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1 Introduction

Linear models like autoregressions or ARMA-processes have primarily been designed for
real-valued and, in particular, Gaussian time series. They do not seem to be adequate tools
for integer-valued processes, e.g. daily or annual counts, if the observations are contained
in a small finite set with high probability. A flexible parametric class of parametric models
for time series with values in {0, 1,2,...} are the integer-valued autoregressive (INAR) pro-
cesses which have been discussed by Al-Osh and Alzaid (1987) and Du and Li (1991). The
same type of model has been introduced under a different name by McKenzie (1985-1988)
who derived various properties for the case of specific marginal distributions and extended
the concept to ARMA-like processes. Let us also remark that INAR-processes of order 1
are special Galton-Watson processes with immigration as studied by Seneta (1969), Ven-
kataraman (1982) and Venkataraman and Nanthi (1982).

Franke and Seligmann (1993) describe the successful application of a particular kind of
INAR-process of order 1 to modelling daily counts of epileptic seizure. As a theoretical
basis for the model and the estimation procedure they gave conditions for the strict- sta-
tionarity of INAR(1)-processes and investigated the asymptotic properties of conditional
maximum likelihood (CML) estimates for the model parameters.

In this paper we generalize the concept of integer-valued autoregressions from the uni-
variate to the multivariate case and discuss stationarity conditions and the properties
of CML-estimates for models of order 1. Such models and estimation procedures are
useful for fitting time series of vectors of counts. Some applications, which we have in
mind, are to daily counts of epileptic seizures, distinguished with respect to type of sei-
zure, and to annual counts of a deer population distinguished with respect to sex and age
class. Multivariate INAR(1)-models have one great advantage: the integer-valued process
X(t) = Ao X(t — 1) + £(t). That fact follows easily from the rules for calculating first
and second moments given in Lemma 1 below. Therefore, INAR-processes retain some of
the properties of the familiar autoregressions while allowing for the discreteness of the data.

Apart from applications to genuine multivariate data our discussion of INAR(1)-processes
in higher dimensions are motivated by the fact that scalar INAR(M )-processes, as discus-
sed by Du and Li (1991), can be written as M-variate INAR(1)-processes. In the latter
form, they have the Markov property, and we are able to apply directly the asymptotic
- theory of Billingsley (1961) to CML-estimates of INAR(M )-parameters.

2 Multivariate integer-valued autoregressions of order 1

To characterize the class of time series models, which we are interested in, we have to
introduce some notation:



U
poU=ZYj
i=1

where U is a random variable with values in INo = {0,1,2,...}, 0<p<1,and 1,Y5,...
are i.i.d. Bernoulli variables, independent of U , with
p=pr(Yj=1)=1-pr(Y; =0).

We call Y;,Y>,... the counting series of po U , and we remark that, given U, po U has a
binomial distribution with parameters (U, p). In general, for M > 1,let A be a M x M-
matrix with entries a;; satisfying 0 < a;; < 1 for ¢,j = 1,..., M. Then, for a random
vector X with values in INY! we define A o X as the IN}!-valued random vector with i-th
component

M
(AOX).'-:ZG.'J'OXJ', i=1,...,. M,

i=1

where we assume independence of the counting series of all a;; 0o X;, ¢,7 =1,...,M. We
stress that we use this definition for constant X = m € IN), too.

A straightforward calculation shows po (go U) d (pg) o U , where d stands for equal
distributions, in dimension 1, and, then in dimension M:

(1) Ao(Box)d(aB)ox
We need the following rules for calculating moments of A o X:
Lemma 1: (i)E(AoX)=AEX

(i) If all the counting series of Ao X and B o Z are independent,

E{(Ao X)(BoZ)T}= A E(x2T) BT

(ii3) E{(Ao X)( Ao X)T} = A E(XXT)AT 4 diag (CEX)

where C is the M x M-matriz with entries C;; = a;;(1 - a;;), i,5=1,...,M , and,
for Z € RM, diag(2) is the diagonal matriz with entries 2, . .. , Zm in the diagonal.
Proof: (i) and (ii) follow directly from the one-dimensional relations given by
E(po U)=pEU , E{(po U)(go V)} = peE(UV),

assuming independent counting series of po U and go V. We prove (iii) for each component
separately, i.e. for k,l = 1,..., M, we consider



M
[E{(Ao X)( Ao X)Hku= Y E{(ario Xi)(ay o X;)}
f,7=1
If k #lori# j, aki o X; and aj o X; are conditionally independent binomial random
variables given X; and Xj, and

E{(aki o Xi)(aij 0 X;)} = E[E{(ari o Xi)(ai; o X;)|Xi, X;}]
Elaki X aij Xj] ‘ '
Gk QY5 E(X.'Xj) .

Butif k =land { = 7, we have

E(akio Xi)? = E[E{(aki o Xi)*|X:}]
E[X.' ari(l - ap) + X.-2 azi]
ai,- E)(,2 + ak;(l - ak,-) EX"

Therefore, with 6,y = 1 if k=1 and = 0 else,

M M
[E{(A o X)(A o X)T}]k'l = Z ak; a5 E(X,‘Xj) + 6 Z ak.-(l - a.k.-) E X;
1,7=1 t=1

Definition 2.1: A INM-valued time series {X(t), —0<t< oo} is called a M -variate
INAR(1)-process if

() _ X(t)=AoX(t—1)+e(t), —00 < t< oo,

for some M x M-matriz A with entries 0 < a;; <1, i,j=1,....,M , and i.i.d INB"-
valued random variables £(t), —o0o < t < 0co.

Let (k) = pr(e(t) = k), k>0,

denote the weights of the law of the innovations £(t) , which we assume to depend on some
parameter 3 € B, where B is an open subset of R9. Here and in the following, we write
m>nform,ne€ zM ifm;>2n;, j=1,...,M.

{X(t)} is a Markov chain with states in INM and transition probabilities

Py(m,n) = pr(X(t)=n|X(t-1)=m)

= Y pr(Aom=n-k)¢’(k), m,n>0.
k<n



Here, 9 stands for the unknown parameters of the process { X(t)}, i.e. in general for 8 and
for some a € R®, s < M? , determining the entries a;; of A. It is admissible that all the
a;;, t,7 = 1,..., M, appear as separate components of a ,i.e. as free parameters in their
own right, but they also may be given functions of some lower dimensional quantity. For
later use, we extend the definition of Py(m,n) to zM x zM by setting Py(m, n) = 0 if at
least one component of m or of n is negative. ‘

The existence of a stationary solution of (2) depends on the largest eigenvalue of the non-
negative matrix A. By a variant of the Perron-Frobenius-Theorem (Basilevsky, 19.., ...),
there exists an eigenvalue 7; of A such that n; > |n;| for all other eigenvalues 7; of A, and
the eigenvector z corresponding to 7 satisfies z > 0 . If A is even positive, i.e. a;; > 0 for
t,j=1,..., M , we have strict inequalities: 7, > |n;}, 7 # 1,and 2> 0.

Theorem 1: Let {X(t)}, satisfying (2), be an irreducible, aperiodic Markov chain on
INM. If Ejle(t)|| < oo and if the largest eigenvalue 1, of A is less than 1, then there ezists
a strictly stationary multivariate INAR(1)-process satisfying (2).

Proof:
1. Let P'gt)(m, n) = pr(X(t) = n|X(0) = m) denote the t-step transition probabilities.

Using (1) repeatedly, we have

t-1
X(@)=Ao(AoX(t-2))+ Ace(t—1)+e(t)=...2 Y Aoe(t—j)+ A0 X(0)

1=0

Using independence of the £(s) and nonnegativity of their coordinates we get

P{(0,0) = pr(X(t) = 0|X(0) = 0)

t—1
= pr ZAjOE(t—j)zg
}=0

t-1

= J[er(Acet-j)=0)

Jj=0
Let 4 = E¢(t). By Markov’s inequality

pr(A’ o e(s) # 0)
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(E A’ oe(s)),
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M

(Ap); =474

1

ii

applying Lemma 1 and using the notation |z} = 2?11 |z;| for z € RM. Now, let
M,.-.,NM be the eigenvalues of A, let z!,...,2zM be a corresponding set of linearly
independent eigenvectors, and let p = ayz' +... + apzM be the representation of u
in terms of that basis. By Theorem 5.6 of Basilevsky (1983),

Ajz_k:‘nigk, 720, k=1,...,M,

and, as gy > |7 for all ¢ > 2,

M M
|A% | 1Y oz <D Ikl lew 2|
k=1 k=1

m c()

IA

with e(p) = |a1 2!| + ... + |am 2¥|. Therefore,

pr(Afoe(s)=0) 21— |A%p| > l—c(u)q’
Now, we choose T > 0 such that ¢(¢)n] < 1, and we have

t—1

-1 )
PP©,0)> [ or (47 oett - j)=0) - [T (1 - e(w)rd)

=0 j=r

The right-hand side is positive and decreasing for t — oo. As, using the Taylor
expansion of log(1l — z),

kt

t-1 ' o o
tog [ (1 - ctwni) = —Z—c(u)*z = 3 pew

=T j=r =1 h

v

-Z ""‘ = ——log(1 - c{u)nf) > — oo
1-m

for all t > 7, P(Y)(0,0) is also bounded from below by a positive number for t — co.
Therefore, we finally conclude

lim P®(0,0) > 0.

t—oo



2. From 1. we have immediately

oo

t=0

i.e. 0is a recurrent state. Let 7y be its mean recurrence time. By Theorem 1.2.2. of
Rosenblatt (1971),

l = lim P(t)(g.vO_),
70 t—o0

and, by 2. 19 < oo and, therefore, 0 is a positive recurrent state. This implies the
existence of a strictly stationary solution of (2) by Theorem 1.2.1 of Rosenblatt (1971)
and the remarks before the statement of this result.

Except for degenerate situations, the assumption of irreducibility and aperiodicity are sa-
tisfied, For instance, we have

Lemma 2: Let0<a;; <1, t,5=1,...,M and0< q?(0) < 1. Then, any solution of
(2) is an irreducible and aperiodic Markov chain on IN}.

Proof:
Let e;,...,ep denote the unit vectors of RM As 0 < ai;j < 1,4,7 = 1,...,M, and
0 < ¢?(0) < 1, we have :

Ps(m,0) > 0 for all m, Péz’(g,gj) >0forj=1,....,.M,

Pﬁ(ﬂag+§j)>07 i=1L...,M, fora‘“.ﬁ‘l#ga

which implies the irreducibility and aperiodicity of {X(t)}.
|

The assumption of Lemma 2 is not satisfied if {X(¢)} is the M-variate representation of a
one-dimensional INAR(M )-process U(t) as studied by Du and Li (1991):

M
U)y=)_ axoU(t—k)+u(t)
k=1

with0<ax <1, k=1,...,M, and i.i.d. INo-valued random variabies v(t). This process
can be written as

| (3) X(t)=AoX(t—1)+¢(t)  with
X(t)=(U@®),U(t-1),...,Ut-M+1)T, &) = (v(1),0,...,0)T, and



1 0 0
A= 0 1
0 0 1 0

Lemma3: LetO<ar<1, k=1,...,M, and 0 < ¢°(0) = pr(v(t) = 0) < 1.
‘Then, any solution {X(t)} of (3) is an irreducible and aperiodic Markov chain on IN).

Proof: Form = (m,,...,my)" € N),let 2 = (mp,my,...,mpy-1)T. Asay,...,am-1 <
1, ap > 0 and ¢°(0) > 0, we have Py(m,m) > 0. Using this relation, 0 < ay,...,apm < 1
and pr (v(t) =) > 0 for some [ > 1, repeatedly, it is easy to see that

PM(mm+e)>0, j=1,...,M, forall meNY,

where e,,...,e)s denote the unit vectors of RM. As also

PM(m,0) >0 forall me N},

the irreducibility of the Markov chain (3) follows. Then, Ps(0,0) > 0 implies immediately
the aperiodicity of {X(¢)] by the remarks of Rosenblatt (1974), ch. III c. n

3 Estimation of multivariate INAR(1)-parameters

In this chapter, we consider the problem of estimating the INAR(1)-parameters from a
finite sample X = (X(0),...,X(N)). We consider the conditional log-likelihood

N ,
IN(X,91X(0) = ) log Py (X(t~ 1), X(2))
t=1
As discussed in Franke and Seligmann (1993), we prefer the conditional maximum likelihood
(CML-)estimate 4 = (&, 3) which maximizes £x(X,9|X(0)) as a function of ¥ = (a, B).
Again, B € B C IR9 determines the law of the innovations ¢(t), and we assume B to be
open. o« € R*® determines the coefficient matrix A of our INAR(1)-scheme. To keep the
discussion as simple as possible we consider only the case where some of the entries of A

are fixed and the others are completely unknown. In other words the components of a are
just certain entries of A, say

(4a) ar = k) k) » K=1,...,8, unknown ,

and the other entries of A are given constants:



(4b)

a;; unknown for (i,7)¢ I = {(i(k), j(k)), k=1,...,8}.

We assume 0 < ax < 1, k = 1,...,s whereas the a;;, (3,j) ¢ I, may be 0 or 1. Therefore,
the parameter ¥ which determines the transition probabilities satisfies

¥ = (a,8) € © = (0,1)* x B C R*H

This framework includes the case where all a;; are to be estimated from the data (s = M?) '
as well as the case where A corresponds to a univariate INAR(M)-scheme as in (3) and its
entries are 0 or 1 except for the first line (s = M).

We want to apply results of Billingsley (1961) on estimates of the parameters of Markov
processes. For this purpose we have to impose some regularity conditions (C1) - (C6). We
always assume that the stationarity condition of Theorem 1 is satisfied.

(C1)
(C2)

(C3)

(C4)

(C5)

{k; ¢®(k) > 0} does not depend of S.
Elle@®I’ = X IIkll*¢°(k) < oo.
k>0
For any k, ¢P(k) is three times continuously differentiable with respect to 8, , u =

1,...,d, on B.
For any ' € B there exists a neighbourhood U of 8’ such that

¥ supper ¢”(k) < o0
k>0

kzosuppev |£:qﬁ(k)| <o, u=l1,...,d,
k>0

2
k%:osupﬁeU lapfap,,qﬁ(l_(ﬂ <oo, uw,v=1,...,d,

For u,v,w = 1,...,d and any 3’ € B there exists a neighbourhood U of §’ and
functions ¥,(n), ¥u,(n), Yuw(n), n > 0 (depending on B’ and U ) , which
increase with respect to the partial ordering of INM induced by the definition of
k < n, such that for all § € U and k < n with nonvanishing ¢°(k)

ad
aﬂuqﬂ(k)l < Wu(n)¢’(k)
2
58,95, Wl < V@)
8°
gt W < Ve W)

Furthermore, we assume w.r.t. the stationary distribution of the multivariate
INAR(1)-process { X (t)}

EVI(X(1)) < o0, E{IIX(1)[|¥u(X(2))} < 00,

8



EW.(X(1))¥,(X(2)) < 00, EW¥yp(X(1)) < 00
(Ce) £(9) = (Guv(9))uv=1,....s+d, the Fisher information matrix given by

ouu(V) =

d
X(2) 55 log Po(X (1), X(2)).
v
foru,v=1,...,8+d,is nonsingular.

Note that conditions (C1), (C4) and (C5) are automatically satisfied for any innovation
law with bounded support, i.e. with only finitely many nonvanishing ¢° (k).

Theorem 2: Let {X(t)} be a M-variate INAR(1)-process satisfying the stationarity con-
dition of Theorem I, and additionally (C1)-(C6). Then, the CML-estimate d = (&,B) is
asymptotically normal, i.e.

VN(@ -9) = N(Q,E7'(¥) for N - oo.

Furthermore, for N — oo,

2{en(X, 91X (0)) - En(X,91X(0))} 7 Xira

and 2{En(X,9|X(0)) — En(X, 9| X(0))} = N(D — )T S(9)(¥ - 9) = 0.

We postpone the proof of the theorem to the appendix. To illustrate the application of our
result, we consider a simple example, a univariate INAR(2)-process:

(5a) U)=ayoU(t=1)+azoU(t - 2) + v(t)

with 0 < a;, a; < 1 and independent Poisson innovations v(t) with common parameter
B > 0. The bivariate INAR(1)-representation of this process is

(5b) X(8)= Ao X(t— 1)+ &(t)
with X(f) = (Ug(i)u) e(t) = ("(t)) A= ( o o ) .

Calculating the eigenvalues of A, we see that the larger one is less than 1 iff a3 + a3 < 1.
By Theorem 1, the latter condition guarantees the existence of a stationary solution of (5a).

Franke and Seligmann (1993) pointed out that the Poisson innovations v(t) satisfy the uni-
variate version of conditions (C1)-(C5). As for the model (5b), ¢°(k) = 0 except for k; = 0,

9



their arguments can immediately be transfered to show that the weights q° (k) of the £(t) of
(5b) satisfy (C1)-(C5) with d = 1 and ¥,(n) = const - n,, \Ilu(n) = const - n?, ¥1n(n) =
const - nd.

Let € = ((1)),_8_2 = ((l))’ _1_ = (:) As a)y = aj, @12 = g, 21 = 1 and a2 = 0, we have
from Lemma Al c) of the appendix for P(m,n) # 0

2 log P(m, n) =

my {P(m—sl,_n—
Bal

1) _. |
T—a Plm. o) - 1} =: @Q1(m, n)

my {P(y_l—gz,g—gl)

i-log P(m,n) = P(m,n) - 1} =: @Q2(m, n)

das 1-ay

Using the convention ¢°(—e;) = 0, we have

iq"(g) P(k-¢e)-¢°(k) for ki >0, k2 =0,

iqﬁ(k) =0 else.

Applying the explicit formula (A2) of the appendix for P(m, n) , a straightforward calcu-
lation shows for P(m,n) > 0

57 1o Plm) = “ B8 _ 1 = Qym,n)

We can write the Fisher information matrix X(9) = £(a, a3, 8) in terms of the functions
Q1, Q2, Q3, and, in particular, we have for z € R?

3
2" E(9)z = E()_ % Qi(X(1), X ()}
i=1
as, of course, P(X(1),X(2)) > 0 a.s. with respect to the stationary distribution p .of
{X(t)}. Therefore, X(¥) is positive definite and satisfies (C6) if

3

(6) D #QiX(1),X(2)=0 p-as.

=1
implies z = 0. As the support of p is IN3 and as we have Poisson innovations,

P(m,n) >0 forall m,ne N2 with n; =m.
Therefore, (6) implies

. ‘
ZZiQe((ml),(k))=0 for all my,my, k>0.
my m

=1
Now, the special selections m;y = my = 0, m; = 1 and m; = 0, m; = 0 and mg =1
immediately imply 23 =0, 2, =0 and z, = 0.

10



Appendix: Proof of Theorem 2

The proof of Theorem 2 is similar to the univariate case treated by Franke and Seligmann
(1993). It is an application of a theorem of Billingsley (1961), and the basic idea for showing
the assumptions of that general result is to use some recursive relations for the transition
probabilites Py(m, n) of the INAR(M )-process. To keep the somewhat tedious notation as
simple as possible we restrict ourselves to the two-dimensional case M = 2, but it is easy
to see from the following proof how the arguments have to be transferred to the case of
general M. Furthermore, we just write P(m, n) instead of Py(m,n) as the dependence of
the transition probabilities on the parameter ¥ = (a, 3) is now obvious. The basic recursi-
ons are contained in the following Lemma.

Lemma Al: Lete, = ((l))a € = (?), 1= G)

a) P(0,n) =¢’(n) for n2>0.

P(m,n) = a;{a;;P(m—-e;,n—-1)+(1-a;)P(m-e;n-e)}
+ (1-a;){a;;P(m~e;,n—-e;)+(1-a;)P(m-e;,n)}
ifmi21,m>0,n20 |

b) Fori =1, j =2 and vice versa let form >0, h >0

P(m,h) = pr(a;om;+a;jom;=h)

miAh
mg m. a 5 .
Z ( ')( ¢ )a:“ a?j “(1 _ a“)m. “(1 _ a,’j)ml e

u=(h—m;)+ K h= o

(A1)

such that we can write

(A2) P(m,n) = ) Pi(m,m - k1) Py(m, n; — k2) ¢°(k).
k<n

Then, for i = 1,j = 2 and vice verse, m; > 1,m; > 0,h > 0:

Pi(m,h) = a;; P,(m - &;,h — 1)+ (1 - a;;) Pi(m — e;, k),

where, for conventence, we set P,(m,h) =0 for h < 0.

11



c) Fori=1, j =2 and vice versa, m,n > 0:.
72 P(m,n) = %—{e;;P(m -~ e;,n- 1)+ (1 - ¢;i)P(m - &;,n - &;) - P(m,n)},
tf0<ay; <1
52 P(m,n) = 72-{a;; P(m — ¢;,n — 1) + (1 - a;;)P(m — ¢;,n - &) - P(m,n)},

if0<a;; <1

Proof:
1. Let a;jom; = 2:;’1 u('.j) , ,7=1,2,

with i.i.d. Bernoulli-variables Yl(ﬁ ), ey Y,&';’ ) such that a;; = pr(Y,,(ij ) = 1). Therefore,
for m; > 1, we have ‘

a;;om; — ,s:f) é ai; o(mj - 1).
Partitioning the event {Aom+¢£(t) = n} for m; > 1 w.r.t.  the four cases {Y,s.l,l) =
LY = 1), (&) = 1, %80 = 0}, (v = 0, ¥ = 1) (v = 0, ¥l = 0}

and using independence, we get:

P(m,n) = auenP(m-¢,n-1)+an(l-an)P(m-e,n-¢)
+ (1-an)an P(m—-e,n-e;)+(1-an)(l-az)P(m-e,n)

which is the recursion a) for i = 1, j = 2. By exchanging the indices 1 and 2, we get
the other relation with ¢+ = 2, j = 1, too. The same type of argument also provides
the recursion b).

2. If m; = 0, P(za,n) does not depend on a;; and ay;, and the relations c) hold.
Therefore, we only have to discuss the case m; > 1, and we restrict ourselves to the

situation ¢ = 1, j = 1 as the other selections of indices can be dealt with analogously.
We have '

il R )\ ([ my -1 my—
dan P, ) z ( H ) (h —I‘) {“a'l“ (1= @)™

us=(h=-my)+

—(my — p)aty(1 - an)"'"“"l} cap7 (1 — agp)ma e

miAh
= - P@mM+ Y u("“)(,,'f’,,)a#;‘(l—au)"""“l :

—en p=(h=ma)v1 K

h- -
a3 “(1 — ayz) ™M+

12



myAh
my v m —1 ma u-lry my-u
l—al{ Filem, B)+ E (l‘—l)(h—#)a“ (1=au)

pu=(h—-ma)vil

aty “(1 = ap)™ ¥

m)

l—an

{Pl(gn.—g,,h “1)- P,(n_x.,h)}

Using this relation and (A2), we get by applying the recursion b) for i =2, j =1

0
Bar, P(m,n) = l_r_na“ {}: Py(m — g, ny — k1 — 1) Py(m, nz — k2) ¢° (k) — P(.ﬂl;,_l.l.)}
= l:n;u {amkz Pi(m—e,n—k—~1) Py(m—e,n;—kz— 1) ¢?(k)
k<n

+(1 = az1) 2 Pi(m—e;,n —k - 1) Px(m—e,,nz - k2) ¢° (k) — P(Q,Q)}
k<n

= 1:n‘ll"{anP(m e,n—1)+(1~an)P(m—-e,n—¢)~- P(m, n)}

|
Lemma A2:Form,n >0, ¢,j = 1,2, we have for P(m,n) >0

m;

7
<_J. ; .. .
Tay = Bayy EP@mm) <0 0<a; <]

Proof: We only discuss the case i = j = 1, as the other situations can be treated analo-
gously. ‘
Using the abbreviations
Sqhi=ayPm-e,n-1)+(1-an)P(m-e,,n-¢) >0,
S31=ay Pm—-e,n—e)+(1-axn)P(m-e,n)20,
we have by Lemma Al form; 21, m; 20,n>0
P(m,n) = 011521 +(1-an)sy
P(m,n) = 1 — {521 P(m, n)}
= - {P(m, n) - 53}

d
dan

IA

— P(m, n)

On the other hand, again by Lemma Al,

13



9
> -
dar, P(m,n) > g

P(m,n)

Both inequalities also hold for m; = 0 as, then, 52— P(m,n) = 0. [

Lemma A3: Fori=1, j =2 and vice versa, we have for P(m,n) > 0

aji P(QP'(;_"’ ;_ b < ;1— if 0<ai<l,
(1-aj) P(m}:(:;:i)— &) < ;1: if 0<a;<1,
a;; P(mp—(z”;‘)_ L) < E% if 0<a;<1,
(1 - ajj) P(m‘;(:i:i)_ &) < %j if 0<a;<l.

Proof: If m; > 1, we have from Lemma Alc

P(m—e;,n—-1 | P(m —e;,n—e;)
< . —-a;
0 < % —pmm 0% T Bm,n)
1—ay; O
= T Oan log P(m,n) + 1
< .1__ﬁ+1=i
[/ Qs

by Lemma A2, such that we have the first and second inequality. For m; = 0, they are
satisfied trivially, as then by definition the left-hand sides vanish. The third and fourth
inequality can be shown analogously. ]

Proof of Theorem 2: The Theorem is a special case of Theorem 2.2 of Billingsley
(1961). We only have to check that conditions (C1) - (C6) imply the conditions of this
general result. We first remark that (C2) implies E||X ()I]® < oo for the stationary solution
of (2). This can be shown completely analogous to the proof of Theorem 2.1 of Du and
Li (1991) where, among other things, the existence of the second moment of a univariate
INAR-process {X(t)} is concluded from E £(t)? < oo.

1. Using the explicit representation for P(m,n) provided by (A1) and (A2) and condi-
tion (C3) we conclude that P(m,n) is three times continuously differentiable w.r.t.
ay,...,a, and B,..., A4, noting that ax = a;x) ;) < 1 by assumption. Further-
more, from 0 < ax = a;);k) < L, k=1,...,8, and (C1) we have that for any

14



m the set {n; P(m,n) > 0} does not depend on a and S. Therefore, log P(m,n)
is well-defined except for a set of P(m,.)—measure 0 which does not depend on the
parameter values.

. As Aom < (m; + mz)1 with 1 = (}), we have for ny,ne 2> my + my

n n2

P(m,n) = > Y pr(Aem=n-k) (k)

kl =ni-—m;—m3 k2 =nz~—m]—m2

Y (k)

n-(mi+my)1<k<n

IN

The first relation of (C4), therefore, implies that for each 9’ there exists a neighbour-
hood V such that for fixed m

S supgey P(m,n) < (my +mz + 1)3{1+ T supgey ¢P(K)} < 00,
n>0 k>0

where U denotes the projection of V onto the subspace corresponding to pa.rameters
Bi,...,Bq4. By Lemma Al c), the same summability condition holds for 3—P(m, n)

and WP(_H_I_, n), k,1=1,...,s, instead of P(m,n). Using additionally the se-
cond and third relation of (C4), we have the uniform summa.blhty for all first and
second derivatives of P(m,n) w.r.t. parameters ay,...,Q,, ﬂ;, s Bds -

. Calculating expectations w.r.t. the stationary state of {X(t)} we have for a; =
@i(k),j(k) » using Lemma A2,

IN

C? - E {max(X;()(1), Xy (1)}
2L E(Xi(1) + Xj(1)* < o0

with C = max(a;',(1 — a;)™!). Similarly, we have from (C5)

€l log POX(1), X(2)

IA

(A3)|6 log P(m, n)| < P( Plm.n) Z pr(Aom | ﬂ(.k.)l < Vy(n)
and " E|z5-log P(X(1),X(2)) ’ < E¥2(X(2)) < o

Therefore, the Fisher information matrix £(9) is well-defined, and, by (C6), it is
nonsingular.

. For all akx = a;),j(k), k= 1,-..,8, we have

0

(Ad) day 0oy

log P(m, n)| < C - mjk) mjq)»

15



where the constant C can be chosen uniform over a suitable neighbourhood of any
¥ € O. To show this relation one has to calculate the second derivatives explicitly
using Lemma Alc, and then Lemma A2 and Lemma A3 are applied, e.g. for k = {
and (k) = j(k) = 1 we have

‘(%2"108 P(m,n) = 302 log P(m, n)
= (l—a )2{Q21 1} +1 -1}
with
Q= o DB, (g _ gy TR ELA S
Q3 is bounded by Lemma A3. Using
o PhkD|_ Pk)| 9

day; P(m,n)| ~ P(m,n)| dan

for P(k,1) > 0 and 52- 7

33—"021 is bounded by const. - m

= 0 else, we see from Lemma A3 and Lemma A2 that

Analogously, we have for k,l,u=1,...,s

9 a8 9
(46) 30 Do Bay o8 P(B)| < O i ™) Miw) »

for a suitable locally uniform constant C. We illustrate the argument with the case
k=l=u, i(k)=j(k)=1

2-2—10 P(m,n) = & l P(m,n)
aai g 2229 22 - a Og m,n

2my a my

2m1
= an)? a2 T 12 aau

= (1 )3 {Q2l }

Again by Lemma A3 and (A5) the first two terms on the right-hand side are bounded

53 @n

by const - mi. By (A5), "r Q21 is a linear combination of terms of the form
0 P(k,1 9
— {P((n n))} [3‘111{105 P(k,1) — log P(Lg,_r_l_)}] and
P(k,l
D {9 fog Pl ) - log P(m, )|

16



it
E

with (l(.y !) € {(.l_n. -€,n~- l)) (Ln. —€,n-— .e..l)} and coefﬁcients az; or (1 - 0'21) ’

such that 3-%;— Q21 is bounded by const - m? too, using Lemma A3, Lemma A2 and
11

(A4).

. We have to show that local suprema of all third order derivatives 6f log P(X,, X2)

have a finite mean. For this purpose, we get locally uniform bounds on all third
derivatives of log P(m, n) by using the same arguments as in 4. and the inequalities
of condition (C5). We have, e.g., from Lemma Alc

+(1-a2n)

ii_ ’ m; _Q_P(m—gl,g—.l_)
3Pa Bar, 8P E) {“" .  P(mn)

m a
l-an aﬂu QZI

] P(m—gpa—-gl)}

l—an 53; P(m,n)

Using as in (A5)

_ P | o -
= Poa.n)| 9% {log P(k,1) — log P(m,n)},

‘ d Pk}
0B, P(m,n)

we see from Lemma A3 and (A3) that 'ﬁai'.: Q21 is bounded by const - ¥, (n). Therefdre,
we have for oy = a1, (k) = j(k) =1 :

and this relation holds forall u = 1,...,d, k=1,...,8: Simila.rly, for ar = ay;

o 02 oom ' m 0 9
3B, a—ak-log Plm,n) = (1-an)? TN Qu + 1 —ay 9B, Oan

Q@2

is bounded by const m2? ¥,(n) , as the first term on the right-hand side is bounded
by m; ¥,(n), and by (A5), 5%: 5021—1 Q2 is a linear combination of terms of the form

o [ Pk} d
3B, { P(m, _,!)} [3au {log P(k,1) — log P(m, Q)}]
and
Pkl [0 @
P(m,n) [aﬂu day; {log P(k,1) ~ log P(m, g_)}]

with (k,1) € {(m - ¢;, n - 1), (m — ¢, n — &)} and coefficients az; or (1 - an),
such that the second term is bounded by const m? ¥,(n) , using Lemma A2 and the
bound on 5%: 3%; log P(m, n) from above.

17



Using similar arguments, we have additionally to (A6)

8 9 9
5. da; ooy CEF(mD) < Cmjumyq) ¥.(n)
d
a(; BZ l°gP (m,n)] £ Cmjgy {Vu(n) + Yu(n) ¥u(n)}
a
‘a?s az a5, g Pmn)l < Vuwu() + Yu(n) Youln) + ¥o(n) Yuu(n)

+¥,(n) ¥yu(n) + 2¥4(n) ¥.(n) ¥.(n)

forall k,!=1,...,s3 and u,v,w = 1,...,d. Using (C5) and E|| X;||® < oo, we finally
have for all parameter values ¥ € © the existence of a neighbourhood V such that
for all third order derivatives

E sup o 0 0

scv |89, 89, 89, log P(X,,X2)| < 00
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