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1 Introduction 

. 

. 

Linear models like autoregressions or ARMA-processes have primarily been designed for 
real-valued and, in particular, Gaussian time series. They do not seem to be adequate tools 
for integer-valued processes, e.g. daily or annual counts, if the observations are contained 
in a small finite set with high probability. A flexible parametric class of parametric models 
for time series with values in (0, 1,2,. . .} are the integer-valued autoregressive (INAR) pro- 
cesses which have been discussed by Al-Osh and Alzaid (1987) and Du and Li (1991). The 
same type of model has been introduced under a different name by McKenzie (1985-1988) 
who derived various properties for the case of specific marginal distributions and extended 
the concept to ARMA-like processes. Let us also remark that INAR-processes of order 1 
are special Galton-Watson processes with immigration as studied by Seneta (1969), Ven- 
kataraman (1982) and Venkataraman and Nanthi (1982). 

Franke and Seligmann (1993) describe the successful application of a particular kind of 
INAR-process of order 1 to modelling daily counts of epileptic seizure. As a theoretical 
basis for the model and the estimation procedure they gave conditions for the strict sta- 
tionarity of INAR( 1)-processes and investigated the asymptotic properties of conditional 
maximum likelihood (CML) estimates for the model parameters. 

In this paper we generalize the concept of integer-valued autoregressions from the uni- 
variate to the multivariate case and discuss stationarity conditions and the properties 
of CML-estimates for models of order 1. Such models and estimation procedures are 
useful for fitting time series of vectors of counts. Some applications, which we have in 
mind, are to daily counts of epileptic seizures, distinguished with respect to type of sei- 
zure, and to annual counts of a deer population distinguished with respect to sex and age 
class. Multivariate INAR( l)- models have one great advantage: the integer-valued process 
X(t) = A o X(t - 1) + I. That fact follows easily from the rules for calculating first 
and second moments given in Lemma 1 below. Therefore, INAR-processes retain some of 
the properties of the familiar autoregressions while allowing for the discreteness of the data. 

Apart from applications to genuine multivariate data our discussion of INAR( 1)-processes 
in higher dimensions are motivated by the fact that scalar INAR(M)-processes, as discus- 
sed by Du and Li (1991), can be written as M-variate INAR(l)-processes. In the latter 
form, they have the Markov property, and we are able to apply directly the asymptotic 
theory of Billingsley (1961) to CML-estimates of INAR(M)-parameters. 

r  2 Multivariate integer-valued autoregressidns of order 1 

To characterize the class of time series models, which we are interested in, we have to 
introduce some notation: 



j=l 

where U is a random variable with values in INu = {0,1,2,. . .} , 0 5 p 5 1 , and Yr, Yz, . . . 
are i.i.d. Bernoulli variables, independent of U , with 

p = pT(Yj = 1) = 1 - pr(Yj = 0) s 

We call Yr,Ys,... the counting series of p o U , and we remark that, given U, p o U has a 
binomial distribution with parameters (U,p). In general, for M 2 1, let A be a M x M- 
matrix with entries a;j satisfying 0 5 o;j 5 1 for i,j = 1,. . . , M. Then, for a random 
vector X with values in INF we define A o X as the lNf-valued random vector with 6th 
component 

(A 0 X)i=Eaij o Xj, i= l,...,M, 
j=l 

where we assume independence of the counting series of all a;j o Xj , i, j = 1,. . . , M. We 
stress that we use this definition for constant X 3 m E INF, too. 

A straightforward calculation shows p o (q o U) i (pq) o U , where 2 stands for equal 
distributions, in dimension 1, and, then in dimension M: 

(1) Ao(BoX)P(AB)oX 

We need the following rules for calculating moments of A o X: 

Lemma 1: (i)E(AoX)=AEX 

(ii) If all the counting series of A o X and B o Z are independent, 

E{(A o X)(B o Z)*} = A E(XZ=) BT 

(iii) E{(A o X)(A o X)T} = A E(XXT) AT + diag (C EX) 

. WhereCistheMXM-matrizwithentriesCij=a;j(l-aij), i,j=l,...,M,and, 
_ for Z E R”, diag (Z) is the diagonal mat& with entries Z,, . . . , 2~ in the diagonal. 

Proof: (i) and (ii) follow directly from the one-dimensional relations given by 

E(po U) =pEU , E{(Po U)(q 0 V)) = w E(UV) 9 
assuming independent counting series of po U and qo V. We prove (iii) for each component 
separately, i.e. for k, 1 = 1,. . . , M , we consider 
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[E{(A 0 X)(A 0 X)T}]k.l = 2 E{(aki 0 Xi)(alj 0 Xj)} 
i,j=l 

If k # 1 or i # j, ski o Xi and alj o Xj are conditionally independent binomial random 
variables given Xi and Xj, and 

E{(aki o Xi)(alj o Xi)} = E[E{(a/ci 0 Xi)(alj 0 Xj)(Xi, Xj}] 
= E[aki Xi a1.j Xj] 

= oki a/j E(XiXj) - 

But if k = I and i = j , we have 

E(aki o Xi)’ = E[E{(aki 0 Xi)21Xi}] 
= E[Xi aki( 1 - ski) t Xf ai;] 

= aEiEX,?+aki(l-aki)EXi 

Therefoie, with 6kI = 1 if k = 1 and = 0 else, 

M 

[E{(A 0 X)(A 0 X)T}]k,l = 5 ski a/j E(XiXj) + 6kl C aki( 1 - ski) E xi 

ij=l i=l 

n 

Definition 2.1: A Dir-valued time series {X(t), - 00 < t < 00) is called a M-variate 
INA R(l)-pmcess if 

(2) X(t) = A o X(t L 1) t I , --oo < t < 00, 

for some M x M-matriz A with entries 0 5 aij 5 1, i, j = 1,. . . , M , and i.i.d. INF- 
valued random variables s(t), -oo < t < oo . 

Let ff(k) = Pwt) = k) , k 2 0, 

denote the weights of the law of the innovations c(t) , which we assume to depend on some 
parameter /3 E B, where f3 is an open subset of R d. Here aqd in the following, we write 
m>nfor~,~EB”ifmj~nj, j=l,..., M. --- 

{X(t)} is a Markov chain with states in INY and transition probabilities 

Ps(m,g) = pr(X(t) = Illx(t - 1) = m) 

= xpr(Aom=q-k)qP&), m,g> 0. 
k<n 
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Here, 29 stands for the unknown parameters of the process {X(t)}, i.e. in general for P and 
for some Q E R”, s 5 M2 , determining the entries aij of A. It is admissible that all the 
CZij, i,j = l,..., M, appear as separate components of cr , ‘i.e. as free parameters in their 
own right, but they also may be given functions of some lower dimensional quantity. For 
later use, we extend the definition of Pa(m,~) to ZM x ZM by setting Ps(m,r~) = 0 if at 

3’ . least one component of m or of n is negative. 

The existence of a stationary solution of (2) depends on the largest eigenvalue of the non- 
negative matrix A. By a variant of the Perron-Frobenius-Theorem (Basilevsky, lg.., . ..). 
there exists an eigenvalue ~1 of A such that ~1 2 IvjJ for all other eigenvalues qj of A, and 
the eigenvector g corresponding to 71 satisfies g 2 0 . If A is even positive, i.e. a;j > 0 for 
i,j = l,..., M , we have strict inequalities: qt > jqjj, j # 1, and z > Q. 

Theorem 1: Let {X(t)}, satisfying (2), & an irreducible, aperiodic Markov chain on 
w. If Wt)ll < 00 and if the largest eigenvalue 71 of A is less than 1, then there exists 
a strictly stationary multivariate INAR(l)-process satisfying (2). 

Proof: 

1. Let f$‘)(m n) = pr(X(t) = 111x(0) = m) d 
Using (l)y&eatedly, we have 

enote 
- 

the t-step transition probabilities. 

t-1 

X(t) = A o (A o X(t - 2)) + A o ~(2 - 1) + I = . . . i! c Aj o~(t - j) + At o X(0) 
j=O 

Using independence of the E(S) and nonnegativity of their coordinates we get 

I$)(0 0) - pr(X(t) = OlX(O) = 0) -,- - 

= n pr(Ajo~(t-j)=Q) 
j=O 

Let /.L = E E( t). By Markov’s inequality 

pt(Aj OE(S) # 0) = P' ~ (A' 'E(S))i 5 1 

i=l 

5 E c (Aj o E(S)); 
i=l 
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= 5 (E Aj o E(S)); 
i=l 

. 
= 5 (A+); b [Ajpl 

i=l 

applying Lemma 1 and using the notation 1~1 = CE, IZiI for z E R”. Now, let 
71,. . . , qM be the eigenvalues of A, let gl,. . . , gM be a corresponding set of linearly 
independent eigenvectors, and let ~1 = arz’ + . . . + crags be the representation of p 
in terms of that basis. By Theorem 5.6 of Basilevsky (1983), 

Aj gk = 7&k , j 1 0, k = 1, . . . , M, 

and, as 71 2 [vi/ for all i 1 2, 

k=l 

5 9-m 

k=l 

with c(p) = Icq ~‘1 + . . . + IQM ~~1. Therefore, 

pr (Aj o E(S) = Q) 2 1 - IA+\ 2 1 - c(j+jj 

Now, we choose T > 0 such that c(p)qc < 1 , and we have 

7-l t-1 

$)(!I, 0) 2 n pr (Aj 0 dt - j) = !I) - n (1 - c(p)9j) 

j=O j=s 

The right-hand side is positive and decreasing for t + co. As, using the Taylor 
expansion of log( 1 - z), 

t-1 

log n (1 - c(&) = 
j=s 

log( 1 - W91’) > - aJ 

for all t > r , P(‘)(Q,O) is also bounded from below by a positive number for t --t co. 
Therefore, we finally conclude 

)iIiI P(‘)(Q,Q) > 0. 
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2. From 1. we have immediately 

2 P’t’(o,o) = 00, 
t=o 

i.e. Q is a recurrent state. Let se be its mean recurrence time. By Theorem 1.2.2. of 
Rosenblatt (1971), 

1 
- = p& fqQ,O), 
To + 

and, by 2. ru < 00 and, therefore, Q is a positive recurrent state. This implies the 
existence of a strictly stationary solution of (2) by Theorem 1.2.1 of Rosenblatt (1971) 
and the remarks before the statement of this result. 

n 

Except for degenerate situations, the assumption of irreducibility and aperiodicity are sa- 
tisfied. For instance, we have 

Lemma 2: Let0 < Qij < 1, i,j = l,..., M and 0 < qp(Q) =c 1. Then, any solution of 
(2) is an irreducible and aperiodic Markou chain on INV. 

Proot: 
Let e,,... ,gM denote the unit vectors of R”. As 0 < a;j < 1, i, j = 1,. . . , M, and 
0 < qfl(Q) < 1, we have 

Pd(g,O) > 0 for all m, P~‘(o,~j) > 0 for j = l,..., M, 

P’(m.m+cj)>O, j=l,..., M, forallm#Q, 

which implies the irreducibility and aperiodicity of {X(t)}. 
n 

The assumption of Lemma 2 is not satisfied if {X(t)} is the M-variate representation of a 
one-dimensional IN AR( M)-p recess U(t) as studied by Du and Li (1991): 

u(t) = 2 Qk 0 u(t - k) + v(t) 
k=l 

with 0 5 ok < I, tZ = l,..., M , and i.i.d. &-valued random variables u(t). This process 
can be written as 

(3) X(t) = A o X(t - 1) + c(t) with 

x(t) = (u(t), U(t - l),. . ., U(t - M + l))T, E(t) = (u(t), 0,. . . ,O)=, and 
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, . 
A= 

,: 1 

01 a2 -** QM 
1 0 *+. 0 

Ol’.. i 
. -. -. *. . 
d a** . . . : 

0 1 0 

Lemma% LetO<crk<l, Ic=l,..., M, and 0 < qfl(Q) = pr(v(t) = 0) < 1. 
‘Then, any solution {X(t)} of (3) is an irreducible and aperiodic Markov chain on INF. 

. 
ii 

Proof: Form = (ml,. . . , m~)~~lN~,letfi=(m~,mt ,..., TTIM-~)~.As~~ ,..., a~-l< 
1, oM > 0 and qp(Q) > 0, we have Pg(m. rsI) > 0. Using this relation, 0 < or,. . . ,QM < 1 
and pr (v(t) = I) > 0 for some 1 2 1, repeatedly, it is easy to see that 

Pi2M)(m,m+cj) > 0 , j = l,..., M, for all BE lN,M, 

whereel,..., eM denote the unit vectors of R”. As also 

f$“)(m 0) > 0 for all -,- 111 E IN? , 

the irreducibility of the Markov chain (3) follows. Then, P&O) > 0 implies immediately 
the aperiodicity of {X(t)] by th e remarks of Rosenblatt (1974), ch. III c. m 

3 Estimation of multivariate INAR(l)-parameters 

In this chapter, we consider the problem of estimating the INAR(I)-parameters from a 
finite sample X = (X(O), . . . , X(N)). We consider the, conditional log-likelihood 

hv(X, 9(X(O)) = 5 log &I (x(t - l), x(t)) 
t=1 

As discussed in Franke and Seligmann (1993), we prefer the conditional maximum likelihood 
(CML-)estimate 8 = (&,p) which maximizes L~(X,ipJX(O)) as a function of 29 = (a,P). 
Again, /3 E B s lRd determines the law of the innovations I, and we assume B to be 
open. a E lRS determines the coefficient matrix A of our INAR(l)-scheme. To keep the 
discussion as simple as possible we consider only the case where some of the entries of A 
are fixed and the others are completely unknown. In other words the components of a are 
just certain entries of A, say 

(44 a& = a;(k)&) , k = 1,. . . ,s , unknown , 

and the other entries of A are given constants: 
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/. 

;i 1 

W dij unknown for (i,j) 4 I = {(i(k), j(k)), Ic = 1,. . .,s}. 

weaSUmeo<ak< 1, kbl,..., s whereas the Oij , (i, j) 4 I , may be 0 or 1. Therefore, 
the parameter 29 which determines the transition probabilities satisfies 

29 = (a,/3) E 8 = (0, l)S x B E IR8+d 

This framework includes the case where all oij are to be estimated from the data (s = M*) 
as well as the case where A corresponds to a univariate INAR(M)-scheme as in (3) and its 
entries are 0 or 1 except for the first line (s = M). 

We want to apply results of Billingsley (1961) on estimates of the parameters of Markov 
processes. For this purpose we have to impose some regularity conditions (Cl) - (C6). We 
always assume that the stationarity condition of Theorem 1 is satisfied. 

(Cl) {lc;qp(lc) > 0) does not depend of p. 

W2) EllW113 = k~gllkl13P(k) < 00. 

W3) For any k, &Ic) is three times continuously differentiable with respect to ,& , u = 
1 ,..., d,onB. 

VW For any p’ E B there exists a neighbourhood U of p’ such that 

c s”P~~u l&q’(!dI < 00 , u = 1,. . . , d, 
La! 

~$%=’ I&!f&)l < 00 , u,u = 1, . . .,d, 

w For u,u,w = l,... , d and any fi’ E B there exists a neighbourhood U of p’ and 
functions @,(n), *,,(a), ~,,(A& 1~ 2 Q (depending on 0’ and U ) , which 
increase with respect to the partial ordering of JNF induced by the definition of 
k < 9, such that for all p E U and k 2 n with nonvanishing qp(lc) 

. 

l 

Furthermore, we assume w.r.t. the stationary distribution of the multivariate 
INAR( 1)process {X(t)} 
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E @,(X( 1)) %,,(X(2)) < 00, E ‘LdX(l)) < 00. 

CC61 c(G) = (h(fi))u,v=l,..., a+d, the Fisher information matrix given by 

G@) = E’($- log ww), X(2)) ” +e9(x(l),x(2))). ” 
for u, u = 1,. . . , s + d , is nonsingular. 

Note that conditions (Cl), (C4) and (C5) are automatically satisfied for any innovation 
law with bounded support, i.e. with only finitely many nonvanishing qo(k). 

Theorem 2: Let {X(t)} be a M- variate INAR(l)-process satisfying the stationarity con- 
dition of Theowzm 1, and additionally (Cl)-(C6). Then, the CML-estimate 8 = (6,p) is 
asymptotically normal, i.e. , 

a(8 - t9) 7 A@, C-‘(Zp)) for N + 00. 

Furthermom, for N 4 00, 

2{hV(x, 81x(o)) - hV(x, filx(o))) c’ d+d 

and 2(&(X, 4(X(O)) - h(X, SIX(O))} - N(d - fi)T c(fi)(d - 6) p’ 0 - 

We postpone the proof of the theorem to the appendix. To iIIustrate the application of our 
result, we consider a simple example, a univariate INAR(P)-process: 

l 

j/ 
. ,  

(54 w = a10 U(t - 1) + a2 0 lJ(t - 2) + v(t) 

with 0 < al, a2 < 1 and independent Poisson innovations v(t) with common parameter 
p > 0. The bivariate INAR( l)-representation of this process is 

(5b) X(t) = A o X(t - 1) + E(t) 

.’ 
l 

/  

with X(t) = (u;f’l)), 40 = (ybt)) ,A = ( y *o’ ) - 

Calculating the eigenvalues of A, we see that the larger one is less than 1 iff al + aa < 1. 
By Theorem 1, the latter condition guarantees the existence of a stationary solution of (5a). 

Franke and SeIigmann (1993) pointed out that the Poisson innovations v(t) satisfy the uni- 
variate version of conditions (Cl)-(C5). As for the model (5b), qfl(k) = 0 except for ka = 0 , 
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their arguments can immediately bc transfered to show that the weights qfl&) of the c(t) of 
(5b) satisfy (Cl)-(C5) with d = 1 and *r(n) = const - nr, @II(E) = const - nf, *III(G) = 

! 0 

‘I # 

const . nf. 

Let e, = (A), e, = (y), 1 = (i). As al1 = al, al2 = a2, 021 = 1 and ~22 = 0, we have 
from Lemma Al c) of the appendix for I’(=, n) # 0 

a 
-log P(m, rJ) = * 

1 
mz-e1,n-1) _ 1 

aal - 1 JYm, E) > 
=: &l(rn, !I) 

a 
- log P(m, n) = * 
aa 1 

m.=- e22,9-- ed _ 1 =. (J2(=+) 

2 m?l, II) > - 

Using the convention qfl(-El) = 0, we have 

a P @P (Ir) = qP&-el)-qP(k) for kr 10, k2=0, 

a P @jQ &I = 0 else. 

Applying the explicit formula (A2) of the appendix for P(rn,n) , a straightforward caku- 
lation shows for I’(=,& > 0 

I 

gj hP(m.n) = 
P(m, ll-e1) _ 1 

P(m, n) 
=: Q,(m,d 

. j/ 

I  

We can write the Fisher information matrix C(6) = C( al, 02, p) in terms of the functions 
&I, 92, 93, and, in particular, we have for g E R3 

gT X(29) g = E{e t;’ Qi(X( l), X(2)}? 
i=l 

as, of course, P(X(l), X(2)) > 0 a.s. with respect to the stationary distribution p,of 
{X(t)}. Th ere ore, f x(19) is positive definite and satisfies (C6) if 

(6) 2 Zi Qi(X( 1),X(2) = 0 j4 - e*S. 
i=l 

implies g = 0. As the support of p is IN; and as we have Poisson innovations, 

I’(=,=)>0 forall ~,EEIN~ with nz=mr. 

Therefore, (6) implies 

NOW, the special selections ml = m2 = 0, ml = 1 and rn2 = 0, ml = 0 and mz = 1 
immediately imply 23 = 0, zr = 0 and z2 = 0. 
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Appendix: Proof of Theorem 2 

0 

I 
, 

The proof of Theorem 2 is similar to the univariate case treated by Franke and Seligmann 
(1993). It is an application of a theorem of Billingsley (1961), and the basic idea for showing 
the assumptions of that general result is to use some recursive relations for the transition 
probabilites P’(m,n) of the INAR(M)-p recess. To keep the somewhat tedious notation as 
simple as possible we restrict ourselves to the two-dimensional case M = 2 , but it is easy 
to see from the following proof how the arguments have to be transferred to the case of 
general M. Furthermore, we just write I’(m,& instead of P,,~(E,Q) as the dependence of 
the transition probabilities on the parameter ti = (a,P) is now obvious. The basic recursi- 
ons are contained in the following Lemma. 

Lemma Al: Let el = (A), ~2 = (y), I = (:)- 

a) P(O,n) = q%l) for n L 0. 
For i = 1, j = 2 and vice versa 

P(m, IL) = ~ii{~jiP(m-~i,n-~)+(l-~j;)P(~-~i,,n-~)} 
+ (1-crii){ajiP(m-~i,4!-~j)+(1-Uji)P(m-~,~)} 

ifmiLl, mj?O, n>@. 

b) For i = 1, j=2andviceversaletfor~>~, h?O 

Pi(my h) = pr(aii 0 m; + aij 0 mj = h) 

such that we can write 

, I  - -  
,  

WI P(lrr, a) = C PI (m, no - h) p2h n2 - k2) d%d. 

k<n 

Then, for i = 1, j = 2 and vice versa, mj 2 1, mi > 0, h > 0 : 

Pi(m, h) = aij Pi(m - Sjvh- l)+(l-aij)Pi(m-ej,h), 

whew, for convenience, we set Pi(m, h) = 0 for h < 0. 
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c) For i = 1, j = 2 and vice versa, ~,IJ 2 0 : 

‘/ . &P(ql,E) = ~{Uj;P(m-~,n-l)+(l-aji)P(m-ei,s-~i)-P(m,I1)}, 

t 
if 0 < U;i < 1. 

ifO< aij < 1. 

Proof: 

1. 

2. 

i . 

Let Uij 0 ?Tlj = Crdr Y,(‘j) , i,j = 1,2, 

(id with i.i.d. Bernoulli-variables Y,(‘j), . . . , Y$i) such that oij = pr(YV = 1). Therefore, 
for mj 2 1, we have 

aij 0 mj _ yz;j) 2 fZij 0 (mj - 1). 

Partitioning theevent {Aom+~(t) = II} for ml > 1 w.r.t. the four cases {YiI1) = 

1 7 Yf21) = 1}, {Y:;’ = 1, Y$Q = 0) ( {Y$I” = 0, y$r’ = 1) {YAY’ = 0, YA;” = 0) ml 

and using independence, we get: 

P(E,II) = alla21 P(m- el,n- L) + %I(1 - 021) %I- !!h,E- 3) 

+ (l-a~~)a2~P(~-e~,n-~2)++~-~ll)(l-~zl)~(m-e,,n) 

which is the recursion a) for i = 1, j = 2. By exchanging the indices 1 and 2, we get 
the other relation with i = 2, j = 1, too. The same type of argument also provides 
the recursion b). 

If rni = 0, P(a,g) does not depend on ali and azi, and the relations c) hold. 
Therefore, we only have to discuss the case mi 1 1, and we restrict ourselves to the 
situation i = 1, j = 1 as the other selections of indices can be dealt with analogously. 
We have 

& Pl(rn,h) = Ir ;g2)+ (;) &) {/4;v - all)m’--P = - 
-(ml - p)afl(l - (Ill)ml--l’-l 

> 
* a:,‘(1 - 012)mo--h+P 

= -~Pl(rn, h) + 
1 - 011 

.,x;)“l P(“:) (h~p)‘:;L(L - wl)m’--P-l 

- - 

a$‘( 1 - a12)m2-h+r 
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ml = 
l-011 { 

P,(IxJ- g,, h - 1) - ~l(rnI h) 
1 

Using this relation and (A2), we get by applying the recursion b) for i = 2, j = 1 

A- P(m,g&) = 
hl 

* 

i 

c S(m - e,, n1 - h - 1) R&L nz - h) dw - eE, 4 

!Lsn I 

ml = - a21 C ~~(m-e~,nl-~l-1)~S(m-el,n2-t2-l)qP(k) 
l-011 

1 kn 

+(1- a21) C 9(m-cl, nl -h - 1) P2(m-el,n2 - kz)@(lr) - %hn) 

k<n I 

ml 

= l-all 1 
a21P(m-el,n-I)+(1-a2t)P(19-e,,n-el)-P(m,~) 

> 

Lemma A2:Form,n> 0, i,j = 1,2, we have for I’(=,&) > 0 

Proof: We only discuss the case i = j = 1, as the other situations can be treated analo- 
gously. 
Using the abbreviations 

~21=~21~(IZ1-e1,~-1)+(~-~21)~(m-e1,n-~1,)2~, 

S’ 21 =~21~(m-e,,n-~2)+(~-~21)~(m-e1,~)1~, 

we have by Lemma Al for ml 2 1, m2 2 0, n 10 

.  

_1 fy19,xL) = QlS21 + (1 -~11)% 

On the other hand, again by Lemma Al, 
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I !  l 

Both inequalities also hold for ml = 0 as, then, & P(m,n) = 0. 

4 

Lemma A3: For i = 1, j = 2 and vice versa, we hue for P(m,n) > 0 

P(m-%!I-3 1 aji 
P(lrr,E) 

< - a;; if 0 < a;i < 1 , 

(1 - Qji) '(macho i)- 9) 5 if 0 < U;i < 1 , 

ajj 
P(,-:;,pI) 

$ 

1 

P(rn,E) 
< - G if 0 < aij < 1 , 

(1 - Qjj) ‘(-&- 4 5 $ if 0 < iZij < 1 . 
-,- 

Proof: If mi 2 1, we have from Lemma Ale 

1 - Uii a = -- logP(z&,I%)+l 
m; hii 

< 1 - aii 
f&i .l=$ 

by Lemma A2, such that we have the first and second inequality. For mi = 0, they are 
satisfied trivially, as then by definition the left-hand sides vanish. The third and fourth 
inequality can be shown analogously. n 

Proof of Theorem 2: The Theorem is a special case of Theorem 2.2 of Billingsley 
(1961). We only have to check that conditions (Cl) - (C6) imply the conditions of this 
general result. We first remark that (C2) implies EjlX(t)113 < 00 for the stationary solution 
of (2). This can be shown completely analogous to the proof of Theorem 2.1 of Du and 
Li (1991) where, among other things, the existence of the second moment of a univariate 
INAR-process {X(t)} is concluded from E.s(~)~ < 00. 

1. Using the explicit representation for P(m,=) provided by (Al) and (A2) and condi- 
tion (C3) we conclude that P(rn,~) is three times continuously differentiable w.r.t. 
or,. . .,a, and or,. . .,& noting that ok = ai(k)itk) < 1 by assumption. F’urther- 
more, from 0 < ak = ai(k),j(k) < 1, k = 1, . . . ,s , and (Cl) we have that for any 
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m the set {r~; P(~,E) > 0) does not depend on o and p. Therefore, log P(m,&$ 
is well-defined except for a set of P(rn, .)-measure 0 which does not depend on the 
parameter values. 

2. AsAom<(mr+mz)~with~=(~),wehavefornr,nz>mt+mz 

‘I ’ 
~bl,n) = 

n1 n2 

c c 
&A 0 m = n - Is) q’(k) 

I c qP(!d 
n-(ml+m2)LIk<n 

The first relation of (C4), therefore, implies that for each 29’ there exists a neighbour- 
hood V such that for fixed m 

C wh9~~Qn~ll) 5 (ml +m2 + 112{1 + C SUP~~LJ~W~ < 00, 
xl>0 -- la! 

where U denotes the projection of V onto the subspace corresponding to parameters 
Pl , . . . , Pd. By Lemma Al c), the same summability condition holds for &P(m,& 

and a&P(=,&), k, 1 = 1, . . . . s , instead of P(m,&). Using additionally the se- 
cond and third relation of (C4), we have the uniform summability for all first and 
second derivatives of P(m, g) w.r.t. parameters al,. . . , a,, Dr, . . . . & . 

3. Calculating expectations w.r.t. the stationary state of {X(t)} we have for ak = 
U;(k),j(k) , using Lemma A2, 

E/&logP(X(1),X(2))12 I c2 . E {max(X+)(L)Y xj(k)(1))2 

5 C2 . E(x;(~)(l) + xj(k)(1))2 < 00 

with C = max(c$‘,(l- ai)-‘). Similarly, we have from (C5) 

I I 
2 

and . E &log P(X(l),X(2)) 5 E ‘I’t(X(2)) < 00 

Therefore, the Fisher information matrix C(t9) is well-defined, and, by (CG), it is 
nonsingular. 

4. For ab ok = o;(k),j(k), k = 1,. . . ,s, we have 

(4 
I 

a a 
G G log P(Ei IL) I C * mj(k) mj(l) , 
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where the constant C can be chosen uniform over a suitable neighbourhood of any 
19’ E 8. To show this relation one has to calculate the second derivatives explicitly 
using Lemma Ale, and then Lemma A2 and Lemma A3 are applied, e.g. for k = 1 
and i(k) = j(k) = 1 we have 

= g log P(m, 9) 
11 

= (1 -h,l,)2 w21 - 11+ 

with 

921 = Q21 
en-e1,JL-1) +(leazl) P(m-e,,ll- Cl) 

P(m, El a?wd - 

921 is bounded by Lemma A3. Using 

for P&,1) > 0 and & a = 0 else, we see from Lemma A3 and Lemma A2 that 

& Qsl is bounded by cons& - ml. 

Analogously, we have for k, 1, u = 1,. . . , s 

W) 

for a suitable locally uniform constant C. We illustrate the argument with the case 
k = I = u, i(k) = j(k) = 1 

. 

&log lQw&) = 
k 

Slog P(rn&) 
11 

2ml a 
= t1-a1)3 {Qn - l) + (1::;lJ2 =Q21 + ml a2 

-- 
1- a11 aa:, 921 

. 
Again by Lemma A3 and (A5) the first two terms on the right-hand side are bounded 
by const - mf. By (A5), $- 421 is a linear combination of terms of the form 11 

-{log P(k!) - log &E, nn 1 3 
16 



with (k,!) E {(m - cl, 1~ - I), (m- e,, 9 - el)} and coefficients a21 or (1 - 021) , 
such that $ Q2t is bounded by con& 0 rn: too, using Lemma A3, Lemma A2 and 

. (A4). I’ 

5. We have to show that local suprema of all third order derivatives of log P(Xr , X2) 
I) have a finite mean, For this purpose, we get locally uniform bounds on all third 

i’ derivatives of log I’(=, g) by using the same arguments as in 4. and the inequalities 
of condition (CS). We have, e.g., from Lemma Ale 

a a --1wP(m,d = * { 
a P(m-e,,n-1) a qE4-!2e,,n--el) 

W” aa11 a21ap, P(m, 3 
+ (I- a2l)apu 

> P(m93 ’ 

- -%?2l 
ml 

= 1 -a11 ap, 

Using as in (AS) 

we see from Lemma A3 and (A3) that & &zr is bounded by const . q,,(n). Therefore, 
we have for ok = all, i(k) = j(k) = 1 

$ & 1% f&Z) 5 WTMt mj(k) *U(S)* 
u 

and this relation holds for all u = 1,. . . , d, k = 1,. . . , s. Similarly, for ak = all 

is bounded by con& rnf V!,,(n) , as the first term on the right-hand side is bounded 
by ml *&L), and by (AS), & & Q2r is a linear combination of terms of the form 

* and ,! 

m,g a a - mm) I - {log W,!) - log P(m, n)} mA &I 1 
with (k,!) E {(~-el,~-~),(m-e~9 9 - er)} and coefficients (~21 or (1 - a21), 
such that the second term is bounded by const rnf e,(n) , using Lemma A2 and the 
bound on & & log P(m,g) from above. 
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. 

Using similar arguments, we have additionally to (A6) 

forallk,l=l,..., sandu,v,w=l,..., d.Using(C5)andE)IX1113<m,wefinaUy 
have for all parameter values 6’ E 9 the existence of a neighbourhood V such that 
for all third order derivatives 

Esup --- 
I 

a a a 
6EV a% a8” mu 

hP(&,X2) 
I 

< 00 
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