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Abstract

This paper considers the numerical solution of a transmission boundary-value problem for
the time-harmonic Maxwell equations with the help of a special finite volume discretization.
Applying this technique to several three-dimensional test problems, we obtain large, sparse,
complex linear systems, which are solved by using BiCG, CGS, BiCGSTAB resp., GMRES.
We combine these methods with suitably chosen preconditioning matrices and compare the
speed of convergence.

1 Introduction

The investigations described in this paper were motivated by a problem which was brought to
our attention by a company manufacturing generators for power plants. During the last two
decades, the size of the newly built power plants has been continuously increasing, thus causing a
significant change in the type of generators being installed. For reasons of effectivity one uses one
large instead of several small generators. Since these extremely large and expensive machines are
designed individually for each customer, there is no possibility for empirical improvements.

It was for that reason, that in the late 70s the development of a computer program for the
optimization of generators was started. One important part of this software tool is an algorithm
for the numerical computation of induced electromagnetic fields.

In the first step, the whole situation was simplified by considering only cross-sections of a
generator, thus reducing the original three dimensional problem to two dimensions. In some cases,
this simplification showed an acceptable behaviour, but for large machines, where very strong
fields occur, the results were not very convincing. So it became obvious, that three dimensional
computations were unavoidable.

After having made first attempts to implement such a method, it soon turned out, that most
of the nice numerical properties of the two dimensional problem are lost in the three dimensional
case. The main difficulties are:

e The linear systems, which were generated by a finite-volume discretization, could in general
not be solved by any standard algorithm.

e In some of the few cases where results were obtained, the computed fields showed a very
strange, physically meaningless behaviour.



In this paper we first present some theoretical results, which give an answer to the second
problem. We then introduce a finite-volume method for the discretization of the corresponding
equations. In Chapter 5 we give a unified description of the most popular Krylov subspace meth-
ods BiCG, CGS, CGSTAB, GMRES and derive the iteration procedures which were used in our
implementation.

In Chapter 6 we present the results obtained for some model problems and compare the per-
formance of the linear system solvers combined with different preconditioning techniques.

Finally we give a short outlook and discuss several aspects of the theoretical and numerical
background of our problem.

2 The physical model

The consideration of the electromagnetic fields in generators leads, as many other problems in
electrical engineering, to a transmission boundary-value problem for the time-harmonic Maxwell
equations.

A bounded domain of conducting material D_ C R? is surrounded by an isolator, usually air.
In Dy = R3\ D_, a given, time-harmonic current density j(.z‘, t) = J(z)e~ ™! induces electromag-
netic fields in D_ (Fig. 1).
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Fig. 1

The behaviour of the electric fields Ey resp. E_ and the magnetic fields H4 resp. H_ in Dy resp.
D_ is described by the classical transmission boundary-value problem

curl Hy = J —iwep By curl Ho = (0= —iwe_)E_
in Dy, in D_,
curl By = iwpy Hy curl E_ =dwp_H_

nANHy =nANH_
onI':=90D; =0D_,
nAEy=nAE_

with Siulver-Miller radiation condition

x 1 .
HiN——-Ei=o0 <—) , uniformly for  |z| — oo
|z ||
and coefficients
o w>0 frequency,
o cp,e_>0 electric permittivity in Dy, D_|
o gy, pu_>0 magnetic permeability in Dy ,D_|
e o_>0 electric conductivity in D_.

This problem is well investigated [4] [10].



In connection with devices working at low frequencies, especially power frequencies, the dis-

placement currents in the above equations are neglected :

curl Hy = J . curl H_ =o_LE_
in Dy
curl By = wwpy Hy curl . =dwp_H_

Moreover the boundary and radiation conditions are changed to

nANHy=nANH_
ne(ppHy)=n-(p_H_)

on I

uniformly for|z| — co.

mm D_.

(1)

In quite a number of applications, the unbounded domain Dy is cut off (Fig. 2). Instead of Dy,

D_, we consider the domains D, D_ (Fig. 2).
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Fig. 2

On the new boundary I'°, the normal component of the magnetization puy Hy is prescribed. The
corresponding data is usually given by measurements or is approximated in some way. The resulting

problem

curl HY = J . curl H_ = o_F_
in DY,
curl B = iwpy HS curl F_ = qwpu_H_
nANH =nAH_

ne(ppHy)=mn-(p_H-)

on I’

n(,LL+H_C+_)If OHFC,

is from now on called bounded problem. In contrast to this, we refer to (1),(2) as the

problem.

in D_,

(3)

(4)

()

unbounded



In Chapter 3 we give existence and uniqueness results for both, the bounded and the unbounded
case. From these theorems we see, that the introduction of the additional boundary I'° and corre-
sponding artificial boundary conditions does not change the internal structure of the transmission
boundary-value problem in the sense that we get the same type of existence and uniqueness results.

Therefore we concentrate in the remaining chapters on the bounded problem (3)—(5).

3 Existence and uniqueness

To establish existence and uniqueness results, we first have to specify some assumptions on Dy,
D3, D_ and the coefficients w, puy, pu_, 0.

Let D_ C R3 be an open, bounded domain of class C?. The complement D, = R3\ D_ should
be connected. D_ is the union of m connected components Dj_, j=1,...,m, having topological
genus p;. The boundaries IV are disjoint, closed surfaces of class C2. Defining I' = U;nzl IV we get
'=0Dy =0D_.

The topological genus of Dy resp. D_ is p = Z}nzl pj. There exist p surfaces Ei_ C D4 and
¥ C D_,i=1,...,p, such that Dy \ Ui, Ei_ and D_ \ [J/_, X© are simply connected. The
boundary curves v}, = 90X and 7. = 9%’ lieon I'.

Let D¢ be a simply connected, open, bounded domain in R3, such that D_,Ei_ C D°. The
boundary ' = §D¢ is assumed to be C2. D5 is now defined as D := D\ D_. Therefore,
D5\ UL, Ei+ is simply connected and the topological genus of D% is also p.

The material coeflicients w, g4, u—, o are real, positive constants. For the prescribed data in
(1),(2) resp., (3)-(5) we suppose

J € CYR3), divJ =0, supp(J)C D5,
resp.,
J e CY(Rr®), divJ =0, supp(J)C D5,
f c COQ(FC),

where the domains Dy, (Dy C Dy) resp., DS, (D5 C D5 ) are bounded. Moreover, we are looking
for classical solutions of (1),(2)

By, Hy € CH(Dy)NC(Dy),
E_,H_€CYD_)nC(D-)

and (3),(4),(5
(3),(4),(5) B, HS € CY(D5)NC(DL),
E_,H_eCY(D-)nC(D-).

Under these assumptions, the following results can be shown [5]:

Theorem 1 For J € CY(R®), divJ =0, supp(J) C Dy, the unbounded problem (1),(2) is solvable.

In the homogeneous case J = 0 we get exactly p linear independent solutions Hy E_ H_,
where p denotes the topological genus of Dy resp.,D_. The different solutions are characterized by
their circulations

hi:/ T - Hydl, i=1,...,p, (6)
v

i

+

along 'yi.
E is not uniquely determined.



Theorem 2 For J € CY(R?), divJ =0, supp(J) C D5, f € C°(I°) the bounded problem (3)-(5)
1s solvable if and only if
fds=0. (7
FC
In the homogeneous case J = 0 we get exactly p linear independent solutions H, E_, H_,
where p denotes the topological genus of D resp., D_. The different solutions are characterized
by their circulations

hf:/ T-HS dl, i=1,...,p, (8)
4
along 71.

ES is not uniquely determined.

We see, that in the simply connected case p = 1 we get unique fields Ay, E_, H_resp., H{, E_, H_,
provided that in the second case condition (7) is fulfilled.

For multiply connected domains we have for both problems a p-dimensional hyperplane of
solutions. The different solutions are uniquley determined if the circulations h; resp., h{ are
prescribed.

The nonphysical results mentioned in the introduction are caused by the nonuniqueness of the
solutions in the multiply connected case. Through the naive application of finite-volume methods
to this problem one randomly picks out one of these solutions which might have nothing to do with
reality.

4 The finite volume approximation

Now we will take care of the discretization of the bounded problem (3)-(5). Due to Theorem 2 we
know, that there exists a p-dimensional hyperplane of solutions, where p denotes the topological
genus of D_ resp., DY In the first part of this chapter, we modify (3)- (5) and obtain an uniquely
solvable system of differential equations, which enables us to construct the whole set of solutions
of the bounded problem. In the second section we are concerned with the discretization of this
modified problem.

4.1 Modification of the bounded problem
The solutions of (3)-(5) can be divided into two classes:

e The nonhomogeneous solution (J # 0, f # 0) with zero circulations

hf:/ T-H{dl=0, t=1,...,p.
i

e The homogeneous solutions (J = 0, f = 0) with nonzero circulations.

Following Theorem 2, the hyperplane of solutions is completely determined, if the nonhomoge-
neous solution of (3)—(5) with vanishing circulations hj and the p different homogeneous solutions
obtained by setting hf = 6;;, ¢ =1,...,p, j=1,...,p are known.

We now want to transform the equations (3)—(5) in order to get an uniform description of both
problems described above.

We start with the nonhomogeneous case. Writing down once again the corresponding equations

curl H{ = J . curl H_. = o_F_ .
in DY, in D_,
curl B = iwpy HS curl F_ = qwpu_H_



nANHf =nANH_
ne(ppHY) =n-(p-H_)

on I

n(lu+H_c+_):f OHFC,
we observe, that due to J € C1(R?), divJ = 0 and the law of Biot and Savart, there exists a field
HBS with
curl Hgs = J, divHgs =0 n RS,

/ T~H35dl:0, i:l,...,p,
v

so that
curl(Hi—HBS):O, diV(Hi—HBs):O,

/ T~(Hj_—HBs)IO.
i
As is well known from potential theory [3], this entails
Hfl_ = Hps+ V¢ (9)
and since divl§ = div(H] — Hps) =0 we get
Ng = 0.

Therefore the magnetic field in DY is split up into the Biot-Savart field corresponding to J and
the gradient of a scalar potential.

At this stage, it is time to consider the ”artificial” boundary condition n - (uy H§) = f on I'°.
We require the artificial boundary I'® to be ”far away” from the conducting body D_ (without
getting too precise what this means). Since the Biot-Savart field Hps represents the true magnetic
field obtained in the absence of the conductor D_, and H is given by (9), the magnetic field H§
observed on I'° will be dominated by Hggs and the influence of the fields induced in D_ may be
neglected. This allows us to set

n-(ppHy)=f=n-(uyHps)  onl? (10)

so that 0,6 = 0 on I'°.
Now we have of course to ask, whether this choice of f fulfills the solvability condition ch fds=
07 Taking a closer look at Biot-Savarts law, the answer is obvious. Since Hpg is given by
1 1

~ 4x el

Hps = curlA, A=T=x*9,
and I'° is a closed surface, we get

fds:,u+/ n-curlAds =0
re re

by using Stokes’ Theorem.
Eliminating £_, we finally have derived the following system of equations for the magnetic
fields in the nonhomogeneous case:

H{ = Hgs+ V¢ ) curl(p_curl H_) = dwpu_H_ ]

in DY, in D_,
Ao =0 p-=1/o_
nAHj =nAH_

n-(ppHi)=n-(u-H-)

Ond =0 onI*

on I'.



Considering the homogeneous problems (J =0, f =0, A = §;;) we proceed in a similar way.
From potential theory we know, that there exist exactly p linear independent fields Ni in DS,
i=1,...,p, the so-called Neumann fields, having the following properties [3]:

diVNiL =0, curlN_i =0 in DY,

n-Ny=0 ondDj=T°UT,

/VT~Nidl:5ij.
74

If we therefore consider the homogeneous problem with circulations A = &;;, we get

div(H{ — NL)=0,  curl(Hi —N{)=0, in D},

/ T (HS — NL)dl = hf — &; =0,
i

so that we have again '
H{ = Ni + Vg, A¢ =0, in Df.

Moreover, f = 0 on I'° now results in

Thus we have shown, that the inhomogeneous as well as the homogeneous case may be reduced to

H =Hyg+V curl(p_curl H_) = twu_ H_
F=Hor Ve D5, (v )= dwn in D_,
Ap =0 p—=1/o_
nANH{ =nAH_ (11)
on I

ne(peHi)=n-(u-H-)

Ond =0 on I'¢,

where Hj is either the Biot-Savart field corresponding to J, or one of the p Neumann fields Ni.

Existence and uniqueness of H{ = Ho + V¢ and H_ still follow from Theorem 2. Since the
equations and boundary-conditions only depend on V¢, the potential ¢ itself is only determined
up to a constant (since DF is connected).

4.2 The discretization

According to the last section, all solutions of the bounded problem can be computed using (11).
Therefore, we are going to discretize the equations of (11) instead of (3)—(5).

For the theoretical results presented in the last chapter, we assumed that the material coef-
ficients w, g4, u—, o are posistive constants. To allow a greater generality for the problems we
consider, we are going to develop a numerical scheme, considering gy, g, o_ as sufficiently smooth,
positive functions in space. The uniqueness results stated in Theorem 2 are easily carried over to
this new situation, but there are no straight forward extensions of the existence proofs.

The discretization procedure can be subdivided into two parts:

e Discretization of A¢ =0 in Df.

e Discretization of curl(p_curlH_) = iwpu_H_ in D_.



In both cases we will use a finite-volume approach. Finite-volume methods have the advantage of
being easily adapted to cylindrical grids, which play a central role in applications (most electric
machines actually are of cylindric shape). For ease of exposition, we will restrict ourselves here to
cartesian coordinate systems.

For the discretization of A¢ = 0 we use a simple cartesian grid in DY . Let p;jr = (4,5, ze)T, -
1,5,k =1,2,..., be the locations of the nodes of the grid, assuming z; < z;, ¥; < y;, % < z; for
t < j. For the discrete values of the approximation of ¢ in the node p;;; we use the notation ¢;;z.

Gijh+1

- =

bijk Bij+1k

-

v

Git1jk

Fig. 3

Now let us consider A¢ = 0. Integrating the equation over the volume V of Fig. 3 (a block whose
surfaces are parallel to the x-y, x-z resp. y-z plane and intersect the vertices of the grid exactly in
the midth between two nodes) and applying the theorem of Gauf}, we get

0 :/ Addv = On¢ ds.
v v

We approximate the integral on the right hand side assuming J,¢ to be constant on each of the
six parts of OV and expressing 0,¢ in terms of the ¢;jp:

Git1jk — Gijk _ Pijk — ¢i—1jk)

1
Ondds =~ 7(Bur+ Awa)(Ba + D) (5 Az

oV

1 - ij+1k — Dijk Dijk — Dij—1k
—+ 4(Al‘1 =+ Alg)(AZl + AZz)( Ayg Ayl )

1 - Gijkr1 — Pijk Dijk — Dijh—1
+ 4(Al‘1 + Aza)(Ayr + Aya)( Ay Az )

where we used Az = x; — xi_1, Dy = i — 2, Dy1 = Y — Yio1, Dy2 = Yip1 — ¥, Dyr =
Yi — Yi—1, Dya = yiy1 — yi. This delivers the usual seven—point formula for the Laplace operator
in R3.

The discretization of the operator curl(p curl ) — dwpH is less straight forward and much
more technical. Therefore, we only present a detailed derivation of the equation obtained for the
first component H® of H = (H®, HY, H*)T. The corresponding approximations for the other two
components are obtained in exactly the same way. For the sake of completeness, the corresponding
results are given below.

For the definition of the discrete approximates we use a certain kind of staggered grid in D_.

Let p;jr denote the nodes of a cartesian grid in D_. The value of H}, (Hf"jk, HZ;y) is defined in the



midth of the vertex connecting p;jx and pit1jx (Pij+1%, Pije+1). Moreover we assume the material
coefficients p and p to be constant in each block of the grid and define p;jx, i to be the values
of the block whose corner with smallest indices is p;jr (Fig. 4).

Pijk, Oijk
WH, /

Dijk o’

T
Hy

Fig. 4

Consider now the rectangle A, which is orthogonal to the vertex between p;;; and p;41;5 and whose
center coincides with the mid point of this vertex (Fig. 5).

/

Dijk

xr
Hy

Di+1jk

Fig. 5

We multiply curl(p curl H) — iwpH = 0 with the first unit vector n = (1,0,0)7 and integrate over
A. Applying Stokes’ Theorem we deduce

iw/,qus:/ n - curl(p curlH)ds:/ T (pcurl H)dl. (12)
A A 54

Assuming curl H to be constant on each of the four vertices Vi, ..., Vy of A, we obtain the following
approximation for the integral on the right hand side
4

/ T-(pecurl H)dl = Z(curlH)i-/ Tpdl,
54

i=1 Vi



Ayr pij—1k-1+ Dy piji—
Z(CUI‘IH)Z' / Tpdl = (CuﬂH)l Y1 Pij—1k—1 1+ DYz pPijr—1
i=1 Vi 2
—  (curlH) A1 pij—1k + Dy pijk
’ 2
+ (curlH), Az pijk—1 + DBza pijk
2
— (curlH)4 Az pij_1k-1+ DBzo pij-1k
2 .
Using a simple difference approximation yields
(curlH)l ~ Hfjk_Hfjk—l _ H;+1jk—1_H;jk_1
Azl A;l‘z )
(CUIIH)E; I~ Hf]k‘l’l_Hf]k . Hf+1)k_Hi]k
AZQ Al,2
Y y - x
(curlH); = Hipijn — M _ H Ly — Hiy
Ay Ays
y y - N
(curlH), = Hipyy o = Wi q  Hi — Hi oy
Az AN '

For the left hand side of (12) we derive similarly

Ay Az pyjip—1+ Dy Dz pijr—1 4

/ WH ds ~ AyaAzy pijr + DApnDzg 1k +
- 4
A

Finally by introducing

ijk

Az pi—ijr + Axo pije

v Ay pij_1k + Dya pijk
ik — 5 )
. Dz pijr-1+ Dz pij
Pijk = 5) )
we obtain for the x-component Hp
y y
0 = (rijk—l T3k i o1k Tijk
Az Azy Ay Ays
. ADyalzs pijr + Dy Dzs pj_1p + Dy Dz pyj_1p—1+ Dya D21 pijr-1. ;g
—w 4 )Hijk
z Y Y
_ -1k e _ Tijk e _ Tijk=1 e _ Tijk g
Ayl ij—1k Ayz ij+1k Azl ijk—1 AZZ ijk+1
rfjk Yy y rfj—lk Yy y
+ sz(Hi-(-ljk_Hijk)_ Azs (Hiprj_up — HY1p)
e, Yy
Ll 2 z
+ A—xz(Hz'Z+1jk —Hj) — A—M(Hf+1jk—1 = Hp_y).

Using the same arguments as above, we get for the y-component HZka

Z
Tijk

AIQ

Ti_1jk

Al‘l

xr
Tijk

AZQ

xr
Tijk—1

Azl

0=

10



. Ay Nzy pijr + Derlzy pijr + Ax1 Az piijr—1+ Axalzy pijr—1

y
zZ Z T T
Tk gy Tk gy B rijk—lHy LT
A‘Il i—1jk A.Z‘g i+1l5k Azl ijk—1 AZZ ijk+1
rZ. ré o
ijk T T =15k T T
+ A (Hipw — Hije) — o (HiZ 000 — HiZ1j1)
Ay2 ij+ 1 Ay2 Jj+ t=1j
xr xr
ry. T
ijk K K 1jk—1 z K
4+ ME (g N S F AR Ll Yl - CANNSE & N
AyQ( ij+1k ZJk) AyQ ( ij+1k—1 ijk 1)
and for the z-component HEy,
T T Y Y
0 = (rij—lk Tijk +7'i—1jk Tijk
Ay Ays Axy Az
. Do Ay pijr + Ax1Ays pimjr + Ax1 Ay pimjo1k + Dxa Ay fijoik .
W 2 ) ijk
Y Y T T
Tk . _ Tijk 177 _ Tij1k . Tk e
AIl i—1jk A;l‘g i+1jk Ayl ij—1k AyZ ij+1k
y y
Tiik , rra © i=1jk e I7e
+ —Az2( k41— ijk)_—Azz( ke — Hiqk)
Tk 1k
ij y y ij— y y
+ HY,  — HY )— HY —HY ).
AZQ( ijk+1 Z]k) AZQ ( ij—1k+1 ij 1k)

The coupling conditions on I' and the boundary conditions on I'* are straight forwardly discretized.

5 Krylov subspace methods

In this chapter, we give a detailed description of the four most popular Krylov subspace methods,
BiCG, CGS, BiCGSTAB and GMRES. For the conjugate gradient like procedures we follow the
lines of [8] and [9]. The derivation of GMRES goes back to [7]. In contrast to the original papers,
we consider the case of complex linear systems, which is necessary in order to apply the algorithms
to the systems arising from our transmission boundary-value problem.

5.1 Conjugate gradient like methods

5.1.1 The polynomial conjugate gradient method

We start our considerations with the simplest case, the original conjugate gradient algorithm,
which was introduced by Hestenes and Stiefel for the solution of linear systems Az = b, where A
is a hermitian (A = A# = A7), positive definite matrix.

If 2y denotes an initial guess for the solution x, the iterates are computed as

o = b— Al‘o,

Do = To,
rig1 = 1 — aAp;,
Piv1 = Tip1+ Gipi, (13)
Tigr = T+ ipi,

- (re,m3)

(pi: Apl) ’

11



g = (Fit1, Tit1)
' (riy i)

H T

where (u,v) = u”v = u' v.

Since pg = 7y, it is easy to see, that r; and p; can be written as polynomials ¢; and v; of degree
i, applied to the matrix A and multiplied by 7y from the right:

i = ¢i(A)ro, pi = ¥i(A)ro.

Substituting this representation into (13), we obtain recurrence relations for the polynomials
&;, ¥;, which are similar to those for r; and p;:

¢0 = 1;
1/}0 = 1;

Giy1 = @i — Ty,
Yip1 = dig1 + Bk,

YT et > (14)
g = = Git1, i1 >
T < ¢Za¢z > ’

<Y > = (6(A)ro, Y(A)ro).

The relations (14) are usually called polynomial CG algorithm. Since A = A the coefficients
a;, B; are real. Therefore ¢;,¢; € II(R), the space of polynomials with real coefficients and < -, - >
defines a bilinear form on II(R).

5.1.2 Generalization

For the generalization of the standard Conjugate Gradient method, we reverse the order of argu-
mentation used in the last section.

In 5.1.1, we started with the vectorial algorithm (13) and derived a corresponding polynomial
form (14). Now we proceed exactly in the opposite direction. Starting with a modification of (14)
we construct corresponding vectorial recurrence relations, which will differ from (13).

To get an idea, how to modify the polynomial method, we take again a look at (14). We observe,
that all the information about the underlying linear system is contained in the bilinearform < -, - >.
For A hermitian and positive definite, we get convergence of (13) (and therefore of (14)) and in
the absence of rounding off errors, the solution of Az = b is reached in at most n steps, where n
denotes the number of unknowns. In the convergence proof some special properties of < -, - > are
exploited, which do not hold for indefinite A. Moreover, it can be shown [1], that in this case it
is not possible to construct an algorithm being of the same type as (13) (resp. (14)), having the
same convergence properties.

Therefore, for the generalization of the standard methods to indefinite or non-hermitian matri-
ces, we have to choose one of the following alternatives:

e We could try to keep all the convergence results unchanged. But then we are forced to alter
the structure of the recurrence relations significantly, so that the number of operations and
the amount of storage necessary in each step can not be compared with the corresponding

values of (13).

12



o We preserve the easy structure of the recurrence relations, giving up a part of the theoretical

results which hold for (13).

The methods we are going to derive here are of the second type. We modify the bilinear form < -, - >
in (14) and require the resulting method to fulfill the orthogonality relations of the Hestenes-Stiefel
method

(ri,rj) = cbij,

(pi, Apj) = 'y,
which may be written in polynomial representation as

<¢Za¢J> = C(Sij:
< 1/%,1‘1/@' > = C/(Sij.

The essential observation in the convergence proof of (13) is, that due to the positive definiteness
of A the constants ¢ and ¢’ are positive. For the reason just mentioned above, we are forced to
give up this restriction.

Moreover, we allow complex coefficients for the polynomials ¢; and ; and define the modified
bilinear form over II(C), the space of polynomials with complex coefficients.

In the following theorem [8], we will see, that a large class of bilinear forms fulfills these re-
quirements. The proof of this theorem is rather elementary and therefore omitted.

Theorem 3 Let [, -] be an arbitrary, symmetric bilinearform on I(C), the space of polynomials
with complex coefficients. If

[ox,¥] = [6,x¥] Vé,¢,x € I(C),
we get for the polynomials ¢; and ¢;, which are computed from (14) by using [-, -] instead of < -, - >:
[9i,0j] = cbij,  [Yi,zyy] =6y e €C.

In the next chapter we give an example of a bilinearform which fits into the framework of
Theorem 3, but is different from the one given in (14). We then present three different ways how
to translate the polynomial algorithm based on this new bilinearform into vectorial recurrence
relations, thus obtaining the three most popular generalized conjugate gradient methods.

5.1.3 The bi-conjugate gradient method, BiCG

We consider the regular, complex matrix A and define a bilinear form [+, ] on II(C') by

[0, 4] = (S(AT)rg, (A)ro),  (u,v) = u'lw, (15)

where ¢(z) = > 7, Axz® is the polynomial with the complex conjugate coefficients of ¢(z) =
E;nzo Arz®, g = b — Azg is the residual vector corresponding to the initial guess z¢ and r{ € C"
is some nonzero vector.

Since
[6,4] = (6(A™)rg, ¥(A)ro) = (1)) d(A)w(A)ro
and
o(A)(A) =v(A)g(4) Vo, € lI(C),
we get

[0, v]=[,0],  [ox,¥]=[¢, x¥],

13



so that the two assumptions of Theorem 3 are fulfilled. Replacing the bilinearform from (14) by
(15), we want to construct the corresponding vectorial recurrence relations. We use as above

ri = ¢i(A)ro, pi = ¥i(A)ro

and conclude
riy1 = 1y — o Ap;, Pit+1 = Tigy1 + Bipi.

For the coefficients «;, 8; we have

o — (@:(AT)r, 6i(A)ro) 5 = (Pt
D (Wi(AT)rh, A (A)ro) ' (9i(AH)rp, ¢i(A)ro)

The vectors ¢;(AH)rl, 1;(A®)rl, occuring as factors on the left hand side of the scalar products,
cannot be computed in terms of r; and p;. Therefore, we have to introduce additional vectors

ri = 6i(A)ry,  ph = gi(AT)rg.
Since ¢;,1; are the polynomials with the complex conjugate coefficients of ¢;, ;, we derive from

iyl = ¢i — oy, Yiv1 = Git1 + Liti,

(Gig1(AT)rh, dig1(A)ro)

the equations

Giy1 = & — ay, Vi1 = Gig1 + Bitd,
and thus

Tipg1 =T — a; A pj, Pip1 = Tig1 + B}

Since r; = b — Az;, 141 = b — Az;41, the iterates z; are defined by
Tip1 = Ty +ogp;.

So we finally got from (14), using the bilinear form (15) the so called Bi-Conjugate Gradient
Method, BiCG [2]:

o = b— A‘IQ,

Po — 7o,

ry € C", (rg,ro) # 0,

Po = 1o
rig1 = 15— aiAp;,
Pi+1 = Tip1 + Gips,
r;+1 = r- o?Z-AHp;», (16)
p;’-}-l = r£+1 + @Pga
Tiy1 = T+ aip;,

rr
o; — (lz’ Z) ’
(pzaApl)
8 = (7’§+1; Tig1)
' (7’2, ri)
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Remarks

The usual choice for 7 is rf = ry.

The BiCG method has the major disadvantage of involving matrix-vector products of the
type Av and Afv, so that the performance on vector-computers and especially massively
parallel machines is very poor.

As simple examples show, the algorithm might stop («; = 0) without having reached the
true solution, which means that r; # 0. This is usually called a break down.

If the algorithm does not break down, it is easily shown, that the true solution is reached
after at most n steps, n being the dimension of the system.

To control the accuracy of the actual iterate, one usually considers the euclidean norm ||r;]|2
of the residual vector r;. If the BiCG method converges, ||r;||2 does in general not decrease
monotonically, but shows heavy oscillations when tending to zero.

5.1.4 The squared conjugate gradient method, CGS

Taking again a look at the assumption on (15) in Theorem 3, we see, that [¢, ] = [1, ¢9]. Therefore
we may write for a;, 5;

[1, ¢7]
[1, ]’

L [1J¢22+1]
b= e

Q; =

so that only the squares of the polynomials ¢;, 1; are involved.
By simply taking the squares of (14), we derive the following recurrence relations for ¢2, 1?

o= 67— oz(20 — iz
67 — o;x(¢; + Gig1) Ui
= ¢ — oz (¢ + Bi16itbi1 + diy19i),

z'2+1 = ¢ZZ+1 + 262¢z+11/}z + 6221/}22
= @i+ Bidir1¥i + Bi(dip1ti + Bit})

and for the mixed products ¢;¢;_1

Gig1i = (i — a2 = 67 + Bi_10ihi_1 — oz}

Defining the polynomial x; as x; = ¢;1;—1 we finally arrive at the definition of the squared poly-
nomial algorithm

0 = 1
i o= 1,
Xo = 0,
Xiv1 = @i +Bicixi — ciwdy,
o= 07— oun(@7 4 Bim1Xi + Xit1),
P = Oin + Bixier + Bilxier + Bivd),

or equivalently

15



bl

6—1 = Oa
VP o= dF 4 Bisaxi + Bici(xi + Bisiviy),
Xi41 = 7+ Bimixi — iy,
67 = 6F —oz(67 + BicaXi + Xi41),
Ll
T ey
) [1:¢22+1]
S W

(17)

For the transformation to a vectorial algorithm, we use again the bilinear form (15), but in
contrast to the last section, we define

ri = ¢22 (A)ro,
Substituting r;, p;, ¢; in (17), we finally obtain the squared Conjugate Gradient Method, CGS

pi = V7 (A)ro, ¢i = xi(A)rg.

p-1 = 0,
q0 0,
ro = b— Axg,
ro € C",  (rg,m0) #0,
f-1 = 0,
pi = T+ Gic1gi + Bic1(q + Bicipio1),
i1 = T+ Pio1qi — iApi,
rigr = 1 — oA+ Bis1qi + qigr),
rigr = &+ oi(ri 4+ Bic1qi + qiy1),
0 pl)
5 (ro ri+1)
(7‘6,7“2')

Remarks

e Usually r{ = rg, as for BiCG.

e For CGS, we might also have break downs.

e Without break down, the solution is obtained after at most n steps.

e There exists the same problem of oscillating ||7;||2 as in the last section.

e For CGS, we don’t have to compute products involving A,

5.1.5 The BiCGSTAB method

Comparing the two methods we derived up to now, we observe that

rE9S = 93 A)rg = Gi(A)rPIC,
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i = i (A)ro = i (A)pPTCC.
Numerical experiments show, that

o OGS usually converges faster than BiCG.

e Oscillations of ||rf%||, are larger than oscillations of ||rB?¢%||,.

These two effects are essentially caused by the additional multiplication of r2:“% by ¢;(A) in each
step. Therefore, we have to ask, whether ¢; is a good choice for this additional multiplication or
do there exist other polynomials, delivering better results ?

For the following investigations, we consider polynomials A; € II(C) of the type

X = 1,
Aipr = (1 —wiz) Ay, (19)

where w; € II(C) are free parameters, which will be determined below. The degree of A; is less or
equal to 1.
Using the polynomials ¢;, v; obtained from (14), (15), we define

ri = (Aidi)(A)ro,  pi = (M) (A)ro.

Note that in contrast to CGS, the additional multiplication is done using the same polynomial in
both cases.

Before we can start the construction of the iteration procedure for r;, p;, we have to derive
the recurrence relations for the two polynomials A;¢;, A;1b;. This can be done without restricting
ourselves to a special bilinear form. Instead of (15) we can also use any other bilinear form on
II(C'), which fulfills the assumption of Theorem 3. Taking a look at (14) and keeping in mind the
definition of the polynomials A;, we have

Ait10it1 = Aip1(ds — uzl;) = (1 — wiz)(Aigs — aszdiny),
Aig1¥itr = Xip1(Gig1 + Bithi) = Aig10ig1 + Bi(1 — wiz) ity
with the usual coeflicients

[0, &3]

;= 00l [Pi41, dita]
T b .
[¥i, 9] (64, ¢i]
To ensure a simple structure of the corresponding vectorial algorithm, we try to express the coef-
ficients a;, G; in terms of A;¢;, A;3;. For this modification, we have to investigate the behaviour

of the polynomials ¢;(z) = Y75 _ ¢ij2, i(2) = 35 _o tije! and Ai(z) = 5o Aijz!
e We know, that ¢;, ¢; are polynomials of degree 7 and
Giy1 = ¢i — aixthy, Vi1 = Gipr + Bitds.
The leading coefficients ¢;;, 1;; are therefore computed by

B =

Gigliel = —itis, Yigli4l = Oit1it1-

Since ¢gp = Yoo = 1, we get the representation
i—1
Gii = i = (=1)" H ;. (20)
j=0

e As long as no break down (a; = 0) occurs, the leading coefficients ¢;;, ¢i; of ¢;, ¥; are
nonzero (20). Therefore, the polynomials ¢;, ¢ = 0,...,m, resp. ¢;, ¢ = 0,..., m are linear
independent and form a basis of II,,,(C'), the space of polynomials of degree less or equal m
with complex coefficients.
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e The leading coefficient of A; is

Ais = (=1)° 1:[ wi. (21)

Now we consider [¢;, ¢;]. Using Theorem 3, we know that [¢;, ¢;] = ¢§;; and obtain
But according to the above remark, {¢g, ..., ¢;_1} is a basis of II;_;(C), so that

Since qbz(di) = E;’:O (bij;tj = q;l + ¢“IZ, (/;Z S Hi_l(C) and /\Z(l‘) = 2;:0 )\Z']'l‘j = /N\z + /\Hl‘l, :\z €
II;_1(C), we obtain ~ ' '

[6i, 0] = [¢s + dui’, 5] = s [2", &4,

D, ] = [ + Az, 63 = N 2, &)

and therefore

bii

[0, 0] = bW [1, Aigi].
Proceeding in the same way, we also derive
Yii Pis
(Y, zehi] = 5 (1, 2Aith] = 5 [1, 2],
e 2

and
o — (66, 6:] _ (L Nidi]
e [Leda]
8 = [$it1, Sita] _ Sivritadii [1 Aig16it1]
' (64, ¢i] Aivrit1di [LNidi]
Using the representations (20) and (21), we get

[ Ae] ooy [L Aig1di4a]
Q= =, Bi=— —
(1, 2Aiti] wi 1, Xid]
With the above analysis, we now obtain the stabilized polynomial algorithm
1/}—1 Oa
¢0 = 1a
X = 1,
6—1 = Oa
W_1 = 0,
Aiti = XNidi + Bici(Mis 1o —wimz Al — L), (22)
Aip10iv1 = Xidi — a2 Xty — wik(Aid; — a e Aidy),
= [1, Aig]
o [Laed]
g = “ (1, Aig10i41]
Y wi [Lag]
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Using again the bilinear form (15) and r; = (A;¢;)(A)ro, pi = (Ai0i)(A)ro, we easily compute the
corresponding vectorial recurrence relations:

pi = ri+Bi—1(pi-1 —wi—1Api—1),
rip1 = 71— aiAp — wi A(r — o Apy),
_ (rg,mi) g (r, rit1)
= 0 . —
(19, Api) wi (7, 7i)

To determine the parameters w;, we consider the vector ;41 as a function depending on w; and
try to minimize ||r;41|]2. Using s = r; — a; Ap; and t = As, we may write 7,41 as
Tig1 = 5 — wit,
so that we have to minimize
[[tws — s||2.

The solution of this least square problem is

w; = (¢, 5) (u,v) = ufv.

t (t’t)i

Finally, for the iterates z; we get, using r; = b — Az;

Tiy1 = & + ip; +wi(r; — aidpi),
which completes the derivation of the stabilized Bi-Conjugate Gradient Method, BICGSTAB:

ro = b— Axg,

ry € C7, (ry, 7o) # 0,
p-1 = 0,
p-1 = 0,
w_1 = 0,

pi = 71+ Bim1(pi-1 —wi-14pi-1),
rig1 = 1 — aiAp; — wiA(ri — a; Ap;), (23)
Tit1 = i+ oap; +wi(ri — aiAp;),

b

' (T(),Api)’
g - M (r0, Tit1)
wi (rh,ri)
o = (A(r; — aiApi),ri — a; Api)

(A(r; — a;Ap;), A(ri — a; Ap;))
(24)

Remarks
e The usual choice for 7} is 7y = ro.
e As for the above algorithms, there may occur break downs.
e Without break downs, the true solution is reached after at most n steps.

o The oscillations of ||r;||2 for BICGSTAB can be neglected, compared to those of BiCG and
CGS.
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5.2 The GMRES method

Taking a look at the algorithms developed above, we recognize, that the residuals in the i'* step
are computed as

riCY = 4y(A)ro,
rz'CGS = gb?(A)To,
pBICGSTAB 3 44y
¢; € II;(C), 2 Mo € Ty(0),

I (C) denoting the space of polynomials of degree k with complex coefficients. Since Ag = ¢g = 1
and ¢;41 = & — aixih;, dip1 = (1 —w;x) Ay, we see, that X;(0) = ¢;(0) = 1 for all i. Therefore we

have ¢; = 1+ 2¢;, Ay =1+ zX;, ¢4, A € IL;-1(C) and
rBiCG = (14 26:)(A) ro = ro + (26)(A) o,
e (1+ mf/;z)z(A) ro =719+ (l‘flzz(l + l‘f/;z)) (A)ro,
rPIOGSTAB = (14 oX)(1+ 26:)(A) ro = ro+ (2Xi(1 +267)) (4) ro.
Since z; = A=1(b —r;), the iterates are in general given by
zi—zo = A" ri —ro) = p(A)ro,  p € Upna(0), (25)

where the degree m — 1 of pis ¢ — 1 for BiCG resp. 2¢ — 1 for CGS and BiCGSTAB.

So the nature of BiCG, CGS resp. BICGSTAB is to modify the initial guess zy by an element
y = p(A)rg of the Krylov space K;i_;(ro) = span{rg, Arq, ..., A™71rg}, which explains the title
of this chapter.

Of course, we have to ask, whether the above choice of y is optimal in some sense. Using ||r;]|2
as a citerion for the quality of the approximation z;, easy examples show, that there exist other
elements in K:t_, (rp), producing smaller norms of the residuals than those obtained from BiCG,
CGS or BiCGSTAB.

For GMRES, we now want to find the best possible vector in K7 _;(rg). In other words, we set

m—1

Ty = Tg + Z oszjro (26)

j=0

and determine the parameters o; (which are the coefficients of the polynomial u) in order to
minimize
m—1
Irmlls = 1lb = Azmllz = [Ib = Y~ aj AT ro]la. (27)
j=0
This problem could be attacked using a standard least square method. But as we will see in the
remaining part of this section, it is very useful to exploit the special structure of (26) in order to
obtain an efficient method for the solution of this problem.

To reformulate (26), we first consider the generation of a Krylov space K (rg) of dimension
[+1. Instead of simply computing the vectors rq, Arg, . .., Alrg, we try to construct an orthonormal
basis {v1,...,vi41} of K,A(ro) using Arnoldi’s method, which is nothing else than the usual Gram-
Schmidt procedure combined with a normalization of the vectors:

o

lIroll2

vy
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forj=1,...,1:
w; = Avj, (28)

’lA)]'+1 = wj— Z(Uiywj)via

=1
Uj41
Vgl =
195411l
If for one k the vector A*ry depends linearly on rq, Arg, ..., A¥~1rg, this process is going to break

down.
Now assume, that k is the first index, where a break down occurs. Thus

k-1
Ay = Z’yiAiro. (29)
i=0
The coefficient vy does not vanish. Otherwise Afrg = AZfz_ll ’yz-Ai_lro, so that A*~1ry would be
a linear combination of rg, Arg, ..., A¥~2rg, which contradicts the minimality of k. Using (25) and
(28) we get
e = b— A.Z‘k

k-1
= b—Alxo + Z ozZ-Airo)
i=0
k—1 )
= Trp— Z OziAH_lT‘o (30)
i=0

k-2 k-1
i+l i
= rp— E az-A’Lro—ak_lE viA'rg
i=0 i=0

k-1
= (I—ar1yo)ro — (i1 + ax_1yi) A'r,

i=1

where the coefficients 7; are given by (28) and the coefficients «; are used to minimize ||ry||2. Since
Yo # 0, we may set ap_1 = 1/v. Using ;1 = —ag—17 = —7%i/70, ¢ = 1,...,k — 1 in (29), we
obtain rp = 0. Therefore, if Arnoldi’s method breaks down, the last iterate xj corresponding to rg
is already the exact solution, so that there is no need to continue the construction of the Krylov
space.

Moreover, since there are at most n linear independent vectors, n denoting the number of
unknowns, Arnoldi’s process breaks down after at most n steps. Thus we have shown, that in the
absence of rounding off errors, GMRES needs less than n + 1 iterations to reach the true solution
z of Az = b. Due to the minimization condition (26), ||rm||2 is a monotone nonincreasing sequence
of real numbers.

Following the above considerations, we may assume that (27) does not break down during the
first m steps and produces an orthonormal basis {vy,...,vms1} of KA (rg). Therefore we may
write x,, as

m—1 m
Tm=20+ Y ajAlrg =20+ Y By
j=0 ji=1

and

T’m:b—AIm:T’Q—ZﬁjAvj ITO_Zijj~

j=1 i=1
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From (27) we conclude
J
wi = [|6541ll2 vipr + D (vi, w))v;. (31)
i=1

Now we define the (m + 1) x m matrix H through

hij = (vi,wy), i<j<m,
hivij = loi4ll2, l<j<m, (32)
hij = 0, 1<j+1<i<m+1
and V as the matrix consisting of the columns vy, ..., v,,41. Moreover, let B = (B1,...,Bn)T be

the vector of the optimization parameters. Now (30) can be written as

7 m+1
wj = hjp1jvi41 + Y hijui = Y hiju;
i=1 i=1
and thus
m m+1
rmo= To— 3 B > hiju;
ji=1 i=1
m-+1 m
S S o)
i=1  j=1
= Trg— VHB
Using ro = ||ro||2 v1, we get

ro=Ve,  e=(||ro|l2,0,...,0" € R™+.
Since the columns of V are orthonormal, we finally arrive at
Irmll2 = llro = VHB||2 = |IV(e = HP)[l2 = |le = HB|2. (33)

Therefore the original minimization problem, going back to the (dense) n x m matrix VH, was
substituted by a minimization problem involving the (m 4 1) x m upper Hessenberg matrix H.
This may easily be solved using for example Givens rotations.

Summarizing the above considerations, GMRES is characterized as follows:

e Let zg be an initial guess for the solution of Az = 5.

e For m =1,2,..., the iterates z,, are determined through the following steps:
— Compute an orthonormal basis vy, ..., vm41 of [{7‘2(7’0) using Arnoldis method
0
V1 = T
lIroll2
forj=1,...,m:
w; = AU]',
J
Gar = wj— Y (v wi)vi,
i=1
Uj+1
Uj+1 TS
1195 411]2
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— Define z,, as

m
Ty = To + E B;vj.

j=1
— Determine the coefficients #; by minimizing
lrmll2 = [le = HB||2, 6:(||r0||2:07"'¢0)T’ 6:(61:""ﬁm)T:

using Givens rotations. The (m 4 1) x m upper Hessenberg matrix H is given by

hij = (Uj,‘wj), 1<j<m,
hjvij = 9412, 1<j<m,
hij = 0, 1§j+1<l§m+1

Remarks
e The sequence ||7p]|2 is monotone nonincreasing.
o After at most n steps, n being the number of unknowns, the true solution is obtained.

e The main drawback of the above algorithm is the large amount of memory which is necessary

to store all the basis vectors vy, ..., v, of the Krylov space K;g_l(ro). This is the reason

why sometimes the following restarted version GMRES(k) is used:

(i) we start with the same initial guess zg

(ii) we apply the GMRES algorithm described above but restrict the maximal dimension of
the Krylov space to k, thus getting a new approximation xy

(iii) if the accuracy is not high enough, we go back to (i), but now use zj as initial guess

It is obvious, that GMRES(k) only requires a limited amount of memory depending on k.
But the convergence results obtained for GMRES do not carry over.

6 Numerical results

In this chapter we apply the discretization method of section 4 to several test problems. We first
present some results reflecting the difficulties which are dew to the nonuniqueness of our problem
in the case of multiply connected domains. In the second part we couple the iterative methods from
the last chapter with different preconditioning techniques and compare their rate of convergence.

6.1 Test problems

We consider the following three problems:

(A) D- is a square massive plate of conducting material of the size 8 cm x 16 cm x 16 cm. The
inducing current is flowing in a square concentric loop where each vertex has a length of

80cm (Fig. 6).
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Y

Fig. 6

(B) The situation in the second case is shown in Fig. 7. This configuration (measuring 4 cm x
8cm x 4 cm) is a little closer to reality, since it reveals a part of the complicated geometry
which usually occurs in connection with electric machines.

A/

Y

Fig. 7

(C) We consider (A) and concentrically cut out a block of size 4 cm X 4 cm x 8 cm, so that D_ is
no longer simply connected (Fig. 8).
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Fig. 8

For (A), (B) and (C) we assume the conducting material in D_ to be aluminium (p_ = 47 *
10_7:‘/—%, o_ =2.Tx 107%) and the inducing current to be 1 A.

The computed current densities in D_ are shown in Fig. 9-12. The crossections are taken in
the plane of the inducing loop. The length of the arrows is proportional to the modulus of the
current density.
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Fig. 9: Computed current densities for (A)
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Fig. 10: Computed current densities for (B)



Fig. 12: Nontrivial solution of the homogeneous problem (C)

The densities corresponding to (A) and (B) show the expexted behaviour. This is not the case
for (C). In Fig. 11 we see, that close to the hole in D_ the current flow changes its direction, which
is physically wrong. This strange behaviour is due to the nonuniqueness of (3)—(5) mentioned in
Chapter 3. In the case of (C), where the topological genus p of D_ is one, we get according to
Theorem 2 exactly one nontrivial solution of the homogeneous problem (3)—(5), which is shown in
Fig. 12.

Using some resently obtained theoretical results [6], it seems to be possible to motivate an
algorithm how to construct out of this two solutions the physically correct one.

6.2 Comparison of the preconditioned iterative solvers

After having given a detailed description of BiCG, CGS, BiCGSTAB and GMRES we now want
to check their performance by applying them to the linear systems Az = b we get for the test
problems of the last section by using the finite volume discretization of Chapter 4. To accelerate
the convergence, we combine the above algorithms with one of the following two preconditioners:

e Incomplete LU Decomposition, ILU
We perform the usual Gaussian decomposition on A, using only those entries which are
nonzero in the original matrix A. Thus we obtain lower (upper) triangular matrices L (U)
being nonsingular and having the same sparsity pattern as the lower (upper) triangular part

of A.

e Matrix Splitting, SPLIT (w)
We split A into A = D+ E + F, where D is the diagonal of A and E (F') denotes the lower
(upper) triangular part A. We define L = D+ wE, U = D + wF where w is a complex
parameter.
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The matrices L and U obtained by the above procedures are easily inverted. Instead of the original
equation Az = b we now consider one of the following three equivalent systems

(L-YAU-Y) (Uz) = L~ (LR)
(U=IL7YA) & =U-L"1b (L)
(AU-'L-Y)(LUz)= b (R)

As initial guess we use for

(Uz)y = U(U'L1b) =L~'b for  (LR),
xg = U 'L7% for (L),
(LUz)o=LUU'L71b)= b for (R).

The different algorithms are then applied to model problem (A). In the diagrams below the ratio
[|7:]|2/]|70]]2 is shown as a function of the number of matrix—vector products. Since these products
are the characteristic time—consuming parts of both the conjugate—gradient like algorithms and
GMRES, this scaling of the x-axes allows good comparison of the different routines, without
refering to the CPU time.

If not explicitely stated, we used the ILU preconditioner and the modified system (LR).
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Fig. 13: Comparison of the different conjugate gradient methods
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Fig. 14: Comparison of GMRES and GMRES(k)
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Fig. 15: Comparison of BICGSTAB and GMRES
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Fig. 16: Behaviour of BICGSTAB-SPLIT for different parameters w
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Fig. 17: Comparison of BICGSTAB-ILU and BiCGSTAB-SPLIT
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Fig. 18: Behaviour of GMRES-SPLIT for different parameters w
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Fig. 19: Comparison of GMRES-ILU and GMRES-SPLIT
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Fig. 20: BiCGSTAB-ILU applied to different modified systems
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Fig. 21: GMRES-ILU applied to different modified systems

Fig. 13 shows the very strong oscillations of BiCG and CGS opposed to the smooth behaviour
of BICGSTAB. Moreover, the residuals of CGS are decaying much faster than those of BiCG. The
speed up of BIGSTAB relative to CGS is not that large.

In the next figure, the original and restarted versions of GMRES are compared. The results
show, that for our problem the restarted algorithms are of no use, since the residuals hardly
decrease after the first restart.

Fig. 15 clearly displays the optimality of GMRES. What seems to be remarkable is the fact,
that BICGSTAB is very close to GMRES up to the first 70 matrix-vector products, where both
slow down. But in contrast to GMRES, BICGSTAB does not reduce the residual significantly for
almost 45 steps.

The effect of the matrix splitting preconditioner is shown in Fig. 16-19 (using again the (LR)
system). Instead of the rapid decrease of the residuals in the first few steps, the overall convergence
behaviour is very poor compared with the ILU preconditioning strategy.

Finally we see (Fig. 20, Fig. 21) that the choice of the modified systems (LR), (L) resp., (R)
does not significantly influence the speed of convergence of BICGSTAB and GMRES (both coupled
with ILU). This also holds for BiCG and CGS.

7 Conclusions and outlook

We presented an easy to handle and easy to implement discretization procedure for the solution
of 3D eddy—current problems in simply connected domains. For multiply connected domains there
occur some problems, since the model equations admit more than one solutions. With the above
algorithm it is possible to approximate the whole set of solutions (based on this observation and
some recently obtained theoretical results [6], it seems to be possible to modify this algorithm
in order to produce the physically correct solutions independently of the topological genus of the
domains under consideration).

The linear systems arising from the discretization are very large, sparse, complex, nonsymmetric
and do not possess any special structure, so that standard iterative procedures in general do not
converge.

In contrast to this, the Krylov subspace methods introduced in Chapter 5 together with a
suitably chosen preconditioning method were successfully applied to our model problems.

GMRES showed the best convergence behaviour, having the disadvantage that the complete
Krylov subspace has to be stored. For this reason it is preferable to use the slower conjugate
gradient methods in quite a number of applications (especially when the systems become very
large), thus keeping the amount of memory small and inreasing the overall efficiency. Taking into
account the results of the last section, we highly recommend the use of BICGSTAB in this case,
because of the rather smooth decay of the residuals and the good rate of convergence.
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A future field of interest would be a detailed investigation of the different preconditioning strate-
gies. This seems to be a very challenging problem, since simple modifications of the underlying
linear system (like a rescaling or a reordering of the equations or unknowns) may have a very strong
influence on preconditioners like ILU. For general systems, these effects are not at all understood.
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