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In these lectures we will mainly treat a billard game. Our particles will be hard spheres.
Not always: We will also touch cases, where particles have interior energies due to
rotation or vibration, which they exchange in a collision, and we will talk about chemical
reactions happening during a collision. But many essential aspects occur already in
the billard case which will be therefore paradigmatic. I do not know enough about
semiconductors to handle collisions there — the Boltzmann case is certainly different
but may give some ideas even for the other cases.

Moreover, these are lectures by a mathematician. Missing physical intuition needed to
"simulate the game of nature” (as G. Bird put it), we have to describe the effects of
collisions by a kinetic equation - this is the modelling part — and then we have to solve
this equation numerically.

In a first — a modelling — part we will describe how to get the "correct” kinetic equation.
In a second lecture we shall describe our basic ideas to solve these equations: It leads
to particle methods or - as we sometimes prefer to call it in order to stress the principal
similarity to Finite Differences or Finite Elements: Finite Pointset Methods (FPM). In
the last part we shall talk about details of a realization of particle methods, comparisons
between existing codes, the behaviour on massively parallel systems and we shall present
numerical results.

All results presented here are the work of a group with Hans Babovsky and Jens Struck-
meier as main contributors, including others as F. Gropengiefler, W. Sack, K. Steiner
and B. Wiesen. Also our "Humboldt fellow” A. Lukschin was a valuable help.



1 Collision Integrals

Our mathematical model will be a kinetic equation, describing the time evolution of a
density in position-velocity space

t — f(t,r,v), re€NveR’,

which may depend on interior energies € too.
A kinetic equation has the form

af af d
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where E is an exterior or selfconsistent force field and I(f) denotes the collision term.
Since we concentrate on collisions, who act on velocities (and interior energies), we shall
restrict ourselves here to the spatially homogeneous case

of _j

S =10,

where

f= f(tvv) (Or f(tvv’f))'

This equation describes the effect collisions have on the density f.

In a paper by A.V. Bobylev, just appeared in Math. Models & Methods in Applied
Sciences (Vol. 3, No. 4, August 93), a systematic derivation of /(f) from several quite
simple postulates is given. I shall shortly review these results since they seem to offer
a new approach for collision modelling (the classical due to Boltzmann or improved
versions of it as in C. Cercignani, "The Boltzmann Equation and its Applications, pp.
44-57, are well known).

(a) We take into account only binary collisions (this assumption fails, if we have to
consider recombination in chemical reactions, where a third collision partner is
needed as energy source): | is a quadratic, time independent operator

(N = 100w = [ [ K@ 0,0 ()] (02)dvdo,

(b) [ is invariant under translation in the velocity space:

If fo(v) := f(v+ a), then If, = (if)a (this assumption is not true tor semicon-
ductors!).



Then

K(v|v,v) =Q(vy —v,v; —v)

(D) = [ [ Quisw) (v + w)f(v + us)durdus.
[ is invariant under rotations in v-space. Then

Qluruz) = Q). Juzl, < wryuz >).
[ can be decomposed in a gain and a loss term
Q=Q" —Q with@* >0
and [=f=0if f=0 (nothing can be lost, if there is nothing). Then
- 1
Q" (u1,uz) = 3 [9(lur])6(u1) + g([ua|)é(w1)],

where g(|u|) is an arbitray function.
With g defined by Q*(uy, uz) = 23q(2uy, 2u,) we get

(N = [ [atw='ut ) f()f(w)du'dw
~1(v) [ g(lul)f(w)dw,

where u = v —w, v' = v+ (v —u), w = w— F(uv' —u).

We have conservation of mass (or particles)

/(if)(v)dv = 0.
Then
9(lul) = /q(u’ — u,u + u)du’

and with p(u’ | u) = ¢(u — v/, u + v’) (transition probability) we get

(IN() = [ [’ 101w - plu | @) f(0)f (w)] du'duw.
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(f) Microreversibility p(—u’ | —u) = p(u | u'). If we include the symmetry (c), we get
plul ) = p(lul, [w'], < u,u’ >)
and |
p(u' | u) = p(u | o).
From (f) we get the H-theorem
JUnwingds <o.

Remark: (b) implies also conservation of momentum

/vi(f)(v)dv =0.

(g) Conservation of energy: p(u | u') = 0 if u| # |[«/|. Then

"o "2 2 <uu >
p(u | ') = 26 (Ju]) —|u|)a(|u|,—,u|2—).

With v’ = |u'| -9 = |u] - 9, u = v — w we get finally

(17100 = [, [ ol (1, S22 (76 0) = 10 )] e

where o(|u|.cos8) is now the only indetermined function, the differential cross
section.

So far our report on Bobylev’s paper (in the rest of the paper he studies space dependent
problems, but in whole R® and uses symmetry properties (invariance under Galileo
transforms etc.), which are not useful for realistic situations).

o is now to be chosen in such a way that we are able to reproduce measurements. These
measurements are mainly those on transport coeflicients — for example the dependence
of the kinematic viscosity on temperature.

The simplest idea for o is given by considering a billard gas (in the phenomenological
derivation)



o(|u|,cos8) = d - cos b,

where d is a constant connected with the diameter of the molecules. But this gives wrong
macroscopic laws; for example, the viscosity n doesn’t depend on an experimentally
observed way on T: ("Sutherland” formula)

1 T

VT T+T,

This can be achieved by changing o a bit, using the so-called Variable Hard Sphere
(VHS) model

o(lu|,cos ) =d (l + i) cos f.

|uf?

In this model. the diameter “shrinks”, if the relative velocity |u| = |v — w| is larger: not
microscopically realistic. but reasonable in the sense of modelling. 7

If one wants to include real gas effects like inelastic scattering or chemical reactions, the
model gets much more complicated. I will scetch the approach to these phenomena.
Assume we have a mixture of molecules A; and the corresponding atoms A. There are
essentially (neglecting ionization) five kinds of collision processes which we have to take
into account:

A+A = A+A (i)
A+ A, = A+ A, (i)
A+ Ay = Ay+ A (iii)
A+A;, = A+A+A  (iv)
Ay+ Ay = A+A+4;, (V)

The equations (i)-(ii1) describe scattering processes, where (i) corresponds to the clas-
sical Boltzmann case. The possibility of dissociation and recombination is stated in (iv)
and (v). Note that in the case of recombinations we have to consider triple collisions
in order to fulfill energy and momentum conservation.

In 1960 Ludwig & Heil (G. Ludwig and M. Heil, "Boundary-layer theory with disso-
ciation and ionization”, in: Advances of Applied Mechanics, Vol. 6 (Academic Press,
New York, 1960)) formulated a system of generalized Boltzmann equations describing
the above mentioned collision processes. Following Kuscer (I. Kuséer, ”Dissociation



and Recombination in an Inhomogeneous Gas”, Physica A 176 (1991), pp. 542-556) we
reformulate these equations in terms of differential cross sections.
Let f(v,t)and g(v,€,t) be the distribution functions for the components A and A; of the
mixture, where ¢ represents the internal energy of the molecule. Then the Boltzmann (or
"Ludwig-Heil” equations) for f (and g respectively) have collision terms representing
these 5 collision processes; the differential cross sections depend on the total energy
E of the process (instead of |u|) and on internal energies; just to show one part of
dissociation of molecules:

21,2
Pyl o (B¢ = B [g’g; - (2”) fflgz] dvrdvade(7)

((l

— and it would take some time to explain all terms here. Recombination is shown in
( ) ffig2 and it is unclear, whether it plays a significant role or not.

The free part is again o; for the nonreactive part, where the molecules and atoms are
just scattered, one uses a generalization of the so-called Larssen-Borgnakke model [C.
Borgnakke and P.S. Larssen; J. Comput. Phys. 18 (1975) p. 405], which consists essen-
tially in dividing the differential cross section into three parts and caring for " detailed
balance”. For collisions among diatomic molecules the model is as follows:

a'sm(E; n- 7’/; (:IQ V,‘, flh VJ — €, Vko €1, Vl) = (1 —a-— b)asm.el + A0 s, ve + basm.in

with

1
Osmel = 47'_ tOt( ) 6(6_6,)6(61 )'kéﬂ

3 tot

Osmve = o E3 Osm E) ( —6_61)61'}:6]'(

Osm,in ( ) (E_f—el—vk_‘/l) tOt(E)

€: continuous rotational energy

V.:  discrete vibrational energy with level index 2
o' . total scattering cross section

sm

Note that ¢! depends on the collision energy E as in VHS.



In the generalized LB model three kinds of scattering are considered:

i) completely elastic (osm,ei)
ii) vibrationally elastic but maximal inelastic with respect to rotation (Gsm.ve)

iii) completely inelastic (osm,in)-

The explicit form of the factor C(E) (depending on the vibrational model) is somewhat
lengthy and therefore not quoted here. The parameters a and b are chosen to reproduce
measured transport coefficients.

For the dissociation reaction we assume (since we have not enough measured data) for
the differential cross section a uniform probability distribution over the energy shell in
phase space. This concept is widely used in high energy physics and often successful in
describing decay processes. The differential cross sections for the dissociation reactions
(iv) and (v) are the following:

1
oaa(E's 'y = ET w) = 4W20§Z'(Ea€')

adnl(El; nlv C,w ‘/ilv 6’19 ‘/jl — €, Vka 6tr'v(")) = Cmb(E)(E —€—- Vk)20,¢ti(:'tl(E 6 VI 613 ])
with (threshold cross section”)

tot (n)(l‘:/__E:B)'1

Odadm = 0 E! 'G(E/—EB)

tr
Eg: binding energy of the molecule;
© : Heavyside function.
The parameters (™ and n have to be chosen to reproduce the measured "rate coeffi-
cient” in equilibrium. This means that averging of |u| - 0, over Maxwell-Boltzmann
distributions should lead to a form of the rate coefficient similar to the well known
" Arrhenius law”:

S
K(T) = AT® exp (KBT)
Kp: Boltzmann’s constant;
T : temperature.
Things become complicated but are still possible to handle. We stop here, but mention
that — besides recombination - ionization, radiative energy transfer etc. is not yet
included: Much remains to be done.



We shall now reformulate the collision integral and the spatially homogeneous equation
in a way which is more appropriate for the numerical approximation we have in mind.

We do so in the following Babovsky (Eur. J. Mech., B/Fluids, 8, No. 1, 1989). We

have

of

a0 =100 = [ [ o= wloo = wl cos0) [ ) (00) = Fit,0)f(t,0)] ()i

with v =v—-n <v—-wn> w =w+n <v-—w,n > (using another unit vector 7
instead of 7, which moves over S2 = {7| < v—w, 5 >> 0} when 7 moves over S? - and
then denoting 7 again with n) or - with k(Jv — w|,8) = |v — w|o(Jv — w|, cos8) :

=i f//kftw

We have to discretize with respect to ¢, putting f;(v) = f(jAt,v) and we may do that
either just by a simple Euler step

(1)
frvr = (1= At [ kfdu()dw ) §; + At [ g1 (0)dln)

or by integrating

(1)

L i) - 1 [ kst

over jJAt <t < (7 4 1)At with f; as initial value.

For the first idea we have to pay as a prize a severe restriction on At — but we pay it,
since the second idea is computationally very expensive without needing a restriction on
At. There is no investigation yet, whether it might be occasionally cheaper to combine
both methods.

Anyhow, we go on with the simple explicit discretization and will use a weak formu-
lation, which we get by multiplying both sides by a bounded continuous test function
¢ € C* and integrating over v (in principle, we should realize that f(t,-) is a density of
a measure and measures are quite natural mathematical objects to deal with mass or
charge distributions etc.; we could derive a measure formulation of any kinetic equation,
which would be a natural starting point for our particle approximations; but the weak
formulation is equivalent to a measure formulation and certainly more familiar to most
scientist<).



We get using dv'dw’ = dvdw, [v' —w'| =|v—w|and v =v" —y < ' — w',n > etc.

(2)
[ mito)do = [ [ (Koup)f5(0)1;(w)dvdu
with
Kuws = (1= 8t [ k(lo = w],0)dw(n)) ¢(0) + At [ K(lo = w],8)p(v')duo).

(1) is equivalent to (2), if we use [ f;(v)dv = 1, which is guaranteed by the conservation
of mass. The "transition kernel” K, ,¢ is here independent of f; — this would be
different for (17). :

We need to transform K, ¢ into a form like

(*) '
Kowp = [ ¢(b(v.0,2)\(z)dz

with an auxiliary A-dimensional variable y; since then we get

[e)inido = [ [ [etw(o,0,2))5(0)f;()x(2)dzdvdu

and we shall see that a point approximation of the (6 + k)-d density f;(v)f;(v)x(z) leads
immediately to an approximation of f;;;. Assuming that we have such an approxima-
tion for f;, we have to construct one for f;(v)f;(w)x(z) and get the approximation for
the time evolution ;3 — 5 + 1.

The representation (*) is due to Babovsky: Let B be a ball in R? of area 1 (radius 7‘;),

then we can construct a function ¢,, : B — Si, such that

Y(v,w,r) =Ty (duw(z)), x(z)=1for z € B;

here T, ,(n) is just v/, i.e. Tyou(n) = v—n < v—w,n > So ¢,,(z) is nothing
but another representation of the "iinpact parameter n”. But more is hidden: the
formulation includes at the end "dummy collisions”, i.e. collisions without effect — a
useful strategy (as we shall see) originally used by Nanby and us and by a Russian code
(Ivanov).

We shall give the construciton of @, since it is the basis of our simulation code: We fix
v, w and take v — w as polar axis in a polar coordinate system (a, 3) for 7, where « is
the angle between 1 and v — w, i.e. 8. We get

k(0)dn = k(a)sin adadf.



Choose a function r(a) such that

r(a )gE—At k(a)sin a.

o

Since n € S2,ie. 0 < a < I, the right hand side is positive for a > 0 and r(a) is

invertible with inverse a(r). The maximal value of r¥(a) is r*(3) = 2At fo k(a)sin ada.
Now a restriction of our Euler scheme comes into the game: We have to guarantee
nonnegativity of f,4+. if f; is nonnegative and we are only sure, if

I—At/ |v—wl0 dw(n) >0 for all v,w

l.e.

2r I
2 k . <
At /O /0 (@) sin adadf < 1

or
7 1

2At/2k inada = r’(2) < .

A (a) sin ada r(2)_7r

This is our main and serious restriction of At! With rp,. = r(5) we get

At [ KB)p()do(n) = At [ @(Tuu(m)k(O)d(n)
_ /0 u /0 " o (Tyw(a(r), B)) rdrdB
L o (Tl dune)) &'z,

Tmax

if @yw(z) is just the mapping z ~ (r,8) — (a(r), B) ((r, B) are the polar coordinates of
the point z in the ball B, _,, with radius rmax). We have defined ¢, ,(z) forz € B, ,,, C
B; this is the case, where "real” collisions happen - v’ is different from v.

The other part - corresponding to (1 — At [ kdw)p(v) - reflects somehow the probability
that no collision happens and so we define ¢, ,,(z):

If £ = (rcosfB,rsinf3) ¢ B,,,,, then
év.w(x) = (g’ﬂ) .

If « = , v—wis orthogonal to n and v’ = v! For z in the ring rp. < r < 71;, we have
dummy ccllisions.
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by 1s now defined for all r € B and since

(1-atfxoaom)ow = [ @ Tulbonln)de

it does, what it should do:

1\'v_wnp=/8<p(1/)(v,w,z))dz

with x(z) =1 for all x.
What we have to solve numerically is

(3)
/R3 2(v)fim(v)dv = /R3 /Rs /B‘r’(‘b(vvwvx))fj(v)fj(w)dxdvdw.

Particle Approximations

A particle is characterized by its velocity v and its mass (or charge) a. Since we talk
only about collisions, we do not consider the position of a particle. In a real simulation
we divide the position space into cells and assume the distribution to be uniform with
respect to position in each cell: f;(z,v) = f{(v) for z in cell c. Therefore our particles
approximating ff are those particles of a real simulation, which are in one cell - in
general not more than some hundreds, often around 20-30. We shall — at the end -
keep that in mind, even if we talk about convergence for particle numbers going to oo.
A particle ensemble (or finite point set) is given by

WwN = {(01»21)»---v(0N’2N)}

or — in another notation - by

6oy = {(a,2}) ..., (o, 2N)}

We consider sequences of particle ensembles -

or



If we assume a total mass (or ch'arge) as M (i.e. [ f(v)dv = M), we consider only
sequences with the same property

Za,{v: M.

=1

Equal weights mean a¥ = ‘—‘}é, i=1,...,N.
Often v are taken from a sequence of velocities v,,v,,.. ., i.e. more and more particles
are brought into the game; then
N N
{yl ,...,QN} = {vy,---,Un}-

One can in general not expect as good results for sequences of velocities as for sequences
of ensembles. Now, for a given density f € L} (R?) with [ fdv = M we say that ”5(‘,5
converges to f7,if

N
}JT;Ogafv¢(gfv) = /f - odv for all ¢ € C*(R®).

This means that the discrete measure 6“':’3 converges weak* to fdv.

Remarks

1) We may interprete this as integration rule, where we integrate the function ¢
with respect to the measure fdv. Knots and weights are depending on f, not
on ¢. Estimates should distinguish between a distance between w) and f and a
smoothness property of ¢. '

2) We should be aware that if f has not a bounded support, we are not able to include
unbounded ¢ as |v|? or |v|?v etc. So we do not get convergence of moments we
need for physical reasons (as temperature or heat transfer). This is a serious
problem, which we see also numerically, if we compute the heat transfer. This
gap is not closed.

We would like to measure the distance between wX and f. This might be done by any
distance in measure spaces (like Prohorov metric or bounded Lipschitz distance), but
also — since the limit fdv is absolutely continuous with respect to the Lebesgue measure
- with help of the "discrepancy”.
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Consider an axe parallel "rectangle” R and the mass of W} in R:

N .
N 1 N . L 1 lf v E R
;ai Xg(xY)  with Xr(v) := { 0 else

Compare it with the mass in R as given by f,i.e. g fdv. Thelargest possible deviation,
ie.

N
;a?’xR(gf")-/Rfdv = D (¥, /)

sup
R
is called "discrepancy”. It is a distance between w} and f and we have

S = iff D (w¥,f) = 0.

There are other but similar definitions of discrepancy using the class of convex sets etc.
instead of rectangles — but this doesn’t change the situation. ‘
There are two consequences of our definition — at least for equal weights al = %—:

1) the Koksma-Hlawka Inequality

N
% > o(v))| < Varlyl] - D /)

=1

/<pfdv—

We see that in fact é,n — f, if D(wN,f) — 0 and that it goes linear with D.
The variation of ¢, which we denote by Var[y)] is for one-dimensional v the usual
total variation and might be substituted by [ |¢'(v)|dv, if ¢ is differentiable. In 3
or higher dimension it is the so-called "Hardy-Krause”-Variation, a quite lengthy
concept based on the Vitali variation.

One realizes that the estimate separates the distance D from the properties of the
test function. From f we assume nothing more than that it is a density.

2) We are now able to discuss an optimal speed of convergence: How fast converges
D(wV, f) to zero? Clearly, the speed depends on the definition of D and we get
mainly a relative information. For f = KXo, (v), the uniform distribution in the
unit cube, there are very strong number theoretic results:

With D(wX) = D(wX, Ajoaj+) one gets

k-1
D(wy) < Ckln N

for all wﬁ

13



and

In N*T*
DY) > 2 ~— for all wf.

Since one can construct sequences of w¥, which have a convergence rate given by
In N¥='/N, one may say that this is the optimal rate today and not much can
be gained in principle. The convergence is slow, but faster than N=%. And it
grows relatively slow with k, the dimension, getting larger - this is the reason,
why particle methods are useful for higher dimension! We shall see that for us
k will be typically 2 x 3 + 2 = 8. We shall come back to the question how to
construct this optimal convergence order in the second lecture.

Remarks:

a)

Do we get much in using weighted particles? We have more parameters free, but

realize: We want to improve D(wY, f),not | [ fodv — 3 aNp(vN)| for a concrete
!

@!

The only answer I know is for a very simple case: k =1 and f = Ajpy). Then the

best without weights we can get is 4, with weights ﬁf ~ but only if YN, eV =

NLH. The order of convergence is not changed in this case.

If we construct wY in using a sequence (v;)jen, just adding a new particle in
moving from N to N + 1, we loose a bit of convergence speed: Now

In N*
(%)

is the optimal order we can achieve.

We finish this lecture by showing how and why particle method works in principle.
Assume that we have an approximation {vf'(j), e ,vﬁ(j)} of f; and we want to con-
struct an approximation of fj4.

The right hand side of (3) tells us, what we have to do: The measure, which integrates,

1S

fi(v) f;(w)Xp(z)dvdwdz,
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where Xg is the characteristic function of B. We need therefore a "Finite Point
Set”, which approximates f;(v)f;(w)Xs(z), which is an 8-dimensional density of to-

tal "mass” 1/M?. If we construct a set {( N(*), w] (*),x{v) ,...,(vN( *), wh (* ),zN)}
(with weights M/N) approximating this density, then

N
T 20 (6 (0. 22))
approximates [ ¢(v)f;41(v)dv and

oM+ 1) = v (o] (), 0] (x), 2F)

is an approximation of f;;,!
This gives the simulation procedure and a convergence criteria:
Given an approximation {ilN(]), . ,vﬁ(j)} of f;. Construct from that an approxima-

tion

{(V )0l (0),2)) -, (N (%), wp (+),28) }
of fi(v)f;(w)Xs(x). Then

oG+ 1) =N (%), w](x),2)), i=1,...,N

approximates fji;.

The main question remains: How do we get (vN(¥),wN(x))? We have only vV (j),
: = 1,...,N! But we have a lot of freedom - the only theoretical condition is the
convergence condition. Practically, we have more conditions - it is necessary to keep
all conservation properties: mass, momentum, energy true for the Boltzmann evolution
in the simulation process, which means for equal weights

N
ZU‘N Zv G+1D

=1 =1

and

N
>l (I = ZHU G+ DI
i=1

All practical computations show the importance of the numerical conservations of these
quantities. We do not have any problems with it for equal weights, but have some for
weighted particles!
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2 Pseudorandom numbers and the simulation pro-

cedure

Our collision procedure may be described as follows: Given N particles (of equal
.,un (I omit the indices not necessary now):

weights) at vy, ..

{(v

Determine N pairs

.,x appropriately and you get

-
xy,..

)} and "impact parameters”

-

(vy, wi

1,

w

-
19

y

the new velocities b

)

).

= *x
Uns WNy TN

¥ (

),

There is no theoretical "must” to form the pairs with the particles given - but it is

quite natural. Then we have N? candidates for those pairs:

Uy, Wy, Iy

U (

The following picture gives a 1-dimensional impression:
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How do we select N pairs out of N? possible ones such that they are an approximation
of fi(v)f;(w)? Denote them by (v,,vj(1)> ey (vN,vj(N)).

If we have the pair (vi,v;(;)), we find an impact parameter z;: {z;,...,zx} must ap-
proximate Xg i.e. the uniform distribution in a ball and we may do that independently
from (v,», vj(i))- This defines the new velocity (v,-,vj(,-),x,-). So, where do we put our
cross in the i-th column of the (v;,v;)-diagram i.e. what is j(¢)?

The first idea due to Nanbu was a stochastic one: Select a random number r; from
a uniform distribution in [0, 1] and put j(z) = [Nr;] + 1; then j(:) € {1,..., N}, but
it might happen that two different i get the same partner j(:). We distribute the
crosses randomly in each column. We need to show that - for fixed velocities ¢, @ and
R; x Ry = {(v,w) | v < 3, w < w}

%ZA’R”R@ (v,»,vj(.-)) — /vSt" f(v)dv /':/Su'f f(w)dw.
Using the central limt theorem, Babovsky showed that this is true for almost all se-
quences (7;);en i.e. the procedure converges with probability 1.
In principle we are through - but only in principle: There are many improvements
necessary and possible and this will constitute the rest of the lectures.
For example, in the Nanbu procedure described above, there is no conservation of total
momentum or energy - this is true only ”in average”. The practical consequences were
such, that Nanbu’s method could not compete with the so-called ”Direct Simulation
Monte-Carlo” (DSMC) of Bird, which we shall describe soon.
Babovsky gave an improvement, which doesn’t have this drawback. Assume the N =

2n. Then divide the set {v;,...,vn} randomly into two subsets {v},...,v!} and
{v},...,v2}, each containing half of the particles. Now choose a permutation 7 of
{1,...,n} at random (i.e. each permutation with the same probability) and consider

(v},v:(i))as well as (vfr(,-),v}) as a pair: We make our crosses symmetric with respect

to the main diagonal. Finally, we choose the same impact parameter r; for both pairs
and get two new velocities

Y (v},vi(a),z«) and ¥ (vvzr(i)’”'!’x") :

This procedure keeps the idea of a binary collision and it conserves energy and momen-
tum, since this is conserved "pairwise”

v; + vim =1 (v}, v:(a)a 3?:') +9 (v,zr(g), Vi, zz')

and the same for the energy [|v}||* + |[vZ; |I*.
So, symmetry guarantees these conservation laws — but only for equally weighted par-
ticles. Babovsky has also shown convergence in probability for this procedure.
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If we have different weights for approximating different species in a mixture with great
differences in the concentrations, then, in one cell, one might have particles with differ-
ent weights a; (this doesn’t occur, if we split particles in more rarefied regions, where
the weights differ from cell to cell, but are homogeneous in each cell).

Conservation of momentum and energy in a cell would mean

k
Z/fj(t,v)vdv = constant
1=1

k
Z/f’(t,v)||v||2dv = constant,
J=1

where f7(t,v) designs the distribution of the j-th species, which is assumed to have a
total mass M;.

Approximating f? by M;a; Zf\;’, é,,, where a; is the weight of the j-th species, we would
get the discrete conservation of total momentum C) and total energy Cg

k N, '
Y Mja;Y v = Cum (*)
=1

=1
k N, )
ST M Y |12 = Ce. (%%)
1=1 i=1

If we would now consider binary collisions and would try to conserve momentum and
energy "individually” in each of these binary collisions, we would fail, if two particles
representing different species would be involved:

aijvj + oMo' = O‘J'ijj, + o M”
and
o M1 12 + aa Millo' |12 = e Myl |[* + Ml |

are resolvable only if a; = a; or if no collision happens.

But it is possible to conserve momentum and energy with weighted particles for the
particle ensemble {(a{, i),y (ak,v,'ﬁ,k)} - not "pairwise” - by choosing the collision
parameters z¥ such that equations (*) and (**) are fulfilled for the post-collision veloc-

ities.
We are still working on this problem; first results can be found in K. Steiner: report on
DFG-project No. 269/8-1, July 1993.
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We shall now describe the DSMC-version, originally developed by G. Bird.

One main difference is that he doesn’t consider dummy collisions, i.e. he has to check
whether a pair really performs a collision (i.e. if z € B,,,,) - we call it then a ”collision
pair” - or not.

To decide, whether a given pair (v;,v;) is a collision pair (cp), one uses an acceptance-
rejection method with a parameter Vj,ax, which is supposed to be the maximal relative
speed of all particles

Vinax = max {|lv; — v;]| | 1 < 4,7 < N}.
Then a pair is a cp, if a [0,1]-uniformly distributed random number r is larger than

[lv: — vill

vmax

In this case an impact parameter is chosen and a collision is performed. The computa-
tion of Vi is a N2-effort; therefore he begins with a guess V' of Viax and updates it,
if he finds a larger ||v; — v;||. We get the following procedure:

(v1,...,vN) guess V

select
[lv}=v3| es
(oh o) — B 5 P98 (02 of) = cpton, )

Vi = max{V, [l — will}
no

(v2, vf) — e

If cp(vy, w,) is selected, we determine a time increment

C

- — C gas dependent constant).

AT]

We substitute (vi, v;) by (v,v}), i.e. we update our particle ensemble after Ary — and

we repeat the process until we reach At, i.e. until

Amy + ...+ A1 2> At.

(For our space independent problem, At has lost its meaning: Our time step is AT and
it is chosen such that only one collision happens during this interval; in this case, the

19



time discretization is coupled with N - the time step tends to zero with N going to oo.
In FPM, N may go to co without At tending to 0. In a space depending problem, At
keeps its importance: We do not move the particles in space during At.)

For the correct procedure (with the real V,,.x), Wagner 1991 has shown convergence as
a stochastic process, i.e. in probability. Practically, the results are sensitive to wrong
initial guesses of Vjay.

The "No Time Counter” version of Bird, mainly used today especially for computational
reasons, seems simular: Instead of changing time steps A7; choose one fixed A7, which
is supposed to be the average time, in which one collision happens

AT = ——

N-V

(i.e. V instead of ||[v — w]|).

V' is updated at the end of At, not after A7. The algorithm works quite well again up
to a sensitivity with respect to V.

To compare shortly the described FPM with permuation, we have just

At / l

NZ

panrs v, w1 UN,'LUN

At is restricted by

L= At [ k(o — wl, 0)dw(n) > 0
S2

for all (possible) v, w!

Finally, we may also do updating during the collision process: We perform each collision
immediately, i.e. substitute (v;,v;) by (v!,v}) after At/N. The difference is that we
keep N collisions (including the dummy ones), have a time At/N not including a guess
of Vipax-
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The differences in computing time are less than 10%, the results are demonstrated by
the following examples (a detailed comparison of Bird’s DSMC and the FPM is done

in: Struckmeier & Steiner: AGTM report No. 91, June 93):

A) Relaxation of two streams (spatially homogeneous)

af
S=10)

f(v)"—p— ex (—”—v—-_—ull—z—>+ex (
)= 50rRTy \*P\ 7 2RT P

with a given fixed u € R,

R

)

The solution relaxes to a Maxwellian and we follow the evolution of the second
moment. The plots show the second moment at time ¢ = At for particle numbers

16-400.
Update
192 | oo '
. 4+ No-Time-C Time-C
Permut
1.10 |
1.08
1.06 |
100 200 300 .400
e 4 L A

Figure : 2nd moment at time ¢t = At versus particle number
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B) A hypersonic flow around an axisymmetric body at 30° angle of attack and at
altitudes around 100 km. Here we calculate "global” quantities acting on the body
as drag, lift and heat transfer. We will touch the question how to use axisymmetry
in a particle code in the third lecture.

Looking at the figures, we realize that with 30 particles per cell we are in general
quite far away from a stabilization. The question, what to do in those cases, will
also be discussed in the last lecture.

Update

~—
/ No-Time-C
2.18) -

/ Permut

2.14)

Figure : Drag coefficient versus particle number

0.85 T Update

—~—~——

—Permut

——

0.8‘ 1 K—/'
o-Time-C
Time-C
0.83 ]
082
0.81]
0-80 4 300 400
A e _— -

Figure : Heat transfer coefficient versus particle number
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So far the different procedures used in a collision simulation. We will now turn to the
question, how much stochasticity is necessary in a code like FPM.
The answer is clear: In principle none! What we need is that we have

a) a good approximation of the initial value fo(v) by a particle set;

b) aselection of .V pairs (vi.wy),....(vn, wn) out of N? candidates (v;, v;), such that
they are a good approximation of f(v)f(w), if vy,...,vn is a good approximation

of f;
c) N 2-dimensional points ry,...,rny approximating Xg(z);

d) in case there are stochastic boundary conditions (like diffuse reflection etc.) an
approximation of the distribution of the fluxes leaving the boundary.

One may use random number generators for all purposes. One takes a 1-d random
number generator (for a uniform distribution in [0.,1]), uses sections of length k to get
k-dimensional points. which should be uniformly distributed in [0, 1]*, transforms them
to get a sample distributed with the given density f - this is, what we have to do for a)
and for ¢). How we use random number generators in b) was described in the previous
pages.

But do we need the "random property” of these generators? And what is it? I shall
give my version of stochasticity for [0,1]-uniformly distributed random numbers. If I
have to construct a set of N points r,,...,zy approximating &jo)(z) in an optimal

way, the solution is simple:
(2.2
2N'2N T 2N )

The discrepancy of this set is % and this is optimal. But certainly not very random.

We see that, by constructing 2-d points from it, for example

13 3 5 2N -3 2N -1\

(ﬁﬁ)(ﬁiﬁ)( 2N 2N )
they all are very near to the diagonal of the unit square [0, 1)> and therefore certainly
not a good approximation of Xjp;2. If we want to have this property, we shall loose
optimality. The best discrepancy we can get (for the 1-d and 2-d sets) is now of order
In N/N. The points zy, ..., rx seem now to be more stochastic - let’s call it stochasticity
of order 1. We may realize that it is only pseudo random by looking at sections of length
ki (zy,....zk) (Zg0. ... Ii41)s ... and consider them as points in [0, 1]*. If they are still
good approximations of Xjgx, we call it stochasticity of order k — 1. A real random
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number generator should have stochasticity or order oo - if we use it for Monte-Carlo
methods in reactor physics, we need a stochasticity of very high order (the dimension
is proportional to the number of collisions a neutron has with a nucleus).

In starting a simulation we should be aware how much stochasticity is needed - and
only then we can decide how we generate our particles. For problems a) and c), we need
just 3-d or 2-d approximations of f(v) or X'p(z). We might do this by using sections
of length 3 or 2 - or by other constructions, called low discrepancy methods, which I
shall describe now.

For b) we need - for our permutation method - a stochastic separation of a 2n-set into
two n-sets and then a sequence ry, ...y of [0,1] random numbers. Since the convergence
proof shows convergence in probability, we need the independence of ry,...7N, in our
language stochasticity of order N — 1. But this is only due to our method of selecting
N pairs out of N2. We could do that completely deterministic, but haven’t done it
yet. Why not selecting just one cross pattern (z,j(z)), which represents a uniform
distribution of the crosses (one may play with introducing an index discrepancy just
defined on {1,... N}? and find an optimal j(z)) and apply it in each collision process?
It would fulfill our convergence condition but would presumably insert a small but
systematic error, which may accumulate during the evolution. This is the only risk
in using as little stochasticity as possible: The fluctuation get smaller, but might be
"one-sided” and do not average out in the evolution.

We had such a problem in treating boundary conditions (Diplom thesis G. Mifmahl,
1990), where we got one-sided errors, which led to a” numerical cooling”. Changing the
deterministic procedure just a bit, we got rid of the effect - but one has to be careful.
Anyhow, we are just in the process of improving b), but not yet with pgblishable results.
But for a) and c) we use low discrepancy methods as extensively described by H.
Niederreiter: ”"Random Number Generation and Quasi-Monte-Carlo Methods”, SIAM
1992.

We want to construct point sequences (not ensemble sequences) xy,Z2,. .. such that
wn = {z1,...,zx)} has a low discrepancy against Xjq s, i.e.

In N*
D(wNvX[o,x]k) = D(wn) =0 ( nN >

(remember: sequences of ensembles could have 0 (""7\:‘_1)).

) InN 1 1 2N -1 C
For k = 1, we get as optimal order LN— not IN as for {Q—N-,..., 5N }, which is
an ensemble sequence.
25
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The starting point is an old idea by van der Corput, defining z; as follows: Take the
dual representation of ¢ = ¢, + €,2' + ... +¢€,2™"! ¢, = 0,1 and put

Ti=¢a(1) =027 + 6,27 4 L 40,27 € [0, 1].

For it

2 InN 1
Dlwn) 31nzT+O(N)’

so it has optimal order. We can change the basis 2 and use any p-adic representation
of 7 as well; this was done by Hammersley and is denoted by ¢,(7).

To get k-dimensional sequences, Halton proposed to take numbers p, ..., pi relatively
prime and to construct

L = (Ppy(2),- -5 0 (2), i€N.

Here again D(wy) = O (%), i.e. optimal.

Please realize that we do not construct k-dimensional points by using sections of 1-d
sequences. Therefore we have stochasticity 0.

[ want to mention that there are other methods to construct k-dimensional low dis-
crepancy sequences, mainly by Faure, Sobol and Niederreiter. They differ in the O-
constants, which depend on the dimension k¥ - and they may have especially low dis-
crepancy for certain N. Since our k is never higher than 10, we do not care for it too
much. There are many tests on the behaviour of different LD-sequences by G. Pages
(J. Comp. & Appl. Math. 44, 1992). But we need fast algorithms for generating z; -
they shouldn’t be slower than the linear congruential methods used in normal random
number generators. This is done, based on an idea of Pages too, by J. Struckmeier
(AGTM report No. 93, July 93).

It uses the p-adic Neumann-Kakutani transformations 7, : [0,1] — [0, 1], which might
be written as T,(z) =z & % with a "left addition &” or as

TP(I):I+b?
. 1 N
with bfz;(p—{—l—p’)z
.| In(l=2)
and 1=7J(z)= [— np } 1



Now r; defined by x; = T,(x,_;). 7o € [0,1] arbitrary is an LD-sequence, called gerer-
alized Halton sequence and has the same optimal behaviour.

The algorithm is clear: We generate b Vj € N and then we iterate: Given z,, we
compute j(z,) and then r,4; = z, + b?(r..) (in practice one needs only the first 32
points of b7).

 In k dimension, we use relatively prime numbers p,...,px and create the m-th com-
ponent of z;, z[* by '

=T,

1 Pm

(z:’ll), 1<m<k.

This method is fine for our purposes, but not for very high dimensions k: Then pj
becomes very large and T, produces worse results for very large p (the O-constant
depends on p and tends to 0o).

Here are some of Struckmeier’s results:

First the time to generate 10° numbers on different machines:

LC (F77)

Hardware g.H. (b=2) rand() (UNIX)
IBM 6000/530 1.9 2.8 1.6

HP 9000/835 SRX 4.8 25.8 12.9

HP 9000/710 1.0 3.1 2.0
nCUBE 2S 1 node 6.3 5.4 -

Then some discrepancies averaged over samples of size M — we average the discrepancy
and compute the variation V:

Sequence Dy Vum Dy Vum Dy Vum

Optimal 1.72-1072 5.15-1073 2.89.1073

rand() 1.30-10"' | 1.6-10~3 | 7.76-10~2 | 6.7-10"* | 6.40- 1072 | 3.0- 10~*

g.H. (b=2) |3.97-1072 | 7.1- 10-% | 1.25-10"2 | 5.7-107% | 9.71-1073 | 8.1-1077

g.H. (b=3) | 3.50 - 10-2 | 6.1-1075 | 1.64-10"2 | 8.1-107° | 8.99-1073 | 3.6 - 10~°

g.H. (b=5) | 3.43-10"2 | 6.1 - 10-% | 1.57-10"2 | 1.1-10"% | 9.63-1073 | 2.3-107°
N=29 M =20 N =97 M=20 | N=173 | M =20

Finally, we use our example B) (hypersonic flow around an axisymmetric body) and just
use LD-sequences for the initial conditions, which is a Maxwellian around a flow velocity
u. We consider just one of the macroscopic quantities — the pressure in flow direction;
and we consider it at the beginning (without influence of the simulation algorithm) and
at the end, when the stationary state is reached. The fluctuations are reduced by 20%,
the costs ot computing by 50%.
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Remark:

All our effort is put into the generation of uniformly distributed sequences. But our
densities, which we want to approximate, are never constants; the best we could expect ‘
are Maxwellians. Therefore we have to transform uniformly distributed sequences into
f-distributed ones, where f is a given density. This is easy for Maxwellians: They
factorize, so that the problem might be reduced to a 1-d problem. The 1-d case is
simple - especially easy, where one may use the so-called Box-Muller algorithm.

If the k-dimensional density doesn’t factorize, the problem is more complicated. Hlawka
& Miick have constructed a transformation T', whose inverse just does, what it should
do: Transforming uniformly distributed point sets in f-distributed ones. The transfor-
mation T' = (T,...,T), which has to be inverted has a diagonal structure

Ti(xy,...,2¢) =Tj(zy,...,75), g=1,...,k.

This can be used for a numerical inversion - an extensive study on the optimal numerical
method was done by M. Hack (AGTM report No. 89, May 93). The estimates for the
discrepancy are worse in this case - Hlawka & Miick show that

D (T'wh, f) SC-D(wﬁ)%,

but the computations show a much better behaviour. Fortunately, the problems we
treated until now didn’t demand for construction of point sets with low discrepancy
against an arbitrary f (the simulation algorithm did it); but other procedures (like those
established by J. Wick for general linear collision terms) need a kind of "redistribution
of particles” according to computed densities and they heavily rely on those algorithms.
They are still a very time consuming component in these procedures.
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3

Some Ideas How to Improve and Extend the
Code

In this last lecture I shall report on some ideas how to improve the code, to accelerate
the algorithm and how to extend it to more realistic situations. Some of them are just
1deas, some are successfully implemented. These topics will be:

a) "Particle numbers against time averaging”: We are mostly interested in station-

ary solutions, but we get them by simulating a time evolution until it reaches a

stationary state; if we are as far, the time evolution just fluctuates. The question

is: Could we use less particles, if we average over several time steps in the station-

ary phase? And what is cheaper? there is a preliminary answer by H. Babovsky

in Eur. J. Mech., B/Fluids, 11, No. 2, 1992, which is not very encouraging. In the
paper Babovsky also develops an idea to solve directly the stationary equation by

a particle mehod - until now only for a 1-d problem.

"Different weights for particles in different regions”: This is different from "dif-
ferent weights for different species” and doesn’t create the same problem of con-

serving energy and momentum, when particles of different weights collide. There
is a detailed study on it by M. Schreiner (AGTM report No. 62, 1991).

"The use of symmetry in particle codes”: If point sets are considered in a physical
way — as representations of real particle sets —, it is not easy to take advantage
of geometrical symmetries of the problem (and the solution). To do that, we
have to exploit the idea of approximation by discrete measure; for example, if the
density has cylinder symmetry, depending only on zy,vy, ||Z|, ||?]| and < Z,0 >
(where & = (z,,z3), o = (v,,v3)), then our measures will be measures in this 5-d
space (instead of 6-d). One may save a lot of computing time, as is shown by

Struckmeier & Steiner (AGTM report No. 83, Nov. 92).

u

"Modeling of kinetic equations” with diffusion or aerodynamic limits. This must
be a promising attempt: Each kinetic equation has some singular limits (”Diffu-
sion approxiiiation”, Euler or Navier-Stokes equation etc.), which hold at least
in some parts in position space. Solving these simpler equations in these parts
and matching the solutions with those of the kinetic equations, which one gets in
the "kinetic rest” of the domain, poses a new problem in domain decomposition.
There are attempts in this direction - see for example Illner & Neunzert (AGTM
report No. 90, May 93).

"Interior energies and chemical reactions”: I shall report on extensions of our
code including real gas effects; this is mainly done by W. Sack.
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f) "Efficiency on massively parallel systems”: Since one year we are running the
code on our nCUBE machine with 72 processors. We have to use appropriate
partitions - a paper by Struckmeier & Pfreundt (Parallel Computing 19, 1993)
reports on it.

We shall now look a bit closer to these topics.

a) Particle methods solve evolution equations - and they get stationary solutions only
as time limits of these evolutions. Babovsky makes a proposal to get directly a
stationary solution. The basic idea is to consider the microscopic fluxes v f (¢, z,v)
entering and leaving cells in position space and try to balance them according to
the Boltzmann equation. He only considers 1-d position spaces, but accept 3-d
velocity spaces. With v, denoting the component of v parallel to z, we have as
Boltzmann equation

af i

Uz =

o =1,

We discretize the x-axis, getting "cells” [z._;,z.] and consider the fluxes of par-
ticles entering or leaving these cells

i _ vl f(zemryv) ifve >0
Hqﬂ@%’{wAﬂaﬁ) if v, <0

and FCOUt[f] correspondingly. The space discretized version of the stationary
Boltzmann equation is now simply

(+) FOU = B + A J (F)
with
Jw3=i<nwn.
vz

Our "particles” are now approximations of Fcin and FCOUt, i.e. starting with
N(c)
N(o) E b, approximating F!™ he develops a simulation scheme very similar to
c) 4 b
=1

the one for the time-depending, spatially homogeneous case (just substitute 9t by
dz and f by F). For N(c) — oo, we get a solution of (). Now we have to iterate:
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Starting with a particle set approximation of vf,, we define the zeroth version of
F!N get FOUl and in that way a first iteration of v f; and so on.

Whether this converges or not (it might be interpreted as a Markov process) is in
general not clear. For discrete velocity models Babovsky showed convergence only
after stabilizing the process by introducing an additional stochasticity. Nothing
is known for the real Boltzmann gas. However, the idea to approximate functions
¥(v)f(t,z,v) instead of f could widen up the applicability of particle methods
and the idea of balancing fluxes as in ordinary fluid dynamics can be helpful also
for kinetic equations and particle methods.

But it remains the main question of the section: Can time averaging substitute
high particle numbers? And what about ensemble averaging, i.e. run the same
procedure M times, each time with another, but smooth particle ensemble, and
average over the runs? All this is done in many typical MC-calculations, mostly
time and ensemble averaging at the same time. Nothing is known for the general
Boltzmann simulation, but a warning comes from the method just described for
the stationary, 1-d Boltzmann equation in the discrete velocity case. Here we
iterate — and iteration parameters may always be interpreted as time or vice
versa: Starting with "particles” &, ;) where ¢; is the cell and v.;) the velocity
(out of finite set vy,...,vk) of the particle, which approximates a flux F,, we get
particles &(c,(t),u..(t)) approximating F; for t € N.

. . oy . 1
Ergodic theory provides us with informations, whether or when — 25(66(0'%(.')(‘))
converges to a stationary "measure”, which we denote by Fi (realize that in this
case position and velocity space are finite sets, so every measure has its density!);
and that we would get this F,, by "time averaging”

t—1 N R
Jim 13-+ 3 g(a(r), (7)) = X X wlerv5) ol )
=0 =1 ¢ j=1

Everything o.k.? Yes, if F,, would be the solution of our discretized stationary
Boltzmann equation. But it is not in this case - there is a systematic error: Neither
ensemble nor time averaging gives the correct result. The equation F, solves (%)
plus an additional term on the right hand side, including a term describing the
covariance between velocities of incoming particles. Responsible for this effect is
the nonlinearity of /; one may express it by saying that the scattered and the
scattering medium are the same: I(f) = I(f, f),where, during a "time step” one
f is considered as a scattering medium in the background and the other f is the
distribution we are looking for
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fn+1 = fut A I(fmfn-H)'

Whether one can control the systematic error and correct it accordingly or whether
one can improve this by smoothing out the factor f, in I(f,, f) has to be checked.

The fundamental problems remain: We have finitely many particles in each cell
and finite means here even "small numbers”. The real question is not: Does it
converge for N — oo. But: I allow you N = 100 - do the best with it! But this

is true not only for particle methods.

"Different weights in different regions, but equal weights in each cell” is an easily
solvable weighting problem. Schreiner describes, how we find an appropriate
particle mass in each cell in position space and how we change our particles (in
splitting them or pasting them: Splipa) in order each particle has this desired
mass. :

Clearly, this desired mass m* has to be small, if the density in a cell is small (for
example behind a space vehicle) - and it has to be large, if the density is high (in
the bow shock). In this way we may control the number of particles in each cell -
the N or N(c) in all our former considerations. During the free flow, particles of
different masses may enter the same cell - but since we want to perform collisions
only with particles of the same mass, we have to homogenize them. We allow
only integer values for particle masses and we assume that m” is always of the
form 27; therefore homogenization might be done splitting particles of mass 21tk
into 2% particles of mass m* or to past minor particles together (first by splitting
them into particles of minimal mass and then unifying two of them again and
again until they are grown enough). The only problem here that one should do -
that in such a way, that mass, momentum and energy is conserved in each Splipa
procedure; especially the velocities after pasting have to be chosen carefully and
there are only some signs to be chosen freely.

One might save time by these ideas. For a 2-d problem (flow around an ellipse),
Schreiner used 25 or 64 particles per cell in the beginning; the simulation without
any weighting is then called A25 or A64, with 3 respectively 4 different weights
we call it B25-3 and B25-4 respectively

CPU | Partnr
A64 | 44’41” | 706,000
A25 | 24’52” | 275,000
B25-3 | 29’13” | 334,000
B25-4 | 26’17” | 248,000
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The results differ - at least the temperature (it is a second moment) shows big
changes from A25 to B25-3 behind the vehicle ’

Temperature in Row 38

S0

g1l [A64  —
A25 o

721 | B25-3

63 | B25-4 -

54
25
36!
27"
18{
9.
O‘

Temperature /T

1 10 20 30 40 S0 60 70 80 S0 100
cell number

So, it is cheap and rewarding to use this weighting. But I want to recall that
weights for different species, where homogenization isn’t possible, create much
bigger problems.

Symmetry reduces dimension - in any numerical method, but normally not for
particle methods. The reason is as usual: Particles are considered as physical
quantities, not as approximations of densities.

Assume that we have cylinder symmetry: The boundary has a rotational sym-
metry with respect to the z-axis. Introducing cylinder coordinates means to
substitute (z,y,z) by (z,7,¢) and (vz,vy,v;) by (vz,vr,v,). Since v,, v, depend
on ¢, we get a more complicated free streaming term and have to transform if)
to cylinder coordinates (which was done by Niclot). A new collision strategy
has to be defined - we thought this way to be too elaborate. But we may use
(z,r, ) together with (vz,v,,v,) - something will not fit completely, but some
other aspects remain unchanged. Then

oF oF JF 42 sin vy + cos Yv, _8_F_‘ _

5{+v,5x—+(cos¢vy+smtpvz)—8: . 3 I(F).
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[(F) is not changed here. Free streaming means to solve & = vz, T = (cos pvy +
sin v, ), p= (—sin pv, + cos pv,)/r with initial values (zo,70,%0). The solution
is

T.(t,ro,r0,90,v) = o+ tvs.
1/2
(rg + 2tro(cos povy + sin @ov,) + tz(v: + vf)) /

. o,
arctg (_Sn_%_o+_) ,

g €OS g + tvy

Tr(ta Lo, To, 5907 U)

Tv(tv Zo, o, 9’0\ U)

With I(f) = 0 we get F(t,z,r,¢,v) = Fo(T(=t,z,7,¢),v).

Now we define G = r~'F and consider the corresponding equation. If for exam-
ple F is a uniform distribution in position space with respect to the Lebesques
measure ( in polar coordinates rdrdpdz), then G can be regarded as a uniform
distribution with respect to the "cartesian” measure drdedz, since G rdrdpdz =

F drdeydr.

To be more flexible, we consider
G(t,z,r,p,v) = R(r)F(t,z,r,0,v).

The equation for G is similar to that for F', but has on the left hand side an addi-
tional term —(cos v, + sin pv,)d;(In R)g and instead of I(F) we have R~ 1(@).
This additional term changes the solution of the free streaming part into

R 6 re o
Ay Co(T(=,0)

G(t,z,r,p,v) =
and the factor R(T,(—t))/R(r) may be handled as a weight: A particle, moving
from P; = (x,,r,,up,,v,) to P,(At) = (T(At, P;),v;) changes its weight according
to R(r;)/ R(ri(At)). For a natural choice R(r) = r~! the particles become heavier
in moving away from the axis — the number of particles in a ring of thickness Ar
remains unchanged (since the mass in a ring (¢ — 1)Ar < r < ¢Ar grows linearly
with 7, the weight of a particle has to grow linearly with ¢ too in order to keep
the particle numbers constant).

But now we have particles of different weights in the same cells ~ something we
want to avoid. Even in the beginning R(r) = r~! would give different weights.
Therefore R is chosen as a step function approximating r~'; but still differently
weighted particles may enter a ring. Besides homogenization described under b)

35



one may follow a general idea by Bird: If the weight changes by a factor « less
than one, just keep the particle with its old weight but with a survival probability
of a. If a is larger than 1, say a = m+a’, m € N, 0 < o' < 1, create m new
particles of the same weight and one other with probability a’. Again such a
strategy doesn’t work, if we have different species of gas, but is successful here.
No rigorous proof is available.

But it reduces the computational costs drastically. Struckmeier & Steiner have
done a study for HERMES with a flap at the leading edge:

Some results are shown in the table.

Altitude[km] Gas Tw K] Ma - T, [K] Ao [M]
120 N, 368 20 1400 2.69
110 N, 247 23 1400 0.60
100 N, 194 25 1400 0.137
Altitude[km] | Partnr | Cellnr | Part/Cell | Timesteps | CPU [A]
120 570,000 | 11,264 64 1000 1.5
110 925,000 | 11,264 64 1000 2.5
100 2,000,000 | 40,960 36 1000 4.0
Altitude[km] Cd,0° Cl,0° (L/D)oa Ch,0° Cm,oo
120 2.191 .890 406 .868 .882
110 1.688 1.048 621 .539 641
100 1.360 1.170 .860 313 490
Altltude[km] Cd.12° Cl,12° (L/D)lgo Ch,l2° Cm,12°
120 2.304 941 408 .901 974
110 1.785 1.109 .621 .557 127
100 1.461 1.246 .853 .325 584
Drag Lift |« coeff — Heat Pitching
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d) I believe that the most promising aspect practically as well as theoretically is
to use kinetic equations only where one is forced to use them — and to use the
appropriate limits wherever it is possible. This idea materializes in 2 questions:

— The "where” problem asked for those regions, where the diffusion limit or the
Euler equation are valid, meanwhile in the complement the kinetic equations
are necessary. ‘

- The other problem is the "how” problem: How do we patch or match the
solution of the kinetic equation with those of the limits.

Kinetic equations deal with position-velocity densities, the limits with some macro-
scopic quantities, which can be interpreted as some moments of the kinetic density:
What kind of boundary conditions for the one and the other are the ”correct” ones
(assuming the kinetic solution everywhere is the truth: Which boundary condi-
tions at the transition give a "combined solution” as near as possible to the truth).
Until now, only the continuity of the macroscopic quantities cross the transition
boundary has been tried to be realized, details are described in Lukschin, Neun-
zert, Struckmeier: "Coupling of Navier-Stokes and Boltzmann Regions”, report
for the HERMES project, July 93.

Since we focus on collisions, I just want to stress one aspect comparing the simu-
lation of collisions with the solution of an Euler equation (I choose Euler, since it
is - as a singular limit - much better understood than Navier-Stokes). Boltzmann
is solved by a particle code in moving the particles in a free flow over At, then
treating the collisions at the end of the time step. Euler can be solved by a very
similar procedure: Move particles in a free flow over At, but then redistribute
them according to a Maxwellian, whose moments are given by particles at the
end of a time step. Euler gives a time evolution, which is a free flow with a con-
straint: To stay at a manifold, which is given by {f : I(f) = 0}; the ordinary free
flow, starting at this manifold, moves away - so we have to project it back on it:
This is the redistribution

free flow redistribution

{£:1()=0)

Euler flow
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So, the difference between Boltzmann and Euler is the difference between the col-
lision procedure and the projection. The projection is numerically much cheaper -
so do projection, wherever it is possible and collisions, when it is necessary. What
we try to use here is the fact that f(f) becomes small, when f becomes very
rarefied - and, when f becomes very dense and near to a Maxwellian: Frequent
collisions create an equilibrium distribution f, for which I(f) = 0. The collision
procedure becomes more expensive the denser f is - but at the same time, the
smaller /(f) becomes.

In

free flow equilibrium

To avoid this effect, we may use these projections. The keyword here is ”Ki-
netic Schemes” (developed originally by Kaniel, Deshpande & Chetverushkin,
but extended now mainly by Perthame, Deshpande and some people from the
Kaiserslautern group). Using kinetic schemes, matching of the two codes, is a mi-
nor problem: Just do projection or collisions cellwise, but otherwise move freely
without caring, where you are. This is work in progress.

We have described, how we model collisions of molecules with interior rotational
and vibrational energies by a generalized Larssen-Borgnakke model and how the
differential cross sections are chosen for dissociation of molecules A; + A — A +
A+ A, Ay + A, —» A2+ A+ A. There are some tricks to handle the uniform
distribution on energy shells in phase space; for example, if

is the relative translational energy of the i-th particle generated in a collision
(where E,, is the translational energy and P, is the momentum of the :-th particle
in the center-of-mass system), then the conservation of energy and momentum
allows only certain triples (el,, €2, €2 ) - the uniform distribution has to be taken
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on this set. A nice representation of this set can be achieved by interpreting €, as
a distance of a point to the i-th side of an equilateral triangle with height one in
a plane. One can show that the admissible points are in an inscribed circle (if all
masses are equal) or an ellipse. The uniform distribution has to be zero outside
this circle or ellipse.

1.0 F particle 3

particle 1, particle 2

1 L Al

0.0 1.0

0.0

W. Sack has made extensive studies using the axisymmetric problem described in
c). Just to give you an impression of the costs on a nCUBE2s with 64 nodes:

Case | Altitude[km] | MPF[m] | Partnr | Cellnr | CPU[h]
1 120 2.690 600,000 | 11,000 1.4
2 110 0.600 | 1,050,000 11,000 2.1
2! 110 0.600 | 2,400,000 | 41,000 7.2
3 100 0.137 |2,700,000 | 41,000 4.1
3 100 0.137 | 7,600,000 | 133,000 | 20.7
4 95 0.059 |6,800,000 (115,000 | 21.2

(2’ and 3’ have just a fourfold finer mesh than 2 and 3.)
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The results show that dissociation has almost no influence on lift, drag, pressure
drag, but create a decrease of the heat transfer coefficient up to 20%. But still we
have quite rough models, do not consider gas mixtures of oxygen and nitrogen: A
lot of improvement in the code is necessary to handle all physicel relevant effects.
An exiting, but very difficult problem is posed by recombination effects, since one
would need triple collisions; but we hope that the effect is neglectible.

The problem described in e) shows the enormeous computational effort needed
to handle realistic problems. My group decided therefore to put any effort into
getting a parallel machine, which is exclusively at our dispesal. Since this year
we own the nCUBE2s with 6448 nodes.

Before we put a lot of effort to optimize the performance of our FPM by using the
vector facilities of supercomputers (VP100-400). This requires data vectors of a
big length. rarely occuring in the method; the real Mflop rate was always quite
lower than the peak performance. The situation is different for parallel machines,
where the speed up factor is near to the theoretical limit; therefore even small
parallel computers are faster than vector computers.

A parallelization of the code refers mainly to the grid structure on the spatial
domain; our cells are cubes with a length smaller than the mean free path of
the unperturbed gas. The collision process in a cell is independent of those in
other cells — and it is the most time consuming part: We parallelize by assigning
a certain number of cells to each processor. If we have as many processors as
cells, fine - but we haven’t. In the free flow particles leave cells and enter others
— if these cells belong to different processors, this means communication between
processors. The partition of cells has to be done such that this communication,
i.e. the number of particles crossing processor boundaries is minimized. But a
static partition, fixed at the beginning of the computation according to a priori
information about the flow fields (most of the particles move essentially with the
stream velocity), doesn’t produce a good load balance of the processors - particle
numbers per processor change and result in a very unsufficient load balance; this
reduces the speed up factor compared to single processors.

To get an adaptive procedure, we put cells laying in a row with respect to the
main stream velocity together to "spatial sticks”. Processors get assigned sev-
eral spatial sticks — and the adaption consists simply of exchanging sticks from
the minimally and the maximally loaded processors. This exchange creates an
iteration procedure until we get near to the partition when the numbers of par-
ticles in the processor domains are near to the average number. The procedure
creates partitions, where the local character of the stick-processor assignment is
destroyed.
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Figure: Final state of the adaptive processor partition

One may fear that this give rise to a high communication time; that this is not
the case is shown in the next figure:
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T.he speed up factor is constant near to 30 (here 32 is optimal), if one compares
d.lfferent Knudsen numbers (i.e. different densities and therefore a different colli-
sion frequency).
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A comparison of CPU-times on the nCUBE2s with a VP100 shows that the higher
peak performance of the vector machine doesn’t lead to lower CPU-time.

MFLOP | CPUls] | ratio
nCUBE2s/8 35 579 3.7
nCUBE2s/16 | 70 297 | 1.9
nCUBE2s/32 140 156 1.0
Fujitsu VP100 285 1075 | 6.9

Final remarks:

FPM is a method to solve kinetic equations with a performance as DSMC but - still
— a better theoretical foundation. Practically the methods converge to the same code.
Until now other algorithms are not as far as to handle the same physical situations.
Whether stochasticity is a method to reduce complexity in these cases has to be and
will be analyzed in our ”Graduiertenkolleg Technomathematik”. FPM represents today
a work of a bit more than 10 men years, but we learned a lot from people like G. Bird,
J. Moss and K. Nanbu. In the last lecture I tried to show that there are many ideas how
to improve the code - some of them are just ideas without any practical tests. But we
need improvements to get nearer to reality and to be sure about it. These improvements
will consist of better models, better algorithmic ideas, better computers. We had a lot
of support of our work through HERMES R & D and through our cooperation with
Dassault, Aerospatiale and INRIA. Even if this support will be strongly reduced (we still
hope that it will not), we shall go on with our research - maybe more in mathematical
direction and peu a peu including semiconductor problems after our fusion with the
group of J. Wick, who died in a tragic accident in May 1993.
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