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Vor Beginn des fachlichen Teils möchte ich mich bei allen bedanken, die zum Gelingen
dieser Arbeit beigetragen haben.
Die vorliegende Arbeit ist unter der finanziellen Unterstützung des Bereichs Optimierung
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wieder neu gesetzten Fokus bei beiden bedanken.
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Zusammenfassung

Die Optimierung unter Unsicherheit ist ein Bereich der Mathematik, der stark von Pro-
blemen der realen Welt inspiriert ist. Für den Umgang mit Unsicherheiten, z.B. bei Pa-
ckungsproblemen, Bestandsmanagement oder der Koordination von Lieferketten, sind
verschiedene Konzepte zur Modellierung von Unsicherheiten entstanden. Um solche Pro-
bleme mit numerischen Methoden zu lösen, müssen wir uns in der Regel zwischen Un-
sicherheitskonzepten mit und ohne Verteilungsinformationen entscheiden. Während Un-
sicherheitskonzepte ohne Verteilungsinformationen sich mehr auf einzelne Szenarien wie
etwa ein worst-case Szenario konzentrieren, erlauben Unsicherheitskonzepte mit Vertei-
lungsinformationen beispielsweise einer Menge an unsicheren Parametern, ihre Wahr-
scheinlichkeiten zuzuweisen.
Modelle, die komplexe Unsicherheiten darstellen, erlauben dem Modellierenden das reale
Problem exakter abzubilden, erschweren aber zugleich die mathematische Handhabung.
In dieser Arbeit konzentrieren wir uns auf die numerische Behandlung von probabilistisch-
robusten (probusten) Optimierungsproblemen. Obwohl einige spezielle Instanzen dieser
Probleme durch Reduktion auf bereits bekannte Optimierungsprobleme gelöst wurden,
haben wir keine Lösungsverfahren gefunden, die direkt auf probuste Optimierungspro-
bleme anwendbar sind. Die vorliegende Arbeit soll diese Lücke füllen.
Wir beginnen mit einer Verallgemeinerung des bisher bekannten Konzepts der probusten
Optimierungsprobleme, um uns die Freiheit in der Modellierung zu geben, die wir für
unsere Anwendungen brauchen werden. Falls geeignete Transformationen gegeben sind,
können wir zeigen, dass diese verallgemeinerten probusten Optimierungsprobleme auf die
gleiche Weise behandelt werden können wie die bereits bekannte Standard-Problemklasse.
Danach konzentrieren wir uns darauf, die Standard-Problemklasse mit Methoden zu lösen,
die von Konzepten aus der semi-infiniten Optimierung inspiriert sind.
Zum einen bestimmen wir untere Schranken für den Optimalwert mit Hilfe einer Folge von
wahrscheinlichkeitsbedingten Optimierungsproblemen. Wir konstruieren diese Probleme
über Diskretisierungsschemata, die eine spezielle Bedingung erfüllen, was zur Konvergenz
der dazugehörigen Schranken gegen den Optimalwert des probusten Optimierungspro-
blems führt. Wir zeigen u.a., dass eine feiner werdende, gleichmäßige Diskretisierung und
eine angepasste Variante der Diskretisierung von Blankenship und Falk diese Bedingung
erfüllen.
Zum anderen berechnen wir obere Schranken für den Optimalwert, indem wir einer Folge
von Mengenapproximationsproblemen lösen. Hier ersetzen wir die Menge der zu einer
Entscheidung gehörenden zulässigen Realisierungen durch eine spezielle Menge aus einer
parametrisierten Mengenfamilie. Wir geben eine hinreichende Bedingung an, die garan-
tiert, dass diese Folge von oberen Schranken gegen eine Lösung des standard probusten
Optimierungsproblems konvergiert. Zusätzlich geben wir an, wie die parametrisierte Men-
genfamilie unter Berücksichtigung bestimmter Strukturen in der Definition des standard
probusten Optimierungsproblems gewählt werden kann.
Schließlich führen wir die Verfahren zur Berechnung der oberen und unteren Schranken
zu Sandwiching-Algorithmen zusammen.
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Um die verschiedenen Lösungsverfahren genauer zu verstehen, betrachten wir geometri-
sche Packungsprobleme, die analytisch gelöst und deren Lösung visuell interpretiert wer-
den können. Wir definieren Diskretisierungsschemata, die die Struktur der Mengen der
zulässigen Realisierungen dieser Probleme nutzen. Dabei verstehen wir, dass modifizierte
Diskretisierungsverfahren und eine schnelle Wahrscheinlichkeitsauswertung entscheidend
dafür sind, probuste Optimierungsprobleme effizient zu lösen.
Mit diesem Verständnis lösen wir eine probuste Formulierung eines speziellen Bestands-
managementproblems - ein Wasserreservoirproblem. Da für diese Probleme weder die
Struktur der Menge der zulässigen Realisierungen, noch eine effiziente Diskretisierungs-
methode bekannt ist, müssen wir diese Informationen aus der Probleminstanz gewinnen.
Deswegen definieren wir eine Diskretisierungsmethode, die die Menge der Unsicherheiten
nach

”
wichtigen“ Diskretisierungspunkten absucht. Mit dieser Methode sind wir in der

Lage, das probuste Wasserreservoirproblem in (annährend) zu lösen und diese Lösung
mit den Lösungen anderer Unsicherheitsmodelle zu vergleichen.
Letztlich behandeln wir eine Anwendung, bei der wir qualitativ hochwertige Produkte
garantieren möchten, obwohl sowohl die Qualität der gelieferten Waren, als auch der
Produktionsprozess unsicher sind.
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Abstract

Optimization under uncertainty is one field of mathematics that is strongly inspired by
real world problems. To handle uncertainties, e.g., in packing problems, inventory man-
agement or supply chains coordination several concepts of how to model uncertainty have
arisen. To solve such problems by numeric methods, we typically have to decide between
uncertainty concepts with or without distributional information. While uncertainty con-
cepts without distribution information focus more on single scenarios such as a worst-case
scenario, uncertainty concepts with distribution information allow, for example, to assign
a probability to a set of uncertain parameters.
As models of complex uncertainty allow the modeler to describe the problem in more
details, the mathematical handling of these models gets harder.
In this thesis, we concentrate on the numerical treatment of probabilistic-robust (pro-
bust) optimization problems. Although some special instances of these problems have
been dealt with by reducing them to already known optimization problems, we are not
aware of any results in the literature concerning solving techniques applicable to the class
of probust optimization problems themselves. This thesis aims at filling this gap.
We start by generalizing the concept of probust optimization problems known so far to
be able to model our applications. Given appropriate transformations, we can show that
generalized probust optimization problems can be handled the same way as the already
known standard problem class.
Then we focus on solving these standard probust optimization problems using methods
that are inspired by concepts from semi-infinite optimization.
On the one hand, we calculate lower bounds of the optimal value by a sequence of
joint chance constrained optimization problems. We coonstruct these problems by dis-
cretization schemes satisfying a special condition which leads to the convergence of the
corresponding lower bounds to the solution of the standard probust optimization prob-
lem. Furthermore, we show that, e.g., a uniform discretization approach and an adapted
variant of the Blankenship and Falk discretization fulfill this condition.
On the other hand, we create upper bounds of the optimal value using a sequence of
set-approximation problems. Here we substitute the set of feasible realizations that is
connected to a fixed decision by a special set out of a given family of parametrized sets.
We provide sufficient conditions to guarantee that the sequence of upper bounds converges
towards the optimal value of the standard probust optimization problem. Additionally,
we comment on how to select the family of parametrized sets based on structures within
these optimization problems.
In the end, we combine the introduced upper and lower bounds to define sandwiching
algorithms.
To understand the different solving methods in more detail, we consider geometric pack-
ing problems which can be solved analytically and can be interpreted visually. We define
discretization schemes that use the structure of sets of feasible realizations to solve these
problems. Hereby, we understand that modified discretization methods and a fast prob-
ability evaluation are critical to solve probust optimization problems efficiently.
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With this understanding, we solve a probust formulation of a specific inventory manage-
ment problem - a water reservoir problem. As we do not recognize a special structure in
the set of feasible realizations of these problems, nor an efficient discretization method,
we have to derive these pieces of information from the problem instance. Therefore, we
define a discretization method that scans the uncertainty set for “important” discretiza-
tion points. With this method we are able to solve the probust water reservoir problem
(approximately) and compare its solution with the solutions of other uncertainty models.
Ultimately, we consider an application where we want to guarantee high quality products
despite the quality of delivered goods and the production process itself is uncertain.
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Introduction

When real world problems are to be solved with the help of mathematical approaches, the
actual work process does not begin with computing a solution of a given mathematical
problem, but already one step before in the modeling. Considering a specific model, two
questions quickly arise:

• Is the model realistic enough?

• Is the model (efficiently) solvable?

The first question aims for a model which is as detailed as possible. In contrast, the
second question requires a manageable and thus, in a certain sense, simple model. Often
these requirements are conflicting and force the modeler to make a trade-off.
One way to make this trade-off accessible is working with model parameters. Usually
there are parameters that have to be set to specify the model but their value is not
known to the modeler. If we use fixed values in the model, the corresponding model
might lead to unrealistic results. If we allow the parameters to be fixed later, we have to
handle so called parametrized models.
Such a parametrized model of a non-linear optimization problem can be denoted as

NLPu : min
x∈X

f(x, u) s.t. g(x, u) ≤ 0.

The objective function and the constraint depend on the parameter u. Thus, a decision x
that leads to a low objective value for a specific parameter might lead to a high objective
value or violate the constraint for another parameter assignment.
If we have to decide before we know how the parameter u ∈ U is realized, u is called
uncertain parameter. Our aim is to fix some decision x∗ ∈ X independent from the
uncertain parameter, but in a way that it handles the possible parameter assignments
“robustly”. This means that the decision fulfills the constraint while ensuring a low ob-
jective value for a lot of parameter values.
Many different concepts on how to deal with uncertain parameters have been introduced
in the literature.
The approaches differ on the level of information that is available for the uncertain pa-
rameters. One typically distinguishes between uncertain parameters without and with
distributional information. While the first type of parameters just gives us the set of
possible parameter values, the second type does also tell us how probable it is that a
certain parameter attains a specific value.
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Introduction

Consequently, considering the first type of parameters we have to define robustness con-
cepts based on the possible values of the uncertain parameter.
Some popular uncertainty approaches are:

• The worst-case approach, where we consider the parameter assignment which makes
it as hard as possible for the current decision to fulfill the constraint or which has an
objective value that is as high as possible. This concept was introduced by Soyster
in [76] and is handled extensively in works of Ben-Tal et al. (see [11, 12]).

• The minimum-regret approach, where we minimize the maximal possible difference
between the objective value and the objective value that we could have reached,
if we would have known the uncertain parameter beforehand. This approach was
introduced by Savage in [69] and is analyzed in optimization problems, e.g., by
Inuiguchi et al. in [48].

• The adjustable-robust approach, where we can separate the decision into two parts.
The first part has to be fixed before the uncertainty is known and is called here-and-
now decision. The second part can be referred to as wait-and-see decision and can
be fixed after the uncertain parameter is revealed. This approach was introduced
by Ben-Tal et al. in [13]. Current results are presented in the survey of Yanikoglu
et al. in [88].

More such concepts can be found, for example in [34].
Using the second type of uncertain parameters with distributional information, we can
weight single outcomes of the uncertain parameter by the additional information. Some
popular approaches are:

• Chance constrained optimization, where we fulfill conditions influenced by a random
parameter within a given percentage of cases. This approach was introduced by
Charnes et al. in [23] and the most important results can be found in works of
Prékopa [61] (Chapter 8, 10, 11) and of Shapiro et al. [75] (Chapter 1, 4).

• Risk concepts, where we consider the deviation of the uncertain parameters from
the expected realization and weight them based on the given distributional infor-
mation. One of the earliest papers about risk measures is Rothschild et al. [67],
more properties of risk measures can be found in Shapiro et al. [75] (Chapter 6).

• Stochastic optimization with recourse which can be interpreted as the stochastic
version of an adaptive-robust approach, where the distributional information is
used to evaluate the objective function. This approach was introduced by Dantzig
[24] and Beale [9]. Main results for this approach can be found in Prékopa [61]
(Chapter 9, 12 and 13) and in Shapiro et al. [75] (Chapter 1, 2 and 3).

In this thesis, we consider an uncertainty approach in which we have distributional in-
formation on part of the uncertain parameter, but not about all of it.
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This implies that we can divide the uncertain parameter into the two parts

u = (ξ, t) and

U = Ξ× T.

We assume that we have distributional information on ξ ∈ Ξ, the so called realizations,
while we do not have such information for t ∈ T , the so called scenarios.
If in each constraint and the objective function, either realizations ξ or scenarios t do
occur, we can use the already introduced approaches for uncertain parameters with or
without distributional information individually. However, if both types of uncertain pa-
rameters appear in an expression at the same time, then this is no longer possible. Fur-
thermore, it may happen that this combination of uncertain parameters implies new
problem structures. In this thesis, we handle the scenarios t ∈ T by a worst-case ap-
proach and the realizations ξ ∈ Ξ by a chance constrained approach which leads to two
possible models. To be able to distinguish these models, it is useful to introduce the set
of feasible realizations

Ω(x, t) = {ξ ∈ Ξ | g(x, ξ, t) ≤ 0}.
This set represents all realizations that fulfill the uncertain constraint for a decision x ∈ X
and a scenario t ∈ T .
We can then either focus on the worst-case probability over these single sets resulting in
the robust-probabilitstic (robubilistic) model

RP : min
x∈X

f(x) s.t. P(g(x, ξ, t) ≤ 0) ≥ p ∀t ∈ T,

or we consider the probability of the intersection of all these sets representable by the
probabilistic-robust (probust) model

SPP : min
x∈X

f(x) s.t. P(g(x, ξ, t) ≤ 0 ∀t ∈ T ) ≥ p.

Because the intersection of all sets is in general smaller than each single set, the probust
model is more restrictive than the robubilistic one.
Although both problems RP and SPP might resemble distributionally robust optimiza-
tion problems that deal with parameter-depending probability distributions (see e.g., [62,
70]), they are not such. In contrast, probust and robubilistic models handle parameter-
dependent events which are evaluated by a constant probability measure.
As probust optimization problems are our main point of mathematical interest, we briefly
comment on how they are used in literature until now.
So far probust optimization problems are considered in papers by Grandón et al. [37] and
Adelhütte et al. [5] to model problems connected to gas networks. The solving procedures
in these papers are based on reducing the probust optimization problem to a chance con-
strained optimization problem. This is achieved by finding an analytical expression of the
worst-case scenario for all possible decisions and realizations of the uncertain parameter
with distributional information.
Adelhütte et al. have mentioned in [5] while analyzing gas networks with circles that
such a representation can be hard to find and is not given in general.
To the best of our knowledge there are no algorithms available to solve probust opti-
mization problems if no analytic description of the worst-case scenarios is known. In this
thesis, we aim for introducing such algorithms.
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Introduction

Scope of this work

The problem description of probust optimization problems requires that a constraint is
fulfilled for all scenarios t ∈ T . This reminds us of semi-infinite optimization problems

SIP : min
x∈X

f(x) s.t. g(x, t) ≤ 0 ∀t ∈ T

which also deal with this structure.
There are several methods to solve semi-infinite optimization problems (see [63, 80] or
Chapter 5 of [78]). Since numerical solution approaches often work on some discretized
basis, it seems convenient to investigate discretization schemes from semi-infinite opti-
mization and adapt them to the probust context. One difficulty in this adaption is that,
in general, we cannot find one single scenario that represents the worst-case for a fixed
decision as in the semi-infinite case.
In the probust context, we have to handle a semi-infinite constraint for each realization
which leads to a family of scenarios (t(x, ξ))ξ∈Ξ that represent the worst-case given a
decision x ∈ X and the realization ξ ∈ Ξ via

max
t∈T

g(x, ξ, t) = g(x, ξ, t(x, ξ)).

As we are mainly interested in continuous distributions later on, this requires to calculate
an infinite number of worst-case scenarios for a fixed decision x.
Although we cannot neglect realizations in general, we can ask if we need the whole
uncertainty set of scenarios or just a (finite) subset S ⊆ T .
This question leads to the definition of the candidate-condition

∀ϵ > 0, t ∈ T : P(g(x, ξ, s) ≤ 0 ∀s ∈ S)− P(g(x, ξ, s) ≤ 0 ∀s ∈ S ∪ {t}) < ϵ

which checks whether the addition of a scenario to the considered subset affects the overall
probability or not. If not, the given subset is a suitable substitute for the whole set of
scenarios. Working with a sequence of discretizations (Tk)k∈N that induces a sequence of
joint chance constrained subproblems

SPPTk
: min
x∈X

f(x) s.t. P(g(x, ξ, t) ≤ 0 ∀t ∈ Tk) ≥ p,

we can check if the corresponding solutions converge towards a solution of the original
probust optimization problem.
In this work, we show that some discretization schemes from semi-infinite optimization
also converge in the probust setting, e.g., uniform discretization schemes or modified ver-
sions of the adaptive discretization approach from Blankenship and Falk introduced in
[17].
Because the constraints indexed by t ∈ T\Tk are not considered in these subproblems,
the iterates are in general infeasible w.r.t. the original probust optimization problem.
As we do not know to which degree our current iterate is infeasible, we have to formulate
an appropriate stopping criterion for iterative discretization schemes.
To be able to find such a stopping criterion, we reconsider the probust optimization prob-
lem to develop a second solution approach to generate feasible iterates.
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So far, we interpreted probust optimization problems as semi-infinite optimization prob-
lems depending on some random value ξ ∈ Ξ. This interpretation focuses on the scenarios,
while the realization just appears as an index.
Readjusting our perspective, we focus on the parameter combination u = (ξ, t). Because
the probust constraint can also be noted as a set-wise condition, we are interested in how
to select an appropriate subset of U that fulfills this condition. While the worst-case
approach causes to respect all scenarios, we are allowed to ignore some realizations in the
set of realizations.
As the search space of subsets is quite big, we reduce this search space to a set ∆ ⊆ Rd

by parametrizing “interesting” subsets D ⊆ Ξ by design variables δ ∈ ∆ to formulate the
inner set-approximation problem for probust optimization problems

ISAD : min
x∈X,δ∈∆

f(x) s.t. P(D(x, δ)) ≥ p,

g(x, ξ, t) ≤ 0 ∀ξ ∈ D(x, δ), t ∈ T.

This problem can be interpreted as a (generalized) semi-infinite optimization problem
with an additional probability evaluation constraint.
As we reduced the search space from the (measurable) subsets of Ξ to the set ∆, a solution
of the inner set-approximation problem is feasible w.r.t. the original probust optimization
problem.
First, we comment on how to define “interesting” subsets depending on the structure
of the constraint g. Then, we give a sufficient condition such that an iterative set-
approximation scheme converges to the optimal solution of the corresponding probust
optimization problem.
With these set-approximation schemes, we can calculate feasible iterates and upper
bounds for the optimal objective value of a probust optimization problem. Together
with the lower bounds defined by a discretization scheme, we define a sandwiching pro-
cedure with a well-defined stopping criterion.
We can even use the information calculated from discretization schemes to define special-
ized set-approximations such as

D ≡
⋂

t∈Tk

{ξ ∈ Ξ | g(xk, ξ, t) ≤ 0},

where (xk, Tk) denotes the output of the k-th iteration of the discretization method.
Although we do not give a convergence guarantee for this special definition of D, it
performs well in most of our applications. This is because the corresponding inner set-
approximation is a standard semi-infinite optimization problem which can be solved effi-
ciently, e.g., by the adaptive discretization approach by Blankenship and Falk.

To test and compare the introduced numerical schemes for solving probust optimization
problems, we consider probust optimization problems that we can also solve analytically.
Motivated by design-centering problems (see ,e.g., [39]) and their interpretation as semi-
infinite optimization problems, we slightly modify the problem definition to generate
probust optimization problems by assuming that the designs or container are influenced
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Introduction

by a random disturbance. As these problems can be solved analytically and can be
represented geometrically, we can compare and visualize the numerical results of our
probust solution schemes.
With this experience we solve probust optimization problems which are strongly inspired
by applications of water reservoir management and chemical process engineering.

Structure of this thesis

This thesis is structured as follows. It consist of two parts, where the first part consisting
of Chapter 1 to 4 concentrates on introducing algorithms to solve probust optimization
problems. The second part including Chapter 5 to 7 highlights the numerical behavior
of the introduced solution schemes and show how we can make the theoretical results
usable for realistic applications.

In Chapter 1, we introduce a generalized version of probust optimization problems as
they are known in literature. We present basic problem classes like chance constrained
optimization problems and semi-infinite optimization problems in Section 1.1. After sur-
veying how we can generalize these concepts using decision-dependent uncertainties in
Section 1.2, we introduce generalized probust optimization problems in Section 1.3.

Chapter 2, then, introduces the first numerical solution method for probust optimiza-
tion problems in form of probust subset schemes. To understand which discretization
points are important, we focus on simpler problems in Section 2.1. After that, we define
the probust discretization algorithm in Section 2.2 and give sufficient conditions for its
convergence. We, then, apply the convergence theorem for some example discretization
schemes that are inspired by schemes from semi-infinite optimization in Section 2.3.

The main idea of Chapter 3 is to generate feasible iterates by utilizing set-approximation
schemes. We start with approximating the probability of some (measurable) set by shrink-
ing down the search space from the corresponding σ-algebra to a family of reference sets
in Section 3.1.
We use these insights to approximate solutions of chance constrained optimization prob-
lems by solutions of inner set-approximation problems in Section 3.2. After defining an
iterative inner set-approximation approach in Section 3.3, we discuss an example of how
to use it with a probust optimization problem in Section 3.4.

To combine the introduced solution schemes in Chapter 4, we discuss how we can use in-
formation from probust subset schemes in set-approximation schemes and vice versa. We
consider some examples that illustrate how probust subset schemes and set-approximation
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schemes have some kind of antagonistic convergence assumptions. Therefore, we cannot
expect convergence of the resulting sandwiching schemes in general. Nevertheless, we
find an interesting sandwiching scheme that we use to create bounds for the objective
values in the application part.

To be able to discuss the performance of different probust solution schemes, we intro-
duce a class of analytically and visually controllable problems in Chapter 5. Since
these problems are described by several inequality constraints, we introduce solution ap-
proaches which are able to handle these constraints separately.

Motivated by the results of Chapter 5, we define a specialized probust solution scheme
to solve water reservoir problems in Chapter 6. It combines an adaptive discretization
approach with an uniform discretization. We then compare the results of the probust
model with solutions of a robubilistic and an expected value model.

In Chapter 7 we consider a flash distillation problem from chemical process engineer-
ing. The corresponding model states equality constraints which have to be handled in the
probust setting. We develop a solution approach based on the implicit function theorem
and numerical tests to solve this problem instance. Afterwards we discuss the results of
the probust formulation for different parameters of the underlying uncertainty sets.

We end this thesis with a summary and a suggestion of future work.
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Part I

Theory
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1 Probust optimization

In this chapter, we introduce the basics of probust optimization. Our goal is to introduce
basic concepts for the analyses following up in the first part of this thesis and to create
a modelling framework that allows us to handle the applications in Part II.
We start with standard probust optimization problems in Section 1.1, where we refer
to closely related problem classes as well as to corresponding analytical statements and
numerical tools. These problem classes will reappear later in Chapter 2 and Chapter 3,
where we consider iterative solution approaches to handle probust optimization problems.
After defining the standard probust optimization problem and surveying theoretical re-
sults that are known in literature so far, we give an example of how to solve such a
standard probust optimization problem analytically. We also visualize single steps of the
solving procedure that will be referred to later in Part II of this thesis.
As the applications in Part II cannot be modelled by standard probust optimization
problems directly, we recall decision-dependent uncertainty concepts in Section 1.2 and
use them to introduce generalized probust optimization problems in Section 1.3. These
extended problem class gives us the freedom to model all applications considered in the
second part of this thesis.
Although the modelling perspective needs an extended concept of probust optimization
to formalize the problems in Chapter 5, the problem structure of these problems stays the
same if we can find appropriate transformations of the uncertainty set. This reduction of
generalized probust optimization problems to standard probust optimization problems is
the main result of this chapter regarding the analytical perspective.

1.1 Standard probust optimization problems

To achieve a better understanding of the solution existence results which are presented
in literature for standard probust optimization problems and to prepare the theoretical
background for analyses in Chapter 2 and Chapter 3, we introduce concepts from semi-
infinite and chance constrained optimization. These problem classes are connected quite
naturally with the probust setting by fixing either a realization ξ ∈ Ξ to get semi-infinite
optimization problem or by fixing a scenario t ∈ T to get a chance constrained optimiza-
tion problem.
One of the first steps to handle an optimization problem is to talk about a well-defined
solution of the problem. Therefore, we start with such results from semi-infinite opti-
mization.
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1 Probust optimization

Semi-infinite optimization

(Standard) semi-infinite optimization problems have the form

SIP : min
x∈X

f(x) s.t. g(x, t) ≤ 0 ∀t ∈ T,

where X ⊆ Rn is some set, T ⊆ Rq, q ∈ N is the set of scenarios of infinite cardinality
and f : X → R, g : X × T → R are functions. Because the decision variable is finite
dimensional while we handle infinite many constraints this leads to the name semi-infinite.
If we compare SIP to the worst-case approach introduced by Ben-Tal in [12], we use
basic analysis to see that semi-infinite optimization problems can be rewritten as robust
optimization problems with an infinite number of scenarios t ∈ T .
The existence of a solution of a SIP can be shown by

Lemma 1.1.1 (Continuous constraint in SIP, Lem. 16.29 in [6]))
Let X,T ̸= ∅ be two topological spaces, g : X×T → R be a lower semi-continuous function
w.r.t. (x, t) ∈ X × T . Then φ : X → R, x 7→ supt∈T g(x, t) is lower semi-continuous.

We can use this lemma with a compact set X and a lower semi-continuous function
f : X → R to guarantee that the induced SIP has a well-defined solution f∗ ∈ R and a
well-defined minimizer x∗ ∈ X if the corresponding feasible set is not empty.
We can also talk about convexity and therefore about an unique solution of a SIP using
the following theorem from Still:

Theorem 1.1.2 (Convex feasible set of SIP, Thm. 4a in [82])
Given a SIP with convex objective function f : X → R and convex g(·, t) : X → R for all
t ∈ R. Then the feasible set of SIP is convex.

If we additionally know that f is strictly convex and the assumptions from the last
theorem are satisfied, then we know that SIP has an unique minimizer.
Next to this analytical properties of SIPs, we are also interested in how we can solve SIPs
numerically. In this context the following subproblem - called lower-level problem - is
frequently used and defined by fixing some decision x ∈ Rn

Q(x) : max
t∈T

g(x, t). (1.1)

Numerical solution approaches for SIPs can be categorized according to the surveys from
Reemtsen et al. [63] and Stein [80] as follows:

1. Discretization methods that reduce the set T to a finite subset. Useful discretization
strategies can be found, e.g., in papers by Blankenship and Falk [17], Reemtsen [64]
and Seidel [73].

2. Reformulation of the lower-level problem using Karush-Kuhn-Tacker-conditions. As
these reformulations imply so called complementarity constraints, they are numer-
ically challenging and therefore often smoothed, see e.g., Stein’s book [78].
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1.1 Standard probust optimization problems

3. Local reduction methods utilizing stronger assumptions to be able to reduce the
semi-infinite optimization problem locally to a (finite) nonlinear optimization prob-
lem. The corresponding theory can be found, e.g., in Klatte’s paper [50].

As probust optimization is a quite young research field, we will work in this thesis with
discretization methods. Not only do they allow us to handle problems with just a few
assumptions which is analytically attractive, but they also define a mapping from the
set T with infinite cardinality to a discrete subset S ⊆ T which we need for numerical
evaluations.
Furthermore, if we have additional structure given as in Seidel’s paper [73], there exist
promising discretization schemes with fast convergence rates.
One popular discretization scheme to solve semi-infinite optimization problems that will
inspire us in Section 2.3 is the adaptive approach from Blankenship and Falk that is
introduced in [17]. It can be formulated as:

Algorithm 1 Adaptive discretization algorithm from Blankenship and Falk [17]

1: Inputs:
Semi-infinite problem instance SIP, starting decision x0 ∈ X, starting
discretization T0 ⊆ T

2: Initialize:
k := 0

3: do
4: xk+1 ← argminx∈X f(x) s.t. g(x, t) ≤ 0 ∀t ∈ Tk

5: t∗k ← argmaxt∈T g(xk+1, t)
6: Tk+1 ← Tk ∪ {t∗k}
7: k ← k + 1
8: while g(xk, t

∗
k) > 0

9: Results:
Sequence (xk, Tk)k∈N

This algorithm guarantees that all accumulation points of (xk)k∈N are minimizers of
the original SIP if f, g are continuous and X,T are compact (see Theorem 2.1 in [17]).
Considering Lemma 1.1.1 these are mild assumptions.
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1 Probust optimization

(Joint) chance constrained optimization

Chance constrained optimization problems have the form

CC : min
x∈X

f(x) s.t. P(g(x, ξ) ≤ 0) ≥ p,

where X ⊆ Rn is some set, (Ξ,A,P) is a measurable space, p ∈ [0, 1] is a probability
threshold, f : X → R is a continuous function and g : X × Ξ → R is measurable w.r.t.
ξ ∈ Ξ for each fixed x ∈ X as well as continuous w.r.t. x ∈ X for P almost surely all ξ ∈ Ξ.
Such a function g is also called Caratheodory function (see e.g., [51]). In comparison to
the semi-infinite optimization problem, we do not have to consider all elements ξ ∈ Ξ,
but we can limit ourselves to a set that covers the probability a given percentage p of the
whole set. If the function g is given by a maximum of (finitely) many functions (gi)i∈I ,
we call the corresponding problem a joint chance constrained optimization problem that
can be noted as

JCC : min
x∈X

f(x) s.t. P(gi(x, ξ) ≤ 0 ∀i ∈ I) ≥ p.

The existence of a solution of a CC is based on statements of Raik that are written in
Russian and ,e.g., referenced by Prékopa as

Theorem 1.1.3 (Continuous constraint in JCC, Thm. 10.1.1 in [61])
Given a JCC assume that the functions gi : X × Ξ → R are point-wise defined for
(x, ξ) ∈ X × Ξ and lower semi-continuous w.r.t. x ∈ X for all i ∈ I, ξ ∈ Ξ. Then the
function φ : X → [0, 1], x 7→ P(gi(x, ξ) ≤ 0 ∀i ∈ I) is upper semi-continuous.
If additionally the condition P(gi(x, ξ) = 0 ∀i ∈ I) = 0 holds for all x ∈ X and gi(·, ξ) is
continuous w.r.t. x ∈ X for arbitrary fixed ξ ∈ Ξ, i ∈ I, then φ is continuous as well.

Consequently, we can use these assumptions together with a compact set X and a lower
semi-continuous objective function f : X → R to conclude the existence of a well-defined
minimizer of JCC if the corresponding feasible set is not empty.
Before we can discuss the uniqueness of a solution of a JCC, we need a concavity concept
for probability measures. One such concept can be found, e.g., in the book of Shapiro et
al. [75]:

Definition 1.1.4 (α-concave probability distributions)
Let (Ξ,B,P) be a probability space, where B is the Borel-σ-algebra of Ξ. We call P an
α-concave probability distribution, if for all A1, A2 ∈ B, λ ∈ [0, 1] we can guarantee

P(A(λ)) ≥ mα(P(A1),P(A2), λ),

where A(λ) = λA1 + (1− λ)A2 and for fixed α ∈ R

mα : R≥0 × R≥0 × [0, 1]→ R,

mα(a, b, λ) =







aλb1−λ if α = 0,

max{a, b} if α =∞,

min{a, b} if α = −∞,

(λaα + (1− λ)bα)
1
α , otherwise.
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1.1 Standard probust optimization problems

With this concept, we can give a sufficient condition on the convexity of the feasible set
of a JCC:

Corollary 1.1.5 (Convex feasible set of JCC, Cor. 4.41 in [75])
Let X ⊆ Rn be some convex set, (Ξ,A,P) be a probability space, I some finite index set,
gi : X×Ξ→ R be Caratheodory functions that are quasi-convex w.r.t. (x, ξ) ∈ X×Ξ for all
i ∈ I and p ∈ [0, 1]. Let P be an α-concave probability measure for some α ∈ R and define
φ : X → R, x 7→ P(gi(x, ξ) ≤ 0 ∀i ∈ I). Then the set {x ∈ X | P(gi(x, ξ) ≤ 0 ∀i ∈ I) ≥ p}
is convex and closed.

Example 4.9 in the book of Shapiro et al. [75] ensures that the probability measure
induced by a multivariate normal distributed random variable is 0-concave. This example
is important as we consider exactly this probability measure in Part II of this thesis.
After introducing the basic results for solution existence and uniqueness of JCCs, we
present numerical solution approaches to calculate these solutions. Such approaches for
JCCs can be categorized into:

1. Scenario approaches which use a finite number of realizations and considers a ro-
bust optimization problem defined on this finite sample. Because these samples do
not necessarily represent the whole set of possible realizations Ξ and we are analyz-
ing a robust optimization problem, it is not intuitively clear how solutions of this
approach behave. Results can be found, e.g., in papers by Calafiore et al. [21] and
Luedtke et al. [56].

2. Expected value methods for which we rewrite P(g(x, ξ) ≤ 0) = E(χg(x,ξ)≤0) and
then use methods for evaluating an expected value like a sample average approach.
Such approaches can be found, e.g., in a paper of Pagnoncelli et al. [59].
As the indicator function χA of an arbitrary set A is discontinuous in general, the
expected value operator might be hard to analyse. By smoothing it, we get more
structure to use in analyses. Papers by Hu et al. [47], Shan et al. [74] and Geletu
et al. [31] deal with that topic.

3. Set-approximation methods, where the set of feasible realizations corresponding to
a fixed decision x is approximated. Using this set of feasible realizations we can
state a robust optimization problem.
Considering linear inequality constraints to describe the set of feasible realizations,
Yuan et al. study in [89] sets like hyper-boxes and ellipses for their robust approach.
Moreover, Margellos et al. [57] use hyper-boxes to approximate the set of feasible
realizations, where the hyper-box is defined adaptively by an associated subproblem.

We will combine set-approximation methods with concepts from semi-infinite analysis to
define inner approximations of probust optimization problems in Chapter 3.
As we will focus on probability measures that have a continuous Lebesgue-density and
especially on multivariate Gaussian distributions in Part II of this thesis, we use the so
called spheric-radial decomposition (SRD) described, e.g., in Section 2 of Déak’s paper
[25] or in Chapter 4 by the book of Genz and Bretz [32].
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1 Probust optimization

The main idea of the spheric-radial decomposition is to sample from the unit-sphere
Sm−1 instead of sampling from Rm using the radial symmetry of the random vector Z.
Therefore, we decompose it into a radial part r ≥ 0 and a direction v ∈ Sm−1. Denoting
L as the Cholesky-decomposition of the covariance matrix Σ, we can reformulate the
probability induced by the Gaussian distributed random variable Z ∼ N (µ,Σ) of some
measurable set Ω as

P(Ω) =

∫

v∈Sm−1

µχ({r ≥ 0 | µ+ rLv ∈ Ω})dµζ(v),

where µχ is the measure of the χ-distribution with m − 1 degrees of freedom and µζ is
the uniform distribution over Sm−1.
E.g., this method is used in a paper of Gotzes et al. [36], where the numerical experience
in Section 7 shows that the SRD yields a faster stabilization of results than generic Monte-
Carlo samples.
Additionally to this numerical experience, the integral representation by SRD allows us
to calculate gradients of the probability evaluation as shown in the articles by van Ackooij
et al. [1, 2] for (joint) chance constraints.
The most interesting result of these papers is the representation of the gradient of the
probability evaluation. As this result needs a lot of technical definitions, we just present
the main idea. In chance constrained optimization, we are interested in the set of feasible
realizations corresponding to some decision x ∈ X given by

Ω(x) = {ξ ∈ Ξ | gi(x, ξ) ≤ 0 ∀i ∈ I}.

Under the assumptions of Theorem 4.1 in [2] we can switch the gradient and the integral
operator to get

∇φ(x) = ∇P(Ω(x))

=

∫

v∈Sm−1

∇xµχ({r ≥ 0 | µ+ rLv ∈ Ω(x)})dµζ(v).

As Ω(x) can be described by functions gi(x, ·), i ∈ I, we can describe the change of the
probability function φ by the change of the probability density and the change of the set
of feasible realizations (see also Theorem 2.1 in [83]). The probability density is constant
w.r.t. x ∈ X, but the change of the set of feasible realizations can be described by the
movement of its boundary ∂Ω(x) which is - given continuous constraints - a subset of

{ξ ∈ Ξ | max
i∈I

gi(x, ξ) = 0}.

If we interpret the realizations ξ ∈ Ξ as additional constraint indices, we can interpret
∂Ω(x) as a subset of the active indices here. Because the set of active indices is described
by an equality constraint, we remember the implicit function theorem to understand the
gradient representation in Theorem 4.1 by the paper of van Ackooij et al. [2]

∇φ(x) =
∫

v∈Sm−1

−
∇xgi(v)(x, µ+ r(x, v)Lv)

⟨∇zgi(v)(x, µ+ r(x, v)Lv), Lv⟩χ(r(x, v))dµζ(v), (1.2)
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1.1 Standard probust optimization problems

where µζ is the uniform distribution over the unit sphere Sm−1, χ is the probability
density function of a one-dimensional chi-distribution with m − 1 degrees of freedom,
r(x, v) ≥ 0 is the length of the ray starting at µ in direction v ∈ Sm−1 intersected with
Ω(x), L is the Cholesky-decomposition of the covariance matrix Σ and i(v) is the active
index of maxi∈I gi(x, µ+ r(x, v)Lv).
We will approximate these gradients using a sample average approach

∇φ(x) ≈ − 1

N

N∑

k=1

∇xgi(vk)(x, µ+ r(x, vk)Lvk)

⟨∇zgi(vk)(x, µ+ r(x, vk)Lvk), Lvk⟩
χ(r(x, vk)), (1.3)

in Part II of this thesis to solve probust optimization problems numerically, where the
vectors vk ∈ Rm with k = 1, ..., N,N ∈ N is some sample of the unit sphere Sm−1.

Standard probust optimization

After having described basic properties of semi-infinite and chance constrained optimiza-
tion problems which can be interpreted as probust optimization problems with fixed
realization ξ ∈ Ξ or fixed scenario t ∈ T respectively, we are ready to consider the cur-
rent results referring to (standard) probust optimization problems. We remember the
definition of a (standard) probust optimization problem

SPP : min
x∈X

f(x) s.t. P(g(x, ξ, t) ≤ 0 ∀t ∈ T ) ≥ p.

In the remainder of this thesis, we will call g the inner function of a probust optimization
problem and φ : X → [0, 1], x 7→ P(g(x, ξ, t) ≤ 0 ∀t ∈ T ) the outer function of a probust
optimization problem.
Because the probust optimization as a research field is quite new and no survey regarding
this topic has been published so far, we give a rough overview of the existing literature:
The idea to consider semi-infinite optimization problems with additional stochastic un-
certainties was stated the first time in [54]. In this article a smoothing algorithm from
semi-infinite optimization was applied to a kind of probust optimization problem. It has
been shown that the corresponding iterative algorithm converges to a solution of the
original problem without given numerical example.
Independent of that paper, in 2017 Grandón et al. [37] handled the problem of how to
minimize costs of a gas manufacturer such that the gas pipe network delivers enough
gas to all costumers where their demand and the state of the gas pipes are treated as
uncertain parameters. While the basic model in this paper is a probust optimization
problem, it can be reduced to a joint chance constrained problem by assuming that the
graph structure is a tree (see Corollary 1 in [36]).
In 2018 Farshbaf-Shaker et al. investigated in [30] the continuity, convexity and stability
of probust constraints w.r.t. a changing distribution function. They interpreted probust
constraints as joint chance constraints indexed by an area and connected their results to
partial derivative equations (PDEs). Nevertheless, they did not computed a solution in
this context nor gave an solution algorithm, either.
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1 Probust optimization

The first time an optimization problem was called a probust optimization problem was
in 2018, when Adelhütte et al. [5] studied gas network applications.
In 2019 Grandón referred in her PhD thesis [38] towards probust constraints, but just
used the vast modelling scope that this problem class allows to start her analysis of a gas
network problem. The most important result for our numerical treatment of probust op-
timization problems can be found in van Ackooij et al. [3] where (sub-)gradient formulas
from the joint chance constrained context were generalized to probust constraints.
As we will need this result as well as the results from Farshbaf-Shaker et al. in Section
1.3, we present them in more detail:

Proposition 1.1.6 (Upper semi-continuity of outer function, Prop. 1 from [30])
Assume that X is a Banach space, T ⊆ Rq is a compact set, g(x, ·, t) is Borel measur-
able for all x ∈ X, t ∈ T and that g(·, ξ, t) is weakly sequentially lower semi-continuous
(w.s.l.s.) for all ξ ∈ Ξ and t ∈ T . Then

φ : X → [0, 1], x 7→ P(g(x, ξ, t) ≤ 0 ∀t ∈ T )

is weakly sequentially upper semi-continuous (w.s.u.s.).

Proposition 1.1.7 (Lower semi-continuity of outer function, Prop. 2 from [30])
Assume that X is a Banach space, T ⊆ Rq is a compact set, (Ξ,A,P) is a probability
space, g : X × Ξ× T → R is w.s.u.s. as a function of all three variables simultaneously.
Then φ is w.s.l.s. at all x ∈ X satisfying

P

(

sup
t∈T

g(x, ξ, t) = 0

)

= 0.

Proposition 1.1.8 (Convexity of feasible set of SPP, Prop. 4 from [30])
Let X be an arbitrary vector space and T be an arbitrary index set. Let the m-dimensional
random vector ξ have a log-concave density (i.e., a density whose logarithm is a possibly
extended-valued concave function). Finally, assume that g(·, ·, t) is quasi-convex for all
t ∈ T . Then, the set

Fp := {x ∈ X | φ(x) ≥ p}

is convex for any p ∈ [0, 1].

Based on the results for joint chance constraints, 2019 van Ackooij et al. generalized the
representation of a gradient from the joint chance constrained case to the probust case in
their paper [3]. Therein, in Corollary 4.5 and Corollary 4.6 they give sufficient conditions
for the function

φ : X → [0, 1], x 7→ P(g(x, ξ, t) ≤ 0 ∀t ∈ T (x))

to be Lipschitzian and differentiable at a given point x ∈ X. The main difference to the
joint chance constrained case (1.2) is that we have to respect changes of the active index
w.r.t. the decision as well.
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Using these gradients, we could apply gradient-based optimization methods to find a
solution of a probust optimization problem numerically. The main issue making such
methods unattractive in practice is that we do not know the active indices in general.
In contrary, we do not need gradient formulations of probust constraints if we face a “sim-
ple” probust optimization problem. Therefore, we end this section by solving a probust
optimization problem analytically and introduce a visualization of the solution process.
We solve a (standard) probust optimization problem by the following three solution
steps:

1) Fix an arbitrary (x, ξ) ∈ X × Ξ and calculate g(x, ξ, T ) := maxt∈T g(x, ξ, t).

2) Fix an arbitrary x ∈ X and calculate φ(x) := P(g(x, ξ, T ) ≤ 0).

3) Solve minx∈X f(x) s.t. φ(x) ≥ p.

We go through these singe steps in the next example:

Example 1.1.9 (Solving a probust optimization problem analytically)
Let X := [0, 1], f : X → R, x 7→ x, (Ξ,A,P) = ([0, 1],B,P), where B is the Borel-σ-algebra
on [0, 1] and P is the probability measure induced by ξ ∼ U ([0, 1]), p = 0.9, T := [−2, 2]
and g : X × Ξ× T → R, (x, ξ, t) 7→ −x+ ξ − (x+ ξ + t)2. Then we can solve the probust
optimization problem

min
x∈X

f(x) s.t. P(g(x, ξ, t) ≤ 0 ∀t ∈ T ) ≥ p

using the three solution steps:
1) Fix an arbitrary x ∈ [0, 1], fix an arbitrary ξ ∈ [0, 1], then we can calculate

g(x, ξ, T ) = max
t∈[−2,2]

g(x, ξ, t) = −x+ ξ.

2) Fix an arbitrary x ∈ [0, 1] and calculate

φ(x) = P(−x+ ξ ≤ 0)

= P(ξ ≤ x) = x.

3) Solve minx∈[0,1] x s.t. x ≥ 0.9. This leads directly to the (unique) minimizer x∗ = 0.9.

Because an analytical solution is not always given for probust optimization problems or
single solution steps, we are interested in how we can visualize the solving procedure.
Therefore, we go through the single calculation steps of the last example once again, but
visualize the interesting subsets in the decision-realization-scenario space X × Ξ× T :
In the first step, we fix a decision x0 = 0.5 ∈ [0, 1] and a realization ξ0 = 0 ∈ [0, 1]
to calculate a corresponding worst-case scenario that t∗(x0, ξ0) ∈ T which represents the
whole set T = [−2, 2]. We have seen in Example 1.1.9 step 1) that the worst-case scenario
is t∗(x, ξ) = −x−ξ for any x ∈ [0, 1], ξ ∈ [0, 1]. This means we can substitute the interval
T by {−0.5} concerning the maximium operator.
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Because the decision x0 and the realization ξ0 are chosen arbitrarily, we plot them as
red crosses that might change later in the solution procedure. The worst-case scenario
defined by these values and visualized as a green cross in Figure 1.1.

Figure 1.1: Fixed decision x0 ∈ X (red cross on the left), realization ξ0 ∈ Ξ (red cross in
the middle) and corresponding worst-case scenario t∗(x0, ξ0) ∈ T (green cross
on the right)

Now we are entering step 2), where we have to calculate φ(x0) for the fixed x0 ∈ X.
To do so, we have to check which realizations ξ ∈ Ξ satisfy g(x0, ξ, T ) ≤ 0. In Example
1.1.9 we calculated that the corresponding set is Ω(x0) = [0, 0.5]. Please note that every
realization ξ ∈ Ω(x0) leads to a new worst-case scenario t∗(x0, ξ) ∈ T . Because this set
is defined by the choice of x0, we print it with its corresponding worst-case scenarios
as green line segments in Figure 1.2. Now we have to calculate the probability that is
covered by this set using the information given in the probability distribution. By step
2) of Example 1.1.9 we get that x0 = 0.5 fulfills the inner function with a probability
of 50%. As this is less then the required threshold of 90%, the choice x0 = 0.5 is infeasible.

Figure 1.2: Fixed decision x0 ∈ X (red cross on the left), feasible realizations Ω(x0) ⊆ Ξ
(green line segment in the middle) and corresponding worst-case scenarios
(green line segment on the right)

Last, but not least we enter step 3), where we use the gathered information to calculate a
minimal x∗ ∈ [0, 1] satisfying φ(x∗) ≥ 0.9. As the probability function can be simplified to
φ(x) = x, we see that x∗ = 0.9 is the optimal solution. This means that the corresponding
set Ω(x∗) covers at least 90% of Ξ for all t ∈ T . This decision x∗ with the corresponding
uncertainty subset Ω(x∗)×⋃ξ∈Ω(x∗){t∗(x∗, ξ)} ⊆ Ξ× T can be seen in Figure 1.3.
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1.2 Decision-dependent uncertainty

Figure 1.3: Optimal decision x∗ ∈ X (green cross on the left), set of feasible realizations
Ω(x∗) ⊆ Ξ (green line segment in the middle) and corresponding worst-case
scenarios (green line segment on the right)

So far, we presented the most important analytical results for standard probust optimiza-
tion problems for this thesis. Additionally, we solved a probust optimization problem an-
alytically and visualized its solution in the decision-realization-scenario space X×Ξ×T .
Thereby, we are at the edge of current research. Before we start with numerical solving
strategies for probust optimization problems, we introduce an extended problem defi-
nition that will allow us to model the problems in Part II more easily. To be able to
formulate this extended problem definition, we need some more results from literature
concerning decision-dependent uncertainty.

1.2 Decision-dependent uncertainty

The main goal of this section is to introduce decision-dependent uncertainties to generalize
the definition of a probust optimization problem in the next section.
As decision-dependent uncertainty implies that the uncertainty set changes with the
decision, we have to talk about point-to-set mappings before going into details with
specialized concepts for semi-infinite and chance constrained optimization problems.
Unfortunately, the uncertainty concepts in these two optimization problem classes require
slightly different continuity concepts. Therefore, we first introduce these concepts and
afterwards discuss their relationship to each other.

Definition 1.2.1 (Correspondences)
Let X,Y be two sets, we call a mapping Γ from the set X to the power set of Y
a correspondence. We will further denote correspondences as Γ : X ⇒ Y . We call
dom(Γ) := {x ∈ X | Γ(x) ̸= ∅} the domain of Γ and gr(Γ) := {(x, y) ∈ X×Y | y ∈ Γ(x)}
the graph of Γ.
Γ is bounded if

⋃

x∈X Γ(x) is bounded.
We call Γ compact/convex-valued if for all x ∈ X the set Γ(x) is compact/convex.

Definition 1.2.2 (Upper/lower hemi-continuity of correspondences)
Given a correspondence Γ : X ⇒ Y between two topological spaces (X, TX), (Y, TY ). We
say that Γ is upper hemi-continuous (u.h.c.) at x̄ ∈ X, if the following holds

∀V ∈ TY ∃U ∈ U(x̄) : Γ(x̄) ⊆ V ⇒ Γ(x) ⊆ V ∀x ∈ U
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Γ is lower hemi-continuous (l.h.c.) at x̄ ∈ X, if the following holds

∀V ∈ TY ∃U ∈ U(x̄) : Γ(x̄) ∩ V ̸= ∅ ⇒ Γ(x) ∩ V ̸= ∅ ∀x ∈ U

Γ is continuous at x̄ if it is lower and upper continuous at x̄ ∈ X.
Γ is (lower/upper hemi-)continuous if Γ is (lower/upper hemi-)continuous for all x ∈ X.

Definition 1.2.3 (Inner/outer semi-continuity of correspondences)
Given a correspondence Γ : X ⇒ Y between two topological spaces (X, TX), (Y, TY ). We
say that Γ is inner semi-continuous (i.s.c.) at x̄ ∈ X, if the following holds

lim inf
x→x̄

Γ(x) ⊇ Γ(x̄).

Γ is outer semi-continuous (o.s.c.) at x̄ ∈ X, if the following holds

lim sup
x→x̄

Γ(x) ⊆ Γ(x̄).

More definitions referring to correspondences and structural properties of these can be
found, e.g., in Berge’s book [14], Chapter 16 of Aliprantis’ book [6], Chapter 5 of Rock-
afeller’s book [66] and a manuscript by Border [18].
These continuity concepts stem from different contexts, but are closely related as the
following proposition shows:

Proposition 1.2.4 (U.h.c./l.h.c and o.s.c/i.s.c., Prop. 23 in [18])
Let Γ : X ⇒ Y be a correspondence.
Γ is lower hemi-continuous at x ∈ X if and only if it is inner semi-continuous at x.
If Γ has nonempty compact values, then Γ is upper hemi-continuous at x ∈ X if and only
if it is outer semi-continuous at x.

Also connected to the introduced continuity concepts for correspondences is continuity
w.r.t. the Hausdorff metric, when we interpret the mapping f : X → 2Y as a correspon-
dence with Γ : X ⇒ Y, x 7→ f(x). We are interested in how continuity of Γ is related to
continuity of f w.r.t. the topology on Y . Here the following theorem helps us:

Theorem 1.2.5 (U.h.c./l.h.c. and Hausdorff-continuity, Thm. 16.16 in [6])
Let Γ : X ⇒ Y be a nonempty compact-valued correspondence from a topological space
(X, TX) into a metrizable space (Y, dY ), and let K(Y ) denote the space of nonempty
compact subsets of Y endowed with its Hausdorff-metric topology. Then the function
f : X → K(Y ) defined by f(x) = Γ(x) is continuous if and only if the correspondence Γ
is continuous.

More details can be found, e.g., in Section 2.5 of the book by Göpfert et al. [35].
All together, the three different continuity concepts of upper/lower hemi-continuity, in-
ner/outer semi-continuity and continuity w.r.t. the Hausdorff metric

dH : K(X)×K(X)→ R, (C1, C2) 7→ inf{ϵ ≥ 0 | C1 ⊆ Bϵ(C2) ∧ C2 ⊆ Bϵ(C1)}

coincide if we consider nonempty, compact-valued correspondences.
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1.2 Decision-dependent uncertainty

Last, but not least, we are interested in the behavior of the function f(x) = maxy∈Γ(x) g(x, y)
for continuous correspondences Γ. The most famous result in this context is Berge’s max-
imum theorem from Berge’s book [14], that we use here in three variants.

Lemma 1.2.6 (L.s.c. of supremum-function, Lem. 16.29 in [6])
Let Γ : X ⇒ Y be a lower hemi-continuous correspondence between topological spaces with
nonempty values and let the function g : gr(Γ) → R be lower semi-continuous. Define
the extended real function f : X → R = R ∪ {±∞} by

f(x) = sup
y∈Γ(x)

g(x, y).

Then the function f is lower semi-continuous.

Lemma 1.2.7 (U.s.c. of supremum-function, Lem. 16.30 in [6])
Let Γ : X ⇒ Y be upper hemi-continuous correspondence between topological spaces with
nonempty, compact values and let the function g : gr(Γ)→ R be upper semi-continuous.
Define the extended real function f : X → R by

f(x) = max
y∈Γ(x)

g(x, y).

Then the function f is upper semi-continuous.

Theorem 1.2.8 (Berge’s maximum theorem, Thm. 16.31 in [6]))
Let Γ : X ⇒ Y be a continuous correspondence between topological spaces with nonempty
compact values and suppose g : gr(Γ) → R is continuous. Define the ”value function”
f : X → R by

f(x) = max
y∈Γ(x)

g(x, y)

and the correspondence y∗ : X ⇒ Y of maximizers by

y∗(x) = {y ∈ Γ(x) | g(x, y) = f(x)}.

Then

1. the value function f is continuous and

2. if either g has a continuous extension to all of X × Y or Y is Hausdorff, then
the ”argmax” correspondence y∗, is upper hemi-continuous with nonempty compact
values.

With this knowledge, we can start considering generalized semi-infinite optimization.
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Generalized semi-infinite optimization

We now consider the most important results from generalized semi-infinite optimization
which we will use later in this thesis. We interpret generalized semi-infinite optimization
problems as the decision-dependent extension of robust optimization and semi-infinite
optimization problems.
Generalized semi-infinite optimization problems have the form

GSIP : min
x∈X

f(x) s.t. g(x, t) ≤ 0 ∀t ∈ T (x) = {t ∈ Rq | uj(x, t) ≤ 0 ∀j ∈ J},

where X ⊆ Rn is some set, J is a finite index set and f : X → R, g, uj : X × Rq → R

are functions for all j ∈ J with |T (x)| =∞ for all x ∈ X. If we compare this formulation
with the semi-infinite problem introduced in Section 1.1, we see that the only difference
is that the uncertainty set T now depends on the decision x ∈ X.
The existence of a solution of a GSIP is a by basic analysis and the Lemma 1.2.6:

Corollary 1.2.9 (Solution existence of GSIP)
Let X be a compact set, f : X → R be lower semi-continuous, T : X ⇒ Rq be a non-
empty, lower hemi-continuous correspondence, Tmax =

⋃

x∈X T (x) and g : X×Tmax → R

be a lower semi-continuous function w.r.t. (x, t) ∈ X × Tmax. Then the induced GSIP
has a well-defined solution f∗ ∈ R and a well-defined minimizer x∗ ∈ X, if the feasible
set is not empty.

As we know that the correspondence T : X ⇒ Rq in a GSIP is defined by inequality
constraints uj : X × Rq → R, j ∈ J , we have to ask which properties of uj , j ∈ J ensures
the lower hemi-continuity of T .
Stein and Still give an answer to this in Lemma 2 in [77] as well as Chapter 3 of Stein’s
book [78] (see Lemma 3.2.2 and Proposition 3.2.27).

Lemma 1.2.10 (Sufficient condition for l.h.c, Lem. 2 in [77])
Given a GSIP with continuous functions uj : X × Y → R for j ∈ J , the following holds
for the correspondence T : X ⇒ Y, x 7→ {y ∈ Y | uj(x, y) ≤ 0 ∀j ∈ J}:

1. If the functions u(x, t) = Ax + Bt − b is (componentwise) affine linear then T is
continuous w.r.t. x ∈ X.

2. Let U ⊆ X be open. Let for any x ∈ U, j ∈ J the function uj(x, ·) be convex in
t and let for any x ∈ U the Slater condition hold: There exists t̄ ∈ Rm such that
uj(x, t̄) < 0 for all j ∈ J . Then T is continuous w.r.t. x ∈ U .

3. Let U ⊆ X be open. Let for any x ∈ U the condition (MFCQ) be fulfilled at all
t ∈ T (x). Then T is continuous w.r.t. x ∈ U .

The Mangasarian-Fromovitz constraint qualification (MFCQ) is fulfilled at a fixed point
(x, t) ∈ X × Rq if

∃d ∈ Rm : ⟨∇tuj(x, t), d⟩ < 0 ∀j ∈ J0(x) = {j ∈ J | uj(x, t) = 0}.
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1.2 Decision-dependent uncertainty

To be able to ensure upper hemi-continuity of a correspondence described by inequality
constraints, we use the following theorem by Hogan. Please note that we are allowed
to exchange the original “closedness of Γ” by “outer semi-continuity of Γ” by means of
Lemma 5.7a of Rockafellar’s book [66].

Theorem 1.2.11 (Sufficient condition for o.s.c., Thm. 10 in [46])
Consider two sets topological space X,Y and functions uj : X × Y → R, j ∈ J , where J
is a finite index set, that are lower semi-continuous on X×Y . Define the correspondence
Γ : X ⇒ Y as

Γ(x) := {y ∈ Y | uj(x, y) ≤ 0 ∀j ∈ J}.

Then Γ is outer semi-continuous and closed-valued.

Proposition 1.2.4 implies now that lower semi-continuity of uj for all j ∈ J together with
the boundedness of

⋃

x∈X Γ(x) guarantee that Γ is upper hemi-continuous w.r.t. x ∈ X.
We can also talk about an unique solution of a GSIP using:

Lemma 1.2.12 (Convex feasible set of GSIP, Lem. 2 in [82])
Suppose that the function g : X × Y → R is convex in (x, y) ∈ X × Y and assume that
the following set-valued inclusion holds for the correspondence Γ : X ⇒ Y :
For any x1, x2 ∈ X and λ ∈ (0, 1) it holds

Γ(λx1 + (1− λ)x2) ⊆ λΓ(x1) + (1− λ)Γ(x2).

Then, the feasible set of GSIP is convex.

Please note that the original proof still works if we substitute the convexity of g(·, t) w.r.t.
x ∈ X by quasi-convexity.
Next to this analytical properties of GSIPs, we are also interested in solving these prob-
lems numerically. In this context the lower-level problem similar to (1.1) is defined by
fixing some decision x ∈ Rn:

Q(x) : max
t∈T (x)

g(x, t) (1.4)

Numerical solution approaches for GSIPs can be categorized the same way as solution
approaches for SIPs in the last section. We recommend the survey by Vazquez et al. [84]
and refer to the monograph [78] for more details.
As discretization methods suffer from the changing set T (x) for different x ∈ X, one
could think that they get less attention. Nevertheless, in publications by Schwientek et
al. (see [71, 72]) a transformation based discretization method is introduced which deals
with this problem.
The transformation based discretization method uses a transformation T : X × Z → Rq

that satisfies T (x, Z) = T (x) for all fixed x ∈ X.
Denoting g̃ : X × Z → R, (x, z) 7→ g̃(x, z) := g(x, T (x, z)), we can write it down as:
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Algorithm 2 Transformation based discretization method from Schwientek [72]

1: Inputs:
Generalized semi-infinite problem instance GSIP, starting decision
x0 ∈ X, reference set Z, starting discretization Z0 ⊆ Z, transformation
T : X × Z → Rq

2: Initialize:
k := 0

3: do
4: xk+1 ← argminx∈X f(x) s.t. g̃(x, z) ≤ 0 ∀z ∈ Zk

5: t∗k ← argmaxt∈T (xk+1) g(xk+1, t)
6: z∗k ← T (xk+1, z

∗
k) = t∗k

7: Zk+1 ← Zk ∪ {z∗k}
8: k ← k + 1
9: while g(xk, t

∗
k) > 0

10: Results:
Sequence (xk, Zk)k∈N

This algorithm guarantees that all accumulation points of (xk)k∈N are minimizers w.r.t.
the original GSIP if f, g, T are continuous andX,Z, T are compact(-valued) (see Theorem
7.3.2 in [72]). Those assumptions are mild considering Corollary 1.2.9.

Decision-dependent chance constrained optimization

Next, we deal with decision-dependent chance constrained optimization problems. The
difference to chance constrained optimization problems is that the probability distribution
now depends on the decision.
Such problems can be noted as

DDCC : min
x∈X

f(x) s.t. P(x)(g(x, ξ) ≤ 0) ≥ p,

where X ⊆ Rn is some set, (Ξ,A,P(x)) is a measurable space for all x ∈ X, p ∈ [0, 1] is a
probability threshold, f : X → R is a continuous function, g is a Caratheodory-function
and P : X → P(Ξ,Ω) is a function that maps into the set of probability measures on
(Ξ,A). If we compare this formulation with the chance constrained optimization problem
introduced in Section 1.1, we see that the only difference is that the distribution function
P depends now on the decision x ∈ X.
The existence of a solution of a DDCC is not known in general to the best of our knowl-
edge. Therefore, we introduce some definitions to be able to create a context where DDCC
has a well-defined solution to close that gap. As a first step we have to define continuity
w.r.t. a probability distribution. To define a quite general concept of continuity, we are
inspired by a paper by Gibbs et al. [33]. There it was shown, that the discrepancy-metric
can be bounded from above by a lot of other probability measures that are used more
frequently, i.e., the total variation distance or the Kolmogorov metric.
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1.2 Decision-dependent uncertainty

Definition 1.2.13 ((Semi-)continuity w.r.t. discrepancy metric dD)
Let (X, dX) be a metric space, (Ξ,A) be a measurable space and P : X → P(Ξ,A) be a
function that maps into the set of probability measures on (Ξ,A).
For S ⊆ A we define the S-discrepancy metric dD(S) as

dD(S) : P(Ξ,A)× P(Ξ,A)→ [0, 1], (P1,P2) 7→ sup
A∈S
|P1(A)− P2(A)|.

We call P : X → P(Ξ,A) upper semi-continuous at x ∈ X w.r.t. the S-discrepancy metric
if for all ϵ > 0 there exists a δ > 0 such that

sup
A∈S

P(x̄)(A)− P(x)(A) < ϵ ∀x ∈ Bδ(x̄).

We call P : X → P(Ξ,A) lower semi-continuous at x ∈ X w.r.t. the S-discrepancy metric
if for all ϵ > 0 there exists a δ > 0 such that

sup
A∈S

P(x)(A)− P(x̄)(A) < ϵ ∀x ∈ Bδ(x̄).

We call P : X → P(Ξ,A) continuous at x ∈ X w.r.t. the S-discrepancy metric if it is
upper and lower semi-continuous w.r.t. the S-discrepancy metric.
We call P : X → P(Ξ,A) (upper/lower semi-)continuous w.r.t. the S-discrepancy metric
if it is (upper/lower semi-)continuous for all x ∈ X.
If we choose S = A, we do not use the prefix S for the continuity descriptions, but write
continuous with respect to the discrepancy-metric dD.

It is noted by Henrion et al. in [41] that the S-discrepancy metric dD(S) is a semi-metric
on (P(Ξ,A) for any S ⊆ A. There is also noted that it is a metric, if S contains a
generator of A. For example, if we are interested in the Borel-σ-algebra of Ξ = Rm, we
could choose the set of all closed sets or all hyper-boxes (−∞, ξ], ξ ∈ Ξ as a generator.
Since we are just interested in theoretical results, we choose S = A in the remainder of
this chapter.
Some examples of probability distribution functions that are continuous w.r.t. the dis-
crepancy metric dD are given next:

Example 1.2.14 (dD-continuous mappings)
(i) We consider the probability measures on (R,B) that are induced by the uniform dis-
tributed random variable Z ∼ U([a(x), b(x)]), where x ∈ X ⊆ Rn, n ∈ N. X is supposed
to be a compact set, a, b : X → R are continuous w.r.t. x and m := infx∈X b(x)−a(x) > 0
is fulfilled. Then the function P : X → P(R,B) is continuous w.r.t. dD.
(ii) We consider the probability measures on (R,B) that are induced by the Gaussian
distributed random variable Z ∼ N (µ(x), σ(x)), where x ∈ X ⊆ Rn, n ∈ N. We as-
sume that the functions µ : X → R, σ : X → R≥0 are continuous w.r.t. x and fulfill
m := infx∈X σ(x) > 0. Then the function P : X → P(R,B) is continuous w.r.t. dD.

Another property of this metric is given by the following theorem which connects it to
weak convergence of probability measures:
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Theorem 1.2.15 (Weak convergence and dD-continuity, Thm. 2 in [16])
Let (Ξ,A,P) be a probability space, Ξ be locally connected, S ⊆ A and (Pn)n∈N ⊆ P(Ξ,A)
be a weakly convergent sequence towards P. Then

lim
n→∞

dD(S)(Pn,P) = 0⇔ lim
ϵ→0

sup
A∈S

P(Bϵ(∂A)) = 0.

This means that weak convergence of probability measures can be upgraded to conver-
gence w.r.t. the discrepancy-metric if all boundaries are null sets w.r.t. the weak limit
probability measure.
As we understand the concept of continuity w.r.t. the discrepancy-metric better now,
we are interested which context is sufficient to guarantee that DDCCs have well-defined
solutions.
The survey about decision-dependent stochastic optimization by Hellemo et al. [40] does
not comment on such statements. Decision-dependent probabilities with continuous dis-
tributions are just barely mentioned. Consequently, we close that gap inspired by the
following theorem of Beer and Villar:

Theorem 1.2.16 (Upper semi-continuity of measures, Thm. 3.2 in [10])
Let µ be a measure on the Borel-σ-algebra B of a metric space (X, dX).

1. If µ is locally finite, then µ is upper semi-continuous w.r.t. the Hausdorff-metric at
each compact set K ∈ K(X).

2. If A ⊆ X is closed and µ(AC) < ∞, then µ is upper semi-continuous w.r.t. the
Hausdorff-metric at A.

Together with Theorem 1.2.5 we conclude that every nonempty, compact-valued, contin-
uous correspondence Γ implies the upper semi-continuity of P(Γ(·)) : X → [0, 1].
We reduce the assumptions to guarantee the upper semi-continuity of P ◦ Γ by the next
lemma.

Lemma 1.2.17 (Upper semi-continuity of P ◦ Γ)
Let (X, dX) be a metric set, (Ξ,B) be a Borel-measurable space, P : X → P(Ξ,B) be a
mapping into the set of probability measures on (Ξ,B) and Γ : X ⇒ Ξ be a correspondence
satisfying Γ(x) ∈ B for all x ∈ X .
(i) If P is upper semi-continuous w.r.t. the discrepancy metric dD and Γ : X ⇒ Ξ is
outer semi-continuous, then the function f : X → [0, 1], x 7→ P(x)(Γ(x)) is upper semi-
continuous.
(ii) If P is lower semi-continuous w.r.t. the discrepancy metric dD and Γ : X ⇒ Ξ is
inner semi-continuous, then the function f : X → [0, 1], x 7→ P(x)(Γ(x)) is lower semi-
continuous.

Proof. We show both claims directly using an ϵ-δ-criterion:
As we want to show that f is upper semi-continuous, we have to show for any x ∈ X and
any ϵ > 0 there exists a δ > 0 such that for all y ∈ Bδ(x) it holds f(y)− f(x) < ϵ.
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1.2 Decision-dependent uncertainty

As Γ is outer semi-continuous, we know that lim supy→x Γ(y) ⊆ Γ(x) and by Fatou’s
lemma lim supy→x P(z)(Γ(y)) ≤ P(z)(Γ(x)) for all z ∈ X. Consequently, the function

fz : X → [0, 1], x 7→ P(z)(Γ(x))

is upper semi-continuous at x for any z ∈ X. This means that especially for the choice
z = x we can guarantee that there exists a δ1 > 0 such that P(x)(Γ(y))−P(x)(Γ(x)) < ϵ

2
for all y ∈ Bδ1(x).
Additionally, with the upper semi-continuity of P w.r.t. dD, we know that there exists an
δ2 > 0 such that for all y ∈ Bδ2(x) we can guarantee supA∈B P(x)(A)− P(y)(A) < ϵ

2 . All
together, we can estimate for y ∈ Bδ(x), where δ := min{δ1, δ2}:

f(y)− f(x) = P(y)(Γ(y))− P(x)(Γ(x))

= P(y)(Γ(y))− P(x)(Γ(y)) + P(x)(Γ(y))− P(x)(Γ(x))

≤ sup
A∈B
{P(y)(A)− P(x)(A)}+ P(x)(Γ(y))− P(x)(Γ(x))

<
ϵ

2
+

ϵ

2
= ϵ

As x ∈ X was chosen arbitrarily, the first part of the claim holds.
The second part of the claim can be shown the same way using the lower semi-continuity
of P, Fatou’s lemma which implies P(z)(lim infy→x Γ(y)) ≤ lim infy→x P(z)(Γ(y)) for each
z ∈ Z and the inner semi-continuity of Γ. □

Using this lemma in the context of decision-dependent chance constrained optimization
problems we can state a sufficient condition for a well-defined solution. To formulate this
result we need to guarantee that the feasible set of a DDCC is not empty. Therefore, we
calculate the following probability threshold

pmax = max
x∈X,p∈[0,1]

p s.t. P(x)(g(x, ξ) ≤ 0) ≥ p (1.5)

and state:

Corollary 1.2.18 (Solution existence of DDCC)
Let (X, dX) be a metric space, (Ξ,A) be a measurable space, P : X → P(Ξ,A) be an
upper semi-continuous function w.r.t. the discrepancy metric dD and g : X × Ξ → R be
a lower semi-continuous function satisfying Γ(x) := {ξ ∈ Ξ | g(x, ξ) ≤ 0} ∈ A for all
x ∈ X. Then the function φ : X → [0, 1], x 7→ P(x)(Γ(x)) is upper semi-continuous.
If additionally the set X is compact, f : X → R is lower semi-continuous and p ≤ pmax,
then the decision-dependent optimization problem has a well-defined minimizer x∗ ∈ X.

Proof. We show this claim directly.
By Theorem 1.2.11 we know that Γ is an outer semi-continuous correspondence w.r.t.
x ∈ X. By Lemma 1.2.17 we know that the function φ : X → [0, 1], x 7→ P(x)(Γ(x))
is upper semi-continuous w.r.t. x ∈ X. Consequently, the feasible set of the DDCC is
closed and compact as X is compact. This implies that the optimization problem defined
to calculate pmax is well-defined as well. Because p ≤ pmax we know that the feasible
set is not empty and due to the lower semi-continuity of f we know that there exists a
minimizer x∗ ∈ X. □
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After focusing on the existence of a solution, we can study conditions to guarantee an
unique solution of a DDCC. To ensure convexity of the feasible set of a DDCC, we
use an extended version of the concept that is introduced for joint chance constrained
optimization problems in Definition 1.1.4:

Definition 1.2.19 (α-concave probability distribution functions)
Let X ⊆ Rn be any convex set and P : X → P(Ξ,A) be a mapping from X into the
set of probability measures P(Ξ,A) on the measurable space (Ξ,A). We call P an α-
concave probability distribution function, if for all x1, x2 ∈ X,A1, A2 ∈ A, λ ∈ [0, 1] we
can guarantee:

P(x(λ))(A(λ)) ≥ mα(P(x1)(A1),P(x2)(A2), λ),

where x(λ) = λx1+(1−λ)x2, A(λ) = λA1+(1−λ)A2 and mα : R≥0×R≥0× [0, 1]→ R≥0

defined as in Definition 1.1.4 for fixed α ∈ R.

If P is independent w.r.t. x ∈ X, then sufficient conditions for φ to be an α-concave
function are stated in Theorem 4.39 from Shapiro’s book [75].
With this concavity concept in mind, we state the following theorem which can be used
to ensure the convexity of the feasible set of a DDCC.

Theorem 1.2.20 (Concavity of ϕ)
Let (X, dX) be a metric space, X and Ξ ⊆ Rm be convex sets, (Ξ,A) be a measur-
able space, P : X → P(Ξ,A) be an α-concave probability distribution function and
Γ : X ⇒ Ξ be a correspondence that satisfies Γ(x(λ)) ⊇ λΓ(x1) + (1 − λ)Γ(x2) for
all x1, x2 ∈ X,λ ∈ [0, 1], x(λ) = λx1 + (1 − λ)x2 and Γ(x) ∈ A for all x ∈ X. Then the
function φ : X → [0, 1], x 7→ P(x)(Γ(x)) is α-concave.

Proof. We show this claim directly by using the definition of an α-concave probability
distribution function.
Let us fix arbitrary x1, x2 ∈ X,λ ∈ [0, 1] and define x(λ) := λx1 + (1− λ)x2.
By assumption Γ satisfies Γ(x(λ)) ⊇ λΓ(x1) + (1 − λ)Γ(x2) and consequently we can
estimate using the α-concavity of P:

φ(x(λ)) = P(x(λ))(Γ(x(λ)))

≥ P(x(λ))(λΓ(x1) + (1− λ)Γ(x2))

≥ mα(P(x1)(Γ(x1)),P(x2)(Γ(x2)), λ)

= mα(φ(x1), φ(x2), λ)

Consequently, because x1, x2 ∈ X,λ ∈ [0, 1] were chosen arbitrarily, φ is α-concave and
the claim holds. □

The next corollary states a sufficient condition for when a correspondence satisfies the
convexity assumption of the last theorem:
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Corollary 1.2.21 (Sufficient condition for convex Γ)
Let X ⊆ Rn, Y ⊆ Rm be convex sets and Γ : X ⇒ Y be a correspondence defined
by Γ(x) = {y ∈ Y | g(x, y) ≤ 0} with quasi-convex function g : X × Y → R w.r.t.
(x, y) ∈ X×Y . Then Γ satisfies for any x1, x2 ∈ X,λ ∈ [0, 1] and x(λ) := λx1+(1−λ)x2
the relation

Γ(x(λ)) ⊇ λΓ(x1) + (1− λ)Γ(x2).

Proof. We show this claim directly by using the quasi-convexity of g:
Let us fix arbitrary x1, x2 ∈ X,λ ∈ [0, 1] to define x(λ) = λx1 + (1 − λ)x2 and take
arbitrary y1 ∈ Γ(x1), y2 ∈ Γ(x2). We show that y(λ) = λy1 + (1− λ)y2 ∈ Γ(x(λ)).
By the quasi-convexity of g we can estimate

g(x(λ), y(λ)) ≤ max{g(x1, y1), g(x2, y2)} ≤ 0.

As y1 ∈ Γ(x1), y2 ∈ Γ(x2) were chosen arbitrarily, we know that the set inclusion
Γ(x(λ)) ⊇ λΓ(x1) + (1 − λ)Γ(x2) holds. Since x1, x2 ∈ X and λ ∈ [0, 1] were chosen
arbitrarily, the statement is proven. □

With these concepts, we can now extend the definition of (standard) probust optimization
problems and consider well-defined solutions in this framework.

1.3 Generalized probust optimization problems

In the last sections we introduced semi-infinite optimization and joint chance constrained
optimization problems as well as decision-dependent uncertainty concepts. Before ex-
tending the definition of (standard) probust optimization problems from Section 1.1, we
introduce so called probust terms.
While we can consider semi-infinite optimization problems as probust optimization prob-
lems with fixed realization ξ ∈ Ξ and chance constrained optimization problems as pro-
bust optimization problems with fixed scenario t ∈ T , these probust terms correspond
to standard probust optimization problems with fixed decision x ∈ X. Analyzing these
terms here and in Chapter 2 provides new insights which are crucial to handle probust
optimization problems.
In this section, we define probust terms and discuss continuity and convexity properties
of parametrized probust terms that we interpret as probust functions.
With this knowledge, we can focus on solution existence and uniqueness of generalized
probust optimization problems.
We close this chapter by proving that generalized probust optimization problems can be
reduced to standard probust optimization problems, if appropriate transformations of
the corresponding uncertainty sets are given. We comment on how the solution of the
original generalized probust optimization problem transforms in this context.
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(Generalized) Probust terms

As explained, probust terms are the missing piece between semi-infinite optimization
problems, joint chance constrained optimization problems and (standard) probust opti-
mization problems. We now introduce a standard and a general form of these terms and
show under which assumptions they are well-defined.

Definition 1.3.1 (Probust term)
Let (Ξ,A,P) be a probability space, T : Ξ ⇒ Rq be a correspondence, Tmax :=

⋃

ξ∈Ξ T (ξ)
and g : Ξ × Tmax → R be a function that satisfies that the set of feasible realizations
Ω := {ξ ∈ Ξ | g(ξ, t) ≤ 0 ∀t ∈ T (ξ)} is measurable w.r.t. A. Then we call

φ := P(g(ξ, t) ≤ 0 ∀t ∈ T (ξ)) ∈ [0, 1]

general probust term.
We call φ standard probust term, if T is constant.

Because later we are interested in sets of feasible realizations which are defined by finite
many scenarios instead of the whole scenario set T , we make the following notation for
convenience:

Notation
Given a probust term φ, a scenario t ∈ Tmax and a subset S ⊆ Tmax, we define

Ω(∅) := Ξ,

Ω(t) := {ξ ∈ Ξ | g(ξ, t) ≤ 0},
Ω(S) :=

⋂

t∈S
Ω(t).

Additionally to this last notation, it will come in handy to be able to represent probust
terms φ ∈ [0, 1] in several ways. This allows us to use the representation that fits the
current analysis or application best. We can rewrite the value of a probust term as

φ = P(g(ξ, t) ≤ 0 ∀t ∈ T (ξ)) = P

(

sup
t∈T (ξ)

g(ξ, t) ≤ 0

)

= P(Ω).

If we consider standard probust terms, we can also write

φ = P(Ω(Tmax)) = P(Ω(T )).

Be aware that Ω(Tmax) ̸= {ξ ∈ Ξ | supt∈T (ξ) g(ξ, t)} in general.
Moreover, the assumption Ω ∈ A in Definition 1.3.1 is not always fulfilled and not easy
to check directly. Therefore, we are interested in a way to guarantee the measurability
of Ω by considering Ω(t), t ∈ Tmax.
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A sufficient condition that guarantees well-defined probust terms can be found in the
next proposition. Because its assumptions hold for the application part of this thesis, it
is quite useful for us.

Proposition 1.3.2 (Sufficient condition for measurable Ω)
Let (Rm,B,P) be a probability space with Borel-σ-algebra, let T : Ξ ⇒ Rq be a lower hemi-
continuous correspondence and let g : Ξ×Tmax → R be a lower semi-continuous function
w.r.t. (ξ, t) ∈ Ξ× Tmax, then the probust term P(g(ξ, t) ≤ 0 ∀t ∈ T (ξ)) is well-defined.

Proof. We show this claim directly by Lemma 1.2.6.
Because the assumptions of Lemma 1.2.6 are fulfilled, we know that

g(·, T ) : Ξ→ R, ξ 7→ sup
t∈T (ξ)

g(ξ, t)

is lower semi-continuous w.r.t. ξ ∈ Ξ. Consequently, the set Ω is closed as the pre-image
of (−∞, 0] under a lower semi-continuous function. Therefore, it is Borel-measurable and
the claim holds. □

If we consider standard probust terms with a compact set of scenarios T , we know that
the correspondence is constant, consequently lower hemi-continuous and thereby we just
have to ensure the lower semi-continuity of g on Ξ× T to use the last proposition.

(Generalized) Probust functions

In the next step, we focus on parametrized probust terms which we interpret as probust
functions. We introduce a standard and a general form of these functions and show which
conditions are sufficient for (upper semi-)continuity of them. After that, we reduce the
general form to the standard form by introducing appropriate transformations. We also
give sufficient conditions for concavity of these functions.

Definition 1.3.3 (Probust function)
Let X be a set, (Ξ,A) a measurable space, P : X → P(Ξ,A) a decision dependent proba-
bility distribution function, T : X × Ξ ⇒ Rq a correspondence, Tmax :=

⋃

x∈X,ξ∈Ξ T (x, ξ)
and g : X × Ξ × Tmax → R an inner function such that the set of feasible realization
satisfies Ω(x) := {ξ ∈ Ξ | g(x, ξ, t) ≤ 0 ∀t ∈ T (x, ξ)} ∈ A for all x ∈ X. Then we call

φ : X → [0, 1], x 7→ φ(x) := P (x) (g(x, ξ, t) ≤ 0 ∀t ∈ T (x, ξ))

general probust function.
If P and T are constant, we call φ standard probust function.

Since we aim to solve probust optimization problems, we are interested under which
assumptions a solution exists and when this solution is unique. These properties of a
solution are closely connected to the continuity and the concavity of the probust function
that is used to describe the probust optimization problem. We start with sufficient
conditions to guarantee their upper semi-continuity.
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Proposition 1.3.4 (Upper semi-continuity of ϕ)
Let (X, dX) be a metric space, (Ξ,A) be a measurable space and P : X → P(Ξ,A) be
a probability distribution function that is upper semi-continuous w.r.t. the discrepancy-
metric dD. Furthermore, let T : X×Ξ ⇒ Rq be a compact-valued, lower hemi-continuous
correspondence and g : X × Ξ × Tmax → R be a lower semi-continuous inner function
w.r.t. (x, ξ, t) ∈ X × Ξ × Tmax that satisfies Ω(x) ∈ A for all x ∈ X, then the probust
function φ : X → [0, 1] is upper semi-continuous.

Proof. We show the using Lemma 1.2.6, Theorem 1.2.11 and Lemma 1.2.17:
We can use Lemma 1.2.6 since g is lower semi-continuous and T is lower hemi-continuous,
which induces that

g(x, ξ, T ) = sup
t∈T (x,ξ)

g(x, ξ, t)

is lower semi-continuous w.r.t. (x, ξ) ∈ X × Ξ.
Because of Theorem 1.2.11 and Lemma 1.2.17 we know that the correspondence
Ω(x) := {ξ ∈ Ξ | g(x, ξ, T ) ≤ 0} is upper hemi-continuous and therefore

φ : X → [0, 1], x 7→ P(x)

(

sup
t∈T (x,ξ)

g(x, ξ, t) ≤ 0

)

is an upper semi-continuous function w.r.t. x ∈ X. □

To be able to ensure lower semi-continuity of φ, we have to strengthen our assumptions:

Proposition 1.3.5 (Continuity of ϕ)
Let (X, dX) be a metric space, (Ξ,A) be a measurable space and P : X → P(Ξ,A)
be a probability distribution function that is continuous w.r.t. dD. Furthermore, let the
correspondence T : X × Ξ ⇒ Rq be a continuous and compact-valued and the inner
function g : X × Ξ × Tmax → R be continuous w.r.t. (x, ξ, t) ∈ X × Ξ × Tmax satisfying
Ω(x) ∈ A and P(x)(maxt∈T (y,ξ) g(y, ξ, t) = 0) = 0 for all x, y ∈ X, then φ : X → [0, 1] is
a continuous function.

Proof. We show the claim by using basic analysis, Berge’s maximum theorem, as well as
Proposition 1.1.6, Proposition 1.1.7 and an ϵ-δ-approach:
Using Berge’s maximum theorem 1.2.8, we know that

g(x, ξ, T ) := max
t∈T (x,ξ)

g(x, ξ, t)

is well-defined and continuous w.r.t. (x, ξ) ∈ X × Ξ.
Next we estimate for x, y ∈ X:

|φ(x)− φ(y)| = |P(x)(g(x, ξ, T ) ≤ 0)− P(y)(g(y, ξ, T ) ≤ 0)|
≤ |P(x)(g(x, ξ, T ) ≤ 0)− P(x)(g(y, ξ, T ) ≤ 0)|

+ |P(x)(g(y, ξ, T ) ≤ 0)− P(y)(g(y, ξ, T ) ≤ 0)|
≤ |P(x)(g(x, ξ, T ) ≤ 0)− P(x)(g(y, ξ, T ) ≤ 0)|

+ sup
A∈A
|P(x)(A)− P(y)(A)|
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1.3 Generalized probust optimization problems

Let us fix an arbitrary ϵ > 0 under consideration of Proposition 1.1.6 and Proposition
1.1.7 with (fixed) distribution P(x). Then, we can estimate the first term in the last
inequality. Additionally, we can estimating the second term by the continuity of P w.r.t.
dD to find δ1, δ2 > 0 such that

|P(x)(g(x, ξ, T ) ≤ 0)− P(x)(g(y, ξ, T ) ≤ 0)| < ϵ

2
∀y ∈ Bδ1(x) and

sup
A∈A
|P(x)(A)− P(y)(A)| < ϵ

2
∀y ∈ Bδ2(x).

Consequently δ := min{δ1, δ2} and y ∈ Bδ(x) implies

|φ(x)− φ(y)| < ϵ

2
+

ϵ

2
= ϵ.

As x ∈ X and ϵ > 0 were chosen arbitrarily, the claim holds. □

Please note that in the standard setting P and T are constant. Consequently, we just have
to guarantee that the inner function g is lower semi-continuous to conclude the upper
semi-continuity of the probust function φ. Furthermore, we need a continuous function
g and the condition P(maxt∈T g(x, ξ, t) = 0) = 0 for all x ∈ X to ensure continuity of φ.
These are exactly the results from Farshbaf-Shaker et al. [30].
Next to the continuity of a probust function we are interested in its concavity. The next
theorem helps us:

Theorem 1.3.6 (Concavity of ϕ)
Let X ⊆ Rn,Ξ ⊆ Rm be convex sets, (Ξ,A) a measurable space, P : X → P(Ξ,A)
an α-concave probability distribution, g : X × Ξ × Tmax → R a quasi-convex function
w.r.t. (x, ξ, t) ∈ X × Ξ × Tmax that is upper semi-continuous w.r.t. t ∈ T (x, ξ) for all
fixed (x, ξ) ∈ X × Ξ. Additionally, let T be a compact-valued correspondence satisfying
T (y(λ)) ⊆ λT (y1) + (1− λ)T (y2) with y(λ) = λy1 + (1− λ)y2, y1 = (x1, ξ1), y2 = (x2, ξ2)
for any λ ∈ [0, 1], x1, x2 ∈ X, ξ1, ξ2 ∈ Ξ. Then the probust function φ is α-concave.

Proof. We show this claim using Corollary 1.2.21 and Theorem 1.2.20.
First we show that the function g(x, ξ, T ) := maxt∈T (x,ξ) g(x, ξ, t) is a quasi-convex func-
tion.
For this, let us now fix any arbitrary x1, x2 ∈ X, arbitrary ξ1, ξ2 ∈ Ξ and any λ ∈ [0, 1].
Denote y1 = (x1, ξ1), y2 = (x2, ξ2).
Since T satisfies the condition

T (y(λ)) ⊆ λT (y1) + (1− λ)T (y2),

we know that for any t ∈ T (y(λ)) there exists t1 ∈ T (y1), t2 ∈ T (y2) such that the scenario
t can be represented as t = λt1 + (1− λ)t2.
Consequently, due to the compactness of T (x, ξ) for all (x, ξ) ∈ X × Ξ and the upper
semi-continuity of g(x, ξ, ·) we can choose any

t∗ ∈ arg max
t∈T (λx1+(1−λ)x2,λξ1+(1−λ)ξ2)

g(λx1 + (1− λ)x2, λξ1 + (1− λ)ξ2, t)
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and estimate by the quasi-convexity of g

g(λx1 + (1− λ)x2, λξ1 + (1− λ)ξ2, T ) = g(λx1 + (1− λ)x2, λξ1 + (1− λ)ξ2, t
∗)

= g(λx1 + (1− λ)x2, λξ1 + (1− λ)ξ2, λt1 + (1− λ)t2)

≤ max{g(x1, ξ1, t1), g(x2, ξ2, t2)}
≤ max{g(x1, ξ1, T ), g(x2, ξ2, T )}.

Because x1, x2 ∈ X, ξ1, ξ2 ∈ Ξ, λ ∈ [0, 1] were chosen arbitrarily, g(x, ξ, T ) is quasi-convex
w.r.t. (x, ξ) ∈ X × Ξ.
Now we use Corollary 1.2.21 to ensure that

Γ : X ⇒ Rm, x 7→ {ξ ∈ Ξ | sup
t∈T (x,ξ)

g(x, ξ, t) ≤ 0}

satisfies Γ(x(λ)) ⊇ λΓ(x1) + (1 − λ)Γ(x2) for all x1, x2 ∈ X,λ ∈ [0, 1]. Then we can use
Theorem 1.2.20 which ensures that φ is a quasi-concave function w.r.t. x ∈ X. □

Generalized probust optimization problems

With continuity and concavity statements of probust functions additionally to the decision-
dependent uncertainty concepts, semi-infinite optimization problems and chance con-
strained optimization problems, we are finally ready to tackle generalized probust opti-
mization problems. We recall that a (standard) probust optimization problem has the
form

SPP : min
x∈X

f(x) s.t. P(g(x, ξ, t) ≤ 0 ∀t ∈ T ) ≥ p,

where X ⊆ Rn is a compact set for n ∈ N, f : X → R is a continuous mapping, P is a
probability measure on the measurable space (Ξ,A), where Ξ ⊆ Rm,m ∈ N and A is a
σ-algebra on Ξ, p ∈ [0, 1], T ⊆ Rq, q ∈ N is a compact set and g : X × Ξ × T → R is a
continuous function w.r.t. (x, ξ, t).
There already exists a generalization by Adelhütte et al. [5] and van Ackooij et al. [3],
where they assumed that the uncertainty set T depends on the decision x.

We generalize the definition of a probust optimization problem using the two decision-
depending uncertainty concepts introduced in the last section:
First, the stochastics can be decision-dependent. This idea is studied so far, e.g., by
Lejeune et al. [53] and Basciftci et al. [8] in a linear context. An overview about decision-
dependent uncertainties can be found in a paper from Hellemo et al. [40].
Second, the set of scenarios is not constant. This idea is well-known from generalized
semi-infinite optimization and studied for example by Still [81], Vázquez et al. [84] and
Stein [80].
The resulting problem definition can be formulated as:
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Definition 1.3.7 (Generalized probust optimization problem)
Let X be a set, f : X → R be a function, (Ξ,A) be a measurable space, P : X → P(Ξ,A)
be a probability distribution function, T : X × Ξ ⇒ Rq be a correspondence and g :
X × Ξ × Tmax → R be a function that satisfies Ω(x) ∈ A for all x ∈ X. Then we define
the generalized probust optimization problem as

GPP : min
x∈X

f(x) s.t. P (x) (g(x, ξ, t) ≤ 0 ∀t ∈ T (x, ξ)) ≥ p.

Before we consider the solution existence theorem, we have to guarantee that the feasible
set of the generalized probust optimization problem is not empty. We can check this by
solving the following problem that is closely related to Equation (1.5):

pmax = max
x∈X,p∈[0,1]

p s.t. P(x)(g(x, ξ, t) ≤ 0 ∀t ∈ T (x, ξ)) ≥ p (1.6)

Lemma 1.3.8 (Well-definedness of pmax )
Let the assumptions of Proposition 1.3.4 hold and ∅ ≠ X ⊆ Rn be a compact set. Then
the value pmax in (1.6) is well-defined.

Proof. We show this claim directly by using Proposition 1.3.4 and Weierstrass’ theorem:
As all assumptions for Proposition 1.3.4 are fulfilled w.r.t. to x ∈ X, we know that the
probust function φ : X → [0, 1] is upper semi-continuous. Consequently, the function

G(x, p) = p− φ(x)

is lower semi-continuous w.r.t. (x, p) ∈ X× [0, 1] as the difference of a continuous function
and an upper semi-continuous function.
Therefore, the feasible set of problem (1.6) is compact as the intersection of the compact
set X × [0, 1] with the closed set described by G(x, p) ≤ 0.
Weierstrass’ theorem then guarantees the existence of a maximum in the feasible set
because the objective function is continuous w.r.t. (x, p) ∈ X × [0, 1].
Please note that the feasible set is not empty because X is not empty and thus every
choice (x, 0) with x ∈ X is feasible. □

Using this additional information, we can ensure that the feasible set of a generalized pro-
bust optimization problem is not empty. This allows us to determine sufficient conditions
to guarantee the existence of a solution of a generalized probust optimization problem:

Theorem 1.3.9 (Existence of a solution of GPP)
Let the assumptions of Lemma 1.3.8 hold. Additionally, let f : X → R be a lower semi-
continuous function and p : X → [0, 1] be a continuous threshold function such that there
exists some x ∈ X with p(x) ≤ pmax. Then the generalized probust optimization problem
has a well-defined solution.
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Proof. We show this claim directly by using Proposition 1.3.4 and a variant of Weierstrass’
theorem:
As all assumptions for Proposition 1.3.4 are fulfilled w.r.t. to x ∈ X, we know that the
probust function φ : X → [0, 1] is upper semi-continuous. Consequently, the function

G(x) = p(x)− φ(x)

is lower semi-continuous w.r.t. x ∈ X as the difference of a continuous function and an
upper semi-continuous function.
Therefore, the feasible set of the generalized probust optimization problem is compact as
the intersection of the compact set X with the closed feasible set.
A variant of Weierstrass’ theorem then guarantees us the existence of a minimum of the
objective function over the feasible set because f is lower semi-continuous w.r.t. x ∈ X.
Please note that the feasible set is not empty as by Lemma 1.3.8 the threshold pmax is
well-defined and we assumed the existence of some x ∈ X such that p(x) ≤ pmax. □

Next to the existence of a solution of a GPP, we are interested in the uniqueness of
this solution. Since we have already found sufficient conditions for the concavity of a
probust function, we can use these conditions to guarantee the uniqueness of a solution
of a GPP:

Theorem 1.3.10 (Unique solution of GPP)
Let the assumptions of Theorem 1.3.6 and Theorem 1.3.9 hold. Furthermore, let X ⊆ Rn

be a convex set, f : X → R be strictly convex and p : X → [0, 1] be a quasi-convex
function. Then the generalized probust optimization problem has a unique minimizer x∗.

Proof. Due to the assumptions of Theorem 1.3.9 hold, we know that there exists some
solution x∗ of the generalized probust optimization problem.
We will show that this solution is unique by since the feasible set is convex and the
objective function is strictly convex w.r.t. x ∈ X.
Because the assumptions of Theorem 1.3.6 are fulfilled, we know that φ is a quasi-concave
function w.r.t. x ∈ X.
As p is quasi-convex, we know that G(x) := p(x)−φ(x) is quasi-convex as the difference
of a quasi-convex and a quasi-concave function. Since X is convex, the feasible set is
convex as the intersection of two convex sets.
Because f was assumed to be strictly convex, we know that the minimizer of this problem
is unique. □

In the other chapters of this thesis, we do not concentrate on generalized probust optimiza-
tion problems, but on standard probust optimization problems instead. This reduction
of problem structure does not necessarily change the solution of the problem as we show
next.
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1.3 Generalized probust optimization problems

Reduction of generalized probust optimization problems to standard probust
optimization problems

In the last part of this section, we are interested in simplifying generalized probust op-
timization problems to standard probust optimization problems. One way to handle
decision-dependent probability measures is the so called “push-in method” that can be
found, e.g., in a note by Rubinstein et al. [68] and in a paper by Dupacova [29].
To apply this method, we assume that the decision-dependent probability measure can
be represented by a probability density function ρ : X × Ξ→ R. This means that for all
measurable sets A ∈ A we can rewrite the expected value of a random variable f as:

Ex(f) =

∫

Ξ
f(ξ)dPx(ξ)

=

∫

Ξ
f(ξ)ρ(x, ξ)dξ

=

∫

Ξ
f(ξ)

ρ(x, ξ)

ρ̂(ξ)
ρ̂(ξ)dξ

=

∫

Ξ
f(ξ)

ρ(x, ξ)

ρ̂(ξ)
dP̂(ξ)

= E

(

f
ρ(x, ·)

ρ̂

)

,

where the function ρ̂ : Ξ→ R is the probability density of a reference probability distri-
bution P̂ on (Ξ,A) which is independent of the a decision x ∈ X. Since this probability
density ρ̂ is pushed into the integrand, it gives the method its name.
Considering probust optimization problems, we are interested in f = χA for some mea-
surable set A ∈ A. We can reformulate probability evaluations by expected values via
Px(A) = Ex(χA) for any fixed x ∈ X, but unfortunately we cannot reformulate the last

expression backwards into an indicator function as ρ(x,·)
ρ̂

/∈ {0, 1} in general.
Consequently, we have to use a new approach to simplify generalized probust optimization
problems. We need a special structure of this problem to do so:

Assumption 1.3.11 (Existence of reference objects)
Given an instance of a generalized probust optimization problem GPP, we assume there

exists a reference probability space (Ξ̂, Â, P̂) and a reference set T̂ ⊆ Rq as well as two
functions

TΞ̂ : X × Ξ̂→ Ξ

T
T̂
: X × Ξ̂× T̂ → Rq

such that for every fixed x ∈ X the function

TΞ̂(x, ·) : Ξ̂→ Ξ

is a bijection between the spaces of realizations.
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1 Probust optimization

Furthermore, we assume that the function

TÂ : Â → A, Â 7→
⋃

ω∈Â

{TΞ̂(x, ω)}

is a bijective mapping between the σ-algebras satisfying

P̂(Â) = P(x)(TÂ(x, Â)) ∀Â ∈ Â

and for any fixed (x, ω) ∈ X × Ξ̂, the function

T
T̂
(x, ω, ·) : T̂ → T (x, TΞ̂(x, ω))

is a bijection between the two uncertainty sets.

Because these transformations are important for the application part of this thesis, we
denote an extra definition for them:

Definition 1.3.12 (Transformation of uncertainty sets)
Given a generalized probust optimization problem GPP, a reference probability space

(Ξ̂, Â, P̂), a reference set T̂ ⊆ Rq and two functions TΞ̂ : X×Ξ̂→ Ξ, T
T̂
: X×Ξ̂× T̂ → Rq

that fulfill Assumption 1.3.11, then we call (Ξ̂, Â, P̂) a reference probability space of GPP,
T̂ a reference uncertainty set of GPP, TΞ̂ a realization transformation and T

T̂
a scenario

transformation of the GPP.

Please note that these reference objects and transformation are not unique in general,
because the reference sets and transformations are scalable.
With these transformations, we can reduce a generalized probust optimization problem to
a standard probust optimization problem. The next theorem shows that transformations
of uncertainty sets do not change the feasible set of the optimization problem.

Theorem 1.3.13 (GPP-reduction theorem)
Given a general probust optimization problem of the form

GPP : min
x∈X

f(x) s.t. P (x) (g(x, ξ, t) ≤ 0 ∀t ∈ T (x, ξ)) ≥ p,

a reference probability space (Ξ̂, Â, P̂), a reference set T̂ ⊆ Rq and two transformations
TΞ̂ : X × Ξ̂→ Ξ, T

T̂
: X × Ξ̂× T̂ → Rq that fulfill Assumption 1.3.11, then a decision is

feasible for GPP if and only if this decision is feasible for the following standard probust
optimization problem

SPP : min
x∈X

f(x) s.t. P̂(g̃(x, ω, z) ≤ 0 ∀z ∈ T̂ ) ≥ p,

where

g̃ : X × Ξ̂× T̂ → R, (x, ω, z) 7→ g(x, TΞ̂(x, ω), TT̂ (x, TΞ̂(x, ω), z)).
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1.3 Generalized probust optimization problems

Proof. We show this claim by proving one set inclusions, an indirect argument and the
bijectivity of the transformations:
FSPP ⊆ FGPP: Let us fix an arbitrary x ∈ FSPP, then we know by definition that

P̂(g̃(x, ω, z) ≤ 0 ∀z ∈ T̂ ) ≥ p.

This means that there exists a set Â ∈ Â such that for all ω ∈ Â and all z ∈ T̂ the
inequality g̃(x, ω, z) ≤ 0 is fulfilled and P̂(Â) ≥ p.
To show x ∈ FGPP, we have to construct a set A ∈ A such that P(x)(A) ≥ p and for all
ξ ∈ A and all t ∈ T (x, ξ) the inequality g(x, ξ, t) ≤ 0 is fulfilled.
Therefore, we fix the set A := TÂ(x, Â). By Assumption 1.3.11 we know that A ∈ A and

P(x)(A) = P̂(Â) ≥ p.
Now, we argue indirectly by assuming that there exists a realization ξ ∈ A and a scenario
t ∈ T (x, ξ) such that g(x, ξ, t) > 0.
By the definition of TÂ and the bijectivity of TΞ̂(x, ·), we know there exists a ω ∈ Â such

that TΞ̂(x, ω) = ξ and by the bijectivity of T
T̂
(x, ω, ·), we know that there exists a z ∈ T̂

such that T
T̂
(x, ω, z) = t.

Consequently, we know that

0 < g(x, ξ, t) = g(x, TΞ̂(x, ω), TT̂ (x, TΞ̂(x, ω), z)) = g̃(x, ω, z).

This contradicts ω ∈ Â and therefore the basic assumption which implies that x ∈ FGPP.
Because x ∈ FSPP was chosen arbitrarily, the set inclusion is guaranteed.
Due to the bijectivity of the transformations, the other set inclusion is also satisfied.
Altogether the claim holds. □

Please note, that we chose the same objective function for both optimization problems
GPP and SPP. Therefore and because of the invariance of the feasible sets, we know that
global (or local) optima of GPP are global (or local) optima of SPP and vice versa.

While transformation examples from a decision depending set to a reference set can be
found in a paper of Schwientek et al. [71], the transformation to a reference probabil-
ity space is new concept to the best of our knowledge. While the push-in-method from
Rubinstein’s paper [52] is roughly speaking a multiplication of the integrand 1 our trans-
formation approach changes the representation of the uncertain parameters.
We can understand this change of representation better considering some examples:

Example 1.3.14 (Extended Example 1.2.14)
(i) Transform the realizations of the decision-dependent random variable Z ∼ U ([a(x), b(x)])
by the (inverse) mapping

T −1

Ξ̂
: X × Ξ, (x, ξ) 7→ ω :=

ξ − a(x)

b(x)− a(x)
.
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This implies a reference random variable Ẑ ∼ U([0, 1]) and we can confirm for an arbi-
trary measurable set A ∈ B

P(x)(A) =

∫

ξ∈A
1dP(x)(ξ)

=

∫

ξ∈A∩[a(x),b(x)]

1

b(x)− a(x)
dλ(ξ)

=

∫

ω∈TΞ̂(B∩[a(x),b(x)])
1dλ(ω)

=

∫

ω∈TΞ̂(A)∩[0,1]
1dλ(ω)

=

∫

ω∈Â
1dP̃(ω)

= P̂(Â),

where Â =
{

ξ̂ ∈ R | ∃ξ ∈ Ξ : ξ̂ = ξ−a(x)
b(x)−a(x)

}

= A−a(x)
b(x)−a(x) .

Reformulating the last equality leads to the transformation of measurable sets

TÂ : X × B → B, (x, Â) 7→ (b(x)− a(x))Â+ a(x).

(ii) Transform the realizations of the decision-dependent random variable Z ∼ N (µ(x), σ(x))
by the (inverse) mapping

T −1

Ξ̂
: X × Ξ, (x, ξ) 7→ ω :=

ξ − µ(x)

σ(x)
.

This implies a reference random variable Ẑ ∼ N (0, 1) and we can confirm for an arbitrary
measurable set A ∈ B

P(x)(A) =

∫

ξ∈A
1dP(x)(ξ)

=

∫

ξ∈A

1√
2πσ(x)

exp

(

−(ξ − µ(x))2

2σ(x)2

)

dλ(ξ)

=

∫

ω∈TΞ̂(A)

1√
2π

exp

(

−ω2

2

)

dλ(ω)

=

∫

ω∈Â
1dP̃(ω)

= P̂(Â),

where Â =
{

ξ̂ ∈ R | ∃ξ ∈ Ξ : ξ̂ = ξ−µ(x)
σ(x)

}

= A−µ(x)
σ(x) .

Reformulating the last equality leads to the transformation of measurable sets

TÂ : X × B → B, (x, Â) 7→ σ(x)Â+ µ(x).
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1.3 Generalized probust optimization problems

Here the push-in technique would define a second factor within the integrand which the
transformation approach does not.
Since we have shown in the proof of Theorem 1.3.13 that the probust functions of GPP
and the corresponding SPP calculate the same probability for all x ∈ X, it does not
change under the realization and scenario transformation. We state this as a corollary,
but skip its proof as it is induced by the proof of the last theorem.

Corollary 1.3.15 (Invariance of sets of feasible realizations)
Given a generalized probust optimization problem GPP, a reference set T̂ ⊆ Rq and a

function T
T̂

: X × Ξ × T̂ → R that is a bijection between T̂ and T (x, ξ) for all fixed

(x, ξ) ∈ X × Ξ. Then for any fixed x ∈ X the set of feasible realizations is invariant
under this transformation, meaning

Ω(x) = {ξ ∈ Ξ | g(x, ξ, t) ≤ 0 ∀t ∈ T (x, ξ)}
= {ξ ∈ Ξ | g̃(x, ξ, z) ≤ 0 ∀z ∈ T̂},

where g̃(x, ξ, z) := g(x, ξ, T
T̂
(x, ξ, z)) for all (x, ξ, z) ∈ X × Ξ× T̂ .

Although the probust function is not influenced by the transformations, the inner func-
tions g and g̃ change with these transformations. If we assume that the transformations
are at least continuous, we know that continuity of g can be transmitted to continuity of
g̃ as a composition of continuous functions. On the contrary, we have seen in Example
7.3.1 in [72] that convexity has not to be transmitted from g to g̃. A similar behavior is
mentioned in Dupacova’s work [28], where the push-in technique can destroy concavity
in the probability evaluation.
As the statements of Propositions 1.1.6 - 1.1.8 from (standard) probust optimization in
Section 1.1 showed: Preserving continuity of the inner function leads to preserving the
existence of a solution of a probust optimization problem, while loosing convexity can
lead to the loss of a unique solution. The question how we can find a solution of a probust
optimization problem numerically will be answered in the next part of this thesis.

Overview of Chapter 1

In Chapter 1 we have introduced the concept of probust optimization problems. Because
this first chapter handles a lot of concepts, we want to visualize the main points of this
chapter. We focus on the concepts that form (standard) probust optimization problems
in Figure 1.4. Furthermore, we summarize the workflow of how to handle generalized
probust optimization problems so far in Figure 1.5.

We have classified the already known concept of (standard) probust optimization prob-
lems by considering certain subproblems of this problem class. In this context, we fixed
either a decision, a realization of the random variable or a scenario of the uncertainty set.
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1 Probust optimization

We have gathered results according to these subproblems that are known in the literature
and guarantee the (unique) existence of a solution. We can now express the relations be-
tween the subproblems and the (standard) probust optimization problem visually by the
following figure:

Figure 1.4: Decomposition of probust-optimization problems

As we found nothing on probust terms in the literature, we filled this gap in Section 1.3
and generalized the concept of probust optimization problems. Furthermore, we guaran-
teed that these problems have a (unique) solution using results from decision-dependent
uncertainty concepts and correspondences.
Last, but not least, we introduced transformations that allow us to reduce a generalized
probust optimization problem to a standard probust optimization problem.

Changing our perspective from modelling to solving optimization problems, we have
to ask ourselves how we can handle the introduced problem classes. So far, we know
that we can reduce a generalized probust optimization problem to a standard probust
optimization problem using appropriate transformations. If we can express the worst-
case scenarios analytically, we can reduce the problem even further to a (joint) chance
constrained optimization problem that can be handled approximately or even analytically
if we know enough about the set of feasible realizations. This workflow of handling
generalized probust optimization problems is visualized by Figure 1.5.
Because no algorithm is known so far that handles probust optimization problems which
cannot be reduced to joint chance constrained optimization problems someone has to
solve the specific problem instances by hand.
The next part of this thesis handles numerical solving strategies that work directly with a
standard probust optimization problem and do not need to express all worst-case scenarios
analytically.
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1.3 Generalized probust optimization problems

Figure 1.5: Workflow of handling generalized probust optimization problems
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2 Probust subset schemes

After introducing probust optimization problems in the last chapter and giving sufficient
conditions to guarantee the existence of an (unique) minimizer, we are interested in solv-
ing such problems.
We have already discussed one way to solve such problems analytically in Example 1.1.9.
As the single steps of this process are not always analytically solvable, we ask ourselves
how numerical methods can bypass these difficulties.
The main goal of this chapter is to solve probust optimization problems via discretization
methods. We are inspired by the discretization schemes from semi-infinite optimization.
As mentioned in the introduction, we can represent the uncertainty set T in semi-infinite
optimization problems by one (decision-dependent) worst-case scenario. Consequently,
we are looking for one scenario to represent the semi-infinite constraint.
In probust optimization this worst-case scenario does also depend on the realization of
the random vector such that we have to consider a family of worst-case scenarios.
To be able to understand if and when a subset S ⊆ T represents this family of worst-case
scenarios, we need a deeper insight into the structure of a probust optimization problem.
We start with focusing on probust terms where the decision x ∈ X is fixed. We then
transfer this insight to probust functions and study their convergence, when considering
a subset sequence (Tk)k∈N, Tk ⊆ T for all k ∈ N.
With this knowledge, we can not only state the iterative probust subset algorithm to solve
probust optimization problems approximately, but we can also show its convergence for
quite general assumptions concerning the subset sequence (Tk)k∈N.
We close this chapter by giving example discretization schemes Φ, whose iterates con-
verge towards the minimizer of the corresponding standard probust optimization problem.
These examples include a uniform discretization approach as well as two probust versions
of the adaptive discretization approach from Blankenship and Falk. These schemes are
used as the starting point in Part II of this thesis to design specified discretization schemes
to solve the given applications efficiently.

2.1 Discretized probust terms and functions

We introduced probust terms and probust functions as a subproblem of probust opti-
mization problems in Section 1.3.
In this section we focus on the behaviour of the mapping φ : 2T → [0, 1], where 2T denotes
the power set of T .
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2 Probust subset schemes

To guarantee that all terms φ(S) with S ∈ 2T are well-defined, we make the following
assumption:

Assumption 2.1.1 (Well-posedness of ϕ(S))
Given a probust term P(g(ξ, t) ≤ 0 ∀t ∈ T ), let Ω(S) := {ξ ∈ Ξ | g(ξ, t) ≤ 0 ∀t ∈ S} ∈ A
hold for all S ∈ 2T .

Recalling Proposition 1.3.2, we already have sufficient conditions that ensure Ω ∈ A and
also Ω(S) ∈ A for all S ⊆ T . Consequently, Assumption 2.1.1 is fulfilled for all S ⊆ T , if
g is lower semi-continuous w.r.t. (ξ, t) ∈ Ξ× T and if we consider a Borel-σ-algebra.
After this comment on the well-posedness of φ, we show that φ is monotone decreasing
for increasing subsets w.r.t. the partial order (⊆, 2T ).

Proposition 2.1.2 (Monotonicity of ϕ w.r.t. ⊆)
Given a probability space (Ξ,A,P), any set T , two subsets S1 ⊆ S2 ⊆ T and an inner
function g : Ξ× T → R. Assume that Ω(S1),Ω(S2) ∈ A, then

φ(S2) ≤ φ(S1).

Proof. We show the claim directly. Let us fix any set T and two subsets S1 ⊆ S2 ⊆ T .
Due to S1 ⊆ S2, we know

⋂

t∈S2
Ω(t) ⊆ ⋂t∈S1

Ω(t) and by the monotonicity of probability
measures we can write:

φ(S2) = P




⋂

t∈S2

Ω(t)





≤ P




⋂

t∈S1

Ω(t)





= φ(S1)

Because we fixed the subsets S1, S2 ⊆ T arbitrarily, the claim holds. □

Consequently, an increasing set of discretization points will lead to a more and more
precise approximation of φ. We are interested in subsets S ⊆ T such that S is as small
as possible to minimize computational efforts later on in Part II of this thesis, but also
guarantees φ(S) = φ(T ).
Checking the size of S is manageable, but the second condition φ(S) = φ(T ) has to be
quantifiable. Therefore, we introduce the following condition:

Definition 2.1.3 (Bottle-neck-condition)
Given a probust term φ = P(g(ξ, t) ≤ 0 ∀t ∈ T ) such that Assumption 2.1.1 is satisfied,
we say that S ⊆ T satisfies the bottle-neck-condition at ξ ∈ Ξ if:

∀t ∈ T ∃s = s(ξ, t) ∈ S : g(ξ, s) ≤ 0⇒ g(ξ, t) ≤ 0
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We say that a subset S ⊆ T satisfies the bottle-neck-condition if there exists some mea-
surable set M ∈ A such that

P(M) = 1 and S fulfills the bottle-neck-condition for all ξ ∈M.

We say ∅ satisfies the bottle-neck-condition if φ(T ) = 1.

To understand this new definition better, we investigate the following example:

Example 2.1.4 (Examples of subsets fulfilling the bottle-neck-condition)
Consider the probability space (R,B,P), where B is the Borel-σ-algebra on R and P is the
probability measure induced by Z ∼ U ([0, 1]) and T := [0, 1].
Let two different inner functions g1, g2 : Ξ× T → R be defined by

g1(ξ, t) := ξ − t2 and

g2(ξ, t) := ξ − (ξ − t)2.

Then any set S ⊇ {0} satisfies the bottle-neck-condition regarding the inner function g1
since any fixed ξ ∈ Ξ with g(ξ, 0) ≤ 0 implies g(ξ, t) = ξ − t2 ≤ 0 for all t ∈ [0, 1].
For the second inner function g2 the bottle-neck-condition holds only for sets S that are
the same as T up to a P-null set such as S = T . Of course this choice is trivial to satisfy
the bottle-neck-condition.

If the inner function g is continuous w.r.t. (ξ, t) ∈ Ξ× T jointly and T ⊆ Rq is compact,
then the functions

g(·, S) : Ξ→ R, ξ 7→ sup
s∈S

g(ξ, s) and

g(·, T ) : Ξ→ R, ξ 7→ max
t∈T

g(ξ, t)

are continuous w.r.t. ξ due to Berge’s maximum theorem 1.2.8.
Consequently, this implies for any subset S ⊆ T that

M := {ξ ∈ Ξ | S fulfills the bottle-neck-condition at ξ}
= {ξ ∈ Ξ | g(ξ, S) ≤ 0⇒ g(ξ, T ) ≤ 0}
= {ξ ∈ Ξ | g(ξ, S) ≤ 0⇔ g(ξ, T ) ≤ 0}
= {ξ ∈ Ξ | (g(ξ, S) ≤ 0 ∧ g(ξ, T ) ≤ 0) ∨ (g(ξ, S) > 0 ∧ g(ξ, T ) > 0)}
= (Ω(S) ∩ Ω(T )) ∪ (ΩC(S) ∩ ΩC(T ))

is measurable as a union of finite intersections of measurable sets. Ensuring that Assump-
tion 2.1.1 holds, this means M is measurable and therefore the bottle-neck-condition is
well-defined.
That the bottle-neck-condition is sufficient to guarantee φ(S) = φ(T ) is the statement of
the following proposition:
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Proposition 2.1.5 (Characterization bottle-neck-condition)
Given a probability space (Ξ,A,P) and a continuous inner function g : Ξ× T → R w.r.t.
t ∈ T satisfying Assumption 2.1.1. Then a subset S ⊆ T of a compact set T ⊆ Rq satisfies
the bottle-neck-condition if and only if φ(S) = φ(T ).

Proof. We show the claim by proving both implications directly.
⇒: Let us assume that S ⊆ T fulfills the bottle-neck-condition. Then there exists a set
M ∈ A such that

P(MC) = 0 and

∀ξ ∈M, t ∈ T ∃s(ξ, t) ∈ S : g(ξ, s) ≤ 0⇒ g(ξ, t) ≤ 0

Fixing any ξ ∈M and taking the supremum over t ∈ T , we can rewrite this as

sup
t∈T

g(ξ, s(ξ, t)) ≤ 0⇒ sup
t∈T

g(ξ, t) ≤ 0.

As s(ξ, t) ∈ S for all t ∈ T and T is compact, we can rewrite

max
s∈cl(S)

g(ξ, s) ≤ 0⇒ max
t∈T

g(ξ, t) ≤ 0.

This implies

{ξ ∈M | max
s∈cl(S)

g(ξ, s) ≤ 0} ⊆ {ξ ∈M | max
t∈T

g(ξ, t) ≤ 0} and

P( max
s∈cl(S)

g(ξ, t) ≤ 0 | ξ ∈M) ≤ P(max
t∈T

g(ξ, t) ≤ 0 | ξ ∈M).

Consequently due to S ⊆ T , Proposition 2.1.2 and P(MC) = 0:

φ(T ) ≤ φ(S)

= P(g(ξ, s) ≤ 0 for all s ∈ S)

= P( max
s∈cl(S)

g(ξ, s) ≤ 0)

= P( max
s∈cl(S)

g(ξ, s) ≤ 0 | ξ ∈M) + P( max
s∈cl(S)

g(ξ, s) ≤ 0 | ξ /∈M)

≤ P(max
t∈T

g(ξ, t) ≤ 0 | ξ ∈M) + P(max
s∈S

g(ξ, s) ≤ 0 | ξ /∈M)

= P(max
t∈T

g(ξ, t) ≤ 0 | ξ ∈M) + 0

= P(max
t∈T

g(ξ, t) ≤ 0)

= φ(T )

This proofs the first implication.

⇐: Let us assume that φ(S) = φ(T ) holds. By definition of φ, we can write:

φ(S) = φ(T )

⇔ P(Ω(S))− P(Ω(T )) = 0
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Because S ⊆ T and by the definition of Ω(S), we know that Ω(T ) ⊆ Ω(S) and therefore

0 = P(Ω(S))− P(Ω(T )) = P(Ω(S)/Ω(T )).

This means that the set

N := Ω(S)/Ω(T )

= {ξ ∈ Ξ | g(ξ, s) ≤ 0 ∀s ∈ S ∧ max
t∈T

g(ξ, t) > 0}

= {ξ ∈ Ξ | g(ξ, s) ≤ 0 ∀s ∈ S ∧ ∃t ∈ T : g(ξ, t) > 0}

is a P-null set.
Because N defines the points where the bottle-neck-condition does not hold, we can
conclude that S fulfills the bottle-neck-condition. This shows the second implication.
All together the claim holds. □

Next, we talk about continuity properties of φ as we assume an additional condition to
hold. It is motivated by the results of Farshbaf-Shaker et al. (see Proposition 1.1.7):

Assumption 2.1.6 (Assumptions concerning (Ξ,A, P))
Assume that Assumption 2.1.1 holds. Assume further that the considered probability
distribution has a Lebesgue-density, meaning that there exists a function ρ : Ξ → R≥0

such that we can calculate the probability of any measurable set A ∈ A by

P(A) =

∫

ξ∈A
ρ(ξ)dλ(ξ),

where λ is the Lebesgue-measure on Ξ.
Additionally assume that given a probust term φ and any S ⊆ T , it holds

P

(

max
t∈cl(S)

g(ξ, t) = 0

)

= 0. (2.1)

Please note that the statement P(g(ξ, t) = 0) = 0 for all t ∈ T does not guarantee
Equation 2.1 to hold as the following counter example shows:

Example 2.1.7 (Counter example for scenario-wise probability assumption)
Consider g(ξ, t) := −(ξ − t)2, where the probability distribution is implied by the random
variable Z ∼ U ([0, 1]) and t ∈ T := [0, 1].
Then we know on the one hand that

P(g(ξ, t) = 0) = P(ξ = t) = 0

for each fixed scenario t ∈ T .
But on the other hand, we know also that

P(max
t∈T

g(ξ, t) = 0) = P(0 = 0) = 1.

Consequently, the element-wise equation does not imply the set-wise equation.
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We use this strengthened setting to show that adding a new point t ∈ T to a given subset
S ⊆ T is a continuous function:

Proposition 2.1.8 (Adding one discretization point is a continuous operation)
Given a probability space (Ξ,B,P), a continuous inner function g : Ξ × T → R w.r.t.
(ξ, t) ∈ Ξ×T that satisfies Assumption 2.1.6, a compact set ∅ ≠ T ⊆ Rq and a set S ⊆ T .
Then the function

fS : T → [0, 1], t→ φ(S ∪ {t})
is continuous w.r.t. t ∈ T .

Proof. We show this claim directly by Theorem 1.1.3:
Let us fix a bounded set ∅ ≠ T ⊂ Rq and S ⊆ T . Because of the Berge’s maximum
theorem 1.2.8 and the continuity of g w.r.t. (ξ, t) ∈ Ξ × T , we can conclude that the
function g(·, S ∪ {t}) := sups∈S∪{t} g(·, s) is continuous w.r.t. ξ ∈ Ξ.
Due to Assumption 2.1.6 and by Theorem 1.1.3 the function φ(S ∪ {·}) is continuous. □

By adding single discretization points to a fixed set S ⊆ T , we are now interested in an
iterative procedure creating a sequence of subsets (Tk)k∈N, Tk ⊆ T, k ∈ N.
To handle an iterative procedures we have to define a stopping criterion that can be
checked by the information at hand in a fixed iteration.
One option for such a stopping criterion is the following:

Definition 2.1.9 (Candidate-condition)
We say that for a probust term φ the candidate-condition holds for a subset S ⊆ T , if

∀t ∈ T, ϵ > 0 : φ(S)− φ(S ∪ {t}) < ϵ.

This criterion concentrates on the change of the probability φ(S) instead on the structure
of S itself like the bottle-neck-condition does.
Although the representation of these conditions are quite different, they share the follow-
ing relation:

Theorem 2.1.10 (Candidate-condition and bottle-neck-condition)
Let the inner function g be continuous w.r.t. (ξ, t) ∈ Ξ × T and let Assumption 2.1.6
hold. Then a subset S ⊆ T satisfies the bottle-neck-condition if and only if it fulfills the
candidate-condition.
Furthermore, a subset S fulfilling one of these conditions implies

φ(S) = φ(T ).

Proof. We prove the claim by showing both implications:
⇒: Let us assume that the candidate-condition holds.
We argue indirectly by assuming that the bottle-neck-condition is not fulfilled and can
formalize

∀t ∈ T, ϵ > 0 : φ(S)− φ(S ∪ {t}) < ϵ and

∃Ω ∈ A : P(Ω) > 0 and

∀ξ ∈ Ω∃t ∈ T ∀s ∈ S : g(ξ, s) ≤ 0 and g(ξ, t) > 0. (2.2)
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Because g is continuous w.r.t. (ξ, t) ∈ Ξ × T and T is compact, we know using Berge’s
maximum theorem 1.2.8 that

g(ξ, S) := sup
s∈S

g(ξ, s)

is continuous w.r.t. ξ ∈ Ξ and we can rewrite (2.2) as

∀ξ ∈ Ω : g(ξ, S) ≤ 0 and

∀ξ ∈ Ω∃t ∈ T : g(ξ, t) > 0.

Because we assumed P(maxs∈cl(S) g(ξ, t) = 0) = 0 for all S ⊆ T , we can find a null-set N

and some measurable set Ω̃ ∈ A such that

Ω̃ = Ω/N,

∀ξ ∈ Ω̃ : g(ξ, S) < 0 and

∀ξ ∈ Ω̃∃t ∈ T : g(ξ, t) > 0.

Due to the definition of N and Ω̃, we know that P(Ω̃) = P(Ω) > 0 and therefore Ω̃ ̸= ∅.
Now let us fix an arbitrary ξ ∈ Ω̃ ̸= ∅.
By definition of Ω̃, we can find a t ∈ T , such that g(ξ, t) > 0.
Due to the continuity of g(·, S) and g(·, t) w.r.t. ξ ∈ Ξ we can find some r > 0 such that

g(ξ, t) > 0 ∀ξ ∈ Br(ξ) and

g(ξ, S) < 0 ∀ξ ∈ Br(ξ).

Due to ξ ∈ supp(P) = {ξ ∈ Ξ | ∀r > 0 : P(Br(ξ)) > 0} and the definition of g(·, S) we
can conclude

φ(S)− φ(S ∪ {t}) ≥ P(Br(ξ)) > 0.

This contradicts the candidate-condition. Therefore our basic assumption (2.2) is wrong
and we can assure that the bottle-neck-condition holds.

⇐: Let us now assume that the bottle-neck-condition holds. By Theorem 2.1.5 we know
that φ(S) = φ(T ) holds. Because S ⊆ T and the definition of Ω(S), we know that
Ω(T ) ⊆ Ω(S) and therefore

0 = P(Ω(S))− P(Ω(T )) = P(Ω(S)/Ω(T )).

This means that the set N := Ω(S)/Ω(T ) is a P null-set.
Now we fix any arbitrary t ∈ T and because of Ω(T ) ⊆ Ω(S ∪ {t}) we know

Ω(S)/Ω(S ∪ {t}) ⊆ Ω(S)/Ω(T ).

Therefore Ω(S)/Ω(S ∪ {t}) is also a P null-set and consequently:

P(Ω(S)/Ω(S ∪ {t})) = 0

⇔ P(Ω(S))− P(Ω(S ∪ {t})) = 0

⇔ φ(S)− φ(S ∪ {t}) = 0

Because the scenario t ∈ T was chosen arbitrarily the candidate-condition is fulfilled.
All together the claim holds. □
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After defining a suitable stopping criterion for an iterative discretization scheme, we can
ask how the probust terms approximation behaves for k → ∞. The answer in the case
of increasing discretizations Tk ⊆ Tk+1 for all k ∈ N is:

Theorem 2.1.11 (Convergence of increasing discretization sequences)
Let the inner function g be continuous w.r.t. (ξ, t) ∈ Ξ×T , Assumption 2.1.6 be satisfied
and let be (Tk)k∈N, Tk ⊆ T for all k ∈ N be a sequence of subsets of T such that Tk ⊆ Tk+1

for all k ∈ N.
Then we can conclude

lim
k→∞

φ(Tk) = φ( lim
k→∞

Tk).

If additionally limk→∞ Tk fulfills the candidate-condition, then we know

lim
k→∞

φ(Tk) = φ(T ).

Proof. We show the claim directly by the definition of φ and the dominated convergence
theorem:
Be aware that φ(S) =

∫

Ξ χΩ(S)(ξ)dP(ξ) holds for any subset S ⊆ T , where χA is the
indicator function of a set A ∈ A. Let us denote S := limk→∞ Tk =

⋃

k∈N Tk. We have
to show point-wise convergence of χΩ(Tk) to χΩ(S) for k →∞ on Ξ to use the dominated
convergence theorem. Please mind that χ is bounded by 1 by definition.
For this, we fix an arbitrary ξ ∈ Ξ and use a case-distinction:
First case ξ ∈ Ω(S): If we assume ξ ∈ Ω(S), we know χΩ(S)(ξ) = 1 and by Tk ⊆ S that

Ω(S) ⊆ Ω(Tk) for all k ∈ N. Consequently, χΩ(S)(ξ) = 1 implies χΩ(Tk)(ξ) = 1 for all
k ∈ N which ensures point-wise convergence.
Second case ξ /∈ Ω(S): If we assume ξ /∈ Ω(S), then we know χΩ(S)(ξ) = 0 and there

exists some s ∈ S such that g(ξ, s) > 0. By definition of S we know that there exists a
N ∈ N such that s ∈ TN . By Tk ⊆ Tk+1 for all k ∈ N, we know that s ∈ Tk for all k ≥ N .
Consequently, maxt∈Tk

g(ξ, t) ≥ g(ξ, s) > 0 and ξ /∈ Ω(Tk) for all k ≥ N . This implies
limk→∞ χΩ(Tk)(ξ) = 0.
Since χA does not have any other values than 0 and 1 the point-wise convergence holds.
As all sets Ω(S),Ω(Tk) with k ∈ N are measurable due to Assumption 2.1.1, we can use
the dominated convergence theorem to conclude

lim
k→∞

∫

Ξ
|χΩ(Tk)(ξ)− χΩ(S)(ξ)|dP(ξ) = 0

which implies

lim
k→∞

φ(Tk) = lim
k→∞

∫

Ξ
χΩ(Tk)(ξ)dP(ξ) = lim

k→∞

∫

Ξ
χΩ(S)(ξ)dP(ξ) = φ(S).

This shows the first part of the claim.
If S satisfies the candidate-condition, we know by Theorem 2.1.10 that φ(S) = φ(T ).
This shows the second part of the claim. □
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We emphasize that the candidate-condition has not to be fulfilled to ensure convergence
of the sequence (φ(Tk))k∈N, it however has to be fulfilled to guarantee convergence to
φ(T ) as the choice Tk = ∅ for all k ∈ N implies.
In Section 2.2 we are interested in discretization strategies that do not necessarily increase
in every iteration. Nevertheless, we want to guarantee convergence using these strate-
gies. Consequently, we have to think about how to replace the limes of a monotonically
increasing subset sequence.
In the next theorem we show that the limes inferior created by an arbitrary subset se-
quence (Tk)k∈N, Tk ⊆ T for all k ∈ N is an appropriate choice.

Theorem 2.1.12 (Convergence of arbitrary discretization sequences)
Let the inner function g be continuous w.r.t. (ξ, t) ∈ Ξ×T , Assumption 2.1.1 be satisfied
and let (Tk)k∈N with Tk ⊆ T for all k ∈ N be a sequence of subsets of T .
Define

S := lim inf
k→∞

Tk =
∞⋃

n=1

∞⋂

k=n

Tk

that fulfills the candidate-condition

∀t ∈ T, ϵ > 0 : φ(S)− φ(S ∪ {t}) < ϵ.

Then we can conclude

lim sup
k→∞

φ(Tk) = lim
k→∞

φ(Tk) = φ(T ).

Proof. We show the claim directly by the definition of the limes inferior:
Because we assumed that the candidate-condition is fulfilled, we know by Theorem 2.1.10
that

φ(S) = φ(T ).

Therefore, we concentrate on estimating φ(Tk) for all k ∈ N by

φ(S) ≥ lim sup
k→∞

φ(Tk) ≥ φ(T ). (2.3)

Please note that φ(T̃ ) ∈ [0, 1] for any subset T̃ ⊆ T . Consequently, the sequence
(φ(Tk))k∈N is bounded and we know that there exists at least on accumulation point
such that the limes superior is well-defined.
The second inequality in (2.3) holds by the assumption Tk ⊆ T for all k ∈ N and Propo-
sition 2.1.2.
Next, we proof the first inequality in (2.3) by considering the following sequence of sets:

Sk :=
⋂

j≥k

Tj ∀k ∈ N
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By definition of Sk we know that for any fixed k ∈ N

Sk = Tk ∩
⋂

j≥k+1

Tj = Tk ∩ Sk+1.

This implies

Sk ⊆ Tk, Sk ⊆ Sk+1 and

lim
k→∞

Sk = S.

Using Proposition 2.1.2 and Theorem 2.1.11, we can conclude:

φ(Sk) ≥ φ(Tk) ∀k ∈ N

φ(S) = lim
k→∞

φ(Sk) ≥ lim sup
k→∞

φ(Tk).

Hence, the first inequality in (2.3) also holds and we can write

φ(T ) = φ(S) ≥ lim sup
k→∞

φ(Tk) ≥ lim inf
k→∞

φ(Tk) ≥ φ(T ).

Therefore the limes of (φ(Tk))k∈N is well-defined and the claim holds. □

Take note that the limes inferior does not give any information about single subsets
Tk, k ∈ N. It might happen that one special subset Tk∗ , k

∗ ∈ N satisfies the candidate-
condition and therefore φ(Tk∗) = φ(T ), but Tk∗∩Tk = ∅ for all k ≥ k∗+1 and consequently
the limes inferior will not contain Tk∗ .

One open question remains:
What is the benefit w.r.t. φ when adding t ∈ T to the current discretization S ⊆ T?
This question will be answered in Lemma 2.3.4. Right now we have to settle for the
general estimation

φ(T ) ≤ φ(S ∪ {t}) ≤ φ(S).

Nevertheless, after understanding which condition a discretization S ⊆ T has to fulfill
to be able to replace the whole set T in probust terms, how adding a new discretiza-
tion points t ∈ T to S influences φ(S) and how we can work with subset sequences
(Tk)k∈N, Tk ⊆ T for all k ∈ N, we can concentrate on discretized probust functions.

After we understood how discretization works with probust terms, we now focus on how
discretization works with probust functions.
First of all, we have to assume that given a decision x ∈ X and some subset S ⊆ T , we
can evaluate φ(x, S). Therefore, we make the following assumption.
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Assumption 2.1.13 (Well-posedness of ϕ(x, S))
Given compact sets X,T , a probability space (Ξ,A,P), a function g : X×Ξ×T → R and
a probust function φ : X → [0, 1], x 7→ φ(x) = P(g(x, ξ, t) ≤ 0 ∀t ∈ T ), we assume that
Ξ(x, S) := {ξ ∈ Ξ | g(x, ξ, t) ≤ 0 ∀t ∈ S} ∈ A for all x ∈ X,S ⊆ T .

With this assumption we can evaluate all terms φ(x, S) := P(g(x, ξ, t) ≤ 0 ∀t ∈ S) given
x ∈ X and S ⊆ T . Analogously to Proposition 2.1.8, we can show that φ(·, S) changes
continuously w.r.t. x ∈ X for all S ⊆ T .

Proposition 2.1.14 (ϕ(·, S) is continuous)
Given that Assumption 2.1.13 holds and that the inner function g is continuous w.r.t.
(x, ξ, t) ∈ X × Ξ × T satisfying P

(
maxs∈cl(S) g(x, ξ, s) = 0

)
= 0 and S ⊆ T , then the

function φ(·, S) : X → [0, 1] is continuous.

Proof. We show the claim directly by using Theorem 1.2.8 and Theorem 1.1.3:
If S = ∅, then φ(x, S) = 1 for all x ∈ X is continuous w.r.t. x ∈ X as a constant function.
Otherwise, choose a nonempty subset S ⊆ T arbitrarily. Then we can focus on the
expression

φ(·, S) = P

(

max
s∈cl(S)

g(·, ξ, s) ≤ 0

)

.

Because cl (S) ⊆ T is a closed subset of a compact set, it is compact itself. By Berge’s
maximum theorem the function

g(x, ξ, S) = max
s∈cl(S)

g(x, ξ, s)

is continuous in (x, ξ) ∈ X × Ξ and by Theorem 1.1.3 we know that φ(·, S) is also
continuous. As S ⊆ T was chosen arbitrarily, the claim holds. □

By what we have seen so far in this section, we want to focus on subsets S ⊆ T that fulfill
the candidate-condition. As probust functions can be interpreted as probust terms that
vary with x ∈ X, it might happen that a subset S ⊆ T fulfills the candidate-condition at
x1 ∈ X does not fulfill it at x2 ∈ X as the next example shows.

Example 2.1.15 (bottle-neck-condition over different decisions)
Consider the probust function defined by the probability space (R,B,P), where B is the
Borel-σ-algebra on R and P is the probability measure implied by Z ∼ U ([0, 1]). Further-
more, set X := [−1, 1], T := [−1, 1] and g(x, ξ, t) := −xt+ ξ for all (x, ξ, t) ∈ X ×Ξ× T .
For x1 = 1 we can find the (unique) maximizer of g(x1, ξ, t) within T that is t∗1 = −1
for all ξ ∈ Ξ. Consequently, S = {−1} fulfills the bottle-neck-condition (and also the
candidate-condition by Theorem 2.1.10) for x1 = 1.
Considering x2 = −1, we know that t∗2 = 1 is the unique maximizer of g(x2, ξ, t) within T
for all ξ ∈ Ξ and S = {−1} does not fulfill the bottle-neck-condition (or equivalently the
candidate-condition) for x2 = −1 because for fixed ξ = 1 the condition g(x2, ξ,−1) ≤ 0
does not imply g(x2, ξ, 1) ≤ 0.
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2 Probust subset schemes

Therefore, we define a special subset of X that aggregates all decisions for which a given
subset S ⊆ T fulfills the candidate-condition.

Definition 2.1.16 (S-candidate-points)
Given a probust function φ : X → [0, 1] with continuous inner function g : X×Ξ×T → R

and a subset S ⊆ T , we define the set of S-candidate-points as

C(S) := {x ∈ X | S fulfills the candidate-condition for φ(x)}.

The next proposition gives sufficient conditions for a set of S-candidate points to be
compact. We need this property to talk about convergence of (φ(·, Tk))k∈N as a function
afterwards.

Proposition 2.1.17 (C(S) is compact)
Given Assumption 2.1.13 with continuous inner function g, then the set of S-candidate-
points is compact.

Proof. We show the claim directly by Theorem 2.1.10 and Proposition 2.1.14:
Because g is continuous w.r.t. (ξ, t) ∈ Ξ × T for all x ∈ X by assumption, we can use
Theorem 2.1.10 to rewrite the set of S-candidate points as

C(S) = {x ∈ X | φ(x, S)− φ(x, T ) = 0}.

As S and T are fixed sets, we know by the continuity of g w.r.t. (x, ξ, t) ∈ X × Ξ × T
and by Proposition 2.1.14 that φ(·, S) − φ(·, T ) is a continuous function w.r.t. x ∈ X.
Consequently, its pre-image of {0} is closed. As X ⊆ Rn was assumed to be compact,
we know that C(S) is compact as an intersection of a closed set with a compact set.
Therefore, the claim holds. □

Take into account that C(S) ⊆ X is compact, but it might be empty.
To guarantee that a given subset sequence (Tk)k∈N with Tk ⊆ T for all k ∈ N has a
non-empty set of S-candidate points C(S), where S := lim infk→∞ Tk, will be the main
part of constructing discretization schemes in Section 2.3.
In the next proposition, we see how the convergence of Tk → S influences the convergence
of φ(·, Tk) as a function of x ∈ X if we guarantee increasing subsets Tk ⊆ Tk+1 for all
k ∈ N:

Proposition 2.1.18 (Convergence of ϕ(·, Tk) towards ϕ(·, S))
Given that Assumption 2.1.13, the setting of Theorem 2.1.11 and a sequence of subsets
(Tk)k∈N, Tk ⊆ Tk+1 ⊆ T for all k ∈ N, we can conclude that φ(·, Tk)→ φ(·, S) uniformly
w.r.t. x ∈ X, that means

lim
k→∞

max
x∈X
|φ(x, Tk)− φ(x, S)| = 0,

where S := limk→∞ Tk =
⋃∞

k=1 Tk.
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Proof. We prove this claim directly using Dini’s theorem.
We know by Proposition 2.1.14 that φ(·, Tk) for all k ∈ N and φ(·, S) are continuous
functions.
To show point-wise convergence of (φ(x, Tk))k∈N for x ∈ X, we fix an arbitrary x ∈ X.
Because we assumed Tk ⊆ Tk+1 for all k ∈ N, (φ(x, Tk))k∈N is a monotonically decreasing
sequence in [0, 1]. Therefore, we know that φ(x, Tk) converges to some value φx ∈ [0, 1].
Because of Theorem 2.1.10 and Assumption 2.1.13 we know that

φ(x, S) = φ(x, lim
k→∞

Tk) = lim
k→∞

φ(x, Tk) = φx.

As x ∈ X was chosen arbitrarily, (φ(·, Tk))k∈N converges point-wise to φ(·, S). Eventually,
we can use Dini’s theorem to conclude uniform convergence of (φ(·, Tk))k∈N to φ(·, S) and
the claim is fulfilled. □

After showing how φ(·, Tk) converges for k → ∞ towards φ(·, S), the question arises for
which x ∈ X we can conclude limk→∞ φ(x, Tk) = φ(x, T ). The next lemma provides the
answer:

Lemma 2.1.19 (Convergence of ϕ(·, Tk) towards ϕ(·, T ))
Given Assumption 2.1.13 and a sequence of subsets (Tk)k∈N ⊆ 2T . We consider the set
S := lim infk→∞ Tk and can conclude that (φ(·, Tk))k∈N converges uniformly to φ(·, T ) on
C(S), meaning

lim
k→∞

max
x∈C(S)

|φ(x, Tk)− φ(x, T )| = 0.

Proof. We show this claim directly by using Lemma 2.1.19 and Theorem 2.1.12:
By Lemma 2.1.19 we know that (φ(·, Tk))k∈N converges uniformly to φ(·, S) on X and
therefore especially on C(S) ⊆ X. By definition of C(S) and Theorem 2.1.12 we know
that φ(x, S) = φ(x, T ) for all x ∈ C(S). Therefore the claim holds. □

We have seen which setting is sufficient to guarantee the well-posedness of φ(x, S) for
x ∈ X,S ⊆ T and how the function sequence φ(·, Tk) converges uniformly towards φ(·, S)
on X. Furthermore, we characterized the points, where φ(·, Tk) converges uniformly to
φ(·, T ), namely at x ∈ C(S), where S = lim infk→∞ Tk.
In the next section, we define the probust discretization algorithm that generates a se-
quence (xk)k∈N ⊆ X to a given sequence of subsets (Tk)k∈N ⊆ 2T such that accumulation
points of (xk)k∈N solve the (standard) probust optimization problem

SPPS : min
x∈X

f(x) s.t. P(g(x, ξ, t) ≤ 0 ∀t ∈ S) ≥ p,

where again S = lim infk→∞ Tk.
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2.2 The probust discretization algorithm

With the knowledge of how to discretize probust functions, we are ready to define the
probust discretization algorithm in this section and show its convergence given an appro-
priate subset sequence (Tk)k∈N ⊆ 2T .

To formulate the probust discretization algorithm, we have to introduce some quantities
beforehand:

Definition 2.2.1 (Subset schemes Φ)
We call the function sequence Φ = (Φk)k∈N a subset scheme, if for all k ∈ N the functions
Φk : X × 2T → 2T are well-defined.
If Φ is a subset scheme and for all k ∈ N the functions Φk satisfy |Φk(x, S)| <∞ for all
x ∈ X,S ∈ 2T with |S| <∞, we call Φ a discretization scheme.
If Φ is a subset scheme and for all k ∈ N the functions Φk does not depend on X or S,
we call Φ a predefined subset scheme. Otherwise, it is called an adaptive subset scheme.
If Φ is a subset scheme satisfying Φk(x, S) ⊇ S for all x ∈ X,S ⊆ T, k ∈ N, we call Φ an
increasing subset scheme.

In the following algorithm, the subset scheme Φ defines (well-defined) rules on how to
use the current iterates xk ∈ X and Tk ⊆ T to define a new subset Tk+1 ⊆ T for the next
iteration.

Algorithm 3 Probust discretization algorithm

1: Inputs:
Standard probust optimization problem instance SPP, discretization
scheme Φ, initial decision x0 ∈ X, initial discretization T0 ⊆ T

2: Initialize:
k := 0

3: do
4: xk+1 ← argminx∈X f(x) s.t. φ(x, Tk) ≥ p
5: Tk+1 ← Φk(xk+1, Tk)
6: k ← k + 1
7: while stopping criterion is not fulfilled
8: Results:

Sequence (xk, Tk)k∈N

Please note that the optimization problem in line 4 is a JCC if all subsets Tk, k ∈ N

are finite. Then we can use Theorem 1.1.3 and Corollary 1.1.5 to ask if the solution is
well-defined and unique in each iteration k ∈ N.
The definition of a stopping criterion in line 7 will be handled in Chapter 4.

Before we study the convergence of the given algorithm, we need one additional lemma
that guarantees decreasing feasible sets of probust optimization problems for increasing
subsets (Tk)k∈N, where increasing and decreasing is meant w.r.t. the partial ordering ⊆.
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Lemma 2.2.2 (Decreasing feasible sets for S ⊆ T )
Given the setting of Theorem 1.3.9 and a subset S ⊆ T , we can conclude

FT,p ⊆ FS,p,

where FS,p := {x ∈ X | φ(x, S) ≥ p} is the feasible set of the (standard) probust opti-
mization problem with subset S ⊆ T .

Proof. We show FT,p ⊆ FS,p element-wise. For this, let us fix an arbitrary x ∈ FT,p.
By definition this implies φ(x, T ) ≥ p. Using Proposition 2.1.2, we know by S ⊆ T
that φ(x, T ) ≤ φ(x, S). Consequently, φ(x, S) ≥ p and x ∈ FS,p. As x ∈ X was fixed
arbitrarily, the claim holds. □

The next theorem states one of the main results of this thesis: The convergence of the
probust subset algorithm.

Theorem 2.2.3 (Convergence theorem)
Given the setting of Theorem 1.3.9 and a subset scheme Φ which creates a sequence of
subsets (Tk)k∈N ⊆ 2T such that for any accumulation point x̄ of (xk)k∈N the limes inferior
of the corresponding subsequence of subsets S = lim infj→∞ Tkj with limj→∞ xkj = x̄
satisfies x̄ ∈ C(S). Then x̄ is a minimizer of the original probust optimization problem.

Proof. We prove the statement by showing that the accumulation point x̄ is feasible and
optimal w.r.t. the original probust optimization problem:
As the setting of Theorem 1.3.9 is given, we know that the probust optimization prob-
lem has a well-defined solution. Let x̄ ∈ X be an accumulation point of the sequence
(xk)k∈N. Because X is compact, we can guarantee the existence of at least one of these
accumulation points.
Without loss of generality we assume that xk → x̄ for k →∞. Otherwise, there exists a
subsequence (xki)i∈N such that ki+1 > ki for all i ∈ N and xki → x̄ for i → ∞ that we
would consider instead.

We show that x̄ is feasible w.r.t. the original probust optimization problem indirectly by
using Lemma 2.2.2, Fatou’s lemma and Lemma 2.1.19 :
Assume that x̄ /∈ FT,p. Because the minimizer xk is well-defined we get for any k ∈ N

that xk ∈ FTk,p and therefore φ(xk, Tk) ≥ p for any k ∈ N.
With Lemma 2.2.2 we get

FSk+i,p ⊆ FSk,p ∀i, k ∈ N,

where Sj :=
⋂

k≥j

Tk ∀j ∈ N.

Consequently, Sj fulfills Sj = Tj ∩ Sj+1 for all j ∈ N and we can conclude for any fixed
i, k ∈ N:

xk+i ∈ FTk+i,p ⊆ FSk+i,p ⊆ FSk,p

⇒ p ≤ φ(xk+i, Tk+i) ≤ φ(xk+i, Sk+i) ≤ φ(xk+i, Sk)
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Next, we rewrite the last inequality as:

p ≤ φ(xk+i, Sk)

= Pξ(Ω (xk+i, Sk)))

=

∫

ξ∈Ω(xk+i,Sk)
1dP(ξ)

=

∫

ξ∈Ξ
χΩ(xk+i,Sk)(ξ)dP(ξ)

=

∫

ξ∈Ξ
χmax

t∈cl(Sk)
g(xk+i,·,t)≤0(ξ)dP(ξ)

Using Fatou’s lemma and the continuity of g w.r.t. x we conclude further:

p ≤ lim sup
i→∞

∫

ξ∈Ξ
χmax

t∈cl(Sk)
g(xk+i,·,t)≤0(ξ)dP(ξ)

≤
∫

ξ∈Ξ
lim sup
i→∞

χmax
t∈cl(Sk)

g(xk+i,·,t)≤0(ξ)dP(ξ)

=

∫

ξ∈Ξ
χmax

t∈cl(Sk)
g(x̄,·,t)≤0(ξ)dP(ξ)

= φ(x̄, Sk)

Therefore, x̄ ∈ FSk,p for every k ∈ N or equivalently x̄ ∈ ⋂k∈NFSk,p.
Because we assumed that S = lim infk→∞ Tk = limk→∞ Sk fulfills x̄ ∈ C(S), we know by
Lemma 2.1.19 and the definition of C(S) that we can write

p ≤ lim
k→∞

φ(x̄, Sk) = φ(x̄, S) = φ(x̄, T ).

Consequently, x̄ is feasible w.r.t. the original problem.

Next we show that x̄ is a minimizer of the original probust optimization problem indi-
rectly:
Let us assume that there exists x∗ ∈ FT,p with f(x∗) < f(x̄). Because FT,p ⊆ FTk,p for
all k ∈ N, we know that x∗, x̄ ∈ FTk,p for all k ∈ N. Because of the definition of xk in the
probust discretization algorithm 3 line 4 and the continuity of f w.r.t. x ∈ X we get the
following contradiction:

f(x∗) < f(x̄) = lim
k→∞

f(xk)

= lim
k→∞

min
x∈FTk,p

f(x)

≤ lim
k→∞

min
x∈FT,p

f(x)

= min
x∈FT,p

f(x) ≤ f(x∗)

Therefore, our assumption is wrong what proves the optimality of x̄ within FT,p.
All together the accumulation point x̄ is feasible and minimal and therefore a minimizer
of the original probust optimization problem. □
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2.2 The probust discretization algorithm

In the last proof, we have seen that the difficult part is showing that the candidate-
condition holds at an accumulation point x̄.
The part of the proof focusing on the optimality of the iterates x̄ is rather short. This can
be used to soften the definition of the iterates xk, k ∈ N to be nearly optimal solutions of
the corresponding subproblems as shown by Theorem 1 in the paper of Berthold, Heitsch,
Henrion and Schwientek [15].
If we use the last theorem on an increasing subset sequence (Tk)k∈N with Tk ⊆ Tk+1 for
all k ∈ N, we can consider S =

⋃∞
k=1 Tk. Then, we just have to check, if S satisfies

the candidate-condition for the accumulation point x̄ ∈ X. The next example shows
that checking the candidate-condition for an arbitrary sequence of subsets might lead to
unsatisfying results:

Example 2.2.4 (lim infk→∞ Tk is too weak in general)
Consider the probust optimization problem

min
x∈[0,2]

−x s.t. P(−x+ ξ + t2 ≤ 0 for all t ∈ T := [−1, 1]) ≥ 0.9, Z ∼ U ([0, 1]) .

Then using the discretization scheme Φ defined by

Φk : X × 2T → 2T , (x, S) 7→
{

{−1} if k is even and

{1} if k is odd

leads to the iterates xk = x∗ = 1.9.
Consequently, the generated iterates converge towards the minimizer of the original pro-
bust optimization problem. Nevertheless, the set S = lim infk→∞ Tk is empty and does
not fulfill φ(xk, S) = φ(xk, T ) for any k ∈ N.
On the contrary, every Tk, k ∈ N fulfills φ(xk, Tk) = φ(xk, T ). Therefore, we must not
only focus on the limes inferior of the whole sequence (Tk)k∈N, but also consider the limes
inferior of subsequences of (Tk)k∈N. Note that the subsequence (x2k, T2k)k∈N fulfills the
condition limk→∞ φ(x2k, T2k) = φ(x∗, T ).

The last theorem can be used as a tool to show directly that a given subset scheme
Φ leads to a solution of the original probust optimization problem. It seems especially
useful if we work with increasing discretization schemes. If we do not ensure increasing
subset schemes, the proof of convergence might be more difficult as we have to specify
subsequences (of subsets) of subsequences (of iterates) to guarantee convergence as the
last example pointed out. This motivates us to focus on another approach that can be
used by comparing two subset schemes Φ1 and Φ2.
We want to show that if the scheme Φ1 leads to iterates that converge to a minimizer
of the original probust optimization problem and Φ2 generates “better” subsets than Φ1,
then the iterates generated by the probust subset algorithm using Φ2 do also converge to
a minimizer of the original probust optimization problem.
With this approach we switch the perspective from the iterates xk, k ∈ N to the minimizer
x∗ ∈ X. We interpret the subsets (Tk)k∈N generated by Φ1 and (Sk)k∈N generated by
Φ2 as measures how precise Φ1 and Φ2 are able to describe the feasibility of x∗ by
approximating φ(x∗, T ).
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2 Probust subset schemes

Lemma 2.2.5 (Reduction of subset schemes 1)
Assume that we have a subset scheme Φ1 that generates a sequence (Tk)k∈N and de-
note S1 := lim infk→∞ Tk. Assume further that a the discretization algorithm with sub-
set scheme Φ2 creates a sequence (xk, Sk)k∈N such that (xk)k∈N has a accumulation
point x̄ ∈ C(S1) and the corresponding limes inferior S2 := lim infj→∞ Skj satisfies
x̄ ∈ C(S1, S2) := {x ∈ X | φ(x, S1) = φ(x, S2)}. Then x̄ is an optimal solution of
the original probust optimization problem.

Proof. We argue directly that any accumulation point x̄ of (xk)k∈N fulfills x̄ ∈ C(S2) and
therefore we can use Theorem 2.2.3 to conclude the claim.

Let us fix an arbitrary accumulation point x̄ of (xk)k∈N. As x̄ ∈ C(S1) ∩ C(S1, S2) by
assumption, we know by definition that

φ(x̄, S2) = φ(x̄, S1) = φ(x̄, T ).

With Theorem 2.1.10 we know that this implies x̄ ∈ C(S2).
Consequently Theorem 2.2.3 guarantees us that x̄ is a solution of the original probust
optimization problem. □

Be aware that this reduction lemma has two difficulties:
First, we have to show x̄ ∈ C(S1, S2). As S2 ⊆ T might be given just implicitly, the
set C(S1, S2) is hard to compute. Consequently, this approach is useful if we know a lot
about the subsets defined by Φ1, e.g., if Φ1 is an uniform discretization scheme.
Second, we have to guarantee that x̄ = limj→∞ xkj ∈ C(S1). Again, it would be nice to
have a reference subset scheme, where we know what C(S1) looks like. We will see in the
next section that the uniform discretization scheme is such a nice reference scheme as it
guarantees C(S1) = X.
The next theorem shows that we can exchange the condition x̄ ∈ C(S1, S2) by a condition
that works on the subset sequences (Tk)k∈N generated by Φ1 and (xk, Sk)k∈N generated
by Φ2.

Theorem 2.2.6 (Reduction of subset schemes 2)
Assume that we have a subset scheme Φ1 that generates a sequence (Tk)k∈N and de-
note S := lim infk→∞ Tk. Assume further that a the discretization algorithm with sub-
set scheme Φ2 creates a sequence (xk, Sk)k∈N such that (xk)k∈N has an accumulation
point x̄ ∈ C(S) and for the subsequence (xkj )j∈N with limj→∞ xkj = x̄ there exists some
N ∈ N such that for all j ∈ N, j ≥ N there exists nj ,mj ∈ N, nj ,mj ≥ j such that
φ(xknj

, Skmj
) ≤ φ(xknj

, Tj), then x̄ is a minimizer of the original probust optimization
problem.

64



2.3 Examples of converging discretization schemes

Proof. We provide this proof directly using Propositions 2.1.14, 2.1.18 and Theorem 2.2.3.
By our assumptions and Proposition 2.1.2, 2.1.14 and 2.1.18 we can estimate:

φ(x̄, T ) = lim
j→∞

φ(xknj
, T )

≤ lim
j→∞

φ(xknj
, Skmj

)

≤ lim
j→∞

φ(xknj
, Tj)

≤ φ(x̄, lim inf
j→∞

Tj)

= φ(x̄, T )

Consequently, we know that x̄ ∈ C(lim infj→∞ Skmj
) where limj→∞ xkmj

= x̄. Using
Theorem 2.2.3 the claim holds. □

Please mind that the iterate sequence generated by the probust discretization algorithm
using Φ1 does not appear anywhere in the last theorem.
In the next section, we specify some discretization strategies Φ and show that the corre-
sponding subset sequences (Tk)k∈N fulfill the candidate-condition for all generated accu-
mulation points of (xk)k∈N.

2.3 Examples of converging discretization schemes

The last section provides results to guarantee the convergence of the iterates generated by
the probust subset algorithm 3 towards the minimizer of the corresponding (standard)
probust optimization problem. Now, we use these results to show that discretization
methods from semi-infinite optimization can also be modified to work in the probust op-
timization context. We focus on the uniform discretization and an adaptive discretization
scheme from Blankenship and Falk [17].

First, we utilize Theorem 2.2.3 to show that the following subset schemes lead to a
minimizer of the original probust optimization problem:

1. An uniform discretization scheme

2. An adaptive discretization scheme using inner function evaluation information called
low-level adaptive discretization (LLAD) approach

3. An adaptive discretization scheme using probust function evaluation information
called high-level adaptive discretization (HLAD) approach.

These discretization schemes define the basic schemes that we use in Part II of this thesis
to create more specified subset schemes to solve the corresponding applications.

65



2 Probust subset schemes

After considering the basic schemes, we finish this chapter by considering a non-increasing
subset scheme that we compare with an uniform discretization scheme and use the re-
duction theorem 2.2.6 to ensure its convergence.

Uniform discretization scheme

The first discretization scheme Φ = (Φk)k∈N which we analyze is an uniform discretization
scheme with vanishing grid size defined by

Φk : X × 2T → 2T , (x, S) 7→
{

t ∈ T ⊆ Rq | ∃j ∈ Zq : t =

q
∑

i=1

dkjiei

}

, (2.4)

where ei, i ∈ {1, ..., q} with q ∈ N is the i.th column of the identity matrix I ∈ Rq×q and
(dk)k∈N is a sequence of positive numbers converging to zero. By definition |Φk(x, S)| <
∞ and Φk(x, S) ⊊ Φk+1(x, S) for all k ∈ N, x ∈ X,S ⊆ T and compact T ⊆ Rq.
Consequently, this scheme is a predefined discretization scheme. If the grid sizes dk, k ∈ N

are multiples of each other, the corresponding subset scheme is also an increasing subset
scheme.

Lemma 2.3.1 (Convergence of uniform discretization scheme)
Let T be a set without isolated points, meaning that for all t ∈ T and r > 0 there exists
some s ∈ T, s ̸= t such that s ∈ Br(t). Additionally, let Φ be the uniform discretization
scheme, then any accumulation point of the sequence (xk)k∈N generated by the probust
subset algorithm 3 converges to a minimizer of the original probust optimization problem.
Furthermore, S := limk→∞ Tk satisfies C(S) = X.

Proof. We prove this claim by using Theorem 2.2.3:
By definition of Φk the set Tk+1 := Φk(xk, Tk) is well-defined for all k ∈ N. Consequently,
the algorithm creates iterates for all k ∈ N and as X ⊆ Rn was assumed to be compact,
we know that (xk)k∈N has at least one accumulation point.
Let us fix an arbitrary accumulation point x̄ of (xk)k∈N. To use Theorem 2.2.3, we have
to show x̄ ∈ C(S). For this, we show that the candidate-condition is fulfilled for any
x ∈ X including x̄.

We argue indirectly and assume there exists x ∈ X such that the candidate-condition
does not hold

∃tf ∈ T, ϵ > 0 : φ(x, S)− φ(x, S ∪ {tf}) ≥ ϵ.

Because of Theorem 2.1.10 and the definition of the bottle-neck-condition, we know that
there exists Ω ∈ A such that

Ω = {ξ ∈ Ξ | g(x, ξ, s) ≤ 0 for all s ∈ S ∧ g(x, ξ, tf ) > 0} and
P(Ω) ≥ ϵ.
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2.3 Examples of converging discretization schemes

Additionally, we know by Assumption 2.1.6 that there exists a set Ω̃ ∈ A such that

Ω̃ = {ξ ∈ Ξ | g(x, ξ, s) < 0 for all s ∈ S ∧ g(x, ξ, tf ) > 0} and
P(Ω̃) = P(Ω) ≥ ϵ.

Because g is continuous w.r.t. t ∈ T and Ω̃ ̸= ∅ due to ϵ > 0, there exists a realization
ξf ∈ Ω̃ and a radius r > 0 such that

g(x, ξf , t) > 0 ∀t ∈ Br(tf ),

while max
s∈cl(S)

g(x, ξf , s) < 0.

By the definition of Tk, we know that Tk ⊆ Tk+1 for all k ∈ N and therefore S =
⋃∞

k=1 Tk.
As we assumed that the distance between discretization points dk goes to 0 for k → ∞,
we can find some N ∈ N such that for all k ≥ N we can guarantee that dk < r and
consequently we have at least one discretization point t̄ ∈ Tk ∩ Br(tf ) ⊆ S ∩ Br(tf ).
Because t̄ ∈ S ∩Br(tf ), this point has to fulfill

g(x, ξf , t̄) > 0,

but g(x, ξf , t̄) ≤ max
s∈cl(S)

g(x, ξf , s) < 0.

This is a contradiction and thus, the candidate-condition holds for any x ∈ X, especially
for any accumulation point x̄ of (xk)k∈N and the claim holds due to Theorem 2.2.3. □

The assumption of T having no isolated point is important. If we do not ensure this
property of T , the uniform discretization scheme does not have to find the minimizer of
the probust optimization problem.
One might think of an example, where T = {

√
2} and the uniform discretization scheme

is defined by its grid sizes dk = 1
k
for all k ∈ N. Since Tk = T ∩Gdk = ∅ in each iteration

k ∈ N this would imply φ(x, Tk) = 1 for all x ∈ X, k ∈ N.

Low-level adaptive discretization approach (LLAD)

In this section, we specify the subset scheme Φ = (Φk)k∈N in the probust discretization
algorithm introduced in Section 2.2 as

Φk : X × 2T → 2T , (x, S) 7→ S ∪ S∗
k (2.5)

where S∗
k :=

⋃

ξ∈Ξ̇k
{t∗(ξ)}, t∗(ξ) ∈ argmaxt∈T g(x, ξ, t) is a set of worst-case scenarios,

depending on the realizations ξ ∈ Ξ̇k, where ∅ ≠ Ξ̇k ⊆ Ξ is any subset of realization from
Ξ for each k ∈ N. By definition this scheme is an increasing subset scheme. If |Ξ̇k| <∞
for all k ∈ N, this scheme is a discretization scheme.
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2 Probust subset schemes

With this scheme we select the scenarios t∗k(ξ) that are worst w.r.t. certain realizations
ξ ∈ Ξ̇k considering decision xk in each iteration k ∈ N.
An interesting questions is which discretization Ξ̇k ⊆ Ξ to select in each iteration k ∈ N.
We show the convergence of the scheme for randomly picked realizations and non-empty
subsets Ξ̇k ̸= ∅ for all iterations k ∈ N.

Lemma 2.3.2 (Convergence of LLAD)
Choosing Φ as the low level adaptive discretization scheme, where Ξ̇k are non-empty

and the realizations ξk ∈ Ξ̇k are randomly i.i.d. chosen (according to random variable
in the probust problem) for all k ∈ N. Then, any accumulation point of (xk)k∈N of the
corresponding probust discretization method is P-almost surely a minimizer of the original
probust optimization problem.
Furthermore, we can conclude with S := limk→∞ Tk that

P(x ∈ C(S)) = 1.

Proof. We prove this claim by using Theorem 2.2.3:
We show that the candidate-condition is fulfilled P-almost surely for any point x ∈ X
and therefore especially for any accumulation point x̄ ∈ X of (xk)k∈N.
Be aware that the maximizer of argmaxt∈T g(xk, ξ, t) is well-defined for all ξ ∈ Ξ, k ∈ N

because we made the assumption that T is compact and g is continuous w.r.t. t ∈ T for
all (x, ξ) ∈ X × Ξ. Furthermore, because X ⊆ Rn with n ∈ N is compact, the sequence
(xk)k∈N has at least one accumulation point.

Now we fix an arbitrary x ∈ X and argue indirectly by assuming:

∃tf ∈ T, ϵ > 0 : φ(x, S)− φ(x, S ∪ {tf}) ≥ ϵ

Because of Theorem 2.1.10 and the definition of the bottle-neck-condition, we know that
there exists Ω ∈ A such that

Ω = {ξ ∈ Ξ | g(x, ξ, s) ≤ 0 for all s ∈ S ∧ g(x, ξ, tf ) > 0},
P(Ω) ≥ ϵ.

Additionally, we know by Assumption 2.1.6 that there exists a set Ω̃ ∈ A such that

Ω̃ = {ξ ∈ Ξ | g(x, ξ, s) < 0 for all s ∈ S ∧ g(x, ξ, tf ) > 0},
P(Ω̃) = P(Ω) ≥ ϵ.

Since g is continuous w.r.t. ξ ∈ Ξ and Ω̃ ̸= ∅ due to ϵ > 0, we can find a realization
ξf ∈ Ω̃ and a radius r > 0, such that

g(x, ξ, tf ) > 0 for all ξ ∈ Br(ξf ),

while max
s∈cl(S)

g(x, ξ, s) < 0 for all ξ ∈ Br(ξf ).
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2.3 Examples of converging discretization schemes

Due to ξ ∈ supp (P), we can conclude that

ε := P(Br(ξf )) > 0.

As we choose at least one realization in each iteration k ∈ N and the choice of new
scenarios ξk ∈ Ξ̇k is i.i.d., the probability of selecting a realization ξk ∈ Br(ξf ) for any
k ∈ N is:

P(∃k ∈ N : ξk ∈ Br(ξf ))

= 1− P(∀k ∈ N : ξk /∈ Br(ξf ))

= lim
k→∞

1− (1− ε)k

= 1

Therefore, we P-almost surely pick a ω ∈ Br(ξf ) at some iteration k ∈ N. Assuming that
we pick ω ∈ Br(ξf ) in iteration K ∈ N, we know that we add

t∗K(ω) := argmax
t∈T

g(x, ω, t) ∈ TK+1 ⊆
∞⋃

k=1

Tk = S

to our discretization. Because of

g(x, ω, t∗K(ω)) = max
t∈T

g(x, ω, t) ≥ g(x, ω, tf ),

we know that the uncertainty pair (ω, tf ) ∈ Br(ξf )× T has to fulfill

g(x, ω, tf ) > 0 as ω ∈ Br(ξf ),

while g(x, ω, tf ) ≤ g(x, ω, t∗K(ω)) ≤ max
s∈cl(S)

g(x, ω, t) < 0.

This is a contradiction. Since we have chosen the realization ξk randomly, our basic
assumption is P-almost surely wrong. Consequently, the candidate-condition holds for
any decision P-almost surely, especially for all accumulation points x̄ ∈ X of (xk)k∈N.
Using Theorem 2.2.3 the claim is true. □

High-level adaptive discretization approach (HLAD)

In this section, we specify the subset scheme Φ = (Φk)k∈N in the probust discretization
algorithm introduced in Section 2.2 as

Φk : X × 2T → 2T , (x, S) 7→ S ∪ S∗
k (2.6)

where S∗
k := {t∗1, ..., t∗nk

}, (t∗1, ..., t∗nk
) ∈ argmin(t1,...,tnk

)∈Tnk φ(x, S ∪ {t1, ..., tnk
}) are the

worst-case scenarios considering the probability of x ∈ X given the current subset S ⊆ T
for each k ∈ N and (nk)k∈N is a sequence of natural numbers. By definition this scheme
is an increasing subset scheme. If |T0| <∞ for all k ∈ N, this scheme is a discretization
scheme.
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2 Probust subset schemes

Lemma 2.3.3 (Convergence of HLAD)
Choosing Φ as the high level adaptive discretization scheme any accumulation point of
(xk)k∈N of the corresponding probust subset method converges to a minimizer of the orig-
inal probust optimization problem.

Proof. We prove this claim by using Theorem 2.2.3:
We show that the candidate-condition is fulfilled for any accumulation point x̄ ∈ X of
(xk)k∈N indirectly.
Please mind that with Assumption 2.1.6 and by the compactness of T the selected sce-
narios are well-defined for all k ∈ N. Furthermore, due to the compactness of X ⊆ Rn,
the sequence (xk)k∈N has at least one accumulation point. Without loss of generality we
assume that the whole sequence has just one accumulation point. Otherwise, we switch
notations to the subsequence.

Now we fix the accumulation point x̄ ∈ X, set S := limk→∞ Tk and assume that the
candidate-condition does not hold:

∃tf ∈ T, ϵ > 0 : φ(x̄, S)− φ(x̄, S ∪ {tf}) ≥ ϵ

We will rewrite this inequality using Propositions 2.1.18 and 2.1.14:

0 < ϵ ≤ lim
k→∞

φ(x̄, Tk)− φ(x̄, Tk ∪ {tf})
= lim

k→∞
φ(x̄, Tk)− φ(xk, Tk ∪ {tf}) + φ(xk, Tk ∪ {tf})− φ(x̄, Tk ∪ {tf})

︸ ︷︷ ︸

→0 by Proposition 2.1.18

= lim
k→∞

φ(x̄, Tk)− φ(xk, Tk ∪ {tf})
= lim

k→∞
φ(x̄, Tk)− φ(xk, Tk+1) + φ(xk, Tk+1)− φ(xk, Tk ∪ {tf})

︸ ︷︷ ︸

≤0 due to the definition of Tk+1,t
∗

k

≤ lim
k→∞

φ(x̄, Tk)− φ(xk, Tk+1)

= lim
k→∞

φ(x̄, Tk)− φ(x̄, Tk+1)
︸ ︷︷ ︸

→0 due to Proposition 2.1.14

+φ(x̄, Tk+1)− φ(xk, Tk+1)
︸ ︷︷ ︸

→0 due to Proposition 2.1.18

= 0

This contradicts the existence of such a tf ∈ T . Consequently, the candidate-condition
is fulfilled for x̄ ∈ X or equivalently x̄ ∈ C(S). Using the convergence Theorem 2.2.3 the
claim holds. □

Additionally to the convergence of the iterates, the HLAD approach has another property
that the uniform and LLAD do not have as they discretize the whole set T . The HLAD
concentrates on the scenarios that guarantee feasibility of the accumulation points of
(xk)k∈N. The next lemma states that this leads to a monotone behavior in the probabil-
ity evaluations. The behavior is noticeable, when the probust constraint is independent
from x ∈ X. Therefore, the next lemma focuses on approximating probust terms with
the HLAD.
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Lemma 2.3.4 (Monotonicity of HLAD)
Assuming that in a probust term φ the inner function g is continuous w.r.t. (ξ, t) and
Assumption 2.1.6 holds, then we can conclude that the subset sequence (Tk)k∈N defined
by HLAD (for probust terms) satisfies for any k ∈ N

φ(Tk)− φ(Tk+1) ≥ φ(Tk+1)− φ(Tk+2).

Proof. We show the claim directly using well-known set theoretical operations:
By Assumption 2.1.6 we know that φ(S ∪ {t}) is a continuous function w.r.t. t ∈ T for
all S ⊆ T . Because T ⊆ Rq is compact, the new discretization point t∗k ∈ T defined by
the HLAD is well-defined due to Weierstrass’ theorem for all k ∈ N.
Next we show that

φ(Tk+2) ≥ 2φ(Tk+1)− φ(Tk). (2.7)

By definition of φ(S), S ⊆ T and t∗k we know for any k ∈ N:

φ(Tk+2) = P




⋂

t∈Tk+2

Ω(t)





= P




⋂

t∈Tk

Ω(t) ∩ Ω(t∗k) ∩ Ω(t∗k+1)





= P




⋂

t∈Tk

Ω(t) ∩ Ω(t∗k) ∩
⋂

t∈Tk

Ω(t) ∩ Ω(t∗k+1)





= P




⋂

t∈Tk

Ω(t) ∩ Ω(t∗k)



+ P




⋂

t∈Tk

Ω(t) ∩ Ω(t∗k+1)





−P








⋂

t∈Tk

Ω(t) ∩ Ω(t∗k)



 ∪




⋂

t∈Tk

Ω(t) ∩ Ω(t∗k+1)









= φ(Tk+1) + φ(Tk ∪ {t∗k+1})− P








⋂

t∈Tk

Ω(t) ∩ Ω(t∗k)



 ∪




⋂

t∈Tk

Ω(t) ∩ Ω(t∗k+1)









≥ φ(Tk+1) + φ(Tk+1)− P

(


⋂

t∈Tk

Ω(t) ∩ Ω(t∗k)



 ∪




⋂

t∈Tk

Ω(t) ∩ Ω(t∗k+1)





︸ ︷︷ ︸

⊆
⋂

t∈Tk
Ω(t)

)

≥ φ(Tk+1) + φ(Tk+1)− P




⋂

t∈Tk

Ω(t)





= 2φ(Tk+1)− φ(Tk)

As inequality (2.7) is equivalent to the claim, the claim holds. □
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This means when using HLAD as a discretization method we can use the following nu-
merical stopping criterion for a fixed precision ϵ > 0 which heuristically estimates the
feasibility of the current iterate xk with k ∈ N

φ(xk, Tk)− φ(xk, Tk+1) < ϵ.

Multi-index high-level adaptive discretization approach (MIHLAD)

Last, but not least, we specify the subset scheme Φ = (Φk)k∈N in the probust discretiza-
tion algorithm introduced in Section 2.2 as

Φk : X × 2T → 2T , (x, S) 7→ S∗
k ,

where S∗
k := {t∗1, ..., t∗nk

} with (t∗1, ..., t
∗
nk
) ∈ argmin(t1,...,tnk

)∈Tnk φ(x, {t1, ..., tnk
}) is the

nk-tuple of worst-scenarios considering the probability of x ∈ X to be feasible with k ∈ N

and (nk)k∈N is a sequence of natural numbers satisfying nk ≥ k for all k ∈ N. By
definition this scheme is a discretization scheme. In comparison to the HLAD we do not
add worst-case discretization points to a given subset S. Instead, we reconstruct the
whole discretization in each iteration k ∈ N. Consequently, MIHLAD does not have to
be an increasing discretization scheme.

Lemma 2.3.5 (Convergence of MIHLAD)
Choosing Φ as the multi-index high-level adaptive discretization approach, any accumu-
lation point x̄ of (xk)k∈N converges to an minimizer of the original probust optimization
problem.

Proof. We prove this result by using the reduction Theorem 2.2.6 and a reduction to the
uniform discretization scheme with dk = 1

2k
for all k ∈ N:

Due to Assumption 2.1.6 and the compactness of T ⊆ Rq the new discretization points
are well-defined for all k ∈ N. As X ⊆ Rn, n ∈ N is compact, the sequence (xk)k∈N
has at least one accumulation point. Without loss of generality we assume that the
whole sequence has just one accumulation point. Otherwise, we switch notations to the
subsequence.
Now we fix this accumulation point x̄ ∈ X and look at the sequence (Tk)k∈N generated
by the uniform discretization scheme. We have already shown that S1 := limk→∞ Tk

guarantees x ∈ C(S1) for all x ∈ X in Lemma 2.3.1. This also implies x̄ ∈ C(S1).
Then we can choose for any fixed j ∈ N the corresponding kj := |Tj | < ∞ number of
points in Tj . By definition of Φ2 as the MIHLAD, we know that we choose in the kjth
iteration a subset S∗

kj
⊆ T with at least |Tj | elements that fulfills by definition:

φ(xkj , Skj ) = min
S⊆T,|S|=|Skj

|
φ(xkj , S) ≤ φ(xkj , Tj) ∀j ∈ N

As j ∈ N was fixed arbitrarily, Theorem 2.2.6 guarantees us the existence of a subsequence
of (xk)k→∞ such that:

lim
j→∞

φ(xkj , Skj ) = φ(x̄, T ).
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2.3 Examples of converging discretization schemes

Since we assumed that (xk)k∈N is convergent, we know that x̄ is a minimizer of the original
probust optimization problem. □

Because the MIHLAD provides a more precise approximations of φ(xk, T ) than HLAD
given a fixed number of discretization points, we can also fix an arbitrary ϵ > 0 and
choose

φ(xk, Tk)− φ(xk, Tk+1) < ϵ

as a stopping criterion for the probust subset algorithm.

Summary

In this chapter, we analyzed probust terms and found characterizations of how a subset
S ⊆ T can represent the whole set T in means of a probust evaluation. With this charac-
terization in form of the candidate-condition in mind, we defined an iterative algorithm
to solve standard probust optimization problems. To show that a given subset scheme Φ
leads to the convergence of the corresponding iterates towards a minimizer of the original
standard probust optimization problem, we gave two alternatives. On the one hand, we
can directly show that any accumulation point of the iterates satisfies the candidate-
condition. On the other hand, we can show that the considered subset scheme is more
accurate than a reference subset scheme whose convergence is already guaranteed.
In the end, we showed that some prominent discretization schemes like an uniform dis-
cretization or the HLAD - as a probust version of the adaptive discretization scheme from
Blankenship and Falk - work out in the probust setting.
One structural property of this subset approach is that we generate iterates xk, k ∈ N that
are in general infeasible w.r.t. the original probust optimization problem. Furthermore,
the stopping criterion for the iterative probust subset algorithm is not clearly defined in
general. We can use some minimal grid size in the uniform discretization approach or
the condition φ(xk, Tk)−φ(xk, Tk+1) < ϵ for some precision ϵ > 0 in the HLAD recalling
Lemma 2.3.4, but these are just heuristics so far.
Our next goal is to define feasible iterates for probust optimization problem such that we
can define upper bounds for the optimal objective value of a standard probust optimiza-
tion problem next to the lower bounds that are defined by the iterates of the probust
subset algorithm.
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3 Set-approximation schemes

In the last chapter, we developed an iterative solution method for standard probust opti-
mization problems based on subsets S of the set of scenarios T . As we do not consider the
constraints indexed by t ∈ T \ S in this approach, the generated iterates are in general
infeasible w.r.t. the original standard probust optimization problem. Furthermore, we
did not specify the stopping criterion for the iterative probust subset algorithm 3.
In this chapter, we introduce a second numerical approach to solve standard probust op-
timization problems that is based on approximating the set of feasible realizations Ω(x∗)
of an optimal solution x∗ of a standard probust optimization problem.
Over the course of this chapter, we see how the structure of the inner function g influ-
ences the structure of the set of feasible realizations and how we can use this structure to
generate decisions that are feasible for the corresponding probust optimization problem.
We end this chapter with an example of how we use the set-approximation approach with
a probust optimization problem.
As the set-approximation approach is not specifically designed for probust optimization
problems, but for chance constrained optimization problems in general as introduced in
Section 1.1, we mainly focus on this problem class. We then see that the results from
chance constrained optimization problems can easily be transferred to probust optimiza-
tion problems. The additional structure of probust optimization problems can even be
used to specify special set-approximation approaches. Here, we are mainly inspired by
the approximation of convex sets by linear inequalities.

3.1 Probability approximation by set-approximation

We start this chapter by considering the problem of approximating the probability of a
given measurable set Ω by a family of measurable sets (Ωδ)δ∈∆. We discuss a solution
approach where we guarantee subset relations of Ω and the elements Ωδ, δ ∈ ∆.
We verify that this relation leads to upper and lower bounds to the probability of the set
Ω. We also define a condition such that these bounds are sharp.
After giving examples which family of sets satisfy this condition, we concentrate on
measurable sets described by inequality constraints. In this context, we ask how we have
to approximate these inequalities to guarantee a good approximation of the corresponding
measurable sets.
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3 Set-approximation schemes

Approximation by a family of sets

Given a probability space (Ξ,A,P), we focus on approximating the probability of a mea-
surable set Ω ∈ A by other measurable sets.
Here, we are looking for a set Ω̃ ∈ A which minimizes its probability of the symmetric
difference with Ω that can be defined as

dP(Ω, Ω̃) := P(Ω ∩ Ω̃C) + P(ΩC ∩ Ω̃).

As this function is hard to evaluate in general, we are interested in reformulations to be
able to find a best approximation Ω̃ in the family of measurable sets (Ωδ)δ∈∆.

Definition 3.1.1 (Set-approximation of a probability)
Let (Ξ,A,P) be a probability space, Ω ∈ A and (Ωδ)δ∈∆ ⊆ A be a family of measurable
sets with index set ∆.
We call the optimization problem

inf
δ∈∆

dP(Ω,Ωδ)

the set-approximation problem of Ω given (Ωδ)δ∈∆,

sup
δ∈∆

P(Ωδ) s.t. Ωδ ⊆ Ω

the inner set-approximation problem of Ω given (Ωδ)δ∈∆ and

inf
δ∈∆

P(Ωδ) s.t. Ω ⊆ Ωδ

the outer set-approximation problem of Ω given (Ωδ)δ∈∆.
Here ∆ is called the design space, δ ∈ ∆ is called a design parameter, Ωδ is called a design
and D =

⋃

δ∈∆Ωδ is called set of designs.

Because Ω and Ωδ are measurable for all δ ∈ ∆, we know that dP(Ω,Ωδ) ∈ [0, 1] is
well-defined for all δ ∈ ∆. To show the connection between the set-approximation prob-
lem and the inner/outer set-approximation problem of a Ω ∈ A, we need the following
proposition:

Proposition 3.1.2 (Reformulation of set-approximation problem)
Let (Ξ,A,P) be a probability space, Ω ∈ A and (Ωδ)δ∈∆ ⊆ A be a family of measurable
sets. Then

(i) infδ∈∆ dP(Ω,Ωδ) = P(Ω)− supδ∈∆ P(Ωδ) if Ωδ ⊆ Ω holds for all δ ∈ ∆.

(ii) infδ∈∆ dP(Ω,Ωδ) = infδ∈∆ P(Ωδ)− P(Ω) if Ω ⊆ Ωδ holds for all δ ∈ ∆.
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3.1 Probability approximation by set-approximation

Proof. We show both reformulation using well-known operations from set and probability
theory:
Proof of (i): Assume that Ωδ ⊆ Ω holds for all δ ∈ ∆. Then we know that

Ωδ ∩ ΩC ⊆ Ω ∩ ΩC = ∅

holds for all δ ∈ ∆. Consequently, we can write

inf
δ∈∆

dP(Ω,Ωδ) = inf
δ∈∆

P(Ω ∩ ΩC
δ ) + P(ΩC ∩ Ωδ)

= inf
δ∈∆

P(Ω ∩ ΩC
δ ) + 0

= inf
δ∈∆

(
1− P(Ωδ ∪ ΩC)

)

= 1− sup
δ∈∆

P(Ωδ ∪ ΩC)

= 1−
(

sup
δ∈∆

P(Ωδ) + P(ΩC)

)

= 1− P(ΩC)− sup
δ∈∆

P(Ωδ)

= P(Ω)− sup
δ∈∆

P(Ωδ),

where we used that Ωδ∪ΩC is a union of disjoint sets as we assumed Ωδ ⊆ Ω. This shows
the first claim.
Proof of (ii): Assume that Ω ⊆ Ωδ holds for all δ ∈ ∆. Then we know that

P(Ωδ) = P(Ωδ ∩ Ω) + P(Ωδ ∩ ΩC)

= P(Ω) + P(Ωδ ∩ ΩC)

holds for all δ ∈ ∆. Consequently, we can write

inf
δ∈∆

dP(Ω,Ωδ) = inf
δ∈∆

P(Ω ∩ ΩC
δ ) + P(ΩC ∩ Ωδ)

= inf
δ∈∆

0 + P(ΩC ∩ Ωδ)

= inf
δ∈∆

P(Ωδ)− P(Ω).

This shows that the second claim holds. □

While the function f(δ) := dP(Ω,Ωδ), δ ∈ ∆ seems hard to analyse because we do not
know how correspondences handle relative complements, the last Proposition allows us
to work with f̃(δ) = P(Ωδ) instead. By Lemma 1.2.17 we know, that an outer semi-
continuous correspondence Ω : ∆ ⇒ Ξ is enough to ensure the upper semi-continuity of
f̃ and therefore guarantee a well-defined maximum maxδ∈∆ P(Ωδ) if the design space ∆
is compact.
That under such assumptions the inner and outer set-approximation problems really de-
fine inner and outer approximations of the probability is shown by the next proposition:
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3 Set-approximation schemes

Proposition 3.1.3 (Approximation via inner/outer set-approximation)
Given a probability space (Ξ,A,P) whose probability distribution has a Lebesgue-density,
a Ω ∈ A, a compact set ∆ and a family of sets (Ωδ)δ∈∆ ⊆ A.

(i) Assume further that the correspondence Γ : ∆ ⇒ Ξ, δ 7→ Ωδ is outer semi-continuous
and that Ωδ ⊆ Ω holds for all δ ∈ ∆. Then the optimal value p := maxδ∈∆ P(Ωδ)
satisfies p ≤ P(Ω).

(ii) Alternatively, assume further that the correspondence Γ : ∆ ⇒ Ξ, δ 7→ Ωδ is inner
semi-continuous and that Ω ⊆ Ωδ holds for all δ ∈ ∆. Then the optimal value
p := minδ∈∆ P(Ωδ) satisfies P(Ω) ≤ p.

Proof. We proof both claims in two steps. First, we show that the inner/outer set-
approximation problem has a well-defined maximizer/minimizer δ∗ ∈ ∆. Second, we use
the subset relations to guarantee p ≤ P(Ω) ≤ p:

Proof of (i): We use Lemma 1.2.17 (i) to conclude that f : ∆ → [0, 1], δ 7→ P(Γ(δ)) is
an upper semi-continuous function. As ∆ is compact, we know that the optimization
problem maxδ∈∆ P(Ωδ) has at least one well-defined maximizer δ∗ ∈ ∆.
Let us fix an arbitrary design parameter δ ∈ ∆. Because we assumed Ωδ ⊆ Ω for all
δ ∈ ∆, we know that P(Ωδ) ≤ P(Ω) for all δ ∈ ∆. This is especially true for all maximiz-
ers and therefore p ≤ P(Ω) holds.

Proof of (ii): We use Lemma 1.2.17 (i) to conclude that f : ∆ → [0, 1], δ 7→ P(Γ(δ))
is a lower semi-continuous function. As ∆ is compact, we know that the optimization
problem minδ∈∆ P(Ωδ) has at least one well-defined minimizer δ∗ ∈ ∆.
Let us fix an arbitrary design parameter δ ∈ ∆. Because we assumed Ω ⊆ Ωδ for all δ ∈ ∆,
we know that P(Ω) ≤ P(Ωδ) for all δ ∈ ∆. This is especially true for all minimizers and
therefore P(Ω) ≤ p holds. □

To use the first part of this proposition, we have to guarantee that Ωδ ⊆ Ω holds for
all δ ∈ ∆. A simple way to do so is to fix an arbitrary subset (Ωδ)δ∈∆ ⊆ A and then
look at tits intersection with Ω. A family of sets (Ω̂δ)δ∈∆ constructed that way is also
measurable as the intersection of two measurable sets and satisfies Ω̂δ ⊆ Ω for all δ ∈ ∆.
To use the second part of the proposition, we can construct a new family of sets by
Ω̂δ := Ωδ ∪ Ω for all δ ∈ ∆.
As we can use Proposition 3.1.3 to define upper and lower bounds for P(Ω), we want to
know under which condition we can ensure p = P(Ω) = p.

Definition 3.1.4 (Fitness-condition)
Let (Ξ,A,P) be a probability space and Ω ∈ A,D = (Ωδ)δ∈∆ ⊆ A for some index set ∆.
We say that D satisfies the fitness-condition, if

inf
δ∈∆

dP(Ω,Ωδ) = 0.
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3.1 Probability approximation by set-approximation

This condition implies the required equality as we see in the next proposition:

Proposition 3.1.5 (Sufficiency of fitness-condition)
Given a measurable space (Ξ,A,P) whose probability distribution has a Lebesgue-density,
a measurable set Ω ∈ A, a compact set ∆ and a family of sets (Ωδ)δ∈∆ ⊆ A that fulfills
the fitness-condition.

(i) Assume further that the correspondence Γ : ∆ ⇒ Ξ, δ 7→ Ωδ is upper hemi-
continuous and that Ωδ ⊆ Ω holds for all δ ∈ ∆. Then the maximal lower bound
p := maxδ∈∆ P(Ωδ) satisfies p = P(Ω).

(ii) Alternatively, assume further that the correspondence Γ : ∆ ⇒ Ξ, δ 7→ Ωδ is lower
hemi-continuous and that Ω ⊆ Ωδ holds for all δ ∈ ∆. Then the minimal upper
bound p := minδ∈∆ P(Ωδ) satisfies P(Ω) = p.

Proof. We proof the statements using the fitness-condition, Proposition 3.1.2 and Propo-
sition 3.1.3:
Proof of (i): The fitness-condition guarantees us, that

inf
δ∈∆

dP(Ω,Ωδ) = 0.

By Proposition 3.1.2 (i) we know that

inf
δ∈∆

dP(Ω,Ωδ) = P(Ω)− sup
δ∈∆

P(Ωδ) = 0.

We know by Proposition 3.1.3 (i) that maxδ∈∆ P(Ωδ) ≤ P(Ω) and that its maximum will
be attained. Consequently, the last equality gives us

P(Ω) = P(Ωδ∗) = p.

That shows the first claim.
Proof of (ii): Analogously, we can use Proposition 3.1.2 (ii) and Proposition 3.1.3 (ii) to
show

P(Ω) = P(Ωδ∗) = p,

what proves the second claim. □

To understand the fitness-condition better, we consider the following examples:

Example 3.1.6 (Family of sets fulfilling the fitness-condition)
(i) Let ([−1, 2],B,P) be a probability space, where P is induced by Z ∼ U ([0, 1]). Let
Ω = [−0.5, 1] ∈ B and define ∆ := [0, 1], Ωδ := [0, δ]. Then all defined sets Ωδ ∈ B are
measurable and the family D = (Ωδ)δ∈∆ fulfills the fitness-condition for Ω because the
choice δ∗ := 1.5 leads to

dP(Ω,Ω1.5) = P([−0.5, 0) ∪ (1, 1.5]) = 0.
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3 Set-approximation schemes

(ii) Let (Ξ,B,P) be a probability space with Ξ ⊆ Rm such that P has a bounded density
ρ ∈ L∞(Ξ,R). Let Ω ∈ A be a compact, convex set, define the design space the sets of
polyhedra described by a natural number of linear inequality constraints by

∆ :=
⋃

k∈N
∆k,∆k = {(A, b) ∈ Rm×k × Rk},

Ωδ := {ξ ∈ Ξ | Aξ ≤ b} ∀δ = (A, b) ∈ ∆.

Then all defined sets Ωδ ∈ B are measurable and the family D = (Ωδ)δ∈∆ fulfills the
fitness-condition for Ω. We know by Theorem 4.1 of a paper by Dudley [27] that we can
approximate any compact, convex set by polyhedrons arbitrarily good w.r.t. the Hausdorff-
metric and the Lebesgue-measure of their symmetric difference. Using

P(B) =

∫

B

1dP(ξ) =

∫

B

ρ(ξ)dλ(ξ) ≤ ||ρ||L∞(Ξ,R)λ(B)

with any measurable set B ∈ B this leads to the estimation

lim
k→∞

inf
δ∈∆k

dP(Ω,Ωδ) ≤ lim
k→∞

||ρ||L∞(Ξ,R)λ (Bk) ≤ lim
k→∞

||ρ||L∞(Ξ,R)
c(Ω)

k
2

m−1

= 0,

where Bk = (Ω ∩ ΩC
δ∗
k
) ∪ (ΩC ∩ Ωδ∗

k
). Consequently, the fitness-condition is fulfilled.

After considering set-approximation problems with a family of measurable sets (Ωδ)δ∈∆,
we are interested in how we can use inequality constraints to describe such sets.

Approximation by a family of functions

So far, we have discussed sufficient conditions for a given family of sets to approximate
P(Ω) arbitrarily good. As we are free to chose any family of sets (Ωδ)δ∈∆ ⊆ A, we are
now interested how to specify it.
We assume that Ω can be described by an inequality constraint. This means that there
exists a A-measurable function g : Ξ→ R such that Ω = {ξ ∈ Ξ | g(ξ) ≤ 0}.
Furthermore, we decide to approximate this Ω by measurable sets (Ωδ)δ∈∆ that can also
be described by functions. We assume that for all δ ∈ ∆ there exists A-measurable
functions gδ : Ξ→ R such that Ωδ = {ξ ∈ Ξ | gδ(ξ) ≤ 0}.
With this representation, we can rewrite the inner and outer set-approximation problem
given Ω ∈ A as

sup
δ∈∆

P(Ωδ) s.t. Ωδ ⊆ Ω

⇔ sup
δ∈∆

P(Ωδ) s.t. g(ξ) ≤ 0 ∀ξ ∈ Ωδ

and

inf
δ∈∆

P(Ωδ) s.t. Ω ⊆ Ωδ

⇔ inf
δ∈∆

P(Ωδ) s.t. gδ(ξ) ≤ 0 ∀ξ ∈ Ω.
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3.1 Probability approximation by set-approximation

If we consider a finite-dimensional search space ∆ ⊆ Rd, the reformulation of the in-
ner approximation problem is a generalized semi-infinite optimization problem, while the
reformulation of the the outer approximation problem is a standard semi-infinite opti-
mization problem.

We are interested in how the structure of the function g influences the structure of the
set

Ω(g) = {ξ ∈ Ξ | g(ξ) ≤ 0}.

Therefore, we use the following proposition:

Proposition 3.1.7 (Structure of set of feasible realizations)
Let (Ξ,A,P) be a probability space and g : Ξ → R satisfy Ω(g) ∈ A. Then the following
holds:
(i) If g is lower semi-continuous, then Ω(g) is closed.
(ii) If g is quasi-convex, then Ω(g) is convex.
(iii) If g is lower semi-continuous as well as coercive, then Ω(g) is bounded.
(iv) If Ξ ⊆ R∪{±∞} and g is monotonically increasing as well as continuous, then there
exists a M ∈ R̄ such that Ω(g) = (−∞,M ]∩Ξ, where in this context (−∞,−∞] = ∅ and
(−∞,∞] = R.

Proof. We show the claims individually using well-known arguments from analysis and
set theory:
Proof of (i): We show that for any convergent sequence (ξk)k∈N ⊆ Ω(g) its limit is again
in Ω(g):
Consider an arbitrary, but fixed convergent sequence (ξk)k∈N ⊆ Ω(g). By definition of Ω
we know that g(ξk) ≤ 0 for all k ∈ N. As g was assumed to be lower semi-continuous, we
know that at the limit point ξ̄ ∈ Ξ of (ξk)k∈N holds

g(ξ̄) ≤ lim
k→∞

g(ξk) ≤ 0.

This ensures ξ̄ ∈ Ω(g). Because (ξk)k∈N was chosen arbitrarily, we know by definition
that Ω(g) is closed what shows the first claim.

Proof of (ii): We show that for any elements ξ1, ξ2 ∈ Ω(g), λ ∈ [0, 1] their convex combi-
nation ξ(λ) = λξ1 + (1− λ)ξ2 is also an element of Ω(g):
Consider arbitrary, but fixed elements ξ1, ξ2 ∈ Ω(g), λ ∈ [0, 1]. By definition of Ω we
know that g(ξi) ≤ 0 for i = 1, 2. As g was assumed to be quasi-convex, we know that for
any λ ∈ [0, 1] it holds

g(ξ(λ)) ≤ max{g(ξ1), g(ξ2)} ≤ 0.

This implies ξ(λ) ∈ Ω(g). Since λ ∈ [0, 1], ξ1, ξ2 ∈ Ω(g) were chosen arbitrarily, we know
by definition that Ω(g) is convex what shows the second claim.
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Proof of (iii): Assuming that g is coercive, we argue indirectly:
Let us assume that g : Ξ → R is coercive, but Ω(g) is unbounded. Then there exists a
sequence (ξk)k∈N ⊆ Ω(g) with limk→∞ ||ξk|| = ∞. As g was assumed to be coercive, we
know that

lim
k→∞

g(ξk) =∞.

As g is lower semi-continuous there exists a N ∈ N such that gk(ξ) > 0 holds for all
k ≥ N . This contradicts ξk ∈ Ω(g) for all k ∈ N.
Consequently, the assumption that Ω(g) is unbounded is wrong what shows the third
claim.

Proof of (iv): We show that claim directly by a case distinction and the monotonicity:
1. Case: If Ω(g) = ∅, we set M = −∞ and the claim holds.
2. Case: If Ω(g) ̸= ∅ is bounded from above. Then their exists some M = supξ∈Ω(g) ξ. As
g is continuous and Ω(g) is bounded from above, we know that M ∈ Ω(g). Consequently,
we know that ξ ≤ M for all ξ ∈ Ω(g) and therefore Ω(g) ⊆ (−∞,M ] ∩ Ξ. By the
monotonicity of g, we know that Ω(g) = (−∞,M ] ∩ Ξ.
3. Case: If Ω(g) is unbounded from above, we know that for all N ∈ N there exists a
ξN ∈ Ω(g) such that N ≤ ξN . As g is monotonically increasing, we know that Ω(g) is a
superset of (−∞, N ] ∩ Ξ for all N ∈ N and consequently M =∞ fulfills the claim, what
shows the forth and last claim. □

In conclusion, it appears wise to approximate g by a function g̃ that has the same struc-
ture. On the contrary, the following example shows that a convergent uniform approxi-
mation does not lead to the convergence of the corresponding probabilities in general and
vice versa.

Example 3.1.8 (Approximating g by g̃)
(i) Let us consider any probability space (Ξ,A,P) and any inner function g : Ξ→ R that
satisfies Ω(g) ∈ A. Then we can define

g̃(ξ) := s(ξ)g(ξ)

with an arbitrary function s : Ξ → R>0. As we do not switch the sign between g̃(ξ) and
g(ξ) for any ξ ∈ Ξ by this multiplication, we know that Ω(g) = Ω(g̃) and φ(g) = φ(g̃).
(ii) Consider the probability space ([0, 1],B,P), where P is the probability measure induced
by Z ∼ U ([0, 1]). Define g : [0, 1] → R, ξ 7→ 0 and g̃k : [0, 1] → R, ξ 7→ ξ

k
. By definition

we know that g̃k → g uniformly for k →∞ because

lim
k→∞

max
ξ∈[0,1]

|g̃k(ξ)− g(ξ)| = lim
k→∞

max
ξ∈[0,1]

∣
∣
∣
∣

ξ

k

∣
∣
∣
∣
= lim

k→∞
1

k
= 0.

On the contrary, we know by definition of g, g̃k that Ω(g) = [0, 1] and Ω(g̃k) = {0} for all
k ∈ N and therefore limk→∞ φ(g̃k) = 0 ̸= 1 = φ(g).
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3.1 Probability approximation by set-approximation

The first example shows that we do not need a good approximation g̃ of g to guarantee
φ(g) = φ(g̃). The second example shows that even a uniform approximation of the
function g by g̃ can lead to the maximal possible error of 1. To improve the understanding
of this convergence behavior, we consider the following statement:

Proposition 3.1.9 (g̃ → g point-wise implies ϕ(g̃) → ϕ(g))
Let (Ξ,A,P) be a probability space, g, g̃k : Ξ → R be inner functions such that the
corresponding sets Ω(g),Ω(g̃k) are elements of A for all k ∈ N and g̃k → g point-wise.

(i) If g̃k(ξ) ≤ g(ξ) for all k ∈ N, ξ ∈ Ξ, then limk→∞ φ(g̃k) = φ(g).

(ii) If g̃k(ξ) ≥ g(ξ) for all k ∈ N, ξ ∈ Ξ, then lim supk→∞ φ(g̃k) ≤ φ(g).

(iii) If P(g(ξ) = 0) = 0, then limk→∞ φ(g̃k) = φ(g).

Proof. To prove the first claim we show that χΩ(g̃k) converges point-wise towards χΩ(g)

indirectly and use the dominated convergence theorem afterwards:
Let us assume that there exists a realization ξf ∈ Ξ such that χΩ(g̃k)(ξf ) does not converge
towards χΩ(g)(ξf ). This means that there exists an ϵ > 0 such that for all n ∈ N there
exists a Kn ≥ n such that

|χΩ(g̃Kn )
(ξf )− χΩ(g)(ξf )| ≥ ϵ. (3.1)

By definition of the characteristic function χ the realization ξf lies either within Ω(g̃Kn)
or within Ω(g). Due to the assumption g̃k(ξ) ≤ g(ξ) for all ξ ∈ Ξ, k ∈ N, we know that
g̃kN (ξf ) ≤ 0 and g(ξf ) > 0 has to hold. As g̃k converges point-wise towards g, there exists

a N ∈ N such that |g̃k(ξf )− g(ξf )| < g(ξf )
2 for all k ≥ N . Consequently, we can conclude

for all k ≥ N

0 ≥ g̃k(ξf ) ≥ g(ξf )−
g(ξf )

2
=

g(ξf )

2
> 0.

Fixing n = N , our assumption (3.1) is wrong and the χΩ(g̃k) converges point-wise towards
χΩ(g).
With that we can use the the dominated convergence theorem to state

lim
k→∞

φ(g̃k) = lim
k→∞

P(Ω(g̃k))

= lim
k→∞

∫

Ξ
χΩ(g̃k)(ξ)dP(ξ)

=

∫

Ξ
lim
k→∞

χΩ(g̃k)(ξ)dP(ξ)

=

∫

Ξ
χΩ(g)(ξ)dP(ξ)

= φ(g),

what proves the first part of the claim.
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3 Set-approximation schemes

To prove the second claim let us fix an arbitrary k ∈ N, ξ ∈ Ω(g̃k). As we assumed that
g(ξ) ≤ g̃k(ξ) for all k ∈ N, ξ ∈ Ξ, we know that a realization ξ ∈ Ω(g̃k) satisfies g̃k(ξ) ≤ 0
by definition. This implies ξ ∈ Ω(g) since

g(ξ) ≤ g̃k(ξ) ≤ 0.

As k ∈ N, ξ ∈ Ω(g̃k) were chosen arbitrarily, we know that Ω(g̃k) ⊆ Ω(g) for all k ∈ N.
Consequently lim supk→∞ φ(g̃k) ≤ φ(g).

We prove the third claim by indirectly verifying that χΩ(g̃k) converges point-wise towards
χΩ(g) and using the dominated convergence theorem afterwards:
Let us assume that there exists a realization ξf ∈ Ξ such that χΩ(g̃k)(ξf ) does not converge
towards χΩ(g)(ξf ). This means that there exists an ϵ > 0 such that for all n ∈ N there
exists a Kn ≥ n such that

|χΩ(g̃Kn )
(ξf )− χΩ(g)(ξf )| ≥ ϵ. (3.2)

By definition of the characteristic function χ the realization ξf is either an element of
Ω(g̃Kn) or an element of Ω(g). Due to the assumption P(g(ξ) = 0) = 0, we can assume
without loss of generality that g(ξf ) ̸= 0. Due to the point-wise convergence, there exists
some N ∈ N such that for all k ≥ N we can guarantee

|g̃k(ξf )− g(ξf )| <
|g(ξf )|

2
.

Fixing n = N , we can argue like in (i) with a case distinction:
Case 1: If ξf ∈ Ω(g̃Kn) \ Ω(g), we know g(ξf ) > 0. Now, the definition of N ∈ N implies
for k ≥ N

g̃k(ξf ) ≥ g(ξf )−
g(ξf )

2
=

g(ξf )

2
> 0.

Fixing n = N in assumption (3.2) this is a contradiction and χΩ(g̃k) converges point-wise
towards χΩ(g).
Case 2: If ξf ∈ Ω(g) \ Ω(g̃k), we know g(ξf ) < 0. The definition of N ∈ N implies for
k ≥ N

g̃k(ξf ) ≤ g(ξf ) +
−g(ξf )

2
=

g(ξf )

2
< 0.

Fixing n = N in assumption (3.2) this is a contradiction and χΩ(g̃k) converges point-wise
towards χΩ(g).
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All together we know that χΩ(g̃k) converges P-almost everywhere point-wise towards χΩ(g)

and we can use the the dominated convergence theorem to state:

lim
k→∞

φ(g̃k) = lim
k→∞

P(Ω(g̃k))

= lim
k→∞

∫

Ξ
χΩ(g̃k)(ξ)dP(ξ)

=

∫

Ξ
lim
k→∞

χΩ(g̃k)(ξ)dP(ξ)

=

∫

Ξ
χΩ(g)(ξ)dP(ξ)

= φ(g)

This proves the third and last part of the claim. □

If we recall the probust subset algorithm from the last chapter to approximate the value
of probust terms by skipping the decision calculation in every iteration, we can see that
we used the functions supt∈Tk

g(·, t) to approximate maxt∈T g(·, t). This setting fits to
the assumptions of the last proposition part (i).

After this excursion into probability approximation by set-approximation, our next goal is
to use the set-approximation approach on chance constrained optimization problems.

3.2 Approximation of chance constrained optimization problems

The main idea of this section is to use the introduced set-approximation approach for
chance constrained optimization problems. Considering these problems, we see that a
feasible decision x ∈ X induces a measurable set Ω(x) ∈ A such that P(Ω(x)) ≥ p.
We will try to approximate this set Ω(x) by a family of measurable sets (Ωδ)δ∈∆. Af-
ter defining the corresponding inner set-approximation problem, we will proof that this
problem really is an inner approximation of the original chance constrained optimization
problem. Additionally, we comment on the convergence behavior of an iterative inner
set-approximation algorithm.

Since we consider chance constrained optimization problems as introduced in Section 1.1,
we are not interested in determining the exact probability P(Ω) of some measurable set
Ω ∈ A, but in underestimations of this probability.
To create an inner approximation, we therefore need to guarantee that P(Ωδ) ≥ p implies
P(Ω(x)) ≥ p. One way to do so is focusing on the constraint Ωδ ⊆ Ω(x) for all δ ∈ ∆ as
we have seen in Proposition 3.1.3 (i). As Ωδ ⊆ Ω(x) might be to restrictive as a constraint
considering an arbitrary x ∈ X, we allow ourselves to work with decision-dependent sets.
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3 Set-approximation schemes

To be able to differentiate between the decision-dependent set Ω(x) and our designs, we
switch the notation for the approximating sets from Ω(δ) to D(δ) for the remainder of
this chapter.

Definition 3.2.1 (Set-approximation problem of CC)
Let X,∆ be compact sets, f : X → R be a continuous function, (Ξ,A,P) be a probability
space, g : X×Ξ→ R be a Caratheodory-function, p ∈ [0, 1] and D : X×∆→ A a design
function. We call

ISAD : min
x∈X,δ∈∆

f(x) s.t. P(D(x, δ)) ≥ p (3.3)

sup
ξ∈D(x,δ)

g(x, ξ) ≤ 0 (3.4)

the inner set-approximation problem of a chance constrained optimization problem CC.

To ensure that the feasible set of the inner set-approximation problem is nonempty, we
need to introduce the following value which is closely related to the values defined in
Equations (1.5) and (1.6):

pmax(D) = max
x∈X,δ∈∆,p∈[0,1]

p s.t. P(D(x, δ)) ≥ p

sup
ξ∈D(x,δ)

g(x, ξ) ≤ 0,

where D =
⋃

x∈X,δ∈∆
D(x, δ).

With this value we can state:

Proposition 3.2.2 (Inner approximation by inner set-approximation problem)
Let X,∆ be nonempty, compact sets, f : X → R be a lower semi-continuous function,
(Ξ,A,P) be a probability space, g : X ×Ξ→ R be a Caratheodory-function, p ∈ [0, 1] and
D : X × ∆ → A a design function such that the correspondence Γ : X × ∆ ⇒ Ξ, δ 7→
D(x, δ) is continuous.
If p ≤ pmax(D), then the inner set-approximation of the induced chance constrained
problem is well-defined. Additionally, every feasible point of the inner set-approximation
is also feasible w.r.t. the induced chance constrained problem.

Proof. First, we show the well-posedness of the problem by well-established theorems
from the literature and afterwards show the feasible set inclusion directly:
We know by assumption that f is lower semi-continuous and that X ×∆ is compact as
a finite Cartesian-product of compact sets. Consequently, we want to show that

FD,p := {(x, δ) ∈ X ×∆ | P(D(x, δ)) ≥ p ∧ sup
ξ∈D(x,δ)

g(x, ξ) ≤ 0}

is a closed set. Please note that by the choice of the threshold p ≤ pmax(D) we know that
the feasible set FD,p is nonempty.
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3.2 Approximation of chance constrained optimization problems

By assumption Γ is continuous w.r.t. (x, δ) ∈ X ×∆ and by Lemma 1.2.17 we know that
the function P(D(·)) is upper semi-continuous w.r.t. (x, δ) ∈ X ×∆.
By our assumptions Lemma 1.2.6 guarantees that the function supξ∈D(x,δ) g(x, ξ) is lower
semi-continuous w.r.t (x, δ) ∈ X×∆ as well. Consequently, FD,p is compact as the inter-
section of a compact set with a closed set and the optimization problem has a well-posed
minimizer as f was assumed to be lower semi-continuous.

Next, we show the inclusion of feasible sets:
Let (x, δ) ∈ FD,p be a feasible point of the inner set-approximation problem. Then it
holds that P(D(x, δ)) ≥ p and g(x, ξ) ≤ 0 for all ξ ∈ D(x, δ). Consequently, we can
ensure D(x, δ) ⊆ Ω(x) = {ξ ∈ Ξ | g(x, ξ) ≤ 0} what implies

P(Ω(x)) ≥ P(D(x, δ)) ≥ p.

This means that x ∈ Fp is feasible what shows the second part of the claim. □

Please note that the assumptions for this proposition are just slightly stronger than the
assumptions we need to guarantee the existence of a minimizer in the chance constrained
optimization context, namely we require ∆ to be compact and D to be continuous as a
correspondence.
If we follow the argumentation of the last chapter, we should try to generalize the fitness-
condition 3.1.4 to ensure that the inner set-approximation converges to an optimal solu-
tion of the original chance constrained optimization problem.
That it is difficult to find conditions that guarantee the convergence of an inner approx-
imation as we illustrate with the following counter example:

Example 3.2.3 (Counter example for convergence of inner set-approximation)
Chose ([0, 1],B,P) as the probability space, where P is induced by the random variable
Z ∼ U ([0, 1]), X := [−1, 1], f(x) = x, g(x, ξ) := −x2−x− p+ ξ and p ∈ [0, 1]. This data
induces the following chance constrained optimization problem:

min
x∈[−1,1]

x s.t. P(−x2 − x− p+ ξ ≤ 0) ≥ p

We can show that the decision x∗ := −1 is feasible by evaluating

P(−1 + 1− p+ ξ ≤ 0) = P(ξ ≤ p) = p ≥ p.

By the definition of X, the optimal solution of the chance constrained optimization prob-
lem therefore has to be x∗ = −1.

To approximate the problem let us define a sequence of inner approximation problems by
∆k := {0} ⊆ R and Dk : X × ∆k → A, Dk(x, δ) =

[
0, p+ 1

k

]
, such that ∆k is compact

for all k ∈ N and Dk is continuous as a constant mapping for all k ∈ N.
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3 Set-approximation schemes

Fixing x0 := 1 and an arbitrary k ∈ N, we check

P(D(x0, δ)) = P

([

0, p+
1

k

])

= min

{

p+
1

k
, 1

}

≥ p

and

max
ξ∈D(x0,δ)

g(x0, ξ) = max
ξ∈[0,p+ 1

k ]
−1− 1− p+ ξ

= −2− p+ p+
1

k

= −2 + 1

k
≤ 0.

Consequently, x = 1 is feasible for all k ∈ N independent from p ∈ [0, 1] and therefore
p ≤ pmax(Dk) = 1, where Dk :=

⋃

x∈X,δ∈∆k
Dk(x, δ) = Dk.

Additionally, Ω(x∗) = {ξ ∈ Ξ | g(x∗, ξ) ≤ 0} = {ξ ∈ [0, 1] | − p+ ξ ≤ 0} = [0, p] is known
and we can guarantee

lim
k→∞

dH(Dk,Ω(x
∗)) = lim

k→∞
dH

([

0, p+
1

k

]

, [0, p]

)

= 0 and

lim
k→∞

dP(Dk,Ω(x
∗)) = lim

k→∞
dP

([

0, p+
1

k

]

, [0, p]

)

= 0.

Unfortunately, the feasible set of decision for any fixed k ∈ N is

F̃Dk,p =





√

1 + 4
k
− 1

2
, 1



 ⊊ [0, 1].

This means that there cannot be any sequence (yk)k∈N ⊆ X such that yk ∈ F̃Dk,p and
limk→∞ yk = x∗ = −1.

To make such a sequence of set-approximation problems converge towards a solution
of the corresponding chance constrained optimization problem is the focus of the next
section.

3.3 Set-approximation algorithm for probust optimization
problems

In the last section, we have seen that we can find feasible decisions for a chance con-
strained optimization problem by solving its corresponding inner set-approximation for
a given design space ∆ and design function D.
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3.3 Set-approximation algorithm for probust optimization problems

In this section, we describe an iterative algorithm for increasing design spaces and study
its convergence behavior as well as its modification to be used on probust optimization
problems.

Before noting the algorithm, we need a sequence of design spaces (∆k)k∈N and a sequence
of designs (Dk)k∈N to describe it: In analogy to probust subset schemes, we analyze the
simpler case, where we have a monotone behavior with respect to the design spaces.

Definition 3.3.1 (Increasing set-approximation schemes)
We call a sequence of design spaces and design functions Ψ = (∆k, Dk)k∈N a set-approximation
scheme.
If a set-approximation scheme Ψ satisfies

∀x ∈ X, k ∈ N, δk ∈ ∆k∃δk+1 ∈ ∆k+1 : Dk(x, δk) = Dk+1(x, δk+1),

we call the set-approximation scheme Ψ an increasing set-approximation scheme.
We can represent the family of designs corresponding to an increasing set-approximation
scheme Ψ by

DΨ =
⋃

k∈N
Dk =

⋃

k∈N




⋃

x∈X,δ∈∆k

Dk(x, δ)



 .

With these definitions, we can describe the iterative set-approximation algorithm as:

Algorithm 4 Set-approximation algorithm for chance constrained optimization problems

1: Inputs:
Chance constrained optimization problem instance CC,
set-approximation scheme Ψ, initial decision x0 ∈ X

2: Initialize:
k := 0

3: do
4: (xk+1, δk+1)← argmin(x,δ)∈X×∆k

f(x) s.t. P(Dk(x, δ)) ≥ p,
5: maxξ∈Dk(x,δ) g(x, ξ) ≤ 0
6: k ← k + 1
7: while stopping criterion is not fulfilled
8: Results:

Sequence (xk, δk)k∈N

In comparison to the probust subset algorithm 3, we have no update of the design space
or design function influenced by the current decision xk or the current design parameter
δk such that we are considering pre-defined set-approximations instead of adaptive ones.
The problem here is on the modelling side as a function that maps the current iterates
(xk, δk) to a pair of a design space with corresponding design function is quite hard to
handle. We will get back to this point defining sandwiching algorithms in the next chap-
ter.
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3 Set-approximation schemes

With the defined set-approximation algorithm 4, we want to focus on its convergence
behavior.
We have already seen in Example 3.2.3 that we cannot expect convergence in general.
The drawback of inner approximations is that we need to guarantee that we can find
decisions that are on the one hand close to the optimal solution x∗ and on the other hand
feasible for some iterations k ∈ N. A condition to ensure that in nonlinear optimiza-
tion problems is, i.e., the Mangasarian-Fromovitz constraint qualification (MFCQ), see
Lemma 1.2.10.
The next lemma shows that if an optimal solution of the chance constrained optimization
problem fulfills the MFCQ, then we can guarantee the convergence of an iterative inner
set-approximation if the design spaces are chosen wisely.
Nevertheless, we point out that MFCQ has nice implications when it holds, despite it
being hard to verify because this condition is based on gradients which are rarely given
for probability evaluation functions.

Theorem 3.3.2 (Convergence theorem of inner set-approximation for CC)
Let X be a compact set, f : X → R be a continuous function, (Ξ,A,P) be a probability
space, g : X × Ξ → R be a Caratheodory-function, p ∈ [0, 1], (∆k)k∈N be a sequence of
compact sets, Dk : X ×∆k → A design functions such that

• Γk : X ×∆k ⇒ Ξ, (x, δ) 7→ Dk(x, δ) are continuous correspondences for all k ∈ N

and

• Dk(x,∆k) ⊆ Dk+1(x,∆k+1) for all x ∈ X, meaning that for each x ∈ X and each
δk ∈ ∆k, we can find a δk+1 ∈ ∆k+1 such that Dk(x, δk) = Dk+1(x, δk+1).

Furthermore, let x∗ ∈ X be a minimizer of the chance constrained optimization problem.
If there exists a MFCQ-vector for the original chance constrained optimization problem
at x∗ and a radius r > 0 such that for all x ∈ Br(x

∗) ∩ Fp there exists a sequence
(δk(x))k∈N, δk : X → ∆k for all k ∈ N such that

• limk→∞ dP(Ω(x), Dk(x, δk(x))) = 0 and

• Dk(x, δk(x)) ⊆ Ω(x) for all k ∈ N,

then every accumulation point of the set-approximation algorithm is a minmizer of the
original chance constrained optimization problem.

Proof. We will show this claim by constructing a sequence of points (x̂n)n∈N that con-
verges towards x∗ and for each n ∈ N, we can find a kn ∈ N with kn ≥ n and x̂n ∈ F̃Dkn ,p

.
Because we assumed that Dk(x̂n,∆k) ⊆ Dk+1(x̂n,∆k+1) for all n ∈ N, k ∈ N, we know
that x̂n ∈ F̃Dk,p for all k ≥ kn and there exists a smallest kn ∈ N satisfying x̂n ∈ F̃Dkn ,p

.
Consequently, we can estimate

f(x∗) = min
x∈Fp

f(x) ≤ min
x∈F̃Dk,p

f(x) = f(xk) ≤ f(x̂n) ∀n ∈ N, k ≥ kn.
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3.3 Set-approximation algorithm for probust optimization problems

Because f(x̂n) converges towards f(x
∗) for n→∞, the sequence (f(xk))k∈N has also to

converge towards f(x∗) for k →∞. As this value is the (global) minimum, we know that
all accumulation points x of (xk)k∈N are (global) minima.
Now we construct the sequence of points (x̂n)n∈N:
Since we assumed that φ is twice continuously differentiable in a neighborhood of x∗,
there exists a radius R > 0 such that BR(x

∗) lies within this neighborhood. We denote

c := max
h∈[−R,R]

|⟨v,D2P(Ω(x∗ + hv))v⟩|,

where D2 denotes the Hessian of the probability evaluation function. Introducing the
variable H := min{r,R, 1

c
} and choosing any h ∈ [0, H], we can estimate the probability

evaluation by a Taylor-expansion with Lagrange remainder and the definition of the
MFCQ-vector via

P(Ω(x∗ + hv)) = P(Ω(x∗)) +∇xP(Ω(x
∗))hv +

⟨v,D2P(Ω(x∗ + h̃v))v⟩
2

h2

≥ p+ h− ch2

2
≥ p+

h

2
,

where h̃ ∈ [0, h] ⊆ [0, R]. Consequently, we know that x∗ + hv ∈ Fp for all h ∈ [0, H].
Because we assumed that there exists a r > 0 such that for all x ∈ Br(x

∗) ∩ Fp we can
approximate Ω(x) by (Dk(x, δk(x))k∈N (w.r.t. dP). For 0 < h ≤ H ≤ r and x = x∗ + hv
we can therefore estimate

P(Dk(x
∗ + hv, δk(x

∗ + hv))) ≥ P(Ω(x∗ + hv))− ϵk

≥ p+
h

2
− ϵk.

Because Dk(x
∗ + hv,∆k) ⊆ Dk+1(x

∗ + hv,∆k+1) for all k ∈ N, we know that (ϵk)k∈N is
a monotonically decreasing sequence with limit 0. Consequently, we can find a minimal
index K(h) ∈ N such that k ≥ K(h) implies ϵk ≤ h

2 and therefore

P(Dk(x
∗ + hv, δk(x

∗ + hv))) ≥ p.

As we assumed that Dk(x, δk(x)) ⊆ Ω(x) holds for all x ∈ Br(x
∗) ∩ F , k ∈ N, we can

verify that

max
ξ∈Dk(x∗+hv,δk(x∗+hv))

g(x∗ + hv, ξ) ≤ max
ξ∈Ω(x∗+hv)

g(x∗ + hv, ξ) ≤ 0.

Consequently, the step size hn := H
n

leads to an iteration kn := max{K(hn), kn−1 + 1}
such that x̂n := x∗+ H

n
∈ F̃Dkn ,p

for all n ∈ N. Using the first part of the proof the claim
holds. □

The assumptions of this convergence result imply that there is a direction v such that we
can approximate Ω(x∗) from this direction with sets (Dk(x̂k, δ̂k)), where (x̂k, δ̂k) ∈ FDk,p

are feasible decision w.r.t. the kth approximation problem.
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3 Set-approximation schemes

Please note that we can only guarantee to achieve an objective value of decisions x ∈ X
whose set of feasible realizations can be approximated by (Dk(x, δ))k∈N,δ∈∆k

sufficiently
well. Since in general we do not know which decision leads to the global minimum, we
have to approximate the set of feasible realizations for as much decisions as possible.
How these sets are structured is already mentioned in Proposition 3.1.7 for fixed deci-
sions x ∈ X.

After we have understood how the set-approximation algorithm works for chance con-
strained optimization problems, we now are interested in using it for probust optimiza-
tion problems. To extend the concept, we just have to use Berge’s maximum Theorem
1.2.8. Since the inner function of a probust optimization problem is continuous w.r.t.
t ∈ T for all (x, ξ) ∈ X × Ξ and the set T is compact, we know that the function
g(x, ξ, T ) = maxt∈T g(x, ξ, t) is continuous. Consequently, we can interpret probust op-
timization problems as a special instances of chance constrained optimization problems
and use all results from the chance constrained case.
The adapted version of the set-approximation algorithm for probust optimization prob-
lems looks like

Algorithm 5 Set-approximation algorithm for probust optimization problems

1: Inputs:
(Standard) probust optimization problem instance SPP,
set-approximation scheme Ψ, initial decision x0 ∈ X

2: Initialize:
k := 0

3: do
4: (xk+1, δk+1)← argmin(x,δ)∈X×∆k

f(x) s.t. P(Dk(x, δ)) ≥ p,
5: maxξ∈Dk(x,δ),t∈T g(x, ξ, t) ≤ 0
6: k ← k + 1
7: while stopping criterion is not fulfilled
8: Results:

Sequence (xk, δk)k∈N

We state the convergence of the inner set-approximation approach for standard probust
optimization problems as another theorem.

Theorem 3.3.3 (Convergence theorem of inner set-approximation for SPP)
Let X,T be compact sets, f : X → R be a continuous function, (Ξ,A,P) be a probability
space, g : X × Ξ × T → R be an inner function, p ∈ [0, 1], (∆k)k∈N be a sequence of
compact sets, Dk : X ×∆k → A design functions such that

• Γk : X ×∆ ⇒ Ξ, (x, δ) 7→ Dk(x, δ) are continuous correspondences for all k ∈ N

• Dk(x,∆k) ⊆ Dk+1(x,∆k+1) for all x ∈ X, meaning that for each x ∈ X and each
δk ∈ ∆k, we can find a δk+1 ∈ ∆k+1 such that Dk(x, δk) = Dk+1(x, δk+1).
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3.4 Example of how to use a set-approximation scheme

Furthermore, let x∗ ∈ X be a minimizer of the chance constrained optimization problem.
If there exists a MFCQ-vector for the original chance constrained optimization problem
at x∗ and a radius r > 0 such that for all x ∈ Br(x

∗) ∩ Fp there exists a sequence
(δk(x))k∈N, δk ∈ ∆k for all k ∈ N such that

• limk→∞ dP(Ω(x), Dk(x, δk(x))) = 0 and

• Dk(x, δk(x)) ⊆ Ω(x) for all k ∈ N,

then every accumulation point of the set-approximation algorithm is a minimizer of the
original standard probust optimization problem.

Proof. We will show this claim using Theorem 3.3.2.
As we assumed that g is continuous w.r.t. (x, ξ, t) ∈ X × Ξ × T and T is compact, we
know by Berge’s maximum Theorem 1.2.8 that

g(x, ξ, T ) := max
t∈T

g(x, ξ, t)

is a continuous function w.r.t. (x, ξ) ∈ X × Ξ.
Consequently, g(x, ·, T ) is Borel-measurable for all x ∈ X and g(·, ξ, T ) is continuous for
all ξ ∈ Ξ and therefore a Caratheodory-function.
Now we can use Theorem 3.3.2 to determine a solution of the chance constrained opti-
mization problem

min
x∈X

f(x) s.t. P(g(x, ξ, T ) ≤ 0) ≥ p.

Because we just reformulated the inequality constraint, the minimizer of this chance
constrained optimization problem is the minimizer of the original standard probust opti-
mization problem and the claim holds. □

After introducing an iterative set-approximation scheme to solve standard probust opti-
mization problems in this section, we concretize this concept by applying one iteration
of the process to an example problem in the next section.

3.4 Example of how to use a set-approximation scheme

In this section, we define a special probust optimization problem instance, we formulate
the corresponding inner set-approximation problem by fixing a design function and solve
this inner set-approximation problem. This problem instance is a stochastic design-
centering problem which we will introduce later in Chapter 5.
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3 Set-approximation schemes

Problem definition

We consider the problem of putting an area maximizing circle

Br(M) = {y ∈ R2 | (y1 −m1)
2 + (y2 −m2)

2 ≤ r2}

with r ≥ 0,M ∈ R2 into an uncertain triangle that is described by the points

P1 = (Z1, 0), Z1 ∼ U ([1, 2]) ,

P2 = (−Z2, 0), Z2 ∼ U ([1, 3]) ,

P3 = (0, Z3), Z3 ∼ N (2, 1) .

Note that this triangle is degenerated if the realization of Z3 is zero. Given the distribution
of this random variable, this happens with probability 0 though.
We can describe the triangle for a fixed realization ξ ∈ Ξ := R3 as

C(ξ) = {y ∈ R2 | g1(ξ, y) ≤ 0, g2(ξ, y) ≤ 0, g3(ξ, y) ≤ 0},
where g1(ξ, y) = −sign(ξ3)y2,

g2(ξ, y) = sign(ξ3) (ξ1y2 + ξ3y1 − ξ1ξ3) ,

g3(ξ, y) = sign(ξ3) (ξ2y2 − ξ3y1 − ξ2ξ3) .

With fixed p := 0.9 the stochastic design-centering problem can be written as

SDC : max
r≥0,M∈R2

πr2 s.t. P(Br(M) ⊆ C(ξ)) ≥ 0.9.

Problem reformulation as a standard probust optimization problem

Before solving this problem, we have to reformulate it as a standard probust optimization
problem to be able to define and solve the inner set-approximation problem introduced
in this chapter.
In a first step, we rewrite SDC as a generalized probust optimization problem. How we
can do that is explained in the beginning of Chapter 5:

SDC-GPP : min
r≥0,M∈R2

−πr2 s.t. P





g1(ξ, y) ≤ 0 ∀y ∈ Br(M),
g2(ξ, y) ≤ 0 ∀y ∈ Br(M),
g3(ξ, y) ≤ 0 ∀y ∈ Br(M)



 ≥ 0.9

Next, we define the set of decisions X := R≥0 ×R2 and use the following transformation
to the reference set T̂ := B1(0) to simplify the set-dependency within the probability
evaluation

T
T̂
: X × Ξ× T̂ → R2, ((r,M), ξ, z)→ rz +M.
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3.4 Example of how to use a set-approximation scheme

As T
T̂
(x, ξ·) is surjective for all (x, ξ) ∈ X × Ξ and even a homeomorphism between

T̂ = B1(0) and Br(M) if r ̸= 0, we can reformulate the inner functions of SDC-GPP as

g̃1(x, ξ, z) = g1(ξ, TT̂ (x, ξ, z)) = −(rz2 +m2),

g̃2(x, ξ, z) = g2(ξ, TT̂ (x, ξ, z)) = ξ1(rz2 +m2) + ξ3(rz1 +m1)− ξ1ξ3,

g̃3(x, ξ, z) = g3(ξ, TT̂ (x, ξ, z)) = ξ2(rz2 +m2)− ξ3(rz1 +m1)− ξ2ξ3,

while keeping the feasible decisions and minimizers the same according to Theorem 1.3.13.
This leads to the following standard probust optimization problem

SDC-SPP : min
r≥0,M∈R2

−πr2 s.t. P





g̃1(x, ξ, z) ≤ 0 ∀z ∈ B1(0),
g̃2(x, ξ, z) ≤ 0 ∀z ∈ B1(0),
g̃3(x, ξ, z) ≤ 0 ∀z ∈ B1(0)



 ≥ 0.9.

Please note that we ignored the sign-functions in the definition of g̃i, i = 1, 2, 3.
We are allowed to do so because any feasible decision x = (r,M) with r > 0 satisfies
ξ3 ≥ 0 for all its feasible realizations ξ ∈ Ω(x) as we see by the following indirect argument
that leads to a case distinction:
Given x ∈ X, r > 0 let us assume there exists a feasible realization ξ ∈ Ω(x) with ξ3 < 0.
1. Case: There exists another feasible realization ξ̃ ∈ Ω(x) with ξ̃3 ≥ 0 which implies
Br(M) ∩ C(ξ) = ∅ or Br(M) ∩ C(ξ̃) = ∅ contradicting ξ, ξ̃ ∈ Ω(x). A sketch of this
argument is shown in Figure 3.1.
2. Case: All feasible realizations satisfy ξ3 < 0 and we can therefore estimate

φ(x) ≤ P(ξ3 ≤ 0) = F (−2) ≈ 0.0228 < p = 0.9.

In both cases the decision x ∈ X cannot be feasible and consequently all feasible decisions
imply ξ3 ≥ 0 for all ξ ∈ Ω(x).

Figure 3.1: Visualization of two triangle realizations C(ξ1), C(ξ2) with positive and neg-
ative height and some circle D(x)
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3 Set-approximation schemes

Choosing an appropriate set-approximation scheme

After rewriting the stochastic design-centering problem as a standard probust optimiza-
tion problem, we have to think about the structure of the set of feasible realizations to
define an appropriate design function for the inner set-approximation problem.
We show that the inner functions maxz∈B1(0) g̃i(x, ξ, z) are monotonically increasing w.r.t.
to the components of ξ if we fix a feasible x ∈ X.
Therefore, we fix a feasible decision x ∈ Fp, a feasible realization ξ ∈ Ω(x) and show that
g̃(x, ξ, z) ≥ g̃(x, ξ̃, z) for all z ∈ B1(0) and ξ̃ ≥ ξ (component-wise).
First we consider g̃1(x, ξ, z) = −(rz2 +m2): Because this constraint does not depend on
any ξ-component, the monotonicity assumption holds for g̃1.
In the next step, we consider the inner function g̃2(x, ·, z). Because ξ ∈ Ω(x), we can
check the monotonicity componentwise:

j = 1 : g̃2(x, ξ, z) = ξ1( rz2 +m2
︸ ︷︷ ︸

≤ξ3 because Br(M)⊆C(ξ)

) + ξ3(rz1 +m1)− ξ1ξ3

= ξ1
︸︷︷︸

≥0

(rz2 +m2 − ξ3
︸ ︷︷ ︸

≤0

) + ξ3(rz1 +m1)

≥ ξ̃1(rz2 +m2 − ξ3) + ξ3(rz1 +m1)

= g̃2(x, (ξ̃1, ξ2, ξ3), z) ∀ξ̃1 ≥ ξ1

j = 2 : g̃2(x, ξ, z) = ξ1(rz2 +m2) + ξ3(rz1 +m1)− ξ1ξ3

= g̃2(x, (ξ1, ξ̃2, ξ3), z) ∀ξ̃2 ≥ ξ2

j = 3 : g̃2(x, ξ, z) = ξ1(rz2 +m2) + ξ3( rz1 +m1
︸ ︷︷ ︸

≤ξ1 because Br(M)⊆C(ξ)

)− ξ1ξ3

= ξ1(rz2 +m2) + ξ3(rz1 +m1 − ξ1
︸ ︷︷ ︸

≤0

)

≥ ξ1(rz2 +m2) + ξ̃3(rz1 +m1 − ξ1)

= g̃2(x, (ξ1, ξ2, ξ̃3), z) ∀ξ̃3 ≥ ξ3

Since we can decompose ξ̃ ≥ ξ in component-wise inequalities, the claim holds for g̃2 for
all ξ̃ ≥ ξ. Analogously, we can show the same result for g̃3.
Because all components g̃i, i = 1, 2, 3 are monotonically increasing w.r.t. ξ, this is also
true for g̃ as the maximum over these functions. As the z ∈ Z was arbitrarily fixed, we
know that the function maxz∈B1(0) g̃(x, ·, z) is also monotonically increasing w.r.t. ξ.
Consequently, using Proposition 3.1.7 (iv) the set of feasible realizations can be described
by intervals [ξ

i
,∞) ∩ Ξi, ξi ∈ R concerning one fixed entry i = 1, 2, 3 of ξ ∈ R3, if the

other two entries are fixed. Consequently, a promising approach is

∆ := {δ ∈ R3 |δ1 ∈ [1, 2], δ2 ∈ [1, 3], δ3 ∈ [0,∞)},
D(x, δ) := [δ1, 2]× [δ2, 3]× [δ3,∞).

Be aware that the design function is independent of x ∈ X.
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3.4 Example of how to use a set-approximation scheme

Because the components of the random vector Z were assumed to be uncorrelated, we
can evaluate the probability P(D(x, δ)) by evaluating the probabilities of the single com-
ponents:

P(D(x, δ)) = P1(ξ ≥ δ1) · P(ξ2 ≥ δ2) · P3(ξ ≥ δ3)

= (2− δ1) ·
(
3− δ2

2

)

· (1− F (δ3 − 2))

This means we can reformulate the probability evaluation constraint of the inner set-
approximation problem as an analytical function and the remaining problem is a semi-
infinite optimization problem that can be solved, e.g., by the adaptive discretization of
Blankenship and Falk [17].
The solution of this problem is

f(x∗) ≈ −0.3257,
x∗ ≈ (0.322, 0, 0.322)

δ∗ = (1, 1, 2− F−1(0.1)) ≈ (1, 1, 0.7184).

By Proposition 3.2.2 and Theorem 1.3.13 we know that this solution is also a feasible
decision of the stochastic design-centering SDC. The solution x∗ is not (exactly) the
optimal solution of the original probust optimization problem because there exist feasible
realizations ξ ∈ Ω(x∗) that fulfill, e.g., ξ1, ξ2 > 1, ξ3 < 2 − F−1(0.1) which are not
considered by the design D.
A visualization of the optimal circle in a reference triangle that corresponds to the value
δ∗ can be seen in the Figure 3.2.

How we can solve probust optimization problems where we cannot find the set of feasible
realizations directly and instead have to use iterative set-approximation algorithm is the
focus of the next chapter. We will combine our results from probust subset schemes and
set-approximation schemes into what we will call sandwiching algorithms.

Figure 3.2: Visualization of expected triangle C(µ), reference triangle C(ξ∗), where
ξ∗ = (1, 1, 2− F−1(0.1)) and solution circle D(x∗)
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4 Sandwiching algorithms

In the last two chapters, we have introduced concepts to solve standard probust opti-
mization problems approximately. While the probust subset algorithm 3 calculates lower
bounds for the minimal objective value, the set-approximation algorithm 5 calculates
upper bounds.
In this chapter, we present how we can combine these two algorithms to use their indi-
vidual strengths and cover their weaknesses.
We start with the following generic sandwiching algorithm:

Algorithm 6 Sandwiching algorithm for standard probust optimization problems

1: Inputs:
Probust optimization problem instance SPP, precision ϵ > 0,
discretization scheme Φ, set-approximation scheme Ψ,
initial decision x0 ∈ X, initial discretization T0 ⊆ T

2: Initialize:
k := 0

3: do
4: xk+1 ← argminx∈X f(x) s.t. φ(x, Tk) ≥ p
5: Tk+1 ← Φk(xk+1, Tk)
6: (xk+1, δk+1)← argmin(x,δ)∈X×∆k+1

f(x) s.t. P(Dk+1(x, δ)) ≥ p,
maxξ∈Dk+1(x,δ),t∈T g(x, ξ, t) ≤ 0

7: k ← k + 1
8: while f(xk)− f(xk) ≥ ϵ
9: Results:

Sequence (xk, xk, Tk, δk)k∈N

We call this algorithm generic, because we use both iterative Algorithms 3 and 5 without
specifying the probust subset schemes or the set-approximation scheme. Since both
solution schemes do not exchange calculated values such as xk, xk, Tk or δk for any k ∈ N,
they define bounds for the optimal objective value by calculating f(xk) and f(xk) like
working on their own. The only advantage we gain in comparison to the individual
algorithms is that calculating these bounds allows us to define a stopping criterion by
f(xk)− f(xk) < ϵ for a given precision ϵ > 0.
Because the solution schemes in this algorithm are separated from each other, we can
add the assumptions for the convergence results in Theorem 2.2.3 and Theorem 3.3.2 to
directly show the convergence of Algorithm 6 after finitely many steps.
How we can exchange information between both solution schemes to benefit from their
strong sides while covering their weaknesses is the main question of the next sections.
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4 Sandwiching algorithms

4.1 Probust subset schemes using set-approximation
information

In this section, we focus on using information generated by probust subset schemes to
define set-approximation schemes. We have seen in Chapter 3 that set-approximation
schemes do find decisions that are feasible w.r.t. to the corresponding probust optimiza-
tion problem. The drawback of these methods is that we cannot guarantee to find the
optimal solution of the corresponding problem and we have to predefine the family of
designs D. Furthermore, we have not specified a stopping criterion in Algorithm 3 or 5
so far.
The main idea of this section is to use the generated iterates (xk)k∈N from probust subset
schemes to help us define a stopping criterion, while we use the sequence (Tk)k∈N to define
designs for the set-approximation scheme. This way the design function Dk adapts in
each iteration k ∈ N to the current information xk, Tk. As mentioned in the last chapter,
this is not given in general for set-approximation schemes.
In the following, we assume we are using an increasing subset scheme Φ that satisfies
the assumptions of Theorem 2.2.3. Since the theorem guarantees that we find all “inter-
esting” scenarios S = limk→∞ Tk ⊆ T for the accumulation points x̄ ∈ X of the defined
sequence (xk)k∈N, we hope that the corresponding inner set-approximations does also
converge.
To get a feeling for the convergence behavior of such methods, we test the following
designs in the next example:

1. We use designs specified by

Dk(x, δ) := Ω(y, Tk) (4.1)

for some y ∈ X. This way Dk is independent of x and we can identify the design
parameter δ by the tuple (y, Tk) for some y ∈ X. We do not use Dk(x, δ) = Ω(x, Tk)
because for Ω(x, Tk) ⊊ Ω(x, T ) = Ω(x), we cannot find a feasible decision for the
constraint (3.4) in general.

2. We use the design specified by

Dk(x, δ) := Ω(xk, Tk), (4.2)

where xk is the solution of the kth iteration of the probust subset scheme. Here
again, we make the design Dk independent of x and do also fix the design param-
eter δ = (xk, Tk) in the single iterations of the set-approximation algorithm. This
has two advantages: First, we know by definition of xk that P(Ω(xk, Tk)) ≥ p.
Thus, we can ignore the probability evaluation constraint (3.3) in the inner set-
approximation. Second, the maximum constraint (3.4) simplifies from a generalized
semi-infinite constraint to a standard semi-infinite constraint. This constraint can
be handled, e.g., by the adaptive algorithm introduced by Seidel in [73].
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4.1 Probust subset schemes using set-approximation information

3. We use designs specified by

Dk(x, δ) := Ωr(x, Tk) := {ξ ∈ Ξ | g(x, ξ, t) + r ≤ 0 ∀t ∈ Tk}, (4.3)

where r ∈ R together with Tk can be identified with the design parameter δ.
We can interpret r ∈ R as a balancing factor between the constraints in the inner
set-approximation problem:
For r > 0 we know by definition Ωr(x, Tk) ⊆ Ω(x, Tk). Consequently, it is harder
to fulfill the probability condition (3.3) in the inner set-approximation problem for
such sets. Nevertheless, the relation Ωr(x, Tk) ⊆ Ω(x, Tk) does also imply that the
maximum condition (3.4) of the inner set-approximation is easier to satisfy. It is
the other way around if we choose r < 0.

A lot of other design definitions are also possible. Going through all of them is not within
the range of this thesis.

Within the range of this thesis is testing the convergence of the solutions of set-approximation
problems using the defined designs in the following example:

Example 4.1.1 (Example: Convergence of set-approximation schemes)
We consider the following probust optimization problem

min
x∈[0,1]

x s.t. P(x− ξ ≤ 0, ξ − 2x− 1.9 + t ≤ 0 ∀t ∈ [0, 1]) ≥ 0.9, where Z ∼ U ([0, 1]) .

First, we solve this problem analytically like in Example 1.1.9. We know that the worst-
case function evaluation is defined by

max
t∈[0,1]

ξ − 2x− 1.9 + t = ξ − 2x− 0.9

for arbitrary (x, ξ) ∈ [0, 1]2. Therefore, we know that the unique worst-case scenario is
t = 1.
This leads to the description of the set of feasible realizations

Ω(x) = Ω(x, T ) = Ω(x, {1}) = [x,min{2x+ 0.9, 1}] ⊆ Ξ = [0, 1]

for any fixed x ∈ [0, 1]. As the uniform distribution can be evaluated easily in this case,
we can reformulate the probust constraint as for x ∈ [0, 1] as

φ(x) = P(Ω(x)) = min{2x+ 0.9, 1} − x ≥ 0.9.

This leads to the (unique) minimizer x∗ = 0 with φ(x∗) = min{0.9, 1} − 0 = 0.9.
Furthermore, we can differentiate φ in the surrounding B0.1(x

∗) ∩ Fp with ∇φ(x∗) = 1
and therefore can find the MFCQ-vector v = 1.
Next, we focus on the subset scheme which is defined here as the union of k ∈ N points

Φk : X × 2T → 2T , (x, S)→ Tk :=

k⋃

n=1

{

1− 1

n

}

.
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4 Sandwiching algorithms

This subset scheme is by definition an increasing discretization scheme and does fulfill
t∗(x, ξ) = 1 ∈ cl (S) with S = limk→∞ Tk for any x ∈ [0, 1], ξ ∈ [0, 1]. With this fixed
subset scheme, we can represent

Ω(x, Tk) =

[

x,min

{

2x+ 0.9 +
1

k
, 1

}]

for any fixed decision x ∈ [0, 1].
As x∗ = 0 is not only the minimizer of the probust optimization problem, but also the
minimizer of the optimization problem minx∈[0,1] x without additional constraint, we know
that the probust subset schemes will find xk = x∗ = 0 for all iterations k ∈ N. Therefore,
we know that for fixed iteration k ∈ N we can represent

Ω(xk, Tk) =

[

0,min

{

0.9 +
1

k
, 1

}]

.

Now, we consider the different set-approximation schemes (4.1) to (4.3).

1. Dk(x, δ) = Ω(y, Tk) : Considering the maximum constraint (3.4) of the inner set-
approximation problem and interpreting it as a set-inclusion constraint, we have to satisfy

Ω(y, Tk) ⊆ Ω(x, T )⇔
[

y, 2y + 0.9 +
1

k

]

⊆ [x, 2x+ 0.9].

for some (x, y) ∈ [0, 1]2. This inclusion implies

x ≤ y and

2y + 0.9 +
1

k
≤ 2x+ 0.9⇔ y ≤ x− 1

2k
,

which is a contradiction for all k ∈ N. This means that we cannot find a feasible solution
for any inner set-approximation problem.

2. Dk(x, δ) = Ω(xk, Tk) : Since this set is a special case of 1. with fixed y = xk the same
arguments as for the last design imply for the maximum constraint (3.4) of the inner
set-approximation problem

Ω(xk, Tk) ⊆ Ω(x, T )⇔
[

0, 0.9 +
1

k

]

⊆ [x, 2x+ 0.9]

and therefore

x ≤ 0 and

0.9 +
1

k
≤ 2x+ 0.9⇔ 1

2k
≤ x,

which is also a contradiction for each k ∈ N.
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4.1 Probust subset schemes using set-approximation information

3. Dk(x, δ) = Ωr(y, Tk) : In contrast to the last two examples, these design lead to a
sequence of set-approximation problems such that the choice xk = 1

4k , yk = 0, rk = 1
2k is

feasible for all problems starting from iteration k ≥ 1
2(1−p) = 5 as we can check

Ωrk(yk, Tk) ⊆ Ω(xk, T )⇔
[

yk + rk, 2yk + 0.9 +
1

k
− rk

]

⊆ [xk, 2xk + 0.9]

⇔
[
1

2k
, 0.9 +

1

2k

]

⊆
[
1

4k
, 0.9 +

1

2k

]

and

P(Ωrk(yk, Tk)) = P

([
1

2k
, 0.9 +

1

2k

])

= 0.9.

Because the sequence xk = 1
4k converges towards the minimizer of the original probust

optimization problem x∗ = 0, this set-approximation scheme seems to be more appropriate
for this problem instance. As it covers the first case by fixing r = 0 we expect it to be the
most flexible design to find a solution.

This example shows that set-approximation schemes with information from probust sub-
set schemes do not converge in general. To be able to approximate the set Ω(x∗) we
should start with generic designs like Ωr(y, Tk) and get more specific by choosing Ω(y, Tk)
or Ω(xk, Tk) if the first design leads to an solvable problem. If the design Ωr(y, Tk) can
always be used given the setting of Theorem 3.3.3 is not clear so far.
One structural problem in general is that increasing subset schemes imply Tk ⊆ Tk+1

for all k ∈ N and therefore a decreasing sequence Ω(x, Tk+1) ⊆ Ω(x, Tk) of the corre-
sponding designs for any x ∈ X. To be able to use Theorem 3.3.3, we have to ensure
an increasing set of designs Dk ⊆ Dk+1 for all k ∈ N. Consequently, we have to find
for each x ∈ X, k ∈ N some y ∈ X such that Dk(x, Tk) = Dk+1(y, Tk+1) which implies
Ω(x, Tk) = Ω(y, Tk+1). Since the set of feasible realizations changes its structure by
adding discretization points, this conditions seems hard to fulfill in general.

To find sufficient conditions to guarantee the convergence of inner and outer approxima-
tions based on pieces of information generated by probust subset methods is one direction
that future work can go.
Nevertheless, we focus on the sandwiching algorithm 6, where we specify Dk = Ω(xk, Tk)
for all k ∈ N for the upcoming applications. As explained, this approach allows us to cal-
culate an upper bound for our objective function fast, even if it does not converge towards
any accumulation point of the iterates created by a probust subset scheme. Keeping this
point in mind, we have to check in every iteration if the solution xk is feasible w.r.t.
the inner set-approximation. The corresponding algorithm which uses information of the
probust subset scheme in the set-approximation scheme is formulated as:
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4 Sandwiching algorithms

Algorithm 7 Exchange sandwiching algorithm for standard probust optimization prob-
lems

1: Inputs:
Probust optimization problem instance SPP, precision ϵ > 0,
discretization scheme Φ, initial decision x0 ∈ X,
initial discretization T0 ⊆ T

2: Initialize:
k := 0

3: do
4: xk+1 ← argminx∈X f(x) s.t. φ(x, Tk) ≥ p
5: Tk+1 ← Φk(xk+1, Tk)
6: xk+1 ← argminx∈X f(x) s.t. maxξ∈Ω(xk+1,Tk),t∈T g(x, ξ, t) ≤ 0
7: k ← k + 1
8: while f(xk)− f(xk) ≥ ϵ
9: Results:

Sequence (xk, xk, Tk)k∈N

Before testing this sandwiching algorithm on applications in the Part II of this thesis, we
comment on the idea of using information from set-approximation schemes in the probust
subset scheme.

4.2 Set-approximation schemes using probust subset

information

In this section, we comment on using information generated by set-approximation schemes
to define a probust subset scheme. We have seen that probust subset schemes define outer
approximations of the corresponding probust optimization problem (see Lemma 2.2.2),
but cannot guarantee to find a solution that is feasible w.r.t. the original problem in
general.
As inner set-approximation methods do find such feasible decisions, we focus on how we
can make this useful for the probust subset schemes.
We assume that we use a set-approximation scheme Ψ satisfying the assumptions of The-
orem 3.3.2. As the theorem guarantees that we find the “shape” of the set of feasible
realizations Ω(x), where x is the accumulation points x ∈ X of the sequence (xk)k∈N gen-
erated by the inner set-approximation problems, we hope that the corresponding probust
subset schemes do also converge.
We do not analyze the convergence of this approach here, but comment on the follow-
ing ways to use information from inner set-approximation problems in probust subset
schemes:
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4.2 Set-approximation schemes using probust subset information

1. We could use the information (xk, δk) to calculate subsets Tk of T by defining
probust subset schemes Φ. This approach is troublesome because the set D(xk, δk)
is independent w.r.t. t ∈ T in general and therefore, it is unclear how to calculate
scenarios given D(xk, δk). On the contrary, we can try to use the iterates xk as
fixed arguments for adaptive subset schemes such as the HLAD or LLAD.

2. We could use the information (xk, δk) to define a new optimization problem to
determine xk. In comparison to the inner set-approximation from Chapter 3, we
think about the following outer set-approximation problem, where we are searching
for supersets of Ω(x), x ∈ X:

min
x∈X

f(x) s.t. P(Dk(x, δ)) ≥ p ∀δ ∈ ∆,

Ω(x) ⊆ Dk(x, δ) ∀δ ∈ ∆.

In this case, it is not enough to just find one design parameter δ ∈ ∆ that satisfies
P(D(x, δ)) ≥ p, but we have to guarantee this condition for all possible δ ∈ ∆.
Consequently, we cannot use δ ∈ ∆ as a decision variable and the probability
constraint gets a necessary condition to guarantee P(Ω(x)) ≥ p.
Because this condition is hard to check, we simplify the outer set-approximation
problem by reducing the design space to just one element ∆k = {δ} for all k ∈ N

defining an unique design Dk. The corresponding optimization problem then reads

min
x∈X

f(x) s.t. P(Dk) ≥ p,

Ω(x) ⊆ Dk.

Here the questions arise how to fix the set Dk and how to solve the generalized
semi-infinite constraint induced by Ω(x) ⊆ Dk efficiently.

So far, we do not see any helpful combination of the parameters (xk, δk)k∈N from a set-
approximation scheme with the iterates of a probust subset scheme (xk, Tk)k∈N.
We think, that this way of combining information is not helpful in general because we
start with a set-approximation scheme to generate subsets S ⊆ T that describe the set
of feasible realizations for a given decision. As the set-approximation scheme converges
towards a solution of the original probust optimization problem by assumption, we know
that the sequence (Dk(xk, δk))k∈N already approximates this set of feasible realizations
and therefore the calculation of S ⊆ T doubles the effort.
Furthermore, we do not see any subproblem in this procedure that can be solved easily
to generate additional information while running a set-approximation scheme.
Therefore, we do not use any of the ideas above numerically in Part II of this thesis.
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Overview Part I

As we reached the end of the theory part of this thesis, we want to recapitulate what we
have achieved within the Chapters 2 - 4.
We do this, on the on hand, by shortly mentioning the main theorems in these chapters
and then visualize the newly defined solution approach for standard probust optimiza-
tion problems by Figure 4.1 which depicts an updated workflow how to handle a probust
optimization problem.

In Chapter 2, we considered discretization schemes inspired by the literature of semi-
infinite optimization to replace the set of scenarios T of infinite cardinality by a sequence
of finite subsets (Tk)k∈N, Tk ⊆ T for all k ∈ N. A condition to check if these sets are
appropriate to replace T is given by the candidate-condition (see Definition (2.1.9)) at
the current iterate xk ∈ X which we deduced from analyzing probust terms.
Using this condition, we define discretization schemes such as a uniform discretization
scheme with vanishing grid sizes or two probust variants of the adaptive discretization
scheme from Blankenship and Falk whose iterates converge to a solution of the original
probust optimization problem.
The main theorem to ensure convergence of such discretization schemes is Theorem 2.2.3.
Since the stated Algorithm 3 is an iterative one without explicit stopping criterion, we
are interested in finding feasible iterates for a probust optimization problem.
Rethinking chance constrained optimization and connecting it to design-centering prob-
lems (that are introduced in the next chapter) in Chapter 3, we defined the inner set-
approximation problem (see Definition 3.2.1) whose optimal value is an upper bound for
the optimal value of the original problem. Interpreting standard probust optimization
problems as chance constraints with a special structure of the inner function, we could
transfer the approximation and convergence results (see Proposition 3.2.2, Theorem 3.3.2
and Theorem 3.3.3) found for the chance constrained problem class to standard probust
optimization problems.
In Chapter 4, we discussed how we can combine both solution approaches efficiently.
Considering several methods where information of one solution approach are used in the
other one and an example problem to test these algorithms are given. In the end, we
came up with one specific combination of the solution approaches stated as Algorithm
7. This algorithm uses the output of a probust subset scheme to reduce the inner-set
approximation problem to a mere SIP. As we hope that this problem can be solved within
a reasonable numerical effort, we will use this algorithm for the following applications.
As we have not fixed the probust subset scheme for this algorithm, we can specify it
according to the structure of the considered problem structure.
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The workflow of how to handle a standard probust optimization problem with the solution
approaches defined in Part I of this thesis can be visualized as follows:

Figure 4.1: Workflow how to solve probust optimization problems defined by Part I of
this thesis
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This workflow is meant to start, where Figure 1.5 in Chapter 2 needed problem specific
solution to ”Solve standard probust optimization problem”.
We first ask ourselves if we know how the set of feasible realizations is structured.
If we can describe this structure by functions as in Proposition 3.1.7, we should consider
an inner set-approximation problem to reformulate this problem and solve it. Here, we
need to evaluate the probability constraint (3.3) which we assume is possible for the
specified structure of the set of feasible realizations. Furthermore, we have to evaluate
the set-inclusion constraint (3.4) which we assume to be reducible to a semi-infinite con-
straint by the given structure of the sets of feasible realizations using an appropriate
transformation of the uncertainty set like in [72]. Consequently, the problem should be
solvable within reasonable numerical effort.
If we do not know the structure of sets of the feasible realizations, we have to generate
knowledge about these sets. Either we just test set-approximation schemes which imply
a lot of numerical effort or we try to use the problem structure given by the probust opti-
mization problem evaluating approximations of the set of feasible realizations Ω(x, S) for
x ∈ X and S ⊆ T . If we can evaluate the probability of such sets numerical efficiently,
we can consider the sandwiching scheme given by Algorithm 7. Here, we have to specify
the probust subset scheme that we want to use.
With the experience of the second part of this thesis, we recommend to test if we can
get additional analytical insight from this scenario-wise solution approach to specify ”im-
portant” discretization points. If so, we can use these information to define an specified
subset scheme that needs a few well-chose discretization points such as the (MI-)HLAD
in Section 2.3. As we just take a few discretization points, the calculation of xk, xk in
each iteration will be relatively fast.
If we have no additional insight into the importance of scenarios, then the search for such
scenarios might take too much time or lead to a break down of the used numerical tool.
Consequently, we have to use explorative discretization schemes such as the uniform dis-
cretization scheme to find important discretization points for all decisions x ∈ X (see
Lemma 2.3.1). Such methods define more discretization points and therefore increase the
running time when calculating iterates xk, xk, but they find discretization points more
reliably. If the structure of the inner function g is useable for an optimization w.r.t.
t ∈ T - e.g. a concave function w.r.t. t ∈ T - then we recommend choosing the LLAD over
choosing a uniform discretization approach.
With the information from explorative discretization schemes we might improve our un-
derstanding of important scenarios and with them the understanding of the structure of
the sets of feasible realizations.
This concludes the workflow depicted in Figure 4.1 of handling standard probust opti-
mization problems defined by the introduced solution approaches.
Our next goal is to use these solution approaches to get solutions for realistic probust
optimization problems and thereby gain insights about the basic problem classes.
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Part II

Applications
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5 Stochastic design-centering problems

In this chapter we give a short introduction to (stochastic) design-centering problems and
how they are connected to semi-infinite and probust optimization problems.
After that we define three problem instances in Section 5.1 which motivate us to modify
the probust subset schemes introduced in Section 2.3 to fit their inner function structure in
Section 5.2. As we can find analytical solutions of these three stochastic design-centering
problem instances, we use them to compare the probust solution approaches introduced
in the first part of this thesis concerning precision of the solution and running time in
Section 5.3. We also gather numerical experience handling these problems that can be
useful for the remaining applications in the second part of this thesis.

A design-centering problem has the following form

DC : max
x∈X

vol(D(x)) s.t. D(x) ⊆ C(x),

where C(x) ⊆ Rm is a so called container in which the parameter-depending design
D(x) ⊆ Rm should lie within for some x ∈ X. As we can influence the form of the design
and the container by the parameter x ∈ X, we want to maximize the volume vol of the
design within the container.
If we assume that the container can be described by finite many inequality constraints
gi : X × Rq → R, i ∈ I, |I| <∞ as

C(x) = {y ∈ Rq | gi(x, y) ≤ 0 ∀i ∈ I},

we can reformulate a DC as a generalized semi-infinite optimization problem

DC-SIP : min
x∈X
−vol(D(x)) s.t. gi(x, y) ≤ 0 ∀y ∈ D(x), i ∈ I.

This kind of problem is handled in several works, e.g., in Section 2.4 of Oliver Stein’s
book [78] and paper’s from Stein [79], Winterfeld [86] and Harwood et al. [39].

Inspired by DCs, we extend the problem description by a random variable Z that can be
interpreted as a random disturbance when adjusting the design into the container.
We call the following extended version of the problem stochastic design-centering problem
(SDC) and can formulate it as

SDC : max
x∈X

E(vol(D(x, ξ))) s.t. P(D(x, ξ) ⊆ C(x, ξ)) ≥ p.
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5 Stochastic design-centering problems

If we again assume that the container can be described by finite many inequality con-
straints gi : X × Ξ× Rq → R, i ∈ I, |I| <∞ as

C(x, ξ) = {y ∈ Rq | gi(x, ξ, y) ≤ 0 ∀i ∈ I},

we can reformulate a SDC as a generalized probust optimization problem

SDC-GPP : min
x∈X
−E(vol(D(x, ξ))) s.t. P(gi(x, ξ, y) ≤ 0 ∀y ∈ D(x, ξ), i ∈ I) ≥ p.

One simple example is that we want to maximize the length of the interval I(x) := [0, x]
within the container C := [0, 1], where x ∈ [0, 1]. When adjusting this interval I into C
we have to consider a uncertain influence Z ∼ U ([0, 1]) that influences the positioning of
I(x) by D(x, ξ) = I(x) + [0, ξ] = [0, x+ ξ].
Given a probability p ∈ [0, 1] with that we should guarantee that D(x, ξ) lies within [0, 1],
we can solve the induced probust optimization problem.
Since the solution of this probust optimization problem can be calculated as x∗p = 1− p,
we can interpret the difference between this minimizer and x∗ = 1 - as the minimizer
corresponding to the (deterministic) constraint I(x) ⊆ C - as a safety buffer to be able
to react to the influence of the realizations of the random vector Z. How big this safety
buffer is depends mainly on p ∈ [0, 1] and the used probability distribution.
In the following section we define some more complex examples of stochastic design-
centering problems.

5.1 Problem instances

The focus of this section is to define three examples of stochastic design-centering prob-
lems with different structural properties. We calculate their optimal solutions before we
compare the performance of different numerical solving strategies inspired by the schemes
introduced in Chapter 2 - 4.
We handle the single stochastic design-centering problems in the following way:
First, we introduce the container and the design which we focus on and represent them
by inequality constraints. The stochastic design-centering problem (SDC) induced by the
sets can then be rewritten as a generalized probust optimization problem (SDC-GPP).
Afterwards, we introduce transformations of the uncertainty sets which allow us to re-
duce the generalized probust optimization problem to a standard probust optimization
problem (SDC-SPP). Then, we can use statements from Chapter 1 to ensure an unique
solution for each problem instance. Finally, we calculate these solutions analytically.
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5.1 Problem instances

Example: Circle in uncertain triangle

Problem formulation: We consider the stochastic design-centering problem of putting
an area maximizing circle given by the design

D(x) = Bx1

((
x2
x3

))

= {y ∈ R2 | (y1 − x2)
2 + (y2 − x3)

2 ≤ x21}

with x ∈ X := R≥0 × R2 into an uncertain triangle interpreted as the container that is
described by the points

P1 = (−1, Z),

P2 = (1, Z),

P3 = (0, Z + 1), Z ∼ N (0, 0.2) .

Consequently, we can describe the triangle for a fixed ξ ∈ R as

C(ξ) = {y ∈ R2 | g1(ξ, y) ≤ 0, g2(ξ, y) ≤ 0, g3(ξ, y) ≤ 0},
where g1(ξ, y) = ξ − y2,

g2(ξ, y) = y2 + y1 − ξ − 1 and

g3(ξ, y) = y2 − y1 − ξ − 1.

Fixing a threshold parameter p := 0.9 leads to the stochastic design-centering problem

SDC : max
x∈X

πx21 s.t. P(D(x) ⊆ C(ξ)) ≥ p.

Problem reformulation (GPP): Before analyzing this problem, we have to reformulate
its constraints in a way that we can handle.
Therefore, we rewrite SDC as a generalized probust optimization problem as explained
in the beginning of this chapter:

SDC-GPP : min
x∈X
−πx21 s.t. P





g1(ξ, y) ≤ 0 ∀y ∈ D(x),
g2(ξ, y) ≤ 0 ∀y ∈ D(x),
g3(ξ, y) ≤ 0 ∀y ∈ D(x)



 ≥ 0.9

Problem reformulation (SPP): Next we use the following transformation to the ref-
erence set T̂ := B1(0) to simplify the set-dependency within the probability evaluation

T
T̂
: X × Ξ× T̂ → R2, (x, ξ, z)→ x1 · z +

(
x2
x3

)

.

As T
T̂
(x, ξ, ·) is surjective for all x ∈ X := R≥0 × R2, ξ ∈ Ξ := R and even a homeomor-

phism between T̂ = B1(0) and D(x) if x1 ̸= 0, we can reformulate the inner functions of
the original problem as

g̃1(x, ξ, z) = g1(ξ, TT̂ (x, ξ, z)) = ξ − x1z2 − x3,

g̃2(x, ξ, z) = g2(ξ, TT̂ (x, ξ, z)) = x1z2 + x3 + x1z1 + x2 − ξ − 1,

g̃3(x, ξ, z) = g3(ξ, TT̂ (x, ξ, z)) = x1z2 + x3 − x1z1 − x2 − ξ − 1.
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5 Stochastic design-centering problems

This leads to the following standard probust optimization problem:

SDC-SPP : min
x1≥0,x2,x3∈R

−πx21 s.t. P





g̃1(x, ξ, z) ≤ 0 ∀z ∈ B1(0),
g̃2(x, ξ, z) ≤ 0 ∀z ∈ B1(0),
g̃3(x, ξ, z) ≤ 0 ∀z ∈ B1(0)



 ≥ 0.9

Analysis (solution existence): After reformulating the optimization problem into a
form we can analyze, we use the theory introduced in Section 1.1.
Because g̃i is continuous w.r.t. (x, ξ, z) ∈ X × Ξ× T̂ , we know by Proposition 1.1.6 that
φ : X → [0, 1] is upper semi-continuous. Consequently the feasible set of SDC-SPP is
closed.
It is also compact, as we can reduce the search spaceX = R≥0×R2 to X̃ = [0, 1]×[−1, 1]2.
This reduction is possible as the radius of the circle is not allowed to be bigger than the
height of the triangles C(ξ), ξ ∈ Ξ, which justifies x1 ∈ [0, 1]. Furthermore, the midpoint
(x2, x3) ∈ R2 has to be contained within some triangle which explains x2 ∈ [−1, 1]. Last,
but not least x3 ∈ [−1, 1] is guaranteed because any decision x ∈ X with |x3| ≥ 1 cannot
be feasible as we will see next:
Any two containers fulfill C(ξ1)∩C(ξ2) = ∅, if |ξ1− ξ2| > 1. Consequently, no design can
lie within both such containers. If we assume |x3| > 1, then we can estimate

φ(x) ≤ P([|x3| − 1, |x3|]) ≤ P([0, 1]) ≤ 1

2
< p.

Therefore, the decision is infeasible as claimed.
All together, we can reduce the search space X to the compact space X̃ = [0, 1]× [−1, 1]2.
Next, we have to guarantee that the feasible set is not empty. Therefore, we concentrate
on estimating pmax ∈ [0, 1]:
We have already observed that C(ξ1) ∩ C(ξ2) = ∅ for all |ξ1 − ξ2| > 1, ξ1, ξ2 ∈ Ξ. This
means that the set of feasible realizations for a fixed decision is contained within in
interval of length 1.
Fixing the decision x0 =

(
0, 0, 12

)
, we know that the set of feasible realizations is given

by Ω(x0) =
[
−1

2 ,
1
2

]
by plotting the corresponding design. This leads to the estimation

pmax = max
x∈X

φ(x) ≥ φ(x0) = P

([

−1

2
,
1

2

])

= F

(
5

2

)

− F

(

−5

2

)

≈ 0.9876.

With p = 0.9 < pmax this implies that the feasible set is not empty and thus SDC-SPP
has a well-defined solution.
Analysis (convex feasible set): Furthermore, we know by Proposition 1.1.8 that
φ : X → [0, 1] is a log-concave function and therefore the feasible set of SDC-SPP is
convex. The assumptions of Proposition 1.1.8 hold because normal distributions are
log-concave, the maximum of quasi-convex functions is quasi-convex and because linear
functions are quasi-convex. We cannot argue that the objective function is strictly convex
w.r.t. x ∈ X, but the next solution step shows that the minimizer of SDC-SPP is unique.
Analysis (solution calculation): Because we know that we can find a solution of the
optimization problem SDC-SPP, we can try to calculate it:
As we are missing a sufficient condition to check if a given point x∗ ∈ X is a minimizer
of a probust optimization problem, we have to construct the solution.
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5.1 Problem instances

By symmetry of the triangle and because changes in the realization ξ ∈ R just influence
the second coordinate of the circle, we know that the optimal decision x∗ = (x∗1, x

∗
2, x

∗
3)

satisfies x∗2 = 0. Now we go through the solving steps introduced in Example 1.1.9.
We start with calculating max

z∈T̂ g̃(x, ξ, z) = max
z∈T̂ maxi=1,2,3 g̃i(x, ξ, z), where we go

through the single constraints individually

max
z∈B1(0)

g̃1(x, ξ, z) = ξ + x1 − x3 with z∗1 = (0,−1),

max
z∈B1(0)

g̃2(x, ξ, z) =
√
2x1 + x2 + x3 − ξ − 1 with z∗2 =

√
2

2
(1, 1) and

max
z∈B1(0)

g̃3(x, ξ, z) =
√
2x1 − x2 + x3 − ξ − 1 with z∗3 =

√
2

2
(−1, 1).

Please note that the worst-case scenarios z∗i , i = 1, 2, 3 do not depend on x ∈ X or ξ ∈ Ξ.
Now, we can reformulate the probust constraint in a second step by a joint chance con-
strained:

P





g̃1(x, ξ, z) ≤ 0 ∀z ∈ B1(0),
g̃2(x, ξ, z) ≤ 0 ∀z ∈ B1(0),
g̃3(x, ξ, z) ≤ 0 ∀z ∈ B1(0)



 = P





ξ + x1 − x3 ≤ 0,√
2x1 + x2 + x3 − ξ − 1 ≤ 0,√
2x1 − x2 + x3 − ξ − 1 ≤ 0





= P





ξ ≤ x3 − x1,√
2x1 + x2 + x3 − 1 ≤ ξ,√
2x1 − x2 + x3 − 1 ≤ ξ





= P([
√
2x1 +max{x2,−x2}+ x3 − 1

︸ ︷︷ ︸

=:ξ(x)

, x3 − x1
︸ ︷︷ ︸

=:ξ(x)

])

= P([ξ(x), ξ(x)] (5.1)

In a third and last step we want to choose an optimal decision variable x∗ ∈ X that
satisfies the joint chance constrained:
We take note that the interval [ξ(x), ξ(x)] is monotonically decreasing w.r.t. ⊆ for increas-
ing x1 ≥ 0. Furthermore, we notice that the decision variables x2, x3 ∈ R do not influence
the objective value directly. They are used to guarantee the feasibility of the decision
variable x1 ≥ 0 which should be chosen as big as possible as the objective function is
monotonically decreasing w.r.t. x1 ≥ 0. Therefore, an optimal decision x∗ does not only
imply x∗2 = 0 as explained above, but also chooses x∗3 in a way such that the probability
is as high as possible. Due to the normal distribution in this example this means that
x∗3 guarantees the symmetry of the set of feasible realizations Ω(x∗) around the expected
value µ = 0 which induces the explicit form Ω(x∗) = [ξ(x∗), ξ(x∗)]. Consequently, we can
derive the following necessary condition for an optimal solution x∗ = (x∗1, x

∗
2, x

∗
3) with

x∗2 = 0:

− ξ(x∗) = ξ(x∗)

⇔− (
√
2x∗1 + x∗3 − 1) = x∗3 − x∗1

⇔x∗3 =
1−
√
2

2
x∗1 +

1

2
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5 Stochastic design-centering problems

Inserting this condition into the bounds ξ(x∗), ξ(x∗) we observe that these are monoton-
ically decreasing w.r.t. x∗1. Consequently, the probust constraint is active for the optimal
choice x∗ which leads to an equality constraint that defines the value of x∗1 by

p = P([ξ(x∗), ξ(x∗)])

= P
(
[−ξ(x∗), ξ(x∗)]

)

= 2P
(
[0, ξ(x∗)]

)

= 2

(

F

(
ξ(x∗)
σ

)

− F (0)

)

= 2

(

F

(
x∗3 − x∗1

σ

)

− 1

2

)

= 2F

(
5

2
(1− (1 +

√
2)x∗1)

)

− 1,

where F denotes the cumulative distribution function of a standard normal distributed
random variable. Remembering p = 0.9, the last equality is equivalent to

x∗1 =
1− 0.4F−1

(
1+p
2

)

1 +
√
2

≈ 0.1417.

With this we can calculate the (unique) optimal solution via

x∗3 =
1−
√
2x∗1

2
+

1

2
≈ 0.4707,

x∗ ≈ (0.1417, 0, 0.4707) and

f(x∗) ≈ −6.308 · 10−2.
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5.1 Problem instances

Example: Ellipse in uncertain triangle

Problem formulation: We consider the stochastic design-centering problem of putting
an area maximizing ellipse given by the design

D(x) = A(x)B1(0) + b(x) = {y ∈ R2 | ∃z ∈ B1(0) : y = A(x)z + b(x)}

with A(x) =

(
x1 x3
0 x2

)

, b(x) =

(
x4
x5

)

, x ∈ X := R2
≥0 × R3 into an uncertain triangle

interpreted as the container that is described by the points

P1 = (−
√
3,−1),

P2 = (
√
3,−1),

P3 = (0, 2 + Z), Z ∼ N (0, 1) .

Please note that this triangle is degenerated for the realization ξ = −3 what happens
with probability P(ξ = −3) = 0.
We can describe the triangle for a fixed realization ξ ∈ R as

C(ξ) = {y ∈ R2 | g1(ξ, y) ≤ 0, g2(ξ, y) ≤ 0, g3(ξ, y) ≤ 0},
where g1(ξ, y) = sign(3 + ξ)(−1− y2),

g2(ξ, y) = sign(3 + ξ)
(√

3y2 + (3 + ξ)y1 +
√
3(2 + ξ)

)

and

g3(ξ, y) = sign(3 + ξ)
(√

3y2 − (3 + ξ)y1 +
√
3
)

.

Here the sign-function is necessary because for ξ < −3 the described triangle flips over.
Nevertheless, we will see that this case is to improbable to consider and therefore we can
ignore the sign-function in the model description.
With p := 0.9 the stochastic design-centering problem can be written as

SDC : max
x∈X

πx1x2 s.t. P(D(x) ⊆ C(ξ)) ≥ p.

Problem reformulation (GPP): Before analyzing this problem, we have to reformulate
its constraints in a way that we can handle them.
Therefore, we rewrite SDC as a generalized probust optimization problem as explained
in the beginning of this chapter:

SDC-GPP : min
x∈X
−πx1x2 s.t. P





g1(ξ, y) ≤ 0 ∀y ∈ D(x),
g2(ξ, y) ≤ 0 ∀y ∈ D(x),
g3(ξ, y) ≤ 0 ∀y ∈ D(x)



 ≥ 0.9

Problem reformulation (SPP): Next we use the following transformation to the ref-
erence set T̂ := B1(0) to simplify the set-dependency within the probability evaluation

T
T̂
: X × Ξ× T̂ → R2, (x, ξ, z)→ A(x)z + b(x).
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5 Stochastic design-centering problems

As T
T̂
(x, ξ, ·) is surjective for all x ∈ X, ξ ∈ Ξ := R and even a homeomorphism between

T̂ = B1(0) and D(x) if x1 · x2 ̸= 0, we can reformulate the inner functions of the original
problem as

g̃1(x, ξ, z) = g1(ξ, TT̂ (x, ξ, z)) = −1− (x2z2 + x5),

g̃2(x, ξ, z) = g2(ξ, TT̂ (x, ξ, z)) =
√
3(x2z2 + x5) + (3 + ξ)(x1z1 + x3z2 + x4) +

√
3(2 + ξ),

g̃3(x, ξ, z) = g3(ξ, TT̂ (x, ξ, z)) =
√
3(x2z2 + x5)− (3 + ξ)(x1z1 + x3z2 + x4) +

√
3(2 + ξ).

This leads to the following standard probust optimization problem:

SDC-SPP : min
x∈X
−πx1x2 s.t. P





g̃1(x, ξ, z) ≤ 0 ∀z ∈ B1(0),
g̃2(x, ξ, z) ≤ 0 ∀z ∈ B1(0),
g̃3(x, ξ, z) ≤ 0 ∀z ∈ B1(0)



 ≥ 0.9

Please note that we ignored the sign-functions in the definition of g̃i, i = 1, 2, 3. We are
allowed to do that because any feasible decision x ∈ X with x1, x2 ≥ 0 satisfies ξ ≥ −3
for all its feasible realizations ξ ∈ Ω(x) := {ξ ∈ Ξ | g̃i(x, ξ, z) ≤ 0 ∀i = 1, 2, 3, z ∈ B1(0)}.
We can understand that with the following indirect argument:
If there is a feasible decision x ∈ X with feasible realization ξ < −3, then we can
distinguish three cases.
Case (i) there exists a feasible realization ξ̃ > −3, which implies D(x) ∩ C(ξ) = ∅ or
D(x) ∩ C(ξ̃) = ∅ (see Figure 3.1) what contradicts that ξ and ξ̃ are feasible realizations
for x ∈ X.
Case (ii) the realization ξ̃ = −3 is feasible. Then the triangle is degenerated and we have
to choose x1 = x2 = 0 leading to f(x) = 0.
Case (iii) all feasible realizations satisfy ξ3 < −3. Then we can estimate

φ(x) ≤ P(ξ3 ≤ −3) = F (−3) ≈ 2.87 · 10−7.

As we chose p = 0.9 > 10−6, x cannot be feasible what is a contradiction.
Consequently, we can ignore the case ξ < −3 if we consider feasible decisions x ∈ X.
Analysis (solution existence): Using the representation SDC-SPP, we can use Propo-
sition 1.1.6 to guarantee that SDC-SPP has a solution x∗ ∈ X because all describing
functions g̃i are continuous w.r.t. (x, ξ, z) ∈ X × Ξ × T̂ and therefore satisfy the condi-
tions of the statement. Consequently, φ : X → [0, 1] is upper semi-continuous and the
feasible set is closed. As we can w.l.o.g. exchange the unbounded set X by the compact
set X̃ := [0, 4]2 × [−2, 2]3 and the objective function is continuous, we know by Weier-
strass’ theorem that there exists an optimal solution x∗ ∈ X.
We are allowed to exchange X by X̃ as we chose p = 0.9 > 0.5. Because the set of feasible
realizations Ω(x) for any x ∈ X is described by convex functions it is convex itself and by
the symmetry of the given probability distribution P(µ+ A) = P(µ− A) for any A ∈ B,
we have to guarantee that µ = 0 ∈ Ω(x) for any feasible decision x ∈ X. This leads to
the deterministic constraint D(x) ⊆ C(0) which implies y1 ∈ [−1, 2] and |y2| ≤

√
3 for all

y ∈ D(x) from a geometrical point of view. These constraints again imply that x ∈ X̃,
where we use that D(x) = A(x)B1(0) + b(x) ⊆ C(0) and fix e.g. z0 = (0, 0) ∈ B1(0) to
get the constraint

A(x)z0 + b(x) = b(x) ∈ C(0).
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This fixation of the scenario implies x4 ∈ [−
√
3,
√
3] ⊆ [−2, 2] and x5 ∈ [−1, 2] ⊆ [−2, 2].

The fixation of z0 ∈ {(0, 1), (1, 0), (−1, 0), (0,−1)} leads to the bounds of x1, x2 and x3.
Additionally, we know that the feasible set is not empty because the design defined by
x0 = (0, 0, 0, 0, 0) lies within all triangles with ξ ≥ −2 and consequently, we know that
pmax ≥ P(ξ ≥ −2) > 0.99 > p = 0.9. This ensures that x0 is feasible for our problem
instance. All together we know that SDC-SPP has a well-defined solution.
Analysis (convex feasible set): Furthermore, we know by the same arguments as in
the last example and by Proposition 1.1.8 that φ : X → [0, 1] is a log-concave function.
This implies the convexity of the feasible set of SDC-SPP. Altough the objective function
is not strictly convex, the following solution step shows that the minimizer of SDC-SPP
is unique.
Analysis (solution): As we know that there exists a solution of SDC-SPP, we can
try to calculate it. Unfortunately, the standard procedure for solving standard probust
optimization problems from Example 1.1.9 is difficult to apply here. One could calculate
the worst-case scenarios z∗i , i = 1, 2, 3, but reformulating the probability evaluation does
not lead to a useful expression as far as we experienced.
Consequently, we need a new reformulation of SDC-GPP that allows us to use a new
kind of (geometric) arguments.
We change the perspective to find a transformation that does not create a reference set T̂
for the design D(x), but that creates a reference set C̃ for the container C(ξ). We choose
this reference set C̃ to be the equilateral triangle defined by

Q1 := (−
√
3,−1), Q2 := (

√
3,−1), Q3 := (0, 2).

The corresponding transformation that maps C̃ to C(ξ) for all ξ ∈ Ξ can be defined as

TC̃ : X × Ξ× C̃ → C(ξ), (x, ξ, z)→ Ã−1(ξ)(z − b̃(ξ)),

where Ã(ξ)Pi + b̃(ξ) = Qi for all i = 1, 2, 3.

In our example the solution of the linear equality systems yields

Ã(ξ) =

(
1 0
0 3

3+ξ

)

, b̃(ξ) =

(

0

− ξ
3+ξ

)

.

The stochastic design-centering problem then looks like

˜SDC : min
x∈X
−πx1x2 s.t.P

(

D̃(x, ξ) ⊆ C̃
)

≥ p,

where D̃(x, ξ) = Ã(ξ)D(x) + b̃(ξ) = {y ∈ R2 | ∃z ∈ B1(0) : y = Ã(ξ)(A(x)z + b(x)) + b̃(ξ)}.

From Corollary 4.2 in [22] and Equations (3), (4), (6) from [85], we know that the biggest
ellipse within an equilateral triangle is its incircle. Consequently, the optimal choice for
fixed ξ ∈ Ξ is

A(x∗, ξ) = Ã−1(ξ) =

(
1 0

0 1 + ξ
3

)

and

b(x∗, ξ) = −Ã−1(ξ)b̃(ξ) =

(
0
ξ
3

)

.
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This leads to a ξ-depending objective value of f(x∗, ξ) = −π(3+ξ)
3 which is monotonically

decreasing w.r.t. ξ ∈ R.
Since we have to fulfill the probust constraint with threshold p, we consider exactly the
realizations that correspond to the lowest possible objective values. Consequently, we are
asking for a lower bound ξ ∈ R such that:

P([ξ,∞)) = p

⇔1− P((−∞, ξ]) = p

⇔ξ = F−1(1− p) ≈ −1.2816
As we can notice from the original problem SDC: Increasing the height of the triangle
by increasing ξ leads to the containment C(ξ) within all triangles C(ξ̃) with ξ ≤ ξ̃ as
sketched in Figure 5.1. This means that an ellipse within C(ξ) lies within all C(ξ̃) with
ξ̃ ≥ ξ and consequently the volume maximal ellipse within C(ξ) is feasible for exactly
100 · p percent of the realizations.

Figure 5.1: Increasing realizations ξ1 ≥ ξ2 ensure containment of design D(x)

This means that we can determine the optimal solution of SDC-GPP by

A(x∗) = Ã−1(ξ) and b(x∗) = −Ã−1(ξ)b̃(ξ)

what implies

x∗ =

(

1, 1 +
ξ∗

3
, 0, 0,

ξ∗

3

)

≈ (1, 0.5728, 0, 0,−0.4272),

f(x∗) = −π(3 + ξ∗)
3

≈ −1.7996.

As the inner circle of a triangle is defined uniquely by an affine transformation of B1(0),
the affine transformation of B1(0) to the incircle of C(ξ) and therefore the solution of
this problem is unique as well.
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Example: Circle into circle with decision-dependent probability distribution

Problem formulation: Last, but not least we consider the stochastic design-centering
problem of putting a circle with uncertain midpoint interpreted as the design

D(ξ) = Br(ξ) = {y ∈ R2 | (y1 − ξ1)
2 + (y2 − ξ2)

2 ≤ r2}
with a fixed r ≥ 0, ξ ∈ R2 into a fixed circle interpreted as the container that is described
for a fixed R ≥ 0 by

C = BR(0) = {y ∈ R2 | y21 + y22 ≤ R2}.
The new perspective of this problem is that we assume that the probability distribution
varies with our decision x ∈ X := R≥0 via Z ∼ N ((0, 0), xI2) and therefore influences
the uncertain design D(ξ) indirectly.
As the size of the design is fixed, we are interested in the maximal x ≥ 0 such that we
can guarantee that the design lies within the container with a probability of at least 90%.
The stochastic design-centering problem can then be written as

SDC : max
x≥0

x s.t. P(x)(D(ξ) ⊆ C) ≥ p.

Problem reformulation (GPP): Before analyzing this problem, we have to reformulate
its constraints in a way that we can handle them. Therefore, we rewrite SDC as a
generalized probust optimization problem as explained in the beginning of this chapter

SDC-GPP : min
x≥0
−x s.t. P(x)

(
y21 + y22 −R2 ≤ 0 ∀y ∈ Br(ξ)

)
≥ 0.9.

Problem reformulation (SPP): Next we use the following transformation to the ref-
erence probability distribution Ẑ ∼ N ((0, 0), I2) on (Ξ̂,B), Ξ̂ = R2 to simplify the prob-
ability evaluation

TΞ̂ : X × Ξ→ R2, (x, ω)→ xω.

As TΞ̂(x, ·) is linear for all fixed x > 0 w.r.t. ω ∈ Ξ̂, we can reformulate the inner functions
of the original problem as

P̃
(
y21 + y22 −R2 ≤ 0 ∀y ∈ Br(xω)

)
≥ 0.9.

In a second step we use the following transformation to the reference set T̂ = B1(0) to
simplify the set-dependency within the probability evaluation

T
T̂
: X × Ξ̂× T̂ → R2, (x, ω, z)→ rz + xω.

This transformation is surjective for all fixed x ∈ X, ξ ∈ Ω and even a homeomorphism
between T̂ = B1(0) and Br(xω).
Therefore, we can consider the following standard probust optimization problem:

SDC-SPP : min
x≥0
−x s.t. P(g(x, ω, z) ≤ 0 ∀z ∈ B1(0)) ≥ 0.9,

where g̃(x, ω, z) = g(x, TΞ̂(x, ω), TT̂ (x, TΞ̂(x, ω), z))
= (rz1 + xω1)

2 + (rz2 + xω2)
2 −R2
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Analysis (solution existence): Using the representation of SDC-SPP, we can use
Proposition 1.1.6 to guarantee that this problem has a solution x∗ ∈ X because g̃ is con-
tinuous w.r.t. (x, ω, z) ∈ X×Ω×Z and therefore satisfy the conditions of the statement.
Consequently, φ : X → [0, 1] is upper semi-continuous and the feasible set is closed. As
we can w.l.o.g. exchange the unbounded set X by the compact set X̃ := [0, R] and the
objective function is continuous, we know by Weierstrass’ theorem that there exists an
optimal solution x∗ ∈ X̃ ⊆ X.
We are allowed to exchange X by X̃ because the probust constraint is continuous and
monotonically decreasing w.r.t. x ≥ 0 with limx→∞ φ(x) = 0 (see Equation (5.2)). Con-
sequently, there exists a some x ≥ 0 such that φ(x) < p for all x > x, what means that
the feasible set of SDC-SPP is compact.
The feasible set is not empty because the decision x = 0 leads to the deterministic con-
straint Br(0) ⊆ BR(0) that is fulfilled due to the definition of r and R.
All together, we know that SDC-SPP has a well-defined solution.
Analysis (convex feasible set): Furthermore, we know by the same arguments as in
the first example and by Proposition 1.1.8 that φ : X → [0, 1] is a log-concave function.
This implies the convexity of the feasible set of SDC-SPP. Because the objective func-
tion of SDC-SPP is monotonically decreasing w.r.t. x ≥ 0, we can calculate the unique
minimizer of SDC-SPP in the following solution step.
Analysis (solution calculation): The solution of this problem can be calculated con-
sidering the three solution steps of Example 1.1.9:
In a first step we calculate the worst-case scenarios for the inner function. Considering
the problem SDC geometrical, it is clear that the worst-case scenario is z∗(x, ω) = ω

||ω||2
(see Figure 5.2) for any x ∈ X,ω ∈ Ξ̂.

Figure 5.2: Worst-case scenario for a given realization ξ
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Consequently, a feasible scenario ω ∈ Ξ̂ for a fixed decision x ≥ 0 has to fulfill

max
z∈B1(0)

(rz1 + xω1)
2 + (rz2 + xω2)

2 −R2

=

(

r
ω1

||ω||2
+ xω1

)2

+

(

r
ω2

||ω||2
+ xω2

)2

−R2

= ω2
1

(
r

||ω||2
+ x

)2

+ ω2
2

(
r

||ω||2
+ x

)2

−R2

= ||ω||22
(

r

||ω||2
+ x

)2

−R2

= (r + ||ω||2x)2 −R2 ≤ 0

⇔||ω||2 ≤
R− r

x
.

This means that we can rewrite the set of feasible realizations as Ω(x) = BR−r
x

(0). Conse-

quently, we can calculate the probability φ(x) for x ≥ 0 switching to polar coordinates:

φ(x) = P̃((rz1 + xω1)
2 + (rz2 + xω2)

2 −R2 ≤ 0 ∀z ∈ B1(0))

= P̃((r + ||ω||x)2 −R2 ≤ 0)

=

∫

ξ∈Ω(x)

1

2π
exp

(

−ω2
1 + ω2

2

2

)

dλ(ξ)

=

∫ R−r
x

0

∫ 2π

0

r̃

2π
exp

(

− r̃2

2

)

dϕdr̃

=

∫ R−r
x

0
r̃ exp

(

− r̃2

2

)

dr̃

=

[

− exp

(

− r̃2

2

)]R−r
x

0

= 1− exp

(

−(R− r)2

2x2

)

(5.2)

Since φ is monotonically decreasing w.r.t. x ≥ 0, the (unique) solution x∗ of this problem
can be calculated by

φ(x∗) = 1− exp

(

−(R− r)2

2(x∗)2

)

= p

what can be reformulated as

⇔x∗ =

√

− (R− r)2

2 ln(1− p)
.

In Section 5.3 we are interested in the problem instance defined by R = 15, r = 3 and
p = 0.9 which leads to the minimizer

x∗ ≈ 5.592.
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5.2 Modified subset schemes

As we have considered three examples of stochastic design-centering problems in the last
section and solved them analytically, we are now interested in solving them numerically
to compare the performance of the corresponding solution schemes. We modify the lower-
level adaptive discretization approach (LLAD) and the high-level adaptive discretization
approach (HLAD) introduced in Section 2.3 to make the solution process more efficient.
We are mainly inspired by the question:

Can we use the maximium structure of the inner function g = maxi∈I gi?

We start with a variant of the LLAD (see Equation (2.5)). We specify the subset scheme
Φ = (Φk)k∈N in the probust discretization algorithm introduced in Section 2.2 as

Φk : X × 2T → 2T , (x, S) 7→ S ∪
⋃

i∈I
S∗
k,i (5.3)

where S∗
k,i := {t∗k,i (ξ) | ξ ∈ Ξ̇k,i}, t∗k,i (ξ) ∈ argmaxt∈T gi (x, ξ, t) are sets of worst-case

scenarios, depending on the realizations ξ ∈ Ξ̇k,i, where ∅ ≠ Ξ̇k,i ⊆ Ξ for each k ∈ N, i ∈ I.
By definition this scheme is an increasing subset scheme.
If |Ξ̇k,i| <∞ for all k ∈ N, i ∈ I, this scheme is a discretization scheme.

Lemma 5.2.1 (Convergence of maximum-structure using variant of LLAD)
Choosing Φ as the maximum-structure using variant of LLAD, where gi : X×Ξ×T → R

are continuous functions w.r.t. (x, ξ, t) ∈ X × Ξ × T fulfilling Assumption 2.1.6 for all
x ∈ X, i ∈ I and ∅ ̸= Ξ̇k,i for all k ∈ N, i ∈ I is defined by realizations that are randomly
i.i.d. chosen according to the random variable Z given in the probust optimization problem,
any accumulation point x of (xk)k∈N is P-almost surely an optimal solution of the original
probust optimization problem.

Proof. We prove this claim by using Theorem 2.2.3:
We show that the candidate-condition 2.1.9 is fulfilled P-almost surely for any point
x ∈ X and therefore especially for any accumulation point x ∈ X of (xk)k∈N.
Please note that t∗k,i (ξ) ∈ argmaxt∈T gi (xk, ξ, t) is well-defined for all ξ ∈ Ξ, k ∈ N, i ∈ I
as T was assumed to be compact and g was assumed to be continuous w.r.t. t ∈ T for all
(x, ξ) ∈ X × Ξ. Furthermore, because X ⊆ Rn is compact, the sequence (xk)k∈N has at
least one accumulation point.
Now we fix an arbitrary x ∈ X and argue indirectly by assuming

∃tf ∈ T, ϵ > 0 : φ (x, S)− φ (x, S ∪ {tf}) ≥ ϵ.

Considering the set

Ω = {ξ ∈ Ξ | g (x, ξ, s) ≤ 0 for all s ∈ S ∧ g (x, ξ, tf ) > 0}
we know by the continuity of g w.r.t. (x, ξ, t) ∈ X ×Ξ× T that Ω ∈ A is measurable and
by Theorem 2.1.10 we know that

P (Ω) = φ (x, S)− φ (x, S ∪ {tf}) ≥ ϵ.
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Additionally, we know by Assumption 2.1.6 and the continuity of g w.r.t. t ∈ T that there
exists a set Ω̃ ∈ A such that

Ω̃ = {ξ ∈ Ξ | g (x, ξ, s) < 0 for all s ∈ S ∧ g (x, ξ, tf ) > 0} and
P
(

Ω̃
)

= P (Ω) ≥ ϵ.

Because g (x, ·, tf ) is continuous w.r.t. ξ ∈ Ξ and Ω̃ ̸= ∅ due to ϵ > 0, we can find a ξf ∈ Ω̃
and a r > 0 such that

g (x, ξ, tf ) > 0 for all ξ ∈ Br (ξf ) and

max
s∈cl(S)

g (x, ξ, s) < 0 for all ξ ∈ Br (ξf ) .

Since ξ ∈ supp (P) = {ξ ∈ Ξ | ∀r > 0 : P(Br(ξ)) > 0}, we can introduce

ε := P (Br (ξf )) > 0.

As we choose at least one realization in each iteration k ∈ N and the choice of new
scenarios ξk ∈ Ξ is i.i.d. the probability to choose a realization ξk ∈ Br (ξf ) for any k ∈ N

is

P (∃k ∈ N : ξk ∈ Br (ξf )) = 1− P (∀k ∈ N : ξk /∈ Br (ξf ))

= lim
k→∞

1− (1− ϵ)k

= 1.

Therefore, we P-almost surely pick a realization ω ∈ Br (ξf ) at some iteration k ∈ N.
Assuming we pick this realization in iteration K ∈ N, we know that we add

t∗K,i (ω) := argmax
t∈T

gi (x, ω, t) ∈ TK+1,i ⊆ TK+1 ⊆
∞⋃

k=1

⋃

i∈I
Tk,i = S

to our discretization and because of

g (x, ω, tf ) ≤ max
t∈T

g (x, ω, t)

= max
t∈T

max
i∈I

gi (x, ω, t)

= max
i∈I

max
t∈T

gi (x, ω, t)

= max
i∈I

gi
(
x, ω, t∗K,i (ω)

)

= max
i∈I

max
t∈T ∗

K

gi (x, ω, t)

= max
t∈T ∗

K

max
i∈I

gi (x, ω, t)

= max
t∈T ∗

K

g (x, ω, t)
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we know that (ω, tf ) has to fulfill

g (x, ω, tf ) > 0 because ω ∈ Br (ξf ) and

g (x, ω, tf ) ≤ max
t∈T ∗

K

g (x, ω, t) ≤ max
t∈cl(S)

g (x, ω, t) < 0.

This is a contradiction.
Therefore, our basic assumption is P-almost surely wrong and consequently the candidate-
condition holds for any point x ∈ X P-almost surely, especially for all accumulation points
x ∈ X of (xk)k∈N. Using Theorem 2.2.3 the claim is true. □

This proof shows that we can use the LLAD on each function gi, i ∈ I separately and
still guarantee the convergence of the scheme.
It is just noted here that we produce at least one discretization point tk,i per index i ∈ I
and iteration k ∈ N with this subset scheme. To reduce the number of discretization
points |Tk|, we can add the following importance-sampling-condition:

t∗k,i (ξ) ∈ S∗
k,i ⇔ gi

(
xk, ξ, t

∗
k,i (ξ)

)
> 0

Now we consider a similar approach with the HLAD (see Equation (2.6)). Therefore, we
specify the subset scheme Φ = (Φk)k∈N in the probust discretization algorithm introduced
in Section 2.2 as

Φk : X × 2T → 2T , (x, S) 7→ S ∪
⋃

i∈I
S∗
k,i, (5.4)

where S∗
k,i := {t∗1, ..., t∗nk,i

},
(

t∗1, ..., t
∗
nk,i

)

∈ argmin(
t1,...,tnk,i

)

∈Tnk,i
φi

(
x, Tk,i ∪ {t1, ..., tnk,i

}
)

are the worst-case scenarios considering the probability of x ∈ X given the subsets

Tk,i = T0 ∪
k−1⋃

j=1

S∗
j,i ⊆ S ⊆ T

for each k ∈ N, i ∈ I of the functions

φi (x, S) := P (gi (x, ξ, t) ≤ 0 ∀t ∈ S)

and (nk,i)k∈N are sequences of natural numbers for all i ∈ I.
By definition this scheme is an increasing subset scheme. If |T0| < ∞ for all k ∈ N, this
scheme is a discretization scheme.

Lemma 5.2.2 (Convergence of maximum-structure using variant of HLAD)
Choosing Φ as the maximum-structure using variant of HLAD, where gi : X×Ξ×T → R

are continuous functions w.r.t. (x, ξ, t) ∈ X × Ξ × T fulfilling Assumption 2.1.6 for all
x ∈ X, i ∈ I, any accumulation point x of (xk)k∈N is an optimal solution of the original
probust optimization problem.
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Proof. We prove this claim by using Theorem 2.2.3:
We show that the candidate-condition is fulfilled for any accumulation point x ∈ X of
(xk)k∈N indirectly.
Please note that with Assumption 2.1.6 and by the compactness of T the discretization
scheme is well-defined for all k ∈ N. Furthermore due to the compactness of X ⊆ Rn,
the sequence (xk)k∈N has at least one accumulation point. Without loss of generality we
assume that the whole sequence (xk)k∈N has just one accumulation point. Otherwise we
switch notations to consider a fixed converging subsequence.

We fix the accumulation point x ∈ X, set S := limk→∞ Tk and assume

∃tf ∈ T, ϵ > 0 : φ (x, S)− φ (x, S ∪ {tf}) ≥ ϵ. (5.5)

In the next step we show that this implies that

∃j ∈ I : φj (x, S)− φj (x, S ∪ {tf}) ≥
ϵ

|I| . (5.6)

Therefore, we use that for any index set I and arbitrary families of measurable sets
(Ai)i∈I , (Bi)i∈I it holds

(
⋂

i∈I
Ai

)

\
(
⋂

i∈I
Bi

)

⊆
⋃

i∈I
(Ai \Bi) . (5.7)

We show statement (5.7) by fixing any x ∈
(⋂

i∈I Ai

)
/
(⋂

i∈I Bi

)
. By definition this

means that x ∈ Ai for all i ∈ I and there exists some k ∈ I such that x /∈ Bk. Conse-
quently, x ∈ Ak \ Bk and x ∈ ⋃i∈I (Ai \Bi). As x ∈

(⋂

i∈I Ai

)
\
(⋂

i∈I Bi

)
was chosen

arbitrarily, the statement is proven.

Using Statement (5.7) and the notation Ωi (x, S) = {ξ ∈ Ξ | gi (x, ξ, t) ≤ 0 for all t ∈ S},
we can estimate:

0 < ϵ ≤ φ (x, S)− φ (x, S ∪ {tf})
= P (Ω(x, S) \ Ω (x, S ∪ {tf}))

= P

(
⋂

i∈I
Ω (x, S) \

⋂

i∈I
Ω (x, S ∪ {tf})

)

≤ P

(
⋃

i∈I
(Ωi (x, S) \ Ωi (x, S ∪ {tf}))

)

≤
∑

i∈I
P (Ωi (x, S) \ Ωi (x, S ∪ {tf}))

=
∑

i∈I
φi (x,Ω (S))− φi (x,Ω (S ∪ {tf}))

≤ |I| ·max
i∈I
{φi (x,Ω (S))− φi (x,Ω (S ∪ {tf}))}
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If Statement (5.6) would be wrong, the last estimation would lead to ϵ < ϵ and therefore
would be a contradiction w.r.t. ϵ > 0. Consequently Statement (5.6) is true.

In a last step we show that there does not exist any j ∈ I such that Statement (5.6)
holds. As Assumption (5.5) implies this statement, we contradict the main assumption
and prove the claim.
We use Theorem 2.1.11 and Proposition 2.1.18 to estimate for an arbitrary i ∈ I:

lim
k→∞

φi (x, Tk,i)− φi (x, Tk,i ∪ {tf})

= lim
k→∞

φi (x, Tk,i)− φi (xk, Tk,i ∪ {tf}) + φi (xk, Tk,i ∪ {tf})− φi (x, Tk,i ∪ {tf})
︸ ︷︷ ︸

→0 due to Proposition 2.1.14

= lim
k→∞

φi (x, Tk,i)− φi (xk, Tk,i ∪ {tf})

= lim
k→∞

φi (x, Tk,i)− φi (xk, Tk+1,i) + φi (xk, Tk+1,i)− φi (xk, Tk,i ∪ {tf})
︸ ︷︷ ︸

≤0 due to the definition of Tk+1,i,t
∗

k,i

≤ lim
k→∞

φi (x, Tk,i)− φi (xk, Tk+1,i)

= lim
k→∞

φi (x, Tk,i)− φi (x, Tk+1,i)
︸ ︷︷ ︸

→0 due to Theorem 2.1.11

+φi (x, Tk+1,i)− φi (xk, Tk+1,i)
︸ ︷︷ ︸

→0 due to Proposition 2.1.14

=0

By Proposition 2.1.18 and the candidate-condition this implies that Si = limk→∞ Tk,i

satisfies

φi (x, T ) = φi (x, Si) .

As Si ⊆ S for all i ∈ I, we also know that φi (x, S) = φi (x, T ) = φi (x, S ∪ {tf}) and
consequently statement (5.6) cannot be fulfilled by any ϵ > 0. This means that the
assumption (5.5) is wrong and therefore the claim holds. □

In the next section, we use the introduced schemes and compare them to each other in
terms of precision of the iterates, number of discretization points and running time.

5.3 Numerical results of probust solution methods

We now solve the stochastic design-centering problems introduced in Section 5.1 and
compare the numerical results with the analytical solutions. We comment on remarkable
numerical results directly, while we focus on problem overlapping solution behavior in
the end of this section.
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5.3 Numerical results of probust solution methods

On the one hand, we are interested in the solution precision of the outer and inner iterates
x∗, x∗ ∈ X. On the other hand, we take care of the chosen discretization points Tk ⊆ T̂
and the time needed to solve different subproblems of the algorithms. Here, we denote
the time to calculate new discretization points T ∗

k ⊆ S by tS , the time to find the current
outer iterate xk by t and the time to find the current inner iterate xk by t for k ∈ N. We
are not especially interested in the sets of feasible realizations that are implied by the
subsets Tk, k ∈ N because they are already characterized in the last section.
We compare the following algorithms with each other:

1. Sandwiching with the uniform discretization scheme (see Equation (2.4)) starting
with three discretization points per dimension.

2. Sandwiching with the maximum-structure using variant of LLAD (see Equation
(5.3)) with ten discretization points per constraint per iteration.

3. Sandwiching with the maximum-structure using variant of HLAD (see Equation
(5.4)) with one discretization point per constraint per iteration.

4. Special set-approximation algorithms considering the structure of the sets of feasible
realizations that were discussed in the Section 5.1.

We stop the discretization schemes, if the relative change of the minimizer w.r.t. ||.||2-
norm is below the precision of ϵ = 10−6 or a maximal solving time from 60 minutes is
exceeded.
We start all discretization schemes with an initial discretization of T0 = ∅ if not stated
differently and with a feasible initial point x0 that is defined according to the single
problems.
We work with a self-written solver to solve these problems. This self-written solver
uses MATLAB’s optimization toolbox and the method fmincon to solve the nonlinear
optimization problems which appear as subproblems in the individual solving procedures.
Additionally, we used the spherical-radial decomposition (SRD) introduced in Section 1.1
to evaluate the probability constraints in connection with probust subset schemes. For
one dimensional normal distributed random vectors, we can calculate the probabilities
(and their gradients) exactly by the two samples {±1} = S0. For the two dimensional
case, we consider 100 equally distributed points of the unit circle S1 defined by the
vectors v = (cos(2παi), sin(2παi)), αi = 0, 0.01, ..., 0.99. With this sample we use the
approximation given by (1.3).

Example: Circle in uncertain triangle

We have already seen that the unique analytical solution of this problem is

x∗ ≈ (0.1417, 0, 0.4707) and

f(x∗) ≈ −6.308 · 10−2.
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5 Stochastic design-centering problems

We start all discretization schemes with x0 := (0.05, 0, 05, 0.4) and T0 := ∅.
Using the sandwiching algorithm 7 with the uniform discretization approach defined by
d1 = 1 and dk+1 =

dk
2 for all k ∈ N, we get the results listed in Table 5.1 and in Table 5.2.

While the first table highlights the number of discretization points with the corresponding
inner and outer approximations, the second table focuses on the running times.

# points in [−1, 1]2 # points in B1(0) x∗ x∗

(1 + 21)2 = 9 5 (0.1710, 0, 0.5) (0.1417, 0, 0.4707)

(1 + 22)2 = 25 13 (0.1710, 0, 0.5) (0.1417, 0, 0.4707)

(1 + 23)2 = 81 49 (0.1520, 0, 0.4810) (0.1417, 0, 0.4707)

(1 + 24)2 = 289 197 (0.1440, 0, 0.4730) (0.1417, 0, 0.4707)

Table 5.1: Iterates generated by a sandwiching approach with a uniform discretization
scheme

# points in [−1, 1]2 # points in B1(0) t [in sec] t [in sec] ttotal [in sec]

(1 + 21)2 = 9 5 220 3.95 224

(1 + 22)2 = 25 13 587 4.72 592

(1 + 23)2 = 81 49 2210 15.2 2230

(1 + 24)2 = 289 197 9420 43.1 9460

Table 5.2: Computation times using a sandwiching approach with a uniform discretization
scheme

Considering the scenario space T , we can visualize the (discretized) design-centering
condition for different iterations of the uniform discretization scheme by Figure 5.3. In
this figure, the discretized design (black crosses) as a subset of the original design (red
circle) should lie within a reference container (blue triangle). The specific definition of
the reference container

C = C(ξ∗) ∩ C(−ξ∗),

with ξ∗ ≈ 0.3290 is inspired by the analysis of this problem in Section 5.1.

Next, we are interested in the results of the maximum-structure using variants of LLAD
and HLAD. Because the maximizers of g̃i(x, ξ, ·), i = 1, 2, 3 are independent of the re-
alization ξ ∈ R, we know that both approaches lead to the same worst-case scenarios.
Because we know that these worst-case scenarios are also independent w.r.t. x ∈ X, the
approaches find the optimal solution in their first iteration (see Table 5.3 - Table 5.5).
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5.3 Numerical results of probust solution methods

a) 5 points in B1(0) b) 13 points in B1(0)

c) 49 points in B1(0) d) 197 points in B1(0)

Figure 5.3: The uniform discretization (black crosses) of the corresponding design D(xk)
(red set) lies within the container C (blue set), but D(xk) ∩ C ̸= D(xk)

T ∗
k x∗ x∗

(0,−1),
(

−
√
2
2 ,

√
2
2

)

,
(√

2
2 ,

√
2
2

)

(0.1417, 0, 0.4707) (0.1417, 0, 0.4707)

Table 5.3: Iterates generated by a sandwiching approach with the maximum structure
using LLAD/HLAD variant

T ∗
k tS [in sec] t [in sec] t [in sec] ttotal [in sec]

(0,−1),
(

−
√
2
2 ,

√
2
2

)

,
(√

2
2 ,

√
2
2

)

1.26 137 3.23 141

Table 5.4: Computation times using a sandwiching approach with the maximum structure
using LLAD variant

T ∗
k tS [in sec] t [in sec] t [in sec] ttotal [in sec]

(0,−1),
(

−
√
2
2 ,

√
2
2

)

,
(√

2
2 ,

√
2
2

)

14.5 149 3.01 166

Table 5.5: Computation times using a sandwiching approach with the maximum structure
using HLAD variant

These solution schemes therefore calculated the (finite) number of worst-case scenarios.
The geometric interpretation of this result is seen in Figure 5.4.
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5 Stochastic design-centering problems

Figure 5.4: The adaptive discretizations (black crosses) and the corresponding design
D(xk) (red set) lie within the container C (blue set)

It is noticeable that all discretization approaches imply the same set of feasible realizations

Ω = [−ξ∗, ξ∗] with ξ∗ = σF−1
(
1+p
2

)

≈ 0.3290 which is also the set of feasible realizations

of the analytical solution Ω(x∗). . Consequently, the inner set-approximation problems
solved in each iteration can search directly for the solution of the original SDC. This
example is a special case because the optimization variables x2, x3 ∈ R do not effect the
objective value and is therefore just used to ensure the feasibility of the decision part
x1 ≥ 0. As there is one “optimal” set of feasible realizations Ω ≈ [−0.3290, 0.3290] for
all x1 ≥ 0, the choice of x2, x3 ∈ R guarantees this form of the set of feasible realizations
independent of the choice of x1 ≥ 0.
For the set-approximation approach, we use the knowledge we gained by the analysis of
the solution in Section 5.1 and define

∆ := {δ ∈ R2 | − 5 ≤ δ1 ≤ δ2 ≤ 5},
D : X ×∆→ R, (x, δ) 7→ [δ1, δ2].

Because g̃1 is monotonically increasing w.r.t. ξ ∈ R, while g̃i, i = 2, 3 are monotonically
decreasing w.r.t. ξ ∈ R, we know that the set of feasible realizations is an interval due to
Proposition 3.1.7 and

Ω(x) = Ω(x, T ) =

3⋂

i=1

Ωi(x, T ) = (−∞, ξ1(x)] ∩ [ξ
2
(x),∞) ∩ [ξ

3
(x),∞)

for some decision dependent bounds ξ1, ξ2, ξ3 : X → R. Therefore, we can reformulate
the probability evaluation as

P(D(x, δ)) = P([δ1, δ2]) = F (5δ2)− F (5δ1).

The result are noted in Table 5.6 and will be commented on in the end of this section.

Solution x∗ design variable δ∗ ttotal in [sec]

(0.1417, 0, 0.4707) (−0.3290, 0.3290) 8.78

Table 5.6: Numerical results of set-approximation approach for SDC circle in uncertain
triangle
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5.3 Numerical results of probust solution methods

Example: Ellipse in uncertain triangle

We have already seen that the unique analytical solution of this problem is

x∗ ≈ (1, 0.5728, 0, 0,−0.4272) and
f(x∗) ≈ −1.800.

To reduce computation times and make the problem more stable, we fix x∗3 = x∗4 = 0 in
the optimization process and add the constraints x1 ∈ [−1, 1], x2 ∈ [−1, 1], x5 ∈ [−1, 2]
and x5 − x2 ≥ −1.
We start all discretization schemes with x0 := (0.25, 0.25, 0, 0, 0) and T0 := ∅.
Using the sandwiching based on the uniform discretization approach, we list the iterates
over the iterations in Table 5.7 and the corresponding computation times in Table 5.8.

# points in Approximations

[−1, 1]2 B1(0) x∗ x∗

(1 + 21)2 = 9 5 (0.8660, 0.8592,−0.1408) (1, 0.5728,−0.4272)
(1 + 22)2 = 25 13 (0.8660, 0.8592,−0.1408) (1, 0.5728,−0.4272)
(1 + 23)2 = 81 49 (1.000, 0.6496,−0.3504) (1, 0.5728,−0.4272)
(1 + 24)2 = 289 197 (1.000, 0.5996,−0.4004) (1, 0.5728,−0.4272)

Table 5.7: Iterates generated by a sandwiching approach with a uniform discretization
scheme

# points in time [in sec]

[−1, 1]2 B1(0) t t ttotal

(1 + 21)2 = 9 5 78.2 10.7 89.0

(1 + 22)2 = 25 13 207 14.3 221

(1 + 23)2 = 81 49 260 33.3 293

(1 + 24)2 = 289 197 1460 105 1570

Table 5.8: Computation times using a sandwiching approach with a uniform discretization
scheme

Next to the uniform discretization approach, we are interested in the results of the
maximum-structure using variants of LLAD and HLAD. As in this example the worst-
case scenarios t∗ = t∗(x, ξ) depend on the decision x and also on the realization of ξ, we
cannot expect the LLAD to find the same points as HLAD. Furthermore, we can only
expect to find approximations of the minimizer of the original problem in contrary to the
last example.
The iterates and computation times for the sandwiching based on the maximum structure
using LLAD variant can be found in Table 5.9 and 5.10 respectively.
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Iteration k x∗ x∗

1 (0.9106, 0.6564,−0.3436) (1, 0.5728,−0.4272)
2 (0.9938, 0.5765,−0.4235) (1, 0.5728,−0.4272)
3 (0.9938, 0.5765,−0.4235) (1, 0.5728,−0.4272)
4 (1, 0.5728,−0.4272) (1, 0.5728,−0.4272)

Table 5.9: Iterates generated by a sandwiching approach with the maximum using variant
of LLAD

Iteration k tS [in sec] t [in sec] t [in sec] ttotal [in sec]

1 0.892 1450 23.8 1480

2 0.931 1720 6.64 1730

3 1.01 498 20.4 519

4 0.910 655 23.9 680

Table 5.10: Computation times using a sandwiching approach with the maximum struc-
ture using LLAD variant

Because we generate 10 random picks in each iteration per constraint, we create up to 30
worst-case scenarios in each iteration in the LLAD approach. How these discretization
points are chosen (in one run of random picks) can be seen in Figure 5.5.

Figure 5.5: LLAD discretization (black crosses) after two iterations with corresponding
design D(xk) (red set) lies within the container C(ξ∗), ξ∗ = 2−F−1(0.9) (blue
set)

We see that the discretization points induced by the inner functions g2, g3 are changing,
but stay in the same area although the triangle moves for different realizations ξ ∈ R.
Since the inner g1 is independent of ξ ∈ R, the corresponding worst-case scenario is fixed
as in the last example.
The results for the sandwiching approach based on the maximum structure using HLAD
variant are considered in Table 5.11.
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5.3 Numerical results of probust solution methods

Iteration Approximations time [in sec]

k x∗ x∗ tS t t ttotal

1 (1, 0.6227,−0.3773) (1, 0.5728,−0.4272) 11.7 20.2 9.11 41.0

Table 5.11: Iterates and computation times using a sandwiching approach with the max-
imum structure using HLAD variant

This table emphasizes that the solver does not find new discretization points starting
from t0 = (0, 0) in the second iteration. Although the discretization points in T ∗

0 might
be chosen optimal for the decision x0, we have seen in Section 5.1 that the worst-case
scenarios depend on the decision. Therefore, we expect to find new points in the second
iteration.
That we cannot find these points numerically, can be explained by visualizing the op-
timization problem of choosing a new discretization point in the second iteration (see
Figure 5.6).

a) Iteration 1 b) Iteration 2

Figure 5.6: Effect on φ2(xk, Tk) of adding a discretization point to the current discretiza-
tion set using the HLAD variant

Here the function φ2(x1, T1 ∪ {·}) is close to zero and nearly constant, especially around
the initial point t0 = (0, 0). Consequently, a gradient based optimizer does not find the
minimizer and returns the initial point t0.
Again all discretization approaches imply the design Ω(xk, Tk) = [ξ∗,∞) with lower bound
ξ∗ = F−1(1−p) which is also the set of feasible realizations of the analytical solution such
that the set-approximation problems find the minimizer of the original problem directly.
For the set-approximation algorithm we use the knowledge we gained by the analysis of
the solution in the last section and define

∆ := {δ ∈ R | − 5 ≤ δ ≤ 5} and D : X ×∆→ R, (x, δ) 7→ [δ,∞).

Because the triangle C(ξ2) contains the triangle C(ξ1) for ξ1, ξ2 ∈ R with ξ2 ≥ ξ1 (see
Figure 5.1), we have a monotonicity w.r.t. increasing ξ. This implies

Ω(x) = Ω(x, T ) = [ξ(x),∞),

for some lower bound ξ : X → R.
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With this representation of the set of feasible realizations Ω(x), we can reformulate the
probability evaluation as

P(D(x, δ)) = P([δ,∞)) = 1− F (δ).

The result of the inner set-approximation problem with this design function is noted in
Table 5.12.

Solution x∗ design variable δ∗ ttotal [in sec]

(1, 0.5728,−0.4272) −1.282 5.51

Table 5.12: Numerical results of set-approximation approach for SDC ellipse in uncertain
triangle

Example: Circle in circle

We have already seen that the unique analytical solution of this problem for R = 15, r = 3
and p = 0.9 is

f(x∗) = −x∗ ≈ −5.592.

We start all discretization schemes with x0 := 4 and T0 := {(−1, 0), (1, 0), (0,−1), (0, 1)}.
Using the sandwiching approach based on the uniform discretization scheme, we get the
following results listed in Table 5.13.

# points in Approximations time [in sec]

[−1, 1]2 B1(0) x∗ x∗ t t ttotal

(1 + 21)2 = 9 5 5.768 5.438 3090 1.13 3090

(1 + 22)2 = 25 13 5.776 5.446 15400 2.42 15400

Table 5.13: Iterates and computation times using a sandwiching approach with uniform
discretization scheme

Please note that the calculation times are highly increased in this example as the random
variable is two-dimensional and therefore the probability evaluations has to consider 50×
as many samples as in the one-dimensional case.
Next to the uniform based approach, we are interested in the results of the LLAD and
HLAD. Since the worst-case scenarios (t∗(x, ξ))ξ∈Ξ depend on the decision x and also
on the realization of ξ, we cannot expect the LLAD to find the same points as HLAD.
Furthermore, we can just expect to find approximations of the minimizer of the original
problem because we have to approximate the set S = ∂B1(0). This cannot be done
in finite many steps by discretization schemes. The iterates and computation times of
the sandwiching approach based on the maximum structure using LLAD variant can be
found in Table 5.14.
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Iteration Approximations time [in sec]

k x∗ x∗ tS t t ttotal

1 5.6343 5.4898 1.09 4060 4.69 4070

2 5.6313 5.4956 1.21 14900 6.88 14900

Table 5.14: Iterates and computation times using a sandwiching approach with the max-
imum structure using LLAD variant

Since we generate 10 random picks in each iteration per constraint in the maximum
structure using LLAD variant, we created up to 10 worst-case scenarios in each iteration.
As our problem is just defined by one inner function, the maximum structure using
LLAD/HLAD variant and the LLAD/HLAD coincide in this example.
The results from the HLAD variant are presented in Table 5.15.

Iteration new point Approximations time [in sec]

k t∗k x∗ x∗ tS t t ttotal

1 (−0.05321, 0.4905) 5.781 5.450 505 4240 2.67 4740

2 (0.03954,−0.6736) 5.749 5.420 730 10600 23.4 11300

Table 5.15: Iterates and computation times using a sandwiching approach with the max-
imum structure using HLAD variant

After finding the discretization point t∗1 = (−0.0532, 0.4905) in the first iteration step, the
solver does not find a new discretization point at the boundary, but t∗2 = (0.0395,−0.6736).
This is again due to the poor analytical structure of φ(x1, T1∪{·}) as in the last example.

Please note that in this example the outer approximations x∗ are monotonically decreas-
ing while the inner approximations x∗ are monotonically increasing as we would expect
using a sandwiching approach. Because a decision variable that ensures the feasibility of
x ≥ 0 is missing in this example, we do not find the optimal solution by solving the inner
set-approximation problems directly.
For the set-approximation approach, we use the knowledge we gained by the analysis of
the solution in the last section and define

∆ := [0, R],

D : X ×∆→ R, (x, δ) 7→ Bδ(0).

Because these designs are monotonically increasing (w.r.t. ⊆) when we increase the radius
δ this implies that given a decision x ∈ X there exists a radius δ(x) ≥ 0 such that

Ω(x) = Bδ(x)(0).
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Therefore, we can reformulate the probability evaluation as

P(D(x, δ)) = P(Bδ(0)) = 1− exp

(

−δ2

2

)

.

The solution of the corresponding inner set-approximation is given by Table 5.16.

Solution x∗ design variable δ∗ ttotal in [sec]

5.592 2.146 0.918

Table 5.16: Numerical results of set-approximation approach for SDC circle in circle

Numerical experience

At the end of this section, we summarize our experience with stochastic design-centering
problems and note the dos and don’ts handling them.
Before discussing the performance of the different solution approaches, we comment on
the choice of numerical parameters to start the sandwiching algorithm 7.
Choice of a initial point x0:

• We recommend to use a feasible initial point x0 to start the algorithm. This can
be calculated, e.g., by solving the probust optimization problem with objective
function 0. We can then start the solution processes of the subproblems defined
in line 4 and 6 of algorithm 7 by using the inner approximate xk for all iterations
k ∈ N. This way, the used optimizer does not has to find the feasible set. This
task alone might lead to its breakdown. Especially, if the initial point x0 ∈ X is
either “too feasible” implying φ(x, Tk) = 1 for all x in a neighborhood of x0 or “too
infeasible” implying φ(x, Tk) = 0 for all x in such a neighborhood, the optimizer
struggles.

• If we just use the probust subset algorithm instead of the sandwiching algorithm,
we can use the last iterate to start the new optimization process. Nevertheless,
it comes in handy to have a reference point x0 that is feasible w.r.t. the original
probust optimization problem such that we can reset the starting point in iterations
k ∈ N where the optimizer started at xk and could not find its way back into the
feasible set FTk+1,p.

Choice of a initial discretization T0:

• We recommend to use an initial discretization T0 if we either know “interesting”
scenarios for our solution beforehand or if the feasible set FT0,p is unbounded. In
the first case, we save running time if we use adaptive discretization schemes. In
the second case, we ensure that the optimizer finds a minimizer. Here, one has to
balance the cardinality of T0 to describe the set of feasible realizations well on the
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one hand and not to increase the numerical extra effort handling these additional
scenarios in each step of the algorithm on the other hand. This numerical effort
takes more than 95% of the running time and scales proportional to the considered
size of T0 as we can see, e.g., in Table 5.2.

Choice of a subset scheme (compare also the positioning of the schemes in Figure 4.1):

• We recommend to choose the uniform discretization scheme just to generate knowl-
edge about the problem. With running times that pass the one hour mark after a
few iterations, this scheme should be used wisely. Please note that these running
times result from the calculation of an outer approximate. If we want to approx-
imate some special scenario t∗ ∈ T as, e.g., in the first example, it might happen
that we never exactly hit this point t∗ ∈ Tk for any k ∈ N. On the contrary, if
we cannot specify interesting scenarios and furthermore a whole interval of points
seems interesting (see Example 1.1.9) this approach might be useful.
Please note that in Table 5.1 we can see that the condition xk = xk+1 is not sufficient
to stop the algorithm.

• We recommend to choose the LLAD scheme if we can calculate the induced max-
imizers in line 5 of algorithm 7 efficiently. As this is given for all examples in this
chapter, the scheme performs well. It needs one to ten seconds - a fraction of the
total running time - to generate new discretization points and generates outer ap-
proximates in a reasonable time interval compared to the uniform discretization
scheme. Especially, when the worst-case scenarios are independent of the realiza-
tion as in the first example. Then we can find the worst-case scenarios fast and at
the same time guarantee the same solution precision as the HLAD (see Table 5.3).
Drawbacks of this approach are that it takes random realizations in each iteration
and therefore its results are not reproducible in general and that it might calculate
worst-case scenarios for “unprobable” realizations. Furthermore, we do not know
when to stop the algorithm if we do not find inner approximates xk, k ∈ N because
the chosen ξ ∈ Ξ̇k and therefore the corresponding t(xk, ξ) have no structure in
general.

• We recommend to choose the HLAD scheme if we can calculate the induced min-
imizers in line 5 of algorithm 7 efficiently. We have seen in the last two examples
that finding this solution is numerically challenging even when the structure of the
problems seems nice from a theoretical point of view. The HLAD then needs around
ten seconds - a fraction of the total running time - to generate new discretization
points and generates outer approximates quite fast compared to the uniform dis-
cretization and LLAD scheme. The HLAD benefits a lot from a warm-start by
choosing x0 and T0 appropriately. It can happen that the HLAD gives back the
starting scenario t0 ∈ T as its minimum altough it is already contained in Tk or ob-
viously suboptimal. Recalling Lemma 2.3.4 we can stop the algorithm then because
we have either found a solution xk of the original probust optimization problem in
the last iteration k ∈ N or we cannot find any new worst-case scenario t∗k(x) ∈ T ,
e.g. because φ(xk, Tk ∪ {·}) is locally constant around the initial scenario.
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In the end, we want to comment on how to use analytical information to speed up the
solver:

1. Replacing the probability evaluation function by an analytic function speeds of the
process considerably as one can see comparing the set-approximation approaches
with the sandwiching approaches. If such knowledge is given, it should be used.

2. A reduction of the search space influences also the evaluation time of the SRD.
Fixing x2 = 0 in the first example leads to calculating times that are just one third
of the ones represented here.

3. If the inner function is a maximum of several inner functions, we recommend to use
this structure as explained in Section 5.2. Otherwise, the optimizer calculating the
worst-case scenarios in the “standard” LLAD or HLAD can have trouble finding the
true worst-case of a maximum of differentiable functions and cancel prematurely.

Summary

In this chapter, we considered three problem instances of stochastic design-centering
problems. We reformulated them as standard probust optimization problems and used
the introduced theory from Chapter 1 and a combination of analytical and geometrical
arguments to calculate their solution.
We then tested four of the solution approaches introduced in Part I of this theses on
these problem instances and discussed their behavior.
In the following chapter, we consider a more realistic application. As we do not know
the structure of the set of feasible realizations in this problem class, we use the numerical
experience we gained in this chapter to define sandwiching algorithms that can solve the
corresponding probust optimization problems efficiently.
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After testing the solution schemes for probust optimization problems that we introduced
in Part I of this thesis in the last chapter, we want to use the gained insights to handle
more realistic applications.
The main focus of this chapter is handling probust water reservoir problems, gaining
insights about the problem structure and comparing the solutions induced by different
uncertainty models.
We start this chapter by a short introduction how to model such water reservoir prob-
lems. Afterwards, we specify two problem instances in Section 6.1 which influence the
design of a specified probust subset scheme in Section 6.2. We then solve the introduced
problem instances and discuss their numerical results in Section 6.3.

A water reservoir problem (WR) in this thesis has the following form

WR: max
x∈X

f(x) s.t. l ≤ l(x, t) ≤ l ∀t ∈ [0, T ],

where x ∈ X are operating variables to influence the water level of the reservoir given
by l : X × [0, T ] → R within the time horizon [0, T ], T ≥ 0, l, l ∈ R are lower and upper
bounds for the water level and f : X → R is some objective function.
One possible objective function is the total output −

∫ T

0 x(t)dt over the time horizon
[0, T ] of a measurable extraction profile x : [0, T ]→ R≥0.
Because we want to guarantee that upper and lower water levels l, l are respected at all
time points t ∈ [0, T ] this leads to infinite many restrictions. If the extraction profile x is
described by a finite dimensional vector, we study a semi-infinite optimization problem.
We often have an uncertain influence changing the water level by either an uncertain
inflow, e.g., due to rain or melting water, or an uncertain outflow, e.g., due to the demand
of water of other parties in a multipurpose water reservoir. Consequently, we want
consider a stochastic component in our model of a water reservoir. We take account of
that by formulating the probust water reservoir problem (PWR) as

PWR: max
x∈X

E(f(x, ξ)) s.t. P(l ≤ l(x, ξ, t) ≤ l ∀t ∈ [0, T ]) ≥ p,

where ξ are the realizations of a random process Z that represents a random influence
of the water level over time and p ∈ [0, 1] is a lower bound for the probability to respect
the minimum and maximium water levels given the stochastic influence.
As WR can be interpreted as a semi-infinite optimization problem, PWR is a probust
optimization problem and is the model of interest in this chapter.
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Such water reservoir problems have been analysed by Prékopa et al. in [60] and by
Henrion in [44]. More complex models can be found in papers from van Ackooij et al. [4]
and Xu et al. [87]. We recommend the working paper by Dupacova et al. [28] and the
monograph from Loucks et al. [55] for an overview of problem formulations and solving
strategies.
In the referred literature a single reservoir or a systems of reservoirs is studied either to
build a new reservoir or to manage an existing one. The reservoirs then can be used to
handle floods (which corresponds to a time horizon of a year) or to generate hydro-power
that should be sold (which corresponds to a time horizon of one day).
In either case, reservoir problems are described by at least one equation that links its
water level over different time points t1, t2 ∈ [0, T ] by

l(x, ξ, t1) = l(x, ξ, t2) + I(x, ξ, t1, t2)−O(x, ξ, t1, t2), (6.1)

where I,O are functions that describe the inflow and outflow into and out of the reservoir
using the extraction profile x ∈ X under realization ξ in the time interval [t1, t2].
In the given literature this function is considered for a fixed, finite number of time points
t1, ..., tN ∈ [0, T ] instead of the whole time interval [0, T ].
This reduces the induced problem to a chance constrained optimization problem. One
way to solve this problem is to solve the constraints individually for any fixed time point.
This leads to the constraint

P(l ≤ l(x, ξ, t) ≤ l) ≥ p ∀t = t1, ..., tN . (6.2)

These constraints can often be handled deterministically by separating the realizations
on one side of the inequality and using the corresponding cumulative density function.
This approach evades numerically costly evaluations of the probability function.
If the constraints are handled as joint chance constraints, one often uses penalty methods
for optimization and simulation techniques like Monte-Carlo simulation for probability
evaluations to handle these problems.
In this work, we consider the whole time horizon [0, T ] instead of a discrete subset. On
the contrary, we make some simplifying assumptions w.r.t. other modelling aspects such
as the distribution of the random influence or the physical effects such as evaporation,
spill or energy production which are neglected or strongly simplified.
We assume that the outflow O of the water reservoir is solely explained by our decision,
while the inflow is solely described by a Gaussian process.
Therefore, we can write

l(x, ξ, t) = l0 +

∫ t

0
ξ(τ)− x(τ)dτ.

To handle the decision and the random process numerically, we approximate them by
finite dimensional decision vectors x̃ ∈ X̃ ⊆ Rn and random vectors Z̃ : Ξ→ Rm.
After this short introduction to probust water reservoir problems, we define two specific
problem instances in the next section.
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6.1 Problem instances

As we introduced a model to describe water reservoir problems in a probust context,
our goal in this section is to motivate two specific problem instances that are handled
numerically in the last section of this chapter.

Linear objective with lower water level constraint

First, we consider a probust water reservoir problem where we are taking as much water
out of a water reservoir as possible. To evade the trivial solution of letting the reservoir
run full and then pump out all the water in the last time period, we also use a price
signal c ∈ L2([0, T ],R≥0) to motivate water release at earlier time points. Given a lower
water level l ≥ 0 and a probability threshold p ∈ [0, 1], we can note the probust water
reservoir problem as

PWR1 : max
x∈L2([0,T ],R)

∫ T

0
c(t)x(t)dt s.t. P(l ≤ l(x, ξ, t) ∀t ∈ [0, T ]) ≥ p,

x(t) ≥ 0 ∀t ∈ [0, T ].

Following the idea given in a paper by Berthold, Heitsch, Henrion and Schwientek in
[15], we approximate the decision variable x ∈ L2([0, T ],R≥0) by a piece-wise constant
function

x(t) ≈
n∑

i=1

x̃iχ[ti−1,ti](t) (6.3)

which can be described by the finite dimensional coefficient vector x̃ ∈ Rn and a sepa-
ration of [0, T ] into sub-intervals Ti = [ti−1, ti] with i = 1, ..., n. These sub-intervals are
defined by fixed time points ti ∈ [0, T ] with i = 0, ..., n. With this approximation we can
determine the outflow of the water reservoir by

O(t) =

∫ t

0
x(τ)dτ ≈

i∗(t)−1
∑

k=1

xk(tk − tk−1) + xi∗(t)(t− ti∗(t)−1), (6.4)

where i∗(t) = mini∈{1,...,n | t≤ti} i defines the index of x̃ ∈ X̃ that represents the water
extraction at the time t ∈ T .
Also we approximate the integral over the stochastic inflow by a superposition of sinus
functions by

I(t) =

∫ t

0
ξ(τ)dτ ≈

m∑

j=1

sin(ωjt)ξ̃j +M(t),

where M : [0, T ] → R≥0, t →
∫ t

0 µ(t)dt is defined by the integral of the expected value
function µ : [0, T ]→ R≥0 of the Gaussian process modelling the random inflow.

145



6 Water reservoir problems

Furthermore, ωj > 0 are inflow frequencies for j = 1, ..,m and ξ̃ ∈ Rm is a realization of

a normal distributed random variable Z̃ ∼ N
(

0, Σ̃
)

with covariance matrix Σ̃ ∈ Rm×m.

Recalling Equation (6.1), this leads for any x̃ ∈ X̃, ξ̃ ∈ Rm and some time point t ∈ T to
the constraint

g(x̃, ξ̃, t) = l − l(x̃, ξ̃, t)

= l − l0 −
m∑

j=1

ξ̃j sin(ωjt)−M(t) +

i∗(t)−1
∑

k=1

x̃k(tk − tk−1) + x̃i∗(t)(t− ti∗(t)−1) ≤ 0.

With the accumulated price vector c̃ ∈ Rn defined by

c̃i =

∫ ti

ti−1

c(t)dt, i = 1, ..., n,

this implies the following reformulation of PWR1 as a standard probust optimization
problem

PWR1-SPP : min
x̃∈Rn

−
n∑

i=1

c̃ix̃i s.t. P(g(x̃, ξ̃, t) ≤ 0 ∀t ∈ [0, T ]) ≥ p,

− x̃i ≤ 0 ∀i = 1, ..., n.

Be aware that we can also represent the water level constraint based on the different
extraction periods by the constraints

gi(x̃, ξ̃, t) = l − l0 −
m∑

j=1

ξ̃j sin(ωjt)−M(t) +
i−1∑

k=1

x̃k(tk − tk−1) + x̃i(t− ti−1) ≤ 0,

with x̃ ∈ X̃, ξ̃ ∈ Rm, t ∈ Ti and i = 1, ..., n.
These constraints lead to the optimization problem

˜PWR1-SPP : min
x̃∈Rn

−
n∑

i=1

c̃ix̃i s.t. P(gi(x̃, ξ̃, t) ≤ 0 ∀t ∈ Ti, i = 1, ..., n) ≥ p,

− x̃i ≤ 0 ∀i = 1, ..., n.

Given these reformulations of PWR1, we can study its structure to decide which probust
subset scheme might be useful to solve it.
We start with the set of scenarios. Not only [0, T ], but also its separation into smaller
intervals Ti with i = 1, ..., n allows us to consider compact, convex and one dimensional
sets. Consequently, these sets are attractive to use as search spaces in optimization prob-
lems, e.g. by the maximum using variants of LLAD (see Equation (5.3)) or the HLAD
(see Equation (5.4)).
In contrast to the structure of the search space, the objective function in these approaches
is non-convex w.r.t. t ∈ [0, T ] since the functions g, gi with i = 1, ..., n are non-convex.
Consequently, the usage of HLAD and LLAD is numerically challenging.
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Nevertheless, given a fixed i = 1, ..., n and t ∈ Ti, the inner function gi is affine-linear
w.r.t. (x̃, ξ̃) which implies a simple structure of the set of feasible realizations.
For a fixed x̃ ∈ Rn we can express this set as

Ω(x̃) =
⋂

i=1,..,n

⋂

t∈Ti

Ωi(x̃, t),

where Ωi(x̃, t) = {ξ̃ ∈ Ξ | gi(x̃, ξ̃, t) ≤ 0}.

Because the sets Ωi(x̃, t) are by definition of gi half-spaces for fixed x̃ and t ∈ T for all
i = 1, ..., n, we know that Ω(x̃) is a convex set for all x̃ ∈ Rn. Furthermore, it is closed
by the continuity of the function gi(x̃, ·, t) w.r.t. ξ̃ ∈ Rm for fixed i = 1, ..., n, fixed t ∈ Ti

and x̃ ∈ X̃.
To ensure the boundedness of the set of feasible realizations, we consider the following
statement:

Proposition 6.1.1 (The sets of feasible realizations of PWR1-SPP are bounded)
Given an extraction profile x̃ ∈ X̃, T > 0, an initial water level l0 ≥ l, a non-negative ex-
pected value function µ ∈ L2([0, T ],R≥0) of the considered random process and frequencies
ω1, ..., ωm ≥ 0 with m ∈ N that satisfy ω1 ≥ 2π

T
and ωj+1 ≥ 2ωj for all j = 1, ...,m − 1,

then the set of feasible realizations Ω(x̃) of PWR1-SPP is bounded.

Proof. We show the claim indirectly:
We assume that there exists a sequence (ξk)k∈N ⊆ Ξ such that limk→∞ ||ξk||∞ = ∞ and
maxt∈T g(x̃, ξk, t) ≤ 0 for all k ∈ N and a given x̃ ∈ X̃. Consequently, 0 is an upper
bound of the sequence (g(x̃, ξk, t))k∈N for any t ∈ [0, T ].
To show that this sequence is unbounded, we represent g for fixed x̃ ∈ X̃ and for fixed
t ∈ [0, T ] as an affine-linear function w.r.t. ξ̃ ∈ Rm and then focus on special scenarios.
We know by the definition of g that

g(x̃, ξ̃, t) = l − l0 −
m∑

j=1

ξ̃j sin(ωjt)−M(t) +

i∗(t)−1
∑

k=1

x̃k(tk − tk−1) + x̃i∗(t)(t− ti∗(t)−1)

=

m∑

j=1

wj(t)ξ̃k + v(x̃, t)

holds for x̃ ∈ X̃ and any t ∈ [0, T ], where we used

wj(t) = − sin(ωjt), j = 1, ...,m and

v(x̃, t) = l − l0 −M(t) +

i∗(t)−1
∑

k=1

x̃k(tk − tk−1) + x̃i∗(t)(t− ti∗(t)−1).
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6 Water reservoir problems

Given x̃ ∈ X̃ ⊆ Rn
≥0, as well as l0 ≥ l and M(t) =

∫ t

0 µ(t)dt ≥ 0 by assumption, we can
estimate v(x̃, t) for any fixed t ∈ [0, T ] by:

v(x̃, t) = l − l0 −M(t) +

i∗(t)−1
∑

k=1

x̃k(tk − tk−1) + x̃i∗(t)(t− ti∗(t)−1)

≥ l − l0 −M(T ) +
n∑

k=1

x̃k(tk − tk−1)

≥ l − l0 −M(T ) =: C

With this estimation for v(x̃, t), we can estimate for any k ∈ N and t ∈ [0, T ]:

−
m∑

j=1

sin(ωjt)ξj,k + C ≤ g(x̃, ξk, t) ≤ 0

⇒−
m∑

j=1

sin(ωjt)ξj,k ≤ −C

By our assumptions we know that ω1 ≥ 2π
T

and ωj+1 ≥ 2ωj for all j = 1, ...,m − 1.
Consequently, there exists a t∗k ∈ [0, T ] such that

∑m
j=1− sin(ωjt

∗
k)ξj,k ≥ maxj=1,...,m |ξj,k|

for any fixed k ∈ N. Therefore, the last inequality states for this fixed t∗k

||ξk||∞ = max
j=1,...,m

|ξj,k| ≤ −
m∑

j=1

sin(ωjt
∗
k)ξj,k ≤ −C

Because we assumed that limk→∞ ||ξk||∞ = ∞, we can ensure that this last inequality
does not hold for k →∞. Therefore, the claim holds. □

With this statement we can guarantee that the set of feasible realizations Ω(x̃) is a convex,
compact set for all x̃ ∈ X̃.
In the next step, we consider the feasible set of PWR1-SPP. By the definition g and due
to Proposition 1.1.6, we can ensure that the probust function φ : X̃ → [0, 1] is upper
semi-continuous and therefore, the feasible set is closed. Moreover, Proposition 1.1.8
implies that the feasible set is convex. To show that this set is bounded, we need another
statement:

Proposition 6.1.2 (The feasible set of PWR1-SPP is bounded)
Given T > 0 and p ∈ (0, 1], then the feasible set of PWR1-SPP is bounded.

Proof. We show the claim indirectly:
We assume that there exists a sequence (xk)k∈N ⊆ X̃ such that limk→∞ ||xk||1 =∞ and
φ(xk) ≥ p for all k ∈ N. Consequently, p is a lower bound of the sequence (φ(xk))k∈N.
We show that for each r > 0, we can find a N ∈ N such that the feasible sets Ω(xk) does
not contain any realization from Br(0) for all k ≥ N . As the set Br(0) is monotonically
increasing w.r.t. ⊆ for increasing r > 0, this contradicts our basic assumption φ(xk) ≥ p
for all k ∈ N, when fixing some R > 0 such that BR(0) satisfies P(BR(0)) > 1− p.
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Let us fix that R > 0 as well as any ξ ∈ BR(0). If ξ is a feasible realization for x̃ ∈ X̃,
then it satisfies the probust constraint especially for t = T , what implies

g(x̃, ξ, T ) = l − l0 −
m∑

j=1

sin(ωjT )ξj −M(T ) +
n∑

i=1

x̃i(ti − ti−1) ≤ 0. (6.5)

Because we can estimate

l − l0 −
m∑

j=1

sin(ωjT )ξj −M(T ) ≥ l − l0 −
m∑

j=1

|ξj | −M(T )

≥ l − l0 −
m∑

j=1

r −M(T ) =: C,

this implies with inequality (6.5):

n∑

i=1

x̃i(ti − ti−1) + C ≤ g(x̃, ξ, T ) ≤ 0

⇒ min
i=1,...,n

(ti − ti−1)
n∑

i=1

x̃i = min
i=1,...,n

(ti − ti−1)||x̃||1 ≤ −C

Since limk→∞ ||xk||1 = ∞, there exists a N ∈ N such that the last inequality is violated
for all k ≥ N .
Because we chose ξ ∈ BR(0) arbitrarily and C does not depend on ξ, we can ensure

BR(0) ∩ Ω(xk) = ∅

for all k ≥ N . This implies that all xk, k ≥ N are infeasible and therefore the feasible set
of PWR1-SPP is bounded. □

Since our objective function is linear w.r.t. x̃ ∈ X̃, we know that PWR1-SPP is a convex
optimization problem.
In Section 6.3, we consider a special problem instance induced by the following parame-
ters:

n = 24,m = 10, T = 24, (6.6)

ω1 =
31π

420
, ωj =

√
5ωj−1 ∀j = 2, .., 10, (6.7)

l = 0.25, l0 = 0.3, (6.8)

p = 0.9, µ ≡ 0.1, Z̃ ∼ N
(

µ̃, Σ̃
)

, (6.9)

µ̃ = 0R10 , Σ̃ = diag(σ2
1, ..., σ

2
10), (6.10)

σ1 = 0.06, σj =
σj−1

2
∀j = 2, ..., 10. (6.11)
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Approximated energy production objective, two water level constraints with
additional constraints

Next to PWR1 which aims for extracting as much water as possible given an abstract
cost function and without any additional constraints, the second problem instance focuses
on more details. The corresponding objective function measures the amount of energy
produced by the extracted water. This function is approximated by the amount of water
we take out of the reservoir multiplied by the water level like in the paper of Andrieu et
al. [7]. Additionally, we are interested in an upper and lower water level which should
be respected in a given percentage of inflow cases as well as some minimal and maximal
outflow constraints and a so called cycling constraint. Thereby, the cycling constraint
guarantees that the water level at t = T is expected to be at least as high as at t = 0.
This leads to the following problem:

PWR2 : max
x∈L2([0,T ],R)

E

(∫ T

0
x(t)l(x, ξ, t)dt

)

s.t. P(l ≤ l(x, ξ, t) ≤ l ∀t ∈ [0, T ]) ≥ p,

xi(t) ∈ [x(t), x(t)] ∀t ∈ [0, T ] (6.12)

E(l(x, ξ, T )) ≥ l0. (6.13)

To simplify this problem, we use the same approximations of the extraction profile x and
the random inflow realizations ξ as in the last problem instance, see (6.3) and (6.4).
Denoting these approximations again by x̃ ∈ Rn

≥0 and ξ̃ ∈ Rm, we reformulate PWR2 as
a probust optimization problem.
We start with reformulating the cycling constraint (6.13):

E
(

l(x̃, ξ̃, t)
)

= E



l0 +
m∑

j=1

ξ̃j sin(ωjt) +M(t)−
i∗(t)−1
∑

i=1

x̃i(ti − ti−1)− x̃i∗(t)(t− ti∗(t)−1)





= l0 +
m∑

j=1

E(ξ̃j) sin(ωjt) +M(t)−
i∗(t)−1
∑

i=1

x̃i(ti − ti−1)− x̃i∗(t)(t− ti∗(t)−1))

= l0 +M(t)−
i∗(t)−1
∑

i=1

x̃i(ti − ti−1)− x̃i∗(t)(t− ti∗(t)−1))

This means that the expected water level at t = T is at least l0 if and only if we pump
out water that is equal or less then the expected amount of water inflow in this time
interval:

E
(

l(x̃, ξ̃, T )
)

≥ l0

⇔M(T ) ≥
n∑

i=1

x̃i(ti − ti−1)
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Using this expression, we can also reformulate the objective function as:

f(x̃) = −E
(
∫ T

0

n∑

i=1

x̃iχ[ti−1,ti)(t)l(x̃, ξ̃, t)dt

)

= −
∫ T

0

n∑

i=1

x̃iχ[ti−1,ti)(t)E(l(x̃, ξ̃, t))dt

= −
n∑

i=1

x̃i

∫ ti

ti−1

E(l(x̃, ξ̃, t))dt

= −
n∑

i=1

x̃i

∫ ti

ti−1

(

l0 +M(t)−
i−1∑

k=1

x̃k(tk − tk−1)− x̃i(t− ti−1)

)

dt

= −
n∑

i=1

x̃i

(

l0(ti − ti−1) +

∫ ti

ti−1

M(t)dt−
i−1∑

k=1

x̃k(tk − tk−1)(ti − ti−1)

− x̃i
(ti − ti−1)

2

2

)

= −T

n

n∑

i=1

x̃i

(

l0 +
T

n

(

(2i− 1)µ

2
−

i−1∑

k=1

x̃k −
x̃i
2

))

= −T

n

(

⟨x̃, Ax̃⟩+
n∑

i=1

bix̃i

)

(6.14)

This representation allows us to evaluate the objective function and its gradients w.r.t.
x ∈ X more easily, where we used

A = −T

n








0.5 0 ... 0

1 0.5 ... 0

...

1 1 ... 0.5








and

b =

(

l0 +
T

n

(2i− 1)µ

2

)

j=1,...,n

.

Furthermore, we decompose the water level constraint into two inner functions of the
form:

g1(x̃, ξ̃, t) := l − l(x̃, ξ̃, t) ≤ 0,

g2(x̃, ξ̃, t) := g1(x̃, ξ̃, t)− l + l ≤ 0

Consequently, we can state the following standard probust optimization problem

PWR2 − SSP: min
x̃∈Rn

f(x̃) s.t. P

(

g1(x̃, ξ̃, t) ≤ 0

g2(x̃, ξ̃, t) ≤ 0
∀t ∈ [0, T ]

)

≥ p,

x̃i ∈ [xi, xi] ∀i = 1, ..., n,

M(T ) ≥
n∑

i=1

x̃i(ti − ti−1).
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In Section 6.3, we consider the problem instance defined by fixed

n = 24,m = 10, T = 24, (6.15)

xi =

{

0.1, if i ∈ {6, 7, 8, 20, 21, 22, 23}
0, otherwise

, (6.16)

xi = 0.2 ∀i = 1, ..., 24, (6.17)

ω1 =
7π

80
, ωj =

√
5ωj−1 ∀j = 2, .., 10, (6.18)

l = 0.25, l0 = 0.3, l = 1, (6.19)

p = 0.9, µ ≡ 0.1, Z̃ ∼ N
(

µ̃, Σ̃
)

, (6.20)

µ̃ = 0R10 , Σ̃ = diag(σ2
1, ..., σ

2
10), (6.21)

σ1 = 0.06, σj =
σj−1

2
∀j = 2, ..., 10. (6.22)

Because the objective function of PWR2 decreases for increasing water levels l, a simple
strategy would be to let the reservoir run full and then start pumping out such that the
reservoir is not surpassing the upper water level (see Figure 6.11). This would imply a
lot of worst-case time points created by the upper water level constraint. To disturb this
strategy, we assume that we need some of the water in the early and late hours of the
day (see Equation (6.16)). This is motivated by the idea that people need water at home
such that a certain output is required.
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6.2 Modified subset schemes

After describing the probust optimization problem instances in the last section, we have to
choose an appropriate subset scheme to use with the sandwiching-algorithm 7. Recalling
Figure 4.1, we note that we are unable to predefine worst-case time points according to
a given extraction profile and an inflow realization analytically. In contrast to this gap
of knowledge, we are aware that the set of feasible realizations is a convex set for all
x̃ ∈ Rn. While the first aspect motivates to use an uniform discretization scheme, the
second perspective supports the HLAD scheme. Therefore, we try to combine these two
approaches in this section in a way that is numerically reasonable.
We do not use the LLAD, because the non-convexity of the inner functions of the probust
water reservoir problem instances w.r.t. t ∈ [0, T ] makes it as difficult to evaluate as the
new discretization scheme, while the new discretization scheme calculates determined
time points in contrary to the randomly picked time points of the LLAD scheme which
makes the interpretation of the results easier.
The new discretization approach closes the gap between universality of applicability of
a discretization scheme and numerical stability and also is able to add user-dependent
inputs to define the ”importance of a scenario”. We recommend using the following
variant of the HLAD (see Equation (2.6)) that is inspired by a semi-infinite discretization
by Reemtsen [64]

Φk : X × 2T → 2T , (x, S) 7→ S ∪ {t∗k}, (6.23)

where t∗k ∈ argmint∈Gdj(k)
φ(x, S ∪ {t}) is the worst-case scenario in the grid Gdj(k) with

grid size dj(k) > 0 considering the probability evaluation for the current decision and
added to the current scenario set S.
The set Gd := {t ∈ T | ∃j ∈ Zq : t = d

∑q
i=1 jiei} is the intersection of T with an uniform

grid of size d > 0. We assume in the remainder of this section that the sequence (dj)j∈N
fulfills dj > 0 for all j ∈ N and limj→∞ dj = 0.
To connect the grid size dj with the iteration k of the probust subset scheme, we define
another sequence (ϵj)j∈N with ϵj > 0 for all j ∈ N and limj→∞ ϵj = 0.
We start in iteration k = 1 with j = 1. Afterwards, we increase the index j by 1 if
either we already took the whole grid into consideration or no remaining grid point is
”important enough”. These conditions can be formalized as

Gdj ⊆ Tk or

φ(xk, Tk)− φ(xk, Tk ∪ {t∗k}) ≤ ϵj .

We call this scheme the uniform-HLAD (UHLAD) scheme. By definition it is an adaptive
increasing subset scheme. If |T0| <∞, it is a discretization scheme.

Before we concentrate on the convergence of UHLAD, we need the following useful propo-
sition:
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Proposition 6.2.1 (j(k) → ∞ for k → ∞)
Assume that T ⊆ Rq is compact and that φ(x, S) is well-defined for all x ∈ X,S ⊆ T .
Then it holds for the index j(k), k ∈ N defined in the UHLAD:

lim
k→∞

j(k) =∞

Proof. We show the claim arguing indirectly:
Assume that (j(k))k∈N is bounded from above. Because j(k) is monotonically increasing
by definition, there has to be an upper bound N ∈ N satisfying j(k) ≤ N for all k ∈ N.
Because T is compact, the set Gd is finite for all d > 0. Consequently, after at most
K =

∑N
j=1 |Gdj | + 1 iterations, we have collected more discretization points than the

first N grids can offer and therefore have to increase j at least N + 1 times implying
j(K) ≥ N + 1. This contradicts that N is an upper bound for all k ∈ N. Hence, the
assumption that (j(k))k∈N is bounded from above is wrong and the claim holds. □

With this proposition, we can show the convergence of the probust discretization scheme
that uses UHLAD.

Lemma 6.2.2 (Convergence of UHLAD)
Choosing Φ = (Φk)k∈N as the UHLAD with (dk)k∈N converging to zero, where the inner
function g : X ×Ξ×T → R is a continuous and fulfilling Assumption 2.1.1 for all x ∈ X
and T has no isolated points, then any accumulation point x of (xk)k∈N is an optimal
solution of the original probust optimization problem.

Proof. We prove this claim by using Theorem 2.2.3:
We show that the candidate-condition is fulfilled for any accumulation point x ∈ X of
(xk)k∈N indirectly.
Please note that with by the compactness of T the set Gd is finite for all d > 0 and conse-
quently the discretization scheme is well-defined for all k ∈ N. Because T has no isolated
points and limk→∞ dj = 0, there exists some iteration N ∈ N such that T ∩Gdk ̸= ∅ for
all k ≥ N . Furthermore, due to the compactness of X ⊆ Rn, the sequence (xk)k∈N has
at least one accumulation point. Without loss of generality we assume that the whole
sequence (xk)k∈N has just one accumulation point. Otherwise we switch notations to
consider any (fixed) converging subsequence.

We fix the accumulation point x ∈ X, set S := limk→∞ Tk and assume

∃tf ∈ T, ϵ > 0 : φ (x, S)− φ (x, S ∪ {tf}) ≥ ϵ.

This implies that there exists a measurable set Ω ∈ A such that

P(Ω) ≥ ϵ and

g(x, ξ, tf ) > 0 ∀ξ ∈ Ω.
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Because P(Ω) ≥ ϵ > 0, there exists at least one element ω ∈ Ω. Since g(x, ω, ·) is
continuous w.r.t. t ∈ T , we know that there exists a radius r > 0 such that

g(x, ω, t) > 0 ∀t ∈ Br(tf ) ∩ T.

By Proposition 6.2.1 and limk→∞ dj(k) = 0, we know that there exists a N ∈ N such that
for all k ≥ N we can guarantee that there exists a tk ∈ Br(tf ) ∩Gdj(k) .
As tk ∈ Br(tf ) is no element of S, we know that tk is not added to Tk for any k ∈ N. By
definition of Φk this implies for any k ∈ N

φ(xk, Tk)− φ(xk, Tk ∪ {tk}) < ϵj(k).

Taking the limes on both sides of the inequality and using limk→∞ ϵj(k) = 0 as well as
limk→∞ tk = tf leads to

lim
k→∞

φ(xk, Tk)− φ(xk, Tk ∪ {tk}) = φ(x, S)− φ(x, S ∪ {tf}) ≤ lim
k→∞

ϵj(k) = 0.

Please note that we used in the last estimation

lim
k→∞

|φ(xk, Tk ∪ {tk})− φ(x, S ∪ {tf})| ≤ lim
k→∞

|φ(xk, Tk ∪ {tk})− φ(x, S ∪ {tk})|
︸ ︷︷ ︸

→0 by Proposition 2.1.18

+ lim
k→∞

|φ(x, S ∪ {tk})− φ(x, S ∪ {tf})|
︸ ︷︷ ︸

→0 by Proposition 2.1.8

=0.

Consequently, the candidate-condition is fulfilled and the claim holds. □

With this subset scheme for a fixed x ∈ X, we can not only “scan” the uncertainty set T
for points that are “important enough” to reduce the probability evaluation at least by
ϵ, but we can also decide how many points we want to evaluate and therefore control the
calculation time by the grid size d.
Although the UHLAD seems to be less elegant than the HLAD from the theoretical point
of view, it does handle the numerical downsides of the HLAD which we already discussed
in Section 5.3 by additional computational effort. This makes the UHLAD useful to high-
light the most important scenarios given a fixed decision x ∈ X in an numerically stable,
deterministic way. Therefore, it provides insights in the structure of worst-case scenar-
ios over all possible realizations and is quite useful when handling probust optimization
problems whose worst-case scenarios are not known analytically.

To make the new discretization scheme run in a reasonable time, we need to speed up
the probability evaluation based on the SRD used in the last chapter. We modify our
implementation as described in the paper of Berthold, Heitsch, Henrion and Schwientek
[15] that showed significant improvements of calculation times:
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1. We fix the sample of unit sphere vectors Sm−1 that is used to evaluate the prob-
ability by the SRD in a problem instance. Therefore, we have a deterministic
approximation of probability evaluation instead of a random approximation and
are able to reuse calculated values w.r.t. the sample {v1, ..., vN} ⊆ Sm−1.

2. We save the minimal ray lengths rk that correspond to the given unit vectors vk
for each scenario t ∈ Tk and all k = 1, ..., N when calculating new time points by
UHLAD. If we add a new discretization point t∗ to Tk, we just have to calculate
the corresponding ray lengths for vk, k = 1, ..., N and check if it is smaller than rk.
It is not useful to save the ray length for switching decisions because the decision
affect the length of all rays rk, k = 1, ..., N in general.

3. We use the affine-linear structure of the water level constraint w.r.t. the inflow
realizations ξ ∈ Rm to calculate the interception point between rays and the set of
feasible realizations (see Equation (1.3)) faster.

4. We start the probust subset schemes with a softened stopping criterion under con-
sideration of Theorem 1 in [15] that allows us to calculate suboptimal iterates.
As we do not expect to converge towards the solution in the first few iterations
and therefore do not need to calculate the corresponding iterates precisely. Do-
ing so, we reduce the necessary probability evaluations until we stop. Over the
iterations, we have to resharpen the solution precision again to guarantee optimal-
ity in the limes. A useful heuristic value how to sharpen the stopping criterion is
φ(xk, Tk)− φ(xk, Tk+1).
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6.3 Numerical results and comparison of uncertainty models

After defining the probust water reservoir problem instances and the solution methods
in the last sections, we want to solve these problem instances. We start with two smaller
instances related to PWR1 and discuss their solutions to get a feeling how the objective
function influences the choice of an optimal decision x∗ which influences the set of feasible
realizations and worst-case time points.
Afterwards, we solve the problem instances PWR1-SPP and PWR2-SPP introduced in
Section 6.1 and compare the results of the following stochastic models:

1. The probust model which guarantees to stay always in between the critical water
levels for a high percentage of inflow realizations. This model leads to a probust
optimization problem solved by UHLAD.

2. The robust-probabilistic (later called robubilistic) model which guarantees to stay
in between the critical water levels for any fixed time-point for a high percentage of
inflow realizations. This model leads to a semi-infinite optimization problem that
is solved by the adaptive discretization approach from Blankenship and Falk (see
[17]).

3. The expected value model which guarantees that the expected inflow stays in be-
tween the critical water levels for all time-points. This model leads to a semi-infinite
optimization problem that is also solved by the adaptive discretization approach
from Blankenship and Falk (see [17]).

Probust solution for PWR1-SPP

We consider two problem instances of PWR1 using the data (6.7)-(6.11), but approximat-
ing the outflow and inflow by n = m = 2 dimensional variables and different objective
functions. Thereafter, we solve the problem instance with n = 24,m = 10. By solving the
smaller problems, we get a feeling for the new solution approach UHLAD, the worst-case
time points, the set of feasible realizations and minimizing extraction profiles.
The first smaller problem instance is defined by the price signal c̃ = (1, 0). This means
that we are interested in pumping out as much water as possible in the first time interval
[0, 12], while we just adapt the outflow in the second time interval [12, 24] in a way that
we satisfy the given constraints.
Consequently, the objective in this case is f1(x̃) = −x̃1. We start the solving process us-
ing UHLAD in Algorithm 7 with x̃0 = (0.05, 0.05), T0 = {0, 12, 24}, a grid of size d1 := 1
and a precision parameter of ϵ1 := 10−6. We choose 10 additional time points in each
iteration to increase the set of worst-case time points and afterwards let the optimizer
take 5 steps to calculate a new extraction profile. The corresponding iterates xk, xk and
calculation times are listed in Table 6.1 and Table 6.2.
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iteration k # point in Tk ⊆ [0, 24] x∗k x∗k
1 13 (0.09262, 0.05) infeasible

2 23 (0.09058, 0.05) (0.01493, 0)

3 33 (0.09058, 0.05) (0.01493, 0)

4 43 (0.09058, 0.05) (0.01493, 0)

5 53 (0.09058, 0.05) (0.01493, 0)

10 103 (0.09057, 0.05) (0.09056, 0)

15 153 (0.09057, 0.05) (0.09056, 0)

Table 6.1: Iterates of UHLAD sandwiching approach for PWR1 instance with c̃ = (1, 0)

iteration # point in time [in sec]

k Tk ⊆ [0, 24] tS t t ttotal

1 13 54.5 36.1 infeasible 90.6

2 23 37.6 25.2 1.47 64.3

3 33 89.8 27.7 2.42 120

4 43 163 36.4 4.00 203

5 53 185 43.0 5.76 234

10 103 412 85.1 22.1 519

15 153 777 132 46.4 955

Table 6.2: Computation times of UHLAD sandwiching approach for PWR1 instance with
c̃ = (1, 0)

We note that the first component of the decision is fixed fastly, because the main necessary
discretization points are found in early iterations k = 1, 2. The optimal outflow in [0, 12]
seems to be roughly 0.906 what is around 10% less than the expected inflow in this time
interval. These 10% can be interpreted as the buffer to not violate the lower water level
constraint for too many realizations.
The set-approximation problem to determine xk needs considerably more discretization
points because Ω(xk) has to cover the set Ω(xk, Tk) which is unbounded for the first few
iterations as depicted in Figure 6.2 a). As Ω(x̃) is bounded by Proposition 6.1.1 and
Proposition 3.1.7, we cannot find a feasible solution.
Because f(xk) and f(xk) do converge to each other, the algorithm can be stopped. Please
note, that the minimizer of this problem is not unique since we are not interested in how
much water is pumped out of the reservoir in the second time interval [12, 24] as long as
all constraints are satisfied.
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Considering the calculation times, we see in Table 6.2 that the time to calculate new
discretization points tS increases over the iterations significantly. That is because the
search space Gd grows exponentially with increasing j(k) ∈ N over the iterations k ∈ N.
The calculation time t of the iterate xk is lower than tS in all iterations. This signifies
that the initial grid size d1 was chosen to be to fine. Nevertheless, the times t and t do
increase over the iterations because we collect more and more scenarios which slows down
the probability evaluations in each optimization. The time t to calculate the iterate xk
is quite small since it does not need to evaluate probabilities which is numerically costly
in these examples.
Next to the extraction profiles, we can also consider the corresponding T -discretizations
Tk ⊆ T that increase over the iterations k ∈ N as represented in Figure 6.1.

Figure 6.1: UHLAD discretization points in different iterations for price signal c̃ = (1, 0)

Because we want to take as much water out of the reservoir as possible in the time inter-
val [0, 12], we stay close to the lower water level l. Consequently, a lot of time points in
this interval are critical depending on the inflow realization. Although there might be a
lot of worst-case time points, Table 6.1 indicates that just a few points are necessary to
calculate a rather good approximation of the optimal solution.
As we understand the worst-case time points, we can focus on the development of the
sets of feasible realizations. Therefore, Figure 6.2 shows how the different sets Ω(xk, Tk),
Ω(xk) and Ω(xk) behave in iteration 1 and 10, where the real sets of feasible realizations
are approximated by a fine uniform grid over [0, 24] with 105 points.
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a) k = 2 with (infeasible) Ω((0, 0)) b) k = 10 with feasible x10

Figure 6.2: Sets of feasible realizations Ω(xk) (transparent red), Ω(xk, Tk) (blue) and
Ω(xk) (filled red) for price signal c̃ = (1, 0)

The comparison of the sets for the two different iterations stresses that we might need a
lot of scenarios to describe the set of feasible realizations properly w.r.t. the Hausdorff-
metric. This is due to the small probability of the realizations which are further away
from the expected value µ̃ = (0, 0) in this example.
For the next problem instance, we choose the price signal to be c̃ = (0, 1). We expect that
an optimal extraction profile saves the water from the first time interval [0, 12] to pump
out more water in the second time interval. In Table 6.3, we can find the corresponding
iterates and calculation times. Apparently, we do not find an inner approximation xk
in a reasonable time for this problem instance, while the outer approximation nearly
converges after the first iteration.

iteration # point in Approximations time in [sec]

k Tk ⊆ [0, 24] x∗k x∗k tS t t ttotal

1 13 (0, 0.2009) infeasible 31.1 55.0 − 86.1

2 23 (0, 0.2009) infeasible 761 51 − 812

Table 6.3: Numerical results of UHLAD sandwiching approach for PWR1 instance with
c̃ = (0, 1)

The corresponding T -discretization is represented in Figure 6.3. Considering the two
iterations with their discretization points, there is just a small difference as the time
points around t = 12 and t = 24 seem to be important.
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Figure 6.3: UHLAD discretization points in different iterations for price signal c̃ = (0, 1)

The behavior of the discretization points in combination with the missing inner approxi-
mations can be explained by considering the sets of feasible realizations in Figure 6.4.

Figure 6.4: Sets of feasible realizations Ω(x2) (transparent red), Ω(x2, T2) (blue) and
Ω(x2) (filled red)

With this figure, we can understand that the inner set-approximation does not find a
solution because the set Ω(x2, T2) slightly extends even the (biggest) set of feasible re-
alizations Ω((0, 0)) and therefore there cannot be a feasible solution for this problem.
We have to increase the iterations (and running time) such that this Ω(xk, Tk) can be in-
cluded in Ω((0, 0)) for some k ∈ N before we are able to solve the inner set-approximation
problem. Nevertheless, the last figure clarifies that after two iterations the approximation
of x2 is geometrically quite good and we stop the procedure with x∗ ≈ (0, 0.200885).
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After understanding the behavior of sandwiching-algorithms for instances with PWR1 like
structure, we now consider a bigger problem instance with n = 24,m = 10. Furthermore,
we consider the following alternating price signal

c̃i =− 1− sin

(
2πi

3

)

· 2− i
12 , i = 1, ..., 24.

This price signal can be represented graphically as by Figure 6.5

Figure 6.5: Alternating price signal c̃

Given the insights of the first two example problems, we expect an optimal extraction
profile to store water for time periods with a low price signal and release water in timer
intervals with a high price signal.
We solve this problem using the vector x0 = 0.05 · e24, where e24 = {1, 1, ..., 1} ∈ R24 and
the discretization T0 = {0, 1, 2, ..., 24}. The results of the UHLAD sandwiching can be
found in Table 6.4.

iteration # point in Approximations time [in sec]

k Tk ⊆ [0, 24] f(x∗k) f(x∗k) tS t t ttotal

1 35 −3.36108 infeasible 56.3 1100 − 1160

5 75 −3.36100 infeasible 174 2030 − 2200

Table 6.4: Numerical results of UHLAD sandwiching for PWR1 instance with
n = 24,m = 10 and alternating cost signal c̃

Again, the inner set-approximation problem does not find inner approximations of the
solution, but the outer approximations do not change a lot in between the first 5 iterations.

162



6.3 Numerical results and comparison of uncertainty models

The corresponding extraction profiles x∗k, k = 1, 5 can be plotted as piece-wise constant
functions over [0, 24] . Because the solutions x∗1, x

∗
5 differ relatively less than 0.3% (mea-

sured in ||.||2), plotting the single solutions is not helpful. Instead we plot just x∗5 in
Figure 6.6 which represents our approximated solution for the problem.

Figure 6.6: Extraction profile x∗5 for the alternating price signal

This extraction profile x∗5 adapts the alternation of the price signal. We also note that
the starting discretization T0 = {0, 1, ..., 24} yields a good approximate x1 as it covers
the main critical time points tcrit ∈ {1, 4, 7, 10, 13, 16, 19, 22, 24}. These are critical time
points because at these time points we stop taking water out of the reservoir and therefore
have local minima considering the filling height in many inflow realizations. Consequently,
these are the time points that might violate the probust constraint most probable. Ad-
ditional time points created by UHLAD do not change this solution considerably. These
time points for the iterates 0, 1 and 5 are depicted in Figure 6.7.

Figure 6.7: UHLAD discretization points in different iterations for alternating price signal
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Next to the accumulation of new time points around the critical time points, we only
generate points in the time interval [0, 3] because we take out water in this time accord-
ing to x∗5 and therefore stay close to l. Consequently, we have to consider the influence
of the inflow ξ which might consume the filling height buffer l0 − l that we start with.
As we cannot represent the set of feasible realizations in this example since it has dimen-
sion m = 10, we plot 100 randomly picked samples instead and check how many of the
corresponding water levels lie above l = 0.25 for all t ∈ [0, 24] in Figure 6.8.

Figure 6.8: Water level over time generating 100 random inflow realizations and using
extraction profile x∗5

As for 10 realizations (red lines) we can find a time point such that the filling height
drops below critical water height l0 = 0.25 (black line), we fulfill our condition in 90 out
of 100 cases which perfectly fits our threshold p = 0.9. Because the inflow realizations
are created randomly, we cannot guarantee this result in general, but we expect to stay
close to 90% feasible inflow realizations.

Probust solution for PWR2

Since we understand the numerical solution of the probust water reservoir problem in-
stance PWR1, we now consider the more complex problem instance PWR2 defined by
the data in (6.15) - (6.22).
We start the solving process using the UHLAD sandwiching with starting vector x0,i = 0.1
for i ∈ {6, 7, 8, 20, 21, 22, 23} and x0,i = 0.07 otherwise for i = 1, ..., 24. Furthermore, we
fix the starting discretization T0 = {0, 1, ..., 24}, a grid of size d1 := 1 and a precision
parameter of ϵ1 = 10−6. We choose 10 additional time points in each iteration to increase
the set of worst-case time points and afterwards let the optimizer take 5 steps to calculate
a new extraction profile. The results can be seen in Table 6.5.
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iteration # point in Approximations time [in sec]

k Tk ⊆ [0, 24] f(x∗k) f(x∗k) tS t t ttotal

1 35 −1.885 infeasible 27.7 3330 − 3360

5 75 −1.880 infeasible 140 5150 − 5290

Table 6.5: Numerical results of UHLAD sandwiching for PWR2

We also tried to compute an upper bound with the set-approximation problem based on
the design Ω(x∗5, T5), but the algorithm does not find a feasible solution for this problem.
Because the corresponding extraction profiles x∗k with k = 1, 5 do not differ a lot, we plot
just x∗5 representing the (approximated) probust solution.

Figure 6.9: Extraction profile x∗5 over time

The development of generated discretization points over the iterations k = 1, 2, 5 can be
seen in the Figure 6.10.
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Figure 6.10: UHLAD discretization points in different iterations for PWR2

To check if the outer approximation solution is (nearly) feasible for the problem, we
generate 100 random inflows and check visually if the filling height lies in between the
critical water levels in Figure 6.11.

Figure 6.11: Water level over time generating 100 random inflow realizations and using
extraction profile x∗5

Since 89 out of 100 scenarios respect the probust condition and f(x∗1) and f(x∗5) do differ
just around 0.4%, we assume that x∗ ≈ x∗5.
Figure 6.11 illustrates that the extraction profile x∗5 stores water in the early hours of the
day to work with a high pressure and in the end pumps out as much water as possible in
the last time interval. This also explains the choice of critical time points in Figure 6.10
as they indicate in which time corridor we stay close to the upper water level l.
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Comparison with other uncertainty models

In the last sections we focused on solving the probust optimization problem instances
PWR1 and PWR2. Now we want to compare the (approximated) probust solutions with
solutions from the expected value and individual chance constrained model.
For the the expected value setting, we exchange the probability evaluation of the water
level constraints by the expected value what leads to the following semi-infinite optimiza-
tion problem that is linear w.r.t. x ∈ X

min
x̃∈R24

−
n∑

i=1

c̃ix̃i s.t. l ≤ E(l(x̃, ξ̃, t)) ∀t ∈ T,

− x̃i ≤ 0 ∀i = 1, ..., 24.

In this setting we can reformulate the expected water level constraint as

E(l(x̃, ξ̃, t)) = l0 + 0.1t−
i∗(t)−1
∑

i=1

x̃i(ti − ti−1)− xi∗(t)(t− ti∗(t)−1).

Considering the individual chance constrained problem, we exchange the for-all-quantor
and the probability evaluation in the water level constraint of the probust formulation to
get the robust-probability problem

min
x̃∈R24

−
n∑

i=1

c̃ix̃i s.t. P(l ≤ l(x̃, ξ̃, t)) ≥ p ∀t ∈ T,

P(l(x̃, ξ̃, t) ≤ l) ≥ p ∀t ∈ T,

− x̃i ≤ 0 ∀i = 1, ..., 24.

Here we can reformulate the water level constraint using

w(t) = −(sin(ωjt))j=1,...,m,

v(x̃, t) = l − l0 −M(t) +

i∗(t)−1
∑

i=1

xi(ti − ti−1) + xi∗(t)(t− ti∗(t)−1)

for an arbitrary t ∈ [0, 24] and with ⟨·, ·⟩ as the scalar product on Rm as

P(l ≤ l(x̃, ξ̃, t)) = P

(

⟨w(t), ξ̃⟩
√

⟨w(t),Σw(t)⟩
≤ −v(x̃, t)
√

⟨w(t),Σw(t)⟩

)

= F

(

−v(x, t)
√

⟨w(t),Σw(t)⟩

)

≥ p.

Because F as the cumulative density function of a standard normal distribution is mono-
tonically increasing, we can invert this function and reformulate the lower water level
constraint for fixed t ∈ [0, T ] as:

P(l ≤ l(x, ξ, t)) ≥ p

⇔ −v(x, t)
√

⟨w(t),Σw(t)⟩
≥ F−1(p)

⇔ g1(x, t) := F−1(p)
√

⟨w(t),Σw(t)⟩+ v(x, t) ≤ 0
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With the same arguments and with l(x, ξ, t)− l = −(l− l(x, ξ, t))+ l− l, we can represent
the upper water level constraint for fixed t ∈ [0, T ] as:

P(l(x, ξ, t) ≤ l) ≥ p

⇔ g2(x, t) := −F−1(1− p)
√

⟨w(t),Σw(t)⟩ − v(x, t) + l − l ≤ 0

We choose the adaptive discretization scheme from Blankenship and Falk to solve the
SIP-reformulations, where we search for one discretization point in each iteration in each
time interval [ti−1, ti] = [i− 1, i] with i = 1, ..., 24. The trade-off between objective value,
feasibility and running time of the different uncertainty models is shown in Table 6.6.

Model objective value f∗ feasible scenarios solving time t [in sec]

expected −3.483 0 12.1

robubilistic −3.404 52 13.8

probust −3.361 90 2200

expected −2.032 0 13.4

robubilistic −1.940 40 18.2

probust −1.880 90 5290

Table 6.6: Numerical results using different uncertainty models for PWR1 and PWR2

As induced by the different approaches, the expected value approach leads to the lowest
objective values, while the probust extraction profile ensures feasibility for many inflow
realizations. The robubilistic solution can be interpreted as a trade-off between these two
aspects.
Focusing on PWR1 in Table 6.6, we loose less than 4% of the objective value that corre-
sponds to the expected value model to be able to resist 90% of uncertain inflow realizations
instead of 0%, if we use the probust extraction profile. This is the strong side of the pro-
bust approach.
In contrast, the time needed to compute the probust extraction profile is more than 100
times higher than the corresponding computational times of the other two extraction pro-
files, although we already used modifications to make it run fast. This is due to the fact,
that the probust optimization problem does not allow the reformulation of the stochastic
constraint as a semi-infinite constraint that can be solved without probability evaluation.
If we can allow ourselves to wait for the probust extraction profile, we would choose the
probust extraction profile in terms of robustness. Otherwise, the robubilistic solution
seems most attractive.
According to the problem instance PWR2, we see the same behavior of the solution cor-
responding objective values, feasible scenarios and solving time. The only difference is
that the objective values differ by 8% and the solution time for the probust extraction
profile is nearly 300 times bigger than the other two. This leads to the consequence that
the robubilistic solution seems even more attractive as the trade-off solution between
computational time and safety while guaranteeing a low objective value.
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Besides the numerical performance, we can compare the behavior of the different optimal
extraction profiles. Therefore, we plot these profiles in Figure 6.12 and in Figure 6.13.

a) Expected value b) Robubilistic

c) Probust

Figure 6.12: Optimal extraction profiles for PWR1 of different uncertainty models

a) Expected value b) Robubilistic

c) Probust

Figure 6.13: Optimal extraction profiles for PWR2 of different uncertainty models
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We note that the extraction profiles corresponding to the expected value model seem
calmer compared to the one related to the probust model. This is due to the fact that
the probust model is more sensitive which realization are allowed to be infeasible and
which do not. Therefore, it has to somehow adapt the structure of “90% of possible
inflow realizations”. Concerning PWR2 this means that when the water level l(x, ξ, t) is
close to the upper water level l, the decision x has to compensate an increasing inflow
in a certain time interval by increasing the outflow. Therefore, we would expect an even
more alternating extraction profile if we would increase the number of considered time
intervals n ∈ N.

Furthermore, we check the robustness of the different extraction profiles by considering
100 random inflow realizations that are fixed for all optimal extraction profiles. With
these, we check if the corresponding water levels respect the lower (and upper) water
level constraints over time or not. Feasible realizations are plotted as blue lines, while
infeasible realizations are plotted as red lines in Figure 6.14 and Figure 6.15.

a) Expected value b) Robubilistic

c) Probust

Figure 6.14: Feasibility check of optimal extraction profiles of PWR1 by simulating 100
inflow realizations

These figures show us that the solution corresponding to the expected value approach is
highly infeasible over all time points [0, 24]. Since the expected value is one fixed inflow
realization, the optimal extraction profile stays at the upper or lower water level as long
as possible to attain a low objective value. Because the randomly created inflows do
alternate around the expected value, they are infeasible with respect to the water level
constraint. The robubilistic extraction profile is more sensitive concerning the different
inflow scenarios than the expected value profile. Therefore, it ensures a buffer such that
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a) Expected value b) Robubilistic

c) Probust

Figure 6.15: Feasibility check of optimal extraction profiles of PWR2 by simulating 100
inflow realizations

10% of the inflow realizations are allowed to violate the water level constraints for each
time point t ∈ [0, 24]. Consequently, we do not count (significantly) more than 10 lines
violating the water level constraints at any time t ∈ [0, 24]. As these 10% of violating
inflow realizations might change over time, the number of inflow realizations which violate
the water level constraints for some t ∈ [0, 24] is way bigger than 10.

Summary

In this chapter, we introduced water reservoir problems, specified four probust water
problem instances, solved them by a new probust subset scheme that corresponds to a
combination of a uniform discretization scheme with the HLAD and compared the opti-
mal probust extraction profiles with the ones defined by other uncertainty models.
We have seen that for both problem instances PWR1 and PWR2 the “natural” discretized
time horizon is a quite good approximation of the probust solution what justifies the us-
age of approaches that based on joint chance constrained optimization problems.
Nevertheless, we have also seen that the safety level of the whole process depends strongly
on the uncertainty model. While models built on individual chance constrained optimiza-
tion might be the compromise between safety, promised objective value and calculation
time, they do clearly lose to the joint chance constrained based model guaranteeing the
feasibility of the extraction profiles.

171





7 Distillation processes

In the last chapter we considered water reservoir problems. These problems are based on
an inner function that is barely described by an inequality constraint which was assumed
to be affine-linear with respect to decisions and realizations. Consequently, we just had
to think about how to determine good scenarios to solve the problems.
In this chapter we consider a distillation process that is analytically more complex to
handle than water reservoir problems. This process is described by preservation laws
which induce equality constraints. Therefore, fixing a decision and a realization leads to
implicitly defined problem parameters such as the temperature of the distillation as we
will see. This implicit problem structure makes the corresponding probust optimization
problem not only more complex, but also takes away the problem structure since some
of the equality constraints are non-linear.
We start this chapter by an introduction to distillation problems in Section 7.1. Here we
describe the equality constraints for our model of a distillation problem as well as roughly
comment on the literature regarding distillation problems under uncertainty.
In Section 7.2 we then define our problem instance that is solved using numerical tests
and the solution steps from Example 1.1.9 in Section 7.3.

7.1 Introduction to distillation problems

Process engineering deals with producing requested substances using methods from me-
chanics, chemistry and biology. One of these processes is the rectification where two
substances are separate by inducing heat into a multi-stage system. If only one stage is
used the separation process is called a distillation.
The process can be visualized by the following flow chart in Figure 7.1.
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7 Distillation processes

Figure 7.1: Flow chart of a continuous distillation process

To describe the distillation process mathematically, we use so called MESH-equations
(see e.g. Chapter 4 in [49]) that formalize preservation laws of physical variables such as
mass, pressure and energy. Rectification becomes a probust optimization problem, when
rethinking the process:
Some of the parameters that are used in the MESH-equations are substance-specific and
determined by experiments. We assume that these are correct up to a certain relative
error which defines the set of scenarios.
Furthermore, we assume that the substances in the inflowing streams might be polluted.
Therefore, we model their concentration as normal random variables with the original
expected concentration as the mean value and small disturbances as their variance.
We want to maximize the volume of the end product while guaranteeing that this product
has at least a given quality. This quality is given as an parameter q ∈ [0, 1] and can be
measured, e.g. by the concentration of the end product yE ∈ [0, 1]. All together we can
formulate the probust rectification problem of K ∈ N liquids as:

PRK : min
χ∈X
−V̇ yE s.t. P(yE(χ, ξ) ≥ q,MESH(χ, ξ) = 0) ≥ pr,

where pr ∈ [0, 1] is a given probability threshold, V̇ ≥ 0 is the head gas stream, X is
some decision space and ξ are the realizations of a random vector Z influencing the rec-
tification.
Please note that we slightly differ the notation of the decision variable χ and the probabil-
ity threshold pr to bypass a clash of notation between the process engineering notations
and the mathematical notations used in this thesis so far.
The MESH-equations have the following form, where we are guided by the notation given
in list of symbols and abbreviations in the beginning of this thesis:

M: Ḟ xF = L̇x+ V̇ y (7.1)

E: pyi = pSi (T )γi(x, T )xi, i = 1, ...,K (7.2)

S:
K∑

i=1

xF,i = 1,
K∑

i=1

xi = 1,
K∑

i=1

yi = 1 (7.3)

H: Ḟ hl(xF , TF ) + Q̇ = L̇hl(x, T ) + V̇ hv(y, T ) (7.4)
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Here equation M ensures the mass equilibrium meaning that substances entering the
process with the feed Ḟ have to get out of the process either by exiting the head V̇ or
bottom stream L̇.
The equation E is an extended version of Raoult’s law which guarantees that the gas
and liquid phase within the described stage have a constant exchange of particles. This
way the corresponding substance concentrations stay unchanged over time because of the
phase equilibrium. The corresponding vapor saturation pressure pS(T ) is calculated as
described in the appendix A.2 of Hoffmann’s thesis [45] by the following approach

pSi (t) = exp
(

ci,1 +
ci,2
T

+ ci,3 log(T ) + ci,4T
ci,5
)

for all components i = 1, ...,K with substance depending coefficients that are taken from
the DIPPR Database [26].
The equation S describes that the sum of all concentrations in a stream has to add up to
one.
The equation H ensures that the energy which is fed into the process by the reboiler heat-
ing and the feed temperature is the same as the energy that leaves the process in form
of the temperature of the outflowing head and bottom streams. Here the enthalpy of the
vapor and gas streams hv and hl are modeled by the linear combination of the tempera-
ture, the substance specific enthalpies hv(T ) and hl(T ) and the substance concentration
of a stream

hl(x, T ) =

K∑

i=1

xihl(T ),

hv(y, T ) =
K∑

i=1

yihv(T ).

As for the vapor saturation pressure the enthalpies hl and hv are defined as described in
the appendix A.2 of Hoffmann’s thesis [45] with coefficients from the DIPPR database
[26].
Because the MESH equations describe the set of feasible realizations in PRK , we have
to extend our probust model to this case. We choose to work with implicitly given
inequalities here. This way, we can represent the unknown variables used in the MESH-
equations as function of the decision and the realization of the random vector, if we choose
the decision space X wisely. The implicit function theorem defines this representation.
So far rectification has already been the focus of optimization under uncertainty. Not only
Henrion et al. (see [42, 43]) considered in stochastic uncertainties, e.g. the feed amount,
and apply different stochastic models to determine optimal controls.
But also methods from robust optimization were used to analyse the influence of empirical
measured parameters like the activity coefficient within the phase equilibrium E (see
Mathias [58], Burger et al. [20] or Bortz et al. [19]).
To the best of our knowledge, process optimization (or even simulation) with both kinds
of uncertainties have not been published so far. This is the subject of this chapter, where
we define a problem instance of a rectification problem in Section 7.2 and solve it by a
set-approximation scheme that is motivated by numerical tests in Section 7.3.
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7 Distillation processes

7.2 Rectification problem instance

The focus of this section is to introduce a probust rectification problem instance with
just one stage and two substances, a so called continuous closed single stage distillation
of binary mixtures. We assume that the model for activity coefficients is correct up to a
relative error of ϵ > 0%. Consequently, we can identify the possible activity coefficients
with the following set of scenarios

γ ∈ Γ(χ, ξ) := [1− ϵ, 1 + ϵ]2 · γ(χ, ξ).
The reference value γ(χ, ξ) is calculated by a non-random-two-liquid-model (NRTL-
model, see [65]).
We assume that the inflowing fluid is wine with an alcohol concentration of 12% consist-
ing of only water and ethanol which are to be separated. To make the identification of the
indices with the associates substances easier, we write i = W for the water component
and i = E for the ethanol component of a substance stream. As the concentration of
ethanol may vary using wine from different years, cultivation areas or just bottles, we
model this concentration by a normal distributed random variable with expected value
µ = 12% and standard derivation σ = 1%.
Consequently, we identify the ethanol concentration of the feed as the realizations of a
random variable

Z ∼ N
(
0.12, (0.01)2

)
.

Moreover, we assume that we can influence the heating power Q̇ and the pressure p to
distillate in this process. These pair (p, Q̇) defines our decision variable. This implies
that we can represent the decision space as X = [Q̇min, Q̇max] × [pmin, pmax], where we
chose pmin = 104[Pa] and pmax = 106[Pa] and calculate Q̇min and Q̇max by pmin and pmax

as follows:
We assume that the MESH equations guarantee that no vapor stream exists. This implies
V̇ = 0 for the minimal allowed heating Q̇min. This assumption implies L̇ = Ḟ and
x = xF . Then we calculate the minimal allowed temperature Tmin by solving the summed
up pressure-equilibrium Equation (7.2) for given pressure pmin and the model activity
coefficient γ(x, T ) by a Newton-Method. With this temperature we can use the enthalpy
Equation (7.4) to calculate Q̇min as:

Q̇min + Ḟ hl(xF , TF ) = L̇hl(x, Tmin) + V̇ hv(y, Tmin)

⇔ Q̇min = Ḟ hl(xF , Tmin)− Ḟ hl(xF , TF )

We can do the same with Q̇max by assuming that this heating implies a vanishing liquid
stream (L̇ = 0) and therefore V̇ = Ḟ and y = xF . With a maximal allowed temperature
Tmax calculated by using pmax, this procedure leads to the representation

Q̇max = Ḟ hv(xF , Tmax)− Ḟ hl(xF , TF ).

Consequently, our probust optimization problem looks like

min
χ=(Q̇,p)∈X

−V̇ yE s.t. P(yE(χ, ξ, γ) ≥ 0.4,MESH(χ, ξ, γ) = 0 ∀γ ∈ Γ(χ, ξ)) ≥ 0.9.
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We fix the quality parameter q := 0.4 such that the ethanol concentration of the gas
stream should have a concentration of at least 40% independent from the activity coeffi-
cient γ ∈ Γ(χ, ξ) in pr = 90% of the ethanol concentration realizations in the feed xFE

.
To reformulate this rectification problem as a standard probust optimization problem,
we use the reference set T̂ := [1− ϵ, 1 + ϵ]2 and the transformation

T
T̂
: X × Ξ× T̂ → R2, (χ, ξ, z)→ γ(χ, ξ) + z

In the next section we analyse this problem instance. We do so by focusing on the solution
steps for probust optimization problems mentioned in Example 1.1.9.

7.3 Solution method and results

In this section we describe different procedures to handle the rectification problem intro-
duced in the last section.
We use numerical simulations to understand the behavior of the worst-case activity co-
efficients and to guess the set of feasible realizations of the ethanol concentration in the
feed. In the end, we solve the probust rectification problem for different uncertainty set
parameters ϵ > 0 and σ > 0.

Step 1a: Evaluating the inner function

Inspired by the ”standard” solution techniques for probust optimization problem from
Example 1.1.9, we start the analysis using a fixed decision, a fixed realization of the
random vector and a fixed activity coefficient and focus on evaluating the inner function.
As the inner function is defined by the quality constraint yE(χ, ξ.γ) ≥ q, where yE is
given implicitly by the equation system MESH(χ, ξ, γ) = 0, we have to solve the equation-
system defined by the MESH-equations to be able to evaluate the quality constraint.
One way to solve these equations is by a Newton-method, where we are searching for the
arguments (L̇, x, V̇ , y, T ) that solve the MESH-equations. The corresponding gradients
can be calculated, e.g. by central differences or differentiating the model functions and
MESH-equations that were introduced in the Section 7.1.
Another method is to solve the MESH-equations by bisection. Therefore we reconsider
the MESH-equations (7.1) - (7.4) and see that the equation system is linear if we know
TF , T and x.
Because we are considering a fixed feed temperature TF and a binary substance, we can
fix some xE ∈ [0, 1], calculate xW = 1− xE and determine T by solving the summed up
Equation (7.2)

E’: p = pSW (T )γWxW + pSE(T )γExE
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7 Distillation processes

by a (one-dimensional) Newton-method. Using the single pressure-equilibrium equations
again, we directly calculate the rate of components within the head stream by

yi =
pSi (T )

p
γixi, i = W,E.

With these values, we calculate V̇ and L̇ using the first mass balance Equation (7.1) with
considering the water component i = W and the heat Equation (7.4).
We use the remaining mass balance equation with fixed index corresponding to the ethanol
component i = E

ḞxF,E = L̇xE + V̇ yE (7.5)

to check if the calculated values of (L̇, x, V̇ , y, T ) are correct.
Because we want to use this scheme iteratively by a bisection, we start with some liquid
ethanol concentration xE,0 ∈ [0, 1] and increase this concentration in the next iteration
step if the left-hand side (LHS) of the feedback Equation (7.5) is bigger than the right
hand side (RHS). We decrease xE if RHS is bigger than LHS.
We stop this iterative process if the equations are fulfilled up to a precision of 10−6 or
after a maximum of 30 iterations. This implies an absolute error of the approximated xE
less than 2−30.
Because the evaluation of the inner function leads to the same values of L̇, x, V̇ , y, T up
to relatives errors below 10−6 for both methods, we choose the bisection method in the
following to evaluate the inner function because its calculation time is approximately a
third of the time that the Newton method in our code needs.

Step 1b: Evaluating the worst-case scenario

In the next solution step, we choose activity coefficients that minimizes the ethanol
concentration of the head stream

min
γ∈Γ(χ,ξ)

yE(χ, ξ, γ).

Considering Equation (7.2), we represent this concentration as

yE =
pSE(T )

p
γExE . (7.6)

Using the summation Equation (7.3) for y and the phase equilibrium (7.2) for yW , we
can also try to focus on

1− yE = yW =
pSW (T )

p
γWxW . (7.7)

As the dependencies of pSi (T )xi with i = W,E from γ is quite complex, we fix some deci-
sion and and a realization of the random vector to solve the problem visually. Therefore,
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we fix the parameters p ∈ {104, 105}, Q̇ ∈ {5 · 103, 104, 4 · 104}, xF,E ∈ {0.05, 0.12, 0.20}
and check 100 uniform distributed activity coefficients in the corresponding area Γ(χ, ξ).
All examples lead to the solution γ∗(χ, ξ) = ((1 + ϵ)γW (χ, ξ), (1 − ϵ)γE(χ, ξ)) as seen
exemplary in Figure 7.2 that corresponds to the case p = 105, Q̇ = 104, xF,E = 0.12.

Figure 7.2: Concentration of ethanol in vapor phase yE depending on activity coefficients
γW , γE

Referring to the Equations (7.6) and (7.7) this means that the influence of γi seems to
be stronger then the effect of pSi (T )xi that depend implicitly on γ for each component
i = W,E.
Therefore, we assume in the remainder of this chapter that the worst-case activity coef-
ficient is γ∗(χ, ξ) = (γ∗W (χ, ξ), γ∗E(χ, ξ)), where γ∗W (χ, ξ) is the maximal possible activity
coefficient for water and γ∗E(χ, ξ) is the minimal possible activity coefficient for ethanol
within Γ(χ, ξ).

Step 2: Evaluating the probability

One general way to calculate the probability of

P(yE(χ, ξ, γ
∗(χ, ξ)) ≥ q)

is to choose a (Quasi-)Monte-Carlo simulation, where we fix a sample size of K = 105

realizations of the random vector Z, calculate the corresponding γ∗(χ, ξ) and check if
yE ≥ q after solving the MESH-equations. Because this method is extremely slow in
evaluating the probability, we are interested in another evaluation strategy.
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We assume that for increasing ethanol concentrations xF,E the ethanol concentration
of the head vapor yE does also increase. Consequently, we are interested in the critical
ethanol concentration x∗F,E such that the corresponding ethanol concentration of the head
stream yE satisfies yE(χ, x

∗
F,E , γ

∗(χ, x∗F,E)) = q.
Due to the assumed monotonicity between yE and xF,E we can then calculate

P(yE(χ, ξ, γ
∗(χ, ξ)) ≥ q) = P(xF,E ≥ x∗F,E) = 1− F

(
x∗F,E − 0.12

0.01

)

. (7.8)

To calculate x∗F,E , we solve the MESH-equations by a bisection method as explained
in step 1a, but we replace the ethanol concentration of the feed xF,E by an implicitly
calculated variable and the value of the implicitly calculated yE by q. Consequently, the
critical ethanol feed concentration x∗F,E = x∗F,E(χ) depends on the inputs χ = (p, Q̇).
This way we just have to solve the MESH-equations once for a fixed decision χ instead
of solving them for each of the 105 realizations in the (Quasi-)Monte-Carlo simulation.
We are allowed to assume a monotone relation between yE and xE as our numerical
experiments show, where we fixed p ∈ {104, 105}, Q̇ ∈ {5 · 103, 104, 4 · 104} and calculated
the implicit given values of (L̇, x, V̇ , y, T ) for varying xF,E . One of these experiments
with p = 105[Pa], Q̇ = 104[W ] is plotted below

Figure 7.3: Ethanol concentration in vapor yE depending on ethanol concentration in
liquid phase xE

Step 3: Optimizing the process

If we assume that the monotonicity assumption is fulfilled, we can reformulate the probust
constraint with Equation (7.8) to a differentiable, non-linear inequality constraint

pr − 1 + F

(
x∗F,E(χ)− 0.12

0.01

)

≤ 0

to use gradient-based optimization tools like MATLAB’s fmincon.
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On the contrary, our numerical experiments support the assumption that for increasing
heating Q̇, the volume of ethanol in the head vapor stream V yE increases and the pureness
yE decreases. This is because more water molecules vaporize, since it is the high-boiling
component.
Consequently, we can determined the optimal heating Q̇∗ for fixed pressure as the highest
feasible heating which satisfies

F

(

x∗F,E((Q̇
∗, p))− 0.12

0.01

)

= 1− pr. (7.9)

Because the heating influences yE and therefore x∗F,E monotonically, we can solve Equa-

tion (7.9) for fixed pressure p by a bisection over the heating Q̇, where we decrease the
heating if the left-hand side is too low and increase it if it is too high. Alternatively, we
rewrite Equation (7.9) as

x∗F,E = 0.12 + 0.01F−1(1− pr)

and solve the MESH-equations given this x∗F,E that is independent from pressure and

heating to calculate Q̇∗(p).
Either way this leads to an optimal heating Q̇∗(p) that depends on the fixed pressure
p ∈ [pmin, pmax]. The optimization over the pressure can be performed, e.g., by a fine
discretization of [pmin, pmax]. The corresponding evaluation of V̇ yE calculated by the
MESH-equations using p, Q̇∗(p), xF,E = 0.12 and the model activity coefficients γ(x, T )
is visualized below.

Figure 7.4: Ethanol vapor volume output over pressure (on the left) and a close-up of
around its maximum (on the right)

Here the red line corresponds to the solution given by the bisection w.r.t. Q̇, while the
black dotted line corresponds to solving the MESH-equations. We see that solving the
MESH-equations gets numerically unstable if the pressure is too high. Nevertheless, this
approach generates sufficiently precise results for small pressures (≤ 105[Pa]) which we
are interested in.
We can determine the optimal pressure graphically by p∗ ≈ 7000[Pa], which leads to an
optimal heating of Q̇∗(p∗) = 1349[W ] and an optimal volume of 1.261 · 10−2[mol/s].
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To comment shortly on running times:

• Solving the MESH-equations by a bisection with given x or y costs around 10−2

seconds.

• Calculating the worst-case activity coefficient costs no time as it is assumed to be
known as γ∗(χ, ξ).

• Evaluating the probability P(yE(χ, ξ, γ
∗(χ, ξ)) ≥ 0.4) using the monotonicity as-

sumptions and solving the MESH-equations with given yE = q needs around 10−2

seconds.

• Solving for an optimal heating Q̇∗(p) for fixed pressure p by solving the MESH-
equations for given x∗F,E , yE again needs around 10−2 seconds. Solving for an opti-

mal heating Q̇∗(p) with a bisection w.r.t. Q̇ costs some seconds.

• Calculating the optimal operating parameters (p, Q̇) by discretizing [pmin, pmax]
with 500 points costs some seconds or several minutes depending on how Q̇∗(p) is
calculated.

Since we could solve the problem for a fixed relative error ϵ = 0.1 and a fixed pollution
σ = 0.01, we are interested in how other errors would influence the solution.
Therefore, we solve the problems which correspond to a combination of the uncertainty
parameters ϵ ∈ {10−8, 0.1, 1, 10} and σ ∈ {10−8, 0.5, 1, 2}. The resulting optimal ethanol
vapor outputs can be seen in the following figure:

Figure 7.5: Maximum amount of ethanol in vapor V yE output depending on uncertainty
parameters ϵ, σ

We see that smaller uncertainties ϵ, σ generate a higher objective value V̇ yE as one
would expect. Please note that the influence of an uncertain activity coefficient ϵ is in
general worse than the same uncertainty w.r.t. the ethanol concentration of the feed σ.
Nevertheless, the figure shows that small errors of less than 1% do not influence the
objective value too much, while bigger errors can lead to a drastical decrease.
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Summary and further work

In this thesis we focused on handling probabilistic-robust (probust) optimization prob-
lems numerically. We were inspired by methods from semi-infinite optimization to handle
the implied uncertainties that are an intertwined combination of uncertain parameters
with and without distributional information.
We introduced useful results for (standard) probust optimization problems and related
topics such as joint chance constrained optimization, semi-infinite optimization, corre-
spondences and decision-dependent uncertainty in the first two sections of Chapter 1.
Afterwards, we defined generalized probust optimization problems in Section 1.3.
Since generalized probust optimization problems define a new problem class, we gave
sufficient conditions for the existence of well-defined (unique) solutions in Theorem 1.3.9.
We showed that we can change the representation of a generalized probust optimization
problem using appropriate transformations of the uncertainty sets without changing the
feasible set or the objective function of the corresponding problem instance. In these
cases, we could reduce the generalized problem to its standard variant as implied by
Theorem 1.3.13.

We then started to work on numerical methods that can approximate the solution of a
standard probust optimization problem in Chapters 2 and 3.
In Chapter 2, we concentrated on calculating outer approximations by discretizing the
set of scenarios induced by a probust optimization problem. We were inspired by dis-
cretization schemes used to solve semi-infinite optimization problems and the analysis of
probust terms to define the probust subset algorithm 3. Theorem 2.2.3 then guaranteed
the convergence of the outer approximations generated by this algorithm towards a min-
imizer of the original probust optimization problem.
Given this convergence result, we defined some basic subset schemes and showed their con-
vergence such as a uniform discretization scheme with increasing refinement (see Lemma
2.3.1) and two modified versions of the adaptive discretization approach from Blanken-
ship and Falk (see Lemma 2.3.3 and Lemma 2.3.2).
With these schemes to calculate outer approximations, we focused on calculating inner
approximations.
In Chapter 3 we discussed how to use a given family of measurable sets to approximate
a certain probability. The resulting concept led to the inner set-approximation problem
(see Definition 3.2.1) which can be interpreted as a GSIP with an additional probability
evaluation constraint. The solution of such a problem defined an inner approximation for
the original probust optimization problem as shown in Theorem 3.2.2.
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We provided a counter example that we cannot expect a sequential set-approximation
scheme to converge in a similar setting as the probust subset scheme, but we have given
sufficient conditions to fix this behavior in Theorem 3.3.2.
Before we finished the chapter by applying the set-approximation approach to a probust
optimization problem instance, we commented on how the structure of the inner function
induces the structure of the set of feasible realizations in Proposition 3.1.7.
In Chapter 4, we discussed how to combine probust subset schemes with set-approximation
schemes to define sandwiching algorithms.
While we could use both approximation methods to define upper and lower bounds for
the optimal objective value separately, we were especially interested in the exchange
of information between these methods. We discussed that neither a set-approximation
method with information from subset schemes, nor a subset scheme with information
from a set-approximation method has to lead to the convergence of the corresponding
iterates in general. This is due to the structural assumptions that partly contradict
each other. Nevertheless, we found a sandwiching method with exchanged information
that can be solved quickly by Algorithm 7 and therefore was used in Part II of this thesis.

In Chapter 5 we introduced a generalization of design-centering problems which adjust
a (design) set into another (container) set such that the design is as big as possible. We
entered a random disturbance of the design or container set to the problem definition and
showed that this problem then can be reformulated as a generalized probust optimization
problem. As we pointed out in Section 1.3, we could find transformations to reduce these
problems to standard probust optimization problems and compared the behavior of the
numerical methods introduced in Chapter 2 to 4.
The main insights of this comparison were that we had to evaluate the probust function
fast to solve the probust optimization problem efficiently. Moreover, structural insights
of the set of feasible realizations or the behavior of worst-case scenarios were essential to
understand and speed up the solving process.
With these insights we challenged probust water reservoir problems in Chapter 6. After
we got a feeling how the worst-case scenarios behave, we defined a solution method that
solved the probust optimization problems quite fast (compare Table 5.13 and Table 6.5).
On the one hand, it is pointed out that the difference between the solution using a “nat-
ural” discretized time horizon and the probust solution is quite small (see Table 6.4). On
the other hand, the comparison with other uncertainty models showed that the probust
model seems appropriate in terms of safety (see Table 6.6).
In the last chapter of this thesis we considered a distillation problem to produce as much
high-quality product as possible while considering randomly polluted inflow as well as a
relative error in empirically measured parameters.
As this problem is defined by nonlinear equations, we had to evaluate an implicitly given
inner function and did not know anything about the structure of the worst-case scenarios
or the set of feasible realizations.
Based on numerical simulations, we stated assumptions how the worst-case scenarios be-
haves and how the set of feasible realizations is structured. With these assumptions the
corresponding probust optimization problem drastically simplified and we could deter-
mine operational parameters (p, Q̇) to run the process optimally.
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In this thesis we focused on the convergence of two classes of algorithms to solve probust
optimization methods. We used the freedom of defining subset and set-approximation
schemes to be able to solve probust optimization problems induced by applications effi-
ciently. During this, we had to adapt some example methods in such a way that these
adapted versions react to the structure given by an application.
The whole process motivates further questions:

• In Part I of this thesis we studied the convergence of algorithms to solve probust
optimization problems. One theoretical motivated question could be: What is the
rate of convergence of a sandwiching algorithm given a certain probust discretization
scheme? Especially the combination with a probust variant of Seidel’s discretization
scheme for semi-infinite problems (see [73]) seems promising.

• In Part II of this thesis we considered solely normal distributed random vectors
because the spherical-radial decomposition allows to evaluate probabilities of quite
complex measurable sets. One numerically motivated question could be: If the
random vector is not elliptical distributed (see the book of Genz [32]), how can we
evaluate the probability of a given (convex) measurable set efficiently?

• In Chapter 5 we have seen how stochastic design-centering problems can be handled
by the introduced solution methods. One practically inspired question could be:
Can we use stochastic design-centering problems to generate additional value, e.g.
in gemstone cutting (see [72, 86])?
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