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Abstract

In this thesis, different techniques for performing retrieval, adaptation and learning
will be presented and integrated in the case-based planner CAPLAN/CBC. The
main purpose of this thesis is to improve the performance of the case-based planning
process.

Retrieval in CAPLAN/CBC is twofold integrating static and dynamic retrieval
techniques. The static retrieval technique is dependency-driven retrieval and is moti-
vated by the necessity to handle some kind of information available in certain complex
domains. The dynamic retrieval technique is feature weighting; after each case-based
planning episode takes place, the performance of the retrieved cases is evaluated. El-
ements determining the value of the similarity assessment are changed depending on
the result of the evaluation. Dependency-driven retrieval guarantees a certain level
of reliability in the retrieval whereas feature weighting dynamically improves it. By
combining these two techniques, a powerful retrieval method is obtained.

The adaptation method implemented in this thesis is complete decision replay, an
extension of standard replay for plan-space planners. In complete decision replay not
only the information leading to the solution is stored in the cases but information
about failed attempts is stored as well. This information is considered during the
adaptation process of the cases to facilitate their refitting in the current situation.
This technique also enables the user to interact during the adaptation process. An
integration issue related to complete decision replay is that the system maintains
statistical information about the reliability of retrieval. If the reliability of a case is
improved as a result of the feature weighting process, standard replay is performed
instead of complete decision replay because the case is likely to fit in situations in
which it is retrieved.

New cases are created only if during case-based planning episodes the guidance
provided by the available cases is considered nonbeneficial. To determine if the
guidance is beneficial or not, a measure of the effort made to refit the cases in
the current situation is computed. This policy to create new cases is motivated
by complete decision replay, which facilitates the refitting process, and by feature
weighting, which improves the accuracy of the retrieval.

The advantages and disadvantages of each method are discussed as well as the
way they complement each other. The characteristics of the domain for which the
different methods are suitable are stated. The results are supported by extensive
empirical validation.
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Chapter 1

Introduction

General problem solving is one of the oldest research fields in Artificial Intelligence
(AI). Early research shows that problem solving is equivalent to searching a node in a
certain graph (Newell and Simon, 1963; Korf, 1987). A major difficulty is that these
search graphs are usually of exponential size. Thus, developing adequate methods to
traverse them is crucial to minimize the time effort to solve a problem (Russell and
Norvig, 1996; Richter, 1992). During the search process, the nodes of these graphs
become choice points in the sense that a decision must be made regarding which of
the neighbouring nodes should be visited next.

Planning is an instance of general problem solving in which a sequence of actions
must be found to transform the state of the world into a required state (Fikes and
Nilsson, 1971; Fikes et al., 1972). Several planning paradigms such as state-space
and plan-space planning have been developed to find the sequence of actions. They
mainly differ in the way the intermediate states obtained during the planning process
are seen; namely, whereas in state-space planning the intermediate states indicate
states of the world, in plan-space planning the intermediate states indicate states of
the partial solution. Several studies have been made to investigate in which situ-
ation which paradigm is better (Barrett and Weld, 1994; Veloso and Blythe, 1994;
Kambhampati et al., 1996a).

Different methods have been developed to guide the planning process. They
support the planner in the decision-making process at the choice points. Regardless
of the underlying planning paradigm used, these methods can be classified as static
or dynamic. Static methods are defined previously to the problem solving episodes
whereas dynamic methods change either during or after a problem solving episode.
In the latter situation, the planner may make different decisions when confronted
with the same choice points at different points of time.

Typically, dynamic methods to guide the planning process are obtained by learn-
ing from problem solving episodes. Methods that learn from problem solving episodes
have been divided into knowledge intensive and lazy learning methods. The first ones
are characterized by the fact that they compile the knowledge learned correspond-
ing to the situation found at every choice point and used the compiled knowledge

11



12 CHAPTER 1. INTRODUCTION

eagerly in latter problem solving episodes (i.e., at every choice point). A typical
knowledge intensive method is explanation-based learning (EBL), in which rules to
guide the base-level planner are learned (Mitchell et al., 1986; Minton, 1988; Minton
et al., 1989; Katukam and Kambhampati, 1994; Kambhampati et al., 1996b). The
rules compile situations encountered at the choice points. They also indicate which
decision was made and if the decision was successful (i.e., the decision leads the
problem solver towards a solution). If, in a problem solving episode, a decision at
a choice point must be made and the decision taken is wrong, the planner makes
another decision if it is confronted with the same situation in future problem solving
episodes.

A well known problem of knowledge intensive methods is the difficulty of handling
the compiled knowledge that has been learned (Minton, 1988; Minton, 1990). In par-
ticular, the performance gains of EBL are decreased with the number of learned rules.
Eventually, after several rules have been learned, the performance of the planning
process with EBL decreases and may result worse than planning from scratch. This
is called the utility problem.

Case-based Reasoning (CBR) overcomes the utility problem by providing efficient
access methods to the learned knowledge. In contrast to EBL, learning does not take
place after making a decision at every choice point. Instead, part of the planning
episode is stored as a whole to be reused in future problem solving episodes. That is,
instead of analyzing the situations occuring at every choice point and learning from
them, a part of the explored search graph is stored.

In the last years, CBR has been the subject of increasing interest because of
several successful applications that show the potentials of this technique (Kolodner,
1993; Aamodt and Plaza, 1994; Althoff et al., 1995; Leake, 1996). CBR has been
used in different areas such as in diagnosis, in monitoring, in broadcasting, and of
particular interest for this thesis in planning.

1.1 The Need for Case-based Planning

In AT planning, general-purpose architectures have been developed. As with the
expert systems, the main motivation of these architectures is to decouple knowledge
representation from inference. In this way, the same architecture may be used, for
example, to plan a sequence of actions to transport radioactive material between a
nuclear plant and a silo or to transform a piece of raw material into a mechanical
workpiece.

One of the main difficulties with general-purpose architectures is generating ad-
equate control strategies to plan for the sequence of actions solving a problem. The
use of control rules is usually not a feasible choice for two reasons: first, whereas the
knowledge about actions transforming the world can be modelled directly by observ-
ing processes in the problem domain, the knowledge about how to reason with such
actions may be very difficult to acquire; extracting the latter knowledge results in
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the bottle-neck typical of knowledge engineering. Second, acquiring the control rules
by learning from previous problem-solving episodes results in the utility problem.

Case-based planning (CBP) offers an alternative to rules for controlling the general-
purpose architectures. In CBP, previously-obtained solution plans and their problem
descriptions are stored as cases. Given a new problem, a similar case is retrieved
and its solution is adapted to solve the new problem. Similarity and adaptation are
key aspects determining the performance of case-based planners.

1.2 Issues about Case-based Planning
In general, any case-based planner must address the following issues (Veloso, 1994):

1. Similarity assessment. The similarity assessment must predict if a given case
can be easily adapt to solve the new problem (Smyth and Keane, 1994).

2. Organization of the case base. The case base must be structured in a way that
enables to evaluate the similarity assessment on the existing cases in an efficient
way.

3. Adaptation of cases. Once one or more similar cases to the new problem have
been retrieved, their solutions must be adapted to build a solution of the new
problem.

Several general-purpose, case-based planners have been developed that assess one
or more of these issues (Veloso, 1994; Kambhampati, 1994; Koehler, 1994; Francis
and Ram, 1995b; Bergmann and Wilke, 1995a; Thrig and Kambhampati, 1996a).
The contributions of these case-based planners that are relevant to this thesis can be
categorized as follows:

1. Goal-Driven Retrieval. Planning problems are described as a pair (I, Q)
where I represents the initial conditions or features of the problem and G
are the goals to be achieved (Fikes and Nilsson, 1971). Case-based planners
traditionally first examine the goals of the candidate cases, preselecting the
ones that achieve one or more goals of the new problem. The final selection
is made by comparing the initial conditions of the preselected cases. Most of
the case libraries known in the literature reflect this principle by indexing the
cases by their goals at the top level (Veloso, 1994; Francis and Ram, 1995b;
Thrig and Kambhampati, 1996a).

2. Static Similarity Metrics. For synthesis tasks such as planning, similarity
metrics predict the adaptation effort of the cases to the new problem. Some
similarity metrics take into account relevant features instead of all the fea-
tures stated in the problem descriptions (Veloso, 1994). Others analyze the
contribution of the features to a particular solution and rate them accordingly
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(Kambhampati, 1994). But common to all of them is the fact that the simi-
larity metrics are static in that the measure between a case and a problem is
always the same.

3. Relevance of Features. A case is usually seen as a pair ((I,G), Sol), where
(I,G) is a problem description and Sol is a solution plan for (I, G). There can
be several solution plans for the same problem. It has been observed that the
relevance of a feature in I depends on the particular solution Sol (Veloso and
Carbonell, 1993); whereas a feature may be relevant for a particular solution, it
may not be relevant for another solution. A method, known as the footprinting
process, has been developed to identify if a feature is relevant for a particular
solution (Veloso, 1994). Base of this method is the goal regression process used
in EBL (Mitchell et al., 1986).

4. Adaptation with Analogical Replay. Most of the adaptation methods
in CBP are based on replay. Under this approach the cases are viewed as
derivational paths indicating which decisions were taken at the choice points
(Veloso and Carbonell, 1993). Initially, the method was implemented on a
state-space, case-based planner (Veloso, 1994) but later it has been imple-
mented in case-based, plan-space planners as well (Ihrig and Kambhampati,
1994; Munoz-Avila et al., 1994). During the adaptation phase the derivational
path is reconstructed relative to the conditions of the new problem by taking
the same decisions. This paradigm has been extended by developing a language
to perform anotations on the derivational path (Veloso, 1994). These anota-
tions indicate failed decisions at the choice points. The language represents
situations occuring during state-space planning. For plan-space planners only
the replay method has been used but no attempts to express the failures have
been made until now.

5. Trade-Off between Efficiency Gains and Case Search. Most case-based
planners retrieve multiple cases to solve new problems (Veloso, 1994; Kamb-
hampati, 1994; Francis and Ram, 1995b; Thrig and Kambhampati, 1996a).
Each case covers one or more goals of the new problem in pursue of covering
as much of the goals as possible. Methods for merging them vary depending
on the underlying planner. For state-space planners, merging can be done by
interleaving first-principles planning and replay (Veloso, 1994). For plan-space
planners, replay is done first and then first-principles planning follows (Ihrig
and Kambhampati, 1994). This is based on the capability of plan-space plan-
ners to decouple plan step execution from plan step ordering, which allows
them to interleave steps in the plan. In general, however, the case-based plan-
ner should not espend arbitrary time searching for the cases to be retrieved;
given that the search has time costs, there is a point where it doesn’t pay-off
to further search for more cases (Veloso, 1994).
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6. Policy to Create New Cases based on Retrieval Failure. Most systems

create new cases eagerly; every time a new solution is found, it is stored together
with the corresponding problem description as a new case. Others, follow a
more elaborated policy: new cases are created only if the retrieved case is
found not to fit into a solution plan of the new problem. That is, if parts of the
case need to be revised to find a solution plan. In such situations the retrieval
is said to be a failure (Ihrig and Kambhampati, 1996a).

An overview of other issues about case-base planning will be made in chapter 10.

1.3 Problems Studied in this Thesis

In this thesis the six issues cathegorized in the previous section were carefully studied.
We made this study by examining their performance in complex domains and found
several problems that needed to be studied:

1.

Handling Extended Problem Descriptions. In many complex domains
more information about the problem is known than just the initial conditions
or features I and the goals to be achieved G. More concrete, in these domains
a partial order, <, can be predetermined that indicates ordering constraints
for achieving the goals G. In this context, problems are given in the form of
extended problem descriptions (I,G,<). The problem is whether a retrieval
technique can be developed to select cases in these domains.

2. Determining a Ranking between the Relevant Features of a Case. In

many domains, case features may not only be classified between relevant and
nonrelevant, but some relevant features may be more important than other
relevant features for a case. The question is how to determine a ranking of the
features in the cases according to their importance. If such a rank would be
available, the retrieval procedure can be improved by considering the feature
ranks.

3. Determining the Context of a Feature. Related to the previous issue, in

many situations is not only useful to know which features are relevant for a
case but to know the context of the case features. That is, the factors affecting
the ranking of features within a case. This is of particular importance for case
retrieval, as usually no case is available that solves the current problem and,
thus, similarity is determined by a partial match between the features. If the
feature context is known, the impact of the absence of a case feature in the
current problem can be predicted to determine if the case should be retrieved
or not.

4. Adapting Cases in Plan-Space Planning. Adaptation based on replay has

been implemented for plan-space planners. However, these methods consider
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only the sequence of decisions that solve the problem stored in the cases. A
more powerful adaptation mechanism should also consider failed attempts made
when the problem was solved. The problem is how to implement an adaptation
method that also considers the failed attempts during the adaptation process
based on a plan-space planner.

5. Considering User Interactions during Case Adaptation. Current case-
based planners are closed in the sense that the user is not considered during
the adaptation process. In realistic situations, however, it is likely that the user
would like to interact during the adaptation process by indicating, for example,
which parts of the retrieved case should not be considered.

6. Merging Multiple Cases. Because of their least-commitment strategy (not to
force orderings between plan steps unless it is necessary to handle interactions),
case-based, plan-space planners have been believed to be particularly suited to
merge multiple cases (Ihrig and Kambhampati, 1996b). The question is whether
multi-case merging is in fact efficient in general or if there are situations in which
multi-case merging is not as effective as it has been claimed.

7. Creating New Cases. As mentioned in point 6 in the previous section, new
cases are created either eagerly or when a failure occurs. Clearly, an adequate
policy should reduce the redundancy of the case base by avoiding the creation
of cases which are already covered by the existing cases. The question in this
situation is if retrieval failure is an adequate policy for case creation and if not,
which case creation policy is effective to reduce the redundancy of the case
base.

In this thesis we developed several techniques to overcome these problems. Fur-
ther, we proposed an unified framework integrating these techniques in a unified
framework.

1.4 Contributions of the Thesis

During the development of this thesis, the case-based planner CAPLAN/CBC has
been conceived and implemented. CAPLAN/CBC is coupled with the generic, plan-
space planner CAPLAN.! CAPLAN is an architecture that provides an interface
allowing an external agent to control its planning process. The case-based planner
CAPLAN/CBC uses this interface to guide CAPLAN by reusing previous problem
solving experiences stored as cases. Case Retrieval in CAPLAN/CBC is twofold; it
combines static and dynamic retrieval techniques. The retrieval is integrated with
a powerful adaptation mechanism to solve new problems. CAPLAN/CBC makes

!The name “CAPLAN” denotes computer assisted planning and “CBC” denotes case-based con-
trol.
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several contributions to CBP, which overcomes each of the problems discussed in the
previous section.

1. Dependency-Driven Retrieval. Dependency-driven retrieval is the technique
developed in CAPLAN/CBC to handle problems that are given in the form of
extended problem descriptions (I,G,<). To take advantage of this informa-
tion, the dependencies, <¢, between the goals achieved in each case C' are
represented explicitly. The dependencies reflect the order in which the goals
are achieved in C' and they are represented at the top level of the case base
in CAPLAN/CBC (Muifioz-Avila and Hiillen, 1995; Mufoz-Avila and Weber-
skirch, 1996b). During retrieval, the dependencies < between the goals in the
cases are compared against the ordering restrictions < of the problems. This
means that retrieval in CAPLAN/CBC is driven by the dependencies instead
of the goals as in other case-based planners (see Chapter 4).

2. Dynamic Similarity Metrics. In CAPLAN/CBC features are given a weight.
These feature weights represent, a hypothesis about the relative relevance of the
feature in the case. The similarity metric counts these feature weights during
retrieval to determine if the case should be retrieved to solve the current prob-
lem (Mufioz-Avila and Hiillen, 1996). Once a case is retrieved, CAPLAN/CBC
evaluates if the retrieval was adequate. If this is the situation, the hypothesis
about the relevance of the features is reinforced. Otherwise, the hypothesis is
punished. Reinforcement and punishment of a hypothesis about the relevance
of a feature is made by updating its weight. That is, the feature weight is
increased or decreased relative to the other feature weights in the case. The
updated weights indicate again a new hypothesis about the relevance of the
features in the case and this hypothesis is tested in future retrieval episodes
(see Chapter 6).

3. The Context of a Feature. Determining the context of a feature (i.e., the
factors affecting the ranking of features within a case) has been the subject of
several studies in analysis tasks such as classification tasks (Aha and Goldstone,
1990; Turney, 1996) but not in synthesis tasks such as planning. We address this
problem and determine that the domain theory plays a key role in determining
the context of a feature (Munoz-Avila and Weberskirch, 1997b; Mufioz-Avila
et al., 1997). We provide a characterization for the domain theory and show
that in domains meeting this characterization, the context can be simplified
(see Chapter 6).

4. Adaptation in Plan-Space Planning with Complete Decision Replay.
One distinguished characteristic of the base-level planner CAPLAN is the incor-
poration of a structure representing dependencies between goals and decisions
(Weberskirch, 1995). This enables CAPLAN to construct the justifications for
every decision made during the planning process. As a result, CAPLAN is able
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to perform interactive planning; the user may dynamically change conditions
of the problem and CAPLAN is able to modify the current plan without having
to plan from the scratch. CAPLAN/CBC takes advantage of this structure by
storing in the cases not just the solution trace (i.e., the sequence of decisions
that solve the problem) but the whole dependency structure (Munoz-Avila and
Weberskirch, 1996b). To adapt the retrieved cases, their dependency struc-
tures are reconstructed relative to the new problem. The result is a powerful
adaptation method that enables CAPLAN/CBC to:

1. Handle the initial conditions of the current problem in a straigthforward
way. By using the dependency structure, the parts of the plan that are
not valid because of missing conditions are easily identified and removed.

2. Reconstruct the whole planning episode. If the justifications for a failed
decision can be reconstructed, the failed decision is marked as invalid
relative to the current problem. As a result during the completion of the
partial solution obtained from the cases, the base-level planner CAPLAN
will not explore the failed decisions.

3. Adapt the case with user interaction. By reconstructing the dependency
structure, the functionality of the base-level planer CAPLAN is naturally
inherited. As a result, the user is able to dynamically prune parts of
the retrieved case or state the invalidity of initial conditions during the
adaptation process.

The second point is similar to the effect obtained by using the language for
the failed attempts in PRODIGY/ANALOGY. However, reconstructing the de-
pendency structure enables CAPLAN/CBC to adapt with less effort the cases
(point 1), enables the user to interact with the system based on the partial
solution obtained from the cases (point 3) and also enables CAPLAN to use
efficient backtracking methods such as dependency-directed backtracking (see
Chapter 5).

5.Trade-off between Efficiency Gains and Case Merging. As mentioned

before, case-based, plan-space planners have been believed to be particularly
suited to merge multiple cases. In this thesis, two forms of merging in the con-
text of plan-space planning will be examined. We will show that similar to the
trade-off between efficiency gains and the number of cases examined during re-
trieval, there is a trade-off between the efficiency gains and the number of cases
being merged for domains having a certain form of interactions (Munioz-Avila
and Weberskirch, 1997a). This means that after merging a certain number of
cases, it doesn’t pay-off to merge more cases because no efficiency-gains will be
made (see Chapter 8).

6. Policy to Create New Cases based on Retrieval Benefits. In a case-

based planning episode, if a retrieval failure occurs, it does not necessarily
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means that the adaptation effort was significant. In addition, the retrieval of a
case may not have been a failure because the case fits into a solution plan of the
problem. However, the effort to extend the case into the solution plan may have
been considerable. CAPLAN/CBC stores the solution found together with the
problem description as a new case only if the adaptation effort is considered
significant and independent of the fact that a retrieval failure occured or not
(see Chapter 7).

In this thesis, each of these issues will be examined carefully. Advantages and
disadvantages of the implemented methods will be pointed out, and characterizations
of the domains in which using the methods is an adequate choice will be given.
Moreover, we will show how they are integrated in a problem solving framework by
the case-based planner CAPLAN/CBC (see Chapters 3, 7). The integration aspects
included in the framework are:

Organization of the Case Base. By combining static and dynamic retrieval
techniques, CAPLAN/CBC improves the accuracy of the retrieval provided
that cases are found meeting the conditions proper of each technique. This
would be worthless if no mechanism is provided allowing to test these conditions
in an efficient way. For this reason, an indexing structure is developed that
enables CAPLAN/CBC to perform the twofold retrieval process by traversing
the indexing structure instead of testing the retrieval conditions case by case
(see Chapters 4 and 7).

Dual Integration of Retrieval and Adaptation. In CAPLAN/CBC, the re-
trieval phase not only determines which cases will be selected but it selects the
adaptation method itself. The dynamic selection of the adaptation method is
based on the reliability of the retrieved cases. When nonrelialable cases are
retrieved, complete decision replay is selected because this method is specially
suited for fixing the cases. The reliability of a case tends to increase as a result
of the feature weighting process. When the case is relialable, standard replay
can be used to improve the performance of the case-based planning process (see

Chapter 7).

1.5 Organization of the Thesis

The thesis is organized in four parts. The first part is an introduction to the thesis.
The second part contains the contributions of this thesis. Part 3 discusses related
work and presents conclusions of this work and Part 4 contains the appendix. This
document is finished with the bibliography, the glossary and the index.

Part 1 is composed of two chapters, one of which is this one. Chapter 2 con-
tains an overview of different existing techniques that are basic to understand the
contributions of this thesis.



20 CHAPTER 1. INTRODUCTION

Part 2, which is the kernel of the thesis, is divided in seven chapters: Chapter 3
presents the problem solving cycle in CAPLAN/CBC. The next chapter presents the
dependency-driven retrieval technique. The adaptation technique complete decision
replay is presented in Chapter 5. Chapter 6 discusses how feature weighting was
conceived and developed for case-based planning and how the context of a feature
can be determined. Chapter 7 presents a complete overview of CAPLAN/CBC and
shows how the contributions are integrated in an unified framework. The study on
mergeability in the context of plan-space planning is presented in Chapter 8. The
claims and results made in this thesis are validated empirically in Chapter 9.

Part 3 consists of two chapters. Chapter 10 presents related work, including other
case-based planners and feature weighting in analysis tasks such as diagnosis. The
conclusions of this thesis as well as future work are presented in Chapter 11.

Part 4 contains the appendix. Appendix A presents a symbolic description of
the domain of process planning. The specification was developed by the author
as part of this thesis and the problems in this domain motivated some of the tech-
niques presented here. Appendix B presents the symbolic specification of the logistics
transportation domain (Veloso, 1994). Finally, Appendix C presents the symbolic
description of an artificial domain.



Chapter 2

Basic Concepts

This chapter introduces some basic concepts about first-principles planning. It does
not intent to be comprehensive but rather to present the basic notations and concepts
that will be used in the subsequent chapters. A well-written introduction to Al
planning can be found in (Russell and Norvig, 1996) (Part IV). In addition, some
basic concepts about case-based planning (CBP) will be presented.

2.1 The Symbolic Specification of Domains

In AT planning, a symbolic specification is used to represent the problem domains.
Typically, symbolic specifications can be divided into objects, predicates and opera-
tors.

Objects. Objects are the basic representational units. They describe the entities
in the world. Examples of objects in the domain of process planning to manufacture
mechanical workpieces are the processing areas of the workpieces and the cutting
tools. Symbolically, an object is represented as a string of characters. For example, H
may indicate the processing area ”horizontal outline” or /rt may indicate the cutting
tool ”left rotary tool”. The base-level planner CAPLAN represents type information
about the objects. Thus, it can be represented symbolically that, for example, H is

an object of type "horizontal outline”.!

Predicates. Predicates indicate relations between objects. Examples of a predicate
in the domain of process planning are subarea(U;,H) and processed(H). The former
indicates the relation ”the processing area U; is a subarea of H” and the latter
indicates the relation ” H has been processed”. The term ”predicate” as used here
corresponds to what in mathematical logic is called a literal, that is, an atomic ground

1Other systems represent type information as well. In CAPLAN, however, this information is
used to partially solve the so-called problem of the filter conditions (Weberskirch and Munoz-Avila,
1997).

21
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predicate where the arguments are objects (i.e., no argument is a function term or
a variable). We will, however, use indistinctly the word ”predicate” to refer to both
(it should be clear from the context to which one we are refering).

Operators. Operators describe actions, which are the basic units from which plans
are made. A widely used representation for operators are the STRIPS-operators
(Fikes and Nilsson, 1971). These operators are constituted of arguments, constraints,
preconditions and effects.

e Arguments. The arguments list all variables used in the definition of the oper-
ator.

e Constraints. The constraints are the binding constraints on the variables.
There are codesignation constraints, Same(<var>,<var’>), and noncodesigna-
tion constraints, NotSame(<var>,<var’>),indicating that the variable <var>
must (not) be instantiated to the same object as the variable <wvar’™>. In ad-
dition, IsOfType(<type>,<var>) and IsNotOfType(<type>,<var>) are type
constraints indicating that the binding of the variable <var> must (not) be of
type <type>.

e Preconditions. The preconditions of an operator list the conditions that must
hold hold in the world before the operator can be executed. A precondition
has the form: +predicateName(<var-1>, ...., <var-n>), where <var-i> is a
variable.

e Effects. The effects of an operator list the changes to the world that the applica-
tion of the action causes. These changes have the form +predicateName(<var-
1>, ...., <war-n>), if the effect is in the add-list, and, -predicateName(<var-
I>, ..., <wvar-n>), if the effect is in the delete-list. That is, the effect is to
be added or deleted from the current state. +/—predicateName(<var-1>, ....,
<war-n>) is called a variable predicate.

Figure 2.1 shows the definition of the holding operators HoldT ool and MakeTool-
HolderFree. The operator HoldTool requires the tool holder to be free. The add-list
consists of a single effect; namely, that tool is held. The delete-list deletes the condi-
tion stating that the tool holder is free. The operator MakeToolHolderFree reverses
HoldTool. Tt requires that a tool is been held. The effects of the operator is that tool
is no longer held and the tool holder is free.

2.2 Planning Problems and Solution Plans

In AI planning, the definition of a problem description is based on the concept of state
of the world. An state can be seen as a snapshot of the world and is represented as a
(finite) set of predicates. That is, a state describe the relations between the objects
of the world that hold at a certain time.
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Operator: HoldTool Operator: MakeToolHolderFree

Arguments: Arguments:
tool tool

Constraints: Constraints:
IsOfType(Tool,tool) IsOfType(Tool,tool)

Effects: Effects:
+toolHeld(tool) +toolHolderFree()
—toolHolderFree() —toolHeld(tool)

Preconditions: Preconditions:
+toolHolderFree() +toolHeld(tool)

Figure 2.1: Definition of clamping and holding operators.

Definition 2.1 (Problem Description) A problem description is a pair (I,G),
where I and G are finite sets of predicates. I is called the initial state and the
predicates in I are called features. G s called the set of goals.

The set of goals G mentions the relations between the objects that must hold.
But typically G does not correspond to a complete state. Any state containing G is
called a final state relative to G (i.e., G C F holds).

Example of a Problem Description. Figure 2.2 shows an example of a problem
description in the domain of process planning. It consists of 5 goals: to process H, to
process the first and second half of U; and to process the first and second half of U,.2.
Figure 2.2 also shows some of the features in the initial state. Features in the initial
state indicate clamping conditions, geometrical relations, cutting tools available, the
state of the tool holder and the state of an area (Mufioz-Avila and Weberskirch,
1996¢). An example of each is shown in Figure 3.5: the first feature states that the
workpiece can be clamped from A;. The second one that U; is a subarea of H. The
third one that the cutting tool /rt is available. Then, the fourth feature indicates
that the tool holder is initially free. Finally, the fifth feature states that initially the
area H is unprocessed. Type information is represented as well: in this example, it
is stated that the object Irt is of type LeftRTool.

The solution of a problem is a sequence of actions or plan steps transforming I
into a final state relative to GG. Plan steps are the basic units of a plan and result
from the application of operators:

Definition 2.2 (Applicable Operator) An operator OP is applicable to a state
S if there is a substitution 6 such that:

1. Precf C S holds, where Prec are the preconditions of OP.

2Because of geometrical properties, to process an undercuts such as Uy, it must be divided in
two half parts. Each part is processed separately.
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Features:
Problem: 1. isClampArea(A;)
Prob3 2.subarea(Uy,H)
Goals: 3. available(lrt)
1. processed(H) 4. toolHolderFree()
2. processedHalf1(U;) 5. +unprocessed(H)
3. processedHalf2(U7)
4. processedHalfl(Us) Objects:
5. processedHalf2(Us) LeftRTool(Irt)

Figure 2.2: Part of the symbolic specification of a problem.

2. 0 satisfies the constraints of OP.

To check if a constraint is satisfied, the values of the variables must be intantiated
according to 6. If, for example, the constraint is same(z,y), then z6 = yf must
hold. The operator HoldTool is applicable to any state containing the predicate
toolHolderFree() (see Figure 2.1).

Definition 2.3 (Application of an Operator (Action, Plan Step)) Let OP be
an applicable operator to a state S with a substitution 0. The application of the op-
erator OP to S is the state obtained by the formula (S — Delfa) | J Addf« if there is
a substitution « of the variables in OP not occurring in 0 such that:

1. AddBa and Delfa contain only grounded predicates, where Add and Del are
the add- and delete-list of the operator.

2. Del™@a C S hold, where Del™ is obtained by removing the sign — of each
variable predicate in Del.

3. Oa satisfies the constraints of OP.

Otherwise, the application of the operator OP to S is ().
The application of an operator is called an action or plan step.

In this context, () indicates an error. For example, if the operator HoldTool is ap-
plied to an state containing the predicate toolHolderFree() and in the current problem
no object of type Tool is given, the operator is applicable but applying the opera-
tor results in (). The reason for the latter is that the constraint IsOfType(Tool,tool)
cannot be satisfied (see Figure 2.1).

Definition 2.4 (Plan, Solution Plan) Any sequence, $1...s,, of plan steps is called
a plan. That is, s; corresponds to the application of an operator OP;.
Let (I, G) be a problem description and P be a plan, s1...8,. P is called a solution

plan of (I,G), if:
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1. The operator OP; is applicable to I, the operator OPs is applicable to the state,
S1, obtained after applying OP; to I and continuing in this way, OP, is appli-
cable to the state S,,_1.

2. G C S, holds, where S,, is the state obtained after applying OP, to S,_1. That
s, S, 18 a final state relative to G.

State-space planners search the solution plans by transforming states; the current
state is transformed by selecting one of the applicable operators in pursue of reaching
a final state relative to G. The search space that state-space planners traverses is
depicted in Figure 2.3. Nodes in this graph are states and arcs are applications of
operators. An arc from A to B denotes that there is an operator applicable to the
state represented in A such that after applying the operator the resulting state is
B. The initial state is one of such nodes (labelled I). Two final states, F'1 and F2,
relative to G are shown (i.e., G C F1 and G C F2 hold). A solution plan is thus
a path from I to a final state relative to (G. State-space planners can perform the
search in forward direction, from the initial state to a final state, or backwards, from
a final state to an initial state, or in both directions at the same time.

F1

Figure 2.3: Abstract representation of a search space in state-space planning; nodes
represent world states and arcs represents actions transforming world states.

2.3 Plan-Space Planning with SNLP

As mentioned in the previous section, state-space planners transform states into
states. They naturally follow from the definition of solution plan (Definition 2.4): A
sequence of plan-steps such that each step is applicable in the world state obtained
after applying the previous step. However, this does not mean that state-space
planning is the only way to obtain solution plans. A different approach is followed
by so-called plan-space planners. The idea of plan-space planning is to transform
partial plans at each step of the planning process. Under this perspective, Figure 2.3
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must be reinterpreted: nodes represent plans and arcs represent actions transforming
plans. The node labelled I represents an initial plan, which is a plan representing
the problem and the nodes F'1 and F'2 represent solution plans.

One of such plan-space planners is SNLP (for: Systematic Nonlinear Planning).
SNLP is a planning algorithm that refines partially ordered plans (McAllester and
Rosenblitt, 1991).

Definition 2.5 (Partial-Order Plan) A partial-order plan is a 4-tuple, < S,—
,—cL, B >, where:

e S is the set of plan steps. S always contains two artifical plan steps: start
and finish. Any other plan step in S must be associated with an operator in the
domain.

e — is a set of links indicating an order for erecuting steps in S.
e —y, s the subset of — containing only causal links.

e B is a set of constraints on the variables bindings.

<_, denotes the partial order corresponding to the transitive clousure of —.

Preconditions and Effects of Steps. Steps in S always contain preconditions
and effects. The preconditions (effects) of a plan steps different from start and finish
are the preconditions (effects) of the operator associated with it.

Initial Plan. Once a planning problem (I,G) is given, a so-called initial plan
representing the planning problem is constructed. The initial plan contains two
artificial plan steps, start and finish, a single link from start to finish and no variable
bindings. The step start contains no preconditions and has as effects the initial
features in I whereas the step finish contains no effects and has as preconditions
the goals in G. Planning proceeds by establishing open preconditions and resolving
conflicts.

Establishment of Open Preconditions. An open condition or subgoal is a pre-
condition of a plan step such that there is no link from an effect of a step to the
precondition. We write p@Qs to denote that p is a precondition of s. A link can be
introduced when the effect of a plan step unifies the open precondition modulo the
binding constraints in B. When such a link is introduced, the precondition is said to
be established by the plan step. These kinds of links are called causal links. Causal
links are denoted by s; — p@sy indicating that the precondition p@s, is established
with s;. We distinguish between the case in which s; was already in S and the case
in which s; is a new step (i.e., not in S). In the first case, the establishment is said
to be a simple establishment whereas, in the second, the precondition is said to be
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established with a new step. When the establishment of the precondition is simple,
the constraints making the precondition and the effect unifiable are added to B.
When a precondition is established with a new step, the constraints of the associated
operator are added to B.

Resolving Conflicts. A conflict or threat to a causal link s; — pQs, is caused by
a third plan step s3 that has as effect p or =p and that is parallel to s; — pQs,,
that is, the following condition does not hold: s3 <_, sl or s, <_, s3 (see Figure
2.4). If the effect of s3 is p, in which case we write s3 — p, the threat is said to be
positive and write S3 PN (s1 — pQ@ss). Otherwise, the effect of s3 must be =p. In
this situation, the threat is said to be negative and write s3 <— (s; — p@s,). SNLP
solves negative and positive threats. Whereas negative threats are solved to ensure
the consistency of the plan, positive threats are solved to ensure the systematicity of

the planning process, which can reduce the size of the search space (Kambhampati,
1993). Threats are solved by

e introducing the link s3 — s, called a protection link, in L (this operation is
called a demotion),

e introducing the link sy — s3, also called a protection link, in L (this operation
is called a promotion), or,

e introducing bindings constraints in B such that the precondition p is not unifi-
able with the conflicting effect of s3 (this operation is called a separation).

Additionally, no step can be ordered before start or after finish. Thus, for
example, if s; is start demoting s3 is not a valid alternative to solve the threat.

— S3 = -p

Figure 2.4: Graphical representation of the positive threat s; PN (s1 — p@ss) and
the negative threat sz «— (s; — p@Q@sy).
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Solution Plan. At every step of the planning process, partially ordered plans are
refined by introducing new links, steps, or ordering constraints. The planning process
is finished if the initial plan is refined to a partial-order plan, Sol = < S, —, —¢r,
, B >, containing no open conditions and no threats. This plan representes several
solution plans; namely, the set of all totally ordered plans, P = (Sp, <p), such that:

e <p is a total order on S extending <_,

e S = Sp holds

Each of these plans is a solution plan for the problem description (I, G) repre-
sented in the initial plan (see Definition 2.4). This means that SNLP is correct. We
say that Sol achieves the goals and refer to Sol as a solution plan for (I,G). SNLP
has been shown to be complete (McAllester and Rosenblitt, 1991), that is, a solution
is found if there is one, otherwise, a failure is returned.

Definition 2.6 (Complete Plan) A partial-order plan is complete if it contains
no open preconditions and no threats.

Example of a complete partial-order plan Figure 2.5 depictes a complete
partial-order plan in the domain of process planning. The plan achieves the goal
processed(H), processing the horizontal outline.> This can be recognized from the
plan because processed(H) is the only precondition of finish. This plan contains
three plan steps: to process the horizontal outline (STEP-3), to hold the tool Irt
(STEP-2) and to clamp the workpiece from the ascending outline A1 (STEP-1). It
also contains four causal links representing the following establishments: clamp(A;)
— processed(H)@finish, cs — clampFrom(outl-L)@mse,, hs — toolHeld(t-ctr)@
MSer, and, start — toolHolder FreeQhs.

CIS';E- /1_\1 clampTurn(outl-L) \
/ STEP-3
oroc. M processed(H) FINISH

toolHolderFree hTool Irt toolHeld(t-ctr) /
STEP- 2

Figure 2.5: Plan for processing (machining) the horizontal outline, hor-.

2.4 A Planning Theory

There is no planning paradigm that outperforms the others for every domain (Barrett
and Weld, 1994; Veloso and Blythe, 1994; Kambhampati et al., 1996a). A planning

3In the parlance of mechanical engineering one speaks of machining instead of processing.
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paradigm may work well for some classes of domains but not for other ones. In
(Barrett and Weld, 1994; Kambhampati et al., 1996a) a theory to explain the possible
advantages of plan-space planners over state-space planners is presented. Thus theory
will be used to characterize the circumstances in which the methods presented in this
thesis are expected to be adequate. In this section the main elements of this theory
are presented. The first elements introduced in the theory are the classes of plans.
We mention two classes:

e Elastic Protected Plans. This class of plans is basically formed by the
partial-order plans. Plans in which the steps are ordered by precedence relations
are said to be elastic. Thus, partial-order plans are elastic because they are
ordered by <_,. Plans including interval preservation constraints (IPC) are

P
said to be protected. IPC are 3-tuples of the form s; — s, indicating that the

p
condition p must be preserved between s; and s,. Clearly, the IPC s; — s5 can
be seen as the causal link s; — p@s,. Thus, partial-order plans are elastic and
protected.

e Prefix, Sufix and Prefix, and Sufix Plans. These are the plans produced
by the state-space planners. In a sufiz plan, the plan steps are contiguous to
each other in a chain whose last element is an dummy step representing the
final state. In the same way, in a prefiz plan, the plan steps are contiguous to
each other in a chain whose first element is an dummy step representing the
initial state.

The second element of the theory is the notion of trivial serializability, which will
be defined later on. First some definitions are introduced. Consider the plan for
machining the center outline shown in Figure 2.5, and, suppose that an additional
processing area, for example a drilled hole, is to be machined. If the plan can be
extended to machine both processing areas, the plan is said to be serially extensible
with respect to the goal corresponding to machining the drilled hole.

Definition 2.7 (Serial Extensibility) Given a class P of plans, a plan P in P
achieving a goal g, is serially extensible with respect to a second goal gy if there is a
refinement of P in P achieving both g, and g,.

Notice that backtracking may take place for achieving g; and g». What the
definition of serial extensibility says is that no backtracking should take place in the
plan refinement steps introducing steps, links or constraints in P. This is illustrated
in the abstract situation depicted in Figure 2.6. The abstract plan was extended by
adding new steps and links to a plan achieving g; and go (boxes represent plan steps
and arcs represent links).

In the same situation as before, if any plan for machining the center outline is
serially extensible with respect to the goal corresponding to machining the drill, then,
the order, first plan for machining the center outline and then for machining the drill,
is called a serialization order.
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Figure 2.6: Illustration of the notion of serial extensibility.

S 92

Definition 2.8 (Serialization Order) Given a class P of plans and a set of goals,
91, 92, -, Gn, @ permutation m on these goals is a serialization order if every plan in P
for solving wgy can be serially extended to wgs (modulo the class P) and any resulting
plan can be serially extended to mgs (modulo the class P) and so on.

Unfortunately, serial extensibility is not a commutative property (Barrett and
Weld, 1994; Kambhampati et al., 1996a). Thus, if the order, first plan for machining
the center outline and then for machining the drill, is a serialization order, it does
not necessarily mean that the opposite order is. If this is the case, the goals are said
to be trivial serializable.

Definition 2.9 (Trivial Serializability) A set of goals, g1, go, .., gn, is trivial se-
rializable, if any permutation of these goals is a serialization order (modulo a class
of plans P).

Goals that are trivially serializable can be solved in any order as the subplan
achieving any of them can be extended to a subplan achieving two of them and so
on. The fact that goals are trivially serializable does not necessarily means that it is
easy to obtain a plan achieving the goals. What the definition says is that the effort
to obtain a subplan achieving some of the goals will not be lost when extending the
subplan to achieve all the goals.

Goals that are trivially serializable in the class of sufix, prefix or sufix and prefix
plans are also trivially serializable in the class of elastic protected plans. The essential
principle of the theory is that for domains for which goals are trivially serializable in
the class of elastic protected plans but not in the class of sufix, prefix or sufix and
prefix plans, plan-space planning should be more efficient whereas for domains for
which goals are trivially serializable in both classes, state-space planning should be
more efficient.
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2.5 Static Analysis of a Domain Theory

STATIC is a system that precompiles the domain theory to generate control rules to
guide the planning process of a state-space planner (Etzioni, 1993b; Etzioni, 1993a).
The precompiled theory is represented as Problem Space Graphs (PSG). A PSG is
an AND/OR, bipartite graph representing a part of the search space that may be
explored when achieving a goal.

Construction of PSGs. A PSG always contains a single node at the first (top)
level. This node contains a predicate g with variable arguments representing several
goals (i.e., all possible instantiations of g). Each operator in the domain theory that
achieves g is represented as a node at the second level. Each node of the second level
is connected with an arc to the node in the first level; they form an OR-tree as any
of the operators represented at the nodes can be used to achieve the goal. For each
precondition of an operator represented at the second level, a node is added at the
third level. Each node n at the third level is connected with a node n’ at the second
level if n represents a precondition of the operator represented in n. They build an
AND-tree as all the preconditions must be achieved for the operator to be applicable.
The process is repeated recursively at the subsequent levels. Figure 2.7 represents an
abstract PSG. It is assumed that only two operators can achieve g (i.e., OP-1-1 and
OP-1-2). Notice that the goal representing the precondition p-2 has two parent
nodes. This means that p1-2 is a common precondition of both.

pl-1

OP-1-1

OP-1-2

pl-2

Figure 2.7: Example of an abstract PSG.

Control of Unfolding Process. Clearly, some kind of control must be stated to
stop the unfolding process in the PSG. An important condition to stop the unfolding
process is when a precondition in a node corresponds to the same predicate repre-
sented in an ancestor of the node. For example, no further unfolding will be made
below the node containing ¢’ as we are assuming that it has the same predicate as ¢
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(the fact that no further unfolding is possible is represented graphically by the bold
square). This condition ensures that the PSG is finite because the branching factor is
always finite and the number of predicates is also finite. Another important criterion
to stop the unfolding process is based on predefined axioms describing true sentences
in the domain. An example of an axiom in the domain of process planning could be:
”the tool holder holds a tool or the tool holder is free”. This axiom is always true
in any situation in this domain. If during the unfolding process, a node is unfolded
containing the goal "tool holder is free” and an ancestor of the node contains the
goal ”hold tool x”, no further unfolding is necessary because the axiom guarantees
that one of the two goals must be true.

Using PSGs to detect Prerequisite Violations. Etzioni uses the PSG to study
the effectiveness of EBL. He also shows that the control rules generated by analyzing
the PSG are equivalent to EBL when certain conditions are met. What is important
for our work is that Etzioni observed that by using the PSG, rules avoiding prereq-
utsite violation can be generated. A prerequisite violation between two goals occurs
when achieving one of them first makes it impossible to achieve the other one. There
are two possible reasons for a order g h to be a prerequisite violation:

e Any subplan achieving g clobbers a precondition necessary to achieve h. That
is, there is a precondition p which is necessary to achieve h and any subplan
achieving g makes p invalid.

e g needs a precondition which can only be obtained when A is achieved.

Prerequisite Violations as Ordering Constraints. In either situation g must
be achieved after h. Notice, that theoretically, the prerequisite violation has no
impact in plan-space planners as in these planners the plan steps can be ordered as
required. However, the prerequisite violations can be used to determine the ordering
constraints < of the current problem and, thus, enables the use of dependency-driven
retrieval in CAPLAN/CBC in domains where no domain-specific reasoner is available
(see Chapter 3). The way < can be obtained is straightforward when the prerequisite
violations are known:

If g, h are two goals and the order g h is a prerequisite violation,
then h < g is a valid ordering restriction.

The ordering restriction h < g is a valid ordering restriction if for any solution
plan h is achieved before g (a formal definition will be given in Chapter 4).

Determining Prerequisite Violations. To determine if there is a prerequisite
violation between g and h, the PSGs of ¢’ and A’ are generated, where ¢’ and h' are
obtained by replacing the arguments of g and h with variables. For each PSG, two sets
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are generated: the necessary effects and the necessary prerequisites. The necessary
effects of a goal are the effects that are always obtained by any subplan achieving the
goal. In the same way, the necessary prerequisites are the preconditions that always
must be valid to generate any subplan achieving the goal. The rules to determine
a prerequisite violation are quite simple: if a necessary effect of ¢ is a necessary
precondition of h or a neccesary effect of h clobbers a necessary precondition of g,
then h g is a prerequisite violation.

Determining the Necessary Effects. The following rules indicate how to gen-
erate the necessary effects of a goal by traversing the PSG:

e The necessary effects of a node representing an operator are the effects of the
operator united with the necessary effects of its child nodes (i.e., the nodes
representing the preconditions of the operator).

e A leaf node has no necessary effects.

e The necessary effects of a node different than a leaf node and representing a
precondition of the goal is the intersection of the necessary effects of its child
nodes (i.e., the nodes representing the operators that achieve the precondition).

Necessary preconditions can be achieved in a similar way.

2.6 Case-Based Planning

In PRODIGY/ANALOGY the concepts of interacting goals, relevant features and adap-
tation with replay were introduced (Veloso, 1994), which are now considered an stan-
dard in CBP. These concepts will be recalled in this section although the definitions
will be reformulated in terms of partially-ordered plans in the sense of SNLP.

The notion of relevance of a feature 7 in I relative to the particular solution found
Sol is motivated by the fact that, whereas a feature may have played a role to find
a particular solution plan, it may play no role at all in another solution plan. For
example, suppose that an individual called Cesar has to go from his house to the train
station. Suppose that Cesar has a car and there is a public bus which passes nearby
his house and goes to the train station. The availability of these two ressources can be
seen as initial features. If Cesar takes his car, the feature refering to the availability
of the bus is completely irrelevant for the plan. Formally, the relevance of a feature
can be defined as follows:

Definition 2.10 (Relevant Features) Given a solution plan Sol = < S,—, —cr,
,B > of a problem (I,G), a feature i in I is relevant if there is a causal link of the
form start — 1Qs in —¢cp, with s in S.
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This means that a feature is considered relevant if it is used to establish the
precondition of a plan step in Sol. In the same way that initial features can be
discriminated between relevant and irrelevant relative to the particular solution Sol,
pairs of goals can be discriminated between interacting and noninteracting. First the
notion of connected components will be defined:

Definition 2.11 (Connected Components) Given a partial-order plan Sol = <
S, —, —crL, B >, the connected components of Sol are the connected components of
the graph obtained by viewing each step in S — {start, finish} as a node and each
link in — as an arc.

Each connected component represents a complete subplan independent of the
others subplans represented in the other connected components. For example, the
plan depicted in Figure 2.5 consists of a single connected component because such a
decomposition in independent parts is not possible. Given a connected component
Con = < S',—> of Sol, a complete plan Sol¢" =< §C¢on _Con _y , Con pCon
can be generated, where:

o S = ' U {start®™", finish®"} hold, where start“" contains as effects all
the features in I used to achieve preconditions in S’ and finish“°" contains as
preconditions all goals in G achieved by steps in S'.

e —0o" ig the subset of — having as source and consumed by steps in S¢°".
o —-.°%" is the subset of causal links in —¢°".

e BC" is the subset of B referred by steps in S¢°"

We can now introduce the notion of interacting goals.

Definition 2.12 (Interacting goals) Given a solution plan Sol of a problem (I, G),
two goals in G interact if they are achieved by the same complete plan represented in
a connected component of Sol.

This means that each connected component of Sol defines a set of interacting
goals. Instead of considering ((I,G),Sol) as a single case, each pair of the form
((Icon, Geon), Solcon) is considered as a case, where G,y is a set of interacting goals
achieved by the complete plan Solc,, represented in a connected component of Sol
and Ig,, is the set of relevant features relative to Solcy-
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Adaptation with Replay. Replay is a method widely used for case adaptation
(Veloso and Carbonell, 1993; Bhansali and Harandi, 1994; Blumenthal and Polster,
1994; Thrig and Kambhampati, 1994; Mufioz-Avila et al., 1994). In this method,
instead of storing the solution plan Sol in the case, the derivational trace followed
to obtain Sol is stored. The derivational trace is the sequence of planning decisions
that were taken to obtain Sol. For example, the derivational path to obtain the plan
shown in Figure 2.5 could be: “apply the operator procc. (H) to achieve the precondi-
tion processed(H)@finish”, “apply the operator clamp A; to achieve the precondition
clamp Turn(outl-L)@clamp(A;)” and so on. If the base-level planner is SNLP, the
derivational trace contains planning decisions that are proper of plan-space planners
such as “order the step clamp(A; ) after the step clamp(A,)”. When adapting a case
with replay, the derivational trace is followed by applying the planning decisions to
the new problem. A planning decision in the derivational is only replayed if no in-
consistency will occur as a result of replaying it. For example if the decision says
“order the step clamp(A;) after the step clamp(As)” and in the current situation
clamp(A1) <., clamp(A3) holds, the decision is not replayed because otherwise a
cycle in the plan is introduced (i.e., clamp(A1) <_, clamp(A2) and clamp(As) <,
clamp(A;) hold simultaneously). In this situation a failure occurs. In Section 5.7 a
detailed study of the kind of failures occuring will be made. Adaptation with replay
supposes an interaction with the base-level planner. That is, part of the planning
process is made by replaying decisions of one or more cases and the other part is
made by the base-level planner. A detailed discussion about this issue will be given
in Chapter 5.
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Chapter 3

The Problem Solving Cycle in
CAPLAN/CBC

In this chapter an overview of the problem solving cycle will be given, the input and
output of each phase will be explained and the scope of the knowledge sources will
be discussed (a discussion about how our cycle compares to the one of (Aamodt and
Plaza, 1994) will be made in Chapter 10). In addition an example of the problem
solving cycle is described. A formal and detailed presentation of the different phases
of the problem solving cycle will be made in further chapters. These chapters will also
discuss the advantages and disadvantages of the methods implemented in each phase,
and a characterization of the domains in which using the methods is an adequate
choice.

3.1 The Problem Solving Cycle

The problem solving cycle in CAPLAN/CBC consists of four phases: Analysis, Re-
trieval, Adaptation and Learning. It also considers four sources of knowledge: the
domain theory, the case base, domain-specific reasoners and the user. The data flow
is depicted in Figure 3.1.

The process starts when a new problem (I,G) is given. [ is the set of initial
conditions or features and G is the set of goals to be achieved. First, an analysis of
the new problem is made. As a result of which a set of ordering constraints < to
achieve the goals are generated. The ordering constraints together with the problem
description form extended problem descriptions (I,G, <).

Retrieval in CAPLAN/CBC is two fold; it combines static and dynamic retrieval
techniques. The static retrieval technique is dependency-driven retrieval. Under this
approach, a case C' always includes its dependencies <, that is, the order in which
the goals are achieved in C'. During retrieval, the order <. is compared against <
first. Only if certain conditions are met, the initial situations of the case and the
problem are compared to determine if C' should be retrieved. The dynamic retrieval
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Figure 3.1: Problem solving cycle in CAPLAN/CBC.

technique is based on feature weighting. Features in the initial state of the cases have
weights. These weights are taken into account when matching the initial situations
of the case and the problem. By proceeding in this way one or more cases are
retrieved each covering a disjoint subset of goals in the problem. In contrast to the
dependencies, the value of the match between the initial states of a problem and a
case migh differ depending on the point of time this match is made. The reason
for this, is that the feature weights are updated every time a retrieval is made. An
additional output of the retrieval phase is the selection of the adaptation method
(see Section 7.2).

At the third phase cases are adapted into the new solution by using complete
decision replay. Base of this strategy is the replay of the structure representing all
decisions made when the case was solved and their justifications. In this way, the
whole problem solving experience is transfered from the cases into the new situation.
After replay, a partial solution is obtained containing the justifications for every
decision in the same way as it would have been obtained by the base-level planner.
This information is used by the base-level planner CAPLAN to prune parts of the
solution that are no longer valid because of missing conditions in the new problem
and to avoid making decisions that are known from the case to be wrong. In this
way the completion effort of the partial solution is reduced in a significant way. The
system enables the user to interact during the adaptation process.

After the new solution is obtained from the adaptation phase, the learning phase
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begins. First, an analysis of the adaptation effort is done to determine if the retrieval
of each case is adequate. Next, the set of nonmatched features is selected. If the
retrieval is adequate the weights of the features in the set will be decreased. The
idea is to reinforce the fact that even when these features were not matched the
retrieval was sucessful. If the retrieval failed, the weights of the features in the set
are increased. In this situation, the idea is to punish the fact that when these features
were not matched the retrieval was a failure. Finally, the new solution is added to
the case base if the retrieval is nonbeneficial.

3.2 The Phases of the Problem Solving Cycle

For each phase the input and output will be explained, the knowledge sources, and
a brief discussion of how each phase was conceived will be given.

3.2.1 Analysis

Problem descriptions in Al planning have been traditionally defined as a pair (I, G),
where [ is a set of initial conditions or features and G is a set of goals to be achieved
(Fikes and Nilsson, 1971). In complex domains, however, frequently there are intrin-
sic dependencies between certain key elements. For example, consider the domain of
process planning to manufacture mechanical workpieces that are symmetrical with
respect to an axis (see Appendix A). In this domain, processing the areas of the
workpiece are the goals to be achieved. Due to geometrical restrictions, some areas
of the workpiece must be processed before others. A domain-specific reasoner called
the geometrical reasoner is used to detect these ordering constraints between the ar-
eas to be processed (Mufioz-Avila and Hiillen, 1995; Munoz-Avila and Weberskirch,
1996b; Munoz-Avila and Weberskirch, 1996¢). Further, these ordering constraints
are stated before the planning process begins and they will hold in any manufactur-
ing plan for the workpiece. Thus, the ordering constraints form part of the problem
description:

Definition 3.1 (Extended Problem Description) An extended problem descrip-
tion is a triple (I, G, <), where I are the initial conditions or features, G are the goals
to be achieved and < are the ordering constraints to achieve the goals.

The input of the analysis phase is a problem description (I, G) and its output
is an extended problem description (I,G,<). CAPLAN/CBC uses the ordering
constraints < to improve the accuracy of the retrieval phase. If the information
about the ordering constraints < is used in an adequate way, the performance of the
problem solving process will be improved. The following are the sources that can be
used to obtain the ordering constraints <:

1. A domain-specific reasoner. A typical example of such a reasoner is the geometri-
cal reasoner in the domain of process planning. This domain has been subject
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of several studies in AI (Hayes, 1987; Kambhampati et al., 1991; Gil, 1991;
Yang and Lu, 1994; Paulokat and Wess, 1994; Nau et al., 1995; Mutioz-Avila
and Weberskirch, 1996¢). In general, there seems to be a consent about the dif-
ficulty of using fully domain-independent techniques to solve problems in this
domain (Kambhampati et al., 1991; Nau et al., 1995; Munoz-Avila et al., 1995;
Munoz-Avila and Weberskirch, 1996¢). One reason for this difficulty is the
high level of interactions between the plans to process different areas (Hayes,
1987; Paulokat and Wess, 1994). The geometrical reasoner precomputes some
of these interactions that should reduce the search effort of the generic problem
solver.

2. The user. CAPLAN/CBC considers the user as a possible source for the ordering

restrictions between the goals. The user can state some ordering constraints
because of his/hers better overview of the problem. There is, however, a re-
striction that must be taken into account: The generic problem solver always
must obtain plans meeting the ordering restrictions even if they are not given
explicitly (see Chapter 4). That is, the ordering restrictions if used in an ade-
quate way, enables the generic problem solver to find a solution more rapidly.
But if they are not given, the generic problem solver should find a solution
meeting the ordering restrictions.

3. A domain-independent analyst. Etzioni observed that by using the domain the-

ory some information about the solution can be precompiled (Etzioni, 1993b;
Etzioni, 1993a). Part of the precompiled information are ordering constraints
to achieve the goals. For example, in the Schedworld domain, it can be precom-
piled that shaping a surface into cylindrical form should be performed before
polishing it (Etzioni, 1990). Base of this method is the construction of a tree-like
structure on which a static analysis of the interactions can be made (see Section
2.5). The relevance for CAPLAN/CBC of this work is the fact that in several
domains the ordering constraints < can be computed automatically. Thus, the
whole problem solving cycle in CAPLAN/CBC is domain-independent in these
domains.

3.2.2 Retrieval

The input of the retrieval phase is an extended problem description (I, G, <). One
particularity of CAPLAN/CBC is that the dependencies between the goals are rep-
resented explicitly in the cases. Informally, the notion of dependencies can be defined
as follows (the formal definition will be given in Chapter 4):

Definition 3.2 (Goal Dependencies) Let g, h be two goals achieved in a case C.
The goal h is said to depend on the goal g and write g <c h if there are two steps
54, Sp, i the solution of C achieving g and h such that s, occurs after sy in Sol.
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When a new problem (I, G, <) is given, all cases in the case base are considered
as candidate cases. The retrieval strategy in CAPLAN/CBC is dependency-driven
in that candidate cases are eliminated because of violations to a condition regarding
their dependencies <. The condition can be stated as follows:

Definition 3.3 (Order Inclusion Condition) A case C meets the ordering in-
clusion condition with respect to a problem (I, G, <) if there is a substitution 6 such
that

1. Gcb C G (where G¢ are the goals achieved in C).

2. For every pair of goals g1, 92 € G¢, if g160 < g20 holds, then g1 <c go must also
hold.

The rationale behind the first requirement of the order inclusion condition is to
avoid the risk that additional goals achieved by the case interact negatively with the
goals of the problem. Condition 2 reflects the dependency-driven retrieval strategy:
the dependencies of the case must extend the ordering constraints of the problem
(informally written: < C <(¢). In Chapter 4 a weakened form of this condition will
be stated, which is actually the form used in CAPLAN/CBC.

Once cases not meeting the order inclusion condition are eliminated from the
list of candidate cases, CAPLAN/CBC proceeds to compare the initial state of the
candidate cases against I. As in PRODIGY/ANALOGY only relevant features are
taken into account by using the foot-printing process to discern between relevant
and nonrelevant features of a case (see Section 2.6).

A distinguished characteristic of CAPLAN/CBC is that features are not only
classified as relevant and not relevant, but they are ranked by associating weights to
them. The weight, w; ¢, of a feature ¢ depends on the particular case C' in which the
feature occurs. A feature may be relevant for two cases, but whereas it may have
a high rank in one of them, it may have a low rank in the other one. That is, the
feature might be very important for one case but not so important for the other one.
The similarity metric in CAPLAN/CBC takes into account the feature weights:

Definition 3.4 (Weighted Similarity Metric) The weighted similarity metric be-
tween a case C' and a problem P, sim™9(C, P), is defined as:

Geb C G

. Z Wwi,c
wy(C P) = i€lNg Ic ™%
sim™*(C, P) { 0 otherwise

where I (), Ic denotes the set of all features in Ic matching a feature in I with a
substitution 6.

Testing all candidate cases to find the one that is most similar has a prohibitive
cost. For this reason, CAPLAN/CBC searches for the first candidate case that meets
the following condition:
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Definition 3.5 (Weighted Retrieval Condition) Given a problem P, a case C
meets the weighted retrieval condition, SIM™9(C, P), if and only if Gcf C G and

(sim™9(C, P)/sim™I(C,C)) > thrye
where thrye is a predefined threshold, called the retrieval threshold.

In other words, the weighted retrieval condition is met if the weighted proportion
of features in I that match features in I modulo 6 is greater than the retrieval
threshold thr,e.

In summary, a case is retrieved if it meets the order inclusion and the weighted
retrieval conditions. In addition, the substitution # in both conditions must be the
same. In Chapters 4 and 7 an indexing structure of the case base will be presented
that allows CAPLAN/CBC to test both conditions in a more efficient way than
testing these conditions sequentially on all the cases. To retrieve multiple cases
CAPLAN/CBC follows the same top down strategy as in PRODIGY/ANALOGY by
pursuing to cover the set of goals with as few cases as possible.

3.2.3 Adaptation

The input of the adaptation phase is the list of retrieved cases and the output is a
solution plan for the problem (I, G, <).

The adaptation method conceived and implemented in CAPLAN/CBC is called
complete decision replay. This method is fundamented on the way the base-level plan-
ner CAPLAN is built (Weberskirch, 1995).! To represent knowledge about plans and
contingencies that occur during planning, CAPLAN is built on the generic REDUX
architecture (Petrie, 1991a; Petrie, 1991b). The REDUX architecture represents re-
lations between goals and operators and between operators and subgoals. In the
parlance of REDUX a decision is made when an operator is applied to achieve a
goal. Decisions are represented as a subtree in the subgoal graph. Subgoal graphs
represent basic dependencies between goals and subgoals as well as between subgoals
and decisions. Figure 3.2 depictes a decision.

REDUX provides a TMS algorithm (Doyle, 1979) to maintain the dependencies.
The nodes in the TMS represent different aspects of the truth maintenance process
such as the validity of a goal. Changes in a node are propagated through the TMS.
CAPLAN maps the concepts of partially ordered plans into the REDUX structure.
As for now, this map can be imagined as a straightforward map from planning goals
to REDUX goals and from planning operators to REDUX operators (a more de-
tailed description will be given in Chapter 5). A key aspect in CAPLAN is that the
justifications of all decisions (valid and rejected) are always mantained. A justifica-
tion has the form {ai, as, ..., a,}, where q; is a constraint. For example, consider a

! The development of CAPLAN does not form part of this thesis. The overview presented here
and the more detailed explanation in Chapter 5 are made as basis to explain the complete decision
replay adaptation method.
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Goal

~_..-decision

operator

Subgoal-1 | -+ | Subgoal-n

Figure 3.2: Tree representation of a decision in REDUX.

decision corresponding to the application of an operator that requires x = y to be
true, where x and y are variables. If the decision is valid, an example of a possible
justification is {x = 1,y = 1}. An example of a justification if the decision is invalid
is {xr =1,y = 0}.

CAPLAN/CBC store as part of a case, the goal graph and the justifications of
every decision made when the case was solved (Mufioz-Avila and Weberskirch, 1996b;
Muifioz-Avila and Weberskirch, 1996a). Complete decision replay consists of three
steps:

1. Replay of the goal graph. Valid decisions are reconstructed relative to the new
problem. The reconstruction of the valid decisions correspond to replay in the
usual way (Veloso, 1994): The operator applied to achieve a goal in the case is
applied to achieve the corresponding goal in the new problem.

2. Replay of the justifications. CAPLAN/CBC pursues to reconstruct the justi-
fications of every rejected decision relative to the new situation. During this
process, two situations may occur:

1. All the constraints in the justification can be reconstructed. This means
that the decision can be rejected in the new situation.

2. One or more constraints cannot be reconstructed. In this situation, it
cannot be guaranteed that the decision can be rejected in the new situa-
tion. Thus, the decision will need to be explored by the base-level planner
CAPLAN at the third step of the adaptation process.

3. Completion of the partial solution. The partial solution plan obtained after
the performing the previous two steps is completed by the base-level planner
CAPLAN. That is, first-principles planning is performed.

During the completion phase, CAPLAN will not make decisions that were rejected
in the case provided that their justifications were successfully reconstructed. As a
result, the search space will be reduced. The gains in efficiency are due to the fact
that CAPLAN needs to make a consistency check (corresponding to a constraint
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propagation process) every time a decision is made. In contrast, the reconstruction
process of the justifications (step 2), no consistency check is necessary.

A second aspect to consider is that finding the parts in the plan that are no longer
valid because of missing conditions can be made efficiently. This is possible due to
the dependencies represented in the subgoal graph.

Finally, as the subgoal graph has been reconstructed, facilities inherent to CA-
PLAN such as interactivity and dependency-directed backtracking (Weberskirch, 1995)
can be performed during the step 3 of the adaptation process. In particular, the user
may remove parts of the partial solution plan obtained after step 2 and/or indicate
which operators to select to achieve a goal.

The merging method for adapting several cases used in this work is based on
the one proposed in (Veloso, 1994) and implemented in the context of plan-space
planning as reported in (Ihrig and Kambhampati, 1996a). The motivation of this
method is to avoid redundancy during multi-case replay; before adding a new step to
achieve a goal, the system checks if no existing step can achieve the goal. The new
step is added only if no such a step exists. This method has been implemented in the
context of complete decision replay as will be explained in Chapter 5. A trade-off
related to the efficiency gains that we found is associated with this method is studied
in Chapter 8.

Note about the word “dependency”. The word dependency has two meanings
in this thesis. First, in the context of the dependency-driven retrieval technique,
the word dependency denotes the partial order in which the goals are achieved in
a particular solution plan (see Definition 3.2). Second, in the context of complete
decision replay, it denotes the relations between the planning objects represented in
the subgoal graph.

3.2.4 Learning

Once a solution has been found, CAPLAN/CBC performs an analysis to determine
if the solution is to be stored as a new case. In addition the feature weigths of the
retrieved case are updated.

A definition of failure has been stated in the literature (Thrig and Kambhampati,
1996a). This definition can be stated as follows:

Definition 3.6 (Retrieval Failure, Adequate Retrieval) Given a solution plan
Sol of a problem P obtained by adapting a case C, the retrieval of C is a failure with
respect to P and Sol if at least one decision replayed from C was revised by the first-
principles planner to obtain Sol. Otherwise the retrieval of C is said to be adequate.

This definition says that the retrieval of a case is considered adequate if the
partial solution obtained after replay can be extended to a complete solution without
having to revise any of the decisions that were replayed from the case. This definition
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suggests an strategy that is followed by the base-level planner CAPLAN to complete
the partial solution: it will try to extend the partial solution first. Decisions made
to obtain the partial solution are only revised if no extension is possible. However,
there are two circumstances that need to be considered:

1. CAPLAN/CBC performs complete decision replay instead of standard replay.
Thus, even if the retrieval is a failure, the effort to complete the solution might
not be large because of the reconstruction of the failed attempts reduces the
search space (see Section 3.2.3).

2. The retrieval of the case is adequate but the completion effort is large. During
the completion process, the first-principles planner may not require to revise a
replayed decision but still the completion effort can be large.

These circumstances are related to the benefit of retrieving the case. The fact
that the retrieval of the case is adequate does not necessarily implies that retrieving
it results in a benefit to the performance of the problem solving process. A diffi-
culty of considering the benefit is that there is no domain-independent procedure
to determine it. To exactly measure the benefit of solving the problem with the
case-based planner it would be necessary to know the effort required by the first-
principles planner to solve the problem. This is, of course, not a feasible possibility.
Instead, CAPLAN/CBC introduces a heuristic measure to determine the benefit of
the retrieval:

Definition 3.7 (Beneficial Retrieval) Given a solution plan Sol of a problem P
obtained by adapting a case C, then the retrieval of C' is beneficial with respect to P
and C if:

searchSpace(Sol)/searchSpace(PSol) < thrye,

where PSol indicates the partial solution obtained after replay, thrye, is a prede-
fined threshold and searchSpace(Sol) returns the size of the search space explored to
obtain the plan Sol. The threshold thrye, is called the benefit threshold.

The function searchSpace(Pl) counts the number of decisions made to compute
the plan Pl (see Chapter 6). Thus, searchSpace(Sol) > searchSpace(PSol) always
holds. The benefit threshold thrye, determines how eagerly cases will be learned. If,
for example, thry., = 1, then anytime a decision is made to find Sol, the retrieval is
considered nonbeneficial. If the value of thry,, is set to 2, the retrieval is nonbeneficial
if the size of the search space explored to complete the case is at least as big as the
number of replayed decisions.

There are situations in which the retrieval fails but it is beneficial or the retrieval
s adequate but nonbeneficial. The first situation means that some replayed decisions
were revised to obtain a solution but the effort to complete the solution was in
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acceptable limits. The second one means that no replayed decisions were revised but
the effort to complete the solution was too large. These situations are considered in
CAPLAN/CBC’s policy to add new cases:

CAPLAN/CBC adds a solution as a new case if and only if the retrieval
of the case is nonbeneficial with respect to the problem and the solution.

If CAPLAN/CBC determines that the new solution is to be stored as a case, the
dependencies between the goals are computed. They constitute the main discrimi-
nation criteria of the new case (see Chapter 4).

The information about the adequateness or failure of the retrieval of a case C
is used in CAPLAN/CBC to update the feature weights. First, the set, NMatch,
of features of C' that do not match features of the new problem is computed. In
addition each case has two variables: k¢ and f¢ indicating the number of adequate
and failed retrievals respectively. These two variables are the most important factors
to determine the incremental factor, Ayc jc, that is used to update the feature
weights.?  The principle to compute Ao yo is based on the relation between k¢
and f¢: the larger the proportion of k¢ to f¢, the smaller Age jc. As a result,
in cases where k¢ is much larger than f¢, the changes in the feature weights are
smaller. The rationale behind this principle is to maintain the distribution between
feature weights for the cases in which statistically most of the times the retrieval
is successful and to change this distribution in a significant way for cases in which
not (see Chapter 6). Figure 3.3 shows the algorithm to update the feature weights.
The value w; ¢ denotes the weight of the feature ¢ in C' and the boolean function
failedRet(C, Prob,Sol) returns true if and only if the retrieval of C' fails with respect
to the problem Prob and the solution Sol.

updateFeatureWeights(C, Prob, Sol)
1. If failedRet(C,Sol,PSol)
For-each i € NMatch
wi.c = wi,c + Akc,fc
2. Else
For-each i € Expl
wi,c = wi,c — Do jo

Figure 3.3: Algorithm to update the feature weights.

If several cases are retrieved the evaluation of adequateness or failure is done
case by case (see chapter 6). The benefit of the retrieval is evaluated by taking into
account the contributions of all retrieved cases (see Chapter 8).

In summary, the input of the learning phase consists of the extended problem
description, the solution plan obtained from the adaptation phase, the retrieved

2Qther factor considered is the number of initial features in the case (see Chapter 6).
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cases and the current case base. The output is the updated case base. There are
two possible updates for the case base: the new solution is added (it occurs if the
retrieval is nonbeneficial) and the feature weights of the retrieved case are updated
(it occurs always).

3.3 A Case in CAPLAN/CBC

The information stored in a case is used by CAPLAN/CBC either during retrieval
or during the adaptation process. For this reason the information contained in the
cases can be classified as follows:

Adaptation Information. This information is contained in the subgoal graph,
which is the REDUX-based structure that represents a partially ordered plan
in the base-level planner CAPLAN. The subgoal graph describes all decisions
(i.e., valid and invalid) made as the problem was solved and their justifications.

Retrieval Information. The goals achieved in the case and their dependencies
<c, i.e. the order in which the goals were achieved in the plan, form part of
every case. The features, their weights and the number of adequate and failed
retrievals also form part of the case.

3.4 The Knowledge Sources of the Problem Solv-
ing Cycle

Two of the knowledge sources are necessary for CAPLAN/CBC: the domain theory
and the case base. The other two, the domain-specific reasoners and the user, are
motivated by the fact that in many real-world applications these information sources
are available and must be taken into account.

3.4.1 The Domain Theory

CAPLAN/CBC as well as other case-based and first-principles planners assume that
a symbolic specification modelling the world is available. The symbolic specification
models actions that transform the world. Actions are modelled with operators. Op-
erators have preconditions, indicating the conditions that must hold to apply them.
The effects of an operator indicate the changes to the world after the operator has
been applied. In addition, the only changes that occur to the world are the ones
stated in the effects of the operator (Fikes and Nilsson, 1971). Section 2.1 formally
defines these concepts.

The level of granularity of the symbolic specification depends on the particular
domain and the purpose of the system. In the domain of process planning, for
example, a specification has been developed that includes 27 operators (see Appendix
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A). The symbolic specifications of other domains consists of fewer operators (for
example the blocks world consists of 4).

As mentioned in section 3.2.1, a static analysis can be also performed to the
domain theory to predetermine ordering constraints to achieve the goals. In CA-
PLAN/CBC this is conceived to be performed in the analysis phase. Section 2.5
resumes this procedure.

3.4.2 The Case Base

Whereas the domain theory is a common knowledge source for both the first-principles
planner CAPLAN and the case-based planner CAPLAN/CBC, the case base is a
knowledge source exclusive of the second one. Typically, the case base not only con-
sists of a collection of cases but of an indexing structure that enables the case-based
planner to evaluate the similarity metric more rapidly. In CAPLAN/CBC the index-
ing structure consists of three levels: at the top level cases are discriminated by the
dependencies between the goals. At the second level cases are discriminated by their
weighted features. The third level is the collection of cases.

In domain-specific, case-based planners such as CHEF (Hammond, 1986) the
case base contains part of the domain theory. For domain-independent, case-based
planners such as CAPLAN/CBC the case base contains meta knowledge about how
the symbolic specification modelling the world has been used to solve problems.

3.4.3 Domain-Specific Reasoners

There are domains that due to their complexity, it is not feasible to assume that
any generic problem solver is capable of solving all problems in reasonable time. For
example, in the domain of process planning, the difficulty of solving problems solely
with a generic planner has been observed (Kambhampati et al., 1991; Nau et al.,
1995; Muifioz-Avila et al., 1995; Mufoz-Avila and Weberskirch, 1996¢). Instead,
for this domain pure domain-specific techniques (Hayes, 1987) or mixed strategies
involving the integration of domain-specific and domain-independent techniques have
been suggested (Kambhampati et al., 1991). The latter is the strategy followed in
CAPLAN/CBC (Munioz-Avila and Weberskirch, 1996b); a domain-specific reasoner
is used to compute ordering constraints between the goals. These ordering constraints
are computed based on geometrical interactions, which are known to be a major
difficulty in this domain (Hayes, 1987; Paulokat and Wess, 1994). CAPLAN/CBC
considers the integration of domain-specific reasoners as part of its analysis phase;
they precompute ordering constraints between the goals.

3.4.4 The User

The user is an important source of information, which is ignored frequently (par-
ticularly in CBP). Given his or her better understanding of the problem, the user
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may state ordering constraints between the goals. That is, the user may contribute
to the analysis phase. Another important aspect is the interactivity of the planning
process. One of the basic premises for the construction of the first-principles plan-
ner CAPLAN is to support user interactions (Weberskirch, 1995; Weberskirch and
Paulokat, 1995). With the complete decision replay method, CAPLAN/CBC recon-
structs the goal graph, which is the base for CAPLAN to support user interaction.
This means that CAPLAN/CBC supports an interactive adaptation of the case as
the user may prune out parts of the replayed case or re-state the validity of initial
conditions after replay has taken place.

3.5 Example of a Problem Solving Cycle

The example occurs in the domain of process planning to manufacture mechanical
workpieces. A five goal problem in this domain will be given and a case achieving
three of the goals and partially matching the features of the problem will be retrieved.
Complete decision replay will be used to adapt the case and finally, CAPLAN/CBC
will learn from this problem solving episode.

3.5.1 The Domain of Process Planning

Figure 3.4 shows an example of a workpiece (“a long shaft”). A planning problem in
this domain is given by a geometrical description of a workpiece and of the stock (raw
material). The description of a workpiece is built up from geometrical primitives like
cylinders, cones and toroids that describe monotone areas of the outline, possibly
augmented by features (threads, undercuts, surface conditions). For such a plan-
ning problem a sequence of processing operations is to be found that will machine
the workpiece considering available resources (i.e. tools, machines) and technological
constraints related to the use of these resources. The process begins with clamping a
piece of raw material on a lathe machine that rotates it at a very high speed. In most
situations, the outline of the workpiece cannot be machined in one step but repeated
cutting operations are necessary to cut the difference between the raw material and
the workpiece in thin horizontal or vertical layers.

The processing of each area conforming the workpiece is a goal. In Figure 3.4
seven of these processing areas are shown: the two ascending outlines A7 and A2, the
horizontal outline H, the two sides S1 and S2, and the two undercuts U; and U;. As
mentioned before, the ordering restrictions in this domain are stated by a geometrical
reasoner. In particular, the geometrical reasoner determines that the processing area
H must be manufactured before the processing areas U; and U;. These constraints
must be met by any partially ordered plan for manufacturing that workpiece.
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40 4
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Figure 3.4: Display of a rotational symmetrical workpiece.

3.5.2 The New Problem

Suppose that a new problem is given that consists of processing the areas H, U; and
U, of the workpiece shown in Figure 3.4. This problem is shown in Figure 3.5 (this
problem description was discussed in detail in Section 2.2).

Problem:
Prob3
Goals: Features:
1. processed(H) 1. isClampArea(Al)
2. processedHalf1(U1) 2. subarea(Uy,H)
3. processedHalf2(U;) 3. available(lrt)
4. processedHalf1(Us) 4. toolHolderFree()
5. processedHalf2(Us) 5. +unprocessed(H)
Ordering Constraints:
1<2 Objects:
1<3 LeftRTool(Irt)
1<4
1<5

Figure 3.5: Part of the symbolic specification of a problem.

3.5.3 The Case

Suppose that a case, C'5, is available in which the area H and the two half parts of
U; of the same workpiece as in the problem Prob3 are processed. The part of the
case which is taken into account during retrieval is shown in Figure 3.6. The goals
and their dependencies are shown (the solution plan will be shown later). In addition
the statistical information about the number of adequate and failed retrievals, kcs
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Case:

Features:

% 1. isClampArea(Al), w; =1
Goals: 2. subarea(U;,H), we =1

L. processed(H) 3. available(Irt), wg =1

2. processedHalf1(U;) 4. available(rrt), wy = 1

3. processe.dHalf‘Z(Ul) 5. toolHolderFree(), ws = 1
Dependencies: 6. +unprocessed(H), wg =1

1 <¢ 2

1 <c3 Objects:
St2at<i SCti?’c . LeftRTool(Irt)

’ RightRTool(rrt)
kc: O
for 0

Figure 3.6: Part of the case that is considered during retrieval.

and fcs respectively, is maintained. In this situation, we assume that the case has
not been retrieved before. Notice that all the feature weights are 1. In addition, we
assume that in contrast to problem Prob3, an additional cutting tool rrt is available
(feature 4).

As discussed in Section 3.3, subgoal graphs and not plans are stored in the cases.
However, in this example we will suppose that C5 stores the plan depicted in Figure
3.7 for the sake of simplicity (see Chapter 5 for a concrete example of a subgoal
graph). Steps 3, 4 and 8 process H and the two half parts of U; respectively. Thus
the goal 1 is achieved before the goals 2 and 3 as expressed by the dependencies
(Figure 3.6). The plan begins by clamping the workpiece from the area Al and
holding the cutting tool Irt (steps 1 and 2). After processing H (step 3), the first
half of U is processed (step 4). Finally, the cutting tool rrt is held (step 6) before
processing the second half of U; (step 8). The figure shows also the three alternatives
to process the second half of the area U,. The first alternative is to use a certain type
of tool (i.e., a “right cutting tool”). This alternative was selected in that plan (i.e.,
step-6). The second alternative is to mount the workpiece from the ascending area
A2 (i.e., step-6’). we assume that this alternative has not been pursued during the
planning process. The third alternative is to mount the workpiece from the side 52
(i.e., step-6”). This alternative requires that the corresponding side contains a hole
of certain dimensions. We also assume that this alternative has been pursued during
the planning process and that it has been rejected because the workpiece shown in
Figure 3.4 does not contain any hole in S52.

3.5.4 Retrieval

Given a new problem, CAPLAN/CBC retrieves a case if the order inclusion condition
and the weighted retrieval condition are met (see Definitions 3.3 and 3.5). Notice
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TUSTEP 6T
.clam A2 __ \
STEP- 3 STEP- 4 > STEP- 6 STEP- 8
roc. H) ( procHL Ul (hTooI rrt , procH2 Ul
USTERIETT TN
clanp S2 !
_ <refected>__ ./

Figure 3.7: Solution plan of the case.

that the goals of the case C'5 match a subset of goals of the problem prob3 with the
identity substitution {H — H,U; — U;}. As the ordering constraints are extended
by the dependencies of the case, the inclusion condition is met. Thus, the case meets
the static requirement. Finally the weighted retrieval condition is also met because
the only unmatched feature in the case is feature 4 (i.e., available(rrt)) and the
retrieval threshold for the domain of process planning is set to 75%. Thus, the case
meets also the dynamic requirement. As required, the two conditions are met with
the same substitution (i.e., the identity substitution). Thus, the case C5 is retrieved.

3.5.5 Adaptation

Complete decision replay reconstructs the subgoal graph as well as the justifications
for every decision. The resulting plan is depicted in Figure 3.8. Most of the decisions
were successfully replayed. Step 6 was replayed as well but the precondition regarding
the use of a tool of type “right cutting tool” is left to the first-principles planner (this
situation is depicted by a question mark, “?”  adjacent to step 6). In addition, the fact
that step-6” is invalid in the new situation has been also reconstructed. Intuitively,
given that the workpiece in the case and of the problem are the same, the justification
for rejecting that step, i.e. there is no hole on 52, can be reconstructed in the new
situation.

STEP- 4 ~ (_ STEP-6 N~ STEP-8
procHL Ul *\(hTool rrt A\ procH2 Ul

Figure 3.8: Partial solution obtained after complete replay.

The partial solution is then completed by the first-principles planner. The solution
plan of the new problem is depicted in Figure 3.9. The step 6 has been rejected
because there is no possibility of generating the cutting tool of the required type
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(this can only be stated as a feature in the initial condition). Given that step-
67 is also known to be invalid the only remaining alternative is to apply step 6.
The goals 4 and 5 are achieved by the steps 5 and 10. Because of the plan-space
planning paradigm implemented in the base-level planner CAPLAN, these steps can
be interleaved in the plan without having to revise any replayed step.

procHl Ul o JwebrocH UL
STEP- 3 JSTEP-6 Ty L/
roc. H \ /
STEP-5 _<rejected> - / STEP- 10
ot ) iR e

hTool RL r~

STEP- 6’
clanmp A2

Figure 3.9: Solution obtained after the adaptation process.

3.5.6 Learning

The last phase in the problem solving cycle of CAPLAN/CBC is the learning phase.
At this phase CAPLAN/CBC evaluates if the retrieval was successful and beneficial
(see Definitions 3.6 and 3.7).

The retrieval failed because at least one decision replayed from the case was
revised during the completion process (i.e., step 6). Following the algorithm update-
FeatureWeights shown in Figure 3.3, the weight of the feature 4, available(rrt), is
incremented by the factor A\ .

Finally, the benefits of the retrieval are evaluated. The benefit threshold thry,, is
set to 2. That is, the retrieval is nonbeneficial if the size of the search space explored
during the completion process is at least as large as the size of the partial solution
obtained after replay. In this particular situation the retrieval is beneficial as the
completion effort is small. Thus, the solution of the new problem is not added as a
new case in the case base. Notice that this is an example of a failed and beneficial
retrieval. This situation is not unusual as we will see in the experiments situation
(see Chapter 9).
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Chapter 4

Dependency-Driven Retrieval

In many domains, more information about a problem is known than just the initial
state and the goals to be achieved. More concrete, in these domains ordering restric-
tions to achieve the goals are also known. Ordering restrictions can be obtained from
different sources such as domain-specific reasoners, domain-independent analyst, or
the user (see Section 3.2.1 for a general discussion about these sources and Section
2.5 to see how a domain-independent analysts can be used to generate the ordering
restrictions).

When these ordering restrictions are available, a natural question to ask is how
can they be used to improve the performance of the generic planner. In the context of
CBP, CAPLAN/CBC answers this question by taking them into account during the
retrieval phase with a technique called dependency-driven retrieval. This technique
is developed in CAPLAN/CBC to improve the accuracy and the performance of
the retrieval phase (Munioz-Avila and Hiillen, 1995; Mufioz-Avila and Weberskirch,
1996b). Three issues are studied in this chapter:

e Definition of a retrieval assessment that takes into account the ordering restric-
tions.

e Design of an indexing structure for the case base based on the retrieval assess-
ment.

e Implementation of a retrieval procedure based on the indexing structure to
evaluate the retrieval assessment efficiently.

In addition, this chapter discusses the characteristics that the domain should have
for dependency-driven retrieval to be useful. Dependency-driven retrieval constitutes
the static retrieval technique supported in CAPLAN/CBC. In further chapters, a
dynamic retrieval technique is studied and the integration of these two techniques is
explained.

o7
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4.1 Extended Problem Descriptions

In CAPLAN/CBC the ordering restrictions are considered part of the so-called ex-
tended problem descriptions. Before formally defining them some notation must be
introduced:

Definition 4.1 (establisher(g,P)) Given a complete plan P = (S,—,—c¢w, B)
and a goal g achieved in P, establisher(g, P) denotes the step s, € S such that:

1. s4 achieves g, and

2. There is no plan step s € S such that s, <_, s and s clobbers g.

In other words, establisher(g,P) is the maximal, nonclobbered step in P achieving
g.

Proposition 4.1 establisher(g,P) is unique.

Proof. The good definition of establisher(g,P) follows from the completeness of P
(i.e., P contains no open preconditions and no unsolved threats); there is at least one
plan step meeting conditions 1 and 2. Otherwise, either the precondition of finish
representing g remains open if condition 1 does not hold, or, a negative threat remains
unsolved if condition 2 does not hold: if there is a step s € S with s, <., s and s

clobbers g, then the threat s «— (s, — g@finish) occurs. Further, there cannot
be two maximal steps achieving g meeting conditions 1 and 2 because otherwise two
positive threats occur: if s, and s; are two steps meeting conditions 1 and 2, then the
jchl'reats Sg <i> (Slq — gQfinish) and s, s (sg = gQfinish) occur. This situation
is illustrated in Figure 4.1.1

— g

__ A
oo T+ finish

SN

—— SY

g

Figure 4.1: Graphical representation of two maximal steps achieving g.

Definition 4.2 (PLAN(I,G),PLAN.(I,G)) Given a problem description, the set
of all partial-order plans solving (I,G) is denoted by PLAN (I, Q).

If < is a partial order on G, then PLAN_(I,G) denotes all plans (S,—, —cr, B)
in PLAN(I,G) such that for all g1 and go with g1 < g2, establisher(g:, Pl) <_,
establisher(gs, Pl) holds.
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Figure 4.2: A situation in the logistics transportation domain.

Informally, PLAN_(I,G) denotes all plans (S, —, B) solving (I, G) such that <
C < holds. That is, for which <_, extends <.

Proposition 4.2 PLAN_(I,G) C PLAN(I,G) holds.

This proposition follows from the fact that any plan in PLAN_(I, G) is a solution
for (I,G). The opposite, however, does not hold. Consider, for example, the initial
situation illustrated in Figure 4.2 in the logistics transportation domain (Veloso,
1994).! In this situation there are three post offices A, B and C. In A there is a
package p; and a truck. In B there is a package p;. Suppose that two goals ¢g; and ¢
are stated consisting in relocating p; and p, in C respectively. Any of the goals can
be achieved first and then the other one. The arrows in Figure 4.2 depicts a path
followed by the truck. In the corresponding plan, p; is loaded in the truck, the truck
is moved from A to C (arc 1), where p; is dropped. Then, the truck is moved from
C to B (arc 2), where py is loaded. Finally, the truck is moved from B to C (arc
3), where po is dropped. That is, g; is achieved before g, in this plan. The point
is that any ordering restriction between the goals will eliminate some solutions. For
example, if the ordering restriction go < g¢; is given, the solution plan mentioned
before does not belong to PLAN.(I,G).

Definition 4.3 (Valid Ordering Restriction,Extended Problem Description)
Given a problem description (I,G), an ordering restriction, <, on G is valid if
PLAN(1,G) = PLANL(I,G).

An extended problem description is a triple (I,G,<) where (I,G) is a problem
description and < s a valid ordering restriction.

Definition 4.3 says that the possible solutions are the same with or without con-
sidering <. Thus, no valid solution is lost if < is considered. In the example presented
before in the logistics transportation domain, no extended problem description can
be stated because, otherwise, solutions will be lost. This means that in the extended
problem descriptions, < has no semantical relevance relative to the problem. How-
ever, < has a significant operational relevance if used in an adequate way.

'Tn the logisticts transportration domain, a typical problem is, starting from a configuration from
objects, locations and transportation means, to place the objects at different locations. There are
differents sorts of locations and means of transportation. In addition, the means of transportation
have certain operational restrictions. For example, a truck can only be moved between two places
located within the same city (see Appendix B).
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Example. The meaning of the ordering restrictions can be illustrated by retaking
the example presented in Section 3.5. In this example some areas of the workpiece
shown in Figure 4.3 are processed. The geometrical reasoner states several ordering
restrictions including: processed(H) < processedH1(U1). This ordering restriction
states that the processing area H must be processed before the area U;. This restric-
tion is stated as a result of the following geometrical consideration: the area U; cannot
be processed until the area H has been removed because the second one covers the
first one. The condition stated in Definition 4.3 is illustrated in this example: even
if the ordering restriction is not stated explicitly, any correct plan to manufacture
the workpiece will process H before U;. Thus, processed(H) < processedH1(U) is
a valid ordering restriction.

40 4

o Ul u2

T T T T T
1} 20 40 &0 g 100 120 140 160 180

Figure 4.3: Display of a rotational symmetrical workpiece.

4.2 Dependencies between Goals

Before storing a solution plan as a new case, CAPLAN/CBC computes the order
in which the goals were achieved in the plan. These ordering restrictions, called
dependencies, are taken into account during retrieval. The name dependency is
motivated by circumstances occuring in the domain of process planning.?

Definition 4.4 (Goal Dependencies) Let g, h be two goals achieved by a complete
partial-order plan Pl = (S,—, B). The goal g depends on the goal h, written h <p g,
if establisher(h, P) <_, establisher(g, P).

In other words the goal dependencies reflect the order in which the goals are
achieved in the plan. Figure 4.4 illustrates this definition. step-¢ and step-j corre-
spond to establisher(h,P) and establisher(g,P) respectively. As establisher(h,P) <_,
establisher(g,P) holds, we have that h <p g holds. That is, g depends on h.

2In the domain of process planning, processing the areas conforming a workpiece are the goals.
Based on geometrical principles, some areas must always be processed after other areas and the
number of alternatives to process an area decreases depending on the areas already processed.
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STEPT ) . .. STEPT ) ...
—

Figure 4.4: Dependencies between two goals.

Examples. Consider the examples in the domain of process planning and in the
logistics transportation domain presented in the last section. In the first one, for any
valid plan P manufacturing the workpiece depicted in Figure 4.3, the following depen-
dency orders will hold: processed(H) <p processedH1(U;) and processed(H) <p
processedH2(Uy). In the second one, in the plan P depicted by the arrows in Figure
4.2, the dependency order g; <p g2 holds (g; corresponds to relocate p; in C' and g,
to relocate py in C).

Computing the dependency order. Figure 4.5 shows the algorithm to compute
the dependency order <p between the goals in GG relative to the partial-order plan
P = (S, —, —cr, B). The partial result is stored in <p, which initially is assigned the
empty set (line 1). The function findPrecGoals(s,g) finds all pairs of goals (¢', g) such
that ¢’ is achieved by an step ordered preceding s (relative to <_,). This function is
called for each goal g in G and each step preceeding the establisher of g (step 2.2.1).
Finally the transitive clousure of <p is returned (step 3). The partial result of the
function findPrecGoals(s’,g) is computed in <p, which is initially assigned the empty
set (step 17). Then all the causal links producing ¢’ and whose consumer is finish are
checked to find if they are establisher of ¢’ (steps 2’, 2.17). If this is this situation,
g’ <p g holds and correspondingly, the pair (¢’, g) is added in <p (step 2.1.1’). The
recursive call is made with each step s” immediately preceding s’ (step 3’). Finally,
the result is returned (step 4').

Algorithm 4.5 is illustrated with the plan depicted in Figure 4.6. In this plan
four goals are achieved: gi, go, g3 and g4. Their establishers are s, sy, s3 and start
respectively. The last means that g, is established directly from the initial situation.
In addition, s; — sy and s; — s3 hold. As usual, all steps are ordered after start and
before finish. Suppose that the first goal selected is g = g, thus s = s5 and s’ = s1.
The function findPrecGoals(s1,g) returns {(g1, g2), (94, 92)}. The last one is obtained
with the recursive call findPrecGoals(start,g). The process with ¢ = g; returns

{(94,91)}, with g = g4 returns {} and with g = g3 returns {(g2, g3), (91, 93), (91, 94) }-
Finally, the result is the union of the four sets.
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computeDependencyOrder(P,G)
1<p:= 0
2 for-each g € G
2.1 s := establisher(g,P1)
2.2 for-each s’ with s’ — s
2.2.1 <p:=<p | findPrecGoals(s', g)
3 return transitiveClousure(< p;).

findPrecGoals(s', g)
1 <p =0
2’ for-each s” with (s’ — ¢'@s")
2.1’ if (s” = finish and s’ = establisher(g’,P))
2.1.7 <p:=<p (4", 9)
3’ for-each s” with (s" — §')
3.1 <p;:=<p; | findPrecGoals(s", g)
4’ return <p;.

Figure 4.5: Algorithm to compute the dependency order <p; between the goals in G
relative to the partial-order plan Pl = (S, —, B).

gl

E/finish
(2]

o4

Figure 4.6: An abstract partial-order plan.

4.3 Retrieval Conditions

Given a case C, the dependency order among the goals G¢ achieved in the plan
contained in C is denoted by <. During retrieval the dependency order < is
compared with the ordering constraints of the problem. Two retrieval conditions
have been studied in CAPLAN/CBC: the order inclusion condition and the order
consistency condition. They differ on the degree of commitment that <o should
have relative to <.

The order inclusion condition has a stronger commitment:

Definition 4.5 (Order Inclusion Condition) A case C meets the ordering in-
clusion condition with respect to a problem (I,G, <) if there is a substitution 6 such
that

1. G c G
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2. For every pair of goals g,h € G, if g0 < h@ holds, g <c h must also hold.

Condition 1 is stated for two purposes: first, to avoid the possibility that a goal
g in G0 — G interacts negatively with the goals in G or that the subplan achieving
g interacts negatively with the subplan achieving GG. Expressed in another way, ¢
may add "noise” to the planning process because the planning effort to achieve the
goals in G¢ may increase as a result of achieving ¢g. Second, it provides a simple
criterium to discard candidate cases from the case base: cases achieving a number of
goals greater than the number of goals of the problem are not considered. Further,
these two purposes are directly related: the more additional goals (i.e., in G°0—G) a
case achieves, the more likely is it that negative interactions takes place. By forcing
G®H C G to hold, no noise to the adaptation process can be caused by goals in
G°0 — G or by subplans achieving goals in G¢0 — G.

Condition 1 is the typical requirement for case-based planners performing what
we call goal-driven retrieval as it is solely based on the goals. Condition 2 expresses
the dependency-directed retrieval technique by comparing < against <. It states
that <¢ must extend < relative to the goals in GY0. This condition ensures that
for any two goals g, h, with gf < hf, establisher(g, PI®) <_, establisher(h, PI®)
holds. Cases that meet this condition are more likely to be succesfully adapted to
the new problem than cases that just match the goals of the problem. In a sense,
the derivational path of cases meeting condition 2 is known to be compatible with
the ordering restrictions of the goals.

Usually no case in the case base corresponds exactly to the solution of the problem.
Instead, cases will partially match the new problem. This consideration is taken into
account in Condition 1, where the goals of the case are required to match a subset
of the goals of the problem (instead of all the goals). As it will be shown in Chapter
6, the same consideration is taken into account when comparing the initial states.
Following this consideration, Condition 2 can be weakened to allow more cases to be
considered. The idea is to discard from consideration cases that achieve their goals
in an order that is not compatible with the orderings of the problem. That is, if the
problem requires the condition gf < hf to hold and in the case C, h <¢ ¢ holds,
then the incompatibility of the orders is an indication that there are parts of the
case (' that cannot be reused to solve the problem; namely, the parts establishing
the ordering establisher(h, PI°) <_, establisher(g, PI°), where PI® is the solution
plan in C. Formally the weakened condition can be formulated as follows:

Definition 4.6 (Order Consistency Condition) A case C' meets the ordering
consistency condition with respect to a problem (I,G, <) if there is a substitution
0 such that

1. Gef C G

2. For every pair of goals g, h € G¢, if g0 < h@ holds, h <¢ g must not hold.
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This means that the order consistency condition eliminates from consideration
cases for which establisher(h, PI°) <_, establisher(g, PI°) holds. That is, cases for
which the dependencies are incompatible with the ordering restrictions of the prob-
lem are eliminated from consideration. However, in contrast to the order inclusion
condition, cases for which g and A are unordered relative to < are still considered
candidate cases. In this situation, it is possible that the case can be refined so that
g is achieved before h as required.® In contrast, such a refinement is not possible for
cases in which h < g holds.

In Chapter 9, it will be shown that the order consistency condition effectively
improves the accuracy of the retrieval phase and thus the performance of the overall
case-based problem solving process.

4.4 Sequences of Dependency Classes

The order consistency condition eliminates from consideration cases having a de-
pendency order incompatible with a given problem. As a result, cases meeting this
condition are more likely to be adapted to the new problem with less difficulty than
cases that just match some goals of the problem. In general, however, stating an
effective retrieval condition is not useful unless an indexing structure that allows to
test the condition efficiently is provided. In CAPLAN/CBC an indexing structure
has been conceived and developed that allows to test the order consistency condition
efficiently.

Once CAPLAN/CBC decides to store a solution plan Pl of the problem (I,G)
as a new case C, several steps are performed: * first, the dependency order between
the goals in G, <¢ is computed (see Figure 4.5). Then, the sequence of dependency
classes is computed based on <p;. Finally, the case is indexed according to its
sequence of dependency classes.

Definition 4.7 (Sequence of Dependency Classes) Given the dependency or-
der <c between goals in G, a sequence of dependency classes relative to (G, <c)
is a sequence of sets |Gy, ..., Gy] such that:

1. Vi (0 # G; C G) holds.

2. GiNG; =0 ifi+# j holds.

3. U, Gi = G holds.

4. Vg€ Gi,h € Gj (h<c g) does not hold if i < j.

3Whether this refinement is possible or not depends on the contezt and particularly on the initial
features of the problem. As will be shown in Chapter 6, CAPLAN/CBC learns so that in succesive
retrieval episodes the refinement of the retrieved cases to solve new problems is more likely to occur.

4The decision of whether to store an obtained solution, depends on the contribution of the
retrieved cases to the problem solving effort (see Chapter 7).
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5. Yi¥g,h € G; (9 <c h) does not hold.

In other words, a sequence of dependency classes relative to (G, <¢) is a partition
of G that is made based on <. The first three conditions ensure that [G1, ..., Gj] is a
partition of G. Condition 4 states the connection between the sets in the partition and
<¢. Notice that Condition 4 reflects Condition 2 of the order consistency condition
(see Definition 4.6). This plays a key role in the retrieval phase as will be shown in
the next section. Condition 5 ensures that the trivial partition (i.e., [G]) is not valid.

Example of dependency classes. Let G = {g1,...,96} and suppose that ¢g; <¢
9o <c g3 and g4 <¢ g2 <¢ g5 holds. In this example three sequences of dependency
classes can be identified: [{g1, 94,86},{92},{93, 95}, [{91,94}, {92, 86}, {93, 95}] and
{91, 94}, {92}, {93, 95, 86 }]. That is, g¢ can be belong to any of the three dependency
classes.

Algorithm for computing a canonical sequence of dependency classes. The
previous example shows that there might be several partitions that meet the five
conditions of Definition 4.7. However, the algorithm depicted in Figure 4.7 always
finds the same partition for a given (G, <¢), denoted as the canonical sequence of
dependency classes relative to (G, <¢). The idea is to take the set of minimal goals
relative to <o (step 1). In the example, the minimal set is {g1, g4, g6}. The function
is called recursively with the remaining goals (step 3.1). The operator e performs a
concatenation (i.e., [G] e [G'] = [G, G']). No recursive call is made when the goals are
exhausted (step 2). The result is returned in Seq (step 4). In the previous example

the canonical sequence is [{g1, g4, g6}, {92}, {93, g5 }]-

computeDependencyClasses(G, <)
1 G' := minimal(G,<¢)

2ifG-G' =10
2.1 Seq := [G']
3 else

3.1 Seq := [G’]e computeDependencyClasses(G — G',<(¢)
4 return Seq

Figure 4.7: Algorithm to compute a sequence of dependency classes relative to the
pair of goal and dependencies (G, <¢).

4.5 Indexing Structure of the Case Base

The sequence of dependency classes as obtained by the function computeDependen-
cyClasses(G, <) are used to construct the index structure in CAPLAN/CBC. The
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index structure consists of three levels: at the top level cases are discriminated by
their sequences of dependency classes. At the intermediate level cases are discrimi-
nated by their initial features. Finally, all cases are listed at the bottom level.

In this section the construction of the top level is explained in detail.® Chap-
ter 7 explains how the intermediate level is constructed. The top level contains
two structures: the type-representation table and the goal discrimination network
(GDN). The type-representation table is based on a similar table introduced in
PRODIGY/ANALOGY. Each entry in this table has the form (n,typ-rep,ptr). n indi-
cates the number of goals in the type-representation typ-rep. The type-representation
of a set of goals is obtained by replacing the arguments of the goals with their types.
For example, continuing with the example of Section 3.5, the type-representation of
{processed(H), processedH1(U1), processedH2(U1)} is {processed(HORIZONTAL),
processedH1(UNDERCUT), processedH2(UNDERCUT)}. ptr is a pointer to a tree
in the GDN. The principle for constructing this table is that all cases achieving
goals that have the same type-representation can be accessed below the pointer of the
corresponding entry in the type-representation table. The entry depicted in the type-
representation table in Figure 4.8 corresponds to the case described in section 3.5.3.
Thus, the case C5 can be accessed below the pointer p.

Type-representation 3 |{processed(HORIZONTAL),processedH1(UNDERCUT), processedH2(UNDERCUT)} | _
Table *"

2 |{processed(HORIZONTAL),processed(A SCENDING)} T -

_/b/

Goal processed(H) processed(H)

Discrimination
Network

processedH 1(U1) processedH2(U1)

processedH2(U1) processedH 1(U1)

cs c113

Figure 4.8: Fragment of the first level of the indexing structure in CAPLAN/CBC.

The Goal Discrimination Network (GDN). The goal discrimination network
(GDN) is a collection of trees, each of which is pointed to by a unique entry in
the type-representation table. The trees are constructed based on the sequences of

SWe are assuming that all goals in the solution interact (see Section 2.6).
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dependency classes of the cases. The root of each three is a dummy node. Nodes
different from the root contains goals so that any path from any son of the root
to any of its descendent leafs is a canonical sequence of dependency classes. More
concrete, if (G; denotes the goals contained in a node, node;, son of the root. Gs
denotes the goals contained in a node, nodes, son of node;. By continuing in this
way G, denotes the leaf node, node,,, son of node,_1. Then [Gi,Gs,...,Gy] is
a canonical sequence of dependency classes. Further, all canonical sequences of
dependency classes relative to goals having the same type-representation are rep-
resented in the same tree of the GDN (the one pointed by the corresponding en-
try in the type-representation table). Cases are pointed below the leaf node of the
tree in the GDN such that the path from the root to this leaf node represents the
canonical sequence of dependency classes relative to the goals achieved in the case
and their dependency order. For example, the case C'5 is pointed below the leaf
node n because the canonical sequence of dependency classes of the goals achieved
in C5, [{processed(H)}, {processedH1(U1)}, {processedH2(U1)}], is represented in
the path from the root r to n (excluding the root).

Algorithm for indexing in the GDN. Algorithm 4.9 indexes a new case C in
the architecture of the case base. Its input are the case C', the goals G achieved by
C, the canonical sequence of dependency classes Seq and the current index structure
Idz. The algorithm begins by computing the type-representation of G (step 1). The
function findEntry(t-repG,Idz) finds the entry of ¢-repG in the type-representation
table if there is one. In this situation, the entry together with Idx are returned. If
no such an entry exists, a new entry with ¢-rep is added. In this situation the new
entry together with the modified index are returned (step 2). The case is indexed in
the tree indicated in entry according to Seq (step 3). Finally, the modified index
structure Idz” is returned (step 4).

indexCaseGDN(C, G, Seq, Idz)

1 t-repG := type-representation(G)

2 (entry,Idx’) := findEntry(t-repG,Idx)

3 Idx” := indexGDN(C,root(tree(entry)),Seq,Idx’,1)

4 return Idx”

Figure 4.9: Algorithm to index a new case C' according to its canonical sequence of
dependency classes Seq. C' achieves a set of goals G' and Idx is the current indexing
structure.

The function findEntry(t-repG,Idz). This auxiliary function is shown in Fig-
ure 4.10. The variable table is assigned the type-representation table of Idz (step 1).
If there is an entry in table containing the same type representation as t-repG, this
entry is returned together with the unmodified index, Idz (step 2). Otherwise a new
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entry for t-repG is added to the type representation table of Idz (steps 3-6). The
new entry and the modified Index, Idz’ are returned. The function number(entry)
returns the field n of entry and typeRep(entry) returns the field typ-rep of entry.
In addition, newEntry(t-repG) creates a new entry such that typeRep(entry) = t-
repG. The function newTreeGDN() creates a new tree consisting of a single node,
the dummy node, and addEntryTypeRep Table(entry,Idz) adds entry as a new entry
to the type-representation table of Idz, and returns the modified Idz.

findEntry (t-repG,Idz)
1 table := typeRepTable(Idx)
2 for-each entry € table with number(entry) = size(t-repG)
2.1 if typeRep(entry) = t-repG
2.1.1 return (entry,Idx)
3 entry := newEntry(t-repQG)
4 tree := newTreeGDN()
5 assignPtr(entry,tree)
6 Idx’ := addEntryTypeRepTable(entry,Idx)
7 return (entry,Idx’)

Figure 4.10: Auxiliary function used in the algorithm to index a new case in the
GDN, indexCaseGDN(C,G,Seq,Idx).

The function indexGDN(C,node,Seq,Idx’,i). This auxiliary function is shown
in Figure 4.11 and is initially called with the parameter node instantiated with the
root of the tree in which the case must be indexed and the value of the parameter
i set to 1 (see step 3 of the algorithm indezCaseGDN(C,G,Seq,Idz)). i is a counter
of Seq, which has the form [G1, ..., G;,,] and node is a descendent of the root. 7 also
indicates how many nodes are contained in the path from the root to node. Thus,
if 2 = 1 holds, node is the root. The idea is to find if there is a child n; of the root
containing goals matching G;. If this is the situation, if there is a child of n; con-
taining goals matching G5 and so on. The process continues in this way until a node
ny is reached for which none of its children match G, ;. In this situation the case is
indexed below ny. To do this, setChildren is assigned the set of children of node (step
1) and G’ is assigned G; (i.e., the i-th partition of Seq, step 2). Step 3 checks that
SetChildren is nonempty and that there is a child of node, node’, containing goals
that match G;. If this is the situation, the process is repeated recursively on node’
and i + 1 (step 3.3). If this is not the situation, either node is a leaf or no child of
node contains goals matching G;. In the second case, G, ..., G, are each stored in a
different node (step 4.3.1). The case is indexed below the node containing G, (step
4.4).% A special situation occurs if node is a leaf. This means that ¢ = m+1 holds. In

6The case must still be indexed acording to its initial state at the intermediate level of the
architecture (see Chapter 7).
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this situation step 4.3.1 is skipped and the case is indexed below node. The function
match(G', G",0) returns true if G’ matches G”. In this situation @ is instantiated
with the corresponding substitution. The calls apply(@,G) and apply(,C) return the
result of applying the substitution € to the set of goals G' and the case C' respectively.

indexGDN (C,node,Seq,Idz’,i)
1 setChildren := children(node)
2 G’ := Seq(i)
3 if (setChildren # {}) and (3 node’ € setChildren with match(G’,goals(node’),6))
3.1 Seq’ := apply(6,Seq)
3.2 ¢’ := apply(0,C)
3.3 Idx” := indexGDN(C’,node’,Seq’,Idx’,i+1)
4’ else
4.1 n := size(Seq)
4.2 currentNode := node
4.3 ifi<n
4.3.1 for-each j € {i,..n}
4.3.1.1 node’ := newNode(G’)
4.3.1.2 assignChild(currentNode,node’)
4.3.1.3 currentNode := node’
4.3.1.4 G’ := Seq(j)
4.4 1dx” := indexCaseBelow(C,currentNode,Idx’)
5 return Idx”

Figure 4.11: Auxiliary function used in the algorithm to index a new case in the
GDN, indexCaseGDN(C,G,Seq,Idx).

4.6 Efficient and Accurate Retrieval

As discussed in Section 4.3, given a new problem, retrieved cases that meet the order
consistency condition are more likely to be effectively reused than retrieved cases
that just match some goals of the problem. In this section will be shown how the
order consistency condition can be tested by using the GDN instead of testing it on
each case in the case base.

Consider two nodes n; and n, in a tree in the GDN, such that n; precedes ngy
and neither of them is the root of the tree. If goals(n) denote the goals stored in
a node n in the GDN, then goals(n;) and goals(ny) are in canonical sequences of
dependency classes relative to a dependency order < for any case C indexed below
ny. Further, the class of goals goals(n;) occurs before the class of goals goals(ns)
in these sequences. Thus, if ¢ € goals(n,) and h € goals(ny) hold, h <¢c g does
not hold in any case C below n,. For example, in the situation depicted in Figure
4.8, processedH1(U1) <5 processed(H) does not hold. This illustrates the following
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property, called the GDN-property:

Given an order restriction g < h in a new problem, a substitution 6
and two nodes n; and n in a tree in the GDN, if g = ¢'0 € goals(n,)
and h = h'0 € goals(ny) hold and n; is an ancestor of ng, then
h'0 <o ¢'0 does not hold for any case indexed below ns.

Figure 4.12 illustrates this property. g and A match ¢’ and A’ respectively. Since
ny is a predecessor of n, in a tree in the GDN, either ¢’ < A’ holds or ¢’ and A’
are unordered modulo < (Figure 4.12 (b)). This property is crucial to evaluate
the order consistency condition efficiently; instead of testing this condition case by
case, it can be tested by matching goals contained in nodes in the GDN; as the
paths in the trees in the GDN represent sequences of dependency classes for all cases
indexed below them, traversing these trees is equivalent to test the order consistency
condition on several cases simultaneously.

GDN

l nl C:

Figure 4.12: Tllustration of a property of the GDN. (a) Part of a tree in the GDN.
(b) Two possible plan fragments in C.

The GDN-property can be used to test if a case C' meets the order consistency
condition relative to the ordering restriction g < h: let C be indexed below the path
rt, N1, ..., Ny, Where rt is the root of a tree in the GDN and n,, is a leaf. Thus,
[goals(ny), ..., goals(n,,)] is the canonical sequence of dependency classes relative to
the goals achieved in ' and to <. In this context, the following possibilities can be
identified:

o If there is a substitution 6 such that g € goals(n;)0, h € goals(n;)f and i < j
hold, the order consistency condition is met. If ¢ > j hold, the order consistency
condition is not met.



4.6. EFFICIENT AND ACCURATE RETRIEVAL 71

e if no substitution @ exists such that g € goals(n;)f and h € goals(n;)0 hold,
the ordering consistency condition is trivially met.

In resume, if there is a substitution é such that g € goals(n;)8, h € goals(n;)0 and
1 > j hold, the order consistency condition relative to g < h is not met. Otherwise,
it is met. In other words, the only way that the order consistency condition is not
met relative to an ordering g < h in the current problem 1is if g is matched by a goal
in a node ng, h is matched by a goal in a node ny, and ny, is a predecessor of ng. The
algorithm that follows examines this condition when traversing the GDN.

retrieveCandidateCasesGDN (G, <, Idz)
11 := size(QG)
2 t-repG := typeRep(G)
3 table := typeRepTable(Idx)
while 4. 1 > 0
4.1 setEntries := allEntriesWithNumber(Table,i)
4.2 for-each entry € setEntries
4.2.1 if typeRep(entry) C t-repG
4.2.1.1 (cand,G’) := matchingCases(G,<,root(ptr(entry)),0,G)
4.2.1.2 if cand # ()
4.2.1.2.1 return (cand,G’)
43i:=1i-1
5 return (0, 0)

Figure 4.13: Algorithm to retrieve a set of candidate cases from the indexing structure
Idz and for a given Problem (I, G, <).

Algorithm for retrieving candidate cases. The algorithm to retrieve a set of
candidate cases is shown in Figure 4.13. The input are the set of goals GG, the ordering
restrictions between the goals < and the indexing structure Idz. The output is a
set of cases meeting the order consistency condition, with each case matching the
same subset, G', of G.7 G' is also returned. The algorithm will try to find cases
covering all goals in G. If this fails, it will try to find cases covering all goals but
one. It continues in this way, finally trying to find cases covering a single goal. If
none is found, the empty set is returned. The counter ¢ indicates how many goals the
algorithm tries to cover. Thus, initially i is the number of goals in G (step 1). t-repG
and table are assigned the type-representation of G and the type-representation table
in Idz respectively (steps 2 and 3). For each value of 7, the following steps are made:
first, all entries in table having ¢ goals in their type-representation item are collected
in setEntries (step 4.1). Then, each entry in setEntries is tested to check if the

TA further selection takes place by comparing the initial states of the selected cases and the
problem as will be described in chapter 6.
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type representation of the entry is equal to a subset of the type representation of G
(step 4.2.1) and if there is a collection, cand, of cases such that their dependencies
meet the ordering consistency condition relative to a subset of G, G’ (step 4.2.2).
If this is the situation, cand and G’ are returned. If all possible values of i (i.e.,
{size(@), size(G) — 1, ...,1} are exhausted and no such a collection has been found,
the empty set is returned (i.e., no cases are retrieved, step 5).

matchingCases (G, <,node,GMach GNotMatch )
1 setChildren := children(node)
2 for-each node’ € setChildren
2.1 GNewMatch ._ goals(node’) na G NotMatch
2.2 if size(goals(node’)) = size(GNewMatch
2.2.1 if testOrderings(G,<,GMatch GNewMatch)
2.2.1.1 (cand,GNewtMatchy . —
matchingCases(G,-<,node’,GM“tCh U GNewMatch, GNotMatch _ GNewMatch)
2.2.1.2 if cand # 0
2.2.1.2.1 return (cand GMatch U GNewMatch U GNethatch)
3 return (0,0)

testOrderings (G,<,GMatch NewMaich)
1’ for-each g, h € G with g < h
1.1 if (h c GMatch and g€ GNewMatch)
1.1.1° return FALSE
2’ return TRUE

Figure 4.14:  Auxiliary function matchingCases(G,<,node,GNotMatch GGMaich )

called in the algorithm to retrieve a set of candidate cases,
retrieveCandidateCasesGDN(G,<,Idx).

The auxiliary function matchingCases(G,<,node,GMaich GNotMatch) = Thjg
function, which is shown in Figure 4.14, is based on the GDN-Property; if there
is a substitution @ such that gf € goals(n;),h € goals(n;) and ¢ > j hold, the
order consistency condition relative to g < h is not met. In any other situation,
the condition is met. node indicates the last node that has been examined. GMaich
indicates the goals in G that have been matched by a goal in the path from the root
of the tree pointed by entry to node, and GN°tMatch contains the nonmatched goals
in G. As a result, initially node is the root of the tree, G is the empty set
and GNotMaich ig (7 (see step 4.2.1.1 of Figure 4.13). node’ is the child of node that
is been currently examined (step 2). If there is a subset, GNewMaich = of GNotMaich
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matching goals(node’), the order consistency condition is tested relative to all or-
dering restrictions < and to GMah and GNewMaich  This is done by the function
testOrderings(G,<,GMatch GNewMatch) called in step 2.2.1 and shown also in Figure
4.14. If the test is positive the function matchingCases is recursively called (step
2.2.1.1). If the recursive call returns a nonempty set of candidate cases cand, cand
is returned (step 2.2.1.2.1). In addition, the subset of G achieved by the cases in
cand is computed by joining G’, the subset of G returned by the recursive call, and
GNewMaich - the subset of G matching goals(node’). If all children of node has been
tested without success, a pair of empty sets is returned (i.e., no candidate cases are
retrieved, step 5).

4.7 Multi-Case Retrieval

To retrieve multiple cases a top-down strategy is followed: first, a call to the function
retrieve CandidateCasesGDN(G,<,Idz) is made with the parameter G instantiated
with all the goals of the new problem (see Figure 4.13). This function returns a set of
candidate cases cand, each covering the same subset of G, G', which is also returned.
If cand is empty, there are no cases achieving any subset of G and meeting the order
consistency condition. Otherwise, the function is called again with the remaining
goals G — G'. The process continues until all goals in G have been exhausted. At
the end a sequence of the form [(CC,Gy), ..., (CCp,, Gp,)] is obtained such that

1. C'C; is a set of cases achieving G, a subset of G.
2. G;(\G, = 0 holds if i # j holds and |J, G; = G holds.
3. CC,, may be empty.

A final selection on which case in C'C; to retrieve is made by comparing the initial
states as will be shown in Chapter 6. Statement 2 says that [G1, ..., Gp,] is a partition
of G. Statement 3 says that the last set of goals may not be covered by any case.
This is a typical situation as it cannot be expected that all goals can be covered. In
chapter 8 a method for merging cases is presented and its effectiveness is evaluated.

4.8 Discussion

The core of the dependency-driven retrieval technique is that problems are given
in the form of extended problem descriptions (I,G,<). An extended problem de-
scription together with the order comsistency retrieval condition defines an inten-
tional description of a collection of plan fragments Coll; namely, a plan fragment
P = (S, —, rightarrowcr, B) is in Coll if for every ordering restriction g < h, h <p g
does not hold. That is, establisher(h, P) <_, establisher(g, P) does not hold. Under
this perspective, the retrieval problem can be re-stated as to find a case C in the
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case base such that the solution of C' contains a plan fragment P’ in Coll which can
be extended to a complete solution by reusing C'.

Clearly, dependency-driven retrieval will usually result in the retrieval of more
appropriate cases than goal-driven retrieval as the former is more informed (i.e.,
goals of the candidate cases must not only match the goals of the problem but their
dependencies must be compatible with the ordering restrictions of the problem). It
could be, however, that the performance of the retrieval decreases and as a result
the performance gains obtained by reusing the more appropriate cases could be lost.
However, the time costs of performing dependency-driven retrieval is usually not
greater than goal-driven retrieval. In fact, as will be shown in Chapter 9 the former
tend to be smaller than the latter. An explanation of this can be made with an the use
of combinatorics: when performing goal-driven retrieval, sets of goals are matched
(the goals of the problem and of the cases). To simplify the discussion, suppose
that two sets of size n are matched. At the worst case, n! permutations of goals are
made. When performing dependency-driven retrieval, partially ordered sets of goals
are matched (i.e., the dependency order of the cases against the ordering restrictions
of the problem). The number of permutations that in the worst case have to be
performed, decreases with the number of ordering restrictions and dependencies. In
a limit situation, if both sets are totally ordered, a single permutation of goals needs
to be considered.

As we saw the GDN allows to test the order consistency condition for several
cases simultaneously instead of one by one. As will be shown in the experiments
(see Chapter 9), this will result in significant improvements in retrieval time for
domains such as process planning in which several ordering restrictions can be pre-
defined. However, the same experiments show that when fewer or none ordering
restrictions are given the GDN should not be used because the retrieval time is in-
creased in a significant way. The reason for the increase is that in any tree T of
the GDN the same set of goals is listed several times; one for each path from the
root of T to a leaf. By traversing these trees in the way described by algorithm
retrieve CandidateCasesGDN(G,=<,Idz) (see Figure 4.13), the same set of goals will
be matched several times. In contrast, the more ordering restrictions are given, the
less nodes are visited in a tree. In the domain of process planning, for example, the
number of ordering restrictions typically increases with the number of goals. In the
worst case, five goals can be stated without any ordering restrictions; namely, the
goals corresponding to manufacturing the five outlines (see Appendix A). However,
any additional goal, which corresponds to the machining of a feature covered by an
outline, necessarily add at least one ordering restriction. Thus, ten goals will contain
at least five ordering restrictions.

An issue that remains to be discussed is how the characteristics of the domain
theory affect the retrieval procedure. In Chapter 7 the issue regarding the relation of
dependency-driven retrieval and the characteristics of the domain will be discussed.



Chapter 5

Adaptation of Cases with
Complete Decision Replay

Adaptation based on replay is widely used in case-based planners searching in the
space of states and in the space of plans (Veloso and Carbonell, 1993; Bhansali and
Harandi, 1994; Blumenthal and Polster, 1994; Ihrig and Kambhampati, 1994). In
this approach, the derivational trace of the retrieved cases is reconstructed relative to
the current problem (see Section 2.6). Different factors affect the performance of this
method such as the the search space of the base-level planner, whether case-based
and first-principles planning interleave and the degree of repair (Mufioz-Avila and
Weberskirch, 1996a).

As originally proposed in PRODIGY/ANALOGY, the derivational path was an-
otated with failure reasons in a validation structure (Veloso, 1994). These failure
reasons expressed situations proper of state-space planners such as the situations
encountered by the state-space planner PRODIGY (Blythe et al., 1992). Later imple-
mentations in plan-space planners considered only the derivational path but not any
failures that occurred during the adaptation process (e.g., (Ihrig and Kambhampati,
1994)). Thus, they have a low degree of repair as the repair effort is totally left to the
first-principle planner. A direct consequence of this flaw is that a large amount of
planning effort may be needed to complete the solution of the new problem because
failures occuring during the solution of the cases are not taken into account.

In this chapter, we introduce a new adaptation method based on replay that we
called Complete Decision Replay. This method is conceived on a plan-space planner
and improves previous approaches using replay based on these planners by increasing
the degree of repair (Mufioz-Avila and Weberskirch, 1996b). Moreover, we will see
that complete decision replay enables the user to interact during the adaptation
process.
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5.1 Motivation of Complete Decision Replay

In this thesis we combine static retrieval techniques (see the previous chapter) with
dynamic retrieval techniques (which will be discussed in the next chapter). However,
independent of the retrieval technique used, it is not realistic to suppose that adequate
cases will always be found. That is, cases that perfectly fit into a solution plan of
the new problem. There are two reasons for this:

e There are no cases in the case base that perfectly “fit” into a solution plan of
the new problem.

e Retrieval cannot take much time. Otherwise, the trade-off between retrieval
and reuse effort is lost (Veloso, 1994; Francis and Ram, 1995a).

The first reason is a recurrent argument in CBR: given that the space of problems
is usually very large, it is not feasible to suppose that there is a case that solves
exactly the same problem. The meaning of a case "fitting” into the new problem can
be precisely defined for CBP; namely, if the solution plan in the case is a subplan of a
solution plan of the new problem. Here is where the second argument is considered:
even if such a case exists it may take too much time to find it as it would require to
test for every candidate case if its solution plan can be extended to a solution plan
of the new problem.

Abstract Example. Figure 5.1 compares complete decision replay with standard
replay using an abstract example. The continuous lines represent the derivational
path driving to the solution plan of the case. In addition, the failed exploration at-
tempts have been also depicted (the discontinuous lines). The case has been selected
for replay and we are supposing that the decision labeled B cannot be replayed in
the new situation. Further, we are supposing that the decision labeled A needs also
to be rejected to complete the solution of the new problem. Solution (a) sketches
the search path that must be followed when completing the plan obtained with re-
play. Notice that during completion of the new solution, some of the failed attempts
made in the case are repeated, for example decisions labeled C and D. In complete
decision replay, justifications of failed attempts are constructed as part of the cases.
These justifications are reconstructed as part of the adaptation process. As a result,
performing unnecessary backtracking is avoided during the completion process (see
solution (b)).

We will now explain how complete decision replay was conceived and implemented
in CAPLAN/CBC, which is based on the plan-space planner CAPLAN. In particular,
we will explain how the justifications are made and how they are reconstructed during
replay. But, before, we will make an overview of the aspects of CAPLAN which are
relevant for the adaptation process.
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Figure 5.1: Replay of a case and completion after (a) standard replay and (b) com-
plete decision replay.

5.2 The Base-Level Planner CAPLAN

CAPLAN is a plan-space planner based on SNLP (the reader not familiar with SNLP
is advised to read Section 2.3). There are several extensions made in CAPLAN with
respect to SNLP:!

e Type information can be explicitly specified in the domain description.
e A dependency maintenance system has been incorporated.

The first aspect is related to the fact that as originally defined, SNLP considered
only codesignation and noncodesignation constraints (see Section 2.1). CAPLAN
implements SNLP but also handles type information explicitly. The second aspect
is the most significant contribution of CAPLAN and plays a key role to perform
complete decision replay.

REDUX. The dependency maintenance system incorporated is REDUX (Petrie,
1991a; Petrie, 1991b). By incorporating the generic REDUX architecture, CAPLAN
is able to represent knowledge about plans and contingencies that occur during plan-
ning. Key concepts of REDUX are goals, constraints, and contingencies. Planning

n this section an overview of some aspects of CAPLAN is made in order to explain how complete
decision replay was conceived. A detailed description of CAPLAN can be found in (Weberskirch,
1995).
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proceeds by applying operators to goals, which may result in subgoals and in as-
signments (Figure 5.2.a). Applying an operator is called a decision and represents a

Goal
decision

op
P

Protection
Goal

‘Subgoal-l ‘ ‘Subgoal-n ‘

Figure 5.2: Representation of a (a) decision and (b) a threat in the subgoal graph.

backtracking point as different operators might be applicable to a goal.

Note about the term ”applicable”. In the parlance of REDUX and thus of
CAPLAN, an operator is said to be applicable to achieve a goal if one of its effects in
the add-list matches the goal modulo the bindings B of the plan and the constraints
of the operator. Whether this operator is in fact applicable in the sense of Definition
2.2, can only be stated if subgoals of the decision corresponding to apply the operator
to achieve the goal are also achieved.

Assignments in Planning. Assignments originally are thought to assign values
to variables. More generally, they stand for modifications made in the plan. In SNLP,
four possible modifications can be made to a partial-order plan < S, —, —¢r, B >
(thus, each of these modifications is represented as an assignment in REDUX):

e Addition of a plan step to S. New steps are added to establish preconditions.

e Addition of a causal link, s — p@s’, to — and —¢y. Causal links are added to
establish preconditions (i.e., p@Qs" denotes the precondition p of s’). The source
of the causal link (i.e., s') is either a new step or an existing step in the plan.
The former is called an establishment with a new plan step whereas the latter
is called a simple establishment.

e Addition of a protection link, s — &', to —. Protection links are added to solve
threats.

e Addition of binding constraints to B. Binding constraints are added either to
solve threats (i.e., to perform ”separation”) or when an operator is applied, in
which case the constraints of the operator are added to B.

The mapping of SNLP concepts to REDUX concepts is straightforward: SNLP
goals are mapped to REDUX goals and SNLP operators to REDUX operators. There
are two types of SNLP goals:
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e Precondition (Domain) goals. These are the goals corresponding to estab-
lish a precondition p@s of a plan step s.

e Planning (Protection) goals. These are goals corresponding to the solution

of a threat s; e (s1 — pQsy).
Correspondingly, SNLP operators are of two types:

e Domain Operators. These operators are used to achieve precondition goals.
Thus, they are divided in two kinds: simple establishments and establishes
with new plan steps. That is, in the former a causal link is added to the plan
whereas in the latter a causal link and a new step are added to the plan.

e Planning (Protection) Operators. These operators serve to achieve plan-

ning goals. That is, with these operators threats, s3 & (s1 — pQssy), are
solved. Thus, there are three kinds of them:

— Separation operators: binding constraints are added so that the effect p’
of s3, which is in conflict with the precondition p@ss, cannot unify.

— Promotion operators: the ordering constraint sy — s3 is added to solve
the threat.

— Demotion operators: the ordering constraint s3 — s; is added to solve the
threat.

The Subgoal Graph. Goals and subgoals build the subgoal graph. It represents
basic dependencies between goals and subgoal as well as between subgoals and deci-
sions. Originally, REDUX makes the assumption that each goal can only have one
parent goal. So the subgoal graph in fact is a tree. This is not adequate for SNLP and
has been modified in CAPLAN for the following reason: protection goals represent
threats and depend on two other goals (Figure 5.2.b). First, the goal with the deci-
sion that added the threatened causal link. Second, the goal with the decision that
added the threatening step. This extension of the dependency structure is important
for automatically identifying threats and threat resolutions that are no longer valid
after the rejection of a decision.

Dependencies. Basically, REDUX represents validity and local optimality of de-
cisions and dependencies among them (cf. (Petrie, 1992)). Important dependencies
for CAPLAN are:

1. Subgoals depend on goals.
2. Subgoals depend on the decision that added them.

3. Decisions depend on the goal they are applied to.
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4. Assignments depend on the decision that added them.

These dependencies are explicitly represented in the subgoal graph (see Figure
5.2); for example, the first dependency means that Subgoal-1, ...., Subgoal-n depend
on Goal. These dependencies are also used to determine the validity of decisions,
goals and assignments. For example, a subgoal is valid if its corresponding goal is
valid (dependency 1) and the decision that added it is valid (dependency 2). In the
example, Subgoal-1 is valid if Goal and decision are both valid. As a result, if a
decision is rejected, the subgoal structure is traversed to reject depending decisions as
well. If, for example, Goal is rejected by the user, CAPLAN declares Subgoal-1, ....,
Subgoal-n, decision and assignments as rejected.

The constraint system in CAPLAN computes connected components in a graph
where the nodes contain the variables and the arcs are the constraints. If, for example,
a decision is taken corresponding to the application of an operator that has the
constraint x = y, this constraint is added as an edge between the node containing x
and the node containing y. The constraint x = y is also represented in an assignment
of the decision.

5.3 Justifications of Decisions

As we saw in the previous section, every time a decision is made, new assignments are
created representing the changes in the plan that take place as a result of making the
decision. Assignments are the base on which justifications are made. A justification
is a set of assignments, {ay, ..., a,}. For each assignment a; it is possible to identify
the decision D; that added the assignment. CAPLAN constructs the justifications of
every decision made (valid or rejected). Justifications play a key role to determine
if the state of validity of a decision remains unchanged when another decision is
rejected. If a decision D is rejected, its corresponding assignments Ap are removed.
This affects any other decision D’ in the following way:

e If D' is rejected and at least one assignment a; in its justifications belong to
Ap, then the decision is no longer rejected. That is, the problem solver may
make D' later on.

e If D' is valid and at least one assignment a; in its justifications belong to Ap,
then the decision must be retracted. That is, the subgoal g that was achieved
with D' becomes unachieved. Thus, the problem solver will need to achieve
g again. If a decision is “retracted”, it does not mean that the decision is
rejected. Rejected decisions are known to have failed. Retracted decisions were
previously known to be valid but their validity can no longer be guaranteed
due to changes in the plan.

If a decision is rejected the subgoal graph is traversed to examine the validity of
the dependent decisions.
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Figure 5.3: (a) Plan fragment illustrating a situation in which a threat occurs but
demotion is not applicable to solve it and (b) part of the subgoal graph in which the
plan fragment is represented.

Example of a Justification. An example of a justification is illustrated in Figure
5.3. A plan fragment is shown consisting of three plan steps and two causal links (part

(a)). In addition, the threat sy <— (s; — p@s3) is depicted (the double arrow).
The part of the subgoal graph representing this plan fragment is also depicted (part
(b)). Goals are represented with boxes and assignments with rounded boxes (not
all assignments associated with the plan fragment are shown). Three domain goals,

pQssz, 7@Qs and ¢@Qs, are represented together with the planning goal sy «— (s1 —
pQss). A failure occurs if the planner pursues to perform a demotion (i.e., to add the
ordering constraint s, — s1) to achieve the planning goal. The reason of the failure is
that s; — p@ssy is a link in the plan and, thus, a cycle occurs in the plan if demotion
is performed. This link is represented by the assignment a;, which was introduced
by decision-3. decision-3 was made to achieve the subgoal ¢@s, and corresponds to
an establishment with s;. decision-4 corresponds to the demotion operation and it
is rejected. The justification of this rejection is {a;}. If decision-3 is rejected later
on, decision-4 is no longer considered rejected because tha assignment a; no longer
exists. In this situation, decision-4 may be made by the planner.

5.4 Contents of Cases

The subgoal graphs are part of the cases. The plan represented in a subgoal graph
can be easily reconstructed by following the assignments of the valid decisions. The
reason for this is that assignments indicate changes made in the plan (see the previous
sections). Additionally, cases contain information concerning justifications of the
decisions. The rationale behind storing the justifications as part of the cases is that
they indicate the reasons for the state of validity of a decision.
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Claim 5.1 (Justification Reconstruction Claim) If a deci-
sion is known from the case to be rejected and its justification can
be reconstructed relative to the new problem, then the decision must
also be rejected in the new situation.

Latter in this chapter it will be explained why this statement, which we called
the justifications-reconstruct claim is true. In particular it will be explained what
is contained in the justifications for rejected decisions in SNLP. Before continuing a
definition is introduced:

Definition 5.1 (Conflict Set) Given a goal g the conflict set C'S of g is the set of
all applicable operators to achieve the goal.

For each applicable operator to achieve a goal there is one and only one valid
decision in the goal subgraph, which represents the application of the operator. Thus,
we also use the term conflict set to refer to the set of decisions that can be made to
achieve a goal.

The part of a case in CAPLAN/CBC that is used for adaptation consists of the
following elements:

e The subgoal graph.

e The conflict set of each goal and the decision made to achieve it. This decision
is labeled as valid.

e The justifications of each rejected decision. These decisions are labeled as
rejected.

Example of Information Stored in a Case. Continuing with the example dis-
cussed in the previous section, if the planning episode is to be stored as a case,
CAPLAN/CBC stores the subgoal graph depicted in Figure 5.3, all conflict sets and
the justifications of the rejected decisions. In particular, decision-4, the fact that it
is rejected and its justification (i.e., {a1}) are stored in the case.

5.5 Complete Decision Replay

The idea of complete decision replay is to reconstruct the justifications stored in the
cases relative to the current problem. In a sense, by making this reconstruction, the
complete problem solving episode stored in the case is taken into account to solve
the new problem. Complete decision replay is performed in three phases:

1. Reconstruction of the subgoal graph of the case with respect to the current
problem.
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2. Reconstruction of the justifications of the rejected decisions.

3. Completion of the partial solution obtained after 2 by the base-level planner
CAPLAN.

As explained in the previous chapter, once retrieval is made one or more cases
are retrieved. Each retrieved case achieves a set of goals that match a subset of goals
of the new problem (see condition 1 of the order consistent condition in Definition
4.6). That is, the goals of the retrieved case C' match a subset G of goals of the new
problem. The algorithm sketched in Figure 5.4 replays the decisions of the case C
for the goals G. Pl is the initial plan (i.e., a plan representing the problem) and N
is an initially empty list of goals that could not be matched immediately and so are
delayed. Goals are delayed in the following situations:

e The goal is a domain goal and is achieved in the case by a simple establishment
with s; and s; does not form part of the plan. As the order in which the plan
stored in the case was generated is not necessarily the same as the order in
which the plan to solve the new problem is generated, it is possible that at
the moment where the simple establishment operator is to be replayed, the
decision adding s; to the plan has not been replayed. In this situation, the
simple establishment cannot be made yet.

e The goal is a threat s3 Pl (s1 — p@sy) (i-e., a planning goal) and either s3 or
s1 — pQsy does not form part of the replayed plan yet. In this situation, the
threat does not occur in the new situation yet.

Notice that there is no guarantee that the delayed step s; in the first situation will
be replayed. In general, some decisions made in the case cannot be reconstructed.
This occurs because their corresponding operators are not applicable relative to the
new situation. An operator in not applicable when no binding of its variables exists
that is consistent relative to its binding constraints and the binding constraints B of
the current plan. The same can happens for s;, s or s3 in the second situation.

Phase 1 (ReplaySubgoalGraph) reconstructs for each goal g in G, the part of
the subgoal graph relative to its corresponding goal go (step 1.2) in C. CS is the
conflict set of g relative to Pl (step 1.1) and opc is the operator of C'S selected in
C to achieve g¢ (step 1.3). If opc matches an operator op in the conflict set C'S
(step 1.4), op is applied to achieve g (step 1.4.1). The subgoals resulting from this
application are matched against the subgoals of g¢ relative to C' (step 1.4.4) and the
algorithm is called recursively (step 1.4.5). Finally, the algorithm checks if there are
any delayed goals that can be solved with the augmented plan (step 1.4.6). If no
operator in C'S is matched by opc, the achievement of the goal g is delayed (step
1.5.1).

The function ReplayDelayedGoals is shown in Figure 5.5. It follows the same
steps as ReplaySubgoalGraph until 1.4.1. That is, the algorithm checks for every
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ReplaySubgoalGraph(Pl, G, N, C)
1 for-each g € G:
1.1 CS := conflictSet(g,Pl)
1.2 g¢ := goalMatching(g,C)
1.3 opc := opDecisionAchieving(g¢,C)
1.4 if Jop € CS with matches(op, opc)
1.4.1 Pl := apply(op,g,PI)
1.4.2 subGP := subgoals(g,Pl)
1.4.3 subGC := subgoals(g¢,C)
1.4.4 SG := match(subGP,subGC)
1.4.5 Pl := ReplaySubgoalGraph(PIl,SG,N,C)
1.4.6 Pl := ReplayDelayedGoals(PI,N,C)
1.5 else
1.5.1 N := N J{g}
2 return Pl

Figure 5.4: The first phase of the replay process: reconstruction of the subgoal graph.

goal g, if the operator opc achieving its corresponding goal gc matches an operator
in the conflict set of g (steps 1.1 - 1.3). If this is the situation, op is applied to
achieve g (step 1.4.1). The reason for not performing steps 1.4.2 - 1.4.6 of Replay-
SubgoalGraph is that applying op cannot generate any subgoals. That is, op is
either a simple establishment or a planning operator (i.e., demotion, promotion, or
separation). If op would have been an establishment with a new plan step, g would
not have been delayed because performing an establishment of a new plan step only
depends on the goal g. If op was not applicable relative to the new situation, op
remains not applicable during the replay phase because new steps and constraints
are added but none is removed.

ReplayDelayedGoals(P1l, N, C)
1 for-each g € N:
1.1 CS := conflictSet(g,Pl)
1.2 g¢ := goalMatching(g,C)
1.3 opc := opDecisionAchieving(gc,C)
1.4 if Jop € C'S with matches(op, opc)
1.4.1 Pl := apply(op,g,Pl)
2 return P]

Figure 5.5: Auxiliary function of ReplaySubgoalGraph(P, G, N, C), the algo-
rithm to reconstruct the subgoal graph.

The reconstruction of the subgoal graph (i.e., algorithm ReplaySubgoalGraph)
is equivalent to standard replay; following the goal graph and applying each decision
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to achieve the goal is equivalent to following the derivational trace replaying the
corresponding steps. For example, reconstructing the subgoal graph depicted in
Figure 5.3 (b) results in the plan fragment depicted in the part (a) of the same
figure. However, by using the subgoal graph, the basis is provided to reconstruct the
justifications of the rejected decisions (see next section), to allow interactive planning
and to perform intelligent backtracking during the completion phase of the adaptation
process (see Section 5.8). The next section contains an example of reconstruction of
the subgoal graph.

5.6 Reconstruction of the Justifications

Whereas the reconstruction of the subgoal graph corresponds to standard replay, the
reconstruction of the justifications of the rejected decisions by CAPLAN/CBC during
the adaptation phase is a novel characteristic in the context of case-based, plan-space

ReconstructJustifications(SG, SG¢)
1 D := reconstructedDec(SG)
2 for-each d € D with rejected(d¢)
2.1 jo := justifications(d.,SG¢)
2.2 depc := dependentDecisions(j¢)
2.3 if depc C D¢
2.3.1 j := newlJustification(j.,Pl)
2.3.2 assignJust(j,d,SG)
2.3.3 rejectDec(d,SQ)
3 return SG

Figure 5.6: Reconstruction of the justifications of the rejected decisions.

planning. The algorithm ReconstructJustifications performs the reconstruction
process. ReconstructJustifications is performed after the subgoal graph, SG¢, of
the case has been reconstructed relative to the new problem. As explained before,
subgoal graphs represent plans (i.e., the partial-order plan obtained after following
the assignments of the valid decisions). The input to the algorithm is the recon-
structed subgoal graph relative to the new problem, SG, and the subgoal graph in
the case, SG¢. All decisions (valid and rejected) in SG are collected in D (step
1). D¢ denotes the set of decisions in SG¢ that mapped D. That is, the decisions
in SG¢ that were reconstructed to obtain SG and dg denotes the decision in D¢
that maps d. As mentioned before, CAPLAN keeps track of the decision that added
every assignment. Thus, given the justification jc of a rejected decision d¢ relative
to SG¢, the set of decisions, depc, on which the assignments in jo depends can be
determined (step 2.2). If depc is contained in D¢, all assignments of jo must have
been reconstructed in SG. In this situation (step 2.3), the corresponding justification
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j can be reconstructed relative to SG (step 2.3.1), j can be assigned as the justifica-
tion of d (step 2.3.2) and d can be marked as rejected (step 2.3.3). In the last step
of the algorithm, the updated subgoal graph SG containing the justifications of the
rejected decisions is returned (step 3).

Example of Reconstruction of the Subgoal Graph and the Justifications.
The reconstruction of the subgoal graph and the justifications can be illustrated by
continuing with the example depicted in Figure 5.3. Recall that the reason for re-
jecting the demotion of ss to solve the threat so «— (s1 — p@s3) is that s; preceeds
s9 in the plan. Thus, a cycle occurs if s, is demoted because this operation orders s
before s;. The fact that s; preceeds sy is consigned in the assignment a; in decision-3.
As the algorithm ReplaySubgoalGraph reconstructs the subgoal graph by travers-
ing it top-down, initially, either p@s3 or r@Qs are mapped to corresponding subgoals
in the subgoal graph of the current situation. Suppose that pQs;z is mapped to a
subgoal p'@s} and that decision-1, establishing p'@s’; with an step s} is valid relative
to the new situation. At this point, the subgoal corresponding to solve the threat
So < (s1 — p@s3) must be delayed. This threat is a subgoal resulting from making
decision-1 and as such is evaluated in the recursive call. This subgoal will be delayed
because there is no operator solving it (the threat does not exists yet). Next, suppose
that the goal r@s, is mapped against a goal r’'@s;, and that decision-2 establishing it
with an step s, is valid. At this point, there are two possibilities: either, a negative
effect of s, matches the precondition p@ss or not. In the former situation, the sub-
goal s «— (s1 — p@ss3) matches s}, «— (s} — p'@s}). In the latter situation, this
planning subgoal cannot be reconstructed (i.e., the threat does not occur in the new
situation because of the binding constraints). Suppose that the planning subgoal
can be reconstructed. In this situation the algorithm pursues to reconstructed the
decision achieving it (this decision is not depicted in Figure 5.3). Eventually, the
subgoal ¢@s, is checked. Suppose that it is mapped to a subgoal ¢'@s}, and that
decision-3 is valid. This decision corresponds to extablishing ¢'@s!, with the same
step establishing p'@s}. That is, it is established with s}. Thus, s} is ordered before
sh in the plan and, thus, decision-4 (i.e., demoting s,) must be rejected in the new
situation. Indirectly, this is what the algorithm ReconstructJustifications does
at step 2.3; namely, checking that all elements in the justification are reconstructed
relative to the new situation.

5.7 Validity of the Justification Reconstruction Claim

In the previous section we motivated with an example that a rejected decision in
the case can also be marked as rejected relative to the current problem if all the
assignments of its justifications can be reconstructed as well. In turn the assignments
can be reconstructed if the decisions on which they depend can be reconstructed. We
also saw that this checking is done by the algorithm ReconstructJustifications.
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In this section we will take a closer look at the possible rejection decisions to explain
why the justification reconstruction claim holds (see Claim 5.1). In general, there
are three possible failures that can occur in SNLP (Kambhampati et al., 1996b):

Ordering failures. Ordering failures occur when there are two plan steps s; and
sg such that s; <_, sy and sy <_, sl. That is, there is a cycle in the plan.

Binding failures. Binding failures occur when the binding constraints of the plan
B are inconsistent. That is, when there is no possible instantiation of the
variables with objects that is consistent with B. An example of such a failure
occurs when the constraint IsOfType(z, Table) but no object in the problem is
of type Table.

Establishment failures. This failure occurs when an open precondition p@Qs can
be established neither by an existing step in the plan nor by adding a new step
in the plan.

If a taken decision d results in a failure, the decision is rejected and a justification
is constructed. If an ordering failure occurs when a decision is taken, the decision
corresponds to the application of a domain or a planning operator (excluding the
separation operation). This means that a link of the form s; — p@s, or s; — s,
is added to — and that currently in the plan there is a chain of the form sy — s3,
§3 — 84, ..., Sp—1 — sn in —.2 Each s; — s;;; must be added by an assignment q;
that dependends on a decision d; in the subgoal graph. Thus, the justification of the
rejected decision is {a, ..., an_1}. Algorithm ReconstructJustifications says that
the justification can be reconstructed relative to the new problem if each decision
d; is reconstructed as a decision d by the algorithm ReplaySubgoalGraph. In
this situation, taken decision d will result in a failure relative to the new problem.
A similar argument can be made to explain why the same holds for ordering and
establishment failures.

5.8 Discussion of Complete Decision Replay

Figure 5.1 illustrates graphically, why a better performance is expected during the
completion of the partial solution when complete decisions replay is performed com-
pared to standard replay. A more technical explanation is based on the following
fact: each time CAPLAN (and SNLP for that matter) makes a decision a consis-
tency check has to be made to ensure that no failure will occur on the plan. If, as
explained in the previous section, a new link is added to —, CAPLAN needs to check
that no cycle will occur. This check is typically much more expensive than the check
that ReconstructJustifications as it frequently involves a constraint propagation

2The orderings can be caused by causal links, s; — pi@s;,1, by protection links s; — s;;1, or
by combinations of causal and protection links as well.
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process. The experiments will show that in fact the time effort to find the solution
plan decreases when complete decision replay is performed compared to standard
replay.

The next issue is related to the overhead caused by reconstructing the justifica-
tions. Clearly, if to find a solution plan, CAPLAN does not need to revise any of
the decisions taken during replay, the justifications do not need to be reconstructed.
In this situation, the overall problem solving process effort will be less if standard
replay is performed instead of complete decision replay. Whether this happens or not
depends on the domain, the size of the problems, and the retrieved cases. Our exten-
sive experience with the domain of process planning and some artificial domains such
as ART-1D-RES (see Appendix C) show that usually some decisions taken from the
case need to be revised and that it does pay off to perform complete decision replay.
One reason for this, is that until now similarity metrics in CBP have been static,
so no learning takes place to improve them. In the next chapter we will present a
framework based on feature weighting to dynamically improve the similarity metric.
If a case is retrieved several times it is less likely that it will not fit into a solution of
the new problem. On the other hand, until an adequate similarity metric is learned,
it is likely that the case will not fit. In Chapter 7, a framework unifying complete de-
cision replay and feature weighting will be presented, as a result of which CAPLAN
is able to estimate whether the case will fit or not and dynamically decide to use
complete decision replay or standard replay.

As discussed in Chapter 3, complete decision replay enables the user to interact
with the system even after replay has taken place. This novel characteristic is based
on the plan representation in CAPLAN which as we saw is based on the represen-
tation of plans in the subgoal graph and the construction of justifications. As these
structures are reconstructed during replay, the functionality of CAPLAN is naturally
inherited in CAPLAN/CBC. In particular the user may

e Reject decisions. That is, the user may declare the decision made to achieve the
goal should be rejected. By using the dependencies represented in the subgoal
graph, the rejection is propagated so that the parts of the plan that are not
affected remain without having to plan from the scratch.

e Select goals and make decisions. The user is able to select which goal to achieve
next or/and to make a decision from the conflict set.

The subgoal graph enables the base-level planner to use more powerful back-
tracking mechanisms than chronological backtracking (Weberskirch, 1995). These
mechanisms can be used to complete the partial solution obtained after replay as a
result of the reconstruction of the subgoal graph made at the first phase of complete
decision replay.

Another aspect that has not been discussed is multi-case replay. In Chapter 8 a
study of kinds of merging for multiple cases in the context of CBP is presented.



Chapter 6

Feature Weighting in Case-Based
Planning

In Chapter 4, we presented dependency-driven retrieval, a method in which ordering
restrictions of the new problem between the goals are used to perform an informed
retrieval to preselect a set of cases. One or more cases are preselected for which
the achieved goals match disjoint subsets of goals of the new problem and their
dependencies are consistent with the ordering restrictions in the problem (see the
ordering consistent condition, Definition 4.6). Thus, given an extended problem
description (I, G, <), dependency-driven retrieval preselects a set of cases based on
the ordering restrictions and the goals of the problem (G, <). In this chapter, we will
see how CAPLAN/CBC makes a final selection between the preselected cases based
on the initial features of the problem I.

Traditionally, initial features of the cases and the problem are compared based on
static criteria. Some systems assign feature weights to rank the initial features based
on an analysis of the particular solution found. Others classify the initial features
between relevant and non relevant depending on whether the features contributed to
the solution plan of the cases or not (see Section 2.6). Common to all of them is that
these criteria are stated when the cases are created and is static. By static we mean
that the similarity metric between a case and a problem is the same independent of
previous retrieval episodes.

In many domains, initial features of the cases are key for the success of the adap-
tation process; if these features are matched, in the current problem the adaptation
is likely to be a success. On the other hand, if these features are not mached the
adaptation will result in a failure.! Moreover, features can be ranked according to
their relative importance. A major difficulty is that obtaining this ranking depends
on several factors making its apriori determination not feasible. For a given case,
these factors are:

!Later in this chapter the concepts of "success” or adequateness and ”failure” will be carefully
defined. As for now they can be thought as a measure of the adaptation effort.
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e the problem description,
e the particular solution plan found,
e the adaptation method, and

e the domain theory.

The first two factors were considered in previous work to determine the relevance
of the features (Veloso and Carbonell, 1993) and to estimate a rank between them
(Kambhampati, 1994). The other two factors are also important and must be taken
into accout. For instance, the absence of an initial feature can be overcomed with
little adaptation effort whereas the absence of another feature may be isurmountable
for the adaptation method making useless the guidance provided by the retrieved
case.

In CAPLAN/CBC we developed a case-based planning framework based on con-
sidering the feedback from the adaptation method to tune the rank of the relevant
features (Munoz-Avila and Hiillen, 1996; Munoz-Avila et al., 1997). The rank of a
feature is given by its weight, a non-negative number reflecting the relative impor-
tance of the feature in the case. Tuning the rank of a feature means in this context
updating its associated weight. Deciding whether to retrieve a case or not is based
on the current distribution of the feature weights. This distribution can be seen as
a hypothesis about the best distribution of the feature weights. This hypothesis is
tested in subsequent problem solving episodes. Depending on the outcome of the
retrieval the hypothesis is reinforced or punished. Reinforcement and punishment
are done by updating the feature weights and, thus, changing their distribution in
the case.

6.1 The Weighted Similarity Metric

Base of the framework to update the feature weights is the weighted similarity metric.
This metric counts the feature weights of the common features of the case and the
problem. Each feature 7 has an associated weight w; ¢ depending on the particular
case C. w; ¢ is a non-negative value reflecting the relative importance of the feature
to the case. In particular, the weight of all non-relevant features can be seen as to
be zero.?

Definition 6.1 (Weighted Similarity Metric) The weighted similarity metric be-
tween a case C and a problem P, sim™9(C, P), is defined as:

Gef C G

: > wi,c
wg C.P) = i€lNg Ic ,
sim™(C, P) { 0 otherwise

2Non-relevant features of a case are not taken into account. In fact, when a case is created,
non-relevant features are even pruned from the problem description (see Section 2.6).
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where I (), Ic denotes the set of all features in Ic matching a feature in I with a
substitution 6.

The weighted similarity metric counts the weights of the features in the case
matching a feature in the current problem. When a case is created, the weight of
the relevant features is assigned. This initial assignment is updated in subsequent
problem solving episodes in which the case is retrieved. It is possible that two different
cases match the same subset of features of the problem. Their similarity, however,
may be very different depending on the corresponding weights. The meaning of the
weighted similarity metric can be explained with the following statement:

If the weights of the features of a case C' were normalized so that
Wiy, + Wi,.c + ... + wi, ¢ = 1, then the factor Z#k wi,c/ > ;Wi
expresses the reliability of making an adequate retrieval, when the
feature 7y is the only one not matched in the new problem.

As mentioned in Section 3.2.2, searching for the most similar case has a prohibitive
time cost. Instead, based on the weighted similarity metric, a retrieval condition is
stated to determine if a case is to be retrieved (this condition is an extension of the
one in PRODIGY/ANALOGY by considering feature weights):

Definition 6.2 (Weighted Retrieval Condition) Given a problem P, a case C
meets the weighted retrieval condition, SIM™9(C, P), if and only if Gef C G and

(sim™9(C, P)/sim"(C,C)) > thre
where thrye is a predefined threshold, called the retrieval threshold.

This means that if the weighted proportion of features in the case matching
features in the current problem is greater than the retrieval threshold, the case is
retrieved.

Weighting Model. For updating the feature weights, a feedback model based on
incremental optimizers is used (Salzberg, 1991; Wettschereck and Aha, 1995). Each
case, C, contains two counters: k¢ and f¢. The first one indicates the number of
times a case was adequately retrieved, and the second one the number of times in
which not. The weight, w; ¢, of a feature ¢ is updated according to the following
equations,

o wi,c + Dge jo 1 failed retrieval
we = wic — Dye jo o adequate retrieval

where 0 < Ayeo jo < 3 X n®. The number of features in the initial state of C is
denoted by n®. Thus, the change in the weight of the features is bound by a factor,
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B x n%, directly proportional to the number of features in the case (8 > 1). If the
value of wic is smaller than 1, then w; ¢ is assigned the value 1 and the weights of the
other features in the case are incremented proportionally. The formula to compute
the incremental factor Ayc ro is as follows:

BxnC — (KC/fC) : kO < fC
Ao jo = B . k= fC
Bx fC/kE) kO >fC

The incremental factor Age e depends on the values of k¢ and f¢ in the following
way: the larger the ratio of k% to fC, the smaller is the value of Ac se. Thus, as
the number of adequate retrieval episodes increases, the effect of a retrieval episode
on the feature weights decreases. In contrast, the smaller the ratio of k¢ to f¢, the
closer is Agc jo to B X n®. Thus, the effect is the opposite: the larger the ratio of
fC to k¢, the higher the value of Ayc fo (i.e., Age jo comes closer to 3 x n®).

6.2 Analysis of Case-Based Planning Episodes

In the previous section we presented the weighted retrieval condition and the feature
weighting model used to update the feature weights. Two issues will be explored in
this section:

e Stating if the retrieval of the cases is adequate or a failure.

e Identifying the features whose weights must be updated.

Both issues are used by the weighting model. The first issue determines if the
feature weights are to be increased or decreased. The second one indicates for which
features the weight must be updated.

As described in Section 3.2.4, the notion of retrieval failure is based on the defi-
nition presented in (Ihrig and Kambhampati, 1996a), which we now recall:

Definition 6.3 (Retrieval Failure, Adequate Retrieval, Skeletal Plan) Given
a solution plan Sol of a problem P obtained by adapting a case C' with standard re-
play, then the retrieval of C' is a failure with respect to P and Sol if at least one
decision replayed from C was revised by the first-principles planner to obtain Sol.
Otherwise the retrieval of C is said to be adequate. The partial solution obtained
after replay is called the skeletal plan.

This definition says that the retrieval of a case is considered adequate if the
subplan obtained after replay can be extended to a solution plan of the current
problem. In CAPLAN/CBC we distinguish between an adequate and a beneficial
retrieval. The latter measures the adaptation effort and determines whether a new
solution is to be stored as a new case. We will examine this issue in Chapter 7.
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Example of a Retrieval Failure. Before continuing, we recall the example pre-
sented in section 3.5, in which a complete problem solving episode is illustrated. In
this problem episode a problem is given consisting of five goals. Three of which
are matched by the retrieved case C5 (namely, processed(H), processedH1(U;) and
processedH2(U, )). The other two remain unsolved after replay (i.e., processedH1(Us)
and processedH2(U,)). In addition a feature in the case does not matched any fea-
ture in the problem; namely, the feature available(rrt) indicating that a tool of type
“right cutting tool” is available. The skeletal plan obtained after replay is depicted in
Figure 6.1. The precondition regarding the use of a tool of type “right cutting tool”
is left open (this situation is depicted by a question mark, “?”, adjacent to step 6).
The retrieval of the case results in a failure because the open precondition cannot be
achieved with additional planning (there are no operators producing a cutting tool).
Thus, step 6 needs to be revised.

STEP- 4 ~ (  STEP-6 N STEP- 8
procHl Ul * \\hTool rrt aA_procH2 Ul

i clanp S2

Figure 6.1: Partial solution obtained after replay (i.e., an skeletal plan).

Non-matched Features in the Skeletal Plan. CAPLAN/CBC identifies the
relevant features whose weights must be recomputed by examining the contribution
of the feature to the solution of the case by taking as basis the skeletal plan. For
example, the precondition available(rrt)@STEP-6 of the skeletal plan shown in Fig-
ure 6.1 was not achieved during replay because it cannot be established with start.
Thus, as the retrieval failed, the weight of the corresponding feature in the case,
available(rrt), is increased by the factor Ages fos.

Skeletal Plan Case%
¥ = 1
P~ Ve
RpE=r.
2 ST 9
L \Cg

Figure 6.2: Abstract configuration of a skeletal plan and a case
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Non-matched Features outside the Skeletal Plan. In more complex situations
non-matched, relevant features may not be included in the skeletal plan. Consider,
for example, the feature g; in the abstract situation described in Figure 6.2.2 A
question arises, namely, whether the weight of g8 must be recomputed or not. A first
possibility is to update the weights of all non-matched features. However, this does
not takes into account the particular adaptation episode; as replay starts from the
goals reconstructing the subgoal graph relative to the current problem, the fact that
some features were non-matched may have no influence whatsoever on the resulting
skeletal plan. This is illustrated in Figure 6.3. The decision d;, which reduced
the subgoal sg, was not reconstructed in the current situation because d1 is not
applicable in the new problem. That is, there is no binding of the variables in op
which is consistent with the binding constraints of the plan and the constraints of op.
Suppose, in addition, that the subgoal sg; was reduced with a decision corresponding
to applying a simple establishment with start. That is, sg; is achieved directly with a
feature ¢ in the initial state of the problem. If in the case, the binding of the variables
in op does not involve any of the arguments of ¢, 7 has no influence on the fact that d;
could not be reconstructed in the new situation. Further, if this was the only place
where 7 was used and ¢ is one of the unmatched features, then the weight of 7 should
not be updated.

Subgoal graph in the Case Subgoal graph after Replay

e relay -]

L= ] |

dil

op

‘ gl “

Figure 6.3: Abstract example of a replay episode.

Filtering Non-matched Features. CAPLAN/CBC performs a careful analysis
based on the resulting skeletal plan and the original case. This analysis is called
filtering as a subset of the non-matched features is selected. Filtering is performed

3Continuous boxes represent plan steps and continuous lines represent the order of execution
among the plan steps. Dashed boxes represent preconditions of steps. Preconditions remaining
unsolved after replay are labelled with a question mark, 2.
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by the function Filter Features(C,Sk) that returns a set, Expl, of non-matched,
relevant features whose weight must be recomputed. The set Fxpl meets the following
condition:

Expl explains the unsolved preconditions in the partial plan.

Explaining Open Preconditions. In the context of retrieval, explaining an open
precondition p, means finding the features in the case such that if they would have
been also present in the new problem, the precondition p would have been achieved
in the skeletal plan. The explanation for an unsolved precondition that is established
with the initial state in the case is the feature used to achieve the precondition.
Examples of such preconditions are available(rrt)@STEP-6 that occurs in the skeletal
plan shown in Figure 6.1, and g¢; that occurs in the skeletal plan shown in Figure
6.2. If p is established with a plan step in the case different from start (i.e., p is not
established with an initial feature of the problem), a careful analysis must be done
to explain it. For example, in Figure 6.2, it is assumed that g, remains unsolved
because a failed establishment with the plan step sy occurs.

The function Filter Features(C, Sk) is shown in Figure 6.4. It receives the re-
trieved case, C', and the skeletal plan, Sk, and returns an explanation, Fxpl. This
function uses two global variables: Arg and P. Arg contains all arguments of fea-
tures in Fxzpl and is computed dynamically. Initially, Arg and Expl are empty (steps
1 and 2). The idea of the function Filter Features(C,Sk) is to examine each open
precondition in the skeletal plan to obtain an explanation. To accomplish this, P
contains the open preconditions in Sk that have not been examined yet. Initially, P
is assigned all unsolved preconditions in Sk.

FilterFeatures(C, Sk) processEstab(p)
1. Expl + {} 1°. Expl < Expl U {p}
2. Arg + {} 2’. Arg < ArgJargIn(p)

3. P < unsolvedPrecond(Sk,C).

4. while (exists p € P with isEstabl(p,C)) processInconsistency(p,C,Sk)
4.1 processEstab(p) 1”. I < argsInconsistStep(p,C)
4.2P « P — {p} 2”7, If I C Arg then skip

5. while (P # {}) 3”. while (I — Arg) isNotEmpty
5.1 processInconsistency(P,C,Sk) 3.1” Let ¢; € I — Arg
5.2P « P — {p} 3.2” p’ + searchFeat(p,c;,C)

6. return Expl 3.8” processEstab(p’)

Figure 6.4: Algorithm for filtering features.

Recall that a precondition, p, can be achieved by establishing it either with the
initial state (i.e., with the dummy step start) or with a plan step associated with an
operator (see Definition 2.5). Thus, there are only two possible reasons why p was
achieved in the case and not in the skeletal plan:
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1. The establishment with start cannot be performed because there is no feature

in the initial state of the new problem that matches p. Examples of failed
establishment with start are available(rrt) @STEP-6 in Figure 6.1 and g; in
Figure 6.2. This failure is considered in the first control block of the algorithm
(step 4): each precondition, p, whose plan step in C is established with the
initial state (i.e., isEstabl(p,C) is true), is stored in Expl (step 1’) and its
arguments are collected in Arg (step 2’). The idea is that if the feature would
have been present in the initial state, the precondition p would have been
achieved by establishing it with start.

. The establishment with a plan step can not be performed because otherwise a

failure occurs (i.e., an inconsistency is introduced). This means that the step
used in the case to establish the precondition p cannot be used because the
effects of the corresponding operator does not match p modulo the bindings
constraints B in the current plan and the constraints of the operator. Thus, if
the operator is applied an inconsistency in the bindings occurs. This means,
for example, that there are two variables 1 and x2 bound with the constants
a and b respectively, and the constraint z; = x, is stated in the plan step.
For example, in Figure 6.2, it is assumed that s, can not be replayed because
a failed establishment with a plan step occured. Thus, the precondition gy
remains unsolved in the skeletal plan. This failure is considered in the second
control block of the algorithm (step 5). If the inconsistent arguments of the
plan step are included already in Arg, nothing is done (step 2”). Otherwise,
two steps are performed: first, each argument, ¢;, that was not included in
Arg already is added to Arg (steps 3.17, 2’). Second, for each argument c;,
the feature found by calling the function searchFeat(p, ¢;, C) is added to Expl
(steps 3.2”, 1°). This function returns a feature achieving a precondition, p', in
the case that has c; as argument and such that the distance® between p' and p is
minimal. The point here is that if the feature binding the inconsistent variables
would have been present in the initial state, the inconsistency would not have
occured and the plan step would have been applicable. Thus, the precondition
p would have been established with the plan step.

In summary, one or more features occuring in the case but not in the new problem

are identified as the explanation for not solving the precondition p in the skeletal plan.
In the case C, p is established either with start or with a plan step associated with
an operator. In the first situation, the explanation is constituted by the feature
in C' matching p. In the second situation, the explanation is constituted by the
features binding the variables, which caused the inconsistency that made the plan
step inapplicable in the new problem.

4The number of arcs of the shortest path connecting two preconditions in the plan.
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Updating the Weights of Features in Ezpl. Each of the features in Ezpl is
updated according to the outcome of the retrieval as shown in the algorithm of
Figure 6.5. C' and Sk denote the case and the skeletal plan. If the skeletal plan is
extendable to a complete plan (step 2), the complete plan is a solution plan of the
problem because all preconditions are achieved; in particular the preconditions of
FINISH, which are the goals of the problem (see Section 2.3). In this situation, the
weight of each feature in Fzpl is incremented by a factor w; ¢. Otherwise, the weight
of each feature in Ezpl is decremented by the same factor.

evaluateAdaptation(C, Sk)
1. Expl «+ FilterFeatures(C,Sk)
2. If (isExtendible(Sk))
For-each i € Expl
wi,c = wi,c + Do jo
3. Else
For-each i € Expl
Wi,Cc = Wi, — Akc,fc

Figure 6.5: Algorithm evaluating the adaptation effort.

6.3 Feature Context and Trivial Serializability

As mentioned in the beginning of this chapter, several factors affect the ranking of the
features in a case according to its importance. These factors, namely, the problem
description, the particular solution plan, the adaptation method and the domain
theory together with the description of the current problem form the context of the
case features. The adaptation method used in CAPLAN/CBC is either standard
or complete decision replay. Thus, the adaptation method is an invariant part of
the context independent of the other factors because the notion of retrieval failure
is the same for both forms of replay. In this section, we will examine the role of
the domain theory in determining the feature context. We will identify situations in
which updating the feature weights is done although the outcome of the retrieval is
determined by other factors in the context distinct from the initial features. We will
provide a characterization to identify these situations based on the domain theory.
This characterization will be illustrated with two examples. In the first one updating
the feature weights is adequate but in the second one it is not.

A Case in the Logistics Transportation Domain. Consider the initial situ-
ation in the logistics transportation domain (Veloso, 1994) illustrated in Figure 6.6
(a). In this situation there are three post offices A, B and C'. In post office A there is
a package p; and a truck. In post office B there is a package p,. In the final situation
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Figure 6.6: Initial situation of (a) the case and (b) the new problem.

both packages, p; and p,, must be located at C'. There are basic restrictions that
any solution must meet and as such form part of the domain theory: (1) only trucks
can move between post offices, (2) to load a package in a truck, both have to be
located at the same post office, and (3) to unload a package from a truck in a certain
office, the truck must be located at that post office. A possible solution is to load
package p; at A, move the truck from A to B, load package p, in the truck, move the
truck from B to C and unload both packages (the arcs show the path followed by
the truck, the numbers indicate the order). Suppose that this problem and solution
are stored as a case.

Example of a Situation in which Updating Feature Weights is Adequate.
Consider a new problem with the initial situation illustrated in Figure 6.6 (b). In
the final situation the three packages must be located at C. If the case is used to
solve the new problem, the truck follows the path illustrated by the arcs, collecting
at each post office the corresponding package, leaving the packages p; and py in C as
indicated in the case. Finally, package ps is loaded and moved to C. In this situation,
the retrieval of the case is adequate because steps taken from the case (2 and 3 in the
new problem) can be extended to solve the new problem. The problem solved in the
case was not totally contained in the new problem: in the case, the truck is located
in the same post office as a package whereas in the new problem, the truck is located
in a post office with no packages. Technically, this means that some initial features
were unmatched by the initial features of the new problem. If we take the unmatched
and matched features of the case as input for a weighting model, the weight of the
unmatched features found by the algorithm FilteringFeaures is decreased relative to
the weight of the other features in the case because their absence did not affect the
reusability of the case.

Example of a Situation in which Updating Feature Weights is not Ad-
equate. Now consider the same case and problem as before, but suppose that
additional restrictions have been added to the domain theory: (4) trucks must not
be moved into the same post office more than once and (5) problem-specific restric-
tions such as not allowing the truck to move from D to A in Figure 6.6 (b). These
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restrictions are made to improve the quality of the plan. Clearly, the path illustrated
in Figure 6.6 (b) violates restriction (4) because the truck is moved to post office C
twice (arcs 3 and 5). This means that the solution of the case must be revised. In
particular, moving the truck from B to C is revised and instead it must be moved
from B to D, where package ps is loaded. Finally, the truck is moved from D to C,
where the three packages are unloaded. In this situation, the retrieval of the case
is considered to be a failure and the weight of the unmatched features is increased
relative to the weight of the other features in the case. However, this does not reflect
the real reasons for the failure: even if the truck is located at A, the plan must still
be revised. The real reason is that in solving the additional goal, to locate ps in
C, a conflict with the solution of the case occurs. That is, the goal interacts nega-
tively with the case. This means that there are factors that affect the effectiveness of
reusing cases different than the initial features. As a result, the strategy of updating
the weights of the features based solely on the matched and unmatched features of
the case becomes questionable.

Characterization of the Situations. The difference between the standard speci-
fication of the logistics transportation domain and the extended (i.e., with restrictions
3 and 4) is that goals in the first one are trivially serializable but in the second one
not necessarily. This motivates the following claim:

Claim 6.1 (Context-Simplified) In domains where goals are
trivially serializable, the feature context are the initial features of
the problem and of the case, the goals common to the problem and
the case, and the solution of the case.

This claim essentially says that the additional goals do not affect the reliability
of the retrieval. As a result, weighting models on initial features can be used. To
show this, let G, G denote the goals of the case and of the problem respectively,
then the subplan achieving G¢ N G in the case is taken and extended relative to the
initial situation of the new problem (in the example, this extension corresponds to
moving the truck from C to A, i.e., arc 1). Once the plan achieving G¢ NG has been
generated, it can be extended to a plan achieving G because the goals are trivially
serializable (i.e., arcs 4 and 5). Of course, retrieval failures will still occur if the
subplan achieving G° NG in the case cannot be extended to solve these goals relative
to the initial situation of the new problem. But the point is that such a failure is
due to the initial features and not to the additional goals.

Table 6.1 summarizes this result (Sol® represents the solution plan of C). If
goals are trivially serializable, only goals that are common to the problem and the
case need to be considered. However, if goals are not trivially serializable, additional
goals in the problem and the case might affect the reusability of the case. This result
establishes a direct relation between the concept of trivial serializability and feature
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‘ Goals in Domain are ‘ Context ‘
trivially serializable Sol® + I+ I+ (G N Q)
not trivially serialiable Sol® +I¢+1+G°+G

Table 6.1: Context according to the characteristics of the goal interactions in the
domain.

context and shows the feasibility o feature weighting in case-based planning. Notice
that the claim is independent of the particular kind of planner being used; all it
requires are the goals to be trivially serializable for that particular kind of planner
and reuse based on replay.

Until now, no mention has been made about whether the fact that CAPLAN/CBC
uses extended problem descriptions plays any role on determining the context. Based
on the ordering restrictions < of the problem, a weakened form of trivial serializability
will be defined in the next chapter. This form of trivial serializability will be used
to weaken the conditions regarding trivial serializability of Claim 6.1. We closed this
section by defining goals interacting negatively with a case.

Definition 6.4 (Goal Interacting Negatively) Given a problem (I,G) and a case
such that G¢ C G, where GC are the goals achieved in C, a goal, g, in G — G® in-
teracts negatively with C if for any skeletal plan, Skel, obtained after replaying C
relative to (I,G), Skel cannot be extended to a solution plan achieving G¢|J{g}.

6.4 Handling Arbitrary Planning Domains

There are several domains for which goals are known to be trivially serializable (Bar-
rett and Weld, 1994; Kambhampati et al., 1996a). However, not for every domain
can be supposed that its goals are trivially serializable. A typical example is the
logistics transportation domain if restrictions (4) and (5) are considered. Notice that
even with these restrictions, there are several situations in which the retrieval is ad-
equate. For example, suppose that we have the same case as before and that the
initial situation of the problem corresponds to a slight modification of the situation
given in Figure 6.6 (b): p3 is located at C and in the final situation, p;, p, must
be located at C' and p3 at D. In this situation, the retrieval of the case is adequate
because the subplan achieving the first two goals can be extended to a plan achieving
these two goals relative to the new problem by moving the truck from C to A (i.e.,
arc 1). In addition, this subplan can be extended by loading ps in the truck, moving
the truck from C to D and unloading the package (i.e., arc 4). In this situation, the
weights of the features can be updated because the additional goals do not interact
negatively with the case. We will now show how explanation-based learning methods
can be used to detect dynamically the situations in which the failure was caused by
goals interacting negatively with the cases.
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Figure 6.7: Example of the regression of explanations over a search tree.

Explanation-based Learning (EBL). Explanation-based learning (EBL) has
been used to guide the search process in planning (Minton, 1988; Kambhampati
et al., 1996b). The current state is viewed as a node in the so-called search tree.®
If the node representing the current state has more than one successor node (i.e.,
there is more than one alternative to transform the current state), the planner has
to chose one. If the choice was wrong (i.e., there is no node representing a solution
in the subtree whose root is the chosen node), another neighbouring node has to be
chosen. If all alternatives have been exhausted, the planner will have to go back to
the predecessor of the node representing the current state and make another decision.
This backtracking process is very expensive. For this reason, the search path can be
analyzed to generate search control rules that explain the failure. When the same
situation is encountered the planner will avoid making the choice known to be wrong.

Detecting Negative Interacting Goals with EBL. The basic idea is to use
EBL to detect situation in which the goals contributed to the failure of the retrieval
because they interact negatively with the case (in CAPLAN the EBL mechanism
as presented in (Kambhampati et al., 1996b) was implemented (Roth-Berghofer,
1996)). Figure 6.7 sketches the search tree of the situation illustrated in Figure 6.6
if condition (4) is taken into account. The root of the tree is the left-most node.
The search three grows from left to right. Nodes labelled with Bn indicate that
backtracking has taken place. Nodes always show the goal being solved and the
operator selected to achieve that node (e.g., in the root node the goal is at(p;,C) and
the operator unload(truck,p;,C)). The nodes explored first are the ones taken from
the case. As explained in the previous section, the subplan in the case achieving the
first two goals can be extended relative to the initial situation of the new problem.
However, the extended subplan cannot be further extended to achieve the third goal
because of condition (4). From a technical point of view, a node will be reached that
does not represent a solution and that either represents an inconsistent state or has
no successors (not shown in Figure 6.7). At this node, EBL generates a so-called

5The meaning of the term “state” depends on the particular planning paradigm: for (Minton,
1988) “state” is a world state whereas for (Kambhampati et al., 1996b) it is a plan state (see Chapter
2).
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initial explanation that describes the inconsistency or the fact that the node cannot
be further transformed. The initial explanations correspond to the justifications of the
failed decisions in the sense of CAPLAN (see Section 5.3). This initial explanation
is propagated to the predecessor of the node. This propagation, called regression,
results in an explanation of the failure in terms of the conditions that were valid
at the predecessor node. If a node has more than one successor node its failure
explanation is the conjunction of the regressed explanations of each successor node
together with the goal being achieved. The obtained explanation can further be
regressed when backtracking occurs using the same principle. In Figure 6.7, four of
the backtracking nodes are shown and their corresponding regressed explanations are
sketched between <>. Two observations can be made here:

1. To have a retrieval failure is equivalent to backtracking on nodes that were
obtained through replay (Ihrig and Kambhampati, 1996a). For example the
node B3 replayed and backtracking on this node occurs. This means that the
case could not be extended and, thus, a retrieval failure occurs.

2. If backtracking is caused by goals interacting negatively with the case, these goals
are present in the regressed explanation of the backtracking nodes. This fact is
illustrated in the regressed explanation < goal : at(ps, C') > of the node B3.

The second observation is very important because it clearly states how to identify
if the failure is due to a negative interaction of a goal relative to the case; namely,
if the goal appears in the regressed explanation at the corresponding node. We will
illustrate why this statement is valid: notice that ¢g will be included in the explanation
of the backtracking at the node representing the state where g was pursued to be
achieved (node B2 in Figure 6.7). Because ¢ is an original goal in the problem,
there was no other node that added g. That is, every regression of an explanation
containing g will contain g again. This shows why the explanation of B3 includes
the negatively interacting goal at(ps3,C).

Evaluation Principle in General Domains. In domains that do not meet the
conditions of Claim 6.1, the EBL method is used in the way described above to detect
the situations where the goals interact negatively with the case. In these situations
no feature weights are updated. In contrast, if the adequateness or failure does not
involve any negatively interacting goal, the feature weights of the cases involved are
updated. In other words, we are using EBL to determine the context (i.e., if the
additional goals form part of it or not).

In Chapter 9 we will see that even in general domains feature weighting improves
the reliability of the retrieval provided that a filtering is made with EBL to the
feature weighting process as described in of this section.
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6.5 Discussion of Feature Weighting

As will be shown through extensive experiments (see Chapter 9), feature weighting
increases the reliability of the retrieval by reducing the number of retrieval failures.
There are, however, two problems that may occur as a result of using feature weight-
ing in case-based planning. The first one is the specialization of the cases, which can
be defined as follows:

Definition 6.5 (Case Specialization) A case C is specialized when there is a
problem P such that:

o The weight of at least one feature in C' s different than 1 and C does not meet
the weighted retrieval condition relative to P.

o [f the weights of all features in C are set to 1, C' meets the weighted retrieval
condition relative to P.

o If C 1is retrieved to solve P, the retrieval is adequate.

The specialization of a case means that situations occur in which the case is not
retrieved although it should. Depending on the previous problem episodes in which
the case was retrieved, the distribution of the feature weights in the case may lead it
to only recognize certain situations. As we will see in the experiments, specialization
of cases seems an inevitable side effect of feature weighting. In the same experiments,
however, we will see that in the average situation, the specialization of the cases tends
to be low. Moreover, the increase in reliability is so significant that overall it pays
off to perform feature weighting.

The second problem is that a case may need to be retrieved several times before
retrieving it is reliable. This depends mainly on the problems which were given
previously. Feature weighting -as any dynamic learning procedure- depends on the
order in which the problems are given (also called training ezamples in this context);
if a set of problems is given in a certain order, the case will learn a good distribution of
feature weights rapidly whereas in other learning order a good distribution of feature
weights may require several training examples. In CAPLAN/CBC this problem is
handled by a synergistic integration of the retrieval and the adaptation procedure.
This integration is called the dual integration of retrieval and adaptation and will be
explained in Section 7.3. The principle is to use dependency-driven retrieval when
non reliable cases are retrieved. The nonreliability of the case is compensated with
the high degree of repair of this adaptation method. Complete decision replay is
specially suited for situations in which replayed decisions need to be revised. That
is, for situations in which retrieval failures occur. Moreover, when relialable cases
are retrieved, the efficiency of the problem solving process is improved by performing
standard replay as the partial solution obtained after replay is likely to be extensible
to a solution plan.
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Chapter 7

Integration Issues in CAPLAN/CBC

In previous chapters we presented different aspects of CAPLAN/CBC; first, we pre-
sented dependency-driven retrieval, which is the static retrieval technique developed
to make a preselection of the cases based on the goals and ordering restrictions of the
current problem (G, <). Then, we observed the flaw of standard replay in plan-space
planning; namely, that the degree of repair is low. Complete decision replay corrects
this flaw by considering failed decisions made in the cases. If the justifications of
a failed decision can be reconstructed, the decision must be also invalid in the cur-
rent problem. Thus, this decision is not explored during the completion process. In
the previous chapter, we presented a dynamic retrieval technique based on feature
weighting. The features in the case are weighted according to their relevance to the
solution in the case. The weighted similarity metric counts the weights of the features
in the case matching features in the problem, I. The feature weights are recomputed
according to the performance of the retrieved case in the case-based planning episode.

In this chapter, a cross examination of different issues involving the integration
of dependency-driven retrieval, complete decision replay and feature weighting in
CAPLAN/CBC will be made. More concrete, the following issues will be discussed:

Organization of the Case Base. Retrieval in CAPLAN/CBC is a twofold pro-
cess. First, dependency-driven retrieval is performed to make a preselection
of the cases. Second, feature weights of the preselected cases are considered
to make a final selection. In the first section of this chapter, the organization
of the case base will be presented, which enables CAPLAN/CBC to perform
the twofold retrieval process on an indexing structure instead of directly with
the cases. The indexing structure extends the one presented in Section 4.6 by
representing the feature weights.

Policy to add New Cases. The decision of whether to add a particular solution
found as a new case depends on a measure of the benefit of the retrieval. In the
second section of this chapter, this measure will be explained and contrasted
with the notion of adequate or failed retrieval (see Definition 6.3).

105
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Dual Integration of Retrieval and Adaptation. One of the very basic princi-
ples of CBR is that in the retrieval phase, one or more cases are selected which
are adaptated to solve the current problem. In CAPLAN/CBC the retrieved
cases are not only adapted into a new solution but they also determine which
adaptation method to use, standard replay or complete decision replay.

The Domain Theory and Retrieval. Trivial serializability is a condition stated
for problem descriptions (see Definition 2.9). In particular, it is based on a prop-
erty that the goals in G must meet. Given that problems in CAPLAN/CBC
are stated in the form of extended problem descriptions, the notion of trivial
serializability can be restricted by considering the ordering restrictions <. In
the fourth and last section of this chapter, the restricted form will be defined
and discussed how the retrieval process can be adequated for domains in which
(G, <) meet the weakened condition.

7.1 Organization of the Case Base in CAPLAN/CBC

The case base in CAPLAN/CBC is a three level structure. The top level is formed
by the type-representation table and the GDN (see Section 4.5). For each different
type representation typRep of a set of goals achieved by a case, there is an entry
in the type-representation table. Each entry points to a tree in the GDN in which
all dependency classes of every set of goals achieved by a case and having the same
type-representation are represented. Every path [rt n; ... ny] in these trees such
that rt is the root of T', n; is a son of rt, n;y; is a son of n; and n,, is a leaf of T
meets the following condition: if G; denotes the goals in n;, then [G,...,G,,] is the
sequence of dependency classes for all cases indexed below n,,.

As explained in Section 4.6, the main advantage of the GDN is that the order
consistency condition can be tested by traversing its trees; given a new problem,
(I,G, <), the GDN is used to identify a path [rt ny ... n,] of a tree T such that all
cases indexed below n,, meet the order consistency condition relative to <. These
cases are the ones that are considered as preselected during the first phase of the
twofold retrieval process.

We will now explain, how the indexing structure was conceived at the second
level of the indexing structure, in which the feature weights are represented. Typi-
cally, initial features have been indexed by considering the frequence in which each
feature occurs in the cases (Veloso, 1994); a tree structure, which we call feature-
discrimination tree, is built reflecting the frequence with which the features occur.
Features common to all cases are located in the root of the feature-discrimination
tree. The successors of a node further discriminate the cases by containing features
common to some cases. The initial features of any case indexed below a leaf n can
be collected by following the path from the root to n. Figure 7.1 depictes a feature-
discrimination tree for two cases, C'l and C2. The root contains the common features
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whereas the two leafs their differences. The motivation of this structure is to reduce
the possibility of performing the same match between initial features more than once.

C1 Cc2

Figure 7.1: Feature-discrimination tree for two cases (Veloso, 1994).

Given the initial features of a new problem, the feature-discrimination tree is
traversed starting from the root and counting for each case the percentage of its
features that match features of the problem. If the percentage of features in a case
matching features in the problem is greater than the retrieval threshold, the case is
selected. If two or more cases meet this condition, one of them is alleatory selected
and retrieved. This corresponds to the weighted retrieval condition but assuming
that the weights of all features is 1 (see Definition 6.2).

As discussed in Section 6.1, each feature 7 in CAPLAN/CBC has an associated
weight, w;c, that depends on the particular case C' in which the feature occurs
and reflects the importance of the feature in the case. In principle, the feature-
discrimination trees could be used to search for a case meeting the weighted retrieval
condition; instead of counting the number of features matched, their weights should
be counted. However, by using the feature-discrimination trees, unnecessary matches
may be performed as, frequently, the features that are most common have a small
weight. Thus, matching them will not have a significant contribution in the process of
finding a case meeting the weighted retrieval condition. For this reason, we conceived
an indexing structure that considers the feature weights directly. The base of this
structure is the notion of weight w; ¢y of a feature 7 relative to a collection of cases

Coll.

Definition 7.1 Given a collection of cases Coll, the weight w;cou of a feature @
relative to Coll is defined by the formula:

Wi, coll = E wi,c

ceColl

As we saw, each path from the root of a tree in the GDN to a leaf represents
the sequence of dependency classes for all cases indexed below the path. The leaf of
the path does not point directly to the cases, but to a structure that discriminates
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them based on their weighted features (see Figure 7.2). This structure consists of
one or more intervals. Each interval contains at most a predefined number, num,
of features occuring in the cases that are indexed below the leaf. To determine the
intervals, the features 4,,;, and 7,4, with the minimal and maximal weight relative
to all cases in the collection are chosen. Two intervals are formed; in the first one
all features with weight greater than (w;, ;. coli + Wina.,coir)/2 are grouped and in the
second one all others. If more than num features are contained in an interval, the
interval is partioned recursively in the same way. Thus, ,,;, and ?,,,, are computed
relative to the features in the interval. A feature-discrimination tree is used to index
all features grouped in an interval. The number num is an input parameter to the
system. It is typically set to 20 to maintain the size of the feature-discrimination
trees relatively small. In the structure, the intervals are ordered starting from the
one with the heavier weights and finishing with the one with the lighter weights. In
Figure 7.2, w; is the weight of the heaviest features. An interval (wy, ws] includes all
weights between w; and wy but excluding ws.

GDN /

I (w3,w2]

feature-
teature- discrimination tree

discrimination tree

COLL= Casel .. Casel23

Figure 7.2: Fragment of the second level of the indexing structure in CAPLAN/CBC.

As we saw, during the first phase of the retrieval process, a path from the root
to a leaf of a tree in the GDN is found. The collection of cases indexed below the
leaf are known to meet the order consistency condition with a substitution . Thus,
in the second phase, the structure pointed by the leaf is traversed to find a case in
the collection meeting the weighted retrieval condition with the same substitution 6.
To traverse this structure, CAPLAN/CBC keeps track of the weighted proportion
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of features in each case in the collection matching features of the current problem.
The first interval visited is the one containing the features with the heavier weights.
The process continues by visiting the next interval with heavier weights and so on.
The process is finished when either a case is found meeting the weighted retrieval
condition or the interval with the lighter weights has been visited and no case was
found. In the latter situation, CAPLAN/CBC performs backtracking to find a new
sequence of dependency classes and repeats the process again.

7.2 Policy to Create New Cases

As discussed in Section 3.2.4, the fact that a retrieval failure occurs does not nec-
essarily means that the adaptation effort was large. Even if some decisions in the
skeletal plan need to be revised, the adaptation effort may be small because of the
high degree of repair of complete decision replay (see Chapter 5). More concrete, the
more justifications of failed decisions can be reconstructed, the more decisions are
marked as invalid in the conflict sets. Thus, if backtracking takes place, the number
of decisions in a conflict set that are not invalid can be very small. As a result, the
system may explore a relative small portion of the space to refit the skeletal plan into
a solution plan. In this situation, clearly, there is no point in creating a new case
with the solution of the current problem as this can be easily reconstructed with the
available cases.

The opposite may occur as well; the retrieval may be considered to be adequate
but still the adaptation effort may be quite large. This means that even though the
skeletal plan was extended to a solution plan, the planning effort to find the solution
plan was large. In this situation, the solution of the current problem found should
be added as a new case in the case base. CAPLAN/CBC adds new cases only if the
retrieval is considered nonbeneficial in the sense of the following definition:

Definition 7.2 (Beneficial Retrieval) Given a plan Pl, searchSpace(Pl) counts
the number of visited nodes when generating Pl.

Given a solution plan Sol of a problem P obtained by adapting a case C, then the
retrieval of C s beneficial with respect to Pl and C' if:

searchSpace(Pl)/searchSpace(Skel) < thryen

where Skel is the skeletal plan and thry., is a predefined threshold, called the
benefit threshold.

The value of the benefit threshold thry, is a parameter of the system. For exam-
ple, if it is set to 2, the retrieval is considered nonbeneficial if the size of the search
space explored to obtain Sol is at least twice as much the size of the one explored to
generate Skel. To compute searchSpace(Skel) only the valid decisions reconstructed
from the goal graph are counted. The reason for this is that the marking of decisions
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as failure is based on the reconstruction process of the justifications and formally
does not involves the exploration of the search space (in the next section, the effort
involved in reconstructing the justifications will be considered.) searchSpace(Sol) is
the sum of searchSpace(Skel) and the size of the search space explored to refit Skel
into a solution plan.

7.3 Dual Integration of Retrieval and Adaptation

As discussed in Section 5.8, complete decision replay reduces the completion effort
of the skeletal plan by discarding decisions known from the retrieved cases to fail.
Stating if a decision fails in the new problem knowing that it has failed in the re-
trieved case requires that its justifications can be reconstructed relative to the current
problem. Reconstructing the justifications causes an overhead compared to standard
replay. In complex domains, it pays off to perform complete decision replay as the
retrieval fails frequently and, thus, decisions made to obtain the skeletal plan need
to be revised. Still, if the outcome of the retrieval (i.e., whether it fails or it is ade-
quate) can be predicted, the time for the adaptation process can be reduced. More
concrete if the retrieval of a case is predicted as adequate, standard replay can be
used instead of complete decision replay avoiding in this way the overhead caused by
the justification reconstruction process.

The feature weights in a case indicate a hypothesis about their relative impor-
tance for the case. This hypothesis is tested in subsequent retrieval episodes, as result
of which, the hypothesis is reinforcement or punishement of by updating the feature
weights. If the hypothesis is correct, the retrieval is adequate. This means, that
the decisions taken from the skeletal plan does not need to be revised and as such
there is no point of performing complete decision replay. The problem is whether the
outcome of the retrieval can be predicted or not. In CAPLAN/CBC related statis-
tical information is maintained; namely, the number of adequate and failed retrieval
episodes in which each case was involved. These numbers are used to determine
the incremental factor Ay o, indicating to what extend the feature weights will
be modified (see Section 6.1). The larger the proportion of adequate retrievals k¢
relative to the failed retrievals fC in a case C, the greater the possibility that the
hypothesis about current distribution of the feature weights is correct and the less
likely is that a retrieval failure occurs. Thus, this criterion can also be used to predict
if standard or complete decision retrieval is to be used:

If the proportion of k¢ to f¢ is greater than thr,.,, standard replay
is used. Otherwise, complete decision replay is used.

The number thr,., is called the replay threshold, which is a parameter to the
system. For example, if thr,., is set to 4 to 1, standard replay is selected to adapt
the retrieved case if from every five retrieval episodes involving the case four were



7.4. THE DOMAIN THEORY AND RETRIEVAL 111

adequate. Still, complete decision replay is key for the efficiency of the case-based,
problem solving process. There are two reasons for this:

e Several retrieval episodes usually take place before a good distribution of the
feature weights are learned.

e In complex domains, new cases are frequently learned.

In resume, the retrieval phase plays a dual role in CAPLAN/CBC; namely, the
usual role in CBR of selecting one or more cases from the case base and a new role
of determining which adaptation method should be used.

7.4 'The Domain Theory and Retrieval

The notion of trivial serializability is based on the traditional specification of problem
descriptions. That is, as a pair (I, G). However, if problems are specified by extended
problem descriptions (I, G, <), this notion can be simplified. By definition, if < is
valid, any solution plan for this problem meets the ordering restrictions in < (see
Section 4.1). Thus, instead of considering all permutations of goals as in trivial
serializability, only permutations of goals that extend < can be considered.

Definition 7.3 (<-Consistent Permutation) A permutation © on a partially or-
dered set of goals, ((g1, 92, .., gn), <), is <-consistent, if, for any two goals, g;, g;,
such that g; < g;, then, (g;] is ordered before m|[g;].

Accordingly, we will restrict the definition of trivial serializability to consider
only permutations that are <-consistent. In this way, we exclude from consideration
permutation orders to achieve the goals that are not to be followed by the planner.

Definition 7.4 (<-Constrained Trivial Serializability) A partially ordered set
of goals, ((91, 92, ---, gn), <), @8 <-constrained trivially serializable, if any <-consistent
permutation on these goals is a serialization order (modulo a class of plans P ).

Notice that, for deciding if a set of goals is <-constrained trivial serializable, the
number of permutations required to be serially extensible is less than the number of
permutations required for deciding if they are trivial serializable. The reduction in
the number of permutations to be considered is directly proportional to the degree
of ordering defined by <. In the limit, if the set of goals is totally ordered, only one
permutation, the one defined by <, must be inspected to decide if they meet this
property. Thus, the following proposition can be stated:

Proposition 7.1 Let ((g1,92, -, 9n), <) be a partially ordered set of goals. If g1,
G2,--,Gn 18 trivially serializable, then ((g1, g2, ---, 9n), <) 8 <-constrained trivially se-
rializable.
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Example. As mentioned before, in the domain of process planning, the ordering
restrictions < are stated by the geometrical reasoner. In (Muhoz-Avila and Weber-
skirch, 1996¢) it is formally shown that goals corresponding to processing the areas
of a workpiece are not trivially serializable modulo the class of elastic protected
plans to process workpieces. However, in the same work it is shown that the goals
are <-constrained trivially serializable modulo the class of elastic protected plans to
process workpieces. An intuitive explanation can be given by recalling the example
presented in Section 3.5.1. In that example the workpiece depicted in Figure 7.3 is to
be processed. In particular, the horizontal outline H and the undercut U; must be
processed. In addition, it is known that the horizontal outline H is to be processed
before the undercut Uy, that is, processed(H) < processedH1(U;) holds. The reason
for this is that H covers U;. Thus, U; cannot be accessed until H is removed. If U; is
processed before H, the precondition to process U; requiring the tool holder machine
to be free will be established with start (i.e., is an initial feature of the problem).
This establishment needs to be revised when ordering the processing step of H before
the one of U;. The precondition to process U; requiring the tool holder machine to
be free must be established with an step unmounting the tool, which was mounted
to process H.

w0 Al H A2

o Ul u2
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Figure 7.3: Display of a rotational symmetrical workpiece.

7.4.1 Dependency-Driven Retrieval and <-Constrained Triv-
ial Serializability
In this section, we will discuss how the order consistency condition can be modi-

fied to consider domains that are known to have goals being <-constrained trivially
serializable but not trivially serializable.

Example Motivating the Modification of the Retrieval Condition. Con-
sider a problem consisting of three goals, g1, g2, g3- Suppose that any solution
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must meet the ordering restriction g; < g3 and that g;, ¢g», g3 are known to be <-
constrained trivially serializable but not trivially serializable. If a case C' achieves
the goals g] and g4 such that ¢| and g¢j match ¢g; and g3 and ¢} <¢ ¢] does not
hold, C' is still an adequate candidate. The reason for this, is that during completion
new ordering constraints may be added so that g; < g3 holds in the final solution.
However, retrieving a case C' achieving a goal matching g, and no goal matching gy,
is no longer adequate. The reason for this is that in this situation the permutation
orders to achieve the goals are either gs, go, g1 or g», g3, g;. The resulting order
is g3, g9, g1 if g3 is the only goal achieved in C or if g, and g3 are achieved in C
and g3 <¢ g2 holds. The resulting order is go, g3, g1 if go» and g3 are achieved in C
and gs <¢ g3 holds. In either case, the permutation is no longer <-consistent as g3
is processed before g;. Because <-consistent trivial serializability links the order in
which the goals must be achieved during the planning process with the order with
which the goals must be established in the resulting solution plan, achieving g5 before
g1 results in a failure. In the example with the domain of process planning, the same
situation is encountered if a one-goal case is retrieved achieving U;. After the case is
replayed, the skeletal plan achieves U;. During the completion process, the skeletal
plan must be extended to achieve the other goals; in particular the processing of
H. Thus, processedH1(U;) is achieved before processed(H), which is clearly not a
<-consistent permutation to achieve the goals and, as we saw, results in a failure.
The order consistency condition is restricted to consider these situations:

Definition 7.5 (Order Consistency Condition Modulo <) Suppose that goals
in the problem (I,G, <) are <-constrained trivially serializable but not trivially se-
rializable. A case C' meets the order consistency condition modulo < if there is a
substitution 0 such that

1. Geb CG@.
2. For every pair of goals g, h € G, if g8 < hf holds, then h <o g must not hold.

3. If g0 is in GcO N G, then for every h in G with h < g6, exists h’ in G such
that h'0 = h and h is in Gc0 N G.

Where G¢ are the goals achieved in C.

The first two conditions are the requirements of the order consistency condition
(Definition 4.6); namely, the goals of the case must match a subset of the goals of the
problem and the order of the case must be consistent with the order of the problem.
The third condition says that if a goal achieved in the case matches a subgoal ¢’ = g6
of the problem, all the predecessors of ¢’ relative to < must be also matched by goals
achieved in the case. This condition ensures that the goals of the problem are solved
with a <-consistent order.
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Evaluating the Order Consistency Condition Modulo <. The GDN allows
to test condition 1 and 2 by traversing it. In particular condition 2 is tested based
on the following property: the only way that the order consistency condition is not
met relative to an ordering g < h in the current problem is if g is matched by a goal
in a node ny, h is matched by a goal in a node n, and n, is a predecessor of n,.
The algorithm retrieveCandidateCasesGDN test this property in the following
way (see Figure 4.13): if a goal in a node n matches g with a substitution 6, each
predecessor n' of n is tested if it contains a goal matching h with the substitution . If
any such a node is found, every case indexed below n violates condition 2. Otherwise,
each of these cases meets condition 2 relative to g < h. When this process is made,
CAPLAN/CBC simultaneously collects all the goals ¢’ in n’ such that ¢’§ < g holds.
In domains in which the conditions of Definition 7.5 must be tested, once these
goals are collected and if condition 2 is not violated, CAPLAN/CBC checks if all
predecessors of ¢ relative to < are also in the collection. If this is the situation,
all the cases indexed below n meet condition 3 relative to g. Otherwise, none of
them meets it. The same process is repeated if any goal g is matched by the node n
currently being revised.

7.4.2 Feature Weighting and <-Constrained Trivial Serializ-
ability

Claim 6.1 states that in domains in which goals are trivially serializable, the context
of a feature can be simplified. In particular, goals in the problem that are not matched
by goals in the retrieved case C' have no influence whatsoever on the outcome of the
retrieval. This means that once the skeletal plan has been refitted to a subplan SP
achieving Go0NG, SP can be extended to a solution plan achieving G. We discussed
that there are domains in which goals are <-constrained trivially serializable but not
trivially serializable. Suppose that [g1,..,0i, gi+1,---,9n| IS @ <-consistent permutation
of the goals and there is a case C achieving a set of goals G and a substitution 6 such
that Gof = [g1,--,9;]- In this situation, once the solution of C has been refitted to a
subplan achieving [g,..,9;], the subplan can be extended to a solution plan achieving
(91,--,95, Git1,---,9n]- Thus, we can now formulate a restricted form of Claim 6.1:

Claim 7.1 Suppose that a domain is given in which goals are
known to be <-constrained trivially serializable and not trivially
serializable. Then, the factors influencing the effectiveness of the
reuse are the initial features of the problem and of the case, the
goals common to the problem and the case, and the solution of the
case provided that only consistent cases are retrieved.

As before, retrieval failures still occur if the subplan achieving G¢ NG in the case
cannot be extended to a subplan achieving these goals relative to the initial situation
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of the new problem. But this claim says that if the subplan can be extended to
achieve G N GF, no failure will occur when extending it further to achieve all the
goals in the new problem (i.e., G). This claim is also independent of the particular
kind of planner being used.
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Chapter 8

Mergeability in Plan-Space
Planning

In the previous chapters, the retrieval procedure developed in CAPLAN/CBC was
presented. It combines dependency-driven retrieval to make a preselection of cases
based on the goals and the ordering restrictions (G, <) of the current problem and
feature weighting to make a final selection based on the initial features I (Chapters 4
and 6). The retrieval procedure selects several cases, each of them covering a disjoint
subset of G.

In this thesis, we presented an adaptation method in which cases contain not only
the solution plan but also information about the failed attempts to solve the problem.
As a result, the adaptation effort is reduced (see Chapter 5). The adaptation method
is based on replay in plan-space planning. In this chapter we will study known
techniques for merging cases in the context of plan-space planning and based on
replay. We will examine the strengths and limitations of these methods and state
policies regarding their use.

The first method that we studied follows directly from a general definition of merg-
ing as presented in (Kambhampati et al., 1996a). The basic idea is to replay steps
of the retrieved cases independent of the steps replayed from the other cases. These
independently replayed cases are completed into a solution by the first-principles
planner. We call this method blind merging as steps are replayed from the current
case without considering the steps which have been previously replayed from other
cases. A more elaborated merging method, which we call non-redundant merging, is
to consider the replayed steps to avoid adding steps that already have been intro-
duced. Non-redundant merging was first implemented on a case-based, state-space
planner (Veloso, 1994; Veloso, 1997) and later on a case-based, plan-space planner
(Thrig and Kambhampati, 1996a).

Clearly, the use of blind merging results in plans containing redundant steps. That
is, the resulting plans contain several steps achieving the same goal. However, it could
be possible that the efficiency to find a solution plan is not affected. We carefully
examined blind merging based on SNLP and found that it is unlikely that the plan
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obtained after replaying all the retrieved cases can be extended into a solution plan.
This means that steps in the plan obtained after replay will need to be revised to
find a solution plan of the current problem. Thus, this method tends to be very
inefficient.

Non-redundant merging has been shown to be effective in guiding the planning
process of case-based, state-space planners (Veloso, 1994) and of particular interest
to our work for case-based, plan-space planners (Ihrig and Kambhampati, 1996a).
However, we found two limitations of this method: first, we found that, when using
non-redundant merging, requiring that the partial plan obtained to be extensible
to a solution plan is a strong requirement (Mufioz-Avila and Weberskirch, 1997a).
Second, we will see that in domains having a certain kind of interactions, the size of
the partial solution obtained after replay tends to decrease with problem size. Thus,
to retrieve a single case covering much of the goals of the problem or to retrieve fewer
cases covering much of the goals is at least equally effective as to retrieve several cases
covering all goals in these domains.

We will also discuss how non-redundant merging is implemented in the context
of complete decision replay and how the notions of retrieval failure and beneficial
retrieval are extended to multi-case retrieval. Finally, we will re-state the context-
simplified claim (see Claim 6.1) for multi-case retrieval.

8.1 Blind Merging of Cases

As a motivation to the discussion that follows, we continue with the example pre-
sented in Section 3.5. In this example, the workpiece depicted in Figure 8.1 must
be manufactured by considering the cutting tools available. Seven of the areas that
must be processed are depicted: the two ascending outlines A; and A,, the horizontal
outline H, the two sides S1 and S2, and the two undercuts U; and U2. Now suppose
that two cases are available in which two plans P; and P, are contained. Suppose
that in P1 the areas to the left of the vertical line are processed and that in P2 the
areas to the right. Thus, for example, the areas Ay, H, U;, U2 and S1 are processed
in P; whereas the areas A, and S2 are processed in P,. Suppose in addition that the
cutting tools available in the problem were also used to obtain P1 and P2. In this
situation, one would expect that by merging P1 and P2 a plan to manufacture the
workpiece can be easily obtained. We will show, however, that this is not the fact
when blind merging is used. But first, we recall the notion of mergeability of plans
(Kambhampati et al., 1996a), which as we mentioned is the base of blind merging:

Definition 8.1 (Mergeability of plans) Given a class P of plans and a plan,
Py, in P for achieving a goal g,. Py is mergeable with respect to a plan Py in P for
achieving a goal g9 if there is a plan P in P extending P, and Py and achieving both
91 and gs.

In addition, the plans are said to be simple mergeable if every step in P is
present in either Py or Py, and the number of steps in P is equal to the number of
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Figure 8.1: Display of a rotational symmetrical workpiece.

steps in Py and Py (that is, only ordering links are added to extent P, and Py).

As with the definition of serial extensibility, the definition of mergeability does
not exclude that backtracking takes place in finding P (see Section 2.4). The point
is that no backtracking should take place in the decisions made to obtain P; or in
P,. This notion is illustrated in Figure 8.2, where P1 and P2 are two plans that are
extended by adding the step s and four links. The depicted plan does not show that
P1 and P2 are simple mergeable because for that to happen only links can be added
to find P. Notice that this definition is only for two plans. The extension for more
than two plans is straightforward. The remaining definitions of this chapter are also
made for two plans for the sake of simplicity.

z(

=

C A H\» 8

L -

Figure 8.2: Illustration of the notion of mergeability.

In CBP, a maximal gain is expected if a case base is given that is constituted
of mergeable plans. If the cases can be replayed totally in the the context of the
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new problem, the mergeability condition ensures that the planner will not need to
revise decisions taken in the cases during the completion phase. It may not always
be possible to replay the cases completely. However, if the cases are small in terms
of the number of goals solved (e.g., one-goal cases), this situation is likely to occur.
The strategy of storing small cases has been explored before to decrease the size of
the case base (Ihrig and Kambhampati, 1996a).

Mergeability turns out to be a strong requirement. A first indication of how
strong this requirement is can be derived from the following definition:

Definition 8.2 (Parallelizability of Goals) Given two goals g1 and go. If any
two plans Py and Py achieving g, and gy are mergeable, then g, and go are said to be
parallelizable.

If goals in a domain are known to be parallelizable, each goal of a new problem
can be solved separately. Afterwards the obtained solution plans can be merged. In
(Kambhampati et al., 1996a), however, it is shown that mergeability is a stronger
requirement than trivial serializability:

Proposition 8.1 If a set of goals is parallelizable, the goals are trivially serializable.

The opposite direction does not hold; goals might be trivially serializable but not
mergeable (an example will be shown later in this section). Still, that does not say
anything with respect to the example with the workpiece domain presented in this
section; even if the seven goals are not parallelizable, it could be that the plans P;
and P, are mergeable. Non-parallelizability means that there are plans achieving
the goals that are not mergeable. Thus, if the goals are not parallelizable does not
necessarily means that all plans are nonmergeable. The following proposition explains
why the plans P, and P, processing parts of the workpiece depicted in Figure 8.1 are
not mergeable:

Proposition 8.2 Suppose that first-principles planning s done with SNLP. Then, a
complete plan Py for achieving a goal g1 is mergeable with respect to a complete plan
Py for achieving a goal go if and only if Py and Py are simple mergeable.

Proof. Clearly, if P, simple mergeable with respect to P, relative to g; and g2,
then these plans must also be mergeable relative to these goals. To show the opposite
direction, suppose by contradiction that a plan step s was added by SNLP to extend
P, and P,. New steps are added by SNLP only to achieve open preconditions. Thus,
either P; or P, have an open precondition. This is a contradiction because P; and
P, are complete. Thus, no step could have been added to find P. As a result, the
plans must be simple mergeable relative to g; and g,. B

Although the proof of this proposition is simple, it has a significant consequence:
if for extending two plans to a solution plan any step must be added, backtracking will
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take place because the plans are nonmergeable. For example, in the domain of process
planning there are always interactions (threats) between any two complete plans
because the use of the cutting tools and the clamping operations must be rationalized.
Concretely, every step holding a tool in a plan will interact with every step holding
a tool in the other plan. Theoretically, to resolve these interactions (conflicts), it is
enough to add links. However, in the specification developed (see Appendix A), not
only ordering links must be added between the holding steps to solve the threats, but
new steps must be introduced as well for performing the operation that unmounts
the tool from the holding machine, MakeToolHolderFree. This is not particular to
our specification; the same situation occurs if the specification of (Gil, 1991) is used
(the unmount operation is called Release-from-holding-device there). As a result,
proposition 8.2 shows that machining plans are not mergeable for SNLP if either of
these specifications is used.! In particular the two plans processing the two parts of
the workpiece depicted in Figure 8.1 are not mergeable. Thus, backtracking will take
place when merging them.

Example of Goals that are Trivially Serializable but Not Mergeable. For
another example consider the initial situation in the logistics transportation domain
depicted in Figure 8.3: there are three post offices A, B and C, two packages p; and
p2 and a truck. The packages and the truck are initially located in B. Suppose that
the goals of the problem are (1) to relocate p; in A and (2) to relocate py in C. The
arcs 1 and 2 depict two subplans achieving the two goals separately; namely, the first
goal is achieved by loading p; in the truck, moving the truck from A to B and then
unloading p; from the truck. The second plan follows the same scheme: p, is loaded
in the truck, the truck is moved from B to C and then p, is unloaded. The point
here is that there is no possible extension of these subplans without adding a plan
step; independent of how SNLP orders the steps of the subplans, a new step must
be added. Notice first that the subplans must be ordered so that one is executed
before the other one because they use the same resource (i.e., the truck). If, for
example, the first subplan is ordered before the second one, a step must be added
between them moving the truck back to B so that the second plan can be performed
(this movement is depicted with the doted line). Proposition 8.2 says that these two
subplans cannot be mergeable in SNLP. Goals in the logistics transportation domain
are trivially serializable for all classes of plans. The reason for this, is the reversible
character of its operations. For example, trucks can always be moved back to its
original destination.? Thus, these two goals are an example of goals that are trivially
serializable but not mergeable.

In (Mufioz-Avila and Weberskirch, 1996c) an explanation of why it is natural to model the
holding operations in this way is given.

2This, however does not mean that problems in this domain are easy. The computational effort
to extend a particular plan can be very large.
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Figure 8.3: A situation in the logistics transportation domain

Meaning of Proposition 8.2 for CBP. The meaning of this result for CBP is
also significant: if some of the retrieved cases can be replayed completely and steps
must be added to extend them, the retrieval will fail because replayed steps must
be revised. This is a sensitive issue, in particular for case-based planners based on
SNLP having as storage policy to store only cases achieving fewer goals as possible
(Thrig and Kambhampati, 1996a). If a multi-goal problem is given, it is likely that
some of these cases can be completely replayed but they cannot be merged. Even
for other approaches, the result shows the strong limitations of blind merging based
on SNLP because precisely in the situations where a maximal gain is expected from
CBP, namely, when the description of the retrieved cases are entirely subsumed in
the description of the current problem, a retrieval failure occurs. In this situation,
blind merging will be able to replay the whole cases but the SNLP can only extend
them if and only if only ordering constraints need to be added. In Chapter 9 it will be
shown that in general blind merging is in fact very innefficient and is outperformed
even by first-principles planning.

8.2 Non-Redundant Merging of Cases

A disadvantage of blind merging is that the solution obtained may be very large
because several steps are repeated unnecessarily. To avoid redundancy, another form
of merging, which we call non-redundant merging, has been proposed (Veloso, 1994;
Thrig and Kambhampati, 1996a). During the replay phase, opportunities to establish
preconditions are considered in the following way: before replaying a step to establish
an open precondition, the system checks if the precondition can be established with
a step in the current subplan (i.e., the subplan already obtained from the previously
replayed cases). If this is possible, the step is not replayed and the precondition
is left open. During the completion process, the first-principles planner prefers to
establish the conditions left open by the replay process by using the available steps.
That is, the first-principles planner prefers to perform simple establishments than
establishments with a new plan step. New steps are added only if no completion of
the plan by using the steps available is possible. If more than two cases are involved,
the process is done stepwise: the first two are merged and extended to obtain a
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complete subplan (i.e., a subplan containing no open preconditions and no threats).
The third case is then merged with the current subplan and so on. The rationale
behind non-redundant merging is to take advantage of opportunities to establish the
open preconditions using steps that were not available when each case was solved
because they were solved separately.

Example of the Effect of the Interactions in Merging. The way the interac-
tions between the goals affect the non-redundant merging process is illustrated with
the example in Figure 8.4. cs, hs and ms denote clamping, holding and machining
steps respectively. That is, steps to mount the workpiece, steps to hold a cutting
tool and steps to process an area. This figure depictes two subplans achieving ma-
chined(H) and machinedH1 (U, ), processing the area H and half of the area U; of the
workpiece depicted in Figure 8.1. The partial plan is obtained with non-redundant
merging and when the subplan achieving machined(H) is generated before the sub-
plan achieving machinedH1(U;). A processing step cs(left), depicted with a dashed
box, was not replayed because another step cs(left) in the other subplan establishes
the precondition clamped(left) (the double arrow represents a threat that would oc-
cur if this step had been replayed). As a result, the part of the case achieving the
preconditions of cs(left) is not replayed, too.

S(H) machined(H)

s mics(left) - clamped(left)
C ! machined(H) ia machinedH1(U1)

..., toolHeld(t) ~

Figure 8.4: Interactions between two subplans.

In the previous section we discussed Kambhampati’s result which shows that
parallelizability is an stronger requirement than trivial serializability. We will now
formalize the notion of non-redundant mergeability to analize this merging method.

Definition 8.3 (Non-Redundant Mergeability, Parallelizability) Given a class
P of plans and two plans P; and Py in P, then Py~ Py denotes the plan that remains
after removing

1. causal links from P, achieving preconditions that can be established by using
steps in Py, and

2. plan steps in P, that were added as the source of a removed causal link, and

3. causal links achieving preconditions of removed plan steps.
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Let g1, go two goals achieved by P, and P,. P; is non-redundant mergeable
with respect to a plan Py if there is a plan P in P extending P, and Py~ P, achieving
both g, and g-.

Given two goals g1 and go. If any two plans Py and Py achieving g1 and go are non-
redundant mergeable, then g, and gs are said to be non-redundant parallelizable.

In other words P, and P, are non-redundant mergeable if P, and P, \. P, are
mergeable relative to ¢;, go and P. Thus, the mergeability of P, and P, implies their
non-redundant mergeability relative to g;, go and P: if P, and P, are mergeable,
there is a plan P in P extending P, and P,. To extend P, and P, \ Py, the latter is
extended to P, by adding the pruned steps. Then, P, and P, are extended to P.

Example showing that Non-Redundant Mergeability does not imply Merge-
ability. The example depicted in Figure 8.5 shows an example of a situation in the
logistics transportation domain were two subplans are non-redundant mergeable but
not mergeable. There are three post offices A, B and C. In addition two packages,
p1 and ps, are located in A, other two packages, po and py4, are located in B and a
truck is located in A (not shown in Figure 8.5 (a)). Suppose that two subplans are
available, P, and P,. In the plan P;, (1) p; is loaded in the truck, (2) the truck is
moved from A to B, (3) p2 is loaded in the truck, (4) the truck is moved from B
to C' and (5) the two packages are downloaded. The path followed by the truck is
marked by the arcs 1 and 2. The fragments (4) and (5) are shown in Figure 8.5 (b).
The subplan P2 relocates the packages ps and p, by following the path marked by
the arcs 3 and 4 (again the last fragments of this subplan are depicted in Figure 8.5
(b)). P, and P, are not mergeable because to extend them a step moving the truck
from C' to A must be added; if, for example, P; is ordered before P2, then once the
truck has to moved back to A after p; and p, are unloaded in C. P; and P, are non-
redundant mergeable because P, \. P; consists only of the two unloading steps(i.e.,
unload(p3,tr) and unload(p4,tr)). The other steps are removed. For example, the
step move(tr,B,C) of P2 is removed because the preconditions of unload(p3,tr) and
unload(p4,tr) can be achieved with an step in P1 (i.e., move(tr,B,C)). Any solution
plan relocating p3 and p4 necessarily contains the two unloading steps. Thus, P; and
P, ~ P, are mergeable.

The previous example shows that non-redundant mergeability is a weaker require-
ment than mergeability. To continue our analysis a new definition is introduced:

Definition 8.4 (Non-Redundant Parellelizability of Goals) Given two goals g,
and go. If any two plans Py and P, achieving g1 and go are non-redundant mergeable,
then g, and g, are said to be non-redundant parallelizable.

Even though it is a weaker requirement than mergeability, non-redundant paral-
lelizable is still stronger than trivially serializable (compare to Proposition 8.1):

Proposition 8.3 If a set of goals g1, ..., g, is non-redundant parallelizable, then it
18 trivially serializable.
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Figure 8.5: Example of a situation in the logistics transportation domain with (a)
the path followed by the two subplans and (b) two subplan fragments.

Proof. We will prove this result for two goals. Let P; be a plan achieving g;.
We will show that P, can be extended to a plan achieving g; and gs. Let P, be
any plan achieving g, and SE(Q), the sequence of planning decisions taken to obtain
P,. Let SEQp,-p, be the subsequence of planning decisions in SE(@), achieving
P, . P;. Because g; and ¢, are non-redundantly parallelizable, there must be a plan
P; extending P, and P, ~. P; that achieves ¢g; and g¢,. Let SEQ3; be the sequence
of planning decisions to obtain P; by extending P, and P, ~ P;. Then, P, can
be extended to a plan achieving g; and go by following the sequences of planning
decisions SEQp,. p, and then SEQ3. This shows that ¢;, ¢- is a serialization order.
In the same way it can be shown that g9, g; is also a serializiation order. Thus, g,
go are trivially serializable. B

8.3 Positive Interactions and Non-Redundant Merg-
ing

Continuing with our study of the non-redundant merging method, notice that in
the two examples discussed in the previous section and depicted in Figures 8.4
and 8.5, no positive threats between P, and P, \. P, occur. This is not a coinci-
dence: positive threats indicate that the same effect has been obtained in P, and
P, which is the kind of redundancy that is eliminated for constructing P, \ P;.
In the example in Figure 8.4, one of the subgoals, clamped(left)@msH1(U; ), of the
machining subplan achieving the goal machinedH1(U;) is left open and as a re-
sult a significant portion of P, is removed. Notice that if cs(left) would have been

added to achieve clamped(left)@msH1 (U, ), the positive threat cs(left) < (cs(left)
— clamped(left)@msH1(U;)) would have occur. In the example in Figure 8.5, all
steps but two are removed from the P,. Again, two positive threats are shown,

move(tr,B,C) <~ (move(tr,B,C) — at(tr,C)@unload(p2,tr,C)) and move(tr,B,C)
s (move(tr,B,C) — at(tr,C)@unload(p4,tr,C)), which would have occur if the
corresponding steps would have been added. This illustrates the following claim:
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Claim 8.1 the more positive threats occur between Py and Ps, the
smaller Py \. Py is.

In the logistics transportation domain, the occurence of threats depends on the
particular situation. In the example depicted in Figure 8.5, several positive threats
occur because of the use of the truck. However, if another truck is available and
P1 uses one truck and P, the other one, no positive threats occurs. In the domain
of process planning the situation is very different: threats always occur between
any two subplans; these threats indicate violations in the use of the clamping and
holding operations.® Several threats will occur between any two processing subplans
P, and Ps; namely, two for each pair of clamping or holding steps such that one
is in P; and the other one is in F,. Further, any complete manufacturing subplan
contains at least one clamping and one holding step because to process any area, the
workpiece must be clamped from a certain position and a certain tool must be held.
The more threats occur, the more likely it is that positive threats occur because
the number of clamping and holding operations is limited. In our specification, six
different clamping operations are possible, but some of them may not be applicable
depending on the particular workpiece being manufactured.

Claim 8.1 is significant for CBP: if in a domain, positive threats are likely to
occur between subplans, retrieving several cases is not an adequate strategy. As
more cases are replayed with the non-redundant merging method, less guidance is
provided by replaying these cases. The reason for the decrease in the guidance is that
more steps tend to be discarded as more positive threats occur between the subplan
obtained after replaying previous cases and the subplan obtained after replaying the
current case. The following claim summarizes this observation and will be supported
in Chapter 9, where several experiments in different domains were performed.

Claim 8.2 In domains where positive threats frequently occur be-
tween subplans, retrieving a single case or fewer cases covering
much of the goals s a more effective retrieval strategy than retriev-
ing several cases covering all the goals.

8.4 Merging with Complete Decision Replay

In complete decision replay the justifications are reconstructed to reduce the comple-
tion effort of the skeletal plan by discarding completion possibilities that are know
from the case to fail (see Section 5.6). A failed decision in the case is considered as
failure in the new situation only if its justification {as, ..., a,} can be reconstructed.

3At any time of the manufacturing process, at most, one cutting tool can be held and one
clamping operation can be performed.



8.5. MULTI-CASE RETRIEVAL AND MERGING 127

That is, only if for each assignment a;, the decision d; containing it has been re-
played. This means that when merging several cases, the justifications reconstruc-
tion process can be performed immediately after each case is replayed, which is what
CAPLAN/CBC does. Replaying additional cases does not affect the invalidity of a
decision d as its invalidity is determined by the set of decisions {dy,...,d,} in the
case. Whether these decisions will not need to be revised during the merging process
depends on the particular situation. If any of these decisions needs to be revised, the
invalidity of d is revised. But, this is precisely the kind of contingencies that REDUX
(and thus CAPLAN) is capable of handling (see Chapter 5).

Clearly, the number of justifications reconstructed depends on the number of
steps of the current case that were replayed. In domains where positive threats occur
frequently between subplans, fewer justifications are reconstructed from the current
case as more cases have been previously replayed to solve the current problem. The
reason for this is that the less decisions are replayed, the less likely is that the
justifications {ay,...,a,} can be reconstructed because the assignments a; can only
be reconstructed if their corresponding decisions d; are replayed (see Section 5.6).
This means that in these domains not only the guidance provided by replay tends to
reduce with the number of cases being replayed but also the guidance provided by
complete decision replay. This also supports Claim 8.2.

8.5 Multi-Case Retrieval and Merging

In this section, we will extend the notions of retrieval failure and beneficial retrieval
for multiple cases (see Definitions 6.3 and 7.2). We will also re-state the context-
simplified claim (see Claim 6.1). The notions are based on the non-redundant merging
method. We will make no further comments about the meaning of these concepts as
they were discussed in detail in Sections 6.2, 7.2 and 6.3. First, we state the notion
of retrieval failure:

Definition 8.5 (Retrieval Failure, Adequate Retrieval) Given a problem P, the
retrieval of Cy and Cy 1s adequate if their corresponding plans Ply and Ply are non-
redundant mergeable. Otherwise, the retrieval is a failure.

The notion of beneficial retrieval for multiple cases is stated as follows:

Definition 8.6 (Beneficial Retrieval) Given a plan Pl, searchSpace(P) counts
the number of valid and failed decisions made when generating Pl.

Given a solution plan Sol of a problem P obtained by the non-redundant merging
of C1 and Cy, then the retrieval of Cv and Cy is beneficial with respect to P and C

if:

searchSpace(Sol)/(searchSpace(Skely) + searchSpace(Skely \ Skely)) < thryen
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where Skely is the skeletal plan obtained after replaying Cy and Skels is the skele-
tal plan obtained after replaying Cy. thrye, is a predefined threshold, called the benefit
threshold.

Finally, we closed this section by stating the context-simplified claim for multi-
case retrieval.

Claim 8.3 (Context-Simplified) In domains where goals are
non-redundant parallelizable, the feature context are the initial fea-
tures of the problem and of the cases, the goals common to the
problem and the cases, and the solution of the cases.



Chapter 9

Empirical Validation

In the previous chapters, the twofold retrieval process in CAPLAN/CBC has been
presented (Chapters 4 and 6) and complete decision replay, an extension of stan-
dard replay for plan-space planners, has been discussed (Chapter 5). In addition,
integration issues in CAPLAN/CBC were studied (Chapter 7) and the scope of plan
mergeability was presented (Chapter 8). In this chapter we will examine the perfor-
mance of these methods. More concrete, the following issues will be studied.

Performance of Dependency-driven Retrieval. Dependency-driven retrieval
will be compared against goal-driven retrieval. The performance of the retrieval
process and the problem-solving process will be measured when both methods
are used. We will also measure the performance of retrieval with the GDN
when no ordering restrictions are given. That is, when goal-driven retrieval is
performed but the indexing structure is the GDN.

Performance of Dynamic Retrieval based on Feature Weighting. The
increase in the reliability of the retrieval when using feature weighting will be
measured. In addition, the policy to create cases based on the retrieval benefits
is compared against the policy to create cases based on the retrieval failures.

Performance of Complete Decision Replay. The performance of complete
decision replay is compared against the performance of standard replay. The
effectiveness of the dual integration between retrieval and adaptation will also
be measured.

Performance of the Overall Case-Based, Problem-Solving Process in CA-
PLAN/CBC. The performance of CAPLAN/CBC will be compared against
first-principles planning with CAPLAN (SNLP). Even though previous research
has shown already that case-based planning outperforms first-principles plan-
ning (Veloso, 1994; Kambhampati, 1994; Koehler, 1994; Francis and Ram,
1995b; Bergmann and Wilke, 1995a; Thrig and Kambhampati, 1996a), we per-
form this experiments to confirm that not only the techniques for CBP pre-
sented in this thesis improves the efficiency over previous techniques, but to

129
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show that the combination of these techniques in CAPLAN/CBC results in a
powerful system.

Performance of the Merging Methods. The claims about the ineffectiveness
of blind merging in plan-space planning will be confirmed experimentally. In
addition, Claim 8.2, regarding the limitations of non-redundant merging in
domains where positive interactions frequenly occur, will be corroborated ex-
perimentally.

9.1 Problem Domains

We performed experiments with the domain of process planning (see Appendix A),
the artificial domain ART-1D-RD-RES (see Appendix C), the logistics transportation
domain (see Appendix B) and the extension of the logistics transportation domain
presented in Section 6.3. As discussed before, the domain of process planning is
characterized by the high number of interactions between subplans achieving goals
corresponding to processing areas of a workpiece (see, Section 8.3). The source of
the interactions are restrictions on the use of manufacturing resources; namely, the
cutting tools and the clamping machine.

The artificial domain ART-1D-RD-RES is an extension of the domain ART-1D-
RD (Kambhampati, 1993); two new operators were added that rationalize the use
of the resources he, renamed occ-a, and hf, renamed occ-b, instead of adding and
deleting them directly in the actions A;. In this way, any problem solver should
be confronted to similar situations as with the domain of process planning. In this
domain, valid ordering restrictions can be predefined; namely, the goal G; should
always be achieved before the goal G;,; for any . In addition, there are always
interactions between any two subplans achieving G; and G;.

The third domain we used in the experiments is the logistics transportation do-
main, originally specified in (Veloso, 1994). In this domain, there are also resources;
namely, trucks and airplanes. However, in contrast to the domain of process plan-
ning, the more resources are made available, the more likely is that subplans achieving
goals are independent. That is, no interactions necessarily occur between the sub-
plans. For example, if two packages must be relocated within the same city and two
trucks are available, each truck can be used to relocate one package.

The extension of the logistics transportation domain adds the following restric-
tions: trucks must not be moved into the same post office more than once and
problem-specific restrictions such as not allowing the truck to move from a certain
post office to another post office. As a result of these restrictions the goals may not
be trivially serializable.
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9.2 Performance of Dependency-Driven Retrieval

To measure the effectiveness of dependency-driven retrieval we compare it against
goal-driven retrieval. More concrete, the retrieval was made by comparing the per-
formance of the case-based, problem solving process when the retrieved cases meet
the ordering consistent condition against cases meeting just condition 1 of the or-
dering consistent condition (see Definition 4.6). To isolate the effects of using the
dependency-driven retrieval technique, the feature weighting mechanism was disable
in this experiment. All relevant features were given a weight of 1, which remained
invariant throughout the experiment. For the same reason, standard replay was used
instead of complete decision replay. The retrieval threshold was set to 75% (see
Definition 6.2).

9.2.1 Experiment Setup

The experiment was performed in the domain of process planning and in the artificial
domain. The ordering restrictions in the domain of process planning were computed
by the geometrical reasoner. The experiment setup consisted of an ordered collection
of problems of ascending goal size; five problems consisting of one goal, ten problems
consisting of two goals, ten problems consisting of three goals and so on until ten
problems consisting of eight goals. To narrow the spectrum of possible problems, a
subset of types of processing areas was randomly selected.

The ordering restrictions in the artificial domain were stated as G; < G, for
every ¢ < j. As with the domain of process planning, the collection was ordered in
sequences of problems consisting of ascending number of goals; namely, five problems
consisting of a single goal and the rest of sequences consisting of 10 goals (one for
two, three and so on until eight goals). To narrow the spectrum of possible problems,
ten goals were preselected, G, ..., Gyp.

For each domain, two case bases were constructed, the three-level case base of
CAPLAN/CBC, in which the main discrimination criterion between the cases are
the dependencies between the goals, and the case base of PRODIGY/ANALOGY, in
which the main discrimination criterion are the goals. All basic operations such as
matching and the representation of basic data types such as collections of predicates
are common to both architectures. In this way, none of them takes advantage on the
other one because of implementation details.

Initially, both case bases were empty. Each time a problem was solved, the
problem and the found solution were added as a new case to each case base. To
solve a problem, a case was retrieved and adapted. We added the retrieval and
adaptation times to measure the performance of the overall case-based, problem-
solving process. Notice that, for a given problem, if a case is retrieved with the
dependency-driven retrieval technique, a case will be retrieved with the goal-driven
retrieval. The opposite, however, does not hold. If no case was retrieved, we added
the time required by the retrieval procedure to find out that no case was available to
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Figure 9.1: Problem solving times with dependency-driven retrieval and goal-driven
retrieval for (a) the domain of process planning and (b) the artificial domain.

the time required by the base-level planner CAPLAN to solve the problem.

9.2.2 Results of the Experiment with Dependency-Driven
Retrieval

Figure 9.1 depictes the results. The overall problem-solving time for the problems
consisting of i goals (i = 1,2,...). This results shows a significant improve in the
performance as a result of the dependency-driven retrieval technique. They also show
the importance of considering the goal orderings in domains where such information
is available.

Retrieval times. In this experiment, we measured the retrieval times. In addition
to the retrieval time with the dependency-driven and the goal-driven techniques, we
measured the retrieval time when no ordering restrictions were given but the GDN
was used to index the cases. That is, when goal-driven retrieval is performed and
the GDN is used as the indexing structure. As discussed in Section 4.8, a decrease
in performance is expected when no ordering constraints are given because in the
GDN the same set of goals can be repeated several times. The results are depicted
in Figure 9.2. The retrieval time when no ordering restrictions were given was quite
high in comparision to the retrieval time when the ordering restrictions were given.
This shows that using the GDN in domains where no ordering restrictions can be
predetermined is an inadequate strategy. On the other hand, these results also show
that not only the overall case-based, problem-solving process is more efficient with
dependency-driven retrieval, but, particularly, that the retrieval time also decreases
provided that the ordering constraints are given.
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Figure 9.2: Retrieval times by performing goal-driven retrieval and using the GDN
as indexing structure, by performing dependency-driven retrieval and by performing
goal-driven retrieval. These time measures are depicted for (a) the domain of process
planning and (b) the artificial domain.

9.3 Performance of Feature Weighting in CBP

In this section a report will be made on experiments performed in which the in-
crease in the reliability of the retrieval by using feature weighting was evaluated. To
perform this evaluation, retrieval was made in a problem-solving cycle also including
adaptation and learning. Retrieval was performed in two modes, dynamic and static.
In the dynamic mode, the weighted similarity condition was used in the framework
presented in Chapter 6. That is, the feedback of the problem solver indicating if the
retrieved cases failed or not was considered and the weights of the filtered features
were updated. In the static mode, the weights of the relevant features were always
set to one and they remain unchanged throughout the experiment.

9.3.1 Learning Weights on Single Cases

In the first experiment, the effect of feature weighting in single cases was studied. The
purpose of this experiment is to measure how the feature weighting process affects
the reliability of the retireval for single cases.

This experiment consisted of two parts: in the first part, the experiment was made
on domains meeting the conditions of Claims 6.1 and 7.4.2. In the second part, the
experiment was made in a domain not meeting these conditions. The experiments
for the first part were performed in the domain of process planning (with ordering
restrictions) and in the logistics transportation domain. The second experiment was
made in the extension of the logistics transportation domain. Adaptation was made
with complete decision replay though it does not play any role in the results because
we measured the increase in reliability and not the time performance..
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Experiments in Domains meeting Claims 6.1 and 7.4.2

Experiment Setup. The experiment setup consisted of 5 runs. In each run, a
problem, called the pivot problem, was stated. A solution for the pivot problem was
found; the solution together with the problem and the relevant features were used
to form a case, C. All feature weights of C were set to 1 and k¢, fo were set to 0.
Then, some features of the pivot problem were randomly fixed. A new goal and new
features that do not occur in the pivot problem were also given. Taking as basis the
pivot problem, new problems were formed by changing the fixed features, or/and by
adding the new goal and the new features. Changing a fixed feature means changing
the relations between the objects mentioned in the feature. For example, if a feature
states that a truck is in a certain location, the changed feature will state that the
truck is in another location. The problem collection met the following conditions:

1. For every problem in the collection and if the weights of all features is set to
1, C meets the retrieval condition with the retrieval threshold set to 75% (see
Definition 6.2).

2. The number of times that fixed features were changed in the collection is the
same. For example, if a fixed feature indicates the location of a truck and
another fixed feature indicates that a post office is in a certain city, the number
of problems in which the truck is changed of location is the same as the number
of problems in which the post office is changed of city.

3. If n denotes the number of fixed features, then problems were ordered in a
way that within a sequence of problems, Problempi1, ..., Problem,in, the
number of changes of a fixed feature is the same (m = 0,1, ...). For this reason,
the number of problems in the collection is a multiple of the number of selected
features.

In the experiments the multiple factor was 5. In addition, in the logistics trans-
portation domain 5 features were fixed and in the domain of process planning 6.
Thus, the collections consisted of 25 problems in the first domain and 30 in the
second one. The total number of problems involved were 125 in the logistics trans-
portation domain and 150 in the domain of process planning.

Discussion about the Experimental Setup. The ideal experiment to show the
increase of reliability with feature weighting is to form all possible combinations of
colections of problems and show that the increase occurs in average. Because such
a process implies a combinatorial explosion, we stated conditions (2) and (3) to
equally distributing the effect of every change in the fixed features and of capturing
the average situation. Condition (2) ensures that no feature takes advantage of the
other ones by changing them the same number of times. As discussed in Chapter
6, the relation of fo to ke determines the incremental rate of the feature weights.
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Thus, if not matching a feature causes a retrieval failure, the changes of weights will
be greater when this feature is changed in problems allocated at the beginning of the
collection. In contrast, if these problems are allocated at the end of the collection,
the changes in the feature weights are reduced. For this reason, condition (3) ensures
that the final weight is closer to the average by distributing the problems changing
the feature equally through the collection.

Results. Tables 9.1 and 9.2 summarize the results of this experiment for the domain
of process planning and for logistics transportation domain respectively. The first
row of these tables presents the percentage of times the pivot cases was retrieved. The
second row presents the percentage of times that retrieving the pivot cases resulted
in a retrieval failure. Each of the first five columns presents the results for a sequence
Problemmpy1, ---, Problemuy, ., in the collection (m = 1, 2, ..., 5). The sixth column
shows the results for the whole collection when the cases are retrieved in static mode.

Dynamic Static
Items 1 |2 [3 [4 |5
% Cases Retr. 82 |71 |63 |51 |49 100
% Retr. Failures 41 (26 |19 |7 4 47

Table 9.1: Measures of the reliability of the retrieval in the domain of process planning
by weighting features and without weighting features.

Dynamic Static
Items 1 |2 |3 [4 |5
% Cases Retr. 94 |84 |73 |65 |57 100
% Retr. Failures | 37 |27 |15 |9 6 41

Table 9.2: Measures of the reliability of the retrieval in the logistics transportation
domain by weighting features and without weighting features.

Discussion of the Experiment Results. These experiments show that feature
weighting increases the reliability of the retrieval by decreasing the percentage of
retrieval failures. This can be seen by comparing the fifth column against the first
column of each table. That is, comparing the reliability of retrieval with the dynamic
mode after several retrieval episodes against the reliability of retrieval in the static
mode. Notice, in addition, that in the later runs the changes in the percentages
tends to decrease. This shows that there is a tendency of the feature weights to
converge in the average situation constructed in the experiment setup. As discussed
in Section 6.5, a problem of feature weighting is that cases may become specialized.
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Static Dynamic
noEBL | EBL
% Cases Retrieved 100 74 57
% Retrieval Failures 56 42 18

Table 9.3: Measuring the reliability of the retrieval in a general domain.

In the domain of process planning and in the last run, from the 49% of the cases
retrieved, 4% were failures. This means that effectively 45% of the retrieval episodes
were adequate. The percentage of situations in which the retrieval is correct is 53%
for all the problems (i.e., 100% - 47%). This means that the specialization of the
cases results in the incorrect exclusion of 8% the problems. This percentage, however,
is small compared to the gains in reliability of the retrieval reducing from 47% of
the retrieval failures to only 4%. A similar observation can be made for the logistics
transportation domain.

Experiments in a General Domain

The domain used in this experiment is the extension of the logistics transportation
domain, which does not meet the conditions of Claim 6.1 (see Section 6.3).

Experiment Setup. The experimental setup was the same as described in the
previous experiments; namely, five runs were made. In each run, a problem was
fixed and a solution was found to form the pivot case. A collection of problems was
made by changing features in fixed problem and distributing these changes equally
throughout the collection. 4/5 of each collection was used as training examples and
the results were measured for the last 1/5 of the examples. Each case was trained in
two modes: the noEBL-mode and the EBL-mode. In both modes feature weights are
updated. In the EBL-mode and if the retrieval failed, a test is made to detect if the
failure was caused by the goals interacting negatively with the case (see Section 6.4).
If this is the situation, the weights are not updated. In contrast, in the noEBL-mode
feature weights are always updated.

Results. The results are shown in table 9.3. The first column shows the results
when weights were not considered for retrieval (i.e., the weighted retrieval condition
was tested with all weights set to 1). The second column shows the results when
feature weights were updated in noEBL-mode. The last column shows the results
when feature weights were updated in EBL-mode. The first row shows the percentage
of cases retrieved and the second one the percentage of retrieval failures.

Discussion of the Experiment Results. Notice that the best results are ob-
tained with the EBL-mode, where the percentage of retrieval failures was reduced
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from 56% (with the static mode) to 18%. The percentage of retrieval failures can-
not be further reduced because of the negative interactions of the goals that are not
in the case. Still, the improve in the reliability is significant relative to the static
mode. With the noEBL-mode, the percentage of retrieval failures also decreases from
56% to 42% although not as significant as with the EBL-mode. A negative effect
is the specialization of the cases in the noEBL-mode; namely, 32% of the retrieved
cases were correct (74% - 42%). Compared to the 44% of the static mode (100% -
56%), this means a specialization factor of 12% (44% - 32%). In the EBL-mode the
specialziation factor is just 5% (44% - 39%). The difference in results between the
noEBL and the EBL modes shows the importance of censoring the learning method
in general domains.

9.3.2 Policies to Create New Cases

In CAPLAN/CBC new cases are created only if the adaptation effort of the retrieved
cases is considered nonbeneficial (see Section 7.2). Previous approaches to CBP add
new cases either eagerly (i.e., every found solution is added as a new case) or if a
retrieval failure occurs (see Definition 6.3). In parallel to the experiments performed
in Section 9.3.1 showing the increase in the reliability of the retrieval by using feature
weighting, we evaluated the policies to create new cases. The beneficial threshold
was set to 2 (see Definition 6.3) and the following items were measured:

1. Percentage of cases retrieved (already reported in Tables 9.1 and 9.2).
2. Percentage of retrieval failures (already reported in Tables 9.1 and 9.2).
3. Percentage of nonbeneficial retrievals.

4. Percentage of case-based, problem-solving episodes in which the retrieval is a
failure but beneficial.

5. Percentage of case-based, problem-solving episodes in which the retrieval is
adequate but nonbeneficial.

Results. The results are summarized in tables 9.4 and 9.5. Each row shows each of
the five items in the same order as listed before. Each column ¢ averages the results
for the i-th sequence of each run. The sixth column shows the results for the whole
collection with the static retrieval mode.

Discussion of the Experiment Results. From these results, some observations
can be made. First, even in the last sequences, when the percentage of retrieval
failures decreases, nonbeneficial retrieval episodes are still likely to occur. Thus, the
adaptation effort can be significant independent of the fact that the retrieval tends to
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Dynamic Static
Items 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5]
% Cases Retr. 8 |71 |63 |51 |49 100
% Retr. Failures 41 |26 |19 |7 4 47
% Nonben. Retr. 15 |12 |17 |11 |15 24
% Fail. & Ben. 8 6 3 2 1 11
% Adeq. & Nonben. |5 3 8 2 7 16

Table 9.4: Comparision of policies to create cases in the domain of process planning.

Dynamic Static
Ttems 1 [2 [3 [4 |5
% Cases Retr. 94 |84 |73 |65 |57 100
% Retr. Failures 37 127 |15 |9 6 41
% Nonben. Retr. 33 |24 |20 |21 19 37
% Fail. & Ben. 18 10 5 2 1 24
% Adeq. & Nonben. 20 12 9 11 10 23

Table 9.5: Comparision of policies to create cases in the logistics transportation
domain.

be succesful. This is particularly interesting in the logistics transportation domain
where even though the percentage of retrieval decreases in a significant way, the
percentage of nonbeneficial retrievals oscilates. Second, by observing the results of
the whole collection (i.e., the 6th column), when no feature weights are considered,
it can be observed that the concepts of retrieval failure is also independent of the
fact that the retrieval is beneficial or not. We conclude that creating cases based on
the benefits of the retrieval is a more adequate policy than creating cases based on
retrieval failures. Two arguments can be given supporting this conclusion:

o If feature weighting are considered and the retrieval failures of a case are un-
likely to occur, no new cases will be created. In the experiments, even though
the difference between the case and the problem were at most of one goal,
nonbeneficial retrievals were still likely to occur, particularly in the logistics
transportation domain. If the difference is greater, say, a case achieves 4 goals
and a new problem has 10 goals, it is clear that the retrieval is likely to be
nonbeneficial.

o [f feature weights are not considered, the independence between retrieval fail-
ures and benefits of a retrieval episode indicates that with the policy to create
cases based on retrieval failures:
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Figure 9.3: Problem solving times with standard and complete decision replay for
(a) the domain of process planning and (b) the artificial domain.

— Cases may be created which can be generated with the existing cases with
little effort.

— Situations may occur in which the adaptation is large but no new cases
are created because no retrieval failure occurs.

9.4 Complete Decision Replay

To evaluate the performance of complete decision replay we used the same exper-
iment setup as in Section 9.2 in which the performance of dependency-driven re-
trieval was evaluated for the domain of process planning. To isolate the effects of
complete decision replay, we disable the feature weighting process and do not per-
formed dependency-driven retrieval. This experiment was performed parallel to the
one presented in Section 9.2. The cases were retrieved with the static mode (i.e., by
using the architecture of the case base of PRODIGY/ANALOGY). The retrieved case
was adapted with standard replay and with complete decision replay.

Discussion of the Experiment Results. Figure 9.3 shows the results of the
overall case-based, problem-solving process with standard and complete decision re-
play. As we see the performance is improved with complete decision replay; in the
the domain of process planning and in the 7 in the artificial domain, the increase
of performance was at least 20% (measuring the difference between the curves). As
discussed in Section 7.3, a further performance improvement can be made if the re-
trieval failures can be predicted. In the same experiment we computed the overhead
caused by the justification reconstruction process in the case-based, problem-solving
episodes in which the retrieval was sucessful. The results were the following:

e 53% of the retrieval episodes were successful in the domain of process planning
and 47% in the artificial domain.
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Figure 9.4: Problem solving times complete decision replay and the dual integration
of retrieval and adaptation for (a) the domain of process planning and (b) the artificial
domain.

e In these episodes, the overhead to the overall case-based, problem-solving pro-
cess caused by the justifications reconstruction process was in average 39% in
the domain of process planning and 34% in the artificial domain.

Experiment with the Dual Intergation between Retrieval and Adaptation.
We repeated the previous experiment but this time we used the dual integration be-
tween retrieval and adaptation. The beneficial threshold was set to 2 to 1. Although
no feature weighting process was performed, we kept track of the number of adequate
and failed retrieval episodes, k¢ and f¢, for each case C. The results are shown in
Figure 9.4. The increase in performance relative to complete decision replay is small.
However, compared to standard replay, the increase in performance was at least 25%
for both domains in the 8-goal (7-goal) problems. Clearly, a major improvement
should be expected if feature weighting is performed because this technique tends
to improve the reliability of the retrieval. Thus, a more accurate prediction can be
made.

9.5 Complete System

In the previous sections we evaluated the performance of each of the methods im-
plemented in this thesis separately. In this experiment we wanted to show that
the integration of the different techniques in CAPLAN/CBC results in an effective
problem-solver. As discussed in Chapter 7, this integration involves several issues
including:

e The twofold retrieval process: combination of dependency-driven retrieval and
feature weighting.
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Figure 9.5: Performance gains with the complete case-based planner CAPLAN/CBC
over the base-level planner CAPLAN.

e The dual integration of retrieval and adaptation: selection of the retrieved case
and the adaptation method in the retrieval phase.

e The policy to create cases: creation of new cases if the retrieval is nonbeneficial.

The Experiment Setup. The experiment setup was designed in five runs. At
each run a collection of problems was randomly formed. Each collection consisted
of 2 one-goal problems, 4 two-goal problems, 8 three-goal problems, 10 four-goal
problems and so on until 10 eight-goal problems. No two problems were the same
within a collection or in different collections. This experiment setup allowed a better
observation of the effects of the learning process. In addition, it was intended to be a
fair simulation of realistic situations; by not saturating the case base first with 1-goal
problems, then with 2-goal problems and so on, problem-solving episodes are likely to
occur in which, say, to solve an 8-goal problem only a 2-goal case is available. This is
particularly significant given our previous experiments that showed the independence
between adequate retrieval and beneficial retrieval. The case base was maintained
through all runs. The retrieval threshold was set to 75%. The beneficial threshold
was set to 4 to 1 and the adaptation threshold was set to 2 to 1.

The Problem Domain. The problem domain was the domain of process planning.
The ordering restrictions computed by the geometrical reasoner were given as part of
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the problem. A subset of nine types of processing was randomly selected from which
the goals of the problems were selected.

Results. We measured the time for solving each problem by CAPLAN and CA-
PLAN/CBC at each run. The results are depicted in Figure 9.5. The values for
CAPLAN correspond to the average of the five runs. Each run is correspondly la-
beled in each curve.

Discussion of the Experiment Results. We observe that with each run the per-
formance of CAPLAN/CBC increases, showing that the methods for CBP proposed
in CAPLAN/CBC are effectively integrated and that it improves its performance as
more case-based problem solving episodes takes place. Given that at the first two
runs, few learning opportunities take place, we conclude that the improvement there
is mainly due to the dependency-driven retrieval technique. This is corroborated by
the fact that the values obtained are in the same range of those in Figure 9.1. For the
same reason, the further improvements in the next runs must be due to the learning
process. A significant increase in the performance takes place between runs 2 and
3 and then the increase rate is relatively low. This suggests that at a certain point
no further efficiency gains will be made. Overall, the increase in performance of the
case-based problem solving process is at least of 40% in the fifth run.

9.6 Mergeability of Plans

We performed experiments to evaluate the different merging strategies in partially
ordered plans based on SNLP.

Problem Domains. We performed experiments with the domain of process plan-
ning, the artificial domain and the logistics transportation domain.

Experiment Setup. We constructed a sequence of single-goal problems (15 for the
domain of process planning, 12 for the transportation domain and 8 for the artificial
domain). To observe the way that the positive interactions affect the merging process,
sequences of n+1-goal problems were constructed by adding a goal randomly selected
from the sequence of single-goal problems to each problem of the sequence of n-goal
problems. In this way, we ensured that when several cases were retrieved, all the
goals in the problem are covered. The constructed problems were revised to avoid
repetitions. The construction of the case base reflects an ideal situation because in
practice it is unlikely that all the goals of the problem are covered. However, this
situation is appropiate to compare the merging methods because a maximal gain is
expected from CBP. In this experiment, the feature weighting process was disabled,
goal-driven retrieval and standard replay were performed. In this way we isolated the
effects of the merging methods. The retrieved cases were merged in blind-merging
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and non-redundant-merging modes. For the domain of process planning the goals
were merged in an order consistent with < (although no dependency-driven retrieval
was performed). The data obtained with SNLP (i.e., CAPLAN) is intended as a
reference to compare the merging algorithms and not to show the advantages of
CBP over first-principles planning.
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Figure 9.6: (a) Problem solving time and (b) plan size for the domain of process
planning.

Results. Figures 9.6, 9.7 and 9.8 compare data obtained with the domain of process
planning, the artificial domain and the logistics transportation domain. Part (a)
of these figures shows the problem solving time by using blind and non-redundant
merging and SNLP. Parts (b) shows the size (i.e., number of steps + number of
ordering constraints in the plan) of the skeletal plans obtained with blind and non-
redundant merging and the size of the solution plans obtained by SNLP.

Common to the three domains is that the worst performance is obtained with
the blind merging mode (it is outperformed by SNLP). Blind merging seems to be
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200 - Blind Merg. <— Skeletal Blind <—
Non-Red. Merg. -+-- 120 b Skeletal Non-Red. -+ |
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Problem Solving Time (s)
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Figure 9.7: (a) Problem solving time and (b) size for the artificial domain.
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Figure 9.8: (a) Problem solving time and (b) skeletal plan size for the logistics
transportation domain.
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Figure 9.9: (a) Number of positive interactions and (b) total number of interactions.

an inadequate choice when the base level planner is SNLP. This result corroborates
Proposition 8.2. In the domain of process planning and the artificial domain the result
reflect the fact that subplans are always nonmergeable. In the transportation domain
some of the skeletal subplans generated were mergeable. Thus, the performance with
the blind merging mode is slightly better compared to the other domains. With
the non-redundant mode, the difference between the size of the skeletal plan and the
solution plan is a measure for the effort needed in the completion phase. For example,
the effort for completition in the transportation domain (see Figure 9.8 (a)) is less
than in the other two domains because the skeletal plans are comparatively larger
(see Figure 9.8 (b)).

Figure 9.9 compares (a) the number of positive interactions and (b) the total
number of interactions occuring in these domains. Because no positive interactions
can occur after non redundant merging, the positive interactions are measured by
observing the blind-merging mode. The difference between the skeletal plan in blind-
merging mode with the skeletal plan in non-redundant-merging mode reflects the
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Figure 9.10: Growth of skeletal plan size with the (a) non-redundant and (b) blind
merging.

percentage of the cases that was not replayed because of the positive interactions.
Particularly, in the domain of process planning and the artificial domain, it can be
observed that for solving the 8-goal problems, a significant part of the cases was not
replayed (more than 70%). This is the result of the positive interactions, which in
both situations correspond to approximately 50% of the interactions (see Figure 9.9).

Related to this issue, notice that as the number of goals increases, the guidance
provided by the additional cases retrieved with the non-redundant merging mode
decreases in the domain of process planning and the artificial domain. Figure 9.10
(a) compares the relative growth of the plans in the three domains for non-redundant
merging whereas part (b) compares this growth for blind merging. The relative
growth for n goals was measured by dividing the average size of the plans for n goals
by the average size of the plans for n-1 goals. It can be observed that for the process
planning domain and the artificial domain the relative growth of the skeletal plan
generated in non-redundant mode decreases with the number of goals (see Figure
9.10). Notice that for both domains there is a significant increase in the number of
positive interactions (see Figure 9.9). This supports our claim that in domains where
positive interactions are likely to occur, the guidance provided by the additional cases
retrieved tends to decrease with the number of goals. These results suggest that in
these domains retrieving a single case covering as much of the goals as possible or
fewer cases is an equivalent strategy because merging additional cases is worthless
after several goals have been solved. Notice, that the growth of the skeletal plans
obtained with blind merging does not decrease with the number of goals.

In contrast to the other two domains, in the logistics transportation domain the
guidance provided by the additional cases with non redundant merging does not
decrease as more goals have been solved and correspondly the number of positive
interactions does not increase in a significant way. This shows that in domains where
goals are not necessarily in conflict, retrieving several cases and using non-redundant
merging is indeed an adequate choice.
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Chapter 10
Related Work

In this chapter we will discuss work related to the thesis. We will first compare the
problem-solving cycle in CAPLAN/CBC to a general problem-solving cycle in CBR.
Next, we will compare methods for CBP implemented in other case-based planners
with the methods implemented CAPLAN/CBC. Finally, relevant work in the field
of machine learning will be discussed.

10.1 Case-Based Reasoning

CBR has been the subject of increasing interest in the AI community over a variety
of fields ranging from academic research (Kolodner, 1993; Leake, 1996) to real-world
applications (Althoff et al., 1995). Several problem-solving cycles have been pro-
posed; one of which, presented in (Aamodt and Plaza, 1994), has been frequently
referred. The cycle presupposes two knowledge sources; namely, the case base and
general knowledge.! The cycle consists of four phases (see Figure 10.1):

Retrieval. Given a problem, one or more cases are selected which are rated as
similar to the problem by a similarity assessment.

Reuse. The retrieved cases are used to find a solution of the new problem.

Revise. The obtained solution is examined to state if it is a valid solution of the
problem. In this phase, the quality of the solution is also examined.

Retain. The revised solution is stored as a new case and the indexing structures
are updated.

The problem-solving solving cycle in CAPLAN/CBC keeps the retrieval phase,
the reuse phase, called adaptation, and the retain phase, called learning (see Figure

LA more concrete description of the knowledge in CBR has been given in (Richter, 1995); the
knowledge of a CBR system is considered to be in four knowledge containers: the representation
language, the similarity assessment, the adaptation mechanism, and the cases.
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Figure 10.1: Problem solving cycle in CBR (adapted from (Aamodt and Plaza,
1994)).

3.1). The name adaptation was chosen as it is more specific; because the cases contain
solution plans, reuse is made by adapting them. This is not the general situation in
CBR. In classification tasks, for example, the term reuse is more appropriate as, in
principle, the new problem is classified as the classification of the retrieved case. The
name learning was chosen to emphasize that not only the obtained solution plans
are possibly used to create a new case but that the system pursues to learn the best
distribution of the feature weights by considering the feedback of the adaptation
process.

There are three major differences between the problem-solving cycle in CA-
PLAN/CBC and the one proposed in (Aamodt and Plaza, 1994):

The Revise Phase does not Takes Place. The solution obtained after the
adaptation process in CAPLAN/CBC is always correct. Thus, there is no ne-
cessity to revise the solution obtained. The reason for the correctness is based
on the correctness of SNLP and the Justification-Reconstruction Claim (see
Claim 5.1): first, SNLP does not make any restriction on which of the deci-
sions of the conflict sets should be chosen. Thus, the fact that the decision
chosen is the one indicated by the derivational path of the retrieved case is
from the point of view of the correctness as good as another choice made by
any other means. The key point is that the chosen decision belongs to the
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conflict set, which is precisely what the replay algorithm does (see step 1.4 of
the algorithm ReplaySubgoalGraph depicted in Figure 5.4). Second, the Justi-
fications Reconstruction Claim ensures that the decisions eliminated from the
conflict sets during the justification reconstruction process are indeed invalid.
Thus, if any of these decisions would have been chosen, no solution would have
been found and SNLP would needed to backtrack on the choice made.

A New Phase: The Analysis Phase. This phase, which occurs previous to
the retrieval process, receives as input the problem description and returns an
extended problem description (see Section 3.2.1). This process could have been
seen as a preprocessing to the retrieval phase. However, because none of the
elements typical to the retrieval phase such as the case base or the similarity
assessment are used to obtain the extended problem descriptions, we decided
that this process should be distinguished from retrieval. In fact, the ordering
constraints can be used to guide the planning process without using any CBR
technique (Weberskirch, 1995).

Dual Integration Between the Retrieval and the Adaptation Phase. As
briefly mentioned before, the output of the retrieval phase in the model of
Aamodt and Plaza is one or more cases to be adapted. In CAPLAN/CBC
not only the cases are selected but the adaptation method itself is selected
(see Section 7.3). Even though the selection of the adaptation method is made
based on the retrieved cases, the point is that this selection can only be made
after retrieval had taken place.

We ommit further discussions about CBR in general. Extensive overviews can be
found in (Kolodner, 1993; Leake, 1996).

10.2 Case-Based Planning

Several general-purpose case-based planners have been developed including:

Prodigy/Analogy. A pioneer work in the field (Veloso and Carbonell, 1993;
Veloso, 1994); it implements for the first time a complete general-purpose,
case-based, problem-solving cycle. Novel features include adaptation with
analogical replay, the concept of relevant features and a complete architec-
ture of the case base (some of these aspects were discussed in Section 2.6).
PRODIGY/ANALOGY is based on the state-space planner Prodigy (Blythe et al.,
1992).

Priar. Another early work in the field (Kambhampati, 1994); some of the novel
features in Priar are cases representing a hierarchical plan, adaptation of hier-
archical plans and rating of the features by their contribution to the cases.
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SPA /MPA. SPA is a case-based planner performing single-case adaptation (Hanks
and Weld, 1995) and MPA is the extension of SPA performing multiple-case
adaptation (Francis and Ram, 1995b). The most important contribution of
this work is an adaptation algorithm in which the solution of the case is trans-
formed into a solution of the new problem. This is opposed to adaptation based
on replay in which the derivational trace is reconstructed relative to the new
solution. Unfortunately, even though SPA has been shown to outperform first-
principles planning with SNLP, no report has been made comparing it with
adaptation based on replay.

derSNLP+EBL. The case-based planner derSNLP+EBL performs case adapta-
tion with standard replay based on SNLP (Ihrig and Kambhampati, 1996a). If
a retrieval failure occurs (see Definition 6.3), EBL generates a rule explaining
the failure. Each of the retrieved cases is annotated with the rule. The censor-
ing rule serves as a choice node in the case base between each of them and a
new case containing the solution obtained when the cases were retrieved and
the failure occured. In subsequent retrieval episodes, before selecting any of
the censored cases, the retrieval procedure checks that the rule does not hold.
Otherwise, the new case is retrieved. The new case may be censored as well, if
it is retrieved and a retrieval failure occurs.

MRAL. The inference mechanism of MRL is based on deductive planning (Koehler,
1994). The deduction mechanism is used to generate plans. The functionality
obtained is somehow comparable to state-space as the state of the world is
represented and transformed in the deductive formalism.

Paris. Paris reuses abstract cases (Bergmann and Wilke, 1995b). Given a new
problem, its problem description is abstracted. The case base is searched for a
case solving the abstracted problem description. Once such a case is found its
solution is refined to a concrete level. New cases are created by abstracting the
solutions found. Paris is based on a linear, state-space planner.

Table 10.1 compares these systems with CAPLAN/CBC according to the follow-
ing aspects (see Chapter 1):

1. Goal-driven retrieval, dependency-driven retrieval or other forms of
retrieval. Goal-driven retrieval means that the first aspect of the problem de-
scriptions considered during retrieval are the goals to be achieved. Dependency-
driven retrieval means that the first aspect considered are the ordering restric-
tions of the problem. Dependency-driven retrieval presupposes that ordering
restrictions can be precomputed (see Sections 3.2.1 and 2.5). Priar and Paris
presuppose in addition to the availability of the domain theory (a common re-
quirement for any general-purpose planner), a transformation theory between
hierarchies and abstractions levels respectively. MRL requires a formalization
in terminological logic for indexing the cases.
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2. Knowledge Necessary for the Problem Solving Cycle. As mentioned in
1, all case-based planners require at least the domain theory. Some require ad-
ditional knowledge. For example, in CAPLAN/CBC, ordering restrictions are
required to perform dependency-driven retrieval. However, in some domains,
the ordering restrictions can be generated automatically from the domain the-
ory (see Section 2.5). Thus, for those domains, no additional knowledge is
necessary.

3. Static or dynamic similarity metrics. Static means that the value of
the similarity assessment between a problem and a case is always the same.
Dynamic means that this value may change after case-based problem solving
episodes have taken place. The fact that the similarity metric in a system is
static does not means that given a certain problem, the same case will always
be retrieved because new cases might have been created. The point here is that
the similarity metric learns from previous case-based problem solving episodes.

4. Base-level planner searches in the space of states or in the space
of plans. Adaptation based on replay is not the only adaptation method that
leaves part of the refitting effort to the base-level planner. In Paris, for example,
first-principles planning is done to refine the abstract cases to a solution plan.
Thus, the search space of the base level planner is also an important factor to
be considered in CBP.

5. Adaptation based on standard replay, adaptation based on replay but
considering failed attempts or other forms of adaptation. The differ-
ence between the first two is that in the former only the derivational path driv-
ing to the solution is considered during the adaptation process whereas, in the
latter, in addition to this path, the decisions taken when the cases were solved
and which drove to no solution are also considered. The third possibility refers
to adaptation methods which are not based on replay. PRODIGY/ANALOGY
and CAPLAN/CBC take into account the failed attempts although the former
searches in the space of states and the latter in the space of plans. Thus, the
mechanisms to represent the failed attempts and to handle this information are
completely different.

6. The system supports user interactions during the adaptation process.
Remarkably, no general-purpose, case-based planner has considered this issue
before.

7. Eager policy to create new cases, case creation based on retrieval
failures or case creation based on retrieval benefits. The first means
that every time a new solution is found, new cases are created. The second one
means that a new case is created if a retrieval failure occurs and the last one
means that a new case is created if the retrieval is nonbeneficial.
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Issue Prodigy/ Priar SPA/ derSNLP Paris MRL CAPlan/
Analogy MPA +EBL CbC

Retrieval goal hierar. goal goal abstr. other depend.

Addition, b bst . . none or

Know- none ierar. none none abstr. elrm'ln. goal

ledge theory theory ogic orderings

Simil.

Metric static static static static static static dynamic

Search

Space states plans plans plans states states plans

Adap- repl hi l

play ierar. replay

tation Hust. adap. transf. replay | refinement other +just.

User

Inter. no no no no no no yes

Case

Creation eager eager eager failure eager eager benefit

Archi-

tecture yes no yes yes yes yes yes

Feedback yes no no yes yes no yes

One or

Multi-

Case multi one multi multi one one multi

Retriev.

Table 10.1: Comparison between several general-purpose, case-based planners on
selected issues.
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8. Architecture of the case base. Providing an indexing structure is key
to evaluate the similarity assessment efficiently. For this reason, most of the
systems provide an architecture of the case base.

9. Feedback from the problem solver. The feedback is used to improve the
accuracy of the retrieval. CBR+EBL (Cain et al., 1991) is a domain-specific
case-based reasoner, which used EBL to improve the accuracy of the retrieval.?
In PRODIGY/ANALOGY, the feedback is used to rank the features in the case
base; features with a higher rank are to be matched before features with lower
rank. The rank of the features, however, is not consider to evaluate the sim-
ilarity. That is, the rank of the feature is not a weight and thus is not taken
into account in the similarity assesssment. derSNLP+EBL uses feedback of
the problem solver to censor the retrieval of a case by adding EBL rules every
time a retrieval failure occurs. Thus, to the usual retrieval costs, the cost of
evaluating the rules should be added. This may result in an architectual utility
problem (Francis and Ram, 1993), an extension of Minton’s utility problem
(Minton, 1988). This problem arises when learning has the side effect of caus-
ing an increase in the costs of the basic operations that the system performs.
The basic operation in this situation is retrieval and the increased in costs are
caused by the evaluation of the EBL rules. In our approach, the feedback re-
sults in a redistribution of the feature weights but no new elements need to be
evaluated.

10. Single or Multi-Case Retrieval. The ability to merge multiple cases is
another factor that distinguishes different case-based planners. However, the
results of Chapter 8 shows that there are some limitations for case-based plan-
ners based on SNLP.

10.3 Mergeability of Plans

The idea of avoiding redundancy during replay of multiple cases was first proposed
in Prodigy/Analogy. Prodigy/Analogy uses a mixed-initiative strategy to switch the
search control between case-based and first-principles. The basis for this strategy is
the fact that Prodigy searches in the space of states instead of the space of plans as in
CAPLAN/CBC. Selecting the kind of base-level planner depends on the characteris-
tics of the particular domain (Kambhampati et al., 1996a; Barrett and Weld, 1994;
Veloso and Blythe, 1994). For example, our specification of the domain of process
planning (see Appendix A), there is theoretical evidence that a partial-order planner
such as SNLP is a better choice (Muhoz-Avila and Weberskirch, 1996¢).
derSNLP+EBL applies the following strategy: in principle, several single-goal
cases are retrieved, each covering a goal of the problem. Non-redundant merging

2CBR+EBL is a domain-specific system and as such it is not compare in Table 10.1.
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is used to combine them. If decisions in the subplans achieving the goals need to
be revised to obtain a solution, this solution is stored as a new multi-goal case. If
in future retrieval episodes the same situation is encountered, the multi-goal case is
retrieved instead of the single-goal cases. Based on the results of this paper, we affirm
that in domains where goals are in conflict this method results in an improvement of
the performance of the planning process as the result of the multi-goal cases learned
but not of the merging method itself. As the number of goals increases, the process
of merging cases serves mainly to construct multi-goal cases.

Although not in the context of partial-order planning, previous work has shown
that merging subplans into a solution is NP-complete (Karinthi et al., 1992; Yang
et al., 1992). The same work, however, shows that there are instances of the problem
that can be solved in polynomial time. An algorithm for merging is presented con-
taining several operations, one of which involves merging the same step occuring in
different plans into a single step. This operation is comparable to prefering existing
establishing oportunities of the non redundant merging method.

10.4 Machine Learning

Feature weighting has been the subject of continuous research in machine learning
(e.g., (Aha and Goldstone, 1990; Salzberg, 1991; Skalak, 1992; Wettschereck and
Aha, 1995)). Moreover, the meaning of the context of a feature has been studied as
well. For example, in (Aha and Goldstone, 1990), it has been pointed out that the
relevance of a feature is a context-specific property. Typically, the notion of relevance
and context of a feature has been defined in terms of statistical information such as
the distribution of the feature values relative to the values of other features (e.g., in
(Turney, 1996)). An overview of feature weighting can be found in (Atkenson et al.,
1995).

A common characteristic of previous work on feature weighting is that it has
been done for analysis tasks such as classification, but not for synthesis tasks such
as planning. There are two key differences between these tasks which determine the
way the relevance and the context of a feature are handled in CBP:

Classification problems have a single solution whereas planning problems
typically have several solutions. This is an important factor to determine
the relevance of a feature in CBP; Veloso pointed out that the relevance of
a feature depends on the particular solution plan found (Veloso, 1994). The
foot-printing process determines the relevant features of a particular solution.

Typically, no domain theory is available in classification whereas the do-
main theory is always available in general-purpose CBP. As described
in Section 6.3, the domain theory plays a key role in determining the context of
a feature in CBP; if goals in a domain are known to be (<-constrained) trivially
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serializable, goals that occur in the new problem but not in the retrieved case
but are not part of the context of the case features.

As mentioned in Section 6.1, the feature weighting model in CAPLAN/CBC is
based on incremental optimizers (Wettschereck and Aha, 1995). More concrete, our
model is an extension of Salzbergs model (Salzberg, 1991), which can be stated as
follows:

o — wic+ A 1 correct retrieval
e wic—A : false retrieval

There are two main differences to our model. First, because Salzbergs model was
developed for classification tasks, the weights of the features are increased (decreased)
if the retrieval is correct (false). That is, if the classification of the retrieved case is
the classification of the problem. Clearly, in CBP, it makes no sense to call a retrieval
correct (or false) because the case can always be adapted. Whether the retrieval was
effective or not is another issue. Thus, in our model we speak of an adequate retrieval
(or a retrieval failure).

Second, the incremental factor, /A, is a global, constant factor in Salzbergs model.
In contrast, in our model, the incremental optimizer, A, s, is local and varies
according to the number of adequate and inadequate retrievals of each case C (i.e., k¢,
fc)- The reason for this difference are the purposes of each method; Salsbergs purpose
is to predict the classification of points in the hyperspace (i.e., in R"x R™). To achieve
this, the hyperspace is divided in hyper-rectangles, representing generalizations of
the points for which the clasification is known. The classification of a new point is
predicted by voting on the classifications of the hyper-rectangles containing it.* In
our approach, the purpose of the feature weighting process is to improve the accuracy
of the retrieval of each case. That is, to increase the possibility that when a case
is retrieved, the solution of the case can be extended to a solution plan of the new
problem. Thus, we are interested on each case locally. As such, the incremental
factor of a case is independent of the other cases. Our approach is comparable to
research done on local similarity metrics (e.g., (Ricci and Avesani, 1995)) because
the weighted similarity metric can be seen as a collection of local similarity metrics;
one for each case.

3In (Wettschereck and Diettrich, 1994), some flaws of Salzbergs approach have been pointed out;
the generalizations obtained with the hyperrectangles turn out to be over-generalizations. Further,
Salzbergs model is outperformed by classification methods based on nearest neighbour.
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Chapter 11

Conclusions and Future Research
Directions

We conclude this thesis by summarizing the obtained results and discussing future
research directions.

11.1 Summary and Conclusions

In this thesis we presented novel methods for CBP, which were motivated by problems
encountered in complex domains such as the domain of process planning. These
methods are:

Dependency-Driven Retrieval. In domains in which valid ordering restrictions
can be stated previous to the problem-solving process, dependency-driven re-
trieval improves the performance and the accuracy of the retrieval process com-
pared to goal-driven retrieval. The GDN is an effective indexing structure by
enabling CAPLAN/CBC to evaluate the order consistency condition on several
cases at the same time. However, in domains in which no valid ordering re-
strictions can be stated, the GDN is not an effective indexing structure because
retrieval costs increase in a significant way.

Dynamic Similarity Metrics. A dynamic similarity metric, the weighted sim-
ilarity metric, has been stated. This metric assesses similarity by counting
the weights of the features in the candidate cases matching features of the new
problem. The feature weights of a case are updated by considering the feedback
of the adaptation process; if the retrieval is adequate, the weights of certain
features is incremented by a factor which depends on previous performances
of the case. Otherwise, the weights of the features are decremented by the
same factor. The features whose weight is updated are identified by a process
called filtering, in which the contributions of the features to the skeletal plan
are analyzed.

159
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The Context of a Feature. The purpose of updating the feature weights is to rank
the case features according to their relevance. The process presupposes that
the context of the case features are the features of the problem and the case and
the common goals in the problem and the case. However, we saw that there are
situations in which the failure of the retrieval is due to goals in the new problem
which are conflicting with the goals of the case. In these situations, the absence
of case features in the new problem has no effect whatsoever on the outcome of
the retrieval. Thus, the feature weights should not be updated. We found that
in these situations, goals are not trivially serializable. We concluded that in
domains for which goals are known to be trivially serializable, feature weighting
can be performed without encountering such situations. In the general case,
that is, in domains for which goals may not be trivially serializable, EBL can be
used to detect these situations. We also found that the requirement of trivial
serializability between the goals can be weakened if valid ordering restrictions,
<, between the goals can be predefined. In this situation, the requirement to
simplify the context is that goals are <-constrained trivially serializable.

Adaptation in Plan-Space Planning with Complete Decision Replay. The
base-level planner CAPLAN maintains the subgoal graph, a structure repre-
senting dependencies between planning elements such as goals and decisions. In
addition, the justifications for every decision are constructed. CAPLAN/CBC
stores as part of the cases the subgoal graph and the justifications. Complete
decision replay reconstruct the subgoal graph relative to the new problem. This
corresponds to standard replay. In addition, the justifications of the failed deci-
sions (i.e., decisions that were taken during planning but were rejected because
they did not conduct to any solution plan) are reconstructed relative to the
new problem. If the justifications of a failed decisions of the case can be recon-
structed, the decision also fails in the new problem. Thus, it can be discarded.
As a result, the search space that the base-level planner needs to explore to
complete the skeletal plan can be smaller compared to standard replay. Two
additional advantages are the result of inheriting the functionality of CAPLAN
and the fact that CAPLAN/CBC reconstructs the subgoal graph and the jus-
tifications. First, the user may interact with the system during the adaptation
process and, second, powerful backtracking mechanism such as dependency-
directed backtracking can be performed during the adaptation process.

Trade-off between Efficiency Gains and Case Merging. Problem solving by
blind merging the retrieved cases is known to result in solution plans containing
redundant steps. We found that when the base-level planner is SNLP, not
only the resulting plans contain redundant steps but that the planning process
itself is very inefficient. We found that a reason for this is that, for SNLP,
the concept of mergeability is equivalent to the concept of trivial mergeability.
Thus, unless the retrieved cases can be extended to a solution plan by adding
only ordering and binding constraints, backtracking will always take place.
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Previous work has shown that if there is a point in which it does not payoff to
spend further effort in the retrieval phase because no gains will be made in the
overall case-based, planning process. We found a somewhat similar result for
adaptation with non-redundant merging; namely, in domains in which positive
interactions frequently occur, the increase in size of the skeletal plan reduces
with the number of goals and the number of cases that is been merged. Thus,
there is a point in which it does not payoff to merge further cases.

Policy to Create New Cases based on Retrieval Benefits. Previous work

created cases either eagerly (i.e., every time a new solution is found) or if a
retrieval failure occurs. A flaw of the eager policy to create cases is that case
bases tend to be very large. This is partially corrected by the policy based
on retrieval failures. However, we found that this policy has two flaws: first,
situations may occur in which no retrieval failure occur but still the adaptation
effort was large. Second, there are situations in which a retrieval failure occurs,
but the adaptation effort is small. To solve these flaws we state a policy to
create cases based on the retrieval benefits; new cases are created only when
the adaptation effort is large. The measure of the adaptation effort is made
with an heuristic assessment.

Experiments were performed to further illustrate the effectiveness of these meth-
ods individualy. However, this thesis is not a collection of independent methods
improving different aspects of CBP, but it integrates these methods in the problem
solving cycle of CAPLAN/CBC. The purpose of this integration is to compensate
the weak points of some of these methods with the strengths of the others. This
integration involves the following aspects:

Twofold Retrieval. The first integration aspect is the twofold retrieval process.

Dependency-driven retrieval and feature weighting are complementary steps
of the retrieval process because the first performs a preselection based on the
ordering restrictions and the goals and the second makes a final selection based
on the initial features. Moreover, the strenght of feature weighting is that it
decreases the possibility that retrieval failures occur by learning from previous
retrieval episodes. Its main drawback is that, under circumstances, several
retrieval episodes may take place until a good distribution of weights is learned.
Dependency-driven retrieval is, on the contrary, static because it does not learn
from previous retrieval episodes. However, dependency-driven retrieval is a
rather reliable process.

Dual Integration of Retrieval and Adaptation. The second integration aspect

is the integration between feature weighting and complete decision replay. As
discussed before, the feature weighting process decreases the possibility that
retrieval failures occur but, under circumstances, it may take several retrieval
episodes before a good distribution of weights is learned. If the retrieval of
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a case is known statistically to be unreliable, CAPLAN/CBC performs com-
plete decision replay. The reason for this, is that when retrieval failures occur,
backtracking must take place. By performing complete decision replay, in-
valid alternatives to complete the skeletal plan are discarded and, thus, the
completion effort is reduced. A drawback of complete decision replay is the
overhead cased by the justification process. If after several retrieval episodes,
the possibility of retrieval failures decreases (as it is the usual result of the
feature wieghting process), CAPLAN/CBC performs standard replay because
backtracking on the skeletal plan is unlikely to occur.

In this thesis, several contributions to each of the phases of the case-based plan-
ning process have been made. The weakeness of some of the proposed methods was
compensated with the advantages of others. The result is a powerful case-based
planner, CAPLAN/CBC, which advances the state of the art in CBP.

11.2 Future Research Directions

There are three main research directions that we believed should be explored. First,
given the advances of CBP, an integration of different CBP techniques can be made.
UCP is a planning system integrating different planning paradigms such as state-
space and plan-space planning (Kambhampati, 1996). Thus, it may serve as a base
for exploring this integration. However, in UCP no learning can be made on the
selection of the planning paradigm; if for example, in a certain point of the planning
process, the system switches from state-space search mode to plan-space search mode,
there is no opportunity to learn from this decision. The reason for this is that UCP
will always be able to find a solution in any planning mode. This is an interesting
property as it ensures the completness of UCP. But, this also means that no learning
can be made on the decision of which planning mode to use. Even though in CBP
no learning is made on single decisions but in the whole planning process, this fact
may pose problems for any learning method including CBP. The integration should
not necessarily be done based on the different search spaces in which planning may
take place; in some of the experiments performed in this thesis, the architecture of
PRODIGY/ANALOGY was integrated into CAPLAN. This is particularly usefull if no
ordering restrictions are given because in this situation the GDN will decrease the
performance of the system. Following similar motivations, a systematic integration
of the different CBP techniques can be explored.

The second issue is the application of CBP in the context of information gath-
ering. Information gathering has been the subject of increasing interest because of
its wide range of practical applications such as search in internet and information
retrieval (Selberg and O.Etzioni, 1995; Pryor, 1995; Knoblock, 1996; Etzioni et al.,
1996; Golden and Weld, 1996). CAPLAN/CBC as all other case-based planners as-
sumes that all conditions relevant to solve the problem are known previous to the
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planning process. This assumption is somewhat relaxed in CAPLAN/CBC by con-
sidering interactions of the user. However, these interactions are limited to pruning
parts of the plan and to make preconditions invalid. In information gathering, more
functionality is needed; some conditions are known previously but others are only
known during the planning process. Further, which conditions are known at a certain
point of the planning process dependend on the partial solution being obtained.

The last research direction concerns the automatic computation of the order-
ing restrictions, which are necessary to perform dependency-driven retrieval. As
discussed in this thesis, Etzionis STATIC can be used to compute automatically or-
dering restrictions. However, Etzioni’s procedure presupposes that axioms are stated
in addition to the domain theory. A more powerful procedure should be developed
that states the ordering restrictions solely based on the domain theory.



164 CHAPTER 11. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS



Part IV

Appendix

165






Appendix A

The Domain of Process Planning

Object types: (33)

CenterOutline
Superclass: Outline
DrillTool

Superclass: HoleTool
ExtRotaryTool
Superclass: Tool
Feature

Superclass: ProcArea
FeatureTool
Superclass: Tool
Groove

Superclass: Feature
GrooveTool
Superclass: FeatureTool
Hole

Superclass: Feature
HoleTool

Superclass: FeatureTool
IntProcArea
Superclass: ProcArea
IntRotaryTool
Superclass: Tool
LeftOutline
Superclass: Outline
LeftRTool
Superclass: ExtRotaryTool
Outline

Superclass: ProcArea
PrickOut

Superclass: Feature
PrickOutTool

Superclass: FeatureTool
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ProcArea

Superclass: None.
RightOutline

Superclass: Outline
RightRTool

Superclass: ExtRotaryTool
RoundOff

Superclass: Feature

RoundOffTool
Superclass: FeatureTool
Slope

Superclass: Feature
SlopeTool

Superclass: FeatureTool
TappingTool
Superclass: HoleTool
Thread

Superclass: Feature
ThreadTool
Superclass: FeatureTool
Tool

Superclass: None.
Undercut

Superclass: Feature
UndercutHalfl
Superclass: Undercut
UndercutHalf2
Superclass: Undercut
WhpieceSide
Superclass: ProcArea
WhpieceSidel
Superclass: WpieceSide
WpieceSide2

Superclass: WpieceSide

Predicates: (17)

available
Arguments: tl
clampNoTurn
Arguments: pos
clampTurn
Arguments: pos
isClampArea
Arguments: area
neighbour
Arguments: areal area2
noSubareaThread

Arguments: outl

THE DOMAIN OF PROCESS PLANNING
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processed
Arguments: area
processedUcutHalfl
Arguments: ucut
processedUcutHalf2
Arguments: ucut
restrictedClamp
Arguments: area
subarea
Arguments: feat outl
toolHeld
Arguments: tl
toolHolderFree

Arguments: None.

unprocessed
Arguments: area

unprocUcutHalfl
Arguments: area

unprocUcutHalf2
Arguments: area

unrestrictedClamp
Arguments: outl

Operators: (27)
ClampFromPFace
Arguments: sl s2 outll outl2 inn
Constraints: IsOfType(Outline, outll)
IsOfType(Outline, outl2)
NotSame(outl2, outll)
IsOfType(WpieceSide, s2)
IsOfType(WpieceSide, s1)
NotSame(s2, s1)
IsOfType(IntProcArea, inn)
Effects: +clampTurn(sl)
-clampTurn(outll)
-clampNoTurn(outll)
-clampTurn(outl2)
-clampNoTurn(outl2)
-clampNoTurn(s2)
Preconditions: +subarea(inn, s1)
+processed(inn)
+unprocessed(s2)
+isClampArea(s1)
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ClampNoTurn

Arguments: outl s2 s outl2

Constraints: IsOfType(Outline, outl2)
IsOfType(Outline, outl)
IsOfType(WpieceSide, s2)
IsOfType(WpieceSide, s)
NotSame(outl, outl2)
NotSame(s2, s)

Effects: +clampNoTurn(outl)
-clampTurn(outl2)
-clampNoTurn(outl2)
-clampNoTurn(s)
-clampNoTurn(s2)
-clampTurn(outl)

Preconditions: +mnoSubareaThread(outl)
+isClampArea(outl2)
+isClampArea(outl)
+unrestrictedClamp(outl)

ClampNoTurn-NotFree

Arguments: outl s2 s outl2

Constraints: IsOfType(Outline, outl2)
IsOfType(Outline, outl)
IsOfType(WpieceSide, s2)
IsOfType(WpieceSide, s)
NotSame(outl, outl2)
NotSame(s2, s)

Effects: +clampNoTurn(outl)
-clampTurn(outl2)
-clampNoTurn(outl2)
-clampNoTurn(s)
-clampNoTurn(s2)
-clampNoTurn(outl)

Preconditions: +unprocessed(outl)
+isClampArea(outl2)
+isClampArea(outl)
+restrictedClamp(outl)



ClampNoTurn-Thread

Arguments:
Constraints:

Effects:

Preconditions:

ClampTurn
Arguments:
Constraints:

Effects:

Preconditions:

outl s2 s outl2 thr
IsOfType(Outline, outl2)
IsOfType(Outline, outl)
IsOfType(WpieceSide, s2)
IsOfType(WpieceSide, s)
NotSame(outl, outl2)
NotSame(s2, s)
IsOfType(Thread, thr)
+clampNoTurn(outl)
-clampTurn(outl2)
-clampNoTurn(outl2)
-clampNoTurn(s)
-clampNoTurn(s2)
-clampTurn(outl)
+unprocessed(thr)
+subarea(thr, outl)
+isClampArea(outl2)
+isClampArea(outl)

outl s2 s outl2
IsOfType(Outline, outl2)
IsOfType(Outline, outl)
IsOfType(WpieceSide, s2)
IsOfType(WpieceSide, s)
NotSame(outl, outl2)
NotSame(s2, s)
+clampTurn(outl)
-clampNoTurn(s)
-clampNoTurn(s2)
-clampTurn(outl2)
-clampNoTurn(outl2)
-clampNoTurn(outl)
+noSubareaThread(outl)
+isClampArea(outl2)
+isClampArea(outl)
+unrestrictedClamp(outl)
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ClampTurn-NotFree

Arguments: outl s2 s outl2

Constraints: IsOfType(Outline, outl2)
IsOfType(Outline, outl)
IsOfType(WpieceSide, s2)
IsOfType(WpieceSide, s)
NotSame(outl, outl2)
NotSame(s2, s)

Effects: +clampTurn(outl)
-clampTurn(outl2)
-clampNoTurn(outl2)
-clampNoTurn(s)
-clampNoTurn(s2)
-clampNoTurn(outl)

Preconditions: +unprocessed(outl)
+isClampArea(outl2)
+isClampArea(outl)
+restrictedClamp(outl)

ClampTurn-Thread
Arguments: outl s2 s outl2 thr
Constraints: IsOfType(Outline, outl2)
IsOfType(Outline, outl)
IsOfType(WpieceSide, s2)
IsOfType(WpieceSide, s)
NotSame(outl, outl2)
NotSame(s2, s)
IsOfType(Thread, thr)
Effects: +clampTurn(outl)
-clampTurn(outl2)
-clampNoTurn(outl2)
-clampNoTurn(s)
-clampNoTurn(s2)
-clampNoTurn(outl)
Preconditions: +unprocessed(thr)
+isClampArea(outl2)
+isClampArea(outl)
+subarea(thr, outl)



DrillHole
Arguments: hole outl aTool clampArea

Constraints: IsOfType(DrillTool, aTool)
IsOfType(Outline, outl)
IsOfType(ProcArea, clampArea)
IsOfType(Hole, hole)
NotSame(outl, clampArea)

Effects: +processed(hole)
-unprocessed (hole)
Preconditions: +processed(outl)
+clampNoTurn(clampArea)
+toolHeld (aTool)
+subarea(hole, outl)
+available(aTool)

HoldTool
Arguments: tooll

Constraints: None.
Effects: +toolHeld(tooll)
-toolHolderFree()
Preconditions: +toolHolderFree()

MachineGroove
Arguments: groove outl tool clampArea

Constraints: IsOfType(GrooveTool, tool)
IsOfType(Outline, outl)
IsOfType(ProcArea, clampArea)
IsOfType(Groove, groove)
NotSame(outl, clampArea)

Effects: +processed(groove)
-unprocessed (groove)
Preconditions: +processed(outl)
+clampTurn(clampArea)
+toolHeld(tool)
+subarea(groove, outl)
+available(tool)
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MachineIlnternalArea
Arguments: inn s tool outl clampArea

Constraints: IsOfType(IntProcArea, inn)
IsOfType(WpieceSide, s)
IsOfType(IntRotaryTool, tool)
IsOfType(Outline, outl)
IsOfType(Outline, clampArea)
NotSame(outl, clampArea)

Effects: +processed(inn)

-unprocessed (inn)

Preconditions: +available(tool)
+processed(s)
+clampNoTurn(clampArea)
+toolHeld(tool)
+subarea(inn, s)
+neighbour(outl, s)

MachineOutline
Arguments: outl tool clampArea

Constraints: IsOfType(Outline, outl)

IsOfType(ProcArea, clampArea)
NotSame(outl, clampArea)
IsOfType(ExtRotaryTool, tool)

Effects: +processed(outl)
-unprocessed (outl)

Preconditions: +clampTurn(clampArea)

+toolHeld(tool)
+unprocessed (outl)
+available(tool)

MachinePrickOut
Arguments: prickout outl tool clampArea

Constraints: IsOfType(PrickOutTool, tool)
IsOfType(Outline, outl)
IsOfType(ProcArea, clampArea)
IsOfType(PrickOut, prickout)
NotSame(outl, clampArea)

Effects: +processed(prickout)
-unprocessed (prickout)
Preconditions: +processed(outl)
+clampTurn(clampArea)
+toolHeld(tool)
+subarea(prickout, outl)
+available(tool)



MachineRound Off

Arguments:
Counstraints:

Effects:

Preconditions:

MachineSide
Arguments:

Constraints:

Effects:

Preconditions:

MachineSlope
Arguments:
Constraints:

Effects:

Preconditions:

roundoff outl tool clampArea
IsOfType(RoundOffTool, tool)
IsOfType(Outline, outl)
IsOfType(ProcArea, clampArea)
IsOfType(RoundOff, roundoff)
NotSame(outl, clampArea)
+processed(roundoff)
-unprocessed (roundoff)
+processed(outl)
+clampTurn(clampArea)
+toolHeld(tool)
+subarea(roundoff, outl)
+available(tool)

s clampArea tool sl
IsOfType(Outline, clampArea)
IsOfType(WpieceSide, s)
IsOfType(WpieceSide, s1)
IsOfType(LeftRTool, tool)
NotSame(s, s1)
+processed(s)
-unprocessed(s)
+clampTurn(clampArea)
+toolHeld(tool)
+unprocessed(s)
+neighbour(clampArea, s1)
+available(tool)

slope outl tool clampArea
IsOfType(SlopeTool, tool)
IsOfType(Outline, outl)
IsOfType(ProcArea, clampArea)
IsOfType(Slope, slope)
NotSame(outl, clampArea)
+processed(slope)
-unprocessed (slope)
+processed(outl)
+clampTurn(clampArea)
+toolHeld(tool)
+subarea(slope, outl)
+available(tool)
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MachineThread
Arguments: thr outl tool clampArea

Constraints: IsOfType(ThreadTool, tool)
IsOfType(Outline, outl)
IsOfType(Thread, thr)
IsOfType(ProcArea, clampArea)
NotSame(outl, clampArea)

Effects: +processed(thr)

-unprocessed (thr)

Preconditions: +processed(outl)
+clampTurn(clampArea)
+toolHeld(tool)
+subarea(thr, outl)
+unprocessed (thr)
+available(tool)

MachineUndercutH1Left ToolOutline
Arguments: ucut outl tool clampArea sl

Constraints: IsOfType(LeftRTool, tool)
IsOfType(ProcArea, clampArea)
NotSame(outl, clampArea)
IsOfType(Outline, outl)
IsOfType(Undercut, ucut)
IsOfType(WpieceSidel, s1)

Effects: +processedUcutHalfl(ucut)
-unprocUcutHalfl (ucut)

Preconditions: +processed(outl)

+toolHeld(tool)
+clampTurn(clampArea)
+subarea(ucut, outl)
+available(tool)
+neighbour(sl, clampArea)

MachineUndercutH1LeftToolSide
Arguments: ucut outl tool clampArea sl

Constraints: IsOfType(LeftRTool, tool)
IsOfType(ProcArea, clampArea)
NotSame(outl, clampArea)
IsOfType(Outline, outl)
IsOfType(Undercut, ucut)
IsOfType(WpieceSidel, s1)

Effects: +processedUcutHalfl (ucut)

-unprocUcutHalfl (ucut)

Preconditions: +processed(outl)
+toolHeld(tool)
+clampTurn(s1)
+subarea(ucut, outl)
+available(tool)
+neighbour(s1, clampArea)



MachineUndercutH1RightToolOutline

Arguments:
Constraints:

Effects:

Preconditions:

ucut outl tool clampArea s2
IsOfType(RightRTool, tool)

IsOfType(ProcArea, clampArea)

NotSame(outl, clampArea)
IsOfType(Outline, outl)
IsOfType(Undercut, ucut)
IsOfType(WpieceSide2, s2)
+processedUcutHalfl (ucut)
-unprocUcutHalfl (ucut)
+processed(outl)
+toolHeld(tool)
+clampTurn(clampArea)
+subarea(ucut, outl)
+available(tool)
+neighbour(s2, clampArea)

MachineUndercutH1RightToolSide

Arguments:
Constraints:

Effects:

Preconditions:

ucut outl tool clampArea s2
IsOfType(RightRTool, tool)

IsOfType(ProcArea, clampArea)

NotSame(outl, clampArea)
IsOfType(Outline, outl)
IsOfType(Undercut, ucut)
IsOfType(WpieceSide2, s2)
+processedUcutHalfl (ucut)
-unprocUcutHalfl (ucut)
+processed(outl)
+toolHeld(tool)
+clampTurn(s2)
+subarea(ucut, outl)
+available(tool)
+neighbour(s2, clampArea)
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MachineUndercutH2Left ToolOutline
Arguments: ucut outl tool clampArea s2

Constraints: IsOfType(LeftRTool, tool)
IsOfType(ProcArea, clampArea)
NotSame(outl, clampArea)
IsOfType(Outline, outl)
IsOfType(Undercut, ucut)
IsOfType(WpieceSide2, s2)

Effects: +processedUcutHalf2(ucut)

-unprocUcutHalf2(ucut)

Preconditions: +processed(outl)
+toolHeld(tool)
+clampTurn(clampArea)
+subarea(ucut, outl)
+available(tool)
+neighbour(s2, clampArea)

MachineUndercutH2LeftToolSide
Arguments: ucut outl tool clampArea s2

Constraints: IsOfType(LeftRTool, tool)
IsOfType(ProcArea, clampArea)
NotSame(outl, clampArea)
IsOfType(Outline, outl)
IsOfType(Undercut, ucut)
IsOfType(WpieceSide2, s2)

Effects: +processedUcutHalf2(ucut)

-unprocUcutHalf2(ucut)

Preconditions: +processed(outl)
+toolHeld(tool)
+clampTurn(s2)
+subarea(ucut, outl)
+available(tool)
+neighbour(s2, clampArea)



MachineUndercutH2RightToolOutline

Arguments:
Constraints:

Effects:

Preconditions:

ucut outl tool clampArea sl
IsOfType(RightRTool, tool)
IsOfType(ProcArea, clampArea)
NotSame(outl, clampArea)
IsOfType(Outline, outl)
IsOfType(Undercut, ucut)
IsOfType(WpieceSidel, s1)
+processedUcutHalf2(ucut)
-unprocUcutHalf2(ucut)
+processed(outl)
+toolHeld(tool)
+clampTurn(clampArea)
+subarea(ucut, outl)
+available(tool)
+neighbour(sl, clampArea)

MachineUndercutH2RightToolSide

Arguments:
Constraints:

Effects:

Preconditions:

ucut outl tool clampArea sl
IsOfType(RightRTool, tool)
IsOfType(ProcArea, clampArea)
NotSame(outl, clampArea)
IsOfType(Outline, outl)
IsOfType(Undercut, ucut)
IsOfType(WpieceSidel, s1)
+processedUcutHalf2(ucut)
-unprocUcutHalf2(ucut)
+processed(outl)
+toolHeld(tool)
+clampTurn(sl)
+subarea(ucut, outl)
+available(tool)
+neighbour(s1, clampArea)

MakeToolHolderFree

Arguments:
Constraints:
Effects:

Preconditions:

tool

IsOfType(Tool, tool)
+toolHolderFree()
-toolHeld(tool)
+toolHeld(tool)

179



180 APPENDIX A. THE DOMAIN OF PROCESS PLANNING

TapHole
Arguments: hole outl aTool clampArea
Constraints: IsOfType(TappingTool, aTool)
IsOfType(Outline, outl)
IsOfType(ProcArea, clampArea)
IsOfType(Hole, hole)
NotSame(outl, clampArea)
Effects: +processed(hole)
-unprocessed (hole)
Preconditions: +processed(outl)
+clampNoTurn(clampArea)
+toolHeld (aTool)
+subarea(hole, outl)
+available(aTool)



Appendix B

The Logistics Transportation

Domain

Taken from (Veloso, 1994).

Object types:

(8)

Airplane

Superclass: Carrier

Airport

Superclass: Location

Carrier

Superclass: None.

City

Superclass: None.

Location

Superclass: None.

Object

Superclass: None.

PostOffice

Superclass: Location

Truck

Superclass: Carrier
Predicates: (9)

at Airplane

Arguments: airplane loc

atObj

Arguments: obj loc

atTruck

Arguments: truck loc

diffCity

Arguments: locl loc2

insideAirplane

Arguments: obj plane
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insideTruck
Arguments: obj airplane

locationAt
Arguments: loc city

sameCity
Arguments: locl loc2

truckInCity
Arguments: truck city

Operators: (6)

DriveTruck
Arguments: truck locFrom locTo city

Constraints: IsOfType(Truck, truck)
IsOfType(Location, locFrom, locTo)
IsOfType(City, city)
NotSame(locFrom, locTo)

Purposes: +atTruck(truck, locTo)
-atTruck(truck, locFrom)
Preconditions: +atTruck(truck, locFrom)
+locationAt(locFrom, city)
+sameCity (locFrom, locTo)
+truckInCity(truck, city)
+locationAt(locTo, city)

FlyAirplane
Arguments: airplane locFrom locTo
Constraints: IsOfType(Airplane, airplane)
IsOfType(Airport, locFrom, locTo)
NotSame(locFrom, locTo)
Purposes: +atAirplane(airplane, locTo)
-atAirplane(airplane, locFrom)
Preconditions: +atAirplane(airplane, locFrom)
+diffCity(locFrom, locTo)

LoadAirplane

Arguments: obj airplane loc

Constraints: IsOfType(Object, obj)
IsOfType(Airplane, airplane)
IsOfType(Airport, loc)

Purposes: +insideAirplane(obj, airplane)
-atObj(obj, loc)
Preconditions: +atObj(obj, loc)

+atAirplane(airplane, loc)



LoadTruck
Arguments: obj truck loc
Constraints: IsOfType(Object, obj)
IsOfType(Truck, truck)
IsOfType(Location, loc)
Purposes: +insideTruck(obj, truck)
-atObj(obj, loc)
Preconditions: +atObj(obj, loc)
+atTruck(truck, loc)
UnloadAirplane
Arguments: obj airplane loc
Constraints: IsOfType(Object, obj)
IsOfType(Airplane, airplane)
IsOfType(Airport, loc)
Purposes: +atObj(obj, loc)
-insideAirplane(obj, airplane)
Preconditions: +insideAirplane(obj, airplane)
+atAirplane(airplane, loc)
UnloadTruck
Arguments: obj truck loc
Constraints: IsOfType(Object, obj)
IsOfType(Truck, truck)
IsOfType(Location, loc)
Purposes: +atObj(obj, loc)
-insideTruck(obj, truck)
Preconditions: +insideTruck(obj, truck)

+atTruck(truck, loc)
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Appendix C

The Artificial Domain
ART-1D-RES

Object types: (0)

Predicates: (27)

G1
Arguments: None.
G10
Arguments: None.
G11
Arguments: None.
G12
Arguments: None.
G2
Arguments: None.
G3
Arguments: None.
G4
Arguments: None.
G5
Arguments: None.
G6
Arguments: None.
G7
Arguments: None.
G8
Arguments: None.
G9
Arguments: None.
I1
Arguments: None.
110

Arguments: None.
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I11

Arguments: None.
112

Arguments: None.
12

Arguments: None.
I3

Arguments: None.
I4

Arguments: None.
I5

Arguments: None.
I6

Arguments: None.
I7

Arguments: None.
I8

Arguments: None.
19

Arguments: None.
occ-a

Arguments: None.
occ-b

Arguments: None.
RES-free

Arguments: None.

Operators: (16)
Al
Arguments: None.

Constraints: None.
Effects: +G1()
Preconditions: +11()
+occ-a()

A10
Arguments: None.

Constraints: None.
Effects: +G10()
19)
Preconditions: +I110()
+oce-b()

All
Arguments: None.

Constraints: None.
Effects: +G11()
-110()
Preconditions: +I111()
+occ-a()



Al12

Arguments:
Constraints:
Effects:

Preconditions:

A2

Arguments:
Constraints:
Effects:

Preconditions:

A3

Arguments:
Constraints:
Effects:

Preconditions:

A4

Arguments:
Constraints:
Effects:

Preconditions:

A5

Arguments:
Constraints:
Effects:

Preconditions:

A6

Arguments:
Constraints:
Effects:

Preconditions:

None.
None.
+G12()
-111()
+112()
+oce-b()

None.
None.
+G2()
11()
+12()
+oce-b()

None.
None.
+G3()
12()
+13()
+occ-a()

None.
None.
+G4()
13()
+14()
+oce-b()

None.
None.
+G5()
-I4()
+I5()
+occ-a()

None.
None.
+G6()
-15()
+16()
+oce-b()
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Arguments:
Constraints:
Effects:

Preconditions:

A8

Arguments:
Constraints:
Effects:

Preconditions:

A9

Arguments:
Constraints:
Effects:

Preconditions:

Alloc-a

Arguments:
Constraints:
Effects:

Preconditions:

Alloc-b

Arguments:
Constraints:
Effects:

Preconditions:

Free-a

Arguments:
Constraints:
Effects:

Preconditions:

Free-b

Arguments:
Constraints:
Effects:

Preconditions:

APPENDIX C. THE ARTIFICIAL DOMAIN ART-1D-RES

None.
None.
+G7()
-16()
+17()
+occ-a()

None.
None.
+G8()
17()
+I8()
+oce-b()

None.
None.
+G9()
-18()
+19()
+occ-a()

None.

None.
+occ-a()
-RES-free()
+RES-free()

None.

None.
+oce-b()
-RES-free()
+RES-free()

None.

None.
+RES-free()
-occ-a()
+occ-a()

None.

None.
+RES-free()
-oce-b()
+oce-b()
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Glossary

Same(<var>,<var’>), codesignation constraint, p. 22
NotSame(<wvar>,<wvar’> ), non codesignation constraint, p. 22
IsOfType(<type>,<wvar>), type constraint, p. 22
IsNotOfType (< type>,<var>), type constraint, p. 22

+predicateName(<var-1>, ...., <wvar-n>), precondition or effect in the add-list
of operators, p. 22

—predicateName(<var-1>, ...., <var-n>), effect in delete-list of operators, p. 22
(I,@G), problem description, p. 23

< 8,—,—cL, B >, partial-order plan, p. 26

<_,, order induced by —, p. 26

s1 — p@Q@sy, causal link, p. 26

S3 PN (s1 — p@Q@ssq), positive threat, p. 27

sg <— (s1 — p@Q@ss), negative threat, p. 27
establisher(g,P), establisher of g, p. 58

PLAN(I,Q), set of plans solving (I,G), p. 58
PLANL(I,QG), set of plans solving (I, G) consistent with <, p. 58
(I,G, <), extended problem description, p. 59

<, ordering constraints, p. 59

[G1, ..., Gr], sequence of dependency classes, p. 64

wj,c, feature weight, p. 90

sim™9(C, P), weighted similarity metric, p. 90

Iy Ic, predicates common to I and I¢ modulo 6, p. 91
SIM™I(C, P), weighted similarity relation, p. 91

Ajo yo, incremental factor, p. 91

G — G, set subtraction, p. 100

wi, coll, feature weight, p. 107

(w1, ws], a left-opened interval, p. 108

P, \ Py, plan difference, p. 123

/\, incremental factor, p. 157
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action, 24

add-list, 22

adequate retrieval, 46, 92, 127
applicable, 23, 78

argument, 22

artificial domain, 130
assignment, 78

beneficial retrieval, 109, 127
blind merging, 118

case specialization, 103

causal link, 26

complete plan, 28

conflict, 27

conflict set, 82

consistent permutation, 111
constrained trivially serializable, 111
constraint, 22

context, 97

context-simplified claim, 99

decision, 78

delete-list, 22
dependencies, 42, 60, 79
dependency, 46
derivational trace, 35
domain goal, 79
domain operator, 79

effect, 22

elastic protected plans, 29

establisher, 58

establishment, 26

establishment with a new step, 27
explaining an open precondition, 95
explanation-based learning (EBL), 101
extended problem description, 59

failure, 87

196

feature context, 97

feature weight, 90, 107
feature-discrimination tree, 106
filtering, 94

final state relative to, 23
finish, 26

goal dependencies, 42
goal discrimination network (GDN), 66
goal interacting negatively, 100

incremental factor, 48, 91, 157
incremental optimizers, 91, 157
initial explanation, 102

initial plan, 26

interacting goals, 34

justification, 80
justification reconstruction, 85

logistics transportation domain, 97
logistics transportation domain extended,
98

mergeable, 118

non-redundant parallelizable, 124
non-redundant mergeable, 124
non-redundant merging, 122
non-redundant parallelizable, 124

objects, 21

open condition, 26

open precondition, 26

operators, 22

order consistency condition modulo, 113
ordering consistency condition, 63
ordering inclusion condition, 62

parallelizable, 120
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partial-order plan, 26 weighted retrieval condition, 91
plan step, 24 weighted similarity metric, 90
plan-space planner, 26

planning operator, 79

planning failre, 87

planning goal, 79

precondition, 22

precondition goal, 79

predicates, 21

prefix plans, 29

prerequisite violation, 32

problem description, 23

process planning, 28, 51

protection goal, 79

PSG, 31

relevant feature, 33

replay, 35

replay threshold, 110
resolving conflicts, 26
retracted, 80

retrieval failure, 46, 92, 127
retrieval threshold, 91

search space, 25, 109, 127
sequence of dependency classes, 64
serialization order, 30
serially extensible, 29
simple mergeable, 118
simple establishment, 26
skeletal plan, 92, 127
SNLP, 26

solution plan, 24, 28
specialization, 103

start, 26

state, 22

state-space planner, 25
subgoal, 26

subgoal graph, 79

sufix plans, 29

sufix and prefix plans, 29

threat, 27
training examples, 103, 136
trivial serializability, 30

valid ordering restriction, 59
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