
On Enabling Efficient and Scalable
Processing of Semi-Structured Data

Dissertation

vom Fachbereich Informatik der RPTU in Kaiserslautern zur Verleihung des
akademischen Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von

Nico Schäfer

Datum der wissenschaftlichen Aussprache 19.05.2023

Dekan Prof. Dr. Christoph Garth

Berichterstatter Prof. Dr.-Ing. Sebastian Michel

Prof. Dr.-Ing. Ralf Schenkel

D-386

Abstract

Semi-structured data is a common data format in many domains. It is char-
acterized by a hierarchical structure and a schema that is not fixed. Efficient
and scalable processing of this data is therefore challenging, as many existing
indexing and processing techniques are not well-suited for this data format.
This dissertation presents a novel approach to processing large JSON datasets.
We describe a new data processor, JODA, that is designed to process semi-
structured data by using all available computing resources and state-of-the-art
techniques. Using a custom query language and a vertically-scaling pipeline
query execution engine, JODA can process large datasets with high throughput.
We optimize JODA by using a novel optimization for iterative query workloads
called delta trees, which succinctly represent the changes between two docu-
ments. This allows us to process iterative and exploratory queries efficiently.
We improve the filtering performance of JODA by implementing a holistic adap-
tive indexing approach that creates and improves structural and content indices
on the fly, depending on the query load. No prior knowledge about the data
is required, and the indices are automatically improved over time. JODA is
also modularized and can be extended with new user-defined predicates, func-
tions, indices, import, and export functionalities. These modules can be written
in an external programming language and integrated into the query execution
pipeline at runtime. To evaluate this system against competitors, we introduce
a benchmark generator, coined BETZE, which aims to simulate data scientists
exploring unknown JSON datasets. The generator can be tweaked to generate
query workload with different characteristics, or predefined presets can be used
to quickly generate a benchmark. We see that JODA outperforms competitors
in most tasks over a wide range of datasets and use-cases.

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contributions & Publications . 2
1.3 Outline . 3

2 Background 5
2.1 JSON . 5

2.1.1 JSON Pointer . 6
2.2 RapidJSON . 6
2.3 JSON Data Processors . 7

2.3.1 JQ . 7
2.3.2 PostgreSQL . 8
2.3.3 MongoDB . 9
2.3.4 Spark . 10

3 Related Work 13
3.1 Research in JSON processing . 13

3.1.1 JSON in RDBMS . 13
3.1.2 Document Stores . 14
3.1.3 Others . 15

3.2 Delta & Change Management 15
3.3 Adaptive Indexing . 16
3.4 User-Defined-Modules . 18
3.5 Benchmarking . 18

3.5.1 Query Suggestion and Online Processing 19

4 JODA—Concepts & Architecture 21
4.1 Query . 22

4.1.1 Collection . 22
4.1.2 Pointer . 22
4.1.3 Source . 24
4.1.4 Loading Data . 24
4.1.5 Joins . 25
4.1.6 Filtering Collections . 26
4.1.7 Transforming Collections 27
4.1.8 Aggregating Collections 27
4.1.9 Storing Collections . 28

4.2 Storage . 29
4.2.1 Collections . 29
4.2.2 Containers . 29
4.2.3 Memory Management . 30

4.3 Query Execution . 31
4.3.1 Tasks . 31
4.3.2 Pipeline . 33
4.3.3 Scheduler . 33

4.4 Optimization . 34
4.4.1 Parsing Optimization . 34

3

4.4.2 Main-Query Evaluation Merging 35
4.4.3 Multi-Query Optimization 35

4.5 Applications . 37
4.5.1 CLI . 37
4.5.2 Client/Server . 37
4.5.3 Web . 38

5 Delta Trees — Optimizing for Iterative Queries 41
5.1 Overview . 41
5.2 Model . 42

5.2.1 Path . 43
5.2.2 Delta Tree . 43
5.2.3 Delta Hierarchy . 44
5.2.4 Costmodel . 44

5.3 Realization & Optimizations . 45
5.3.1 Traversal with Visitor Pattern 45
5.3.2 Retrieval of Atomic Values 47
5.3.3 Partial Materialization . 47
5.3.4 Object Indexing . 48
5.3.5 Adaptive Algorithm . 49

5.4 Experimental Evaluation . 49
5.4.1 Settings and Data and Workloads 49
5.4.2 Delta Hierarchy Creation and Shared Reads 49
5.4.3 Adaptive Execution Method 52

5.5 Summary . 54
5.5.1 Potential Extensions . 54

6 Adaptive Indexing 57
6.1 Overview and Preliminaries . 58
6.2 Adaptive Indexing using Structure and Content Indices 59

6.2.1 Handling Document References and Document Sets . . . 59
6.2.2 Query Evaluation . 60
6.2.3 Adaptive Structural Index 61
6.2.4 Adaptive Trie Content Index 63
6.2.5 Adaptive Histogram Tree for Numbers 65
6.2.6 Mutable Indices and Memory Management 66

6.3 Evaluation . 67
6.3.1 Structural Index . 67
6.3.2 Content Indices . 69

6.4 Summary & Potential Extensions 72

7 User-Defined-Modules 73
7.1 Core Architecture and Modules 73

7.1.1 User-Defined Modules . 75
7.1.2 Connecting Scripts and System 75

7.2 Sample Use Cases . 76
7.2.1 User-Defined Functions 77
7.2.2 Replacing and Augmenting Data Processing Modules . . . 79
7.2.3 Customized Data Import and Export 80

7.3 Evaluation . 82

7.4 Summary & Potential Extensions 84

8 BETZE: A Novel Benchmark for Interactive Exploration 87
8.1 Random Explorer Model and

Supported Queries . 89
8.1.1 Query Support . 91

8.2 Data Analyzer and Query Generator 93
8.2.1 Data Analysis . 93
8.2.2 The Query Generator . 94
8.2.3 Generating Specialized Benchmarks 96
8.2.4 Extendability . 97

8.3 Getting Started with BETZE . 100
8.4 Evaluation . 101

8.4.1 Understanding Impact of User Characteristics 102
8.4.2 Query Skew . 104

8.5 Summary . 105
8.5.1 Possible Extensions . 105

9 Evaluation 107
9.1 Setup . 107
9.2 Datasets . 107
9.3 General Performance . 108

9.3.1 Data Import . 108
9.3.2 Filter & Export . 109
9.3.3 Aggregation . 111

9.4 Explorative Workloads . 112
9.4.1 Scalability . 112
9.4.2 Exploration . 115

10 Conclusion & Outlook 117
10.1 Outlook . 118

Appendices 119

A List of Functions 121

B List of Tasks 125

C BETZE Query Session for
Scalability 129

Chapter 1

Introduction

In recent years, the interest in the JSON [1] file format steadily increased. This
semi-structured file format is used in nearly every aspect of computer science.
It is easy for humans to read and write JSON documents, while also enabling
machines to parse and compose them. Thus, JSON documents are useful for a
wide variety of tasks, like scientific experiments, configuration files, and logging.
Because of its utility, is it one of the main formats used for interchanging data
on the Internet, as the communication between servers and clients, relies on
textual data that has to be parsable by the involved systems. Researchers
and data scientists may be faced with large amount of—unknown or partially
known—documents, which need to be explored and analyzed.

Take, for example, a data scientist responsible for social media interaction at a
big company. They are faced with a very large JSON dataset of Twitter tweets.
While they may know the general structure of the data by looking at examples
and reading the documentation, they may not know the exact structure of their
dataset, as the schema changed over the time and it contains many optional
attributes depending on the content. In the first step, the data scientist wants
to calculate statistics of the attribute distribution to get an overview of the data.
After having a good intuition of the data, they want to find out the most common
words and hashtags in posts that generated a lot of interaction.

Next, they group the posts by the average sentiment of the replies to the posts,
using natural language processing techniques. This information can be used to
improve the company’s social media strategy by avoiding topics, hashtags, or
words that are not well received by the audience.

Finally, the data scientist wants to export the results to give them to the mar-
keting department, so they can use them to create a new campaign. Attached to
the exported data, they want to include example tweets that generated the desired
interaction so that the marketing department can use them as inspiration.

Performing this complex task requires many operations on the base dataset that
may not be known in advance. Some queries may have to be adjusted iteratively
until they produce the desired results. Waiting a long time for each result is not
feasible, as the data scientist needs to be able to quickly iterate over the data
and adjust the queries. Additionally, it is not feasible to infer and maintain the
schema of the data in expensive precomputation steps, as the workload involves
multiple transformations into intermediate representations.

For these tasks, tools have to be used that are either not designed for these
use cases or do not provide the performance needed to explore millions of doc-
uments in a timely fashion. Many classic relational database management sys-
tems (RDBMS) were adapted with features to support semi-structured data
formats like JSON. But these were designed for structured data with a fixed
schema and only provide limited functionality. Additionally, they are burdened

1

by overhead like the ACID paradigm, which is not needed for simple data pro-
cessing tasks. Thus, these systems are often too slow for the given tasks. As one
of the main categories of NoSQL, document stores were created specifically for
query evaluation of semi-structured documents. But these document stores are
optimized for horizontal scaling, by distributing data over many machines. They
often do not make use of the full vertical scale, meaning all available hardware
resources, of a given machine to evaluate queries. Furthermore, are they also de-
signed to provide durable storage for documents and often transform them into
an optimized internal representation, during a slow import step. As the JSON
format is now widely spread, lightweight tools were created for exploration and
analysis of JSON files in the terminal. But these tools were often not designed
for huge workloads and only make use of a single thread. Thus, often the only
choice is to write custom software, which is tailored exactly to the given data
set and task. This is time-consuming and may require knowledge of the data
and programming languages that may not be available.

1.1 Problem Statement
When faced with a potentially large dataset of JSON documents, whose struc-
ture and content may be unknown, a data scientist needs a tool that can effi-
ciently process the data and provide the results of iterative queries in a timely
fashion.

We define the following requirements for such a tool:

• Support load, filter, transformation, aggregation, and export operations
on the data.

• Scales with available hardware resources to handle arbitrarily large datasets.

• Is easy to use and set up.

• Can be extended with custom code.

• Has subsecond response times for gigabyte-sized datasets.

– Creates and updates adaptive indices on the fly.

1.2 Contributions & Publications
The contributions of this thesis are the following:

• We introduce JODA, a novel easy-to-use JSON data processor that can
process arbitrarily large datasets, using a custom query language, with
high throughput by using all available system resources.

• We propose delta trees, a novel data structure that can store the results
of iterative queries over JSON data in an efficient form by only storing
changes to the previous result.

• We describe a holistic adaptive-indexing strategy that iteratively builds
and improves structural and content indices on potentially unknown data.

2

The indices are implemented in JODA to enhance the performance of
iterative queries over the datasets.

• We modularize the query execution components of JODA to enable ex-
tendability in the form of user-defined modules that allow the integration
of external code into the query execution pipeline.

• In the absence of standard benchmarks for exploratory workloads, we in-
troduce the BETZE benchmark generator, which generates queries that
simulate the behavior of a data scientist exploring a dataset. By generat-
ing exploratory query workloads for semi-structured data we can evaluate
JODA against competitor systems.

The work presented in this thesis was published in the following peer-reviewed
papers and demonstrations:

• We demonstrated JODA at the ICDE conference in 2020 [2] by giving an
overview of the system and demonstrating its performance and ease of use.

• Delta trees were first introduced at EDBT 2020 [3], where a sketch of the
data structure was presented and early results were shown.

• This approach was then further developed and published at ICDE 2021 [4],
where the formal model of the delta tree was specified, a more detailed
implementation in JODA was presented, and an in-depth performance
evaluation was conducted.

• The BETZE benchmark generator was introduced at the ICDE conference
2022 [5]. The underlying random-explorer model was presented together
with the implementation and an evaluation of the benchmark character-
istics was given. Finally, in a preliminary evaluation, the benchmark was
used to compare the performance of JODA with other systems.

1.3 Outline
The remainder of this thesis is structured as follows.

In Chapter 2, we give an overview of concepts and technologies that are relevant
to understanding this thesis. Relevant research work is additionally discussed
in Chapter 3.

Chapter 4 introduces our novel JSON data processor JODA, which can process
arbitrarily large datasets with a high throughput. First, we introduce the query
language of JODA which also highlights the supported features. Then the ar-
chitecture of the internal storage, the query execution, and the optimization
features are presented.

In Chapter 5, we present our novel data structure, the delta tree which can store
the results of iterative queries over JSON data in a highly compressed form. The
formal model of the delta tree is specified and then implemented in our JODA
system. We then evaluate the performance characteristics of the delta tree. By
using this data structure, we can significantly reduce the memory requirements
and increase the performance of the transformation steps.

3

To improve the performance of filtering in JODA, we introduce a holistic ap-
proach to adaptive indexing in Chapter 6. We introduce an index structure
that indexes the structural as well as content information of a JSON dataset
and adaptively improves its accuracy and performance during query processing.
The performance gains are then analyzed and compared to the original system.

In Chapter 7 we explain the importance of modularizing data processors to
enable extendability and flexibility. All major query execution components of
JODA will be exemplarily modularized. We then show how the support for
user-defined modules can be used to extend the functionality of JODA. We also
show example use cases where JODA can be integrated with other systems to
leverage the strengths of both systems. In different use cases, we show how
JODA can be used to improve workflows it was not originally designed for.

JODA was designed with explorative data analysis in mind. But no benchmark
suites exist that are well-suited for this task with semi-structured data. To fill
this gap, we created the BETZE benchmark generator. Chapter 8 introduces
the underlying random-explorer model, simulating a data scientist exploring
a dataset. We explain the supported features and queries and describe the
architecture of the benchmark generator. JODA is then compared to other
data processors using queries generated by the BETZE benchmark suite.

The JODA system is then extensively compared against competitor systems in
Chapter 9. Lastly, we conclude our work in Chapter 10 and discuss possible
extensions.

4

Chapter 2

Background

This chapter provides a brief overview of concepts and technologies that are
relevant to this thesis. It starts with a short introduction to the JSON data
format. It then describes the RapidJSON library, which is used to parse and
store JSON documents in JODA. Finally, it gives a short overview of the JSON
data processors evaluated in this thesis.

2.1 JSON
Semi-structured documents are used in virtually all fields of computer sci-
ence. The most well-known semi-structured formats are XML [6] and JSON
(JavaScript Object Notation) [1]. They are human-readable open-standard file
formats used for storing and transmitting textual data. Both have similar capa-
bilities, storing different data types with associated attribute names. Attributes
may be nested within other attributes or stored within a list/array.

The basic building blocks of JSON are atomic values, arrays, and objects.
Atomic values may either be a (signed) number in integer or floating-point
formatting, strings, Booleans, or the null value. Arrays store a set of elements,
where each element may be any of the valid JSON building blocks. An array is
written as a comma-separated list of values, enclosed in square brackets. Ob-
jects consist of one, or multiple, key-value pairs, combining an attribute name
with one valid JSON building block. Objects are enclosed in curly brackets;
the keys are separated from the values by a colon, and the key-value pairs are
separated by commas. Keys must be strings and must be unique within the
object. Listing 2.1 shows one valid JSON document, containing all JSON types.

As the name implies, JSON was derived from JavaScript but has since been
adopted by many languages. It is supported by virtually every programming
language, either natively or through a library. Its ability to be read and written

{
" number ": 5,
" nested ": {

" array ": [
" string ",
1.1742,
{"deep": "nest"}

],
"bool": True

},
"null": null

}

Listing 2.1: Example JSON document with different data types

5

equally well by humans and machines makes JSON suited for a large variety of
use cases. For example, it is widely used as a data interchange format on the
internet. Many web APIs use it to receive and send data. Twitter, for example,
provides an API to create, retrieve, and delete tweets within their service.

2.1.1 JSON Pointer
To access a specific value within a JSON document, a JSON Pointer [7] can
be used. A JSON Pointer is a string that contains a sequence of zero or more
reference tokens, separated by a slash character. Each token is either a key,
representing an object attribute, or a numerical index, representing an array
element. By following the tokens in order, the desired value can be found in the
document.

Take for example the JSON document in Listing 2.1 and the JSON Pointer
“/nested/array/1”. The root value of the document is an object. By following
the first token, the value of the attribute nested is found, which is again an
object. The second token references the attribute array, which is an array.
The third token is now a numerical index, referencing the second element of the
array. This element is the floating-point number 1.1742. As we followed all
tokens, we found the value we were looking for.

2.2 RapidJSON
RapidJSON [8] is a C++ library for reading, manipulating, and writing JSON
documents. It describes itself as small, complete, fast, and memory friendly. It
is distributed as a self-contained header-only library, which means that it can
be used without any additional compilation steps. JODA uses RapidJSON to
parse, manipulate, and store JSON documents.

Figure 2.1 shows a typical workflow using RapidJSON. Given a raw string or
character stream, RapidJSON can parse the JSON document into a tree-like
structure. This structure is called a DOM (Document Object Model). Each
node in the tree represents a JSON value. The nodes can be accessed by manu-
ally traversing the tree, or by using a JSON Pointer to directly access a specific
node. The DOM can be modified by adding, removing, or changing nodes. In
our example, the value of the stars attribute is changed from 10 to 11. The
DOM can be traversed completely using a visitor pattern by using the Accept()
method. Every single node in the DOM will be visited, and the visitor can per-
form an action on each node. RapidJSON implements a number of visitors,
including a writer and pretty writer that can serialize the DOM back into a
JSON string.

Object and array nodes contain an array of children nodes which are sized
dynamically. The parser only iterates the string once, which means that the
number of children nodes is not known beforehand. Hence, if the array of
children is full, it is resized to twice its original size, which may lead to partially
empty memory blocks. Every document has a reference to an allocator, which
is responsible for allocating memory for the nodes. By default, RapidJSON uses
a Memory Pool Allocator which allocates memory in chunks using the default

6

Figure 2.1: Example RapidJSON workflow. Taken from [8].

system allocator. Each document may use its own allocator or share an allocator
with other documents. By sharing an allocator, and using a larger chunk size,
the amount of expensive memory allocation calls can be reduced.

2.3 JSON Data Processors
As mentioned in Section 2.1, JSON is a widely supported data format. Multiple
data processors exist that can be used to process JSON documents. This section
gives a brief overview of the data processors that were evaluated in this thesis
and the reasons for their selection.

2.3.1 JQ
jq [9] is a command-line JSON processor. It is a small program written in C
and is available for most operating systems. Similar to grep, sed, and awk, jq
evaluates a fixed expression on a given input. But unlike these tools, jq parses
the input as JSON and can use the structure and content of the documents. In
the most basic form, jq can be used to extract a specific value from a JSON
document. Similar to JSON Pointer, jq uses a path expression to access a value.
In this case, every token is separated by a dot and array indices are enclosed in
square brackets.

7

Storage
jq works on raw JSON data, either piped into the program or read from a file.
It does not provide the means to store the data in an internal representation for
later use. The result of each query is printed to the standard output and has to
be redirected to a file or piped into another program if it is to be stored.

Query Capabilities
jq uses a custom query language based on multiple chained filters. Each filter
takes the input, performs some operation on it, and passes the result to the
next filter. Filters can make use of many inbuilt functions, such as lookups,
mathematical operations, string manipulation, search, sort, map, and reduce.
This allows for a wide range of operations to be performed on the data. jq does
not provide any straightforward way to aggregate data, but it is possible to use
the reduce functions or multiple chained jq invocations to achieve this.

Indexing & Query Optimization
As jq only performs single-pass queries over an input, it does not provide any
means to index the data. It also does not perform any query optimization.

Performance
jq is a command-line tool that works on raw data and performs all operations
in a single main thread. This means that it is not able to make use of multiple
cores, indices, or in-memory data structures. Hence, compared to the other data
processors, jq is the slowest, as Chapter 9 shows.

Setup
Being a command-line tool without any dependencies, jq is easy to install. Vir-
tually every Linux distribution provides a package for jq. Alternatively, the
program can also be compiled from the source, or precompiled binaries can be
downloaded for all major operating systems. It can also be tested online in a
web browser without any installation. No setup is required in any form for jq
to work.

2.3.2 PostgreSQL
PostgreSQL [10] is a relational database management system (RDBMS). It is a
mature and widely used database that is available for most operating systems.
PostgreSQL is a full-featured database that supports a wide range of features,
including transactions, views, and triggers. It supports JSON data in the form
of json and jsonb data types. The json type stores the JSON document in
its textual form without any additional processing. jsonb, on the other hand,
stores the JSON document in a decomposed binary format that is optimized
for querying and can be indexed. Both data types are augmented with a set
of operators and functions that allow for querying and manipulation of the
data. While other RDBMS like MySQL [11] also support JSON data, we focus
on PostgreSQL as it is a popular and mature database that is widely used in
production environments as well as research.

Storage
PostgreSQL is a full-featured database with persistent storage. Its main purpose
is to store and query data. It is not designed to be used as a temporary data
store or processor. The data is stored in a relational format, which is not the

8

most efficient for storing JSON documents. However, when using the jsonb
data type, the data is decomposed and stored in a more efficient format. If the
user wishes to reuse the intermediate results of a query, they can be stored in a
temporary table or view.

Query Capabilities
SQL is a powerful query language that allows for a wide range of operations.
Filtering, sorting, grouping, and aggregation are all supported. Many functions
are implemented, that query and manipulate the JSON data types. These can
be integrated into all parts of the SQL query.

Indexing & Query Optimization
If knowledge about the JSON data is known in advance and the data is stored
in the jsonb format, it is possible to create indices on the data. These indices
can either be created on the structure of the JSON or on the content of specific
attributes. The full power of the RDBMS query optimizer can then be used to
optimize the query execution.

Performance
PostgreSQL is a full-featured database that adheres to the ACID properties.
It is designed to be durable and consistent, which means that it requires a lot
of overhead to ensure that the data is stored correctly. This overhead is not
present in the other data processors. As a result, PostgreSQL is one of the
slower systems evaluated in this thesis when it comes to importing data. When
using the jsonb data type, the import takes even longer, as the data has to
be decomposed and translated. However, once the data is imported the query
performance is comparable to the other data processors.

Setup
Installing PostgreSQL is easy on most operating systems. The database can be
installed from the package manager of the operating system or downloaded from
the official website. But correctly configuring and setting up the database is a
more involved process, where users have to be created, permissions have to be
set, and the database has to be initialized. For simple temporary data processing
tasks this is unnecessary overhead. Importing JSON files into PostgreSQL can
be achieved using the COPY command. But files that work with all other data
processors may not work with PostgreSQL, as it does not allow some special
characters in the JSON data. Importing this data then requires an additional
preprocessing step.

2.3.3 MongoDB
MongoDB [12] is a NoSQL database that stores data in the form of JSON
documents. It is designed to scale horizontally and supports ad-hoc querying
and indexing of the data. Documents are parsed into the BSON format, which
is a binary representation of JSON. The emphasis of MongoDB is on storing
and querying data in a flexible and distributable way.

9

Storage
Documents are stored in persistent collections, which are similar to tables in
relational databases. The data is stored in a binary format using the WiredTiger
storage engine. It uses document-level concurrency control to ensure that the
data is consistent. Additional caches are used to improve the performance of
the database.

Query Capabilities
MongoDB exposes its query language through a JavaScript API that allows for
ad-hoc querying of the data. The database provides an object for every collec-
tion that can be used to query the data. Simple queries can be performed using
the find() function, which takes a predicate and returns an iterator over all
documents that match the predicate. More complex queries can be performed
using the aggregate() pipeline, which takes a list of stages that are executed
in order. The result is again provided as an iterator over the documents. Many
functions are provided to manipulate the data, such as filtering, sorting, group-
ing, and aggregation.

Indexing & Query Optimization
If knowledge about the data is known in advance, it is possible to manually
create indices on the data. Multiple index types are supported, including com-
pound indices, text indices, and geospatial indices. These indices are used by
the query optimizer to reduce the number of documents that have to be read
from the disk.

Performance
Our experiments in Chapter 9 show that MongoDB is one the slowest system
under evaluation. Especially the import of data takes a long time. But the
query performance is also not as good as the other systems under consideration.

Setup
MongoDB is available as a package for most major operating systems. Once
started, it can be immediately used with the default configuration. Importing
JSON files requires the usage of an external tool mongoimport that is provided
with the database. While this process takes a long time, it is easy to use and
does not require any additional configuration.

2.3.4 Spark
Spark [13] is a distributed general-purpose data processing framework. It is de-
signed for large-scale data processing tasks distributed over multiple machines.
The data is stored in RDDs (Resilient Distributed Datasets), which are im-
mutable collections of data. The user interacts with the system using a high-
level API written in Scala, Java, R, or Python. All interactions with RDDs
are translated into a directed acyclic graph where the nodes are RDDs and the
edges are operations. The graph is then executed in parallel on a cluster of
machines as soon as the results are required.

Storage
Data is stored in RDDs that are distributed over the cluster. Spark does not aim
to provide persistent storage for the data, but rather a framework for processing.
By default, RDDs only store data in memory. But they can also be configured
to serialize the data to disk if not enough memory is available.

10

Query Capabilities
Spark is deeply integrated with their supported programming language. It is
often possible to use native functions of the language to manipulate the data.
This enables a vast range of operations that can be performed on the data.
Additionally, Spark includes general operations that allow iterating, mapping,
and aggregating data in an RDD. This flexibility comes at the cost of usability,
as the user has to be familiar with the programming language and the Spark
API. Spark also allows the usage of DataFrames, which are similar to tables
in relational databases. They have a fixed schema and can be queried using a
SQL-like syntax.

Indexing & Query Optimization
As Spark is not a data management system, it does not provide any indexing
features. The user has to ensure that the data is stored in a way that is efficient
for the query. While indexing is out-of-scope for Spark it still tries to optimize
the query execution using late materialization. As mentioned before, RDD
interactions are translated into a directed acyclic graph. But no actual execution
takes place until the final results are required. Hence, multiple queries can be
posed to the system without actually executing them. Only when a result tuple
is fetched, the required nodes of the graph are executed.

Performance
Spark is designed to be used on large-scale data processing tasks under the usage
of all available system resources. As a result, it is one of the fastest systems
under consideration.

Setup
Installing and setting up Spark is a complex process. The system is designed to
be used on a cluster of machines, which requires a lot of configuration. The user
has to install libraries for the programming language, Spark itself, and set up the
environment. If used in cluster mode, Spark also needs a cluster manager. But
even in local mode, configuring spark to use all available resources is not trivial.
Connecting to Spark and using the API also requires extended knowledge of the
programming language.

11

12

Chapter 3

Related Work

In this chapter, work related to JODA and its components is discussed. First, we
give an overview of current research in JSON data processing systems. Then we
discuss existing work related to our delta trees approach, shown in Chapter 5.
Next, current adaptive indexing approaches are discussed. We then give an
overview over user-defined modules in different systems. Lastly, we discuss
current benchmarking approaches for JSON data processing systems.

3.1 Research in JSON processing
The support for the JSON file format is rapidly increasing. Many systems are
now able to handle JSON files, either as input or output. In this section, we
provide an overview of the current state of research for JSON data processing
systems.

3.1.1 JSON in RDBMS
Classic relational database management systems (RDBMS), like MySQL and
PostgreSQL, use fixed-schema relations to store data. This data is distributed
over multiple relations, each having fixed columns of specific data types. The
data is represented by rows within the relations, with values for each column.
As the data type of a column is known, the data can be stored and retrieved
efficiently in binary format.

RDBMS are the most commonly tool used for data storage and analysis. Most
of these systems use SQL (Structured Query Language) to alter and query the
stored data.

With the emerging success of semi-structured data, many RDBMS were ex-
tended with support for such file types. These systems are able to store XML
or JSON documents in special text columns, checking the validity of the docu-
ment upon insertion. Supporting functions are implemented, for querying and
modifying these columns.

As mentioned in Section 2.3.2, PostgreSQL and MySQL both support JSON
columns out of the box. But the past years have witnessed various approaches
that try to incorporate deeper JSON support into existing relational query en-
gines [14, 15]. More specifically, in their very recent work, Durner et al. [14]
propose to group JSON documents by their available attributes in so-called tiles
and describe how the query processing is conducted over tiles in a RDBMS.

13

3.1.2 Document Stores
In recent years, NoSQL systems rapidly gained in popularity. The abbreviation
NoSQL stands for “non SQL”, “non relational”, or “Not only SQL” and describes
a collection of database systems, not adhering to the classic relational model.

NoSQL systems are characterized by their focus on horizontal scaling, meaning
that data is distributed over multiple instances. Queries are then evaluated on
all instances simultaneously, and the result is collected. In addition to distribut-
ing data, it may also be replicated on more than one instance to improve failure
safety.

These systems mostly implement weaker consistency models than the ACID
transaction paradigm. Some systems replaced it with the BASE model, which
stands for “Basically Available, Soft state, Eventually consisten” [16]. By not
adhering to the ACID model, higher performance and better horizontal scala-
bility can be achieved.

There exists a large variety of NoSQL systems split into different categories.
Some of the most notable categories of NoSQL systems are:

• Key-Value Stores, storing data—as the name implies—as simple key-
value pairs.

• (Wide) Column Stores, which, like RDBMS, store data in columns
within tables. But unlike relational databases, each row may have a dif-
ferent set of columns. Thus, data with sparse columns can be stored more
efficiently.

• Graph Databases, representing their data as graph structures with
nodes and edges.

• Document stores, storing semi-structured documents in collections.

There are many document stores or document-oriented databases. Each with its
own set of features and supported types. Some document stores like CouchDB
and MongoDB are specialized on JSON documents, while others, like BaseX
and eXist use XML. There are also multi-type document-oriented databases,
like the Clusterpoint Database. These systems may either store the documents
in textual representation or in a specialized binary format.

MongoDB [12] is one of the most well-known document stores. It uses the BSON
(Binary JSON) [17] format as the underlying storage model. Documents may
be split into shards and distributed over many instances. This can be used
to provide load balancing, replication and distributed querying. The binary
format enables the platform to efficiently query attributes and to create a wide
range of indices. But using the BSON format comes at the cost of increased
import times, as these documents first have to be parsed and decomposed into
this format. Exporting JSON files also requires a special exportation step to
recreate a human-readable document.

As document stores are mostly optimized for distributed deployment, the setup
of such database systems tend to be complex. Furthermore, are they designed,
like RDBMS, to persistently store documents and enable concurrent queries
by different users. This overhead, combined with the complex setup step and

14

potential slow import/export of documents, make document stores unsuitable
for exploration and analysis or unknown data.

3.1.3 Others
There exist many tools and languages supporting JSON files, in addition to the
previously discussed database systems.

Most programming languages support JSON either directly or through third-
party libraries. This extensive support for the format only helps its increasing
popularity. Many programs and web services provide a JSON-based API, which
makes them compatible with all these languages.

Programmers familiar with any of the supported languages may use them to
explore and transform JSON files with custom programs. But creating such a
program not only requires knowledge of the language but in most cases also
knowledge about the data itself. Additionally, is it not always trivial to write
these programs in such a fashion, that the evaluation of the documents is per-
formant and scales well with increasing amounts of data.

The need for simple JSON processors is a recognized one, as tools like jq [9],
which provide command-line JSON processing capabilities, are integrated into
the standard repositories of many Linux operation systems. This tool enables
the user to pipe JSON text into the program and process these documents
using a query language. The output can itself be piped into other processes,
thus providing JSON capabilities to the system. But usage of such tools is
often confined to single threads or other restrictions. This makes them apt for
exploring small document sets but does not scale well if the exploration and
analysis of millions of documents may be required.

As an alternative to classical RDBMS, Alagiannis et al. proposed a new paradigm
for database systems, called NoDB [18]. They created an extension for Post-
greSQL, which is able to evaluate queries in situ on raw data files, thus skipping
the import step. They compared their implementation against common RDBMS
and concluded that NoDB systems can achieve competitive performance with
traditional database systems.

3.2 Delta & Change Management
Change detection in hierarchical data, which is often based on tree edit dis-
tances [19, 20], is a well-studied topic [21]. XML trees are a special case of
hierarchical data, for which many approaches have been created [22, 23]. One
of the most cited approaches is X-Diff by Wang et al. [24]. They propose an
algorithm to find changes in XML trees by only using ancestor relationships.
Most algorithms created for XML can be adapted to work with JSON trees,
as they have a similar hierarchical structure and path expressions. While these
approaches aim at identifying differences between two given trees, our approach
wants to store changes without duplicating any data.

Almeida et al. proposed to create a map as a Conflict-free Replicated Data
Type (CRDT) [25], which can be synchronized by sending delta changes of the
modification action to replicated instances. This data type can also be nested

15

and JSON documents can be translated to and from nested maps. But the
computational overhead required for conflict-free synchronization is too large
for our use case.

In software development, version control systems (VCS) are often used to man-
age source code. These systems enable developers to have a full history of
all changes made to a given code base. Some VCS always store the complete
file when a new version is checked in, which requires a lot of memory, as for
each change redundant data has to be stored. Delta-based VCS only store
the whole file on first check-in and use delta encoding to manage changes. This
delta-encoding reduces the required storage, but has the drawback of a more ex-
pensive retrieval operation. Popular VCS that use some kind of delta-encoding
include Git [26], SVN [27], and CVS [28]. Similar methods are also used by
command line tools like Diff [29] and standards like VCDiff [30], to find deltas
in text files. But most, or all, of these approaches only use the textual or binary
representation and do not exploit the structure of semi-structured documents.

Some database systems create query plans that decide between late and early
materialization of intermediate query results [31]. Early materialization means
that result tuples are constructed immediately and then processed further by
remaining operations or queries. On the other hand, late materialization tries
to push expensive operations as far back as possible, to potentially reduce the
required work of result tuple construction. In our case, early materialization
is similar to the default approach of immediately constructing and storing the
result documents. The approach we are suggesting is a compromise between
early and late materialization, by immediately materializing the changes of a
document, while deferring the potential construction of a complete result doc-
ument to a later point in time. the changes of a document, while deferring the
potential construction of a complete result document to a later point in time.

3.3 Adaptive Indexing
Semi-structured documents are often nested and mostly do not possess a strict
schema, which can be used to create indices. However, one can, in principle,
interpret a path in a document as a column name and use it for indexing. The
problem however is that not every document may contain the given path and
different documents may store a different data type. There has been previous
work on using the structure of semi-structured documents for indexing. For ex-
ample, Kaushik et al. [32] described a structural index that uses the XML data
structure by transforming it into a graph. The approach collects all available
paths in the documents and creates a “summary graph”. The graph does not
contain any content nodes but only represents the structure of a set of docu-
ments. Each document is then indexed by storing the level in the graph and
the XML document ID in the node, for usage in queries. Additionally, Chung et
al. [33] created a similar summary graph that adapts to the current workload.
Only frequently accessed paths will be kept in the graph.

Shukla et al. [34] introduced a similar approach for the JSON document database
Azure DocumentDB. A JSON document can be interpreted as a tree. Docu-
mentDB will index, all paths of all documents by creating a new tree that
merges all possible paths and values. For example /user/name: "Mike" can

16

be thought of as a tree with three nodes: "user" → "name" → "Mike". Since
nodes may only be available in specific documents, each node is associated with
a set of document references. We extend this idea by building sub-trees on-
demand and augmenting this structure index with additional content indices.

Kissinger et al. [35] argue, that the trend of growing data means that a column
index used in traditional, relational systems, contains a considerable amount of
data that is not needed. Many techniques to improve indexing are still based on
creating and dropping an index, while it should be more closely related to the
data that gets queried. They introduce SMIX as an exemplary partial column
index. SMIX is based on pages, the internal basic data blocks used by most SQL
systems to store data. When a value is queried, it gets indexed in a separate tree
data structure. For each page, the index keeps track of the fraction of indexed
values. With subsequent queries, more data is indexed. For almost indexed
pages, SMIX can decide to index them fully. All pages which are fully indexed
can then be skipped by the next query and only rely on the index. SMIX can
also be restricted in the amount of memory or storage it may use. To enforce
these quotas, SMIX may evict data on a per-page basis. Similarly, our system
also contains partial indices, which may be dropped when memory resources are
used up.

Instead of changing the types of indices, to support adaptive or automatic in-
dexing, Das et al. [36] created a system on top of traditional SQL systems,
which analyzes historical user queries and creates indices fitting for the previ-
ous query loads. They presented an automatic indexing service that is supposed
to improve millions of databases in the cloud without human interaction. It is
implemented with a recommender system that evaluates user input and data to
decide if an index on a column should be created. Since it is sometimes hard
to estimate the value of an index, a validator system compares performance
before and after the index creation to detect wrong decisions and adapt in case
of query load changes.

Instead of deciding which index should be created after multiple specific queries
to certain data, Arulraj et al. [37] proposed “predictive indexing”. A machine
learning approach, which predicts what kind of index is needed next. This way,
the database can apply measures earlier to improve performance. They intro-
duced a “hybrid scan” mechanism to execute queries with support for partial
indices, which execute an index scan on indexed pages, and a table scan on the
non-indexed pages.

Cracking databases, as proposed by Idreos et al. [38], Adaptive Merging, as
introduced by Graefe et al. [39], and the hybrid approach [40], are examples
of indices that are built at query execution time and improved on each use.
While database cracking is very performant for the first query, it converges very
slowly to a full index. Adaptive merging is the opposite; the first query is slower
than cracking, but the index converges faster. The hybrid approach tries to
combine the two approaches to find a way to achieve a more balanced adaptive
strategy. Recently, Holanda et al. [41] introduced a novel progressive indexing
technique, which has similar goals and use cases as our approach. They created
a system, which works for traditional SQL systems and may be configured with
an indexing budget that can be spent on creating and maintaining incremental
indices.

17

3.4 User-Defined-Modules
There exist a plethora of work on augmenting (relational) database systems with
features around user-defined functions. Gupta and Ramachandra [42] investi-
gate and report on the results of executing procedural extensions in an RDBMS.
Through the analysis of stored procedures, triggers, and user-defined functions,
they outline the limitations of extensions and possible opportunities to improve
their execution. Friedman et al. [43] present a framework, called SQL/MapRe-
duce (SQL/MR), to implement user-defined functions making it possible to
include them as SQL sub-queries, without the limitations of poor paralleliz-
able execution and the definition of input and output specification. Crotty et
al. [44] describe a novel architecture that automatically compiles workflows of
user-defined functions, which include more complex operations such as selec-
tion or join. Hellerstein et al. [45] present an open-source library allowing the
incorporation of SQL-based algorithms for machine learning, data mining and
statistics run within a database engine, such as Postgres. Passing et al. [46] asses
different possibilities of including data analytics in database systems, and allow
for the integration of analytical operators directly in SQL, using their novel
user-defined lambda expressions. Schüle et al. [47] use the PostgreSQL just-in-
time compilation feature to allow for user-written lambda functions and they
demonstrate them in combination with data mining algorithms. Others [48,49]
allow for interpretation of procedural programs as subqueries by an SQL en-
gine, by transforming them entirely to recursive CTEs. Recently, Sichert and
Neumann [50] present user-defined operators allowing the inclusion of custom al-
gorithms from a programming language of their choice into an existing database
system, while still preserving the ACID properties. They test UDOs in Postgres
and Umbra and show that their execution is as efficient as regular queries.

Differently, Boehm et al. [51] introduce an open source system for end-to-end
execution of machine learning models including data preprocessing, model train-
ing, as well as debugging. Similarly, Schüle et al. [52] make use of database
systems for data inspection and provide full support for running end-to-end
pipelines including model training and testing.

3.5 Benchmarking
Careful benchmarking is a necessity for understanding the effectiveness and effi-
ciency of data management solutions. It is particularly pivotal when comparing
competing solutions to advance the state-of-the-art. For this, across different
disciplines, efforts have been made to develop benchmark datasets and work-
loads.

In particular, in the database community, around SQL query engines, develop-
ing and using standard benchmarks has a long tradition. A prominent exam-
ple of standard benchmarks is the work published by TPC [53], the transac-
tion processing council, and perhaps most prominently the TPC-H or TPC-C
benchmarks. Depending on application cases, new benchmarks are proposed to
overcome limitations or unrealistic assumptions of existing benchmarks [54].

18

With the increasing popularity of semi-structured data format XML throughout
the early 2000s several benchmarks [55,56] have been proposed to evaluate XML
databases [57, 58], that implemented special query patterns like path queries,
reflecting the characteristics of the XML data model. In the information re-
trieval domain, the TREC [59] conference is a synonym for a variety of different
benchmarks, ranging from traditional text retrieval, to question answering, and
temporal data summarization. For XML, a similar attempt was the INEX ini-
tiative [60] that organized annual workshops and competitions. Benchmarks like
INEX and XMach, assess systems according to the retrieval effectiveness and
querying performance, respectively, for fully specified queries using XQuery or
XPath expressions. Although we also specifically address semi-structured data,
our proposed benchmark generator addresses an entirely different angle. For
JSON data, Chasseur et al. [61] proposed the NoBench data generator to create
benchmarking datasets of variable size.

There exist many benchmarks for specialized workloads. For example, G-
CARE [62] is a benchmark framework for cardinality estimation techniques of
subgraph matching algorithms. While this benchmark concentrates on graphs
in relational data systems, similar work exists for graph data in other systems,
like LUBM [63], a benchmark for OWL knowledge base systems. They propose a
standardized ontology with a set of benchmark queries concentrating on certain
characteristics. Similarly, WatDiv [64] was created as a SPARQL benchmark
for resource description framework (RDF) data, to evaluate workloads previous
SPARQL benchmarks were not suitable for.

The need for exploration benchmarks was also noticed by Eichmann et al. [65],
who proposed IDEBench to benchmark interactive data exploration on rela-
tional data. Our benchmark generator has a similar goal for semi-structured
documents and extends it with iterative queries.

3.5.1 Query Suggestion and Online Processing
Related to interactive data exploration is also work around query suggestion [66,
67], where the system proposed queries to be evaluated next, according to the
previously issued interactions and further data characteristics. For such and
related scenarios, where users are constantly issuing new queries as not being
satisfied with the results so far, denoted as being in flux [68] work on online
processing [69] and approximate query processing can be effective. To improve
the exploration capabilities of databases, El-Hindi et al. [70] created VisTrees,
a multi-dimensional index for interactive computation of histograms. In our
own JODA system, we implemented Delta trees [4], to improve performance for
iterative queries, as often found in exploratory query workloads.

19

20

Chapter 4

JODA—Concepts & Archi-
tecture

LOAD A FROM FILES "...",
FROM URL "..."

CHOOSE ’/p’ == true
AGG (’ ’:SUM(’/v’))

Server CLI

Figure 4.1: Overview over the JODA system

To solve the challenges of semi-structured data exploration, processing, and
analysis, we introduce JODA, a novel data processor for JSON data. JODA
is a data processor that is designed to be fast, flexible, and easy to use. It is
written in C++ and employs modern techniques to achieve high performance.
The core philosophy of the JODA design is to create a system that is scalable to
all sizes of data and optimally utilizes all available system resources. To achieve
this, JODA performs as much work as possible in parallel and in memory. This
includes the parsing of the data, the execution of queries, and the storage of the
data.

Figure 4.1 shows a high-level overview of the JODA system. At the core of
the system, we have our pipeline-based query execution engine. Every query is
transformed into separate tasks that are connected using queues until they form
a single query pipeline. Data flows from one task to the next, until the final
result is produced. JODA can import data from a variety of sources, including
files, websites, and streams.

To parse and interact with the data, JODA uses the fast RapidJSON library [8].
The parsed documents are then stored in collections, which are themselves par-
titioned into independent containers. Each container includes all data necessary
to execute a query on this given partition. This allows completely independent
and parallel execution of queries on the data.

The user can interact with JODA by either including it as a library in their own
application, by using the JODA command line interface, or by starting a JODA
instance as a server and communicating with it via HTTP.

21

LOAD FROM FILE " Twitter .json"
CHOOSE ’/user/ verified ’ == True && ’/user/ followers_count ’ > 1000
AS (’’:’/user ’),

(’/ popularity ’:
SUM(’/user/ followers_count ’,’/user/ friends_count ’))

AGG (’’: GROUP AVG(’/ popularity ’) AS avg_popularity BY ’/lang ’)
STORE AS FILE " popular_verified .json";

Listing 4.1: Example query calculating the average popularity by language for
all verified users with a minimum followers count

4.1 Query
To support all features that JODA provides, and present them in a way that
is easy to understand and use, we created a custom query language for JODA.
Queries in JODA consist of multiple straightforward statements representing
stages in the execution pipeline. Figure 4.2 shows the general syntax of a JODA
query.

Each stage passes its result on to the next stage, as can be seen in the example
query in Listing 4.1. The LOAD statement loads the data to be used for the re-
maining stages. Using JOIN, data from another collection or query can be joined
with the current data. The CHOOSE statement filters documents and passes on
all documents that match the given condition, which can be transformed using
the AS statement. All documents in the pipeline can then be aggregated using
the AGG keyword. Finally, the resulting documents can be stored or exported
using STORE.

4.1.1 Collection
All documents in JODA are stored in collections. A collection is comparable to
a table in a relational database or a collection in MongoDB.

Named collections are created by the user using queries. But queries that do
not specify any collection name will still create internal temporary collections
that can not be reused in different queries.

Collections are completely schemaless and do not restrict the number or types
of documents that can be added to them.

4.1.2 Pointer
Pointers are used to reference attributes within a single document. In JODA,
a pointer is denoted by a path string surrounded by single quotes. JODA
pointers use the same syntax as JSON-pointers [7]. The path string is a sequence
of attribute names or index numbers separated by a slash. Starting from the
document’s root, each path string segment is used to traverse the document tree.
For example, the pointer ’/a/1’ would point to the value 2 in the document
{"a":["x",2,3]}.

22

LOAD

<COLLECTION> FROM <IMPORT>

,

JOIN <COLLECTION>

(<SUB QUERY>)

<JOIN CONDITION>

CHOOSE <SOURCE>

AS

* ,

(<POINTER> : <SOURCE>)
,

AGG (<POINTER> : <AGG FUNC>)
,

STORE <COLLECTION>

AS <DESTINATION>

;

Figure 4.2: JODA query syntax

23

4.1.3 Source
To access and modify data of documents in JODA queries, sources are used. A
source can either be a pointer, as described in Section 4.1.2, or a function. JODA
supports many different functions that provide means of accessing metadata,
modifying existing data, or creating new data. For example, the LEN() function
can be used to get the length of a string, or the CONCAT() function to concatenate
two strings. Appendix A lists all currently supported functions in JODA.

Sources can also be nested to create more complex expressions. The expression
LEN(LTRIM(’/text’)) would first trim the leading whitespace of the attribute
text and then return the length of the resulting string.

In addition to prefix notation, JODA also supports infix notation for most
Boolean and arithmetic operators. For example, the expression ’/num’ > 0
is equivalent to GT(’/num’,0) and checks whether the number contained in the
attribute num is greater than zero.

4.1.4 Loading Data
Every query in JODA starts with a LOAD statement. It specifies on which data
the rest of the query should be executed. If a collection name is specified, the
data is loaded from the internal JODA data store. Data can also be loaded
from external sources, like files or URLs, by providing import clauses. A LOAD
statement requires either a collection name or at least one import clause. If
both are defined, the imported data is first added to the internal collection, and
then the collection is used for the rest of the query. By storing the data in the
internal data store, it can be reused in future queries.

Each import clause starts with the FROM keyword, followed by the source type
and additional parameters, as shown in Figure 4.3. The source types FILE,
FILES, and URL can be used to load data from single files, directories, or URLs,
respectively. JODA always reads a file or URL until the end and parses any valid
JSON document it finds. These may be atomic values, objects, or arrays. By
specifying the LINESEPARATED parameter, JODA expects each line to contain a
single JSON document. While parsing these kinds of files also works without the
parameter, it is more efficient to specify it. JODA can also load a partial dataset
by specifying a SAMPLE parameter. It expects a floating point number between

FROM

FILE "path/to/file"

FILES "path/to/dir"

URL "path.to/file.json"

STREAM

<UDI> "config string"

LINESEPARATED SAMPLE (0,1)

Figure 4.3: Syntax of import clause

24

LOAD FROM FILE ’data.json ’ LINESEPARATED SAMPLE 0.5;

LOAD Twitter FROM FILES ’twitter ’,
FROM URL " https :// api. twitter .com /1.1/ tweets .json";

LOAD Twitter ;

Listing 4.2: Example queries showcasing different LOAD usecases

ON (<SOURCE 1>

, <SOURCE 2>

)

WHERE <SOURCE>

Figure 4.4: Syntax of join condition

0 and 1, which specifies the fraction of the data that should be loaded. This is
useful for fast queries on large datasets where no exact results are required.

In addition to the previously mentioned source types, JODA also supports load-
ing data from the input stream. The same options as for files and URLs are
supported. Streaming data into JODA is only supported in non-interactive en-
vironments, like the execution of a query or query file provided as a command
line argument.

Finally, user-defined import modules (UDI) can be used to load data from cus-
tom sources. UDIs are always configured with a single string parameter. As
they return finished documents instead of using the JODA parsing pipeline, no
additional options like LINESEPARATED or SAMPLE are supported.

Listing 4.2 shows multiple example queries that load data from different sources.
The first query loads half of the documents stored in the local data.json file,
which contains line-separated JSON documents. The second query, on the other
hand, loads all documents from the twitter directory and queries the Twitter
API for additional data. Both sources are stored in a collection called Twitter
for future use. The third query then loads the previously imported Twitter
collection again.

4.1.5 Joins
Two collections can be combined using the JOIN statement. As seen in Fig-
ure 4.2, the data of the LOAD statement can be either joined with another,
already existing, collection or with the result of a subquery. The data of the
LOAD statement is called the left join partner, while the collection or subquery
is called the right join partner. All left documents are collected and then joined
with each right document. For best performance results, the left collection
should be the smaller one. The result of the join will be one JSON object for
each joined pair of documents, containing two attributes left and right.

25

LOAD Users
JOIN Twitter ON (’/id ’, ’/user/id ’);

LOAD Users
JOIN Twitter

WHERE ’/left/id ’ == ’/ right /user/id ’;

LOAD Twitter
JOIN (

LOAD FROM URL ’languages .json ’
) ON (’/lang ’);

Listing 4.3: Example queries showcasing different JOIN usecases

Which document is joined with its partner is determined by the join condition.
As can be seen in Figure 4.4 there exist two types of join conditions: equality
and theta. Equality joins, denoted by the ON keyword, are used to join two
collections based on the equality of attributes. If only one source is specified in
the ON clause, the value is evaluated in the left and right join partner and then
checked for equality. If two sources are specified, each join partner is evaluated
with its own source.

For more complex join conditions, JODA supports theta joins. Two documents
are joined if the specified source evaluates to true. To be able to access both
join partners in the theta-join condition, the system has to calculate the cross-
product by joining all pairs of documents. Then the join condition is evaluated,
and only the pairs that match are kept. This makes theta joins significantly
slower than equality joins.

The first two queries in Listing 4.3 will have the same result, but one uses an
equality join and the other one a theta join. An existing Users collection is
joined with the Twitter collection based on the equality of user ID. The third
query shows the usage of a subquery, which fetches an external dataset from a
URL and joins it with the Twitter collection based on a common attribute.

As Section 4.2 explains, JODA splits the data into multiple partitions, called
container. Within the join executer, each container of the left collection is
first stored in a list. Then each container in the right collection is sent to the
executor, which performs a pair-wise join with every container in the list. The
system performs a nested loop join over each document in the containers to join
two containers.

4.1.6 Filtering Collections
Collections can be filtered using the CHOOSE keyword. The source is then evalu-
ated for every single document in the collection. If the result is a Boolean true,
the document is passed on to the next step; else, it is filtered out. The type of
the source has to be either a Boolean or a pointer to a Boolean attribute. No
truthy conversion of other types is performed automatically. If the user desires
a conversion, the TRUTHY function can be used. If no CHOOSE statement is given,
all documents are passed on. Listing 4.4 gives example CHOOSE conditions.

26

LOAD Twitter CHOOSE EXISTS (’/text ’) && ’/lang ’ == "en";

LOAD Twitter CHOOSE TRUTHY (’/user/ follower_count ’);

Listing 4.4: Example queries showcasing different CHOOSE usecases

LOAD Twitter AS (’/text ’:’/text ’), (’/ length ’, LEN(’/text ’));

LOAD Twitter AS *, (’/text ’: SUBSTR (’/text ’ ,0 ,10));

Listing 4.5: Example queries showcasing different AS usecases

4.1.7 Transforming Collections
After the filter step, collections can also be transformed into a new format.
Using the AS keyword and one or multiple transformation tuples, each source
document is transformed to have the desired structure and content. Every tuple
consists of a pointer and a source. The pointer denotes where the value should
be written in the new document, while the source denotes which value should
be written. The source is evaluated against the source documents. Tuples are
evaluated in order and can override previously written values.

As it is often desirable to only change a part of a document—e.g. replacing
a name with initials or calculating a new numerical value—JODA provides a
shortcut to copy the whole source document. Instead of a tuple, the first term
after the AS statement can also be a *, which is syntactic sugar for the tuple
(’ ’:’ ’). All successive tuples will then add to the source document or replace
attributes. If no AS statement is present in the query, the documents are passed
on as-is.

The first query shown in Listing 4.5 takes the set of twitter documents and
simplifies it by extracting only the text attribute, and adding a length attribute
containing the string length. The second query uses the * function to copy the
whole tweet object but afterward truncates the text string to contain only ten
characters.

4.1.8 Aggregating Collections
JODA also supports aggregation queries, which create a single document from
a collection. Similar to the AS command, aggregation is performed using the
AGG keyword, followed by a list of tuples. Each tuple consists of a pointer
and an aggregation function. Again, the pointer denotes the location of the
new value, which in this case, is given by the aggregation function. Every
aggregation function is evaluated independently, and the result is written in a
single document in the order of the tuples. The aggregation function parameters
are arbitrary sources with full support for pointers and functions.

Each aggregation tuple can also be grouped and aggregated separately, like the
GROUP BY statement in SQL. To group an aggregation function, the second part
of the tuple has to start with GROUP <AGG Function> <As> BY <Source>. For

27

LOAD Twitter AGG (’/ min_length ’, MIN(LEN(’/text ’)));

LOAD Twitter AGG (’’: GROUP COUNT (’/text ’) AS count BY ’/lang ’);

LOAD Twitter AGG WINDOW (100) (’’: GROUP COUNT (’/text ’) AS count BY ’
/lang ’);

Listing 4.6: Example queries showcasing different AGG usecases

AS

FILE "path/to/file"

FILES "path/to/dir"

<UDI> "config string"

Figure 4.5: Syntax of store destination

each value of the source, a new group is created, and the aggregation function
is evaluated on all documents in that group. Using the optional AS keyword,
the group value can be written to a new attribute.

The first query in Listing 4.6 calculates the minimum length of all tweets in
the collection. The second query counts the number of tweets grouped by their
language The result will be an array of objects, where each object has a group
attribute containing the language and a count attribute containing the number
of tweets in that language.

In streaming queries, the AGG statement can also be used to aggregate over
a window of documents. After the keyword, the window size in number of
documents has to be given using the WINDOW(<size>) function. Query three in
Listing 4.6 counts the number of tweets grouped by their language in a window
of 100 documents. Currently only tumbling windows are supported, i.e., the
aggregation resets after each window.

4.1.9 Storing Collections
Using the final optional STORE statement, the result of the query is either stored
in a collection or exported from the system. If STORE is only followed by an
identifier, the result is stored in a collection with that name. If no collection
with this name exists, the system creates a new one and stores the result in this
collection. Else, the results are appended to the existing collection.

The STORE statement can also be followed by a AS keyword followed by the
export type. Figure 4.5 shows the different export types. Currently, the system
natively supports exporting the JSON documents into either one or multiple
line-separated JSON files. Additionally, results can also be streamed to standard
output in a line-separated format if the system runs in a streaming-compatible
mode. The export statement also supports user-defined export types, which can
be used to export documents into other formats.

28

<Temporary> Twitter A . . .

Collections

Documents

Indices Metadata

Documents

Indices Metadata

Documents

Indices Metadata

Containers

Figure 4.6: Overview of the storage hierarchy of JODA

4.2 Storage
In JODA, documents are logically divided into collections. Queries reference col-
lections to store and retrieve a set of documents. They are comparable to the
collections in MongoDB and tables in SQL. Within each collection, documents
are partitioned into self-sustained containers. Containers bundle all necessary
data and meta-data required to evaluate any part of a query. Figure 4.6 sum-
marizes the basic JODA storage architecture.

4.2.1 Collections
A collection is a semantic user-defined group of documents. When the user
imports data into JODA or a query returns a result set, the data is stored in a
collection. If no name is specified by the user, the collection is called a temporary
collection. These collections can’t be referenced by the user in a future query
and are removed automatically when they are not needed anymore. If a name is
specified, the collection is called a named collection. Named collections can be
referenced in the LOAD, STORE, and JOIN commands. They have to be explicitly
deleted by the user to free all allocated memory. Collections are mutable, as
new documents can be added at any point by referencing an existing named
collection in the LOAD and STORE commands. Internally, collections do not store
the documents directly. Instead, they store a list of containers, which will be
explained in Section 4.2.2. Each collection has a unique directory assigned in a
temporary directory on the file system. If in-memory data has to be evicted to
disk, the data is stored in this directory.

4.2.2 Containers
Containers partition the actual documents into self-sustained units. A container
is initialized with a maximum size. Documents are added into containers until
the maximum size is reached. Then, a new container is created. After it is filled,
the container is finalized and indexed. The list of documents within a container
is immutable. No document can be removed, added, or modified.

But containers also store indices and meta-data that may change over time. For
example, the container can store a bloom filter of all paths in all documents.
This allows the container to quickly determine if a query can return a non-
empty result. They also store a filter-predicate cache, which is used to speed
up the evaluation of queries. After every filter operation, a Boolean vector

29

representing the chosen documents is stored together with the filter predicate.
If the same filter predicate is used again, the Boolean vector can be returned
directly without accessing the documents. This cache can also be used to restrict
the documents that have to be evaluated if a stored predicate is a subset of the
current predicate.

Documents of containers can also be serialized to disk if needed. This allows
the in-memory representation of the documents to be removed. Indices and
meta-data remain in memory and can be used to answer queries. If the indices
are not sufficient to answer the queries, the documents are reparsed from the
disk. Additionally, containers can be initialized lazily. This means that the
documents are not parsed, but only a reference to the file on disk, and the
position within the file is stored. This allows the documents to be parsed only
when they are needed.

4.2.3 Memory Management
Most operations of JODA are performed in memory. This allows for fast and
efficient processing. However, the amount of memory required to store the
documents and indices can be very large. To avoid out-of-memory errors, JODA
uses a memory manager to manage memory usage. The memory manager is
responsible for monitoring and freeing memory.

For each collection, the timestamp of creation and the last access is stored. If
the system does not have enough free memory to import new data or perform
a query, a cleanup procedure is started. In this procedure, the documents of
a set of collections are removed from memory and serialized to disk. JODA
implements multiple strategies to determine which collections to remove: LRU,
FIFO, size, dependencies, and random explorer. The default strategy is to
evict the least-recently-used collection first. But users can also configure JODA
to use different strategies. The first-in-first-out strategy prioritizes the oldest
collections, while the size strategy prioritizes the largest collections. The depen-
dencies strategy prioritizes collections that have the least depending collections
(see Chapter 5). Finally, the random explorer strategy selects collections that
are least likely to be used if the user follows the random explorer model (see
Chapter 8). Once the cleanup procedure is finished, the import or query can be
performed.

For every collection, JODA creates a temporary directory on disk. This direc-
tory is used to store one JSON file for each evicted container. Every document
within the container is translated into the string representation of a JSON ob-
ject and stored in a single file. In memory, the container is updated with a
reference to the file on disk and the byte positions of every document.

Every container stores a reference counter to prevent the eviction of documents
currently in use. If the reference counter is larger than zero, the container
documents are not evicted. On the other hand, if the reference counter is
incremented from zero to one and the container is evicted, the documents are
reparsed from disk. To prevent unnecessary reparsing, functions can also specify
which documents they need, such that only these documents are reparsed. If
a later function needs different or more documents, the evicted documents are
reparsed again.

30

Source Task

Single-Threaded

Operator Task

Multi-threaded

Sink Task

Synchronous

Type1 Type2

Figure 4.7: Example tasks connected by two queues

4.3 Query Execution
At the heart of JODA query processing is the pipeline, which is a sequence of
connected tasks that are executed in a specific order. A query is translated into
multiple tasks that are added to the execution pipeline. Within the pipeline,
the tasks are connected by I/O queues. Queues transfer different types of data,
depending on the connected tasks. The tasks are then executed by multiple
threads, depending on the scheduler strategy.

4.3.1 Tasks
A task is a self-contained unit of work that is executed by a single thread. It
is responsible for processing a specific part of a query. There are three types
of tasks in JODA: source tasks, operator tasks, and sink tasks. Source tasks
generate data from outside the system, collections, or other centralized struc-
tures. They only have an output queue through which they send data to the
rest of the pipeline. Operator tasks process data from their input queue and
write the result to their output queue. Not every input tuple has to produce an
output tuple, it is also possible to output more or fewer tuples than the number
of input tuples. Sink tasks only consume data from their input queue and may
write results to centralized structures, storages, or even outside systems.

Every task can have one of three types of parallelism: synchronous, single-
threaded, and multi-threaded. Synchronous tasks are executed by the main ex-
ecution thread and serve as a synchronization point for other tasks. A syn-
chronous task can only be started if all previous synchronous tasks are finished.
Single-threaded tasks are executed by a single thread, with no insurance on
the order of execution. I/O heavy operations that are not CPU-bound or non-
parallelizable tasks are executed as single-threaded tasks. But multi-threaded
tasks can be executed by multiple threads in parallel. They are used for CPU-
bound tasks that benefit from being parallelized. For every thread executing a
task, a new task instance is created. For single-threaded and synchronous tasks,
only one instance exists at any time.

Figure 4.7 showcases the task visualization for the remaining thesis. Single-
threaded tasks are drawn with a normal border, synchronous tasks use a thick
border, and multi-threaded tasks a double border. Source tasks have a single
output on the right, sink tasks a single input on the left, and operator tasks
show both connectors.

Depending on the task type, the scheduler decides when and how many task
instances are started. Every task instance has a status that indicates its current
state, which may be any of the following:

31

NOT
STARTED RUNNING

IDLEYIELD STARVED

FINISHED
Start Task

Empty Input &
Input Finished

Empty Input

FullO
utput

Figure 4.8: Transitions between task instance states

• NOT_STARTED: The task instance has not been started yet.

• RUNNING: The task instance is currently running.

• FINISHED: The task is finished and no more tuples will be read or written.

• STARVED: The task is not finished, but no more tuples can be read from
the input queue.

• IDLE: The task is not finished, but no more tuples can be written to the
output queue.

• YIELD: The task is not finished, but yields the execution to another task.

Figure 4.8 shows the possible transitions between the different task-instance
states. First, a task instance with the default status NOT_STARTED is created.
Then, it is started and transitions to RUNNING. Every task instance has an
execute method that depending on the type, reads from the input queue, pro-
cesses the data, and writes to the output queue. How many tuples are read and
written is determined by the task. The execute method then returns the new
status of the task instance. Depending on this status, the scheduler decides what
to do next. If the task instance is finished, it is not considered by the scheduler
anymore. An instance is finished if the input queue is empty and marked as
finished. The queues connecting the tasks keep track of how many producers are
filling the queue. If all producers are finished, the queue is marked as finished.
If the input queue is empty, but not yet finished the task instance transitions
to STARVED. On the other hand, if the output queue is full, the task instance
transitions to IDLE. Additionally, may the task instance yield the execution to
another task by returning YIELD. This happens after a certain number of tuples
have been processed to ensure all tasks down the pipeline are executed. Every
waiting task instance may be restarted by the scheduler at a later point in time
and transition back to RUNNING. A task in the pipeline is considered finished
if all of its task instances are finished. A list of all implemented tasks can be
found in Appendix B.

32

LOAD Twitter
CHOOSE EXISTS (’/user ’)
AS (’’:’/name ’)
STORE Users ;

Listing 4.7: Example JODA query loading, filtering, transforming, and storing
twitter documents.

StorageSender

Twitter

Choose

EXISTS(’/user’)

As

(”:’/name’)

StorageReceiver

Users

Container
Filtered

Container Container

Figure 4.9: Pipeline created by query in Listing 4.7

4.3.2 Pipeline
An ordered sequence of tasks, optionally connected by queues, is called a pipeline.
Queries are translated into tasks that are added to a given pipeline. For each
added task, the pipeline creates a queue for the task’s output if the task is not
a sink task. If the task is not a source task, queues of compatible previous
tasks are connected to the task’s input. JODA keeps a list of all compatible
tasks, which are tasks with the same output and input types that are allowed
to happen after each other in a query.

For example, consider the query in Listing 4.7. Figure 4.9 shows the resulting
pipeline. First, the LOAD statement is translated into a source task that loads the
Twitter collection from JODA storage and writes the containers to the output
queue. After the StorageSender task is added, the pipeline creates a queue
of type Container and connects it to the task’s output. Then, the CHOOSE
statement is translated into an operator task that reads the containers from
the input queue, filters the containers, and writes the filtered containers to the
output queue. As this task has an empty input, the pipeline searches backward
for a compatible unconnected task and connects the previously created queue
to the task’s input. As seen previously, a new queue is created for the task’s
output. Next, the AS statement is translated and added similarly to the CHOOSE
statement. Finally, the STORE statement is translated into a sink task that reads
the containers from the input queue and stores them in the JODA storage. The
resulting pipeline begins and ends with synchronous source and sink tasks, and
has two multi-threaded operator tasks in between.

After the query is translated into a pipeline, it is optimized by the systems as
described in Section 4.4. The scheduler then starts the pipeline and schedules
the tasks depending on their parallelism type.

4.3.3 Scheduler
The scheduler is responsible for creating and scheduling task instances in a
pipeline. Given a maximum number of threads and a list of tasks, the scheduler
first creates the task instances. For every task, the scheduler creates one instance
for each single-threaded task and as many instances as the configured number of
threads for multi-threaded tasks. The instances are stored in an internal stage
list. Synchronous tasks are executed in the main query-execution loop and are
not added to the stage list.

33

The scheduler then starts the execution of the pipeline. For every stage, a task
instance is started in round-robin order until all threads are occupied. When a
task instance returns (i.e., finishes or yields), the scheduler reschedules a new
task instance depending on the returned status. After the initial scheduling, the
scheduler also executes the synchronous tasks in order.

When a task instance returns, by default a task instance in the next stage is
started. But if the task instance is STARVED, the scheduler searches for a task
instance in the previous stage. No matter the stage, the scheduler tries to start
a task instance that is not FINISHED. If no such instance exists in the chosen
stage, the scheduler continues the search in the next one. If no task can be found
in any stage, the rescheduling returns. As soon as all task instances in all stages
and the synchronous tasks are FINISHED, the scheduler stops the execution of
the pipeline.

4.4 Optimization
JODA implements a rule-based optimizer that uses a set of rules to transform
a pipeline into an optimized version. Each rule is a class that implements
a optimize method that takes a pipeline and returns a range of tasks to be
replaced and the replacement tasks. If the rule can not be applied, the method
returns an empty range. The optimizer applies all configured rules in a loop
until no rule can be applied anymore.

The default rule-class consists of a set of task ids to be replaced and a set of
replacement tasks. If the set of tasks to be replaced is contained in the pipeline
and connected with each other, the optimize method replaces the tasks with the
replacement tasks. But the rule can be extended to implement more complex
optimizations. Additional checks can be performed on the pipeline and tasks
to ensure the rule can be applied. For example, is it possible to apply a rule
depending on the filter predicate in the choose task.

It is generally desirable to have as few tasks as possible in a pipeline, as the I/O
overhead of queue communication and task scheduling reduces the performance.
Hence, optimization rules should concentrate on either replacing high-impact
tasks with versions optimized to a specific corner case or replacing common
multi-task patterns with single tasks.

4.4.1 Parsing Optimization
JODA tasks are created with modularity and interoperability in mind. Specif-
ically, the parsing of a line-separated JSON file is split into multiple tasks. As
seen in Figure 4.10, first the file is opened and a character stream is passed
on to a reader task which scans the file for a newline character. Every line
is then extracted from the stream and passed on as a string to a JSON parser
task. This ensures that streams from different sources, like HTTP requests,
decompression libraries, or similar can be parsed by the same tasks. But if only
local files are parsed, the reading can be improved by performing it in a more
efficient single task. The FileMap optimization rule replaces the file opener and
file reader tasks with a single file mapper task, which uses the mmap system call
to map the file into memory and efficiently scan for the newline delimiter.

34

Original

LineSeparated
StreamReaderFileOpener TextParserFile Stream String

Optimized

TextParserFileMapperFile String

Figure 4.10: Optimization rule FileMap

Original

AsChoose AggContainer Container Container Aggregator

Optimized

ChooseAsAggContainer Aggregator

Figure 4.11: Optimization rule ChooseAsAgg

4.4.2 Main-Query Evaluation Merging
The most common operations in every JODA pipeline are the CHOOSE, AS, and
AGG tasks. They all are multithreaded operator tasks and take a container as
input and produce a container as output. The evaluation of every task is very
similar, in that they have a set of predicates, tuples, or aggregators and call a
method on the container to evaluate it. Hence, it makes sense that they are
executed in the same task in a tight loop over the container. But as not every
query contains all three statements, they have to be split into multiple tasks.
To reduce the overhead of queue communication, JODA includes optimization
rules to merge all combinations of these tasks into a single task. As a result, the
main query evaluation of a single container is always performed in a single task,
where the resulting container of the previous step is directly passed to the next
one in the same thread. Figure 4.11 shows the example case where all three
operations are present in the pipeline and can be merged into a single task.

4.4.3 Multi-Query Optimization
Generally, JODA translates a single query into one pipeline. For interactive
queries that always return a single result, this is sufficient. But JODA also
accepts a query file as input that contains multiple queries, but only returns
the last result. Similarly, can multiple queries also be supplied through the
HTTP API. These features can be used to perform multi-stage queries where
the result of one query is used in the following. Listing 4.8 shows an example
of two related queries.

35

LOAD Twitter FROM FILE " twitter .json";
LOAD Twitter
CHOOSE EXISTS (’/user ’);

Listing 4.8: Three partly unrelated example queries

ListFile

users.json

FileMapper TextParser StorageReceiver

Twitter

Original Pipeline
Sub Pipeline 1

File String Container

StorageSender

Twitter

Choose

EXISTS(’/user)

StorageReceiver

<Temp>

Sub Pipeline 2

Container Container

Optimized Pipeline

ListFile

users.json

FileMapper TextParser StorageBuffer

Twitter

Choose

EXISTS(’/user)

StorageReceiver

<Temp>

File String Container

Container

Container

Figure 4.12: Multi-query optimization example pipelines

The first query parses the Twitter dataset and stores it in the Twitter collection.
This dataset is then used in the second query to filter all tweets that contain a
top-level user attribute. JODA could now create one pipeline for each query
and execute them in sequence. But this would result in some overhead as
available computing resources could not start processing the second query until
the first one is finished. To avoid this, JODA will merge all queries into a single
pipeline. Before the query is executed, the scheduler analyzes any given pipeline
for connections and splits unconnected parts into sub-pipelines. Then, each sub-
pipeline is executed as if it were its own pipeline. In itself, this feature does not
improve performance, but it allows the optimizer to optimize the pipeline as a
whole over all queries.

Figure 4.12 shows the example pipeline of the two queries. It contains two
unconnected sub-pipelines that end and start with the Twitter collection re-
spectively. The QueryCombination rule searches for a successive unconnected
StorageReceiver and StorageSender task and merges them into a single
StorageBuffer task. These buffers send all already existing containers to the
queue, and store all new containers in the collection while also passing them
on. In an additional pass of the optimizer, the StorageBuffer task can even
be removed, if this query is the last query to be executed before the system is
shut down. This optimization is only possible if the query set has been supplied
through the CLI in a non-interactive session.

36

4.5 Applications
Data processors are used for many different use cases. To support a wide range
of applications, JODA includes multiple execution modes and supporting tools
that can be used to solve different problems. This section gives a brief overview
of the ways a user can interact with JODA.

4.5.1 CLI
The first and most basic way to interact with JODA is via the command line
interface (CLI). By simply invoking the JODA executable without any argu-
ments, the user is presented with an interactive shell that allows to execute
JODA queries. The shell also provides a set of commands to manage collec-
tions, set some basic settings, and get information about the current state of
the system. The result of each query can be interactively navigated by browsing
through each individual result document.

If the executable is started without a valid interactive shell (e.g. when started
from a script) or the user supplies the --noninteractive flag, the system allows
the execution of streaming queries. One or multiple queries can be supplied via
the command line and the results are printed to the standard output as a stream
of line delimited JSON documents. Input documents can be imported via the
standard import functionalities, or by piping them into the executable. This
allows JODA to be combined with other tools. For example, could the user get
a JSON file from the web, process it in JODA, and compress the result using
curl <url> | JODA -q "<query>" | gzip.

JODA is extensively configurable. Every optimization and feature can be en-
abled, disabled, or tweaked to fit the user’s needs. These settings can either be
set via command-line arguments or by using a configuration file.

4.5.2 Client/Server
Instead of using the CLI to directly interact with JODA, the user can also start
a server instance that can be accessed via a client. The server can be started
by supplying the --server command-line argument. The JODA instance will
then listen on a specified port for incoming connections. It uses an HTTP API
to communicate with the client. Via this API the current collections can be
retrieved, queries can be executed, and results can be fetched using paginated
requests.

A simple client program is provided with JODA. It has similar functionality as
the CLI, but instead of executing queries directly, it sends them to the server,
fetches the results, and displays them. But as the server uses a simple HTTP
API, it is also possible to write custom clients that can be used to interact with
JODA.

37

Figure 4.13: Screenshot of the web interface start page.

4.5.3 Web
To improve the user experience, we also implemented a web interface for JODA
using GoLang. This is an additional server that communicates with a JODA
server instance and provides an easy-to-use web interface. Figure 4.13 shows the
start page of the web interface. Here an overview of all collections and stored
result sets is shown. For each collection, the user can execute a query, remove it,
or get a deep analysis of the structure and content of the collection. Results of
previous queries are cached in the system and can be viewed with an interactive
JSON viewer with syntax highlighting. Single documents and whole result sets
can also be downloaded as JSON files.

For each query, statistics about the execution time and the number of documents
that were processed are stored. These statistics are shown after each query as
can be seen in Figure 4.14. The query pipeline is also visualized as a graph. The
web interface also contains an exhaustive reference of the JODA query language
and example queries to help the user get started.

Explorer

To further help the user explore unknown data, we implemented an exploration
tool that analyzes the structure and content of a collection and recommends
queries that can be used to create interesting datasets. For example, if a dataset
is split into two or more structurally different parts, the tool can recommend
queries that extract each of these partitions. Or if a certain attribute contains
a statistically significant value, the tool can recommend queries that extract all
documents that contain or do not contain this value. Each recommended query
can be executed and the tool will continue to analyze the result. New recom-
mendations are generated based on the new data and the process is repeated
until the user is satisfied or no more recommendations can be made. This allows
the user to explore a dataset and create interesting subsets of it without having
to write any queries.

38

Figure 4.14: Screenshot of the query statistics page.

BETZE

In Chapter 8, the BETZE benchmark generator for exploratory queries is pre-
sented. The generator itself is a GoLang library with an included CLI. The
JODA web interface includes this library and provides a visual interface to gen-
erate and execute exploratory queries. This allows the user to set benchmark
parameters, generate queries, and view and export them in different query lan-
guages. The benchmark session is also visualized as a graph with statistics
about each individual query and the generation process.

39

40

Chapter 5

Delta Trees — Optimizing for
Iterative Queries
As mentioned in the previous chapter, the results of each task within the query
pipeline are passed on to the next task. For transformation tasks, this means
that a new container has to be created with the transformed documents of the
incoming container. Take for example the query in Listing 5.1. It loads an
existing Twitter dataset, adds a new attribute to each document, and removes
the user attribute. The original container in the Twitter collection can’t be
modified, as it may be used by other queries in the future. Thus, a new container
has to be created, which contains the transformed documents. If the changes
to the original document are minimal, this is a waste of resources, as the new
container will mostly contain the same data as the original container.

This kind of query workload is especially common in the field of data science,
where data is often iteratively filtered and transformed until a certain result is
achieved. For large datasets, duplicating most of the data multiple times is not
feasible. Even if intermediate results are removed after the query is finished,
the memory and storage requirements are still high.

In this chapter, we present delta trees [3, 4], which succinctly represent data
modifications while keeping original datasets intact. Instead of duplicating and
modifying the original data, we only store the changes in the document and
reconstruct the full document on demand. They also support partial material-
izations as a tradeoff between storage capacity and performance.

The remainder of this chapter is structured as follows. Section 5.1 gives an
overview of the approach. Section 5.2 introduces the theoretical model under-
lying delta trees, whose implementation in JODA is shown in Section 5.3. This
implementation is evaluated in Section 5.4. Lastly, we give a short summary in
Section 5.5.

5.1 Overview
In many systems, semi-structured documents are represented as trees (or nested
hash maps, which can be seen as trees) in the memory. For example, HTML
and XML documents are mostly stored according to the document object model
(DOM) [71]. This model provides an interface to dynamically query and edit
the represented documents. Each document is represented as a tree, where each
node is an object representing a part of the document.

LOAD Twitter
AS *, (’/ parsed_at ’: NOW ()), (’/user ’:);

Listing 5.1: Query transforming documents in the Twitter dataset

41

Object

“A”

Object

“B”

1

“C”

2

“D”

3

(a) Base document

Object

“A”

Object

“B”

“X”

“E”

5

“D”

3

(b) Delta tree - document

Object

“A”

Object

“B”

“X”

“E”

5

“C”

2

(c) Combined delta tree

Figure 5.1: Example of base document with a delta tree

JSON documents, the currently dominant semi-structured document type used
to exchange data, can also be represented as a DOM tree. For example, the
RapidJSON [8] library uses the DOM representation when parsing JSON docu-
ments into main memory. We use RapidJSON in our JODA software for parsing
and storing JSON documents in memory. The proposed improvements to the
system consist of additions to the storage hierarchy, algorithms to interact with
delta trees and documents in a transparent manner, and adaptions of the target
system to use these algorithms.

Normally, to change a document, while keeping the original intact, the system
has to deep-copy the whole document tree and modify the copy. But traversing
a tree and allocating memory for its nodes is a performance-heavy task. The
idea of our approach is to create an additional delta tree on top of the original,
which only contains the minimal information required to represent the changes
made to the original tree.

Figure 5.1 visualizes this idea. In Figure 5.1a the internal tree structure of a
normal JSON document is given. A possible delta tree, based on the previous
tree is shown in Figure 5.1b. It changes the values of the B member, adds
a E member, and removes the D member. Combining these trees results in
Figure 5.1c.

5.2 Model
Most semi-structured documents can be represented as a directed tree. A di-
rected tree is an acyclic-connected graph T ′ = (V, E), with V being the vertices
in the graph and E the edges. This representation is also often used as the

42

in-memory storage model of the documents to allow easy traversal and modifi-
cation. More specifically, the Document Object Model (DOM) [71] is often used
to represent XML and HTML documents. Every document has one root node,
which can contain children nodes that are themselves root nodes of subtrees.
The leaves of the tree represent the stored data. Additionally, every node is
labeled with metadata, like the attribute name and/or type.

We augment the tree definition to obtain a document T = (V, E, I, A, L, D).
V and E are still denoting vertices and edges, respectively. The vertices are
distributed into the distinct subsets I ∪A = V , with I being the inner structural
nodes and A the atomic leaf nodes. An edge (x, y) ∈ E represents a parent/child
relationship with y being the child node of x. L is a set of labels, a mapping
of I → Σ∗, where Σ is a domain specific alphabet. For each parent node, the
labels of all its children are unique. D represents the actual stored data and
is a mapping A → Σ∗ from the leaf nodes to the data. This is a very generic
abstraction, to which JSON, XML, and YAML documents comply.

5.2.1 Path
A path p is an ordered list of labels p = (l1, . . . , ln) with li ∈ Σ∗. As the child
labels are unique in the scope of the parent node, it is possible to uniquely
identify each node in the tree by a path. For each inner node, i ∈ I there exists
a mapping vtp(v) = v → p. There is also a reverse mapping, path-to-vertice.
Given a tree T and a path p:

ptv(T, p) =
{

v ∃v ∈ V, vtp(v) = p
∅ else

Every input data that can be represented as the aforementioned tree, can also
be used with this concept of paths. For example, the W3C recommendation
for XPath [72] describes a query language for XML documents in this style. A
document can be queried by specifying an ordered list of labels, separated with
the ‘/’ symbol. Similarly, RFC 6901 [7] proposes a JSON pointer with a similar
format to query JSON documents.

5.2.2 Delta Tree
Using the previous definitions, we can now formally introduce delta trees. A
delta tree D = (b, t, PD) is a tuple consisting of a base tree b = (Vb, Eb, Ib, Ab, Lb,
Db), a tree t = (VD, ED, ID, AD, LD, DD) containing the changes relative to b,
and a set of paths P . The base tree b and the change tree t are both valid
documents.

The set of paths P describes all the paths that have been changed in this delta
tree. For example, would the paths {(<Root>, "A","B"), (<Root>, "A","E"),
(<Root>, "D")} denote all changes of the delta tree in Figure 5.1b. Given
this set and the base tree b, we can define the set of overwritten vertices with
OV (bD, PD). For all v ∈ Vb, v ∈ OV (bD, PD) iff:

1. ∃p ∈ PD, vtp(v) = p

2. ∃v′ ∈ OV (bD, PD), (v′, v) ∈ Eb

43

This means, a vertex of b is overwritten in D if it is either directly changed in
the delta tree, or if it is a child of a changed vertex.

The document resulting from combining the base tree b with the delta tree t is
again a tree R = (VR, ER, IR, AR, LR, DR) with:

VR = {v|v ∈ Vb ∧ v ̸∈ OV (bD, PD)} ∪ VD

ER = {(x, y)|(x, y) ∈ Eb ∧ x, y ̸∈ OV (bD, PD)} ∪ ED

IR, AR, LR, and DR are defined analogously to VR.

5.2.3 Delta Hierarchy
As mentioned previously, a delta tree describes changes to a base tree. Thus, it
is possible to have a base tree b and a delta tree D = (b, tD, PD) derived from
it. Let the result of merging these trees be RD. We can now use this result tree
as a base tree for an additional delta tree D′ = (RD, tD′ , PD′). Analogously, we
obtain the result tree RD′ .

This means, we can build delta trees on the results of previous trees. A set of
delta trees H = (D0, D1, . . . , Dn), where each delta tree references the result of
the previous one is called a delta hierarchy. D0 represents the base tree b, which
can be seen as a delta tree D0 = (∅, b, {< Root >}), with no base document
and where the root node is overwritten, thereby using the whole change tree.
The result of the delta hierarchy equals the result tree of the uppermost delta
tree RH = RDn

.

5.2.4 Costmodel
The primary enhancement of delta trees is the reduced memory footprint. We
now define the cost of a delta tree as its memory requirement.

Let the cost of a JSON tree node be C, which is the cost of the data contained
in the node, as well as all children nodes. For atomic nodes, this cost is exactly
the size of this datatype, or in the case of strings, the length of the string plus
the memory size of a character.

For the remaining nodes, C is defined as follows:

C(n) =
{

size(val(n)) n ∈ A (atomic)∑
(n,n′)∈E C(n′) n ∈ I (array/object)

The total cost of a document T is thereby C(T) = C(root(T)) where root(T)
is the root node of the document. Similarly, the total cost of a delta tree
D is the cost of its derived document plus the cost of the overwritten paths
C(D) = C(t) + C(PD) with

C(PD) =
∑

p∈PD

∑
x∈p

size(x)

44

Multiple delta tree documents may share a single PD instance, if they were
created by the same query. In this case, the cost of a single delta tree document
is C(V) = C(t) + C(PD)

N for N delta tree documents.

As we can see, for large N the path cost becomes irrelevant.

lim
N→∞

C(D) + C(PD)
N

= C(D)

Also, the cost C(PD) is always a constant per set of delta trees with C(PD) <<∑
n∈N C(Dn).

The cost of a delta hierarchy is simply the sum of the base tree and all delta
trees in the hierarchy.

5.3 Realization & Optimizations
We now describe how delta trees are implemented inside JODA. JODA uses the
RapidJSON parser, which creates an in-memory DOM tree representation. But
the introduced algorithms should be straightforward to implement in similar
systems, as long as the requirements stated in Section 5.2 are fulfilled. Given
a delta hierarchy H = (D0, . . . , Di, . . . , Dn), as defined above. The document
trees are represented internally as DOM trees, which can directly be mapped to
our theoretical model of document trees presented before.

H supports the following actions:

• Traverse a result document Ri using the visitor pattern.

• Materialize changes of a sub-tree at path expression p.

• Get the subtree of a path expression p.

5.3.1 Traversal with Visitor Pattern
A well-known method of traversing structured data without changing it is the
visitor pattern [73]. With it, we can traverse our internal tree structure to
perform many different tasks. For example, it is used for stringification and
duplication of whole documents or parts of them within our system. An efficient
implementation of this pattern is crucial for the efficiency of our delta tree
implementation.

As mentioned in Section 5.2.3, the result of a delta hierarchy can be computed by
iteratively creating an intermediate result for every level of the delta hierarchy.
Using this approach on a delta tree D1 which is based on the document D0,
we would combine both trees, to build the result document R1. However, this
approach does not work well with delta hierarchies of many levels, as too many
intermediate results have to be computed. Instead, Algorithm 1 traverses a delta
hierarchy as if it was one document (illustrated in Fig. 5.2), for an arbitrary
number of delta DOM trees. We start at the root document of the upper most
delta tree. First, we check using a function IsShared, if the children of the
given node are distributed over multiple trees. By storing all overwritten paths
in a suitable structure, like a map, we can check this by performing one hash
lookup per delta tree.

45

Data: p = ’ ’; D0, . . . , Dm

1 if IsShared(p,D0, . . . , Dm) then
2 O = GetLastOverwrite(p,D0, . . . , Dm));
3 for i = O to Dm do
4 members += GetMembers(Di);
5 end
6 for member in members do
7 Visit member;
8 Recurse(p+’/’+member.id,D0, . . . , Dm);
9 end

10 else
11 nD = GetBaseNode(n);
12 Visit nD;
13 end

Algorithm 1: Simultaneous traversal algorithm

Object (1)

/A/F
/B
/C

"A" (2)

Object

"B" (6)

Object

"F" (5)

1

"G" (7)

False

Object (1)

/

"B" (6)

"X"

"A" (2)

Object

"C"

"True"

"D" (3)

2

"E" (4)

"Y"

Object (1)

/A/D
/B/H

"A" (2)

Object

"B" (6)

Object

"D" (3)

False

"H" (8)

True

Object (1)

"A" (2)

Object

"B" (6)

Object

"E" (4)

"Y"

"D" (3)

False

"F" (5)

1

"G" (7)

False

"H" (8)

True

Figure 5.2: Simultaneous traversal

46

If this node is shared—like the root, “A”, and “B” nodes in the example—we
get the upper most overwrite for the given node, with the GetLastOverwrite
function, which returns the document highest up in the delta hierarchy which
completely replaced this attribute. In case of node “A”, the base document was
the last one to overwrite the value, as the base document overwrites everything.
For node “B”, the second layer overwrote this sub-tree last. For this, we also
only have to do a prefix check on the overwritten paths. In our implementation,
we include this check in the IsShared function call, to reduce the runtime. We
then collect all unique paths of children of this node and nodes with the same
path in the trees above. Each member is then visited once, and the function is
called with each of their paths again.

5.3.2 Retrieval of Atomic Values
Most query functions only have to read atomic values. As atomic values are
never shared and can be read from a single delta tree directly, we introduce a
getAtomic function which optimizes these accesses. By using the previously
explained GetLastOverwrite function, we get the delta tree which overwrote
the given path last. The atomic value we try to find is either in this tree, or
does not exist at all. Hence, we can simply extract the value from this one delta
tree.

5.3.3 Partial Materialization
Simultaneous traversal of delta hierarchies is still more expensive than directly
accessing a normal (materialized) tree. To mitigate this issue, we introduce a
method that allows partial materialization of a given delta tree. Given a delta
hierarchy H = (D0, . . . , Dn) and a path p, we can materialize p into Dn.

Algorithm 2 shows the materialization procedure. Lines 1–6 traverse the delta
hierarchy to the required path p and prune delta trees, which are not required
for further computation, from the search space. The resulting delta hierarchy
is then used to take a special CopyVisitor object, which creates a deep-copy
of the sub tree, in Line 7—we use Algorithm 1 to traverse this sub tree in the
delta hierarchy. This copy is then assigned to path p within the topmost delta
tree and the materialized path is added to the set of overwritten paths.

Data: p; D0, . . . , Dn;
1 for Di ∈ D0 to Dn−1 do
2 Node = Di.find(p);
3 if Node is null then
4 remove Di from list;
5 end
6 end
7 Dn.set(p,Accept(CopyVisitor,p, D0, . . . , Dn))
8 Dn.P+ = p;

Algorithm 2: Materialize_P()

47

Virtual Objects Index

Object

“A”

Object

“B”

“X”

“E”

5

“D”

3

Object

“A”

Object

“B”

1

“C”

2

“D”

3

2

Object

1

Object

1: <Root>
2: “A”
3: “C”
4: “B”
5: “E”

Figure 5.3: Object index

If the path to be materialized points to the root, the entire delta hierarchy is ma-
terialized. In this case, the uppermost delta tree is converted into a normal tree,
and removed from the delta hierarchy. This is called a complete materialization.

Materializing (parts of) the delta hierarchy increases memory consumption, as
we store duplicated data. Partial materialization could be used by the system,
if specific paths in the delta hierarchy are accessed frequently by queries and the
increased memory footprint is tolerably small. Hence, we can choose, depending
on the available memory, if we want to materialize a path to decrease query
runtime.

5.3.4 Object Indexing

To prevent the partial materialization of objects, a virtual object index is created.
This index combines the key benefits of delta trees with the advantage in read
performance of materialization. A virtual object is a list of tuples containing
an attribute id and a pointer to a value or nested virtual object, as shown in
Figure 5.3. The attribute id is a numerical value, retrieved by mapping a string
attribute name to a numerical value using a hash map. This has two advantages.
(1) Having a numerical value reduces the cost of comparisons needed for the
linear search of children. (2) The string dictionary is stored in the container
and shared by many documents, thus, reducing the required memory of this
index.

We create these virtual objects as soon as an object, that is distributed over
multiple trees in the delta hierarchy, is traversed for the first time. During
traversal, we map the attribute names of the children to the attribute id and
add it to the virtual object, together with the pointer of the actually traversed
value. Each value may reside in a different tree within the delta hierarchy. The
traversed object is then replaced by the virtual object in the highest delta tree
of the hierarchy. Future accesses of the object can then use the created index
without traversing multiple trees.

48

5.3.5 Adaptive Algorithm
The main advantage of delta trees is the reduced memory requirement. Evi-
dently, each delta tree is smaller or equal in size as the result tree that is given
by combining the whole delta hierarchy—as all of its nodes are contained in
the result, plus potential additional nodes from the base document. Thus, the
memory cost of delta trees should always be smaller or equal to materializing
the whole result. However, this may not always be the case in practice, as the
RapidJSON library, which is used to create JSON documents, creates each new
object and array with 16 placeholder children. In many cases, this is a sensible
decision, as reallocating memory for more children is an expensive operation and
objects and arrays often have more than one child. For delta trees that mostly
consist of a few nodes, this decision can often be a disadvantage. We extended
our previously introduced cost model by these implementation-dependent fac-
tors. Additionally, we added a sample step to our system before deciding which
execution method, delta trees or complete materialization, to choose. The trans-
formation is performed for ≤ 1% of documents with both execution methods.
Then the memory requirement of these documents is calculated and the method
with the lowest requirement is chosen. This decision is performed once for each
container.

5.4 Experimental Evaluation

5.4.1 Settings and Data and Workloads
The experiments are executed on a machine with 4 Xeon E7-4830 CPUs, each
having 12 cores—and 24 threads—with 2.1 GHz, and 1 TB of RAM. The data
is stored on one HGST Ultrastar 7K4000 HDD. Ubuntu 16.04.3 LTS is used
as the underlying operating system. The described delta tree approach and
optimizations are implemented as extensions to JODA.

The dataset used is a 109 GB file containing a sample of the raw Twitter JSON
stream1. It consists of 29,634,708 JSON documents, where each document has
between 7 and 348 attributes, containing every JSON type. The documents
are split into two major groups. Around 23.5 million (79.33%) documents are
normal tweets, while around 6.1 (20.67%) million documents are deletion in-
structions. The tweets have a varying number of attributes, depending on their
status, e.g., retweets and favorites, while the deletion documents consist of seven
attributes.

5.4.2 Delta Hierarchy Creation and Shared Reads
In the first evaluation, we execute a number of queries that illustrate the core
features of our approach. The first query in Listing 5.2 loads the Twitter dataset.
Then a collection is created which adds one member to the user object of the
previous dataset. Derived from this collection, another attribute is added to
the user object. In the following query, only the data added in Q2 is used in an
aggregation. Then the member count of the user object is queried in the next
two queries. The last query copies the shared user object into a new collection.

1https://developer.twitter.com/en/docs/labs/sampled-stream

49

https://developer.twitter.com/en/docs/labs/sampled-stream

Q2 Q3 Q4 Q5 Q6 Q7 Total

47
.9

29
.2

2.
5

2.
0

1.
7 7.

1

90
.4

16
.1

5.
3

0.
8 14

.4

6.
9

12
.2

55
.6

16
.1

5.
3

0.
5 16

.7

3.
3 10

.6

52
.6

15
.6

4.
7

0.
6 16

.5

3.
1 10

.2

50
.7

Default Delta tree Index Adaptive

Figure 5.4: Runtime of different execution methods (in s)

Q1: LOAD t1 FROM FILES "/data/ twitter ";
Q2: LOAD t1 CHOOSE EXISTS (’/user ’)

AS *,(’/user/v1 ’:1) STORE t2;
Q3: LOAD t2 AS *,(’/user/v2 ’:2) STORE t3;
Q4: LOAD t3 AGG (’’:SUM(’/user/v1 ’)) STORE a;
Q5: LOAD t3 AS (’’: MEMCOUNT (’/user ’)) STORE c1;
Q6: LOAD t3 AS (’’: MEMCOUNT (’/user ’)+1) STORE c2;
Q7: LOAD t3 AS (’’:’/user ’) STORE user;

Listing 5.2: Queries iteratively changing an object and reading it

We compare our introduced approaches against the default execution method,
which copies and modifies the full JSON documents. The delta tree approach
is based on our implementation within the system, as explained in Section 5.3.
The index approach uses the same implementation, but with enabled virtual
object indexing, as described in Section 5.3.4. Lastly, the adaptive approach—
described in Section 5.3.5—is compared.

Runtime

The query time plot in Fig. 5.4 is omitting the first data import query, as it
is unaffected by the execution method and requires the same time for all of
them. As we can see in Fig. 5.4, the implementation without delta trees, which
transforms the documents by copying the source data, requires for queries Q2–
Q7 about 90.4 seconds. The delta tree implementations on the other hand
executed these queries significantly faster, with 55.6, 52.6, and 50.7 seconds in
total respectively.

For the modification queries Q2 and Q3, the default execution method requires
up to 5.5× as much query time as the delta tree approaches, as the whole docu-
ment has to be copied, and memory has to be allocated. Q4 is the first reading
query and aggregates one of the previously added attributes. We expect reading
operations on shared objects to be slower for delta trees. But as this function
only reads one of the atomic values, we see that the delta tree approaches require
only around 1/5th of the query time. This is possible because the delta trees—
in this case—are way smaller than the full document tree, which means that
fewer comparisons are needed to find the required value. In Q5, we now read
the /user attribute, which is shared over multiple delta trees in the non-default

50

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
0

200

400

600

Data Size

Actual Prediction

Figure 5.5: Memory consumption (GB) of different execution methods

implementations. Here we see the drawback of our approach. As the delta trees
have to simultaneously traverse multiple trees with additional algorithms, the
query execution time is approximately 7 times longer than the normal delta
tree execution. The indexed delta tree needs additional time for creating the
indices on the first traversal of a shared object. Q6 shows now that creating
the index pays off, as we now require less than half the execution time of the
normal delta tree approach. This is a significant speed up, but still slower than
the default reading speed, which is to be expected. Query Q7 now copies the
shared attribute into a new collection. As before, the default execution method
is faster, but the indexing helps to close the gap.

Memory Usage

Fig. 5.5 immediately shows the main advantage of delta trees. All implementa-
tions start with the same memory usage after the data import query Q1. For
Q2 and Q3, the default implementation has to copy the data it wants to modify.
This of course has a heavy impact on memory usage. The delta tree implemen-
tations on the other hand only have to store the additional data, with a little
overhead for the internal tree structure.

When using the object index, memory usage is increased by up to 9% compared
to the normal delta tree implementation. But compared to the baseline data
(190GB in-memory), delta trees with indexes only required an additional 87%,
while copying the data increases the memory usage by 274%.

Table 5.1 compares the costs calculated by the theoretical cost model with
the model adapted for our specific implementation, from Section 5.3.5 and the
actual value measured in the system. All costs are given in (expected) increase
of memory consumption in MB. The first query is the parsing query, which is the
same for all execution methods. We thereby cannot compare any costs or make
any choices. For Q2 and Q3, which add one attribute to a given document, the
theoretical model gives a lower estimate for the delta trees than the real value.
The adapted model on the other hand is much closer to the correct value. For
both queries, the delta trees would be correctly chosen by both the theoretical
and adapted model. As aggregations depend on multiple documents, we cannot
compute it with delta trees and hence, make no estimation for this query. The

51

Theoretical Model Adapted Model Actual
Default Delta Tree Choose Default Delta Tree Choose Default Delta Tree Choose

Q1 - - - - - Default - - -
Q2 180,385 1,881 Delta Tree 185,077 25,578 Delta Tree 231,765 26,331 Delta Tree
Q3 181,137 1,881 Delta Tree 186,457 25,578 Delta Tree 233,898 26,331 Delta Tree
Q4 - - - - - - - - -
Q5 376 376 Default 2,257 2,257 Default 2,257 2,257 Default
Q6 376 376 Default 2,257 2,257 Default 2,257 2,257 Default
Q7 50,191 50,191 Default 51,695 51,695 Default 54,876 54,876 Default

Table 5.1: Cost model comparison (in ∆MB)

Q1: LOAD t1 FROM FILES "/data/ twitter ";
Q2: LOAD t1 CHOOSE ! EXISTS (’/ delete ’)

AS *, (’/user/id ’:HASH(’/user/id ’)) STORE hashed ;
Q3: LOAD t1 CHOOSE EXISTS (’/ delete ’)

AS *, (’/ delete / status / user_id ’:
HASH(’/ delete / status / user_id ’)) STORE hashed ;

Q4: LOAD hashed AS (’’:’/user/id ’) STORE hashes ;
Q5: LOAD hashed

AS (’’:’/ delete / status / user_id ’) STORE hashes ;
Q6: LOAD hashes AGG (’/min ’:MIN(’’)), (’/max ’:MAX(’’));

Listing 5.3: Hashing user IDs in different documents

last queries only create a single value and do not select other values from the
base document. This results in equal costs for delta trees and default executions.
But as delta trees incur an overhead during execution, the default execution is
chosen for all of these queries.

The adaptive algorithm was only executed with indexing enabled. As the
adapted model makes the same choices as we did without the model, the memory
consumption and runtime is similar to the index solution.

5.4.3 Adaptive Execution Method
In this experiment, we evaluate the capabilities of the adaptive execution method.
The queries shown in Listing 5.3, once again, import our Twitter dataset and
then replace the user IDs with a hash value. Queries Q2 and Q3 replace the user
IDs in the differently structured tweet and delete objects and store the adapted
documents in the same collection. Q4 and Q5 then extract these hashes into
their documents with only the hash value as the root. Lastly, Q6 aggregates all
hash values to find the minimum and maximum.

Runtime

Fig. 5.6 shows the runtime of each of these queries executed by the default, delta
tree, delta tree with indexing, and adaptive execution methods. As before we
omit the parsing step as it is uninteresting for this evaluation. In Q2, we replace
the user id of all tweet documents. These documents are large and hence, require
a lot of time alone for copying the source documents before modifying them in
the default execution. All delta tree implementations require less than half of
the query time to evaluate this query.

52

Q2 Q3 Q4 Q5 Q6 Total

43.4

2.9 3.7
1.1 0.1

51.2

20.0

3.2 4.3
1.3 0.3

29.1

20.1

3.1 4.6
1.3 0.2

29.2

19.5

2.2 3.4
1.3 0.2

26.6

Default Delta tree Index Adaptive

Figure 5.6: Runtime of queries for different configurations (in s)

Theoretical Model Adapted Model Actual
Default Delta Tree Choice Default Delta Tree Choice Default Delta Tree Choice

Q1 - - - - - - - - -
Q2 179,632 1,881 Delta Tree 170,783 25,578 Delta Tree 189,009 26,331 Delta Tree
Q3 1,602 686 Delta Tree 1,798 9,702 Default 2,136 9,996 Default
Q4 376 376 Default 2,257 2,257 Default 2,257 2,257 Default
Q5 98 98 Default 588 588 Default 588 588 Default
Q6 - - - - - - - - -

Table 5.2: Cost model comparison (in ∆MB)

Query Q3 does the same for the delete documents. They are very small and there
are only a few of them in the dataset. Hence, this query is evaluated fast. Here
the delta tree approach is slightly slower, even for a modifying query. This is the
case, because of the nested structure with only a few attributes, for which the
implementation allocates placeholder memory. The adaptive algorithm correctly
predicts this situation, as shown in Table 5.2, and chooses the default execution
method.

Queries Q4–Q5 now read the created datasets and extract the hash values. For
Q4, the default and adaptive execution methods are again faster, as the model
correctly predicts an advantage for this query. The delta tree approaches are
slightly slower.

In total, the delta tree approaches are faster than the default execution method,
as the complete document set does not have to be copied. The adaptive approach
improves this total runtime, as it predicts the advantages of the default execution
for some queries.

Memory Usage

The memory requirements of all approaches for the given queries are shown
in Fig. 5.7. Once again, we can see that delta trees require less memory for
large documents where only parts of them are changed. Table 5.1 compares
the costs calculated by cost models. The first query is again the data import
and cannot be compared. The second query replaces a single attribute within
a large document and a large object. For these kinds of queries, the theoretical
model, as before, estimates a too low value for the delta tree execution. The
adapted model has a better estimation, which correctly chooses delta trees to
perform this query. Q3, on the other hand, replaces a single attribute in a

53

Q0 Q1 Q2 Q3 Q4 Q5 Q6
0

100

200

300

400

Data Size

Actual Prediction

Figure 5.7: Memory consumption (GB) of queries for different configurations

twice-nested small object (2 attributes) within a very small document. The
theoretical model assumes that the costs of delta trees are lower, as it would still
prevent the duplication of some data, and chooses them to execute the query.
But the adapted model correctly assesses that the overhead of object creation
is larger than simply duplicating the data, and chooses the default execution
method. The remaining queries, as before, can either be not compared or have
the same costs for both execution methods and are thereby executed by the
default method.

The adaptive implementation chose to execute Q3 with the default execution
method. This results in the lowest memory consumption of all tested execution
methods.

5.5 Summary
In this chapter, we introduced the concept of delta trees, for materializing only
the differences of a document transformation, to reduce the memory footprint
of exploration systems. We explained the basic idea, theoretical model, and
specific implementation details, based on JODA. Additionally, we introduced
improvements to the systems to mitigate the performance bottlenecks intro-
duced by the approach. Delta trees enable systems to perform queries, with a
fraction of the required memory, leaving original datasets intact. An adaptive
algorithm was introduced, which helps to avoid the drawbacks of this approach.
This increased transformation performance is bought, by sacrificing performance
in some read-heavy operations, especially copying shared objects. We mitigated
this performance loss by creating a special index for these shared objects. This
increased the read performance, at cost of slightly higher memory usage.

5.5.1 Potential Extensions
In Section 5.2.4 we introduced a cost model for memory consumption. But the
proposed delta trees also incur an increased runtime cost in some cases and
improve runtime in others. We are working to create a model to estimate the
impact of delta trees on the query runtime. Currently, we are able to accurately
estimate it for most cases. But important corner cases remain, for which the

54

estimation is too inaccurate. When this estimation is working properly, an
execution method could be created, which optimally uses available memory and
CPU resources.

We introduced virtual object indices in Section 5.3.4 to reduce the runtime of
reading queries for delta trees at the cost of slightly increased memory usage.
But delta trees also support the modification of arrays. Currently, arrays are al-
ways materialized completely if they are modified, as the performance overhead
of traversing them through a large delta hierarchy, like objects, is too large.
To solve this bottleneck, a virtual array could be created, similar to the intro-
duced virtual objects. This would decrease memory consumption, compared to
completely materializing the array while giving a similar read performance.

Our cost model as introduced in Sections 5.2.4 and 5.3.5 currently disregards any
virtual objects that may have been or will be created by our implementation. We
could adapt the model to predict when the indices will be created and estimate
how much memory they will require. This would improve the prediction if
indexing is enabled.

55

56

Chapter 6

Adaptive Indexing

The key idea in JODA is to organize documents into immutable containers
that are independently and perfectly in parallel processed by the available CPU
resources. While this achieves virtually unlimited vertical scalability, as ex-
pected, the lack of index structures vastly wastes computational resources for
low-selectivity queries. At the same time, in the spirit of raw data processors
like the NoDB approach by [74], introducing upfront indexing would violate the
core design principles and intent behind such systems. In this chapter, we de-
scribe how adaptive indexing can be useful for processing semi-structured data
and how this is implemented and evaluated as a proof-of-concept in JODA. The
idea of adaptive indexing is not new, in fact, there is ample work [38,41,75] that
describes how indices are iteratively constructed, refined, and maintained over
time.

Most importantly, the indices should be created automatically without any hu-
man intervention. The creation of the indices should be lightweight, such that
the creation of potentially unnecessary indices does not negatively impact query
runtime. After the creation of the index, each successive usage should improve
the index until it converges to a full index. The query runtime should already
be improved when using the index after the initial creation phase. Lastly, the
index should make use of the document structure without an exhaustive analysis
step.

As an example, assume a data scientist receives a large dataset of Twitter mes-
sages in JSON format. While the general structure of the documents may be
extracted from the documentation, the specific properties of this dataset may
not be known. The data scientist read in the documentation that the stream
dataset is composed of tweets and delete statements, which have different top-
level attributes. In a first query, all documents containing the top-level attribute
“/delete” are selected and aggregated, while a second query checks for the ex-
istence of the “/user” attribute. During the first query, the system could start
building a structural index of all top-level attributes first query and, thus, im-
prove the runtime of the second.

We consider an immutable set of semi-structured documents with potentially
unknown and non-uniform schema. The documents are loaded into the main
memory and can be then queried by users. In this chapter, we present an
adaptive indexing scheme, developed with S. Lang during his Master’s thesis
work [76], which will create and improve indices on these documents with each
query. To achieve this goal we make the following contributions:

• We propose an adaptive structural index, which keeps track of the struc-
ture of the documents.

• We further propose two proof-of-concept adaptive content indices, for
string and number data types, respectively:

57

– One adaptive trie, based on patricia tries by Morrison [77], for pre-
fix/equality/comparative string predicates.

– One adaptive histogram-like number index for equality/comparative
number predicates.

• We give details on a query evaluation algorithm that can use multiple
indices for a single query.

This chapter is organized as follows. Section 6.1 gives an overview of our ap-
proach and presents the architecture of the system. The exemplary implemen-
tation is then explained in Section 6.2. Section 6.3 evaluates the performance of
these indices and discusses their strengths and weaknesses. At last, Section 6.4
will summarize the extension.

6.1 Overview and Preliminaries

To achieve the goal of adaptive indexing in JODA, three main components are
designed. Differences in the structure of JSON documents are handled with a
structural index that gathers information about the availability of different
JSON types in specific paths. The index processes this information in a way
to enhance queries for simple JSON types, like null and Boolean values, to
optimize future requests that concern the structure of JSON documents, and
to prune documents that do not have the required attribute and types for the
given queries. The other two components are content indices for strings
and numeric values. Both integrate with the structural index, are specialized
for each value type, and support complex operations on the data. All indices
are created on-demand and incrementally improved while incoming queries are
processed.

The structural index reflects the structure of an arbitrarily large set of docu-
ments. Each attribute in the document trees may have a node in the structure
index with additional information. The structural index also manages the avail-
able content indices. If the system deems it advantageous, the content indices
are initialized at attribute nodes. Figure 6.1 shows a simplified example of the
index composition.

For example, a query may contain the predicate /user/name == "Mike", which
checks a given document’s paths for equality with a specific string value. First,
the node of the structural index for the path /user/name is looked up or created
if it does not exist. Only documents known to have this attribute with a type
of string are considered for further evaluation. The structural index can if
possible, further create and consult a fitting content index. All content indices
always refer to a specific JSON path. Therefore, they are directly owned by
the structural index node. When a structural index node is created, it collects
information about which documents contain which data types at the specified
path. In this case, a string index could be used to efficiently answer the query,
and potentially improve future string queries on the given attribute.

58

Structural Index

user

/

name

Content Indexes

String Index

followers_count

Number Index

Adaptive Index Manager

P
re

di
ca

te

...

Figure 6.1: Predicate execution

6.2 Adaptive Indexing using Structure and Con-
tent Indices

As laid out in Section 6.1, a structural index and two content indices are imple-
mented to support basic operations on strings and numbers. In general, these
indices should be of adaptive nature and are created and executed while running
queries without further configuration beforehand. Creating the indices should
be lightweight and keep the querytime impact to a minimum. Each query to
an index should improve the situation for following similar queries, until a full
index is created.

6.2.1 Handling Document References and Document Sets
At the leaf nodes of each index structure, a set of matching documents is stored.
In our indices, depending on the situation we used three possibilities of storing
these sets. The system splits collections of documents into containers, with each
container having its own set of indices. As containers are immutable, we can
identify a document by its position index within the container.

If a set of documents is very small, we can use a document index list, which
is a simple list of all positions as integers. This works well, for small sets, as
we can iterate this list and access all documents by their given index. But
this approach requires a lot of storage if the document sets become larger. To
reduce the storage requirements, we can also store the indices as ranges. If many
sequential documents are contained in the list, using ranges can free up a lot of
space. In the best case, all documents are contained in the set, which can be
represented by two integers. On the other hand, if the result set is large, but it
does not contain large consecutive ranges (e.g. every second document), then
the range set could have a worse storage requirement. In this case, we can use
a bit-vector to represent the set.

59

AND

OR

/user/follower_count > 100000/verified==true

NOT

/user/name == “Mike”

Figure 6.2: Example query predicate

For example, the index list [1, 2, 5], range list [(1, 2), (5, 5)], and bit-vector
[1, 1, 0, 0, 1] all represent the same set of documents and can be used inter-
changeably and be converted into each other.

6.2.2 Query Evaluation
To be able to use indices for the selection phase of query evaluation, we have to
analyze the filter predicate for compatibility and execution effort. Our system
parses the textual query predicates into a tree structure or nested predicate
functions, as shown in the example in Figure 6.2.

We traverse this tree using a simple visitor pattern, in order to augment it
with index specific information. For each predicate function, a list of applicable
indices with their estimated execution cost is stored. Additionally, important
parameters for each supported index are already extracted and stored. The
extracted attributes serve as a decision parameter on which index to execute
later, and offer potential to optimize the call in the index. Some predicate
functions will also be combined in this step, if supported. For example, if one
knows that the result of a function will be negated, a more appropriate index
call could be chosen instead of inverting the result afterward. Additionally, a
range query with upper and lower bound can be executed at once, instead of
using two index calls.

By default, the filter step is executed by checking the predicate tree for each
document. Each predicate function returns true or false, given a document. The
system checks the root node of the predicate tree, which in return calls all of
its potential children. The implementation of the “AND” and “OR” functions
already includes lazy execution, as it will stop checking additional children as
soon as the result is clear.

As indices return all matching documents as a set for a given predicate function,
the execution of index-only filter steps is slightly different. If all predicate
functions are supported by indices, the result sets will be retrieved bottom
up. For “AND” or “OR” nodes, the children are executed first, and the result
document-sets are merged. The “NOT” function will invert the result set of its
child function. The set returned by the root node is then the final result.

If the predicate tree contains both index-supported and unsupported functions,
additional logic is required. The naïve approach would be to check all predicates
one by one and merging the results afterward. While index checks would be fast,
each unsupported predicate would trigger a complete document scan with pred-
icate evaluation. Therefore, we implemented a mixed-execution lazy evaluation
approach. For this approach an additional lazy-evaluation tree is created. The

60

(A AND B) OR (C OR D)

C OR D

DTRUE

[CT rue] [CF alse]

B OR (C OR D)

B OR DTRUE

[CT rue] [CF alse]

[AT rue] [AF alse]

Figure 6.3: Example lazy-evaluation tree

root node of this tree represents the full logical filter-predicate. Each index-
supported predicate adds an additional level to the tree with two children for
each node in the current level. One child represents the same predicate where
all occurrences of this predicate function are replaced by true, and one by false.
The predicate is then simplified using Boolean algebra. This decision tree will
then be used to execute only the necessary unsupported predicate functions.

For example, the filter predicate given in the query could be (A AND B) OR
(C OR D), where A and C are index-supported sub-predicates. Figure 6.3
now shows the lazy evaluation tree of this predicate. The results of each sub-
predicate execution is cached for the lifetime of the query, to prevent duplicate
execution of the same predicates. The documents of the data-set are then iter-
ated and depending on their index results, evaluated. For example, documents
where the function A returned false, but C returned true can be added imme-
diately to the final result set. But for documents where C returned false, the
unsupported function D has to be evaluated on the document. In this example,
we can also see that the order of tree creation can be optimized. If the C func-
tion would had been added first, only one sub-tree would have to be created.
Optimizing the lazy-evaluation tree is a potential future improvement.

6.2.3 Adaptive Structural Index
As we are working with potentially heterogeneous data, the structure of the
documents may differ. Query predicates always implicitly check for certain con-
straints on the structure of the document. For example, the predicate /str ==
"a string" will check if the document contains the first-level attribute “str” of
type String, before evaluating the equality. Documents without this attribute,
or storing other types of data within the given attribute, would not have to be
considered for this predicate.

To improve the performance of this search-space pruning, we propose the union
tree, a tree mirroring the structure of the union of all indexed documents. In
each node, we store for each type the set of documents containing the path with
the given type.

We decided to use a tree structure, as it directly represents the underlying data.
This allows us to use already existing components of JODA with only minor
adaptions. Figure 6.4 shows an example of a partial union tree.

61

user

/ (Root)

multimedia

follower_countnameString
{1,2}

Object
{1,2,3}

Object
{1,2}

String
{1}

Object
{3}

Number
{1,2}

Figure 6.4: Partial union tree with document sets

The union tree is initialized without any nodes. Every time a new path is used in
a filter predicate, the tree is expanded up to the provided node. If the next query
requires path “/user/location/street”, we only have to check all documents that
are known to contain “/user”. The tree will then be expanded to also contain
the newly queried path—with all of its parents.

Using this tree, documents can be pruned from future query evaluation and
some predicates may even be answered completely. The union tree additionally
manages the content indices. Whenever a predicate is executed on an already
existing union-tree node, the query predicate is, if supported, passed on to an
index. If no index is registered at the node, the most fitting one is created.
Only content indices that are relevant to the current predicate are initialized.
Algorithm 3 summarizes the filter predicate evaluation using the union tree.
For our approach, we only implemented adaptive indices, which are improved
with every further predicate execution. But the implementation is modular
and allows the addition of arbitrary content indices. As proof of concept, we
implemented one content index for strings, and one for numerical values, which
will be introduced in the following.

Data: Predicate-tree node P, Union tree U, Documents D
Result: Result document set

1 if P is leaf with path p then
2 Create and traverse nodes to p in U;
3 if P compatible with an index I then
4 Create I if not exists;
5 return Evaluate P with I;
6 else
7 return Evaluate P for each d in D;
8 end
9 else

10 S = Recurse with children of P;
11 return merge S;
12 end

Algorithm 3: Union tree filter predicate evaluation

62

Index Value
5 a
7 hello
8 hell
33 xenias
344 albert
556 bye
585 xenial
2893 xylophone

Table 6.1: Example mapping of document indices to their string values

6.2.4 Adaptive Trie Content Index
The short-string index implementation should work well in an adaptive manner
without a costly analysis of all strings and needs to support basic string queries.
Hence, we opted for the usage of a trie, as it can easily be used as an adaptive
index. Additionally, it supports the most functions also supported by the JODA
query language, like prefix matching and lexicographic ordering. Each path
from the root node represents a different string prefix. To reduce the space
consumption, tries can also be compressed as shown by Patricia tries, introduced
by Morrison [77]. When several nodes in a path have a single descendant and
do not constitute a word at this point, they can be merged into one node with
several characters. In our implementation, each node representing a completed
word, will be augmented with a set of documents, which contain this word in
the given attribute.

Instead of fully building the index for all documents, we incrementally improve
it. With each additional call to the index, another level will be added to the
trie, using all the relevant documents. An initial string predicate results in
the creation of a trie, having the first character of all documents. For some
example values shown in Table 6.1, this first query will create the nodes “a”,
“b”, “h”, and “x”, as visualized in Figure 6.5. For each node, we store document
sets for documents where there is an exact match, and a prefix match. When
all children of a node are extracted, the prefix document set can either be
discarded, as the information is now stored in the children implicitly, or kept.
Keeping the document set may improve performance at the cost of memory, as
for some retrieval operations the child-trees do not have to be traversed. Per
default, we opt to discard these values, as the performance improvements are
too specific for only a few predicates, while negatively impacting the memory
footprint, and hence the ability to create more content indices. If a node of a
trie cannot be expanded further with the given set of documents, it is marked
as finished. To improve the accuracy and usefulness of the trie, we adapted it to
always fully index—and compress—the full query keyword given by the query.
The complexity of the first predicate execution is not dependent on the queried
value length and keeps the call relatively close to the runtime without any
index structures. The adaptive trie makes use of a proven search tree concept
and transforms it into an adaptive approach. While it does not store all values,
like some other partial indices, it stores partial values that have been used by
predicates to help improve future similar predicates.

63

Initialization Root

a b h x

Match [5]
Prefix [334] Prefix [556]

Match [8]
Prefix [7]

Prefix
[33,2893,585]

Query
== "albert

Root

a b h xMatch [5]
Prefix [334]

Prefix [556]
Match [8]
Prefix [7]

Prefix
[33,2893,585]

lbert

Match [334]

Query
PREFIX("xen")

Root

a b h xMatch [5]
Prefix [334]

Prefix [556]
Match [8]
Prefix [7]

Prefix [33,585]

lbert

Match [334]

en y

Prefix [2893]

Figure 6.5: Adaptive trie example

To query an additional value, we traverse the tree. If we encounter an unfinished
node, all documents referenced as prefix matches are loaded and the trie is
expanded further as explained previously. In our example in Figure 6.5, the
index is queried with an equality predicate for the string “albert”. As described,
the queried string is expanded completely and then compressed. Finally, a prefix
query for “xen” will then create two additional nodes, one for the complete and
compressed query value and another one for the only other direct descendant of
the “x” prefix.

As the relevant set of documents can only be filtered further, each child’s docu-
ment sets will be a subset of the parent node. As a consequence, if the trie did
load documents once, no further documents need to be loaded. This implemen-
tation supports the following predicate functions:

Equality By traversing the trie—and expanding it on demand—to the given
query string, we extract the document set where all documents have ex-
actly the given value as attribute.

Inequality is implemented by retrieving the equality result and inverting the
result set.

Prefix Matching Similar to equality matches, we traverse the trie and retrieve
not only the exact matches, but also the partially matching documents.

Lexicographical comparison To evaluate a greater/smaller-than predicate,
we traverse the trie to the given string value—again while potentially
expanding it. Then the document sets of the whole sub-tree to the left or
right of the given node—and parent nodes—have to be collected. If the
index kept the partial matching document sets of the parent nodes while
expanding, then fewer nodes have to be traversed to collect the result.

In any case, documents are only loaded at most once, and document values only
checked if a node needs to be extracted.

64

Root

[0,99] [100,199] [800,899] [900,999]...

Value
Doc

0
10

54
3 32

12 Value
Doc

192
96

101
8 74

112 ...

Figure 6.6: Root node with a value range of [0, 999] and k = 10

6.2.5 Adaptive Histogram Tree for Numbers
As previously described, there exist many adaptive numerical indices. For our
system, we opted for implementing an adaptive tree index with histogram-like
properties, as it is easy to implement in an adaptive manner and already im-
proved the performance of number-based predicates significantly. It also sup-
ports all filtering number predicates implemented in JODA. Equi-width and
equi-depth histograms are the most widely known and simplest forms of his-
tograms. While equi-width histograms are simple and fast to create, they are
not well suited for skewed data which is often found in real-world applications.
In most cases, it is more useful to have an equi-depth histogram that divides
the values into similar-sized buckets with varying ranges. For example, Sprenger
et al. [78] use equi-depth ranges to divide data in an index tree. But creating
equi-depth histograms requires a large up-front computational overhead.

The idea of our implementation is to create an equi-width histogram, whose
buckets will be refined in further queries until it approximates a B+-tree. Each
node in this tree is composed of up to k ranges—similar to histogram buckets—
which contain the numerical attribute values together with the document refer-
ence. Initially, the tree is created with a root node, which contains k equi-width
ranges within the found numerical values. Figure 6.6 shows the creation of the
index with k = 10 and a value range of [0, 999].

...

Root

[0,99] [100,199] [800,899] [900,999]...

[100,109] [110,119] [180,189] [190,199]...

Value
Doc

0
10

54
3 32

12

Value
Doc

101
8

Value
Doc

112
74

Value
Doc

192
96

...

Figure 6.7: Index with a value range of [0, 999], k = 10, and t = 2, after a split

65

If an additional query predicate is evaluated using the index, for instance,
/user/followers < 150, the fitting ranges are selected, and their document
sets are returned, after being optionally filtered if required. If a filtered range
contains more values than a specified threshold t, it is further split into k sub-
ranges. This ensures that the first creation of the index is fast—as all values
have to be loaded and compared anyway—while the index is adaptively im-
proved with each query. If the data is heavily skewed, predicates selecting
outside of the bulk are immediately very fast, without any additional process-
ing. Predicates selecting an overfull range trigger another cheap refinement,
which is always cheaper than the first. This index supports all numerical pred-
icates. Additionally, in future work, the query evaluation could be improved to
use the index to immediately answer aggregation queries like min, max. The
index does not need to support deletion, updates, or inserts, as the containers
and documents are immutable, but a sketch of how these operations could be
implemented is shown in Section 6.2.6.

To improve the performance of edge cases, each range additionally stores the
minimum and maximum value contained within. Instead of using the previous
range for splitting the values into k sub-ranges of same width, we split the
[min, max] range. This prevents cases, where dense values over the threshold t
would be split multiple times with many empty ranges. Figure 6.7 shows the
previous index, after a query selected values from the second range.

6.2.6 Mutable Indices and Memory Management
As our system works on immutable containers, which are sub-sets of documents,
we did not implement any delete, update, or add operations for our indices. But
adding them would be straightforward. For example, adding a new document
could be achieved by simultaneously traversing the structure index with the
given document, and adding the document reference to each matching node.
This would also call the insert function on the content indices, which would
have to support inserts. Adding documents to our number index would simply
involve adding them to the correct bucket and splitting it, if it grows beyond
the threshold, while the string index would simply add the document reference
to the fitting nodes. A document could also be removed from the index in a
similar fashion. Here, special care would have to be given, when nodes become
empty by removing the document. Then the node would have to be removed,
which may result in additional deleted nodes further up the tree. Updates of
specific documents would be harder to implement, as the complete structure
and content could change. Instead of handling this case, we would implement
it by removing and inserting the changed document.

As indices are bound to containers, they would only be removed if a container
is removed from the system. This may lead to many indices being created and
filling the memory. Hence, we implemented a simple memory manager, which
keeps track of the sizes of all created indices and when and they have been used
last. It can be configured with a maximum memory size, which defaults to all
available memory. If a new index has to be created, or an existing index needs
to grow, then the memory manager will free up memory by removing existing
indices in Least-Recently-Used order, until enough memory is freed.

66

Q0 LOAD TWITTER FROM FILE " twitter .json"
Q1 LOAD TWITTER CHOOSE ISNUMBER (’/ quoted_status /id ’)
Q2 LOAD TWITTER CHOOSE EXISTS (’/ quoted_status /user/ location ’)
Q3 LOAD TWITTER CHOOSE ’/ quoted_status /user/ verified ’ == true
Q4 LOAD TWITTER CHOOSE TYPE(’/ quoted_status /user/ followers_count ’)

== " NUMBER "

Listing 6.1: Structure queries on quoted Tweets

6.3 Evaluation
The core version of JODA as well as the adaptive indexing extensions are im-
plemented in C++17. For the evaluation, a Twitter dataset of 109 Gigabyte is
used1. The dataset contains 30 million JSON documents that represent normal
Tweets (∼80%) and some documents represent deleted (∼20%). Deleted Tweets
have a completely different document structure with exactly 7 attributes. Some
Tweets are Retweets or responses to other Tweets and contain additional objects
with information about the original Tweet. The dataset is initially loaded from
disk where they occupy 8800 files, each with 9–18 MB. The initial loading is
not part of the runtime measures below.

The queries are executed on a server running Ubuntu 16.04.6 LTS with four
Intel Xeon E7–4830 v3 CPUs. Each CPU has 12 cores with 24 hyper-threaded
cores that run at 2.1 GHz. About 1 TB of RAM, composed of 33 RAM modules
at 2400Mhz, is installed.

6.3.1 Structural Index
Figure 6.8 presents the runtime of the query filter step for different queries on
different subsets of documents. An example query set using different structural
properties to filter the documents is shown in Listing 6.1. Q0 loads the document
set into the main memory, from where it will be used by forthcoming queries.
Importing the documents takes on average 144.28s. The original data loaded
from disk does not contain any index information, hence, no matter if adaptive
indexing is enabled or not for the later-on queries, there is no impact on the
initial loading time. After the first query to a node, all subsequent queries are
executed to descendants of that node. The descendants can use the information
about the document structure gathered with the first query. In this case, about
5–10% of the Tweets contain the quote of another Tweet. To only show the
effect of the structure, the query predicates always access a different child node,
so there is never an already existing union node with organized values for that
path. This also means that every query needs to perform some extra work to
create the union tree node. None of the queries are supported by an additional
content index and will not cause extra work in that regard.

The results, in Figure 6.8a, show the additional time the first query needs to
create the union node. All other queries also need this additional time but are
faster because they know which 5–10% of documents the need to look at given
the /quoted_status node. Q2–Q4 are already considerably faster without any

1https://developer.twitter.com/en/docs/labs/sampled-stream

67

https://developer.twitter.com/en/docs/labs/sampled-stream

Q1 Q2 Q3 Q4

1.86

0.22 0.15 0.15

1.61

0.63 0.50 0.50
Fi

lte
r

tim
e

(s
)

(a) Structural index filter time on a small
subset

Q1 Q2 Q3 Q4

3.97

2.24

1.12 1.02

3.79

2.53

1.34 1.35

Fi
lte

r
tim

e
(s

)

(b) Structural index filter time on a
medium-sized subset

Q1 Q2 Q3 Q4 Q5

1.56
1.08

1.83

0.82 0.74
1.10

0.75

1.29

0.50 0.53

Fi
lte

r
tim

e
(s

)

(c) Structural index filter time
for independent attributes

Q1 Q2 Q3 Q4 Q5

3.98

0.00 0.00 0.01 0.00

3.86
3.21

1.24
0.49 0.72

Fi
lte

r
tim

e
(s

)

(d) Structural index filter time
for structural queries on same attribute

Adaptive Index Default

Figure 6.8: Structure index benchmark results

content indices. Note that in general, e.g. because JSON data is already loaded
in memory from a previous query, the execution time of the default executor may
also vary. The memory usage of the index after the four queries was 227.8MB,
which is 0.2% of the total data size.

Figure 6.8b shows similar queries to the first structural test (Listing 6.1) but
on a different subset of attributes. The structure of these attributes is nearly
identical to the previous queries, but they are contained in over 50% of all
documents. Hence, the memory usage of the index is the same as in the previous
benchmark. We can see that the structural benefits are not as prominent as in
the first benchmark in Figure 6.8a, but the index creation already pays off as
soon as a predicate accesses a sub-tree more than once.

Figure 6.8c showcases how much penalty one has to pay to create a new struc-
tural index node. All queries in this benchmark access completely different
paths that concern different subsets of the documents. That means all queries
have to create a new union tree node without any benefits from previous queries.
The resulting index is also much larger with 1.18GB (≈ 1% of total data), as
each query creates a new subtree. Q3 and Q5 also need additional processing
time to initialize an adaptive histogram respective the first level of the adaptive
trie. As expected, the default execution method outperforms in every query, as
no initial index creation has to be performed. On the other end of the spec-
trum, Figure 6.8d shows the filter times of five queries, each querying structural
information—like existence and type—of the same attribute. For these queries,
after the structure index is created, no documents have to be loaded, and the
query can be answered with the structure index alone. This results in negligible
filter times and a small index with 144.9MB (≈ 0.13% of data).

68

Q1 LOAD TWITTER CHOOSE ’/user/ screen_name ’ == " RimaTupick52039 "
Q2 LOAD TWITTER CHOOSE ’/user/ screen_name ’ != " RimaTupick52039 "
Q3 LOAD TWITTER CHOOSE ’/user/ screen_name ’ == " J03LP1M3NT3L "
Q4 LOAD TWITTER CHOOSE STARTSWITH (’/user/ screen_name ’, "Rima")
Q5 LOAD TWITTER CHOOSE ’/user/ screen_name ’ == "

non_existing_username "
Q6 LOAD TWITTER CHOOSE STARTSWITH (’/user/ screen_name ’, " sello ")
Q7 LOAD TWITTER CHOOSE STARTSWITH (’/user/ screen_name ’, "ma")
Q8 LOAD TWITTER CHOOSE ’/user/ screen_name ’ < "a"

Listing 6.2: Different string queries on the same attribute

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

1.74

0.15 0.14 0.01 0.14 0.18 0.22
0.00

1.59
1.28

1.09

0.49 0.59 0.40 0.41 0.44

Fi
lte

r
tim

e
(s

)

Adaptive Index Default

Figure 6.9: Adaptive trie filter time

6.3.2 Content Indices
In the following, we evaluate the performance impact of the content indices in
addition to the structure index.

String Index

The benchmark shown in Figure 6.9 tests the performance development when
querying an adaptive trie multiple times with different parameters (Listing 6.2).
To eliminate other factors, only one path is queried. The first query will create
the structure index node and initialize the trie by creating the first level. All sub-
sequent queries are directly forwarded to the trie structure. The queries contain
all available trie operations: equals, not-equals, starts with, and lexicographic
comparisons.

Q2 is very fast despite the huge result size since Q1 already created all necessary
trie paths. In this case, the index creation immediately pays off after the same
attribute is queried for the second time, as non-indexed string predicates are
relatively slow operations. The same is valid for Q4. Q5 and Q6 both return
empty results, but they need to extend the trie in any case. Q7 is a short query
to a larger result, which also has to be loaded an extracted in the trie, while Q8
showcases the use of lexicographic comparison. After evaluating all queries the
trie index, together with the structural index required for management, requires
339.3MB (≈ 0.31% of total data) of memory.

Figure 6.10 shows a distribution of the query time for 121 queries to /text, an
attribute containing the text of the whole tweet. The queries use all supported
string predicates, with randomly chosen values extracted from the dataset. As
we can see, the first query is approximately 50% slower than the default execu-

69

Q1 Q22 Q42 Q62 Q82 Q102 Q121
0

0.5
1

1.5
2

Fi
lte

r
tim

e
(s

)

Adaptive Index Default

Figure 6.10: Adaptive trie query response time

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

2.08

0.03 0.01 0.00 0.00 0.03 0.00 0.00

1.35

0.54 0.45 0.58

1.20
0.69 0.47 0.44

Fi
lte

r
tim

e
(s

)

Adaptive Index Default

Figure 6.11: Histogram index filter time

tion, which results in massively improved query runtime for nearly all following
queries. The trie and structural indices grew to 775.68MB (≈ 29.8% of the
attribute data) after these queries.

Number Index

Figure 6.11 shows the performance when querying the same number attribute
with and without adaptive number index. All normal tweets contain the cho-
sen path, /user/friends_count, so there are next to no structural benefits.
The split size for the histogram is 100, so every split creates 100 new buckets.
Because the Twitter dataset is skewed to lower numbers of friends and follow-
ers, more queries are in the lower range to make it harder for the index and
force histogram splits. Queries Q8 and Q7 query values outside of the existing
value ranges. The results are clear: Even with very large result sets that will
cause histogram splits, e.g. Q2, performance is far ahead of the alternative.
Any queries for values outside the minimum and maximum are near instant.
However, as number-based predicates are already performant by default, the
index is only paying off after querying the same attribute three times. The
number index, again together with the structural index required for manage-
ment, needed 694.9MB (≈ 0.63% of total data) more memory than the default
execution. This index generally requires more data, as it has to copy the whole
numerical attribute data, together with a document reference. Hence, replacing
or optimizing this index for memory usage should be prioritized in future work.

Mixed-Predicate Queries

In the following, we test the robustness of the adaptive approach regarding
usage of multiple indices in one query and index usage combined with non-
index-supported predicates.

70

Q1 LOAD TWITTER CHOOSE ’/user/ followers_count ’ >= 5000 &&
STARTSWITH (’/user/ screen_name ’, "Fel")

Q2 LOAD TWITTER CHOOSE ’/user/ followers_count ’ >= 4000 &&
STARTSWITH (’/user/ screen_name ’, "Ma")

Q3 LOAD TWITTER CHOOSE ’/user/ followers_count ’ >= 7000 &&
STARTSWITH (’/user/ screen_name ’, "Mon") && ’/ retweeted_status /
user/ friends_count ’ == 500

Q4 LOAD TWITTER CHOOSE ’/user/ followers_count ’ >= 5500 &&
STARTSWITH (’/user/ screen_name ’, "De") && ’/ retweeted_status /
user/ friends_count ’ == 600

Q5 LOAD TWITTER CHOOSE (’/user/ followers_count ’ >= 6000 &&
STARTSWITH (’/user/ screen_name ’, "Ko")) && (’/ retweeted_status /
user/ friends_count ’ > 10000 || ’/user/ verified ’ == true)

Q6 LOAD TWITTER CHOOSE (’/user/ followers_count ’ >= 6500 &&
STARTSWITH (’/user/ screen_name ’, "Li")) && (’/ retweeted_status /
user/ friends_count ’ > 9000 || ’/user/ verified ’ == true)

Listing 6.3: Queries with multiple index-supported predicates

Q1 Q2 Q3 Q4 Q5 Q6

2.33

0.14

1.40

0.12
0.70

0.11

1.41

0.59 0.51 0.48 0.47 0.46

Fi
lte

r
tim

e
(s

)

(a) Filter time for multiple index-supported predicates

Q1 Q2 Q3 Q4

1.77

0.10 0.10

0.75
1.21

0.46 0.59 0.67

Fi
lte

r
tim

e
(s

)

(b) Complex hybrid query filter time
Adaptive Index Default

Figure 6.12: Benchmark results of mixed-predicate queries

71

Q1 LOAD TWITTER CHOOSE ’/user/ screen_name ’ == " J03LP1M3NT3L " &&
SCONTAINS (’/user/ screen_name ’, "T3L")

Q2 LOAD TWITTER CHOOSE ’/user/ screen_name ’ == " J03LP1M3NT3L " &&
SCONTAINS (’/user/ screen_name ’, "T3L")

Q3 LOAD TWITTER CHOOSE ’/user/ screen_name ’ == " non_existing_user "
&& SCONTAINS (’/user/ screen_name ’, "T3L")

Q4 LOAD TWITTER CHOOSE ’/user/ screen_name ’ == " non_existing_user "
|| SCONTAINS (’/user/ screen_name ’, "T3L")

Listing 6.4: Complex queries with supported and non-supported predicates

The result of multiple queries (Listing 6.3) containing 2–4 predicates, which are
all supported by indices are shown in Figure 6.12a. All predicate values of the
queries differ from each other to keep the indices spending time on improving
their data structure. Predicate paths stay the same to not construct a new index
each time. In Q1, two indices are created, which creates a bigger discrepancy
between the adaptive index and the default variant. Q3 and Q5 also create
new structure index nodes together with content indices. The index-initializing
queries show a expected slower filter time, while all other queries show vastly
improved runtimes. In total, all created indices required 1.73GB (≈ 1.59% of
total data) after executing all queries.

The queries shown in Listing 6.4 mix a content-index supported operation with
a non-supported predicate. As we can see in Figure 6.12b, the first query is of
course slower again. But limiting the search-space due to lazy evaluation of the
query predicates improves the runtime of queries with logical AND predicates.
On the other hand, using a top-level OR predicate, reduces the runtime, as
all documents have to be loaded and evaluated anyway. This highlights the
currently biggest drawback of our approach. To reduce negative performance
impacts, a query analyzer should check if using an index would even make sense
for the given query. In total, all created indices required 637.9MB (≈ 0.58% of
total data).

6.4 Summary & Potential Extensions
In this chapter, we considered adaptively indexing semi-structured documents
in ad-hoc data processing engines that aim at data exploration and wrangling
tasks without heavy initial processing. We introduced a structural index that
incrementally resembles the structure of a set of documents to limit the search
space of future queries accessing attributes in the same sub-tree. This structural
index was then augmented with two proof-of-concept content indices, which
are adaptively built and improved with string and number attributes in these
documents. The experimental evaluation revealed that with moderate initial
investment, the runtime of forthcoming queries on the same attributes, even
with different predicates, can be vastly reduced. Future improvements could be
achieved by introducing a better query analyzer to prevent unfavorable index
calls and complementary or alternate adaptive indices to the ones presented in
this chapter. Most importantly, these indices would need a better memory foot-
print than the current, relatively large proof-of-concept indices. Additionally, a
multi-query optimizer could be developed which analyzes a known query load
to prevent the creation of unnecessary indices.

72

Chapter 7

User-Defined-Modules

Recent years have witnessed unprecedented competition of data management
researchers and companies to provide solutions to handle the vast amount and
increasing heterogeneity of data. This has spurred the development of novel data
management solutions (aka. NoSQL), tailored to specific data characteristics
and query capability demands and the augmentation of traditional relational
database management systems to support novel features. Given the plethora of
data formats, required functionality, and workloads, a one-size-fits-all solution
off-the-shelf is arguably hard to reach and would likely lose grounds to tailored
solutions for specific workloads. Data scientists appear reluctant to dive into the
plethora of existing solutions but opt for using primitive data preparation utili-
ties and scripted data transformation pipelines. However, many a functionality
is provided solely in programming language libraries, most prominently (com-
plex) pre-trained models and toolkit around machine learning tasks (e.g., Wolf
et al. [79]), and difficult to integrate with existing systems without major ef-
fort. In this chapter, we show that by enabling user-defined modules, seemingly
simple data processors can combine the advantages of a multitude of systems
to enable new pipelines that outperform existing solutions. We implemented
our approach by prototypical modularizing JODA, where core parts have been
rewritten to accept Python scripts as implementations. While this adds ver-
satility, the high-performance, multi-thread core of JODA, remains untouched.
This combination offers blazing-fast parsing and processing of raw JSON data
in a scalable fashion, combined with the possibility to write extensions like user-
defined functions, custom indices, and support of additional data formats and
I/O routines, provided in plain Python.

7.1 Core Architecture and Modules
As mentioned in Chapter 4, JODA is fully decomposed into a set of independent
modules—or tasks. Each task is defined as a class that can be executed, given
an input queue, an output queue, or both. Depending on the query, these
tasks are added into a query execution pipeline where compatible tasks are
connected via I/O queues. The scheduler then executes instances of each task
using all available or a configured number of CPU cores. A task may limit the
number of instances that can be executed in parallel. For example, a task that
reads data from a file system may limit the number of instances to one. A
task may stop its execution when the input queue and the task are finished, the
output queue is full (stalled), or the input queue is temporarily empty (starved).
Stalled and starved tasks are restarted at a later time by the scheduler. Moving
from a static query planner calling hard-coded functions to a dynamic query
planner based on tasks greatly improved flexibility. Depending on user queries
and optimization rules, tasks can now be added, replaced, reordered, or removed.

73

LOAD FROM FILE "File.json",
FROM SQL "postgres://localhost:..."

CHOOSE LANG(’/text ’) == "en"
AGG (’ ’:TRAIN(’ ’));

Listing 7.1: Example JODA query using multiple user-defined modules

TextParser

PSQLImport

postgres://localhost:...

Choose

LANG(’/text’)
== en

Agg

TRAIN(’ ’)

Stream

Aggregator

Container

Container

Container

Import Filter Aggregate

Figure 7.1: A sample JODA pipeline using user-defined modules

While the data being transmitted between tasks can be of different formats,
JODA mainly uses containers (see Section 4.2.2) as atomic units of data. A
container bundles multiple JSON documents and supplementary data struc-
tures like (cracking) indices, query caches, and data synopses. This enables
an (almost) entirely lock-free execution of queries as the documents are passed
through the pipeline without requiring supporting centralized data. Figure 7.1
shows the pipeline of the sample JODA query in Listing 7.1 using both a native
JSON import and a customized PostgreSQL import, with subsequent language
identification through an ML model via Python, multithreaded filtering in core
JODA, and learning of a machine learning model.

Within the tasks that interact with specific parts of the documents, like filtering,
transforming, and aggregating, we use sources as interfaces to the data. A
source may be a simple pointer to a part of the document or a function with
parameters that use inputs to calculate a new value. All sources in JODA are
also implemented as independent classes being loaded and dynamically added
to the internal query processing. They define their output type, how many
parameters of which type they expect, and provide a function that calculates
the result, given a list of parameters. For instance, a source calculating the
length of the string defines its return type as int and expects one parameter of
type string. With JODA being decomposed into independent modules that are
scheduled and connected based on rules, we can easily extend the system. For
instance, can a filter task now be added—and automatically connected—to every
other task that returns a container. If we implement a new kind of importer,
that retrieves containers from another system, the query planner can simply
add the task to the pipeline and any successive filter task will automatically be
connected to it.

This enables the user to add new tasks to the system, such that developers, re-
searchers, and data scientists can add new functionality without understanding
or changing the core code. Section 7.2 introduces each module type in detail
and gives motivating examples showcasing their application.

74

7.1.1 User-Defined Modules
Modules are our means for the user to extend the system. A module is a single
script file that can be loaded into JODA to provide some sort of functionality.
It has to provide specific functions and variables depending on the feature it
implements. To support a wide range of use cases, we implemented the following
modules that a user may import:

• Import: Connects the processor to new data sources that may previously
not be supported.

• Export: Exports JSON documents into a user-supplied format or system.

• Index: Implements a new index for improving the filter performance of
JODA.

• Agg: Supplies a new aggregation function that uses a set of data to
compute a single result.

• Source: A typical user-defined-function as known from other database
systems. It provides a single JSON value, given one or multiple parame-
ters.

To support user-supplied functionality, we use a ModuleRegistry, and depend-
ing on the requirements, a set of Modules. When a user supplies a new module,
the registry loads the given script and infers the type of the module by the given
functions. From then on, the module can be used in all subsequent queries un-
til the user deregisters the module. The registry stores a mapping of module
names to the script location such that the query pipeline can find and invoke it.
Internally, each module initializes a task or source class which is also stored
in the registry.

During query parsing, the registry is accessed to find the user-supplied module
if an aggregation or a source function is referenced but not found in JODA’s
native function list. An error is raised if the registry is also unable to find the
referenced function. Otherwise, the source created from the module is embedded
into the internal query representation. During query execution, the module is
then invoked to compute the result. Similarly, if the query contains an unknown
import or export statement, the registry is checked for an import or export task
to be added to the query pipeline. Indices form a special case, as they are not
directly referenced in queries but chosen by the query planner. All internal and
user-supplied indices are collected during query planning, and the planner then
chooses the best index for the query using an estimator given by the index.
Given a query, the internal index data, and a container, the index estimates
how many documents have to be reevaluated with the actual predicate if it is
executed.

7.1.2 Connecting Scripts and System
A major aspect of executing user-supplied code is to enable efficient and versatile
communication between scripts and the core system itself. In JODA, data
is stored internally as a dynamic in-memory JSON data structure. As most
languages have some kind of support for JSON data or at least have third-
party libraries that provide such support, it would be possible to translate the

75

internal structure back into a JSON string representation and pass it to the user-
supplied scripts. Then a language-specific function can parse and interpret the
JSON data. However, translating and parsing such a document would cause
significant overhead, in particular, if the query deals with large amounts of
documents. Hence, it is preferable to immediately translate the internal data
structure into a language-specific one. Before a user function is executed, the
system will initialize a variable in the chosen language environment and call the
translation function of the implemented language.

As we chose Python as our first supported language in our system, we decided to
map JSON values into their Python-native counterpart by traversing the JSON
document depth-first. Basic datatypes like integer, float, Boolean, null,
and string are directly initialized in the Python environment. The composite
array can also be directly converted as JSON as well, as Python supports arrays
with heterogeneous datatypes. Finally, every JSON object is converted into
a Python dict. The functions in the user-supplied script are then called with
the translated variables as parameters. The potential return values then have
to be translated back into the JSON format using the inverse mapping of the
previous step. Most language APIs return a handle to the internal result, which
is again translated by the system using the language-specific translate func-
tion. Afterward, the language-specific result is uninitialized, and the translated
value is passed on to the internal query engine. If the called function returns
an unsupported data type, a runtime error is thrown, and the user function is
assumed to have returned null.

7.2 Sample Use Cases

We next outline the novel capabilities of JODA through specific use cases, such
as allowing interoperability between systems, enabling the improvement of the
execution through external approaches, and outlining the perks and benefits of
allowing user-defined functions in a system specifically tailored for JSON data.
To enable the inclusion of these novel capabilities, we follow two notions:

Ease-of-use: although we enable the users to provide complex functionality
in JODA, they just need to provide scripts following straightforward templates
to realize it. The internal logic is completely hidden and they do not need to
understand it.

Efficiency: the known benefits of JODA are directly applicable since the novel
features will be realized on the data that resides within our JSON processor.
With that, the users will benefit from fast data processing without transporting
the data to any other format or system for performing complex analysis.

Through these capabilities of JODA, we not only outline the guidelines for a
more interoperable system but also show that the benefits are double-sided, as
both the system and the extending approaches can benefit from the following
scenarios.

76

Returns a single value based on the given parameters
def get_value (arg1 , arg2 , ...):

return arg1 + arg2

Listing 7.2: Example of a user-defined source function

Initializes the state of the aggregator
It is passed to every other function
def init_state ():

return 0
Aggregates a single value into the state
def aggregate (state , arg1):

return state +arg1
Merges two states into one
def merge (state , other):

return state + other
Finalizes the state into a result
def finalize (state):

return state

Listing 7.3: Example of a user-defined aggregation function

7.2.1 User-Defined Functions
Nowadays, the research in the field of databases constantly introduces novel
purposeful structures and algorithms for various new applications and produces
improvements over already established aspects of the databases. However, con-
trary to this research, systems are often expected to have a prespecified set
of simple capabilities which are in most cases sufficient for simple operations.
Therefore, for requirements that fall outside of the capabilities envisioned for
the system, proper modifications of the internal implementation of the system
are needed. Thus, to avoid the direct change of the system, often, additional
services and applications are required, which rely on the need to extract the
data from the data system and process it outside of it, contradicting the initial
purpose of the system itself.

The user can extend JODA with a user-defined function that can be called
during query execution. To supply the extension, a script following a prede-
fined template needs to be provided. To perform the extension the user only
needs to perform a simple API call and provide the implementation of the
desired algorithm. This way, the core system will stay entirely hidden and
knowledge of them is not required to benefit from the fast processing and We
distinguish between two different types of extensions, source functions and ag-
gregation functions. For source functions, the user only needs to implement
the method get_value, as shown in Listing 7.2. To provide a new aggrega-
tion function, the user has to implement the functions init_state, aggregate,
merge, and finalize, as shown in Listing 7.3. The function init_state will
be used for initializations needed by the new feature. The function aggregate
will be executed for every passed JSON document. The merging of the states—
that may have been calculated in different threads—will be performed in the
merge method, and the final result over the merged data will be computed in
finalize. In the following, we consider example extensions for JODA and
detail their realization of the necessary methods.

77

model = fasttext . load_model (PRETRAINED_MODEL_PATH)
def get_value (arg1):

prediction = model . predict (text)
return pred. split (’__label__ ’)[1]

Listing 7.4: Language Identification in Python

Example Extensions

To extend the functionalities of JODA, we implemented language detection,
sentiment analysis, training and evaluation of a learned model, and
computation of number statistics extensions in Python.

To motivate the need for the per source extensions language detection and
sentiment analysis, consider a collection of tweets for which the language of
origin and the sentiment are unknown but are of interest to the user. The user
is interested in identifying all tweets concerning the sports company Adidas that
were written in the German language and have a positive sentiment. Such an
extension to an already existing system would require modifying the internal
code of the system directly to enable this capability. This will naturally be
cumbersome for the user since it will require time and the ability of the user
to understand the system code. Certain functions and approaches are already
quite common and prominent in specific languages, where often, more advanced
and ready-to-use libraries exist. By using them, one can avoid recreating the
same functionality in the native language of the used system. Examples include
the machine learning libraries, such as the language detector or the sentiment
analyzer, for which several pre-trained models already exist in Python and can
be directly used to extend JODA. Enabling the loading of such a model in JODA
will produce the required results will minimal effort.

An example script for extending JODA with language classification by utilizing
the fastText [80] language classifier is shown in Listing 7.4. Once the language
classification is registered, it can be used as a function directly in the query
language:

LOAD Twitter AS (’/t’:’/text ’) ,(’/lang ’:LANG(’/t’));

As one example of an aggregation extension, we implemented the computa-
tion of simple numerical statistics (average, sum, and count) over a given at-
tribute in Python. The script is presented in Listing 7.5. As explained, the
aggregate method will be performed for each document individually and the
merge method will connect the temporary results from different partitions. The
method finalize produces the required result, in this case, an object containing
the average, sum, and count.

Adding new capabilities to JODA can also simplify the handling and improve
performance of existing code. For example, for training a machine-learning
model where the data is too large to be stored in memory, the user will first
need to load the data by taking only the relevant parts for the approach and
performing the required pre-processing. However, JODA already provides an
efficient mechanism to load and process data in batches that can be used, to

78

def aggregate (state , num):
return [state [0]+ num , state [1]+1]

def merge (state , other):
return [state [0]+ other [0] , state [1]+ other [1]]

def finalize (state):
return (state [0] / state [1] , state [0] , state [1])

def init_state ():
return [0, 0]

Listing 7.5: Statistics computation in Python

train and use a learned model. In our case, a Stochastic Gradient Descent
(SGD) Classifier. To train the model, we need to follow the template for
an extension working over a collection of records. In the init_state method,
the classifier model is initialized if it has not been already created. If a model
exists, it is loaded for the current JSON partition. The input records are added
to the training batch in the aggregate method. If the training batch reaches
the required predefined size, the training of the model is invoked. The merge
method is crucial since it can happen that in the previously covered JSON
partition, there were remaining documents that were not yet used for training.
These documents will be added to the current data batch and used for training
once the training batch size is reached. In the finalize method, once the
remaining documents are used for training, the model will be saved. Once the
model is trained, to use it, we need to realize the template for the extension over
single records. Hence, in the get_value method, we use the trained model for
predicting over the input records. Native JODA query language features have
been used to filter, clean, and scale the dataset before training the model.

Once the training and evaluation of the model are registered in JODA, they can
be called in the same way as the extensions. The time and memory statistics
can be obtained directly from the output when calling the new functionalities.
For the analysis of the prediction accuracy, the user needs to register one more
extension that compares the predicted and actual class for every record.

7.2.2 Replacing and Augmenting Data Processing Mod-
ules

Besides the aspect of applying novelty to an existing system through extension,
frequently there is a need for improvement by employing novel approaches as
a replacement for existing ones. With the research prosperity, new approaches
are constantly developed, which produce better results when considering mem-
ory footprints or execution time. However, Existing systems rarely progress at
the same rate as the most recent scientific advancements and stick to existing
techniques. Next to user-defined functions, which are commonly supported in
relational database systems, JODA also allows to replace data structures and
query processing behavior. Consider the case of replacing existing membership
index structures with faster and more efficient ones. Often this would warrant
modification of the system code, specifically where such structures are tightly
bound with the system. In JODA, one has to provide a replacement script
where the implementation logic will be realized through five methods: The

79

def estimate_usage (predicate , state):
if predicate in state :

return 0
return None

def execute_state (predicate , state):
return (state [predicate], True)

def execute_docs (predicate , docs , state):
return None

def improve_index (predicate , state , doc_index):
state [predicate] = doc_index

def init_index ():
return dict ()

Listing 7.6: Query cache in Python

init_index method initializes the index with a persistent state. The method
estimate_usage gives an estimate on the remaining work after a predicate
from the query has been evaluated on the index. Then, for each container the
execute_state function is called, which may return a filtered document set,
using only the state of the index. If this is not possible, and the actual docu-
ment contents are needed, None can be returned and the system will call the
execute_docs method, which determines which of the given documents fulfill
the predicate. Finally, the method improve_index updates the index with the
final results of the query if they are suitable for the index. As a proof-of-concept
for replacements in JODA, we considered and realized a Bloom filter and a query
cache. Both replacements were realized in Python.

The module for replacing an existing index in JODA with a query cache is
depicted in Listing 7.6. Once the query cache is registered in JODA, the system
will check the output of the estimate_usage method to determine the best
index for the query. Thus, when the predicates are in the query cache, the
results from the replacement index will be used.

This feature can also be used to implement domain-specific indices that are too
specific to be implemented in a general-purpose data processor. For example,
if the user extensively works on geospatial data, one can implement a spatial
index that is optimized for the data set.

7.2.3 Customized Data Import and Export
Consider the case where relevant data is distributed over multiple files or sys-
tems, e.g., a company employs a relational database of customers and sales
data, a key-value store for online shopping carts, and local CSV files of access
logs. Joint data processing over such data sources is a tedious task and would
typically require human-involved pre-processing, before the system of choice is
able to execute the actual query.

A solution to this problem can be wishful thinking—to hope that the developers
of the given tool add support for the required data soon. A more realistic and
versatile solution is to have the system provide simple means to extend the
data import and export mechanisms of the system, developers can ensure that
their tool can be used for highly specialized tasks that integrate many different

80

Initializes a state , given a parameter string
def init(param):

return <State >
Returns the next entry from the input , given the state . If no

more data is available , returns None.
def get_next (state):

to_transform = state . import_next (data)
return transform (to_transform)

Listing 7.7: Data import module interface

Initializes a state , given a parameter string
def init(param):

return <State >
Exports a single entry , given the state and the internal data

representation
def set_next (state , data):

to_export = transform (data)
export (to_export)

Is called after the export of all entries is finished to
perform cleanup tasks

def finalize (state):
pass

Listing 7.8: Data export module interface

sources. Indeed, for many use cases, it is enough to let the user specify how
the data has to be transformed, read, and written. Listings 7.7 and 7.8 show
our suggestions for simple interfaces supporting user-given import and export
tasks. Both modules work with an internal state that can optionally represent a
(stateful) resource to be used, like a file handle or an open database connection.
Using this state, the import module fetches new entries from the source one-
by-one, while the export module transforms the JSON documents into their
representation to be stored.

By supporting these interfaces, users can quickly connect their data format
or system to the supporting data processor. As proof-of-concept connections,
we have implemented a CSV file and a PostgreSQL table reader and writer.
Listing 7.9 shows a straightforward example of adding support for reading CSV
files into our JSON data processor.

import csv
def init(param):

csvfile = open(param , newline =’’)
reader = csv. DictReader (csvfile)
return reader

def get_next (state):
return next(state , None)

Listing 7.9: Example CSV import implementation

81

Q1 Q2 Q4Q3

106.82 101.05

226.05

70.46
86.21 76.66

111.43

41.25R
un

tim
e

in
s

Python JODA

n/a
81.95 73.84

58.27

129.62

91.92

Python JODA Spark Spark Collect

Figure 7.2: Runtime comparison of values

7.3 Evaluation
To provide evidence that the extensions above are not only viable but can also
bring large runtime benefits, we implemented at least one user-defined module
for each use case. All experiments have been run on an Arch Linux OS using an
i7-855U 8x1.8Ghz CPU with 16Gb of RAM. As a dataset, a 5Gb excerpt of the
raw Twitter JSON stream1 has been used. Every evaluation has been run 10
times and the average runtime was computed. The runtime of each query has
been compared to the runtime of producing the same result with native Python
code. If applicable, we also included the module into Spark and compared the
results.

As discussed in Section 7.2.1, we implemented value modules performing sen-
timent analysis, language interference, and training of a custom machine learn-
ing model. Additionally, we have implemented a straightforward aggregation
module that given a numerical attribute, calculates the count, sum, and aver-
age values, and returns them in a textual format. Queries Q1, Q2, and Q3 in
Listing 7.10 show the usage of these modules in a JODA query.

For the sentiment analysis, we parsed the Twitter dataset and selected only
tweets written in English. We then used the user-defined sentiment analysis to
return the tweet ID together with the sentiment description for each document.
The native Python implementation reads the document set line-by-line and
parses the JSON into a native dictionary. It then performs the same operations
as JODA. Using the same module, we also implemented a PySpark script, which
registers the Python module as a UDF, reads the JSON documents into a data
frame, filters it, and applies the UDF to each row. For all systems, the results are
written back to a single JSON file. As we can see in Figure 7.2, JODA returns the
results the fastest, followed by the native Python implementation. As Python
uses a global interpreter lock (GIL), it can only use a single CPU core to process
the data, while JODA and Spark distribute their work on multiple cores. But
the GIL also restricts JODA to only being able to execute one thread of user-
defined Python code simultaneously. This is why, despite working on 8 cores,
JODA is only 1.24 times faster than Python. The performance of Spark in this
evaluation is slightly better than JODA, if the results are returned per partition.

1https://developer.twitter.com/en/docs/labs/sampled-stream

82

https://developer.twitter.com/en/docs/labs/sampled-stream

// Q1 - Sentiment analysis
LOAD FROM FILES "/data/ twitter "
CHOOSE EXISTS (’/text ’) && ’/lang ’ == "en"
AS (’/ sentiment ’: SENTIMENT (’/text ’)), (’/id ’:’/id ’)
STORE AS FILE "out.json"

// Q2 - Language detection
LOAD FROM FILES "/data/ twitter " CHOOSE EXISTS (’/text ’)
AS (’/text ’:’/text ’), (’/lang ’: LANGUAGE (

REGEX_REPLACE (’/text ’,"\\n"," ")))
STORE AS FILE "out.json"

// Q3 - Number Statistics
LOAD FROM FILES "/data"
CHOOSE ISNUMBER (’/user/ followers_count ’)
AGG (’’: STATS (’/user/ followers_count ’))

// Q4 - SQL export
LOAD FROM FILES "/data/ twitter " CHOOSE EXISTS (’/user ’)
AS (’/id ’:’/user/id ’),
(’/name ’: REGEX_REPLACE (’/user/ screen_name ’,"\\ x00","")),
(’/ location ’: REGEX_REPLACE (’/user/ location ’,"\\ x00",""))
(’/ followers ’:’/user/ followers_count ’),
(’/ friends ’:’/user/ friends_count ’)
STORE AS SQL_EXPORT " postgresql :// postgres : postgres@localhost

:5455/ postgres twitter_users "

Listing 7.10: JODA queries using user-defined modules

If a single result document is expected, Spark has the worst performance, due
to coalescing the results.

In Q2, we again parsed the Twitter dataset and used the Python third-party
library FastText [80] to infer the language of the tweets using a machine learning
model. This time, the text had to be preprocessed by removing all newlines with
spaces for the model to work properly. This preprocessing is done in each system
natively, while the module only performs the language interference on the text.
Again a native Python script reads all documents line-by-line and applies the
module to each tweet, while PySpark registers the module as a UDF. The results
are written back to a single JSON file. The runtimes are similar to the previous
experiment. Only the cost of coalescing the data has less of an impact on the
Spark implementation.

Q3 evaluates the performance of a straightforward aggregation module. The
Python implementation again uses the module functions on a line-by-line parsing
of the JSON data set, while JODA registers the module and uses its aggregation
framework. As PySpark does not support user-defined aggregation functions for
data frames in Python, we adapted the Spark script to read the JSON files into
an RDD and use its aggregation function with the module. Before aggregating,
each system natively checks if the nested attribute exists and has a numerical
type. The aggregation result is then returned to the user. As we can see in
Figure 7.2, JODA returns the results the fastest, followed by Spark, and with
the native Python implementation the slowest.

83

In the last experiment, we wanted to test the performance of a custom data ex-
port module. For this experiment, we implemented a module that connects to a
PostgreSQL database and exports the given dictionary/JSON document set into
a table. Q4 first checks for the existence of a user attribute and then transforms
the document into a simplified representation of the user. This reduced user
object is then stored in a PostgreSQL table. The user-defined module uses the
Python psycopg2 library to connect to the database and execute the query. The
native Python implementation again parses the documents, transforms them,
and finally calls the module to insert each tuple into the database. While Spark
natively supports the export to databases, it does not support user-defined
data readers or writers. In this section, we want to evaluate the performance
of user-supplied modules. Hence we omitted the Spark implementation. But
the evaluation shows that the multi-threaded nature of JODA allows for much
faster filtering and transformation of the data, such that JODA performs the
task in 49.2% of the native Python implementation.

We also briefly evaluated the potential performance benefits of using a user-
defined index module. JODA implements a straightforward predicate cache
index, in which the result of a filter step is stored in a hash map, with the
predicate as the key. For this experiment, we implemented a naive version of
such an index in Python, which stores the result of a filter step in a dictionary.
To evaluate this index we again parsed the Twitter dataset and executed a
query with a relatively costly filter predicate using regex matching on the text
attribute. Then we executed the same query again, but this time the query-
planner will use the index to evaluate the index step. This procedure has been
repeated once for JODA configured to (a) not use any index at all, (b) use
the native predicate cache, and (c) use the user-defined Python index. For
configuration (a), the first query took 0.35s while the successive query took
0.23s for a total of 0.58s. Configuration (b) took 0.4s and 0.01s for a total of
0.41s. As we can see, filling the cache incurs some minor overhead, but the
subsequent queries are much faster. Finally, configuration (c) took 0.36s and
0.09s for a total of 0.45s. The filling of the index has less of an impact on
the user-defined implementation, as the implemented index is far simpler than
the native one. Furthermore, is the second query much slower than the native
index, but still requires less than 1/3 of the time than without the index. This
illustrates that it is possible to implement user-defined indices that can be used
by the query planner to speed up the execution of queries.

In summary, we found that integrating user-defined Python modules into
JODA is a very powerful tool for data analysis. The performance, while being
restricted by the GIL, is still significantly better than the native Python imple-
mentation. But there is still room for improvement, as a distributed Spark job
can outperform JODA with Python modules in some tasks.

7.4 Summary & Potential Extensions
In this chapter, we described how a modularized data processor can be easily
extended to support user-defined external modules. We implemented the de-
scribed changes in the JODA data processor as a proof of concept. For every
supported module, we provided use cases and examples. We further showed

84

that the performance of this system can be better than writing specialized code
in the programming language of choice or using a general data processor with
programming support. By supplying modules that integrate with external tools
we also showed that we can fit the system into a broader ecosystem of tools and
hence, create a powerful data processing pipeline.

While the described changes are already usable and performant, there are still
some improvements that can be made. Because of the Global Interpreter Lock
of Python, only one thread can execute Python code at a time. In an inherently
multithreaded system like JODA, this can be a bottleneck for complex user-
defined functions. To overcome this, JODA could spawn multiple Python worker
processes and distribute the workload among them instead of using a single
Python interpreter. This would make the implementation more complex, but
would also allow the user to use the full power of the CPU cores.

Another improvement would be to support more programming languages. Cur-
rently, JODA only supports Python, but it would be possible to add support
for other languages. Interpreted languages are the easiest to implement, as they
can be executed in the same process as the JODA core by a simple library call.
For example, Ruby, Lua, or JavaScript could be supported in this way.

By implementing a more complex compiling and dynamic linking architecture,
it would be possible to support compiled languages like C or C++. This change
could speed up the execution of the user-defined functions and would enable
support for more languages.

While currently the most important party of JODA have been modularized and
can be extended, there are still some parts missing. For example, could JODA
support user-defined tasks, that supply their own query statements to be used
in the JODA query language. The tasks would then be integrated into the
execution pipeline and could perform arbitrary computations on the data.

85

86

Chapter 8

BETZE: A Novel Benchmark
for Interactive Exploration

Interactive data exploration [65–67,81–83] is a fundamental task in data science
and related areas to get acquainted to previously unknown datasets, to obtain
essential insights, apply data cleaning if needed, and to ultimately transform
parts of the data into different application-tailored formats for visualization or
further processing. Many a data scientist spend a considerable amount of time
in preparing raw data before moving on to more advanced analytic tasks; around
40% or 60% of their time or even higher, depending on study or anecdote [84–87].

As an example scenario, consider Alice, who is working as a data scientist in
the publicity department of a soccer footwear and apparel company. To increase
product visibility in an upcoming German sports event, she wants to analyze
the potential impact of placing ads by inspecting discussions in social media,
say Twitter. She got her hands on a large file of the raw Twitter stream that
does not come with a fixed schema, contains actual tweets and delete messages,
creation and changes to user profiles, etc.—utter chaos. She first thinks she can
obtain the tweets by demanding the existence of an attribute ‘user’ (cf. Fig-
ure 8.1), which, however, just leads to the user profiles, not the tweets. She
then discards the results and issues a query asking for all documents that carry
a ‘post’ attribute of type string and then applies an additional predicate ask-
ing for the location to be Germany—and so on—until she eventually finds the
information she was aiming at.

Depending on Alice’s adeptness in using the system’s query language, her ex-
perience in phrasing queries according to her needs, and existing knowledge of
the dataset, she might require more or fewer queries to reach her goal. In this
chapter, we present our benchmark generator BETZE [5], which can be used
to evaluate systems designed to explore semi-structured data, precisely, JSON
data. JSON is a prominent open data standard that composes data objects con-
sisting of attribute-value pairs. It was designed to be human-readable and has
been accepted across various systems and data providers. While the schema-free
nature of JSON, together with the support of different data types like arrays
and nested objects, offers vast flexibility in capturing data, JSON datasets often
become a potpourri of different data concepts. It is then all but impossible to
write a one-shot query that delivers the intended results, if the intent is even
clearly known. Work on interactive data exploration [65] specifically addresses
research challenges around assisting users on their way to find hidden insights
through multiple, iterative steps, often via visual support [88–90], and features
like query suggestion. Notwithstanding the importance and relevance of such
solutions, generated queries need to inevitably be executed by a backend query
engine, where low response times are crucial to minimize the idle time of users
and to keep them focused [91,92].

87

Figure 8.1: Data exploration example

Existing benchmarks for semi-structured documents, like NoBench [61], only
benchmark generic JSON query features, but do not contain any incremental
query loads. In particular, such benchmark datasets often contain simple, ar-
tificially generated data values and, thus, do not exhibit the characteristics of
real-world data. We opted for a benchmark generator, coined BETZE, that
can work with arbitrary JSON datasets, thus, can be used for experiments over
different datasets—like Twitter tweets, the aforementioned NoBench dataset, or
application scenarios from specific domains [83]. We release the benchmark as
an easily executable software package, running in Docker. BETZE first ana-
lyzes a given dataset and outputs sequences of queries which can then be used
to benchmark the performance of the systems under consideration.

We investigated PostgreSQL, MongoDB, jq, and JODA as representatives of tra-
ditional RDBMS, document stores, simple command-line tools, and specialized
JSON data processors. Without a standard query language for native JSON
stores, we identified a basic set of commonly supported query patterns but kept
expandability in mind.

Using a random explorer model, similar to what is known from the famous
PageRank algorithm [93], we can set benchmark parameters to reflect different
skill levels of users. We give presets for a novice, an intermediate, and an expert
user. BETZE consists of two main modules: a dataset analyzer, collecting
statistics and insights from a specified JSON dataset, and a query generator
component, which generates a set of queries. The dataset analyzer uses our
JODA systems to extract the insights using the ATTSTAT aggregation function.

In this chapter, we make the following contributions:

• We propose the use of a random explorer model for query generation
and describe an approach that can work with arbitrary JSON datasets to
generate query sequences.

88

• We have implemented support for PostgreSQL, MongoDB, and jq—next
to our own approach JODA.

• BETZE is publicly available and is through Docker easily employable.

• We present the results of a first experimental evaluation using the proposed
benchmark and four competitors.

The remainder of this chapter is organized as follows. Section 8.1 introduces
the random explorer model and which types of queries are supported as of
now. Section 8.2 discusses how query generation is conducted. Section 8.3
describes the default setting and how the benchmark can be employed. It further
gives insights into how the benchmark can be adapted to support additional
systems. Section 8.4 presents the results of an experimental study, where our
JSON processor JODA is compared to three popular systems, using the newly
proposed benchmark over two datasets. Finally, Section 8.5 summarizes the
chapter and discusses potential extensions.

8.1 Random Explorer Model and
Supported Queries

In BETZE, queries are generated using a random explorer model, similar to the
random surfer model introduced by Brin and Page [93]. This model simulates
a single user exploring one or multiple given sets of JSON documents that we
consider the base datasets. By applying queries to base datasets, new datasets
are formed—like obtaining a dataset of textual tweets out of the full status
updates of Twitter, as in the earlier example around Alice.

Figure 8.2 shows a sample query session. Here, the simulated user started with
dataset A and created a dataset B by issuing a query. After reconsidering,
the user went back to the parent dataset A and created another dataset C, for
instance, by refining the initial query or starting all over with a new one. Then,
the user goes back to dataset B via, what we call, a random jump and creates
the dataset D.

That means, after each querying step, the user has four possibilities:

i) Explore: Continue with the current dataset by issuing a new query on
it, which creates a new dataset (i.e., B in Figure 8.2)

ii) Return: Going back to the parent dataset (e.g., if the extracted knowl-
edge is unsatisfactory or additional insights are required before continuing
from there).

iii) Jump: Go to any previously created dataset (e.g., if the whole path is
deemed uninteresting)

iv) Stop: Ending the exploration session. (e.g., the user learned everything
they wanted to learn)

The model is supplied with a parameter n that specifies how many queries are
generated per exploration session. The remaining choices of the user are modeled
by a weighted random decision. α represents the probability of the user going

89

Figure 8.2: Possible exploration session in the random explorer model

go back probability random jump Queries per session
α β n

Novice 0.5 0.3 20
Intermediate 0.3 0.2 10
Expert 0.2 0.05 5

Table 8.1: Default user configurations

back to the parent dataset, while β is the probability of the user randomly
jumping to another dataset. Hence, the probability of the user continuing with
the most recent dataset is given by 1 − α − β.

Depending on these parameters, the generated queries have different charac-
teristics. If, for instance, the likelihood to continue exploring a newly-created
dataset is set high, the load to the underlying system to execute this more con-
straint query is likely to be lower due to more effective indexing or re-use of
intermediate results. In contrast, if the probability of returning to the parent
dataset is higher, the subsequent query will be more costly. Together with the
configurable length of a query session, i.e., the number of queries required gen-
erated by the random explorer model, we can, thus, control the amount of work
the query execution engine has to cope with.

Since we aim at evaluating the query execution performance of underlying sys-
tems, we propose three default configurations, as listed in Table 8.1, that cause
heavy, intermediate, and low load according to the aforementioned rationales—
as the experiments confirm, e.g. in Figure 8.5. While we do not intend to fully

90

model real users, these configurations should coarsely reflect different skill levels
of data scientists working with data management systems for data preparation
and the corresponding variety of time they invest in such tasks [84–87].

• A novice user does not have any knowledge about the tools and no
intuition about the dataset and how to achieve their goal. Such a user
will issue more queries that backtrack and often jump to another random
dataset when noticing that the current path probably will not yield the
desired result.

• An intermediate user, on the other hand, already has knowledge about
the used tools and some intuition about how to reach the information
needed. The chosen path is often correct, with only minor adjustments—
in the form of backtracking.

• An expert user knows the available tools well and either already has
knowledge about the dataset or a good intuition about how to reach the
goal—nearly no backtracking and only very minor random exploration is
needed.

A session represents the interactions of a single user, from starting the explo-
ration to finding the desired result. To evaluate multi-user systems, we could
generate multiple sessions and execute them simultaneously. Using different
configurations for different sessions is also possible. Figure 8.3 shows an exam-
ple session for each introduced user configuration. Orange nodes represent the
starting dataset(s), blue nodes intermediate dataset(s), and the red node the
finally created dataset. The links are colored depending on whether they are
random jumps (purple), backtracking (red), or queries generating new datasets
(brown).

8.1.1 Query Support
Our initial implementation of BETZE is able to generate queries for JODA [2],
MongoDB [12], jq [9], and PostgreSQL [10]. As mentioned before, support for
additional systems can be added easily with a few lines of code. We give more
details on how this can be done in Section 8.2.4. The query features used by
BETZE need to be simple enough to be supported by as many external systems
as possible but complex enough to be useful and realistic. After analyzing the
query expressiveness of the above systems regarding JSON processing, we opted
to use the following tasks:

• Loading datasets

• Filtering datasets

a) Using simple predicates

b) Combined only with logical binary AND and OR operators

• Outputting:

a) the whole content of the selected documents

b) an aggregation of the documents (grouped by an attribute)

91

(a) Example novice user session

(b) Example intermediate user session

(c) Example expert user session

Figure 8.3: Example user sessions

92

These features were supported by all evaluated systems and are sufficient to
enable the creation of realistic exploratory query workloads. We added at least
one filter predicate for each data type supported by JSON:

• EXISTS(<ptr>): checks existence of an attribute

• ISSTRING(<ptr>): checks if attribute is of type string

• <ptr> == <int>: equality check with integer

• <ptr> <comparison> <float>: comparison with floating point

• <ptr> == <string>: equality check with string

• HASPREFIX(<ptr>,<string>): checks if attribute is string and has prefix

• <ptr> == <bool>: equality check with boolean

• ARRSIZE(<ptr>) <comparison> <int>: comparison of array size with
constant number

• OBJSIZE(<ptr>) <comparison> <int>: comparison of object size (num-
ber of children) with constant number

In addition, BETZE can be configured to create (group-by) aggregation queries.
The currently supported aggregation functions are:

• COUNT(<ptr>): counts the number of documents having this attribute

• SUM(<ptr>): sums the numerical attribute, if it exists

• <Agg> GROUP BY <ptr>: groups one of the previous aggregations by the
given numerical, string, or boolean attribute

These predicates and aggregations are later translated into system-specific syn-
tax. BETZE is designed to be extendible and additional functions may be added
with ease. Listing 8.1 shows a single query, expressed in the syntax of the four
currently supported systems. In this example, a Boolean predicate filters the
document set, which is then aggregated by a grouped count aggregation.

8.2 Data Analyzer and Query Generator
BETZE comprises two main modules, a data analyzer, and a query generator.
First, the analyzer creates a statistical and structural summary of the input
datasets. This data is stored in a JSON file and used by the generator to create
the actual benchmark queries.

8.2.1 Data Analysis
Given the input datasets, the analyzer uses JODA as a backend to analyze the
data. A sample output of this analysis is shown in Listing 8.2, for the case of
10 000 documents obtained from the Twitter API, 1 000 of the given documents
have a /user attribute which is always of type object and has between one and
three members. One of the children of the /user object is a name, which only

93

JODA
LOAD Twitter
CHOOSE ’/ retweeted_status /user/verified ’ == false
AGG GROUP COUNT (’’) AS count BY ’/user/time_zone ’)

JQ
jq -c ’inputs | select (. retweeted_status .user. verified == false)’

Twitter .json |
jq -s -c ’def agg(s): reduce s as $x (0; . + 1);

group_by (. user. time_zone)
| map ({ group : .[0]. user.time_zone ,

count : agg (.[]) }) ’

MongoDB
db. Twitter . aggregate ([{ $match :

{ " retweeted_status .user. verified " : false },
{ $group : { _id: ’$user .time_zone ’,
count : { $sum: 1 }}}]) ;

PostgreSQL
SELECT doc #> ’{user , time_zone }’ as group , COUNT (*)
FROM Twitter
WHERE jsonb_path_exists (doc ,

’$. retweeted_status .user. verified ? (@ == false) ’)
GROUP BY doc #> ’{user , time_zone }’;

Listing 8.1: Example queries for each of the supported languages

exists in half of the objects. For each distinct path in the source documents, we—
currently—store the number of documents that contain this path and additional
type-specific statistics.

For every JSON type, we keep the total number of its occurrence separately.
We also store the minimum and maximum values for numerical types—split into
integer and real numbers. In contrast, for the Boolean type, we store the number
of true values—and thus, also the number of false values. The minimum and
the maximum number of children is kept for object and array types. We also
store a set of prefixes and their number of occurrences for string types. Once
the analysis is complete, the statistics file will be used for the actual benchmark
generation. It can also be stored and shared for future generator runs without
the actual dataset.

8.2.2 The Query Generator
After the input datasets have been analyzed, the generator will use the resulting
statistics to create benchmark queries. Each execution of the generator creates
one session of queries, that is, the simulated interaction of a single data scien-
tist with an exploration tool. In the very beginning, there are only the initial
datasets. Then, as queries are created, more and more datasets are available.
The random explorer model is used to decide how to proceed in each step. Say,
a new query should be issued against the dataset that was created last. The
generator analyses the provided statistics and generates a filter predicate by
first randomly selecting a JSON path based on the obtained structural informa-
tion. Then, all implemented predicates (cf., Section 8.1.1) are checked for their
validity to be applied to this path. If no predicate is applicable to the given

94

[{
" dataset ":" Twitter ",
" Count ":10000,
" Paths ":{

"/user":{
" Count ":1000,
" Objecttype ":{

" Count ":1000,
" MinMembers ":1," MaxMembers ":3

}
},
"/user/name":{

" Count ":500,
" StringType ":{

" Count ":500, " Prefixes ":[...]
}

},
...

}
}]

Listing 8.2: Example analysis file

path, another path is chosen. If no paths remain, another dataset is chosen
through a random jump. As soon as an applicable predicate type (e.g. ==int)
is found, the available statistics and parameters are used to instantiate it. This
process is different for each predicate type, but each one tries to achieve the
desired configured selectivity range (default: [0.2, 0.9]). For instance, assuming
there is a path with 90% numerical values, 10% string values, and the numerical
values are between 1 and 10. Now, the generator decided—by dice roll— that
a numerical comparison predicate should be generated. As the numerical type
of the attribute already has a selectivity of 0.9, the system will try to generate
a predicate with a selectivity in the range of [0.2

0.9 , 0.9
0.9] = [0.22, 1]. The final

value is then randomized within this range, which could result in the predicate
[path] ≥ 5. If the desired selectivity cannot be reached using the chosen predi-
cate, the generator will try to augment it with another condition. In case the
selectivity is too high, it will be combined using a logical AND, and if it is too
low with OR. Aggregations are generated similarly if BETZE is configured to
create them. Again, a path is chosen at random, and all supported aggrega-
tion functions are evaluated for suitability. Then, a random suitable function is
generated. If the group-by aggregation function is enabled, the generator will
try a limited number of times to find a suitable grouping expression by ran-
domly choosing another path. If successful, the previously chosen aggregation
will be grouped by this path. Otherwise, the aggregation is performed over all
documents.

The generator will then execute each generated query in the data processor and
calculate the actual selectivity. If it is within desired selectivity range, the query
is kept. If not, it is discarded. The runtime of this step depends on the system
specs and size of the dataset, as all queries have to be executed. Hence, having
the analyzer generate accurate summaries of the base dataset is very important.
Accurate summaries allow the generator to estimate the selectivities better and
prevent unnecessary queries to the underlying data processor.

95

After a query is generated, a name for the new dataset is determined, and
a store instruction using this name is appended to the query. Query and
dataset are then added to a dependency graph (similar to the one shown in
Figures 8.2 and 8.3). From there, the next step is given by the random explorer
model. When all queries are generated, the generator returns an internal query
representation. For each supported system, a query language module is called in
order to translate the internal representation into a system-specific query which
is then written to a file.

8.2.3 Generating Specialized Benchmarks
Due to the randomized nature of the benchmark generator, executing it multiple
times on the same dataset will yield different queries. By supplying a seed value
to BETZE, repeatable generator runs are possible. This is especially useful if
benchmarks should be shared or experiments should be reproducible. By shar-
ing the seed value and the means to acquire or generate the dataset, a second
party can regenerate the same benchmarks and validate the results or produce
new queries for another system. If benchmarking of specialized workloads is
required, for example, to stress-test a system prototype in all details, BETZE
allows overwriting preset parameters.

Configuring random surfer model: Most importantly, the random explorer model
can be configured differently beyond the three types of simulated users. These
presets set the probabilities for backtracking to the parent dataset (α), for the
random jump (β), and the number of generated queries to completely change
the characteristics of the dataset dependency graph. By default, the interme-
diate user is used. But each of these values can also be set explicitly to either
overwrite a part of a preset or create a unique configuration.

Adapting target selectivity range: The user may also change the default min-
imum (0.2) and maximum (0.9) selectivity that each query should adhere to.
However, the range of allowed selectivities should not be chosen too narrow,
as the generator may not be able to generate a predicate with the same selec-
tivity accurately. Additionally, the set of permissible predicates can be set via
exclusion or inclusion lists, for instance, to allow only string-type predicates to
benchmark a newly implemented string index.

Output of query results: Depending on the system under evaluation, an exe-
cuted query would output all result documents, which can result in a large
I/O overhead that may not be part of the desired evaluation. For instance, jq
queries would always output the whole content over the standard output stream
(stdout), while other systems, like JODA and MongoDB may only return a ref-
erence or iterator to the evaluated result set. To reduce this overhead and to
evaluate the whole query pipeline, the user may choose to generate aggregation
queries, which prevent the materialization and/or output of large quantities of
data. When the generation of aggregations is enabled, the user may also specify
which aggregation functions should be used and the percentage of queries that
should be aggregated (default: all).

96

Materializing query results: As explained in Section 8.1 and shown in Figure 8.2,
the underlying model treats each result of an exploratory query as an indepen-
dent dataset. Each system would then store the result of every query of a session
in an intermediate dataset. For example, may JODA use the STORE command
and MongoDB an additional $out stage to create new internal datasets. jq
would simply write to a new file on the filesystem. By default, however, each
generated query will only reference the base dataset and extend the predicate.
If, for instance, the dataset B in Figure 8.2 was created by a query with predi-
cate x, then the query creating D with predicate y would be exported as a query
based on dataset A with predicate x ∧ y. The intermediate set feature cannot
be used with the previously described aggregation feature, as the result dataset
would only consist of one aggregated document, which can not be filtered fur-
ther.

Weighted paths: For datasets where the documents are deeply nested, and most
of the attributes are situated in the lower levels, it might be undesirable to choose
the attribute to generate a predicate for in a truly random fashion. Especially
if the large nested objects exist only in small subsets of documents, as every
predicate evaluated on its children will inherit the selectivity of the parent’s
existence. Additionally, real users would choose the top-most fitting attribute
to use in a predicate. To simulate this affinity, the generator can be configured
to choose the next attribute with a weight that is inversely correlated to the
path length. Using this function, an attribute is much more likely to be chosen
the closer to the root node it is. For documents that consist of mostly object-
and array-type attributes closer to the root, this will result in an increased usage
of the OBJSIZE and ARRSIZE attributes. By default, this setting is disabled, and
the next attribute is chosen in an unweighted manner.

8.2.4 Extendability
As of now, the benchmark generator generates queries compatible with Mon-
goDB, jq, PostgreSQL, and JODA. In order to add different languages, the
simple interface shown in Listing 8.3 needs to be implemented. The language
interface provides the generator with basic identifying information about the
system and the means to create a system-specific query file.

To be able to support multiple languages, queries are first generated in an
internal representation, which is easy to translate into different query languages.
A query is represented by a base dataset on which the query is executed, an
optional dataset to store the result in, an optional query predicate tree, and an
optional aggregation function. The filter-predicate tree is composed of OR and
AND predicates as inner nodes, and filtering functions (e.g. equality, comparisons,
prefix matching) as leaf nodes. For each implemented language interface, the
benchmark generator will translate the internal query representations into a
system-specific script using the Translate function. Listings 8.4 and 8.5 show
excerpts of the PostgreSQL and MongoDB implementations of the language
interface. They illustrate the ease of implementation, as the translation of the
internal query representation into the system-specific query language is mostly
a matter of string concatenation.

97

type Language interface {
// Display the name of the language
Name () string
// Unique identifier name for the language
ShortName () string
// Translates a Query into the language
Translate (query query . Query) string
// Writes a comment with the system - specific comment syntax .
Comment (comment string) string
// Returns necessary header string to be added as a preface to

the system - specific file
Header () string
// Returns the delimiting symbol / string to terminate a query
QueryDelimiter () string

}

Listing 8.3: Language interface

func (Postgres) Name () string { return " Postgres " }
func (Postgres) ShortName () string {r eturn " postgres " }
func (Postgres) Comment (comment string) string { return "-- " +

comment }
func (Postgres) Header () string { return "" }
func (Postgres) QueryDelimiter () string { return ";" }
func (Postgres) Translate (query query . Query) string {

...
query_string += " WHERE " + translate_predicated (query .

predicate)
...

}
func translate_predicate (predicate query . Predicate) string {

...
switch pred := predicate .(type) {
...
return fmt. Sprintf (" jsonb_path_exists (doc ,’%s ? (@ == %s) ’)",

pred.Path , pred.Str)
}

}

Listing 8.4: Excerp of Postgres implementation

98

func (MongoDB) Name () string { return " MongoDB "}
func (MongoDB) ShortName () string { return " mongo " }
func (MongoDB) Comment (comment string) string { return "// " +

comment }
func (MongoDB) Header () string { return ""}
func (MongoDB) QueryDelimiter () string { return ";" }
func (MongoDB) Translate (query query . Query) string {

...
query_string = fmt. Sprintf ("%s. count (%s)", query .dataset ,

translate_predicate (query . predicate))
...

}
...
func translate_predicate (predicate query . Predicate) string {

...
switch pred := predicate .(type) {
...
return fmt. Sprintf ("{\"%s\" : \"%s\"}", pred.Path , pred.Str)
}
...

}

Listing 8.5: Excerp of MongoDB implementation

It is also possible to easily implement new predicates and aggregation functions
in the system. For each function, one Factory class has to be implemented
with two functions. First, given a specific path of the analyzed dataset, the
factory has to decide whether the function can be generated for the given path.
For example, if the dataset does not have any statistics about the minimum
and maximum numerical values of an attribute or no numerical data exists
at all, we cannot create a numerical comparison predicate. After the system
chooses one possible predicate factory, it will call its Generate function. Given a
dataset path with statistics, a random generator, and an exclusion list of already
generated predicates to prevent duplicates, it generates a query predicate with
the desired selectivity.

In Section 8.2.1 we described how JODA is used to analyze the basic dataset.
While it is currently the only analyzer backend, we support the usage of ad-
ditional backends. It is possible, for example, to write a MongoDB connector
and let it compute the analytical data. If, for some reason, the backend cannot
provide all supported statistics, the generator is able to generate benchmark
queries anyway. That means, for example, if no string prefixes are provided
to the generator, it falls back to the string-type checker predicate. For most
missing statistics, default values are provided, i.e., if the Boolean type statistics
do not provide true/false counts, a uniform distribution is assumed. Similarly,
the JODA backend, during query generation, can also be replaced with another
system. It can even be omitted completely, in which case the generator will
not double-check the generated queries. The statistics of each generated sub-
dataset are then calculated by scaling the statistics of the base dataset according
to the selectivities. Using no backend to check the query selectivities is currently
not recommended, as this scaling does not provide the necessary accuracy to
generate queries of acceptable quality.

99

./ generate_queries .sh <dataset dir >
<dir -to -store -query -files > [<seed >] [<options >]
./ generate_queries .sh /data ~/ queries 123 --preset expert --

aggregate

./ benchmark_queries .sh <dataset dir > <query dir >
[< docker run options >]
./ benchmark_queries .sh /data ~/ queries

Listing 8.6: CLI commands to generate a session and benchmark it with all
supported systems.

(a) Configuration page (b) Interactive result page

Figure 8.4: The web interface of BETZE

8.3 Getting Started with BETZE

We provide multiple ways to interact with BETZE to make it easily accessible.
The library itself is written in Go and allows integrating additional data evalu-
ation systems for query generation and data analysis. We also implemented a
simple command-line interface (CLI) wrapper around the library. With this, all
settings introduced in this chapter can be modified. Creating a session is a two-
step process in the CLI: First, a dataset has to be analyzed and the result stored
in a JSON file—this is currently done using a JODA instance. Subsequently,
the JSON file is passed to a second program run to generate a session. In this
step, having a JODA connection is highly recommended for better queries but
not required. We also provide a Docker image of the CLI to make installing
and using it as simple as possible. Utility bash scripts have also been written
that allow the generation of sessions with a single command pointing to a direc-
tory with JSON files. Benchmarking these sessions with all currently supported
systems is also realized with an additional bash script. Example usage of these

100

scripts is shown in Listing 8.6. The first command will pull the public JODA
Docker image, build a local BETZE image, and generate one query session to be
stored in the supplied directory. The second command will then fetch JODA,
PostgreSQL, and MongoDB images, build a local lightweight jq image and ex-
ecute the previously generated queries. Execution logs of all containers and a
summary of all runtimes are then stored in the query directory.

To further improve the user experience, we also integrated the explorer library
into our JODA web interface. Figure 8.4a shows the configuration page, where
the imported datasets of JODA can be chosen, and all important settings can
be set. The generator will then automatically analyze the chosen datasets and
generate a user session. The session is then displayed in an interactive graph,
shown in Figure 8.4b, which allows the browsing of all generated queries. The
generated code of all supported systems can then be downloaded to be executed.
The JODA web interface is also publicly available as a Docker image, and a
docker-compose file is available to run it with a JODA server. A short demo of
the web interface is available on YouTube1.

8.4 Evaluation
To evaluate our approach, we employ Twitter dataset, consisting of a 109 GB
file containing a sample of the raw Twitter JSON stream2. We chose this dataset
as it contains real-world data in the form of heterogeneous JSON documents. In
total, there are 29, 634, 708 JSON documents, where each document has between
7 and 348 deeply-nested attributes, containing every possible JSON type. It is
a perfect example to showcase the potential complexity of semi-structured data.

All experiments are executed in a dockerized environment to facilitate the repro-
ducibility of the experiments. Additionally, non-default parameters and com-
mands will be noted for each experiment. As docker host, a server with 4 Xeon
E7-4830 CPUs, each having 12 cores—and 24 threads—with 2.1 GHz, and 1
TB of RAM is used. The input data files, as well as the PostgreSQL and Mon-
goDB data directories are located on a ramdisk to reduce the impact of disk
I/O, for fair comparison with JODA which operates solely in main memory. jq
operates directly on the input data files and has not been specially configured
in any way. For each system, the official docker image is used. Except for
jq, for which we created our own image with the current Arch-Linux version
of 05.Oct.2021, as they do not provide their own image. For PostgreSQL, we
used the tag postgres:13.4-alpine, for MongoDB mongo:5.0.3-focal, and
for JODA ghcr.io/joda-explore/joda/joda:0.13.2.

Data is then imported, if possible, and benchmark queries are executed right
after—no additional configuration is performed to any system. To measure the
overall execution time, we use the start and end times of the docker containers.
This time includes setup procedures performed by the systems themselves and
the import of the datasets, which we call wall clock time. We also measure the
query execution time using the capabilities of the systems themselves. The sum
of the query execution times without data import is noted as w/o import. If

1https://youtu.be/U0rJNEP78vY
2https://developer.twitter.com/en/docs/labs/sampled-stream

101

https://youtu.be/U0rJNEP78vY
https://developer.twitter.com/en/docs/labs/sampled-stream

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

Query i

Av
er

ag
e

R
un

tim
e

in
se

co
nd

s

Novice Intermediate Expert

Figure 8.5: Trends in execution time for each user preset (20 queries for all
users)

not noted otherwise we use the w/o import time by default as we are more
interested in the systems capabilities as in the data I/O.

8.4.1 Understanding Impact of User Characteristics
First, we evaluate the influence of different user configurations that model a
novice user, an intermediate user, and an expert user. For the Twitter dataset
and each user configuration, we first fix the number of queries created per session
to n = 20 to highlight the trends of each user better, regardless of session length.
Figure 8.5 shows the average runtime per query, aggregated over 30 generated
sessions with different seeds. For this benchmark-centric experiment, we only
used JODA to evaluate the sessions, as we are not interested in a comparison of
the individual systems. As we can see, the query runtime generally declines—
for all users types—the more queries are executed. This is expected, as with
each applied query the datasets get smaller. Further, the more small datasets we
have, the higher the probability that we execute a query on a small set. However,
as the results show, the execution time for the novice user often increases. This
is due to the higher random-jump probability, which causes the novice user to
jump to larger datasets compared to the other two types of users. The query
times for the intermediate user also vary by a large degree but reduce faster
than the novice user and is, as expected, between the expert and novice user.
For the expert user, the reduction of query runtimes is more drastic, and the
minimum runtime is reached faster. The query execution times also do not
suddenly increase as much as they do for the other configurations. Note that we
show here for all user types the execution of 20 queries, to understand the trend,
although in the following experiments we consider the query length parameters
to be 20, 10, and 5, for novice, intermediate user, and expert user, respectively.

Even though the generation of benchmark sessions is an offline process, it is
worth discussing the runtime of the generation process. Generating all 30
sessions, with 1, 800 queries total, took 8h42m overall, of which 8h35m has
been spent on dataset analysis and 9m on actual query generation. On aver-

102

0 20 40 60 80 100 120

Expert

Intermediate

Novice
18.83 57.53 123.1

9.63

26.57

59.29

11.19

19.71

34.17

Figure 8.6: Execution time (in seconds) of 30 sessions per user configuration

age, generating one session took 17m24s, of which 17m10s was analysis time
and 14s generation time. The queries have been generated using the complete
109GB dataset and JODA as analysis and selectivity-verification backend. To
reduce the generation time, the queries could be generated with a smaller sam-
ple dataset at a potential minor loss of query accuracy for the larger dataset.
Alternatively, the queries could also be generated without intermediate data
analysis and selectivity-verification at a significant risk to not hit the targeted
query selectivity.

Figure 8.6 shows the distribution of the time it takes to execute a session of
queries, for each user configuration and 30 sessions, using the Twitter dataset.
Recall that each session consists of an entire sequence of queries. As each user
only uses half the number of queries as the next less-proficient one, one might
expect the median execution time to also be exactly 50%. But as we can see, for
the expert user, for example, the execution time is actually 74%. This can be
explained by larger datasets that have to be evaluated for queries in the begin-
ning, as shown in Figure 8.5. While the minimum values are relatively close to
each other, the maximum values vary wildly. This is a direct consequence of the
default selectivity parameters. The best case for every session would be if each
query uses the previously filtered dataset as a base and filters it to the smallest
possible size. This would result in N

∑n−1
i=0 mini evaluated documents, with

min being the minimum allowed selectivity and N the number of documents
in the original dataset. For session sizes n = {5, 10, 20} and min = 0.2, this
results in 1.2496N, 1.2499N, 1.25N evaluated documents respectively. Hence,
theoretically, all configurations could have the same minimum query runtime,
even if this case is improbable. On the other hand, the worst-case for each query
would be if every query uses the original dataset as the base set, filters it once,
and then jumps back to the base set. This would result in a maximum of nN
document evaluations.

To verify the impact of the different random-jump and backtracking probabil-
ities, we create 20 sessions for each combination of the two probabilities (in
steps of 0.1). For each session, we create n = 10 queries and measure the total
execution time of the entire session. Figure 8.7 shows the average execution
time (in seconds) over all 20 sessions, for each probability combination. As ex-
pected, having a low α and β value yields the lowest execution times, as jumps
to larger datasets are rarer. When either α or β increases, the average session

103

0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

Novice

Intermediate

Expert

β (Random Jump)

α
(B

ac
kt

ra
ce

)

11

12

13

14

15

16

17

18

19

Figure 8.7: Aggregated execution times (in seconds) of n = 10 queries with
varying jump and backtrace probabilities

time increases, too. Increasing α has a more significant impact on the execution
times, as expected, as backtracking results in queries on larger datasets, while
increasing β may also result in jumps to smaller or equally sized datasets.

8.4.2 Query Skew
Queries of real users will be skewed towards the most interesting attributes. In
Section 8.2.3 we already briefly motivated and introduced a setting to increase
the skew towards attributes at the top of the document hierarchy.

Without changing any settings, we can already observe a skew of attributes
chosen by the generator. For the preset evaluation, a total of 1, 800 queries
have been generated on the Twitter dataset. In these queries there have been
5, 267 references to (405 distinct) attributes, of which 579 (≈ 10%) referenced
the top-10 distinct attributes and 986 (≈ 19%) referenced the top-20 distinct
attributes. The majority of top-20 attributes consist of attributes that can be
used to partition the documents into small subsets, e.g. user names, cities, and
URLs. The remaining attributes are either Boolean values or used in existence-
predicates to split the documents into two major sets. This shows a clear skew
of the generator towards ‘interesting’ attributes.

Table 8.2 shows the distribution of path depths. The documents column shows
the actual depth distribution of all attributes contained in the documents. As
we can see, while the depth distribution of the attributes in queries generated
with default settings mirrors the distribution of the actual documents closely,
it shifts towards the top for queries generated with weighted probabilities.

104

Path Depth Documents Queries Default Queries Weighted Paths
0 0.2% 0.03% 0.0%
1 8.3% 6.2% 8.1%
2 30.7% 32.5% 40.0%
3 40.6% 44.2% 41.2%
4 17.9% 15.8% 10.4%
5 1.9% 1.1% 0.2%

Table 8.2: Distribution of path depths in the original documents and the gen-
erated queries

8.5 Summary
In this chapter, we proposed BETZE, a benchmark generator to evaluate inter-
active data exploration solutions. We identified common query language con-
structs and put forward a query generator based on a random explorer model.
With this model, it is possible in an intuitive manner to configure the savvi-
ness of a user to explore data. We pre-defined three such setups that lead to
different query-session characteristics, causing more or less load to be handled
by the evaluated systems. The benchmark generator makes use of our JSON
processor JODA to analyze data in order to create user sessions. BETZE was
created with ease of use in mind and can be used as a library, CLI tool, web in-
terface, and docker image. We also introduced helper scripts that allow creating
a benchmarking session with a single command and running this session with
all supported systems with another command. We evaluated and validated the
characteristics of the different user configurations and provided a performance
comparison over four competing systems using the proposed benchmark. The
results revealed that even for seemingly simple aggregation and filtering queries,
the performance of the investigated systems varies drastically, ranging from re-
sponse times in seconds to minutes and even hours. We expect that the proposed
benchmark will foster the optimization of existing systems and the development
of specialized tools, like JODA, to efficiently handle incremental workloads of
exploratory queries.

8.5.1 Possible Extensions
To predict the selectivity of generated predicates more accurately, more detailed
statistics could be used. For numerical attributes, for example, histograms can
capture the distribution of values and prevent wrong decisions due to skewed
data. The initial analytics of the dataset could also be included in the generator
without the help of external data wrangling tools.

The already supported systems form a strong basis of all kinds of exploration
tools, but currently still lacks support for many popular systems. We work on
adding more and hope at the same time that BETZE will be widely adopted.

105

To provide another aspect to benchmarking, we would like to include trans-
formation features into the query generator in the future. These queries would
change the structure and content of the dataset as a user would often do. Exam-
ple transformations could be the renaming, removing, or addition of attributes.
To transform the content, many more functions for each data type could be in-
cluded, like string concatenation or splitting, arithmetic functions, and Boolean
algebra. This feature would further challenge the benchmarked systems, as the
base dataset cannot simply be used unchanged but would have to be transformed
repeatedly with nested queries if no intermediate datasets are supported.

In this work, we focused on describing a benchmark generator to evaluate JSON
data stores. The idea of a random explorer that issues sequences of queries
against an underlying data store is general enough to be applied on other forms
of data, too, specifically also relational data. For single-table relational schemas,
this is straightforward and even for multiple tables that are queried indepen-
dently (i.e., no joins, no union, etc.), BETZE can be employed without major
changes to its core functionality. Note that the Reddit dataset used in the ex-
perimental evaluation can be considered as relational, but represented in JSON
format to be directly usable as a benchmark in this thesis. For relational data
stored in an RDBMS, the analytical component should ideally be replaced by
an RDBMS, too, which is not supported by BETZE yet. Likewise, for graph
data, simple filtering tasks could be handled by BETZE, but when considering
more meaningful graph queries, like full-fledged SPARQL, the generator needs
to be substantially extended.

106

Chapter 9

Evaluation

In this chapter, we evaluate the performance of JODA against the chosen com-
petitor systems introduced in Chapter 2.3. In contrast to the previous evalu-
ations, where we focused on one specific aspect or feature of JODA, we now
evaluate the overall performance of JODA and its competitors. We evaluate
each system using its default out-of-the-box configuration.

9.1 Setup
All of the following experiments are performed on a machine with 4 Xeon E7-
4830 CPUs, each having 12 cores—and 24 threads—with 2.1 GHz, and 33 RAM-
Kits, each having 32 GB of memory at 2400 MHz, providing the server with
around 1 TB of RAM. The data is stored initially on a RAM disk to reduce
the impact of the I/O on the performance. Ubuntu 16.04.3 LTS is used as the
underlying operating system.

Every system is installed as a Docker container. If available, the official Docker
images are used. If not stated otherwise, the default configuration of the system
and Docker is used. For scaling experiments, Docker functionality is used to
restrict the number of CPU cores and memory available to the container.

For server systems like Spark and MongoDB, the server is first started. Then
the timing of the query starts after the server is ready and the first query is sent
to the server. Timeouts are realized by externally measuring the wallclock time
and killing the container.

9.2 Datasets
In this evaluation, we use three datasets with different characteristics to evaluate
the performance of the systems. Each dataset is structured as a single line-
delimited JSON file. The file has a size of 10 GB in its uncompressed textual
form.

The Twitter dataset consists of a sample of the raw Twitter JSON stream1.
The file contains 2 700 000 JSON documents, where each document has between
7 and 348 attributes, containing every JSON type. The documents are split into
two major groups. Around 80% of documents are normal tweets, retweets, and
replies, while around 20% of documents are deletion instructions. The tweets
have a varying number of attributes, depending on their status, e.g. retweets
and favorites, while the deletion documents consist of seven attributes.

1https://developer.twitter.com/en/docs/labs/sampled-stream

107

https://developer.twitter.com/en/docs/labs/sampled-stream

Twitter Reddit NoBench
0

500

1,000

1,500

2,000

10.6 22.1 20.4

632

2,030

1,648.9

291.9
128.6 111.6

553.6
376.6 342.8

18.3 23.4 51.7

Dataset

Im
po

rt
tim

e
in

se
co

nd
s

JODA MongoDB PostgreSQL PostgreSQL(JSONB) Spark

Figure 9.1: Runtime of import step in seconds

Additionally, we use Reddit2 as another real-world dataset. It consists of com-
ments on the social media platform. The 10 GB file contains 18 100 000 docu-
ments. Each document has a fixed schema with 20 attributes and no nesting.

Finally, the NoBench [61] dataset is a synthetic sparse dataset. Each of the
16 700 000 documents has exactly 21 attributes of all JSON types—except for
null—with only minor nesting. Eleven attributes are always present, while the
remaining ten attributes are randomly chosen from a set of 1 000 sparse at-
tributes.

9.3 General Performance
As a first performance benchmark, we compare the general performance of the
systems. To this end, we compare the import, filtering, and aggregation perfor-
mance using simple queries.

9.3.1 Data Import
The first step for most of the systems is to import the data. Given the location
of a JSON file, the systems import the data into their internal data structures.
Only jq does not require an import step, as it operates directly on the JSON file.
In this experiment, we measure the time it takes to import different datasets
into the systems. But for all future experiments, we excluded the import time
from the query time, as it is not part of the query execution and can be done
once for a dataset.

To measure the import time, we use the following queries. For JODA a single
import query in the form of LOAD X FROM FILE "..." LINESEPARATED is used.
This query parses the whole dataset and stores it in-memory using an internal
representation. For Spark we use the spark.read.json function to read the
dataset into a DataFrame. In PostgreSQL we first create an unlogged table
with the json column type and then import the data using the COPY command.
MongoDB uses the mongoimport command to import the data into a collection.

2https://files.pushshift.io/reddit/comments/

108

https://files.pushshift.io/reddit/comments/

Figure 9.1 shows the import times for the different datasets in all systems except
jq. As we can see JODA is consistently the fastest system, with Spark following
closely behind. PostgreSQL with the json column type is significantly slower
than either JODA or Spark. With the JSONB column type, this difference
becomes even more pronounced, as the data is additionally decomposed into
the binary format. The slowest system is MongoDB. For the Twitter dataset,
the difference between MongoDB and PostgreSQL with the JSONB format is
not significant. But for the other datasets, MongoDB is up to 5 times slower.

While all three datasets have the same size on disk, the Twitter dataset is
significantly smaller than the other two datasets when counting the number of
documents. For most systems this difference results in approximately the twice
the import time. But MongoDB is significantly slower, which suggests a high
dependency on the number of documents for its runtime. Interestingly, as only
system, the import time of PostgreSQL reduces for both column types for the
larger datasets. While Reddit is a dataset with fixed schema, and NoBench has
a sparse schema with low nesting, Twitter is a deeply nested dataset with a
dynamic schema. PostgreSQL seems to struggle with this kind of data.

Generally, the evaluated systems can be clearly categorized into two groups.
On one hand, there is JODA and Spark which are data processors without
persistent database capabilities. On the other hand, there is PostgreSQL and
MongoDB which are full-fledged databases. The performance of both groups is
very different, as the database systems are optimized for different use cases.

9.3.2 Filter & Export
After evaluating the import performance, we evaluate basic filter and export
queries. We create a straightforward filter query for each dataset and let the
system export the result back to a JSON file. For the Twitter dataset, we keep
only tweets with an even ID. We do the same for the Reddit and NoBench
datasets, but instead of using an ID, we use the retrieved_on field and num
fields, respectively. The query results are written back to a file on a mounted
RAM disk to reduce the impact of disk I/O on the results. The RAM disk
is directly mounted into the docker container. For JODA, we use the STORE
AS FILE command to write the result to a file, while jq pipes the result to a
file. We use the mongoexport command with the -q flag to export the result of
the MongoDB query. For Spark, we use the write.json function to write the
result. In this case, the result is not written to a single file but to a directory
containing multiple files. For PostgreSQL, we use the COPY command.

Figure 9.2 shows the runtime of the filter and export queries for all systems,
excluding the time required to import the data. As we can see, JODA is the
fastest system, closely followed by Spark. Then follows PostgreSQL with the
JSON datatype, which is significantly slower than JODA. With the JSONB
datatype, the query needs even more time. Then follow MongoDB and jq, which
are significantly slower than the other systems. But comparing the results jq
with the other systems is not fair, as jq always includes the import time in
its runtime. Therefore, we also include the import time of the other systems
in Figure 9.3. With import included, MongoDB is by far the slowest of all
evaluated systems. The execution time of PostgreSQL with the JSONB column

109

Twitter Reddit NoBench
0

200

400

600

800

9.9 11.9 10.5

530.6

434.6
474.6

78.2 82.2 71.8
133.9

84.8 79.4
19.6 15.6 45.5

791.9

599.6 601.1

Dataset

R
un

tim
e

in
se

co
nd

s

JODA MongoDB PostgreSQL PostgreSQL(JSONB) Spark jq

Figure 9.2: Runtime of filter and export queries (excluding import) in seconds

Twitter Reddit NoBench
0

1,000

2,000

18.8 27.2 24.1

1,164.2

2,467.6

2,143.5

364.1
215.8 186.3

684.6
466.8 428.4

38.6 39.3 95.9

791.9
599.6 601.1

Dataset

R
un

tim
e

in
se

co
nd

s

JODA MongoDB PostgreSQL PostgreSQL(JSONB) Spark jq

Figure 9.3: Runtime of filter and export queries (including import) in seconds

110

Twitter Reddit NoBench
0

200

400

0.9 2.6 1.812
33.1

56.7
79.5 69.5 66.7

14.1 11.3 6.45.4 5.1 4.5

374.4

498.4
451.2

Dataset

R
un

tim
e

in
se

co
nd

s

JODA MongoDB PostgreSQL PostgreSQL(JSONB) Spark jq

Figure 9.4: Runtime of aggregation (excluding import) in seconds

is now closer to the runtime of jq. Of course, if more than a single query is
executed, the import time is amortized and the difference between jq and the
other systems will be more significant. JODA and Spark remain the fastest
systems, with JODA being slightly faster than Spark. The difference between
these two systems is even more significant for the NoBench dataset. The sparse
nature of the dataset could be the reason for this difference, as Spark converted
each document to the same schema, which now needs to be evaluated for null
values at export. In contrast, JODA exports the documents as they are.

Generally, our experiments show that the query performance of the JSONB
datatype is much faster than the JSON datatype. In this experiment, the worse
performance of the JSON datatype is due to the fact that the data is exported,
and the documents have to be reconstructed from the decomposed JSONB col-
umn. The JSON column type is already stored in textual representation and
can simply be written.

9.3.3 Aggregation
To test the performance of the aggregation, we use the previously imported
datasets and perform a straightforward aggregation on the data. For the Twitter
dataset, we calculate the average of the /user/friends_count attribute, which
exists in ∼ 80% of all documents and is of type int. For NoBench we calculate
the count of the /sparse_100 attribute, which is one of the sparse columns and
only exists in 1% of all documents. Lastly, for the Reddit dataset, we calculate
the minimum of the /retrieved_on attribute, which exists in all documents
and is an integer timestamp.

111

Twitter Reddit NoBench
0

1,000

2,000

10 19 16

647

2,067

1,704

371
202 175

580
389 350

25 29 56

374
498 451

Dataset

R
un

tim
e

in
se

co
nd

s

JODA MongoDB PostgreSQL PostgreSQL(JSONB) Spark jq

Figure 9.5: Runtime of aggregation (including import) in seconds

The results are shown in Figure 9.4. As we can see, JODA is again the fastest
system for all three datasets, closely followed by Spark. For the Reddit and
NoBench datasets, PostgreSQL with the JSONB datatype is only slightly slower
than Spark, while the remaining systems are significantly slower. But for the
Twitter dataset, MongoDB is faster than PostgreSQL with the JSONB datatype,
while still taking more than twice as long as Spark. PostgreSQL without the
JSONB datatype is significantly slower than the other systems, except for jq,
which required by far the longest time. As in the experiments before, we also
include the import time in Figure 9.5. Here we can see, that for one-off queries,
jq may actually be better suited than MongoDB, and in the case of the Twitter
dataset even PostgreSQL with the JSONB datatype. With import included,
MongoDB is the slowest system for all datasets. We can clearly see that for
MongoDB the number of documents to parse, evaluate, and aggregate has a
significant impact on the runtime. The Twitter dataset has only 2.7 million
documents, of which 2.2 million are aggregated, while the NoBench dataset has
16.7 million documents, of which only 167 000 are aggregated and the Reddit
dataset has 18.1 million documents, of which all are aggregated. This is reflected
in the runtime of most systems, but the impact is especially significant for
MongoDB.

9.4 Explorative Workloads
In this section, we use the BETZE benchmark generator (see Chapter 8) to gen-
erate explorative query workloads to evaluate the performance of the systems.
This gives us a better understanding of the performance of the systems in a
more realistic exploratory scenario.

9.4.1 Scalability
To test the scalability of the systems in regards to number of CPU threads and
dataset size we generated one fixed BETZE session and only modify the input.
In these experiments, we only use PostgreSQL with the JSONB column, as the
previous experiments showed that the query evaluation time is the fastest of
the two PostgreSQL options. We used the default (intermediate) preset, with a

112

0 10 20 30 40 50 60 70
0

2,000

4,000

6,000

CPU cores

R
un

tim
e

in
se

co
nd

s

w import w/o import JODA MongoDB
PostgreSQL Spark jq

Figure 9.6: Runtime of different systems (in seconds) depending on usable CPU
threads

seed of 1 and default settings, to generate one benchmark session. The JODA
queries of the session can be found in Appendix C. We double the number
of CPU threads between each experiment and calculated the average session
runtime of five executions. Figure 9.6 shows the results of these experiments.
As the difference between the runtimes of jq and MongoDB in comparison to
the other systems is too large, we also show the results without these systems
in Figure 9.7.

jq is completely stable and does not depend on the number of CPU cores, as it
only uses one thread. PostgreSQL is also very stable after at least 4 cores. For
MongoDB, the query evaluation is not affected by the number of CPU cores,
but the import step is. Import times reduce significantly up to 16 cores, but do
not improve further afterward. Spark and JODA are impacted the most by the
number of CPU cores, as both systems make use of all available cores by design.
The general order of the systems is the same as in the previous preliminary
experiments, where MongoDB and jq are the slowest systems by far. For a
larger number of CPU cores, JODA is the fastest system, followed by Spark and
PostgreSQL. But for less than 8 cores, PostgreSQL is even faster than Spark.

To evaluate the scalability of the systems in regard to the dataset size, we
generate multiple NoBench datasets. Figure 9.8 shows the performance of a
default session with seed 123 when executed on a NoBench dataset with x
documents. Again, Figure 9.9 shows the same results without MongoDB and
jq. The shown document counts correspond to approximate dataset sizes of
5.5MB, 55MB, 550MB, and 5.5GB respectively.

As we can see, JODA is the most stable system and generally the fastest for
increasing dataset sizes. Again, jq and MongoDB are the slowest systems, but
in this experiment jq is slightly faster than MongoDB with the import step
included. For PostgreSQL, the import of the JSON documents takes multiple
times longer than the evaluation of the whole session. The overall order of the
performance of the system remains unchanged from the previous experiments.

113

0 10 20 30 40 50 60 70
0

500

1,000

1,500

CPU cores

R
un

tim
e

in
se

co
nd

s

w import w/o import JODA PostgreSQL
Spark

Figure 9.7: Runtime of different systems (in seconds) depending on usable CPU
threads. MongoDB and jq excluded.

10k 100k 1M 10M
0

1,000

2,000

3,000

Documents

R
un

tim
e

in
se

co
nd

s

w import w/o import JODA MongoDB
PostgreSQL Spark jq

Figure 9.8: Runtime of different systems (in seconds) depending on document
count, using the NoBench dataset

10k 100k 1M 10M
0

100

200

Documents

R
un

tim
e

in
se

co
nd

s

w import w/o import JODA PostgreSQL
Spark

Figure 9.9: Runtime of different systems (in seconds) depending on document
count, using the NoBench dataset. MongoDB and jq excluded

114

Twitter NoBench Reddit
Config N I E N I E N I E
JODA 12 s 11 s 10 s 21 s 18 s 18 s 32 s 24 s 21 s
Spark 3 m 1 m 59 s 3 m 2 m 1 m 2 m 1 m 50 s
PSQL 20 m 13 m 13 m 10 m 7 m 73 m 12 m 9 m 7 m
Mongo 82 m 39 m 28 m - 85 m 70 m - - 111 m
JQ - 84 m 47 m - 81 m 43 m - 92 m 46 m

Table 9.1: Session execution time with import of data included for multiple
presets and configurations with seed 1

9.4.2 Exploration
To further compare all currently supported systems, we created one session
for each preset with a seed of 1 for each of the three datasets. To reduce
the impact of disk operations on the benchmark, we did not display or export
the result documents, but only executed the query and counted the number of
results. We tried to prevent the usage of included aggregation functionality of
the systems as we want to compare the performance of the query evaluation
only. For JODA, we used the log to extract the number of result documents.
The output of jq was piped to the wc -l command to count the number of lines.
For MongoDB, Spark, and PostgreSQL, we used the counting functionality of
the cursor returned by the query.

Table 9.1 shows the execution times of the complete sessions for the three
datasets. The configurations N, I, and E correspond to the novice, interme-
diate, and expert presets of BETZE. As we can see, for the novice preset, which
consists of 20 queries, jq did never finish the execution within the timeout of two
hours. The same applies for MongoDB with the NoBench and Reddit datasets.
Interestingly, for Reddit dataset, MongoDB did also not finish the execution of
the intermediate preset within the timeout, while jq did. The Reddit dataset is
the largest of the three measured by number of documents. As noted in earlier
experiments, the runtime of MongoDB seems highly dependent on the dataset
size. Generally, the ranking of the systems is the same as in the previous exper-
iments, with JODA being the fastest system, followed closely by Spark. Then
comes PostgreSQL and MongoDB, with jq being the slowest system. Only for
the Reddit dataset, the positions of PostgreSQL and MongoDB are swapped.

For every exploration session, JODA finishes the execution in less than one
minute. The average waiting time for a single query within the exploration
sessions is ∼ 2 seconds. This is a significant improvement over the waiting
times of the other systems, which range between 12 seconds and 22 minutes.

Overall, as we can see, using jq or MongoDB to explore large sets of JSON files
is unfeasible. This result is expected, as jq does not import the files into an opti-
mized format but re-reads the input dataset from the filesystem for each query,
which causes a substantial I/O overhead. Additionally, MongoDB, PostgreSQL,
and jq only use one CPU core, as mentioned earlier. Out of the tested systems,
only JODA and Spark can produce tolerable waiting times for interactive data
exploration on semi-structured data. But the waiting times of JODA are still
significantly lower (up to 12 times) than those of Spark.

115

116

Chapter 10

Conclusion & Outlook

In this dissertation, we presented JODA, a novel data processor for JSON data.
It is designed to be fast, flexible, and easy to use. We explained the design
decisions and the architecture of JODA and gave an overview of the implemented
features. An extensive introduction to the straightforward query language and
the query execution engine was given. We also showed how the CLI, the web
API, and further supporting tools can be used to interact with JODA.

Delta trees were introduced as a novel data structure for storing the results of
an iterative query. We explained how the deltas of a transformation step can
be efficiently stored for a single document and further optimized the approach
with virtual object indices. A close evaluation showed that the performance
improvements of delta trees are significant for iterative queries.

To further improve the performance of JODA we introduced adaptive indexing.
With each query on a collection, JODA builds structure and content indices that
iteratively improve the performance of the filter step of subsequent queries. We
showed that the structure index, as well as the content indices for string and
numerical values, are very effective for suitable query loads, while only having
a small overhead for other query loads.

After improving the performance of JODA we extended the system and query
language with support for user-defined functions by decomposing JODA into
modules. Support for user-defined import and export modules was added to
allow the user to integrate JODA into their custom workflow. User-defined
functions allow the user to easily extend the query language with custom func-
tionality. We also added support for user-defined indices that can be specialized
for specific workloads or to quickly prototype new ideas. The performance of
these modules was on par if not better than a complete implementation in the
module programming language, thanks to the architecture of JODA.

To better understand the performance of JODA and other data processors in
exploratory workloads, we developed BETZE, a benchmark generator for JSON
data processors. It analyses a JSON dataset and creates a query workload that
is representative of a data scientist exploring this dataset for the first time.

In a comprehensive evaluation, we compared JODA to other data processors
for JSON data. We showed that JODA is significantly faster than other data
processors while also being easy to deploy and use. Overall JODA became a
very versatile tool for data scientists and developers to explore, process, and
analyze JSON data. It fills the noted gap of existing systems for explorative
workloads and is a valuable addition to the data processing ecosystem.

117

10.1 Outlook
During the development of JODA great care has been taken to optimally sup-
port vertical scaling to all sizes of computing resources. However, horizontal
scaling is an important topic for cloud- and server-based data processors. The
multithreaded architecture of JODA and usage of independent containers for
query evaluation lend themselves well to horizontal scaling. In a future version,
we plan to support horizontal scaling by registering external instances to a cen-
tral JODA instance. This main instance will then distribute the queries to all
registered instances, collect the results, and return the aggregated result set.
Aggregating queries can also be easily implemented, as currently JODA already
evaluates aggregations in parallel and merges the result in a last post-processing
step. The sub-instances only have to return the intermediate results of the ag-
gregation. JODA already supports running in server mode with an integrated
web API. This web API would need to be extended to support inter-server
communication like registering instances, distributing queries, and returning in-
termediate aggregation results. Each instance would then execute the query
on their local data. In another iteration, automatic data distribution between
instances depending on load could be implemented. This would allow to auto-
matically distribute the data to the instances with the least load. This would
also allow us to scale the instances up and down depending on the expected
workload.

118

Appendices

119

Appendix A

List of Functions

In the following, we list all currently implemented functions that can be used in
the JODA query language. They are grouped by their functionality and give a
brief description of their purpose. Additionally, the online documentation1 also
contains an up-to-date list of all functions with examples.

Mathematical

ABS (<x>) Calculates the absolute value of a number
ACOS (<x>) Calculates the arccosine of the given number
ASIN (<x>) Calculates the arcsine of the given number
ATAN (<x>) Calculates the arctangent of the given number
ATAN2 (<x>, <y>) Calculates the ATAN2 of the given number
CEIL (<x>) Calculates the ceiling of the given (floating point) number
COS (<x>) Calculates the cosine of the given number
DEGREES (<x>) Converts the given radians to degrees
DIV (<x>, <y>) Divides x by y
FLOOR (<x>) Calculates the floor of the given (floating point) number
MOD (<x>, <y>) Returns the remainder of the division of ‘x‘ by ‘y‘
PI () Constant of the number pi.
POW (<x>, <y>) Calculates ‘x‘ to the power of ‘y‘
PROD (<x>, <y>) Multiplies ‘x‘ with ‘y‘
RADIANS (<x>) Converts the given degrees to radians
ROUND (<x>) Rounds the given (floating point) number to the nearest in-

teger number
SIN (<x>) Calculates the sine of the given number
SQRT (<x>) Calculates the square root of ‘x‘
SUB (<x>, <y>) Subtracts ‘x‘ from ‘y‘
SUM (<x>, <y>) Calculates the sum of ‘x‘ and ‘y‘
TAN (<x>) Calculates the tangent of x
TRUNC (<x>) Truncates the floating point number

Cast

FLOAT (<x>) Casts the given value to floating point
INT (<x>) Casts/Parses the given value to integer
STRING (<x>, (<jsonify>)) Converts an atomic value to their string repre-

sentation
1https://joda-explore.github.io/JODA/functions/

121

https://joda-explore.github.io/JODA/functions/

Iterator

ALL (<iteratable>, <predicate>) Checks if the second parameter is true for
all children of the first parameter.

ANY (<iteratable>, <predicate>) Checks if the second parameter is true for
any children of the first parameter.

FILTER (<iteratable>, <predicate>) Filters an array with a given predicate.
MAP (<iteratable>, <map function>) Maps array children into another value

Boolean Algebra

AND (<lhs>, <rhs>) Combines the two parameters with the Boolean AND
operation.

IMPLICATION (<lhs>, <rhs>) Combines the two parameters with the
Boolean implication (->) operation.

NOT (<x>) Negates the Boolean value
OR (<lhs>, <rhs>) Combines the two parameters with the Boolean OR op-

eration.
XOR (<lhs>, <rhs>) Combines the two parameters with the Boolean exclu-

sive or (XOR) operation.

String

CONCAT (<str1>, <str2>) Concatenates two string values
FINDSTR (<str>, <substr>) Returns the position of the second string in

the first string, or -1 if it is not contained.
LEN (<str>) Returns the length of the passed string
LOWER (<str>) Converts the given string to lower case
LTRIM (<str>) Trims all whitespace to the left of the string
REGEX (<str>, <regexp>) Checks whether ‘str‘ matches the regular expres-

sion ‘regexp‘
REGEX_EXTRACT (<str>, <regexp>) Matches all ‘regexp‘ in ‘str‘ and

returns them.
REGEX_EXTRACT_FIRST (<str>, <regexp>) Matches first ‘regexp‘

in ‘str‘ and returns it.
REGEX_REPLACE (<str>, <regexp>, <replace>) Replaces all matches

of ‘regexp‘ in ‘str‘ with ‘replace‘
RTRIM (<str>) Trims all whitespace to the right of the string
SCONTAINS (<str>, <substr>) Checks whether ‘str‘ contains ‘substr‘
SPLIT (<str>, <delimiter>) Splits a given string by the supplied delimiter
STARTSWITH (<str>, <substr>) Checks whether ‘str‘ starts with ‘substr‘
SUBSTR (<str>, <start>, (<length>)) Returns a substring of ‘str‘ from

‘start‘ with ‘end‘ characters.
UPPER (<str>) Converts the given string to upper case

122

Comparison

EQUAL (<lhs>, <rhs>) Checks if the given parameters have the same values.
GREATER (<lhs>, <rhs>) Checks if ‘lhs‘ is greater than ‘rhs‘.
GREATEREQ (<lhs>, <rhs>) Checks if ‘lhs‘ is greater or equal than ‘rhs‘.
LESS (<lhs>, <rhs>) Checks if ‘lhs‘ is less than ‘rhs‘.
LESSEQ (<lhs>, <rhs>) Checks if ‘lhs‘ is less or equal than ‘rhs‘.
UNEQUAL (<lhs>, <rhs>) Checks if the given parameters do not have the

same values.

Type

EXISTS (<x>) Checks if the given attribute exists.
FALSY (<x>) Checks whether the given value is falsy.
ISARRAY (<x>) Checks whether the attribute is of type array
ISBOOL (<x>) Checks whether the attribute is of type Bool
ISNULL (<x>) Checks whether the attribute is of type null
ISNUMBER (<x>) Checks whether the attribute is of numerical type
ISOBJECT (<x>) Checks whether the attribute is of type object
ISSTRING (<x>) Checks whether the attribute is of type string
TRUTHY (<x>) Checks whether the given value is truthy.
TYPE () Returns the type of the given attribute

Metadata

FILENAME () Returns the filename (with full path), or "[PROJECTION]" if
the document was projected

FILEPOSEND () Returns the end position of the document within the file.
FILEPOSSTART () Returns the starting position of the document within

the file.
ID () Returns the unique internal ID of the document.
NOW () Returns the current UNIX timestamp in milliseconds

Misc

HASH (<x>) Computes a hash value of the given value
SEQNUM () Returns a sequential number for every document in the collection

Array

IN (<element>, <array>) Checks whether the ‘element‘ is contained in the
‘array‘

SIZE (<arr>) Returns the size of the array

Object

LISTATTRIBUTES (<obj>) Returns a list of all member names in the given
object

MEMCOUNT (<obj>) Returns the number of members in the object

123

124

Appendix B

List of Tasks

In the following, we list all tasks that are currently implemented in JODA. They
are grouped by their functionality and give a brief description of their purpose.

Parsing

ListFile Output: File; Single threaded;
Checks if a given file exists and passes on a system path. Also exists as a
version for line-separated files.

ListFiles Output: File; Single threaded;
Iterates all files in a given directory and passes on the system paths. Also
exists as a version for line-separated files.

FileOpener Input: File; Output: Stream; Single threaded;
Opens a file and passes on a character stream. Also exists as a version for
line-separated files.

URLStream Output: Stream; Synchronous;
Requests a URL and passes on the response as a character stream.

InStream Output: Stream; Synchronous;
Passes on the input character stream of JODA (e.g.: piped JSON text).

LSFileMapper Input: File; Output: String; Single threaded;
Uses mmap to map a file into memory, scan for the newline character, split
lines into strings, and pass them on.

LSStreamReader Input: Stream; Output: String; Single threaded;
Reads character streams and scans for the newline character. Splits lines
into strings and passes them on.

StreamParser Input: Stream; Output: Container; Multi threaded;
Reads and parses character streams to JSON documents. The documents
are packed into containers and passed on.

StringParser Input: String; Output: Container; Multi threaded;
Parses strings to JSON documents. The documents are packed into con-
tainers and passed on.

Storage

StorageSender Output: Container; Synchronous;
Sends all containers in a collection.

StorageReceiver Input: Container; Synchronous;
Stores all received containers in a collection.

StorageBuffer Input: Container; Output: Container; Synchronous;
First sends all containers in a collection. Then stores all received contain-
ers in the same collection and also passes them on.

125

Processing

Choose Input: Container; Output: Container; Multi threaded;
Filters containers with a given CHOOSE predicate. If the filtered container
is empty it is discarded.

As Input: Container; Output: Container; Multi threaded;
Transforms containers with the given AS tuples.

Agg Input: Container; Output: Aggregator; Multi threaded;
Aggregates containers with the given AGG aggregation functions. Sends
the intermediate results after all containers have been processed.

AggMerge Input: Aggregator; Output: Container; Single threaded;
Merges all intermediate aggregation results into a single document and
passes it on in a new container.

WindowAgg Input: Container; Output: Container; Single threaded;
Special version of Agg. Given an additional window expression, it aggre-
gates the containers in the window and passes on the aggregation result
in a new container.

Joins & Groups

LeftJoin Input: Container; Synchronous;
Stores all received containers in an internal list for later join processing.

RightJoin Input: Container; Output: Container; Multi Threaded;
Joins every received container with every stored container of the previous
LeftJoin task and returns the result as a new container.

GroupStore Input: Container; Synchronous;
Groups all documents depending on a group predicate and stores the result
in an internal representation either in-memory or as files.

MemoryGroup Output: Container; Single threaded;
Fetches the in-memory grouped documents, passes them on as containers.
The internal group representation is then removed.

FileGroupList Output: File; Single threaded;
Iterates all group files belonging to the current grouping operation and
passes them on.

FileGroupParse Input: File; Output: Container; Multi threaded;
Reads and parses the grouping files and sends the resulting documents as
containers.

Optimization

ChooseAs Input: Container; Output: Container; Multi Threaded;
Combination of Choose and As tasks in a tight loop.

ChooseAgg Input: Container; Output: Aggregator; Multi Threaded;
Combination of Choose and Agg tasks in a tight loop.

ChooseAsAgg Input: Container; Output: Aggregator; Multi Threaded;
Combination of Choose, As, and Agg tasks in a tight loop.

126

Extension

PythonImport Output: Container; Single threaded;
Executes a given Python import module, packs the result documents into
containers, and passes them on.

PythonExport Input: Container; Single threaded;
Iterates over each document in the passed containers and passes them to
the given Python export module.

127

128

Appendix C

BETZE Query Session for
Scalability
LOAD Data
CHOOSE (((EXISTS (’/ sparse_462 ’) || EXISTS (’/ sparse_037 ’)) ||

ISSTRING (’/ sparse_776 ’)) || ’/bool ’ == false)

LOAD Data
CHOOSE ((((EXISTS (’/ sparse_462 ’) || EXISTS (’/ sparse_037 ’)) ||

ISSTRING (’/ sparse_776 ’)) || ’/bool ’ == false) && (((ISSTRING (’/
sparse_248 ’) || ISSTRING (’/ sparse_149 ’)) || EXISTS (’/ sparse_484
’)) || ’/ nested_obj /num ’ <= 1980582.508197))

LOAD Data
CHOOSE (((((EXISTS (’/ sparse_462 ’) || EXISTS (’/ sparse_037 ’)) ||

ISSTRING (’/ sparse_776 ’)) || ’/bool ’ == false) && (((ISSTRING (’/
sparse_248 ’) || ISSTRING (’/ sparse_149 ’)) || EXISTS (’/ sparse_484
’)) || ’/ nested_obj /num ’ <= 1980582.508197)) && (((ISSTRING (’/
sparse_387 ’) || EXISTS (’/ sparse_060 ’)) || EXISTS (’/ sparse_980 ’)
) || ’/dyn1 ’ <= 7586826.435617))

LOAD Data
CHOOSE (((((EXISTS (’/ sparse_462 ’) || EXISTS (’/ sparse_037 ’)) ||

ISSTRING (’/ sparse_776 ’)) || ’/bool ’ == false) && (((ISSTRING (’/
sparse_248 ’) || ISSTRING (’/ sparse_149 ’)) || EXISTS (’/ sparse_484
’)) || ’/ nested_obj /num ’ <= 1980582.508197)) && (EXISTS (’/
sparse_884 ’) || ISSTRING (’/dyn2 ’)))

LOAD Data
CHOOSE ((((((EXISTS (’/ sparse_462 ’) || EXISTS (’/ sparse_037 ’)) ||

ISSTRING (’/ sparse_776 ’)) || ’/bool ’ == false) && (((ISSTRING (’/
sparse_248 ’) || ISSTRING (’/ sparse_149 ’)) || EXISTS (’/ sparse_484
’)) || ’/ nested_obj /num ’ <= 1980582.508197)) && (EXISTS (’/
sparse_884 ’) || ISSTRING (’/dyn2 ’))) && (((ISSTRING (’/ sparse_483
’) || ISSTRING (’/ sparse_242 ’)) || ISSTRING (’/ sparse_540 ’)) ||
EXISTS (’/ sparse_143 ’)))

LOAD Data
CHOOSE (((((((EXISTS (’/ sparse_462 ’) || EXISTS (’/ sparse_037 ’)) ||

ISSTRING (’/ sparse_776 ’)) || ’/bool ’ == false) && (((ISSTRING (’/
sparse_248 ’) || ISSTRING (’/ sparse_149 ’)) || EXISTS (’/ sparse_484
’)) || ’/ nested_obj /num ’ <= 1980582.508197)) && (EXISTS (’/
sparse_884 ’) || ISSTRING (’/dyn2 ’))) && (((ISSTRING (’/ sparse_483
’) || ISSTRING (’/ sparse_242 ’)) || ISSTRING (’/ sparse_540 ’)) ||
EXISTS (’/ sparse_143 ’))) && EXISTS (’/ sparse_248 ’))

LOAD Data
CHOOSE ((((((((EXISTS (’/ sparse_462 ’) || EXISTS (’/ sparse_037 ’)) ||

ISSTRING (’/ sparse_776 ’)) || ’/bool ’ == false) && (((ISSTRING (’/
sparse_248 ’) || ISSTRING (’/ sparse_149 ’)) || EXISTS (’/ sparse_484
’)) || ’/ nested_obj /num ’ <= 1980582.508197)) && (EXISTS (’/
sparse_884 ’) || ISSTRING (’/dyn2 ’))) && (((ISSTRING (’/ sparse_483
’) || ISSTRING (’/ sparse_242 ’)) || ISSTRING (’/ sparse_540 ’)) ||
EXISTS (’/ sparse_143 ’))) && EXISTS (’/ sparse_248 ’)) && ’/
nested_obj /num ’ <= 3031986.344638)

129

LOAD Data
CHOOSE (((((((((EXISTS (’/ sparse_462 ’) || EXISTS (’/ sparse_037 ’)) ||

ISSTRING (’/ sparse_776 ’)) || ’/bool ’ == false) && (((ISSTRING (’/
sparse_248 ’) || ISSTRING (’/ sparse_149 ’)) || EXISTS (’/ sparse_484
’)) || ’/ nested_obj /num ’ <= 1980582.508197)) && (EXISTS (’/
sparse_884 ’) || ISSTRING (’/dyn2 ’))) && (((ISSTRING (’/ sparse_483
’) || ISSTRING (’/ sparse_242 ’)) || ISSTRING (’/ sparse_540 ’)) ||
EXISTS (’/ sparse_143 ’))) && EXISTS (’/ sparse_248 ’)) && ’/
nested_obj /num ’ <= 3031986.344638) && (((’/ nested_obj /num ’ ==
242063 || ’/dyn1 ’ == 7510913) || ’/ nested_obj /num ’ == 1858662)
|| ’/ thousandth ’ <= 746.269983))

LOAD Data
CHOOSE ((((((((((EXISTS (’/ sparse_462 ’) || EXISTS (’/ sparse_037 ’)) ||

ISSTRING (’/ sparse_776 ’)) || ’/bool ’ == false) && (((ISSTRING (’
/ sparse_248 ’) || ISSTRING (’/ sparse_149 ’)) || EXISTS (’/
sparse_484 ’)) || ’/ nested_obj /num ’ <= 1980582.508197)) && (
EXISTS (’/ sparse_884 ’) || ISSTRING (’/dyn2 ’))) && (((ISSTRING (’/
sparse_483 ’) || ISSTRING (’/ sparse_242 ’)) || ISSTRING (’/
sparse_540 ’)) || EXISTS (’/ sparse_143 ’))) && EXISTS (’/ sparse_248
’)) && ’/ nested_obj /num ’ <= 3031986.344638) && (((’/ nested_obj /
num ’ == 242063 || ’/dyn1 ’ == 7510913) || ’/ nested_obj /num ’ ==
1858662) || ’/ thousandth ’ <= 746.269983)) && (’/ nested_obj /num ’

== 2308517 || ’/ thousandth ’ >= 490.820768))

LOAD Data
CHOOSE (((((((((((EXISTS (’/ sparse_462 ’) || EXISTS (’/ sparse_037 ’))

|| ISSTRING (’/ sparse_776 ’)) || ’/bool ’ == false) && (((ISSTRING
(’/ sparse_248 ’) || ISSTRING (’/ sparse_149 ’)) || EXISTS (’/
sparse_484 ’)) || ’/ nested_obj /num ’ <= 1980582.508197)) && (
EXISTS (’/ sparse_884 ’) || ISSTRING (’/dyn2 ’))) && (((ISSTRING (’/
sparse_483 ’) || ISSTRING (’/ sparse_242 ’)) || ISSTRING (’/
sparse_540 ’)) || EXISTS (’/ sparse_143 ’))) && EXISTS (’/ sparse_248
’)) && ’/ nested_obj /num ’ <= 3031986.344638) && (((’/ nested_obj /
num ’ == 242063 || ’/dyn1 ’ == 7510913) || ’/ nested_obj /num ’ ==
1858662) || ’/ thousandth ’ <= 746.269983)) && (’/ nested_obj /num ’

== 2308517 || ’/ thousandth ’ >= 490.820768)) && (((’/num ’ ==
6121896 || ’/dyn1 ’ <= 5211996.845157) || ’/ thousandth ’ <=
701.459958) && ’/ nested_obj /num ’ <= 1726982.896982))

Listing C.1: BETZE exploration session used in scalability experiments in
Chapter 9.4.1

130

List of Figures

2.1 Example RapidJSON workflow. Taken from [8]. 7

4.1 Overview over the JODA system 21
4.2 JODA query syntax . 23
4.3 Syntax of import clause . 24
4.4 Syntax of join condition . 25
4.5 Syntax of store destination . 28
4.6 Overview of the storage hierarchy of JODA 29
4.7 Example tasks connected by two queues 31
4.8 Transitions between task instance states 32
4.9 Pipeline created by query in Listing 4.7 33
4.10 Optimization rule FileMap . 35
4.11 Optimization rule ChooseAsAgg 35
4.12 Multi-query optimization example pipelines 36
4.13 Screenshot of the web interface start page. 38
4.14 Screenshot of the query statistics page. 39

5.1 Example of base document with a delta tree 42
5.2 Simultaneous traversal . 46
5.3 Object index . 48
5.4 Runtime of different execution methods (in s) 50
5.5 Memory consumption (GB) of different execution methods 51
5.6 Runtime of queries for different configurations (in s) 53
5.7 Memory consumption (GB) of queries for different configurations 54

6.1 Predicate execution . 59
6.2 Example query predicate . 60
6.3 Example lazy-evaluation tree . 61
6.4 Partial union tree with document sets 62
6.5 Adaptive trie example . 64
6.6 Root node with a value range of [0, 999] and k = 10 65
6.7 Index with a value range of [0, 999], k = 10, and t = 2, after a split 65
6.8 Structure index benchmark results 68
6.9 Adaptive trie filter time . 69
6.10 Adaptive trie query response time 70
6.11 Histogram index filter time . 70
6.12 Benchmark results of mixed-predicate queries 71

7.1 A sample JODA pipeline using user-defined modules 74
7.2 Runtime comparison of values . 82

8.1 Data exploration example . 88
8.2 Possible exploration session in the random explorer model 90
8.3 Example user sessions . 92
8.4 The web interface of BETZE . 100
8.5 Trends in execution time for each user preset (20 queries for all

users) . 102
8.6 Execution time (in seconds) of 30 sessions per user configuration 103

131

8.7 Aggregated execution times (in seconds) of n = 10 queries with
varying jump and backtrace probabilities 104

9.1 Runtime of import step in seconds 108
9.2 Runtime of filter and export queries (excluding import) in seconds110
9.3 Runtime of filter and export queries (including import) in seconds 110
9.4 Runtime of aggregation (excluding import) in seconds 111
9.5 Runtime of aggregation (including import) in seconds 112
9.6 Runtime of different systems (in seconds) depending on usable

CPU threads . 113
9.7 Runtime of different systems (in seconds) depending on usable

CPU threads. MongoDB and jq excluded. 114
9.8 Runtime of different systems (in seconds) depending on document

count, using the NoBench dataset 114
9.9 Runtime of different systems (in seconds) depending on document

count, using the NoBench dataset. MongoDB and jq excluded . . 114

132

List of Algorithms

1 Simultaneous traversal algorithm 46
2 Materialize_P() . 47

3 Union tree filter predicate evaluation 62

List of Tables

5.1 Cost model comparison (in ∆MB) 52
5.2 Cost model comparison (in ∆MB) 53

6.1 Example mapping of document indices to their string values . . . 63

8.1 Default user configurations . 90
8.2 Distribution of path depths in the original documents and the

generated queries . 105

9.1 Session execution time with import of data included for multiple
presets and configurations with seed 1 115

Listings

2.1 Example JSON document with different data types 5
4.1 Example query calculating the average popularity by language

for all verified users with a minimum followers count 22
4.2 Example queries showcasing different LOAD usecases 25
4.3 Example queries showcasing different JOIN usecases 26
4.4 Example queries showcasing different CHOOSE usecases 27
4.5 Example queries showcasing different AS usecases 27
4.6 Example queries showcasing different AGG usecases 28
4.7 Example JODA query loading, filtering, transforming, and stor-

ing twitter documents. 33
4.8 Three partly unrelated example queries 36
5.1 Query transforming documents in the Twitter dataset 41
5.2 Queries iteratively changing an object and reading it 50

133

5.3 Hashing user IDs in different documents 52
6.1 Structure queries on quoted Tweets 67
6.2 Different string queries on the same attribute 69
6.3 Queries with multiple index-supported predicates 71
6.4 Complex queries with supported and non-supported predicates . 72
7.1 Example JODA query using multiple user-defined modules 74
7.2 Example of a user-defined source function 77
7.3 Example of a user-defined aggregation function 77
7.4 Language Identification in Python 78
7.5 Statistics computation in Python 79
7.6 Query cache in Python . 80
7.7 Data import module interface . 81
7.8 Data export module interface . 81
7.9 Example CSV import implementation 81
7.10 JODA queries using user-defined modules 83
8.1 Example queries for each of the supported languages 94
8.2 Example analysis file . 95
8.3 Language interface . 98
8.4 Excerp of Postgres implementation 98
8.5 Excerp of MongoDB implementation 99
8.6 CLI commands to generate a session and benchmark it with all

supported systems. 100
C.1 BETZE exploration session used in scalability experiments in

Chapter 9.4.1 . 129

134

Bibliography

[1] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange
Format,” 2017. [Online]. Available: https://www.rfc-editor.org/info/
rfc8259

[2] N. Schäfer and S. Michel, “JODA: A vertically scalable, lightweight
JSON processor for big data transformations,” in 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA,
April 20-24, 2020. IEEE, 2020, pp. 1726–1729. [Online]. Available:
https://doi.org/10.1109/ICDE48307.2020.00155

[3] N. Schäfer and S. Michel, “Partially materializable delta trees for efficient
data wrangling of semi-structured contents,” in Proceedings of the 23rd
International Conference on Extending Database Technology, EDBT 2020,
Copenhagen, Denmark, March 30 - April 02, 2020, A. Bonifati, Y. Zhou,
M. A. V. Salles, A. Böhm, D. Olteanu, G. H. L. Fletcher, A. Khan,
and B. Yang, Eds. OpenProceedings.org, 2020, pp. 399–402. [Online].
Available: https://doi.org/10.5441/002/edbt.2020.42

[4] N. Schäfer and S. Michel, “Utilizing delta trees for efficient, iterative
exploration and transformation of semi-structured contents,” in 37th
IEEE International Conference on Data Engineering, ICDE 2021, Chania,
Greece, April 19-22, 2021. IEEE, 2021, pp. 1895–1900. [Online]. Available:
https://doi.org/10.1109/ICDE51399.2021.00173

[5] N. Schäfer and S. Michel, “BETZE: benchmarking data exploration
tools with (almost) zero effort,” in 38th IEEE International Conference
on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May
9-12, 2022. IEEE, 2022, pp. 2385–2398. [Online]. Available: https:
//doi.org/10.1109/ICDE53745.2022.00224

[6] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, “Extensible markup
language (XML),” World Wide Web J., vol. 2, no. 4, pp. 27–66, 1997.
[Online]. Available: http://www.w3.org/TR/WD-xml-970807

[7] P. Bryan, K. Zyp, and M. Nottingham, “Javascript object notation (json)
pointer,” Internet Requests for Comments, RFC Editor, RFC 6901, April
2013. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6901.txt

[8] Tencent Company and M. Yip. (2023) RapidJSON a fast JSON
parser/generator for c++ with both SAX/DOM style API. [Online].
Available: http://rapidjson.org/

[9] (2023, jan) jq project website. [Online]. Available: https://stedolan.github.
io/jq/

[10] (2023, jan) Postgresql project website. [Online]. Available: https:
//www.postgresql.org/

[11] Oracle Corporation. (2023, jan) Mysql. [Online]. Available: https:
//www.mysql.com/

[12] MongoDB Inc. (2021, jul) Mongodb project website. [Online]. Available:
https://www.mongodb.com/

135

https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://doi.org/10.1109/ICDE48307.2020.00155
https://doi.org/10.5441/002/edbt.2020.42
https://doi.org/10.1109/ICDE51399.2021.00173
https://doi.org/10.1109/ICDE53745.2022.00224
https://doi.org/10.1109/ICDE53745.2022.00224
http://www.w3.org/TR/WD-xml-970807
http://www.rfc-editor.org/rfc/rfc6901.txt
http://rapidjson.org/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.mysql.com/
https://www.mysql.com/
https://www.mongodb.com/

[13] A. S. Foundation. (2023) Apache Spark - unified engine for large-scale
data analytics. [Online]. Available: https://spark.apache.org/

[14] D. Durner, V. Leis, and T. Neumann, “JSON tiles: Fast analytics on
semi-structured data,” in SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20-25, 2021, G. Li,
Z. Li, S. Idreos, and D. Srivastava, Eds. ACM, 2021, pp. 445–458.
[Online]. Available: https://doi.org/10.1145/3448016.3452809

[15] D. Tahara, T. Diamond, and D. J. Abadi, “Sinew: a SQL system for
multi-structured data,” in International Conference on Management of
Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, C. E.
Dyreson, F. Li, and M. T. Özsu, Eds. ACM, 2014, pp. 815–826. [Online].
Available: https://doi.org/10.1145/2588555.2612183

[16] D. Pritchett, “BASE: an acid alternative,” ACM Queue, vol. 6, no. 3, pp.
48–55, 2008. [Online]. Available: https://doi.org/10.1145/1394127.1394128

[17] BSON. BSON - binary JSON format. [Online]. Available: http:
//bsonspec.org/

[18] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki, “Nodb:
efficient query execution on raw data files,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2012, Scottsdale, AZ, USA, May 20-24, 2012, K. S. Candan, Y. Chen,
R. T. Snodgrass, L. Gravano, and A. Fuxman, Eds. ACM, 2012, pp.
241–252. [Online]. Available: https://doi.org/10.1145/2213836.2213864

[19] K. Tai, “The tree-to-tree correction problem,” J. ACM, vol. 26, no. 3, pp.
422–433, 1979. [Online]. Available: https://doi.org/10.1145/322139.322143

[20] P. Bille, “A survey on tree edit distance and related problems,” Theor.
Comput. Sci., vol. 337, no. 1-3, pp. 217–239, 2005. [Online]. Available:
https://doi.org/10.1016/j.tcs.2004.12.030

[21] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom, “Change
detection in hierarchically structured information,” in Proceedings of
the 1996 ACM SIGMOD International Conference on Management of
Data, Montreal, Quebec, Canada, June 4-6, 1996, H. V. Jagadish and
I. S. Mumick, Eds. ACM Press, 1996, pp. 493–504. [Online]. Available:
https://doi.org/10.1145/233269.233366

[22] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet, “Change-centric
management of versions in an XML warehouse,” in VLDB 2001,
Proceedings of 27th International Conference on Very Large Data Bases,
September 11-14, 2001, Roma, Italy, P. M. G. Apers, P. Atzeni,
S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. T. Snodgrass,
Eds. Morgan Kaufmann, 2001, pp. 581–590. [Online]. Available:
http://www.vldb.org/conf/2001/P581.pdf

[23] H. Su, D. Kramer, L. Chen, K. T. Claypool, and E. A. Rundensteiner,
“XEM: managing the evolution of XML documents,” in Eleventh
International Workshop on Research Issues in Data Engineering:
Document Management for Data Intensive Business and Scientific
Applications, Heidelberg, Germany, 1-2 April 2001, K. Aberer and L. Liu,

136

https://spark.apache.org/
https://doi.org/10.1145/3448016.3452809
https://doi.org/10.1145/2588555.2612183
https://doi.org/10.1145/1394127.1394128
http://bsonspec.org/
http://bsonspec.org/
https://doi.org/10.1145/2213836.2213864
https://doi.org/10.1145/322139.322143
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1145/233269.233366
http://www.vldb.org/conf/2001/P581.pdf

Eds. IEEE Computer Society, 2001, pp. 103–110. [Online]. Available:
https://doi.org/10.1109/RIDE.2001.916497

[24] Y. Wang, D. J. DeWitt, and J. Cai, “X-diff: An effective change
detection algorithm for XML documents,” in Proceedings of the 19th
International Conference on Data Engineering, March 5-8, 2003,
Bangalore, India, U. Dayal, K. Ramamritham, and T. M. Vijayaraman,
Eds. IEEE Computer Society, 2003, pp. 519–530. [Online]. Available:
https://doi.org/10.1109/ICDE.2003.1260818

[25] P. S. Almeida, A. Shoker, and C. Baquero, “Delta state replicated data
types,” J. Parallel Distrib. Comput., vol. 111, pp. 162–173, 2018. [Online].
Available: https://doi.org/10.1016/j.jpdc.2017.08.003

[26] L. Torvalds and J. Hamano. (2010) Git: Fast version control system.
[Online]. Available: https://git-scm.com/

[27] A. Subversion. (2011) Enterprise-class centralized version control for the
masses. [Online]. Available: https://subversion.apache.org/

[28] GNU. (1998) Cvs - concurrent versions system. [Online]. Available:
https://www.nongnu.org/cvs/

[29] J. W. Hunt and M. D. MacIlroy, An algorithm for differential file compar-
ison. Bell Laboratories Murray Hill, 1976.

[30] D. Korn, J. MacDonald, J. Mogul, and K. Vo, “The vcdiff generic differenc-
ing and compression data format,” Internet Requests for Comments, RFC
Editor, RFC 3284, June 2002.

[31] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. Madden, “Materialization
strategies in a column-oriented DBMS,” in Proceedings of the 23rd
International Conference on Data Engineering, ICDE 2007, The Marmara
Hotel, Istanbul, Turkey, April 15-20, 2007, R. Chirkova, A. Dogac, M. T.
Özsu, and T. K. Sellis, Eds. IEEE Computer Society, 2007, pp. 466–475.
[Online]. Available: https://doi.org/10.1109/ICDE.2007.367892

[32] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Ramakrishnan,
“On the integration of structure indexes and inverted lists,” in Proceedings
of the ACM SIGMOD International Conference on Management of
Data, Paris, France, June 13-18, 2004, G. Weikum, A. C. König,
and S. Deßloch, Eds. ACM, 2004, pp. 779–790. [Online]. Available:
https://doi.org/10.1145/1007568.1007656

[33] C. Chung, J. Min, and K. Shim, “APEX: an adaptive path index for XML
data,” in Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, Madison, Wisconsin, USA, June 3-6, 2002, M. J.
Franklin, B. Moon, and A. Ailamaki, Eds. ACM, 2002, pp. 121–132.
[Online]. Available: https://doi.org/10.1145/564691.564706

[34] D. Shukla, S. Thota, K. Raman, M. Gajendran, A. Shah, S. Ziuzin,
K. Sundaram, M. G. Guajardo, A. Wawrzyniak, S. Boshra, R. Ferreira,
M. Nassar, M. Koltachev, J. Huang, S. Sengupta, J. J. Levandoski, and
D. B. Lomet, “Schema-agnostic indexing with azure documentdb,” Proc.

137

https://doi.org/10.1109/RIDE.2001.916497
https://doi.org/10.1109/ICDE.2003.1260818
https://doi.org/10.1016/j.jpdc.2017.08.003
https://git-scm.com/
https://subversion.apache.org/
https://www.nongnu.org/cvs/
https://doi.org/10.1109/ICDE.2007.367892
https://doi.org/10.1145/1007568.1007656
https://doi.org/10.1145/564691.564706

VLDB Endow., vol. 8, no. 12, pp. 1668–1679, 2015. [Online]. Available:
http://www.vldb.org/pvldb/vol8/p1668-shukla.pdf

[35] T. Kissinger, H. Voigt, and W. Lehner, “SMIX live - A self-managing
index infrastructure for dynamic workloads,” in IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012, A. Kementsietsidis and M. A. V.
Salles, Eds. IEEE Computer Society, 2012, pp. 1225–1228. [Online].
Available: https://doi.org/10.1109/ICDE.2012.9

[36] S. Das, M. Grbic, I. Ilic, I. Jovandic, A. Jovanovic, V. R. Narasayya,
M. Radulovic, M. Stikic, G. Xu, and S. Chaudhuri, “Automatically
indexing millions of databases in microsoft azure SQL database,” in
Proceedings of the 2019 International Conference on Management of Data,
SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 -
July 5, 2019, P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande,
and T. Kraska, Eds. ACM, 2019, pp. 666–679. [Online]. Available:
https://doi.org/10.1145/3299869.3314035

[37] J. Arulraj, R. Xian, L. Ma, and A. Pavlo, “Predictive indexing,” CoRR,
vol. abs/1901.07064, 2019. [Online]. Available: http://arxiv.org/abs/1901.
07064

[38] S. Idreos, M. L. Kersten, and S. Manegold, “Database cracking,”
in CIDR 2007, Third Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 7-10, 2007, Online
Proceedings. www.cidrdb.org, 2007, pp. 68–78. [Online]. Available:
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf

[39] G. Graefe and H. A. Kuno, “Self-selecting, self-tuning, incrementally
optimized indexes,” in EDBT 2010, 13th International Conference on
Extending Database Technology, Lausanne, Switzerland, March 22-26,
2010, Proceedings, ser. ACM International Conference Proceeding Series,
I. Manolescu, S. Spaccapietra, J. Teubner, M. Kitsuregawa, A. Léger,
F. Naumann, A. Ailamaki, and F. Özcan, Eds., vol. 426. ACM, 2010, pp.
371–381. [Online]. Available: https://doi.org/10.1145/1739041.1739087

[40] S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe, “Merging what’s
cracked, cracking what’s merged: Adaptive indexing in main-memory
column-stores,” Proc. VLDB Endow., vol. 4, no. 9, pp. 585–597, 2011.
[Online]. Available: http://www.vldb.org/pvldb/vol4/p586-idreos.pdf

[41] P. Holanda, S. Manegold, H. Mühleisen, and M. Raasveldt, “Progressive
indexes: Indexing for interactive data analysis,” Proc. VLDB Endow.,
vol. 12, no. 13, pp. 2366–2378, 2019. [Online]. Available: http:
//www.vldb.org/pvldb/vol12/p2366-holanda.pdf

[42] S. Gupta and K. Ramachandra, “Procedural extensions of SQL:
understanding their usage in the wild,” Proc. VLDB Endow., vol. 14,
no. 8, pp. 1378–1391, 2021. [Online]. Available: http://www.vldb.org/
pvldb/vol14/p1378-ramachandra.pdf

[43] E. Friedman, P. M. Pawlowski, and J. Cieslewicz, “Sql/mapreduce: A
practical approach to self-describing, polymorphic, and parallelizable user-

138

http://www.vldb.org/pvldb/vol8/p1668-shukla.pdf
https://doi.org/10.1109/ICDE.2012.9
https://doi.org/10.1145/3299869.3314035
http://arxiv.org/abs/1901.07064
http://arxiv.org/abs/1901.07064
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
https://doi.org/10.1145/1739041.1739087
http://www.vldb.org/pvldb/vol4/p586-idreos.pdf
http://www.vldb.org/pvldb/vol12/p2366-holanda.pdf
http://www.vldb.org/pvldb/vol12/p2366-holanda.pdf
http://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf
http://www.vldb.org/pvldb/vol14/p1378-ramachandra.pdf

defined functions,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1402–1413, 2009.
[Online]. Available: http://www.vldb.org/pvldb/vol2/vldb09-464.pdf

[44] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig, U. Çetintemel,
and S. Zdonik, “An architecture for compiling udf-centric workflows,”
Proc. VLDB Endow., vol. 8, no. 12, pp. 1466–1477, 2015. [Online].
Available: http://www.vldb.org/pvldb/vol8/p1466-crotty.pdf

[45] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin,
A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, and A. Kumar,
“The madlib analytics library or MAD skills, the SQL,” Proc. VLDB
Endow., vol. 5, no. 12, pp. 1700–1711, 2012. [Online]. Available:
http://vldb.org/pvldb/vol5/p1700_joehellerstein_vldb2012.pdf

[46] L. Passing, M. Then, N. C. Hubig, H. Lang, M. Schreier, S. Günnemann,
A. Kemper, and T. Neumann, “SQL- and operator-centric data analytics
in relational main-memory databases,” in EDBT. OpenProceedings.org,
2017, pp. 84–95.

[47] M. E. Schüle, J. Huber, A. Kemper, and T. Neumann, “Freedom for the
sql-lambda: Just-in-time-compiling user-injected functions in postgresql,”
in SSDBM. ACM, 2020, pp. 6:1–6:12.

[48] C. Duta, D. Hirn, and T. Grust, “Compiling PL/SQL away,” in
10th Conference on Innovative Data Systems Research, CIDR 2020,
Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings.
www.cidrdb.org, 2020. [Online]. Available: http://cidrdb.org/cidr2020/
papers/p1-duta-cidr20.pdf

[49] D. Hirn and T. Grust, “One WITH RECURSIVE is worth many
gotos,” in SIGMOD ’21: International Conference on Management of
Data, Virtual Event, China, June 20-25, 2021, G. Li, Z. Li, S. Idreos,
and D. Srivastava, Eds. ACM, 2021, pp. 723–735. [Online]. Available:
https://doi.org/10.1145/3448016.3457272

[50] M. Sichert and T. Neumann, “User-defined operators: Efficiently
integrating custom algorithms into modern databases,” Proc. VLDB
Endow., vol. 15, no. 5, pp. 1119–1131, 2022. [Online]. Available:
https://www.vldb.org/pvldb/vol15/p1119-sichert.pdf

[51] M. Boehm, I. Antonov, S. Baunsgaard, M. Dokter, R. Ginthör, K. Innereb-
ner, F. Klezin, S. N. Lindstaedt, A. Phani, B. Rath, B. Reinwald, S. Sid-
diqui, and S. B. Wrede, “Systemds: A declarative machine learning system
for the end-to-end data science lifecycle,” in CIDR. www.cidrdb.org, 2020.

[52] M. E. Schüle, L. Scalerandi, A. Kemper, and T. Neumann, “Blue elephants
inspecting pandas: Inspection and execution of machine learning pipelines
in SQL,” in EDBT. OpenProceedings.org, 2023, pp. 40–52.

[53] (2023, jan) Tpc project website. [Online]. Available: http://www.tpc.org/

[54] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and
T. Neumann, “How good are query optimizers, really?” Proc.
VLDB Endow., vol. 9, no. 3, pp. 204–215, 2015. [Online]. Available:
http://www.vldb.org/pvldb/vol9/p204-leis.pdf

139

http://www.vldb.org/pvldb/vol2/vldb09-464.pdf
http://www.vldb.org/pvldb/vol8/p1466-crotty.pdf
http://vldb.org/pvldb/vol5/p1700_joehellerstein_vldb2012.pdf
http://cidrdb.org/cidr2020/papers/p1-duta-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p1-duta-cidr20.pdf
https://doi.org/10.1145/3448016.3457272
https://www.vldb.org/pvldb/vol15/p1119-sichert.pdf
http://www.tpc.org/
http://www.vldb.org/pvldb/vol9/p204-leis.pdf

[55] T. Böhme and E. Rahm, “Xmach-1: A benchmark for XML
data management,” in Datenbanksysteme in Büro, Technik und
Wissenschaft (BTW), 9. GI-Fachtagung, Oldenburg, 7.-9. März 2001,
Proceedings, ser. Informatik Aktuell, A. Heuer, F. Leymann, and
D. Priebe, Eds. Springer, 2001, pp. 264–273. [Online]. Available:
https://doi.org/10.1007/978-3-642-56687-5_20

[56] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and
R. Busse, “Xmark: A benchmark for XML data management,” in
Proceedings of 28th International Conference on Very Large Data Bases,
VLDB 2002, Hong Kong, August 20-23, 2002. Morgan Kaufmann, 2002,
pp. 974–985. [Online]. Available: http://www.vldb.org/conf/2002/S30P01.
pdf

[57] T. Fiebig, S. Helmer, C. Kanne, G. Moerkotte, J. Neumann, R. Schiele,
and T. Westmann, “Anatomy of a native XML base management
system,” VLDB J., vol. 11, no. 4, pp. 292–314, 2002. [Online]. Available:
https://doi.org/10.1007/s00778-002-0080-y

[58] H. Schöning, “Tamino - A database system combining text retrieval and
XML,” in Intelligent Search on XML Data, Applications, Languages,
Models, Implementations, and Benchmarks, ser. Lecture Notes in
Computer Science, H. M. Blanken, T. Grabs, H. Schek, R. Schenkel,
and G. Weikum, Eds., vol. 2818. Springer, 2003, pp. 77–89. [Online].
Available: https://doi.org/10.1007/978-3-540-45194-5_5

[59] (2021, nov) Trec conference website. [Online]. Available: https:
//trec.nist.gov

[60] N. Fuhr, N. Gövert, G. Kazai, and M. Lalmas, Eds., Proceedings of the First
Workshop of the INitiative for the Evaluation of XML Retrieval (INEX),
Schloss Dagstuhl, Germany, December 9-11, 2002, 2002.

[61] C. Chasseur, Y. Li, and J. M. Patel, “Enabling JSON document stores in
relational systems,” in Proceedings of the 16th International Workshop on
the Web and Databases 2013, WebDB 2013, New York, NY, USA, June
23, 2013, A. Bonifati and C. Yu, Eds., 2013, pp. 1–6. [Online]. Available:
http://webdb2013.lille.inria.fr/Paper%2010.pdf

[62] Y. Park, S. Ko, S. S. Bhowmick, K. Kim, K. Hong, and W. Han,
“G-CARE: A framework for performance benchmarking of cardinality
estimation techniques for subgraph matching,” in Proceedings of the
2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020, D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini, and
H. Q. Ngo, Eds. ACM, 2020, pp. 1099–1114. [Online]. Available:
https://doi.org/10.1145/3318464.3389702

[63] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL knowledge
base systems,” J. Web Semant., vol. 3, no. 2-3, pp. 158–182, 2005. [Online].
Available: https://doi.org/10.1016/j.websem.2005.06.005

[64] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee, “Diversified stress
testing of RDF data management systems,” in The Semantic Web - ISWC

140

https://doi.org/10.1007/978-3-642-56687-5_20
http://www.vldb.org/conf/2002/S30P01.pdf
http://www.vldb.org/conf/2002/S30P01.pdf
https://doi.org/10.1007/s00778-002-0080-y
https://doi.org/10.1007/978-3-540-45194-5_5
https://trec.nist.gov
https://trec.nist.gov
http://webdb2013.lille.inria.fr/Paper%2010.pdf
https://doi.org/10.1145/3318464.3389702
https://doi.org/10.1016/j.websem.2005.06.005

2014 - 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part I, ser. Lecture Notes in
Computer Science, P. Mika, T. Tudorache, A. Bernstein, C. Welty, C. A.
Knoblock, D. Vrandecic, P. Groth, N. F. Noy, K. Janowicz, and C. A.
Goble, Eds., vol. 8796. Springer, 2014, pp. 197–212. [Online]. Available:
https://doi.org/10.1007/978-3-319-11964-9_13

[65] P. Eichmann, E. Zgraggen, C. Binnig, and T. Kraska, “Idebench:
A benchmark for interactive data exploration,” in Proceedings of the
2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020, D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini, and
H. Q. Ngo, Eds. ACM, 2020, pp. 1555–1569. [Online]. Available:
https://doi.org/10.1145/3318464.3380574

[66] A. Glenis and G. Koutrika, “Pyexplore: Query recommendations for
data exploration without query logs,” in SIGMOD ’21: International
Conference on Management of Data, Virtual Event, China, June 20-25,
2021, G. Li, Z. Li, S. Idreos, and D. Srivastava, Eds. ACM, 2021, pp.
2731–2735. [Online]. Available: https://doi.org/10.1145/3448016.3452762

[67] A. Personnaz, S. Amer-Yahia, L. Berti-Équille, M. Fabricius, and
S. Subramanian, “DORA THE EXPLORER: exploring very large data
with interactive deep reinforcement learning,” in CIKM ’21: The 30th ACM
International Conference on Information and Knowledge Management,
Virtual Event, Queensland, Australia, November 1 - 5, 2021, G. Demartini,
G. Zuccon, J. S. Culpepper, Z. Huang, and H. Tong, Eds. ACM, 2021, pp.
4769–4773. [Online]. Available: https://doi.org/10.1145/3459637.3481967

[68] R. Ebenstein, N. Kamat, and A. Nandi, “FluxQuery: An execution
framework for highly interactive query workloads,” in Proceedings of
the 2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016,
F. Özcan, G. Koutrika, and S. Madden, Eds. ACM, 2016, pp. 1333–1345.
[Online]. Available: https://doi.org/10.1145/2882903.2882945

[69] P. J. Haas and J. M. Hellerstein, “Online query processing,” in Proceedings
of the 2001 ACM SIGMOD international conference on Management
of data, Santa Barbara, CA, USA, May 21-24, 2001, S. Mehrotra
and T. K. Sellis, Eds. ACM, 2001, p. 623. [Online]. Available:
https://doi.org/10.1145/375663.375800

[70] M. El-Hindi, Z. Zhao, C. Binnig, and T. Kraska, “Vistrees: fast
indexes for interactive data exploration,” in Proceedings of the Workshop
on Human-In-the-Loop Data Analytics, HILDA@SIGMOD 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, C. Binnig, A. D.
Fekete, and A. Nandi, Eds. ACM, 2016, p. 5. [Online]. Available:
https://doi.org/10.1145/2939502.2939507

[71] G. Nicol, M. Champion, J. Robie, A. L. Hors, L. Wood, R. S. Su-
tor, S. Isaacson, C. Wilson, S. B. Byrne, and I. Jacobs, “Document ob-
ject model (DOM) level 1,” W3C, W3C Recommendation, Oct. 1998,
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/.

141

https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1145/3318464.3380574
https://doi.org/10.1145/3448016.3452762
https://doi.org/10.1145/3459637.3481967
https://doi.org/10.1145/2882903.2882945
https://doi.org/10.1145/375663.375800
https://doi.org/10.1145/2939502.2939507

[72] M. Dyck, J. Spiegel, and J. Robie, “XML path language
(XPath) 3.1,” W3C, W3C Recommendation, Mar. 2017,
https://www.w3.org/TR/2017/REC-xpath-31-20170321/.

[73] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software. USA: Addison-Wesley Long-
man Publishing Co., Inc., 1995.

[74] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki,
“Nodb in action: Adaptive query processing on raw data,” Proc.
VLDB Endow., vol. 5, no. 12, pp. 1942–1945, 2012. [Online]. Available:
http://vldb.org/pvldb/vol5/p1942_ioannisalagiannis_vldb2012.pdf

[75] F. M. Schuhknecht, J. Dittrich, and L. Linden, “Adaptive adaptive
indexing,” in 34th IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16-19, 2018. IEEE Computer Society,
2018, pp. 665–676. [Online]. Available: https://doi.org/10.1109/ICDE.
2018.00066

[76] S. Lang, “Adaptive indexing of semi-structured data,” 2020.

[77] D. R. Morrison, “PATRICIA - practical algorithm to retrieve information
coded in alphanumeric,” J. ACM, vol. 15, no. 4, pp. 514–534, 1968.
[Online]. Available: https://doi.org/10.1145/321479.321481

[78] S. Sprenger, P. Schäfer, and U. Leser, “Bb-tree: A main-memory
index structure for multidimensional range queries,” in 35th IEEE
International Conference on Data Engineering, ICDE 2019, Macao,
China, April 8-11, 2019. IEEE, 2019, pp. 1566–1569. [Online]. Available:
https://doi.org/10.1109/ICDE.2019.00143

[79] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame,
Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-Art Natural
Language Processing.” Association for Computational Linguistics, 10
2020, pp. 38–45. [Online]. Available: https://www.aclweb.org/anthology/
2020.emnlp-demos.6

[80] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” arXiv preprint arXiv:1607.01759, 2016.

[81] A. Nandi and H. V. Jagadish, “Guided interaction: Rethinking the query-
result paradigm,” Proc. VLDB Endow., vol. 4, no. 12, pp. 1466–1469, 2011.
[Online]. Available: http://www.vldb.org/pvldb/vol4/p1466-nandi.pdf

[82] S. Baunsgaard, M. Boehm, A. Chaudhary, B. Derakhshan, S. Geißelsöder,
P. M. Grulich, M. Hildebrand, K. Innerebner, V. Markl, C. Neubauer,
S. Osterburg, O. Ovcharenko, S. Redyuk, T. Rieger, A. R. Mahdiraji,
S. B. Wrede, and S. Zeuch, “Exdra: Exploratory data science on federated
raw data,” in SIGMOD ’21: International Conference on Management of
Data, Virtual Event, China, June 20-25, 2021, G. Li, Z. Li, S. Idreos,
and D. Srivastava, Eds. ACM, 2021, pp. 2450–2463. [Online]. Available:
https://doi.org/10.1145/3448016.3457549

142

http://vldb.org/pvldb/vol5/p1942_ioannisalagiannis_vldb2012.pdf
https://doi.org/10.1109/ICDE.2018.00066
https://doi.org/10.1109/ICDE.2018.00066
https://doi.org/10.1145/321479.321481
https://doi.org/10.1109/ICDE.2019.00143
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://www.vldb.org/pvldb/vol4/p1466-nandi.pdf
https://doi.org/10.1145/3448016.3457549

[83] G. Doniparthi, T. Mühlhaus, and S. Deßloch, “A hybrid data model
and flexible indexing for interactive exploration of large-scale bio-
science data,” in New Trends in Database and Information Systems
- ADBIS 2021 Short Papers, Doctoral Consortium and Workshops:
DOING, SIMPDA, MADEISD, MegaData, CAoNS, Tartu, Estonia,
August 24-26, 2021, Proceedings, ser. Communications in Computer
and Information Science, L. Bellatreche, M. Dumas, P. Karras,
R. Matulevicius, A. Awad, M. Weidlich, M. Ivanovic, and O. Hartig,
Eds., vol. 1450. Springer, 2021, pp. 27–37. [Online]. Available:
https://doi.org/10.1007/978-3-030-85082-1_3

[84] M. Stonebraker and E. K. Rezig, “Machine learning and big data: What is
important?” IEEE Data Eng. Bull., vol. 42, no. 4, pp. 3–7, 2019. [Online].
Available: http://sites.computer.org/debull/A19dec/p3.pdf

[85] A. Kumar, “Automation of data prep, ml, and data science: New cure or
snake oil?” in SIGMOD ’21: International Conference on Management of
Data, Virtual Event, China, June 20-25, 2021, G. Li, Z. Li, S. Idreos,
and D. Srivastava, Eds. ACM, 2021, pp. 2878–2880. [Online]. Available:
https://doi.org/10.1145/3448016.3457537

[86] D. A. Woodie. (2020). [Online]. Available: https://www.datanami.com/
2020/07/06/data-prep-still-dominates-data-scientists-time-survey-finds/

[87] F. Eight. (2016). [Online]. Available: https://visit.figure-eight.com/rs/
416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

[88] M. Vartak, S. Rahman, S. Madden, A. G. Parameswaran, and N. Polyzotis,
“SEEDB: efficient data-driven visualization recommendations to support
visual analytics,” Proc. VLDB Endow., vol. 8, no. 13, pp. 2182–2193, 2015.
[Online]. Available: http://www.vldb.org/pvldb/vol8/p2182-vartak.pdf

[89] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer, “Wrangler:
interactive visual specification of data transformation scripts,” in
Proceedings of the International Conference on Human Factors in
Computing Systems, CHI 2011, Vancouver, BC, Canada, May 7-12,
2011, D. S. Tan, S. Amershi, B. Begole, W. A. Kellogg, and
M. Tungare, Eds. ACM, 2011, pp. 3363–3372. [Online]. Available:
https://doi.org/10.1145/1978942.1979444

[90] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and T. Kraska,
“Vizdom: Interactive analytics through pen and touch,” Proc. VLDB
Endow., vol. 8, no. 12, pp. 2024–2027, 2015. [Online]. Available:
http://www.vldb.org/pvldb/vol8/p2024-crotty.pdf

[91] B. Shneiderman, “Response time and display rate in human performance
with computers,” ACM Comput. Surv., vol. 16, no. 3, pp. 265–285, 1984.
[Online]. Available: https://doi.org/10.1145/2514.2517

[92] E. Zgraggen, A. Galakatos, A. Crotty, J. Fekete, and T. Kraska, “How
progressive visualizations affect exploratory analysis,” IEEE Trans. Vis.
Comput. Graph., vol. 23, no. 8, pp. 1977–1987, 2017. [Online]. Available:
https://doi.org/10.1109/TVCG.2016.2607714

143

https://doi.org/10.1007/978-3-030-85082-1_3
http://sites.computer.org/debull/A19dec/p3.pdf
https://doi.org/10.1145/3448016.3457537
https://www.datanami.com/2020/07/06/data-prep-still-dominates-data-scientists-time-survey-finds/
https://www.datanami.com/2020/07/06/data-prep-still-dominates-data-scientists-time-survey-finds/
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
http://www.vldb.org/pvldb/vol8/p2182-vartak.pdf
https://doi.org/10.1145/1978942.1979444
http://www.vldb.org/pvldb/vol8/p2024-crotty.pdf
https://doi.org/10.1145/2514.2517
https://doi.org/10.1109/TVCG.2016.2607714

[93] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Comput. Networks, vol. 30, no. 1-7, pp. 107–117, 1998.
[Online]. Available: https://doi.org/10.1016/S0169-7552(98)00110-X

144

https://doi.org/10.1016/S0169-7552(98)00110-X

Nico Schäfer

Master of Science in Computer Science

Education

2018–Today Doctoral Studies, RPTU Kaiserslautern-Landau
Topic: On Enabling Efficient and Scalable Processing of Semi-
Structured Data

2015–2018 MSc. Informatik, TU Kaiserslautern
Thesis: Vertically-Scaled JSON On-Demand Processing With
JODA
Major: Information systems

2011–2015 BSc. Informatik, TU Kaiserslautern
Thesis: An SQL-based Intermediate Layer for Table Transforma-
tions on Wide-Column Stores
Major: Software-Engineering

2002–2011 Abitur, IGS Kurt Schumacher, Ingelheim am Rhein

Work Experience

2015–Today Research associate, TU Kaiserslautern / RPTU
Kaiserslautern-Landau
Employment within the framework of the doctorate.
Organization of exercises, seminars, supervision of theses.
DigiVine project

2012–2018 Student assistant, TU Kaiserslautern
Various student assistant activities.
IT-Service FB WiWi
Tutoring Information systems

nschaefer@cs.uni-kl.de

	Introduction
	Problem Statement
	Contributions & Publications
	Outline

	Background
	JSON
	JSON Pointer

	RapidJSON
	JSON Data Processors
	JQ
	PostgreSQL
	MongoDB
	Spark

	Related Work
	Research in JSON processing
	JSON in RDBMS
	Document Stores
	Others

	Delta & Change Management
	Adaptive Indexing
	User-Defined-Modules
	Benchmarking
	Query Suggestion and Online Processing

	JODA—Concepts & Architecture
	Query
	Collection
	Pointer
	Source
	Loading Data
	Joins
	Filtering Collections
	Transforming Collections
	Aggregating Collections
	Storing Collections

	Storage
	Collections
	Containers
	Memory Management

	Query Execution
	Tasks
	Pipeline
	Scheduler

	Optimization
	Parsing Optimization
	Main-Query Evaluation Merging
	Multi-Query Optimization

	Applications
	CLI
	Client/Server
	Web

	Delta Trees — Optimizing for Iterative Queries
	Overview
	Model
	Path
	Delta Tree
	Delta Hierarchy
	Costmodel

	Realization & Optimizations
	Traversal with Visitor Pattern
	Retrieval of Atomic Values
	Partial Materialization
	Object Indexing
	Adaptive Algorithm

	Experimental Evaluation
	Settings and Data and Workloads
	Delta Hierarchy Creation and Shared Reads
	Adaptive Execution Method

	Summary
	Potential Extensions

	Adaptive Indexing
	Overview and Preliminaries
	Adaptive Indexing using Structure and Content Indices
	Handling Document References and Document Sets
	Query Evaluation
	Adaptive Structural Index
	Adaptive Trie Content Index
	Adaptive Histogram Tree for Numbers
	Mutable Indices and Memory Management

	Evaluation
	Structural Index
	Content Indices

	Summary & Potential Extensions

	User-Defined-Modules
	Core Architecture and Modules
	User-Defined Modules
	Connecting Scripts and System

	Sample Use Cases
	User-Defined Functions
	Replacing and Augmenting Data Processing Modules
	Customized Data Import and Export

	Evaluation
	Summary & Potential Extensions

	BETZE: A Novel Benchmark for Interactive Exploration
	Random Explorer Model andSupported Queries
	Query Support

	Data Analyzer and Query Generator
	Data Analysis
	The Query Generator
	Generating Specialized Benchmarks
	Extendability

	Getting Started with BETZE
	Evaluation
	Understanding Impact of User Characteristics
	Query Skew

	Summary
	Possible Extensions

	Evaluation
	Setup
	Datasets
	General Performance
	Data Import
	Filter & Export
	Aggregation

	Explorative Workloads
	Scalability
	Exploration

	Conclusion & Outlook
	Outlook

	Appendices
	List of Functions
	List of Tasks
	BETZE Query Session for Scalability

