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Abstract

The paper presents a fast implementation of a constructive method to generate a spe-
cial class of low—discrepancy sequences which are based on Van Neumann-Kakutani
transformations. Such sequences can be used in various simulation codes where it is
necessary to generate a certain number of uniformly distributed random numbers on
the unit intervall.

From a theoretical point of view the uniformity of a sequence is measured in terms of
the discrepancy which is a special distance between a finite set of points and the uniform
distribution on the unit intervall.

Numerical results are given on the cost efficiency of different generators on different
hardware architectures as well as on the corresponding uniformity of the sequences. As
an example for the efficient use of low—discrepancy sequences in a complex simulation
code results are presented for the simulation of a hypersonic rarefied gas flow.



1 Introduction

The generation of pseudo-random numbers is one of the central parts in standard simu-
lation methods. Typical fields of application are Monte-Carlo methods used for example
in gas—surface scattering theory. Typically, pseudo-random numbers are used like ideal
random numbers without looking in detail on the generators. A well know consequence of
this negligence is the random number generator RANDU implemented in the IBM scientific
Subroutine Package in the seventies which is described as ”inaccurate, obsolete and down-
right dangerous to use” ([12]).

A theoretical concept to quantify the quality of pseudo—random numbers is the so—called
discrepancy which was introduced by H. Weyl in his famous paper "Uber die Gleichverteil-
ung von Zahlen mod Eins” ([11]). From a theoretical point of view a lot of effort is spent by
mathematicians to construct well-distributed sequences in multidimensions. Unfortunately
this research does not influence the research on simulation methods used for applications.

One attempt in this direction was given by Pages and coworker who presented a comparison
of different methods to generate random numbers.

The aim of the current paper is to present a fast algorithm to generate a special class of
low—discrepancy sequences. From a practical point of view the efficiency to generate low—
discrepancy sequences is a central aspect — it is not useful to use well-distributed sequences
which have suitable uniformity properties, but are too expensive to generate. Chapter 2
recalls first the concept of linear congruential methods which are mainly implemented in
subroutine packages. Furthermore a special class of low—discrepancy sequences, the so—
called genralized Halton—sequences, is described. The algorithm to generate such sequences
is described. Chapter 3 presents numerical results on the cost efficiency of such sequences
as well as on the quality of the random numbers.

2 Random numbers and Low—Discrepancy Sequences

The classical approach to generate random numbers, which should be uniformly distributed
on the unit intervall, is the linear congruential generator. This type of algorithm is the
standard way to produce random numbers on a computer and most of the internal subrou-
tine packages work with this kind of generator.

The second part of the chapter describes a special class of deterministic sequences, which
have much better uniformity properties. Nevertheless they are not very often used in real-
istic applications.

One central aspect in realistic applications is typically the computational effort to perform
the calculation. It is not often recognized that the generation of random numbers is a im-
portant part for the computational costs.

The aim of the chapter is to show that there exist very efficient algorithms to generate
deterministic sequences which can even be faster than standard generator.



2.1 Linear congruential methods

Linear congruential methods for the generation of random numbers are given by the follow-
ing recurrence relation
Tpt1 = (@ -z, +b) mod m

where a,b and m are some given constants.

It is obvious that the maximal period of the generator is given by the modulus m. Neverthe-
less the parameter a,b and m must be chosen carefully to achieve a reasonable period. The
necessary condition for a maximal period m is given by the following well-known theorem.

Theorem 1
The linear congruential sequence has period m if and only if the following holds:

(1) b is relatively prime to m
(2) a—1 is a multiple of p, p being a prime divisor of m.
(3) a—1 is a multiple of 4 if m is a multiple of 4.

The study of Marsaglia ([3]) gives a method to determine the period for a given set {a, b, m}.
Normally the user of computer codes does not take care on the generation of pseudo-random
numbers. The standard task is to take the generators, which are implemented directly on
the computer. For example the generator implemented on UNIX-machines is provided with
the parameters

69069
b = 1
m = 4294967296

a

This generator is used as an example for the computations given in the next chapter.
Using linear congruential methods problems may occur in the construction of multidimen-
sional sequences. To generate uniformly distributed sequences in [0, 1]* k& consecutive num-
bers are choosen to produce a random k-tuple. The uniformity of those sequences may be
very poor.

In general one may say that the confidence in the quality of generators can be dangerous;
as given in the introduction see for example the popular IBM random number generator
RANDU, which was implemented in the IBM scientific Subroutine Package in the seventies.
This generator produces completely correlated consecutive triples ([4]).

2.2 Low discrepancy sequences

The theory of uniformly distributed sequences is based on the number theoretical definition
of the uniform distribution mod 1 and the definition of the discrepancy.

This concept was introduced by H.Weyl in 1916 in his famous paper 'Uber die Gleichver-
teilung von Zahlen mod. FEins’ ([11]). It is out of the scope of the paper to discuss the
number theoretical concept of the discrepancy and the estimates, which can be given for



some special sequences. The authors refer to the book of H.Niederreiter ([6]), where the
reader may find all references necessary for a detailed study of this approach.

The low discrepancy sequence used in the current comparison is a generalization of the
classical Van der Corput sequence with base 2 ([10]). In the current paper we will focus on
the generation of this special class of low—discrepancy sequences.

A theoretical investigation together with numerical experiments can be found in [7] and [8],
where the reader also find the proofs of the theorems given below.

Definition 1
Let zy and zy be two numbers in [0, 1] with p-adic expansions, where p is an arbitrary integer:

o0 k

41
21 =
k+1
k:Op
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72 = pht
k=0

with  2F€{0,..,p—1} V i=1,2;k€ N.
Then the the ‘left addition’ @ is defined by
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with coefficients z*, k € IN given by the recurrence relation
22 = (2} +29) mod p

1
o= A+ modp + (T T -

The following example should illustrate the ’left addition’ .

Example 1
Let p =2,z = 0.10111 and z3 = 0.100101 then

21 @ 23 = 0.10111 ¢ 0.100101 = 0.0110001

With the help of the left addition @ one can define a sequence on [0,1] by the following
recurrence relation

Definition 2
Let p be an integer and zq € [0, 1] arbitary.

Then .
Ty(z): =z p

s called p—adic Van Neumann Kakutani transformation.

We use T, for defining a sequence (z,),en recursively:

LTntl = Tp(xn)



Theorem 2

V x€l0,1] the sequence (Tf(w))keN is uniformly distributed on [0, 1].

The quality of a given sequence in [0, 1] is measured using the so called ”discrepancy” of
the sequence, which gives an estimate on the uniformity of a finite section. Furthermore
the sequence is called a low discrepancy sequence if the discrepancy of the points converge
with the best possible order. It can be shown that the construction given above produces
low—discrepancy sequences.

Definition 3
Let (z,)n=1,...N be a finite pointset in [0, 1].
Then the discrepancy D((zy,)n=1,..N) of the pointsel is defined by:

N
1
D((#n)n=1,..N) = sup |a— =" Xgu(z,)l
ae[ovl] =1
The connection between the discrepancy of a sequence and the uniform distribution on [0, 1]
is given by the following theorem.

Theorem 3
A sequence (xy)nen s uniformly distributed in the unit intervall [0, 1] if and only if

]\}I—I{loo D((xn)n:L...,N) =0

Theorem 4
The following estimate for the discrepancy of the sequence (T]f(xo))k:l,,,,,]v holds:
In(N)

D((TF(x0))k=1,..5) £ C N

where the absolute constant C' only depends on p and x.
Furthermore the estimate given above is the best possible order of convergence for a infinite
sequence of points in [0,1].

The main advantage of these sequences is the easy way to construct multidimensional uni-
formly distributed sequences.

Theorem 5
Let pq, ..., pr be relatively prime.
Then the sequence (z, ...,25),cn in [0,1]% given by

whq =Ty (ah) Vi=1,..k

k
and starting point i= (.% ,...,:% ) in [0, 1)% is a multidimensional low discrepancy sequence.

In the following we will call sequences as defined above ’generalized Halton sequences’.
One advantage of the generalized Halton sequences is the way to construct different se-
quences only by changing the starting point re [0, 1]%.

This fact is important in simulation methods, where it is necessary to average over ’inde-
pendent’ samples in order to reduce the statistical scattering. It is clear that sequences with
different starting point are in some sense correlated. This correlation is not investigated in
the current paper, but will be topic of a forthcoming paper.



2.3 Fast Generation of generalized Halton sequences

From a computational point of view it is necessary to find a fast algorithm to generate the
generalized Halton sequences in arbitrary dimensions.
In order to illustrate the algorithm used in the following figure 1 shows the graph of T3

Ty: [0,1] —[0,1]

T — TP =

2

Fig. 1 : Function 73 : [0,1] — [0, 1]

The graph of T3 is given by infinitely many parallel lines with slope 1.
The following representation of the Van—Neumann-Kakutani transformation 7}, leads to an
efficient algorithm to generate generalized Halton sequences.

Lemma 1
Let p be an integer and z € [0,1] arbitrary.
Define the sequence (bY)ren by

1

bizzﬁ-(p—l—l—pk) vk € IN (1)
Then the p-adic Van Neumann-Kakutani transformation T, is given by
T(a) = o + 0] (2)
where (1 )
k= [—ﬁ] +1 (3)



Using the above lemma the following relations are obvious:

1
1) W =-
(1) b=
(2) lim b} = -1 Vpe N

Consequently, in the limit p — oo the graph of the function 7, degenerates to the line
T,(x) = z, which gives the identity on the intervall [0, 1].

It is obvious that for the limit p — oo the sequence can not be uniformly distributed on the
unit intervall: the sequence is given by a constant point z.

Nevertheless the estimation for the discrepancy still holds which means that the absolute
constant C'(p, %) in front of the estimate must tend to infinity if p tends to infinity.

This result was already obtained by Faure, who gives the asymptotic behaviour for the
absolute constant C(p,z) ([1]).

For practical applications it means that the generalized Halton sequences in high dimensions
will be not very useful, because the quality of this components which corresponds to large
values of pr will be not sufficient.

This statement is validated by the numerical results given in ([8]).

Using the representations (1),(2) and (3) it is possible to developed a fast generator:

Algorithm (LD)
(to generate generalized Halton sequences to base p)

0) Initialization step:
Generate the sequence (b7) according to (3)

1) Choose an arbitrary starting point € [0, 1]

2) Suppose the random number z,, is given.
Calculate the integer k according to (1) with z = z,,,
then z,41 is given by

Tyl = Ty + bi

Due to the finite number of digits used on a computer to represent a real number the
generalized Halton—sequences, which have no period from a theoretical point of view, will
only produce a finite set of numbers on a computer.
This can be used to implement the algorithm (LD):



Define an integer M > 1.
Generate the first M points of the sequence (b}) and the corresponding partition of the unit
intervall [0, 1] into subintervalls of the form

22, k=0,.M

where
P

0 B=1 E=1-p* (4)

Implementation of Algorithm (LD)
(to generate generalized Halton sequences to base p)

0) Initialization step:
Generate the first M points of the sequence (b%)
Generate the corresponding partition on the unit in-
tervall according to (4)

1) Choose an arbitrary starting point € [0, 1]

2) Suppose the random number z,, is given.
If 2, is less then I},
determine the unique integer & such that z,, € [I§_,, ]
else determine the integer k according to (3),
then z,47 is given by

Tyl = Tp + bi

For the numerical results presented in the next chapter the first 32 points of the sequence
(b}) respectively (1)) were calculated a priori and used to generate the generalized Halton-
sequence.

The implementation given above is very fast using for example FORTRAN 77 language,
because more then 95% of the points are less then /33 and can be determined in a BLOCK-IF
structure by a simple addition.

3 Numerical Results

The numerical results presented in this chapter give first an overview on the cost efliciency
to generate the generalized Halton sequences. Furthermore we illustrate the uniformity



properties in comparison with the classical linear congruential pseudo-random numbers.
Because the main aspect of the paper is the fast generation of low—discrepancy sequences,
we restrict ourselve to a small number of statistical tests, which is of course not enough to get
a qualified comparison between low—discrepancy sequences and pseudo—random numbers.
A detailled and much more elaborated investigation the reader may find in reference ([8]).
Finally we present results on the efficiency in a complex simulation for the description of
hypersonic rarefied gas flows.

3.1 Efficiency

Besides the uniformity of a sequence the computional costs which are necessary to generate
a uniform sequence in [0, 1] play a central role in practical applications. It is obvious that
the efliciency strongly depends on the hardware architecture. One may expect differences
between standard and RISC architectures. Hence, in the current investigation four different
machines were used to compare the efficiency:

1) IBM 6000/530

)
2) HP 9000/835 SRX ( produced in 1988)
3) HP 9000/710

4) nCUBE 2S (1 node)

The generation of the generalized Halton—sequences is based on the algoithm presented in
the last chapter. The program was written in FORTRAN 77 using a BLOCK-IF structure
and 32 points of the sequence (b} )ren (see chapter 2).

Hardware g.H. (p=2) | LC (F77) | rand() (UNIX)
IBM 6000/530 1.9 2.8 1.6

HP 9000/835 SRX 4.8 25.8 12.9

HP 9000/710 1.0 3.1 2.0
nCUBE 25 1 node 6.3 5.4 -

Tab.1: CPU-Time in seconds to generate 10° random numbers

Remark:

The CPU—-time to generate Halton sequences to base p > 2 decreases, because the proba-
bility that the number will be generated by a simple addition in the first [F-structure of
the algorithm (LD) is given by pp%l.

The results show, that the generation of generalized Halton—sequences using the algorithm
(LD) presented in the last chapter is very efficient.



3.2 Uniformity Properties

We restrict the comparison on the uniformity on a small number of statistical tests:
1) the discrepancy
2) the Weyl sum
3) the uniformity in higher dimensions

1) The Discrepancy
The following table gives the uniformity of the sequences in [0,1] — the measure used to
quantify this property is the discrepancy as defined in chapter 2.

Sequence Dy Vu Dy Vu Dy Vu
Optimal 1.72-1072 5.15- 1073 2.89-1073
rand() 1.30-107* | 1.6-1072 | 7.76-107% | 6.7-107* | 6.40- 1072 | 3.0-107*

g.H. (b=2)|3.97-1072 | 7.1-107° | 1.25-1072 | 5.7-107% | 9.71-1073 | 8.1- 1077
g.H. (b=3) | 3.50-107% | 6.1-107° | 1.64-1072? | 8.1-107° | 8.99-107% | 3.6-107°
g.H. (b=5) | 3.43-1072 | 6.1-107° | 1.57-1072 | 1.1-107® | 9.63- 1073 | 2.3-107¢
N=29 [ M=20 | N=97 | M=20 | N=173 | M =20

Tab.2: Averaged Discrepancy of different sequences
Remark:
Dy is the discrepancy of a finite set of N points

Vs is the variation of the discrepancy for M independent samplings

2) The Weyl sum
The quality of sequences can also be tested using the so—called Weyl sum defined by

1
¢ = /cos(27rx)dx
0

Sequence || |D| | D] |D|
rand() 2.11-107% | 1.45-107% | 1.19-107% | 2.91-107°
g.H. (p=2) | 1.43-1073 | 1.48-1073 | 1.44-10=* | 5.59- 1075

(
g.H. (p=3) | 2.20-1073 | 1.20- 1073 | 1.56- 1073 | 2.12-107°
.(p=5) | 5.70-1073 | 2.74-1072 | 1.05-1072 | 4.69- 107
N =29 N=97 | N=173 | N =307

Tab.3: Approximation Errors in the Weyl sum

10



Remark:
The results are obtained by taking 20 independent samples.

3) Uniformity in higher dimensions

An important aspect for practical applications is the uniformity of a sequences in higher
dimensions.

The generic way to generate multidimensional sequences when using pseudo-random num-
bers is generate suceeding random numbers in [0, 1].

The following table illustrate the expectation value IF(zyz), which should be equal to 0.125
if the random number (z,y,z) is uniformly distributed in [0,1]® and the corresponding

variance.
Sequence Iy Vu IFy Vu Iy Vu
rand() 1.226-1071 | 5.8-107* | 1.204-10~! | 1.3-107* | 1.222-107! | 1.7-107°
g.H. 1.275-1071 | 4.1-107° | 1.254-107' | 1.3-107° | 1.252-107! | 6.2- 1077
N=29 M =20 N =97 M =20 N = 307 M =20
Tab.4: Expectation value F(zyz) and variance
Remark:

Vs is the variation of IF(zyz) for M independent samplings. The generalized Halton—
sequence in [0, 1]? is based on the prime numbers 2,3 and 5. The threedimensional pseudo—
random sequence is generated using the UNIX—rand() subroutine and suceeding triples.

3.3 Example: Hypersonic Rarefied Gas Flows

One example for a simulation method where generalized Halton sequences can be efficiently
used is the Finite-Pointset-Method (FPM) for the description of hypersonic rarefied gas
flows ([5]). This particle method is used to solve the so—called Boltzmann equation which
describes rarefied gas flows.

In this approach the velocity distribution function f(¢,z,v) of a rarefied gas ensemble is
approximated by a finite particle set and the dynamic behaviour of the distribution func-
tion f(t,z,v) which is described by the Boltzmann equation is transfered to a dynamical
behaviour of the finite particle set.

The dynamical process consists of a free transport of the particle set over a small time in-
crement At according to the given velocity of the particle and a binary interactions between
between the particles — the so—called collision process.

The FPM code is used to describe the aerodynamic characteristics of a space vehicle during
the reentry phase at high altitudes. The computational costs for this application are quite
high because it is necessary to work with a reasonable number of discrete particles in order
to obtain accurate results — for threedimensional computations with complex body geome-
try several millions of particles are used.

Pseudo random numbers are used at various steps of the calculation:

11



1) Aproximation of the initial velocity distribution by a finite set of particles
2) Approximation of the boundary conditions
3) Description of the collisions between the particles

Code improvement is always an important task in this research and one way is to improve
the accuracy of the results, i.e. to reduce the statistical scattering. This approach was
first investigated by Lecot ([2]) in a spatially homogenous relaxation problem. Within the
framework of the European Space Project HERMES a detailed comparison of different sim-
ulation methods for rarefied gas flows as well as the behaviour of low—discrepancy sequences
in the simulation approach was investigated by the author ([9]).

The efficiency of low—discrepancy sequences is demonstrated by the following two numerical
experiments:

o
The first result concerns the approximation of the initial distribution function f (z,v) by
a finite set of particles. In typical applications the gas ensemble is assumed to be in an
equilibrium state which is given by an Maxwellian distribution of the form

; P (v —u)?

= Grrryr P SR )

The quantities which have to be approximated with a high accuracy are integral values over
the velocity space — this integrals determine the macroscopic quantities of the gas flow, i.e.
density p, flow velocity w and temperature 7.

A typical result is given in figure 1:

The plotted curves show the statistical scattering using independent samples to determine
the correct pressure in x—direction at the beginning of the computation. The curves are
plotted versus the number of particles used for one independent sampling.

During the instationary calculation several sets of random numbers are used to determine
the solution. The results given in figure 2 present the statistical scattering of the same
quantity at the end of the computation. In this calculation, generalized Halton sequences
are used to determine the postcollisional velocities of two particles when they undergo a
collision.

The statistical scattering can be reduced by about 20% — in terms of the computational
costs it means a reduction by a factor 2.

12
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4 Conclusion

Generalized Halton sequences based on Van Neumann-Kakutani transformations can be
generated with the same cost efficiency as classical linear congruential random numbers.
Depending on the hard architecture the computational costs can even be lower. In addi-
tion to that, deterministic sequences stand out for much better uniformity properties than
classical random numbers.

The common problem in simulation codes — the combination of deterministic sequences and
independent sampling — can be eliminated by using generalized Halton sequences with arbi-
trary starting points; an investigation on the influence of the correlation of such sequences
seems to be necessary. In high dimensional problems generalized Halton sequences loose a
lot of their uniformity property — because of the ’singular limit’ when the corresponding
basis tends to infinity.

Nevertheless, in low dimensions they can be extremely useful to improve the accuracy of var-
ious simulation methods. This fact directly influences the computational costs of complex
simulation and hopefully increases the fields of applications of such methods
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