddings to a low dimensional embedding space 5.

5for the untransformed sentence x, Equation (2.18) becomes fθ(x) = gθ(xAθ(x)).
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Table 2.8: Average AUC (%) with standard deviation on Reuters datasets. NTL
achieves the best average AUC and the best accuracy on 5 of 7 experimental variants.

Class OCSVM DSVDD CVDD DMSVDD mSVDD NTL
earn 91.1 95.9 91.8 96.0 95.9 97.4±0.1
acq 93.1 89.4 91.5 89.8 90.1 91.6±1.1

crude 92.4 92.8 95.5 92.1 92.4 96.4±0.4
trade 99.0 98.4 99.2 98.8 98.6 99.5±0.1

money-fx 88.6 86.3 82.8 87.1 87.1 89.8±0.1
interest 97.4 97.3 97.7 97.2 97.3 98.6±0.4

ship 91.2 92.5 95.6 93.0 92.6 89.6±0.7
average 93.3 93.2 93.1 93.4 93.4 94.7±0.1

Table 2.9: Example of relevant words (with large attention weights) for each class.
The attention mechanism learns to highlight words with a similar semantic content.

classes earn acq crude trade money-fx interest ship

x
pretax share futures imports dollar rate ship
rupees dollars crude exports currency pct ships
dlrs billion oil trade bank rates port

Implementation details. For M θ
k we use a neural network of three bias-free linear

layers of units [300, 300, 300] with ReLU activations and affine-free batch normaliza-
tion layers and a sigmoid activation on the top. The weights w1 and w2 have the
shapes of [300, 300] and [300, 1]. For gθ we use a neural network of three bias-free
linear layers of units [300, 100, 100] with ReLU activations. We set the number of
transformations K = 10 and the temperature τ = 0.1.

2.3.6.3 Empirical Results

The detection results in terms of average AUC (%) with standard deviation are
reported in Table 2.8. While all existing baselines apply one-class classification-based
approaches to text anomaly detection, NTL explores the application of self-supervised
detection on the text and achieves the best detection accuracy on 5 of 7 experimental
variants. On average, NTL outperforms all baselines by at least 1.3%.

We also record the three most relevant words (in terms of highest attention weight
Aθ(x)) for each class in Table 2.9. We can see that the attention mechanism of
NTL learns to highlight words with similar semantic content. This can give hints on
selecting the signature words in specific applications.
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2.4 Summary and Discussion
We propose NTL, a self-supervised anomaly detection method with learnable trans-
formations. The key ingredient is a novel training objective, DCL, which encourages
the learned transformations to be diverse and semantically meaningful. This un-
leashes the power of self-supervised anomaly detection to general data types. We
theoretically demonstrate that DCL is more suited than existing self-supervised
loss functions for transformation learning and anomaly detection. We also critically
discuss the theoretical limitations of NTL on learning transformations and detecting
anomalies. Addressing these, we give practical recommendations on the architecture
design and implementation. Our extensive empirical study finds that on various
data types, including time series, images, tabular data, and text data, learning
transformations and detecting anomalies with NTL improves over existing anomaly
detection approaches. Beyond anomaly detection, we also show that NTL can better
localize the anomalous regions of an image than many existing methods.

The idea of learning data augmentation schemes is also studied in other domains
previously. “AutoAugmentation” has usually relied on composing hand-crafted data
augmentations [113, 114, 115, 116, 117]. Tran et al. [118] learn Bayesian augmentation
schemes for neural networks, and Wong and Kolter [119] learn perturbation sets for
adversarial robustness. Though their setting and approach are different, our work
is most closely related to Tamkin et al. [120], which studies how to generate views
for representation learning in the framework of Chen et al. [73]. They parameterize
their “viewmakers” as residual perturbations, which are trained adversarially to avoid
trivial solutions where the views share no semantic information with the original
sample. In contrast, under NTL, there are no restrictions on the architecture of
the transformations, as long as the DCL can be optimized (i.e., the gradient is well
defined). The DCL is an adequate objective for training the transformations jointly
as it manages the trade-off between semantics and diversity.

Parts of this chapter are mainly based on:

[121] Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan Mandt, and Maja Rudolph.
Neural Transformation Learning for Anomaly Detection beyond Images. In Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 8703–8714. PMLR, 18–24 Jul 2021.

Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. Self-Supervised Anomaly
Detection with Neural Transformations. Preprint (under review), 2022.
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mation Learning

In this chapter, we introduce the extensions of NTL and show that NTL is compatible
with representation learning and One-Class Classification (OCC) learning. Benefiting
from combining NTL with other learning paradigms, our methods achieve impressive
results in anomaly detection within time series and graph-level anomaly detection.

In Section 3.1 we study detecting anomalies within time series, which is essential
in many application domains, reaching from self-driving cars, finance, and marketing
to medical diagnosis and epidemiology. Addressing this, we develop Local Neural
Transformations (LNT), a method for learning local transformations of time series
and producing an anomaly score for each time step to detect anomalies within the
time series. LNT combines NTL and time series representation learning, Contrastive
Predictive Coding (CPC), which learns representations that capture both local and
contextualized semantics. However, the representation learning method is not suitable
for detecting anomalies. To do so, NTL is built upon the representations of each time
step for anomaly detection. In theory, we prove that both components complement
each other to avoid trivial solutions not appropriate for anomaly detection within
time series. Our experimental evaluations show that LNT can detect anomalies in
time series with complex dynamics.

In Section 3.2, we study graph-level anomaly detection, which has become
a critical topic in diverse areas, such as financial fraud detection and detecting
anomalous activities in social networks. In graph-level anomaly detection, we are
interested in detecting entire abnormal graphs in a set of graphs. Addressing this, we
introduce One-Class Graph Transformation Learning (OCGTL) and Multi-view One-
Class Classification (MOCC). We show that both OCGTL and MOCC complement
deep OCC with learnable transformations to be more powerful without exhibiting
hypersphere collapse. On the other hand, deep OCC also complements NTL to exploit
better the graph size information in graph-level anomaly detection. Our extensive
experiments demonstrate that OCGTL and MOCC raise the bar in graph-level
anomaly detection significantly.
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3.1 Local Neural Transformation Learning
Anomaly detection within time series is significant in many industrial, medical,
and scientific applications. For instance, undetected anomalies in water treatment
facilities or chemical plants can bring harm to millions of people. Such systems need
to be constantly monitored for anomalies. Existing methods for detecting anomalies
within time series using deep learning include forecasting methods [122, 123, 124,
125], autoencoder-based methods [105, 126, 127, 128], and deep generative models
[129, 130, 131, 132, 133, 134, 135, 136]. Although there has been growing interest in
tackling anomaly detection with self-supervised learning, there is limited success of
self-supervised methods in detecting anomalies within time series.

NTL learns transformations and makes self-supervised anomaly detection appli-
cable to general data types. While this approach can identify an entire sequence as
anomalous (Section 2.3), it can still not be applied to detecting anomalies within
time series. NTL can lead to trivial transformations that are not suitable for anomaly
detection within time series. For anomaly detection within time series, both local
semantics (the dynamics within a time window) and contextualized semantics (how
the time window relates to the remaining time series) matter. To this end, we propose
LNT, a new framework for detecting anomalies within time series data that combines
NTL and time series representation learning.

We first present the algorithm in Section 3.1.1. Then, we provide theoretical
arguments for combining transformation learning and representation learning in
Section 3.1.2 and show that both learning paradigms complement each other to avoid
trivial solutions not appropriate for detecting anomalies. In the end, our experiments
in Section 3.1.3 demonstrate that LNT can find anomalies in speech segments from
the LibriSpeech dataset and detect interruptions to cyber-physical systems.

3.1.1 Algorithm and Methodology of LNT

LNT has two components: a feature extractor (encoder) and an anomaly detector
(local neural transformations). Given an input sequence, an encoder produces an
embedding for each time step, encoding relevant information from the current time
window. These features are then transformed by applying distinct neural networks
to each embedding, producing different latent views. The views are trained to fulfill
two requirements; the views should be diverse and semantically meaningful, i.e., they
should reflect both local dynamics as well as how the observations fit into the larger
context of the time series. The requirements are encouraged via self-supervision.

Specifically, two aspects of LNT are self-supervised – it combines two different
contrastive losses. One of the contrastive losses, CPC, guides the representation
learning that guarantees the encoder of LNT to produce meaningful semantic time
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Figure 3.1: Overview of LNT: neural transformations are built upon the local
representations zt at each time step to generate a variety of latent views T θ

k (zt).
Neural transformations and the encoder (and RNN) are jointly trained with a unified
loss combining the CPC loss and the DDCL.

series representations that generalize well to unseen test data. The second contrastive
loss, a novel Dynamic Deterministic Contrastive Loss (DDCL), guides the transfor-
mation learning to learn a variety of latent views being semantically representative
of the time series, both in a local and in a contextualized sense.

LNT follows the general paradigm of self-supervised anomaly detection. During
training, the capability to generate diverse and semantically meaningful data views
improves for normal data, while it does not generalize to anomalies. Given a
(potentially multivariate) time series x1:T with xt ∈ Rd, our method should output
scores for each individual time step, representing the likelihood that the observation
in this time step is an anomaly. The inputs are processed by an encoder that is trained
jointly with the local neural transformations. Before presenting local transformation
learning, we describe the learning of local time series representations.

3.1.1.1 Local Time Series Representations

The first part of the LNT architecture is an encoder (as shown in Figure 3.1). The
encoder maps a sequence of samples to a sequence of local latent representations
zt and is trained using the principles of CPC [62]. We use the same architecture
as Oord et al. [62]. The representations produced by the encoder zt = gθ

enc(xt) are
summarized with an autoregressive module into context vectors ct = gθ

ar(z≤t). We
have a function measuring the alignment of the representation of xt and the linear
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j-step prediction wjct
1 as

hj(xt, ct) = exp(z⊤
t wjct) (3.1)

For all t and all prediction steps j, we sample a set M from the training set D that
contains one positive pair (xt,xt+j) and negative samples in the rest. The CPC loss
contrasts xt+j to negative samples given the linear j-step future prediction wjct as
the anchor:

Lθ
CPC = −EM∼D

[
log hj(xt+j , ct)∑

xi∈M hj(xi, ct)

]
. (3.2)

It encourages the context representation ct to be predictive of nearby local repre-
sentations of xt+j . Optimizing Equation (3.2) relates to maximizing the mutual
information [66] between the context representation ct and nearby time points xt+j

to produce good representations (zt and ct) that can be used in the downstream
tasks, including anomaly detection.

3.1.1.2 Local Neural Transformations

The second part of the LNT architecture (above the encoder as shown in Figure 3.1)
introduces an auxiliary task for learning and anomaly detection. The time series
representations zt are processed by local neural transformations to produce different
views of each embedding. This operation relates to data augmentation but has
two major differences: First, the transformations are not applied at the data level
but in the latent space, producing latent views of each time window. Second, the
transformations are not hand-crafted as is often done in computer vision but are
directly learned during training.

The neural transformations are K neural networks T θ
k with parameters θ for

k = 1, . . . , K. They are applied to each latent representation zt to produce different
latent views T θ

k (zt). Each of the transformed views is encouraged to be predictive of
the context at different time horizons j by a loss contribution

ℓ
(j,k)
t (x≤t; θ) = − log h(T θ

k (zt),wjct−j)
h(T θ

k (zt),wjct−j) +
∑

l∈{1,...,K}/{k} h(T θ
k (zt), T θ

l (zt))
,

which simultaneously pushes different views of the same latent representations apart
from each other. The loss contributions of each time-step t, each transformation
k, and each time horizon j are combined to produce the Dynamic Deterministic
Contrastive Loss (DDCL):

Lθ
DDCL = Ex1:T ∼D

[
J∑

j=1

T∑
t=1

K∑
k=1

ℓ
(j,k)
t (x≤t; θ)

]
. (3.3)

1wj is a learnable parameter included in θ.
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During training, the two objectives (Equations (3.2) and (3.3)) are optimized jointly
using a unified loss,

Lθ
LNT = Lθ

CPC + λ · Lθ
DDCL (3.4)

and a balancing hyperparameter λ. We set λ = 1 in default.
As depicted by orange arrows in Figure 3.1, Lθ

DDCL can intuitively be interpreted
as pushing and pulling different representations in latent space. The numerator
pulls the learned transformations T θ

k (zt+j) close to wjct ensuring semantic views,
while the denominator pushes different views apart, ensuring diversity in the learned
transformations.

After training LNT on a dataset of typical time series, we can use the DDCL
for anomaly detection. Given a test sequence x1:T , we evaluate the contribution of
individual time steps to Lθ

DDCL (Equation (3.3)). The score for each time point t in
the sequence is,

st(x≤t) =
J∑

j=1

K∑
k=1

ℓ
(j,k)
t (x≤t; θ) (3.5)

The higher the score, the more likely the series exhibits abnormal behavior at time t.
Unlike CPC-based anomaly detection [137], this anomaly score has the advantage
of being deterministic, and thus there is no need to draw negative samples from a
proposal or noise distribution.

3.1.2 Theoretical Properties of LNT

Since the LNT architecture (shown in Figure 3.1) is trained on two losses jointly
(the CPC loss and the DDCL), the natural question arises: are both losses necessary,
or could we just train on the DDCL alone? The following analysis demonstrates the
value of considering both losses jointly.

The following theorem shows that, if we trained the LNT architecture (i.e., the
encoder and transformations T θ

k ) only on the Lθ
DDCL (without the Lθ

CPC), the optimal
solution would collapse to a constant encoder. Thus Lθ

CPC acts as a regularizer in our
LNT learning framework to avoid the learning of an uninformative constant encoder;
it is thus strictly necessary.

Proposition 7. Let gθ
enc and gθ

ar be arbitrary encoders (including biases) with learned
parameters θ, and let Lθ

DDCL be the corresponding DDCL. Then there exist constant
encoders gθ̃

enc and gθ̃
ar (i.e., ∃θ̃,a, b ∀x, z : gθ̃

enc(x) = a, gθ̃
ar(z) = b) with

Lθ̃
DDCL ≤ Lθ

DDCL.

Proof. Let gθ
enc and gθ

ar be arbitrary encoders (including biases) with learned param-
eters θ, and let Lθ

DDCL be the corresponding DDCL. We observe from Equation (3.3)
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that Lθ
DDCL decomposes into a sum of loss contributions ℓ

(j,k)
t (x≤t; θ). Let

(x∗
≤t∗ , j∗, t∗) = arg min

K∑
k=1

ℓ
(j,k)
t (x≤t; θ), (3.6)

be the indices of the summands with the smallest contribution to the sum, for a
given fixed θ. This means x∗ is the sample, j∗ the time horizon, and t∗ the time
point associated with the smallest loss contribution to LDDCL. Put

ℓ∗ :=
K∑

k=1
ℓ

(j∗,k)
t (x≤t∗ ; θ). (3.7)

Since our encoders are equipped with bias terms there exist constant encoders gθ̃
enc

and gθ̃
ar (i.e., ∃θ̃,a, b ∀x, z : gθ̃

enc(x) = a, gθ̃
ar(z) = b) with

∀x, j, t :
K∑

k=1
ℓ

(j,k)
t (x≤t; θ̃) = ℓ∗. (3.8)

Then we have:

Lθ
DDCL

(3.3)
= E

[
J∑

j=1

T∑
t=1

K∑
k=1

ℓ
(j,k)
t (x≤t; θ)

]
(3.6)
≥ JT

K∑
k=1

ℓ
(j∗,k)
t (x∗

≤t∗ ; θ)
(3.7)

= JTℓ∗

(3.8)
= E

[
J∑

j=1

T∑
t=1

K∑
k=1

ℓ
(j,k)
t (x≤t; θ̃)

]
(3.3)

= Lθ̃
DDCL,

which was to prove.

The above theorem shows that if LNT was trained on the DDCL only, LNT
would collapse into a trivial solution. On the other hand, a constant encoder clearly
does not optimize the maximum mutual information criterion [62], which is induced
by the CPC objective.

Besides this hard mathematical evidence, there are also other good reasons to
include the CPC loss in LNT. For instance, it ensures that the latent representations
account for dynamics at longer time scales. This task is carried out by CPC’s
autoregressive module. Our hypothesis is that, for effective anomaly detection within
time series, it is necessary to consider both: the local signal in a time window and
the larger context across time windows. Otherwise, the observations within a time
window could be perfectly normal while not making sense in the context of a longer
time horizon. For this reason, we believe that there are two types of semantic
requirements of the representations and the latent views of LNT:
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• Local semantics: views should share relevant semantic information with the
current time window. (This is addressed by Lθ

CPC)

• Contextualized semantics: views should reflect how the time window relates to
the rest of the time series at different, longer time horizons. (This is addressed
by Lθ

DDCL)

Both loss contributions of LNT facilitate these requirements. CPC contributes local
latent representations and context representations. The semantic content of the views
is managed by the DDCL. Especially its numerator ensures contextualized semantics:
the view T θ

k (zt) should be close to the context information wjct−j with various lags
j. This gives the LNT architecture a lever to consider longer time horizons from
different (non-transformed) contexts ct−j when deciding whether there is an anomaly
at time t meaning that it also exhibits contextual semantic.

3.1.3 Experiments on Anomaly Detection within Time Series

In the experimental evaluation, we compare LNT to existing strong baselines on
challenging time series anomaly detection datasets. We first describe the datasets,
baselines, and implementation details. Second, we present our findings: LNT out-
performs many strong baselines in detecting anomalies in the operation of a water
treatment system and accurately finds anomalies in speech. Third, we provide visu-
alizations of the local transformations that are learned by LNT. Finally, we analyze
the performance of LNT in comparison to CPC-based alternatives.

3.1.3.1 Datasets

We evaluate LNT on two challenging real-world datasets, namely, the Secure Water
Treatment dataset (SWaT) [138] and the Libri Speech Collection [139]. The SWaT
dataset is provided with labeled anomalies in the test set. The LibriSpeech data is
augmented with realistic synthetic anomalies.

SWaT. This dataset is from a testbed for water treatment [140] that evaluates the
cyber-security of a fully functional plant with a six-stage process of filtration and
chemical dosing. Goh et al. [138] collected eleven days of operation data. Under
normal operation, 51 sensor channels are recorded for seven days yielding a training
time series of the length of 475200. For the test data of the length of 224960, 36
attacks were launched during the last four days of the collection process. As suggested
in Goh et al. [138], Li et al. [141], the first 21600 samples from the training data are
removed for training stability. We follow the experimental setup of He and Zhao
[124] and take the first part of the collection under attack as the validation set. We
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also drop channels that are constant in both training and test set, yielding a time
series of 45 dimensions.

LibriSpeech. The LibriSpeech dataset [139] is an audio collection with spoken
language recordings from 251 distinct speakers. We adopt the setup of Oord et al.
[62] and their train/test split. For benchmarking anomaly detection performance, we
randomly place additive pure sine tones of varying frequency (20 - 120 Hz) and length
(512 - 4096 time steps) in the test data, yielding consecutive anomaly regions making
up ≈ 10% of the test data. Speech data offers a challenging benchmark for anomaly
detection within time series since speech data typically exhibits complex temporal
dynamics due to its high multi-modality introduced through different speakers and
word sequences.

3.1.3.2 Baselines

We study LNT in comparison to different classes of anomaly detection algorithms,
ranging from classical methods to recent advances in deep anomaly detection. They
include (i) methods that leverage the reconstruction of the autoencoder or variational
autoencoder, including LSTM-ED [105], LSTM-VAE [130], and Multi-Scale Convo-
lutional Recurrent Encoder-Decoder (MSCRED) [127]. (ii) methods that use the
ability of GANs to discriminate fake examples, like BeatGAN [142] and MadGAN
[141], (iii) OmniA [133] which estimates the data density with a stochastic recurrent
neural network, (iv) and Temporal Hierarchical One-Class Network (THOC) [143]
for time-series which employs a one-class objective.

Implementation details. For LNT, the hyperparamaters are adopted from those
reported by Oord et al. [62] for CPC: especially ct ∈ R256 and zt ∈ R512 for
experiments with LibriSpeech data. The data is processed in sub-sequences of length
20480 for both training and testing. Since the SWaT dataset contains way less diverse
data points and shows simpler temporal dynamics, the embeddings sizes are reduced
to ct ∈ R32 and zt ∈ R128. Also, the convolutional encoder network is downsized
to filters (3, 3, 4, 2) and strides (3, 3, 4, 2) resulting in the convolution of 72 time
steps. We consistently choose K = 12 learnable transformations on both datasets.
Each transformation is parametrized multiplicatively as T θ

k (zt) = zt⊙M θ
k (zt), where

M θ
k (zt) is an attention mask (with values between 0 and 1) and the multiplication

is applied element-wise. M θ
k is modeled by a two-layer MLP on the SWaT and

a three-layer MLP on the LibriSpeech data. All MLPs have intermediate ReLU
activations and a sigmoid activation on the top. The final layer always shares the
dimensionality of zt. All bias terms in the network are fixed as zero.
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Table 3.1: F1-score (%) for anomaly detection on the SWaT. Baseline results are
taken from Shen et al. [143]. LNT achieves the best F1-score and the best recall.

LSTM-ED LSTM-VAE MadGAN BeatGAN OmniA MSCRED THOC LNT
Prec 93.69 98.39 98.72 88.37 99.01 98.43 98.08 94.75
Rec 63.31 77.01 77.60 76.41 77.06 77.69 79.94 83.28
F1 75.56 86.39 86.89 81.95 86.67 86.84 88.09 88.65

3.1.3.3 Quantitative Results

We judge the anomaly scores predicted by the algorithms for each time step individu-
ally. The results on the SWaT datasets in terms of F1-score are reported in Table 3.1.
LNT outperforms a set of challenging baselines reported in Shen et al. [143] with
the highest F1-score (88.65%) and the highest recall (83.28%). A high recall reflects
a better performance in uncovering some of the harder detectable anomalies. In
many mission-critical applications, detecting as many anomalies as possible with
reasonable precision is often critical, as a false negative can do more harm than a
false positive. This makes the high recall of LNT preferable.

We also compare LNT with recent deep learning methods on the LibriSpeech data,
which has more complex temporal dynamics. Successful detection of these complex
anomalies requires a deep understanding of their temporal dynamics. We report
the results in terms of ROC curves in Figure 3.2. Here, LNT clearly outperforms
both deep learning methods. This shows that detecting anomalies within speech
data with its complex temporal dynamics is indeed a challenging task for many
deep anomaly detection algorithms. Especially the future predictions of LSTM-ED
perform only slightly better than random chance in this experiment for all possible
thresholds. This emphasizes the benefit of building the anomaly detection method
upon self-supervised representation learning. We also provide the visualizations of
LNT detection on LibriSpeech in Appendix A.3.

3.1.3.4 Visualization of Transformations

In general, it is considered hard to get insights from embedding visualizations for
zt in the latent space. Hence, to make the transformations interpretable in terms
of semantics, we propose to visualize them in data space. We reuse the encoder
as described in Section 3.1.1 and enrich it with a separate decoder. We train the
decoder to reconstruct the (non-transformed) input data while freezing the encoder
weights. The trained decoder is then applied to transformed embeddings to visualize
them in data space.

We visualize four transformations showing interpretable behaviors on the SWaT
dataset in Figure 3.3. For the non-transformed series x the signal jumps in channels
25 and 36 at t ≈ 2500. This jump is delayed for channels 26 − 35. Interestingly,
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Figure 3.2: Our approach LNT outperforms deep time series anomaly detection
baselines on LibriSpeech data in terms of ROC curves.

Figure 3.3: Data space visualizations of learned transformations on the SWaT dataset.
For visualization, the representations are mapped to the data space with a separately
trained decoder. The transformations show semantically interpretable behavior, such
as altered delays in specific channels.

we observe that this delay is altered by the learned transformations. For example,
T1 removes this delay causing the signal jump for all aforementioned channels at
t ≈ 2500. In contrast, T2 affects the series oppositely by enlarging this delay.

In summary, these transformations produce semantically meaningful and diverse
views of the time series. Admittedly, current interpretations are still rather high-level
and fairly limited from application standpoints. However, without domain knowledge,
there exists no gold standard for a good time series transformation to compare
against. This was the original motivation for the usage of learnable transformations
as effective data augmentation for anomaly detection.
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(a) SWaT
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(b) LibriSpeech

Figure 3.4: Improvement of LNT over CPC-based scoring evaluated on SWaT and
LibriSpeech datasets. Our proposed method LNT (combing transformation learning
and CPC) consistently outperforms the other variants of CPC for anomaly scoring.

3.1.3.5 Comparison to CPC-based Anomaly Detection

Finally, we study the advantage of LNT over CPC on anomaly detection within time
series. There are various ways to use CPC for anomaly detection. Beyond LNT, we
consider two methods that build on CPC: (i) methods that directly use the CPC
loss to score anomalies [137] and (ii) methods that use CPC as a feature extractor
and then run another anomaly detection method such as OCSVM on the extracted
features. One disadvantage of (i) is the sampling of negative samples. This makes it
nontrivial to evaluate the CPC loss on test data. de Haan and Löwe [137] argue that
taking samples from the test data is biased and using the training data is infeasible
in practice. Alternatively, we use the numerator of the CPC loss (without counting
the negative samples) as the anomaly score at test time.

In contrast, the DDCL is deterministic, and the views are constructed from a
single sample. It is hence straightforward to use it to score anomalies. From the
results in Figure 3.4, we can see that the combination of transformation learning with
representation learning of CPC consistently outperforms the considered variants of
CPC for anomaly detection on both datasets. This connects to the discussion about
contextualized semantics in Section 3.1.2. Comparing LNT with CPC + OCSVM
supports our claim: while OCSVM with CPC input features has access only to the
local semantics in the local representations, LNT learns transformations exhibiting
both local and contextualized semantics, leading to consistently superior anomaly
detection performance.
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3.2 One-Class Graph Transformation Learning

Many web-based systems are best represented by graphs and there have been many
works on detecting anomalous nodes and edges within a graph [144]. However,
in many applications, it is much more relevant to ask whether an entire graph is
abnormal. For example, one might be interested in detecting novel (anomalous)
molecules whose atoms and bonds are nodes and edges in the molecular graphs.
Thus, while every atom may be known, the molecule might be novel as a whole.
Furthermore, graph-level anomaly detection could be very useful in financial fraud
detection. Consider a graph where nodes represent entities and edges represent
financial transactions. A money-laundering scheme involving many parties would
not be detectable on a node level but would require identifying the whole graph (or
at least a segment of it) as anomalous. In an application, one could partition a large
transaction graph into subgraphs and identify anomalies on the subgraph level.

For graph-level anomaly detection, we assume to have access to a large dataset
of typical graphs, such as a dataset of communities in a social network or a dataset
of molecules. All graphs in the training data are considered “normal”. The goal is
to use the data to learn an anomaly scoring function which can then be used to
score how likely it is that a new graph is either normal or abnormal. Importantly,
the term graph-level anomaly detection refers to detecting entire abnormal graphs,
rather than localizing anomalies within graphs.

Finding abnormal nodes or edges within a large graph is widely studied [144]. In
contrast, deep learning for graph-level anomaly detection has received less attention.
Zhao and Akoglu [145] first explored how to extend deep OCC for graph-level anomaly
detection and developed One-Class GIN (OCGIN). They also introduced two-stage
graph-level anomaly detection frameworks with either graph embedding models or
graph kernels. However, all these attempts have not yet produced a solid baseline
for graph-level anomaly detection. Zhao and Akoglu [145] report that these methods
suffer from “performance flip”, where the trained model systematically confuses
anomalies with normal samples. We study how to overcome it and raise the bar in
graph-level anomaly detection.

In this section, we develop One-Class Graph Transformation Learning (OCGTL)
and Multi-view One-Class Classification (MOCC) for graph-level anomaly detection.
Both methods combine deep OCC and self-supervision. Specifically, OCGTL uses a
joint loss with a one-class learning term and a transformation learning term. MOCC
is a generalization of deep OCC that involves multiple learnable views and datapoint-
dependent centers. Our experiments in Section 3.2.3 reveal that the proposed
methods, OCGTL and MOCC, improve over existing methods in graph-level anomaly
detection significantly.
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3.2.1 Algorithm and Theory of OCGTL

OCGTL combines the complementary strengths of deep OCC [89, 145] and self-
supervised anomaly detection with learnable transformations (see Section 2.1). Com-
bining these two learning paradigms is advantageous for two reasons. First, deep
OCC is prone to a trivial solution called hypersphere collapse, which cannot be used
for anomaly detection. OCGTL provably overcomes hypersphere collapse by regu-
larizing the one-class learning term in the objective with a transformation learning
term. The resulting model is more flexible (the hypersphere center can be treated
as a trainable parameter) and training is more robust, despite the added flexibility.
Second, the two loss contributions focus on different notions of distance between
the graph embeddings. The one-class learning term relies on Euclidean distances
while the transformation learning term is sensitive to the angles between embeddings.
When the combined loss is used as the anomaly score this means that it can detect
abnormal embedding configurations both in terms of angles between embeddings
and in terms of Euclidean distances.

As follows, we first introduce OCGTL and then detail its main ingredients,
including self-supervised anomaly detection with learnable transformations, deep
OCC, and feature extraction with Graph Neural Networks (GNNs). We then present
the theory behind OCGTL.

3.2.1.1 The OCGTL Method

OCGTL consists of an ensemble of GNNs. One of them – the reference feature
extractor T θ

0 – produces a reference embedding of its input graph. The other K

GNN feature extractors T θ
k (k = 1, · · · , K) produce alternative “latent views” of the

graph. Each of them takes as input an attributed graph G = {V, E ,X}, with vertex
set V, edges E , and node features (attributes) X = {xv|v ∈ V} and maps it into an
embedding space Z. These K + 1 feature extractors are trained on the training set
D jointly with the OCGTL loss, Lθ

OCGTL = EG∼D [ℓOCGTL(G; θ)]. Each graph in the
training data contributes two terms to the loss,

ℓOCGTL(G; θ) = ℓOCC(G; θ) + λ · ℓGTL(G; θ). (3.9)

The first term, ℓOCC(G; θ), is a one-class learning term; it encourages all the embed-
dings to be as close as possible to the same point c ∈ Z. The second term, ℓGTL(G; θ),
is a Graph Transformation Learning (GTL) term; it enforces each GNN’s embeddings
to be diverse and semantically meaningful representations of the input graph G. λ

is a balancing hyperparameter and is one in default. The tension that arises from
satisfying both aspects of the objective leads to a harder self-supervision task, which
in turn leads to better anomaly detection performance. When the training objective
is difficult to satisfy, the trained model has to be more sensitive to typical salient
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features of normal data. New graphs which do not exhibit these features incur a
higher loss and are then more easily detected as anomalies.

The two terms are presented in detail below.

Graph transformation learning term. We adopt DCL (Equation (2.2)) to graphs.
For a graph G, the loss of GTL encourages the embeddings of each GNN, T θ

k (G), to
be similar to the embedding of the reference GNN, T θ

0 (G), while being dissimilar
from each other. Consequently, each GNN is able to extract graph-level features to
produce a different view of G. The contribution of each graph to the objective is

ℓGTL(G; θ) = −
K∑

k=1
log h(T θ

k (G), T θ
0 (G))∑

l∈{0,...,K}/{k} h(T θ
k (G), T θ

l (G))
(3.10)

One-class learning term. OCC is a popular paradigm for anomaly detection [13, 89].
The idea is to map data into a minimal hypersphere encompassing all normal training
data. Data points outside the boundary are considered anomalous. The contribution
of each graph G to our OCC objective is

ℓOCC(G; θ) =
K∑

k=1
∥(T θ

k (G)− c)∥2 (3.11)

The loss function penalizes the distance of the graph G to the center c which we
treat as a trainable parameter. In previous deep OCC approaches, the center c has
to be a fixed hyperparameter to avoid trivial solutions to Equation (3.11).

Feature extraction with GNNs. For graph data, parametrizing the feature extrac-
tors T θ

0 , . . . , T θ
K by GNNs is advantageous. At each layer l, a GNN maintains node

representation vectors h
(l)
v for each node v. The representation is computed based

on the previous layer’s representations of v and its neighbors N (v),

z(l)
v = GNN(l)

(
z(l−1)

v , z(l−1)
u | u ∈ N (v)

)
. (3.12)

Each layer’s node representations are then combined into layer-specific graph repre-
sentations,

z
(l)
G = READOUT(l)

(
z(l)

v | v ∈ G
)

, (3.13)

which are concatenated into graph-level representations,

z = CONCAT
(
z

(l)
G | l = 1, ..., L

)
. (3.14)

This concatenation introduces information from various hierarchical levels into the
graph representation [146]. Our empirical study in Section 3.2.3 shows that the
choice of the readout function (which determines how the node representations are
aggregated into graph representations) is particularly important to detect graph-level
anomalies reliably.
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Anomaly scoring with OCGTL. OCGTL is an end-to-end method for graph-level
anomaly detection. During test, ℓOCGTL (Equation (3.9)) is also used directly as the
score function for detecting anomalous graphs. A low loss on a test sample means
that the graph is likely normal, whereas a high loss is indicative of an anomaly. One
advantage of OCGTL is that its loss makes it more sensitive to different types of
anomalies by considering different notions of distance between the graph embeddings.
The one-class learning term is based on Euclidean distances, while the transformation
learning loss is based on angles between embeddings. With the combined loss as the
anomaly score, our method is sensitive to abnormal embedding configurations both
in terms of angles between the latent views and in terms of Euclidean distances. In
contrast, OCC-based methods typically rely on the Euclidean distance only.

Another advantage of OCGTL over OCC-based approaches is that its training is
more robust and the model can be more flexible. We prove this next.

3.2.1.2 A Theory of OCGTL

A known difficulty for training OCC-based deep anomaly detectors (such as DSVDD
and OCGIN) is hypersphere collapse [89]. Hypersphere collapse is a trivial optimum
of the training objective and occurs when the model maps all inputs exactly into the
center. The hypersphere then has a radius of zero, and anomaly detection becomes
impossible. Ruff et al. [89] recommend fixing the center and removing bias terms for
the model and show good results in practice. However, there is no guarantee that a
trivial solution can be avoided under any model architecture. Here we prove that
OCGTL overcomes this.

We show that the trivial solution of Equation (3.11), T θ
k (G) = c achieves a perfect

OCC loss but is not optimal under the OCGTL loss. Thus OCGTL provably avoids
hypersphere collapse even when the center c is a trainable parameter. This result
makes OCGTL the first deep OCC approach where the center can be trained.

Proposition 8. The constant feature extractors, T θ
k (G) = c for k = 1, · · · , K and all

inputs G, minimize ℓOCC(G; θ) (Equation (3.11)).

Proof. 0 ≤ ℓOCC(G; θ) is the Euclidean norm of the distance between the embedding
of G and the center c. Plugging in T θ

k (G) = c attains the minimum 0.

In contrast, regularization with transformation learning can avoid hypersphere
collapse. Under the constant encoder, each view is equidistant from the reference
embedding and the other latent views, leading to ℓGTL(G; θ) = K log K. However,
the transformation learning objective aims at making the views predictive of the
reference embeddings, in which case ℓGTL(G; θ) < K log K. The following proposition
shows that if there is a parameter setting that achieves this, the constant feature
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extractors do not minimize the OCGTL loss which proves that hypersphere collapse
can be avoided.

Proposition 9. If there exists a parameter setting such that ℓGTL(G; θ) < K log K on
the training data, then the constant feature extractors T θ

k (G) = c do not minimize
the combined loss ℓOCGTL(G; θ) (Equation (3.9)).

Proof. For constant feature extractors T θ
k (G) = c (for k = 1, . . . , K) and all inputs

G, the combined loss ℓOCGTL(G; θ) = ℓGTL(G; θ) ≥ K log K, where K is the number
of transformations and K log K is the negative entropy of randomly guessing the
reference embedding. Assume there is a constellation of the model parameters
s.t. ℓGTL(G; θ) < K log K. Since c is trainable, we can set it to be the origin.
The loss of the optimal solution is at least as good as the loss with c = 0. Set
ϵ = K log K − ℓGTL(G; θ). The transformations can be manipulated such that their
outputs are rescaled and as a result their sum

∑K
k=1||T θ

k (G)||2< ϵ. As the norm of
the embeddings changes, ℓGTL(G; θ) remains unchanged since the cosine similarity is
not sensitive to the norm of the embeddings. By plugging this into Equation (3.9)
we get ℓOCGTL(G; θ) =

∑K
k=1||T θ

k (G)||2+ℓGTL(G; θ) < K log K, which is better than
the performance of the best constant encoder.

Propositions 8 and 9 demonstrate that while deep OCC is prone to hypersphere
collapse, the same trivial solution is not a minimizer of the combined loss ℓOCGTL(G; θ).
The assumption of Proposition 9, that ℓGTL(G; θ) < K log K can be tested in practice
by training GTL and evaluating the predictive entropy on the training data. In all
scenarios we worked with ℓGTL(G; θ) << K log K after training.

3.2.2 Transformation Learning as Multi-View OCC

GTL can be an end-to-end graph-level anomaly detection method on its own. The
K + 1 GNNs, T θ

k (k = 0, · · · , K) are jointly trained on ℓGTL (Equation (3.10)). The
loss ℓGTL is then used directly to score anomalies. However, ℓGTL is not sensitive
to the embedding’s norm. The norm of the graph embeddings can reflect the graph
size as it is derived from aggregating the node representations. We know that graph
size acts as an important feature in graph-related tasks, such as graph classification
[147]. The embedding normalization step in ℓGTL (computing the cosine similarity)
erases the norm information. This may put GTL at a disadvantage compared to
the other methods, which profit from being aware of the graph size. To improve
GTL on extracting features from the embedding norms, we develop MOCC, which
incorporates OCC into transformation learning by simply modifying the similarity
function of GTL. We also present that MOCC is a multi-view generalization of deep
OCC and has several advantages thanks to the learnable transformations.
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We first specialize ℓGTL so that it has a similar form to ℓOCC. To this end,
we set the similarity function to the negative Euclidean distance. This results in
the MOCC loss, a multi-view generalization of deep OCC loss involving multiple
mappings T θ

k (·) : X → Z,

ℓMOCC(G; θ) := −τ
K∑

k=1
log exp(−||T θ

k (G)− T θ
0 (G)||2/τ)∑

l∈{0,...,K}/{k} exp(−||T θ
k (G)− T θ

l (G)||2/τ)

=
K∑

k=1
||T θ

k (G)− T θ
0 (G)||2 + τ log Zk , (3.15)

where Zk =
∑

l∈{0,...,K}/{k}
exp(−||T θ

k (G)− T θ
l (G)||2/τ).

After rearranging the loss terms, the connection to deep OCC becomes apparent.
The ℓMOCC ties together K OCC-type losses and a regularization term. Instead of
the fixed center c, the one-class learning terms now have datapoint-dependent centers
T θ

0 (G). There are multiple embeddings T θ
k (G) of each graph, and the regularizer

prevents all embeddings from being the same. The log-partition function log Zk

pushes different views away from each other, ensuring that K transformations do
not collapse to the same value in the embedding space. For K = 1 and removing
log Zk (or sending τ → 0), ℓMOCC is equivalent to ℓOCC when T θ

0 (G) is replaced by a
constant, independent of the input graph G.

Discussion. We empirically find that MOCC is more powerful than deep OCC
(see Section 3.2.3), which could be explained as follows. First, compared to deep
OCC, MOCC learns to extract multiple, different features for anomaly detection (as
opposed to only one feature) by including multiple learnable views. All extracted
features are enforced to be diverse by the regularization term. Second, T θ

0 (G) serves
as a datapoint-dependent center. Compared with the fixed center c in ℓOCC, T θ

0 (G)
is more flexible since it can be optimized jointly with the other parameters. T θ

0 (G)
is also more informative since it preserves instance-level information beyond the
common factors of variation in the dataset at large. So MOCC incorporates the
one-class learning into the transformation learning and becomes more powerful and
more flexible than deep OCC.

Interestingly, the NTL loss and ℓMOCC do not couple any data points explicitly,
while ℓOCC couples the data points by pulling them to a shared center c. NTL and
MOCC seek to find “intrinsic” features within learnable views that characterize
the normality of data. By measuring the similarity of each view/feature with the
reference embedding T θ

0 (G), MOCC detects the anomalies.
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3.2.3 Experiments on Graph-level Anomaly Detection

This section details our empirical study. We benchmark ten algorithms on six real-
world graph classification datasets from different domains using various evaluation
measures. First, we describe the datasets and how the anomaly detection benchmark
is set up. Second, we present the baselines and their implementation details. Third,
the evaluation results are presented and analyzed. We show that our proposed
methods (OCGTL and MOCC) outperform the baselines on real-world datasets from
various domains and raise the anomaly detection accuracy significantly. Finally, we
present our findings about preferable design choices that are also beneficial to other
deep methods in graph-level anomaly detection.

3.2.3.1 Datasets and Experimental Setting

We benchmark ten methods on six graph classification datasets that are representative
of three domains. In addition to financial and social network security, health
organizations need an effective graph-level anomaly detection method to examine
proteins (represented as graphs) to monitor the spread and evolution of diseases.
Targeting these application domains, we study two bioinformatics datasets: DD and
PROTEINS, two molecular datasets: NCI1 and AIDS, and two datasets of social
networks: IMDB-BINARY and REDDIT-BINARY. The datasets are made available
by Morris et al. [148], and the statistics of the datasets are given in Appendix B.2.

We follow the standard setting of previous work to construct an anomaly detection
task from a classification dataset [38, 89, 145]. A classification dataset with N classes
produces N experimental variants. In each experimental variant, one of the classes
is treated as “normal”; the other classes are considered anomalies. The training set
and validation set only contain normal samples, while the test set contains a mix
of normal samples and anomalies that have to be detected during test time. For
each experimental variant, 10% of the normal class is set aside for the test set, and
10% of each of the other classes is added to the test set as anomalies. The resulting
fraction of anomalies in the test set is proportional to the class balance in the original
dataset. The remaining 90% of the normal class is used for training and validation.
We use 10-fold cross-validation to estimate the model performance. In each fold,
10% of the training set is held out for validation. We train each model three times
separately and average the test results of three runs to get the final test results in
each fold. Training multiple times ensures a fair comparison as it favors methods
that are robust to random initialization.

Evaluation. Results will be reported in terms of AUC (%), averaged over ten
folds with standard deviation. In addition, all methods will be evaluated in terms
of their susceptibility to performance flip. Zhao and Akoglu [145] coined the term
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“performance flip” for anomaly detection benchmarks derived from binary classification
datasets. We generalize their definition to multiple classes:

Definition 3.2.1. (Performance flip.) A model suffers from the performance flip on
an anomaly detection benchmark derived from a classification dataset if it performs
worse than random on at least one experimental variant.

3.2.3.2 Baselines and Implementation Details

Many deep anomaly detection approaches that achieved impressive results in other
domains have not yet been adapted to graph-level anomaly detection. There has
been no comprehensive study of various GNN-based graph-level anomaly detection
approaches. An additional contribution of our work is that we adapt recent advances
in deep anomaly detection to graphs. In our empirical study, we compare OCGTL
and MOCC to GNN-based methods and to non-GNN-based methods.

GNN-based baselines. Our study includes OCGTL, MOCC, OCGIN [145], an
ablation GTL, and a newly proposed self-supervised approach, Graph Transfor-
mation Prediction (GTP). GTP is an end-to-end self-supervised method based on
transformation prediction. It trains a classifier to predict which transformation has
been applied to a sample and uses the cross-entropy loss to score anomalies. We
implement GTP with six graph transformations (node dropping, edge dropping,
edge adding, attribute masking, subgraph, and identity transformation) originally
designed in You et al. [149].

We use Graph Isomorphism Network (GIN) [147] as the feature extractor for
all GNN-based baselines to compare with OCGIN fairly. In particular, we use four
GIN layers, each of which includes a two-layer MLP and graph normalization [150].
The dimension of the node representations is 32. The readout function of almost all
methods consists of a two-layer MLP, and then an add pooling layer. In GTP, the
final prediction is obtained by summing the layer-wise predictions, and the readout
function is composed of an add pooing layer followed by a linear layer. In GTP, we
employ six hand-crafted transformations. For a fair comparison, OCGTL, MOCC,
and GTL also use six learnable graph transformations in all experiments. Additional
implementation details are provided in Appendix B.2.

Non-GNN-based baselines. We include four two-stage detection methods proposed
by Zhao and Akoglu [145]. Two of them use unsupervised graph embedding methods,
Graph2Vec (G2V) [151] or FGSD[152], to extract graph-level representations. The
other two of them make use of graph kernels (Weisfeiler-Leman subtree Kernel
(WLK) [153] or Propagation Kernel (PK) [154]), which measure the similarity
between graphs. For all two-stage detection baselines, we use OCSVM (with ν = 0.1)

61



3 Extensions of Neural Transformation Learning

Table 3.2: Average AUC (%) with standard deviations of ten methods on six datasets.
Results marked with ∗ perform worse than random on at least one experimental
variant (performance flip). OCGTL and MOCC both outperform other baselines on
all datasets and have no performance flip.

Datasets DD PROT NCI1 AIDS IMDB-B RDT-B Avg.
WLK 50.2±0.3∗ 49.7±0.5∗ 49.6±0.4∗ 51.3±0.8∗ 62.0±2.0 50.2±0.2∗ 52.2
PK 51.2±2.3∗ 50.8±1.5∗ 51.4±1.7∗ 59.5±2.3∗ 53.5±2.0 50.0 52.7

G2V 49.5±2.2∗ 53.2±3.0∗ 50.5±0.7∗ 48.4±0.8∗ 54.3±1.6 51.5±0.6∗ 51.2
FGSD 66.0±2.3 58.5±1.8∗ 55.4±0.7 91.6±3.7 57.1±1.8 - 65.7

OCGIN 50.7±1.2∗ 54.2±1.2∗ 53.6±1.3∗ 60.8±2.2∗ 60.4±2.8 67.1±3.5 57.8
OCPool 61.1±3.3∗ 61.9±2.1 57.0±1.3 97.5±1.4 56.5±0.8 65.3±2.2 66.6

GTP 54.2±1.9 61.9±2.9 55.3±1.2∗ 77.2±2.9 57.6±1.1 64.4±2.2 61.8
GTL 51.7±0.9∗ 56.2±2.5∗ 59.8±1.0∗ 67.8±3.3∗ 65.2±1.9 71.6±2.3 62.1

OCGTL 69.9±2.6 60.7±2.4 63.7±1.2 97.5±2.0 65.1±1.8 77.4±1.9 72.4
MOCC 67.0±2.0 61.8±1.5 64.8±1.6 98.5±1.2 62.2±2.2 79.1±2.4 72.2

as the downstream outlier detector. The number of iterations specifies how far
neighborhood information can be propagated. By setting the number of iterations
to 4, we get a fair comparison to the GNN-based methods, which all have 4 GNN
layers. All other hyperparameters correspond to the choices in Zhao and Akoglu
[145]. Additional details are provided in Appendix B.2.

We also develop a new two-stage method, One-Class Pooling (OCPool), a shallow
method that uses pooling to construct a graph-level representation from the node
features:

z = POOLING (xv | v ∈ G) . (3.16)

This feature extractor does not have parameters and hence requires no training.
Anomalies can be detected by training an OCSVM [13] on these features. This
novel approach for graph-level anomaly detection is a simple baseline and achieves
solid results in our empirical study (even though it does not use the edge sets E of
the graphs). Another reason for studying OCPool is that it helps us understand
which pooling function might work best as a readout function (Equation (3.13)) for
GNN-based anomaly detection methods.

3.2.3.3 Empirical Results

We compare OCGTL and MOCC to all existing baselines on six real-world datasets.
The detection results are reported in Table 3.2 in terms of average AUC (%) with
standard deviation. We can see that OCGTL achieves competitive results on all
datasets and outperforms the existing baselines at least by 5.8%, averaging over
six datasets. MOCC also performs competitive with OCGTL and outperforms the
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Table 3.3: Average AUC (%) with standard deviations on both experimental variants
of bioinformatic and molecular datasets. Each dataset leads to two experimental
variants by considering either class 0 or class 1 as the normal class (and the rest
classes as abnormal). The results worse than random (AUC < 50%) are colored with
red. OCGTL and MOCC have no performance flip on any of the datasets.

DD PROT NCI1 AIDS
Nor. Cls 0 1 0 1 0 1 0 1

WLK 81.8±2.7 18.5±2.7 78.4±5.4 20.9±6.0 33.7±3.2 65.4±3.0 96.8±1.7 5.8±1.8
PK 73.8±3.8 28.5±3.5 72.6±5.3 29.1±5.4 47.4±3.8 55.5±1.6 87.5±1.6 31.6±4.5

G2V 32.8±4.1 66.2±5.0 45.2±7.2 61.1±5.5 67.9±2.9 33.1±2.6 2.6±1.8 94.2±2.3
FGSD 76.7±3.2 55.3±3.6 70.7±6.0 46.4±5.9 56.0±2.7 54.9±2.5 84.1±7.2 99.1±1.2

OCGIN 75.2±3.4 26.3±2.7 65.9±4.5 42.5±4.4 42.9±3.0 64.4±2.5 95.5±2.2 26.0±3.9
OCPool 77.0±4.2 45.2±5.1 70.1±6.7 53.8±4.2 57.7±3.2 56.3±2.9 96.1±2.6 99.2±1.0

GTP 54.2±3.1 54.3±1.8 70.3±4.3 53.5±4.6 46.0±3.2 64.7±3.1 93.3±2.0 61.1±5.1
GTL 79.7±2.6 23.8±2.6 75.8±5.2 36.6±6.7 44.7±2.8 74.9±2.5 97.5±1.5 38.1±6.6

OCGTL 73.0±2.9 66.8±4.6 58.1±6.1 63.2±5.4 56.2±2.5 71.2±3.0 95.7±3.6 99.3±0.9
MOCC 67.1±1.8 67.0±4.7 61.2±4.6 62.4±3.8 57.1±3.3 72.6±1.6 98.0±1.5 99.1±1.0

existing baselines at least by 5.6% averaging over six datasets. OCGTL achieves
the best average performance on bioinformatic datasets and social-network datasets,
while MOCC performs the best on molecular datasets. We can conclude that OCGTL
and MOCC raise the detection accuracy in graph-level anomaly detection on various
application domains significantly.

Moreover, methods with performance flip are marked with a ∗ in Table 3.2. We
also report the results of OCGIN [145] and our methods, OCGTL and MOCC, on
both experimental variants of datasets where the performance flip is observed in
Table 3.3. We can see that all existing baselines suffer from the performance flip
issue, while OCGTL and MOCC have no performance flip on any of the datasets.

Ablation study of methods. Here we discuss the results in Table 3.2 from the
perspective of an ablation study to understand the advantages of combing deep OCC
and neural transformation learning. From the results, we can see that OCGTL and
MOCC improve over OCGIN consistently. Either adding ℓGTL as a regularization
term in OCGTL or generalizing deep OCC with multiple learnable transformations
in MOCC boost the detection performance of deep OCC (OCGIN) significantly. Also,
OCGTL and MOCC outperform GTL on 5 of 6 datasets by incorporating the idea
of OCC in learning and detection. The detection in terms of Euclidean distances is
sensitive to the graph size, a critical feature in graph-level anomaly detection, and
therefore enhances the graph-level anomaly detection performance. We can conclude
that the two learning paradigms complement each other. As a result, OCGTL and
MOCC consistently outperform OCGIN and GTL.
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Figure 3.5: OCPool with add pooling (blue) outperforms alternative choices (mean
(orange), max (green)). The results are reported in terms of AUC (%).

GTP applies hand-crafted graph transformations. Its performance varies across
datasets since it is sensitive to the choice of transformations. Even though it works well
on the PROTEINS dataset with the chosen graph transformations, its performance
on other datasets is not competitive with OCGTL and MOCC. Finding the right
transformations for each dataset requires domain knowledge, which is not the focus
of this work. In comparison, OCGTL and MOCC learn data-specific transformations
automatically and perform consistently well on various datasets.

Study of design choices. To raise the bar in deep anomaly detection on graphs,
we must understand the impact of the design choices associated with the GNN
architecture. Here we discuss the type of pooling layer for the readout function
(Equation (3.13)) and the normalization of the GNN layers.

First, we study the impact of different pooling layers. OCPool is the ideal
testbed to compare add pooling, mean pooling, and max pooling due to its simplicity.
Results of running the three options on nine datasets are reported in Figure 3.5. Add
pooling outperforms the other options. This may result from that add pooling injects
information about the number of nodes into the graph representations. OCPool
with add pooling is a simple yet effective method for anomaly detection. It provides
a simple heuristic for aggregating node attributes into graph representations. As
shown in Table 3.2, it does well on many datasets (particularly on the PROTEINS
and AIDS datasets), even though it does not account for graph structure (edges).

Second, to study the combined impact of the pooling layer and normalization layers
on the deep GNN-based methods, we compare add pooling with graph normalization
(AP + GN) and mean pooling with batch normalization (MP + BN). In Figure 3.6,
we visualize in a scatter plot the performance of all GNN-based methods on all six
datasets, contrasting the AP + GN result with the MP + BN result in terms of
average AUC (%) with standard deviation. Almost all points fall above the diagonal,
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Figure 3.6: A comparison of two design choices in deep GNN-based methods, namely,
add pooling with graph normalization (AP + GN, y-axis) and mean pooling with
batch normalization (MP + BN, x-axis). Each point compares the detection results
of the two variants of one model on one dataset. Most points falling above the
diagonal indicate that AP + GN is the preferred design choice for deep GNN-based
anomaly detection methods.

meaning that AP + GN is preferable to MP + BN, which has been the design choice
of Zhao and Akoglu [145] for OCGIN. With the new design choices, we are able to
significantly raise the bar in graph-level anomaly detection.

3.3 Summary and Discussion
For detecting anomalies within time series, we propose a novel self-supervised method
LNT. The key ingredient is a new training objective combining representation learning
and transformation learning. We prove that both learning paradigms complement
each other to avoid trivial solutions not appropriate for anomaly detection within
time series. We find in an empirical study that LNT learns diverse and semantically
meaningful transformations, leading to the improvement over many strong baselines
on challenging detection tasks.

For graph-level anomaly detection, we develop end-to-end methods, OCGTL and
MOCC, that combine NTL and deep OCC. OCGTL mitigates the shortcomings of
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deep OCC by using graph transformation learning as regularization and complements
graph transformation learning by introducing a sensitivity to the norm of the graph
representations. MOCC generalizes deep OCC and becomes a more powerful and
more flexible anomaly detection method thanks to the learnable transformations.
Our comprehensive empirical study supports our claim and theoretical results. It
shows that our proposed methods (OCGTL and MOCC) outperform existing work
in various challenging domains and do not struggle with performance flip.

Parts of this chapter are mainly based on:

[155] Tim Schneider, Chen Qiu, and Maja Rudolph. Anomalous Region Detection
in Time Series with Local Neural Transformations. In ICML 2021 Workshop:
Self-Supervised Learning for Reasoning and Perception, 2021.

[156] Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. Raising the Bar in
Graph-level Anomaly Detection. In In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22, pages 2196–2203. International
Joint Conferences on Artificial Intelligence Organization, 7 2022. Main Track.

Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. Self-Supervised Anomaly
Detection with Neural Transformations. Preprint (under review), 2022.
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4 Neural Transformation Learning
with Contaminated Data

A common assumption in training anomaly detection models is that clean training
data is available to teach the model what normal samples look like [17]. In reality,
this assumption is often violated: datasets are frequently large and uncurated and
may already contain some of the anomalies one is hoping to find. For example, a
large dataset of medical images may already contain cancer images, or datasets of
financial transactions could already contain unnoticed fraudulent activity. In this
chapter, we study how to learn NTL on a contaminated dataset.

In Section 4.1, we propose a strategy, Latent Outlier Exposure (LOE), for training
deep anomaly detectors in the presence of unlabeled anomalies. LOE is compatible
with a broad class of models, including NTL, and improves their robustness to data
contamination. The idea is to jointly infer binary labels to each datum (normal vs.
anomalous) while updating the model parameters. We use a combination of two
losses that share parameters: one for the normal and one for the anomalous data.
We then iteratively proceed with block coordinate updates on the parameters and
the most likely (latent) labels. Our experimental evaluation demonstrates that LOE
is applicable to a variety of deep anomaly detection models and improves over the
existing training strategies on the contaminated data significantly.

For many anomaly detection problems, e.g., in biomedical image analysis or fraud
detection, one can achieve significantly higher performance by querying anomaly
labels. In Section 4.2, we propose a new active learning strategy, Active Latent
Outlier Exposure (ALOE), for deep anomaly detection. ALOE queries data diversely
in feature space based on the seeding algorithm of K-means++ . By just querying a
few diverse samples, ALOE can efficiently estimate the sole hyperparameter in LOE,
the assumed anomaly rate, based on an importance sampling estimate. The resulting
approach is hyperparameter-free and applicable to various deep anomaly detection
methods. Our extensive experiments on image and tabular data show that ALOE
results in state-of-the-art active anomaly detection performance.
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4.1 Latent Outlier Exposure
A common strategy to deal with contaminated training data is to hope that the
contamination ratio is low and that the anomaly detection method will exercise inlier
priority [40]. Throughout this thesis, we refer to the strategy of blindly training an
anomaly detector as if the training data was clean as “Blind” training. Yoon et al.
[157] have proposed a data refinement strategy that removes potential anomalies
from the training data. Their approach, which we refer to as “Refine”, employs an
ensemble of one-class classifiers to iteratively weed out anomalies and then continue
training on the refined dataset. Similar data refinement strategies are also combined
with latent SVDD [158], autoencoders [159, 160], or time series models [161] for
anomaly detection. However, these methods fail to exploit the insight of outlier
exposure [31] that anomalies provide a valuable training signal.

We introduce LOE, a new unsupervised approach to training deep anomaly
detectors on a contaminated dataset. LOE uses a combination of two coupled losses
to extract learning signals from both normal and anomalous data. In order to decide
which of the two loss functions to activate for a given datum (normal vs. abnormal),
we use a binary latent variable that we jointly infer while updating the model
parameters. Training the model thus results in a joint optimization problem over
continuous model parameters and binary variables that we solve using alternating
updates. During testing, we can use threshold only one of the two loss functions to
identify anomalies in constant time. We demonstrate that LOE can be applied to a
variety of anomaly detection methods, including NTL (Section 2.1), and data types,
including tabular, image, and video data. Beyond detection of entire anomalous
images, we also consider the problem of anomaly segmentation which is concerned
with finding anomalous regions within an image.

4.1.1 Algorithm and Methodology of LOE

We study the problem of unsupervised (or self-supervised) anomaly detection. We
consider a dataset of samples xi; these could either come from a data distribution
of “normal” samples or could otherwise come from an unknown corruption process
and thus be considered “anomalies”. For each datum xi, let ỹi = 0 if the datum
is normal, and ỹi = 1 if it is anomalous. We assume that these binary labels are
unobserved in our training and have to be inferred from the data.

In contrast to most anomaly detection setups, we assume that our dataset is
corrupted by anomalies. That means we assume that a fraction (1− α) of the data
is normal, while its complementary fraction α is anomalous. This corresponds to a
more challenging (but arguably more realistic) anomaly detection setup since the
training data cannot be assumed to be normal. We treat the assumed anomaly
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rate α as a hyperparameter in our approach and denote α0 as the ground truth
contamination rate where needed. Note that an assumed contamination ratio is a
common hyperparameter in many robust algorithms [e.g., 162, 163], and we test the
robustness of our approach w.r.t. this parameter in Section 4.1.2.

Our goal is to train a (deep) anomaly detection model on such corrupted data
based on self-supervised or unsupervised training paradigms. The challenge thereby is
to simultaneously infer the binary labels ỹi during training while optimally exploiting
this information for training the model.

4.1.1.1 Loss Function

We consider two losses in LOE. Similar to most work on deep anomaly detection, we
consider a loss function ℓn(x; θ) that we aim to minimize over “normal" data. When
being trained on only normal data, the trained loss will yield lower values for normal
than for anomalous data so that it can be used to construct an anomaly score.

We also consider a second loss for anomalies ℓa(x; θ) (the parameters θ are
shared). Minimizing this loss on only anomalous data will result in low loss values for
anomalies and larger values for normal data. The anomaly loss is designed to have
opposite effects as the loss function ℓn(x; θ). For example, if ℓn(x; θ) = ||fθ(x)− c||2

as in DSVDD [89] (pulling normal data towards the center), we define ℓa(x; θ) =
1/||fθ(x)− c||2 (pushing abnormal data away from it) as in Ruff et al. [22].

Temporarily assuming that all assignment variables ỹ were known, consider the
joint loss function,

Lθ
LOE(ỹ) = 1

N

N∑
i=1

(1− ỹi)ℓn(xi; θ) + ỹiℓa(xi; θ). (4.1)

This equation resembles the log-likelihood of a probabilistic mixture model, but
note that ℓn(xi; θ) and ℓa(xi; θ) are not necessarily data log-likelihoods; rather,
self-supervised auxiliary losses can be used and often perform better in practice [164].

Optimizing Equation (4.1) over its parameters θ yields a better anomaly detector
than ℓn(x; θ) trained in isolation. By construction of the anomaly loss ℓa(x; θ), the
known anomalies provide an additional training signal to ℓn(x; θ): due to parameter
sharing, the labeled anomalies teach ℓn(x; θ) where not to expect normal data in
feature space. This is the basic idea of Outlier Exposure [31], which constructs
artificial labeled anomalies for enhanced detection performance.

Different from outlier exposure, we assume that the set of ỹi is unobserved, hence
latent. We therefore term our approach of jointly inferring the latent assignment
variables ỹ and learning the parameters θ as Latent Outlier Exposure. We show that
it leads to competitive performance on training data corrupted by outliers.
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4 Neural Transformation Learning with Contaminated Data

4.1.1.2 Optimization Problem

We discuss the optimization problem of LOE and an efficient solving procedure of
the optimization problem in the following.

“Hard” Latent Outlier Exposure (LOEH). In LOE, we seek to both optimize both
losses’ shared parameters θ while also optimizing the most likely assignment variables
ỹi. Due to our assumption of having a fixed rate of anomalies α in the training data,
we introduce a constrained set:

Y = {ỹ ∈ {0, 1}N :
N∑

i=1
ỹi = αN}. (4.2)

The set describes a “hard” label assignment; hence the name “hard LOE”, which
is the default version of our approach. Section 4.1.1.3 describes an extension with
“soft" label assignments. Note that we require αN to be an integer.

Since our goal is to use the losses ℓn(x; θ) and ℓa(x; θ) to identify and score
anomalies, we seek ℓn(x; θ)−ℓa(x; θ) to be large for anomalies, and ℓa(x; θ)−ℓn(x; θ)
to be large for normal data. Assuming these losses to be optimized over θ, our
best guess to identify anomalies is to minimize Equation (4.1) over the assignment
variables y. Combining this with the constraint (Equation (4.2)) yields the following
minimization problem:

min
θ

min
ỹ∈Y

Lθ
LOE(ỹ). (4.3)

As follows, we describe an efficient optimization procedure for the constraint opti-
mization problem.

Block coordinate descent. The constraint discrete optimization problem has an
elegant solution. To this end, we consider a sequence of parameters θt and labels ỹt

and proceed with alternating updates. To update θ, we simply fix ỹt and minimize
Lθ

LOE(ỹt) over θ. In practice, we perform a single gradient step (or stochastic gradient
step, see below), yielding a partial update.

To update ỹ given θt, we minimize the same function subject to the constraint
(Equation (4.2)). To this end, we define training anomaly scores,

strain(xi) = ℓn(xi; θ)− ℓa(xi; θ). (4.4)

These scores quantify the effect of ỹi on minimizing Equation (4.1). We rank these
scores and assign the (1 − α)-quantile of the associated labels ỹi to the value 0
and the remainder to the value 1. This minimizes the loss function subject to the
label constraint. We discuss the sensitivity of our approach to the assumed rate of
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4.1 Latent Outlier Exposure

Algorithm 2: Training process of LOE
Input: Contaminated training dataset D (with an anomaly rate α0)

hyperparamter α

Model: Deep anomaly detector with parameters θ

// Training process
foreach Epoch do

foreach Mini-batch M do
Calculate the anomaly score strain(xi) for xi ∈M
Estimate the label ỹi given strain(xi) and α

Update the parameters θ by minimizing Lθ
LOE(ỹ)

end
end

anomalies α in our experiments section. We stress that our testing anomaly scores
will be different (see Section 4.1.1.3).

Assuming that all involved losses are bounded from below, the block coordinate
descent converges to a local optimum since every update improves the loss.

Stochastic optimization. In practice, we perform stochastic gradient descent on
Equation (4.1) based on mini-batches. For simplicity and memory-efficiency, we
impose the label constraint Equation (4.2) on each mini-batch and optimize θ and ỹ

in the same alternating fashion. The induced bias vanishes for large mini-batches.
In practice, we found that this approach leads to satisfying results. Note that an
exact mini-batch version of the optimization problem in Equation (4.3) would also
be possible, requiring memorization of ỹ for the whole data set.

Algorithm 2 summarizes our approach.

4.1.1.3 Model Extension and Anomaly Detection

We discuss an important extension of our approach and then present the usage of
our approach in anomaly detection in the following.

“Soft” Latent Outlier Exposure (LOES). In practice, the block coordinate descent
procedure can be overconfident in assigning ỹ, leading to suboptimal training. To
overcome this problem, we also propose a soft anomaly scoring approach that we
term Soft LOE. Soft LOE is very simply implemented by a modified constraint set:

Y ′ = {ỹ ∈ {0, 0.5}N :
N∑

i=1
ỹi = 0.5αN}. (4.5)
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4 Neural Transformation Learning with Contaminated Data

Everything else about the model’s training and testing scheme remains the same.
The consequence of an identified anomaly ỹi = 0.5 is that we minimize an equal

combination of both losses, 0.5(ℓn(xi; θ) + ℓa(xi; θ)). The interpretation is that the
algorithm is uncertain about whether to treat xi as a normal or anomalous data point
and compromises between both cases. A similar weighting scheme has been proposed
for supervised learning in the presence of unlabeled examples [165]. In practice, we
found the soft scheme to sometimes outperform the hard one (see Section 4.1.2).

Anomaly detection. In order to use our approach for finding anomalies in a test
set, we could in principle proceed as we did during training and infer the most likely
labels as described in Section 4.1.1.2. However, in practice, we may not want to
assume to encounter the same kinds of anomalies that we encountered during training.
Hence, we refrain from using ℓa(x; θ) during testing and score anomalies using only
ℓn(x; θ). Note that due to parameter sharing, training ℓa(x; θ) jointly with ℓn(x; θ)
has already led to the desired information transfer between both losses.

Testing is the same for both “soft” LOE and “hard” LOE. We define our testing
anomaly score in terms of the “normal” loss function,

stest(x) = ℓn(x, θ). (4.6)

4.1.1.4 Neural Transformation Learning with LOE

LOE is applicable to various deep anomaly detection methods. We show the appli-
cation of LOE to NTL as an example 1. NTL learns K + 1 neural transformations
T θ

0,...,K with parameters θ from data and uses the learned transformations to detect
anomalies. For normal samples, NTL encourages each transformed view to be similar
to the original sample and to be dissimilar from other transformed views in the
embedding space. To achieve this objective, NTL minimizes

ℓn(x; θ) := −
K∑

k=1
log pk(x; θ) with pk(x; θ) = h(T θ

k (x), T θ
0 (x))∑

l∈{0,...,K}/{k} h(T θ
k (x), T θ

l (x))
,

(4.7)

where the function h defined in Equation (2.1) measures the similarity of two
embeddings. Intuitively, the nominator of pk(x; θ) pulls the transformed embeddings
close to the reference embedding while the denominator pushes all transformed
embeddings away from each other.

For anomalies, we “flip” the normal loss and design the abnormal loss as

ℓa(x; θ) := −
K∑

k=1
log(1− pk(x; θ)). (4.8)

1Additional applications of LOE are provided in Appendix A.4.
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The model instead pushes the transformed embeddings T θ
k (x) for k = 1, . . . , K away

from the reference embedding T θ
0 (x) and pulls them close to each other.

4.1.2 Experiments of LOE

We have conducted extensive experiments for unsupervised anomaly detection tasks
on synthetic data, images, tabular data, and videos. The data are contaminated
with different anomaly ratios. Our proposed method sets a new state-of-the-art on
most datasets. We also show that our method gives robust results even when the
contamination ratio is unknown.

Across all experiments, we employ two baselines that do not utilize anomalies to
help the training of models. The baselines are either completely blind to anomalies
or drop the perceived anomalies’ information. Normally training a model without
recognizing anomalies serves as our first baseline. Since this baseline doesn’t take
any action to the anomalies in the contaminated training data and is actually blind
to the anomalies that exist, we name it Blind. Mathematically, Blind sets ỹi = 0 in
Equation (4.1) for all samples. The second baseline filters out anomalies and refines
the training data: at every mini-batch update, it first ranks the mini-batch data
according to the anomaly scores given the current detection model, then removes the
top α most likely anomalous samples from the mini-batch. The remaining samples
perform the model update. We name the second baseline Refine, which still follows
Algorithm. 2 but removes ℓa(x; θ) in Equation (4.1). Both these two baselines take
limited actions to the anomalies. We use them to contrast our proposed methods
and highlight the useful information contained in unseen anomalies.

4.1.2.1 Experiments on Synthetic Data

We first analyze the methods in a controlled setup on a synthetic data set. For the
sake of visualization, we created a 2D contaminated data set with a three-component
Gaussian mixture. One larger component is used to generate normal samples, while
the two smaller components are used to generate the anomalies contaminating the
data (see Figure 4.1). For simplicity, the backbone anomaly detector is DSVDD [89]
with radial basis functions. Setting the contamination ratio to α = α0 = 0.1, we
compare the baselines “Blind” and “Refine” with the proposed LOEH and LOES

(described in Section 4.1.1) and the theoretically optimal G-truth method which uses
the ground truth labels.

Figure 4.1 shows the results (anomaly-score contour lines after training). With
more latent anomaly information exploited from (a) to (e), the contour lines become
increasingly accurate. While (a) “Blind” erroneously treats all anomalies as normal,
(b) “Refine” improves by filtering out some anomalies. (c) LOES and (d) LOEH use
the anomalies, resulting in a clear separation of anomalies and normal data. LOEH
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(a) Blind (b) Refine

(c) LOES (d) LOEH (e) G-truth

Figure 4.1: DSVDD trained on 2D synthetic contaminated data with different strate-
gies: (a) “Blind” (treats all data as normal), (b) “Refine” (filters out some anomalies),
(c) LOES (proposed, assigns soft labels to anomalies), (d) LOEH (proposed, assigns
hard labels), (e) supervised anomaly detection with ground truth labels (for refer-
ence). LOE leads to improved region boundaries.

leads to more pronounced boundaries than LOES , but it is at risk of overfitting,
especially when normal samples are incorrectly detected as anomalies (see our
experiments below). A supervised model with ground-truth labels (“G-truth”)
approximately recovers the true contours.

4.1.2.2 Experiments on Image Data

Anomaly detection on images is especially far developed. We demonstrate LOE’s
benefits when applied to NTL. Our experiments are designed to test the hypothesis
that LOE can mitigate the performance drop caused by training on contaminated
image data. We experiment with three image datasets: CIFAR10, FashionMNIST,
and MVTEC [107]. These have been used in virtually all deep anomaly detection
papers published at top-tier venues [38, 39, 41, 88, 89], and we adopt these papers’
experimental protocol here, as detailed below.
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Backbone model and baselines. Many existing baselines apply either blind updates
or a refinement strategy to specific backbone models. However, a recent study showed
that many of the classical anomaly detection methods, such as autoencoders, are
no longer on par with modern self-supervised approaches [39]. By default, we use
NTL as the backbone model. Results with other backbone models are shown in
Appendix A.4.

NTL is built upon the final pooling layer of a pre-trained ResNet152 for CIFAR10
and FMNIST (as suggested in Defard et al. [111]), and upon the third residual block
of a pre-trained WideResNet50 for MVTEC (as suggested in Reiss et al. [30]). On
all image datasets, the pre-trained feature extractors are frozen during training. We
set the number of transformations K = 15. We use a MLP of three linear layers
with intermediate batchnorm layers and ReLU activations for each transformation
network. The hidden sizes of the transformation networks are [2048, 2048, 2048] on
CIFAR10 and FMNIST, and [1024, 1024, 1024] on MVTEC. The encoder is one linear
layer with units of 256 for CIFAR10 and MVTEC, and is a MLP of two linear layers
of size [1024, 256] with an intermediate ReLU activation for FMNIST. Further details
are provided in Appendix B.3.

For a more competitive and unified comparison with existing baselines in terms of
the training strategy, we hence adopt the two proposed LOE methods (Section 4.1.1)
and the two baseline methods “Blind” and “Refine” to NTL. For the “Refine” baseline
and our methods, we set the number of warm-up epochs as two on all image datasets.
In warm-up epochs, the model is trained blindly.

Image datasets. On CIFAR10 and FMNIST, we follow the standard “one-vs.-rest”
protocol of converting these data into anomaly detection datasets [38, 39, 41, 89].
We create N anomaly detection tasks (where N is the number of classes), with each
task considering one of the classes as normal and the union of all other classes as
abnormal. For each task, the training set is a mixture of normal samples and a
fraction of α0 abnormal samples.

For MVTEC, we use patch-level features as the model inputs. The features are
obtained from the third residual block of a WideResNet50 pre-trained on ImageNet as
suggested in Reiss et al. [30]. Since the MVTEC training set contains no anomalies,
we contaminate it with artificial anomalies that we create by adding zero-mean
Gaussian noise to the features of test set anomalies. We use a large variance for the
additive noise (equal to the empirical variance of the anomalous features) to reduce
information leakage from the test set into the training set.

Empirical results. We present the experimental results of CIFAR10 and FMNIST in
Table 4.1, where we set the contamination ratio α = α0 = 0.1. The results are reported
as the mean and standard deviation of three runs with different model initialization

75
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Table 4.1: AUC (%) with standard deviation for anomaly detection on CIFAR10
and FMNIST. For all experiments, we set the contamination ratio as 10%. LOE
mitigates the performance drop when NTL is trained on the contaminated datasets.

CIFAR10 FMNIST
Blind 91.3±0.1 (-4.4) 85.0±0.2 (-9.7)
Refine 93.5±0.1 (-2.2) 89.1±0.2 (-5.6)
LOEH (ours) 94.9±0.2 (-0.8) 92.9±0.7 (-1.8)
LOES (ours) 94.9±0.1 (-0.8) 92.5±0.1 (-2.2)

Table 4.2: AUC (%) with standard deviation for anomaly detection/segmentation on
MVTEC. We set the contamination ratio of the training set as 10% and 20%. LOE
mitigates the performance drop in both anomaly detection and anomaly segmentation.

Detection Segmentation
10% 20% 10% 20%

Blind 94.2±0.5 (-3.2) 89.4±0.3 (-8.0) 96.17±0.08 (-0.78) 95.09±0.17 (-1.86)
Refine 95.3±0.5 (-2.1) 93.2±0.3 (-4.2) 96.55±0.04 (-0.40) 96.09±0.06 (-0.86)
LOEH 95.9±0.9 (-1.5) 92.9±0.4 (-4.5) 95.97±0.22 (-0.98) 93.29±0.21 (-3.66)
LOES 95.4±0.5 (-2.0) 93.6±0.3 (-3.8) 96.56±0.04 (-0.39) 96.11±0.05 (-0.84)

and anomaly samples for the contamination. The number in the brackets is the
average performance difference to the model trained on clean data. Our proposed
methods consistently outperform the baselines and mitigate the performance drop
compared to the model trained on clean data. Specifically, LOE significantly improves
over the best-performing baseline, “Refine”, by 1.4% and 3.8% AUC on CIFAR10
and FMNIST, respectively. On CIFAR10, our methods have only 0.8% AUC lower
than when training on the normal dataset.

We also evaluate our methods at various contamination ratios (from 5% to
20%) in Figure 4.2 (a) and (b). We can see 1) adding labeled anomalies (G-truth)
boosts performance, and 2) among all methods that do not have ground truth
labels, the proposed LOE methods achieve the best performance consistently at all
contamination ratios.

We also evaluate our methods for anomaly detection and segmentation on the
MVTEC dataset. Results are shown in Table 4.2, where we evaluated the methods
on two contamination ratios (10% and 20%). Our method improves over the “Blind”
and “Refine” baselines in all experimental settings.

4.1.2.3 Experiments on Tabular Data

Tabular data is another important application area of anomaly detection. Many
datasets in the healthcare and cyber security domains are tabular data. Our empirical
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Figure 4.2: Anomaly detection performance of NTL on CIFAR10, FMNIST, and two
tabular datasets (Arrhythmia and Thyroid) with α0 ∈ {5%, 10%, 15%, 20%}. LOE
consistently outperforms the “Blind” and “Refine” on various contamination ratios.

study demonstrates that LOE yields the best performance for two popular backbone
models on a comprehensive set of contaminated tabular datasets.

Tabular datasets. We study all 30 tabular datasets used in the empirical analysis of
a recent state-of-the-art paper [166]. These include the frequently-studied small-scale
Arrhythmia and Thyroid medical datasets, the large-scale cyber intrusion detection
datasets KDD and KDDRev, and multi-dimensional point datasets from the outlier
detection datasets2. We follow the pre-processing and train-test split of the datasets
in Shenkar and Wolf [166]. To corrupt the training set, we create artificial anomalies
by adding zero-mean Gaussian noise to anomalies from the test set. We use a large
variance for the additive noise (equal to the empirical variance of the anomalies in
the test set) to reduce information leakage from the test set into the training set.

2http://odds.cs.stonybrook.edu/
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Table 4.3: F1-score (%) of NTL for anomaly detection on 30 tabular datasets studied
in Shenkar and Wolf [166]. We set α = α0 = 10% in all experiments. The number in
the bracket is the average performance difference from the model trained on clean
data. LOE outperforms the “Blind” and “Refine” baselines consistently.

Blind Refine LOEH (ours) LOES (ours)
abalone 37.9±13.4 (-25.3) 55.2±15.9 (-8.0) 42.8±26.9 (-20.4) 59.3±12.0 (-3.9)
annthyroid 29.7±3.5 (-21.6) 42.7±7.1 (-8.6) 47.7±11.4 (-3.6) 50.3±4.5 (-1.0)
arrhythmia 57.6±2.5 (-3.0) 59.1±2.1 (-1.5) 62.1±2.8 (+1.5) 62.7±3.3 (+2.1)
breastw 84.0±1.8 (-8.4) 93.1±0.9 (+0.7) 95.6±0.4 (+3.2) 95.3±0.4 (+2.9)
cardio 21.8±4.9 (-35.0) 45.2±7.9 (-11.6) 73.0±7.9 (+16.2) 57.8±5.5 (+1.0)
ecoli 0.0±0.0 (-95.6) 88.9±14.1 (-6.7) 100±0.0 (+4.4) 100±0.0 (+4.4)
forest 20.4±4.0 (-44.2) 56.2±4.9 (-8.4) 61.1±34.9 (-3.5) 67.6±30.6 (+3.0)
glass 11.1±7.0 (-6.7) 15.6±5.4 (-2.2) 17.8±5.4 (+0.0) 20.0±8.3 (+2.2)
ionosphere 89.0±1.5 (-3.5) 91.0±2.0 (-1.5) 91.0±1.7 (-1.5) 91.3±2.2 (-1.2)
kdd 95.9±0.0 (-2.4) 96.0±1.1 (-2.3) 98.1±0.4 (-0.2) 98.4±0.1 (+0.1)
kddrev 98.4±0.1 (+0.2) 98.4±0.2 (+0.2) 89.1±1.7 (-9.1) 98.6±0.0 (+0.4)
letter 36.4±3.6 (-11.0) 44.4±3.1 (-3.0) 25.4±10.0 (-22.0) 45.6±10.6 (-1.8)
lympho 53.3±12.5 (-20.0) 60.0±8.2 (-13.3) 60.0±13.3 (-13.3) 73.3±22.6 (+0.0)
mammo. 5.5±2.8 (-21.3) 2.6±1.7 (-24.2) 3.3±1.6 (-23.5) 13.5±3.8 (-13.3)
mnist 78.6±0.5 (-6.6) 80.3±1.1 (-4.9) 71.8±1.8 (-13.4) 76.3±2.1 (-8.9)
mulcross 45.5±9.6 (-50.5) 58.2±3.5 (-37.8) 58.2±6.2 (-37.8) 50.1±8.9 (-45.9)
musk 21.0±3.3 (-79.0) 98.8±0.4 (-1.2) 100±0.0 (+0.0) 100±0.0 (+0.0)
optdigits 0.2±0.3 (-24.7) 1.5±0.3 (-23.4) 41.7±45.9 (+16.8) 59.1±48.2 (+34.2)
pendigits 5.0±2.5 (-56.3) 32.6±10.0 (-28.7) 79.4±4.7 (+18.1) 81.9±4.3 (+20.6)
pima 60.3±2.6 (-1.2) 61.0±1.9 (-0.5) 61.3±2.4 (-0.2) 61.0±0.9 (-0.5)
satellite 73.6±0.4 (-1.0) 74.1±0.3 (-0.5) 74.8±0.4 (+0.2) 74.7±0.1 (+0.1)
satimage 26.8±1.5 (-65.2) 86.8±4.0 (-5.2) 90.7±1.1 (-1.3) 91.0±0.7 (-1.0)
seismic 11.9±1.8 (-0.6) 11.5±1.0 (-1.0) 18.1±0.7 (+5.6) 17.1±0.6 (+4.6)
shuttle 97.0±0.3 (+0.3) 97.0±0.2 (+0.3) 97.1±0.2 (+0.4) 97.0±0.2 (+0.3)
speech 6.9±1.2 (-2.6) 8.2±2.1 (-1.3) 43.3±5.6 (+33.8) 50.8±2.5 (+41.3)
thyroid 43.4±5.5 (-34.4) 55.1±4.2 (-22.7) 82.4±2.7 (+4.6) 82.4±2.3 (+4.6)
vertebral 22.0±4.5 (-8.7) 21.3±4.5 (-9.4) 22.7±11.0 (-8.0) 25.3±4.0 (-5.4)
vowels 36.0±1.8 (-40.7) 50.4±8.8 (-26.3) 62.8±9.5 (-13.9) 48.4±6.6 (-28.3)
wbc 25.7±12.3 (-39.1) 45.7±15.5 (-19.1) 76.2±6.0 (+11.4) 69.5±3.8 (+4.7)
wine 24.0±18.5 (-68.0) 66.0±12.0 (-26.0) 90.0±0.0 (-2.0) 92.0±4.0 (+0.0)

Backbone models and baselines. By default, we use NTL as the backbone model,
which was identified as state-of-the-art in a recent independent comparison of 13
models [167]. Results with other backbone models are shown in Appendix A.4. We
implement the proposed LOE methods, the “Blind” and “Refine” baselines with
NTL. For the “Refine” baseline and our methods, we set the number of warm-up
epochs as two for small datasets and as one for large datasets. In warm-up epochs,
the model is trained blindly.

For NTL, we use MLPs for neural transformations and the encoder on all
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datasets. We set the number of transformations as nine. The transformations are
either parametrized with the network directly or as a residual connection of the
network and the original sample. We search for the best-performed transformation
parameterization and other hyperparameters based on the performance of the model
trained on clean data. Further details are provided in Appendix B.3.

Empirical results. We report F1-scores for 30 tabular datasets in Table 4.3. The
results are reported as the mean and standard derivation of five runs with different
model initializations and random training set split. We set the contamination ratio
α = α0 = 0.1 for all datasets. LOE outperforms the “Blind” and “Refine” baselines
consistently. Remarkably, LOE trained on contaminated data can achieve better
results than on clean data on some datasets (see Table 4.3), suggesting that the latent
anomalies provide a positive learning signal. This effect can be seen when increasing
the contamination ratio on the Arrhythmia and Thyroid datasets (Figure 4.2 (c)
and (d)). Hendrycks et al. [31] noticed a similar phenomenon when adding labeled
outliers; these known anomalies help the model learn better region boundaries for
normal data. Our results suggest that even unlabelled anomalies, when properly
inferred, can improve the performance of an anomaly detector. Overall, we conclude
that LOE significantly improves the performance of anomaly detection methods on
contaminated tabular datasets. However, we also observed a large variance in the
results on some datasets. For example, on Optidigits, LOE achieves either perfect
detection or flipped detection in different runs. A flipped detection at the beginning
of the training could mislead LOE.

4.1.2.4 Experiments on Video Data

In addition to image and tabular data, we also evaluate our methods on a video
frame anomaly detection benchmark also studied in Pang et al. [168]. The goal is to
identify video frames that contain unusual objects or abnormal events. Experiments
show that our methods achieve state-of-the-art performance on this benchmark.

Video dataset. We study UCSD Peds13, a popular benchmark for video anomaly
detection. It contains surveillance videos of a pedestrian walkway. Non-pedestrian
and unusual behavior is labeled as abnormal. The data set contains 34 training video
clips and 36 testing video clips, where all frames in the training set are normal and
about half of the testing frames are abnormal. We follow the data preprocessing
protocol of Pang et al. [168] for dividing the data into training and test sets. To
realize different contamination ratios, we randomly remove some abnormal frames
from the training set, but the test set is fixed.

3http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
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Table 4.4: AUC (%) for video frame anomaly detection on UCSD Peds1 with various
contamination ratios, including 10%, 20%, and 30%*. LOES achieves the best results
on ratios 10% and 20% and performs competitively with the state-of-the-art method
Pang et al. [168].

Method Contamination Ratio
10% 20% 30%∗

Sugiyama and Borgwardt [169] 55.0 56.0 56.3
Pang et al. [168] 68.0 70.0 71.7
Blind 85.2±1.0 76.0±2.7 66.6±2.6
Refine 82.7±1.5 74.9±2.4 69.3±0.7
LOEH (ours) 82.3±1.6 59.6±3.8 56.8±9.5
LOES (ours) 86.8±1.2 79.2±1.3 71.5±2.4
∗Default setup in Pang et al. [168], α0 ≈ 30%.

Backbone models and baselines. In addition to the “Blind” and “Refine” baselines,
we compare to Sugiyama and Borgwardt [169], a distance-based method, and Pang
et al. [168], an ordinal regression-based state-of-the-art method for video frame
anomaly detection.We implement the proposed LOE methods, the “Blind”, and the
“Refine” baselines with NTL as the backbone model. We use a pre-trained ResNet50
on ImageNet as a feature extractor, whose output is then sent into an NTL. The
feature extractor and NTL are jointly optimized during training. Further details are
provided in Appendix B.3.

Empirical results. We report the results in Table 4.4. Our soft LOE method
achieves the best performance across different contamination ratios. Our method
outperforms Pang et al. [168] by 18.8% and 9.2% AUC on the contamination ratios of
10% and 20%, respectively. LOES is also robust to the unusually large contamination
ratio and performs competitively with the state-of-the-art method Pang et al. [168]
when the ratio α0 = 30%. LOES outperforms the “Blind” and “Refine” baselines
significantly on various contamination ratios from 10% to 30%.

4.1.2.5 Sensitivity Study

The hyperparameter α characterizes the assumed fraction of anomalies in our training
data. Here, we evaluate its robustness under different ground truth contamination
ratios. We run LOEH , LOES , and the “Refine” baseline with NTL on CIFAR-10
with varying true anomaly ratios α0 and different hyperparameters α. We present
the results in a matrix accommodating the two variables. The diagonal values report
the results when correctly setting the contamination ratio.

LOEH (Figure 4.3 (a)) shows considerable robustness: the method suffers at
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Figure 4.3: A sensitivity study of the robustness of LOEH , LOES , and “Refine”
to the misspecified contamination ratio. We evaluate them on CIFAR10 in terms
of AUC (%). LOEH and LOES yield robust results and outperform the “Refine”
baseline in most cases.

most 1.4% performance degradation when the hyperparameter α is off by 5%, and is
always better than “Blind”. It always outperforms “Refine” (Figure 4.3 (c)) when
erroneously setting a smaller α than the true ratio α0. LOES (Figure 4.3 (b))
also shows robustness, especially when erroneously setting a larger α than the true
ratio α0. The method is always better than “Refine” (Figure 4.3 (c)) when the
hyperparameter α is off by up to 15%, and always outperforms “Blind”.

4.2 Active Latent Outlier Exposure
In some cases, expert feedback is available in learning the anomaly detector. For
example, in a medical setting, one may ask a medical doctor to confirm whether
a given image shows normal or abnormal cellular tissue. Other application areas
include detecting network intrusions or machine failures. As expert feedback is
typically expensive, it is essential to find effective strategies for querying informative
data points. To this end, we study the active anomaly detection problem.

Active anomaly detection has been studied for decades. A variety of querying
strategies have been proposed to specific shallow anomaly detectors such as OCSVM
and KDE [170, 171, 171, 172, 173, 174, 175, 176]. However, shallow methods are
known to be problematic for high-dimensional data [164]. Recently, deep active
anomaly detection has received a lot of attention. Pimentel et al. [177] propose to
query samples with the top anomaly scores for autoencoder-based methods, while
Ning et al. [178] improve the querying with a diversity consideration. Tang et al.
[179] use an ensemble of deep anomaly detectors and query the most likely abnormal
samples for each detector separately. Russo et al. [180] query samples where the
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model is uncertain about the predictions. Pang et al. [181] and Zha et al. [182]
propose querying strategies based on reinforcement learning, which requires labeled
datasets for learning a Markov decision process.

These works primarily involved domain-specific applications and/or subpar archi-
tectures, making it hard to disentangle modeling choices from querying strategies. In
this section, we aim to identify the different factors that lead to good performance
in deep active anomaly detection. We find that diversified sampling strategies can
dramatically improve popular querying strategies, such as querying data based on
their predicted anomaly score or around the decision boundaries. Based on these
findings, we propose ALOE: a new active learning strategy compatible with many
self-supervised losses. ALOE queries data diversely in feature space based on the
seeding algorithm of K-means++ and draws information from both queried and
unqueried data based on two equally weighted losses. By just querying a few diverse
samples, ALOE can efficiently estimate the sole hyperparameter in LOE, the assumed
anomaly rate, based on an importance sampling estimate.

4.2.1 Algorithm and Methodology of ALOE

Active learning assumes that the training data contains unlabeled anomalies. However,
querying the whole dataset (i.e., obtaining labels for all data) is usually infeasible
due to the sheer amount of data and the high cost associated with getting expert
feedback. Therefore, we can assume that we will only obtain labels for a small
fraction of the data. Once some queries are labeled, the performance of an anomaly
detector can be improved via the additional annotations. In active learning, it is
much more common to seek a semi-supervised approach that accounts both for the
labeled samples and the remaining unlabeled dataset. ALOE falls into this category.
We first present our proposed loss and then discuss our proposed querying strategy.

4.2.1.1 Loss Function

We consider a joint distribution p(x, y) over data x and binary anomaly labels y,
where y = 0 represents normal and y = 1 represents abnormal data. Our goal is to
learn an anomaly detection model that associates every input with an anomaly score
s(x) that we can use to predict y for any x. After querying, a subset of the data will
be labeled and can be used to train the anomaly detector in a supervised manner.

Supervised loss. In order to use the normal data to train the model, we assume
we have available a self-supervised or unsupervised loss function ℓn(x; θ), where θ

denotes the model parameters. This could be an autoencoder loss [19], an OCC loss
[89], or a NTL objective (Equation (2.2)). By construction, this loss tries to learn an
anomaly detector based on only normal data. Similar to Hendrycks et al. [31] and
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LOE in Section 4.1.1, we also require a corresponding loss function for abnormal data.
This loss ℓa(x; θ) shares parameters with the normal loss and is typically chosen to
have a complementary effect on the learned function. Denoting our queried indices
by Q, we obtain a corresponding supervised loss as

Lθ
Q = 1

|Q|
∑
j∈Q

(yjℓa(xj ; θ) + (1− yj)ℓn(xj ; θ)). (4.9)

Instead of training this loss only on queried data, we improve on this idea
and consider how to use both labeled and unlabeled samples to provide training
signals. LOE have shown that this loss function is also applicable when the labels
are unobserved as expectation-maximization can be used to infer the latent anomaly
labels in Section 4.1.1.2.

ALOE loss. We propose to combine the supervised loss in Equation (4.9) with the
unsupervised loss in Equation (4.1), thereby drawing information from both the
queried and unqueried parts of the data. As follows, we assume that our data indices
I = {1, · · · , N} partition into a set of unlabeled data U and a set of queried data
Q such that I = U ∪ Q. For all queried data, we assume that ground truth labels
yi are available, while for unqueried data, the labels ỹi are unknown. Adding both
losses together yields

Lθ
ALOE(ỹ) = Lθ

Q + 1
|U|

∑
i∈U

(ỹiℓa(xi; θ) + (1− ỹi)ℓn(xi; θ)). (4.10)

Optimizing this loss involves a block coordinate ascent scheme that alternates
between inferring the anomaly labels of unlabeled samples and taking gradient steps
to minimize Equation (4.10) with the inferred labels. In each iteration, given Q, the
pseudo labels ỹi for i ∈ U are obtained by optimizing

min
ỹ∈{0,0.5}|U|

1
|U|

∑
i∈U

ỹiℓa(xi; θ) + (1− ỹi)ℓn(xi; θ) s.t.
∑
i∈U

ỹi = 0.5(αN −
∑
j∈Q

yj).

The constraint on the labels ensures that the inferred anomaly labels respect a certain
contamination ratio α, which is an important hyperparameter of the approach. In
practice, this constrained optimization problem is solved as in Section 4.1.1.3 by
using the current anomaly detector to rank the unlabeled samples based on their
anomaly scores and assign the top α-quantile of the associated labels ỹi to the value
0.5, and the remaining to the value 0. Assigning ỹi = 0.5 to the inferred anomalies
accounts for the uncertainty of whether the sample truly is an anomaly.

In theory, α could be treated as a hyperparameter [162, 163], but eliminating
hyperparameters is important in anomaly detection. In many practical applications
of anomaly detection, there is no labeled data that can be used for validation.
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While LOE have to assume that the contamination ratio is given, active learning
provides an opportunity to estimate α. In Section 4.2.1.2, we develop an importance
sampling-based approach to estimate α from the labeled data.

Another noteworthy aspect of the ALOE loss is that it weighs the averaged
losses equally to each other. While equal weighting cannot be justified from the first
principles, we expect our queried samples to be informative, and yet we do not want
either loss component to dominate the learning task (assuming that we always query
only a small percentage of the data). This provides more weight to every queried
data point than to an unqueried one, assuring these goals. Our equal weighting
scheme is also practical because it avoids a hyperparameter.

Equation (4.10) is our ALOE loss. It draws information from both labeled and
unlabeled samples. Next, we propose how to select good queries for ALOE.

4.2.1.2 Active Querying

We consider the following active learning setup. An anomaly detection model is
trained on a dataset involving unidentified anomalies. The trained model then uses
some mechanism to select K data points xi for querying an anomaly label yi ∈ {0, 1}.
Based on the queried samples, the model is then refined. During testing, we use only
the learned anomaly detection model, i.e., we do not carry out active learning during
testing, eliminating the need for a human in the loop.

Several active learning strategies for anomaly detection have been proposed in
the literature. As a simple baseline, data points can be queried at random [22];
however, this oftentimes results in very few queried true anomalies. Görnitz et al.
[173] proposed to query at the boundary of the normal region, which is the learned
hypersphere surface in the feature space. A more general approach is to query data
in the α-quantile of an anomaly detector, but the problem is that one typically does
not know which value of α defines the decision boundary.

Our proposed solution is to query data points diversely, covering a large area in
the feature space. This diverse querying has two benefits. First, we do not query
data with redundant feature information. Second, it turns out that anomalies are
oftentimes associated with regions of a greater distance to the center of the data.
Thus, diverse querying will typically over-sample true anomalies, compensating for
the fact that anomalies are rare in the training data.

Combining the requirements of informativeness and large support, we propose
to use the seeding algorithm of K-means++ as our active learning strategy. This
algorithm selects diverse initialization points for the K-means clustering. Specifically,
we query samples in the unlabeled dataset U that are dissimilar to the samples in the
queried set Q. The query probability is proportional to the distance to its nearest
sample in the queried set.

84



4.2 Active Latent Outlier Exposure

Algorithm 3: Diverse query of ALOE
Input: Unlabeled training dataset U , querying budget |Q|
Compute the pairwise distance d(x,x′) of samples in U
Set the initial sample in the query set Q = [arg minx

∑
x′∈U d(x,x′)]

for i = 2,. . . ,|Q| do
Sample xi from U with the probability pquery(xi)
U ← U \ xi

Q ← xi ∪Q
end

For a more meaningful notion of distance, we define the latter in an embedding
space as d(x,x′) = exp(∥fθ(x) − fθ(x′)∥2/τ), where fθ is a neural feature map,
and τ is a temperature parameter controlling the strength of diversity. We stress
that all loss functions considered in this thesis already have an associated feature
map that we can use. The distance of a sample xi to the query set Q is defined as
D(xi) = minxj∈Q d(xi,xj). Given the existing queried samples Q we draw a sample
from the unlabeled dataset U with a categorical distribution

pquery(xi) = D(xi)∑
xj∈U D(xj) ∀i ∈ U . (4.11)

Algorithm 3 summarizes our querying strategy.

4.2.1.3 Contamination Ratio Estimation

To eliminate a critical hyperparameter in our approach, we estimate the contamination
ratio, i.e., the fraction of anomalies in the data set. Under a few assumptions, we
show that this parameter can be estimated despite our biased querying strategy.

We consider the empirical fraction of anomalies in the training data, defined
as α0 =

∑N
i=1 1a(xi)/N , where 1a(x) ≡ 1(y(x) = 1) indicates whether or not the

sample is abnormal. Specifically, we want to estimate this quantity only based
on our queried samples Q, avoiding additional queries. Our querying procedure
results in a chain of indices Q = {i1, i2, ..., i|Q|}, where each conditional distribution
ik|i<k is defined by Equation (4.11). Unfortunately, the samples contained in Q are
non-uniformly distributed, but importance sampling comes to the rescue. Importance
sampling requires uncorrelated samples. Our first assumption is therefore as follows:

Assumption 1. The anomaly scores {s(xi) : i ∈ Q} of queries are approximately
independently distributed. Thus, they can be treated as independent samples in
importance sampling.

This assumption is only approximately valid, but we can justify it based on
a dimensionality argument. By construction, the chain of queried data points
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{xi : i ∈ Q} are spatially anti-correlated. However, we argue that these correlations
get mostly lost in the projection step of xi 7→ s(xi). Consider repulsively sampling
points in a n-dimensional hypercube, where n is large. Projecting these samples onto
any one-dimensional subspace will result in approximately decorrelated samples since
the samples still have n− 1 dimensions to avoid each other.

We can now collect two data sets of one-dimensional scores, Sp = {s(xi) : i ∈ I}
(coming from the full data) and Sq = {s(xi) : i ∈ Q} (coming from the queries).
Since we are in one dimension, we can easily interpolate these discrete distributions to
continuous ones using kernel density estimators with Gaussian kernels. Let dp(s) and
dq(s) denote the resulting two densities. To set the bandwidth, we apply the average
width as if the samples were evenly spaced in the range, i.e., (maxi(si)−mini(si))/|Q|.

To correct the sampling bias, we need to estimate the importance ratio between
our proposal distribution q(xi) (coming from the query) and the data distribution
p(xi). For tractability, we will do this in the space of anomaly scores. To this end,
we make the following additional assumption.

Assumption 2. The importance weights p(xi)/q(xi) in the space of samples can
be approximated by the importance weights in the anomaly score space, namely,
p(xi)/q(xi) ≈ dp(s(xi))/dq(s(xi)).

We justify this assumption as follows. The learned anomaly score s(x) of any
deep anomaly detector is approximately a function of the data distribution’s level
sets. Thus, the anomaly score is (approximately) a sufficient statistic of the data
distribution. We assume that the same holds true for the distribution of queried
samples, which cannot differ too wildly from the data distribution.

Given both assumptions, we can estimate the contamination ratio based on our
query set as

α = 1
|Q|

|Q|∑
i=1

p(xi)
q(xi)

1a(xi) ≈
1
|Q|

|Q|∑
i=1

dp(s(xi))
dq(s(xi))

1a(xi). (4.12)

Experiments show the bandwidth setup mentioned above works well in practice.

4.2.2 Experiments of ALOE

We study active anomaly detection on standard image benchmarks, medical images,
and tabular data. Our extensive empirical study establishes how our proposed
method compares to eight recent active anomaly detection methods we implemented
as baselines. We find that diverse querying with K-means++ improves the detection
accuracy of a broad range of self-supervised anomaly detection methods and that
our method ALOE consistently outperforms all other methods by a large margin.

We first describe the baselines and their implementations. Afterward, we present
the experiments on images and tabular data. Finally, we provide an analysis of
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the contamination ratio estimation. We also provide an ablation study showing the
benefit of each ingredient in Appendix A.5.

Baselines. Most existing baselines apply their proposed querying and training
strategies to shallow anomaly detection methods or sub-optimal deep models (e.g.,
autoencoders [19]). In recent years, these approaches have consistently been outper-
formed by self-supervised anomaly detection methods [39]. For a fair comparison
of querying strategies, we endow all baselines with the same state-of-the-art self-
supervised backbone models also used in our method. By default, we use NTL as the
backbone model. Results with other backbone models are provided in Appendix A.5.

The baselines are summarized in Table 4.5 and detailed in Appendix B.4. They
differ in the treatment of labeled and unlabeled samples (training losses in col. 4 &
col. 5): the unlabeled data is either ignored or modeled with a one-class objective.
Most baselines incorporate the labeled data by a supervised loss (Equation (4.9)).
As an exception, Ning et al. [178] use data refinement [19, 157] to remove all labeled
anomalies and then train a weighted one-class objective on the remaining data. All
baselines weigh the unsupervised and supervised losses equally. The baselines also
differ in their querying strategies (col. 3), summarized below:

• margin query selects samples deterministically that are the closest to the boundary
of the normality region. We provide the method with the true contamination
ratio to help it choose an ideal boundary.

• margin diverse query combines margin query with neighborhood-based diversifi-
cation. It tends to select samples at different positions of the normality boundary.
The final criterion is an equally weighted combination of the two aspects.

• random query draws samples uniformly among the training set.

• most positive query selects the top-ranked samples ordered by anomaly scores.

• positive random query samples uniformly among the top 50% data ranked by
their anomaly scores.

• positive diverse query combines querying according to anomaly scores with
distance-based diversification. The selection criterion is an equally weighted
combination of the two aspects: anomaly score and the minimum Euclidean
distance to all previously queried samples.

Implementation details. In all experiments, we use NTL as the backbone model
for all methods. On image datasets, we apply NTL to the visual features extracted
with a frozen ResNet152 pre-trained on ImageNet. On tabular datasets, we directly
apply NTL to the data. We apply the same number of transformations, network
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Table 4.5: A summary of all compared experimental methods’ query strategies and
training strategies irrespective of their backbone models.

Name Reference Querying Loss (labeled) Loss (unlabeled)

Mar Görnitz et al. [173] margin superv. (Equation (4.9)) one class
Hybr1 Görnitz et al. [173] margin diverse superv. (Equation (4.9)) one class
Pos1 Pimentel et al. [177] most positive superv. (Equation (4.9)) none
Pos2 Barnabé-Lortie et al. [183] most positive superv. (Equation (4.9)) one class
Rand1 Ruff et al. [22] random superv. (Equation (4.9)) one class
Rand2 Trittenbach et al. [184] positive random superv. (Equation (4.9)) one class
Hybr2 Das et al. [176] positive diverse superv. (Equation (4.9)) none
Hybr3 Ning et al. [178] positive diverse refinement weighted one class

ALOE [ours] K-means++ ALOE loss (Equation (4.10))

components, and anomaly loss function ℓa as in Section 4.1.2. NTL is trained for one
epoch, after which |Q| queries are labeled and collected at once. The contamination
ratio α in ALOE is estimated using the labeled samples immediately after the
querying step and then fixed for the remaining training process. We set ỹi = 0 for
samples that are inferred to be normal and ỹi = 0.5 for inferred anomalies. More
implementation details are provided in Appendix B.4.

4.2.2.1 Experiments on Image Data

In this section, we study ALOE on standard image benchmarks to establish how it
compares to eight well-known active anomaly detection baselines. Active learning
plays an important role in medical domains where expert labeling is expensive. Hence,
we also study nine medical datasets from Yang et al. [185]. We describe the datasets,
the evaluation protocol, and finally the results of our study.

Image benchmark datasets. First, we experiment with two popular image bench-
mark datasets: CIFAR10 and FashionMNIST. These have been used in virtually all
deep anomaly detection papers published at top-tier venues [37, 38, 39, 41, 88, 89].

Medical image datasets. Since medical imaging is a very important practical
application of active anomaly detection, we also study ALOE on medical images.
The datasets we consider cover different data modalities (e.g., X-ray, CT, electron
microscope), and their characteristic image features can be very different from natu-
ral images. Our empirical study includes all 2D image datasets presented in Yang
et al. [185] that have more than 500 samples in each class, including BloodMNIST,
OrganAMNIST, OrganCMNIST, OrganSMNIST, OCTMNIST, PathMNIST, Pneu-
moniaMNIST, and TissueMNIST. We also include DermaMNIST but are restricted
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Table 4.6: AUC (%) with standard deviation for anomaly detection on 11 image
datasets when the query budget |Q|= 20. ALOE outperforms all baselines by a large
margin by querying diverse and informative samples.

Mar Hybr1 Pos1 Pos2 Rand1 Rand2 Hybr2 Hybr3 ALOE

CIFAR10 92.4±0.7 92.0±0.7 93.4±0.5 92.1±0.7 89.2±3.2 91.4±1.0 85.1±2.2 71.8±7.4 96.3±0.3
FMNIST 93.1±0.4 92.6±0.4 92.2±0.6 89.3±1.0 84.0±3.8 90.6±1.1 88.7±1.4 82.6±4.3 94.8±0.6
Blood 68.6±1.8 69.1±1.3 69.6±1.8 72.2±4.9 70.6±1.6 69.2±1.7 72.2±2.7 58.3±5.2 80.5±0.5
OrganA 86.4±1.3 87.4±0.7 81.7±2.9 81.8±2.1 82.9±0.6 86.5±0.7 88.6±1.5 68.8±3.1 90.7±0.7
OrganC 86.5±0.9 87.0±0.7 84.6±1.9 79.6±2.0 85.5±0.9 86.4±0.8 84.8±1.2 68.9±3.0 89.7±0.7
OrganS 83.5±1.1 84.1±0.4 83.2±1.3 78.6±1.0 82.2±1.4 83.8±0.4 82.3±0.7 66.9±4.3 87.4±0.8
OCT 64.4±3.7 63.3±1.8 63.8±4.4 63.0±4.0 59.7±1.9 62.1±4.3 63.0±7.6 56.2±4.5 68.5±3.4
Path 82.7±2.4 86.0±1.1 77.5±2.0 80.2±3.5 83.2±1.6 83.9±2.9 86.1±2.0 75.1±4.2 88.1±1.1
Pneu. 72.1±7.0 75.1±5.3 75.5±8.8 83.6±6.1 68.1±5.9 76.0±8.0 88.4±3.3 63.4±17.7 91.2±1.4
Tissue 60.2±1.5 61.3±1.7 65.8±1.7 63.5±2.0 59.9±1.7 59.5±1.3 62.1±1.7 50.8±1.6 66.4±1.4
Derma 62.6±3.8 63.1±4.7 66.6±2.3 66.4±4.3 64.5±4.8 68.3±2.1 57.2±13.3 48.0±13.6 73.5±2.5

Average 77.5 78.3 77.3 77.6 75.4 78.0 78.0 64.6 84.3

to the classes which have more than 500 training samples. The specific data statistics
and the collection procedure are listed in Yang et al. [185].

Evaluation protocol. We follow the community standard known as the “one-vs.-rest”
protocol to turn these classification datasets into a test-bed for anomaly detection
[37, 38, 39, 41, 89]. While respecting the original train and test split of these datasets,
the protocol iterates over the classes and treats each class in turn as normal. Random
samples from the other classes are used to contaminate the data. The training set
is then a mixture of unlabeled normal and abnormal samples with a contamination
ratio of 10% [40]. This protocol can simulate a “human expert” to provide labels
for the queried samples because the datasets provide ground-truth class labels. The
models are trained on the training data and evaluated on the test data. The reported
results for each dataset are averaged over the number of experiments (i.e., classes)
and over five independent runs. Results are reported in terms of average AUC (%)
with standard deviation.

Empirical results. We report the evaluation results of our method (ALOE) and
the eight baselines on all 11 image datasets in Table 4.6. All methods have a query
budget of 20 samples. On all datasets, our proposed method ALOE achieves the
best performance and significantly outperforms all baselines by six percentage points
on average, reaching state-of-the-art results in active anomaly detection on images.

In addition, we also study detection performance as the query budget increases
from 20 to 160. The results are plotted in Figure 4.4. This systematic experiment
demonstrates ALOE’s superior performance is consistent given various active learning
budgets. Even with a small budget of 20 samples, ALOE (by querying diverse and
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Figure 4.4: Results in terms of AUCs (%) for anomaly detection on 11 image datasets
with the query budgets varying from 20 to 160. ALOE performs the best among the
compared methods on all query budgets.

informative samples) makes better usage of the labeling information than the other
baselines and thus leads to better performance by a large margin. The performance
of almost all methods increases as more samples are allowed to be queried. Even
for |Q|= 160 queries where the benefit from adding more queries starts to saturate,
ALOE still outperforms the baselines. We also provide results with other backbone
models in Appendix A.5.

4.2.2.2 Experiments on Tabular Data

Many practical use cases of anomaly detection, for example, in healthcare or cyber
security, are concerned with tabular data. For this reason, we study ALOE on a
number of tabular datasets from various domains. We find that it outperforms
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Table 4.7: F1-score (%) with standard error for anomaly detection on tabular datasets
when the query budget |Q|= 10. ALOE performs the best on 3 of 4 datasets. We set
the contamination ratio as 10%.

Mar Hybr1 Pos1 Pos2 Rand1 Rand2 Hybr2 Hybr3 ALOE

BreastW 81.6±0.7 83.3±2.0 58.6±7.7 81.3±0.8 87.1±1.0 82.9±1.1 55.0±6.0 79.6±4.9 93.9±0.5
Iono. 91.9±0.3 92.3±0.5 56.1±6.2 91.1±0.8 91.1±0.3 91.9±0.6 64.0±4.6 88.2±0.9 91.8±1.1
Pima 50.1±1.3 49.2±1.9 48.5±0.4 52.4±0.8 53.6±1.1 51.9±2.0 53.8±4.0 48.4±0.7 55.5±1.2
Satellite 64.2±1.2 66.2±1.7 57.0±3.0 56.7±3.2 67.7±1.2 66.6±0.8 48.6±6.9 56.9±7.0 71.1±1.7

Average 72.0 72.8 55.1 70.4 74.9 73.3 55.4 68.3 78.1

existing baselines, even with as few as ten queries.

Tabular datasets. Our study includes four multi-dimensional tabular datasets from
the ODDS repository 4, which have an outlier ratio of at least 30%. This is necessary
to ensure that there are enough anomalies available to remove from the test set and
add to the clean training set to achieve a contamination ratio of 10%. The datasets
are BreastW, Ionosphere, Pima, and Satellite. To form the training and test set
for tabular data, we first split the data into normal and abnormal categories. We
randomly sub-sample half the normal data as the training data and treat the other
half as the test data. To contaminate training data, we randomly sub-sample the
abnormal data into the training set to reach the desired 10% contamination ratio;
the remaining abnormal data goes into the test set.

As in the image experiments, there is one round of querying after one-epoch
training, in which 10 samples are labeled. We evaluate the model performance of
all baselines in terms of F1-score (%). For each dataset, we report the averaged
results with standard errors over five runs with random train-test splits and random
initialization.

Empirical results. We report the results for our method in comparison to the eight
baselines (described in Table 4.5) in Table 4.7. Our proposed method ALOE performs
best on three of four datasets and outperforms all baselines by at least 3.2 percentage
points on average. Diverse querying best utilizes the query budget to label the
diverse and informative data points, yielding a consistent improvement over existing
baselines in active anomaly detection on tabular data.

4.2.2.3 Analysis on Ratio Estimation

We analyze the accuracy of the contamination ratio estimation (Equation (4.12)).
The relative errors of the estimated contamination ratio to the true ratio when the

4http://odds.cs.stonybrook.edu/
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Figure 4.5: Relative error (%) of the estimated contamination ratio α̃ to the true
ratio α0 on all image datasets. The true contamination ratio is 10%. The estimation
error is less than 10% on 7 of 11 datasets, even when querying 20 samples.

Table 4.8: AUC(%) with standard error of ALOE with estimated ratio and ALOE
with true ratio when the query budget |Q|= 20, 40, 80, 160. The results are averaged
over 11 image datasets. ALOE with either true ratio or estimated ratio performs
similarly on all query budgets.

K 20 40 80 160

ALOE 84.3±3.0 86.4±2.9 88.4±2.7 89.9±2.5
ALOE (true ratio) 85.2±3.0 87.0±3.0 88.7±2.7 90.1±2.5

query budget |Q|= 20, 40, 80, 160 are reported in Figure 4.5. The estimation error is
less than 10% on 7 of 11 datasets, even when the query budget is just 20. When the
query budget increases, the estimation error goes smaller on all datasets as expected.
Since LOE (the training strategy on the unqueried samples) is robust against the
misspecified ratios as shown in Section 4.1.2, we found that the estimation error does
not cause a clear degradation in all experiments.

We compare ALOE to the counterpart with the true anomaly ratio to see how the
estimated ratio affects the detection performance. The results are reported in terms
of AUC (%) with standard error averaged over 11 image datasets in Table 4.8. The
performance degradation caused by a misspecified ratio is maximal 0.9% for a query
budget of 20 and decreases to 0.2% when querying 160 samples. It shows that ALOE
with either true ratio or estimated ratio performs similarly with all query budgets.
Using an estimated ratio only leads to negligible performance degradation. Therefore,
the estimated ratio can be applied safely. This is very important in practice since
the true anomaly ratio is unknown in many applications.
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4.3 Summary and Discussion
We first propose LOE: a domain-independent approach for training deep anomaly
detectors on a dataset contaminated by unidentified anomalies in an unsupervised
manner. During training, LOE infers anomalous data in the training set while
updating model parameters by solving a mixed continuous-discrete optimization
problem; iteratively updating the model and its predicted anomalies. Similar to
outlier exposure [31], LOE extracts learning signals from both normal and abnormal
samples by considering a combination of two losses for both normal and (assumed)
abnormal data, respectively. Our approach can be applied to a variety of anomaly
detection benchmarks and loss functions. As demonstrated in our comprehensive
empirical study, LOE yields significant performance improvements on all image,
tabular, and video data.

We then propose ALOE: an active learning approach for querying anomaly labels
and training deep anomaly detection models if expert feedback is available. ALOE
relies on a diversified querying strategy based on the seeding algorithm of K-means++
and a combination of two losses for queried and unqueried samples. Based on a
simple heuristic for weighting the losses relative to each other and by estimating the
unknown contamination rate from queried samples, we were able to make ALOE free
of the most important hyperparameter in LOE. We showed on a variety of datasets
from different domains that the approach results in a new state-of-the-art in active
anomaly detection.

LOE has an important hyperparameter, the assumed contamination ratio. The
estimation of the contamination ratio relies on prior knowledge or the expert’s expe-
rience in the unsupervised scenario. ALOE can eliminate this sole hyperparameter
efficiently based on an importance-weighted estimate when expert feedback is avail-
able to label a few informative samples. However, the success of the estimation
relies on several heuristics that cannot be proven rigorously. These heuristics include
our relative weighting of the averaged losses for the queried and unqueried data,
as well as our estimation procedure for the importance weights. Nevertheless, the
fact that these assumptions were validated on a variety of data makes us optimistic
that these heuristics will generalize to other domains. Furthermore, estimating the
contamination ratio can be noisy when the query set is small. But note that LOE
is shown to be robust even under the misspecification of the contamination ratio.
Finally, the diversified sampling strategy becomes expensive when the dataset is
large. This shortcoming can be mitigated by random data thinning before querying.
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5 Conclusion and Outlook

We conclude this thesis with a summary of the results in Section 5.1 and an outline
of the future research paths in Section 5.2.

5.1 Summary of Results
This thesis has contributed NTL, a self-supervised anomaly detection approach
with learnable transformations. NTL learns a variety of semantically meaningful
and diverse transformations from data and uses the learned transformations for
detecting anomalies. Thanks to the flexibility of the learnable transformations,
NTL is applicable to various data types, including time series, images, tabular data,
and text. The key ingredient is a novel training objective that manages the trade-
off between the semantics and the diversity of the learnable transformations. We
have theoretically demonstrated that the proposed loss function learns semantically
meaningful and diverse transformations and is better suited than existing self-
supervised losses. We have also critically discussed the theoretical limitations of
NTL in learning transformations and the score function. Implied by the constructed
failure cases, we have provided practical recommendations on the architecture design
and implementation. In the experimental evaluation, we found that NTL improves
over many strong baselines in anomaly detection on sequences, images, tabular data,
text, and also anomaly localization on images.

NTL can also be a plug-in that complements other components in a system
to enhance the anomaly detection performance. We have introduced extensions
of NTL, which combine with representation learning or deep OCC. For detecting
anomalies within time series, we have introduced LNT, which combines NTL and
time series representation learning to learn local transformations and produce an
anomaly score for each time step. We have proven that both NTL and representation
learning complement each other to avoid trivial solutions not appropriate for anomaly
detection within time series. In experiments, we found that LNT can detect hard
anomalies in time series with complex dynamics. For graph-level anomaly detection,
we have introduced OCGTL and MOCC. Both methods combine NTL and deep
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OCC and become more flexible and more expressive. Our extensive experiments
have revealed that OCGTL and MOCC have no hypersphere collapse and raise the
bar in graph-level anomaly detection significantly.

Furthermore, we have studied a more practical scenario of anomaly detection,
where the training set is contaminated by unnoticed anomalies. We have shown that
naive training on contaminated data leads to performance degradation. Addressing
this, we have introduced a novel training strategy, LOE, which infers unlabeled
anomalies and uses them to provide positive training signals. In our extensive
experiments, we found that LOE is applicable to various deep anomaly detection
models and significantly improves over established baselines in anomaly detection
on images, video, and tabular data. With ALOE, we have extended LOE to the
active anomaly detection setting. ALOE queries diverse samples based on the seeding
algorithm of K-means++ and learns the model parameters using both queried
and unqueried data. One additional benefit is that ALOE eliminates this sole
hyperparameter in LOE given a few queried samples. We showed on a variety of
image and tabular datasets that ALOE results in a new state-of-the-art in active
anomaly detection.

In conclusion, this thesis has demonstrated through various experiments and
analyses that learning transformations and detecting anomalies with NTL improves
over the state-of-the-art on general data types and various applications. Moreover,
for the more practical scenario of anomaly detection with contaminated data, this
thesis has demonstrated through extensive experiments that NTL becomes robust to
data contamination with the proposed training strategy LOE or the proposed active
learning approach ALOE. In the remainder of this thesis, we turn to what lies ahead
and identify specific paths for future research.

5.2 Future Research Paths
We discuss the potential future research directions in the following.

5.2.1 Multimodal Anomaly Detection

The different data types describe the same object from various perspectives generally.
Learning to exploit different data types together can lead to a more powerful detection
system. For example, driver fatigue detection relying on a fusion of EEG signals,
gyroscope, and images is more accurate than the detection solely based on facial
expressions [187]. Overall, multimodal anomaly detection is interesting yet under-
explored. So one of the next steps of building a powerful anomaly detector is to fuse
the information from different data sources for anomaly detection.
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Learning a multimodal anomaly detector requires solving three tasks: extracting
features from various data types, feature fusion, and anomaly detection. Many
existing representation learning methods have shown great success in learning good
features in an unsupervised manner, e.g., BERT [55] on language data, CPC [62]
on time series, and masked autoencoders [188] on visual data. They provide a solid
foundation for solving feature extraction. For unsupervised feature fusion, simple
operations, such as summation or concatenation, might not be the optimal solution.
The attention mechanism is shown to be a better operation of fusing the features in
many applications [189, 190, 191, 192]. To sum up, a simple two-stage multimodal
anomaly detector consists of pre-trained feature extractors for each data source, an
attention-based fusion operation, and a simple downstream anomaly detector (e.g.,
OCSVM, KNN). Also, we can design an end-to-end multimodal anomaly detector
that solves feature extraction, feature fusion, and anomaly detection jointly. Notice
that these data sources are different yet not isolated from each other. Learning their
potential commonalities and discrepancies is vital for both feature extraction and
feature fusion. To do so, we might borrow ideas from self-supervised learning by
treating each data source as a view. The model learns and fuses the features from
different data sources by contrasting them or predicting them in the auxiliary task.
The anomalies can then be scored by the model performance in the auxiliary task.

5.2.2 Meta-Learning Meets Anomaly Detection

In real-world scenarios, the distribution of data often changes according to the
environment. The distribution shift may change the scope of normal samples or the
definition of anomalies. For example, if the model is tested on the samples collected
by sensors (e.g., cameras) different from the sensors used in training, the model
performance might drop significantly. Generalizing to unseen data distribution often
challenges the data-driven anomaly detection approaches. The classical learning
setup expects to learn a single model covering all environments or learn environment-
specific models. The former neglects the discrepancy of environments and leads to
sub-optimal results in general, while the latter requires a large amount of data for
each environment which is not practical in real-world applications.

Meta-learning suggests learning a metal model that captures the commonalities
of various environments and adapts to the test environment efficiently. Lu et al.
[193], Wu et al. [194] propose to learn an adaptive anomaly detector with MAML
algorithm [195] for image anomaly detection. During the test, the model is rapidly
fine-tuned by a few samples from the test distribution. Meta-training requires a
training set involving samples from multiple tasks or distributions. However, it is
impractical for one-class classification learning, where the samples are commonly
assumed to be from the same normal distribution. This conflict makes the employment
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of meta-training in anomaly detection not straightforward in real-world applications,
especially when the training data is scarce. Addressing this, we might use data
augmentations to simulate multiple data distributions in meta-training. By learning
to adapt across the augmented data distributions, we expect the meta-model to
capture the common features of the normal samples and be able to adapt to new
distributions efficiently.

5.2.3 Continual Anomaly Detection

Most previous works assume that the training data covers all normal data patterns
and relies on offline training. However, we might receive training samples continually
in practice, and the new incoming normal samples follow a data distribution different
from the previously observed one. For example, a manufacturing chain collects data
from a new sensor system every day. The data from the new sensor system is still
normal but might be from a different distribution. Apart from this, the definition
of anomalies might change in the new stage. For instance, a surveillance system
records video frames under new weather when the season changes. Wearing heavy
clothes is normal in the winter but is less normal in the summer. This raises a
research question: can we design a continual learning procedure that updates deep
anomaly detectors sorely on new incoming samples without forgetting the learned
knowledge? By studying this question, we aim to build a closed-loop of data and
anomaly detectors.

Wiewel and Yang [196] first study anomaly detection with replay-based contin-
ual learning, where a variational autoencoder is learned to generate samples for
complementing the new incoming training samples. Doshi and Yilmaz [197, 198]
propose memory-based continual anomaly detection methods for the surveillance
video application. A meta-learning algorithm is proposed for continual anomaly
detection by Frikha et al. [199], while a regularization-based continual anomaly
detection method is introduced by Maschler et al. [200]. Although continual anomaly
detection has been explored in several existing works, a standard benchmark is not
established. The existing continual learning algorithms can be categorized to replay
methods, regularization-based methods, and parameter isolation methods [201]. By
building a benchmark with well-controlled experiment setups, we can first answer
what the suitable continual learning algorithm for anomaly detection is. This can
also pave the way for designing continual learning algorithms for anomaly detection
specifically.

5.2.4 Representation Learning for Anomaly Detection

The quality of data representations influences the performance of machine learning
algorithms heavily. A good representation reveals the useful semantic information of
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the data and makes the downstream tasks easier. Deep learning automates feature
learning. The advanced representation learning methods [73, 74, 202] have improved
the model performance on various downstream tasks. However, learning rich features
is not straightforward due to the lack of objective signals in anomaly detection.

Self-supervised anomaly detection methods enhance representation learning and
scoring by exploiting data augmentations. Sohn et al. [37] learn representations with
contrastive learning and evaluate the learned representations for anomaly detection.
Contrastive learning promotes the uniformity of the representations and therefore
learns linearly separable representations [203]. The uniformity of the representations
leads to performance improvement in multi-class classification. However, they found
that uniformly distributed representations of normal samples are not optimal for
anomaly detection or one-class classification since the anomalies cannot be easily
isolated then.

Addressing this, Sohn et al. [37] learn compact representations of normal samples
by contrasting them to rotated images. Similarly, Reiss and Hoshen [87] propose
to learn compact representations by combining contrastive learning and OCC loss.
Both methods try to improve the representations’ quality of contrastive learning
by alleviating the uniformity property of contrastive learning. Also, the success
of contrastive learning relies on well-designed data augmentations and cannot be
generalized to other data types easily. To alleviate the dependence of contrastive
learning on data augmentation, Tamkin et al. [120], Shi et al. [204] coincide with
the idea of learning transformation via adversarial training. In the broader context,
an interesting question will be is contrastive learning the most suited algorithm for
learning representations for anomaly detection on general data types.

Bert [55] learns effective text representations by learning to predict the masked
tokens. He et al. [188] extend the self-prediction idea to images and learn visual
representations by predicting the masked image patches. The self-prediction-based
learning framework has shown success in both visual and language domains and
on various downstream tasks except anomaly detection. Different than contrastive
learning, the self-prediction-based learning framework does not enforce the unifor-
mity of representations. So one remaining open question is how well the learned
representations for anomaly detection on different data types work.

5.2.5 Explainable Anomaly Detection

Deep anomaly detection methods have demonstrated their ability in terms of achieving
high accuracy on a variety of tasks. However, the use of these black-box models outside
the machine learning community has been hampered by difficulties in interpreting
them. The research on explainable anomaly detection has recently received much
attention [205, 206, 207]. The core motivation here is to understand why a sample
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is labeled as an anomaly. Numerous algorithms have been proposed for anomaly
segmentation of an image, which reveals the salient abnormal regions [88, 108, 109,
110, 111, 208, 209, 210, 211]. Beyond that, Du et al. [212] detect out-of-distribution
objects in an image. For example, the appearance of pedestrians is normal on the
sidewalk but is abnormal on the highway. The anomaly is caused by the abnormal
co-occurrence of the object and the background scenario. Also, in medical diagnosis,
it is crucial to understand what causes the diagnosis. Figuring out this causal
relationship guarantees the reliability of the diagnosis and hints at the therapy
targets [213]. These examples suggest the development of an anomaly detection
method that can understand the underlying correlation or even causal relationship
of the inputs. Moreover, building logical rules or symbolic formulas that describe the
black-box deep anomaly detector can even achieve a higher level of explainability.
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A Supplementary Analysis and Re-
sults

A.1 Visual Analysis of NTL on Synthetic Data
We analyze NTL on a synthetic dataset. For the sake of visualization, we created a
2D dataset with two circles. The inner-circle (blue) is considered normal, and the
outside circle (orange) is abnormal (see Figure A.1). The model is trained on samples
drawn from the inner circle. The neural transformations T θ

k with k ∈ {1, · · · , K}
are modeled by K feed-forward neural networks and the transformation T θ

0 is an
identity transformation. We set the number of learnable transformations K = 4.

In the first row of Figure A.1, we visualize the gradient vector fields of how
T θ

1:K transform normal samples and anomalies. The length of the arrow indicates
the transformation magnitude. In the second row of Figure A.1, we visualize the
anomaly score contour lines, where the dark areas have low scores, and the light color
corresponds to a high score. sk(x) denotes the score term led by the transformation
T θ

k and is thus defined as

sk(x) = − log h(T θ
k (x), T θ

0 (x))∑
l∈{0,...,K}\{k} h(T θ

k (x), T θ
l (x))

. (A.1)

Apart from the score terms sk(x), we also visualize the complete score function s(x)
involving all score terms s1:K(x). The transformations T θ

1:4 learn salient features of
normal samples and move normal samples to different directions. Since anomalies
do not share the same features with normal samples, the transformations move
anomalies to similar directions and lead to higher anomaly scores. From the sub-
figures of s1:4(x), we can see each transformation learns to predict low anomaly
scores on normal regions and high anomaly scores on different anomalous regions.
The complete score function s(x) predicts the contour line encompassing the normal
regions successfully by taking all transformations and their associated score terms
into account. In summary, each transformation learns different salient features of
normal samples and helps the model detect anomalies from a different view. The
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Figure A.1: Visualization of learned transformations and anomaly score contour lines
on 2D synthetic data with two circles. The data points (blue) in the inner-circle are
considered normal, and the points (orange) in the outside circle are abnormal. We
visualize the gradient vector fields of learned transformations in the first row. In the
second row, we visualize the score terms sk(x) led by each transformation T θ

k and
the complete anomaly score s(x).

anomaly score s(x) earns a complete sense of normal and anomalous patterns by
considering various transformations.

A.2 Ablation Study of NTL
We study the performance of NTL under various design choices for the learnable
transformations, including their parametrizations, and their number K. We consider
the following parametrizations: forward ϕθ

k(x) = M θ
k (x), residual ϕθ

k(x) = M θ
k (x)+x,

and multiplicative ϕθ
k(x) = M θ

k (x)⊙x, which differ in how they combine the learnable
masks M θ

k (·) with the data.
In Figure A.2 we show the anomaly detection accuracy achieved with each

parametrization, as K varies from 2 to 15 on the time series data NATOPS and
the tabular data Arrhythmia. For large enough K, NTL is robust to the different
parametrizations, since DCL ensures the learned transformations satisfy the semantic
requirement and the diversity requirement. The performance of NTL improves as the
number k increases. When K is large enough the performance becomes stable. When
K ≤ 4, the performance has a larger variance, since the learned transformations
are not guaranteed to be useful for anomaly detection without the guidance of
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Figure A.2: Anomaly detection accuracy in terms of AUC of NTL on NATOPS and in
terms of F1-score of NTL on Arrhythmia increases as the number of transformations
K increases, but stabilizes when a certain threshold is reached (K >≈ 10). With
enough transformations, NTL is robust to the transformation parametrization.

any labels. When K is large enough, the learned transformations contain with a
high likelihood some transformations that are useful for anomaly detection. The
transformation-based methods (including NTL) have roughly K times the memory
requirement as other deep learning methods (e.g. DSVDD). However, the results in
Figure A.2 show that even with small K NTL achieves competitive results.

A.3 Visualization of LNT Detection

Visualizations of LNT detection on LibriSpeech data are reported in Figure A.3.
These plots show samples from the test set with artificial anomalies placed at
the yellow shaded area in the top row, below LDDCL loss yielded by LNT. The
reference loss is the output when the uncorrupted sample is fed. To derive a binary
decision about the anomaly, instead of thresholding each anomaly score separately,
we exploit the sequential nature of the data. We use a downstream Hidden Markov
Model with binary states and extract the maximum likelihood state trajectory with
Viterbi Decoding. This will smooth the outputs and help detect entire regions that
are considered anomalous. From Figure A.3 we can see, that LNT yields higher
loss/score values in the corrupted region and can therefore detect the anomalous
region successfully.
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Figure A.3: Top row shows the corrupted signal with an anomaly artificially placed
in the highlighted region. This highlight also serves as the ground truth for the last
row, which shows the binary decision of the detection. The middle row shows the
loss output by LNT for both the corrupted input signal and for the same signal
without corruptions (reference loss). The reference loss is only used for visualization
purposes to emphasize the locality of LNT.

A.4 Ablation Study of LOE

We review two additional self-supervised anomaly detection methods that are com-
patible with our approach. They are Multi-Head RotNet (MHRot) [39] for images
and Internal Contrastive Learning (ICL) [166] for tabular data.

Multi-Head RotNet (MHRot). MHRot [39] is a self-supervised image anomaly
detection method. It learns a multi-head classifier fθ to predict the applied image
transformations including rotation, horizontal shift, and vertical shift. We denote
K combined image transformations as {ϕ1, ..., ϕK}. The model learns to solve three
different tasks: one for predicting rotations, one for predicting vertical shifts, and
one for predicting horizontal shifts. The model has three softmax heads, each
for a classification task l, modeling the prediction distribution of a transformed
image pl(·|ϕk(x); θ). Aiming to predict the correct transformations for normal
samples, we maximize the log-likelihoods of the ground truth label tl

k for each
image transformation and each head; for anomalies, we make the predictions evenly
distributed by minimizing the cross-entropy from a uniform distribution to the
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prediction distribution, resulting in

ℓn(x) := −
K∑

k=1

3∑
l=1

log pl(tl
k|ϕk(x); θ), ℓa(x) :=

K∑
k=1

3∑
l=1

CE(Unif, pl(·|ϕk(x); θ))

We present the experimental results of MHRot on CIFAR10 and FMNIST in table A.1,
where we set the contamination ratio α0 = α = 0.1. The results are reported as the
mean and standard deviation of three runs with different model initialization and
anomaly samples for the contamination. The number in the brackets is the average
performance difference from the model trained on clean data. When we use MHRot
on raw images, our LOE methods outperform the “Blind” and “Refine” baselines by
about 2% AUC on both datasets.

Table A.1: AUC (%) with standard deviation for anomaly detection on CIFAR10
and FMNIST. For all experiments, we set the contamination ratio as 10%. LOE
mitigates the performance drop when MHRot trained on the contaminated datasets.

CIFAR10 FMNIST
Blind 84.0±0.5 (-4.2) 88.8±0.1 (-4.9)
Refine 84.4±0.1 (-3.8) 89.6±0.2 (-4.1)
LOEH (ours) 86.4±0.5 (-1.8) 91.4±0.2 (-2.3)
LOES (ours) 86.3±0.2 (-1.9) 91.2±0.4 (-2.5)

Internal Contrastive Learning (ICL). ICL [166] is a state-of-the-art tabular anomaly
detection method. Assuming that the relations between a subset of the features
(table columns) and the complementary subset are class-dependent, ICL is able to
learn an anomaly detector by discovering the feature relations for a specific class.
With this in mind, ICL learns to maximize the mutual information between the
two complementary feature subsets, a(x) and b(x), in the embedding space. The
maximization of the mutual information is equivalent to minimizing a contrastive
loss on normal samples with two encoders fθ and gθ.

ℓn(x; θ) := −
K∑

k=1
log pk(x; θ) with pk(x; θ) = h(fθ(ak(x)), gθ(bk(x)))∑K

l=1 h(fθ(al(x)), gθ(bk(x))
.

For anomalies, we flip the objective as

ℓa(x; θ) := −
K∑

k=1
log(1− pk(x; θ)).

We report F1-scores of ICL on 30 tabular datasets in table A.2. The results are
reported as the mean and standard derivation of five runs with different model
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initializations and random training set split. We set the contamination ratio α0 =
α = 0.1 for all datasets. With the backbone model ICL, LOE also outperforms the
“Blind" and “Refine" baselines consistently.

Table A.2: F1-score (%) of ICL for anomaly detection on 30 tabular datasets studied
in Shenkar and Wolf [166]. We set α = α0 = 10% in all experiments. The number in
the brackets is the average performance difference from the model trained on clean
data. LOE (proposed) outperforms the “Blind” and “Refine” consistently.

Blind Refine LOEH (ours) LOES (ours)
abalone 50.9±1.5(-11.2) 54.3±2.9(-7.8) 53.4±5.2(-8.7) 51.7±2.4(-10.4)
annthyroid 29.1±2.2(-12.0) 38.5±2.1(-2.6) 48.7±7.6(+7.6) 43.0±8.8(+1.9)
arrhythmia 53.9±0.7(-7.6) 60.9±2.2(-0.6) 62.4±1.8(+0.9) 63.6±2.1(+2.1)
breastw 92.6±1.1(-2.4) 93.4±1.0(-1.6) 96.0±0.6(+1.0) 95.7±0.6(+0.7)
cardio 50.2±4.5(-19.5) 56.2±3.4(-13.5) 71.1±3.2(+1.4) 62.2±2.7(-7.5)
ecoli 17.8±15.1(-55.5) 46.7±25.7(-26.6) 75.6±4.4(+2.3) 75.6±4.4(+2.3)
forest 9.2±4.5(-37.8) 8.0±3.6(-39.0) 6.8±3.6(-40.2) 11.1±2.1(-35.9)
glass 8.9±4.4(-13.3) 11.1±0.0(-11.1) 11.1±7.0(-11.1) 8.9±8.3(-13.3)
ionosphere 86.5±1.1(-5.7) 85.9±2.3(-6.3) 85.7±2.8(-6.5) 88.6±0.6(-3.6)
kdd 99.3±0.1(-0.1) 99.4±0.1(+0.0) 99.5±0.0(+0.1) 99.4±0.0(+0.0)
kddrev 97.9±0.5(-0.9) 98.4±0.4(-0.4) 98.8±0.1(+0.0) 98.2±0.4(-0.6)
letter 43.0±2.5(-15.5) 51.2±3.7(-7.3) 54.4±5.6(-4.1) 47.2±4.9(-11.3)
lympho 43.3±8.2(-40.0) 60.0±8.2(-23.3) 80.0±12.5(-3.3) 83.3±10.5(+0.0)
mammo. 8.8±1.9(-14.0) 11.4±1.9(-11.4) 34.0±20.2(+11.2) 42.8±17.6(+20.0)
mnist 72.1±1.0(-10.5) 80.7±0.7(-1.9) 86.0±0.4(+3.4) 79.2±0.9(-3.4)
mulcross 70.4±13.4(-29.6) 94.4±6.3(-5.6) 100.0±0.0(+0.0) 99.9±0.1(-0.1)
musk 6.2±3.0(-93.8) 100.0±0.0(+0.0) 100.0±0.0(+0.0) 100.0±0.0(+0.0)
optdigits 0.8±0.5(-62.4) 1.3±1.1(-61.9) 1.2±1.0(-62.0) 0.9±0.5(-62.3)
pendigits 10.3±4.6(-67.9) 30.1±8.5(-48.1) 80.3±6.1(+2.1) 88.6±2.2(+10.4)
pima 58.1±2.9(-2.2) 59.3±1.4(-1.0) 63.0±1.0(+2.7) 60.1±1.4(-0.2)
satellite 72.7±1.3(-2.1) 72.7±0.6(-2.1) 73.6±0.2(-1.2) 73.2±0.6(-1.6)
satimage 7.3±0.6(-82.0) 85.1±1.4(-4.2) 91.3±1.1(+2.0) 91.5±0.9(+2.2)
seismic 14.9±1.4(-3.0) 17.3±2.1(-0.6) 23.6±2.8(+5.7) 24.2±1.4(+6.3)
shuttle 96.6±0.2(-0.4) 96.7±0.1(-0.3) 96.9±0.1(-0.1) 97.0±0.2(+0.0)
speech 0.3±0.7(-4.1) 1.6±1.0(-2.8) 2.0±0.7(-2.4) 0.7±0.8(-3.7)
thyroid 45.8±7.3(-31.4) 71.6±2.4(-5.6) 83.2±2.9(+6.0) 80.9±2.5(+3.7)
vertebral 8.9±3.1(-7.8) 8.9±4.2(-7.8) 7.8±4.2(-8.9) 10.0±2.7(-6.7)
vowels 42.1±9.0(-37.5) 60.4±7.9(-19.2) 81.6±2.9(+2.0) 74.4±8.0(-5.2)
wbc 50.5±5.7(-8.2) 50.5±2.3(-8.2) 61.0±4.7(+2.3) 61.0±1.9(+2.3)
wine 4.0±4.9(-86.0) 10.0±8.9(-80.0) 98.0±4.0(+8.0) 100.0±0.0(+10.0)
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A.5 Ablation Study of ALOE
We investigate the general applicability of ALOE to different backbone models and
the benefit of diverse querying.

A.5.1 Study of Backbone Models

We are interested in whether ALOE works for different backbone models. To that
end, we repeat part of the experiments in Table 4.6 but using an self-supervised
learning model MHRot [39] and a OCC model DSVDD [89] as the backbone model.
We compare ALOE to two best performing baselines — Hybr1 and Hybr2. In this
experiment, MHRot and DSVDD take different input types: while MHRot takes raw
images as input, DSVDD uses pre-trained image features. We also set the query
budget to be K = 20.

We report the results in Table A.3. It showcases the superiority of ALOE
compared to the baselines. On all datasets, ALOE significantly outperforms the
two best performing baselines, Hybr1 and Hybr2, thus demonstrating the wide
applicability of ALOE across anomaly detection model types.

Table A.3: AUC (%) with standard deviation for anomaly detection on six datasets
(CIFAR10, FMNIST, Blood, OrganA, OrganC, OrganS). The backbone models are
MHRot [39] and DSVDD [89]. For all experiments, we set the contamination ratio
as 10% and query 20 samples. ALOE consistently outperforms two best-performing
baselines on all six datasets.

MHRot DSVDD

ALOE Hybr1 Hybr2 ALOE Hybr1 Hybr2

CIFAR10 86.9±0.7 83.9±0.1 49.1±2.0 93.1±0.2 89.0±0.6 91.3±1.0
FMNIST 92.6±0.1 87.1±0.2 58.9±5.7 91.4±0.5 90.9±0.4 82.5±2.9
Blood 83.3±0.2 81.1±2.5 61.8±2.1 80.2±1.1 79.7±1.2 77.2±3.0
OrganA 96.5±0.3 94.1±0.3 61.1±4.8 89.5±0.3 87.1±0.7 71.3±3.8
OrganC 92.1±0.2 91.6±0.1 70.9±0.8 87.5±0.7 85.3±0.8 84.2±0.9
OrganS 89.3±0.2 88.3±0.3 68.2±0.1 85.5±0.7 83.4±0.3 81.2±1.3

A.5.2 Study of Querying Strategies

To understand the benefit of sampling diverse queries with K-means++ , we run the
following experiment: We train various anomaly detectors using a supervised loss
only on the queried samples. The only difference between them is just the querying
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Figure A.4: Ablation study on the query strategy. K-Means++ significantly outper-
forms other strategies for active anomaly detection on most of the datasets.

strategy used to select the samples. We evaluate them on all image datasets we
studied for query budget |Q|= 20, 40, 80, 160.

The results are reported in Figure A.4 in terms of AUC (%). On all datasets
except OCT, K-means++ consistently outperforms all other querying strategies from
previous works on active anomaly detection. The difference is particularly large when
only a few samples are queried.
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B.1 Details of NTL Experiments

B.1.1 NTL Implementation on Time Series

The networks in the neural transformations used in all time series experiments consist
of one 1D convolutional layer on the bottom, a stack of three residual blocks of
1D convolutional layers with affine-free instance normalization layers, and ReLU
activations, as well as one 1D convolutional layer on the top. All convolutional layers
are with the kernel size of 3, and the stride of 1. All bias terms are fixed as zero.
The dimension of the residual blocks is the data dimension. The convolutional layer
on the top has an output dimension as the data dimension. For the multiplicative
parameterization, a sigmoid activation is added to the end.

The encoder used in all experiments consists of residual blocks of 1D convolutional
layers with ReLU activations, as well as one 1D convolutional layer on the top of all
residual blocks.The detailed network structure (from bottom to top) in each time
series dataset is:

• SAD: (i) one residual block with the kernel size of 3, the stride of 1, and the output
dimension of 32. (ii) four residual blocks with the kernel size of 3, the stride of
2, and the output dimensions of 32, 64, 128, and 256. (iii) one 1D convolutional
layer with the kernel size of 6, the stride of 1, and the output dimension of 32.

• NATOPS: (i) one residual block with the kernel size of 3, the stride of 1, and
the output dimension of 32. (ii) four residual blocks with the kernel size of 3,
the stride of 2, and the output dimensions of 32, 64, 128, and 256. (iii) one
1D convolutional layer with the kernel size of 4, the stride of 1, and the output
dimension of 64.

• CT: (i) one residual block with the kernel size of 3, the stride of 1, and the output
dimension of 32. (ii) six residual blocks with the kernel size of 3, the stride of
2, and the output dimensions of 32, 64, 128, 256, 512, and 1024. (iii) one 1D
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convolutional layer with the kernel size of 3, the stride of 1, and the output
dimension of 64.

• EPSY: (i) one residual block with the kernel size of 3, the stride of 1, and the
output dimension of 32. (ii) six residual blocks with the kernel size of 3, the
stride of 2, and the output dimensions of 32, 64, 128, 256, 512, and 1024. (iii) one
1D convolutional layer with the kernel size of 4, the stride of 1, and the output
dimension of 128.

• RS: (i) one residual block with the kernel size of 3, the stride of 1, and the output
dimension of 32. (ii) three residual blocks with the kernel size of 3, the stride of 2,
and the output dimensions of 32, 64, and 128. (iii) one 1D convolutional layer
with the kernel size of 4, the stride of 1, and the output dimension of 64.

B.1.2 Time Series Anomaly Detection Baselines

To study the effectiveness of NTL on time series, we implement the following
unsupervised and self-supervised anomaly detection time series baselines.

• Deep Anomaly Detection Baselines. The implementations of DSVDD, DROCC,
and DAGMM are adopted from the published codes with a similar encoder as
NTL. DAGMM has a hyperparameter of the number of mixture components.
We consider the number of components between 4 and 12 and select the best-
performing one.

• Self-supervised Anomaly Detection Baselines. The implementation of GOAD
is taken from the published code. The results of GOAD depend on the choice
of the output dimension r of affine transformations. We consider the reduced
dimension r ∈ {22, 23, ..., 26}, and select the best performing one. We craft specific
time series transformations for the designed classification-based baseline. The
hand-crafted transformations are the compositions of flipping along the time axis
(true/false), flipping along the channel axis (true/false), and shifting along the
time axis by 0.25 of its time length (forward/backward/none). By taking all
possible compositions, we obtain a total of 2 ∗ 2 ∗ 3 = 12 transformations.

• Anomaly Detection Baselines for Time Series. The RNN is parameterized by two
layers of recurrent neural networks, e.g., GRU, and a stack of two linear layers
with ReLU activation on top of it which outputs the mean and variance at each
time step. The implementation of LSTM-ED is taken from the web.
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B.2 Details of Graph-level Anomaly Detection Ex-
periments

B.2.1 Datasets Statistics

We select six graph classification datasets for the evaluation from three domains
(bioinformatics, molecules, and social networks). For each dataset, we report the
number of graphs, the dimension of node attributes, the average number of nodes,
and the average number of edges in each class as statistics. We list the statistics of
these six datasets in Table B.1.

Table B.1: The statistics of used datasets. We report the number of graphs, the
dimension of node attributes, the average number of nodes, and the average number
of edges for each class in each dataset.

Dataset Category Class #Graphs #NodeAttrs Avg.#Nodes Avg.#Edges

DD Bioinformatics 0 691 89 355.2 1806.6
1 487 89 183.7 898.9

PRTOEINS Bioinformatics 0 663 3 50.0 188.1
1 450 3 22.9 83.0

NCI1 Molecules 0 2053 37 25.7 55.3
1 2057 37 34.1 73.9

AIDS Molecules 0 400 38 37.6 80.5
1 1600 38 10.2 20.4

IMDB-B Social networks 0 500 136 20.1 193.6
1 500 136 19.4 192.6

REDDIT-B Social networks 0 1000 1 641.3 1471.9
1 1000 1 218.0 519.1

⋆ In IMDB-B, the one-hot degree is used as node attributes. In REDDIT-B, the constant
one is used as node attributes.

B.2.2 Baselines Details

To build a comprehensive benchmark for graph-level anomaly detection, we include
both GNN-based methods and non-GNN-based methods as baselines.

Graph Transformation Prediction (GTP) is a self-supervised detection method
based on transformation prediction. It is an end-to-end detection method optimizing
the classifier and scoring the anomalies using the cross-entropy of predictions and
ground truth labels. We use six graph transformations (including the identity
transformation), which are originally designed for graph contrastive learning in You
et al. [149]. For completeness, we list their details below.
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• Node dropping: it randomly discards 10% of vertices along with their connections
given the graph. Each node dropping probability follows a uniform distribution.

• Edge adding: it randomly adds 10% of edges to the graph. Each edge adding
probability follows a uniform distribution.

• Edge dropping: it randomly removes 10% of the edges. The dropping probability
follows a uniform distribution.

• Attribute masking: given the graph, it firstly selects 10% of nodes randomly
and then masks all feature dimensions of the selected node with a Gaussian
distribution.

• Subgraph: it samples a subgraph with a ratio of 10% from the graph using a
random walk.

Non-GNN based baselines. In the empirical study, we include non-GNN based
methods as baselines. They are two-stage detection methods using either unsupervised
graph embedding methods (G2V [151] or (FGSD) [152]) or graph kernels (WLK
[153] or PK [154]) as the first stage model. Anomalies can be detected by training
an OCSVM on the features obtained from the first stage model. Their descriptions
are listed below.

• G2V is an unsupervised graph embedding method. It views an entire graph as
a document and sub-graphs as words that compose the document and learn the
graph-level representation using the doc2vec algorithm.

• FGSD is an unsupervised graph embedding method. It calculates the Moore-
Penrose spectrum of the normalized Laplacian and uses it as the graph-level
representation.

• WLK is a graph kernel algorithm. It compares graphs in different hierarchical
levels by iteratively relabeling graphs using the WL algorithm and constructing a
base graph kernel applied at each level.

• PK is a graph kernel algorithm. It propagates node information between nodes
based on the graph structure.

The implementations of G2V and FGSD are from Karate Club library [214]. The
implementations of WLK and PK are from GraKel [215].
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B.2.3 Training Hyperparameters

We use the Adam optimizer [94] with an initial learning rate of 0.001 and decay the
learning rate by 0.5 every 100 epochs. We set the maximum epochs as 500 and the
batch size as 128. We use the early stopping based on validation loss (without access
to the true labeled anomalies) for the training. The early stopping is implemented
with a patience parameter of 100 epochs to ease the sensitivity to fluctuations in the
validation loss. An early stopping without access to the true anomalies is critical for
an unbiased model evaluation in the anomaly detection tasks.

B.3 Details of LOE Experiments

B.3.1 Baseline Details

Across all experiments, we employ two baselines that do not utilize anomalies to
help train the models. The baselines are either completely blind to anomalies, or
drop the perceived anomalies’ information. Normally training a model without
recognizing anomalies serves as our first baseline. Since this baseline doesn’t take
any action to the anomalies in the contaminated training data and is actually blind
to the anomalies that exist, we name it Blind. Mathematically, Blind sets yi = 0 in
Equation (4.1) for all samples.

The second baseline filters out anomalies and refines the training data: at every
mini-batch update, it first ranks the mini-batch data according to the anomaly scores
given the current detection model, then removes the top α most likely anomalous
samples from the mini-batch. The remaining samples perform the model update.
We name the second baseline Refine, which still follows Alg. 2 but removes ℓa in
Equation (4.1). Both these two baselines take limited actions to the anomalies. We
use them to contrast our proposed methods and highlight the useful information
contained in unseen anomalies.

B.3.2 Training Hyperparameters

NTL on image data. On CIFAR10, we set the mini-batch size to be 500, the
learning rate to be 4e-4, 30 training epochs with Adam optimizer [94]. On FMNIST,
we set the mini-batch size to be 500, the learning rate to be 2e-4, 30 training epochs
with the Adam optimizer. On MVTEC, we set the mini-batch size to be 40, the
learning rate to be 2e-4, 30 training epochs with Adam optimizer. For the “Refine”
baseline and our methods we set the number of warm-up epochs as two on all image
datasets.
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NTL on tabular data. We use Adam optimizer with a learning rate chosen from
[5e− 4, 1e− 3, 2e− 3]. For the “Refine” baseline and our methods we set the number
of warm-up epochs as two for small datasets and as one for large datasets.

NTL on video data. We use Adam stochastic optimizer with a batch size of 192
and a learning rate of 1e-4. We update the model for 3 epochs and report the results
with three independent runs.

B.4 Details of ALOE Experiments

B.4.1 Baselines Details

we describe the details of the baselines in Table 4.5 in Section 4.2.2. For each baseline
method, we explain their query strategies and post-query training strategies. Please
also refer to our codebase for practical implementation details.

• Rand1. This strategy used by Ruff et al. [22] selects queries by sampling uniformly
without replacement across the training set, resulting in the queried index set
Q = {iq ∼ Unif(1, · · · , N)|1 ≤ q ≤ |Q|}. After the querying, models are trained
with a supervised loss function based on outlier exposure on the labeled data and
with a one-class classification loss function on the unlabeled data,

Lθ
Rand1 = 1

|Q|
∑
j∈Q

(yjℓa(xj ; θ) + (1− yj)ℓn(xj ; θ)) + 1
|U|

∑
i∈U

ℓn(xi; θ). (B.1)

As in ALOE both loss contributions are weighted equally. Lθ
Rand1 is minimized

with respect to the backbone model parameters θ.

• Rand2. The querying strategy of Trittenbach et al. [184] samples uniformly among
the top 50% data ranked by anomaly scores without replacement. This leads to a
random set of “positive” queries. After the queries are labeled, the training loss
function is the same as Lθ

Rand1 (Equation (B.1)).

• Mar. After training the backbone model for one epoch, this querying strategy by
Görnitz et al. [173] uses the α-quantile (sα) of the training data anomaly scores
to define a “normality region”. Then the K samples closest to the margin sα are
selected to be queried. After the queries are labeled, the training loss function
is the same as Lθ

Rand1 (Equation (B.1)). Note that in practice we don’t know
the true anomaly ratio for the α-quantile. In all experiments, we provide this
querying strategy with the true contamination ratio of the dataset. Even with
the true ratio, the “Mar” strategy is still outperformed by ALOE.
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• Hybr1. This hybrid strategy, also used by [173] combines the “Mar” query with
neighborhood-based diversification. The neighborhood-based strategy selects sam-
ples with fewer neighbors covered by the queried set to ensure the samples’ diversity
in the feature space. We start by selecting the data index arg min1≤i≤N∥si − sα∥
into Q. Then the samples are selected sequentially without replacement by the
criterion

arg min
1≤i≤N

0.5 + |{j ∈ NNk(fθ(xi)) : j ∈ Q}|
2k

+ β
∥si − sα∥−mini∥si − sα∥

maxi∥si − sα∥−mini∥si − sα∥

where the inter-sample distance is measured in the feature space and the number
of nearest neighbors is k = ⌈N/K⌉. We set β = 1 for an equal contribution of
both terms. After the queries are labeled, the training loss function is the same
as Lθ

Rand1 (Equation (B.1)).

• Pos1. This querying strategy by Pimentel et al. [177] always selects the top-ranked
samples ordered by their anomaly scores, arg max1≤i≤N si. After the queries are
labeled, the training loss only involves the labeled data

Lθ
Pos1 = 1

|Q|
∑
j∈Q

(yjℓa(xj ; θ) + (1− yj)ℓn(xj ; θ)).

Pimentel et al. [177] use the logistic loss but we use the supervised outlier exposure
loss. The supervised outlier exposure loss is shown to be better than the logistic
loss in learning anomaly detection models [22, 31].

• Pos2. This approach of [183] uses the same querying strategy as Pos1, but
the training is different. Pos2 also uses the unlabeled data during training.
After the queries are labeled, the training loss function is the same as Lθ

Rand1
(Equation (B.1)).

• Hybr2. This hybrid strategy by Das et al. [176] makes positive diverse queries. It
combines querying according to anomaly scores with distance-based diversification.
Hybr2 selects the initial query arg max1≤i≤N si into Q. Then the samples are
selected sequentially without replacement by the criterion

arg max
1≤i≤N

si −mini si

maxi si −mini si
+ β min

j∈Q

d(xi,xj)−mina̸=b d(xa,xb)
maxa̸=b d(xa,xb)−mina̸=b d(xa,xb)

where d(xi,xj) = ||fθ(xi) − fθ(xj)||2. We set β = 1 for an equal contribution
of both terms. After the queries are labeled, Das et al. [176] use the labeled set
to learn a set of weights for the components of an ensemble of detectors. For a
fair comparison of active learning strategies, we use the labeled set to update an
individual anomaly detector with parameters θ by optimizing the loss

Lθ
Hybr2 = 1

|Q|
∑
j∈Q

(yjℓa(xj ; θ) + (1− yj)ℓn(xj ; θ)).
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• Hybr3. This baseline by [178] uses the same query strategy as Hybr2, but differs
in the training loss function,

Lθ
Hybr3 = 1

|Q|+|U|
∑
j∈Q

wj(1− yj)ℓn(xj ; θ) + 1
|Q|+|U|

∑
i∈U

ŵiℓn(xi; θ),

where wj = 2σ(dj) and ŵi = 2 − 2σ(di) where σ(·) is the sigmoid function and
di = minmax(||fθ(xi)−c0||2−||fθ(xi)−c1||2) where c0 is the center of the queried
normal samples and c1 is the center of the queried abnormal samples in the feature
space, and minmax is the min-max scaling.

We make three observations for the loss function. First, Lθ
Hybr3 filters out all

labeled anomalies in the supervised learning part and assigns a large weight (but
only as large as two at most) to the true normal data that has a high anomaly
score. Second, in the unlabeled data, Lθ

Hybr3 assigns a smaller weight (less than 1)
to the seemingly abnormal data. Third, overall, the weight of the labeled data is
similar to the weight of the unlabeled data. This is unlike ALOE, which weighs
labeled data |U|/|Q| times higher than unlabeled data.

B.4.2 Training Hyperparameters

In the experiments, we use Adam [94] in the training of NTL to find the local optimal
anomaly scorer parameters θ. For Adam, we set β1 = 0.9, β2 = 0.999 and no weight
decay for all experiments. To set the learning rate, training epochs, and minibatch
size for MedMNIST, we find the best performing hyperparameters by evaluating the
method on the validation dataset. We use the same hyperparameters on other image
data. We summarize all optimization hyperparameters in Table B.2.

Table B.2: A summary of optimization parameters for NTL on image datasets and
tabular datasets.

Dataset Learning Rate Epoch Minibatch Size τ

CIFAR10 1e-4 30 512 1e-2
FMNIST 1e-4 30 512 1e-2
MedMNIST 1e-4 30 512 1e-2
ODDS 1e-3 100 ⌈N/5⌉ 1e-2

118



List of Figures

2.1 NTL is an end-to-end procedure for self-supervised anomaly detection
with learnable neural transformations. Each sample is transformed by
a set of neural transformations and then embedded into a semantic
space. The transformations and the encoder are trained jointly with
a contrastive objective (Equation (2.2)), which is also used to score
anomalies. Note that the figures of Marilyn Monroe [92] are only used
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