

Rheinland-Pfälzische Technische Universität

Kaiserslautern-Landau

Distance Study Program

Software Engineering for Embedded Systems

Master’s Thesis

Evaluation and development of the bridging
application between ISO 15118 and OCPP

2.0.1 protocols

Provided by

Nguyen, Quang Hai

First supervisor: Prof. Dr.-Ing. Peter Liggesmeyer

Second supervisor: Ms. Zai Müller-Zhang

Declaration

Declaration

Ich versichere, dass ich diese Masterarbeit selbstständig und nur unter Verwendung der

angegebenen Quellen und Hilfsmittel angefertigt und die den benutzten Quellen wörtlich

oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Place, date Signature

haing
Typewriter
NGUYEN, QUANG HAI

haing
Typewriter
Hannover, 31.03.2023

Abstract

Abstract

The increase in the number of electric vehicles(EVs) has undoubtedly put stress on the

local power grid because these systems were designed without anticipating the charging

needs of electric vehicles. To overcome this problem, Smart Charging is introduced to

allow the Charging Stations Management System(CSMS) to load-balance the charging

needs of the electric vehicles during peak hours. In addition, it allows the EVs to return

their energy to the system when needed. Smart Charging uses the de facto standards

ISO 15118 and OCPP to enable the CSMS to control the charging profiles of the EVs.

Since these protocols are specified by different organizations, their compatibility must be

analyzed to ensure their interoperability.

In the first part, this thesis aims to apply a theoretical analysis method to analyze the

compatibility between ISO 15118 and OCPP. This method uses the Symbolic Transition

System to model the interactions between the protocols. Then, the state transitions and

message exchanges of the models are analyzed using the flooding algorithm. The result

of this analysis is a compatibility matrix, which illustrates the degrees of compatibility

between the states of the protocols. Based on the results, this thesis concludes that ISO

15118 and OCPP are compatible. However, their compatibility is not perfect because of

data type incompatibility between messages. The reason is that ISO 15118 uses domain

data types for its parameters, while OCPP uses generic data types to increase its inter-

operability with other protocols.

The second part of this thesis describes the concept and design of the application to bridge

the communication between ISO 15118 and OCPP. The application also demonstrates

how to overcome the problems found in the compatibility analysis using facade patterns.

In addition, the development of the bridging application highlights several issues that

have arisen in practice. The first issue is, due to the large memory footprint of the

messages, the OCPP stack is not suitable for running on small embedded systems without

extreme optimization. Second, using JSON, a human-readable format, to encode the

OCPP messages is unnecessary because most of the messages are processed by machines.

In addition, the OCPP application is highly complex due to the nested conditions involved

in sending and receiving OCPP messages. Finally, both the JSON and EXI data formats

require serializers (parsers) to encode (decode) the messages, adding to the complexity of

the system.

Table of Contents I

Table of Contents

Declaration .

Abstract .

Table of Contents . I

Abbreviations . IV

List of Tables . VI

List of Figures . VII

Listings . IX

1 Introduction . 1

1.1 The Challenges of Charging Protocols Integration 2

1.2 The Objectives of the Thesis . 4

1.3 The Structure of the Thesis . 4

2 Background . 6

2.1 State-of-the-Art Compatibility Analysis 6

2.2 Theory of Compatibility Analysis . 8

2.2.1 Modeling the Protocol Interaction . 8

2.2.2 Compatibility Notion . 10

2.2.3 The Process of Measuring Protocol Compatibility 11

2.2.3.1 Static Compatibility . 12

2.2.3.2 Behavioral Compatibility . 13

2.3 ISO 15118 . 16

2.3.1 Characteristics of ISO 15118 . 18

2.3.2 ISO 15118 Message . 19

2.3.3 ISO 15118 Message Sequences . 19

2.3.4 SEVENSTAX’s ISO 15118 Implementation 20

2.4 OCPP 2.0.1 . 21

2.4.1 Characteristics of OCPP . 22

2.4.2 OCPP Messages . 23

2.4.3 OCPP Use Cases . 24

2.4.4 SEVENSTAX’s OCPP Implementation 25

Table of Contents II

2.5 Interaction Between ISO15118 and OCPP 2.0.1 26

2.5.1 Communication Setup . 28

2.5.2 Identification, Authorization, and Authentication 30

2.5.3 Target Setting and Charge Scheduling 33

2.5.4 Charging Loop with Signed Metering Values 36

2.5.5 CSMS Triggers the Charging Profile Renegotiation 37

2.5.6 End of Charging Session . 38

2.6 Chapter’s Summary . 39

3 Protocols Compatibility Analysis . 41

3.1 The Analysis of ISO 15118 and OCPP 41

3.2 Results And Discussion . 53

3.2.1 Results . 53

3.2.2 Discussion . 55

3.3 Chapter’s Summary . 58

4 Development of a Protocols Bridging Application 59

4.1 Assumptions and Requirements . 59

4.2 Software Development Environment . 60

4.3 SEVENSTAX’s ISO 15118 Stack Operation 61

4.4 SEVENSTAX’s OCPP Stack Operation 63

4.5 The Bridging Application’s Design . 64

4.5.1 Structure of the Bridging Application 64

4.5.2 Interfaces Design and Descriptions . 66

4.5.3 Sequence for Handling the Requests and the Responses 69

4.6 Error Handling . 71

4.6.1 ISO 15118-related Error Handling . 71

4.6.2 OCPP-related Error Handling . 72

4.7 Discussion . 73

4.8 Chapter’s Summary . 78

5 Conclusion and Future Work . 80

5.1 Conclusion . 80

5.2 Furture Work . 81

References . 83

Appendix A - ISO 15118 . 86

Table of Contents III

Appendix B - OCPP 2.0.1 . 89

Appendix C - The interactions between ISO 15118 and OCPP 2.0.1 . . . 92

Appendix D - Compatibility Calculation . 97

Appendix E - Code Listings . 130

Abbreviations IV

Abbreviations

AC Alternate Current

CP Control Pilot

CSMS Charging Station Management System

DC Direct Current

EIM External Identification Means

EV Electric Vehicle

EVCC Electric Vehicle Communication Controller

EVSE Electric Vehicle Supply Equipment

EXI Efficient XML Interchange format

IEC International Electrotechnical Commission

JSON JavaScript Object Notation

HPGP HomePlug Green PHY

IPv6 Internet Protocol version 6

ISO International Organization for Standardization

OCA Open Charge Alliance

OCPP Open Charge Point Protocol

OEM Original Equipment Manufacture

OSI Open System Interconnection

PLC Power Line Communication

PWM Pulse Width Modulation

RPC Remote Procedure Call

SECC Supply Equipment Communication Controller

SLAC Signal Level Attenuation Characterization

Abbreviations V

TCP Transmission Controller Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

V2G Vehicle-2-Grid

V2GTP Vehicle-2-Grid Transfer Protocol

STS Symbolic Transition System

XML Extensible Markup Language

XSD XML Schema Definition

List of Tables VI

List of Tables

Table 1: States of PWM communication according to IEC 61851 (DIN, 2019) . . . 17

Table 2: ISO 15118 message sequences (ISO, 2014) 20

Table 3: OCPP use cases related to ISO 15118, Open Charge Alliance, 2020b . . . 25

Table 4: Element of the CertificateInstallationResponse 32

Table 5: Explanation of ISO 15118’s STS . 43

Table 6: Explanation of OCPP’s STS . 44

Table 7: COMP 0
UR,↔[ai, bj] . 45

Table 8: COMP 1
UR,↔[ai, bj] . 51

Table 9: COMP 11
UR,↔[ai, bj] . 53

Table 10: Mismatched data type between the ISO 15118 and OCPP parameters . . 57

Table 11: Ten largest-size message structures . 75

Table 12: Use cases involving the StatusNotificationRequest 91

Table 13: Exchanged elements between Get15118EvCertificateRequest and Certifi-

cateInstallationRequest . 92

Table 14: Exchanged elements between Get15118EvCertificateResponse and Cer-

tificateInstallationResponse . 92

Table 15: Exchanged elements between PaymentDetailRequest and AuthorizeRequest 92

Table 16: Exchanged elements between PaymentDetailResponse and AuthorizeRe-

sponse . 92

Table 17: Exchanged elements between ChargeParameterRequest and NotifyEVCharg-

ingNeedsRequest . 93

Table 18: Exchanged elements between ChargeParameterReponse and SetCharg-

ingProfileRequest . 94

Table 19: Exchanged elements between PowerDeliveryRequest and NotifyEVCharg-

ingsSchedule . 96

Table 20: Exchanged elements between MeteringReceiptRequest and Transaction-

EventRequest . 96

Table 21: Exchanged elements between SessionStopRequest and TransactionEven-

tRequest . 96

List of Figures VII

List of Figures

Figure 1: Overview of EV charging system . 2

Figure 2: Example of the interaction between the engineer and database services.

Adapted from Ouederni et al., 2010 . 9

Figure 3: The process of measuring the protocol compatibility. Extracted from

Ouederni et al., 2010 . 12

Figure 4: PWM communication based on IEC 61851 17

Figure 5: ISO 15118 protocol according to Open System Interconnection (OSI)

model . 18

Figure 6: ISO 15118 message model . 19

Figure 7: SEVENSTAX’s Vehicle-2-Grid (V2G) stack 21

Figure 8: OCPP protocol stack based on OSI model 22

Figure 9: Message model of OCPP messages . 24

Figure 10: SEVENSTAX’s OCPP stack . 26

Figure 11: Deployment diagram of ISO 15118 and OCPP software component . . . 27

Figure 12: The communication setup phase . 29

Figure 13: Identification, authentication, and authorization phase 31

Figure 14: Target scheduling . 34

Figure 15: Charging loop with signed metering values 36

Figure 16: CSMS renegotiates the charging schedule 38

Figure 17: End of charging session . 39

Figure 18: STS between ISO 15118 and OCPP . 42

Figure 19: Reachable states . 45

Figure 20: Compatibility Calculator application . 52

Figure 21: Software development environment . 61

Figure 22: Handling ISO 15118 request. Extracted from SEVENSTAX GmbH, 2021 62

Figure 23: Handling ISO 15118 response. Extracted from SEVENSTAX GmbH, 2021 62

Figure 24: Transmitting OCPP message . 63

Figure 25: Receiving OCPP message . 64

Figure 26: Application without the bridging application 65

Figure 27: Application with the bridging application 66

Figure 28: the interfaces provided by the bridging application 67

Figure 29: Bridging application handles transmitting message 70

Figure 30: Bridging application handles receiving message 71

Figure 31: OCPP application block diagram . 77

Figure 32: Sequence diagram of a ISO 15118 charging session 88

Figure 33: Boot Charge Station - Rejected . 89

List of Figures VIII

Figure 34: Boot Notification message sequence . 90

Figure 35: Class diagram of the Graph, State, and Transition 133

Figure 36: Flow chart of the Parser of the Compatibility calculation tool 134

Listings IX

Listings

1 Example of OCPP error message . 90

2 Example of data structures having ordered parameters 130

3 Example of data structures having unordered parameters 131

4 Format of the json file to describe the STS . 131

5 Command to display help menu . 132

6 Command to start the protocol compatibility calculation 132

Introduction 1

1 Introduction

According to The Federal Government, 2020, seven to ten million Electric Vehicle (EV)s

will be registered in Germany by 2030, responsible for twenty-three Tera-Watt-hour of

charging demand (Bermejo et al., 2021). Even though the energy demand is enormous,

it only accounts for an eight percent increase. However, charging millions of EVs will cause

massive stress on the local energy distribution system during peak times. Engel et al.,

2018 indicates that the peak circuit load can increase by thirty percent with twenty-five

percent of EV penetration. Therefore, Smart charging is introduced to cope with the issue

by employing several strategies to smooth out the load during peak time. AMPECO, n.d.

lists three primary techniques for smart charging:

• Load shifting: the EVs are charged slower during peak time and faster during off-

peak time.

• Peak shaving: the system automatically controls the charging process so that the

charging power does not exceed its capability.

• Dynamic load balancing: all EVs are charged within the maximum charging limit

and according to their capacity.

With bidirectional energy transfer enabled, the EVs can even feed the energy from their

battery back to the grid to support the grid during peak hours. To enable Smart Charg-

ing, the back-end system must know the charging status of the charging stations, and

EVs connecting to the grid. Furthermore, the back-end system must control the charging

stations to influence the energy delivered to the EVs, which optimizes the charging pro-

cess and the grid’s load. Therefore, Smart Charging requires a significant amount of data,

such as charging parameters, metering values, EVs status, and charging stations status,

to be exchanged among EVs, Electric Vehicle Supply Equipment (EVSE), and Charging

Station Management System (CSMS).

Introduction 2

Figure 1: Overview of EV charging system

Various communication standards are proposed to build up such a scenario, for exam-

ple, IEC 61851, ISO 15118, and CHAdeMO for communication between EV and EVSE;

Open Charge Point Protocol (OCPP), IEC 63110, OpenADR, and EEBUS for the com-

munication between the EVSE and back-end systems (Neaimeh and Andersen, 2020).

Nevertheless, the de facto standards in the industry are ISO 15118 and OCPP 2.0.1. ISO

15118 defines the communication standard between the EVs and the EVSEs, which al-

lows the EVs to exchange data, such as charging parameters, EV’s status, EVSE’s status,

metering values, and authorization information, with the EVSEs. On the other hand,

OCPP specifies the communication standard between EVSEs and CSMS, providing the

methods for CSMS to manage, monitor and control EVSEs. Consequently, to implement

a complete communication chain between the EVs and CSMS, the protocol adopters must

build a bridging application to receive ISO 15118 messages, transform them into OCPP

messages, transmit the OCPP messages and vice versa (Figure 1).

1.1 The Challenges of Charging Protocols Integration

The challenges of implementing Smart Charging are that each protocol is defined by differ-

ent organizations. ISO 15118 standard is a joint work between the International Organiza-

tion for Standardization (ISO) and the International Electrotechnical Commission (IEC).

Meanwhile, the OCPP is defined by the Open Charge Alliance (OCA). Although both

protocols are TCP/IP based (Figure 5 and 8), they have different requirements regarding

message format, data structure, timing, and message exchange sequences. Chapter seven

of ISO, 2019 specifies the use cases and the interactions between the primary actors (EV

or EVSE) and the secondary actors (CSMS, Energy management systems, charging sta-

Introduction 3

tion operators) during a charging session. However, those use cases do not describe their

interactions in detail. Open Charge Alliance, 2020b specifies more in detail (compared to

ISO, 2019) about its support for ISO 15118 in various OCPP use cases (Table 3). Those

use cases are presented by message sequences, illustrating which OCPP messages are used

in cooperating with ISO 15118 messages. These message sequences nonetheless lack the

detail of which data and data types are exchanged between the protocols.

Various studies on ISO15118 and OCPP have been carried out. For instance, Kern, 2021

investigated the privacy and security of ISO 15118 and OCPP ; Klapwijk and Driessen,

2017 addresses which charging protocols are suitable for which functionalities based on

their interoperability, maturity, market adoption, and openness; Wellisch et al., 2015 pro-

poses the smart charging capable Alternate Current (AC) charging station based on ISO

15118 and OCPP; Schmutzler et al., 2013 provides a review on the ISO 15118 standard

and how OCPP can leverage the smart charging. However, there is little work to investi-

gate whether ISO 15118 and OCPP are compatible and the challenges when developing

an application to bridge these protocols.

Both the ISO 15118 and OCPP standards will be increasingly adopted due to the popu-

larity of EVs. Therefore, the standards need to be highly interoperable so that different

protocol implementations from different vendors can work together. As a result, a pro-

tocol compatibility analysis must be performed to measure the interoperability of ISO

15118 and OCPP. The analysis must answer the questions of how well ISO 15118 and

OCPP are compatible. Protocol compatibility means that

• The interactions between the protocols do not cause one or all of them to enter a

deadlock state.

• The data exchanged between the protocols is similar in structure and data type.

This similarity is important because it reduces the effort of data transformation, i.e.

the developer can take the data from one protocol and send it immediately via the

other protocol, which reduces the complexity of the software implementation.

In practice, the bridging application must also be implemented in order to verify how much

impact the incompatibility has during development and how much effort the developers

have to invest to implement such an application. In addition, the implementation of the

bridging application provides additional incompatibilities that were not anticipated in the

compatibility analysis.

Introduction 4

1.2 The Objectives of the Thesis

The objectives of the thesis are to apply the method proposed by Ouederni, M., Salaün,

G., & Pimentel, E. (2010). Measuring the compatibility of service interaction protocols

- technical report iti 4-10 to analyze the compatibility between OCPP and ISO 15118.

Then, a Bridging application is developed, based on SEVENSTAX GmbH ISO 15118 stack

and OCPP stack, to verify the compatibility of the protocol in practice. The outcomes

of the thesis are:

• The compatibility between ISO 15118 and OCPP is analyzed based on the theoreti-

cal methodology. The analysis answers the question of how good the interoperability

between ISO 15118 and OCPP is and what are the incompatibilities between them.

Based on the analysis methodology, a prototype tool is developed to calculate the

degree of compatibility of the protocols.

• The problems that EVSE manufacturers encounter in practice when integrating

these protocols into their systems and how to overcome them; and the recommenda-

tions for the development of the bridging application between ISO15118 and OCPP

protocols.

1.3 The Structure of the Thesis

The rest of the thesis is divided into four chapters: Background, Protocols Compatibil-

ity Analysis, Development a Protocols Bridging Application, and Conclusion and Future

Work.

The Background chapter gives an overview of the state of the art in protocol compatibil-

ity analysis and explains why the method proposed by Ouederni et al., 2010 is suitable

for analyzing the interaction between ISO 15118 and OCPP. In addition, this chapter

describes how this analysis method works and how the result is calculated. Next, this

chapter describes the structures of ISO 15118 and OCPP and their software implemen-

tation. Finally, this chapter explains how ISO 15118 and OCPP interact, which is the

input for protocol analysis.

The Protocols Compatibility Analysis chapter describes how to model the interaction

between ISO 15118 and OCPP and how to calculate the compatibility between them.

Then, based on the result, the compatibility between the ISO 15118 and OCPP is con-

cluded. Any incompatibility found in this chapter will be resolved in the following chapter.

Introduction 5

The Development a Protocols Bridging Application chapter describes the architecture and

design of the Bridging application and how this application addresses the incompatibili-

ties found in the theoretical analysis. In addition, this chapter identifies any pitfalls not

identified by the theoretical method and proposes solutions.

The Conclusion and Future Work chapter concludes with a discussion of how well the two

protocols are compatible, the challenges that EVSE vendors may face in implementing

these protocols, proposed solutions to overcome the challenges, and future implementa-

tions.

Background 6

2 Background

This chapter provides the background theory necessary for the protocol compatibility

analysis and Bridging application development. Firstly, it reviews the state of the art in

protocols compatibility analysis, explains why Ouederni et al., 2010 is a suitable method

for analyzing OCPP and ISO 15118, and describes the procedure for analyzing protocol

compatibility using the mentioned method. Secondly, It describes the purpose, network

layers, message construction and use cases of ISO 15118 and OCPP to provide an insight

into both standards. In addition to the protocol explanation, the OCPP section also

highlights the similarities and differences between itself and ISO 15118. Thirdly, this

chapter briefly mentions the implementations of OCPP and ISO 15118 by SEVENTAX

GmbH. Finally, this chapter explains the interaction and the data exchange between the

protocols during a charging session using a message sequence diagram.

2.1 State-of-the-Art Compatibility Analysis

The analysis of protocols or services interaction is a well-known problem in the service-

oriented-computing area, where the services’ interoperability is analyzed. In other words,

the requests of one service are served by its counterpart and vice versa so that both

services can evolve to the next states. In services interactions, the state transitions and

message exchange are defined as the service’s protocol. Therefore, services are compatible

if their underlying protocols are compatible. Starting from here, the term protocol and

service are used interchanged. The existing analysis methods employ one of the modeling

systems, such as Petri-Net and its variants (Yang et al., 2009, Martens, 2003, and Aalst

et al., 2009), π-calculus (Wu et al., 2009), or state machine (Gao and Wei, 2011 and Elabd

et al., 2009), to describe the behaviors of the services. Then, those methods utilize for-

malized algorithms and automation tools to check the compatibility of the services based

on their models.

Martens, 2003 proposed the method for analyzing the services by modeling their behav-

iors using Petri-Net. Then the method described the process of analyzing the service

compatibility by composing the models and using the compatibility notions such as syn-

tactical and semantical compatibility. The outcome of the analysis is to answer whether

the services are compatible and usable.

Gao and Wei, 2011 introduced the method for checking the compatibility of the service

protocols, in which the service interactions are modeled using a finite state machine. This

method introduces the context-awareness concept, which specifies that a transition occurs

Background 7

only when the message and the constrained context are matched. Then, the compatibility

analysis is performed based on services product automata using a transversing approach

and observable compatibility analysis. The outcome of this method is to answer whether

the service protocols are compatible.

Elabd et al., 2009 proposed the compatibility analysis based on modeling the interaction

between services using state machines. This method introduces the time restriction con-

cept, meaning the state transitions require compatible messages under a specific interval.

Similar to Gao, this method utilizes the observable compatibility and states transversal

of the protocols product automata to analyze the compatibility of the protocol.

Wu et al., 2009 proposed the analysis approach using the π-calculus to model the protocol

interactions. This method also utilizes the observable compatibility and state transversal

to analyze the compatibility. Furthermore, this method introduces the algorithm to cal-

culate the compatibility degree instead of only giving the Boolean answer if the service is

compatible. Finally, this method proposes a tool to perform the analysis automatically.

Yang et al., 2009 approach employs the Colored Petri-Net to model the service behaviors.

The model is analyzed using the Correct Process compatibility notion. Besides checking

the states and the messages, this method considered the data type of the messages. The

outcome of the analysis is to answer whether the protocols are compatible.

Aalst et al., 2009 provided a method to address the challenges in the services’ interaction,

namely services exposition, service refinement and replacement, and service adaption, us-

ing Petri-Net. Although the paper considered the behaviors of the services and messages

exchange, it focused on the service replacement and adaption and did not give a clear

indicator to determine if the services are compatible.

Even though the aforementioned methods are promising candidates to analyze the in-

teraction between ISO 15118 and OCPP, they lack the aspects to analyze the charging

protocols specifically. Martens, 2003, Gao and Wei, 2011, Elabd et al., 2009, Wu et al.,

2009 and Aalst et al., 2009 analyze the compatibility regarding the state transitions and

message exchange, but they do not take the parameters and parameters data types into

consideration. Yang et al., 2009 considers only the data type of the message on a high

level but does not evaluate the message parameters. Martens, 2003, Gao and Wei, 2011,

Elabd et al., 2009, Yang et al., 2009, Aalst et al., 2009 return the result of the compat-

ibility analysis with the Boolean answer-true or false, which is too straightforward for

Background 8

ISO 15118 and OCPP. OCPP claims to support ISO 15118, so they are compatible to a

certain degree. However, those protocols are mismatched in detail due to being specified

by different organizations. Therefore, the analysis method must return a more elaborated

result than a Boolean answer. During the review, Ouederni et al., 2010 was found as a

suitable candidate for analyzing ISO 15118 and OCPP.

Ouederni et al., 2010 proposed a method to measure the compatibility of protocols using

the Symbolic Transition System, which describes the system using states, transitions,

labels (messages), and list of parameters. This method evaluates compatibility using

unspecified reception and unidirectional complementarity notions, which are based on the

analysis of message compatibility. The compatibility of the messages is evaluated on the

basis of the parameters and their data types. The result of the analysis is a compatibility

matrix in which the compatibility is scored between zero and one, where zero means

incompatible and one means perfectly compatible. The following section describes in

detail the compatibility analysis method proposed by Ouederni et al., 2010. In addition,

some formulae are modified to meet the requirements for analyzing ISO 15118 and OCPP.

2.2 Theory of Compatibility Analysis

2.2.1 Modeling the Protocol Interaction

Ouederni et al., 2010 proposed the model of the protocol interaction using the Symbolic

Transition System. The Symbolic Transition System is a tuple (A, S, I, F, T) where:

• A: set of labels associated with the transitions.

• S: is the set of states

• I: the initial state

• F: the non-empty set of the final state

• T: transition relation

Ouederni et al., 2010 specified that a label is either τ , for internal action or a tuple of

(m, d, pl), where:

• m is the message name.

• d is the direction of communication (! for transmission and ? for reception).

• pl is the list of parameters and their data type.

Background 9

Figure 2 demonstrates the interaction between the engineer service and the database

service based on the Symbolic Transition System. At the initial states, the engineer

service transmits the register message to the database service and moves to the next state

(c1). The register message has only one parameter, id, with data type int. Similarly, the

database service can advance to the next state (s1) when it receives the register message

from the engineer service. Then, the database service transmits the ack message and

advances into the final state (s2). At the same time, the engineer service evolves to the

final state when it receives the ack message.

Figure 2: Example of the interaction between the engineer and database services. Adapted from
Ouederni et al., 2010

Additionally, according to the aforementioned definitions, it can be deduced from Figure

2 that:

As = ¶register?id : int, update?, ack!♢, Ss = ¶s0, s1, s2♢, Is = ¶s0♢, Fs = ¶s2♢,

Ts = ¶(s0, update!, s1), (s1, ack!, s2), (s0, register?id : int, s1)♢

Ac = ¶register!id : int, reject?, ack?♢, Sc = ¶c0, c1, c2♢, Ic = ¶c0♢, Fc = ¶c2♢,

Background 10

Tc = ¶(c0, register!id : int, c1), (c1, reject?, c2), (c1, ack?, c2)♢

2.2.2 Compatibility Notion

Ouederni et al., 2010 defined two compatibility notions to measure the protocol com-

patibility: Unspecified Receptions and Unidirectional Complementary. The definitions of

these notions are following:

Unspecified Receptions (Bidirectional Compatibility): Two services are compati-

ble with this notion:

• If they are deadlock-free at their initial global state.

• If one service sends a message at the reachable state, its partners must receive that

message and both services advance to a compatible state.

Unidirectional Complementary: Two services are compatible with this notion:

• If there is one service (complementer) receives (sends respectively) all messages that

its partner (complemented) sends (receives respectively) at all reachable states.

• Both services must be free from deadlock in all reachable state

From the aforementioned definitions, the Unspecified Receptions requires that one service

must support all transmissions from its counterpart and vice versa, and this behavior

ensures that no transmissions are left un-handled. The second notion - Unidirectional

Complementary implies that only one service (complementer) must support all the trans-

missions and receptions from its counterpart (complemented). This notion is useful to

specify the interaction of the client-server model, where the server must support all trans-

missions and receptions from the client. Those definitions mention three terms: deadlock

freedom, compatible states, and reachable states, which are defined by Ouederni et al.,

2010 as follows:

Deadlock freedom: Two protocols are considered freedom at a state pair (s1, s2) if

and only if both states are final states or these protocols are deadlock-free in each state

reachable from the current state pair.

Reachable states: reachable states are the state pairs that the protocol can reach from

a current state pair by synchronization on compatible labels, which are the tuples of

(m, d, pl), or internal transition τ . The compatible label notion is explained in the Static

Compatibility section.

State Compatibility: A state pair (s1, s2) are compatible whether the message sent (re-

ceived respectively) by one protocol are state s1 is received (sent respectively) by another

Background 11

protocol at state s2, and both protocol advance to the compatible states. If one protocol

cannot interact with the other protocol’s action, then both protocols must advance to a

state (s1, s′
2), where the action is supported.

Section 2.5 shows that both ISO 15118 and OCPP are deployed in the same target (the

charging station), and their interactions are triggered internally by the function calls

instead of message exchanging via a physical bus. Therefore, the transmissions (or in-

teractions) from ISO 15118 are always supported by the OCPP and vice versa. This

behavior reassembles the characteristic of the Unspecified Receptions notion; hence, the

Unspecified Receptions notion is applied to measure the compatibility between the pro-

tocols. Starting from this point, any formulas and calculations presented in the thesis are

considered the Unspecified Receptions notion.

2.2.3 The Process of Measuring Protocol Compatibility

Ouederni et al., 2010 proposed the process (presented in Figure 3) to measure protocol

compatibility, in which static compatibility is evaluated by analyzing the state nature,

messages parameters, and messages labels. Then, the behavioral compatibility is cal-

culated based on Bidirectional Propagation or Unidirectional Propagation, which utilizes

observational compatibility, which, in turn, requires static compatibility as input. Finally,

the state compatibility of each state of the protocol is calculated based on the state nature

and the behavioral compatibility. The state compatibility is calculated in a defined itera-

tion, and results are presented in the matrix S1 ×S2, where S1 and S2 are the set of states

of both protocols. The compatibility matrix can be used to identify the mismatches.

Background 12

Figure 3: The process of measuring the protocol compatibility. Extracted from Ouederni et al.,
2010

In the next section, the method of calculating the compatibility is presented, where the

observational compatibility is based on the Unspecified Receptions notion.

2.2.3.1 Static Compatibility

Static compatibility is measured based on state natures, labels, and exchange parameters.

Ouederni et al., 2010 specified the calculations as follows:

State Nature. The function nat(s1, s2) return 1 if state s1 and s2 have the exact nature,

i.e., both s1 and s2 are initial states, final states, or none of them; otherwise, it returns 0.

As an example, in Figure 2, nat(s0, c0) = nat(s2, c2) = nat(s1, c1) = 1 and nat(s0, c1) = 0

Parameters. Parameter compatibility between two parameters list pl1 and pl2 is mea-

sured by the function par comp(pl1, pl2), which is the average of the number compatibility

number(pl1, pl2), order compatibility order(pl1, pl2), and type compatibility type(pl1, pl2).

par comp(pl1, pl2) =
number(pl1, pl2) + order(pl1andpl2) + type(pl1, pl2)

3

Where:

number(pl1, pl2) = 1 −
abs(∥pl1∥ − ∥pl2∥)

max(∥pl1∥, ∥pl2∥)

Background 13

order(pl1, pl2) =
∥unorderedTypes(pl1, pl2)∥)

∥sharedTypes(pl1, pl2)∥)

The function unorderedTypes(pl1, pl2) returns the set of parameters that are not in order.

The function sharedTypes(pl1, pl2) returns the set of shared types between pl1 and pl2.

type(pl1, pl2) = 1 −
∥unsharedTypes(pl1, pl2)∥

∥pl1∥ + ∥pl2∥

The function unsharedTypes(pl1, pl2) returns the set of types that are not shared between

pl1 and pl2.

Because the interactions between ISO 15118 and OCPP are internal function calls, the

number compatibility and order compatibility do not contribute to parameter compati-

bility but the parameters data types because the messages and parameters are defined by

different organizations. Hence, the number and order compatibility are set to 1, and the

parameter compatibility function is reduced as follows:

par comp(pl1, pl2) =
2 + type(pl1, pl2)

3
= 1 −

∥unsharedTypes(pl1, pl2)∥

3(∥pl1∥ + ∥pl2∥)

Labels. The function lab comp(l1, l2) returns 0 if both labels have the same direction.

Otherwise, it returns:

lab comp(l1, l2) =
sem comp(l1, l2) + par comp(pl1, pl2)

2

Where sem comp(l1, l2) measures the semantic compatibility between the message name

m1 and m2. Ouederni et al., 2010 noted that semantic compatibility could be measured

by using Manning and Schütze, 1999 or Pedersen et al., 2004. In ISO 15118 and OCPP

use case, the function sem comp(l1, l2) always returns 1 because ISO 15118 and OCPP use

function calls to exchange messages. Therefore, the lab comp(l1, l2) is reduced as follows:

lab comp(l1, l2) =
1 + par comp(pl1, pl2)

2
= 1 −

∥unsharedTypes(pl1, pl2)∥

6(∥pl1∥ + ∥pl2∥)
(1)

2.2.3.2 Behavioral Compatibility

Assume there are two protocols describing the following tuples:

STSi = (Ai, Si, Ii, Fi, Ti)

STSj = (Aj, Sj, Ij, Fj, Tj)

Ouederni et al., 2010 defined the behavioral compatibility of the two protocols are calcu-

Background 14

lated based on a flooding algorithm, which returns the compatibility degree as a matrix

of COMP k
CN,D where each entry COMP k

CN,D[si, sj] stands for the compatibility of state

(si, sj) at the iteration kth with the compatibility notion CN in the direction D (bidirec-

tional or unidirectional).

In the initial iteration, the compatibility matrix is considered to be perfectly matched,

meaning:

COMP 0
UR,↔[si, sj] = 1

The COMP k
UR,↔ is calculated based on two functions, which are observational compat-

ibility obs compk
UR,↔ and state compatibility state compk

UR,↔ (Ouederni et al., 2010).

The function state compk
UR,↔ is dependent on two functions, namely fw propagk

UR,↔ and

bw propagk
UR,↔. In other to calculate the aforementioned functions, Ouederni et al., 2010

specified the following notations:

• E(s, T) = ¶t ∈ T ♣t = (s, (m, !, pl), s′)♢ denotes the emission transition T from state

s to state s′ with the message m and parameter list pl.

• R(s, T) = ¶t ∈ T ♣t = (s, (m, ?, pl), s′)♢ denotes the reception transition T from state

s to state s′ with the message m and parameter list pl.

• Fw(s, T) = E(s, T) ∪ R(s, T) denotes the forward transition from state s to state

s′.

• tau(s, T) = ¶t ∈ T ♣t = (s, τ, s′)♢ denotes the internal transition T from state s to

state s′.

Then, Ouederni et al., 2010 defined the function sumk
UR,↔((si, sj), Ti, Tj), calculating the

sum of the best compatibility degree of the forward neighbors of the state si related to

those of sj, as follows:

sumk
UR,↔((si, sj), Ti, Tj) =

∑

(si,li,s
′

i
)∈Ti

max(sj ,lj ,s′

j
)∈Tj

(lab comp(li, lj) ∗ COMP k−1
UR,↔[s′

i, s′
j])

(2)

if ∥Fw(si, Ti)∥ ≠ ∅ and ∥Fw(sj, Tj)∥ ≠ ∅, otherwise sumk
CN,D((si, sj), Ti, Tj) = 0

The observational compatibility (Ouederni et al., 2010) with respect to the Unspecified

Receptions notion is calculated as follows:

If there is a perfect match,

obs compk
UR,↔(s1, s2) = 1

Background 15

If there is deadlock,

obs compk
UR,↔(s1, s2) = 0

Otherwise,

obs compk
UR,↔(s1, s2)

=
sumk

UR,↔((s1, s2), E(s1, T1), R(s2, T2)) + sumk
UR,↔((s2, s1), E(s2, T2), R(s1, T1))

∥E(s1, T1)∥ + ∥E(s2, T2)∥

(3)

The forward propagation (Ouederni et al., 2010) at the state (s1, s2) can be calculated as

follows:

fw propagk
UR,↔(s1, s2) =

d fw propagk
UR,↔(s1, s2) + d fw propagk

UR,↔(s2, s1)

2
(4)

Where ∀(i, j) ∈ ¶1, 2♢ & i ̸= j:

if tau(si, T i) ̸= ∅ and ∥Fw(si, Ti)∥ = ∅,

d fw propagk
UR,↔(si, sj) =

∑
(si,τ,s′

i
)∈Ti

fw propagk
UR,↔(s′

i, sj)

∥tau(si, T i)∥
(5)

otherwise,

d fw propagk
UR,↔(si, sj) =

∑
(si,τ,s′

i
)∈Ti

fw propagk
UR,↔(s′

i, sj) + obs compk
UR,↔(si, sj)

∥tau(si, T i)∥ + 1
(6)

The backward propagation is calculated in the same manner as the forward propagation

but using incoming transitions instead of outgoing transitions.

Finally, the state compatibility and the compatibility of state state (si, sj) at the iteration

kth are specified by Ouederni et al., 2010 as follows:

state compk
UR,↔(si, sj)

=
w1 ∗ fw propagk

UR,↔(si, sj) + w2 ∗ bw propagk
UR,↔(si, sj) + w3 ∗ nat(su, sj)

w1 + w2 + w3

(7)

where Ouederni et al., 2010 noted that:

• w1: the number of best matching found among the outgoing transition labels in

states si and sj.

• w2: the number of best matching found among the incoming transition labels in

Background 16

states si and sj.

• w3: equal 0 if there is at least one state with outgoing or incoming τ transitions,

and such that both forward and backward compatibilities are equal to 1. Otherwise,

w3 is set to 1.

The compatibility degree between two states is the average of the state compatibility

between them and their previous compatibility degree (Ouederni et al., 2010):

COMP k
UR,D[si, sj] =

COMP k−1
UR,↔[si, sj] + state compk

UR,↔(si, sj)

2
(8)

Formula 8 is applied to calculate the compatibility degree among the states of the two

services, resulting in the compatibility matrix. Ouederni et al., 2010 specifies that the

compatibility is computed in an iterative process and that process is terminated when

the Euclidean difference ϵk =∥ COMP k
UR,↔ − COMP k−1

UR,↔ ∥ of matrices COMP k
UR,↔ and

COMP k−1
UR,↔ converges or until a defined k iteration is reached.

Before analyzing the interactions between ISO 15118 and OCPP, the following sections

describe the protocol structures, their message formats, their use cases, their software

implementations, and their interactions.

2.3 ISO 15118

ISO 15118 standard specifies an IP-based and digital communication protocol between

the Electric Vehicle Communication Controller (EVCC) and the Supply Equipment Com-

munication Controller (SECC) in the EV and the EVSE respectively. ISO 15118 is de-

signed to provide a seamless method to authenticate, authorize, charge EVs, and bill

their drivers without further interaction from the drivers. Additionally, ISO 15118 en-

ables Smart Charging, which allows bidirectional energy to be transferred between the

EV̧s and the power grid. With smart charging, energy can be transferred from the grid

to the EVs based on their demands and the grid’s capacity. The energy can likewise be

transferred from the EVs back to the grid to support the grid during peak times.

Before the communication using ISO 15118 takes place, it employs an analog Pulse Width

Modulation (PWM) signal protocol, defined by the IEC 61851 standard, to initiate the

communication between the EV and EVSE via the Control Pilot (CP) pin of the charging

plug (Figure 4).

Background 17

Figure 4: PWM communication based on IEC 61851

IEC 61581 specifies the charging states and the output power of a charging session by

controlling the duty cycle and the amplitude of the PWM signal. The EVCC controls

the states of the charging session by changing the signal’s amplitude. Meanwhile, by

modifying the signal’s duty cycle, the SECC notifies the maximum current it can provide

to the EVs. The states of the communication are described in Table 1.

Table 1: States of PWM communication according to IEC 61851 (DIN, 2019)

State A (+12V) EV is not connected to the charging station.
State B (+9V) EV is connected to the charging station and not ready for charging.
State C (+6V) EV is connected to the charging station and ready for charging with-

out the ventilator requested.
State D (+3V) EV is connected to the charging station and ready for charging, with

a ventilator requested.
State E (0V) Problem with the power grid.
State F (-12V) The charging station is not available.

By implementing only IEC 61851 communication, the EVs can be fully charged with the

maximum current provided by the charging station. However, the purpose of a seamless

charging protocol and enabling smart charging is defeated because only minimal data,

i.e., charging states and maximum charging current, is shared between EVs and EVSEs.

Therefore, under the following conditions:

• Both EV and EVSE support ISO 15118.

• IEC 61851 communication is at state B in Table 1.

• The duty cycle of the PWM signal is set to five percent by the EVCC.

Background 18

The communication between the EV and EVSE is switched to ISO 15118. After the

transition, the PWM signal is replaced by the Power Line Communication (PLC) protocol

and the ISO 15118 protocol stack is initiated. The communication switches from analog to

digital, IP-based form (Figure 5). The detail of the ISO 15118 protocol stack is described

in the next section.

2.3.1 Characteristics of ISO 15118

Figure 5 describes ISO 15118 according to the OSI model. The Physical and Data link

layer is managed by Signal Level Attenuation Characterization (SLAC) and HomePlug

Green PHY (HPGP) protocol. The HPGP protocol controls the PLC communication

between EVCC and SECC. The SLAC protocol defines the mechanism to ensure that the

EV communicates to the correct charging station. The Network and Transport layer of the

OSI model utilize the popular Internet Protocol version 6 (IPv6), Transmission Controller

Protocol (TCP), User Datagram Protocol (UDP), and Transport Layer Security (TLS)

protocols. The Session layer is occupied by the Vehicle-2-Grid Transfer Protocol (V2GTP)

protocol, which manages the messages exchange session between EVCC and SECC. In the

Presentation layer, the Efficient XML Interchange format (EXI) format is implemented to

encode and decode the messages exchanged by the Application layer. EXI is the binary

Extensible Markup Language (XML) format developed by WC3, which is an effort to

optimize the performance and reduce the memory footprint of the XML format, to make

it suitable for embedded systems.

Figure 5: ISO 15118 protocol according to OSI model

Background 19

Finally, the Application layer is responsible for exchanging messages with its counterpart.

The Application layer works as the client-server messaging model, where EVCC is the

client sending requests to the server and SECC is the server responding to the client’s

requests.

2.3.2 ISO 15118 Message

ISO, 2014 specifies that each ISO 15118 message has two parts: the header and the

body (Figure 6). The ISO 15118 header provides the general information of the message.

Each ISO 15118 header has minimum one element – the Session ID. The Session ID has

maximum eight bytes and is presented in hexadecimal format. Its purpose is to identify

the ISO 15118 message’s communication session. This value is established during the

communication setup phase, and every ISO 15118 message header must use this ID until

the end of the charging session. When errors occur during message decoding on the EVSE

side, the Notification element is added to the header to notify its counterpart about the

errors. Both the Session ID and the Notification is defined in detail by the ISO 15118 XML

Schema Definition (XSD) document. If a ISO 15118 message is required to be signed, the

Signature element, specified by WC3, 2002, is included in the header. The body of the

ISO 15118 message consists of the one or multiples elements that hold the parameters

related to a specific ISO 15118 message defined in the ISO 15118 XSD document. For

example, ISO, 2014 specifies that the SessionSetupReq message’s body holds only one

element called EVCCID, containing the ID of the EVCC.

Figure 6: ISO 15118 message model

2.3.3 ISO 15118 Message Sequences

A charging session is divided into eight sequences by ISO, 2019, and within an individual

sequence, the V2G messages exchanged between EVCC and SECC are defined. Because

DC charging requires more complex control than AC charging, in some use cases, there is

a difference regarding the messages between them. For example, in the sequence Target

Background 20

setting and charge scheduling, DC charging requires two extra message pairs, CableCheck-

Request/Response and PreChargeRequest/Response, to check for the status of the connec-

tor and the charging parameters before the energy delivery. Furthermore, in DC charging,

before ending the charging session, the message pair WeldingDetectionRequest/Response

is used to check the status of the connector before the connector is unlocked from the

EV. Table 2 lists the eight sequences, the messages in each sequence, and the difference

between AC and Direct Current (DC) charging regarding message usage.

Table 2: ISO 15118 message sequences (ISO, 2014)

Sequence name DC charging AC charging
Start of
communication

No messages are exchanged, IEC 61851 hands over
the communication to ISO 15118

Communication setup
supportedProtocolApplicationReq/Res

SessionSetupReq/Res

Certificate handling
ServiceDiscoveryReq/Res

PaymentServiceSelectionReq/Res
CertificateInstallationReq/Res(Optional)

Identification,
authentication,
authorization

PaymentDetailReq/Res
AuthorizationReq/Res

Target setting and
charge scheduling

ChargeParameterDiscoveryReq/Res
CableCheckReq/Res N/A
PreChargeReq/Res N/A

PowerDeliveryReq/Res
Charge controlling and
rescheduling

CurrentDemandReq/Res ChargingStatusReq/Res
MeteringReceiptReq/Res

Value-added services ServiceDetailReq/Res (Optional)

End of the charging
process

PowerDeliveryReq/Res
WeldingDetectionReq/Res N/A

SessionStopReq/Res

For the details of the charging session, please also refer to the sequence diagram in Ap-

pendix A.

2.3.4 SEVENSTAX’s ISO 15118 Implementation

In the context of this thesis, the construction of the SEVENSTAX’s ISO 15118 stack

is examined to give the audience an abstract view of how the ISO 15118 stack can be

implemented. The overview lays the foundation for the bridging application development

section. SEVENSTAX’s ISO 15118 stack is developed in C programming language and it

is intended to be deployed in the embedded systems. The stack relies on TCP/IP network

stack and the PLC chip driver, which are also developed in-house. SEVENSTAX’s V2G

Background 21

stack supports both EVSE and EV modes, but only the EVSE configuration is in the

scope of the thesis.

Figure 7: SEVENSTAX’s V2G stack

The SEVENSTAX’s ISO 15118 stack is divided into three components: ISO 15118 service,

Message handler, and EXI codec (Figure 7). The ISO 15118 service is responsible for han-

dling the connections with its counter part, and it also distributes C-structure messages

to the upper layers and EXI messages to the lower layer. The EXI codec is accountable

for parsing the ISO 15118 message to C-structure, which can be processed by the upper

layer. Additionally, the EXI codec converts the messages in C-structure from the upper

layer to the corresponding ISO 15118 message in EXI format, which is going to be sent

away by the V2G service. The Message handler’s responsibilities are getting and setting

the ISO 15118 messages’ parameters from or to the ISO 15118 application. The ISO

15118 application is intended to be implemented by the ISO 15118 stack developers, and

this application must provide the data to or process the data from the Message handler

according to the message sequence (Figure 32) of the charging session.

2.4 OCPP 2.0.1

OCPP is the de facto standard for communication between the charging station and the

CSMS. The current version of OCPP is 2.0.1. The purposes of OCPP are to define an

Background 22

open and secured communication protocol over the internet, to support data exchange

between charging stations and backend systems. With the support of ISO15118, OCPP

can enable smart charging capability by managing and controlling the charging profile of

the charging stations based on drivers’ demand and the electric grid’s situation.

2.4.1 Characteristics of OCPP

Similar to ISO 15118, OCPP is also an IP-based protocol, which relies on TCP as the

transport protocol and TLS for authentication and encrpyted communication (Figure 8).

The first difference between ISO 15118 and OCPP is that ISO 15118 uses PLC and SLAC

protocol for Physical and Data link layer, while OCPP is based entirely on Ethernet

communication.

Figure 8: OCPP protocol stack based on OSI model

Unlike ISO 15118, which uses a proprietary protocol and EXI for exchanging data on

the application layer, OCPP uses the well-known WebSocket protocol as an application

protocol and JavaScript Object Notation (JSON) format to encode OCPP messages.

Open Charge Alliance, 2020d specifies OCPP functions as a server-client communication

protocol, where the charging station is the client, and CSMS is the server. Due to the

nature of WebSocket, which is a full duplex communication, the client and the server

can simultaneously send data to other parties. Consequently, to create the request and

response behavior, Open Charge Alliance, 2020d defines a Remote Procedure Call (RPC)

Background 23

framework to coordinate the messages exchange. The fundamentals of the RPC are

described as follows:

• An entity (charging station or CSMS) sends a request to its counterpart and waits

for a response or an error message.

• While waiting for the response, that entity is not allowed to send a new request

until the response arrives or a timeout interval elapses

Another distinction between ISO 15118 and OCPP is their messages. The V2G message

is binary based, while the OCPP message is transferred using plain-text JSON. The

structure of the OCPP message is discussed in the following subsection.

2.4.2 OCPP Messages

Open Charge Alliance, 2020d specifies three OCPP message types: CALL (request),

CALLRESULT (response), and CALLERROR (Figure 9). Each message type can be

identified by its Message Type ID, which is defined by Open Charge Alliance, 2020d as

follows:

• The CALL has ID 2

• The CALLRESULT has ID 3

• The CALLERROR has ID 4

A unique Message ID is assigned to every CALL (request) so that its CALLRESULT

(response) can be identified later. Therefore, if the CALL and the CALLRESULT belong

to the same request/response, they must have the exact Message ID. The Action element

only exists in the CALL message and has the string value indicating the payload of the

message. The payload of the message is defined by Open Charge Alliance, 2020c. The Ac-

tion element is omitted from the CALLRESULT because the CALL and CALLRESULT

are always in pairs and can be identified using the Message ID. Therefore, including the

Action element in the CALL is already sufficient. For instance, Figure 34 illustrates the

Boot Notification CALL and CALLRESULT, including their payload’s content.

When errors occur during communication, such as network connection, service availabil-

ity, or message decoding, the recipient can respond to the sender with the CALLERROR.

Open Charge Alliance, 2020d specifies that the CALLERROR consists of five elements:

Message Type ID, Message ID, Error code, Error Description, and Error detail. CALLER-

ROR’s Message Type ID has the value four (4), and its Message ID must, again, be the

Background 24

same as the Message ID of the CALL message so that the receiver can match the CALLER-

ROR to the CALL. The Error description and Error detail are optional elements allowing

the receivers to describe the error in detail. Listing 1 is an example of a CALLERROR

message notifying the recipient that SetDisplayMessageRequest is not supported.

Figure 9: Message model of OCPP messages

2.4.3 OCPP Use Cases

Open Charge Alliance, 2020a groups the OCPP messages into use cases, and the use

cases are grouped into sixteen blocks based on functionalities. Open Charge Alliance,

2020b illustrates each use case with a sequence diagram to indicate the direction of com-

munication and the type of messages being exchanged. Additionally, each use case is

accompanied by a list of requirements to define the expected behaviors. For example,

Figure 33 illustrates the use case B03 – Cold Boot Charging Station – Rejected

Since Open Charge Alliance, 2020a) specifies various use cases, within the scope of this

thesis, only the use cases related to ISO 15118 are listed and discussed. Table 3 lists the

use cases related to ISO 15118.

Background 25

Table 3: OCPP use cases related to ISO 15118, Open Charge Alliance, 2020b

Functional block Use case ID Use case name

Authorization
C07 Authorization using Contracts Certificate
C08 Authorization at EVSE using ISO 15118 EIM

Transaction E15 End of the charging process
Remote Control F04 Remote Stop ISO 15118 Charging from CSMS
Meter Values J03 Signed Meter Values

Smart Charging
K15 Charging with load leveling based on High-

Level Communication
K16 Renegotiation initiated by CSMS
K17 Renegotiation initiated by EV

ISO15118
CertificateManagement

M01 Certificate installation EV
M02 Certificate Update EV
M03 Retrieve a list of available certificates from a

Charging Station
M04 Delete a specific certificate from a Charging

Station
M05 Install the CA certificate in a Charging Sta-

tion
M06 Get V2G Charging Station Certificate status

2.4.4 SEVENSTAX’s OCPP Implementation

In the scope of this thesis, only the OCPP client is discussed because a bridging application

is built in the later chapter based upon its interaction with the ISO 15118 stack. As with

the ISO 15118 stack, the OCPP stack is developed using C-programming language and

intended to be used in embedded systems. The stack comprises three components: the

OCPP Service, the OCPP Controller, and the OCPP Message codec (Figure 10). The

Controller component manages the WebSocket connection to the CSMS and the message

routing between the Service component and lower network layers. Upon receiving or

transmitting an OCPP message, the Controller component invokes the Message codec

component to transform the OCPP message into a corresponding format. When receiving

an OCPP message, the Message codec parses this JSON message into the C-structure,

then the C-structure data is forwarded to the Service by the Controller. Before the

Controller component sends any message to the CSMS, the Message codec component

serializes the C-structure data to JSON format. The Service component is responsible for

notifying the OCPP Application about the arrived messages and preparing the resources

to serialize the transmitted messages. The OCPP Application is intended to be developed

by OCPP stack users. It processes the messages from the Service component and responds

with a reply according to the use cases defined by Open Charge Alliance, 2020b.

Background 26

Figure 10: SEVENSTAX’s OCPP stack

2.5 Interaction Between ISO15118 and OCPP 2.0.1

In this chapter, a combined sequence diagram of ISO 15118 and OCPP, derived from

Sections 2.3.3 and 2.4.3, is presented to illustrate the message exchange between both

protocols. Due to various scenarios supported by ISO 15118 and OCPP, the following

points are discussed:

• The conducted (wired) communication of ISO, 2014 is analyzed.

• ISO 15118-20 is not analyzed because it is still under construction.

• It is assumed that the EV uses a contract certificate, which is not yet installed in

the vehicle, as a payment method. Therefore, the EV must request the contract

certificate from the charging station.

• During the charging session, the charging profile renegotiation may be triggered

by either the EV or CSMS. Both re-negotiations are similar in terms of messages

exchanged, only the triggering source is different. Therefore, only the later is shown

and analyzed.

• From OCPP, only the use cases related to ISO 15118 are presented and evaluated.

Background 27

The following notation for addressing the messages and their elements is introduced to

keep the information unified, readable, and easy to look up.

• The message’s name is written using Pascal case, which means the words in its

name are compounded, and the first letter of each word is written in uppercase, for

example, BootNotificationRequest or CertificateInstallationRequest.

• The elements in each message are also denoted using the Pascal case. Because an

element can contain other sub-elements, to denote a sub-element, the following nota-

tion is applied: Element.SubElelement.SubSubElement, for example, EVChargePa-

rameter.EAmount.

• The element’s data type is presented as follows: Element.SubElelement:datatype,

for example, EVChargeParameter.EAmount:PhysicalValueType

• The value of an element is written in italics, for example, Occupied.

Figure 11 shows the deployment of the charging-protocol-related software components

in the EV, Charging station, and CSMS. . In the scope of the thesis, only the those

components are of interest. Other components, e.g., the GUI, metering, or card reader,

are omitted from the diagram.

Figure 11: Deployment diagram of ISO 15118 and OCPP software component

In the EV entity, the ISO 15118 component acts as an ISO 15118 client, which sends

ISO 15118 requests to its counterpart - the ISO 15118 server - in the Charging station.

The charging station hosts two charging protocol components, an ISO 15118 component

acting as a server and an OCPP component acting as a client. The ISO 15118 server

handles the V2G requests from the EV and controls the charging process according to the

required charging parameters. On the other hand, the OCPP client reports the status of

the charging station and forwards the data from the ISO 15118 client to the CSMS. The

CSMS manages its charging station using the OCPP server component. In the case of

Smart Changing, the CSMS controls the power delivered to the EVs by sending OCPP

messages containing the new charging profiles to the designated charging station. The

four mentioned components are the four actors of the sequence diagram, which is discussed

in the following sections.

Background 28

2.5.1 Communication Setup

As shown in Figure 12, after booting up, the OCPP client in the charging station sends

the BootNotificationRequest containing the boot reason and charging station informa-

tion to the server. The OCPP server responds with the message containing the status

Accepted, the server’s current time, and the heartbeat’s interval. When receiving a sta-

tus other than Accepted, the client retries to send the request after an interval specified

by the heartbeat’s interval. After the BootNotification message, the OCPP client sends

the status of its connectors, which are the electrical outlets providing the energy to the

EV, to the server with the StatusNotificationRequest. The OCPP server acknowledges

the request with the StatusNotificationResponse. From this point, the client periodically

sends the HeartbeatRequest to the server to indicate the liveliness of the connection. The

server confirms the request with a response containing the server’s timestamp which can

be used as a source for time synchronization between the client and the server. The inter-

val between two Heartbeat requests is specified in the BootNotificationResponse. When

a connector is connected to an EV, the charging station sends another StatusNotifica-

tionRequest containing the status Occupied to the server to indicate an EV connected to

the charging station. At this point, the EV is performing the IEC 61581 communication

with the EVSE.

Background 29

Figure 12: The communication setup phase

After the communication is switched to ISO 15118, the ISO 15118 client on the EV

sends the SupportedProtocolApplicationRequest to the server located in the charging

station. The SupportedProtocolApplicationRequest specifies which types of protocol are

supported by the client. The server replies to the client with the SupportedProtocolAp-

plicationResponse containing the most suitable protocol it can support and the Respon-

seCode OK SuccessfulNegotiation. If the client and the server agree upon the protocol,

they establish the communication session. As mentioned in Section 2.3.2, each ISO 15118

message requires an ID to identify the communication session, but for the SessionSetupRe-

quest message, its header contains the SessionID with the value 0x0000000000000000,

and its body contains the MAC address of the EVCC. The response header contains

a SessionID, which is used for the rest of the communication session. Additionally, the

response message’s body contains the ResponseCode OK NewSessionEstablished and the

EVSEID. After the communication is established, the EV and the charging station per-

form the authorization and authentication. Up to this point, no charging parameters have

been exchanged between ISO 15118 and OCPP protocol.

Background 30

2.5.2 Identification, Authorization, and Authentication

After the communication is established, the EV sends the ServiceDiscoveryRequest to

the charging station to query for the services provided by that charging station. The

ServiceDiscoveryRequest has two optional elements: ServiceScope and ServiceCategory,

which are used by the EV to limit the types of services in the response message. The

charging station processes the ServiceDiscoveryRequest and responds with the ServiceDis-

coveryResponse holding the following parameters containing the provided services: Re-

sponseCode, PaymentOptionList, ChargeServiceList, and ServiceList. The EV may send

the ServiceDetailRequest to inquire about the detail of the services provided in the Ser-

viceDiscoveryResponse. The charging station responds to the EV with a ServiceDetailRe-

sponse, including the information about the inquired services. With the information from

the previous messages, the EV chooses the payment service by sending the PaymentSer-

viceSelectionRequest to the server. In this message, the EV specifies which type of service

it wants to use for payment, e.g., using a contract certificate or external method. After

processing the request, the station acknowledges the EV with the PaymentServiceSelec-

tionResponds.

Background 31

Figure 13: Identification, authentication, and authorization phase

Because this thesis assumes that the EV uses the contract certificate as the payment

method and the contract certificate is not present in the vehicle, the EV sends the Cer-

tificateInstallationRequest message to the charging station to issue the installation of the

contract certificate into the EV. The CertificateInstallationRequest’s payload contains is

signed with the private key of the Original Equipment Manufacture (OEM) Provisioning

Certificate so that it can be verified for the genuineness by the server. The body of this

message consists of the OEM Provisioning Certificate, whose public key is employed to

verify the genuineness of the request. In addition to the OEM Provisioning Certificate, the

Background 32

CertificateInstallationRequest also includes the ListOfRootCertificateIDs containing the

IDs of the root certificate installed in the EV. Upon receiving the CertificateInstallation-

Request, the charging station sends the OCPP GetEV15118CertificateRequest message

to the CSMS. This OCPP request contains three elements: the Iso15118SchemaVersion,

the Action holding value Install, and the ExiRequest holding the complete Certificate-

InstallationRequest message. The CSMS processes the request and replies with the

GetEV15118CertificateResponse containing the Status of the operation (Accepted) and

the ExiResponse. In case of not receiving the status Accepted, paymen using a contract

certificate is not possible and the charging station must use a fallback solution, for ex-

ample, authorization using External Identification Means (EIM). As soon as the charging

station receives the OCPP response, it sends CertificateInstallationResponse, which is the

ExiResponse element of the GetEV15118CertificateResponse, to the EV. The Certificate-

InstallationResponse consists of the ResponseCode, the SAProvisioningCertificateChain,

ContractSignatureCertChain, ContractSignatureEncryptedPrivateKey, DHpublickey, and

the eMAID. Table 4 explains the meaning of the elements mentioned above.

Table 4: Element of the CertificateInstallationResponse

ResponseCode Indicating the acknowledgment of the status
of the message.

SAProvisioningCertificateChain The certificate chain for verifying the signa-
ture in the message header.

ContractSignatureCertChain The certificate chain has to be installed in
the EV for signature purposes.

ContractSignatureEncryptedPrivateKey The private key belongs to the ContractSig-
natureCertChain and is encrypted based on
the OEM Provisioning Certificate and the
DHPublickey.

DHpublickey The Diffie Hellman public key to generate
the session key to decrypt the ContractSig-
natureEncryptedPrivateKey.

eMAID An identifier to identify the ContractSigna-
tureCertChain.

After receiving the Contract certificate, the EV sends the PaymentDetailRequest to the

charging station to start the authentication process. The PaymentDetailRequest message

comprises the eMAID and the ContractSignatureCertChain, which the EVs received in

the previous request. If the charging station is online and connects to the CSMS, it com-

bines the information from the ContractSignatureCertChain and its locally stored data

to create the OCPP AuthorizeRequest message to send to the CSMS. The exchanged

elements between OCPP and ISO 15118, mentioned in the above section, are listed in

Background 33

Table 15. The CSMS verifies the data in the request and responds with the AuthorizeRe-

sponse message to the charging station. This OCPP response holds the status of whether

the provided certificates are verified. Upon receiving the OCPP response, the charging

station replies to the EV with the PaymentDetailResponse message containing the Re-

sponseCode, the GenChallenge, and the EVSETimestamp. The GenChallenge element

is a randomly generated number acting as a challenge to prevent the relay attack during

the authentication process. The EVSETimestamp acts simply as a time source for time

synchronization in the EV. Table 16 lists the elements shared between ISO 15118 and

OCPP. The EV signs the body of the ISO 15118 AuthorizationRequest holding the same

GenChallenge with the private key, which it obtains in CertificateInstallationResponse,

and sends the request to the charging station. The charging station verifies the signature

in the request and sends the ISO 15118 AuthorizationResponse containing the verifica-

tion status back to the EV. The verification status can be OnGoing to indicate that

the charging station is still processing the data, or it can be Finished to indicate that

the authorization is successful. When the EV receives the status Finished, it is ready to

proceed to the charging phase.

2.5.3 Target Setting and Charge Scheduling

In this phase, the EV requests a charging profile from the charging station. The charging

station, in turn, inquires about a charging profile from the CSMS if it has a connection to

the CSMS . In case of no connection to the CSMS, the charging station can use fallback

solutions, for example, using default profiles or simply providing the requested energy.

After receiving a suitable charging profile and before the energy is provided, the EV per-

forms the functionality checks, i.e., cable check and pre-charge check. Figure 14 illustrates

the message sequence of setting and scheduling the charging profile. Firstly, it sends the

ChargeParameterDiscoveryRequest to the charging station. This message typically con-

sists of the RequestingEnergyTransferMode element indicating the charging types (AC or

DC), and the EVChargeParamter element containing the EV’s charging requirements, for

example, minimum current, minimum voltage, energy amount, et cetera (Table 17). The

EVChargeParemeter element’s content depends on whether the charging mode is AC or

DC. Upon receiving the request, the charging station extracts the information from it and

creates the OCPP NotifyEVChargingNeedsRequest to send to the CSMS . The OCPP

request holds the evseID, to which the EV connects, and the ChargingNeed extracted

from the EVChargeParemeter. The mentioned elements are listed in detail in Table 17

Background 34

Figure 14: Target scheduling

The CSMS sends the NotifyEVChargingNeedsResponse to the station with the status

Accepted to acknowledge the message. Right after sending the NotifyEVChargingNeed-

sRequest, the charging station replies to the EV with the ChargeParameterDiscoveryRe-

sponse. Since the charging station is still waiting for the charging profiles from the CSMS,

the response message contains the EVSEProcessing element with the value OnGoing to

indicate that the charging station is still processing the request. The charging station must

perform this ping-pong message loop between the ChargeParameterDiscoveryRequest and

the ChargeParameterDiscoveryResponse to prevent the timeout event from causing the

Background 35

EV to terminate the communication session. When the CSMS is ready, it sends the

OCPP SetChargingProfileRequest, holding the charging profiles. The charging station

extracts the charging profile from the OCPP request and includes it in the ChargePa-

rameterDiscoveryResponse to send to the EV. This time, the EVSEProcessing element

of the ChargeParameterDiscoveryResponse has the value Finished to indicate that the

negotiation is complete. The exchanged elements between the SetChargingProfileRequest

and the ChargeParameterDiscoveryResponse are extracted and presented in Table 17.

In case of DC charging, the EV sends the CableCheckRequest to the charging station to

request the cable check status at the charging station side and to inform the charging

station that EV’s connector is locked and the EV is ready to be charged. The check-

ing process at the charging station side can last up to 40 seconds. In this case, the

charging station responds to the EV with the CableCheckResponse containing its current

DC EVSEStatus and Ongoing status. The EV keeps sending the request until it receives

the CableCheckResponse message with Finished status. After the cable check is com-

pleted, the EV sends the PreChargeRequest to the charging station to inform it about

the required current and voltage. The charging station keeps adapting the output voltage

and current according to the requested values and informs the EVs about the process

by responding with the PreChargeResponse. This procedure can take up a couple of re-

quest/response until the charging station can provide the requested voltage and current.

Before the charging can start, the EV sends the PowerDeliveryRequest to the charging

station to request the energy delivered to the EV’s battery. The delivered power must be

conformed to the charging profiles negotiated in the ChargeParameterDiscoveryResponse

message. The charging station replies to the EV with the PowerDeliveryResponse to con-

firm the requested charging energy, and it starts to provide the energy to the EV. As an

optional step, the charging station can inform the CSMS about the selected charging pro-

file by sending the OCPP NotifyEVChargingScheduleRequest. The CSMS acknowledges

the requests by returning the NotifyEVChargingScheduleResponse. This acknowledgment

means that the CSMS processes the request successfully. It does not state that the CSMS

approves the charging profile. The charging station also sends the OCPP Transaction-

EventRequest to the CSMS to notify the charge station about the start of the charging.

The request typically contains the event’s type – Started, the time stamp, the trigger

reason (i.e., the reason this message is being sent) – ChargingStateChanged, the sequence

number, and the transaction information. The transaction information consists of detail

about the transaction, e.g., transaction ID, charging state, and time spent on charging.

The CSMS responds to the request with the TransactionEventResponse.

Background 36

2.5.4 Charging Loop with Signed Metering Values

During the energy delivery phase, the EV periodically requests the charging status from

the charging station, by which the EV can monitor the output power provided by the

charging station. By regulation of some countries, the metering information record must

be signed for billing purposes. Therefore, upon request, the EV sends the signed meter-

ing information to the charging station during the charging loop. Figure 15 displays the

message sequence of the charging loop with signed metering values. For the AC charging

case, the EV sends ChargingStatusRequest to the charging station. The charging station

replies with the ChargingStatusResponse containing the EVSE’s ID, the EVSE’s status,

the maximum provided current, and the ID of the charging profile the EVSE is using to

provide the energy to the EV. If the charging station requires the metering information

record to be signed, the ReceiptRequired element and the MeteringInfo element are in-

cluded in the response, and the ReceiptRequired element is set to value true. For DC

charging, the EV sends the CurrentDemandRequest to the charging station. The Cur-

rentDemandRequest includes all the elements necessary for the charging station to verify

the power it delivers to the EV. The charging station responds with the CurrentDeman-

dResponse containing its charging status. Similar to AC charging, the ReceiptRequired

element and the MeteringInfo element are included when signing metering information is

required.

Figure 15: Charging loop with signed metering values

When signing metering information is required, the EV signs the body of the MeteringRe-

Background 37

ceiptRequest with the private key from the contract certificate it obtains in the certificate

installation phase. The charging station replies with the MeteringReceiptResponse to

confirm the message reception. The charging station then sends the signed metering

information to the CSMS by sending another OCPP TransactionEventRequest to the

CSMS. This time, the TransactionEventRequest includes the event’s type – Updated,

the time stamp, the trigger reason (i.e., the reason this message is being sent) – Trigger,

the sequence number, and the transaction information, and the signed metering informa-

tion. The CSMS, again, confirms the message reception by responding to the EV with

the TransactionEventResponse. The message sequence mentioned above is periodically

repeated until the charging loop is complete. Table 20 illustrates the elements exchanged

by ISO 15118 and OCPP.

2.5.5 CSMS Triggers the Charging Profile Renegotiation

During the charging loop, the CSMS could send a new charging profiles to the charging

station according to the status of the power grid, for example, the charging station can

provide more energy to the EV because the grid is not under high load (Figure 16). To

initiate the charging profile, the CSMS sends the OCPP SetChargingProfileRequest to

the charging station. This request consists of the new charging profile and the EVSE ID

to which the charging profile is applied. The charging station acknowledges the request by

sending the SetChargingProfileResponse. In the next ChargingStatusRequest, in case of

AC charging, the charging station responds to the EV with the ChargingStatusResponse

containing the notification Renegotiation to indicate that a new charging profile is going

to be applied. In the case of DC charging, the same notification is applied to the Current-

DemandResponse. When receiving the response with the Renegotiation notification, the

EV sends the PowerDeliveryRequest to trigger the renegotiation procedure. The charging

station replies to the EV with the PowerDeliveryResponse to confirm the EV’s request.

Then, the EV sends the ChargeParameterDiscoveryRequest to get the new charging pro-

file from the charging station. Since the charging station already receives the charging

profile from the CSMS, it does not need to issue a new NotifyEVChargingNeedsRequest

to the CSMS, but it can reply to the EV with the ChargeParameterDiscoveryResponse

containing the new charging profile. Upon receiving the new charging profile, the EV

requests power delivery with the PowerDeliveryRequest message containing the newly

received charging profile. The charging station again confirms the request with the Pow-

erDeliveryResponse. From this point, the charging loop can be started again, and energy

is provided to the EV according to the new charging profile. Optionally, the charging

station can inform the CSMS that the new charging profile is being used by sending the

OCPP NotifyEvChargingScheduleRequest to the CSMS. The charging station receives

Background 38

the NotifyEvChargingScheduleResponse from the CSMS as an acknowledgment.

Figure 16: CSMS renegotiates the charging schedule

2.5.6 End of Charging Session

When the EV’s battery is fully charged, the EV sends the PowerDeliveryRequest con-

taining the element ChargeProgress, which is set to value Stop. Upon receiving the

request, the charging station responds with the PowerDeliveryResponse to confirm the

message reception. If a wielding detection is requested according to the IEC 61851-23,

the EV sends WeldingDetectionRequest to the charging station. The EV also opens the

DC voltage paths’ contacts and monitors the charging station’s response. The charging

station replies with the message WeldingDetectionResponse with the element EVSEPre-

sentVoltage containing the value of the DC voltage on the DC paths. If the contacts are

opened, the voltage has a value of 0. Then, the EV can close the charging session by

Background 39

sending the message SessionStopRequest holding the element ChargingSession with the

value Terminate. The charging station responds with the message SessionStopResponse

to acknowledge the request. The charging station notifies the CSMS about the termi-

nation of the charging session by sending the OCPP message TransactionEventRequest

with the element evenType having the value Ended. The CSMS replies to the request

with the message TransactionEventResponse to confirm the charging session termination.

The elements exchanged between OCPP and ISO 15118 are listed in Table 21.

Figure 17: End of charging session

2.6 Chapter’s Summary

This chapter provides an overview of several researches in the field of protocol compati-

bility analysis in terms of modeling method, algorithm, and result. Then, it reasons that

the method proposed by the Ouederni et al., 2010 is suitable for analyzing the compati-

bility between ISO 15118 and OCPP because the mentioned method evaluates not only

the state transitions and message exchange, but also the message parameters. After that,

this chapter describes the process of analyzing the compatibility and how to derive the

compatibility matrix. Then, this chapter describes the basics of ISO 15118 and OCPP

protocols: their OSI model, message construction, use cases, and implementation. Both

Background 40

are IP-based protocols, but OCPP relies entirely on Ethernet at the data link and phys-

ical layer. ISO 15118, however, uses the PLC protocol for communication. In terms of

messaging, OCPP encodes its message in JSON format, but ISO 15118 uses EXI format.

ISO 15118 has a fixed message sequence and operates in a client/server fashion, where the

EV must be the client and the EVSE must be the server. In contrast, OCPP is a stateless

protocol. Although OCPP defines client and server roles, both can send OCPP requests

and responses simultaneously. SEVENSTAX provides the ISO 15118 and OCPP protocol

stacks in C programming language. Both stacks are implemented in the event-driven

pattern, where the OCPP and V2G applications must respond to messages from their

associated services. Finally, this chapter also covers the message sequence of a charging

session involving the ISO 15118 client, the ISO 15118 server, the OCPP client, and the

OCPP server. Each charging session must go through the following phases: Communi-

cation setup, Identification - Authorization - Authentication, Target Setting - Charging

Scheduling, Charging Loop, Charging Profile Renegotiation (optional), and End of Charg-

ing Session. For each phase during a charging session, the messages exchanged and their

parameters are explained to highlight the interactions between the above components.

The interactions between the ISO 15118 server and the OCPP client will be the input for

the compatibility analysis.

Protocols Compatibility Analysis 41

3 Protocols Compatibility Analysis

This chapter describes how the compatibility between ISO 15118 and OCPP is analyzed

based on the method proposed by Ouederni et al., 2010. First, the behavior of both

protocols is modeled using the Symbolic Transition System. Then, the compatibility

degrees are calculated based on the formulas in sections. Finally, the compatibility matrix

is discussed and the conclusion is drawn based on the results.

3.1 The Analysis of ISO 15118 and OCPP

Modeling the interaction between the protocols is critical because it is used as an input

to the analysis and can significantly affect the outcome. Ouederni et al., 2010 and the

literature in Section 2.1 did not specifically mention any techniques for modeling the

system. However, the following points can be derived from the papers to create such a

model:

• Protocols evolve into new states when messages are exchanged between them. In

order words, a position between two message exchanges is a state.

• The model must have an initial state and one or more final states.

• Message exchange is not limited to sending data in physical channels; messages can

also be sent in logical channels, such as shared memory or message queues.

With the above information, the interactions between ISO 15118 and OCPP are modeled

and illustrated in Figure 18 using the Symbolic Transition System (STS) and based on

Chapter 2.5.

Protocols Compatibility Analysis 42

Figure 18: STS between ISO 15118 and OCPP

Note: Even though the ISO 15118 and OCPP components are deployed in the same

hardware and software instance (Figure 11), and their interactions are function calls, not

transceiving messages through a physical or logical bus, the analysis still uses the termi-

nology ”sending/receiving” messages to denote the interaction between them.

Protocols Compatibility Analysis 43

The name of the states and their description are listed in Table 5 and Table 6. To keep

the graph more readable, the messages’ parameters are denoted as plmessage name. The

concrete parameters are mentioned during the calculation and in Appendix C.

Table 5: Explanation of ISO 15118’s STS

State State name Description
a0 Initial The ISO 15118 server handles the supportedProtocolAp-

plicationReq, SessionSetupReq, ServiceDiscoveryReq, Ser-
viceDetailReq, and PaymenServiceSelectionReq from the
client. ISO 15118 advances to the next state when it trans-
mits the certRequest! to the OCPP client.

a1 CertInstallWait The ISO 15118 server is waiting for the response from the
OCPP client. It can advance to the next state when it
receives certRequest?.

a2 Authorize The ISO 15118 server prepares and sends the authorization
data in authorize! to OCPP, and then it advances to the
next state.

a3 AuthorizeWait The ISO 15118 server waits for the response from the
OCPP client.

a4 ChargeParams In this state, the ISO 15118 server sends the charging pa-
rameter to the OCPP client and transition to the next
state.

a5 ChargeParamWait The ISO 15118 server is waiting for the charging schedule
from the OCPP client. Upon receiving the response, the
ISO 15118 server moves to the next state.

a6 PreCharging In this state, the ISO 15118 server sends the charging
schedule to the EV and sends the transactionEvent! to
the OCPP client to notify the beginning of a charging ses-
sion and move to the next state.

a7 Charging In this state, the EV is being charged. Whenever the
EV sends new charging parameters to the EVSE (host-
ing the ISO 15118 server), the server sends the message
chargeParams! to the OCPP client to notify the renegoti-
ation of the charging parameters and advance to state a5.
Upon receiving the new charging profile from the OCPP
client via the message chargeSchedule?, the ISO 15118 ad-
vances to state a6 to send the new charging schedule to
the EV.
When the EV is fully charged, the ISO 15118 server sends
the transactionEvent! to the OCPP client to stop the
charging session and move to the final state. On the other
hand, the ISO 15118 server can receive the requestStop?
from the OCPP client to terminate the charging process
and move to the final state.

a8 Final(End Session) State final.

Protocols Compatibility Analysis 44

Table 6: Explanation of OCPP’s STS

State State name Description
b0 Initial (Idle) Inial state of the OCPP client. It is idle and waits for

incoming messages.
Upon receiving the message certRequest?, authorize?,
chargeParam?, and transactionEvent?, the OCPP client
advance to the following states CertWait, Authorize-
Wait, ChargeScheduleWait, and Charging, respectively.

b1 CertWait In the states, the OCPP client waits for the certificate
response message from its server. Upon receiving the re-
sponse, it transmits the certResponse! to the ISO 15118
server and returns to state b0.

b2 AuthorizeWait In the states, the OCPP client waits for the authoriza-
tion response message from its server. Upon receiving
the response, it transmits the paymentDetail! to the
ISO 15118 server and returns to state b0.

b3 ChargeScheduleWait In the states, the OCPP client waits for the charging
schedule message from its server. Upon receiving the
response, it transmits the chargeSchedule! to the ISO
15118 server and returns to state b0.

b4 Charging In the charging state, the EV is being charged by the
charging station. If the CSMS issues a new charging
schedule, the OCPP client sends the schedule to the ISO
15118 server via the message chargeSchedule! and ad-
vances to state b0.
When the OCPP client receives new charging parame-
ters from the ISO 15118 server via the chargeParam?
message, it evolves to state b3 and waits for the new
charge schedules from the OCPP server.
The OCPP client can issue a charging termination by
sending requestStop! to the ISO 15118 client and evolv-
ing to the final state. On the contrary, it can advance
to state b5 by receiving the transactionEvent? from the
ISO 15118 server.

b5 Final Final state. End of charging session.

From Figure 18, the reachable states are derived and illustrated as follows:

Protocols Compatibility Analysis 45

Figure 19: Reachable states

According to Ouederni et al., 2010, for the initial interaction, the state compatibility of

all states has the value of 1. Therefore, the state compatibility for the first iteration is

illustrated as follows.

For k = 0

Table 7: COMP 0
UR,↔[ai, bj]

a0 a1 a2 a3 a4 a5 a6 a7 a8

b0 1 1 1 1 1 1 1 1 1
b1 1 1 1 1 1 1 1 1 1
b2 1 1 1 1 1 1 1 1 1
b3 1 1 1 1 1 1 1 1 1
b4 1 1 1 1 1 1 1 1 1
b5 1 1 1 1 1 1 1 1 1

The Calculation of COMP1

UR,↔[a0, b0]

obs comp1
UR,↔(a0, b0) =

sum1

UR,↔
((a0,b0),E(a0,T0),R(b0,T0))+sum1

UR,↔
((b0,a0),E(b0,T0),R(a0,T0))

∥E(a0,T0)∥+∥E(b0,T0)∥

where:

Protocols Compatibility Analysis 46

E(a0, T0) = ¶(a0, certRequest!plcertRequest!, a1)♢

R(a0, T0) = ∅

E(b0, T0) = ∅

tau(a0, T0) = ∅

tau(b0, T0) = ∅

Fw(a0, T0) = E(a0, T0)

Fw(b0, T0) = R(b0, T0)

R(b0, T0) = ¶(b0, certReqest?plcertRequest?, b1),

(b0, authorize?plauthorize?, b2),

(b0, chargeParams?plchargeP arams?, b3),

(b0, transactionEvent?pltransactionEvent?, b4)♢

The function sum1
UR,↔((a0, b0), E(a0, T0), R(b0, T0)) calculates the sum of the best com-

patibility between E(a0, T0) and R(b0, T0). The calculation is reduced down to the transi-

tions (a0, certRequest!plcertRequest!, a1) and (b0, certRequest?plcertRequest?, b1) because other

transitions are unmatched.

⇒sum1
UR,↔((a0, b0), E(a0, T0), R(b0, T0))

= lab comp(certRequest!, certRequest?) ∗ COMP 0
UR,↔[a1, b1]

with:

COMP 0
UR,↔[a1, b1] = 1

lab comp(certRequest!, certRequest?) = 1−
∥unsharedTypes(plcertRequest!, plcertRequest?)∥)

6(∥plcertRequest!∥ + ∥plcertRequest?∥)

From Table 13, the un-shared data types between the messages are:

unshared = ¶base64encoding, string♢

Protocols Compatibility Analysis 47

⇒ ∥unsharedTypes(plcertRequest!, plcertRequest?)∥ = 2

⇒ lab comp(certRequest!, certRequest?) = 1 −
2

6 ∗ (1 + 1)
= 0.833

⇒ sum1
UR,↔((a0, b0), E(a0, T0), R(b0, T0)) = 0.833

(9)

The function sum1
UR,↔((b0, a0), E(b0, T0), R(a0, T0)) is based upon the compatibility be-

tween the E(b0, T0) and R(a0, T0). Because of E(b0, T0) = ∅

⇒ sum1
UR,↔((b0, a0), E(b0, T0), R(a0, T0)) = 0

⇒ obs comp1
UR,↔(a0, b0) =

0.833 + 0

1
= 0.833

Because tau(a0, T0) = ∅, it can be concluded that the forward are equal to the observable

compatibility obs comp(a0, T0).

Proof:

fw propag1
UR,↔(a0, b0) =

d fw propag1
UR,↔(a0, b0) + d fw propag1

UR,↔(b0, a0)

2

with:

d fw propag1
UR,↔(a0, b0) =

∑
(a0,τ,a′

0
)∈T0

fw propag1
UR,↔(a′

0, b0) + obs comp1
UR,↔(a0, b0)

∥tau(a0, T0)∥ + 1

= obs comp1
UR,↔(a0, b0)

(tau(a0, T0) = ∅ ⇒
∑

(a0,τ,a′

0
)∈T0

fw propag1
UR,↔(a′

0, b0) = 0 and ∥tau(a0, T0)∥ = 0)

d fw propag1
UR,↔(b0, a0) =

∑
(b0,τ,b′

0
)∈T0

fw propag1
UR,↔(b′

0, a0) + obs comp1
UR,↔(b0, a0)

∥tau(b0, T0)∥ + 1

= obs comp1
UR,↔(b0, a0)

(tau(b0, T0) = ∅ ⇒
∑

(b0,τ,b′

0
)∈T0

fw propag1
CN,↔(a′

0, b0) = 0 and ∥tau(b0, T0)∥ = 0)

Therefore,

Protocols Compatibility Analysis 48

fw propagk
UR,↔(a0, b0) =

d fw propagk
UR,↔(a0, b0) + d fw propagk

UR,↔(b0, a0)

2

= obs comp1
UR,↔(a0, b0)

= 0.833

Due to no internal backward propagation to (a0, b0), the backward propagation of (a0, b0)

is equal to their observable compatibility.

Proof:

bw propag1
UR,↔(a0, b0) =

d bw propag1
UR,↔(a0, b0) + d bw propag1

UR,↔(b0, a0)

2

with:

d bw propag1
UR,↔(a0, b0) =

∑
(a′

0
,τ,a0)∈T0

bw propag1
UR,↔(a′

0, b0) + obs comp1
UR,↔(a0, b0)

∥tau(a0, T0)∥ + 1

= obs comp1
CN,↔(a0, b0)

(
∑

(a′

0
,τ,a0)∈T0

bw propag1
UR,↔(a′

0, b1) = 0 because state a0 is the initial state, which has no

backward propagation)

d bw propag1
UR,↔(b0, a0) =

∑
(b′

0
,τ,b0)∈T1

bw propag1
UR,↔(b′

0, a0) + obs comp1
UR,↔(b0, a0)

∥tau(b0, T0)∥ + 1

= obs comp1
UR,↔(b0, a0)

(
∑

(b′

0
,τ,b0)∈T0

bw propag1
UR,↔(b′

0, a0) = 0 because state b0 has no internal transition from

backward neighbor states.

⇒ bw propag1
UR,↔(a0, b0) = obs comp1

UR,↔(b0, a0) = 0.833

According to Equation 7, the state compatibility of the state (a0, b0) is:

state comp1
UR,↔(a0, b0)

=
w1 ∗ fw propag1

UR,↔(a0, b0) + w2 ∗ bw propag1
UR,↔(a0, b0) + w3 ∗ nat(a0, b0)

w1 + w2 + w3

Where

Protocols Compatibility Analysis 49

• w1 = 5 because a0 has one outgoing matching transition and b0 has four outgoing

matching transitions.

• w2 = 4 because b0 has four incoming matching transitions .

• w3 = 1 because there is no τ transition. nat(a0, b0) = 1 since both state are initial

state.

⇒ state comp1
UR,↔(a0, b0) =

5 ∗ 0.833 + 4 ∗ 0.833 + 1 ∗ 1

5 + 4 + 1
= 0.85

and

COMP 1
UR,↔[a0, b0] =

COMP 0
UR,↔[a0, b0] + state comp1

UR,↔(a0, b0)

2
=

1 + 0.85

2
= 0.925

The Calculation of COMP1

UR,↔[a0, b1] From Figure 18, the state (a0, b1) is deadlock.

Therefore, theirs compatibility degree yields value 0, i.e., COMP 1
UR,↔[a0, b1] = 0

Proof:

obs comp1
UR,↔(a0, b1) =

sum1

UR,↔
((a0,b1),E(a0,T0),R(b1,T1))+sum1

UR,↔
((b1,a0),E(b1,T1),R(a0,T0))

∥E(a0,T0)∥+∥E(b1,T1)∥

where:

E(a0, T0) = ¶(a0, certRequest!plcertRequest!, a1)♢

R(a0, T0) = ∅

tau(a0, T0) = ∅

Fw(a0, T0) = E(a0, T0)

and

E(b1, T1) = ¶(b1, certResponse!plcertResponse!, b0)♢

R(b1, T1) = ∅

tau(b1, T1) = ∅

Fw(b1, T1) = E(b1, T1)

The function sum1
UR,↔((a0, b1), E(a0, T0), R(b1, T1)) calculates the sum of the best com-

Protocols Compatibility Analysis 50

patibility between the emissions of state a0 and the receptions of state b1. Because there is

no reception at state b1 (R(b1, T1) = ∅), sum1
UR,↔((a0, b1), E(a0, T0), R(b1, T1)) = 0. With

the same argument, it can be concluded that, sum1
UR,↔((b1, a0), E(b1, T1), R(a0, T0)) = 0.

⇒ obs comp1
UR,↔((a0, b1)) = 0

Because there is no internal forward propagation in a0, b1

fw propagk
CN,↔(a0, b1) = obs comp1

UR,↔(a0, b1) = 0

Due to no internal backward propagation to (a0, b1), the backward propagation of (a0, b1)

is equal to their observable compatibility.

⇒ bw propag1
UR,↔(a0, b1) = obs comp1

UR,↔(a0, b1) = 0

The state compatibility of state (a0, b1) is calculated as follows:

state comp1
UR,↔(a0, b1)

=
w1 ∗ fw propag1

UR,↔(a0, b1) + w2 ∗ bw propag1
UR,↔(a0, b1) + w3 ∗ nat(a0, b1)

w1 + w2 + w3

=
w3 ∗ nat(a0, b1)

w1 + w2 + w3

= 0

(nat(a0, b1) = 0 because a0 ∈ Ia & b1 /∈ (Ib ∪ Fb))

And the compatibility degree is calculated as follows:

COMP 1
UR,↔[a0, b1] =

COMP 0
UR,↔[a0, b1] + state comp1

UR,↔(a0, b1)

2
=

1 + 0

2
= 0.5

Apply the same procedure to states (a0, b2), (a0, b3), (a0, b4), (a0, b5),

Protocols Compatibility Analysis 51

state comp1
UR,↔(a0, b1) =

w3 ∗ nat(a0, b2)

w1 + w2 + w3

= 0

state comp1
UR,↔(a0, b2) =

w3 ∗ nat(a0, b3)

w1 + w2 + w3

= 0

state comp1
UR,↔(a0, b3) =

w3 ∗ nat(a0, b4)

w1 + w2 + w3

= 0

state comp1
UR,↔(a0, b4) =

w3 ∗ nat(a0, b5)

w1 + w2 + w3

= 0

since a0 ∈ Ia & (b1, b2, b3, b4, b5) /∈ (Ib ∪ Fb))

and

COMP 1
UR,↔[a0, b2] = COMP 1

UR,↔[a0, b3]

= COMP 1
UR,↔[a0, b4]

= COMP 1
UR,↔[a0, b5]

= 0.5

The rest of the compatibility degrees are calculated in Appendix D. For k = 1, the

compatibility degree table is presented as follows:

Table 8: COMP 1
UR,↔[ai, bj]

a0 a1 a2 a3 a4 a5 a6 a7 a8

b0 0.925 0.5 0.936 0.5 0.931 0.5 0.882 0.914 0.5
b1 0.5 0.933 0.6 0.6 0.6 0.584 0.584 0.563 0.5
b2 0.5 0.6 0.6 0.933 0.6 0.584 0.584 0.563 0.5
b3 0.5 0.584 0.584 0.584 0.584 0.978 0.571 0.693 0.5
b4 0.5 0.563 0.563 0.563 0.702 0.766 0.679 0.97 0.5
b5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1

Based on the calculation performed in Appendix D, a scripting application is developed

using the Python programming language to assist in the calculation of the compatibility

matrix (Nguyen, 2023). The application is a command line interface that allows the user

to input the paths to the graph and the number of iterations, and then outputs the com-

patibility matrix as results or error messages (Listing 5 and 6).

Protocols Compatibility Analysis 52

Figure 20: Compatibility Calculator application

Figure 20 illustrates the design of the tool, including its input and output data. The

tool consists of two modules, the Parser and the Compatibility Calculator. The Parser

is responsible for validating and parsing the input data. The input data are the JSON

files describing the protocol’s model, following the format described in Listing 4. After

the parser successfully validates the input data, it parses data into the Graph object for

processing (the validation criterion is described by Nguyen, 2023). The Graph class con-

tains information about the associated protocols, including their states and transitions.

The design of the Graph class is specified in Figure 35. The Compatibility Calculator

module inputs the Graph objects to compute the compatibility matrices. Due to time

constraints, the Compatibility Calculator module is implemented using the Unspecified

Reception notion to calculate the compatibility degree. The results of the calculation are

displayed on the terminal and saved to a text file.

For the analysis, ISO 15118’s STS and OCPP’s STS are converted into JSON data, which

is calculated by the Compatibility calculator application for 11 iterations. The result of

the calculation is presented and discussed in the following section.

Protocols Compatibility Analysis 53

3.2 Results And Discussion

3.2.1 Results

Table 9: COMP 11
UR,↔[ai, bj]

a0 a1 a2 a3 a4 a5 a6 a7 a8

b0 0.581 0 0.573 0.0 0.594 0 0.691 0.306 0
b1 0 0.611 0.2 0.2 0.2 0.167 0.167 0.126 0
b2 0 0.2 0.2 0.621 0.2 0.167 0.167 0.126 0
b3 0 0.167 0.167 0.167 0.167 0.663 0.143 0.291 0
b4 0 0.126 0.126 0.126 0.316 0.381 0.113 0.794 0
b5 0 0 0 0 0 0 0 0 1

Table 9 illustrates the compatibility degree of ISO 15118 and OCPP calculated with the

prototype tool after 11 iterations. In column a0, (a0, b0) has the highest compatibility

degree. It is consistent with the model where state a0 sends certRequest! and proceeds

to state a1; and b0 receives CertRequest? and proceeds to state b1. However, the com-

patibility degree is not perfect because of the unshared data types in the messages. As

of ISO 15118, certRequest! uses base64Binary as the data type for its CertificateInstalla-

tionRequest parameter. On the other hand, OCPP expects string as the data type for its

equivalent parameter, ExiRequest. This data type incompatibility affects the label com-

patibility calculation (Equation 9), which ultimately reduces the overall compatibility of

(a0, b0). The other states, such as (a0, b1), (a0, b2), (a0, b3), (a0, b4), and (a0, b5) are in a

deadlock because there is no valid message exchange to allow the protocols to proceed to

the next states.

In column a1, (a1, b1) has the highest compatibility degree because they share the com-

patibility message certResponse. They also do not have a perfect compatibility degree

because of the data type incompatibility (base64Binary and string). (a1, b0) and (a1, b5)

have a compatibility degree of zero because they are deadlocked and have no compatibility

messages. Although (a1, b2), (a1, b3), and (a1, b4) are also deadlocked, their compatibility

degrees are not zero. The reason is that according to formula 7, the state compatibility

degree is also depend on the nature of the state, and the mentioned states have the same

state nature (they are neither initial state nor final state).

In column a2, (a2, b0) has the highest compatibility degree, but the value is not perfect.

The reason is the same as in the previous cases. The message is compatible, but the they

do not have the same data types (Table 15). In this column, (a2, b5) has the lowest degree

of compatibility because it does not have the same state type and compatibility messages.

Protocols Compatibility Analysis 54

(a2, b1), (a2, b2), (a2, b3), and (a2, b4) are also deadlocked, but they have the same state

nature, so the compatibility degrees are not zero.

Column a3 has the same behavior as column a1, (a3, b0) and (a3, b5) have zero compatibil-

ity degrees due to incompatibility message and different state natures. The other states,

such as (a3, b1), (a3, b3), and (a3, b4), are also deadlocked, but they have the same state

nature; thus, their compatibility degrees are low but not zero. (a3, b2) has the highest

degree of compatibility because they have the compatibility message paymentDetail. This

message exchange again has unshared data types (Table 16), causing the compatibility

degree to be not perfect.

In column a4, (a4, b0) has the highest compatibility degree because it shares the com-

patible message-chargeParams. Again, the degree of compatibility is not perfect because

of unshared data types (Table 17). (a4, b5) has zero compatibility because of deadlock

and state-nature differences. (a4, b1), (a4, b2), and (a4, b3) have deadlock but share the

same state nature; thus, the compatibility degrees are low but not zero. Interestingly,

(a4, b4) does not have a high compatibility degree (0.316), but still has the second high-

est value. The reason is that it has a legal transition, i.e. (a4, chargeParam!, a5) and

(b4, chargeParam?, b3). According to Figure 19, the transition to (a4, b4) does not happen

because it is not in the list of reachable states. However, if this transition were to occur,

it would place the charging station in an undesirable state. In state a4, the EV is not

yet charged and the ISO 15118 server sends the charging parameters to the OCPP client.

In state b4, the OCPP client is already in the charging state where the EV is already

charged, which is inconsistent with the ISO 15118 server. In practice, this behavior must

be prevented to avoid unsynchronization between ISO 15118 and OCPP.

Column a5 has the same behavior as columns a1 and a3, with (a5, b0) and (a5, b5) having

zero compatibility due to deadlock and state nature differences. (a5, b3) has the highest

degree of compatibility, but the value is not perfect due to data type differences (Table

18). (a5, b4) has the same behavior as (a4, b4). It does not have a high compatibility degree

(0.381), but it is still the second highest. The reason is that it has a legal transition, i.e.

(a5, chargeSchedule?, a6) and (b4, chargeSchedule!, b0). (a5, b4) does not happen because

it is not in the list of reachable states and it must be prevented for the same reason as

with (a4, b4).

Column a6 has the same behavior as column a2. (a6, b0) has the highest degree of com-

patibility, but this value is not perfect due to data type differences (Table 20). (a6, b5) has

Protocols Compatibility Analysis 55

zero compatibility due to deadlock and state nature differences. (a6, b1), (a6, b2), (a6, b3),

and (a6, b4) have deadlocks but still share the same state nature. Therefore, their degrees

of compatibility are not zero.

In column a7, (a7, b4) has the highest degree of compatibility, but this value is not perfect

for the same reason as the previous cases. (a7, b1), (a7, b2), and (a7, b5) are deadlocked.

Nevertheless, (a7, b1) and (a7, b2) have the same state nature, so their compatibility degree

is not zero. (a7, b0) and (a7, b3) have higher compatibility degrees than the deadlock states

because of legal transitions that are transactionEvent and chargeSchedule, respectively.

However, these states do not occur because they are not on the list of reachable states

and must be prevented.

Finally, (a8, b5) in column a8 has the highest compatibility value because they are both

states. The rest have zero compatibility due to deadlock and state nature differences.

3.2.2 Discussion

From the results section, the compatibility matrix of ISO 15118 and OCPP provides four

points:

• States that are incompatible and have different state natures have zero compatibility

degrees.

• States that are incompatible but have the same state nature have relatively low

compatibility degrees, ranging from 0.1 to 0.2 (Table 9).

• There are unreachable states with high compatibility degrees, such as (a4, b4), (a5, b4),

(a7, b0), or (a7, b3), compared to the incompatible states. They have such a com-

patibility degree because of compatible transitions. In practice, these unreachable

states are undesirable and must be avoided.

• The highest degrees of compatibility in each column belong to the compatible states,

which are also the reachable states (Figure 19). It is therefore concluded that ISO

15118 and OCPP are compatible.

Despite being compatible in states and transitions, the ISO 15118 and OCPP compati-

bility is not perfect because of the low label compatibility caused by the unshared data

type. For example, in Table 17, when exchanging the charging parameters, ISO 15118

uses the PhysicalValueType data type, which is a structure of three parameters: Value,

Multiplier, and Unit. The actual value from this data type is calculated as follows:

Protocols Compatibility Analysis 56

final value = V alue ∗ 10Multiplier

On contrary, OCPP uses the data type integer for its charging parameters. Another

example is ISO 15118 uses byte data type for the parameter FullSOC, but OCPP uses

integer data type. Of course, not all ISO 15118 enumeration data types can be mapped

one-to-one to OCPP enumeration data types. For example, in Table 17, the Energy-

TransferMode parameter from ISO 15118 has one of the following enumeration values:

AC single phase core, AC three phase core, DC core, DC extended, DC combo core, or

DC unique (ISO, 2014). Meanwhile, the requestedEnergyTransfer parameter from OCPP

has one of the enumeration values: DC, AC single phase, AC two phase, or AC three phase

(Open Charge Alliance, 2020c). The enumeration mismatch creates ambiguity during im-

plementation because it is up to the developers to decide which ISO 15118 enumeration

value matches which OCPP enumeration. For instance, the developer can convert the val-

ues DC extended, DC combo core, and DC unique from ISO 15118 to DC in OCPP. From

a semantic point of view, this conversion is appropriate. However, from the perspective of

ISO 15118 standards, this conversion may lose detailed information about the DC charge

type, and eventually, these inconsistencies contribute to the low interoperability of the

protocols.

The explanation for this behavior is that OCPP aims to be a generalized back-end protocol

supporting not only ISO 15118 but also other charging-related protocols, for example,

CHAdemo (Open Charge Alliance and CHAdeMo, 2020) or OpenARD (Hoekstra et al.,

n.d.). Therefore, the OCPP’s parameters use common data types and do not include

specific or domain knowledge data types. Furthermore, those data types must be large

enough to hold the potential data types from other protocols. Type compatibility between

parameters is important to the software implementation because it reduces the effort and

complexity of the implementation. For example, if two standalone parameters have the

same data type, developers can perform an assignment operation to pass a value from

ISO 15118 to the OCPP message:

i so15118 param a = ocpp param a ;

If the parameters are packed into the structures where they have the same others, and

their data types are compatible (Listing 2), the developers can use the memcpy function

to pass the data:

memcpy(&iso15118 data , &ocpp data , s izeof (

i s o 1 5 1 1 8 d a t a s t r u t u r e b))

On the contrary, if the parameters of specific OCPP and ISO 15118 data structures are not

Protocols Compatibility Analysis 57

in the same order and their data types are not compatible, the developer must manually

match and do data transformation on each parameter (Listing 3). Table 10 shows a list

of mismatched data type between parameters of ISO 15118 and OCPP and the method

to convert them.

Table 10: Mismatched data type between the ISO 15118 and OCPP parameters

ISO 15118 OCPP Conversion method
Base64 string Dedicated base64 en-

coding and decoding
functions

ResponseCodeEnum CertificateStatusEnum Comparing the seman-
tic meaning of the enu-
meration value

EnergyTransferModeEnum RequestedEnergyTransferEnum Comparing the seman-
tic meaning of the enu-
meration value

PhysicalValueType integer Dedicated conversion
function

Byte integer Type casting
Unsigned integer integer Type casting
Iso15118CostkindEnum OcppCostkindEnum Comparing the seman-

tic meaning of the enu-
meration value

unsignedLong number Type casting
PhysicalValueType number Dedicated conversion

function

In summary, ISO 15118 and OCPP protocols are compatible. The interactions between

the protocols start from the initial state and reach the final state, forming a list of reach-

able states (Figure 19). Each reachable state results in a high degree of compatibility,

as shown in Table 9. However, the compatibility is not perfect because the messages ex-

changed do not have similar data types. In addition, such states (a4, b4), (a5, b4), (a7, b0),

and (a7, b3) have high compatibility degrees but are unreachable. These states must be

prevented to avoid unsynchronization between the protocols. Therefore, to implement a

Bridging application between the protocols, developers must implement the helper func-

tions that convert the between OCPP and ISO 15118 data types (the conversion methods

are listed in Table 10). Since OCPP is a stateless protocol, meaning that any message can

be sent and received in any state, ISO 15118 may receive OCPP messages that are not

expected for that state. Therefore, developers must implement a mechanism to monitor

which OCPP messages are allowed to be sent and expected to be received in a particular

ISO 15118 charging state.

Protocols Compatibility Analysis 58

3.3 Chapter’s Summary

This chapter describes the steps to calculate the protocol compatibility between ISO 15118

and OCPP. Based on the result of the first calculation iteration, a prototype tool is im-

plemented to calculate the compatibility between protocols. The compatibility matrix

between ISO 15118 and OCPP (Table 9) calculated by the prototype tool concludes that

the protocols are not perfectly compatible due to the different data types of the exchanged

messages. Therefore, when implementing a Bridging application between the two proto-

cols, a data type conversion between the protocols must be implemented. In addition,

due to the stateless nature of OCPP, a monitoring mechanism must be implemented to

allow ISO 15118 to send and receive OCPP messages accordingly.

Development of a Protocols Bridging Application 59

4 Development of a Protocols Bridging Application

This chapter discusses the concept, architecture, and construction of the protocol Bridging

application to enable data transmission between EV, EVSE, and CSMS. Additionally,

this application must tackle the findings in the previous chapter, namely:

• Data types differences between ISO 15118 and OCPP.

• Controlling which OCPP messages can be sent and received during the charging

session to prevent deadlock or unexpected states.

Furthermore, the bridging application must handle the errors occurring during run-time,

which are not foreseen by the theoretical analysis, such as timeout, connection interrup-

tions, and invalid messages transmission or reception. Before the application’s design is

described, the operations of ISO 15118 and OCPP stack, which is the extension of Sec-

tion 2.3.4 and 2.4.4, are explained to give the readers an idea of how each stack operates

standalone and how to combine them. Then, based on that, the bridging application’s

design is described to illustrate how this design can solved the mentioned issues.

4.1 Assumptions and Requirements

The bridging application is designed with the following assumptions:

• Both ISO 15118 and OCPP stacks are deployed in the same hardware and software

instance (Figure 11). Therefore, they communicate with each other via function

calls and shared memory. The stacks can also be deployed in a multi-core system

where one core handles the ISO 15118 stack, and the other handles the OCPP stack.

Even though the compatibility analysis still holds, this setup is not in the scope of

the thesis.

• The Bridging application depends on the SEVENSTAX’s OCPP stack.

• The Bridging application implementation is designed to operate with SEVEN-

STAX’s ISO 15118 stack. It is, however, open to work with ISO 15118 stacks

from other vendors.

Besides the mentioned assumptions, the following high-level requirements must be con-

sidered during the design of the bridging application:

• The application must be event-driven; in other words, polling is forbidden. Ratio-

nale: The bridging application must not block other modules.

Development of a Protocols Bridging Application 60

• The application must not use dynamic memory allocation, i.e., malloc(). Ratio-

nale: both protocol stacks and the Bridging application are deployed in embedded

systems, where dynamic memory allocation is discouraged.

• The bridging application must depend only on SEVENSTAX’s OCPP stack. Ratio-

nale: this requirement allows the bridging application and OCPP stack work with

the ISO15118 stack from other vendors.

• When errors occur in the Bridging application or in the OCPP stack, they must

be handled, and they must not interfere with the charging session: Rationale: This

requirement ensures that if errors occur on the OCPP side, the OCPP stack can be

recovered and the charging session is not interrupted.

• The Bridging application must be open for extension to the new ISO 15118 stan-

dards. Rationale: ISO 15118-20 is currently implemented, and the bridging appli-

cation must support this new standard in the future.

4.2 Software Development Environment

The bridging application is developed using Visual Studio 2022 on a PC running the

Windows 10 operating system (Figure 21). The Visual Studio project consists of an EVSE

reference application that demonstrates how a typical charging session is implemented

using the SEVENSTAX ISO 15118 software stack. The Bridging application is developed

using the OCPP stacks and provides the interfaces to the EVSE application so that the

EVSE application can communicate with the CSMS.

Development of a Protocols Bridging Application 61

Figure 21: Software development environment

The communication between the EV and the EVSE is tested with an EV application

compiled with the options using the External Identification Means (EIM) and the Contract

Certificate for authentication. Similarly, a Python application using OCPP stack from

The Mobility House, n.d. is implemented to simulate the operation of the CSMS and

to test the interoperability of SEVENSTAX’s OCPP stack with other vendors. Due to

the requirements of the SEVENSTAX software stack, the EV and Bridging applications

use a separated network interface from the CSMS application. In the physical layer, the

EV and the EVSE communicate via the PLC protocol (Figure 5) but PLC is omitted

during development to make it less dependent on hardware components and easier to

test. Instead of PLC, the EV and EV applications use Ethernet to communicate with

each other.

4.3 SEVENSTAX’s ISO 15118 Stack Operation

As mentioned in Section 2.3.1, in ISO 15118 protocol, EV is always the one sending the

request to the EVSE, and the EVSE processes the request before sending back a response

to EV. Therefore, from the software implementation perspective, the ISO 15118 stack

has two operations, processing requests and building the responses (Figure 22 and 23).

Development of a Protocols Bridging Application 62

Figure 22: Handling ISO 15118 request. Extracted from SEVENSTAX GmbH, 2021

The message sequence in Figure 22 describes how the ISO 15118 application handles the

ISO 15118 requests. Whenever a request comes from the EV, the Service component

handles the message decoding from EXI format to C data structure (Section 2.3.4) and

notifies the Message Handler EVSE about the new request. The Message Handler EVSE

unpacks the C data structure and notifies the application about the parameters in the

data structure.

Figure 23: Handling ISO 15118 response. Extracted from SEVENSTAX GmbH, 2021

Preparing an ISO 15118 response also works similarly (Figure 23). After completely

processing the request, the Service allocates resources for a response, and it notifies the

Message Handler EVSE about the response message. Again, the Message Handler EVSE

requests the parameters of the response from the application via callback functions.

Development of a Protocols Bridging Application 63

4.4 SEVENSTAX’s OCPP Stack Operation

The OCPP stack functions similarly to the ISO 15118 stack, except for one aspect. In-

stead of setting and getting individual parameter from the application layer, the Service

module of the OCPP stack sends the complete received message to the application layer

and let the application layer retrieves the parameters out of the message. Similarly, the

Service allocates the data for the response and requires the application to fill in the data

by itself. The reason for this implementation is that the OCPP protocol has more mes-

sages than ISO 15118; on average, each OCPP message has more parameters than the

ISO 15118 message. Hence, setting and getting individual parameters are not practical.

Figure 24: Transmitting OCPP message

Figure 24 illustrates the sequence of sending an OCPP message to the counterpart. Firstly,

the OCPP application must issue a “Prepare message” to the Service module, and the

Service module adds the command to the queue. The reason for queuing the message is

that Open Charge Alliance, 2020d specifies that only one request can be sent out, and

Development of a Protocols Bridging Application 64

the OCPP stack is blocked until it gets a response or a timeout. As long as no request is

being processed, the Service module commands the Message module to prepare resources

for generating a new message. When the message is ready, the Service module notifies the

OCPP application so that the application can fill in the data according to the generated

OCPP message. Then, the Service module commands the Message module to serialize

the message from C-structure to JSON format. When the serialization is completed, the

JSON message can be sent away by the Controller module.

Figure 25: Receiving OCPP message

Receiving an OCPP message requires fewer steps than transmitting one (Figure 25).

Whenever the controller receives an OCPP message, it triggers the parsing process. When

the message is converted into the C data structure, the Controller notifies the Service,

which, in turn, notifies the application about the newly received message. Then, the

application is responsible for reads out the data in the message and acts accordingly.

4.5 The Bridging Application’s Design

4.5.1 Structure of the Bridging Application

At first thought, there is no need to create a bridging application with the current im-

plementation of the OCPP stack. The ISO 15118 application can transmit and receive

OCPP messages directly by interacting with the OCPP Service (Figure 26).

Development of a Protocols Bridging Application 65

Figure 26: Application without the bridging application

However, this design exposes several flaws, such as:

• The ISO 15118 application must also handle the message sequences for transmitting

and receiving OCPP messages, which exponentially increases the complexity of the

application.

• The ISO 15118 contains many dependencies from the OCPP module, and there will

be much work to be done if the V2G application is migrated to a new OCPP stack.

On the other hand, it is also challenging to make the OCPP stack support new ISO

15118 standards.

• The ISO 15118 application gains access to all OCPP messages, which are mostly

unnecessary for the interaction between ISO 15118 and OCPP. The required OCPP

messages are mentioned in Chapter 2.5.

Therefore, a Bridging application is required to reduce the system’s complexity. The

Bridging application acts as a facade layer, which provides the interfaces to send and

receive ISO 15118-related-OCPP messages. Internally, the bridging application works

with the OCPP service module to ensure that messages are transmitted and received

correctly. This design has the following advantages compared to the previous one:

• Instead of having one large and complicated application, it is broken down into

smaller applications, each with a single responsibility (divide and conquer).

Development of a Protocols Bridging Application 66

• The Bridging application acts as a facade layer, hiding the detailed implementation

of the OCPP stack from the ISO 15118 developers. The developers are provided

with a set of function calls (Figure 28) to trigger the OCPP message generation, and

they only need to know the required information according to the specific OCPP

message. This information is provided in Table 3 and Open Charge Alliance, 2020b.

• The bridging application can control which OCPP messages can be sent or received

according to Chapter 2.5. Additionally, it provides the helper functions to convert

ISO 15118 to OCPP data types and vice versa.

• This implementation is open for extension. If the new standard (ISO 15118-20)

requires new messages, new functions can be easily added.

Consequently, the block diagram from Figure 26 is transformed into the new design in

Figure 27.

Figure 27: Application with the bridging application

4.5.2 Interfaces Design and Descriptions

Figure 28 illustrates the interfaces and callbacks provided by the Bridging application.

The stxOcppAdapter Send methods allow the ISO 15118 application to initiate an OCPP

Development of a Protocols Bridging Application 67

message. When the resource for the initiated message is available, the ISO 15118 appli-

cation is notified by a callback associated with that message.

Figure 28: the interfaces provided by the bridging application

Development of a Protocols Bridging Application 68

For example, the ISO 15118 application can call the stxOcppAdapter SendCableConnect

method to notify the CSMS that the cable is connected to the EV. When the resource is

ready, the ISO 15118 application is notified by the pfnConnectorOccupiedRequest callback.

The callback is a function pointer of type PREPARE OCPP TRANSMIT :

typede f void (∗PREPARE OCPP TRANSMIT) (void ∗pstOcppMsg ,

bool ∗ bResult) ;

with:

• pstOcppMsg: pointer to the message, where the related ISO 15118 parameters are

set to the OCPP parameters.

• bResult: return status

If the unmatched data types occur, they are converted in this callback according to Table

10

The ISO 15118 application can be notified when it receives a response from the CSMS.by

registering to one of the HANDLE OCPP RECEIVE callbacks. For example, pfnHandle-

SetConnectorResponse is the response callback for both stxOcppAdapter SetCableConnect

and stxOcppAdapter SetCableDisconnect.

typede f void (∗HANDLE OCPP RECEIVE) (void ∗pstOcppMsg ,

bool ∗ bResult) ;

with:

• pstOcppMsg: pointer to the message containing the OCPP response. The related

ISO 15118 parameters are extracted from the OCPP parameters.

• bResult: return status

If any data type mismatched occurs, it is converted from OCPP type to ISO 15118 type

in this callback, based on Table 10.

The PROTOCOL NOTIFY HANDLER provides a callback to notify the ISO 15118 ap-

plication of the following events:

• OCPP ADAPTER NC DISCONNECTED: The bridging application is disconnected

from the CSMS due to network connectivity.

• OCPP ADAPTER NC CONNECTED: The bridging application is connected to

the CSMS.

Development of a Protocols Bridging Application 69

• OCPP ADAPTER NC AUTHORIZE TIMEOUT : Timeout event while waiting for

authorization response.

• OCPP ADAPTER NC CHARGE PROFILE TIMEOUT : Timeout event while wait-

ing for the charge profile.

With this interface design, new interfaces and callbacks can be added to the Bridging

Application whenever new messages must be supported.

4.5.3 Sequence for Handling the Requests and the Responses

Figure 29 illustrates the process of sending an OCPP message to the CSMS. After the

ISO 15118 application receives all of the parameters from its service layer, it initiates an

OCPP message by calling one of the stxOcppAdapter Send methods in Figure 28, e.g.,

stxOcppAdapter SetCableConnect. Internally, the Bridging application verifies if stxOcp-

pAdapter SetCableConnect can be called during the current state. For example, stxOcp-

pAdapter SetCableConnect must be called before providing the energy to the EV. If the

state is valid, the Bridging application prepares the OCPP message, which is the Sta-

tusNotificationRequest (Figure 12), corresponding to stxOcppAdapter SetCableConnect.

After the Service allocates the resources for the initiated message, it notifies the Bridging

Application. Then, the Bridging application notifies that the message is ready via the

callback pfnSetConnectorOccupiedRequest. The task of the ISO 15118 application is to

set the ISO 15118-related data to the OCPP parameters according to the requirement of

the JSON schema (Open Charge Alliance, 2020c). Additionally, any data type mismatch

between ISO 15118 parameters and OCPP parameters is converted by the ISO 15118

application based on the suggestion in Table 10. Before sending the OCPP message away,

the Bridging application verifies whether the required parameters are presented in the

OCPP messages according to Open Charge Alliance, 2020c. If errors occur during the

verification, the Bridging Application notifies the ISO 15118 application via the pfnOcp-

pAdapterNotifyHandler callback.

Development of a Protocols Bridging Application 70

Figure 29: Bridging application handles transmitting message

After sending the OCPP message, the ISO 15118 application waits for the response from

the CSMS. Within the timeout value, the Message Handler EVSE starts the procedure

by checking whether the response has arrived. If the OCPP response has not yet arrived,

the ISO 15118 application prepares an ISO 15118 response with Busy status. When the

Bridging application receives the OCPP messages from its Service module, it verifies if the

OCPP message is allowed in the current state. Then, the OCPP message is forwarded to

the ISO 15118 application. The ISO 15118 application converts any mismatched data type

from OCPP type to ISO 15118 type based on Table 10, stores the necessary parameters,

and is ready for the subsequent request from the Message Handler EVSE.

Development of a Protocols Bridging Application 71

Figure 30: Bridging application handles receiving message

4.6 Error Handling

Besides enabling data exchange between protocols, the Bridging Application must handle

the errors from both sides. Error handling can be divided into two categories. The first

category is the errors coming from ISO 15118, namely, what happens if the ISO 15118

communication is interrupted; for instance, the driver unplugged the charging cable. The

second one is from OCPP, specifically what happens if the OCPP communication is

interrupted due to no network connection.

4.6.1 ISO 15118-related Error Handling

From the OCPP communication point of view, whenever the communication between

the EV and EVSE is interrupted during the energy delivery phase, two statuses must be

reported to the CSMS:

Development of a Protocols Bridging Application 72

• Status of the connector

• Status of the transaction

The status of the transaction can be reported with the OCPP message Transaction-

EventRequest, in which the developers can specify the event type, the trigger reason,

and the stopped reason. The TransactionEventRequest message lets the CSMS know

that the energy offered to the EV has been stopped. Whenever the cable is unplugged,

the StatusNotificationEventRequest notifies the CSMS that the connector is available

again. Those handlings are specified in use cases E9 and E10 by Open Charge Alliance,

2020b. For the Bridging application, they are equal to calling the functions stxOcp-

pAdapter SendStopCharging and stxOcppAdapter SendCableDisconnect. Then, the ISO

15118 application can fill in the data of those messages according to Figure 29.

4.6.2 OCPP-related Error Handling

For the OCPP communication interruption, several use cases must be handled: during

certificate handling, during authorization, during charging profile negotiation, and during

the charging loop.

Error handling during certificate handling phase

Open Charge Alliance, 2020b does not specify how to handle the OCPP connection inter-

ruption during the certification handling phase. Therefore, it can be assumed as follows:

• The charging station is offline before the certificate handling phase.

• The charging station is offline during the certificate handling phase.

If the charging station is offline before the certificate handling phase, the ISO 15118 appli-

cation is already notified of the offline status by the Bridging application so that the ISO

15118 application can switch to other solutions, such as EIM. If the charging station is

offline during the certificate handling phase, the ISO 15118 application will receive either

a ”timeout” or “disconnected” notification from the Bridging application. The ISO 15118

application must then terminate the charging session.

Error handling during authorization phase

If authorization must be performed when the charging station has no connection to the

CSMS, the charging station must switch to authorization using cached data or authoriza-

tion using local list to authorize the EV. Use cases C13 and C15 of the Open Charge

Alliance, 2020b specify the handling in detail. Nothing is to be done for the Bridging

Development of a Protocols Bridging Application 73

application.

Error handling during charging profile negotiation phase

If the charging station loses its connection to the CSMS prior to or during the charging

profile negotiation, the use cases K16 and K17 in Open Charge Alliance, 2020b specify

that the charging station must deliver the energy to the EV according to the default or

local charging profile. The Bridging Application must only notify the ISO 15118 Appli-

cation that the connection is lost so that ISO 15118 Application switches to the local or

default charging profile. The local or default charging profile is up to the application users

to define. When the connection is later recovered, the CSMS can perform load balancing

by issuing a new charging profile via the SetEvCharingProfileRequest message (Figure 16).

Error handling during charging loop

If the OCPP communication is interrupted during the charging loop, Open Charge Al-

liance, 2020b specifies in use cases E04, E08, and E12 that all TransactionEventRequest

messages must be queued in the memory. These messages are then sent to the CSMS

when the station is online again. From the software implementation perspective, the

Bridging application and the Service module handle this situation automatically. When

the station is offline, the stxOcppAdapter SendTransactionEvent function commands the

Service module to queue the OCPP messages in the memory instead of sending them.

When the station comes back online, the Service module automatically checks for the

queued messages and sends them to the CSMS.

4.7 Discussion

The Bridging application is designed to resolve the data type incompatibilities and unde-

sired states found in the theoretical compatibility analysis when the ISO 15118 and OCPP

protocols interact. In addition, during the development of the Bridging application, other

problems were found, such as:

• No standardized use case to report the faulty state of the EV or EVSE

• High memory consumption of OCPP messages

• Nested conditions of OCPP messages

• Software complexity due to the serializer and parser of both protocols

The following sections discuss these problems in detail and offer suggestions for resolving

them.

Development of a Protocols Bridging Application 74

At the protocol level, although OCPP specifies the messages to support ISO 15118, these

messages focus only on authorization, authentication, and transaction, but lack standard-

ized use cases for reporting EV or EVSE faults. There are, of course, some messages for

reporting general status. For example, the OCPP NotifyEventRequest message allows the

charging station to report its events to the CSMS. However, this message does not have

a standardized payload, and the implementation is left up to the application developers.

If the message is not standardized, and in the event of a change to a new charging station

operator, the new system may not understand this custom message. The Open Charge

Alliance, 2020b also provides the StatusNotificationRequest message, which allows the

charging station to report the status of its connector to the CSMS; however, the reported

status is limited to the enumeration value: Available, Occupied, Reserved, Unavailable

and Faulted. Therefore, a standard for fault reporting in general and for ISO 15118 needs

to be developed to increase interoperability between systems.

During the development, the size of the OCPP C-structure messages is measured using the

sizeof() function. Table 11 shows the ten-largest-size messages in terms of memory allo-

cation. Out of the ten messages, the largest message (stxReportChargingProfilesRequest)

consumes 495940 bytes, and the smallest message (stxGetVariablesResponse) consumes

18452 bytes. Three messages (stxNotifyEVChargingScheduleRequest, stxTransactionEven-

tRequest, and stxSetChargingProfileRequest) from the list are used for the data exchange

between ISO 15118 and OCPP. On a larger system, such as a microprocessor running

embedded Linux, the large message size poses no problem because those systems have

enough resources to allocate the messages, but it is not possible to integrate or limitedly

integrate OCPP into a small embedded system running a real-time operating system or

bare metal. The reason for the large-size messages is that they have a complicated struc-

ture, where objects and arrays of objects are nested together. Furthermore, the objects

themselves also have a complex structure (Open Charge Alliance, 2020c).

Development of a Protocols Bridging Application 75

Table 11: Ten largest-size message structures

C-structure message Size (bytes)
stxReportChargingProfilesRequest 495940
stxNotifyChargingLimitRequest 165256
stxRequestStartTransactionRequest 127528
stxSetChargingProfileRequest 124176
stxTransactionEventRequest 98788
stxMeterValuesRequest 96456
stxNotifyReportRequest 54888
stxNotifyEVChargingScheduleRequest 41468
stxSendLocalListRequest 19152
stxGetVariablesResponse 18452

From the software point of view, the message size can be optimized by compiling them

with the ”packed” option to prevent the compiler from padding data to the structure. For

example, in GCC:

s t r u c t a t t r i b u t e ((pa cked)) foo

¶

void ∗p ;

char c ;

u i n t 32 t x ;

♢ ;

Additionally, the number of objects in an array in a OCPP message can be reduced to save

memory. For instance, in the SetChargingProfileRequest’s schema (Open Charge Alliance,

2020c), the size of chargingSchedulePeriod attribute is specified as follows:

” charg ingSchedulePer iod ” : ¶

” type ” : ” array ” ,

” add i t i ona l I t ems ” : f a l s e ,

” i tems ” : ¶

” $ r e f ” : ”#/ d e f i n i t i o n s / ChargingSchedulePeriodType ”

♢ ,

” minItems ” : 1 ,

”maxItems ” : 1024

♢

The developers can specify the maximum number of items depending on the system’s

capabilities. However, this solution will encounter problems when the charging stations

are migrated to a new CSMS that supports more items than specified in the charging

station. In SEVENSTAX’s implementation, the OCPP C-structure messages and objects

Development of a Protocols Bridging Application 76

are automatically generated by a code generator, so the code generator can be extended

to support this feature. From the hardware point of view, the message size problem can

be easily solved by running the OCPP (and ISO 15118) stack on a high-performance

hardware platform.

OCPP is designed as a stateless protocol with the intention of supporting various front-end

protocols (protocol for the communication between EV and EVSE) and giving the users

the flexibility to employ the OCPP messages according to their needs. However, OCPP

specifications do not specify the purpose of each message but only specify where that mes-

sage is applied (OCPP use cases). Furthermore, that message shall be sent only if specific

conditions are satisfied in specific use cases. For example, StatusNotificationRequest is

applied in twenty-six use cases (Table 12), and B01 - Cold Boot Charging Station use case

specifies that StatusNotificationRequest shall be sent only when the BootNotificationRe-

sponse containing the status Accept. The nested condition increases the complexity of the

application since it must check for multiple conditions before transmitting or receiving a

message. For example:

s tatusNot i fyReq = GetStatusNot i f i ca t i onReques t () ;

i f (s t a t e == co ld boot)

¶

i f (boo t s t a tu s == accepted)

¶

/∗ F i l l in the statusNot i fyReq ’ s parameters with data ∗/

♢

♢

e l s e i f (s t a t e == s t a t e t r a n s a c t i o n)

¶

. . .

♢

e l s e i f (other cond i t i on . . .)

¶

. . .

♢

SendOcppMessage (statusNot i fyReq) ;

The OCPP stack copes with this issue by instead of having one big application (Figure

10), the OCPP application can be divided into smaller use-case-dedicated applications

(Figure 31) by using the OCPP Service module. The OCPP Service keeps track of which

application sends which OCPP message so that it can return the response to the origi-

Development of a Protocols Bridging Application 77

nating application accordingly. Therefore, the same message can be handled differently

depending on the use case and without various condition checking.

Figure 31: OCPP application block diagram

The OCPP and ISO 15118 stacks expose a complex message sequence (Figure 22, 23, 24,

25) because of the message’s serializing and parsing processes. The steps for serializing

and parsing data are described as follows:

• If the serializer is available, the application occupies it. Otherwise, the application

must wait until the next cycle.

• The serializer allocates the fixed resource for encoding the message.

• The serializer notifies the application that the resource is available

• The application creates the message by adding information to it.

• The serializer encodes the message using dedicated libraries (JSON and EXI) and

sends it away.

• When a message is received, and the parser is available, it allocates the fixed re-

source. Otherwise, the message is queued.

• The parser decodes the message using dedicated libraries (JSON and EXI).

Development of a Protocols Bridging Application 78

• The parser notifies the application that the message is decoded and ready for pro-

cessing.

In addition, OCPP uses JSON, which is a popular data format on the Web because of its

readability and ease of use; however, it adds much overhead for increasing the readability.

In charging communication, most messages are processed by the machine without human

intervention, so there is no urgent need for a human-readable data format. Readability is

helpful during development or debugging, but it must not overshadow the efficiency and

resource consumption of the system, especially when the protocols are used in embedded

systems.

The data formats are embodied in the ISO 15118 and OCPP specifications, and therefore

there is no possibility of changing them. However, to reduce complexity, an efficient non-

encoding-decoding data format could be used instead of JSON and EXI. One suggestion

for such a data format is FlatBuffers (Google, n.d.-a), originally developed at Google

for gaming or performance-critical applications. The key feature of FlatBuffers is that

they can access serialized data without having to parse or unpack it, making them more

efficient than other data formats (Google, n.d.-b). In addition, many FlatBuffer com-

pilers are available (Google, n.d.-c) to convert the FlatBuffer schema into target code,

so that message structures are always the same regardless of programming language and

implementation.

4.8 Chapter’s Summary

This chapter describes the design of the bridging application to show how to bridge the

OCPP and ISO 15118 protocols to allow data exchange between the EV and the CSMS

during a charging session. The bridging application also solves the problems found in

the compatibility analysis, namely data type incompatibility and unwanted state transi-

tions. In addition, this chapter points out several problems that were not detected by the

compatibility analysis. For example, the OCPP specification does not specify safety use

cases, i.e., there is no specific message sequence for the charging station to report the mal-

functions of the EVs or EVSEs. In addition, OCPP messages consume large amounts of

memory, making it difficult to run on small embedded devices. Several software optimiza-

tions are proposed to overcome this problem, such as reducing the number of elements

in OCPP messages or preventing the compiler from padding data to the C-structure. In

addition, OCPP application development is complicated because of the nested conditions

for sending and receiving OCPP messages. To overcome this problem, SEVENSTAX’s

OCPP stack has a service layer to break the OCPP application into smaller modules,

Development of a Protocols Bridging Application 79

reducing the complexity of the system. Finally, both ISO 15118 and the OCPP stack

are exposed to high complexity due to serializing and parsing the messages. This thesis

proposes FlatBuffers as an alternative format to replace JSON and EXI, because of its

read-without-unpacking serialized data characteristics.

Conclusion and Future Work 80

5 Conclusion and Future Work

5.1 Conclusion

Smart Charging lets the back-end system control the charging process of potentially hun-

dreds of thousands of EVs during peak time to reduce the stress on the local energy grid.

Smart Charging can be realized only when the back-end system can communicate to the

EVs being charged to influence their charging profile. Various protocols are introduced

to solve this challenge. ISO 15118 and OCPP are gaining momentum in the industry

as the protocols for communication between EV and EVSE; and between EVSE and the

back-end system. Even though both protocols share similarities, such as IP-based pro-

tocol, and software design pattern, they must be analysis to see how well they can work

together to enable seamless communication between EVs and the back-end system.

The first part of the thesis provides an overview of both protocols to highlight their

similarities and differences regarding the network stack, the data format, and the use

cases. Then both protocols are composed into a message sequence illustrating their in-

teractions. The message sequence is transformed into the model comprising states and

messages, and based on the model, this thesis analyzes the compatibility of the proto-

cols using the method proposed by the Ouederni et al., 2010. Based on this method, the

author developed a prototype tool to automate the calculation of the compatibility degree.

The outcome of the analysis shows that both protocols are compatible with each other

in terms of state transitions. However, their compatibility degrees are low because of

incompatible data types among exchanged parameters. The reason is that ISO 15118

uses some domain-specific data types for its parameters; meanwhile, OCPP uses generic

data types with the intention of supporting as many front-end protocols as possible. The

incompatible data type shows that when integrating both protocols into a system, the

protocols integrators must do data type conversion whenever the data type incompati-

bility occurs to ensure the protocols’ interoperability. Furthermore, the integrators must

apply a mechanism to monitor the message exchange between the protocols to prevent

unwanted state transitions.

In the second part, this thesis describes the design concept of the Bridging application

between the ISO 15118 and OCPP protocol. The Bridging application provides a facade

interface to the ISO 15118 application with the goals such as hiding the complexity of

the OCPP stack, verifying the validity of states and messages, providing helper functions

to convert data between the protocols, and handling the errors. The bridging applica-

Conclusion and Future Work 81

tion also demonstrates how the problems in the compatibility analysis can be solved by

its design and interfaces. Furthermore, the development of the Bridging application also

points out further problems overlooked by the compatibility analysis.

The Bridging application development points out that there is no standard or specifica-

tion for reporting the malfunction of the EVs or the charging stations. Fault reporting

allows the Smart Charging participants to act promptly when incidents occur. The size of

the OCPP messages is measured, and the result indicates that it is not possible to deploy

the OCPP stack in the small embedded systems without tweaking the OCPP messages

due to limited resources. Therefore, running the OCPP stack on a more resource-capable

platform is recommended, i.e., running the OCPP stack on a processor with an Operating

System instead of a microcontroller. The thesis also points out that using JSON and EXI

as data formats makes the OCPP and ISO 15118 stacks more complex because these data

formats require serializers and parsers. Furthermore, JSON is a human-readable format

that adds unnecessary overhead since the messages are processed by machines, not hu-

mans. The suggestion for this challenge is that, in the future, protocols designers can

switch to Flatbuffer, which is boasted for its efficiency and low memory footprint.

In conclusion, this thesis points out that, regardless of the differences in data types, ISO

15118 and OCPP are compatible and can be used to realize Smart Charging. When devel-

oping a Bridging Application to bridge the protocols, the protocol adaptors must convert

the data type between protocols, handles the exchanged message to prevent unwanted

state transitions, and handles the complexity of parsing and serializing data.

5.2 Furture Work

Although the thesis achieved its goals of analyzing the compatibility of the protocol and

designing a protocols Bridging application, several areas can be improved in the future to

obtain better results.

The parameters’ depth in a data structure must be analyzed in the parameter com-

patibility calculation since they affect the compatibility of the protocol and increase the

complexity of the protocol bridging application. Then, the param comp(pl1, pl2) becomes:

par comp(pl1, pl2) =
number(pl1, pl2) + order(pl1andpl2) + type(pl1, pl2) + depth(pl1, pl2)

4

Where depth(pl1, pl2) is the depth analysis between the parameter lists pl1 and pl1

Conclusion and Future Work 82

The compatibility calculation prototype tool (Nguyen, 2023) is developed and tested in-

tensively based on the calculation presented in this thesis. Therefore, it must be extended

to accept the calculation based on other compatibility notations. The user experience can

be improved by designing the graphical interface, where users can design and edit their

model instead of describing the model with JSON files. Result reporting can be improved

to show not only the step-by-step calculations and result matrices but also illustrates

which messages and transitions contribute to the incompatibility.

The bridging application is designed based on common software design practices, SEV-

ENSTAX’s design guidelines, and SEVENSTAX’s software architecture. However, several

works, such as Tan et al., 2009, Yellin and Strom, 1997, and Nejati et al., 2007, propose

methods and techniques for service composition and protocol adaptor implementation.

Those methods and techniques can be applied to build the composition model or an

adaptor component, which can be used to realize the software implementation. Addition-

ally, those methods and techniques can be integrated into the prototype tool so that the

tool can model an adaptor component and potentially generate the code template for the

software implementation.

References 83

References

Aalst, W. M. P. v. d., Mooji, A. J., Stahl, C., & Wolf, K. (2009). Service interaction:

Patterns, formalization, and analysis. In Formal methods for web services (pp. 42–

88).

AMPECO. (n.d.). Smart charging: All you need to know. Retrieved March 5, 2023, from

https://www.ampeco.com/guides/smart-charging/

Bermejo, C., Geissmann, T., Möller, T., Nägele, F., & Winter, R. (2021). The impact of

electromobility on the german electric grid. Retrieved March 5, 2023, from https:

//www.mckinsey.com/industries/electric-power-and-natural-gas/our- insights/

the-impact-of-electromobility-on-the-german-electric-grid

Brand, D., & Zafiropulo, P. (1983). On communicating finite-state machines. Journal of

the Association for Computing Machinery, 323–342.

DIN. (2019). Konduktive ladesysteme für elektrofahrzeuge - teil 1: Allgemeine anforderun-

gen.

Elabd, E., Coquery, E., & Hacid, M.-S. (2009). Compatibility and replaceability analysis of

timed web services protocols. 2009 Second International Conference on Computer

and Electrical Engineering, 2, 15–19. https://doi.org/10.1109/ICCEE.2009.106

Engel, H., Hensley, R., Knupfer, S., & Sahdev, S. (2018). The potential impact of electric

vehicles on global energy systems. Retrieved March 5, 2023, from https://www.

mckinsey.com/industries/automotive-and-assembly/our- insights/the-potential-

impact-of-electric-vehicles-on-global-energy-systems

Gao, C., & Wei, J. (2011). Checking compatibility of context-aware service protocols. Pro-

ceedings of 2011 IEEE 6th International Symposium on Service Oriented System

(SOSE), 335–340. https://doi.org/10.1109/SOSE.2011.6139125

Google. (n.d.-a). Flatbuffers. Retrieved March 12, 2023, from https://google.github.io/

flatbuffers/index.html

Google. (n.d.-b). Flatbuffers benchmarks for c++. Retrieved March 12, 2023, from https:

//google.github.io/flatbuffers/flatbuffers benchmarks.html

Google. (n.d.-c). Platform/language/feature support. Retrieved March 28, 2023, from

https://google.github.io/flatbuffers/flatbuffers support.html

Hoekstra, A., Bienert, R., Wargers, A., Singh, H., & Voskuilen, P. (n.d.). Using openadr

with ocpp. https : / / www . openchargealliance . org / uploads / files / OCA - Using -

OpenADR-with-ocpp.pdf

ISO. (2014). Iso15118 - 2: Network and application protocol requirements.

ISO. (2019). Iso15118 - 1: General information and use-case definition.

References 84

Kern, D. (2021). Privacy-preserving architecture for ev charging and billing (Master’s

thesis). Technische Universität. Darmstadt. https://doi.org/10.26083/tuprints-

00018558

Klapwijk, P., & Driessen, L. (2017). Ev related protocol study.

Manning, C., & Schütze, H. (1999). Foundations of statistical natural language processing.

MIT Press.

Martens, A. (2003). On compatibility of web services. Petri Net Newsletter, 65 (12-20),

100.

Neaimeh, M., & Andersen, P. B. (2020). Mind the gap- open communication protocols

for vehicle grid integration. Energy Informatics. https://doi.org/10.1186/s42162-

020-0103-1

Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., & Zave, P. (2007). Matching and

merging of statecharts specifications. 29th International Conference on Software

Engineering (ICSE’07), 54–64. https://doi.org/10.1109/ICSE.2007.50

Nguyen, Q. H. (2023). Compatibility calculation application. https : / / github . com /

QuangHaiNguyen/protocol compatibility calculation

Open Charge Alliance. (2020a). Ocpp 2.0.1: Part 0 - introduction. https://www.openchargealliance.

org/protocols/ocpp-201/

Open Charge Alliance. (2020b). Ocpp 2.0.1: Part 2 - specification. https://www.openchargealliance.

org/protocols/ocpp-201/

Open Charge Alliance. (2020c). Ocpp 2.0.1: Part 3 - schema. https://www.openchargealliance.

org/protocols/ocpp-201/

Open Charge Alliance. (2020d). Part 4 - json over websockets implementation guide.

https://www.openchargealliance.org/protocols/ocpp-201/

Open Charge Alliance & CHAdeMo. (2020). Using ocpp with chademo. https://www.

openchargealliance.org/uploads/files/Using-OCPP-with-CHAdeMO.pdf

Ouederni, M., Salaün, G., & Pimentel, E. (2010). Measuring the compatibility of service

interaction protocols - technical report iti 4-10.

Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). Wordnet::similarity.

Schmutzler, J., Andersen, C., & Wietfeld, C. (2013). Evaluation of ocpp and iec 61850

for smart charging electric vehicles. World Electric Vehicle Journal, 6, 863–874.

https://doi.org/10.3390/wevj6040863

SEVENSTAX GmbH. (2021). Sevenstax v2g user manual, 10–11.

Tan, W., Fan, Y., & Zhou, M. (2009). A petri net-based method for compatibility analysis

and composition of web services in business process execution language. Automa-

tion Science and Engineering, IEEE Transactions on, 6, 94–106. https://doi.org/

10.1109/TASE.2008.916747

References 85

The Federal Government. (2020). Climate-friendly transport. Retrieved March 5, 2023,

from https://www.bundesregierung.de/breg-en/issues/climate-action/climate-

friendly-transport-1795842

The Mobility House. (n.d.). Ocpp. https://github.com/mobilityhouse/ocpp

WC3, T. (2002). Schema for xml signatures. http://www.w3.org/2000/09/xmldsig#

Wellisch, D., Lenz, J., Faschingbauer, A., Pöschl, R., & Kunze, S. (2015). Vehicle-to-grid

ac charging station: An approach for smart charging development.

Wu, Z., Deng, S., Li, Y., & Wu, J. (2009). Computing compatibility in dynamic service

composition. Knowledge and Information Systems, 107–129. https://doi.org/0.

1007/s10115-008-0143-5

Yang, Y., Zhang, M., Ye, X., Chen, H., & Lian, X. (2009). Protocol compatibility ver-

ification for web services interaction. 2009 Fifth International Conference on Se-

mantics, Knowledge and Grid, 106–112. https://doi.org/10.1109/SKG.2009.86

Yellin, D. M., & Strom, R. E. (1997). Protocol specifications and component adaptors.

ACM Trans. Program. Lang. Syst., 19 (2), 292–333. https ://doi .org/10 .1145/

244795.244801

Appendix A - ISO 15118 86

Appendix A - ISO 15118

Appendix A - ISO 15118 87

Appendix A - ISO 15118 88

Figure 32: Sequence diagram of a ISO 15118 charging session

Appendix B - OCPP 2.0.1 89

Appendix B - OCPP 2.0.1

Figure 33: Boot Charge Station - Rejected

Appendix B - OCPP 2.0.1 90

Figure 34: Boot Notification message sequence

Listing 1: Example of OCPP error message

[

4 ,

”162376037” ,

” NotSupported ” ,

” SetDisplayMessageRequest not implemented ” ,

¶♢

]

Appendix B - OCPP 2.0.1 91

Table 12: Use cases involving the StatusNotificationRequest

Index Use case name
1 B01 - Cold Boot Charging Station
2 B04 - Offline Behavior Idle Charging Station
3 B12 - Reset - With Ongoing Transaction
4 C02 - Authorization using a start button
5 C03 - Authorization using credit/debit card
6 C05 - Authorization for CSMS initiated transactions
7 C06 - Authorization using local id type
8 C12 - Start Transaction - Cached Id
9 E02 - Start Transaction - Cable Plugin First
10 E03 - Start Transaction - IdToken First
11 E06 - Stop Transaction options
12 E07 - Transaction locally stopped by IdToken
13 E09 - When cable disconnected on EV-side: Stop Transaction
14 E10 - When cable disconnected on EV-side: Suspend Transaction
15 F01 - Remote Start Transaction - Cable Plugin First
16 F02 - Remote Start Transaction - Remote Start First
17 F03 - Remote Stop Transaction
18 G01 - Status Notification
19 G03 - Change Availability EVSE/Connector
20 G04 - Change Availability Charging Station
21 H01 - Reservation
22 H02 - Cancel Reservation
23 H03 - Use a reserved EVSE
24 H04 - Reservation Ended, not used
25 K02 - Central Smart Charging
26 K05 - Remote Start Transaction with Charging Profile

Appendix C - The interactions between ISO 15118 and OCPP 2.0.1 92

Appendix C - The interactions between ISO 15118

and OCPP 2.0.1

Table 13: Exchanged elements between Get15118EvCertificateRequest and CertificateInstalla-
tionRequest

ISO15118 OCPP
CertificateInstallationRequest Get15118EvCertificateRequest

Element CertificateInstallationRequest: ExiRequest:string
base64Binary

Table 14: Exchanged elements between Get15118EvCertificateResponse and CertificateInstalla-
tionResponse

ISO15118 OCPP
CertificateInstallationResponse Get15118EvCertificateResponse

Element CertificateInstallationResponse: ExiResponse:string
base64Binary

Table 15: Exchanged elements between PaymentDetailRequest and AuthorizeRequest

ISO15118 OCPP
PaymentDetailRequest AuthorizeRequest

Element eMAID:string IdToken.IdToken:string
Certificate:base64Binary Certificate:string

Table 16: Exchanged elements between PaymentDetailResponse and AuthorizeResponse

ISO15118 OCPP
PaymentDetailResponse AuthorizeResponse

Element ResponseCode:iso enum CertificateStatus:ocpp enum

Appendix C - The interactions between ISO 15118 and OCPP 2.0.1 93

T
a
bl

e
1
7
:

E
xc

h
a
n

ge
d

el
em

en
ts

be
tw

ee
n

C
h
a
rg

eP
a
ra

m
et

er
R

eq
u
es

t
a
n

d
N

o
ti

fy
E

V
C

h
a
rg

in
gN

ee
d
sR

eq
u
es

t

IS
O

15
11

8
O

C
P

P
C

h
ar

ge
P

ar
am

et
er

R
eq

u
es

t
N

ot
if

y
E

V
C

h
ar

gi
n
gN

ee
d
sR

eq
u
es

t
C

om
m

on
el

em
en

t
E

n
er

gy
T

ra
n
sf

er
M

o
d
e:

is
o

en
u
m

re
q
u
es

te
d
E

n
er

gy
T

ra
n
sf

er
:o

cp
p

en
u
m

A
C

el
em

en
ts

E
V

C
h
ar

ge
P

ar
am

et
er

.
E

A
m

ou
n
t:

P
h
y
si

ca
lV

al
u
eT

y
p

e
C

h
ar

gi
n
gN

ee
d
s.

A
cC

h
ar

gi
n
gP

ar
am

et
er

s.
en

er
gy

A
m

ou
n
t:

in
te

ge
r

C
h
ar

gi
n
gN

ee
d
s.

E
V

M
in

C
u
rr

en
t:

P
h
y
si

ca
lV

al
u
eT

y
p

e
C

h
ar

gi
n
gN

ee
d
s.

A
cC

h
ar

gi
n
gP

ar
am

et
er

s.
E

v
M

in
C

u
rr

en
t:

in
te

ge
r

C
h
ar

gi
n
gN

ee
d
s.

E
V

M
ax

C
u
rr

en
t:

P
h
y
si

ca
lV

al
u
eT

y
p

e
C

h
ar

gi
n
gN

ee
d
s.

A
cC

h
ar

gi
n
gP

ar
am

et
er

s.
E

v
M

ax
C

u
rr

en
t:

in
te

ge
r

C
h
ar

gi
n
gN

ee
d
s.

E
V

M
ax

V
ol

ta
ge

:P
h
y
si

ca
lV

al
u
eT

y
p

e
C

h
ar

gi
n
gN

ee
d
s.

A
cC

h
ar

gi
n
gP

ar
am

et
er

s.
E

v
M

ax
V

ol
ta

ge
:i
n
te

ge
r

D
C

el
em

en
ts

E
V

C
h
ar

ge
P

ar
am

et
er

.
E

V
M

ax
im

u
m

C
u
rr

en
tL

im
it

:P
h
y
si

ca
lV

al
u
eT

y
p

e
C

h
ar

gi
n
gN

ee
d
s.

D
cC

h
ar

gi
n
gP

ar
am

et
er

s.
E

v
M

ax
C

u
rr

en
t:

in
te

ge
r

E
V

C
h
ar

ge
P

ar
am

et
er

.
E

V
M

ax
im

u
m

V
ol

ta
ge

L
im

it
:P

h
y
si

ca
lV

al
u
eT

y
p

ee
C

h
ar

gi
n
gN

ee
d
s.

D
cC

h
ar

gi
n
gP

ar
am

et
er

s.
E

v
M

ax
V

ol
ta

ge
:i
n
te

ge
r

E
V

C
h
ar

ge
P

ar
am

et
er

.
E

V
E

n
er

gy
R

eq
u
es

t:
P

h
y
si

ca
lV

al
u
eT

y
p

e
C

h
ar

gi
n
gN

ee
d
s.

D
cC

h
ar

gi
n
gP

ar
am

et
er

s.
E

n
er

gy
A

m
ou

n
t:

in
te

ge
r

E
V

C
h
ar

ge
P

ar
am

et
er

.
E

V
M

ax
im

u
m

P
ow

er
L

im
it

:P
h
y
si

ca
lV

al
u
eT

y
p

e
C

h
ar

gi
n
gN

ee
d
s.

D
cC

h
ar

gi
n
gP

ar
am

et
er

s.
E

v
M

ax
P

ow
er

:i
n
te

ge
r

E
V

C
h
ar

ge
P

ar
am

et
er

.
D

C
E

V
S
ta

tu
s.

E
V

R
E

S
S
S
O

C
:b

y
te

C
h
ar

gi
n
gN

ee
d
s.

D
cC

h
ar

gi
n
gP

ar
am

et
er

s.
S
ta

te
O

fC
h
ar

ge
:i
n
te

ge
r

E
V

C
h
ar

ge
P

ar
am

et
er

.
F
u
ll
S
O

C
:b

y
te

C
h
ar

gi
n
gN

ee
d
s.

D
cC

h
ar

gi
n
gP

ar
am

et
er

s.
F
u
ll
S
oC

:i
n
te

ge
r

E
V

C
h
ar

ge
P

ar
am

et
er

.
B

u
lk

S
O

C
:b

y
te

C
h
ar

gi
n
gN

ee
d
s.

D
cC

h
ar

gi
n
gP

ar
am

et
er

s.
B

u
lk

S
oC

:i
n
te

ge
r

Appendix C - The interactions between ISO 15118 and OCPP 2.0.1 94

T
a
bl

e
1
8
:

E
xc

h
a
n

ge
d

el
em

en
ts

be
tw

ee
n

C
h
a
rg

eP
a
ra

m
et

er
R

ep
o
n

se
a
n

d
S

et
C

h
a
rg

in
gP

ro
fi

le
R

eq
u
es

t

IS
O

15
11

8
O

C
P

P
C

h
ar

ge
P

ar
am

et
er

R
ep

on
se

S
et

C
h
ar

gi
n
gP

ro
fi
le

R
eq

u
es

t
E

le
m

en
ts

S
A

S
ch

ed
u
le

s.
S
A

S
ch

ed
u
le

T
u
p
le

ID
:u

n
si

gn
ed

B
y
te

C
h
ar

gi
n
gP

ro
fi
le

.C
h
ar

gi
n
gS

ch
ed

u
le

.I
d
:i
n
t

S
A

S
ch

ed
u
le

s.
P

M
ax

S
ch

ed
u
le

.
P

M
ax

S
ch

ed
u
le

E
n
tr

y.
R

el
at

iv
eT

im
eI

n
te

rv
al

.s
ta

rt
:u

n
si

gn
ed

In
t

C
h
ar

gi
n
gP

ro
fi
le

.c
h
ar

gi
n
gS

ch
ed

u
le

.
C

h
ar

gi
n
gS

ch
ed

u
le

P
er

io
d
.S

ta
rt

P
er

io
d
:i
n
t

S
A

S
ch

ed
u
le

s.
P

M
ax

S
ch

ed
u
le

.
P

M
ax

S
ch

ed
u
le

E
n
tr

y.
P

M
ax

:P
h
y
si

ca
lV

al
u
eT

y
p

e
C

h
ar

gi
n
gP

ro
fi
le

.c
h
ar

gi
n
gS

ch
ed

u
le

.
C

h
ar

gi
n
gS

ch
ed

u
le

P
er

io
d
.l
im

it
:n

u
m

b
er

S
A

S
ch

ed
u
le

s.
S
al

es
T

ar
iff

.
S
al

es
T

ar
iff

ID
:u

n
si

gn
ed

B
y
te

C
h
ar

gi
n
gP

ro
fi
le

.C
h
ar

gi
n
gS

ch
ed

u
le

.
S
al

es
T

ar
iff

.I
d
:i
n
t

S
A

S
ch

ed
u
le

s.
S
al

es
T

ar
iff

.
S
al

es
T

ar
iff

D
es

cr
ip

ti
on

:s
tr

in
g

C
h
ar

gi
n
gP

ro
fi
le

.C
h
ar

gi
n
gS

ch
ed

u
le

.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

D
es

cr
ip

ti
on

:s
tr

in
g

S
A

S
ch

ed
u
le

s.
S
al

es
T

ar
iff

.
N

u
m

E
P

ri
ce

L
ev

el
s:

u
n
si

gn
ed

B
y
te

C
h
ar

gi
n
gP

ro
fi
le

.C
h
ar

gi
n
gS

ch
ed

u
le

.
S
al

es
T

ar
iff

.N
u
m

E
P

ri
ce

L
ev

el
s.

Id
:i
n
t

S
A

S
ch

ed
u
le

s.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
R

el
at

iv
eT

im
eI

n
te

rv
al

.S
ta

rt
:u

n
si

gn
ed

In
t

C
h
ar

gi
n
gP

ro
fi
le

.C
h
ar

gi
n
gS

ch
ed

u
le

.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
R

el
at

iv
eT

im
eI

n
te

rv
al

.S
ta

rt
:i
n
t

S
A

S
ch

ed
u
le

s.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
R

el
at

iv
eT

im
eI

n
te

rv
al

.D
u
ra

ti
on

:u
n
si

gn
ed

In
t

C
h
ar

gi
n
gP

ro
fi
le

.C
h
ar

gi
n
gS

ch
ed

u
le

.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
R

el
at

iv
eT

im
eI

n
te

rv
al

.D
u
ra

ti
on

:i
n
te

ge
r

S
A

S
ch

ed
u
le

s.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
E

P
ri

ce
L

ev
el

:u
n
si

gn
ed

B
y
te

C
h
ar

gi
n
gP

ro
fi
le

.C
h
ar

gi
n
gS

ch
ed

u
le

.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
E

P
ri

ce
L

ev
el

:i
n
te

ge
r

S
A

S
ch

ed
u
le

s.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
C

on
su

m
p
ti

on
C

os
t.

S
ta

rt
V

al
u
e:

P
h
y
si

ca
lV

al
u
eT

y
p

e

C
h
ar

gi
n
gP

ro
fi
le

.C
h
ar

gi
n
gS

ch
ed

u
le

.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
C

on
su

m
p
ti

on
C

os
t.

S
ta

rt
V

al
u
e:

n
u
m

b
er

S
A

S
ch

ed
u
le

s.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
C

on
su

m
p
ti

on
C

os
t.

C
os

t.
A

m
ou

n
t:

u
n
si

gn
ed

In
t

C
h
ar

gi
n
gP

ro
fi
le

.C
h
ar

gi
n
gS

ch
ed

u
le

.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
C

on
su

m
p
ti

on
C

os
t.

C
os

t.
A

m
ou

n
t:

in
te

ge
r

Appendix C - The interactions between ISO 15118 and OCPP 2.0.1 95

IS
O

15
11

8
O

C
P

P
C

h
ar

ge
P

ar
am

et
er

R
ep

on
se

S
et

C
h
ar

gi
n
gP

ro
fi
le

R
eq

u
es

t

E
le

m
en

ts
S
A

S
ch

ed
u
le

s.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
C

on
su

m
p
ti

on
C

os
t.

C
os

t.
A

m
ou

n
tM

u
lt

ip
li
er

:b
y
te

C
h
ar

gi
n
gP

ro
fi
le

.C
h
ar

gi
n
gS

ch
ed

u
le

.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
C

on
su

m
p
ti

on
C

os
t.

C
os

t.
A

m
ou

n
tM

u
lt

ip
li
er

:i
n
te

ge
r

S
A

S
ch

ed
u
le

s.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
C

os
t.

C
os

tK
in

d
:i
so

en
u
m

C
h
ar

gi
n
gP

ro
fi
le

.C
h
ar

gi
n
gS

ch
ed

u
le

.
S
al

es
T

ar
iff

.S
al

es
T

ar
iff

E
n
tr

y.
C

on
su

m
p
ti

on
C

os
t.

C
os

t.
C

os
tK

in
d
:o

cp
p

en
u
m

Appendix C - The interactions between ISO 15118 and OCPP 2.0.1 96

Table 19: Exchanged elements between PowerDeliveryRequest and NotifyEVChargingsSchedule

ISO15118 OCPP
PowerDeliveryRequest NotifyEVChargingsSchedule

Element SAScheduleTupleID:unsignedByte EChargingSchedule.Id:int

Table 20: Exchanged elements between MeteringReceiptRequest and TransactionEventRequest

ISO15118 OCPP
MeteringReceiptRequest TransactionEventRequest

Element
MeterInfo.

MeterReading:unsignedLong
meterValue.sampledValue.

value:number
MeterInfo.

MeterReading:base64Binary
meterValue.sampledValue.

signedMeterValue.
signedMeterData:string

Table 21: Exchanged elements between SessionStopRequest and TransactionEventRequest

ISO15118 OCPP
SessionStopRequest TransactionEventRequest

Element TransactionEvent:enum ChargingSession:enum

Appendix D - Compatibility Calculation 97

Appendix D - Compatibility Calculation

For k = 1

The Calculation of COMP1

UR,↔[a1, b0], COMP1

UR,↔[a1, b2], COMP1

UR,↔[a1, b3],

COMP1

UR,↔[a1, b4], and COMP1

UR,↔[a1, b5]

The state (a1, b0), (a1, b2), (a1, b3) ,(a1, b4), and (a1, b5) have dead lock because their

message is not compatible.

⇒ obs comp1
UR,↔(a1, b0) = obs comp1

UR,↔(a1, b2)

= obs comp1
UR,↔(a1, b3)

= obs comp1
UR,↔(a1, b4)

= obs comp1
UR,↔(a1, b5)

= 0

⇒ fw propag1
UR,↔(a1, b0) = fw propag1

UR,↔(a1, b2)

= fw propag1
UR,↔(a1, b3)

= fw propag1
UR,↔(a1, b4)

= fw propag1
UR,↔(a1, b5)

= bw propag1
UR,↔(a1, b0)

= bw propag1
UR,↔(a1, b2)

= bw propag1
UR,↔(a1, b3)

= bw propag1
UR,↔(a1, b4)

= bw propag1
UR,↔(a1, b5)

= 0

The state compatibility is calculated as follows:

Appendix D - Compatibility Calculation 98

state comp1
UR,↔(a1, b0) =

w3 ∗ nat(a1, b0)

w1 + w2 + w3

=
1 ∗ 0

5 + 5 + 1
= 0

state comp1
UR,↔(a1, b2) =

w3 ∗ nat(a1, b2)

w1 + w2 + w3

=
1 ∗ 1

2 + 2 + 1
= 0.2

state comp1
UR,↔(a1, b3) =

w3 ∗ nat(a1, b3)

w1 + w2 + w3

=
1 ∗ 1

2 + 3 + 1
= 0.167

state comp1
UR,↔(a1, b4) =

w3 ∗ nat(a1, b4)

w1 + w2 + w3

=
1 ∗ 1

5 + 2 + 1
= 0.125

state comp1
UR,↔(a1, b5) =

w3 ∗ nat(a1, b4)

w1 + w2 + w3

=
1 ∗ 0

1 + 3 + 1
= 0

and

COMP 1
UR,↔[a1, b0] =

COMP 0
UR,↔[a1, b0] + state comp1

UR,↔(a1, b0)

2
=

1 + 0

2
= 0.5

COMP 1
UR,↔[a1, b2] =

COMP 0
UR,↔[a1, b2] + state comp1

UR,↔(a1, b2)

2
=

1 + 0.2

2
= 0.6

COMP 1
UR,↔[a1, b3] =

COMP 0
UR,↔[a1, b3] + state comp1

UR,↔(a1, b3)

2
=

1 + 0.167

2
= 0.584

COMP 1
UR,↔[a1, b4] =

COMP 0
UR,↔[a1, b4] + state comp1

UR,↔(a1, b4)

2
=

1 + 0.125

2
= 0.563

COMP 1
UR,↔[a1, b5] =

COMP 0
UR,↔[a1, b5] + state comp1

UR,↔(a1, b5)

2
=

1 + 0.2

2
= 0.5

The Calculation of COMP1

UR,↔[a1, b1]

obs comp1
UR,↔(a1, b1) =

sum1

UR,↔
((a1,b1),E(a1,T1),R(b1,T1))+sum1

UR,↔
((b1,a1),E(b1,T1),R(a1,T1))

∥E(a1,T1)∥+∥E(b1,T1)∥

where:

E(a1, T1) = ∅

R(a1, T1) = ¶(a1, certResponse?plcertResponse?, a2)♢

tau(a1, T1) = ∅

Fw(a1, T1) = ¶(a1, certResponse?plcertResponse?, a2)♢

and

Appendix D - Compatibility Calculation 99

E(b1, T1) = ¶(b1, certResponse!plcertResponse!, b0)♢

R(b1, T1) = ∅

tau(b1, T1) = ∅

Fw(b1, T1) = ¶(b1, certResponse!plcertResponse!, b0)♢

The function sum1
UR,↔((a1, b1), E(a1, T1), R(b1, T1)) calculates the sum of the best com-

patibility between E(a1, T1) and R(b1, T1). Because, E(a1, T1) = ∅

sum1
UR,↔((a1, b1), E(a1, T1), R(b1, T1)) = 0

The function sum1
UR,↔((b1, a1), E(b1, T1), R(a1, T1)) calculates the sum of the best com-

patibility between E(b1, T1) and R(a1, T1).

⇒sum1
UR,↔((b1, a1), E(b1, T1), R(a1, T1))

= lab comp(certResponse!, certResponse?) ∗ COMP 0
UR,↔[b0, a2]

with

COMP 0
UR,↔[b0, a2] = 1

lab comp(certResponse!, certResponse?)

= 1 −
∥unsharedTypes(plcertResponse!, plcertResponse?)∥)

6(∥plcertResponse!∥ + ∥plcertResponse?∥)

From Table 14, The data type between two messages are base64encoding and string

respectively.

⇒ ∥unsharedTypes(plcertResponse!, plcertResponse?)∥ = 2

⇒lab comp(certResponse!, certResponse?)

= 1 −
2

6(1 + 1)

= 0.833

(10)

Appendix D - Compatibility Calculation 100

⇒sum1
UR,↔((b1, a1), E(b1, T1), R(a1, T1)) = 0.833

⇒obs comp1
UR,↔(a1, b1) =

0 + 0.833

0 + 1
= 0.833

(Both state (a1, b1) do not have any incoming or outgoing τ transition.)

⇒fw propag1
UR,↔(a1, b1)

= bw propag1
UR,↔(a1, b1)

= obs comp1
UR,↔(a1, b1) = 0.833

The state compatibility of state (a1, b1) is calculated as follows:

state comp1
UR,↔(a1, b1)

=
w1 ∗ fw propag1

UR,↔(a1, b1) + w2 ∗ bw propag1
UR,↔(a1, b1) + w3 ∗ nat(a1, b1)

w1 + w2 + w3

with:

• w1 = 2 because a1 has one outgoing transmission and b1 has one outgoing transmis-

sion.

• w2 = 2 because a1 has one incoming transmission and b1 has one incoming trans-

mission.

• w3 = 1 and nat(a1, b1) = 1 because a1 /∈ (Ia ∪ Fa) & b1 /∈ (Ib ∪ Fb)

⇒ state comp1
UR,↔(a1, b1) =

2 ∗ 0.833 + 2 ∗ 0.833 + 1 ∗ 1

2 + 2 + 1
= 0.866

And the compatibility degree is calculated as follows:

COMP 1
UR,↔[a1, b1] =

COMP 0
UR,↔[a1, b1] + state comp1

UR,↔(a1, b1)

2
=

1 + 0.866

2
= 0.933

The Calculation of COMP1

UR,↔[a2, b0]

obs comp1
UR,↔(a2, b0) =

sum1

UR,↔
((a2,b0),E(a2,T2),R(b0,T0))+sum1

UR,↔
((b0,a2),E(b0,T0),R(a2,T2))

∥E(a2,T2)∥+∥E(b0,T0)∥

Appendix D - Compatibility Calculation 101

Where:

E(a2, T2) = ¶(a2, authorize!plauthorize!, a3)♢

R(a2, T2) = ∅

tau(a2, T2) = ∅

Fw(a2, T2) = ¶(a2, authorize!plauthorize!, a3)♢

and

R(b0, T0) = ¶(b0, certReqest?plcertRequest?, b1),

(b0, authorize?plauthorize?, b2),

(b0, chargeParams?plchargeP arams?, b3),

(b0, transactionEvent?pltransactionEvent?, b4)♢

E(b0, T0) =∅

tau(b0, T0) =∅

Fw(b0, T0) =R(b0, T0)

The function sum1
UR,↔((a2, b0), E(a2, T2), R(b0, T0)) calculates the sum of the best com-

patibility between E(a2, T2) and R(b0, T0).

sum1
UR,↔((a2, b2), E(a2, T2), R(b0, T0))

= lab comp(authorize!, authorize?) ∗ COMP 0
UR,↔[a3, b2]

Where:

lab comp(authorize!, authorize?) = 1 −
∥unsharedTypes(plauthorize!, plauthorize?)∥)

6(∥plauthorize!∥ + ∥plauthorize?∥)

Table 15 illustrates that both message have one uncommon data - base64Binary

⇒ lab comp(authorize!, authorize?) = 1 −
1

6 ∗ (2 + 2)
= 0.958

⇒ sum1
UR,↔((a2, b2), E(a2, T2), R(b0, T0)) = 0.958

The function sum1
UR,↔((b0, a0), E(b0, T0), R(a2, T2)) is based upon the compatibility be-

Appendix D - Compatibility Calculation 102

tween the E(b0, T0) and R(a2, T2) . However, E(b0, T0) = ∅,

⇒sum1
UR,↔((b0, a2), E(b0, T0), R(a2, T2)) = 0

⇒obs comp1
UR,↔(a2, b0) =

0.958 + 0

1
= 0.958

fw propag1
UR,↔(a2, b0) =

d fw propag1
UR,↔(a2, b0) + d fw propag1

UR,↔(b0, a2)

2

with:

d fw propag1
UR,↔(a2, b0) =

∑
(a2,τ,a′

2
)∈T0

fw propag1
CN,↔(a′

2, b0) + obs comp1
CN,↔(a2, b2)

∥tau(a2, T2)∥ + 1

= obs comp1
CN,↔(a2, b0)

Both state (a2, b0) do not have any incoming or outgoing τ transition.

⇒fw propag1
UR,↔(a2, b0)

= bw propag1
UR,↔(a2, b0)

= obs comp1
UR,↔(a2, b0) = 0.958

The state compatibility of state (a2, b0) is calculated as follows:

state comp1
UR,↔(a2, b0)

=
w1 ∗ fw propag1

UR,↔(a2, b0) + w2 ∗ bw propag1
UR,↔(a2, b0) + w3 ∗ nat(a2, b0)

w1 + w2 + w3

with w1 = 5, w2 = 5, and w3 = 1 and nat(a2, b0) = 0 because a2 /∈ (Ia ∪ Fa) & b0 ∈ Ib

⇒ state comp1
UR,↔(a2, b0) =

5 ∗ 0.958 + 5 ∗ 0.958 + 0.958 ∗ 0

5 + 5 + 1
= 0.871

And the compatibility degree is calculated as follows:

COMP 1
UR,↔[a2, b0] =

COMP 0
UR,↔[a2, b0] + state comp1

UR,↔(a2, b0)

2
=

1 + 0.871

2
= 0.936

The Calculation of COMP1

UR,↔[a2, b1], COMP1

UR,↔[a2, b2], COMP1

UR,↔[a2, b3],

COMP1

UR,↔[a2, b4], and COMP1

UR,↔[a2, b5]

Appendix D - Compatibility Calculation 103

The state (a2, b1), (a2, b2), (a2, b3) ,(a2, b4), and (a2, b5) have dead lock because their

message is not compatible.

⇒ obs comp1
UR,↔(a2, b1) = obs comp1

UR,↔(a2, b2)

= obs comp1
UR,↔(a2, b3)

= obs comp1
UR,↔(a2, b4)

= obs comp1
UR,↔(a2, b5)

= 0

⇒ fw propag1
UR,↔(a2, b1) = fw propag1

UR,↔(a2, b2)

= fw propag1
UR,↔(a2, b3)

= fw propag1
UR,↔(a2, b4)

= fw propag1
UR,↔(a2, b5)

= bw propag1
UR,↔(a2, b1)

= bw propag1
UR,↔(a2, b2)

= bw propag1
UR,↔(a2, b3)

= bw propag1
UR,↔(a2, b4)

= bw propag1
UR,↔(a2, b5)

= 0

The state compatibility is calculated as follows

state comp1
UR,↔(a2, b1) =

w3 ∗ nat(a2, b1)

w1 + w2 + w3

=
1 ∗ 1

2 + 2 + 1
= 0.2

state comp1
UR,↔(a2, b2) =

w3 ∗ nat(a2, b2)

w1 + w2 + w3

=
1 ∗ 1

2 + 2 + 1
= 0.2

state comp1
UR,↔(a2, b3) =

w3 ∗ nat(a2, b3)

w1 + w2 + w3

=
1 ∗ 1

2 + 3 + 1
= 0.167

state comp1
UR,↔(a2, b4) =

w3 ∗ nat(a2, b4)

w1 + w2 + w3

=
1 ∗ 1

5 + 2 + 1
= 0.125

state comp1
UR,↔(a2, b5) =

w3 ∗ nat(a2, b5)

w1 + w2 + w3

=
1 ∗ 0

1 + 3 + 1
= 0

and

Appendix D - Compatibility Calculation 104

COMP 1
UR,↔[a2, b1] =

COMP 0
UR,↔[a2, b1] + state comp1

UR,↔(a2, b1)

2
=

1 + 0.2

2
= 0.6

COMP 1
UR,↔[a2, b2] =

COMP 0
UR,↔[a2, b2] + state comp1

UR,↔(a2, b2)

2
=

1 + 0.2

2
= 0.6

COMP 1
UR,↔[a3, b3] =

COMP 0
UR,↔[a3, b3] + state comp1

UR,↔(a3, b3)

2
=

1 + 0.167

2
= 0.584

COMP 1
UR,↔[a4, b4] =

COMP 0
UR,↔[a4, b4] + state comp1

UR,↔(a4, b4)

2
=

1 + 0.125

2
= 0.563

COMP 1
UR,↔[a5, b5] =

COMP 0
UR,↔[a5, b5] + state comp1

UR,↔(a5, b5)

2
=

1 + 0

2
= 0.5

The Calculation of COMP1

UR,↔[a3, b2]

obs comp1
UR,↔(a3, b2) =

sum1

UR,↔
((a3,b2),E(a3,T3),R(b2,T2))+sum1

UR,↔
((b2,a3),E(b2,T2),R(a3,T3))

∥E(a3,T3)∥+∥E(b2,T2)∥

where:

E(a3, T3) = ∅

R(a3, T3) = ¶(a3, paymentDetail?plpaymentDetail?, a4)♢

tau(a3, T3) = ∅

Fw(a3, T3) = R(a3, T3)

and

E(b2, T2) = ¶(b2, paymentDetail!plpaymentDetail!, b0)♢

R(b2, T2) = ∅

tau(b2, T2) = ∅

Fw(b2, T2) = E(b2, T2)

The function sum1
UR,↔((a3, b2), E(a3, T3), R(b2, T2)) calculates the sum of the best com-

patibility between E(a3, T3) and R(b2, T2). Because, E(a3, T3) = ∅

sum1
UR,↔((a3, b2), E(a3, T3), R(b2, T2)) = 0

The function sum1
UR,↔((b2, a3), E(b2, T2), R(a3, T3)) calculates the sum of the best com-

patibility between E(b2, T2) and R(a3, T3).

Appendix D - Compatibility Calculation 105

⇒ sum1
UR,↔((b2, a3), E(b2, T2), R(a3, T3))

= lab comp(paymentDetail!, paymentDetail?) ∗ COMP 0
UR,↔[b0, a4]

with

COMP 0
UR,↔[b0, a4] = 1

lab comp(paymentDetail!, paymentDetail?)

= 1 −
∥unsharedTypes(plpaymentDetail!, plpaymentDetail?)∥)

6(∥plpaymentDetail!∥ + ∥plpaymentDetail?∥)

The list of parameters between message paymentDetail! and paymentDetail! is listed in

Table 16. Because the parameters have different enumeration value,

∥unsharedTypes(plcertResponse!, plcertResponse?)∥ = 2.

⇒ lab comp(certResponse!, certResponse?) = 1 −
2

6(1 + 1)
= 0.833

⇒sum1
UR,↔((b2, a3), E(b2, T2), R(a3, T3)) = 0.833

⇒obs comp1
UR,↔(a3, b2) =

0 + 0.833

0 + 1
= 0.833

Both state (a3, b2) do not have any incoming or outgoing τ transitions.

⇒fw propag1
UR,↔(a3, b2)

= bw propag1
UR,↔(a3, b2)

= obs comp1
UR,↔(a3, b2) = 0.833

The state compatibility of state (a3, b2) is calculated as follows:

state comp1
UR,↔(a3, b2)

=
w1 ∗ fw propag1

UR,↔(a3, b2) + w2 ∗ bw propag1
UR,↔(a3, b2) + w3 ∗ nat(a3, b2)

w1 + w2 + w3

with w1 = 2, w2 = 2, w3 = 1 and nat(a3, b2) = 1 because a3 /∈ (Ia ∪ Fa) & b2 /∈ (Ib ∪ Fb)

Appendix D - Compatibility Calculation 106

⇒state comp1
UR,↔(a3, b2) =

2 ∗ 0.833 + 2 ∗ 0.833 + 1 ∗ 1

2 + 2 + 1
= 0.866

⇒COMP 1
UR,↔[a3, b2]

=
COMP 0

UR,↔[a3, b2] + state comp1
UR,↔(a3, b2)

2

=
1 + 0.866

2
= 0.933

The Calculation of COMP1

UR,↔[a3, b0], COMP1

UR,↔[a3, b1], COMP1

UR,↔[a3, b3],

COMP1

UR,↔[a3, b4], and COMP1

UR,↔[a2, b5]

The observable compatibility obs comp between states (a3, b0), (a3, b1), (a3, b3), (a3, b4),

and (a3, b5) have value zero because their labels are not compatible. For example the

emissions in a3 and b0 have the same direction (receiving).

⇒ obs comp1
UR,↔(a3, b0) = obs comp1

UR,↔(a3, b1)

= obs comp1
UR,↔(a3, b3)

= obs comp1
UR,↔(a3, b4)

= obs comp1
UR,↔(a3, b5)

= 0

Furthermore, in those states, there are no forward and backward τ transitions in those

states.

⇒ fw propag1
CN,↔(a3, b0) = fw propag1

CN,↔(a3, b1)

= fw propag1
CN,↔(a3, b3)

= fw propag1
CN,↔(a3, b4)

= fw propag1
CN,↔(a3, b5)

= bw propag1
CN,↔(a3, b0)

= bw propag1
CN,↔(a3, b1)

= bw propag1
CN,↔(a3, b3)

= bw propag1
CN,↔(a3, b4)

= bw propag1
CN,↔(a3, b5)

= 0

Appendix D - Compatibility Calculation 107

The state compatibility is calculated as follows:

state comp1
UR,↔(a3, b0) =

w3 ∗ nat(a3, b0)

w1 + w2 + w3

=
1 ∗ 0

5 + 5 + 1
= 0

state comp1
UR,↔(a3, b1) =

w3 ∗ nat(a3, b1)

w1 + w2 + w3

=
1 ∗ 1

2 + 2 + 1
= 0.2

state comp1
UR,↔(a3, b3) =

w3 ∗ nat(a3, b3)

w1 + w2 + w3

=
1 ∗ 1

2 + 3 + 1
= 0.167

state comp1
UR,↔(a3, b4) =

w3 ∗ nat(a3, b4)

w1 + w2 + w3

=
1 ∗ 1

5 + 2 + 1
= 0.125

state comp1
UR,↔(a3, b5) =

w3 ∗ nat(a3, b5)

w1 + w2 + w3

=
1 ∗ 0

1 + 3 + 1
= 0

and

COMP 1
UR,↔[a3, b0] =

COMP 0
UR,↔[a3, b0] + state comp1

UR,↔(a3, b0)

2
=

1 + 0

2
= 0.5

COMP 1
UR,↔[a3, b1] =

COMP 0
UR,↔[a3, b1] + state comp1

UR,↔(a3, b1)

2
=

1 + 0.2

2
= 0.6

COMP 1
UR,↔[a3, b3] =

COMP 0
UR,↔[a3, b3] + state comp1

UR,↔(a3, b3)

2
=

1 + 0.167

2
= 0.584

COMP 1
UR,↔[a3, b4] =

COMP 0
UR,↔[a3, b4] + state comp1

UR,↔(a3, b4)

2
=

1 + 0.125

2
= 0.563

COMP 1
UR,↔[a3, b5] =

COMP 0
UR,↔[a3, b5] + state comp1

UR,↔([a3, b5)

2
=

1 + 0

2
= 0.5

The Calculation of COMP1

UR,↔[a4, b0]

obs comp1
UR,↔(a4, b0) =

sum1

UR,↔
((a4,b0),E(a4,T4),R(b0,T0))+sum1

UR,↔
((b0,a4),E(b0,T0),R(a4,T4))

∥E(a4,T4)∥+∥E(b0,T0)∥

Where:

E(a4, T4) = ¶(a4, chargeParams!plchargeP arams!, a5)♢

R(a4, T4) = ∅

tau(a4, T4) = ∅

Fw(a4, T4) = E(a4, T4)

and

Appendix D - Compatibility Calculation 108

R(b0, T0) = ¶(b0, certReqest?plcertRequest?, b1),

(b0, authorize?plauthorize?, b2),

(b0, chargeParams?plchargeP arams?, b3),

(b0, transactionEvent?pltransactionEvent?, b4)♢

E(b0, T0) =∅

tau(b0, T0) =∅

Fw(b0, T0) =R(b0, T0)

The function sum1
UR,↔((a4, b0), E(a4, T4), R(b0, T0)) calculates the sum of the best com-

patibility between E(a4, T4) and R(b0, T0).

sum1
UR,↔((a4, b0), E(a4, T4), R(b0, T0))

= lab comp(chargeParams!, chargeParams?) ∗ COMP 0
UR,↔[a5, b3]

Where:

lab comp(chargeParams!, chargeParams?)

= 1 −
∥unsharedTypes(plchargeP arams!, plchargeP arams?)∥)

6(∥plchargeP arams!∥ + ∥plchargeP arams?∥)

and

COMP 0
UR,↔[a5, b3] = 1

Table 17 illustrates the list of exchange parameters and their data types. The parameters

from DC charging are used for this calculation.

unshared types = ¶iso enum, ocpp enum, PhysicalV alueType, integer, byte♢

Appendix D - Compatibility Calculation 109

⇒lab comp(chargeParams!, chargeParams?)

= 1 −
∥unshared types∥)

6(∥plchargeP arams!∥ + ∥plchargeP arams?∥)

= 1 −
5

6(8 + 8)

= 0.948

(11)

⇒ sum1
UR,↔((a4, b0), E(a4, T4), R(b0, T0)) = 0.948

The function sum1
UR,↔((b0, a4), E(b0, T0), R(a4, T4)) is based upon the compatibility be-

tween the E(b0, T0) and R(a4, T4) . However, E(b0, T0) = ∅,

⇒sum1
UR,↔((b0, a4), E(b0, T0), R(a4, T4)) = 0

⇒obs comp1
UR,↔(a4, b0) =

0.948 + 0

1
= 0.948

Both state (a4, b0) do not have any incoming or outgoing τ transitions.

⇒fw propag1
UR,↔(a4, b0)

= bw propag1
UR,↔(a4, b0)

= obs comp1
UR,↔(a4, b0) = 0.948

The state compatibility of state (a4, b0) is calculated as follows:

state comp1
UR,↔(a4, b0)

=
w1 ∗ fw propag1

UR,↔(a4, b0) + w2 ∗ bw propag1
UR,↔(a4, b0) + w3 ∗ nat(a4, b0)

w1 + w2 + w3

with w1 = 5, w2 = 5, and w3 = 1 and nat(a4, b0) = 0 because a4 /∈ (Ia ∪ Fa) & b0 ∈ Ib

⇒ state comp1
UR,↔(a2, b0) =

5 ∗ 0.948 + 5 ∗ 0.948 + 1 ∗ 0

5 + 5 + 1
= 0.862

And the compatibility degree is calculated as follows:

COMP 1
UR,↔[a4, b0] =

COMP 0
UR,↔[a4, b0] + state comp1

UR,↔(a4, b0)

2
=

1 + 0.862

2
= 0.931

Appendix D - Compatibility Calculation 110

The Calculation of COMP1

UR,↔[a4, b4]

obs comp1
UR,↔(a4, b4) =

sum1

UR,↔
((a4,b4),E(a4,T4),R(b4,T4))+sum1

UR,↔
((b4,a4),E(b4,T4),R(a4,T4))

∥E(a4,T4)∥+∥E(b4,T4)∥

Where:

E(a4, T4) = ¶(a4, chargeParams!plchargeP arams!, a5)♢

R(a4, T4) = ∅

tau(a4, T4) = ∅

Fw(a4, T4) = E(a4, T4)

and

R(b4, T4) =¶(b4, chargeParams?plchargeP arams?, b3),

(b4, transactionEvent?pltransactionEvent?, b5)♢

E(b4, T4) =¶(b4, chargeSchedule!plchargeSchedule!, b0),

(b4, requestStop!plrequestStop!, b5)♢

tau(b4, T4) =∅

Fw(b4, T4) =E(b4, T4) ∪ R(b4, T4)

The function sum1
UR,↔((a4, b4), E(a4, T4), R(b4, T4)) calculates the sum of the best com-

patibility between E(a4, T4) and R(b4, T4). The calculation is reduced to:

(chargeParams!, chargeParams?) because (chargeParams!, transactionEvent?) is not

label compatible.

sum1
UR,↔((a4, b4), E(a4, T4), R(b4, T4))

= lab comp(chargeParams!, chargeParams?) ∗ COMP 0
UR,↔[a5, b3]

Where:

lab comp(chargeParams!, chargeParams?)

= 1 −
∥unsharedTypes(plchargeP arams!, plchargeP arams?)∥)

6(∥plchargeP arams!∥ + ∥plchargeP arams?∥)

Appendix D - Compatibility Calculation 111

and

COMP 0
UR,↔[a5, b3] = 1

From Equation 11, lab comp(chargeParams!, chargeParams?) = 0.948

⇒ sum1
UR,↔((a4, b4), E(a4, T4), R(b4, T4)) = 0.948

The function sum1
UR,↔((b4, a4), E(b4, T4), R(a4, T4)) is based upon the compatibility be-

tween the E(b4, T4) and R(a4, T4) . However, E(a4, T4) = ∅,

⇒sum1
UR,↔((b4, a4), E(b4, T4), R(a4, T4)) = 0

⇒obs comp1
UR,↔(a4, b4) =

0.948 + 0

1 + 2
= 0.316

Both state (a4, b4) do not have any incoming or outgoing τ transitions.

⇒fw propag1
UR,↔(a4, b4)

= bw propag1
UR,↔(a4, b4)

= obs comp1
UR,↔(a4, b4) = 0.316

The state compatibility of state (a4, b4) is calculated as follows:

state comp1
UR,↔(a4, b4)

=
w1 ∗ fw propag1

UR,↔(a4, b4) + w2 ∗ bw propag1
UR,↔(a4, b4) + w3 ∗ nat(a4, b4)

w1 + w2 + w3

with w1 = 5, w2 = 2, and w3 = 1 and nat(a4, b4) = 1 because a4 /∈ (Ia ∪ Fa) & b0 /∈

(Ib ∪ Fb)

⇒ state comp1
UR,↔(a4, b4) =

5 ∗ 0.316 + 2 ∗ 0.316 + 1 ∗ 1

5 + 2 + 1
= 0.402

And the compatibility degree is calculated as follows:

COMP 1
UR,↔[a4, b4] =

COMP 0
UR,↔[a4, b4] + state comp1

UR,↔(a4, b4)

2
=

1 + 0.402

2
= 0.701

Appendix D - Compatibility Calculation 112

The Calculation of COMP1

UR,↔[a4, b1], COMP1

UR,↔[a4, b2], COMP1

UR,↔[a4, b3],

and COMP1

UR,↔[a4, b5]

By observing the Figure 18, the observable compatibility of the states (a4, b1), (a4, b2),

(a4, b3), and (a4, b5) are equal to zero because of dead lock.

⇒ fw propag1
CN,↔(a4, b1) = fw propag1

CN,↔(a4, b2)

= fw propag1
CN,↔(a4, b3)

= fw propag1
CN,↔(a4, b5)

= bw propag1
CN,↔(a4, b1)

= bw propag1
CN,↔(a4, b2)

= bw propag1
CN,↔(a4, b3)

= bw propag1
CN,↔(a4, b5)

= 0

The state compatibility is calculated as follows:

state comp1
UR,↔(a4, b1) =

w3 ∗ nat(a4, b1)

w1 + w2 + w3

=
1 ∗ 1

2 + 2 + 1
= 0.2

state comp1
UR,↔(a4, b2) =

w3 ∗ nat(a4, b2)

w1 + w2 + w3

=
1 ∗ 1

2 + 2 + 1
= 0.2

state comp1
UR,↔(a4, b3) =

w3 ∗ nat(a4, b3)

w1 + w2 + w3

=
1 ∗ 1

2 + 3 + 1
= 0.167

state comp1
UR,↔(a4, b5) =

w3 ∗ nat(a4, b5)

w1 + w2 + w3

=
1 ∗ 0

5 + 2 + 1
= 0

and

COMP 1
UR,↔[a4, b1] =

COMP 0
UR,↔[a4, b1] + state comp1

UR,↔(a4, b1)

2
=

1 + 0.2

2
= 0.6

COMP 1
UR,↔[a4, b2] =

COMP 0
UR,↔[a4, b2] + state comp1

UR,↔(a4, b2)

2
=

1 + 0.2

2
= 0.6

COMP 1
UR,↔[a4, b3] =

COMP 0
UR,↔[a4, b3] + state comp1

UR,↔(a4, b3)

2
=

1 + 0.167

2
= 0.584

COMP 1
UR,↔[a4, b5] =

COMP 0
UR,↔[a4, b5] + state comp1

UR,↔(a4, b5)

2
=

1 + 0

2
= 0.5

The Calculation of COMP1

UR,↔[a5, b3]

Appendix D - Compatibility Calculation 113

obs comp1
UR,↔(a5, b3) =

sum1

UR,↔
((a5,b3),E(a5,T5),R(b3,T3))+sum1

UR,↔
((b3,a5),E(b3,T3),R(a5,T5))

∥E(a5,T5)∥+∥E(b3,T3)∥

Where:

E(a5, T5) = ∅

R(a5, T5) = ¶(a4, chargeSchedule?plchargeSchedule?, a6)♢

tau(a5, T5) = ∅

Fw(a5, T5) = E(a5, T5)

and

R(b3, T3) = ∅

E(b3, T3) = ¶(b3, chargeSchedule!plchargeSchedule!, b0)♢

tau(b3, T3) = ∅

Fw(b3, T3) = E(b3, T3)

The function sum1
UR,↔((a5, b3), E(a5, T5), R(b3, T3)) calculates the sum of the best com-

patibility between E(a5, T5) and R(b3, T3). Since E(a5, T5) = ∅,

sum1
UR,↔((a5, b3), E(a5, T5), R(b3, T3)) = 0

The function sum1
UR,↔((b3, a5), E(b3, T3), R(a5, T5)) is based upon the compatibility be-

tween the E(b3, T3) and R(a5, T5).

sum1
UR,↔((b3, a5), E(b3, T3), R(a5, T5))

= lab comp(chargeSchedule!, chargeSchedule?) ∗ COMP 0
UR,↔[b0, a6]

Where:

lab comp(chargeParams!, chargeParams?)

= 1 −
∥chargeSchedule(plchargeSchedule!, plchargeSchedule?)∥)

6(∥plchargeSchedule!∥ + ∥plchargeSchedule?∥)

and

Appendix D - Compatibility Calculation 114

COMP 0
UR,↔[b0, a6] = 1

From Table 18, the list of of un-shared data types are

unshared types = ¶PhysicalV alueType

number

unsignedByte,

unsignedInteger,

integer,

byte,

iso enum,

ocpp enum)♢

⇒lab comp(chargeSchedule!, chargeSchedule?)

= 1 −
∥unshared types∥)

6(∥plchargeSchedule!∥ + ∥plchargeSchedule?∥)

= 1 −
8

6(13 + 13)

= 0.949

(12)

The state (a5, b3) does not have any outgoing or incoming τ transitions

⇒fw propagk
UR,↔(a5, b3)

= bw propag1
UR,↔(a5, b3)

= lab comp(chargeSchedule!, chargeSchedule?) = 0.949

The state compatibility of state (a5, b3) is calculated as follows:

state comp1
UR,↔(a5, b3)

=
w1 ∗ fw propag1

UR,↔(a5, b3) + w2 ∗ bw propag1
UR,↔(a5, b3) + w3 ∗ nat(a5, b3)

w1 + w2 + w3

with w1 = 2, w2 = 4, and w3 = 1 and nat(a5, b3) = 1 because a5 /∈ (Ia ∪ Fa) & b3 /∈

(Ib ∪ Fb)

Appendix D - Compatibility Calculation 115

⇒ state comp1
UR,↔(a5, b3) =

2 ∗ 0.949 + 4 ∗ 0.949 + 1 ∗ 1

2 + 4 + 1
= 0.956

And the compatibility degree is calculated as follows:

COMP 1
UR,↔[a5, b3] =

COMP 0
UR,↔[a5, b3] + state comp1

UR,↔(a5, b3)

2
=

1 + 0.956

2
= 0.978

The Calculation of COMP1

UR,↔[a5, b4]

obs comp1
UR,↔(a5, b4) =

sum1

UR,↔
((a5,b4),E(a5,T5),R(b4,T4))+sum1

UR,↔
((b4,a5),E(b4,T4),R(a5,T5))

∥E(a5,T5)∥+∥E(b4,T4)∥

Where:

E(a5, T5) = ∅

R(a5, T5) = ¶(a4, chargeSchedule?plchargeSchedule?, a6)♢

tau(a5, T5) = ∅

Fw(a5, T5) = E(a5, T5)

and

R(b4, T4) =¶(b4, chargeParams?plchargeP arams?, b3),

(b4, transactionEvent?pltransactionEvent?, b5)♢

E(b4, T4) =¶(b4, chargeSchedule!plchargeSchedule!, b0),

(b4, requestStop!plrequestStop!, b5)♢

tau(b4, T4) =∅

Fw(b4, T4) =E(b4, T4) ∪ R(b4, T4)

The function sum1
UR,↔((a5, b4), E(a5, T5), R(b4, T4)) calculates the sum of the best com-

patibility between E(a5, T5) and R(b4, T4). Since E(a5, T5) = ∅,

sum1
UR,↔((a5, b4), E(a5, T5), R(b4, T4)) = 0

The function sum1
UR,↔((b4, a5), E(b4, T4), R(a5, T5)) calculates the sum of the best com-

patibility between E(b4, T4) and R(a5, T5). The calculation is reduced to only

(chargeParams!, chargeParams?) because (requestStop!, chargeSchedule?) is not label

Appendix D - Compatibility Calculation 116

compatible.

sum1
UR,↔((b4, a5), E(b4, T4), R(a5, T5))

= lab comp(chargeParams!, chargeParams?) ∗ COMP 0
UR,↔[b0, a6]

Where:

lab comp(chargeParams!, chargeParams?)

= 1 −
∥unsharedTypes(plchargeP arams!, plchargeP arams?)∥)

6(∥plchargeP arams!∥ + ∥plchargeP arams?∥)

and

COMP 0
UR,↔[b0, a6] = 1

From Equation 11, lab comp(chargeParams!, chargeParams?) = 0.948

⇒sum1
UR,↔((b4, a5), E(b4, T4), R(a5, T5)) = 0.948

⇒obs comp1
UR,↔(a5, b4) =

0 + 0.948

0 + 2
= 0.474

The state (a5, b4) does not have any outgoing or incoming τ transitions

⇒ fw propagk
CN,↔(a5, b4) = bw propag1

UR,↔(a5, b4) = 0.474

The state compatibility of state (a5, b4) is calculated as follows:

state comp1
UR,↔(a5, b4)

=
w1 ∗ fw propag1

UR,↔(a5, b4) + w2 ∗ bw propag1
UR,↔(a5, b4) + w3 ∗ nat(a5, b4)

w1 + w2 + w3

with w1 = 5, w2 = 3, and w3 = 1 and nat(a5, b4) = 1 because a5 /∈ (Ia ∪ Fa) & b4 /∈

(Ib ∪ Fb)

⇒ state comp1
UR,↔(a5, b4) =

5 ∗ 0.474 + 3 ∗ 0.474 + 1 ∗ 1

5 + 3 + 1
= 0.532

And the compatibility degree is calculated as follows:

Appendix D - Compatibility Calculation 117

COMP 1
UR,↔[a5, b4] =

COMP 0
UR,↔[a5, b4] + state comp1

UR,↔(a5, b4)

2
=

1 + 0.532

2
= 0.766

The Calculation of COMP1

UR,↔[a5, b0], COMP1

UR,↔[a5, b1], COMP1

UR,↔[a5, b2],

and COMP1

UR,↔[a5, b5]

By observing the Figure 18, the observable compatibility of the states (a5, b0), (a5, b1),

(a5, b2), and (a5, b5) are equal to zero because of dead lock. Therefore, their forward and

backward compatibility is also zero.

The state compatibility is calculated as follows:

state comp1
UR,↔(a5, b0) =

w3 ∗ nat(a5, b0)

w1 + w2 + w3

=
1 ∗ 0

2 + 2 + 1
= 0

state comp1
UR,↔(a5, b1) =

w3 ∗ nat(a5, b1)

w1 + w2 + w3

=
1 ∗ 1

2 + 3 + 1
= 0.167

state comp1
UR,↔(a5, b2) =

w3 ∗ nat(a5, b2)

w1 + w2 + w3

=
1 ∗ 1

2 + 3 + 1
= 0.167

state comp1
UR,↔(a5, b5) =

w3 ∗ nat(a5, b5)

w1 + w2 + w3

=
1 ∗ 0

1 + 4 + 1
= 0

and

COMP 1
UR,↔[a5, b0] =

COMP 0
UR,↔[a5, b0] + state comp1

UR,↔(a5, b0)

2
=

1 + 0

2
= 0.5

COMP 1
UR,↔[a5, b1] =

COMP 0
UR,↔[a5, b1] + state comp1

UR,↔(a5, b1)

2
=

1 + 0.167

2
= 0.584

COMP 1
UR,↔[a5, b2] =

COMP 0
UR,↔[a5, b2] + state comp1

UR,↔(a5, b2)

2
=

1 + 0.167

2
= 0.584

COMP 1
UR,↔[a5, b5] =

COMP 0
UR,↔[a5, b5] + state comp1

UR,↔(a5, b5)

2
=

1 + 0

2
= 0.5

The Calculation of COMP1

UR,↔[a6, b0]

obs comp1
UR,↔(a6, b0) =

sum1

UR,↔
((a6,b0),E(a6,T6),R(b0,T0))+sum1

UR,↔
((b0,a6),E(b0,T0),R(a6,T6))

∥E(a6,T6)∥+∥E(b0,T0)∥

Where:

Appendix D - Compatibility Calculation 118

E(a6, T6) = ¶(a6, transactionEvent!pltransactionEvent!, a7)♢

R(a6, T6) = ∅

tau(a6, T6) = ∅

Fw(a6, T6) = E(a6, T6)

and

R(b0, T0) = ¶(b0, certReqest?plcertRequest?, b1),

(b0, authorize?plauthorize?, b2),

(b0, chargeParams?plchargeP arams?, b3),

(b0, transactionEvent?pltransactionEvent?, b4)♢

E(b0, T0) =∅

tau(b0, T0) =∅

Fw(b0, T0) =R(b0, T0)

The function sum1
UR,↔((a6, b0), E(a6, T6), R(b0, T0)) calculates the sum of the best com-

patibility between E(a6, T6) and R(b0, T0).

sum1
UR,↔((a6, b0), E(a6, T6), R(b0, T0))

= lab comp(transactionEvent!, transactionEvent?) ∗ COMP 0
UR,↔[a7, b4]

Where:

lab comp(transactionEvent!, transactionEvent?)

= 1 −
∥unsharedTypes(pltransactionEvent!, pltransactionEvent?)∥)

6(∥pltransactionEvent!∥ + ∥pltransactionEvent?∥)

and

COMP 0
UR,↔[a7, b4] = 1

Table 20 shows that the un-shared data types between two messages are unshared =

¶unsignedLong, number, base64Binary, string♢

Appendix D - Compatibility Calculation 119

⇒lab comp(transactionEvent!, transactionEvent?)

= 1 −
4

6(2 + 2)

= 0.833

(13)

⇒ sum1
UR,↔((a6, b0), E(a6, T6), R(b0, T0)) = 0.833

The function sum1
UR,↔((b0, a6), E(b0, T0), R(a6, T6)) is based upon the compatibility be-

tween the E(b0, T0) and R(a6, T6) . However, E(b0, T0) = ∅,

⇒sum1
UR,↔((b0, a6), E(b0, T0), R(a6, T6)) = 0

⇒obs comp1
UR,↔(a4, b0) =

0.833 + 0

1
= 0.833

The state (a6, b0) does not have any outgoing or incoming τ transitions

⇒ fw propagk
UR,↔(a6, b0) = bw propag1

UR,↔(a6, b0) = 0.833

The state compatibility of state (a6, b0) is calculated as follows:

state comp1
UR,↔(a6, b0)

=
w1 ∗ fw propag1

UR,↔(a6, b0) + w2 ∗ bw propag1
UR,↔(a6, b0) + w3 ∗ nat(a6, b0)

w1 + w2 + w3

with w1 = 5, w2 = 6, and w3 = 1 and nat(a6, b0) = 0 because a5 /∈ (Ia ∪ Fa) & b0 ∈ Ib

⇒ state comp1
UR,↔(a6, b0) =

5 ∗ 0.833 + 6 ∗ 0.833 + 1 ∗ 0

5 + 6 + 1
= 0.764

And the compatibility degree is calculated as follows:

COMP 1
UR,↔[a6, b0] =

COMP 0
UR,↔[a6, b0] + state comp1

UR,↔(a6, b0)

2
=

1 + 0.764

2
= 0.882

The Calculation of COMP1

UR,↔[a6, b4]

obs comp1
UR,↔(a6, b4) =

sum1

UR,↔
((a6,b4),E(a6,T6),R(b4,T4))+sum1

UR,↔
((b4,a6),E(b4,T4),R(a6,T6))

∥E(a6,T6)∥+∥E(b4,T4)∥

Where:

Appendix D - Compatibility Calculation 120

E(a6, T6) = ¶(a6, transactionEvent!pltransactionEvent!, a7)♢

R(a6, T6) = ∅

tau(a6, T6) = ∅

Fw(a6, T6) = E(a6, T6)

and

R(b4, T4) =¶(b4, chargeParams?plchargeP arams?, b3),

(b4, transactionEvent?pltransactionEvent?, b5)♢

E(b4, T4) =¶(b4, chargeSchedule!plchargeSchedule!, b0),

(b4, requestStop!plrequestStop!, b5)♢

tau(b4, T4) =∅

Fw(b4, T4) =E(b4, T4) ∪ R(b4, T4)

The function sum1
UR,↔((a6, b4), E(a6, T6), R(b4, T4)) calculates the sum of the best com-

patibility between E(a6, T6) and R(b4, T4).

sum1
UR,↔((a6, b4), E(a6, T6), R(b4, T4))

= lab comp(transactionEvent!, transactionEvent?) ∗ COMP 0
UR,↔[a7, b3]

Where:

lab comp(transactionEvent!, transactionEvent?)

= 1 −
∥unsharedTypes(pltransactionEvent!, pltransactionEvent?)∥)

6(∥pltransactionEvent!∥ + ∥pltransactionEvent?∥)

and

COMP 0
UR,↔[a7, b3] = 1

Table 20 shows that the un-shared data types between two messages are unshared =

¶unsignedLong, number, base64Binary, string♢

Appendix D - Compatibility Calculation 121

⇒lab comp(chargeParams!, chargeParams?)

= 1 −
4

6(2 + 2)

= 0.833

⇒ sum1
UR,↔((a6, b4), E(a6, T6), R(b4, T4)) = 0.833

The function sum1
UR,↔((b3, a6), E(b3, T3), R(a6, T6)) is based upon the compatibility be-

tween the E(b4, T4) and R(a6, T6) . However, R(a6, T6) = ∅,

⇒sum1
UR,↔((b4, a6), E(b4, T4), R(a6, T6)) = 0

⇒obs comp1
UR,↔(a6, b4) =

0.833 + 0

1 + 2
= 0.278

The state (a6, b4) does not have any outgoing or incoming τ transitions

⇒ fw propagk
UR,↔(a6, b4) = bw propag1

UR,↔(a6, b4) = 0.278

The state compatibility of state (a6, b4) is calculated as follows:

state comp1
UR,↔(a6, b4)

=
w1 ∗ fw propag1

UR,↔(a6, b4) + w2 ∗ bw propag1
UR,↔(a6, b4) + w3 ∗ nat(a6, b4)

w1 + w2 + w3

with w1 = 5, w2 = 3, and w3 = 1 and nat(a6, b4) = 1 because a6 /∈ (Ia ∪ Fa) & b4 /∈

(Ib ∪ Fb)

⇒ state comp1
UR,↔(a6, b4) =

5 ∗ 0.278 + 3 ∗ 0.278 + 1 ∗ 1

5 + 3 + 1
= 0.358

And the compatibility degree is calculated as follows:

COMP 1
UR,↔[a6, b4] =

COMP 0
UR,↔[a6, b4] + state comp1

UR,↔(a5, b3)

2
=

1 + 0.358

2
= 0.679

The Calculation of COMP1

UR,↔[a6, b1], COMP1

UR,↔[a6, b2], COMP1

UR,↔[a6, b3],

and COMP1

UR,↔[a5, b5]

By observing the Figure 18, the observable compatibility of the states (a6, b1), (a6, b2),

Appendix D - Compatibility Calculation 122

(a6, b3), and (a6, b5) are equal to zero because of dead lock. Therefore, their forward and

backward compatibility is also zero.

The state compatibility is calculated as follows:

state comp1
UR,↔(a6, b1) =

w3 ∗ nat(a6, b2)

w1 + w2 + w3

=
1 ∗ 1

2 + 3 + 1
= 0.167

state comp1
UR,↔(a6, b2) =

w3 ∗ nat(a6, b2)

w1 + w2 + w3

=
1 ∗ 1

2 + 3 + 1
= 0.167

state comp1
UR,↔(a6, b3) =

w3 ∗ nat(a6, b3)

w1 + w2 + w3

=
1 ∗ 1

2 + 4 + 1
= 0.142

state comp1
UR,↔(a6, b5) =

w3 ∗ nat(a6, b5)

w1 + w2 + w3

=
1 ∗ 0

1 + 4 + 1
= 0

and

COMP 1
UR,↔[a6, b1] =

COMP 0
UR,↔[a6, b1] + state comp1

UR,↔(a6, b1)

2
=

1 + 0.167

2
= 0.584

COMP 1
UR,↔[a6, b2] =

COMP 0
UR,↔[a6, b2] + state comp1

UR,↔(a6, b2)

2
=

1 + 0.167

2
= 0.584

COMP 1
UR,↔[a6, b3] =

COMP 0
UR,↔[a6, b3] + state comp1

UR,↔(a6, b3)

2
=

1 + 0.142

2
= 0.571

COMP 1
UR,↔[a6, b5] =

COMP 0
UR,↔[a6, b5] + state comp1

UR,↔(a6, b5)

2
=

1 + 0

2
= 0.5

The Calculation of COMP1

UR,↔[a7, b0]

obs comp1
UR,↔(a7, b0) =

sum1

UR,↔
((a7,b0),E(a7,T7),R(b0,T0))+sum1

UR,↔
((b0,a7),E(b0,T0),R(a7,T7))

∥E(a7,T7)∥+∥E(b0,T0)∥

Where:

E(a7, T7) =¶(a7, transactionEvent!pltransactionEvent!, a8),

(a7, chargeParams!plchargeP arams!, a5)♢

R(a7, T7) =¶(a7, requestStop?plrequestStop?, a8),

(a7, chargeSchedule?plchargeSchedule?, a5)♢

tau(a7, T7) =∅

Fw(a7, T7) =E(a7, T7) ∪ R(a7, T7)

Appendix D - Compatibility Calculation 123

and

R(b0, T0) = ¶(b0, certReqest?plcertRequest?, b1),

(b0, authorize?plauthorize?, b2),

(b0, chargeParams?plchargeP arams?, b3),

(b0, transactionEvent?pltransactionEvent?, b4)♢

E(b0, T0) =∅

tau(b0, T0) =∅

Fw(b0, T0) =R(b0, T0)

The function sum1
UR,↔((a7, b0), E(a7, T7), R(b0, T0)) calculates the sum of the best com-

patibility between E(a7, T7) and R(b0, T0).

sum1
UR,↔((a7, b0), E(a7, T7), R(b0, T0))

= lab comp(transactionEvent!, transactionEvent?) ∗ COMP 0
UR,↔[a8, b4]

+ lab comp(chargeParams!, chargeParams?) ∗ COMP 0
UR,↔[a5, b3]

Where:

lab comp(transactionEvent!, transactionEvent?)

= 1 −
∥unsharedTypes(pltransactionEvent!, pltransactionEvent?)∥)

6(∥pltransactionEvent!∥ + ∥pltransactionEvent?∥)

+ 1 −
∥unsharedTypes(plchargeP arams!, plchargeP arams?)∥)

6(∥plchargeP arams!∥ + ∥plchargeP arams?∥)

and

COMP 0
UR,↔[a8, b4] = 1, COMP 0

UR,↔[a5, b3] = 1

From Equation 13, lab comp(transactionEvent!, transactionEvent?) = 0.833 and from

Equation 11, lab comp(chargeParams!, chargeParams?) = 0.948

⇒ sum1
UR,↔((a7, b0), E(a7, T7), R(b0, T0)) = 0.833 + 0.948 = 1.781

The function sum1
UR,↔((b0, a7), E(b0, T0), R(a7, T7)) is based upon the compatibility be-

tween the E(b0, T0) and R(a7, T7) . However, E(b0, T0) = ∅,

Appendix D - Compatibility Calculation 124

⇒sum1
UR,↔((b0, a7), E(b0, T0), R(a7, T7)) = 0

⇒obs comp1
UR,↔(a7, b0) =

1.781 + 0

2
= 0.891

The state (a7, b0) does not have any incoming or outgoing τ transitions

⇒ fw propagk
CN,↔(a7, b0) = bw propag1

UR,↔(a7, b0) = 0.891

The state compatibility of state (a7, b0) is calculated as follows:

state comp1
UR,↔(a7, b0)

=
w1 ∗ fw propag1

UR,↔(a7, b0) + w2 ∗ bw propag1
UR,↔(a7, b0) + w3 ∗ nat(a7, b0)

w1 + w2 + w3

with w1 = 8, w2 = 5, and w3 = 1 and nat(a7, b0) = 0 because a7 /∈ (Ia ∪ Fa) & b0 ∈ Ib

⇒ state comp1
UR,↔(a7, b0) =

8 ∗ 0.891 + 5 ∗ 0.891 + 1 ∗ 0

8 + 5 + 1
= 0.827

And the compatibility degree is calculated as follows:

COMP 1
UR,↔[a7, b0] =

COMP 0
UR,↔[a7, b0] + state comp1

UR,↔(a7, b0)

2
=

1 + 0.827

2
= 0.914

The Calculation of COMP1

UR,↔[a7, b3]

obs comp1
UR,↔(a7, b3) =

sum1

UR,↔
((a7,b3),E(a7,T7),R(b3,T3))+sum1

UR,↔
((b3,a7),E(b3,T3),R(a7,T7))

∥E(a7,T7)∥+∥E(b3,T3)∥

Where:

E(a7, T7) =¶(a7, transactionEvent!pltransactionEvent!, a8),

(a7, chargeParams!plchargeP arams!, a5)♢

R(a7, T7) =¶(a7, requestStop?plrequestStop?, a8),

(a7, chargeSchedule?plchargeSchedule?, a5)♢

tau(a7, T7) =∅

Fw(a7, T7) =E(a7, T7) ∪ R(a7, T7)

and

Appendix D - Compatibility Calculation 125

R(b3, T3) =∅

E(b3, T3) =¶(b3, chargeSchedule!plchargeSchedule!, b0)♢

tau(b3, T3) =∅

Fw(b3, T3) =E(b3, T3)

The function sum1
UR,↔((a7, b3), E(a7, T7), R(b3, T3)) calculates the sum of the best com-

patibility between E(a7, T7) and R(b3, T3). Since there is no compatible messages in

(a7, b3)

sum1
UR,↔((a7, b3), E(a7, T7), R(b3, T3)) = 0

The function sum1
UR,↔((b3, a7), E(b3, T3), R(a7, T7)) is based upon the best compatibility

between the E(b3, T3) and R(a7, T7).

sum1
UR,↔((b3, a7), E(b3, T3), R(a7, T7))

= lab comp(chargeSchedule!, chargeSchedule?) ∗ COMP 0
UR,↔[b0, a5]

From Equation 12, lab comp(chargeSchedule!, chargeSchedule?) = 0.949. Furthermore,

COMP 0
UR,↔[b0, a5] = 1

⇒sum1
UR,↔((b3, a7), E(b3, T3), R(a7, T7)) = 0.949

⇒obs comp1
UR,↔(a7, b3) =

0 + 0.949

1 + 2
= 0.316

The state (a7, b3) does not have any incoming or outgoing τ transitions

⇒ fw propagk
CN,↔(a5, b3) = bw propag1

UR,↔(a5, b3) = 0.316

The state compatibility of state (a7, b3) is calculated as follows:

state comp1
UR,↔(a7, b3)

=
w1 ∗ fw propag1

CN,↔(a7, b3) + w2 ∗ bw propag1
CN,↔(a7, b3) + w3 ∗ nat(a7, b3)

w1 + w2 + w3

with w1 = 5, w2 = 3, and w3 = 1 and nat(a7, b3) = 1 because a7 /∈ (Ia ∪ Fa) & b3 /∈

(Ib ∪ Fb)

Appendix D - Compatibility Calculation 126

⇒ state comp1
UR,↔(a7, b3) =

5 ∗ 0.316 + 3 ∗ 0.316 + 1 ∗ 1

5 + 3 + 1
= 0.392

And the compatibility degree is calculated as follows:

COMP 1
UR,↔[a7, b3] =

COMP 0
UR,↔[a7, b3] + state comp1

UR,↔(a7, b3)

2
=

1 + 0.392

2
= 0.696

The Calculation of COMP1

UR,↔[a7, b4]

obs comp1
UR,↔(a7, b4) =

sum1

UR,↔
((a7,b4),E(a7,T7),R(b4,T4))+sum1

UR,↔
((b4,a7),E(b4,T4),R(a7,T7))

∥E(a7,T7)∥+∥E(b4,T4)∥

Where:

E(a7, T7) =¶(a7, transactionEvent!pltransactionEvent!, a8),

(a7, chargeParams!plchargeP arams!, a5)♢

R(a7, T7) =¶(a7, requestStop?plrequestStop?, a8),

(a7, chargeSchedule?plchargeSchedule?, a5)♢

tau(a7, T7) =∅

Fw(a7, T7) =E(a7, T7) ∪ R(a7, T7)

and

R(b4, T4) =¶(b4, chargeParams?plchargeP arams?, b3),

(b4, transactionEvent?pltransactionEvent?, b5)♢

E(b4, T4) =¶(b4, chargeSchedule!plchargeSchedule!, b0),

(b4, requestStop!plrequestStop!, b5)♢

tau(b4, T4) =∅

Fw(b4, T4) =E(b4, T4) ∪ R(b4, T4)

The function sum1
UR,↔((a7, b4), E(a7, T7), R(b4, T4)) calculates the sum of the best com-

patibility between E(a7, T7) and R(b4, T4).

Appendix D - Compatibility Calculation 127

sum1
UR,↔((a7, b4), E(a7, T7), R(b4, T4))

=lab comp(transactionEvent!, transactionEvent?) ∗ COMP 0
UR,↔[a8, b5]

+ lab comp(chargeParams!, chargeParams?) ∗ COMP 0
UR,↔[a5, b3]

From 13, lab comp(transactionEvent!, transactionEvent?) = 0.833

From 11, lab comp(chargeParams!, chargeParams?) = 0.948

COMP 0
UR,↔[a8, b5] = 1

COMP 0
UR,↔[a5, b3] = 1

⇒ sum1
UR,↔((a7, b4), E(a7, T7), R(b4, T4)) = 0.833 + 0.948 = 1.781

The function sum1
UR,↔((b4, a7), E(b4, T4), R(a7, T7)) is based upon the compatibility be-

tween the E(b4, T4) and R(a7, T7).

sum1
UR,↔((a7, b4), E(a7, T7), R(b4, T4))

=lab comp(requestStop!, requestStop?) ∗ COMP 0
UR,↔[b5, a8]

=lab comp(chargeSchedule!, chargeSchedule?) ∗ COMP 0
UR,↔[b0, a5]

From Equation 12, lab comp(chargeSchedule!, chargeSchedule?) = 0.949. Additionally,

lab comp(requestStop!, requestStop?) = 1 because of a perfect match.

And

COMP 0
UR,↔[b5, a8] = 1

COMP 0
UR,↔[b0, a5] = 1

⇒sum1
UR,↔((b4, a7), E(b4, T4), R(a7, T7)) = 1 + 0.949 = 1.949

⇒obs comp1
UR,↔(a6, b4) =

1.781 + 1.949

2 + 2
= 0.933

The state (a7, b4) does not have any outgoing or incoming τ transition

⇒ fw propagk
UR,↔(a6, b4) = bw propag1

UR,↔(a6, b4) = 0.933

Appendix D - Compatibility Calculation 128

The state compatibility of state (a7, b4) is calculated as follows:

state comp1
UR,↔(a7, b4)

=
w1 ∗ fw propag1

UR,↔(a7, b4) + w2 ∗ bw propag1
UR,↔(a7, b4) + w3 ∗ nat(a7, b4)

w1 + w2 + w3

with w1 = 8, w2 = 2, and w3 = 1 and nat(a7, b4) = 1 because a7 /∈ (Ia ∪ Fa) & b4 /∈

(Ib ∪ Fb)

⇒ state comp1
UR,↔(a7, b4) =

8 ∗ 0.933 + 2 ∗ 0.933 + 1 ∗ 1

8 + 2 + 1
= 0.939

And the compatibility degree is calculated as follows:

COMP 1
UR,↔[a7, b4] =

COMP 0
UR,↔[a7, b4] + state comp1

UR,↔(a7, b4)

2
=

1 + 0.939

2
= 0.97

The Calculation of COMP1

UR,↔[a7, b1], COMP1

UR,↔[a7, b2], and COMP1

UR,↔[a7, b5]

By observing the Figure 18, the observable compatibility of the states (a7, b1), (a7, b2),

and (a7, b5) are equal to zero because of dead lock. Therefore, their forward and backward

compatibility is also zero.

The state compatibility is calculated as follows:

state comp1
UR,↔(a7, b1) =

w3 ∗ nat(a7, b2)

w1 + w2 + w3

=
1 ∗ 1

5 + 2 + 1
= 0.125

state comp1
UR,↔(a7, b2) =

w3 ∗ nat(a7, b2)

w1 + w2 + w3

=
1 ∗ 1

5 + 2 + 1
= 0.125

state comp1
UR,↔(a7, b5) =

w3 ∗ nat(a7, b5)

w1 + w2 + w3

=
1 ∗ 0

5 + 3 + 1
= 0

and

COMP 1
UR,↔[a7, b1] =

COMP 0
UR,↔[a7, b1] + state comp1

UR,↔(a7, b1)

2
=

1 + 0.125

2
= 0.563

COMP 1
UR,↔[a7, b2] =

COMP 0
UR,↔[a7, b2] + state comp1

UR,↔(a7, b2)

2
=

1 + 0.125

2
= 0.563

COMP 1
UR,↔[a7, b5] =

COMP 0
UR,↔[a7, b5] + state comp1

UR,↔(a7, b5)

2
=

1 + 0

2
= 0.5

Appendix D - Compatibility Calculation 129

The Calculation of COMP1

UR,↔[a8, b5]

By observing the Figure 18, it can be seen that (a8, b5) are final states.

⇒obs comp(a8, b5) = 1

⇒fw propagk
UR,↔(a8, b5) = 0 & bw propagk

UR,↔(a8, b5) = 1

The state compatibility of state (a8, b5) is calculated as follows:

state comp1
UR,↔(a8, b5)

=
w1 ∗ fw propag1

UR,↔(a8, b5) + w2 ∗ bw propag1
UR,↔(a8, b5) + w3 ∗ nat(a8, b5)

w1 + w2 + w3

with w1 = 0, w2 = 4, and w3 = 1 and nat(a8, b5) = 1 because a8 ∈ Fa & b5 ∈ Fb

⇒ state comp1
UR,↔(a8, b5) =

0 ∗ 1 + 4 ∗ 1 + 1 ∗ 1

0 + 4 + 1
= 1

And the compatibility degree is calculated as follows:

COMP 1
UR,↔[a8, b5] =

COMP 0
UR,↔[a8, b5] + state comp1

UR,↔(a8, b5)

2
=

1 + 1

2
= 1

The Calculation of COMP1

UR,↔[a8, b0], COMP1

UR,↔[a8, b1], COMP1

UR,↔[a8, b2],

COMP1

UR,↔[a8, b3], and COMP1

UR,↔[a8, b4]

By observing the Figure 18, it can be seen that (a8, b0), (a8, b1), (a8, b2), (a8, b3) ,(a8, b4)

are in dead lock because a8 has no emission messages. Hence their forward and backward

compatibility is equal zero. Furthermore, those states do not the same nature, since one

is final state and the other is neither final or initial state.

⇒ state comp1
UR,↔(a8, b0) =state comp1

UR,↔(a8, b1)

=state comp1
UR,↔(a8, b2)

=state comp1
UR,↔(a8, b3)

=state comp1
UR,↔(a8, b4)

=0

Appendix E - Code Listings 130

⇒ COMP 1
UR,↔[a8, b0] =COMP 1

UR,↔[a8, b1]

=COMP 1
UR,↔[a8, b2]

=COMP 1
UR,↔[a8, b3]

=COMP 1
UR,↔[a8, b4]

=
1 + 0

2
= 0.5

Appendix E - Code Listings

Listing 2: Example of data structures having ordered parameters

/∗∗ F inc t i ona l ISO 15118 data s t r u t u r e

∗/

typedef struct

¶

int param1 ;

f loat param2 ;

char param3 [6 4] ;

♢ i s o 1 5 1 1 8 s t r u t u r e b ;

/∗∗ F inc t i ona l OCPP data s t r u t u r e

∗/

typedef struct

¶

int param1 ;

f loat param2 ;

char param3 [6 4] ;

♢ ocpp s t ru tu r e b ;

i s o 1 5 1 1 8 s t r u t u r e b i so15118 data =¶

. param1 = 0xBEEFCAFE,

. param2 = 3 .14 ,

. param3 = ” h e l l o wolrd ” ♢ ;

Appendix E - Code Listings 131

ocpp s t ru tu r e b ocpp data = ¶0♢ ;

Listing 3: Example of data structures having unordered parameters

typedef base64 char ;

/∗ F i c t i o n a l ISO 15118 data s t r u c t u r e ∗/

typedef struct

¶

byte param1 ;

double param2 ;

base64 param3 [6 4] ;

♢ i s o 1 5 1 1 8 s t r u t u r e b ;

/∗ F i c t i o n a l OCPP data s t r u c t u r e ∗/

typedef struct

¶

u i n t 8 t param3 [6 4] ;

f loat param2 ;

int param1 ;

♢ ocpp s t ru tu r e b ;

void ConvertIso2Ocpp (i s o 1 5 1 1 8 s t r u t u r e b ∗ i so , o cpp s t ru tu r e b ∗

ocpp)

¶

ocpp−>param1 = (int) i so −>param1 ;

ocpp−>param2 = (double) i so −>param2

DecodeBase64 (i so −>param3 , s izeof (i so −>param3) , ocpp−>param3) ;

♢

Listing 4: Format of the json file to describe the STS

¶

”graph name ” : ”NAME OF THE GRAPH” ,

” s t a t e s ” :

[

¶

” state name ” : ”NAME OF STATE” ,

” s t a t e t y p e ” : ”STATE TYPE” ,

Appendix E - Code Listings 132

” t r a n s i t i o n s ” :

[

¶

” t rans i t i on name ” : ”NAME OF THE TRANSITION” ,

” t r a n s i t i o n t y p e ” : ”TRANSITION TYPE” ,

”params ” : [” name : data type ” , ”name : data type

” , ”name : data type ”] ,

” n e x t s t a t e ” : ”NAME OF STATE”

♢ ,

] ,

♢ ,

¶

” state name ” : ”NAME OF STATE” ,

” s t a t e t y p e ” : ”STATE TYPE” ,

” t r a n s i t i o n s ” :

[

¶

” t rans i t i on name ” : ”NAME OF THE TRANSITION” ,

” t r a n s i t i o n t y p e ” : ”TRANSITION TYPE” ,

”params ” : [” name : data type ” , ”name : data type

” , ”name : data type ”] ,

” n e x t s t a t e ” : ”NAME OF STATE”

♢ ,

] ,

♢ ,

]

♢

Typical commands of the Compatibility calculation application

Listing 5: Command to display help menu

python c o m p a t i b i l i t y c a l c u l a t i o n . py −−help

Listing 6: Command to start the protocol compatibility calculation

python c o m p a t i b i l i t y c a l c u l a t i o n . py −−graph i s o 15118 . j son ocpp

. j son −− i t e r a t e 10 −− l o g l e v e l none −−output t e s t . txt

Appendix E - Code Listings 133

Figure 35: Class diagram of the Graph, State, and Transition

Appendix E - Code Listings 134

Figure 36: Flow chart of the Parser of the Compatibility calculation tool

	Declaration
	Abstract
	Table of Contents
	Abbreviations
	List of Tables
	List of Figures
	Listings
	Introduction
	The Challenges of Charging Protocols Integration
	The Objectives of the Thesis
	The Structure of the Thesis

	Background
	State-of-the-Art Compatibility Analysis
	Theory of Compatibility Analysis
	Modeling the Protocol Interaction
	Compatibility Notion
	The Process of Measuring Protocol Compatibility
	Static Compatibility
	Behavioral Compatibility

	ISO 15118
	Characteristics of ISO 15118
	ISO 15118 Message
	ISO 15118 Message Sequences
	SEVENSTAX's ISO 15118 Implementation

	OCPP 2.0.1
	Characteristics of OCPP
	OCPP Messages
	OCPP Use Cases
	SEVENSTAX's OCPP Implementation

	Interaction Between ISO15118 and OCPP 2.0.1
	Communication Setup
	Identification, Authorization, and Authentication
	Target Setting and Charge Scheduling
	Charging Loop with Signed Metering Values
	CSMS Triggers the Charging Profile Renegotiation
	End of Charging Session

	Chapter's Summary

	Protocols Compatibility Analysis
	The Analysis of ISO 15118 and OCPP
	Results And Discussion
	Results
	Discussion

	Chapter's Summary

	Development of a Protocols Bridging Application
	Assumptions and Requirements
	Software Development Environment
	SEVENSTAX's ISO 15118 Stack Operation
	SEVENSTAX's OCPP Stack Operation
	The Bridging Application's Design
	Structure of the Bridging Application
	Interfaces Design and Descriptions
	Sequence for Handling the Requests and the Responses

	Error Handling
	ISO 15118-related Error Handling
	OCPP-related Error Handling

	Discussion
	Chapter's Summary

	Conclusion and Future Work
	Conclusion
	Furture Work

	References
	Appendix A - ISO 15118
	Appendix B - OCPP 2.0.1
	Appendix C - The interactions between ISO 15118 and OCPP 2.0.1
	Appendix D - Compatibility Calculation
	Appendix E - Code Listings

