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Abstract

Symplectic linear quotient singularities belong to the class of symplectic singularities
introduced by Beauville in 2000. They are linear quotients by a group preserving a
symplectic form on the vector space and are necessarily singular by a classical theorem
of Chevalley–Serre–Shephard–Todd. We study Q-factorial terminalizations of such quo-
tient singularities, that is, crepant partial resolutions that are allowed to have mild
singularities.

The only symplectic linear quotients that can possibly admit a smooth Q-factorial
terminalization are by a theorem of Verbitsky those by symplectic reflection groups. A
smooth Q-factorial terminalization is in this context referred to as a symplectic resolu-
tion and over the past two decades, there is an ongoing effort to classify exactly which
symplectic reflection groups give rise to quotients that admit symplectic resolutions. We
reduce this classification to finitely many, precisely 45, open cases by proving that for
almost all quotients by symplectically primitive symplectic reflection groups no such
resolution exists.

Concentrating on the groups themselves, we prove that a parabolic subgroup of a
symplectic reflection group is generated by symplectic reflections as well. This is a
direct analogue of a theorem of Steinberg for complex reflection groups.

We further study divisor class groups of Q-factorial terminalizations of linear quotients
by finite subgroups G of the special linear group and prove that such a class group is
completely controlled by the symplectic reflections – or more generally junior elements
– contained in G.

We finally discuss our implementation of an algorithm by Yamagishi for the computa-
tion of the Cox ring of a Q-factorial terminalization of a linear quotient in the computer
algebra system OSCAR. We use this algorithm to construct a generating system of the
Cox ring corresponding to the quotient by a dihedral group of order 2d with d odd acting
by symplectic reflections. Although our argument follows the algorithm, the proof does
not logically depend on computer calculations. We are able to derive the Q-factorial
terminalization itself from the Cox ring in this case.

Zusammenfassung

Symplektische lineare Quotientensingularitäten gehören zur Klasse der symplektischen
Singularitäten, die 2000 von Beauville eingeführt wurden. Es handelt sich um lineare
Quotienten nach Gruppen, die eine symplektische Form auf dem Vektorraum erhalten
und daher nach einem klassischen Satz von Chevalley–Serre–Shephard–Todd notwendi-
gerweise singulär sind. Wir betrachten Q-faktorielle Terminalisierungen solcher Quoti-
entensingularitiäten, das heißt krepante partielle Auflösungen, die milde Singularitäten
haben können.

Die einzigen symplektischen linearen Quotienten, die potentiell eine glatte Q-fakto-
rielle Terminalisierung haben können, sind nach einem Satz von Verbitsky jene nach
symplektischen Spiegelungsgruppen. Eine glatte Q-faktorielle Terminalisierung wird in
diesem Kontext als symplektische Auflösung bezeichnet und über die vergangenen zwei
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Jahrzehnte gibt es andauernde Bestrebungen genau die symplektischen Spiegelungsgrup-
pen zu klassifizieren, die zu Quotienten führen, welche eine symplektische Auflösung
zulassen. Wir reduzieren diese Klassifikation auf endlich viele, nämlich 45, offene Fälle,
indem wir zeigen, dass für fast alle Quotienten nach symplektisch primitiven symplekti-
schen Spiegelungsgruppen keine solche Auflösung existiert.

Mit dem Fokus auf die Gruppen selbst zeigen wir, dass eine parabolische Untergrup-
pe einer symplektischen Spiegelungsgruppe wiederum von symplektischen Spiegelungen
erzeugt ist. Dies entspricht einem Satz von Steinberg für komplexe Spiegelungsgruppen.

Wir betrachten außerdem Divisorenklassengruppen von Q-faktoriellen Terminalisie-
rungen von linearen Quotienten nach endlichen Untergruppen G der speziellen linearen
Gruppe und zeigen, dass solch eine Klassengruppe vollständig von den in G enthaltenen
symplektischen Spiegelungen – oder allgemeiner Juniorelementen – kontrolliert wird.

Abschließend diskutieren wir unsere Implementierung eines Algorithmus von Yama-
gishi zur Berechnung des Cox Rings einer Q-faktoriellen Terminalisierung eines linearen
Quotienten im Computeralgebrasystem OSCAR. Mit diesem Algorithmus konstruieren
wir ein Erzeugendensystem des Cox Rings, der zu einem Quotienten nach einer Die-
dergruppe der Ordnung 2d mit d ungerade korrespondiert, die via symplektischer Spie-
gelungen operiert. Obwohl unsere Argumentation auf den Algorithmus aufbaut, ist der
Beweis logisch unabhängig von Computerberechnungen. Wir sind in diesem Fall in der
Lage die Q-faktorielle Terminalisierung aus dem Cox Ring abzuleiten.
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Introduction

The central object of this thesis are linear quotients, that is, orbit spaces V/G of the
action of a finite group G on a finite-dimensional complex vector space V . If the vector
space is endowed with a symplectic form and G preserves this form, then the quotient
also admits a symplectic structure and we call V/G a symplectic linear quotient. By a
theorem of Chevalley, Serre, Shephard and Todd [Che55, ST54, Ser68], these quotients
are necessarily singular. The singularities belong to the class of symplectic singularities
as defined by Beauville [Bea00]. In general, it is not possible to resolve these symplectic
linear quotient singularities with a crepant morphism, that is, without changing the
canonical class. We are therefore interested in Q-factorial terminalizations, which are
projective partial resolutions that are crepant, but are allowed to have terminal singular-
ities; they are also referred to as minimal models in the case of quotient singularities.
If G ≤ SL(V ), there exists a Q-factorial terminalization for the linear quotient V/G
by a deep theorem of Birkar, Cascini, Hacon and McKernan in the context of the min-
imal model programme [BCHM10]. This notably includes the case of symplectic linear
quotients.

If a crepant resolution of a symplectic linear quotient singularity exists, this is also
referred to as a symplectic resolution as it is exactly a resolution that maintains the
symplectic structure. With regard to such resolutions, there is a particular interest in
quotients by finite symplectic reflection groups. These are finite groups G ≤ GLn(C)
generated by bireflections that preserve a symplectic form; one can identify them with
reflection groups over the skew field of quaternions. The reason for this special interest
is a theorem of Verbitsky [Ver00], which says that if a symplectic linear quotient admits
a symplectic resolution, then the group must be a symplectic reflection group. However,
this theorem is not an equivalence and the question exactly which symplectic reflection
groups give rise to linear quotients admitting a symplectic resolution enjoyed much
interest over the past two decades. A crucial ingredient of this effort is the classification
of finite symplectic reflection groups over the complex numbers by Cohen [Coh80]. Cohen
in fact classifies the equivalent family of finite quaternion reflection groups; we summarize
the classification in Chapter 1 by translating the results to our symplectic setting. In
Chapter 2, we collect the tools employed to study Q-factorial terminalizations and in
particular the existence of symplectic resolutions, which stem from birational geometry
as well as representation theory via the theory of symplectic reflection algebras introduced
by Etingof and Ginzburg [EG02].

Stabilizer subgroups We study symplectic reflection groups and the corresponding
linear quotients from different perspectives. The first perspective is group theoretic
and motivated from the fact that the name ‘symplectic reflection group’ invites one to
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Introduction

relate these groups to complex reflection groups. A fundamental result for the latter
groups is Steinberg’s fixed point theorem [Ste64], which says that any subgroup of a
complex reflection group stabilizing a vector is a complex reflection group itself. The
question whether the analogous theorem also holds for symplectic reflection groups was
already raised by Cohen [Coh80] and in Chapter 3 we answer it in the affirmative; see
Theorem 3.1.1 and Corollary 3.1.9. This part of this thesis is already published in
[BST23].

Theorem. Let V be a finite-dimensional symplectic vector space over C, let G ≤ Sp(V )
be a finite symplectic reflection group and let U be a subset of V . Then the subgroup of
G that fixes U pointwise is also a symplectic reflection group.

Switching to the geometric perspective, we see that stabilizer subgroups of a finite
group G ≤ GL(V ) are related to the singularities of the linear quotient V/G via Luna’s
slice theorem [Lun73]. In this context, there is the already mentioned fundamental
theorem by Chevalley, Shephard and Todd [Che55, ST54] saying that the invariant ring
C[V ]G is a polynomial algebra if and only if G is a complex reflection group. Even more
amazingly, this implies that V/G is smooth if and only if G is a complex reflection group,
see [Ser68]. This tells us that, if G is a symplectic reflection group, then the quotient
V/G is singular as G ≤ SL(V ). Using the above theorem on stabilizer subgroups, we
can prove that the singular locus of a symplectic linear quotient singularity is of pure
codimension 2, see Corollary 3.2.3.

Symplectic resolutions Beauville [Bea00] defined a concept of singular varieties with
a symplectic structure on the smooth locus bridging the gap between the smooth man-
ifolds in symplectic geometry and the singularities arising in algebraic geometry. Sym-
plectic linear quotients belong to these symplectic singularities and we consider the
question whether they admit a symplectic resolution, that is, a desingularization of V/G
that preserves the symplectic form. In general, the answer to this question is nega-
tive by the theorem of Verbitsky mentioned above; there might only be a symplectic
resolution if the group is a symplectic reflection group. This motivates the following
classification problem [Ver00, Question 1.5]: for which symplectic reflection groups does
the corresponding quotient admit a symplectic resolution? The solution of this problem
is ongoing work by many authors over the past two decades starting with the seminal
paper by Etingof and Ginzburg [EG02]; we give a detailed overview of this classification
in Section 2.2.

The groups for which this classification has so far not been completed is the family of
symplectically primitive symplectic reflection groups. This family consists of infinitely
many groups; we consider these groups in Chapter 4. Our results are already published
in [BST22, BST23].

Theorem. Let G ≤ Sp(V ) be a symplectically irreducible and symplectically primitive
symplectic reflection group. Then the symplectic linear quotient V/G does not admit a
(projective) symplectic resolution in all but possibly 45 cases.
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With our theorem, the classification is reduced to finitely many cases for the first time.
All of the remaining 45 groups are of rank 4; we give the explicit list in Section 4.4. For
the proof of the above theorem, we use a theorem by Etingof, Ginzburg and Kaledin
[EG02, GK04] that provides a deep link between the geometry of the quotient V/G and
the representation theory of symplectic reflection algebras associated to G as introduced
in [EG02]. The main idea is that one studies deformations of V/G that maintain the
symplectic structure. However, on the algebraic side it turns out that one should not
deform the invariant ring C[V ]G directly, but rather the skew group ring C[V ] ⋊ G
leading to the symplectic reflection algebras. The centres of these algebras then give
deformations of C[V ]G.

Class groups One sees from the classification that symplectic resolutions are a rare
phenomenon not only for symplectic linear quotients in general, but also for quotients
by symplectic reflection groups. It therefore makes sense to broaden our focus by gen-
eralizing from symplectic resolutions to Q-factorial terminalizations. From Chapter 5
onwards, we do so and also consider the bigger class of linear quotients by subgroups of
SLn(C) instead of symplectic linear quotients where possible. In fact, one can see sym-
plectic reflection groups as a special case of subgroups of SLn(C) generated by junior
elements as introduced by Ito and Reid [IR96]. In this setting, we extend results by
Donten-Bury, Wísniewski and Yamagishi [DW17, Yam18] regarding the class group of a
Q-factorial terminalization of a linear quotient, see Corollary 5.4.2.

Theorem. Let G ≤ SL(V ) be a finite group and let H ≤ G be the subgroup generated by
the junior elements contained in G. Let φ : X → V/G be a Q-factorial terminalization
of V/G. Then we have

Cl(X) ∼= Zm ⊕ Hom(G/H,C×) ,

where m is the number of junior conjugacy classes in G.

The proof follows a general philosophy of this thesis in that we try to gain information
on a Q-factorial terminalization X → V/G via the Cox ring R(X) of X. This ring was
introduced by Cox for toric varieties [Cox95] and generalized to the setting of birational
geometry by Hu and Keel [HK00]. The Cox ring is graded by the class group and in our
situation finitely generated. Our main tool to prove the above theorem is then a one-to-
one correspondence between effective divisors on X and homogeneous elements of R(X)
up to units, see [ADHL15, Section 1.5].

Cox rings In Chapter 6, we present an algorithm due to Yamagishi [Yam18] to com-
pute a presentation of R(X) given only the finite group G ≤ SL(V ) and without con-
structing the Q-factorial terminalization X itself. A key ingredient of this algorithm
is the observation originally by Donten-Bury [Don16] that we can consider R(X) as a
subring of the Laurent series ring R(V/G)[t±1 , . . . , t

±
m], where m is the number of junior

conjugacy classes in the group G. Here, R(V/G) is the Cox ring of V/G and this ring
is graded-isomorphic to the invariant ring C[V ][G,G] by a theorem of Arzhantsev and
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Introduction

Gǎıfullin [AG10]. We implemented Yamagishi’s algorithm in the computer algebra sys-
tem OSCAR [Osc23]. To the author’s knowledge this is the first implementation of this
kind; we give a detailed example of how one can use it in Appendix D.

For some symplectic reflection groups coming from complex reflection groups, we com-
puted generators of the Cox ring of a Q-factorial terminalization of the corresponding
linear quotient, see Appendix C. Among these are several cases where there is no sym-
plectic resolution by [Bel09], so the Q-factorial terminalization is singular. In particular,
the list contains the Cox rings corresponding to the symplectic reflection groups coming
from the exceptional groups G4, . . . , G7 in the classification [ST54].

Guided by experiments we did with our implementation, we further arrive at a gen-
erating system for the Cox ring corresponding to a linear quotient by a dihedral group
acting by symplectic reflections, see Theorem 7.3.9.

Theorem. Let d ∈ Z≥3 be odd and let Dd ≤ Sp4(C) be the dihedral group generated by

s :=

(
1

1
1

1

)
and r :=

 ζd
ζ−1
d

ζ−1
d

ζd

,
where ζd is a primitive d-th root of unity. Let X → C4/Dd be a Q-factorial terminaliza-
tion of the linear quotient C4/Dd. Then the Cox ring R(X) identified with a subalgebra
of C[x1, . . . , x4][t

±] is generated by:

x1x2, x3x4, x1x3 + x2x4, (x1x3 − x2x4)t,

xk1x
d−k
4 + xk2x

d−k
3 (0 ≤ k ≤ d),

(xk1x
d−k
4 − xk2x

d−k
3 )t (0 ≤ k ≤ d),

t−2.

Although we use ideas from Yamagishi’s algorithm for the proof, the theorem does
not logically depend on computer calculations. We conjecture a generating system of
the Cox ring corresponding to dihedral groups Dd with d even, see Conjecture 7.3.10.
If d > 3, the Q-factorial terminalization X → C4/Dd is singular by [Bel09]. Together
with the computational results in Appendix C, our theorem provides the first examples
of Cox rings in this situation.

Construction of Q-factorial terminalizations Given the Cox ring, one can recover
all Q-factorial terminalizations via variation of GIT quotient, but we are not aware
of a practical algorithm that is able to do this construction in general. However, for
the dihedral groups Dd with d odd, the situation is rather simple and we can indeed
construct the Q-factorial terminalization from the Cox ring, see Corollary 7.3.13. This
gives an explicit family of singular Q-factorial terminalizations complementing the known
examples of symplectic resolutions constructed using various techniques in [LS12, DW17,
BC20].

We see this as a ‘proof of concept’ of the algorithmic idea to construct a Q-factorial
terminalization via its Cox ring. Concrete examples of this kind are interesting from two
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points of view. On one hand, we hope to gain a deeper understanding of which properties
of the linear quotient or even the group itself control the (non-)existence of a symplectic
resolution. All of the proofs in the classification work with ad hoc arguments and give
little insight in the underlying structures, but one would hope – or maybe even expect –
that deeper connections are present in light of the McKay correspondence [Rei02]. The
second point of view comes from the area of higher dimensional geometry. There are
very few examples of varieties of dimension 4 or higher which are available for testing
conjectures in birational geometry. Linear quotient varieties are natural candidates to
provide such examples as they are more accessible via the additional structure coming
from the group and, again, the McKay correspondence.

Outlook We expect that our analogue of Steinberg’s theorem is only the beginning of
studying similarities between the families of complex reflection groups and symplectic
reflection groups. For example, we know that complex reflection groups are characterized
by the property that their invariant ring is a polynomial algebra and we may therefore
ask whether we can also characterize symplectic reflection groups via their invariant
ring. So far, we only know that this invariant ring is Gorenstein (as for all subgroups of
SLn(C)), but in general not a complete intersection, see Section 3.3.

Moving on, we would hope that one can improve Yamagishi’s algorithm as it often
runs for several days already for groups of size around 50, see also Remark 6.4.1. For
this, one might be able to generalize our ad hoc techniques involving Hilbert series
from Chapter 7. Further, the algorithm can be divided into two phases as presented
in Chapter 6 and in our computations we never encountered a case where the second
phase was necessary. We are so far unable to give a theoretical reason for this. It would
also be very interesting to see how one can algorithmically construct the Q-factorial
terminalization given its Cox ring in general, see Remark 7.3.15.

Finally, we would of course like to finish the classification of symplectic reflection
groups whose corresponding linear quotient admits a symplectic resolution. Having the
above algorithms at hand, one might be able to do this via brute force computations as
there are only 45 groups left. However, even the smallest of these are still too large for
Yamagishi’s algorithm in its current form.

Conventions and notation We use basic notions from representation theory, alge-
braic geometry and occasionally symplectic geometry and refer the reader to the text-
books by Fulton and Harris [FH91], Hartshorne [Har77] and Cannas da Silva [Can08],
respectively, for the definitions.

We always work over the field of complex numbers C and all rings are unital. The
unit group of a ring R is denoted by R×. For a vector space V , we denote by C[V ] the
symmetric algebra on the dual space V ∗; we can also see this as the coordinate ring of
the affine space V . The word ‘variety’ means an integral separated scheme of finite type
over a field. We usually abbreviate ‘Weil divisor’ to just ‘divisor’ and for a resolution
of singularities φ : X → Y , we assume that φ is a projective morphism, if not stated
otherwise.

xiii



Introduction

Groups are generally written multiplicatively. Given a group G acting on a set X, we
denote by g.x the action of g ∈ G on x ∈ X. We further use standard abbreviations for
abstract finite groups, namely Cn for the cyclic group of order n, Sn for the symmetric
group on n letters, An for the alternating group on n letters and Q8 for the quaternion
group. Unfortunately, we also use the symbols W (S1), W (S2) and W (S3) for certain
primitive symplectic reflection groups following [Coh80]; these have nothing to do with
the symmetric group. For complex reflection groups, we use the notation G(m, p, n) as
well as G4, . . . , G37 coming from the classification in [ST54]. If we want to emphasize that
we consider Sn as the irreducible complex reflection group of rank n− 1, we write Sn.

We borrow the symbol from sheet music to mark the end of a remark or an example.

Contributions to OSCAR During the work on the project covered by this thesis,
the author contributed the following implementations to OSCAR [Osc23]:(1)

• an algorithm to construct an isomorphic matrix group over a finite field for a
matrix group in characteristic zero [DFO13]

• Kemper’s algorithm for the computation of primary invariants (non-modular and
modular case) [Kem99]

• algorithms for the computations of secondary and irreducible secondary invariants
(non-modular and modular case) [KS99, Kin07]

• King’s algorithm for the computation of fundamental invariants [Kin13]

• an algorithm for the computation of relations of fundamental invariants relying
only on linear algebra [KS99]

• an algorithm to compute semi-invariants (also called relative invariants) with re-
spect to a linear character [Gat96]

• large parts of the general framework for invariant theory of finite groups including
methods for the computation of Molien series, Reynolds operators and bases of
fixed degree components of invariants

• an algorithm to compute the Cox ring R(V/G) of a linear quotient V/G as de-
scribed in Section 6.4

• an algorithm to compute the Cox ring R(X) of a Q-factorial terminalization
X → V/G [Yam18] (see also Chapter 6)

(1)See also https://github.com/oscar-system/Oscar.jl/commits?author=joschmitt .
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1. Symplectic reflection groups

We introduce symplectic reflection groups, which are the main object of study of this
thesis. After presenting the basic definitions in Section 1.1, we give an outline of the
classification of these groups following [Coh80]. We summarize this classification in
Figure 1.2.1.

1.1. Symplectic groups

Throughout, let V be a vector space over the field of complex numbers C of finite
dimension dimV > 0.

Recall that a bilinear form ω : V × V → C is called alternating if we have ω(v, v) = 0
for all v ∈ V . This is equivalent to ω being skew-symmetric (or antisymmetric), that is,
ω(v, w) = −ω(w, v) for all v, w ∈ V by bilinearity as we are in characteristic 0.

Definition 1.1.1 (Symplectic form). We call a bilinear form ω : V × V → C on V
symplectic if it is non-degenerate and alternating. The vector space V endowed with a
symplectic form ω in this way is called a symplectic vector space. A morphism between
two symplectic vector spaces V1 and V2 with symplectic forms ω1 and ω2, respectively,
is a linear map φ : V1 → V2 with ω1 = ω2 ◦ (φ× φ).

Notation 1.1.2. To emphasize the symplectic form, we write (V, ω) for a symplectic vector
space V with symplectic form ω.

Given a symplectic vector space (V, ω), one can find a basis e1, . . . , en, f1, . . . , fn ∈ V
of V with n ∈ Z>0 such that for all 1 ≤ i, j ≤ n we have

ω(ei, ej) = 0 = ω(fi, fj) and ω(ei, fj) = δij ,

see [Can08, Theorem 1.1]. We call such a basis a symplectic basis. In particular, the di-
mension of a symplectic vector space is always even. In a symplectic basis, the symplectic
form ω is given by the matrix Jn :=

(
0 In

−In 0

)
via

ω(v, w) = v⊤Jnw

for all v, w ∈ V . Whenever it becomes necessary to fix a basis of (V, ω), we choose the
basis such that ω is given by Jn in this way and refer to ω as the standard symplectic
form.

Definition 1.1.3 (Symplectic group). Given a symplectic vector space (V, ω), we call
the group

Spω(V ) := {g ∈ GL(V ) | ω(g.v, g.w) = ω(v, w) for all v, w ∈ V } ,

1



1. Symplectic reflection groups

that is, the group of all automorphisms of V leaving the symplectic form ω invariant,
the symplectic group of (V, ω).

We usually omit the index and just write Sp(V ) for the symplectic group. Identifying
V with C2n by fixing a symplectic basis gives the description

Sp2n(C) := {g ∈ GL2n(C) | g⊤Jng = Jn}

for the symplectic group.

One sees directly from the definition that elements of Spω(V ) must have determinant
±1. It is more involved to prove that in fact each element has determinant +1, so we
have Spω(V ) ≤ SL(V ), see [Art57, Theorem 3.25].

By abuse of language, we call any subgroup of Sp(V ) a symplectic group as well.
Throughout this thesis we are only interested in finite symplectic groups.

For any finite group, we can construct a representation that identifies the group with
a symplectic group as demonstrated in the following example.

Example 1.1.4. Let G be a finite group and let ρ : G → GL(V ) be a representation
of G on a finite-dimensional complex vector space V . Recall the dual representation
ρ∗ : G → GL(V ∗) defined by ρ∗(g) = ρ(g−1)⊤, see [FH91, p. 4]. For simplicity, we
denote the natural pairing between V and V ∗ by evaluation of maps, that is, given
v ∈ V and f ∈ V ∗, we just write f(v) ∈ C for the pairing.

We endow V ⊕ V ∗ with a symplectic form ω by setting

ω((v, f), (v′, f ′)) = f ′(v) − f(v′) ,

where v, v′ ∈ V and f, f ′ ∈ V ∗. The action of G on V ∗ via ρ∗ is constructed in such a
way that it leaves the natural pairing between V and V ∗ invariant. Hence, we see that
the image of the representation ρ⊕ ρ∗ is contained in Spω(V ⊕ V ∗).

If ρ is chosen to be faithful, that is, injective, we can identify G with a symplectic
group in this way.

Notation 1.1.5. Let G ≤ GL(V ) be a finite group acting on a finite-dimensional complex
vector space V . As described in Example 1.1.4 above, we can identify G with a subgroup
of Sp(V ⊕ V ∗), which we denote by G⊛ (it is the direct sum ⊕ with the dual ∗). Notice
that after fixing a basis, we can explicitly define G⊛ as the group

G⊛ :=
{(

g 0

0 (g−1)⊤

) ∣∣∣ g ∈ G
}
≤ Sp(V ⊕ V ∗) .

For g ∈ GL(V ), we occasionally write g⊛ :=
(
g 0

0 (g−1)⊤

)
∈ GL(V ⊕ V ∗) as well.

Remark 1.1.6. The existence of a symplectic structure on V ⊕ V ∗ is a special case of
the fact that there is a canonical symplectic structure on the cotangent bundle of any
manifold, see [Can08, Chapter 2].
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1.1. Symplectic groups

Remark 1.1.7. In a more rigorous way, we should think of a symplectic group G ≤ Sp(V )
as an abstract group G together with a faithful representation ρ : G → GL(V ), such
that V is a symplectic vector space and ρ(G) ≤ Sp(V ). To simplify the notation, we
always identify the abstract group G with the image ρ(G) and write down the triple
(V, ω,G) when we want to emphasize the structure of V as a representation of G. We
occasionally refer to (V, ω,G) as a ‘symplectic triple’ and always imply that V is finite-
dimensional and G a finite group.

We are now able to introduce the main object of study of this thesis.

Definition 1.1.8 (Symplectic reflection group). Let (V, ω) be a symplectic vector space.
An element g ∈ Spω(V ) is called a symplectic reflection if g is of finite order and we have
rk(g − 1) = 2, where 1 denotes the identity automorphism.

We call a finite subgroup G ≤ Spω(V ) a symplectic reflection group if G is generated
by the symplectic reflections contained in G.

Notation 1.1.9. Given any group G ≤ Sp(V ), we write S(G) ⊆ G for the (possibly
empty) set of symplectic reflections in G.

In general, an element g ∈ GL(V ) with rk(g−1) = 2 is called a bireflection. The term
symplectic reflection is more common in our context and also emphasizes the fact that
a symplectic reflection is an element of Spω(V ). We introduce a different generalization
of symplectic reflections – the junior elements – in Section 2.1.

A large class of examples of symplectic reflection groups are coming from complex
reflection groups.

Example 1.1.10. Let G ≤ GL(V ) be a complex reflection group acting on a finite-di-
mensional complex vector space V , that is, let G be generated by elements g ∈ G with
rk(g− 1) = 1, the reflections. Then we see that G⊛ ≤ Sp(V ⊕V ∗) is a symplectic reflec-
tion group and the (complex) reflections in G correspond one-to-one to the symplectic
reflections in G⊛ by applying ⊛.

Example 1.1.11. Let V = C2 be endowed with the standard symplectic form induced by
J1 =

(
1

−1

)
. In this dimension, we have Sp2(C) = SL2(C) as

g⊤J1g =

(
det g

−det g

)
for any g ∈ GL2(C). Further, all finite non-trivial subgroups of SL2(C) are symplectic
reflection groups as the condition rk(g − 1) = 2 is trivially fulfilled for all g ∈ SL2(C)
with g ̸= 1.

Hence, a symplectic reflection group in Sp2(C) is given by one of the following groups
up to conjugacy in Sp2(C):

(a) the cyclic group Cm of order m generated by(
ζm

ζ−1
m

)
,

3



1. Symplectic reflection groups

(b) the binary dihedral group Dm of order 4m generated by(
ζ2m

ζ−1
2m

)
and

(
0 −1
1 0

)
,

(c) the binary tetrahedral group T of order 24 generated by

1

2

(
−1 − i 1 − i
−1 − i −1 + i

)
and

(
−i 0
0 i

)
,

(d) the binary octahedral group O of order 48 generated by

1

2

(
−1 − i 1 − i
−1 − i −1 + i

)
and

1√
2

(
1 − i 0

0 1 + i

)
,

(e) the binary icosahedral group I of order 120 generated by

1

2

(
τ−1 − τi 1

−1 τ−1 + τi

)
and

(
−i 0
0 i

)
,

where ζm ∈ C is a primitive m-th root of unity, i :=
√
−1 is the imaginary unit and

τ := 1
2(1+

√
5). See [LT09, Theorem 5.14] and the discussion preceding it for a proof.

We note that the inclusion Sp2n(C) ≤ SL2n(C) is proper for n > 1. Indeed, we have,

for example,
(

−I2
I2n−2

)
∈ SL2n(C) \ Sp2n(C) if n > 1.

1.2. Cohen’s classification

The symplectic reflection groups are classified for arbitrary dimension 2n by Cohen in
[Coh80]. We now present an outline of this classification and refer the reader to [Coh80]
for details and proofs.

Remark 1.2.1. Cohen classifies finite quaternionic reflection groups, that is, reflection
groups over the skew-field of quaternions H. However, one sees that quaternionic re-
flection groups and symplectic reflection groups are the same class of groups; they are
linked by an explicit ‘complexification’ operation described in [Coh80, pp. 294, 295]. In
what follows, we translate the results for the quaternions to the base field C whenever
necessary.

In fact, we do not make use of the alternative view point provided by the ‘quaternionic
interpretation’ of these groups and are not aware of any other source doing so. A reason
for this might be that the invariant ring of a finite group, which we use heavily from
Chapter 2 onwards, appears not to be well-defined if the coefficient ring is a skew field.
For example, consider the quaternion group Q8 := {±1,±i,±j,±k}. Then the standard
definition of a group action of this group on H[x] does in fact not give a well-defined
group action; we have

((x2).i).j = (−x2).j = x2

4



1.2. Cohen’s classification

but on the other hand
(x2).(ij) = (x2).k = −x2 .

The natural reason for this is that the evaluation of polynomials in H[x] is not a morphism
of rings, see [Lam01, §16].

Remark 1.2.2. While Cohen’s classification [Coh80] is only concerned with the case of
characteristic 0, there is a classification of finite symplectic reflection groups in arbitrary
characteristic by Guralnick and Saxl in [GS03, Section 10]. However, while the latter
is more general, the first is more detailed and it is in particular not clear how one can
obtain an explicit list of symplectic reflection groups from the results in [GS03]. As
we are in need of such a list for our work in chapters 3 and 4 and only interested in
characteristic 0, we do not make use of [GS03] in what follows.

We now recall two basic notions from representation theory: (ir)reducibility and
(im)primitivity. These characterize the classes of symplectic reflection groups in the
classification.

Definition 1.2.3. Let V be a finite-dimensional vector space and let G ≤ GL(V ) be a
finite group.

(a) The representation V of G is called complex reducible if there exists a non-trivial
decomposition into G-invariant subspaces V = V1 ⊕ V2. Otherwise, we call V
complex irreducible.

(b) The representation V of G is called complex imprimitive if there exists a non-
trivial decomposition V = V1 ⊕ · · · ⊕ Vn into subspaces Vi ≤ V such that for any
i ∈ {1, . . . , n} and any g ∈ G there exists j ∈ {1, . . . , n} with g.Vi = Vj . In
this case, we call the decomposition V = V1 ⊕ · · · ⊕ Vn a system of imprimitivity.
Otherwise, we call V complex primitive.

Now let (V, ω) be a symplectic vector space and let G ≤ Spω(V ) be a finite group. We
define in complete analogy:

(c) The representation V of G is called symplectically reducible if there exists a non-
trivial decomposition into G-invariant symplectic subspaces V = V1 ⊕ V2. Other-
wise, we call V symplectically irreducible.

(d) The representation V of G is called symplectically imprimitive if there exists a non-
trivial decomposition V = V1⊕· · ·⊕Vn into symplectic subspaces Vi ≤ V such that
for any i ∈ {1, . . . , n} and any g ∈ G there exists j ∈ {1, . . . , n} with g.Vi = Vj .
Otherwise, we call V symplectically primitive.

We add the adjective ‘complex’ to the usual notions of irreducibility and imprimitivity
here and in what follows to avoid confusion with the symplectic notions. By abuse
of language, we often refer to reducibility and primitivity as properties of the group
instead of the representation, that is, we say for example that G ≤ GL(V ) is a complex
irreducible group.
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1. Symplectic reflection groups

From the definition, we see that complex irreducibility implies symplectic irreducibil-
ity and complex primitivity implies symplectic primitivity. However, neither notion is
equivalent to the other as we see in the following example.

Example 1.2.4. Recall the subgroups of Sp2(C) from Example 1.1.11. All of these are
symplectically irreducible and all but Cm are complex irreducible. The group Cm fits in
the framework of Example 1.1.10 and the representation V ⊕V ∗ of a group G in the latter
example is complex reducible. The representation V ⊕ V ∗ is furthermore symplectically
irreducible if and only if V is complex irreducible.

All of the subgroups of Sp2(C) are symplectically primitive. However, Cm and Dm are
complex imprimitive. The groups T, O and I are complex primitive.

We should mention that the complex irreducible (and hence symplectically irreducible)
groups pass as ‘proper quaternionic groups’ in [Coh80].

1.2.1. Reduction to symplectically irreducible groups

In what follows, let (V, ω) be a finite-dimensional symplectic vector space over C and let
G ≤ Spω(V ) be a finite group.

We state three easy lemmas for completeness.

Lemma 1.2.5. Let V = V1 ⊕ V2 be a decomposition in symplectic vector spaces (V1, ω1)
and (V2, ω2). Then (V, ω) and (V1 ⊕ V2, ω1 ⊕ ω2) are isomorphic as symplectic vector
spaces.

Proof. There are standard symplectic bases e
(i)
1 , . . . , e

(i)
ni , f

(i)
1 , . . . , f

(i)
ni ∈ Vi for i = 1, 2

and with dimVi = 2ni. Then

e
(1)
1 , . . . , e(1)n1

, e
(2)
1 , . . . , e(2)n2

, f
(1)
1 , . . . , f (1)n1

, f
(2)
1 , . . . , f (2)n2

∈ V1 ⊕ V2

is a symplectic basis for the form ω1 ⊕ ω2. Choosing a symplectic basis for (V, ω) hence
induces a change of basis, which is trivially a symplectic isomorphism.

For a subspace W ≤ V , we let

W⊥ := {v ∈ V | ω(v, w) = 0 for all w ∈W}

be the symplectic complement of W in V . One should be aware that the symplectic com-
plement is in general not a complement in the usual sense of the word: while we always
have dimW + dimW⊥ = dimV [Lee03, Lemma 22.3], the condition W ∩W⊥ = {0}
holds if and only if W is a symplectic subspace [Lee03, Proposition 22.5].

Lemma 1.2.6. Let V G ≤ V be the subspace of points fixed by G and W ≤ V the
(unique) G-invariant complement to V G in V .

Then both V G and W are symplectic subspaces and W = (V G)⊥ is the symplectic
complement to V G.
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1.2. Cohen’s classification

Proof. To prove that V G is symplectic we need to show that ω restricts to a non-
degenerate form on V G. Let 0 ̸= v ∈ V G. As ω is non-degenerate on V , there exists
w ∈ V with ω(v, w) ̸= 0. Then 1

|G|
∑

g∈G gw ∈ V G and

ω
(
v,

1

|G|
∑
g∈G

gw
)

=
1

|G|
∑
g∈G

ω(gv, gw) = ω(v, w) ̸= 0 ,

as required.
We now show that the G-invariant complement W of V G is contained in (V G)⊥. Let

w ∈W . Then w′ := 1
|G|

∑
g∈G gw ∈W by G-invariance of W , but also w′ ∈ V G as w′ is

fixed by G. Hence we must have w′ = 0 and so

ω(v, w) =
1

|G|
∑
g∈G

ω(gv, gw) = ω(v, w′) = 0

for all v ∈ V G as required.
Therefore W ≤ (V G)⊥ and equality follows directly for dimension reasons. In partic-

ular, W is a symplectic subspace.

Lemma 1.2.7. Let G ≤ Sp(V ) be a symplectically reducible group leaving the decom-
position V = V1 ⊕ V2 into symplectic vector spaces invariant and assume V G = {0}.
Then the action of G on Vi identifies G with a subgroup G1 × G2 ≤ Sp(V1) × Sp(V2).
Furthermore, the group G is a symplectic reflection group if and only if both G1 ≤ Sp(V1)
and G2 ≤ Sp(V2) are symplectic reflection groups.

Proof. The action of G on Vi gives groups Gi ≤ GL(Vi) with G ∼= G1 × G2. We
immediately have Gi ∈ Sp(Vi) by Lemma 1.2.5 as G ≤ Sp(V ).

If G1 and G2 are both generated by symplectic reflections, then so is G by exactly
these elements. On the other hand, let G be generated by symplectic reflections. For a
symplectic reflection g ∈ G, we prove that Vi ⊆ V g for either i = 1 or i = 2. Assume
Vi ̸⊆ V g for i = 1, 2, so there are v1 ∈ V1 and v2 ∈ V2 with g.vi ̸= vi. As g is a symplectic
reflection, we have dim(V g)⊥ = 2 for the symplectic complement, so ⟨v1, v2⟩ = (V g)⊥.
In particular, ω(v1, v2) ̸= 0 as the symplectic complement is a symplectic space by
Lemma 1.2.6. This is a contradiction to the fact that V decomposes symplectically into
V1 ⊕ V2 and hence ω(V1, V2) = 0. Therefore we have Vi ⊆ V g for, say, i = 1 and then
(V g)⊥ ⊆ V ⊥

1 = V2. This means we can identify g with a symplectic reflection in G1 or
G2. Hence, G1 and G2 are both symplectic reflection groups.

Lemma 1.2.7 tells us that we can restrict ourselves to the classification of symplectically
irreducible symplectic reflection groups.

1.2.2. Complex reducible groups

The next facts are well-known to the experts and best described as ‘folklore’, see for
example [BS16, Section 4.1]. We provide a proof for completeness. A subspace W ≤ V
with W = W⊥ is called Lagrangian, see [Lee03, p. 566].
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1. Symplectic reflection groups

Lemma 1.2.8. Let G ≤ Sp(V ) be a symplectically irreducible, complex reducible sym-
plectic reflection group. Then there is a G-invariant Lagrangian subspace W ≤ V such
that the representation W of G is complex irreducible.

Proof. Let 0 ⪇W ⪇ V be a G-invariant subspace of V . We show W = W⊥.

Assume there are w,w′ ∈W with ω(w,w′) ̸= 0. Then the subspace W ′ := ⟨w,w′⟩ ≤ V
is symplectic and then so is the G-invariant space G.W ′ as G consists of symplectic
morphisms. But G.W ′ ≤ W by G-invariance of W , hence G.W ′ ⪇ V , a contradiction.
This shows W ≤W⊥. Notice that W⊥ is G-invariant as well and so the same argument
gives W⊥ ≤ (W⊥)⊥ = W .

Choose now a complex irreducible subspace 0 ⪇ W ⪇ V . Then W is in particular
G-invariant, hence W = W⊥ and W is Lagrangian.

Given a Lagrangian subspace W ≤ V , there is a symplectic isomorphism V = W⊕W ∗,
where the symplectic form on W ⊕W ∗ is constructed as in Example 1.1.4. This gives
the following proposition.

Proposition 1.2.9. Let G ≤ Sp(V ) be a symplectic reflection group which is sym-
plectically irreducible and complex reducible. Let W ≤ V be a G-invariant Lagrangian
subspace as in Lemma 1.2.8. Then G identified with a subgroup of GL(W ) is a complex
reflection group, which acts on V ∼= W ⊕W ∗ as described in Example 1.1.10.

Complex reflection groups have been classified by Shephard and Todd [ST54]. If H is
a complex reflection group, then the symplectic reflection group H⊛ is clearly complex
imprimitive. The symplectic primitivity of H⊛ is equivalent to the complex primitivity of
H. Hence H⊛ is symplectically imprimitive if H belongs to the infinite series G(m, p, n)
with m ≥ 2, p | m and n ≥ 2. If H⊛ is symplectically primitive, then H belongs to one
of the following.

• The infinite series G(m, 1, 1), m ≥ 2, hence H⊛ is conjugate to Cm.

• The symmetric groups Sn, n ≥ 5, acting on an (n − 1)-dimensional space, see
[LT09, Example 2.11].

• The exceptional groups G4, . . . , G37, see [ST54].

1.2.3. Symplectically imprimitive groups

We now turn to symplectic reflection groups which are complex irreducible. Analo-
gously to the classification of complex reflection groups, we use the notion of symplectic
(im)primitivity to further distinguish the groups.

We note the following result for later use.

Lemma 1.2.10. Let G ≤ Sp(V ) be a complex irreducible symplectic reflection group. If
G is symplectically imprimitive with system of imprimitivity V = V1 ⊕ · · · ⊕ Vn, we have
dimVi = 2 for i = 1, . . . , n.
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1.2. Cohen’s classification

This is explained in the proof of [Coh80, Theorem 2.9], where one has to keep in mind
that Cohen works over the quaternions and hence shows dimVi = 1 as quaternionic
vector spaces.

The case of symplectically imprimitive groups bears some resemblance to the situation
of complex reflection groups. Let H ≤ SL2(C) = Sp2(C) be a finite group and let Sn be
the symmetric group for some n ≥ 1. We have an action of Sn on Hn via

σ.(h1, . . . , hn) = (hσ(1), . . . , hσ(n))

and we define the wreath product H ≀ Sn as the semidirect product Hn ⋊ Sn with multi-
plication (h, σ) · (h′, σ′) = (h(σ.h′), σσ′). The wreath product H ≀ Sn gives a symplectic
reflection group acting on C2n, where the elements of the group can be identified with
products Dπ of matrices D,π ∈ GL2n(C) with a block diagonal matrix

D =

h1 . . .

hn


for some h1, . . . , hn ∈ H and where π is obtained from a n × n permutation matrix by
replacing every entry ε by ( ε ε ).

Cohen shows that any symplectically imprimitive group is conjugate to a subgroup of
such an H ≀ Sn. We summarize his results as follows.

Theorem 1.2.11. Let G ≤ Sp(V ) be a complex irreducible, symplectically imprimitive
symplectic reflection group. Then we have dimV ≥ 4 and G is one of the following.

(a) In case dimV = 4, there are finite subgroups K,H ≤ SL2(C) with H ⊴ K and
an involution α of K/H such that G is conjugate to the subgroup denoted by
G(K,H,α) of K ≀ S2 generated by S2 and the cosets (kH,α(kH)) ⊆ K × K for
k ∈ K. See [Coh80, Table I] for the precise list of triples (K,H,α) that can occur.

(b) In case dimV = 2n > 4, there are finite subgroups K,H ≤ SL2(C) with H ⊴ K
and K not a cyclic group such that G is conjugate to the subgroup denoted by
Gn(K,H) of K ≀ Sn generated by Sn and the elements (k1, . . . , kn) ∈ Kn with
k1 · · · kn ∈ H.

See [Coh80, Section 2] for a proof, in particular Theorem 2.6 and Theorem 2.9.
Notice that Gn(Cmp,Cm) ∼= G(m, p, n)⊛ is complex reducible, we hence have to exclude

the case of cyclic groups K in the theorem.

1.2.4. Symplectically primitive groups

We turn to the symplectically primitive groups. Recall that such a group can be either
complex imprimitive or complex primitive.

For a group H ≤ GL2(C), we define

E(H) := {h⊛, h⊛s | h ∈ H} ≤ Sp4(C) ,
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1. Symplectic reflection groups

where

s :=

(
1

−1
−1

1

)
.

This is by construction a complex imprimitive group with system of imprimitivity ex-
actly the Lagrangian subspace and its dual space which are left invariant by H as in
Lemma 1.2.8. The next theorem informs us which groups H ≤ GL2(C) lead to a sym-
plectically primitive symplectic reflection group E(H). We require some notation. For
any d ∈ Z≥1, let

µd :=
〈(

ζd
ζd

)〉
,

where ζd ∈ C is a primitive d-th root of unity. Let T and O be the binary tetrahedral
and binary octahedral group, respectively, as introduced in Example 1.1.11. We have
T ⊴ O with O/T ∼= C2, so O = ⟨T, ω⟩ for some ω ∈ O. We follow [Coh76, p. 392] to
construct a further group OTd for any d ∈ Z≥1 (or (µ2d | µd;O | T) in Cohen’s notation).
For d ∈ Z≥1, let

φ : µ2d/µd → O/T

be the isomorphism defined by φ
(
ζ2dI2

)
= ω. Set

µ2d ×φ O = {(z, g) ∈ µ2d × O | φ(zµd) = gT} ,

and let OTd denote the image of µ2d ×φ O in GL2(C) under the natural multiplication
map. That means, we have

OTd =
2d−1⋃
k=0
k even

ζk2dT ∪
2d−1⋃
k=1
k odd

ζk2dωT .

Theorem 1.2.12. Let G ≤ Sp(V ) be a complex irreducible, symplectically primitive,
complex imprimitive symplectic reflection group. Then we either have dimV = 2 and G
is conjugate to the group Dm for some m ≥ 1 or dimV = 4 and G is conjugate to E(H),
where H is one of the following:

(a) µdT, with d a multiple of 6,

(b) µdO, with d a multiple of 4,

(c) µdI, with d a multiple of 4, 6 or 10,

(d) OT2d, with d not divisible by 4.

See [Coh80, Theorem 3.6] for a proof. We study the structure of these groups in more
detail in Section 4.1.

This leaves the groups which are complex primitive (and hence symplectically prim-
itive). This class of groups consists of only 16 groups in dimension up to 10; one might
want to call these groups ‘exceptional’.
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1.2. Cohen’s classification

Theorem 1.2.13. Let G ≤ Sp(V ) be a complex irreducible, complex primitive symplectic
reflection group. If dimV = 2, then G is conjugate to one of the groups T, O or I.
Otherwise, G is conjugate to one of the 13 groups listed in [Coh80, Table III].

See [Coh80, Theorem 4.2] for a proof.
This finishes our outline of the classification of symplectic reflection groups. We

provide Figure 1.2.1 as an overview of the different classes of groups.
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Symplectically
irreducible

Complex
reducible

Complex
irreducible

Symplectically
imprimitive

Symplectically
primitive

Symplectically
imprimitive

Symplectically
primitive

Complex
imprimitive

Complex
primitive

‘Doubled’ imprimitive
complex reflection groups
G(m, p, n)⊛, m,n ≥ 2
(Proposition 1.2.9)

‘Doubled’ primitive
complex reflection groups
G⊛

4 , . . . , G
⊛
37, Cm, S⊛

n

(Proposition 1.2.9)

G(K,H,α), if dimV = 4
Gn(K,H), if dimV > 4
(Theorem 1.2.11)

Dm, if dimV = 2
E(H), if dimV = 4
(Theorem 1.2.12)

16 exceptional groups,
2 ≤ dimV ≤ 10
(Theorem 1.2.13)

Figure 1.2.1.: The classification of symplectic reflection groups
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2. Symplectic resolutions

From Chapter 4 onwards, we investigate symplectic reflection groups from a geometric
point of view via their associated linear quotients and in particular via symplectic res-
olutions and, more general, Q-factorial terminalizations. For this, we now introduce the
necessary fundamental notions from birational geometry and – a bit surprising maybe –
representation theory.

We start in Section 2.1 by collecting properties of linear quotients and present a notion
of the McKay correspondence deeply connecting the Q-factorial terminalization of such a
quotient to the corresponding group. We proceed by formulating the classification prob-
lem concerning the existence of symplectic resolutions (equivalently, smooth Q-factorial
terminalizations) and summarize the state of the art of this classification (Section 2.2). In
Section 2.3, we present symplectic reflection algebras and their connection to symplectic
resolutions. We close the chapter by introducing Cox rings and a rough algorithmic
strategy to compute the Q-factorial terminalization of a linear quotient (Section 2.4).

In view of the breadth of the discussed material, we are not able to give our treatment
the depth the topics would allow and only present the results necessary for the chapters
to follow. We refer the reader looking for more in depth information to the references
throughout the text and in particular to the survey articles [Fu06, Gor08, LV09, Rei02].

2.1. Birational geometry of linear quotients

2.1.1. Linear quotients

Throughout, let V be a finite-dimensional complex vector space.

Definition 2.1.1 (Invariant ring). Let G ≤ GL(V ) be a finite group. We call

C[V ]G := {f ∈ C[V ] | g.f = f for all g ∈ G}

the invariant ring of G.

We require the following classical result, see [Ben93, Theorem 1.3.1].

Theorem 2.1.2 (Hilbert, Noether). Let G ≤ GL(V ) be a finite group. Then the invari-
ant ring C[V ]G is a finitely generated C-algebra.

This allows us to define the geometric object of interest.

Definition 2.1.3 (Linear quotient). Let G ≤ GL(V ) be a finite group. We denote the
affine variety SpecC[V ]G by V/G and refer to it as the linear quotient or the quotient
variety of V by G.

13



2. Symplectic resolutions

Example 2.1.4. The linear quotients of C2 by the finite subgroups of SL2(C) as listed
in Example 1.1.11 are the well-known Kleinian singularities (also known as Du Val
singularities, simple surface singularities, ADE singularities or rational double points).
We have for example

C2/Cm ∼= SpecC[x, y, z]/⟨xm + y2 − z2⟩ .

We often revisit the variety C2/C2 in the following examples and mostly work with
the presentation C[u, v, w]/⟨uv − w2⟩. This presentation is isomorphic to the former
coordinate ring via the linear coordinate change

x 7→ u+ iv, y 7→ u− iv, z 7→ w ,

where i :=
√
−1 is the imaginary unit.

See [Dur79] for many more details about these singularities.

Theorem 2.1.5 (Chevalley, Serre, Shephard–Todd). Let G ≤ GL(V ) be a finite group.
Then the linear quotient V/G is smooth if and only if G is a complex reflection group.

See [Ser68, Théorème 1’] for a proof. We also refer to a singular linear quotient V/G as
a quotient singularity.

The following corollary of Luna’s slice theorem [Lun73] and the theorem above is well-
known.

Lemma 2.1.6. Let G ≤ GL(V ) be a finite group and write π : V → V/G for the
projection morphism. For v ∈ V , the point π(v) is a smooth point of V/G if and only if
the stabilizer Gv ≤ G of v is a complex reflection group.

Proof. Write (V/G)sm for the smooth locus of V/G. By [Lun73, Lemme II.2], the map
V/Gv → V/G is étale for every v ∈ V . Hence, v ∈ (V/G)sm if and only if v ∈ (V/Gv)sm
as étale morphisms maintain regular points [Liu02, Corollary 4.3.24]. The latter happens
if and only if Gv is generated by reflections by [Ser68, Théorème 1’].

Notice that the subgroup generated by the (complex) reflections contained in a finite
group G ≤ GL(V ) is normal in G as the dimension of the fixed space is invariant under
conjugation.

Proposition 2.1.7. Let G ≤ GL(V ) be a finite group and let H ≤ G be the subgroup
generated by the reflections contained in G.

(a) The variety V/G is normal.

(b) We have Pic(V/G) = 0.

(c) We have Cl(V/G) ∼= Hom(G/H,C×). In particular, V/G is Q-factorial.

Statement (a) corresponds to the algebraic statement that C[V ]G is integrally closed,
see [Ben93, Proposition 1.1.1]. For (b) and (c), we refer to [Ben93, Theorem 3.6.1] and
[Ben93, Theorem 3.9.2], respectively.

Recall that a commutative Noetherian ring is called Gorenstein, if every localization
has finite injective dimension, see [Bas63].

14



2.1. Birational geometry of linear quotients

Figure 2.1.1.: A resolution of C2/C2 as in Example 2.1.10.

Theorem 2.1.8 (Watanabe). Let G ≤ GL(V ) be a finite group which does not contain
any reflections. Then the ring C[V ]G is Gorenstein if and only if G ≤ SL(V ).

See [Wat74, Theorem 1] for a proof.

In our applications, we exclusively consider subgroups G ≤ SL(V ). Theorem 2.1.8 tells
us that the corresponding linear quotient V/G is Gorenstein and this implies that the
canonical class KV/G is trivial together with Proposition 2.1.7 (b), see [Har66, Propo-
sition V.9.3]. Further, we have that V/G is singular by Theorem 2.1.5 as a complex
reflection cannot have determinant 1.

2.1.2. Minimal models

Definition 2.1.9 (Resolution). Let Y be a variety. A resolution of singularities of Y
is a proper birational morphism φ : X → Y from a smooth variety X which is an iso-
morphism outside of the singular locus of Y . If φ is furthermore a projective morphism,
we call the resolution a projective resolution. If φ is crepant, that is, φ∗KY = KX , we
call the resolution a crepant resolution.

Example 2.1.10. The Kleinian singularities from Example 2.1.4 all admit crepant resolu-
tions. In case G = C2 a resolution is given by

X := SpecC[x, y, z]/⟨x2 + y2 − 1⟩ ⊆ A3

with the map

φ : X → C2/C2, (x, y, z) 7→ (xz, yz, z) .

See Figure 2.1.1 for a (real) visualization of the situation. However, this resolution is cer-
tainly not projective and also not crepant. See [Liu02, Example 8.1.5] for a construction
of a crepant projective resolution via blowing up.

From now on, we only consider projective resolutions in this work and therefore usually
drop the adjective projective.
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2. Symplectic resolutions

While a resolution always exists, this is not true for crepant resolutions. An example is
given by the quotient singularity C4/G with G = ⟨−I4⟩ ≤ SL4(C) which does not admit
a crepant resolution as explained in [Gra19, Example 2.3.6]. We therefore consider
Q-factorial terminalizations, that is, crepant partial resolutions which are allowed to
have mild – precisely terminal (see [KM98, Definition 2.12]) – singularities.

Definition 2.1.11 (Q-factorial terminalization). Let Y be a normal Q-factorial variety.
A Q-factorial terminalization of Y is a projective birational morphism φ : X → Y such
that X is a normal Q-factorial variety with terminal singularities and φ is crepant.

In our context, Q-factorial terminalizations are related to minimal models, see Propo-
sition 2.1.13 and Remark 2.1.14.

Definition 2.1.12 (Minimal model). Let φ : X → Y be a projective birational mor-
phism of normal Q-factorial varieties where X is smooth. A relative minimal model of
X over Y is a projective birational morphism φ′ : X ′ → Y sitting in a diagram

X X ′

Y

φ

ψ

φ′

such that

(i) X ′ is a normal Q-factorial variety with terminal singularities,

(ii) the canonical class KX′ is φ′-nef (see [Kol13, Definition 1.4]) and

(iii) ψ : X 99K X ′ is a birational contraction, that is, a birational map such that the
exceptional locus of ψ−1 has codimension at least 2.

The above definition was given following [KM98, Example 2.16] and also [Kol13, Def-
inition 1.19]. We require the following result to be able to see that Q-factorial terminal-
izations exist, see also [Gra19, Proposition 2.1.11].

Proposition 2.1.13. Let G ≤ SL(V ) be a finite group and let φ : X → V/G be a
projective resolution of V/G with X a Q-factorial variety.
If φ′ : X ′ → V/G is a relative minimal model of X over V/G, then φ′ is a Q-factorial

terminalization of V/G.

Proof. Let φ′ : X ′ → V/G be a relative minimal model of X over V/G. We only need
to prove that φ′ is crepant. By Theorem 2.1.8, we have KV/G = 0. As KX′ is φ′-nef, we
must have −KX′ ≥ 0 by [KM98, Lemma 3.39]. On the other hand, V/G has canonical
singularities by [Kol13, Theorem 3.21], so KX′ ≥ 0 as well. We conclude KX′ = 0.

Remark 2.1.14. In the situation of Proposition 2.1.13, one immediately sees that a Q-fac-
torial terminalization X ′ → V/G is a relative minimal model of a projective resolution
X → V/G that factors through X ′ such that X 99K X ′ is a birational contraction.

In our context, a Q-factorial terminalization X ′ → V/G is therefore often referred to
as ‘minimal model’, see for example [IR96]. However, the usage of this terminology is
not entirely uniform and we decided to distinguish the two notions to avoid confusion.
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2.1. Birational geometry of linear quotients

We have the following special case of the deep result achieved in [BCHM10].

Theorem 2.1.15. Let G ≤ SL(V ) be a finite group. There exists a Q-factorial termi-
nalization of V/G.

Proof. This follows from [BCHM10, Corollary 1.4.3]. To give at least some details, we
require certain notions from birational geometry, which we did not introduce before; see
for example [Kol13] for definitions.

Let φ : X → V/G be a projective resolution of V/G. We want to apply [BCHM10, Co-
rollary 1.4.3] to V/G and φ (or rather the log pair (V/G, 0)). By [Kol13, Theorem 3.21],
the variety V/G has canonical singularities, so in particular KV/G is Kawamata log ter-
minal, see [Kol13, p. 42]. As described in [BCHM10, p. 413], we may use [BCHM10,
Corollary 1.4.3] with the set of all valuations of log discrepancy at most 1 to obtain
a birational morphism φ′ : X ′ → V/G where X ′ is Q-factorial and has terminal sin-
gularities. In fact, we see from the proof of [BCHM10, Corollary 1.4.3] that X ′ is a log
terminal model, see [BCHM10, Definition 3.6.7]. This means that there is a birational
contraction X 99K X ′ turning X ′ into a relative minimal model of X over V/G. In par-
ticular X ′ → V/G is projective and KX′ is φ′-nef. By Proposition 2.1.13, we conclude
that X ′ → V/G is a Q-factorial terminalization.

2.1.3. McKay correspondence

Throughout, let G ≤ SL(V ) be a finite group. We introduce a deep connection due to
Ito and Reid [IR96] between a Q-factorial terminalization X → V/G and the group G
itself.

For the following definitions, let g ∈ GL(V ) be of finite order r and fix a primitive
r-th root of unity ζr. In an eigenbasis, we can write g as a diagonal matrixζ

a1
r

. . .

ζanr


for certain integers 0 ≤ ai < r, where dimV = n.

Definition 2.1.16 (Age and junior elements). We call the number

age(g) :=
1

r

n∑
i=1

ai

the age of g. Elements of age 1 are called junior.

By construction, we have that age(g) is an integer if g ∈ SL(V ) and the junior elements
in SL(V ) are hence the non-trivial elements of minimal age 1. The age is by definition
invariant under conjugacy and we refer to the conjugacy classes of a group G ≤ GL(V )
consisting (only) of junior elements as junior conjugacy classes.
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2. Symplectic resolutions

Remark 2.1.17. We emphasize that the age as defined above depends on the choice of
the root of unity ζr, although this is hidden in the notation. For example, the matrix
diag(ε, ε, ε) ∈ SL3(C) with ε a primitive third root of unity has age 1, if we choose
ζ3 = ε, and age 2, if we choose ζ3 = ε−1. See [IR96, p. 224, Remark 3] for another
(counter-)example. In [IR96], Ito and Reid circumvent this problem by defining the age
not for the group G, but for the group Γ := Hom(µ|G|, G), where µ|G| is the group of
roots of unity of order |G|. On Γ, the notion of age is independent of any choices. By
choosing a root of unity ζ ∈ C of order |G|, the group Γ becomes isomorphic to G via
Γ → G, φ 7→ φ(ζ).

As we are interested in explicit calculations, we require a concrete description of the
age and in particular the corresponding valuation, see below, for elements of G.

In contrast to the above remark, the following lemma tells us that in the symplectic
case the age is independent of any choices, see also [Kal02, Lemma 2.6].

Lemma 2.1.18. Let g ∈ Sp(V ) be of finite order r and write V g ≤ V for the subspace
of vectors fixed by g. Then we have

age(g) =
1

2
codimV g .

In particular, g is a junior element if and only if g is a symplectic reflection.

Proof. By the symplectic eigenvalue theorem [AM87, Theorem 3.1.16], the eigenvalues
of g ∈ Sp(V ) come in pairs of the form λ, λ−1 for some λ ∈ C×. This means we can
write down the eigenvalues of g as

1, . . . , 1, ζa1r , ζ
r−a1
r , . . . , ζamr , ζr−amr

with a primitive r-th root of unity ζr, 2m = codimV g and 0 < ai < r. Then

age(g) =
1

r

m∑
i=1

(ai + (r − ai)) = m =
1

2
codimV g

by construction.

Definition 2.1.19 (Monomial valuation). For non-negative integers a1, . . . , an ∈ Z≥0

with gcd(a1, . . . , an) = 1, we construct a discrete valuation v : C(x1, . . . , xn) → Z defined
on C[x1, . . . , xn] via ∑

α∈Zn
≥0

λαx
α1
1 · · ·xαn

n 7→ min
α∈Zn

≥0

λα ̸=0

n∑
i=1

αiai .

We call v a monomial valuation.

This construction indeed gives a well-defined discrete valuation, see [Kal02, Defini-
tion 2.1].
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2.2. The classification of symplectic resolutions

Notation 2.1.20. Let g ∈ GL(V ) be of finite order r written in an eigenbasis asζ
a1
r

. . .

ζanr


as above. We can always choose ζr in such a way that gcd(a1, . . . , an) = 1. Indeed, given

any choice of root of unity, replacing ζr by ζ
gcd(a1,...,an)
r gives the desired result. We can

therefore define a monomial valuation

vg : C(x1, . . . , xn) → Z

for g via a1, . . . , an.

The construction of vg again depends on the choice of a root of unity, see Remark 2.1.17
above. The valuation vg is stable under conjugacy of g and we can hence associate valu-
ations to conjugacy classes in G without requiring to specify a particular representative.

Theorem 2.1.21 (McKay correspondence). Let G ≤ SL(V ) be a finite group and let
X → V/G be a Q-factorial terminalization. Then there is a one-to-one correspondence
between the junior conjugacy classes of G and the irreducible exceptional divisors on X.

More precisely, if E is a divisor corresponding to a conjugacy class of a junior element
g ∈ G of order r in this way, then vE = 1

rvg, where vE is the valuation of E and we
identify C(X) = C(V )G via the birational morphism X → V/G.

See [IR96, Section 2.8] for a proof.
Theorem 2.1.21 is our main tool to approach the Q-factorial terminalization X com-

putationally as it relates properties of X to the group G itself – an object we understand
much better.

2.2. The classification of symplectic resolutions

We present a concept of singular varieties with a symplectic structure as introduced by
Beauville [Bea00] with the definition of symplectic singularities. We refer to varieties
with such singularities as symplectic varieties following [Fu06]. To be able to state
the precise definition, we borrow a few notions from symplectic geometry, see [Can08,
Section 1.3] or [Lee03, Chapter 22] for more details.

Definition 2.2.1 (Symplectic form on a variety). Let Y be a smooth variety. A 2-form
ω ∈ Γ(Y,Ω2

Y ) on Y is non-degenerate at every point, if ω restricts to a non-degenerate
bilinear form on the tangent space TpY for all p ∈ Y . We further call ω closed, if
dω = 0, where d is the exterior derivative. A symplectic form on Y is a closed 2-form
ω ∈ Γ(Y,Ω2

Y ) which is non-degenerate at every point.

Definition 2.2.2 (Symplectic variety). Let Y be a normal variety. We call Y a sym-
plectic variety, if the smooth part Ysm of Y admits a symplectic form ω such that the
pull-back of ω to any (not necessarily projective) resolution X → Y extends to a 2-form
on X.

19



2. Symplectic resolutions

We emphasize that following [Fu06] we do not require a symplectic variety to be
smooth. Further, we note that the pull-back of ω to a resolution is in general not
symplectic as it is closed but possibly degenerate at some points, see [Fu06, p. 211]. The
singularities on a symplectic variety are exactly the symplectic singularities introduced
in [Bea00, Definition 1.1].

Let (V, ω,G) be a symplectic triple, where we use the short-hand notation from Re-
mark 1.1.7. Write π : V → V/G for the quotient map. Note that by Lemma 2.1.6
the smooth locus (V/G)sm of V/G is the image under π of the elements v ∈ V with
trivial stabilizer Gv = {1} in G. Further, the morphism π is étale at any such v by
[Lun73, Lemme II.2]. Hence, we can push forward the symplectic form ω on V to obtain
a symplectic form on (V/G)sm by [Liu02, Proposition 6.2.10]. This discussion gives the
following proposition.

Proposition 2.2.3. If (V, ω,G) is a symplectic triple, then the linear quotient V/G is
a symplectic variety.

Proof. By the above discussion, (V/G)sm admits a symplectic structure. Hence the claim
follows by [Nam01, Theorem 6] using Theorem 2.1.8.

See [Bea00, Proposition 2.4] for a proof working directly with the definition and not
requiring the result in [Nam01].

If we have symplectic singularities, we should also have symplectic resolutions.

Definition 2.2.4 (Symplectic resolution). Let φ : X → Y be a resolution of a symplectic
variety Y with symplectic form ω. We call φ a symplectic resolution, if the pull-back
φ∗ω can be extended to a symplectic form on X.

Proposition 2.2.5. Let Y be a symplectic variety and let φ : X → Y be a (not ne-
cessarily projective) resolution of singularities. Then φ is symplectic if and only if φ is
crepant.

See [Fu06, Proposition 1.6] for a proof. The same statement restricted to Y being a
quotient singularity can be found in [Ver00, Theorem 2.4].

Although a symplectic resolution is not a new concept by this proposition, we still use
the term symplectic resolution in the following as it is more common in our context. As
already discussed above, a crepant resolution of V/G does in general not exist. We have
a more precise result for symplectic quotient singularities.

Theorem 2.2.6 (Verbitsky). Let (V, ω,G) be a symplectic triple such that the linear
quotient V/G admits a (not necessarily projective) symplectic resolution. Then G is a
symplectic reflection group.

See [Ver00, Theorem 1.1] for a proof. There is a generalization of this result to subgroups
G ≤ SL(V ), saying that the existence of a crepant resolution of V/G implies that G is
generated by junior elements, see [Yam18, Theorem 1.1].

Theorem 2.2.6 means that for a classification of all finite subgroups of Sp(V ) whose
corresponding quotients admits a symplectic resolution we only need to look at sym-
plectic reflection groups. We see that we can further restrict to symplectically irreducible
symplectic reflection groups.
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2.2. The classification of symplectic resolutions

Lemma 2.2.7. If (V, ω,G) is a symplectically reducible symplectic triple decomposing
as V = V1 ⊕ V2 and G = G1 × G2 with Gi ≤ Sp(Vi), then V/G admits a symplectic
resolution if and only if both V1/G1 and V2/G2 admit symplectic resolutions.

Proof. The decomposition V/G = V1/G1 × V2/G2 implies that if each Vi/Gi admits a
symplectic resolution, then so does V/G.

For the converse, assume that V/G admits a symplectic resolution. Let v ∈ V1 be a
vector with trivial stabilizer StabG1(v) = 1. Then StabG(v) = G2, so V StabG(v) = V1.
Therefore V2/G2 admits a symplectic resolution by [Kal03, Theorem 1.6] and so does
V1/G1 by the analogous argument.

We arrive at the following classification problem:

Problem. Classify all symplectically irreducible symplectic reflection groups G ≤ Sp(V )
for which V/G admits a symplectic resolution.

This classification is ongoing work by many authors over the last two decades and
can be seen as almost finished with our contribution in Chapter 4. There, we reduce
the classification to only finitely many open cases using the representation theory of
symplectic reflection algebras as introduced in [EG02], see the next section. We now
give an outline of the current state of the classification, see Figure 2.2.1 for an overview.
We should emphasize that all of the results are only concerned with projective symplectic
resolutions.

Complex reducible groups. The complex reducible symplectic reflection groups for
which the corresponding quotient admits a symplectic resolution are the cyclic groups
Cm, the symmetric groups S⊛

n , the wreath product groups G(m, 1, n)⊛ and the excep-
tional group G⊛

4 . The quotients by all other complex reducible groups do not admit a
symplectic resolution. This part of the classification is presented in [Bel09] extending
partial results in [EG02, Corollary 1.14] and [Gor03, Proposition 7.3].

Complex irreducible, symplectically imprimitive groups. The complex irredu-
cible, symplectically imprimitive symplectic reflection groups for which the correspond-
ing quotient admits a symplectic resolution are the wreath product groups K ≀ Sn, for
K ≤ SL2(C) a finite group, and the group G(D2,C2, id) = Q8 ×Z/2ZD4, where Q8 is the
quaternion group of order 8 and D4 is the dihedral group of order 8. The quotients by
all other symplectically imprimitive groups do not admit a symplectic resolution. The
main reference for this part of the classification is [BS16] with the group G(D2,C2, id)
already treated in [BS13] and some remaining groups covered by [Yam18, Theorem 6.1].

Complex irreducible, symplectically primitive groups. The complex irredu-
cible, symplectically primitive groups for which it is known that the corresponding quo-
tient admits a symplectic resolution are the Kleinian groups Dm, m ≥ 1, T, O and I. It
is proven in [BS16] that there exist no symplectic resolutions for the quotients by three
exceptional groups. In Chapter 4, we prove the non-existence of a symplectic resolution
for the quotients by all other groups with the exception of 45 groups in rank 4 for which
the classification is still open; we give the precise list in Section 4.4.
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2. Symplectic resolutions

In the cases where a symplectic resolution is known to exist, these have been con-
structed explicitly. This is done in [BC20] for the wreath product cases using Nakajima
quiver varieties. The symplectic resolutions for the quotient corresponding to G⊛

4 are
constructed via the explicit computation of blowing-ups in [LS12]. Finally, [DW17] and
[BCR+21] deal with the resolutions of the quotient corresponding to G(D2,C2, id). These
resolutions are constructed in [BCR+21] using Nakajima quiver varieties and in [DW17]
by first constructing the Cox ring of such a resolution; we discuss the general idea of the
latter approach in more detail in Section 2.4.3.

2.3. Symplectic reflection algebras

We give an overview of symplectic reflection algebras as introduced by Etingof and
Ginzburg in the seminal paper [EG02]. They are a tool from representation theory that
we use in Chapter 4 to prove the non-existence of symplectic resolutions for almost all
quotients corresponding to symplectically primitive symplectic reflection groups.

Let (V, ω) be a symplectic vector space and let G ≤ Sp(V ) be a finite group. We want
to study the quotient V/G via deformations. However, it turns out that one should
not deform the ring C[V ]G directly, but rather the skew group ring C[V ] ⋊ G; see the
introduction of [EG02] for some reasons for this.

Definition 2.3.1 (Skew group ring). The skew group ring C[V ]⋊G is, as a vector space,
equal to C[V ] ⊗C CG with the multiplication for f, f ′ ∈ C[V ] and g, g′ ∈ G given by

(f ⊗ g) · (f ′ ⊗ g′) = f(g.f ′) ⊗ gg′

and extended linearly.

The skew group ring is in general a non-commutative algebra and we observe that the
centre is given by Z(C[V ] ⋊G) = C[V ]G. This means that the centre of a deformation
of C[V ] ⋊G gives us a deformation of C[V ]G.

We require a bit of notation for the deformations of C[V ] ⋊ G we are particularly
interested in. Recall that we write S(G) for the set of symplectic reflections in the group
G. For each g ∈ S(G), we decompose V = V g ⊕ (V g)⊥, where V g is the subspace of
elements fixed by g and (V g)⊥ the symplectic complement. Let πg : V → (V g)⊥ be the
projection map and define a bilinear form

ωg : V × V → C, (v, w) 7→ ω(πg(v), πg(w)) .

Finally, let c : S(G) → C be a G-conjugacy invariant function, that is, c(hgh−1) = c(g)
for all g ∈ S(G) and h ∈ G; we call c a parameter. Let TV ∗ = C⊕ V ∗ ⊕ (V ∗ × V ∗)⊕ · · ·
be the tensor algebra on V ∗.

Definition 2.3.2 (Symplectic reflection algebra). Given a symplectic triple (V, ω,G)
and a G-conjugacy invariant parameter c : S(G) → C, the symplectic reflection algebra
Hc(G) is the algebra TV ∗ ⋊G modulo the ideal generated by

v ⊗ w − w ⊗ v −
∑

g∈S(G)

c(g)ωg(v, w)g , for all v, w ∈ V ∗ .
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Symplectically
irreducible

Complex
reducible

Complex
irreducible

Symplectically
imprimitive

Symplectically
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Symplectically
imprimitive

Symplectically
primitive

Complex
imprimitive

Complex
primitive

G(m, 1, n)⊛, m,n ≥ 2
[Bel09, EG02, Gor03]

G⊛
4 , Cm, S⊛

n

[Bel09, EG02, Gor03]

K ≀ Sn, K ≤ SL2(C),
G(D2,C2, id)
[BS16, BS13, Yam18]

Dm,
39 open cases
Chapter 4

T, O, I,
6 open cases
[BS16], Chapter 4

Figure 2.2.1.: Symplectic reflection groups for which the existence of a symplectic res-
olution of the corresponding linear quotient is known
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2. Symplectic resolutions

Observe that H0(G) = C[V ] ⋊G.

Remark 2.3.3. The general definition of a symplectic reflection algebra in [EG02] involves
a further parameter t ∈ C, which we omit in our definition. The research on symplectic
reflection algebras splits up between the cases t = 0 and t = 1, see for example the
survey [Gor08]. We only consider the case t = 0 in this thesis.

Remark 2.3.4. Putting G in degree 0 and V in degree 1, we obtain a filtration of the
symplectic reflection algebra Hc(G). The associated graded algebra is then isomorphic to
C[V ] ⋊G, that is, Hc(G) fulfils the Poincaré–Birkhoff–Witt property (PBW-property),
see [EG02, Theorem 1.3]. In fact, [EG02, Theorem 1.3] is stronger and tells us that all
quotients of TV ∗ ⋊G by a commutator relation that fulfil the PBW-property are given
by symplectic reflection algebras with the additional parameter t as in Remark 2.3.3, at
least if G is symplectically irreducible.

Example 2.3.5. We consider the example C2 ≤ SL2(C) in this context. Write V := C2.
The only symplectic reflection is g := −I2, so we can identify a parameter c with an
element of C. We have V g = {0}, so ωg = ω. Let x, y ∈ V ∗ be a basis of V ∗ with
ω(x, y) = 1. This gives the relation

[x, y] =
∑

g∈S(G)

cω(x, y)g = cg .

So, the symplectic reflection algebra is given by

Hc(G) ∼= C⟨x, y, g⟩/⟨g2 = 1, gx = −xg, gy = −yg, [x, y] = cg⟩ ,

where C⟨x, y, g⟩ denotes the free algebra on {x, y, g}.

We want to relate the algebra Hc(G) to the geometric object V/G.

Notation 2.3.6. We write Zc(G) := Z(Hc(G)) for the centre of the symplectic reflection
algebra Hc(G).

Proposition 2.3.7 (Etingof–Ginzburg). Let (V, ω,G) be a symplectic triple and let
c : S(G) → C be a G-conjugacy invariant function. Then the centre Zc(G) of Hc(G) is
a finitely generated integral C-algebra.

Combine [EG02, Theorem 3.1] and [EG02, Theorem 1.5 (i)] for a proof.

Definition 2.3.8 (Calogero–Moser space). The affine variety Xc(G) := SpecZc(G) is
called the Calogero–Moser space of G with parameter c.

Example 2.3.9. Consider again C2 ≤ SL2(C) as in Example 2.3.5. The centre Zc(G) is
generated by the elements x2, y2, xy−cg ∈ Hc(G) as can be checked using the computer
algebra package CHAMP [Thi15]. This results in a presentation

C[u, v, w]/⟨uv − w2 + c2⟩ ∼= Zc(G) ,

u 7→ x2 ,

v 7→ y2 ,

w 7→ xy − cg .
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Figure 2.3.1.: A deformation of C2/C2 as in Example 2.3.9.

Hence, Xc(G) gives deformations of C2/C2
∼= SpecC[u, v, w]/⟨uv −w2⟩ parametrized by

c as expected. See Figure 2.3.1 for a (real) visualization of the situation. However, it is
only a coincidence in this example that a deformation is also a resolution of C2/C2.

We have the following connection to the classification of symplectic resolutions presen-
ted in the previous section.

Theorem 2.3.10 (Ginzburg–Kaledin, Namikawa). Let (V, ω,G) be a symplectically ir-
reducible symplectic triple. Then the symplectic linear quotient V/G admits a symplectic
resolution if and only if there is a parameter c : S(G) → C such that the Calogero–Moser
space Xc(G) is smooth.

One implication is due to [GK04, Corollary 1.21]. See [Nam11, Corollary 5.6] for the
statement that a symplectic resolution exists if and only if there is a smooth Poisson
deformation of V/G. This then yields the equivalence in the theorem with [GK04,
Theorem 1.18] and [GK04, Theorem 1.20], see also [Bel10, Section 4.3] for details.

The question whether Xc(G) is smooth is related to the representation theory of Hc(G).

Theorem 2.3.11 (Etingof–Ginzburg). Let (V, ω,G) be a symplectically irreducible sym-
plectic triple and let c : S(G) → C be a parameter. If Xc(G) is smooth, then the dimen-
sion of all simple Hc(G)-modules is equal to the order of G.

See [EG02, Theorem 1.7] for a proof.
Combining both theorems gives the following corollary.

Corollary 2.3.12. Let (V, ω,G) be a symplectically irreducible symplectic triple. If the
symplectic linear quotient V/G admits a symplectic resolution, then there is a parameter
c : S(G) → C such that the dimension of all simple Hc(G)-modules is equal to the
order of G.

2.4. Cox rings

Following [ADHL15, Section 1.4], we introduce an important invariant in birational
geometry: the Cox ring of a variety. The Cox ring was originally defined by Cox [Cox95]
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as the homogeneous coordinate ring of a toric variety and transferred to a more general
setting by Hu and Keel [HK00]. It is also referred to as the total coordinate ring.

Notation 2.4.1. We write Div(Y ) for the group of Weil divisors on a normal variety Y
and usually abbreviate ‘Weil divisor’ to just ‘divisor’. For a divisor D ∈ Div(Y ), we
write [D] ∈ Cl(Y ) for its class in the class group.

2.4.1. Construction

Let Y be a normal variety with finitely generated class group Cl(Y ). Note that linear
quotients fulfil this assumption, see Proposition 2.1.7. As the definition of the Cox ring
is a bit involved if the class group contains torsion, we assume at first that Cl(Y ) is a
free group, to get an idea.

Recall that Div(Y ) is the free abelian group generated by the prime divisors on Y
and that Cl(Y ) is the quotient of Div(Y ) by the principal divisors. We can hence fix a
subgroup H ≤ Div(Y ) such that the canonical map π : H → Cl(Y ) sending D ∈ H to
its class [D] ∈ Cl(Y ) is an isomorphism by choosing representatives of a minimal set of
generators of the free group Cl(Y ).

Definition 2.4.2 (Cox ring). Assume that Cl(Y ) is free. The Cox ring associated to
H is the Cl(Y )-graded ring

R(Y ) :=
⊕
D∈H

Γ(Y,OY (D)) ,

where the multiplication in R(Y ) is given by multiplying homogeneous sections in the
field of rational functions C(Y ).

Given two subgroups H,H ′ ≤ Div(Y ) projecting isomorphically onto Cl(Y ), their
associated Cox rings are graded isomorphic, see [ADHL15, Construction 1.4.1.1]. In
particular, the definition is independent of the choice of the group H.

Example 2.4.3. Let Y = Pn be the projective space for some n ≥ 1 with homogeneous
coordinate ring C[x0, . . . , xn] and let D ⊆ Pn be the hyperplane defined by x0 = 0.
The class of D generates Cl(Pn) ∼= Z freely [Har77, Proposition II.6.4] and we choose
H = ⟨D⟩ as system of representatives for Cl(Pn). A section f ∈ Γ(Pn,OPn(kD)) for
k ∈ Z is given by a polynomial of degree ≤ k in the coordinates x1

x0
, . . . , xnx0 . In particular,

Γ(Pn,OPn(kD)) is trivial for k < 0. For k ≥ 0, multiplying by xk0 induces an isomorphism
of C-vector spaces

Γ(Pn,OPn(kD)) ∼= {f ∈ C[x0, . . . , xn] | f homogeneous of degree k} .

In conclusion, the Cox ring R(Pn) is Z-graded isomorphic to the polynomial ring with
the standard grading C[x0, . . . , xn], which is the homogeneous coordinate ring of Pn.

We now drop the assumption that Cl(Y ) is free. We still require that Cl(Y ) is finitely
generated and impose the additional assumption that Γ(Y,O×

Y ) = C×, which is for
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example fulfilled by varieties which are projective over SpecC, but also again for linear
quotients, see below. Let H ≤ Div(Y ) be a subgroup such that the canonical map
π : H → Cl(Y ) sending D to its class [D] ∈ Cl(Y ) is surjective. Any D ∈ ker(π) is a
principal divisor, so there is f ∈ C(Y )× with D = div(f). Hence we can choose a group
homomorphism χ : ker(π) → C(Y )× with div(χ(D)) = D for all D ∈ ker(π). Let

S :=
⊕
D∈H

Γ(Y,OY (D))

be the divisorial algebra associated to H, see [ADHL15, Definition 1.3.1.1], and set

I := ⟨1 − χ(D) | D ∈ ker(π)⟩ ⊴ S .

For a generator 1 − χ(D) of I, we have 1 in degree 0 and χ(D) in degree −D.

Definition 2.4.4. The Cox ring of Y associated to H and χ is the quotient R(Y ) := S/I
graded by Cl(Y ) via

R(Y ) =
⊕

[D]∈Cl(Y )

R[D](Y ) , R[D](Y ) := ρ
( ⊕
E∈π−1([D])

SE

)
with the projection morphism ρ : S → R(Y ).

Proposition 2.4.5. Let Y be a normal variety with Γ(Y,O×
Y ) = C× and finitely gen-

erated class group Cl(Y ). Then different choices of H and χ as above give rise to Cox
rings which are graded isomorphic.

See [ADHL15, Proposition 1.4.2.2] for a proof.

Example 2.4.6. We summarize [ADHL15, Example 1.4.2.4] dealing with the affine cone
Y = C2/C2 = V (xy − z2) ⊆ A3. We revisit this example in Example 2.4.12 after
establishing more theory. Write fx := x|Y , fy := y|Y and fz := z|Y for the functions on
Y . We have the prime divisor D := VY (fy) = V (y, z) ∩ Y , whose class generates the
divisor class group Cl(X) ∼= Z/2Z [Har77, Example II.6.5.2]. Write H = ⟨D⟩ and let S
be the corresponding divisorial algebra as above. Grade the ring C[u, v, w±1] by H via
degH(u),degH(v) := D and degH(w) := 2D. One can prove that there is an H-graded
isomorphism

C[u, v, w±1] → S ,

u 7→ 1 ∈ Γ(Y,OY (D)) ,

v 7→ fzf
−1
y ∈ Γ(Y,OY (D)) ,

w 7→ f−1
y ∈ Γ(Y,OY (2D)) .

The kernel of the projection π : H → Cl(Y ) is ker(π) = ⟨2D⟩ and a group homomorphism
χ : ker(π) → C(Y )× as above is given by

χ : ker(π) → C(Y )×, 2nD 7→ fny .
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By [ADHL15, Remark 1.4.3.2], the ideal I = ⟨1−χ(E) | E ∈ ker(π)⟩ is generated by the
element 1 − fy with 1 having degree 0 and fy having degree −2D. Therefore we have

R(Y ) = S/I ∼= C[u, v, w±1]/⟨1 − w−1⟩ ∼= C[u, v] ,

with the Cl(Y )-grading deg(u) = deg(v) = [D]. That means that there are two graded
components in C[u, v]; one generated as a C-vector space by all monomials of even degree
and one generated by all monomials of odd degree.

2.4.2. Birational morphisms

Let X and Y be normal varieties and let φ : X → Y be a projective birational mor-
phism. Assume that the class groups Cl(X) and Cl(Y ) are finitely generated and that
Γ(X,O×

X) = C× = Γ(Y,O×
Y ). Write φ∗ : C(Y ) → C(X) for the induced isomorphism of

function fields.

Recall that there is an induced push-forward morphism of groups

φ∗ : Div(X) → Div(Y )

mapping a divisor D to φ(D), if φ(D) is a divisor, and to 0 otherwise. This gives rise
to a morphism of class groups Cl(X) → Cl(Y ), which we call φ∗ as well by abuse of
notation, see [Ful84, Theorem 1.4].

We can relate the Cox rings of X and Y as follows.

Proposition 2.4.7. With the assumptions on X, Y and φ : X → Y as at the beginning
of this section, there is a surjective morphism of graded rings φ∗ : R(X) → R(Y ) given
by the isomorphism φ∗ : C(Y ) → C(X) on the rings and the push-forward morphism
φ∗ : Cl(X) → Cl(Y ) on the grading groups.

See [ADHL15, Proposition 4.1.3.1] for a proof. We only require the first statement given
there and hence do not need to assume that both X and Y are complete.

2.4.3. Mori dream spaces

We give a brief overview of the theory of Mori dream spaces introduced by Hu and Keel
[HK00] to motivate our interest in Cox rings in the context of Q-factorial terminaliza-
tions.

Definition 2.4.8 (Mori dream space). Let X → Y be a projective morphism of normal
varieties X and Y . Assume that Cl(X) is finitely generated and that Γ(X,O×

X) = C×.
We call X a (relative) Mori dream space over Y if the Cox ring R(X) is finitely generated.

Remark 2.4.9. There are (at least) two common ways to define Mori dream spaces:
an ‘algebraic definition’ via the Cox ring as above or a ‘geometric definition’ via the
structure of the nef cone of the variety X, see [HK00, Definition 1.10]. The reason for
the adjective ‘relative’ is more obvious from the latter definition.
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If we assume additionally that Y is affine, Cl(Y ) is a torsion group and that X is
Q-factorial, then by [Gra19, Theorem 3.4.7] finite generation of R(X) is equivalent to a
relative version of Mori dream spaces in the second sense, see [Gra19, Definition 3.4.6].
In our applications, Y is a linear quotient and X → Y a Q-factorial terminalization, so
we are always in this situation.

For a thorough presentation of relative Mori dream spaces see [Oht22], where they are
called Mori dream morphisms.

We note the following fact.

Lemma 2.4.10. Let X → Y be a projective birational morphism of normal varieties
where Y is affine. Then Γ(X,OX) = Γ(Y,OY ).

Proof. The morphism X → Y is projective, hence proper [Liu02, Theorem 3.3.30], and
therefore Γ(X,OX) is integral over Γ(Y,OY ) by [Liu02, Proposition 3.3.18]. As Y is
normal, Γ(Y,OY ) is integrally closed in C(Y ) ∼= C(X) and the claim follows.

Let X → Y be a projective birational morphism of normal varieties where Y is affine
and such that X is a relative Mori dream space over Y . We call a birational map
φ : X 99K X ′ small, if φ defines an isomorphism of open subsets with complement of
codimension 2. In other words, we require φ to not contract a divisor on X.

We can recover all normal varieties X ′ connected to X via a small birational map
relative to Y via variation of GIT quotient. The main idea is the following. As R(X)
is finitely generated and graded by Cl(X), we have the affine variety SpecR(X) with
an action by the quasitorus SpecC[Cl(X)]. We now proceed by taking GIT quotients
of certain linearizations of SpecR(X) with respect to this action. We do not recall this
construction here, but only give the results, see [ADHL15, Section 3.3.4] for details.
In the given reference it is assumed that X is projective (over SpecC). However, the
described GIT construction immediately generalizes to our relative setting as the con-
structed quotients are then projective over Γ(X,OX), see [ADHL15, Proposition 3.1.2.2].

Taking GIT quotients translates to the following construction on the algebraic side.
Every divisor D ∈ Div(X) on X gives rise to a positively graded algebra

S(D) :=
⊕
k∈Z≥0

Γ(X,OX(kD)) .

As R(X) is by assumption finitely generated, so is the Veronese subalgebra S(D) by
[ADHL15, Proposition 1.1.2.4]. Furthermore, we have a rational map X 99K X(D)
where X(D) := ProjS(D). Notice that X(D) is projective over Spec Γ(X,OX), so over
Y by Lemma 2.4.10 in our situation. If we choose D to be ample, then X 99K X(D) is
an isomorphism, that is, we can recover X (up to isomorphism) from its Cox ring, see
also [ADHL15, Corollary 3.2.1.11].

For a divisor D ∈ Div(X), we call

Bs(D) :=
⋂

f∈Γ(X,OX(D))

Supp(div(f) +D) and B(D) :=
∞⋂
m=1

Bs(mD)
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the base locus and the stable base locus of D respectively. We say that D is movable if
B(D) is of codimension at least 2 in X. If D ∈ Div(X) is movable, then X 99K X(D)
is a small birational morphism. In fact, we can recover all small birational morphisms
starting in X relative to Y in this way by the geometric definition of Mori dream spaces,
see [Gra19, Definition 3.4.6] and recall Remark 2.4.9.

2.4.4. Linear quotients

Let again V be a finite-dimensional vector space and let G ≤ SL(V ) be a finite group.
Recall from Proposition 2.1.7 that V/G is a normal variety with finitely generated divisor
class group Cl(V/G) ∼= Hom(G,C×) as G cannot contain any reflections. Further, we
clearly have

Γ(V/G,OV/G)× = (C[V ]G)× = C×

as C[V ]G ≤ C[V ]. This means that we may talk about the Cox ring R(V/G).
Let Ab(G) := G/[G,G] be the abelianization of G and write Ab(G)∨ for the group of

irreducible (hence linear) characters of this group. By [BKZ18, Theorem 9.5], we have
Hom(G,C×) = Ab(G)∨ ∼= Ab(G). There is an action of Ab(G) on the ring C[V ][G,G]

induced by the action of G. This action induces a grading by Ab(G)∨ by setting the
graded component of a character χ ∈ Ab(G)∨ to be

C[V ][G,G]
χ := {f ∈ C[V ][G,G] | γ.f = χ(γ)f for all γ ∈ Ab(G)} .

We have the following theorem.

Theorem 2.4.11 (Arzhantsev–Gǎıfullin). Let G ≤ SL(V ) be a finite group. Then there
is an Ab(G)∨-graded isomorphism R(V/G) ∼= C[V ][G,G].

See [AG10, Theorem 3.1] for a proof.

Example 2.4.12. We consider again Example 2.4.6 and determine R(C2/C2), this time
by using Theorem 2.4.11. We have [C2,C2] = 1 as C2 is abelian, so R(C2/C2) = C[x, y].
The group C∨

2 = Hom(C2,C×) is generated by the character

χ : C2 7→ C×, ( 1
1 ) 7→ 1,

(−1
−1

)
7→ −1 .

We hence have the two graded components

C[x, y]χ = {f ∈ C[x, y] | f involves only terms of odd degree}

and
C[x, y]χ2 = {f ∈ C[x, y] | f involves only terms of even degree} .

Let φ : X → V/G be a Q-factorial terminalization of the linear quotient V/G and
let m ∈ Z≥0 be the number of junior conjugacy classes in G. Using [Har77, Proposi-
tion II.6.5 (c)] and Theorem 2.1.21, we have an exact sequence of abelian groups⊕m

i=1 ZEi Cl(X) Cl(V/G) 0 ,
φ∗
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where Ei are the irreducible exceptional divisors on X. This implies that the class
group Cl(X) is finitely generated as both Cl(V/G) and

⊕m
i=1 ZEi are finitely generated

groups. We give a precise description of the group Cl(X) in Corollary 5.4.2. Further, by
Lemma 2.4.10, we have in particular Γ(X,OX)× = C×. This means that we may again
speak about the Cox ring R(X).

Theorem 2.4.13. Let G ≤ SL(V ) be a finite group and let φ : X → V/G be a Q-factorial
terminalization. Then R(X) is a finitely generated C-algebra and hence X a relative
Mori dream space over V/G.

See [Gra19, Theorem 3.4.10] for a proof. For symplectic linear quotients, this also follows
from [Nam15, Main Theorem].

This makes the following algorithmic strategy feasible: to compute a Q-factorial ter-
minalization of a linear quotient V/G, one first computes the finitely generated algebra
R(X) and then recovers X as a GIT quotient. The practical considerations concerning
this idea are the main topic of chapters 6 and 7.
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3. Parabolic subgroups of symplectic
reflection groups

The name ‘symplectic reflection group’ invites one to compare these groups to complex
reflection groups. A fundamental result for the latter is Steinberg’s fixed point theorem
[Ste64, Theorem 1.5], which states that the parabolic subgroups of complex reflection
groups are generated by the complex reflections they contain. In this chapter, we prove
a symplectic analogue of this theorem; see Theorem 3.1.1 for the precise statement. In
Section 3.2, we draw first consequences of this result regarding the rank of minimal
and maximal parabolic subgroups as well as the codimension of the singular locus of a
symplectic linear quotient. In [KW82, Theorem C] it is shown that a parabolic subgroup
of a CI-group, that is, a group whose invariant ring is a complete intersection, is generated
by bireflections. However, we give a short argument for why a symplectic reflection group
of rank at least 6 cannot be a CI-group, see Section 3.3.

The results of this chapter are already published in [BST23].

3.1. A symplectic analogue of Steinberg’s fixed point
theorem

The question of whether an analogue of Steinberg’s fixed point theorem also holds for
symplectic reflection groups was posed in [Coh80, Remark (iv)] and again in [BS16,
Question 9.1]. We can answer it in the affirmative.

Theorem 3.1.1. Let (V, ω) be a finite-dimensional symplectic vector space over C, let
G ≤ Sp(V ) be a finite symplectic reflection group and choose v ∈ V . Then the stabilizer
Gv of v in G is also a symplectic reflection group.

Specifically, the theorem says that the stabilizer of v is generated by those symplectic
reflections in G that fix v. It would be interesting to see what other properties of complex
reflection groups can be generalized to symplectic reflection groups.

The stabilizer Gv of a vector v is usually called a parabolic subgroup of G. Therefore,
Theorem 3.1.1 can be rephrased as ‘every parabolic subgroup of a symplectic reflection
group is a symplectic reflection group’.

The proof of Theorem 3.1.1 given below is a case-by-case analysis using the classifi-
cation of symplectically irreducible symplectic reflection groups; see Proposition 3.1.6,
Proposition 3.1.7 and Lemma 3.1.8.

Remark 3.1.2. By an easy induction (see Corollary 3.1.9), one can show that any sub-
group of G that fixes a subset U ⊆ V pointwise is also a symplectic reflection group.
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Remark 3.1.3. As noted in [BS16, Remark 9.2], it would be interesting to have a con-
ceptual proof of Theorem 3.1.1 that does not rely on the classification of symplectic
reflection groups. Such a proof would provide a deeper insight in the nature of sym-
plectic reflection groups. The proofs of Steinberg’s theorem for complex reflection groups
given in [Ste64], [Leh04] and [Bou68, Chapter V, Exercise 8] all make use of alterna-
tive (but equivalent) characterizations of these groups. We are not aware of any similar
characterization of symplectic reflection groups that would help here.

3.1.1. First reductions

Throughout this chapter, let (V, ω) be a finite-dimensional symplectic vector space over
C. Let G ≤ Sp(V ) be a finite symplectic reflection group.

Lemma 3.1.4. Theorem 3.1.1 holds trivially for triples (V, ω,G) with dimV ≤ 4.

Proof. Let v ∈ V and set H := StabG(v). Write W := (V H)⊥ for the symplectic
complement of the subspace of points fixed by H. Since W is symplectic by Lemma 1.2.6,
H is a subgroup of Sp(W ). We must have dimW < dimV and dimW is even.

If dimV = 2 then there are no non-trivial symplectic subspaces of V and The-
orem 3.1.1 is vacuous. When dimV = 4, every proper symplectic subspace has di-
mension 2 and all finite subgroups of Sp2(C) = SL2(C) are symplectic reflection groups,
see Example 1.1.11. Therefore Theorem 3.1.1 holds in this case.

Remark 3.1.5. Assume that G is symplectically reducible. If V G ̸= {0}, we may replace
V by the complement (V G)⊥ and G by the corresponding (isomorphic) subgroup of
Sp((V G)⊥). We are hence in the situation of Lemma 1.2.7 and have a decomposition
V = V1 ⊕ V2 into symplectic subspaces invariant under G such that G can be identified
with a product G1 × G2 ≤ Sp(V1) × Sp(V2), where both G1 and G2 are symplectic
reflection groups. Then the stabilizer Gv = Gv1 ×Gv2 of a vector v = v1 + v2 in V , with
vi ∈ Vi, is a symplectic reflection group if and only if each Gvi is a symplectic reflection
group in Gi.

From now on, we assume that G is a symplectically irreducible symplectic reflection
group.

3.1.2. Complex reducible groups

Assume that G is a complex reducible group. Recall from Proposition 1.2.9 that there
is a G-invariant Lagrangian subspace W ≤ V such that G identified with a subgroup of
GL(W ) is a complex reflection group. The following particular case of Theorem 3.1.1
was already proved as part of [BG03, Proposition 7.7]. Since our claim is weaker than
the statement of the given reference, a shorter argument suffices. We give it here for the
sake of completeness.

Proposition 3.1.6. Theorem 3.1.1 holds if G is complex reducible.
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Proof. Let W be a G-invariant Lagrangian subspace of V and write H for the corres-
ponding complex reflection group, that is, the image of the embedding G ↪→ GL(W ),
see Proposition 1.2.9.

Let v ∈ V , so there are v1 ∈W and v∗2 ∈W ∗ with v = v1 + v∗2 and we have

StabG(v) = StabH(v1)
⊛ ∩ StabH(v∗2)⊛ .

Since W ∗ is the dual of the representation W , there exists a vector v2 ∈ W with
StabH(v2) = StabH(v∗2).

By Steinberg’s fixed point theorem [Ste64, Theorem 1.5], the group StabH(v1) is
generated by complex reflections. We have

StabH(v1) ∩ StabH(v2) = StabStabH(v1)(v2) ,

and a second application of Steinberg’s theorem implies that this intersection is gener-
ated by complex reflections. Hence, StabG(v) is generated by symplectic reflections as
claimed.

3.1.3. Symplectically imprimitive groups

We assume from now on that G is complex irreducible.
Let G also be symplectically imprimitive. By Lemma 1.2.10, the system of imprimi-

tivity is of the form V = V1⊕· · ·⊕Vn with dimVi = 2 for i = 1, . . . , n. By Lemma 3.1.4,
we may assume dimV > 4. That means, we are in case (b) of Theorem 1.2.11 and there
are finite subgroups K,H ≤ SL2(C) with H ⊴ K such that G is conjugate to the group
Gn(K,H) ≤ K ≀ Sn.

Notice that the transpositions in Sn act as symplectic reflections on V ; they simply
swap two summands in the system of imprimitivity.

Proposition 3.1.7. Theorem 3.1.1 holds if G is complex irreducible and symplectically
imprimitive.

Proof. Let G = Gn(K,H) for finite subgroups K,H ≤ SL2(C) and n > 2 as explained
above.

Let v = (v1, . . . , vn) ∈ V = V1⊕· · ·⊕Vn. Now let σ ∈ Sn such that for the permutation
v′ of v given by v′j := vσ(i) we have a ‘block structure’

(v′1, . . . , v
′
n0
, v′n0+1, . . . , v

′
n0+n1

, . . . , v′n0+···+nr−1+1, . . . , v
′
n0+···+nr

) ,

given by the condition that Kv′i = Kv′j if and only if there exists 0 ≤ s ≤ r with(∑s−1
t=−1 nt

)
+ 1 ≤ i, j ≤

∑s
t=0 nt, where we set n−1 := 0. That is, we permute the

entries of v so that elements in the same K-orbit lie next to each other and the number
of elements lying in the same orbit is given by the ni. Without loss of generality, we
may assume v′1 = · · · = v′n0

= 0. After fixing representatives w0, . . . , wr for the occurring
orbits, we can find an element k ∈ Kn such that

k.v′ = w = (w0, . . . , w0, w1, . . . , w1, . . . , wr, . . . , wr) ,
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where (Kwi) ∩ (Kwj) = ∅ for i ̸= j and w0 = 0. Combining σ and k hence gives an
element g ∈ K ≀ Sn with g.v = w.

If an element τh ∈ Gn(K,H) stabilizes the vector w, then τ ∈ Sn0 × Sn1 × · · · × Snr .
Furthermore, we must have h = (h1, . . . , hn0 , 1, . . . , 1), where h1, . . . , hn0 ∈ K with
h1 · · ·hn0 ∈ H.

Hence, StabGn(K,H)(v) is (K ≀ Sn)-conjugate to Gn0(K,H) × Sn1 × · · · × Snr , which is
a (in general, symplectically reducible) symplectic reflection group. Notice that we may
have ni = 1 for some of the blocks, resulting in trivial factors in the above product. The
claim now follows as symplectic reflections are preserved under conjugation.

3.1.4. Symplectically primitive groups

The only remaining case is where G is complex irreducible and symplectically primitive.
Once again, we may assume dimV > 4 by Lemma 3.1.4. This excludes all complex
imprimitive groups (see Theorem 1.2.12) and only leaves seven complex primitive groups
to consider. These are given explicitly via the root systems Q to U in [Coh80, Table II]
and one can check with the help of a computer that all stabilizer subgroups are indeed
generated by symplectic reflections. A list of the groups occurring in this way can be
found in Appendix A.

Lemma 3.1.8. Theorem 3.1.1 holds if G is complex irreducible and symplectically prim-
itive.

This finishes the proof of Theorem 3.1.1. Finally, we note how Theorem 3.1.1 implies
the statement in Remark 3.1.2. The proof is the same induction as in [Ste64, Section 7]
(see also [LT09, Corollary 9.51]); we repeat it for the reader’s convenience.

Corollary 3.1.9. Let (V, ω) be a finite-dimensional symplectic vector space over C, let
G ≤ Sp(V ) be a finite symplectic reflection group and let U be a subset of V . Then the
subgroup of G that fixes U pointwise is also a symplectic reflection group.

Proof. As the action of G is linear, we may replace U by the linear span ⟨U⟩ and assume
in the following that U is a subspace of V .

Let u1, . . . , uk be a basis of U . Recalling that StabG(U) fixes U pointwise in this
discussion, we have

StabG(U) = StabG(u1) ∩ StabG(⟨u2, . . . , uk⟩) .

Now

StabG(u1) ∩ StabG(⟨u2, . . . , uk⟩) = StabStabG(u1)(⟨u2, . . . , uk⟩)

and StabG(u1) is a symplectic reflection group by Theorem 3.1.1. Hence the claim follows
by induction on k.
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3.2. Applications

3.2.1. Minimal and maximal parabolic subgroups

We note the following results on the rank of minimal and maximal parabolic subgroups
where minimality and maximality are to be understood with respect to inclusion.

Corollary 3.2.1. Let G ≤ Sp(V ) be a finite symplectic reflection group and let H ≤ G
with H ̸= {1} be a minimal parabolic subgroup. Then we have dimV H = dimV −2, that
is, H is of rank 2.

Proof. By Corollary 3.1.9, the parabolic subgroup H must contain a symplectic reflection
s. Set K := StabG(V s). Then

StabG(V H + V K) = StabH(V K) = H ∩K ,

so H = K by minimality of H. Hence, dimV H = dimV s = dimV − 2.

The analogous result for maximal parabolic subgroups is easier and does not require
Theorem 3.1.1.

Lemma 3.2.2. Let G ≤ Sp(V ) be a finite symplectic reflection group with V G = {0}
and let H ≤ G be a maximal parabolic subgroup. Then dimV H = 2, that is, H is of
rank dimV − 2.

Proof. Let S(G) ⊆ G be the set of symplectic reflections. Since G = ⟨S(G)⟩, there must
exist some s ∈ S(G) that is not in H. Then dimV s = dimV − 2 and we know

dimV s + dimV H − dim(V s ∩ V H) = dimV

as V s + V H = V . So if dimV H > 2 then V s ∩ V H ̸= {0}. If this is the case, then let
K := StabG(V s ∩ V H). Since V K ̸= {0}, we have K ̸= G. But ⟨s,H⟩ ≤ K so H is a
proper subgroup of K. This is a contradiction. Therefore, dimV H = 2.

3.2.2. Codimension of symplectic linear quotient singularities

As another application, we have a result on the singular locus of the symplectic linear
quotient V/G.

Corollary 3.2.3. If G is a symplectic reflection group, then the singular locus of V/G
is of pure codimension 2.

Proof. For k ≥ 0, let

Vk := {v ∈ V | dimV − dimV Gv = 2k} ,

that is, the set of all vectors v ∈ V with stabilizer of rank 2k, see also [Kal03, Section 4].
Let π : V → V/G be the projection morphism and set Yk := π(Vk). By Lemma 2.1.6, we
have Y0 = (V/G)sm. Let now v ∈ Vk for some k ≥ 1. Then there is a minimal parabolic
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3. Parabolic subgroups of symplectic reflection groups

subgroup H ≤ G with v ∈ V H and H is of rank 2 by Corollary 3.2.1. This implies that
v ∈ V1, where the closure is taken with respect to the Zariski topology on V . Hence, we
have Y1 = Sing(V/G) as π is a closed map. In particular, Y1 is dense in Sing(V/G).

By [Kal03, Lemma 4.1], the morphism V1 → Y1 induced by π is étale. By construction,
V1 is of pure codimension 2, hence so is Y1 by [Liu02, Proposition 4.3.23].

3.3. Complete intersections

A symplectic reflection can be viewed as a special kind of bireflection and groups gener-
ated by bireflections are related to complete intersections by [KW82, Theorem A]. More
precisely, for a finite-dimensional complex vector space V and a finite group G ≤ GL(V ),
[KW82, Theorem A] says that if V/G is a complete intersection, then G is generated
by bireflections. A group G with V/G a complete intersection is commonly called a CI-
group. Furthermore, [KW82, Theorem C] states that all parabolic subgroups of a CI-
group are generated by bireflections. If we assume V to be symplectic and G ≤ Sp(V )
then this condition simply means that every parabolic subgroup of G must be a sym-
plectic reflection group.

One might then expect that symplectic reflection groups give rise to a large number
of CI-groups. Indeed, in dimension 2, the resulting Kleinian singularities are all hyper-
surfaces and hence every finite subgroup of SL2(C) is a CI-group. However, we have the
following result.

Proposition 3.3.1. Let (V, ω,G) be a symplectically irreducible symplectic triple with
dimV > 4. Then G is not a CI-group.

Proof. We begin by noting that [KW82, Theorem A] implies that if G is a CI-group
then G must be a symplectic reflection group. Assuming this, we can make use of the
classification of symplectic reflection groups presented in Chapter 1 and the classification
of CI-groups in [Gor86].

First, let G be complex reducible, so the action of G on the symplectic space V is
induced from a complex reflection group H acting on a Lagrangian subspace W with
V = W ⊕W ∗ as in Proposition 1.2.9. If G is a CI-group, we must have [G,G] = {1}
by [Gor86, Theorem 3]. In other words, G is abelian. But this can only happen if
H = G(m, p, 1) in the classification [ST54]. In particular, the group H is rank 1 and
hence G is rank 2.

Next, assume that G is complex irreducible and symplectically imprimitive, with sys-
tem of imprimitivity V = V1 ⊕ · · · ⊕ Vn. Recall that this implies dimVi = 2 for all i by
Lemma 1.2.10. But then G cannot be a CI-group by [Gor86, 5.2] which says that if G
is a CI-group then dimVi = 1 for all i.

If G is symplectically primitive and has rank at least six then it must be complex
primitive; see Theorem 1.2.12. But then it cannot be a CI-group by [Gor86, Theorem 5].
We note that this also follows from our computational results in Appendix A, together
with the arguments in the first paragraph, since all of these groups contain a stabil-
izer of type G(m, p, n)⊛ with n > 1 which is not a CI-group; this contradicts [KW82,
Theorem C].
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We see that symplectic reflection groups do not appear to give any new examples
of CI-groups in dimensions larger than 4. It remains to understand which symplectic
reflection groups of rank 4 are CI-groups; in theory, one could use the classification of
Gordeev and Nakajima [Gor86, NW84, Nak84, Nak85] for this, but this appears to be
very difficult to do in practice.

Modulo the groups of rank four, Proposition 3.3.1 answers the first half of [Fu06,
Problem 1] in the case of symplectic linear quotient singularities.
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4. On symplectic resolutions of
symplectically primitive quotients

After obtaining a first result on the singularities of a symplectic linear quotient V/G
in Corollary 3.2.3, we now turn to the classification problem introduced in Section 2.2:
for which symplectic groups does the corresponding linear quotient admit a symplectic
resolution? As explained in Section 2.2, this question can be reduced to symplectically
irreducible symplectic reflection groups and the only groups for which it is still un-
answered are the symplectically primitive groups of rank at least 4. In this chapter, we
carry out the classification for almost all of these groups and prove that all but possibly
45 linear quotients do not admit a symplectic resolution.

In sections 4.1 and 4.2, we consider the complex imprimitive groups and use the
machinery of symplectic reflection algebras introduced in Section 2.3 to obtain the an-
nounced result. We turn to the complex primitive groups in Section 4.3 where the
computational results in Appendix A enable us to finish the classification of symplecti-
cally primitive groups of rank at least 6. In Section 4.4 we give an explicit list of the 45
open cases.

The results of this chapter are already published in [BST22] and, with regard to Sec-
tion 4.3, [BST23].

4.1. Structure of the symplectically primitive, complex
imprimitive groups

Throughout this chapter, all symplectic reflection groups are assumed to be symplecti-
cally irreducible. We start with studying the structure of symplectically primitive, com-
plex imprimitive symplectic reflection groups in more detail. Recall from Theorem 1.2.12
that these groups are of rank 2 or 4, where in rank 2 we have the well-known binary
dihedral groups Dm. We now consider the groups of rank 4. By Theorem 1.2.12, such a
group is conjugate to

E(G) = {g⊛, g⊛s | g ∈ G}

with

s =

(
1

−1
−1

1

)
and G ≤ GL2(C) one of the following:

(a) µdT, with d a multiple of 6,
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4. On symplectic resolutions of symplectically primitive quotients

(b) µdO, with d a multiple of 4,

(c) µdI, with d a multiple of 4, 6 or 10,

(d) OT2d, with d not divisible by 4.

We first analyse the possible groups G in more detail. In particular, we identify
the largest complex reflection group contained in them. In the following, ζk denotes a
primitive k-th root of unity for k ∈ Z>1.

4.1.1. Primitive complex reflection groups

Lemma 4.1.1. We have Z(µdT) = Z(µdO) = Z(µdI) = Z(OTd) = µd for all even
d ∈ Z≥1.

Proof. We have {±I2} ⊆ µd for even d and Z(µdT)∩T ⊆ Z(T) = {±I2} (and analogously
for O and I), which settles the first three groups.

Let g ∈ Z(OTd). Note that OTd ⊆ µ2dO, so for any h ∈ OTd, there exist z ∈ µ2d and
h′ ∈ O, such that h = zh′. Then gh = hg implies gzh′ = zh′g, so gh′ = h′g. It follows
g ∈ Z(µ2dO) = µ2d, so Z(OTd) ≤ µ2d. Since µ2d ∩ OTd = µd and clearly µd ⊆ Z(OTd),
it follows µd = Z(OTd).

Lemma 4.1.2. For any group G in Theorem 1.2.12 (a) to (d) and any g ∈ G, we have
(det g)I2 ∈ Z(G). More precisely, we have {(det g)I2 | g ∈ G} = µd/2, if G is µdT, µdO
or µdI and {(det g)I2 | g ∈ G} = µd if G is OTd.

Proof. Let G = µdT with d a multiple of 6. Then the claim follows directly since
T ≤ SL2(C) and (det g)I2 ∈ µd/2 for g ∈ µd. One argues analogously for the groups µdO
and µdI.

Let G = OTd with d a multiple of 2 not divisible by 8. Then G ⊆ µ2dO, so any non-
trivial determinant comes from an element ζk2dg with a primitive 2d-th root of unity ζ2d,
g ∈ O and 0 ≤ k < 2d. Then det(ζk2dg) = ζkd ∈ Z(G). For the second claim, notice that
for any 0 ≤ k < 2d either ζk2dI2 ∈ G or ζk2dω ∈ G, so we obtain indeed all elements of
Z(G) as determinants.

Lemma 4.1.3. The groups O and I are not conjugate to any subgroup of µdT for even
d ∈ Z≥1.

Proof. Assume there is an embedding O ↪→ µdT for an even d. Then we also would
have an injective map O/Z(O) ↪→ µdT/Z(µdT), since the preimage of Z(µdT) must be
contained in Z(O). But

|µdT/Z(µdT)| = |µdT/µd| =
|T|
2

= 12

and

|O/Z(O)| =
|O|
2

= 24 ,

so this is not possible. The same reasoning holds for I in place of O since |I/Z(I)| = 60.
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4.1. Structure of the symplectically primitive, complex imprimitive groups

Group
Shephard–Todd

Group
Shephard–Todd

number number

µ6T 5 µ12T 7

µ4O 13 µ8O 9
µ12O 15 µ24O 11

µ4I 22 µ6I 20
µ10I 16 µ12I 21
µ20I 17 µ30I 18
µ60I 19

OT2 12 OT4 8
OT6 14 OT12 10

Table 4.1.1.: Primitive complex reflection groups

For groups G,H ≤ GL2(C), we write H ≤g G if gHg−1 ≤ G with g ∈ GL2(C).

Lemma 4.1.4. The group O is not conjugate to any subgroup of OT2d for any d ∈ Z≥1.

Proof. Assume O ≤g OT2d for a g ∈ GL2(C) and let h ∈ O. By the explicit description
of OT2d (see the construction before Theorem 1.2.12), we may distinguish two cases.

First assume ghg−1 = ζk4dωt for some t ∈ T and 1 ≤ k < 4d odd. But this would imply
det(ζk4dI2) = 1, so k must be a multiple of 2d in contradiction to k being odd.

Hence, we must have ghg−1 = ζk4dt for some t ∈ T and 0 ≤ k < 4d even. As this holds
for all h ∈ O, it follows O ≤g µ4dT in contradiction to Lemma 4.1.3.

Lemma 4.1.5. There exists g ∈ GL2(C) with OT2d ≤g OT2d′ for d and d′ both not
divisible by 4 if and only if d divides d′ with d′/d odd.

Proof. Assume OT2d ≤g OT2d′ for some g ∈ GL2(C). We have ζ4dω ∈ OT2d so
gζ4dωg

−1 ∈ OT2d′ and hence

det(ζ4dω)I2 = ζ24dI2 ∈ Z(OT2d′) = µ2d′ ,

by Lemma 4.1.2. So ζ24d = ζk2d′ for some 0 ≤ k < 2d′, which already shows d | d′. Now
assume that k = d′/d is even. Then the only elements of OT2d′ having determinant
ζk2d′ lie in ζk4d′T. But then we would have gζ4dωg

−1 ∈ µ4d′T, so gωg−1 ∈ µ16dd′T in
contradiction to Lemma 4.1.3.

Every group G in Theorem 1.2.12 (a) to (d) contains a primitive complex reflec-
tion group of rank 2: following [Coh76, (3.6)], we can identify the groups in The-
orem 1.2.12 (a) to (d) for ‘small’ values of d with the groups G5 and G7 to G22 in
the classification by Shephard and Todd [ST54], see Table 4.1.1.

We now want to describe the largest complex reflection group contained in G, that is,
the group G0 ≤ G generated by the reflections contained in G. Let G′ be any primitive
complex reflection group contained in G. Then G0 must also be primitive and of rank
2 since it contains G′. By [Coh76, Theorem 3.4], G0 must be conjugate to one of the
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4. On symplectic resolutions of symplectically primitive quotients

group is (conjugate to) a subgroup of

µ6T
µ12T, µdO for d ∈ {12, 24}, µdI for d ∈ {6, 12, 30, 60},
OT2d for d ∈ {3, 6}

µ12T µ12O, µ24O, µ12I, µ60I, OT12

µ4O µ8O, µ12O, µ24O
µ8O µ24O
µ12O µ24O
µ24O
µ4I µ12I, µ20I, µ60I
µ6I µ12I, µ30I, µ60I
µ10I µ20I, µ30I, µ60I
µ12I µ60I
µ20I µ60I
µ30I µ60I
µ60I
OT2 µdO for d ∈ {4, 8, 12, 24}, OT6

OT4 µ8O, µ24O, OT12

OT6 µ12O, µ24O
OT12 µ24O

Table 4.1.2.: Subgroup relations

groups G4 to G22 in [ST54]. To reduce the number of cases one has to consider in the
proof of the next proposition, we computed which groups of the table are (conjugate
to) a subgroup of another group using OSCAR [Osc23]. We summarize the results in
Table 4.1.2. Note that the groups G4 and G6 do not contain any other group.

Proposition 4.1.6. For the groups G in Theorem 1.2.12 (a) to (d), the largest complex
reflection group G0 ≤ GL2(C) contained in G is as follows:

(a) If G = µdT then G0 = µd0T with d0 ∈ {6, 12} the largest number dividing d.

(b) If G = µdO then G0 = µd0O with d0 ∈ {4, 8, 12, 24} the largest number dividing d.

(c) If G = µdI then G0 = µd0 I with d0 ∈ {4, 6, 10, 12, 20, 30, 60} the largest number
dividing d.

(d) If G = OT2d then G0 = OT2d0 with d0 ∈ {1, 2, 3, 6} the largest number dividing d,
such that d/d0 is odd.

In each case we have G0 ⊴ G and G/G0
∼= µd′ with d

′ := d/d0.

Proof. (a) Let G = µdT, d a multiple of 6. Then clearly µ6T ≤ G, so by the above
discussion we have to consider the groups in the first row of Table 4.1.2.

The group µ12T is a subgroup of G if and only if d is a multiple of 12.
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For any g ∈ GL2(C), we cannot have µd̃O ≤g G or µd̃I ≤g G for any d̃ since this
would imply O ≤g G or I ≤g G which does not hold by Lemma 4.1.3.

Assume finally OT2d̃ ≤g G for some g ∈ GL2(C). Then for all h ∈ O we have
ghg−1 = ζkd t or gζ4d̃hg

−1 = ζkd t for some 0 ≤ k < d and t ∈ T. But then
ghg−1 ∈ µ4d̃dT, so O ≤g µ4d̃dT in contradiction to Lemma 4.1.3.

So the largest complex reflection group in G is µd0T with

d0 :=

{
6, d is an odd multiple of 6,

12, d is an even multiple of 6

and clearly G/G0
∼= µd/d0 .

(b) Let G = µdO, d a multiple of 4. Then µ4O ≤ G, so µ4O ≤ G0 and we only have to
consider the supergroups of µ4O in Table 4.1.2. This already finishes this case.

(c) Let G = µdI, d a multiple of 4, 6 or 10. Then G certainly contains µ4I, µ6I or µ10I
and Table 4.1.2 assures us that the only possible subgroups are of the form µd0 I.

(d) Let G = OT2d with d not divisible by 4. By Lemma 4.1.5, OT2d0 is a subgroup
of OT2d if and only if d0 divides d and d/d0 is odd. Choosing the largest such
d0 ∈ {1, 2, 3, 6} we hence obtain the largest reflection group of type OT2d0 contained
in OT2d. Such a d0 always exists since d is either an odd multiple of 1 or of
2. Consulting Table 4.1.2 again, it remains to prove µd̃O ̸≤g G for any d̃ ∈
{4, 8, 12, 24} and any g ∈ GL2(C). This holds by Lemma 4.1.4.

Lastly, we prove G/G0
∼= µd/d0 . Set d′ := d/d0 and define φ : G → µd′ by

φ(ζk4dg) := ζkd′I2 for all 0 ≤ k < 4d and g ∈ O, such that ζk4dg ∈ G. Let ζk4dg ∈
ker(φ). Then d′ | k, so k = d′l for some l ∈ Z≥0, where l is odd if and only if k
is odd, since d′ is odd. Hence ζk4dg = ζ l4d0g ∈ OT2d0 . As φ is surjective, it follows
G/OT2d0

∼= µd′ .

4.1.2. Symplectically imprimitive symplectic reflection groups

We analyse the structure of the symplectically imprimitive symplectic reflection groups of
rank 4. As before, letG ≤ GL2(C) be one of the groups in Theorem 1.2.12 and letG0 ≤ G
be the largest complex reflection group contained in G as in Proposition 4.1.6. Write
Z(G) = µd as in Lemma 4.1.1, so that we have G = µdG0, but note that µd∩G0 = Z(G0).

We consider certain normal subgroups of the group E(G).

Lemma 4.1.7. The subgroups G⊛ and G⊛
0 are normal subgroups of E(G).

Proof. For g, h ∈ G, we have g⊛h⊛(g⊛)−1 = (ghg−1)⊛ ∈ G⊛. If h ∈ G0, then also
g⊛h⊛(g⊛)−1 ∈ G⊛

0 , since either g ∈ G0 or g ∈ Z(G). It remains to show sh⊛s−1 ∈ G⊛ for

h ∈ G. Here, an easy calculation shows sh⊛s−1 =
(
(deth)−1h

)⊛ ∈ G⊛ (see Lemma 4.1.2)
and the same holds for h ∈ G0.
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4. On symplectic resolutions of symplectically primitive quotients

Lemma 4.1.8. The group Dd := ⟨µ⊛d , s⟩ ≤ E(G) is the dihedral group of order 2d and
a normal subgroup of E(G).

Proof. By definition, Dd is generated by r⊛ and s, where

r :=

(
ζd

ζd

)
,

and the equalities
(r⊛)d = s2 = (sr⊛)2 = I4

hold, so Dd is indeed the dihedral group of order 2d.
Let t ∈ E(G), so t = g⊛sk for some g ∈ G and k ∈ {0, 1}. We have tr⊛t−1 = r⊛ ∈ Dd,

if k = 0, and tr⊛t−1 = (r⊛)−1 ∈ Dd, if k = 1. Further, we have

tst−1 = g⊛skss−k(g⊛)−1 = g⊛s(g⊛)−1 .

But

g⊛s(g⊛)−1 =

(
A

A−1

)
with

A := g

(
1

−1

)
g⊤ =

(
det g

−det g

)
.

By det g = ζ ld for some 0 ≤ l < d, it follows tst−1 = (rl)⊛s ∈ Dd and Dd is indeed a
normal subgroup of E(G).

We denote by R(G) the set of (complex) reflections contained in G. The symplectic
reflections in E(G) split up between the subgroups G and Dd.

Proposition 4.1.9. The group E(G) is a symplectic reflection group with symplectic
reflections

S := {g⊛ | g ∈ R(G)} ⊔ {z⊛s | z ∈ µd} .

Proof. If g ∈ R(G), then g⊛ is a symplectic reflection. Also, for z =
(
ζkd

ζkd

)
∈ µd for

some 0 ≤ k < d, we have

z⊛s =


ζkd

−ζkd
−ζ−kd

ζ−kd

 ,

so rk(z⊛s−I4) = 2 and z⊛s is a symplectic reflection. Hence, all elements in S are indeed
symplectic reflections and E(G) is a symplectic reflection group since E(G) = ⟨S⟩.

Now let t ∈ E(G) be a symplectic reflection. Then either t = g⊛ or t = g⊛s for a
g ∈ G. In the first case, it directly follows g ∈ R(G). So assume t = g⊛s. For ease of
notation, we define

A := g

(
1

−1

)
and B := (g⊤)−1

(
−1

1

)
,
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4.2. On the non-existence of symplectic resolutions for complex imprimitive groups

so that

t =

(
A

B

)
.

From

I4 − t =

(
I2 −A
−B I2

)
=

(
I2 0
−B I2 −BA

)(
I2 −A
0 I2

)
it follows that rk(I4 − t) = 2 if and only if BA = I2, so A = B−1. A straightforward
calculation shows that this requires g to be a scalar matrix, so g ∈ Z(G) = µd, as all
scalar matrices lie in the centre of G. Therefore, all symplectic reflections in E(G) are
elements of S.

Finally, note that the two given subsets of S contain matrices of different block-types,
so their union is disjoint.

Corollary 4.1.10. All symplectic reflections in E(G) lie either in G⊛
0 or in Dd. None

of the symplectic reflections of G⊛
0 is conjugate in E(G) to one of Dd and vice versa.

Proof. The first part is clear since R(G) = R(G0). The second part follows from
Lemma 4.1.7 and Lemma 4.1.8.

As we want to apply the theory established in Section 2.3, we are interested in the
behaviour of the symplectic reflections under conjugacy.

Lemma 4.1.11. There are two Dd-conjugacy classes in S(Dd), namely

[s] and [(ζdI2)
⊛s] .

In case G is µdT, µdO or µdI these are also the E(G)-conjugacy classes. In case G is
OTd, there is only one E(G)-conjugacy class in S(Dd).

Proof. For the claim about Dd-conjugacy, see [BT16, Section 8.3]. The computations
in the proof of Lemma 4.1.8 show that for g ∈ E(G) we have gsg−1 = z⊛s with
z ∈ {(deth)I2 | h ∈ G} (and for any such z there exists a g ∈ E(G)). Hence, s and
(ζdI2)

⊛s are conjugate in E(G) if and only if there exists h ∈ G with deth = ζd. By
Lemma 4.1.2, this is the case if and only if G = OTd.

4.2. On the non-existence of symplectic resolutions for
complex imprimitive groups

We prove that the linear quotients corresponding to all but possibly 39 symplectically
primitive, complex imprimitive symplectic reflection groups of rank 4 do not admit a
symplectic resolution.

Let again G ≤ GL2(C) be one of the groups in Theorem 1.2.12, let G0 be the largest
complex reflection group contained in G and let µd = Z(G). Let Dd := ⟨µ⊛d , s⟩ ≤ E(G) as
before. Let V = C4 with standard symplectic form ω (notice that we already implicitly
assumed this setting when we defined s).
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4. On symplectic resolutions of symplectically primitive quotients

We want to use Corollary 2.3.12, that is, we want to construct a simple module of the
symplectic reflection algebra Hc(E(G)) of dimension strictly less than |E(G)| to conclude
that V/E(G) does not admit a symplectic resolution. The main idea is to use the
symplectic reflection algebras coming from the subgroups G⊛ and Dd of E(G) identified
in the previous section as we have a better understanding of the representation theory
of these algebras. The keywords here are baby Verma modules and rigid representations
as introduced in [Gor03] and [BT16], respectively. To be able to state the precise result,
we require a bit more notation.

By Corollary 4.1.10, we may split a parameter c : S(E(G)) → C into two E(G)-in-
variant functions c1 : S(E(G)) → C and c2 : S(E(G)) → C given by

c1(g) =

{
c(g), g ∈ S(G⊛

0 ),

0, g ∈ S(Dd),
and c2(g) =

{
0, g ∈ S(G⊛

0 ),

c(g), g ∈ S(Dd),

respectively, so we may think of c as c1 + c2. By abuse of notation, we also write
c1 respectively c2 for the restrictions c1|S(G⊛

0 ) respectively c2|S(Dd). We may consider

the symplectic reflection algebras Hc1(G0) and Hc1(G) (or more precisely Hc1(G⊛
0 ) and

Hc1(G⊛)) with the embeddings Hc1(G0) ⊆ Hc1(G) ⊆ Hc1(E(G)). Notice, however,
that c1 is in general not a generic (or even arbitrary) parameter for Hc1(G0), since
G⊛

0 -invariant functions are not necessarily E(G)-invariant.
Let χ0, . . . , χd−1 be the irreducible characters of Z(G) = µd, ordered such that

χl(ζ
k
d I2) = ζkld

for all 0 ≤ k, l < d and a primitive d-th root of unity ζd.
Recall that d is even. We label the irreducible representations of Dd as follows. There

are four 1-dimensional representations Triv, Sgn, V1 and V2, where

Triv |Z(G)⊛ = Sgn |Z(G)⊛ = χ0 and V1|Z(G)⊛ = V2|Z(G)⊛ = χ d
2

(note that Z(G)⊛ ≤ Dd). Further, there are the 2-dimensional representations φi,
1 ≤ i ≤ d

2 − 1, for which we have

φi|Z(G)⊛ = χi ⊕ χd−i .

See [BT16, Section 8.2] for more details and precise definitions of these representations.

4.2.1. Rigid representations

We say an irreducible representation φ of Dd is c2-rigid, if φ is (isomorphic to) a simple
Hc2(Dd)-module, see [BT16] for details. The following proposition reduces the problem
of constructing Hc(E(G))-modules to constructing Hc1(G)-modules.

Proposition 4.2.1. Let M be a simple Hc1(G)-module and set

E(M) := Hc1(E(G)) ⊗Hc1 (G) M .

Then E(M) is an Hc(E(G))-module if and only if all constituents of the restriction
E(M)|Dd

are c2-rigid.
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4.2. On the non-existence of symplectic resolutions for complex imprimitive groups

Proof. By definition, E(M) is an Hc1(E(G))-module. We just need to show that it
naturally deforms to an Hc(E(G))-module. The defining relations for Hc(E(G)) are

[v, w] =
∑

g∈S(G⊛)

c1(g)ωg(v, w)g +
∑

g∈S(Dd)

c2(g)ωg(v, w)g

in contrast to
[v, w] =

∑
g∈S(G⊛)

c1(g)ωg(v, w)g

for Hc1(E(G)). As E(M) is an Hc1(E(G))-module this means that [v, w] acts as∑
g∈S(G⊛)

c1(g)ωg(v, w)g .

Hence, E(M) is an Hc(E(G))-module if and only if
∑

g∈S(Dd)
c2(g)ωg(v, w)g acts as zero

on E(M) for all v, w ∈ V ∗ that is, if and only if∑
g∈S(Dd)

c2(g)ωg(v, w)φ(g) = 0

for any constituent φ of E(M)|Dd
. By [BT16, Lemma 4.10], this holds if and only if all

constituents of E(M)|Dd
are c2-rigid.

This means that we have to understand the rigid representations of Dd.

Lemma 4.2.2. An irreducible representation φ ∈ IrrDd is c2-rigid for all E(G)-invari-
ant functions c2 : S(Dd) → C if and only if:

(a) φ = φi for some 1 < i < (d− 2)/2, in case G is µdT, µdO or µdI,

(b) φ = φi for some 1 < i ≤ (d− 2)/2 or φ ∈ {V1, V2}, in case G is OTd.

Proof. By [BT16, Proposition 8.3], the representations φi for 1 < i < (d − 2)/2 are
c2-rigid for arbitrary parameters c2. By Lemma 4.1.11, the function c2 is determined
by its values at s and (ζdI2)

⊛s.

(a) The symplectic reflections s and (ζdI2)
⊛s are not E(G)-conjugate by Lemma 4.1.11.

Hence, there exist parameters c2 with c2(s) ̸= ±c2((ζdI2)
⊛s) and all other repre-

sentations are not c2-rigid for those parameters by [BT16, Proposition 8.3].

(b) Here, Lemma 4.1.11 states that there is only one E(G)-conjugacy class in S(Dd).
Therefore, all parameters fulfil c2(s) = c2((ζdI2)

⊛s) and only φ1, Triv and Sgn are
not c2-rigid by [BT16, Proposition 8.3].

Corollary 4.2.3. Let φ be any representation of Dd. Then all constituents of φ are
c2-rigid for all E(G)-invariant functions c2 : S(Dd) → C if and only if:

(a) χi | φ|Z(G) implies i /∈ {0, 1, d2 − 1, d2 ,
d
2 + 1, d− 1} in case G is µdT, µdO or µdI,

(b) χi | φ|Z(G) implies i /∈ {0, 1, d− 1} in case G is OTd.
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4. On symplectic resolutions of symplectically primitive quotients

4.2.2. Baby Verma modules

To be able to apply Proposition 4.2.1, we also need to understand the simple modules
of Hc1(G). As G0 is a reflection group, we have the baby Verma modules introduced in
[Gor03]; we summarize the construction. The action of G0 respectively G on V leaves a
Lagrangian subspace h invariant and we may identify h with the reflection representation
of G0 (hence the notation h), see also Lemma 1.2.8. Then h = C2 and ζdI2 ∈ µd acts
as the scalar ζd on h and as ζ−1

d on h∗. We may write V = h ⊕ h∗, but note that this
decomposition is of course not invariant under the action of s. Then we can define a
Z-grading on Hc1(G0) by putting h∗ in degree 1, h in degree −1 and G0 in degree 0. In
the same way, we obtain a Z-grading on Hc1(G) and the inclusion Hc1(G0) ⊆ Hc1(G)
preserves this grading.

Let
Hc1(G0) := Hc1(G0)

/(
C[h]G0 ⊗ C[h∗]G0

)
+
Hc1(G0)

be the restricted rational Cherednik algebra introduced in [Gor03], where (−)+ denotes
the elements with no constant term. This algebra has a triangular decomposition

Hc1(G0) ∼= C[h]coG0 ⊗ CG0 ⊗ C[h∗]coG0 ,

see [Thi17, Corollary 2.1], where C[h]coG0 := C[h]/C[h]G0
+ C[h] are the G0-coinvariants.

Given λ ∈ IrrG0, we then have the baby Verma module

∆(λ) := Hc1(G0) ⊗C[h∗]coG0⋊G0
λ

of Hc1(G0) corresponding to G0 as in [Thi17, p. 24]. The module ∆(λ) has a simple head
L(λ) by [Thi17, Theorem 2.3]. We may consider both of them as Hc1(G0)-modules by
letting Hc1(G0) act via the quotient morphism Hc1(G0) ↠ Hc1(G0). Notice that L(λ) is
also simple as Hc1(G0)-module.

Lemma 4.2.4. Let λ ∈ IrrG. Then

(a) λ|G0 ∈ IrrG0 and

(b) the Hc1(G0)-module structure on any graded quotient of ∆(λ|G0) extends to Hc1(G).
In particular, L(λ|G0) is a graded (simple) Hc1(G)-module.

Proof. (a) This is [Fei82, Theorem III.2.14 (ii)] since G/G0 is cyclic.

(b) We have to define an action of Z(G) on ∆(λ|G0). By [Thi17, Lemma 2.5], we have

∆(λ|G0) ∼= C[h]coG0 ⊗C λ|G0

as vector spaces, in particular ∆(λ|G0) is concentrated in non-negative degree. Let
Z(G) act by χ on λ. By the above, ζdI2 ∈ Z(G) = µd acts by ζ−1

d on h∗. We

obtain an action of Z(G) on ∆(λ|G0)k for any k ≥ 0 by letting ζdI2 act by ζ−kd on

C[h]coG0
k and by χ(ζdI2) on λ|G0 . Then this action of Z(G) extends ∆(λ|G0) to a

module over Hc1(G).
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4.2. On the non-existence of symplectic resolutions for complex imprimitive groups

Now let M ≤ ∆(λ|G0) be any graded Hc1(G0)-submodule. Since M is graded, it is
stable under the action of C× induced by the action of C× on h. The given action
of Z(G) on h∗ is just a restriction of this action to the subgroup ⟨ζd⟩ ≤ C×. Hence
this also extends M to an Hc1(G)-module.

As L(λ|G0) is a graded quotient of ∆(λ|G0), this turns L(λ|G0) into an Hc1(G)-mod-
ule too and L(λ|G0) is of course simple as such a module.

4.2.3. Conclusion

We now combine the above results with Corollary 2.3.12.

Theorem 4.2.5. If there exists a character λ ∈ IrrG such that L(λ|G0)|Dd
is c2-rigid

for all E(G)-invariant functions c2 : S(Dd) → C and dimL(λ|G0) < |G|, then V/E(G)
does not admit a (projective) symplectic resolution.

Proof. Since L(λ|G0) fulfils the conditions of Proposition 4.2.1, we obtain a module
E(L(λ|G0)) over Hc(E(G)). By construction, we have

dimE(L(λ|G0)) = dim
(
Hc1(E(G)) ⊗Hc1 (G) L(λ|G0)

)
= 2 dimL(λ|G0) < |E(G)| ,

since |E(G)| = 2|G|. Then any simple quotient L of E(L(λ|G0)) fulfils dimL < |E(G)|
as well. As this holds for arbitrary parameters c, if follows that the variety V/E(G) does
not admit a symplectic resolution by Corollary 2.3.12.

This leaves the question when a simple module λ ∈ IrrG as in Theorem 4.2.5 exists.
We now establish theoretical bounds on d to show that this is indeed the case for almost
all groups G. With the help of computer calculations, we then extend this result to some
of the remaining groups.

Lemma 4.2.6. Let λ ∈ Irr(G) and let 0 ≤ m,M < d such that m is minimal with
χm | λ|Z(G) and M is maximal with χM | λ|Z(G). Let k ≥ 0 be maximal such that for
the graded component L(λ|G0)k we have L(λ|G0)k ̸= 0. Then L(λ|G0)|Dd

is c2-rigid for
all E(G)-invariant functions c2 : S(Dd) → C if and only if:

(a) either m − k > 1 and M < d
2 − 1 or m − k > d

2 + 1 and M < d − 1 in case G is
µdT, µdO or µdI,

(b) m− k > 1 and M < d− 1 in case G is OTd.

Proof. Let χmi , 1 ≤ i ≤ s, be the constituents of λ|Z(G). As in the proof of Lemma 4.2.4,
Z(G) acts on a graded component ∆(λ|G0)l by

χd−l ⊗ (χm1 ⊕ · · · ⊕ χms) = χm1−l ⊕ · · · ⊕ χms−l ,

for l ≥ 0. We have m = mini{mi} and M = maxi{mi}. Since L(λ|G0) is a quotient of
∆(λ|G0) and ∆(λ|G0) has no components in negative degree [Thi17, Lemma 2.5], this
implies that if

[L(λ|G0)|Z(G) : χi] ̸= 0
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4. On symplectic resolutions of symplectically primitive quotients

Group
Number of Minimal

Group
Number of Minimal

reflections value of d reflections value of d

µ6T 16 39 µ12T 22 51

µ4O 18 43 µ8O 30 67
µ12O 34 75 µ24O 46 99

µ4I 30 67 µ6I 40 87
µ10I 48 103 µ12I 70 147
µ20I 78 163 µ30I 88 183
µ60I 118 243

OT2 12 16 OT4 18 22
OT6 28 32 OT12 34 38

Table 4.2.1.: Number of reflections in the groups G0

then i ∈ {m− k, . . . ,M}. Further, we have L(λ|G0)0 ∼= λ|G0 ̸= 0 by [Thi17, Lemma 2.7]
and L(λ|G0)k ̸= 0 by assumption. Hence,

[L(λ|G0)|Z(G) : χm−k] ̸= 0 and [L(λ|G0)|Z(G) : χM ] ̸= 0 ,

that is, the extremal values of i are achieved. Now the claim follows by Corollary 4.2.3.

Proposition 4.2.7. Let N := |R(G0)| be the number of reflections in G0. The group G
admits a simple module λ as in Theorem 4.2.5 if G0 ⪇ G and

(a) 2N + 6 < d in case G is µdT, µdO or µdI,

(b) N + 3 < d in case G is OTd.

Proof. The coinvariant ring C[h]coG0 is a positively graded ring with (C[h]coG0)l = 0 for
l > N , by [Kan01, Proposition 20-3A]. This implies ∆(λ)l = 0 for each l > N or l < 0
and any simple G0-module λ.

Note that d − 2 ≥ 0 by assumption. Let λ ∈ IrrG be any irreducible summand of
IndGZ(G) χd−2, so λ restricts to a multiple of χd−2 on Z(G). We want to use Lemma 4.2.6.

For (a), we have 2N + 6 < d, so N + 2 < d−2
2 and

d− 2 −N = d− (N + 2) > d− d− 2

2
=
d

2
+ 1 .

For (b), N + 3 < d gives

d− 2 −N = d+ 1 − (N + 3) > d+ 1 − d = 1 .

Hence, L(λ|G0)|Dd
is c2-rigid for all parameters c2 by Lemma 4.2.6.

We have dimL(λ|G0) ≤ |G0| by [EG02, Theorem 1.7], hence dimL(λ|G0) < |G| since
G0 ⪇ G.
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G0
Groups containing G0 as

G0
Groups containing G0 as

largest reflection group largest reflection group

µ6T µdT, d ∈ {6, 18, 30} µ12T µdT, d ∈ {12, 24, 36, 48}
µ4O µdO, d ∈ {4, 20, 28} µ8O µdO, d ∈ {8, 16, 32, 40, 56, 64}
µ12O µdO, d ∈ {12, 36, 60} µ24O µdO, d ∈ {24, 48, 72, 96}
µ4I µdI, d ∈ {4, 8, 16, 28, 32, 44, 52, 56, 64} µ6I µdI, d ∈ {6, 18, 42, 54, 66, 78}
µ10I µdI, d ∈ {10, 50, 70} µ12I µdI, d ∈ {12, 24, 36, 48, 72, 84,
µ20I µdI, d ∈ {20, 40, 80, 100, 140} 96, 108, 132, 144}
µ30I µdI, d ∈ {30, 90, 150} µ60I µdI, d ∈ {60, 120, 180, 240}
OT2 OTd, d ∈ {2, 10, 14} OT4 OTd, d ∈ {4, 20}
OT6 OTd, d ∈ {6, 18, 30} OT12 OTd, d ∈ {12, 36}

Table 4.2.2.: Groups for which Proposition 4.2.7 does not apply

4.2.4. Sharp bounds

In Table 4.2.1 we recall the number of reflections in the possible groups G0 from [Coh76]
together with the minimal value of d fulfilling the condition in Proposition 4.2.7 (which
does not mean that there exists a group G for such a d). This gives the groups G
for which Proposition 4.2.7 does not apply as in Table 4.2.2. Using data computed
with CHAMP [Thi15], we improve the estimates in Proposition 4.2.7. We describe the
necessary computations and give a concrete example below.

As before, let G0 be one of the complex reflection groups from Table 4.1.1 and let
(Gd)d∈D be the family of supergroups containing G0 as subgroup generated by the re-
flections for a set of indices D determined by the conditions in Theorem 1.2.12 (a) to (d)
and Proposition 4.1.6. Let λ ∈ IrrG0 and let Z(G0) = µd0 = ⟨ζ⟩. Then λ(ζ) = ζlIdimλ

for a certain primitive l-th root of unity ζl with l | d0. Hence, we can extend λ to a
representation λd of Gd for any d ∈ D by setting λd|G0 = λ and λd(η) = ζl′Idimλ, where
Z(G) = ⟨η⟩ and l′ = l dd0 (note that l′ | d, since l | d0 and d0

d
d0

= d). Here, ζl′ is a

primitive l′-th root of unity with ζ
d/d0
l′ = ζl. In particular, there may exist more than

one choice for λd.
Now one can find, if it exists, the smallest d1 ∈ D such that λd1(η) = η−mIdimλ with

2 ≤ m < d1
2 − 1 respectively 2 ≤ m < d1 − 1 if G0 = OTd0 .

Let k ≥ 0 be minimal such that L(λ)k = 0 with respect to all parameters c1, which
we can compute using CHAMP. Then by Lemma 4.2.6 the module L(λ|G0) is c2-rigid
for all d ∈ D with d ≥ d1 and d− (k − 1) −m > d

2 + 1 respectively d− (k − 1) −m > 1
if G0 = OTd0 .

We give the results of our computations and in particular the best possible values for
k and m for each of the families of groups in Table 4.2.3. Using those bounds for d, we
obtain an improved version of Table 4.2.2, see Table 4.2.4.

Example 4.2.8. We carry out the described computations for the group G0 := µ6T. The
family of supergroups is given by Gd := µdT for d = 12a + 6 with a ∈ Z≥0. Let ω ∈ C
be a primitive third root of unity and set ζ6 := −ω−1. Then we may choose the matrix

53



4. On symplectic resolutions of symplectically primitive quotients

G0
Shephard– Character Number

k d1 m
Lower

Todd of λ in CHAMP bound of d

µ6T G5 φ3,4 19 5 3d0 2 15
µ12T G7 φ3,10 37 7 d0 2 19

µ4O G13 φ2,1 7 3 5d0 3 11
µ8O G9 φ4,5 32 7 2d0 3 21
µ12O G15 φ′′

3,10 36 11 d0 2 27

µ24O G11 No data available.

µ4I G22 φ4,6 12 1 2d0 2 7
µ6I G20 φ′

3,10 13 1 3d0 2 7

µ10I G16 φ5,8 39 9 d0 2 23
µ12I G21 No data available.
µ20I G17 No data available.
µ30I G18 No data available.
µ60I G19 No data available.

OT2 G12 φ2,1 3 3 5d0 3 7
OT4 G8 φ4,5 15 7 5d0 3 11
OT6 G14 φ2,4 14 5 3d0 2 9
OT12 G10 φ′

3,10 36 11 d0 2 14

Table 4.2.3.: Results of the computations with CHAMP

G0
Groups containing G0 as

G0
Groups containing G0 as

largest reflection group largest reflection group

µ6T µ6T µ12T µ12T

µ4O µ4O µ8O µdO, d ∈ {8, 16}
µ12O µ12O µ24O µdO, d ∈ {24, 48, 72, 96}
µ4I µ4I µ6I µ6I
µ10I µ10I µ12I µdI, d ∈ {12, 24, 36, 48, 72, 84,
µ20I µdI, d ∈ {20, 40, 80, 100, 140} 96, 108, 132, 144}
µ30I µdI, d ∈ {30, 90, 150} µ60I µdI, d ∈ {60, 120, 180, 240}
OT2 OT2 OT4 OT4

OT6 OT6 OT12 OT12

Table 4.2.4.: Groups for which there is no answer yet
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ζ := ζ6I2 as generator for Z(G0) = µ6. Going through the representations of G0 in the
database of CHAMP, we see that the representation numbered 19 with character φ3,4

maps ζ to (−ω − 1)I3 = ζ−2
6 I3. In the above notation, we hence have m = 2. Note that

this is the best possible value of m since we require m ≥ 2.

This gives the lower bound m = 2 < d1
2 − 1, so that d1 > 6, that is, d1 = 18 = 3d0.

Using CHAMP, we see that the top degree of L(λ) is 4, hence we have k = 5. Therefore,
we have the additional restriction

d− (k − 1) −m = d− 6 >
d

2
+ 1 ,

which simplifies to d > 14. In conclusion, we improved the lower bound for d in Propo-
sition 4.2.7 to d ≥ 18, leaving only the group G0 itself.

Remark 4.2.9. Studying the data from CHAMP, we see that we almost always use the
smallest possible value of k, that is, of the top degree of L(λ|G0) in Table 4.2.3. The only
exception is G0 = OT2 where simple modules with k = 1 exist. As in Proposition 4.2.7,
we compute that d must (independently of m) fulfil the lower bound 2k + 6 < d, re-
spectively k + 3 < d if G0 = OTd0 . Hence, the bounds on d (including the case OT2) in
Table 4.2.3 are sharp in the sense that we cannot find a module fulfilling the bounds in
Lemma 4.2.6 for smaller values of d.

A caveat to this argument is that we did not investigate whether the restricted para-
meter c1 is generic for the group G0. It might well be that there are different G0-con-
jugacy classes of reflections which join in E(G) just as for the Dd-conjugacy classes in
Lemma 4.1.11. The simple modules of Hc1(G0) for certain special parameters behave
differently than in the generic case, so there could be a simple module L(λ|G0) with a
smaller top degree. However, the data on simple modules for special parameters is also
available in the database of CHAMP for at least some of the groups G0 and we see that
while there are cases where there is a module of smaller top degree this is never small
enough to make a change on the bounds on d in Table 4.2.3.

4.3. On the non-existence of symplectic resolutions for
complex primitive groups

We turn to the linear quotients coming from symplectic reflection groups which are both
symplectically and complex primitive. Recall from Theorem 1.2.13 that there are only
16 groups of rank up to 10 in this family. In [BS16], a theorem of Kaledin [Kal03,
Theorem 1.6] is used to prove that the linear quotients by three of these groups do
not admit symplectic resolutions. We now use the same argument together with the
computational results in Appendix A to extend this result to four further groups.

Theorem 4.3.1. Let G be the group W (R), W (S1), W (S2) or W (U) as in [Coh80,
Table III] and let n be the rank of G. Then the symplectic linear quotient Cn/G does
not admit a (projective) symplectic resolution.
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4. On symplectic resolutions of symplectically primitive quotients

Proof. If there exists a resolution in any of these cases, then the symplectic quotient
associated to every parabolic subgroup also admits a symplectic resolution by [Kal03,
Theorem 1.6].

From the results described in Appendix A, we see that W (R), W (S1) and W (S2)
contain a parabolic subgroup conjugate to the complex reflection group G(5, 5, 2)⊛,
G(3, 3, 3)⊛ and G(3, 3, 3)⊛, respectively. In all cases, the quotient by this parabolic sub-
group does not admit a symplectic resolution by [Bel09]. Hence neither do the quotients
by W (R), W (S1) or W (S2).

Finally, W (S1) is the stabilizer of a root of W (U) by [Coh80, Table III] (see also
Appendix A). Therefore, this quotient cannot admit a symplectic resolution either.

4.4. Open cases

We summarize for which symplectic reflection groups the question whether the corres-
ponding linear quotient admits a symplectic resolution is still open. As already estab-
lished in Section 2.2, all of these groups are symplectically primitive and of rank 4.

The complex imprimitive groups are as given in Table 4.2.4, that is, these are the
groups E(G) ≤ Sp4(C), where G is one of the following:

(a) µdT with d ∈ {6, 12},

(b) µdO with d ∈ {4, 8, 12, 16, 24, 48, 72, 96},

(c) µdI with d ∈ {4, 6, 10, 12, 20, 24, 30, 36, 40, 48, 60, 72, 80, 84, 90, 96, 100, 108, 120, 132,
140, 144, 150, 180, 240},

(d) OT2d with d ∈ {1, 2, 3, 6}.

However, the fact that the bounds given in Table 4.2.3 are sharp, see Remark 4.2.9,
means that for the above 39 groups (besides those, for which we could not do any
computations) new ideas are needed. The strategy for finding a suitable simple module
used in Theorem 4.2.5 is exhausted by the equivalence in Lemma 4.2.6.

The only remaining complex primitive groups are the groups

(e) W (Oi) for i = 1, 2, 3,

(f) W (Pi) for i = 1, 2, 3,

from [Coh80, Table III]. All of these are of rank 4, hence the argument in Theorem 4.3.1
cannot be applied, see also the proof of Lemma 3.1.4.

With the results presented in this section, we do not expect any of the remaining linear
quotients to admit a symplectic resolution. However, given the exceptional nature of the
complex primitive groups, this can only be considered a wild guess. Some computational
evidence supporting it can be found in Appendix B.
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5. The class group of a Q-factorial
terminalization of a linear quotient

In this and the next chapter, we generalize from symplectic linear quotient singularities
to linear quotients V/G by finite subgroups G ≤ SL(V ). Also, we study Q-factorial
terminalizations as a generalization of symplectic resolutions as discussed in Chapter 2.

We now describe the class group of a Q-factorial terminalization X → V/G of a linear
quotient V/G for G ≤ SL(V ). In the literature, one can find the result that the class
group Cl(X) is free if and only if G is generated by junior elements together with [G,G],
see [Yam18, Proposition 4.14]. This extends [DW17, Lemma 2.11], which states that
Cl(X) is free if X is smooth. We expand these results further and study the torsion part
of Cl(X) to describe the class group in full detail. We prove that Cl(X) is completely
controlled by the junior elements contained in G, see Corollary 5.4.2.

The strategy for our proof is similar to the one in [Yam18] and completely different
from the approach via the Picard group in [DW17]. In fact, we follow our general
philosophy that we try to gain information on X via its Cox ring R(X). For this, we
use the correspondence of homogeneous elements in R(X) and effective divisors on X,
which we recall in Section 5.2.

Throughout, let V be a finite-dimensional vector space over C and let G ≤ SL(V ) be
a finite group. Let φ : X → V/G be a Q-factorial terminalization of the linear quotient
corresponding to V/G and let m ∈ Z≥0 be the number of junior conjugacy classes in
G. We emphasize that we do not assume that G is generated by junior elements in this
chapter if not stated otherwise. We might well have m = 0, but this is not an interesting
case, see also Example 5.4.7.

5.1. A short exact sequence

We translate the short exact sequence in [ST88] to our setting. For this, we need the
following connection to the algebraic side. For a noetherian normal domain R, we define
the class group Cl(R) as the quotient of the free group on the prime ideals of codimension
1 modulo the subgroup generated by the principal fractional ideals, see [Fos73, §6]. We
see immediately that Cl(R) = Cl(SpecR). We also need the following fact.

Lemma 5.1.1. Let S =
⊕

d≥0 Sd be a noetherian normal graded domain. Then we have
Cl(S) = Cl(ProjS).

Proof. We need to show that Cl(S) is generated by homogeneous prime ideals of codi-
mension 1 which do not contain the irrelevant ideal S+ :=

⊕
d≥1 Sd. By [Fos73, Propo-

sition 10.2], it suffices to consider homogeneous prime ideals in the definition of Cl(S).
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5. The class group of a Q-factorial terminalization of a linear quotient

Any prime ideal properly containing S+ must be of codimension larger than 1, so the
only case left to consider is codimS+ = 1 and the ideal S+ itself.

In this case, the localization of S at the prime ideal S+ is a regular local ring by Serre’s
criterion [Eis95, Theorem 11.5], hence SS+ is a factorial ring by [Eis95, Theorem 19.19].
By [Fos73, Proposition 6.1], we conclude that Cl(SS+) = 0 and this implies that Cl(S)
is generated by the classes of prime ideals which meet S \ S+ [Fos73, Corollary 7.2]. In
conclusion, we see that Cl(S) is in any case generated by the classes of homogeneous
prime ideals of codimension 1 which do not contain S+, which means Cl(S) = Cl(ProjS).

Proposition 5.1.2 (Simis–Trung). Let Y be a normal affine variety and let ψ : Ỹ → Y
be a blowing-up of Y along a closed subset. Then there is a short exact sequence of
abelian groups

0 Zr Cl(Ỹ ) Cl(Y ) 0 ,
ψ∗

where r ∈ Z≥0 is the number of irreducible components of the exceptional divisor of ψ
and ψ∗ : Cl(Ỹ ) → Cl(Y ) is the induced push-forward morphism.

Proof. Since the blowing-up of a variety corresponds to a Rees algebra on the algebraic
side, this is exactly [ST88, Theorem 1.1].

Corollary 5.1.3 (Grab). There is a short exact sequence of abelian groups

0
⊕m

i=1 ZEi Cl(X) Cl(V/G) 0 ,
φ∗

where Ei ∈ Div(X) are the irreducible components of the exceptional divisor of φ and
φ∗ : Cl(X) → Cl(V/G) is the induced push-forward map.

Proof. By [Har77, Theorem II.7.17], the projective birational morphism φ corresponds to
a blowing-up of V/G along a closed subset. Hence this follows by Proposition 5.1.2.

See [Gra19, Proposition 4.1.3] for a more ‘geometric’ proof.

We write Cl(X)tors ≤ Cl(X) for the torsion subgroup of Cl(X) and Cl(X)free for the
corresponding factor group, that is, Cl(X)free = Cl(X)/Cl(X)tors. Denote the canonical
projection by ρ : Cl(X) → Cl(X)free. We note the following fact for later reference, see
also [Gra19, Lemma 4.1.4].

Lemma 5.1.4. The morphism of groups

ϑ : Cl(X) → Cl(V/G) ⊕ Cl(X)free, [D] 7→ ([φ∗D], ρ([D]))

is injective.

Proof. This follows from the exactness of the sequence in Corollary 5.1.3 noticing that
the group

⊕m
i=1 ZEi embeds into Cl(X)free.
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5.2. Correspondence of effective divisors and homogeneous
elements

To be able to deduce information on Cl(X) via the ring R(X), we use the connection
between effective divisors and canonical sections in the Cox ring R(V/G) of V/G. We
recall this correspondence and adapt it to our setting.

Notation 5.2.1. For a divisor D ∈ Div(V/G), we write χ[D] ∈ Ab(G)∨ for the character
corresponding to the class [D] ∈ Cl(V/G) under the isomorphism in Proposition 2.1.7 (c).

Remark 5.2.2. Working with the ring R(V/G) brings two subtle problems. First of all,
homogeneous elements f ∈ R(V/G) are only residue classes of elements of the function
field C(V )G as Cl(V/G) is a torsion group. We hence cannot immediately identify such
elements f with a function in C(V )G. However, for a divisor D ∈ Div(V/G) we have an
isomorphism

ψD : Γ(V/G,OV/G(D)) → R(V/G)[D]

by [ADHL15, Lemma 1.4.3.4]. That means, once we fixed a representative of the degree
of a homogeneous element f ∈ R(V/G) we can uniquely lift f to an element of C(V )G.

The second problem comes from the fact that we make heavy use of the graded iso-
morphism Ψ : R(V/G) → C[V ][G,G] as in Theorem 2.4.11 to the extent that one might
forget that the isomorphism is not an identity. This is in particular important when we
work with a valuation v : C(V ) → Z. We can only use v on elements of C[V ][G,G] and
cannot apply v to elements of R(V/G) in a well-defined way without choosing a system
of representatives for the class group. For D ∈ Div(V/G), we have an isomorphism of
vector spaces

ψ̃D : Γ(V/G,OV/G(D)) → C[V ][G,G]
χ[D]

by setting ψ̃D := Ψ ◦ ψD. Notice that for the trivial divisor, this gives an identity as we
have

Γ(V/G,OV/G(0)) = C[V ]G = C[V ]
[G,G]
1 ,

where 1 denotes the trivial character.

Notation 5.2.3. Let χ ∈ Ab(G)∨ and let D ∈ Div(V/G) with χ = χ[D]. For a homogene-

ous element 0 ̸= f ∈ C[V ]
[G,G]
χ , let f̃ ∈ C(V )G be the rational function mapping to f via

the isomorphism determined by D as in Remark 5.2.2. We associate to f an effective
divisor

div[D](f) := div(f̃) +D ∈ Div(V/G) ,

the [D]-divisor of f . This construction is well-defined, see [ADHL15, Proposition 1.5.2.2].
In particular, the [D]-divisor is independent of the choice of the representative D. We
have [div[D](f)] = [D] by definition.

The construction of a [D]-divisor is not limited to our setting; see [ADHL15, Con-
struction 1.5.2.1] for more details and the general case. We point out that f ∈ C[V ][G,G]

is in general not an element of C(V )G, that is, there is no meaning in writing div(f).
The [D]-divisor behaves well with respect to the multiplication of elements.
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5. The class group of a Q-factorial terminalization of a linear quotient

Lemma 5.2.4. For non-zero homogeneous elements f ∈ C[V ]
[G,G]
χ[D1]

and g ∈ C[V ]
[G,G]
χ[D2]

,
we have

div[D1]+[D2](fg) = div[D1](f) + div[D2](g) .

See [ADHL15, Proposition 1.5.2.2 (iii)] for a proof.

We have a converse to the construction of the [D]-divisor.

Proposition 5.2.5. Let E ∈ Div(V/G) be an effective divisor. Then there exist a class

[D] ∈ Cl(V/G) and an element f ∈ C[V ]
[G,G]
χ[D]

with E = div[D](f). The element f is
unique up to constants; it is called a canonical section of E.

See [ADHL15, Proposition 1.5.2.2 (i)] and [ADHL15, Proposition 1.5.3.5 (ii)] for a proof.

Using the correspondence between effective divisors and homogeneous elements one
can derive a precise description of the image of the strict transform of an effective divisor
D ∈ Div(V/G) in the free group Cl(X)free. The general idea of this argument appeared
to the author’s knowledge first in [DW17, Lemma 3.22]. We require a bit of notation.

Recall that by Theorem 2.1.21 we have a one-to-one correspondence between the
junior conjugacy classes of G and the irreducible components of the exceptional divisor
of φ. Let {g1, . . . , gm} ∈ G be a minimal set of representatives of the junior conjugacy
classes corresponding to exceptional prime divisors E1, . . . , Em ∈ Div(X). For each
i ∈ {1, . . . ,m}, write vi for the monomial valuation on C(V ) defined by gi and recall
from Theorem 2.1.21 that we have vEi = 1

ri
vi, where vEi is the divisorial valuation of Ei

and ri the order of gi.

The following also appears in [Gra19, Proposition 4.1.9]. We present the argument
from [Yam18, Lemma 4.3] for completeness.

Proposition 5.2.6. Let D ≥ 0 be an effective divisor on V/G and let f ∈ C[V ]
[G,G]
χ[D]

be

a canonical section. Write D := φ−1
∗ (D) for the strict transform of D via φ. Then we

have the equality

ρ([D]) = −
m∑
i=1

1

ri
vi(f)ρ([Ei])

in Cl(X)free.

Proof. As f is homogeneous with respect to the action of Ab(G), there is r ∈ Z>0 such

that f r ∈ C[V ]
[G,G]
1 = C[V ]G ⊆ C(V )G and rD is principal. In particular, we have

rD = div[rD](f
r) = div[0](f

r) = div(f r) ,

where the first equality is by Lemma 5.2.4, the second by the independence of choice of
representative and the third is by the fact that f r ∈ C[V ]G, see Remark 5.2.2. Then we
have

div(φ∗(f r)) = rD +

m∑
i=1

vEi(φ
∗(f r))Ei .
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Hence, we have the equality of classes

[rD] = −
m∑
i=1

vEi(φ
∗(f r))[Ei]

in Cl(X). Now vEi(φ
∗(f r)) = 1

ri
vi(f

r) by Theorem 2.1.21. Noting that vi is a valuation

on C(V ) (and not just C(V )G) this yields

[rD] = −
m∑
i=1

r

ri
vi(f)[Ei] .

We may finally cancel r in the free group Cl(X)free giving

ρ([D]) = −
m∑
i=1

1

ri
vi(f)ρ([Ei]) .

5.3. A digression on gradings

As we want to approach the group Cl(X) via the ring R(X), which is graded by Cl(X),
we first have to get a better understanding of the grading of C[V ][G,G] by Ab(G)∨.
Unfortunately, there are a few subtle details to consider turning this into a quite technical
discussion.

Again, let g1, . . . , gm ∈ G be representatives of the junior conjugacy classes corres-
ponding to the exceptional divisors E1, . . . , Em ∈ Div(X) of φ and write v1, . . . , vm for
the monomial valuations corresponding to the gi.

At first, fix i ∈ {1, . . . ,m}. We recall the construction of the valuation vi from
Section 2.1.3. In an eigenbasis, the matrix gi is of the formζ

ai,1
ri

. . .

ζ
ai,n
ri


with a primitive ri-th root of unity ζri and integers 0 ≤ ai,j < ri, where ri is the order
of gi in G and n = dimV . This induces a Z-grading degi on C[x1, . . . , xn] by putting
degi(xj) := ai,j . For a polynomial f ∈ C[x1, . . . , xn], the valuation vi(f) is then the
degree of the homogeneous component of f of minimal degree with respect to degi.
Note that the grading degi is well-defined on C[V ] for any basis of V , although the
variables of the polynomial ring are in general not homogeneous. As we endow the same
ring with gradings by different groups, we use the non-standard notation (C[V ],Z,degi)
for the ring C[V ] graded by Z via degi.

The group ⟨gi⟩ acts on C[V ] and hence induces a grading by ⟨gi⟩∨ ∼= Z/riZ, which we
denote by degi. Write (C[V ],Z/riZ,degi) for the ring C[V ] graded by Z/riZ via degi.
We directly obtain:
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5. The class group of a Q-factorial terminalization of a linear quotient

Lemma 5.3.1. With the above notation, if f ∈ C[V ] is degi-homogeneous, then f is
degi-homogeneous as well and we have

degi(f) ≡ degi(f) mod ri .

In particular, there is a graded morphism

(C[V ],Z,degi) → (C[V ],Z/riZ,degi)

given by the identity on the rings and by the projection Z → Z/riZ on the grading groups.

Observe that for every 1 ≤ i ≤ m we have an action of gi on C[V ][G,G]. Indeed, for
any f ∈ C[V ][G,G] and h ∈ [G,G], we have

h.(gi.f) = (hgi).f = (hgi).((g
−1
i h−1gih).f) = gi.(h.f) = gi.f ,

so gi.f ∈ C[V ][G,G] as required. Hence the grading by ⟨gi⟩∨ descends to C[V ][G,G]. As
the actions of the elements g1, . . . , gm on C[V ][G,G] commute, we can consider all the
induced gradings at the same time and hence obtain a grading by Z/r1Z× · · · ×Z/rmZ
on C[V ][G,G].

The gi do not commute with each other in general, so we cannot decompose their
actions on C[V ] into a common eigenbasis. Hence, we cannot put the above gradings
together to obtain a grading by Zm or Z/r1Z × · · · × Z/rmZ on C[V ] as there are in
general no polynomials which are homogeneous with respect to all gradings at the same
time.

Let H ≤ G be the subgroup of G generated by the junior elements contained in G. In
general, the representatives g1, . . . , gm do not suffice to generate H. Let

H := H/(H ∩ [G,G]) ≤ Ab(G)

and notice that this group is generated by the residue classes g1, . . . , gm modulo [G,G].
This gives a map

⟨g1⟩ × · · · × ⟨gm⟩ → Ab(G) ,

which is surjective onto H. This surjection corresponds to an embedding of characters
H

∨ → Z/r1Z× · · · ×Z/rmZ. Further, the inclusion H → Ab(G) induces a projection of

characters Ab(G)∨ → H
∨

by restriction. We conclude:

Lemma 5.3.2. The gradings on C[V ][G,G] coming from the actions of the groups Ab(G),
H and ⟨g1⟩ × · · · × ⟨gm⟩ are compatible in the sense that there is a graded morphism

(C[V ][G,G],Ab(G)∨) → (C[V ][G,G],Z/r1Z× · · · × Z/rmZ)

which factors through (C[V ][G,G], H
∨

).

We state for later reference:

Lemma 5.3.3. We have Ab(G/H) ∼= Ab(G)/H and H
∨ ∼= Ab(G)∨/Ab(G/H)∨.
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Proof. For the first statement, we note that the image of [G,G] under the projection
G→ G/H is [G/H,G/H]. Hence,

Ab(G/H) ∼= (G/H)/([G,G]/[G,G] ∩H) ∼= G/(H[G,G])

and an application of the isomorphism theorems gives the claim. The second statement
follows directly as ∨ is a contravariant functor.

The following three lemmas are key ingredients for our theorem on Cl(X).

Lemma 5.3.4. Let f ∈ C[V ][G,G] be Ab(G)∨-homogeneous. For every i ∈ {1, . . . ,m},
we have vi(f) ≡ degi(f) mod ri.

Proof. Let f ∈ C[V ][G,G] be Ab(G)∨-homogeneous. Fix an i ∈ {1, . . . ,m}. Lemma 5.3.2
implies that f is degi-homogeneous. By Lemma 5.3.1, there exist degi- and degi-homo-
geneous elements fi,j ∈ C[V ] such that f =

∑
j fi,j and degi(fi,j) < degi(fi,j′) whenever

j < j′. In particular, we have degi(fi,1) = vi(f) and degi(fi,1) = degi(f). Hence, we
conclude

vi(f) ≡ degi(fi,1) = degi(f) mod ri

by Lemma 5.3.1.

Lemma 5.3.5. Let f ∈ C[V ][G,G] be Ab(G)∨-homogeneous. We have ri | vi(f) for all
i ∈ {1, . . . ,m} if and only if f ∈ C[V ]H , where H ≤ G is the subgroup generated by the
junior elements contained in G.

Proof. By Lemma 5.3.4, we have vi(f) ≡ degi(f) mod ri for every i. Therefore, ri | vi(f)
is equivalent to degi(f) = 0 for every i. Equivalently, every gi acts trivially on f . Since
f is furthermore [G,G]-invariant, we conclude that this is the case if and only if every
junior element in G leaves f invariant and hence f ∈ C[V ]H .

Lemma 5.3.6. Let [D] ∈ Cl(V/G) be a class of divisors. Then there exists a homoge-
neous element in C[V ][G,G] of degree χ[D].

Proof. This is saying that the relative invariants with respect to the linear characters of
Ab(G) on C[V ][G,G] are non-empty which holds by [Nak82, Lemma 2.1].

Alternatively, one lets d ∈ Z>0 such that C[V ][G,G] is generated by polynomials of
degree up to d. Then we can write the linear actions of any set of generators of Ab(G)
on the vector space of polynomials in C[V ][G,G] of degree up to d as pairwise commuting
matrices. These matrices are simultaneously diagonalizable and the common eigenspaces
are exactly the Ab(G)∨-homogeneous components.

Notice that the lemma also implies that we can find an effective divisor in any class
of divisors in Cl(V/G).
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5.4. The class group

We are now prepared for our theorem.

Theorem 5.4.1. Let G ≤ SL(V ) be a finite group and let H ≤ G be the subgroup
generated by the junior elements contained in G. Let φ : X → V/G be a Q-factorial
terminalization of V/G. Then we have a canonical isomorphism of abelian groups

Cl(X)tors ∼= Ab(G/H)∨ = Hom(G/H,C×) ,

which is induced by the push-forward map φ∗ : Cl(X) → Cl(V/G).

Proof. For ease of notation, we identify Cl(V/G) with Ab(G)∨ via Proposition 2.1.7 (c)
and use both groups synonymously. Notice that Ab(G/H)∨ is the subgroup of Ab(G)∨

consisting of those characters which take value 1 on every junior element. We claim that
restricting φ∗ to Cl(X)tors induces a bijection onto Ab(G/H)∨.

We first show that we indeed have φ∗(Cl(X)tors) ⊆ Ab(G/H)∨. Let D ∈ Div(X) be
a divisor on X. By Lemma 5.3.6, there is f ∈ C[V ][G,G] of degree χ[φ∗D] and we have

the effective divisor D′ := div[φ∗D](f) on V/G with [D′] = [φ∗D]. Write D′ ∈ Div(X)

for the strict transform of D′ via φ. Then φ∗D′ = D′, hence by Corollary 5.1.3 we have

[D′] = [D] +
m∑
i=1

ai[Ei] , (5.4.1)

with ai ∈ Z and where E1, . . . , Em ∈ Div(X) are the irreducible components of the
exceptional divisor of φ. As before let ρ : Cl(X) → Cl(X)free := Cl(X)/Cl(X)tors be the
canonical projection. Applying ρ on both sides of (5.4.1) and using Proposition 5.2.6
yields

ρ([D]) = −
m∑
i=1

1

ri
vi(f)ρ([Ei]) −

m∑
i=1

aiρ([Ei]) . (5.4.2)

Assume now [D] ∈ Cl(X)tors. Then ρ([D]) = 0 and we conclude by (5.4.2) that
vi(f) = −riai for all i and, in particular, ri | vi(f). Hence, f ∈ C[V ]H by Lemma 5.3.5
and therefore we can identify [D′] = [φ∗D], or more precisely χ[φ∗D], with an element of
Hom(G/H,C×). This means that we obtain a well-defined map

ψ : Cl(X)tors → Hom(G/H,C×), [D] 7→ [φ∗D]

by restricting φ∗ to Cl(X)tors.
We now prove that ψ is bijective. Injectivity follows directly from the injectivity of

ϑ in Lemma 5.1.4. Indeed, if we have ψ([D]) = ψ([D′]) for [D], [D′] ∈ Cl(X)tors, then
ϑ([D]) = ϑ([D′]) as by construction ρ([D]) = 0 = ρ([D′]).

Now let χ ∈ Hom(G/H,C×) be a character, which we identify with a class of divisors

[D] ∈ Cl(V/G). By Lemma 5.3.6, there exists 0 ̸= f ∈ C[V ]
[G,G]
χ and we may assume

without loss of generality that D ∈ Div(V/G) is effective and f is the canonical section
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of D as in Proposition 5.2.5. By the assumption on χ, we have 1
ri
vi(f) ∈ Z for all i by

Lemma 5.3.5. Let

E := −
m∑
i=1

1

ri
vi(f)Ei ∈ Div(X)

and set D′ := D − E, where D := φ−1
∗ (D) is the strict transform of D via φ. By

Corollary 5.1.3, we have [E] ∈ ker(φ∗) and therefore [φ∗D
′] = [φ∗D] = [D]. Using

Proposition 5.2.6, we have ρ([D]) = ρ([E]), hence ρ([D′]) = 0 and [D′] ∈ Cl(X)tors. We
conclude ψ([D′]) = [D] and ψ is surjective.

Combining Theorem 2.1.21 and Theorem 5.4.1 enables us to describe the class group
of X in general.

Corollary 5.4.2. Let G ≤ SL(V ) be a finite group and let H ≤ G be the subgroup
generated by the junior elements contained in G. Let φ : X → V/G be a Q-factorial
terminalization of V/G. Then we have

Cl(X) ∼= Zm ⊕ Ab(G/H)∨ ,

where m is the number of junior conjugacy classes in G.

Corollary 5.4.3. Let G ≤ SL(V ) be a finite group and let H ≤ G be the subgroup
generated by the junior elements contained in G. Let φ : X → V/G be a Q-factorial
terminalization of V/G. Write ι :

⊕m
i=1 ZEi → Cl(X)free for the canonical embedding

and H := H/(H ∩ [G,G]) as above. Then we have coker(ι) = H
∨
.

Proof. Combining Corollaries 5.1.3 and 5.4.2 gives Ab(G)∨ ∼= coker(ι)⊕Ab(G/H)∨ and
then the claim follows by Lemma 5.3.3.

Remark 5.4.4. As the isomorphism in Theorem 5.4.1 is induced by φ∗, we can see the
sequence in Corollary 5.1.3 as the direct sum of the short exact sequences

0
⊕m

i=1 ZEi Cl(X)free H
∨

0

and
0 0 Cl(X)tors Ab(G/H)∨ 0 .

We obtain [Yam18, Proposition 4.14] as a further corollary.

Corollary 5.4.5. Let G ≤ SL(V ) be a finite group and let φ : X → V/G be a Q-factorial
terminalization of V/G. Then the class group Cl(X) is free if and only if G is generated
by the junior elements contained in G together with [G,G].

Remark 5.4.6. Note that in Corollary 5.4.5 we cannot drop the part ‘together with
[G,G]’ for the equivalence, that is, there are groups which are not generated by junior
elements such that Cl(X) is free. For example, let G := I × I ≤ SL4(C) be the group
generated by two copies of the binary icosahedral group I ≤ SL2(C) on the diagonal, so
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G = {diag(g, g) | g ∈ I}. The abelianization Ab(I) = {1} is trivial, so the same is true for
Ab(G). However, every non-trivial element in I is of age 1, hence all non-trivial elements
of G are of age 2 and G does not contain any junior elements. Hence, the class group
of a Q-factorial terminalization of C4/G is trivial and therefore free. For an example
of a non-trivially free class group, one considers the direct product of G with a group
generated by junior elements.

Example 5.4.7. As a ‘reality check’, let G ≤ SL(V ) be a group which does not contain
any junior elements. Then age(g) > 1 for every non-trivial g ∈ G, so V/G has terminal
singularities by [Kol13, Theorem 3.21]. Hence, V/G is a Q-factorial terminalization of
itself and Corollary 5.4.2 gives Cl(V/G) = Ab(G)∨ as in Proposition 2.1.7 (c).

Example 5.4.8. For a non-trivial example, we consider the group

G :=
〈
diag(−1,−1,−ζ3,−ζ23 )

〉
≤ SL4(C)

of order 6, where ζ3 is a primitive third root of unity. As G does not contain any
reflections, we have Cl(C4/G) ∼= Z/6Z.

To determine the age of elements in G, we need to fix a sixth root of unity. However,
the two possible choices −ζ3 and −ζ23 both result in the same junior elements of G,
namely

g1 := diag(1, 1, ζ23 , ζ3) and g2 := diag(1, 1, ζ3, ζ
2
3 ) .

As G is abelian, the conjugacy classes in G are trivial. So, the rank of the free part of
the class group Cl(X) of a Q-factorial terminalization X → C4/G is 2. For the torsion
part, we determine that G/H ∼= C2 is cyclic of order 2 and we conclude

Cl(X) ∼= Z2 ⊕ Z/2Z .

Write the elements of Cl(X) as 3-tuples with the first two entries corresponding to the
free part and the last entry corresponding to the torsion part. Then the push-forward
morphism Cl(X) → Cl(C4/G) is given by

(1, 0, 0) 7→ g1, (0, 1, 0) 7→ g2, (0, 0, 1) 7→ −I4 .

Remark 5.4.9. We make two philosophical observations. Firstly, we emphasize that by
Corollary 5.4.2, the class group of a Q-factorial terminalization is completely controlled
by the group G itself. This fits well into the general framework of McKay correspon-
dence(s), where one expects that it should be possible to give answers to questions
regarding the birational geometry of V/G by only considering the action of G on V , see
for example Reid’s ‘principle of the McKay correspondence’ [Rei02, Principle 1.1].

Further, we feel that Theorem 5.4.1 mirrors Proposition 2.1.7 (c) just like Verbitsky’s
Theorem (Theorem 2.2.6) mirrors the Chevalley–Serre–Shephard–Todd Theorem (The-
orem 2.1.5). In both cases the geometry of the linear quotient V/G is controlled by the
(complex) reflections contained in G and the junior elements (or symplectic reflections)
control the geometry of the Q-factorial terminalization X → V/G. Still, it appears that
this picture is far from complete. Verbitsky’s result on the smoothness of X is not an
equivalence and also the freeness of the class group depends in a somewhat convoluted
way on the junior elements, see Remark 5.4.6.
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6. Yamagishi’s algorithm for the Cox
ring of a Q-factorial terminalization

We continue in the context of the previous chapter and let G ≤ SL(V ) be a finite group.
We describe an algorithm by Yamagishi [Yam18], which computes a presentation of
the Cox ring R(X) of a Q-factorial terminalization X → V/G of the linear quotient
given the group G. After stating the theoretical foundation of the algorithm and some
preparatory comments in Section 6.1, we present the main algorithm for the computation
of generators of the ring R(X) in full detail and prove its correctness in Section 6.2. We
discuss two necessary ‘subalgorithms’ as well as a method to compute the relations of
the computed generators in Section 6.3. These are taken from [Yam18] as well, however
we present the methods in more generality and add detailed proofs of correctness. We
implemented the described algorithms in the computer algebra system OSCAR [Osc23].
To the author’s knowledge, this is the first implementation of this kind. In Section 6.4,
we comment on this implementation.

We decided to present the algorithm from [Yam18] here in full detail for several rea-
sons. Besides the already mentioned implementation, we differ from the presentation
in [Yam18], see Remark 6.2.17 and in particular Remark 6.2.24. Further, we use the
algorithm in Chapter 7 and therefore like to lay out the necessary notation here.

Throughout, let V be a finite-dimensional vector space over C and let G ≤ SL(V ) be
a finite group. Let φ : X → V/G be a Q-factorial terminalization of the linear quotient
V/G and let m ∈ Z≥0 be the number of junior conjugacy classes in G. We again let
{g1, . . . , gm} ∈ G be a minimal set of representatives of the junior conjugacy classes
corresponding by Theorem 2.1.21 to exceptional prime divisors E1, . . . , Em ∈ Div(X) of
φ. For any i ∈ {1, . . . ,m}, we write vi for the monomial valuation on C(V ) defined by
gi, see Section 2.1.3.

6.1. Preparations

6.1.1. Embedding the Cox ring

We describe a way of embedding the Cox ring R(X) into a Laurent polynomial ring over
R(V/G). This approach was to the author’s knowledge first proposed in [Don16] and
further investigated in [DG16], [DW17], [Yam18] and [Gra19].

Let Cl(X)free be the free part of the class group of X with canonical projection mor-
phism ρ : Cl(X) → Cl(X)free. By Corollary 5.4.2, we have Cl(X)free ∼= Zm. Let
C[Cl(X)free] ∼= C[t±1

1 , . . . , t±1
m ] be the group ring; one can also think of C[Cl(X)free]

as the coordinate ring of the torus Hom(Cl(X)free,C×) ∼= (C×)m. We consider the
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6. Yamagishi’s algorithm for the Cox ring of a Q-factorial terminalization

ring R(V/G) ⊗C C[Cl(X)free], which is graded by Cl(V/G) ⊕ Cl(X)free in the nat-
ural way. Recall from Proposition 2.4.7 that there is a surjective graded morphism
φ∗ : R(X) → R(V/G) induced by φ : X → V/G. Let

Θ : R(X) → R(V/G) ⊗C C[Cl(X)free]

be the morphism of graded rings mapping a homogeneous element f ∈ R(X)[D] to

Θ(f) = φ∗(f) ⊗ ρ([D]) ,

where we consider ρ([D]) as an element of the group ring.

Proposition 6.1.1. The morphism Θ is injective.

This follows directly from Lemma 5.1.4, see [Gra19, Proposition 4.1.5].
We can hence realize R(X) as the subring Θ(R(X)) of

R(V/G) ⊗C C[Cl(X)free] ∼=
(
C[V ][G,G]

)
[t±1
1 , . . . , t±1

m ] .

Further, any set of Ab(G)∨-homogeneous generators f1, . . . , fk ∈ C[V ][G,G] gives rise to
a ring R(f1, . . . , fk) ≤ R(V/G)⊗CC[Cl(X)free] as follows. Let χ[D1], . . . , χ[Dk] ∈ Ab(G)∨

be the degrees of f1, . . . , fk with divisors D1, . . . , Dk ∈ Div(V/G). We may assume that
Di = div[Di](fi) for all 1 ≤ i ≤ k. Now let R(f1, . . . , fk) be the ring generated by the
elements

fi ⊗ ρ([Di]), 1 ≤ i ≤ k, and

1 ⊗ ρ([Ej ]), 1 ≤ j ≤ m,

where Di is the strict transform of Di via φ.

Lemma 6.1.2. With the notation introduced above, we have R(f1, . . . , fk) ≤ Θ(R(X))
for any set of Ab(G)∨-homogeneous generators f1, . . . , fk of C[V ][G,G].

Proof. Follows directly from the surjectivity of φ∗ (Proposition 2.4.7).

We now give a condition on the generators f1, . . . , fk involving the valuations vi en-
suring that

R(f1, . . . , fk) = Θ(R(X)) ∼= R(X) ,

see also [Yam18, p. 610] or [Gra19, Assumption 4.1.14].

Condition 6.1.3. Let f1, . . . , fk ∈ C[V ][G,G] be Ab(G)∨-homogeneous generators and
let f ∈ C[V ][G,G] be Ab(G)∨-homogeneous. We say that the generators f1, . . . , fk satisfy
(∗f), if f can be expressed as a sum of monomials F1, . . . , Fl in f1, . . . , fk such that
vi(f) ≤ vi(Fj) for every 1 ≤ i ≤ m and 1 ≤ j ≤ l.

Remark 6.1.4. In the situation of Condition 6.1.3, we always have vi(f) ≥ vi(Fj) by
definition of a valuation.

Theorem 6.1.5. Let f1, . . . , fk ∈ C[V ][G,G] be Ab(G)∨-homogeneous generators. We
have R(f1, . . . , fk) = Θ(R(X)) if and only if the generators f1, . . . , fk ∈ C[V ][G,G] satisfy
(∗f) for every Ab(G)∨-homogeneous element f ∈ C[V ][G,G].

See [Yam18, Proposition 4.4] or [Gra19, Theorem 4.1.15] for a proof.
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6.1.2. Explicit representation of objects in the computer

Before we describe the algorithm given in [Yam18], which uses Theorem 6.1.5 to compute
generators of R(X), we give a few comments to describe the involved mathematical
objects more concretely as is necessary from an algorithmic point of view.

The isomorphism Cl(X)free ∼= Zm

Firstly, we give a more explicit description of the isomorphism Cl(X)free ∼= Zm. As
before, let H ≤ G be the subgroup generated by the junior elements contained in G and
write H := H/(H ∩ [G,G]) for the image of H in Ab(G). We identify the free group⊕m

i=1 ZEi with a subgroup of Cl(X)free via the canonical embedding, see Corollary 5.1.3.

By Corollary 5.4.3, we have Cl(X)free/
⊕m

i=1 ZEi ∼= H
∨

and from the discussion in

Section 5.3 we see that H
∨

embeds into Z/r1Z× · · ·Z/rmZ, where the ri are the orders
of the gi. This means that we may define an injective group morphism ι : Cl(X)free → Zm
with the property that ι(ρ([Ei])) = (0, . . . , 0,−ri, 0, . . . , 0) with the non-trivial entry at
the i-th position. The reason for adding the negative sign here is explained below.

Remark 6.1.6. The map ι is in general not surjective. Although this is the case for
the dihedral groups we consider in Chapter 7, we also have an example in the other
extreme: for the binary icosahedral group I ≤ SL2(C), the group Ab(I) is trivial, so we
obtain coker(ι) = Z/r1Z×· · ·×Z/rmZ in the above notation. The group Zm containing⊕m

i=1 ZEi in the prescribed way is in down to earth terms the ‘biggest’ group we might
need to represent elements of Cl(X)free by integers in the computer.

The group morphism ι induces an embedding of rings C[Cl(X)free] ↪→ C[t±1
1 , . . . , t±1

m ].
The element ρ([D]) corresponding to the strict transform of an effective divisor D on V/G

is in this way identified with the Laurent polynomial
∏m
i=1 t

vi(f)
i , where f ∈ C[V ]

[G,G]
χ[D]

is a canonical section of D by Proposition 5.2.6. Note that our choice of sign for the
images of the ρ([Ei]) results in positive exponents in this expression.

Junior elements and valuations

Recall from Section 2.1 that for a general subgroup of SL(V ) the age of an element as
well as the corresponding monomial valuation depend on a choice of root of unity, see

Remark 2.1.17. For explicit computations, we therefore assume that we choose e
2πi
r as

primitive r-th root of unity, where e is Euler’s number and i :=
√
−1 the imaginary unit.

Recall further that the valuations vi on C(V ) corresponding to the junior elements gi
are so far only constructed with respect to an eigenbasis of gi. Since we are going to
work with m valuations simultaneously, we cannot fix one basis for V during the whole
algorithm. However, the defined valuations v1, . . . , vm easily translate to C(V ) where V
is given in any basis. Indeed, let w1, . . . , wn be an eigenbasis for gi and let w′

1, . . . , w
′
n

be another basis of V . Then there is a vector space automorphism ψ : V → V given by
the change of basis. This induces a ring isomorphism

Ψ : C[w′
1, . . . , w

′
n] → C[w1, . . . , wn], h 7→ h(ψ(w′

1), . . . , ψ(w′
n)) ,
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so that we can define the valuation of h ∈ C[w′
1, . . . , w

′
n] by vi(h) := vi(Ψ(h)).

6.1.3. ‘Negative’ homogenization

A helpful tool in the algorithm is ‘negative’ homogenization – as we call it for lack of a
better term.

Let R := C[X1, . . . , Xk] be a polynomial ring graded by a matrix W ∈ Matr,k(Z)
of rank r ≥ 1, that is, degW (Xj) := (W1j , . . . ,Wrj) ∈ Zr, 1 ≤ j ≤ k. We introduce
additional variables t1, . . . , tr and endow the ring R− := C[X1, . . . , Xk, t1, . . . , tr] with
the grading induced by the matrix W− := (W | −Ir), where Ir denotes the identity
matrix of rank r. Analogous to the homogenization with respect to variables of degree
1, see for example [KR05, Definition 4.3.1], we define the homogenization of a polynomial
f ∈ R with respect to the variables t1, . . . , tr of degree −1.

Definition 6.1.7 (Minimal degree and negative homogenization). Let f ∈ R \ {0} and
write f = f1 + · · · + fs with fi the terms of f . For j = 1, . . . , s, let degW (fj) =
(d1j , . . . , drj) ∈ Zr. Moreover, for i = 1, . . . , r, let µi := min{dij | j = 1, . . . , s}.

(a) The tuple (µ1, . . . , µr) is called the minimal degree of f with respect to the grading
given by W and denoted by mindegW (f).

(b) The homogenization of f with respect to the grading given by W is the polynomial

fh =
s∑
j=1

fjt
d1j−µ1
1 · · · tdrj−µrr ∈ R− .

For the zero polynomial, we set 0h = 0.

The polynomial fh is homogeneous of degree mindegW (f) by construction. To be able
to use results from the literature concerned with homogenization in the usual sense, that
is, with respect to variables of positive degree, we require the following lemma.

Lemma 6.1.8. Let R+ := C[X1, . . . , Xk, u1, . . . , ur] be a polynomial ring graded by the
matrix W+ := (−W | Ir). For a polynomial f ∈ R \ {0}, let f−, respectively f+, be
the homogenization of f as an element of R−, respectively R+, with respect to t1, . . . , tr,
respectively u1, . . . , ur. Then f− = f+(X1, . . . , Xk, t1, . . . , tr).

Proof. Write f = f1 + · · · + fs with fi the terms of f . Let µ+ := topdeg−W (f) (see
[KR05, Definition 4.3.1]) and µ− := mindegW (f). We observe that −µ+ = µ−. We have

f− =
s∑
j=1

(
fj

r∏
i=1

t
degW (fj)i−(µ−)i
i

)
=

s∑
j=1

(
fj

r∏
i=1

t
− deg−W (fj)i+(µ+)i
i

)
= f+(X1, . . . , Xk, t1, . . . , tr) ,

as required.

Remark 6.1.9. Lemma 6.1.8 enables us to use well-known ‘calculation rules’ for homo-
genized polynomials and ideals as in [KR05, Proposition 4.3.2] and [KR05, Proposi-
tion 4.3.5], although these rules are only proven for homogenizations with respect to
variables of positive degree in the given references.

70



6.2. The algorithm

6.2. The algorithm

We are ready to describe the algorithm from [Yam18] for the computation of a set of
generators of R(X).

6.2.1. A different characterization of Condition 6.1.3

Let f1, . . . , fk be Ab(G)∨-homogeneous generators of C[V ][G,G]. We want to compute ad-
ditional Ab(G)∨-homogeneous elements fk+1, . . . , fk′ in C[V ][G,G] such that the elements
f1, . . . , fk′ fulfil condition 6.1.3 for every Ab(G)∨-homogeneous element f ∈ C[V ][G,G].
To be able to write down the algorithm we have to introduce some notation; most of it
is directly taken from [Yam18].

Definition 6.2.1. Let S = {f1, . . . , fk} be a set of Ab(G)∨-homogeneous generators of
C[V ][G,G], let A ⊆ {1, . . . ,m} and let f ∈ C[V ][G,G] be Ab(G)∨-homogeneous. We say
that S satisfies (∗A, f), if f can be expressed as a sum of monomials F1, . . . , Fl in the
elements f1, . . . , fk such that vi(f) ≤ vi(Fj) for every i ∈ A and 1 ≤ j ≤ l. Further, we
say that S satisfies (∗A), if S satisfies (∗A, f) for every Ab(G)∨-homogeneous element
f ∈ C[V ][G,G].

Of course, (∗{1, . . . ,m}, f) is just Condition 6.1.3 and we aim for a set of generators
fulfilling (∗{1, . . . ,m}) as in Theorem 6.1.5.

The following corollary of the fact that R(X) is a finitely generated C-algebra (The-
orem 2.4.13) is necessary to ensure the termination of the algorithm after finitely many
steps.

Lemma 6.2.2. There exist Ab(G)∨-homogeneous polynomials f̃1, . . . , f̃s ∈ C[V ][G,G]

such that for any set {f1, . . . , fk} of Ab(G)∨-homogeneous generators of C[V ][G,G] and
any subset A ⊆ {1, . . . ,m}, condition (∗A) is satisfied if and only if (∗A, f̃j) is satisfied
for all j = 1, . . . , s.

See [Yam18, Lemma 4.8] for a proof. The proof is non-constructive as one chooses the f̃j
to be the images of generators of R(X) under the push-forward φ∗ : R(X) → R(V/G).

We now introduce a reformulation of Condition 6.1.3. For this, we fix notation that
remains in place throughout the chapter. We consider the morphism of rings

α : C[X1, . . . , Xk] → C[V ][G,G], Xi 7→ fi

and endow C[X1, . . . , Xk] with a weighted grading degi for every junior element gi,
1 ≤ i ≤ m, by setting degi(Xj) := vi(fj) for 1 ≤ j ≤ k. Given a polynomial

h =
∑
a∈Zk

≥0

λaX
a1
1 · · ·Xak

k ∈ C[X1, . . . , Xk] ,

we let
mindegi(h) := min

a∈Zk
≥0

λa ̸=0

degi
(
Xa1

1 · · ·Xak
k

)
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be the minimal degree of h with respect to degi. Notice that mindegi(0) = ∞.

Further, we lift the action of Ab(G) on C[V ][G,G] to an action on C[X1, . . . , Xk] via
α as follows. Given γ ∈ Ab(G) and 1 ≤ j ≤ k there is λj ∈ C× with γ.fj = λjfj
by Ab(G)∨-homogeneity so that we can define γ.Xj := λjXj . This gives a grading by
Ab(G)∨ on C[X1, . . . , Xk] and α is by construction an Ab(G)∨-graded morphism.

We have the following reformulation of Definition 6.2.1:

Lemma 6.2.3. The set {f1, . . . , fk} satisfies (∗A, f) for a subset A ⊆ {1, . . . ,m} and
an Ab(G)∨-homogeneous element f ∈ C[V ][G,G] if and only if there exists h ∈ α−1(f)
with mindegi(h) = vi(f) for all i ∈ A.

At this point, we can already state the basic skeleton of the algorithm from [Yam18],
see Algorithm 6.2.1. This relies on Algorithm 6.2.2 and Algorithm 6.2.3 discussed be-
low, which may be seen as an ‘induction start’ and ‘induction step’, respectively. The
correctness of Algorithm 6.2.1 follows directly from the correctness of Algorithm 6.2.2
and Algorithm 6.2.3, once one has convinced oneself that the nested for-loops ensure
the conditions (∗{1, . . . , i′, i}) in the order

(∗{1, 2})

(∗{1, 3}), (∗{1, 2, 3})

(∗{1, 4}), (∗{1, 2, 4}), (∗{1, 2, 3, 4})

...

(∗{1,m}), (∗{1, 2,m}), . . . , (∗{1, . . . ,m}) .

We now present the two parts of this algorithm, which we think of as ‘Phase 1’ (the first
for-loop) and ‘Phase 2’ (the nested for-loops).

6.2.2. Phase 1: The case of one valuation

Fix an index i ∈ {1, . . . ,m} and let {f1, . . . , fk} be a set of Ab(G)∨-homogeneous gener-
ators of C[V ][G,G]. Following [Yam18], we prove that (∗{i}) is equivalent to the equality
of certain ideals.

Notation 6.2.4. Given h ∈ C[X1, . . . , Xk] we write mini(h) for the degi-homogeneous
part of h of minimal degree mindegi(h).

Lemma 6.2.5. Let h ∈ C[X1, . . . , Xk] be Ab(G)∨-homogeneous. Then the degi-minimal
part mini(h) is Ab(G)∨-homogeneous as well.

Proof. This is clear since mini(h) is a summand of h and any monomial in C[X1, . . . , Xk]
is Ab(G)∨-homogeneous.

Lemma 6.2.6. We have mindegi(h) ≤ vi(α(h)) for any 0 ̸= h ∈ C[X1, . . . , Xk].
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Algorithm 6.2.1. Generators of C[V ][G,G] fulfilling (∗{1, . . . ,m})

Input : Ab(G)∨-homogeneous generators f1, . . . , fk of C[V ][G,G]

Output: Ab(G)∨-homogeneous elements fk+1, . . . , fl ∈ C[V ][G,G] such that
{f1, . . . , fl} satisfies (∗{1, . . . ,m})

1 Set S := {f1, . . . , fk}
2 for i = 1, . . . ,m do
3 Enlarge S using Algorithm 6.2.2 to ensure (∗{i})
4 end
5 for i = 2, . . . ,m do
6 for i′ = 1, . . . , i− 1 do
7 Enlarge S using Algorithm 6.2.3 (with input A = {1, . . . , i′ − 1}) to

ensure (∗{1, . . . , i′, i})

8 end

9 end
10 return S

Proof. Write h =
∑

a∈Zk
≥0
λaX

a1
1 · · ·Xak

k . Then we have

mindegi(h) = min
a∈Zk

≥0

λa ̸=0

vi
(
fa11 · · · fakk

)
≤ vi(h(f1, . . . , fk)) = vi(α(h)) .

Lemma 6.2.7. Let 0 ̸= h ∈ C[X1, . . . , Xk]. We have mindegi(h) < vi(α(h)) if and only
if degi(mini(h)) < vi(α(mini(h))).

Proof. Set h′ := mini(h) and notice that degi(h
′) = mindegi(h). Recall that for all

h1, h2 ∈ C[V ][G,G] we have

vi(h1) ̸= vi(h2) =⇒ vi(h1 + h2) = min{vi(h1), vi(h2)}

as this holds for any valuation, see for example [Lan02, p. 481].
Assume mindegi(h) < vi(α(h)) and degi(h

′) = vi(α(h′)). It follows that vi(α(h′)) <
vi(α(h)) and hence vi(α(h′)) = vi(α(h− h′)). But then

mindegi(h− h′) ≤ vi(α(h− h′)) = degi(h
′)

by Lemma 6.2.6 in contradiction to mindegi(h− h′) > degi(h
′).

Assume degi(h
′) < vi(α(h′)) and mindegi(h) = vi(α(h)). This means that vi(α(h)) <

vi(α(h′)) but also
min{vi(α(h′)), vi(α(h− h′))} ≤ vi(α(h)) ,

so vi(α(h′)) > vi(α(h− h′)) leading to vi(α(h)) = vi(α(h− h′)). This, however, implies

mindegi(h− h′) > mindegi(h) = vi(α(h− h′))

contradicting Lemma 6.2.6.
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Notation 6.2.8. For an ideal I ⊴ C[X1, . . . , Xk], write

mini I := ⟨mini(h) | h ∈ I⟩

and

miniI := ⟨f ∈ I | f is Ab(G)∨-homogeneous⟩ .

We fix some more notation. Let I := ker(α) and notice that I is Ab(G)∨-homogeneous
as α is an Ab(G)∨-graded morphism. Let w1, . . . , wn ∈ V be an eigenbasis of V for gi and
let ψ : C[V ] → C[w1, . . . , wn] be the ring isomorphism induced by the change of basis.
Recall that the valuation vi(f) of f ∈ C[w1, . . . , wn] is the minimum of the valuations
of the terms of f . Let mini(f) ∈ C[w1, . . . , wn] be the sum of the terms of minimal
valuation. Define

βi : C[X1, . . . , Xk] → C[w1, . . . , wn], Xj 7→ mini(ψ(fj))

and let Ji := ker(βi).

We are interested in the ideals mini I and miniJi. These are well-behaved with respect
to the different gradings.

Lemma 6.2.9. The ideals mini I and miniJi are degi-homogeneous and Ab(G)∨-homo-
geneous.

Proof. The degi-homogeneity of mini I and the Ab(G)∨-homogeneity of miniJi follow
by construction. For the degi-homogeneity of miniJi, one uses that βi is a graded
morphism with respect to degi on C[X1, . . . , Xk] and the grading induced by vi on C[V ]
as in Section 5.3, see [Yam18, Lemma 4.5].

It remains to show Ab(G)∨-homogeneity of mini I. Let h ∈ I, giving a generator
mini(h) ∈ mini I. We can write h =

∑t
j=1 hj with Ab(G)∨-homogeneous elements

hj ∈ I since I is an Ab(G)∨-homogeneous ideal. Then the minimal parts mini(hj) are
Ab(G)∨-homogeneous as well by Lemma 6.2.5. Now mini(h) is exactly the sum of those
mini(hj) with degi(mini(hj)) = mindegi(h) and the Ab(G)∨-homogeneous components
of mini(h) are hence in mini I. So, the ideal mini I is Ab(G)∨-homogeneous as well.

The ideal miniJi can be seen as the set of polynomials violating (∗{i}) by the next
lemma.

Lemma 6.2.10. For an Ab(G)∨-homogeneous polynomial 0 ̸= h ∈ C[X1, . . . Xk], we
have mini(h) ∈ miniJi if and only if mindegi(h) < vi(α(h)).

Proof. We follow the argument in [Yam18, p. 611].

By Lemmas 6.2.5, 6.2.7 and 6.2.9, we may assume that h is degi-homogeneous by
replacing h by mini(h).

Assume h ∈ miniJi. We have

vi(α(h)) = vi(h(f1, . . . , fk)) = vi
(
h(ψ(f1), . . . , ψ(fk))

)
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by definition of α and vi, where ψ is the morphism to an eigenbasis of gi as in the
definition of βi. But h ∈ Ji, so h is a non-trivial relation of the minimal parts of
ψ(f1), . . . , ψ(fk). Hence,

vi
(
h(ψ(f1), . . . , ψ(fk))

)
= vi

(
h(f ′1, . . . , f

′
k))

)
,

where f ′j := ψ(fj) − minj(ψ(fj)) for 1 ≤ j ≤ k. Writing h =
∑

a∈Zk
≥0
λaX

a1
1 · · ·Xak

k , we

conclude

vi
(
h(f ′1, . . . , f

′
k)
)
≥ min

a∈Zk
≥0

λa ̸=0

vi
(
f ′1
a1 · · · f ′k

ak
)
> min

a∈Zk
≥0

λa ̸=0

vi
(
fa11 · · · fakk

)
= degi(h) .

Conversely, if degi(h) < vi(α(h)), we have with the same notation

min
a∈Zk

≥0

λa ̸=0

vi
(
fa11 · · · fakk

)
= min

a∈Zk
≥0

λa ̸=0

vi
(
mini(ψ(f1))

a1 · · ·mini(ψ(fk))
ak
)
.

Further, for any two terms λaX
a1
1 · · ·Xak

k and λbX
b1
1 · · ·Xbk

k of h we must have

vi
(
mini(ψ(f1))

a1 · · ·mini(ψ(fk))
ak
)

= vi
(
mini(ψ(f1))

b1 · · ·mini(ψ(fk))
bk
)

by degi-homogeneity of h. Then vi(α(h)) can only be properly larger than degi(h) if
h
(
mini(ψ(f1)), . . . ,mini(ψ(fk))

)
vanishes, so if h ∈ Ji. Since h is Ab(G)∨-homogeneous,

we conclude h ∈ miniJi.

The ideal mini I is a subset of miniJi consisting of those ‘bad’ polynomials for which
there exists a ‘better’ preimage, that is, a preimage with a higher minimal degree.

Lemma 6.2.11. Let 0 ̸= h ∈ C[X1, . . . , Xk] be Ab(G)∨-homogeneous and degi-homoge-
neous. We have h ∈ mini I if and only if there exists an Ab(G)∨-homogeneous polynomial
h̃ ∈ C[X1, . . . , Xk] such that h− h̃ ∈ I and degi(h) < mindegi(h̃).

Proof. We follow the argument in [Yam18, p. 611].
Assume h ∈ mini I, so h = mini(h1) + · · · + mini(ht) for polynomials hj ∈ I. We may

assume that the hj are Ab(G)∨-homogeneous of same degree since h is Ab(G)∨-homoge-
neous and I is an Ab(G)∨-homogeneous ideal. Set h′ :=

∑t
j=1 hj ∈ I. Then mini(h

′) = h

by degi-homogeneity of h. Hence h̃ := h− h′ fulfils the requirements.
Conversely, assume that we have a polynomial h̃ ∈ C[X1, . . . , Xk] as in the claim.

Then it follows that mini(h− h̃) = h, so h ∈ mini I.

Corollary 6.2.12. We have mini I ⊆ miniJi.

Proof. This follows from the above lemmas, see [Yam18, Lemma 4.5].

We are now able to relate the property (∗{i}) to the ideals mini I and miniJi.

Proposition 6.2.13. The set {f1, . . . , fk} satisfies (∗{i}) if and only if mini I = miniJi.
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Algorithm 6.2.2. Phase 1: ensure (∗{i})

Input : Ab(G)∨-homogeneous generators f1, . . . , fk of C[V ][G,G];
i ∈ {1, . . . ,m}

Output: Ab(G)∨-homogeneous elements fk+1, . . . , fl ∈ C[V ][G,G] such that
{f1, . . . , fl} satisfies (∗{i})

1 Set S := {f1, . . . , fk}
2 Compute mini I and miniJi
3 while mini I ̸= miniJi do
4 Write miniJi = mini I + ⟨h1, . . . , ht⟩ with degi-homogeneous and

Ab(G)∨-homogeneous elements hj /∈ mini I
5 S := S ∪ {α(h1), . . . , α(ht)}
6 Update mini I and miniJi
7 end
8 return S

Proof. We follow the argument in [Yam18, Proposition 4.9].

Assume that {f1, . . . , fk} satisfies (∗{i}). By Corollary 6.2.12, we have the inclusion
mini I ⊆ miniJi and Lemma 6.2.9 states that both ideals are degi-homogeneous and
Ab(G)∨-homogeneous. Let h ∈ miniJi be degi-homogeneous and Ab(G)∨-homogeneous.
Then degi(h) < vi(α(h)) by Lemma 6.2.10. As {f1, . . . , fk} satisfies (∗{i}), there must
be h̃ with α(h̃) = α(h) and vi(α(h̃)) = mindegi(h̃), by Lemma 6.2.3. Then h̃ − h ∈ I
and mindegi(h̃) > degi(h). Hence, h ∈ mini I by Lemma 6.2.11 and mini I = miniJi as
required.

Conversely, assume mini I = miniJi and let f ∈ C[V ][G,G] be Ab(G)∨-homogeneous.
Using Lemma 6.2.3, we have to show that there is h ∈ α−1(f) with mindegi(h) = vi(f).
So, let h′ ∈ α−1(f) be any preimage and assume we have mindegi(h

′) < vi(f). We
may assume that h′ is Ab(G)∨-homogeneous since α is a graded morphism. Hence,
h := mini(h

′) ∈ miniJi by Lemma 6.2.10 and h is Ab(G)∨-homogeneous by Lemma 6.2.5.
Then by assumption h ∈ mini I, so there is h̃ ∈ C[X1, . . . , Xk] with h − h̃ ∈ I and
degi(h) < mindegi(h̃) by Lemma 6.2.11. Hence, for h′′ := h′ − h+ h̃ we have α(h′′) = f
and mindegi(h

′′) > mindegi(h
′). Increasing the minimal degree in this way we eventually

obtain the desired preimage with minimal degree vi(f).

Proposition 6.2.13 motivates Algorithm 6.2.2 and implies the correctness of this al-
gorithm, assuming it terminates. We present algorithms for the computation of mini I
and miniJi in Section 6.3.

Lemma 6.2.14. Algorithm 6.2.2 terminates after finitely many steps.

Proof. We follow the argument in [Yam18, Proposition 4.9].

By Lemma 6.2.2, there exist Ab(G)∨-homogeneous elements f̃1, . . . , f̃s ∈ C[V ][G,G],
such that we only have to show that the set of generators satisfies (∗{i}, f̃j), j = 1, . . . , s,
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after finitely many steps of the algorithm. Let S = {f1, . . . , fk′} be the set of gen-
erators at the beginning of an iteration of the while-loop of the algorithm and let
f ∈ {f̃1, . . . , f̃s} be such that (∗{i}, f) is not satisfied. Choose any h′ ∈ α−1(f). We may
assume that h′ is Ab(G)∨-homogeneous as α is an Ab(G)∨-graded morphism. Then
we have mindegi(h

′) < vi(f) and hence h := mini(h
′) ∈ miniJi by Lemma 6.2.10.

By Lemma 6.2.5, h is Ab(G)∨-homogeneous. Writing miniJi = mini I + ⟨h1, . . . , ht⟩
as in the algorithm, there are h′′ ∈ mini I and a1, . . . , at ∈ C[X1, . . . , Xk′ ] with h =
h′′ +

∑t
j=1 ajhj . We may assume that the polynomials h′′ and ajhj are degi-homogene-

ous of same degree

degi(h) = degi(h
′′) = degi(ajhj)

since h and the hj are degi-homogeneous and mini I is a degi-homogeneous ideal.

Write α+, S+, I+ and so on for the updated instances in the next iteration of the
while-loop. Let Xk′+1, . . . , Xk′+t be the new variables corresponding to α(h1), . . . , α(ht).
Notice that α+(f ′) = α(f ′) for any f ′ ∈ C[X1, . . . , Xk′ ] and in particular I ⊆ I+ by con-
sidering elements of C[X1, . . . , Xk′ ] as elements of C[X1, . . . , Xk′+t] in the canonical way.
We have h1, . . . , hl ∈ mini I. Indeed, for 1 ≤ j ≤ l, by construction hj − Xk+j ∈ I
and degi(Xk+j) > degi(hj), so mini(hj − Xk+j) = hj ∈ mini I using the degi-ho-
mogeneity of hj . Hence, h ∈ mini I and by Lemma 6.2.11 it follows that there is
h̃ ∈ C[X1, . . . , Xk] with h̃− h ∈ I and mindegi(h̃) > degi(h). So, α(h′ − h+ h̃) = f and
mindegi(h

′ −h+ h̃) > mindegi(h
′). In each iteration we hence find a preimage of higher

degree and after finitely many steps the updated set S must satisfy (∗{i}, f).

6.2.3. Phase 2: Combining different valuations

For the second phase of Algorithm 6.2.1, fix i, i′ ∈ {1, . . . ,m} with i′ ̸= i. We present a
condition equivalent to (∗{i′, i}), which is again based on the equality of certain ideals.

Remark 6.2.15. After applying Algorithm 6.2.2 for every valuation v1, . . . , vm iteratively,
we have generators f1, . . . , fk ∈ C[V ][G,G] fulfilling (∗{1}), . . . , (∗{m}). This translates
to the logical expression:

∀f ∈ C[V ][G,G] ∀i ∈ {1, . . . ,m} ∃h ∈ α−1(f) : mindegi(h) = vi(f) .

However, for (∗{1, . . . ,m}) we require:

∀f ∈ C[V ][G,G] ∃h ∈ α−1(f) ∀i ∈ {1, . . . ,m} : mindegi(h) = vi(f) .

In other words: so far we can ensure for f ∈ C[V ][G,G] and 1 ≤ i′ < i ≤ m that there
are hi′ , hi ∈ C[X1, . . . , Xk] with α(hi′) = α(hi) = f and mindegi′(hi′) = vi′(f) as well as
mindegi(hi) = vi(f). But for (∗{i′, i}) we require a polynomial h ∈ C[X1, . . . , Xk] that
fulfils both degree conditions simultaneously.

As before, let f1, . . . , fk ∈ C[V ][G,G] be Ab(G)∨-homogeneous generators and let I
be the kernel of the morphism α. We follow [Yam18, p. 611], but are able to simplify
the construction, see Remark 6.2.17. Consider the polynomial ring C[X1, . . . , Xk, ti′ , ti].
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We extend the action of Ab(G) by γ.tj = tj , j = i′, i, for all γ ∈ Ab(G) giving an
Ab(G)∨-grading on C[X1, . . . , Xk, ti′ , ti]. Further, we extend the gradings degi′ and degi
by setting degj(tj′) = −δj,j′ for every possible choice of j, j′ ∈ {i′, i}, where δj,j′ is the
Kronecker delta.

Notation 6.2.16. Let 0 ̸= h ∈ C[X1, . . . , Xk] and write h =
∑

j hj with terms hj . Then
we set

h{i′,i} :=
∑
j

(
hjt

degi′ (hj)−mindegi′ (h)
i′ t

degi(hj)−mindegi(h)
i

)
for the homogenization with respect to the gradings degi′ and degi, see Section 6.1.3.
Notice that h{i′,i} is degj-homogeneous of degree mindegj(h) for j = i′, i.

Remark 6.2.17. We adopt the non-standard notation h{i′,i} for the homogenized polyno-
mial from [Yam18]. However, we emphasize that we always only require to homogenize at
two degrees simultaneously. In [Yam18], the homogenization is extended to an arbitrary
set A ⊆ {1, . . . ,m}. The argument then works with the set A = {1, . . . , i′, i} and we
are able to drop the homogeneity with respect to deg1, . . . ,degi′−1 in what follows. The
approach in [Yam18] does not complicate the theory, but leads to a poorer performance
of the algorithm in practice, as more and more variables need to be introduced.

We collect some properties of the homogenization, which all follow by construction.
By abuse of notation we abbreviate h|ti′=1,ti=1 to h|t=1.

Lemma 6.2.18. Let h ∈ C[X1, . . . , Xk] and H ∈ C[X1, . . . , Xk, ti′ , ti]. Then we have:

(a) (h{i′,i})|t=1 = h;

(b) if h is Ab(G)∨-homogeneous then so is h{i′,i};

(c) if H is Ab(G)∨-homogeneous then so is H|t=1;

(d) mindegj(h) = mindegj(h{i′,i}) for all j ∈ {1, . . . ,m};

(e) mindegj(H) ≤ mindegj(H|t=1) for all j ∈ {1, . . . ,m} with equality if j ̸= i′, i or
tj ∤ H;

(f) (H|tj=0)|t=1 = minj(H|t=1) for j = i′, i.

Set
I{i′,i} := ⟨h{i′,i} | h ∈ I⟩ ⊴ C[X1, . . . , Xk, ti′ , ti]

and notice that this is a degj-homogeneous ideal for j = i′, i by construction and also
Ab(G)∨-homogeneous as this is inherited from I.

Notation 6.2.19. For i′, i ∈ {1, . . . ,m} with i ̸= i′, we define the ideals

Ii′,i := I{i′,i} ∩ ⟨ti′ , ti⟩

and
I ′i′,i := (I{i′,i} ∩ ⟨ti′⟩) + (I{i′,i} ∩ ⟨ti⟩) .

These ideals correspond to Ĩi′,i and Ĩ ′i′,i, respectively, in [Yam18].
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Lemma 6.2.20. The ideals Ii′,i and I
′
i′,i are Ab(G)∨-homogeneous and degj-homogene-

ous for j = i′, i. Further, we have the inclusion I ′i′,i ⊆ Ii′,i.

Proof. This follows by construction.

The ideal Ii′,i has a similar function as miniJi in the previous section as it is connected
to the polynomials violating (∗{i′, i}).

Lemma 6.2.21. Let 0 ̸= h1, h2 ∈ C[X1, . . . , Xk], h1 ̸= h2, be Ab(G)∨-homogeneous
with h1 − h2 ∈ I. If mindegi′(h1) > mindegi′(h2) and mindegi(h1) < mindegi(h2), then
(h1 − h2){i′,i} ∈ Ii′,i.

Proof. By assumption, h1 − h2 ∈ I, so clearly (h1 − h2){i′,i} ∈ I{i′,i}. For the minimal
parts, we have mini′(h1 − h2) = mini′(h2) and mini(h1 − h2) = mini(h1), so every term
of (h1 − h2){i′,i} must be divisible by ti′ or ti proving the claim.

In analogy to mini I, the ideal I ′i′,i is the set of ‘bad’ polynomials for which we can
choose a better preimage.

Lemma 6.2.22. Let A ⊆ {1, . . . ,m}. Let f ∈ C[V ][G,G] be Ab(G)∨-homogeneous and
let h1, h2 ∈ α−1(f) be Ab(G)∨-homogeneous with

mindegj(h1) = mindegj(h2) = vj(f)

for j ∈ A and

mindegi′(h1) > mindegi′(h2) and mindegi(h1) < mindegi(h2) .

If (h1 − h2){i′,i} ∈ I ′i′,i, then there exists an Ab(G)∨-homogeneous element h ∈ α−1(f)
with

mindegj(h) = vj(f) for j ∈ A

and
mindegi′(h) > mindegi′(h2) and mindegi(h) > mindegi(h1) .

Proof. By assumption, there are g1 ∈ I{i′,i} ∩ ⟨ti′⟩ and g2 ∈ I{i′,i} ∩ ⟨ti⟩ with

(h1 − h2){i′,i} = g1 + g2 .

In particular, g1 ∈ I{i′,i} and g1|t=1 ∈ I by [KR05, Proposition 4.3.5].
We claim that h := h1−g1|t=1 has the required degrees. Clearly, α(h) = f . For j ∈ A,

we have

mindegj(g1|t=1) ≥ mindegj(g1) ≥ mindegj((h1 − h2){i′,i})

= mindegj(h1 − h2) ≥ vj(f) ,

so mindegj(h) = vj(f) by Lemma 6.2.6. We have g1 ∈ ⟨ti′⟩, so

mindegi′(g1|t=1) > mindegi′(g1) ≥ mindegi′(h2) .

79



6. Yamagishi’s algorithm for the Cox ring of a Q-factorial terminalization

Since also mindegi′(h1) > mindegi′(h2), we conclude mindegi′(h) > mindegi′(h2). Fur-
ther, we have ti | g2, so

mini(g1|t=1) = mini((g1 + g2)|t=1) = mini(h1)

and therefore mindegi(h) > mindegi(h1).
If h is not Ab(G)∨-homogeneous, then there exists an Ab(G)∨-homogeneous summand

h′ of h such that h−h′ ∈ I since α is an Ab(G)∨-graded morphism and f is homogeneous.
Then mindegj(h

′) ≥ mindegj(h) for all j ∈ {1, . . . ,m}, so h′ is as required.

We can now prove an analogue to Proposition 6.2.13. Although this is essentially
[Yam18, Proposition 4.10], we prove a different statement, see Remark 6.2.24 for an
explanation.

Proposition 6.2.23. Let i, i′ ∈ {1, . . . ,m}, i ̸= i′ and A ⊆ {1, . . . ,m}. The set
{f1, . . . , fk} satisfies (∗A ∪ {i′, i}) if and only if it satisfies (∗A ∪ {i′}) and (∗A ∪ {i})
and we have Ii′,i = I ′i′,i.

Proof. Assume that {f1, . . . , fk} satisfies (∗A ∪ {i′, i}). Then this directly implies both
(∗A ∪ {i′}) and (∗A ∪ {i}), so we only have to show the equality of ideals, that is,
Ii′,i ⊆ I ′i′,i.

Let h′ be an element of Ii′,i. By Lemma 6.2.20, we may assume that h′ is Ab(G)∨-ho-
mogeneous and degj-homogeneous for j = i′, i. If ti′ | h′ or ti | h′, we are done, so
assume otherwise and set h := mini(h

′|t=1) ∈ mini I. Notice that h′|t=1 and hence h are
Ab(G)∨-homogeneous by Lemma 6.2.18 and Lemma 6.2.5. Then degi(h) < vi(α(h))
by Corollary 6.2.12 and Lemma 6.2.10. As we assume (∗A ∪ {i′, i}), there is h̃ ∈
C[X1, . . . , Xk] with h − h̃ ∈ I and mindegj(h̃) = vj(α(h)) for all j ∈ A ∪ {i′, i}. Set

h′′ = (h− h̃){i′,i} ∈ I{i′,i}.
We have ti′ | (h′|ti=0) since h′ ∈ Ii′,i and by assumption ti′ ∤ h′, so

mindegi′(h
′|t=1) < mindegi′(h) ≤ mindegi′(h̃) .

Hence mindegi′(h
′) < mindegi′(h

′′). We have (h′′|ti=0)|ti′=1 = h, so by homogeneity
there is l ∈ Z>0 with

h′|ti=0 = (h′′|ti=0)t
l
i′ .

Now h′′tli′ ∈ I{i′,i} ∩ ⟨ti′⟩ and ti | (h′ − h′′tli′), so h′ − h′′tli′ ∈ I{i′,i} ∩ ⟨ti⟩. We conclude

h′ = h′′tli′ + (h′ − h′′tli′) ∈ I ′i′,i .

Conversely, assume that {f1, . . . , fk} satisfies both (∗A∪{i′}) and (∗A∪{i}) and that
Ii′,i = I ′i′,i. Let f ∈ C[V ][G,G] be Ab(G)∨-homogeneous. Then there are Ab(G)∨-homo-

geneous elements h1, h2 ∈ α−1(f) with

mindegj(h1) = mindegj(h2) = vj(f), for j ∈ A ;

mindegi′(h1) = vi′(f) ;

mindegi(h2) = vi(f) .
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If either mindegi(h1) = vi(f) or mindegi′(h2) = vi′(f), we are done, so we assume

mindegi(h1) < mindegi(h2) and

mindegi′(h2) < mindegi′(h1) .

As h1−h2 ∈ I, we have (h1−h2){i′,i} ∈ I{i′,i}. Also (h1−h2){i′,i} ∈ ⟨ti′ , ti⟩ since neither h1
nor h2 has a term of minimal degree with respect to both degi′ and degi by assumption.
Hence (h1−h2){i′,i} ∈ Ii′,i = I ′i′,i. We prove at first that we can find h̃2 ∈ α−1(f) fulfilling

all of the above equalities in place of h2 and additionally mindegi′(h̃2) > mindegi′(h2).
We are in the situation of Lemma 6.2.22 and hence there exists h ∈ α−1(f) with

mindegj(h) = vj(f), for j ∈ A ;

mindegi′(h) > mindegi′(h2) ;

mindegi(h) > mindegi(h1) .

In case mindegi(h) = mindegi(h2), we set h̃2 := h. Otherwise, the pair (h, h2) fulfils
the assumptions of Lemma 6.2.22, so we may assume that after applying the lemma
with (h, h2) iteratively, we arrive at a polynomial h with mindegi(h) = mindegi(h2) as
required.

We now replace h2 by h̃2 and iterate the described process. As mindegi′(h2) properly
increases in every step, this terminates after finitely many steps and we arrive at a
polynomial h2 with mindegj(h2) = vj(α(h2)) for all j ∈ A ∪ {i′, i}.

This motivates Algorithm 6.2.3. Correctness of the algorithm is clear with Proposition
6.2.23, assuming it terminates.

Remark 6.2.24. In [Yam18, Proposition 4.10], Yamagishi claims that (∗A ∪ {i′, i}) is
equivalent to (∗A ∪ {i}) and Ii′,i = I ′i′,i, using our notation. However, we have to point
out a mistake in the second half of the proof. There, [Yam18, Lemma 4.7] is used for the
index i, where it should be used for i′. We do not see, how one could prove Yamagishi’s
claim.

If the result is nevertheless true, then this will lead to a more efficient algorithm as one
could remove the nested for-loops in Algorithm 6.2.1 in favour of a single loop asserting
the conditions (∗{1, 2}), (∗{1, 2, 3}), (∗{1, 2, 3, 4}) and so on.

Remark 6.2.25. Algorithm 6.2.3 does in fact not require a set A ⊆ {1, . . . ,m} as input
as the construction of Ii′,i and I ′i′,i is independent of A. We only added this to the
description of the algorithm to emphasize that it preserves the condition (∗A) assuming
that both (∗A ∪ {i′}) and (∗A ∪ {i}) hold.

The next lemma is helpful to prove termination of Algorithm 6.2.3 after finitely many
steps (Proposition 6.2.27).

Lemma 6.2.26. In the situation of Algorithm 6.2.3, if h ∈ {h1, . . . , hl} in some iteration
of the while-loop, then h ∈ I ′i′,i in the next iteration.
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Algorithm 6.2.3. Phase 2: ensure (∗{i′, i})

Input : i, i′ ∈ {1, . . . ,m};
A ⊆ {1, . . . ,m};
Ab(G)∨-homogeneous generators {f1, . . . , fk} of C[V ][G,G] satisfying
(∗A ∪ {i′}) and (∗A ∪ {i})

Output: Ab(G)∨-homogeneous elements fk+1, . . . , fl ∈ C[V ][G,G] such that
{f1, . . . , fl} satisfies (∗A ∪ {i′, i})

1 Initialize S := {f1, . . . , fk}
2 Compute Ii′,i and I ′i′,i
3 while Ii′,i ̸= I ′i′,i do

4 Write Ii′,i = I ′i′,i + ⟨h1, . . . , hl⟩ with degj-homogeneous, j = i′, i, and

Ab(G)∨-homogeneous elements h1, . . . , hl /∈ I ′i′,i
5 S := S ∪ {α(mini(h1|t=1)), . . . , α(mini(hl|t=1))}
6 Update Ii′,i and I ′i′,i
7 end
8 return S

Proof. Let h ∈ {h1, . . . , hl} and let S, α, Ii′,i, I
′
i′,i and so on be the updated instances

in the next iteration of the while-loop. We have α(mini(h|t=1)) ∈ S and there is a
variable X with α(X) = α(mini(h|t=1)), so X −mini(h|t=1) ∈ I. Set h′ := h− h|ti=0, so
h′|t=1 = h|t=1 − mini(h|t=1) by Lemma 6.2.18. We have h ∈ I{i′,i}, hence h|t=1 ∈ I by
[KR05, Proposition 4.3.5]. Then also X + h′|t=1 ∈ I. Further, mini(h|t=1) ∈ mini I, so

mindegi(h|t=1) = degi(mini(h|t=1)) < degi(X)

by Corollary 6.2.12 and Lemma 6.2.10. We have h ∈ ⟨ti′ , ti⟩ and ti ∤ (h|ti=0), so

mindegi′(h|t=1) < mindegi′(mini(h|t=1)) ≤ degi′(X) .

By construction,

mindegi′(h|t=1) ≤ mindegi′(h
′|t=1) ;

mindegi(h|t=1) < mindegi(h
′|t=1) .

Write h(i
′) := (X − mini(h|t=1)){i′,i} ∈ I{i′,i} and h(i) := (X + h′|t=1){i′,i} ∈ I{i′,i}. Then

we conclude from the above (in)equalities and Lemma 6.2.18 that

mindegi′(h) < mindegi′(h
(i′)) ;

mindegi(h) ≤ mindegi(h
(i′)) ;

mindegi′(h) ≤ mindegi′(h
(i)) ;

mindegi(h) < mindegi(h
(i)) .
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Hence, there are ki′ , li ∈ Z>0 and ki, li′ ∈ Z≥0 such that

H(i′) := h(i
′)t
ki′
i′ t

ki
i and H(i) := h(i)t

li′
i′ t

li
i

are degj-homogeneous of degree mindegj(h) for j = i′, i. In particular, h = H(i) −H(i′)

and H(i′) ∈ ⟨ti′⟩ as well as H(i) ∈ ⟨ti⟩ by choice of ki′ and li, respectively. Hence,
h ∈ (I{i′,i} ∩ ⟨ti′⟩) + (I{i′,i} ∩ ⟨ti⟩) = I ′i′,i as claimed.

Proposition 6.2.27. Algorithm 6.2.3 terminates after finitely many steps.

Proof. We use the notation from the algorithm. Let S be the set of generators at some
iteration of the while-loop. By Lemma 6.2.2, there exist f̃1, . . . , f̃s ∈ C[V ][G,G], such
that S satisfies (∗A∪{i′, i}) if and only if for all j ∈ {1, . . . , s} we have (∗A∪{i′, i}, f̃j).

Let f ∈ {f̃1, . . . , f̃s}. As (∗A ∪ {i′}) and (∗A ∪ {i}) are satisfied, there are preim-
ages h1, h2 ∈ α−1(f) with mindegj(h1) = mindegj(h2) = vj(f) for all j ∈ A and
mindegi′(h1) = vi′(f) as well as mindegi(h2) = vi(f). If mindegi(h1) = vi(f) or
mindegi′(h2) = vi′(f), then (∗A ∪ {i′, i}, f) is satisfied and we are done. Hence, we
assume mindegi(h1) < vi(f) and mindegi′(h2) < vi′(f). Then (h1 − h2){i′,i} ∈ Ii′,i by
Lemma 6.2.21 and there are h′ ∈ I ′i′,i and aj ∈ C[X1, . . . , X|S|, ti′ , ti] with

(h1 − h2){i′,i} = h′ +
l∑

j=1

ajhj .

In the next iteration of the while-loop we then have (h1 − h2){i′,i} ∈ I ′i′,i with the
‘new’ ideal I ′i′,i by Lemma 6.2.26. Now we are in the situation of Lemma 6.2.22 and by
iterating this process as in Proposition 6.2.23 we eventually obtain the desired preimage
after finitely many iterations.

6.3. Subalgorithms and relations of the Cox ring

6.3.1. Computing mini I

We present an algorithm for the computation of mini I following [Yam18, p. 632].

We state the task in a more general setting. Let C[X1, . . . , Xk] be graded by a weight
vector w = (w1, . . . , wk) ∈ Zk≥0, so degw(Xi) := wi. Given I ⊴ C[X1, . . . , Xk], we want to
compute the ideal minw I := ⟨minw(f) | f ∈ I⟩, where minw(f) is the graded component
of f ∈ C[X1, . . . , Xk] of minimal degree. This can be done using Algorithm 6.3.1.

Lemma 6.3.1. Algorithm 6.3.1 is correct.

Proof. We use the notation from the algorithm. Let J := ⟨f1|t=0, . . . , fs|t=0⟩. We see
that J = ⟨f |t=0 | f ∈ Ih⟩. Now let f ∈ I. Then fh ∈ Ih and we have fh = minw(f)+ tf ′

for some f ′ ∈ C[X1, . . . , Xk, t]. Hence minw(f) = fh|t=0.
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Algorithm 6.3.1. minw I

Input : An ideal I ⊴ C[X1, . . . , Xk];
w ∈ Zk≥0

Output: minw I

1 Add a variable t to C[X1, . . . , Xk] of degree degw(t) = −1

2 Compute the homogenization Ih = ⟨f1, . . . , fs⟩ of I with respect to degw and t
3 return ⟨f1|t=0, . . . , fs|t=0⟩

6.3.2. Computing miniJi

We present the algorithm in [Yam18, p. 632] for the computation of miniJi in a more
general setting.

Let C[X1, . . . , Xk] be a polynomial ring with an action by a finite abelian group A,
which induces a grading by the characters A∨ of A. For an ideal I ⊴ C[X1, . . . , Xk], we
want to compute the ideal

IA := ⟨f ∈ I | f is A∨-homogeneous⟩ .

For this, we first assume that A = ⟨γ⟩ is cyclic generated by some γ ∈ A of order
r ∈ Z>0. For a fixed r-th root of unity ζr ∈ C×, we then have integers 0 ≤ ai < r such
that γ acts on Xi via γ.Xi = ζair Xi, for 1 ≤ i ≤ k. Hence, we can endow C[X1, . . . , Xk]
with a further grading degγ defined by degγ(Xi) := ai.

Remark 6.3.2. Note that there is a subtle difference between the properties of being
homogeneous with respect to the degγ-grading and being homogeneous with respect
to the action of γ. If f is homogeneous in the second sense, then we require only that
degγ(m)−degγ(m′) ≡ 0 mod r for any pair of terms m and m′ of f . Hence, homogeneity
with respect to degγ implies homogeneity with respect to the action of γ, but in general
not vice versa. See also the related statement in Lemma 5.3.1.

Algorithm 6.3.2 computes the ideal I⟨γ⟩. For an arbitrary finite abelian group A, we
iteratively use Algorithm 6.3.2 with a generating system γ1, . . . , γs ∈ A to compute the
ideal IA.

Lemma 6.3.3. Algorithm 6.3.2 is correct.

Proof. We use the notation from the algorithm. We have to show that

I⟨γ⟩ = (Ih + ⟨tr − 1⟩) ∩ C[X1, . . . , Xk] .

Let f ∈ I⟨γ⟩. We may assume that f is ⟨γ⟩∨-homogeneous and hence we have
degγ(m) ≡ degγ(m′) mod r for every pair m and m′ of terms of f , see Remark 6.3.2.

We have fh =
∑s

i=1 fit
ir with f = f1 + · · · + fs and

fit
ir − fi = fi

i∑
j=1

t(j−1)r(tr − 1) ∈ ⟨tr − 1⟩ ,
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Algorithm 6.3.2. I⟨γ⟩

Input : An ideal I ⊴ C[X1, . . . , Xk];
a cyclic finite abelian group ⟨γ⟩ acting on C[X1, . . . , Xk]

Output: I⟨γ⟩ = ⟨f ∈ I | f is ⟨γ⟩∨-homogeneous⟩
1 Compute the order r of γ
2 Fix an r-th root of unity ζr ∈ C×

3 Determine the weights a1, . . . , ak giving rise to the grading degγ
4 Add a variable t to C[X1, . . . , Xk] of degree degγ(t) = 1

5 Compute the homogenization Ih of I with respect to degγ and t

6 return (Ih + ⟨tr − 1⟩) ∩ C[X1, . . . , Xk]

so fh − f ∈ ⟨tr − 1⟩. Therefore f ∈ Ih + ⟨tr − 1⟩.
Conversely, let f ∈ (Ih+ ⟨tr−1⟩)∩C[X1, . . . , Xk]. Then there are polynomials g ∈ Ih

and h ∈ C[X1, . . . , Xk, t] with

f = g + h(tr − 1) .

Write

g =
s∑
i=0

gi and h =
s∑
i=0

hi

where gi, hi ∈ C[X1, . . . , Xk, t] are homogeneous with degγ(gi) = i or gi = 0 for all
0 ≤ i ≤ s and the same for the degrees of the hi. By our assumption on f , we have
g + h(tr − 1) ∈ C[X1, . . . , Xk]. Homogeneity with respect to degγ gives

gi + hi−rt
r − hi ∈ C[X1, . . . , Xk] ,

where hi := 0 for i < 0. For any 0 ≤ i0 < r, we set

fi0 :=

⌊s/r⌋∑
i=0

(
gir+i0 + hir+i0(tr − 1)

)
∈ C[X1, . . . , Xk] .

We have

fi0 = fi0 |t=1 =

⌊t/r⌋∑
i=0

gir+i0 |t=1 .

Since Ih is degγ-homogeneous, we have gi ∈ Ih for any i and therefore gi|t=1 ∈ I by
[KR05, Proposition 4.3.5]. Hence fi0 ∈ I. We extend the action of γ by setting γ.t := ζrt,
where ζr is the r-th root of unity fixed at the beginning of Algorithm 6.3.2. Then we
have γ.fi0 = ζi0r fi0 , so f0, . . . , fr−1 are exactly the ⟨γ⟩∨-homogeneous components of f .
In conclusion, we have fi0 ∈ I⟨γ⟩, so f ∈ I⟨γ⟩.
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Algorithm 6.3.3. Relations of the Cox ring

Input : Ab(G)∨-homogeneous generators f1, . . . , fk of C[V ][G,G] fulfilling
(∗{1, . . . ,m})

Output: Relations of the generators of R(X) corresponding to f1, . . . , fk

1 Compute the kernel I of the morphism C[X1, . . . , Xk] → C[V ][G,G], Xi 7→ fi
2 Add variables s1, . . . , sm of degree degi(sj) = −δi,j to C[X1, . . . , Xk]

3 Compute the homogenization Ih with respect to the gradings deg1, . . . ,degm
and the variables s1, . . . , sm

4 Pick generators h1, . . . , hs ∈ Ih which are degi-homogeneous, 1 ≤ i ≤ m, and
Ab(G)∨-homogeneous

5 for j = 1, . . . , s do

6 Let di be maximal with sdii | hj
7 Set h̃j := hj/(s

d1
1 · · · sdmm )

8 Substitute any occurrence of srii in h̃j by Yi and denote the resulting

polynomial by ĥj
9 end

10 return ĥ1, . . . , ĥs

6.3.3. Relations of the Cox ring

Let f1, . . . , fk ∈ C[V ][G,G] be Ab(G)∨-homogeneous generators of C[V ][G,G] fulfilling
(∗{1, . . . ,m}). Recall that these give rise to generators

f̃1 := f1

m∏
i=1

t
vi(f1)
i , . . . , f̃k := fk

m∏
i=1

t
vi(fk)
i ∈

(
C[V ][G,G]

)
[t±1 , . . . , t

±
m]

and
τ1 := t−r11 , . . . , τm := t−rmm ∈

(
C[V ][G,G]

)
[t±1 , . . . , t

±
m]

of the Cox ring R(X), see Theorem 6.1.5 and Section 6.1.2. For a presentation of R(X)
as an affine algebra, we require the ideal of relations of these generators, that is, the
kernel of the map

Ψ : C[X1, . . . , Xk, Y1, . . . , Ym] → C[V ][G,G][t±1 , . . . , t
±
m], Xi 7→ f̃i, Yi 7→ τi .

For this, we may use Algorithm 6.3.3 following [Yam18, Section 7.2].

Lemma 6.3.4. Algorithm 6.3.3 is correct.

Proof. We use the notation from the algorithm. We first convince ourselves that the
polynomials ĥj do not involve the variables si. If sdi and sei occur in ĥj , we must have

d− e ≡ 0 mod ri by Lemmas 5.3.1 and 5.3.2. As sj ∤ ĥj by construction, it follows that

ri | e for every sei involved in ĥj . Hence, substituting these powers of si in ĥj indeed
results in a polynomial in C[X1, . . . , Xk, Y1, . . . , Ym].
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Further, note that ĥ1, . . . , ĥs form a generating set of Ih as Ih is saturated with respect
to the variables s1, . . . , sm, see [KR05, Corollary 4.3.7].

We obtain an Ab(G)∨-grading on C[X1, . . . , Xk, Y1, . . . , Ym] by letting γ ∈ Ab(G)
act on Xi by the same scalar as on fi and by 1 on Yi. Write J := ker(Ψ) and let
J̃ = ⟨ĥ1, . . . , ĥs⟩. Both J and J̃ are Ab(G)∨-homogeneous by construction.

We have

ĥi(f̃1, . . . , f̃k, τ1, . . . , τm) = h̃i(f̃1, . . . , f̃k, t
−1
1 , . . . , t−1

m )

and for the dehomogenization we further have h̃i|s=1 ∈ I by [KR05, Proposition 4.3.5],
hence h̃i(f1, . . . , fk, 1, . . . , 1) = 0. Write h̃i|s=1 =

∑
j hi,j with terms hi,j . Then

h̃i = (h̃i|s=1)
h =

∑
j

(
hi,j

m∏
l=1

s
degl(hi,j)−mindegl(h̃i)
l

)
by definition of the homogenization and the construction of the h̃i. Evaluating gives

ĥi(f̃1, . . . , f̃k, τ1, . . . τm) =
∑
j

(
hi,j(f̃1, . . . , f̃k)

m∏
l=1

t
−(degl(hi,j)−mindegl(h̃i))
l

)
=

∑
j

(
hi,j(f1, . . . , fk)

( m∏
l=1

t
degl(hi,j)
l

)( m∏
l=1

t
mindegl(h̃i)−degl(hi,j)
l

))
= h̃i(f1, . . . , fk, 1, . . . , 1)

m∏
l=1

t
mindegl(h̃i)
l = 0 ,

hence indeed ĥi ∈ J and J̃ ⊆ J .

Conversely, let h ∈ J be Ab(G)∨-homogeneous. Then h(f̃1, . . . , f̃k, τ1, . . . , τm) = 0
and hence

h(f1, . . . , fk, 1, . . . , 1) = h(f̃1, . . . , f̃k, τ1, . . . , τm)|t=1 = 0 ,

therefore h|s=1 ∈ I. We have (h|s=1)
h ∈ Ih and the variables si only occur as powers by

multiples of ri in (h|s=1)
h by Ab(G)∨-homogeneity. Let ĥ ∈ C[X1, . . . , Xk, Y1, . . . , Ym]

be the polynomial obtained from (h|s=1)
h by substituting every occurrence of srii by Yi.

Then there are e1, . . . , em ∈ Z≥0 with h = Y e1
1 · · ·Y em

m ĥ, see [KR05, Proposition 4.3.2].
In particular, h ∈ J̃ .

6.4. Implementation notes

We implemented Algorithm 6.2.1 in the computer algebra system OSCAR [Osc23]. In
Appendix D, we give an overview of the available functionality by applying the algorithm
to an example. Experiments with this implementation enabled us to formulate the
statements contained in Chapter 7, although the proofs are then completely ‘computer-
free’. We further computed the Cox ring of a Q-factorial terminalization of V/G, where
G = H⊛ for certain complex reflection groups H, see Appendix C.
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Remark 6.4.1. Unfortunately, the capabilities of the algorithm are still quite limited.
For Appendix C, we attempted to compute the Cox rings corresponding to quotients
by other fairly small symplectic reflection groups, for example, G⊛

12 or S⊛
4 , but the

computations did not finish over the course of several weeks. Likewise, we were not
able to compute the Cox rings corresponding to symplectically irreducible groups, for
example the groups from Section 4.4. It is not clear, what invariants of the input (that
is, the group) give a meaningful ‘input size’ to estimate the runtime of the algorithm.
Obvious candidates are the order of the group, its rank and the number of conjugacy
classes of junior elements. However, these parameters cannot give the whole picture as
G⊛

12 can be considered ‘small’ in all these categories: it is of order 48, rank 4 and has
only one conjugacy class of symplectic reflections. A more sensible input size might be
the cardinality of a minimal generating system of C[V ][G,G] as this directly corresponds
to the number of variables in the polynomial ring in which most of the computations
have to be carried out; in case of G⊛

12 this polynomial ring already has 30 variables at
the beginning of the algorithm.

We further expect that the performance of the algorithm is sensitive to the chosen
representation of the group: for complex reflection groups there exist several such ‘ma-
trix models’ and in our computations we used the ones from CHEVIE [GHL+96, Mic15]
which result in rational generators of the invariant ring [MM10, Proposition 11.1]. For
symplectically irreducible symplectic reflection groups, the situation is much less under-
stood and the study of the invariant theory of these groups would certainly be worthwhile
also from this computational perspective.

We now provide some details regarding the implementation including established al-
gorithms we made use of. Although we keep using the field C in our presentation, we
never work over the complex numbers in practice. Instead, we work over an extension
field of Q that contains all values of irreducible characters of G. Since G is a finite group,
this is always a finite extension of Q by [Bra47, Theorem 1] and one can hence do exact
computations in this field.

6.4.1. Constructive invariant theory

We require an Ab(G)∨-homogeneous generating system of C[V ][G,G] as input of Al-
gorithm 6.2.1. Finding generators of an invariant ring by a finite group is a classical
problem from invariant theory where minimal sets of such generators are called ‘funda-
mental invariants’. There are two established algorithmic strategies for this problem, see
also [DK15, Section 3.8]. The first approach starts with computing generators of a No-
ether normalization of C[V ][G,G] (commonly called the ‘primary invariants’) via [Kem99]
and then proceeds by finding generators of C[V ][G,G] as a module over this subalgebra
(‘secondary invariants’) via [KS99, Kin07]. The second approach is ‘King’s algorithm’ –
an algorithm that directly computes the fundamental invariants, see [Kin13].

All the referenced algorithms are available in OSCAR implemented by the author. If
one is only interested in computing fundamental invariants, King’s algorithm is expected
to be more efficient. However, we are interested in a presentation of C[V ][G,G] as an affine
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algebra. Therefore, we also require the relations of the fundamental invariants, that is,
the kernel of the ring morphism

C[X1, . . . , Xk] → C[V ][G,G], Xi 7→ fi

given the fundamental invariants f1, . . . , fk. For this, one can use standard algorithms
to compute such kernels relying on the computation of a Gröbner basis, see [GP08,
Section 1.8.10]. If the fundamental invariants are computed via primary and secondary
invariants, there is also an algorithm relying only on linear algebra available, see [KS99,
Section 17.5.5]. In our experiments, this turned out to be the more efficient way of
obtaining a presentation of C[V ][G,G].

Once fundamental invariants have been computed, one needs to transform these into
Ab(G)∨-homogeneous generators of C[V ][G,G]. For this, we use the algorithm described
in [DK17, Construction 2.4] that relies on linear algebra computations in the vector

spaces C[V ]
[G,G]
d of invariants of a fixed degree d ≥ 0 in the standard grading of the

polynomial ring C[V ]. As the dimension of these vector spaces grows exponentially in
d, but the polynomials we handle only involve very few monomials, we carried out these
computations using the functionality for ‘sparse linear algebra’ available in OSCAR.

Again, we also need to take care of the relations of the Ab(G)∨-homogeneous genera-
tors. Let f1, . . . , fk ∈ C[V ][G,G] be fundamental invariants and let f̃1, . . . , f̃k ∈ C[V ][G,G]

be the Ab(G)∨-homogeneous generators computed from the fi. Since both sets of
polynomials generate C[V ][G,G], there are polynomials F1, . . . , Fk ∈ C[X1, . . . , Xk] with
fi = Fi(f̃1, . . . , f̃k) for 1 ≤ i ≤ k. In our implementation, we keep track of the necessary
data to easily construct these polynomials Fi. We have a commutative diagram:

C[X1, . . . , Xk] C[V ][G,G]

C[X1, . . . , Xk] C[V ][G,G] .

Xi 7→fi

Xi 7→Fi

Xi 7→f̃i

A polynomial h ∈ C[X1, . . . , Xk] is a relation of f1, . . . , fk if and only if h(F1, . . . , Fk) is a
relation of f̃1, . . . , f̃k. In this way, we can compute the relations of the Ab(G)∨-homogene-
ous generators from the fundamental invariants. The Ab(G)∨-homogeneous presentation
of C[V ][G,G] computed in this way is exactly the Cox ring R(V/G) by Theorem 2.4.11.

6.4.2. Homogenization and Bayer’s method

In numerous places in the algorithm, we need to compute the homogenization of an ideal,
see Algorithms 6.3.1, 6.3.2, 6.3.3 and also implicitly in the construction of Ii′,i and I ′i′,i
in Algorithm 6.2.3. We should therefore aim to have an efficient implementation for this
fundamental operation at hand. We require some notions from the theory of Gröbner
bases (or standard bases) and refer to [GP08, Chapter 1] for the basic definitions. In
particular, if > is a monomial ordering on a polynomial ring C[X1, . . . , Xk], then fol-
lowing [GP08, Definition 1.2.1] we allow that Xi < 1, which is occasionally excluded in
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the definition of monomial orderings. We also adopt the terminology of only speaking
of ‘Gröbner bases’ if the ordering is global and of ‘standard bases’ in general, see [GP08,
Definition 1.6.1].

For the following discussion, let C[X1, . . . , Xk] be graded by an integral weight vector
w = (w1, . . . , wk) ∈ Zk≥0 via degw(Xi) = wi and let I ⊴ C[X1, . . . , Xk] be an ideal. We
add an additional variable t to C[X1, . . . , Xk] and want to compute the homogenization
Ih of I with respect to the grading degw and the variable t. Depending on whether we
want to homogenize ‘positively’ or ‘negatively’, we set degw(t) := 1 or degw(t) := −1,
respectively.

If wi ̸= 0 for all 1 ≤ i ≤ k, there is a quite simple method to compute Ih that only
involves the computation of a Gröbner basis of I with respect to the weighted degree
ordering defined by w, see [GP08, Exercise 1.7.5]. However, although the weights in our
application are non-negative, they might in general be zero, so they do not give rise to
a total ordering on the set of monomials and we cannot make use of this approach.

A more general idea for the computation of Ih is to homogenize a set of generators
of I resulting in an ideal Ĩ and then to compute the saturation of Ĩ with respect to t
as one has Ih = Ĩ : ⟨t⟩∞ by [KR05, Corollary 4.3.8]. However, a naive computation of
this saturation potentially involves several expensive Gröbner basis computations as one
iteratively computes ideal quotients until the result stabilizes, see [GP08, Section 1.8.9].

In our implementation, we use a more specialized approach for the saturation based
on ‘Bayer’s method’, see [Bay82, p. 120], [Sti05, Proposition 5.1.11]. In a nutshell,
this means that we compute a standard basis of Ĩ with respect to a tailored monomial
ordering and then only need to divide the elements of this basis by t, see Proposition 6.4.4
for the precise statement. The core idea of Bayer’s method is the following observation.
Let f ∈ C[X1, . . . , Xk] be a homogeneous polynomial with respect to the standard
grading. Then the leading term LT(f) with respect to the degree reverse lexicographical
ordering [GP08, Example 1.2.8 (1) (ii)] is divisible by Xk if and only if f is divisible by
Xk. We now translate this to the grading degw by considering a certain matrix ordering.

We assume that w ̸= 0, so after reordering the variables we may assume wk ̸= 0.
If we have w = 0, then any polynomial and hence any ideal is homogeneous, so the
computation of the homogenization is trivial. Let

M :=


w1 · · · · · · wk degw(t)
0 · · · · · · 0 −1

1
. . .

... 0
. . .

. . .
...

...
0 1 0 0

 ∈ Z(k+1)×(k+1) .

This is a matrix of full rank as wk ̸= 0 and hence induces a monomial ordering >M on
the monomials of C[X1, . . . , Xk, t] by multiplying the exponent vectors by M (from the
left) and then using the lexicographic ordering in Zk+1, see [GP08, Remark 1.2.7].

One directly convinces oneself of the following facts.

Lemma 6.4.2. Let f1 = Xa1
1 · · ·Xak

k tak+1 and f2 = Xb1
1 · · ·Xbk

k t
bk+1 be two monomials.

Then we have:
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(a) Xi >M 1 for 1 ≤ i ≤ k;

(b) if degw(t) = 1, then t >M 1, and 1 >M t otherwise;

(c) if degw(f1) > degw(f2), then f1 >M f2;

(d) if degw(f1) = degw(f2) and f1 >M f2, then ak+1 ≤ bk+1.

Point (d) is the direct generalization of the above mentioned ‘core idea’ for Bayer’s
method: for a degw-homogeneous polynomial f , we have t | LT>M (f) if and only if
t | f , where LT>M is the leading term with respect to >M . It follows from point (a)
that >M is global with respect to the variables X1, . . . , Xk and this also extends to the
variable t, if degw(t) = 1, that is, if we homogenize positively, by point (b). However, if
degw(t) = −1, then t <M 1, so the ordering >M is local with respect to t. This second
case is more challenging: in order to speak about a standard basis of Ĩ with respect to
>M , we have to consider the extension of Ĩ to the localization

C[X1, . . . , Xk, t]>M
:= S−1C[X1, . . . , Xk, t] ,

where
S := {u ∈ C[X1, . . . , Xk, t] \ {0} | LT>M (u) is constant} .

See [GP08, Section 1.5] for details. If degw(t) = −1, we have S = {h ∈ C[t] | h(0) ̸= 0},
so we may identify

C[X1, . . . , Xk, t]>M =
(
C[t](t)

)
[X1, . . . , Xk] .

In case degw(t) = 1, the ordering >M is global by Lemma 6.4.2, so we have S = C× by
[GP08, p. 39].

Lemma 6.4.3. With the above notation, let J ⊴ C[X1, . . . , Xk, t] be a degw-homogene-
ous ideal. Then we have

J = (S−1J) ∩ C[X1, . . . , Xk, t] .

Proof. If degw(t) = 1, there is nothing to show, so let degw(t) = −1. For a polynomial
f ∈ (S−1J) ∩ C[X1, . . . , Xk, t], there is u ∈ S with uf ∈ J . Writing u =

∑
j ajt

j with

aj ∈ C, we have ajt
jf ∈ J for all j since J is homogeneous. But a0 ̸= 0 by assumption,

so f ∈ J .

Proposition 6.4.4 (Bayer’s method). Let J ⊴ C[X1, . . . , Xk, t] be a degw-homogeneous
ideal and let g1, . . . , gs ∈ C[X1, . . . , Xk, t] be a standard basis of S−1J with respect to the
monomial ordering >M . Write gi = tmig′i for g

′
i ∈ C[X1, . . . , Xk, t] with t ∤ g′i. Then

g′1, . . . , g
′
s generate J : ⟨t⟩∞.

Proof. By Lemma 6.4.3, we have gi ∈ J and hence g′i ∈ J : ⟨t⟩∞.
Let g′ ∈ J : ⟨t⟩∞. Then there is m ≥ 0 with g := tmg′ ∈ J , hence g ∈ S−1J . So there

is i ∈ {1, . . . , s} such that LT>M (gi) | LT>M (g) and therefore

LT>M (g′i) | tm LT>M (g′) .
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We may assume that the gi are degw-homogeneous, as replacing gi by their homo-
geneous parts does not change the standard basis property. Therefore, t ∤ LT>M (g′i)
by choice of g′i and the properties of >M . So, LT>M (g′i) | LT>M (g′) and this proves
that g′1, . . . , g

′
s is a standard basis of S−1

(
J : ⟨t⟩∞

)
, so in particular a generating sys-

tem [GP08, Lemma 1.6.7 (3)]. But then g′1, . . . , g
′
s generate J : ⟨t⟩∞ by Lemma 6.4.3

again.

In conclusion, to compute Ih = Ĩ : ⟨t⟩∞ we need to compute a standard basis for Ĩ
with respect to >M and divide the elements by t. This only involves the computation
of one standard basis and proved to be quite efficient in practice compared with the
computation of the saturation via iterated quotients.

6.4.3. Further comments

We close this section with a few minor comments regarding an efficient implementation.
Throughout, we assume that we are given a set of generators f1, . . . , fk ∈ C[V ][G,G]

together with the morphism

α : C[X1, . . . , Xk] → C[V ][G,G], Xi 7→ fi

with kernel I := ker(α).

An application of Nakayama’s Lemma

A major problem of the algorithm is the potentially large number of variables in the
ring C[X1, . . . , Xk] which makes the already notorious Gröbner basis computations even
slower. We therefore should aim to keep the number of variables as small as possible.

At the start of the algorithm, we have a generating system of C[V ][G,G] of minimal
cardinality (the fundamental invariants), as explained in Section 6.4.1. However, this
cardinality might already be quite large, see for example Chapter 7, where we treat
groups G of order 2d, d ∈ Z≥3, for which there are already 2d+6 fundamental invariants
for the ring C[V ][G,G]. In Algorithms 6.2.2 and 6.2.3, we potentially add more generators,
hence variables, but at least in the first algorithm, we can make sure that the number
of new generators is minimal by the following trick.

Recall that in Algorithm 6.2.2 we have the ideals mini I and miniJi and compute poly-
nomials h1, . . . , ht ∈ miniJi such that miniJi = mini I + ⟨h1, . . . , ht⟩. These polynomials
h1, . . . , ht then become the new generators in the next iteration of the algorithm and
we hence want to find such a set of polynomials of minimal cardinality. For this, notice
that the invariant ring C[V ][G,G] inherits the standard grading of polynomials from the
ring C[V ]. In particular, we may assume that the generators f1, . . . , fk of C[V ][G,G] are
homogeneous with respect to the standard grading as well. We can then endow the
ring C[X1, . . . , Xk] with a grading by positive weights by setting deg(Xi) := deg(fi).
Notice that the ideals mini I and miniJi are homogeneous with respect to this grading.
Therefore, we can consider miniJi as a graded module of the positively graded algebra
C[X1, . . . , Xk]/mini I. In this case, the ‘graded Nakayama Lemma’ [DK15, Lemma 3.7.1]
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gives an easy criterion to find a minimal system of generators of miniJi as a module in
this sense. Most importantly, this criterion gives rise to an algorithm for use in practice,
which is available in OSCAR.

Unfortunately, it is not clear how we can use this idea in Algorithm 6.2.3 as there
appears to be no grading by positive weights for which the ideals Ii′,i and I ′i′,i are
homogeneous.

Updating I

During the run of the algorithm, the set of generators f1, . . . , fk and the ideal I change
whenever we add a further generator fk+1. Fortunately, we do not need to recompute I
completely as a kernel of the map

α+ : C[X1, . . . , Xk+1] → C[V ][G,G], Xi 7→ fi ,

but we have the following easy way of updating I. Let h ∈ C[X1, . . . , Xk] be a polynomial
with α(h) = fk+1.

Lemma 6.4.5. With the above notation, we have I + ⟨h−Xk+1⟩ = ker(α+).

Proof. Clearly, I + ⟨h−Xk+1⟩ ⊆ ker(α+). For f ∈ ker(α+), we can write

f − f(X1, . . . , Xk, h) = h′(h−Xk+1)

for some h′ ∈ C[X1, . . . , Xk+1]. Hence, f(X1, . . . , Xk, h) ∈ ker(α+), so

f(X1, . . . , Xk, h) ∈ ker(α+) ∩ C[X1, . . . , Xk] = I .

One more optimization

We close this chapter with a small observation.

Lemma 6.4.6. In the situation of Algorithm 6.2.3, we have

I{i′,i} ∩ ⟨ti⟩ = I{i′,i} · ⟨ti⟩

and analogously for the intersection with ⟨ti′⟩.

Proof. Clearly, I{i′,i} · ⟨ti⟩ ⊆ I{i′,i} ∩ ⟨ti⟩. For the reverse inclusion, notice that for
f ∈ I{i′,i} ∩ ⟨ti⟩, there is f ′ ∈ C[X1, . . . , Xk] with f = f ′ti. The ideal I{i′,i} is saturated
with respect to ⟨ti⟩ as a homogenization by [KR05, Corollary 4.3.7]. Hence, f ′ ∈ I{i′,i}
and therefore f ∈ I{i′,i} · ⟨ti⟩.

This minor point allows us to replace the computation of an intersection of two ideals,
which in general requires the computation of a Gröbner basis, see [GP08, Section 1.8.7],
by a product of ideals, which can be computed by simply multiplying the generators.
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7. A Q-factorial terminalization of C4/Dd

We apply the algorithm presented in Chapter 6 to the dihedral groupsDd of order 2d with
d ≥ 3 odd acting on C4 as symplectic reflection groups to compute generators of the Cox
ring of a Q-factorial terminalization X → C4/Dd of the corresponding linear quotient.
Using the theory from Section 2.4.3 we are able to recover X from this ring. As the
proofs in this chapter are completely ‘computer-free’, we need to introduce new ad hoc
ideas to handle the computational complexity. We explain this strategy in Section 7.1
after fixing the notation. In Section 7.2 we then construct a presentation of the Cox ring
R(C4/Dd), from which we derive generators of R(X) in Section 7.3.

Although our proofs do not logically rely on computer calculations, they would not
have been possible without the computer algebra system OSCAR [Osc23], which we used
extensively to formulate conjectures.

7.1. Preparations

7.1.1. Notation

Let d ≥ 3 and let ζd ∈ C be a primitive d-th root of unity. Let Dd be the dihedral
group of order 2d, that is, as an abstract group, Dd is the group with the presentation
⟨s, r | rd = 1, s2 = 1, s−1rs = r−1⟩. In this chapter, we identify Dd with the symplectic
reflection group G(d, d, 2)⊛, so Dd is generated by

s :=

(
1

1
1

1

)
and r :=

 ζd
ζ−1
d

ζ−1
d

ζd


as a subgroup of Sp4(C) and Dd acts on V := C4 by symplectic reflections. Notice that
the group D3 is isomorphic to S⊛

3 as symplectic reflection groups.

An easy calculation shows that the commutator subgroup of Dd is generated by r if d
is odd and by r2 if d is even. Let

δ :=

{
d, d odd,
d
2 , d even,

and writeHδ := [Dd, Dd]. If d is odd, there is one conjugacy class of symplectic reflections
(or junior elements) in Dd for which we choose s as a representative. If d is even, there
are two such classes and we choose s and rs as representatives.
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7.1.2. Strategy

As a large part of this chapter is taken up by elementary but tedious by-hand computa-
tions, we provide an outline of our strategy and highlight the main results. In principle,
we use Algorithm 6.2.1 to compute generators for the Cox ring R(X) of a Q-factorial
terminalization X → V/Dd of V/Dd. For this, we first construct the Cox ring R(V/Dd),
so by Theorem 2.4.11 a presentation of C[V ]Hδ with Ab(Dd)

∨-homogeneous generators
f1, . . . , fk, see Proposition 7.2.6.

For our main result regarding the Cox ring R(X), we only proceed for d odd from
now on, but see also Conjecture 7.3.10. Let Φs : C[V ] → C[V ] be the automorphism
induced by the change into an eigenbasis of s, where s is a representative for the single
conjugacy class of symplectic reflections in Dd. Let vs be the monomial valuation on
C(V ) corresponding to s and, for f ∈ C[V ]Hδ , write mins(Φs(f)) for the sum of the
terms of minimal valuation. We have the maps

α : C[X1, . . . , Xk] → C[V ]Hδ , Xi 7→ fi

and
βs : C[X1, . . . , Xk] → C[V ], Xi 7→ mins(Φs(fi))

given by the constructed generators f1, . . . , fk of C[V ]Hδ and these give rise to the ideals
I := ker(α) and Js := ker(βs). In terms of Algorithm 6.2.1, we have to compare the
ideals mins I and minsJs defined as in Section 6.2. In fact, we prove that with our chosen
system of generators we have mins I = minsJs and the algorithm terminates after one
step, see Proposition 7.3.8. However, we are unable to compute the ideals mins I and
minsJs by hand and instead compare their Hilbert series.

Recall that for a graded module M =
⊕∞

d=0Md with Md finite dimensional for all d,
we have the Hilbert series (or Poincaré series)

H(M, t) :=
∞∑
d=0

dim(Md)t
d ∈ Z[[t]]

encoding the dimensions of the graded components of M . We can choose the generators
f1, . . . , fk to be homogeneous with respect to the standard grading on the polynomial
ring C[V ] as the action of Hδ is linear. The ideals mins I and minsJs are homogeneous
with respect to the weighted grading where we put the variable Xi in degree deg(fi).
The main idea is to show that the Hilbert series H(mins I, t) and H(minsJs, t) with
respect to this grading coincide. As mins I ⊆ minsJs by Corollary 6.2.12, this implies
the equality of the ideals.

For this, we prove the general fact that H(I, t) = H(mins I, t), see Proposition 7.1.2.
Further, we see that the polynomials mins(Φs(fi)) are in our situation Ab(Dd)

∨-homo-
geneous, hence Js = minsJs, see Lemma 7.3.1. We conclude

H(mins I, t) = H(minsJs, t) ⇐⇒ H(I, t) = H(Js, t) .

Write S := C[X1, . . . , Xk] and let T ≤ C[V ] be the C-algebra generated by mins(Φs(fi)),
1 ≤ i ≤ k, so

C[V ]Hδ ∼= S/I and T ∼= S/Js .
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Both C[V ]Hδ and T inherit the standard grading on C[V ] and we have

H(I, t) = H(Js, t) ⇐⇒ H(C[V ]Hδ , t) = H(T, t) ,

see also Lemma 7.3.3. The majority of this chapter is taken up by computing the
latter two Hilbert series, see Corollaries 7.2.3 and 7.3.7. In both cases, we see that the
algebras are free modules over a respective Noether normalization and after computing
the generators explicitly, we can read off the Hilbert series.

Remark 7.1.1. Our argument implies that T is a Cohen–Macaulay ring. It would be
interesting to see, whether this is always the case for algebras generated by minimal
parts in this way.

Having proved the equality mins I = minsJs, we can derive a generating system of
R(X) from the previously computed presentation of R(V/Dd), see Theorem 7.3.9.

7.1.3. The Hilbert series of mini I

We state a result on the Hilbert series of ideals of the form mini I as in Chapter 6. We
do this in full generality and do not restrict to the case of dihedral groups.

Let R = C[X1, . . . , Xk] be a polynomial ring, graded by degd(Xi) = di with di ∈ Z>0

and let I ⊴ R be homogeneous with respect to this grading. Let there be another grading
on R given by dege(Xi) = ei with ei ∈ Z≥0. Let us emphasize that the second grading
is in general not positive.

For a polynomial f ∈ R, write mine(f) for the homogeneous part of f with respect to
dege of minimal degree. Let mine I := ⟨mine(f) | f ∈ I⟩, which is degd-homogeneous as
I is degd-homogeneous.

Proposition 7.1.2. With the above notation we have H(I, t) = H(mine I, t), where we
consider the grading by degd for the Hilbert series.

Proof. Assume first that there is c ∈ Q with ei/di = c for all i, that is, the grading by
dege is just a ‘scaling’ of the grading by degd. Then it directly follows I = mine I and
the claim is trivial.

We may hence assume that after reordering the variables we have ek−1/dk−1 ̸= ek/dk.
This implies that the matrix

M :=


d1 · · · dk−1 dk
−e1 · · · −ek−1 −ek

1 0 0
. . .

...
...

1 0 0

 ∈ Zk×k

is non-singular and therefore induces a monomial ordering >M on the monomials of R,
see [GP08, Remark 1.2.7].

Write LM(f) for the leading monomial with respect to >M of a polynomial f ∈ R
and L(A) for the leading ideal with respect to >M of any subset A ⊴ R, see [GP08,
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7. A Q-factorial terminalization of C4/Dd

Definition 1.5.5]. We show that L(I) = L(mine I), which implies the claim by [KR05,
Theorem 5.2.18] (notice that the result directly generalizes to the case of a general
positive grading, see for example [DK15, pp. 20, 21]).

First of all, let A := {mine(f) | f ∈ I} be the set of all dege-homogeneous polynomials
in mine I. Then this set must contain a Gröbner basis of mine I with respect to >M as
mine I is a dege-homogeneous ideal, so L(A) = L(mine I).

To prove L(I) = L(A), it suffices to show that for a degd-homogeneous polynomial
f ∈ R we have LM(f) = LM(mine(f)). For this, let LM(f) = Xα1

1 · · ·Xαk
k and let

Xβ1
1 · · ·Xβk

k be any other monomial of f . Then Mα⊤ > Mβ⊤, where > is the lexico-

graphical ordering on Zk. We have
∑k

i=1 diαi =
∑k

i=1 diβi by degd-homogeneity of f , so
this implies

−
k∑
i=1

eiαi ≥ −
k∑
i=1

eiβi .

In other words,

dege(X
α1
1 · · ·Xαk

k ) ≤ dege(X
β1
1 · · ·Xβk

k )

and hence LM(f) must be a monomial of mine(f).

7.2. The Cox ring of C4/Dd

We give a presentation of the Cox ring R(V/Dd) of V/Dd, where we use Theorem 2.4.11
to identify this ring with C[V ]Hδ graded by Ab(Dd)

∨. We write C[V ] = C[x1, . . . , x4]
throughout.

7.2.1. A presentation of C[V ]Hδ

We start with constructing a presentation of the invariant ring C[V ]Hδ leaving the grad-
ing by Ab(Dd)

∨ aside for the moment.

Lemma 7.2.1. The algebra C[V ]Hδ is generated by the polynomials

f12 := x1x2, f13 := x1x3, f24 := x2x4, f34 := x3x4,

gk := xk1x
δ−k
4 (0 ≤ k ≤ δ),

hk := xk2x
δ−k
3 (0 ≤ k ≤ δ).

Proof. The given polynomials are clearly invariants of Hδ.
Let f ∈ C[V ]Hδ . Then every term of f must also be invariant under the action of

Hδ as Hδ only consists of diagonal matrices. Hence, we may assume f =
∏4
i=1 x

ai
i with

ai ∈ Z≥0 for i = 1, . . . , 4. Let g be the polynomial one obtains if one divides f by f12 ‘as
often as possible’, that is, min(a1, a2) times, and then by f13 as often as possible. Write
g = xb11 x

b2
2 x

b3
3 x

b4
4 and note that g is Hδ-invariant. We now have either b2 = b3 = 0 or

b1 = 0. In the first case, we see that r.g = ζb1+b4d g (respectively r.g = ζ
2(b1+b4)
d g if d is

even), so b1 + b4 ≡ 0 mod δ. Hence g is a power of one of the gk.
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In the second case, we have b1 = 0 and we divide further by f24 and f34 resulting
in a new invariant monomial h = xc22 x

c3
3 x

c4
4 and have either c2 = c3 = 0 or c4 = 0. If

c2 = c3 = 0, we see that c4 ≡ 0 mod δ, so h is a power of g0. In the remaining case, we
have c2 + c3 ≡ 0 mod δ and h is a power of hk for some k.

We now rearrange the above generators to make the construction of relations between
them easier. Let Q := gδ + hδ = xδ1 + xδ2 and R := g0 + h0 = xδ3 + xδ4, so that we have a
generating system given by

f12, f13, f24, f34, Q, R, gk (1 ≤ k ≤ δ), hk (0 ≤ k ≤ δ − 1).

It is easy to see that f12, f34, Q and R form a system of algebraically independent poly-
nomials. Let P := C[f12, f34, Q,R].

Lemma 7.2.2. The C-algebra C[V ]Hδ is generated as a P -module by the polynomials

1, fk13 (1 ≤ k ≤ δ), fk24 (1 ≤ k ≤ δ − 1), gk (1 ≤ k ≤ δ), hk (0 ≤ k ≤ δ − 1) .

In particular, C[V ]Hδ is finite over P .

Proof. We systematically compute that any product of two of the given polynomials
is again in the P -module span of the polynomials. Iteratively applying the resulting
relations then yields the claim.

Because of the equality
f13f24 = f12f34 ,

we see that products of the form fk13f
l
24 are in the P -module span of the powers of f13

and f24 respectively. The given powers of f13 and f24 are sufficient as

f δ+1
13 = QRf13 − f34Qg1 − f12Rhδ−1 + f12f34f

δ−1
24

and
f δ24 = QR− gδR− h0Q+ f δ13 .

The products gkhl lie in this span as well for all feasible k and l by the relation

gkhl = fm12f
δ−M
34 fk−m13 f l−m24 ,

where m := min(k, l) and M := max(k, l).
Let us now consider products of the form gkgl, 1 ≤ k, l ≤ δ. If k + l ≤ δ, we have

gkgl = (R− h0)gk+l = Rgk+l − f δ−k−l34 fk+l13 ,

and in the other case

gkgl = (Q− hδ)gk+l−δ = Qgk+l−δ − fk+l−δ12 f2δ−k−l24 ,

so the product lies in the P -module span of the claimed generators in both cases. A
similar argument shows the analogous claim for the products hkhl.
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Fix a product of the form fk13gl for 1 ≤ k, l ≤ δ. If k + l ≤ δ, we have fk13gl = fk34gk+l
and in the other case we obtain

fk13gl = f δ−l34 Qfk+l−δ13 − f δ−l34 fk+l−δ12 h2δ−k−l .

Similar relations hold for products of the form fk24gl, f
k
13hl and fk24hl for all feasible k

and l.

In the terminology of computational invariant theory, the module generators given in
Lemma 7.2.2 are secondary invariants with respect to the primary invariants f12, f34,
Q and R.

Corollary 7.2.3. The Hilbert series of C[V ]Hδ with respect to the standard grading of
C[V ] is given by

H(C[V ]Hδ , t) =
t2δ + 2δtδ + 1 +

∑δ−1
i=1 2t2i

(1 − t2)2(1 − tδ)2
.

Proof. As f12, f34, Q and R are algebraically independent and C[V ]Hδ is finite over the
subalgebra generated by them, we conclude that these polynomials are a homogeneous
system of parameters of C[V ]Hδ , see [DK15, Definition 2.5.6]. Using [DK15, (2.7.3)],
the claim then follows directly from Lemma 7.2.2 by grouping terms of same degree
together.

Remark 7.2.4. It is possible to compute the series H(C[V ]Hδ , t) with Molien’s formula
[DK15, Theorem 3.4.2] without knowing generators of C[V ]Hδ . However, we require the
Hilbert series expressed in the particular form given in Corollary 7.2.3 and therefore
prefer the above approach in this case.

We now translate the relations showing up in the proof of Lemma 7.2.2 into relations
of C[V ]Hδ as an affine algebra.

Lemma 7.2.5. Consider the morphism of rings

φ : C[X12, X13, X24, X34, Y0, . . . , Yδ, Z0, . . . , Zδ] → C[V ]Hδ ,

Xij 7→ fij ,

Yk 7→ gk ,

Zk 7→ hk .

Then the kernel of φ is generated by the following polynomials:

X12X34 −X13X24, (7.2.1)

X12Yk −X24Yk+1, X13Yk −X34Yk+1, X12Zk −X13Zk+1, X24Zk −X34Zk+1, (7.2.2)

where 0 ≤ k ≤ δ − 1,

YkYS−k − Yk′YS−k′ , ZkZS−k − Zk′ZS−k′ , (7.2.3)

100



7.2. The Cox ring of C4/Dd

where 2 ≤ S ≤ 2δ − 2, k := max(0, S − δ), k < k′ ≤ ⌊S/2⌋ and

YkZl −Xm
12X

δ−M
34 Xk−m

13 X l−m
24 , (7.2.4)

where 0 ≤ k, l ≤ δ, m := min(k, l), M := max(k, l).

Proof. One directly checks that the given polynomials are indeed elements of the kernel
of φ. Write I for the ideal generated by the given polynomials. To prove that I = ker(φ),
we apply [KS99, Proposition 17.5]. This tells us that ker(φ) is generated by elements of
the form fg− h where f and g are chosen from the preimages of the module generators
in Lemma 7.2.2 and h is the preimage of the representation of φ(fg) in that module
basis.

For the products of the form Xk
13X

l
24, it suffices to consider the products Xk

13X24,
respectively X13X

k
24, 1 ≤ k ≤ δ, by [KS99, Proposition 17.5] again. From these we get

the relation

Xk
13X24 −Xk−1

13 X12X34 = Xk−1
13 (X13X24 −X12X34) ∈ I ,

respectively

X13X
k
24 −Xk−1

24 X12X34 = Xk−1
24 (X13X24 −X12X34) ∈ I .

For the products Xk
13Yl, we take the computations from the proof of Lemma 7.2.2

into account, which give us fk13gl = fk34gk+l in the case k + l ≤ δ. This gives rise to the
relation

Xk
13Yl −Xk

34Yk+l =
k−1∑
i=0

Xk−i−1
13 Xi

34(X13Yl+i −X34Yl+i+1) ∈ I .

In the case k + l > δ, we obtain similarly

Xk
13Yl −Xδ−l

34 (Yδ + Zδ)X
k+l−δ
13 +Xδ−l

34 Xk+l−δ
12 Z2δ−k−l

= Xk
13Yl −Xδ−l

34 Xk+l−δ
13 Yδ −Xδ−l

34 (Xk+l−δ
13 Zδ −Xk+l−δ

12 Z2δ−k−l)

=
δ−l−1∑
i=0

Xk−i−1
13 Xi

34(X13Yl+i −X34Yl+i+1)

−Xδ−l
34

k+l−δ−1∑
i=0

Xk+l−δ−i−1
12 Xi

13(X12Z2δ−k−l+i −X13Z2δ−k−l+i+1) ∈ I .

In a similar fashion, one convinces oneself that the relations coming from the products
of the form Xk

24Yl, X
k
13Zl and Xk

24Zl are all in I.

We proceed with the products YkYl for 0 ≤ k, l ≤ δ. Again we use the computations
from the proof of Lemma 7.2.2 and treat at first the case k + l ≤ δ. We then get the
relation

YkYl − φ−1(Rgk+l − f δ−k−l34 fk+l13 ) = YkYl − Y0Yk+l − Yk+lZ0 +Xδ−k−l
34 Xk+l

13 ∈ I .
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In the case k + l > δ, we obtain

YkYl − φ−1(Qgk+l−δ − fk+l−δ12 f2δ−k−l24 )

= YkYl − YδYk+l−δ − Yk+l−δZδ +Xk+l−δ
12 X2δ−k−l

24 ∈ I

and the computations for the relations coming from products of the form ZkZl are
analogous.

This leaves us with the products YkZl, 0 ≤ k, l ≤ δ. Here, our previous computations
give us the relations

YkZl −Xm
12X

δ−M
34 Xk−m

13 X l−m
24 ∈ I

with m := min(k, l) and M := max(k, l) if k ̸= 0 and l ̸= δ. So assume now l = δ, but
k ̸= 0. In this case, we have

YkZδ − φ−1(gk(Q− gδ)) = YkZδ − φ−1(fk12f
δ−k
24 ) = YkZδ −Xk

12X
δ−k
24 ∈ I .

The case k = 0 is treated similarly.

7.2.2. Ab(Dd)
∨-homogeneous generators

We adjust the presentation of C[V ]Hδ in Lemma 7.2.5 so that the generators are homo-
geneous with respect to the grading induced by the action of Ab(Dd) = Dd/Hδ.

In case d is odd, we have Hδ = ⟨r⟩, so Ab(Dd) = ⟨s⟩ ∼= C2, where we denote the residue
class of an element g ∈ Dd modulo [Dd, Dd] by g. If d is even, we have Hδ = ⟨r2⟩, so
Ab(Dd) = ⟨s, r⟩ ∼= C2 × C2. Note that the generators in Lemma 7.2.1 are already
homogeneous with respect to the action of r in either case. The action of s on C[V ]
swaps the variable x1 with x2 and x3 with x4.

Let χ1 : Ab(Dd) → C× be the linear character defined by χ1(s) = −1 and χ1(r) = 1;
we can see χ1 as the determinant of the ‘non-doubled’ group G(d, d, 2). In case d is
even, let further χ2 : Ab(Dd) → C× be the linear character defined by χ2(s) = 1 and
χ2(r) = −1. We have Ab(Dd)

∨ = {1, χ1}, respectively Ab(Dd)
∨ = {1, χ1, χ2, χ1χ2},

where 1 is the trivial character.

Proposition 7.2.6. The algebra R(V/Dd) ∼= C[V ]Hδ is generated by the Ab(Dd)
∨-ho-

mogeneous polynomials

p1 := f12 of degree 1,

p2 := f34 of degree 1,

p3 := f13 + f24 of degree 1,

p4 := f13 − f24 of degree χ1,

qk := gk + hk (0 ≤ k ≤ δ) of degree 1, respectively χ2,

rk := gk − hk (0 ≤ k ≤ δ) of degree χ1, respectively χ1χ2,

if d is odd, respectively even.
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Consider the morphism of rings

α : C[U1, . . . , U4, V0, . . . , Vδ,W0, . . . ,Wδ] → C[V ]Hδ ,

Uk 7→ pk ,

Vk 7→ qk ,

Wk 7→ rk .

Then the kernel of α is generated by the following polynomials:

4U1U2 − U2
3 + U2

4 (7.2.5)

2U1Vk − U3Vk+1 + U4Wk+1, 2U1Wk + U4Vk+1 − U3Wk+1,

U3Vk + U4Wk − 2U2Vk+1, U4Vk + U3Wk − 2U2Wk+1,
(7.2.6)

where 0 ≤ k ≤ δ − 1,

VkVS−k +WkWS−k − Vk′VS−k′ −Wk′WS−k′ ,

VkWS−k +WkVS−k − Vk′WS−k′ −Wk′VS−k′ ,
(7.2.7)

where 2 ≤ S ≤ 2δ − 2, k := max(0, S − δ), k < k′ ≤ ⌊S/2⌋ and

1

4
(Vk +Wk)(Vl −Wl) − Um1 U

δ−M
2

(
1

2
U3 +

1

2
U4

)k−m(1

2
U3 −

1

2
U4

)l−m
, (7.2.8)

where 0 ≤ k, l ≤ δ, m := min(k, l), M := max(k, l).

Proof. The pk, qk and rk obviously are Ab(Dd)
∨-homogeneous and form a system of

generators. One obtains the relations by substituting the polynomials in Lemma 7.2.5
and simplifying the results by taking sums and differences, for example the first and
third polynomial in (7.2.2) give rise to the first polynomial in (7.2.6) etc.

7.3. The Cox ring of a Q-factorial terminalization

From now on, we restrict ourselves to the case that d is odd. It follows that there is
only one conjugacy class of symplectic reflections in Dd for which we may choose s as a
representative.

7.3.1. Reductions

An eigenbasis of s is given by

1

2
(e1 + e2),

1

2
(e1 − e2),

1

2
(e3 + e4),

1

2
(e3 − e4),

where {e1, . . . , e4} is the standard basis of V . In this eigenbasis, s takes the form(
1
−1

1
−1

)
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and the change of basis into the eigenbasis induces the algebra isomorphism

Φs : C[x1, . . . , x4] → C[y1, . . . , y4], f 7→ f(y1 + y2, y1 − y2, y3 + y4, y3 − y4) ,

where we write C[y1, . . . , y4] for the coordinate ring of V in the eigenbasis of s for
distinction.

Let vs be the monomial valuation on C(V ) corresponding to s and write as before
mins(f) for the minimal part of f ∈ C[y1, . . . , y4]. In Table 7.3.1, we give the minimal
parts and valuations of the generators in Proposition 7.2.6.

The valuation vs induces a grading on S := C[Ui, Vj ,Wk] by weighting the variables
with the valuation of their images under α as in Chapter 6. This means we have

degs(U1) = degs(U2) = degs(U3) = degs(Vk) = 0

and
degs(U4) = degs(Wk) = 1 .

For h ∈ S, write mins(h) for the degs-homogeneous component of h of minimal degs-de-
gree and let mins I = ⟨mins(h) | h ∈ I⟩ with I := ker(α).

We see from Table 7.3.1 that a degs-homogeneous polynomial h ∈ S is Ab(Dd)
∨-ho-

mogeneous, that is, the grading by degs is a refinement of the one by Ab(Dd)
∨. Let

βs : S → C[V ], h 7→ mins(Φs(α(h))) .

Then βs is by definition degs-graded and hence Ab(Dd)
∨-graded. We conclude that the

kernel Js := ker(βs) is Ab(Dd)
∨-homogeneous and therefore:

Lemma 7.3.1. We have Js = minsJs.

Remark 7.3.2. In the situation of Chapter 6, the inclusion miniJi ⊆ Ji is in general
proper. This happens, for example, with the symplectic reflection group G⊛

6 as for this
group minimal parts with respect to one grading are in general not homogeneous with
respect to the other involved gradings.

We claim that we have mins I = minsJs, so that the generators in Proposition 7.2.6
give rise to generators of R(X) by Proposition 6.2.13. However, we are not able to
compute these ideals by hand, so we use the following lemma. Let T be the C-algebra
generated by the polynomials mins(Φs(f)), where f runs over the generators in Proposi-
tion 7.2.6. The algebra T is graded with respect to the standard grading of polynomials
on C[x1, . . . , x4] as it is generated by homogeneous polynomials. We endow S with a
further grading deg by setting deg(Ui) = 2 and deg(Vi) = deg(Wi) = δ. This turns α
and βs into graded morphisms with respect to the grading deg on S and the standard
grading on C[x1, . . . , x4]. We see that I and Js and hence mins I and minsJs are deg-ho-
mogeneous ideals. In what follows, Hilbert series of ideals in S are always with respect
to the grading by deg and Hilbert series of subalgebras of C[x1, . . . , x4] are always with
respect to the standard grading.

Lemma 7.3.3. We have mins I = minsJs if and only if H(C[V ]Hδ , t) = H(T, t).
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Proof. By Corollary 6.2.12, we have mins I ⊆ minsJs, so we see that mins I = minsJs
if and only if H(mins I, t) = H(minsJs, t). By Proposition 7.1.2, we have the equality
H(I, t) = H(mins I, t) and Lemma 7.3.1 yields H(Js, t) = H(minsJs). As α and βs are
graded morphisms, we have H(I, t) = H(C[V ]Hδ , t) and H(Js, t) = H(T, t), giving the
claim.

7.3.2. The Hilbert series of T

To compute the Hilbert series of T , we construct generators of T as a module over a
Noether normalization, so that we can read off H(T, t) as in Corollary 7.2.3.

Recall that the algebra T ≤ C[y1, . . . , y4] is generated by the polynomials mins(Φs(f)),
where f runs over the generators from Proposition 7.2.6. We label these polynomials as
follows:

s1 := y21

s2 := y23

s3 := y1y3

s4 := y1y4 + y2y3

tk := yk1y
δ−k
3 (0 ≤ k ≤ δ)

u0 := yδ−1
3 y4

uk := kyk−1
1 y2y

δ−k
3 − (δ − k)yk1y

δ−k−1
3 y4 (1 ≤ k ≤ δ − 1)

uδ := yδ−1
1 y2

Lemma 7.3.4. The Krull dimension of T is dimT = 4.

Proof. Since T ≤ C[y1, . . . , y4], we have dimT ≤ 4. Consider the properly ascending
chain

⟨0⟩ ⊊ ⟨y4⟩ ⊊ ⟨y4, y2⟩ ⊊ ⟨y4, y2, y1⟩ ⊊ ⟨y4, y2, y1, y3⟩
of prime ideals in C[y1, . . . , y4]. Intersecting these ideals with the subalgebra T gives an
ascending chain of prime ideals in T . We need to see that all the inclusions in this chain
are still proper. Indeed, we have

u0 ∈ ⟨y4⟩ ∩ T \ ⟨0⟩
uδ ∈ ⟨y4, y2⟩ ∩ T \ ⟨y4⟩ ∩ T
s1 ∈ ⟨y4, y2, y1⟩ ∩ T \ ⟨y4, y2⟩ ∩ T
s2 ∈ ⟨y4, y2, y1, y3⟩ ∩ T \ ⟨y4, y2, y1⟩ ∩ T .

As a counterpart to Lemma 7.2.2, we have:

Lemma 7.3.5. Let P ′ := C[s1, s4, u0, t0+uδ]. The algebra T is generated as a P ′-module
by the polynomials

1, sk2 (1 ≤ k ≤ δ − 1), sk2s3 (0 ≤ k ≤ δ − 1), tk (0 ≤ k ≤ δ), uk (1 ≤ k ≤ δ − 1) .

In particular, T is finite over P ′.

106



7.3. The Cox ring of a Q-factorial terminalization

Proof. We systematically compute that any product of two of the given generators is
again in the P ′-module span of the generators. Iteratively applying the resulting relations
then yields the claim.

We see that the powers of s2 are sufficient as

sδ2 = −s
δ−1
2

1 s4s
δ−1
2

2 + (t0 + uδ)t0 + u0tδ

and

sδ2s3 = (t0 + uδ)
2s3 − s

δ−1
2

1 s4s
δ−1
2

2 s3 + s1u0tδ−1 −
1

δ
s4(t0 + uδ)tδ −

1

δ
s1(t0 + uδ)uδ−1 .

Further we have

s23 = s1s2 ,

so that products (sk2s3)(s
l
2s3) are in the P ′-span.

Let us consider products of the form tkul for 0 ≤ k ≤ δ and 1 ≤ l ≤ δ−1. If k+ l ≤ δ,
we have

tkul = ls
a−
1 s4s

d−a+
2 sa03 − δu0tk+l

with a± := k+l
2 ± 1 and a0 := 1 if k + l is even and a± := k+l±1

2 and a0 := 0 if k + l is
odd. If k + l > δ, we compute

tkul = −δsa−1 s
δ−a+
2 sa03 + (l − δ)s

b−
1 s4s

δ−b+
2 sb03 + δ(t0 + uδ)tk+l−δ

with a± := k+l−δ±1
2 , a0 := 1, b± := k+l

2 ± 1 and b0 := 1 if k + l is even and a± := k+l−δ
2 ,

a0 := 0, b± := k+l±1
2 and b0 := 0 if k + l is odd.

For the product tktl, we have the special case

t20 = −s
δ−1
2

1 s4s
δ−1
2

2 + u0tδ + (t0 + uδ)t0

and for all other feasible k, l we obtain

tktl = s
a−
1 s

δ−a+
2 sa03

with a± := k+l
2 , a0 := 0 if k + l is even and a± := k+l±1

2 , a0 := 1 if k + l is odd.

We again have to distinguish several cases for products of the form ukul with 1 ≤
k, l ≤ δ − 1. If k + l < δ, we have

ukul = kls
a−
1 s24s

δ−a+
2 sa03 − δu0uk+l

with a± := k+l±2
2 and a0 := 0 if k+ l is even and a± := k+l±3

2 and a0 := 1 if k+ l is odd.
If k + l > δ, we have

ukul = (δ − k)(δ − l)s
a−
1 s24s

δ−a+
2 sa03 + δ(δ − k − l)s

b−
1 s4s

δ−b+
2 sb03

+ δ2u0tk+l−δ + δ(t0 + uδ)uk+l−δ
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with a± := k+l±2
2 , a0 := 0, b± := k+l−δ±1

2 and b0 := 0 if k + l is even and a± := k+l±3
2 ,

a0 := 1, b± := k+l−δ±2
2 and b0 := 1 if k + l is odd. In case k + l = δ, we have

ukul = kls
δ−3
2

1 s24s
δ−3
2

2 s3 + δ2u0t0 − δ2u0(t0 + uδ) .

We now consider products of the form sk2tl with 1 ≤ k ≤ δ − 1 and 0 ≤ l ≤ δ. If
l − 2k ≥ 0, we directly have

sk2tl = sk1tl−2k .

If 0 > l − 2k > −δ, we have

sk2tl = s
a−
1 (t0 + uδ)s

k−a+
2 sa03 − 2k − l

δ
sk−1
1 s4tδ+1−2k+l −

1

δ
sk1uδ−2k+l

with a± := l
2 and a0 := 0 if l is even and a± := l±1

2 and a0 := 1 if l is odd.

If l − 2k ∈ {−δ,−δ − 1}, we have

sk2tl = s
a−
1 (t0 + uδ)s

k−a+
2 sa03 + s

b−
1 u0s

k−b+
2 sb03 − sk−1

1 s4tδ+1−2k+l

with a± := l
2 , a0 := 0, b± := δ+l±1

2 and b0 := 1 if l is even and a± := l±1
2 , a0 := 1,

b± := δ+l
2 and b0 := 0 if l is odd.

If l − 2k < −δ − 1, we have

sk2tl = s
a−
1 (t0 + uδ)s

k−a+
2 sa03 − s

b−
1 s4(t0 + uδ)s

k−b+
2 sb03 + s

c−
1 u0s

k−c+
2 sc03

+
2k − l − δ − 1

δ
sk−2
1 s24t2δ+2−2k+l +

1

δ
sk−1
1 s4u2δ+1−2k+l ,

where a± := l
2 , a0 := 0, b± := δ±1+l

2 , b0 := 0, c± := b± and c0 := 1 if l is even and

a± := l±1
2 , a0 := 1, b± := δ+l

2 ± 1, b0 := 1, c± := δ+l
2 and c0 := 0 if l is odd.

We now consider products of the form sk2ul with 1 ≤ k ≤ δ − 1 and 1 ≤ l ≤ δ − 1. If
2k − l < 0, we have

sk2ul = 2ksk−1
1 s4tl−2k+1 + sk1ul−2k .

If 2k − l ∈ {0, 1}, then

sk2ul = ls4s
k−1
1 tl−2k+1 − δu0s

a−
1 s

k−a+
2 sa03 ,

where a± := l
2 and a0 := 0 if l is even and a± := l±1

2 and a0 := 1 if l is odd.

If 2k − l > 1 and 2k − l ≤ δ, we have

sk2ul = −δsa−1 u0s
k−a+
2 sa03 + ls

b−
1 s4(t0 + uδ)s

k−b+
2 sb03

− l(2k − l − 1)

δ
sk−2
1 s24tδ−2k+l+2 −

l

δ
sk−1
1 s4uδ−2k+l+1 ,

where a± := l
2 , a0 := 0, b± := l

2 ± 1 and b0 := 1 if l is even and a± := l±1
2 , a0 := 1,

b± := l±1
2 and b0 := 0 if l is odd.
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If 2k − l ∈ {δ + 1, δ + 2}, we have

sk2ul = −δsa−1 u0s
k−a+
2 sa03 + ls

b−
1 s4(t0 + uδ)s

k−b+
2 sb03

+ ls
c−
1 s4u0s

k−c+
2 sc03 − lsk−2

1 s24tδ−2k+l+2 ,

where a± := l
2 , a0 := 0, b± := l

2 ± 1, b0 := 1, c± := δ+l±1
2 and c0 := 0 if l is even and

a± := l±1
2 , a0 := 1, b± := l±1

2 , b0 := 0, c± := δ+l
2 ± 1 and c0 := 1 if l is odd.

If 2k − l > δ + 2, we have

sk2ul = −δsa−1 u0s
k−a+
2 sa03 + ls

b−
1 s4(t0 + uδ)s

k−b+
2 sb03

+ ls
c−
1 s4u0s

k−c+
2 sc03 − ls24(t0 + uδ)s

d−
1 s

k−d+
2 sd03

+
l(2k − l − δ − 2)

δ
sk−3
1 s34t2δ−2k+l+3 +

l

δ
sk−2
1 s24u2δ−2k+l+2 ,

where a± := l
2 , a0 := 0, b± := l

2 ± 1, b0 := 1, c± := δ+l±1
2 , c0 := 0, d± := δ+l±3

2 and

d0 := 1 if l is even and a± := l±1
2 , a0 := 1, b± := l±1

2 , b0 := 0, c± := δ+l
2 ± 1, c0 := 1,

d± := δ+l±2
2 and d0 := 0 if l is odd.

The products of the form sk2s3tl and sk2s3ul for k ≥ 1 follow by the above relations
together with s23 = s1s2. Finally, we have s3tl = s1tl−1 for 1 ≤ l ≤ δ and s3t0 =
(t0 + uδ)s3 − 1

δ s4tδ −
1
δ s1uδ−1 as well as s3ul = s4tl + s1ul−1 for 2 ≤ l ≤ δ − 1 and

s3u1 = s4t1 − δs1u0.

The above lemma allows us to conclude that P ′ is a Noether normalization of T and
that furthermore T is a Cohen–Macaulay ring.

Corollary 7.3.6. The polynomials s1, s4, u0, t0 + uδ form a regular sequence for T .

Proof. By Lemma 7.3.5, the extension P ′ ≤ T is finite. Since the number of polynomials
in the sequence coincides with the dimension of T by Lemma 7.3.4, we conclude that
s1, s4, u0, t0 + uδ are algebraically independent and hence they form a homogeneous
system of parameters for the positively graded algebra T , see [DK15, Definition 2.5.6].

The algebraic independence of the generators of P ′ also implies that T is a free P ′-mod-
ule as the module generators given in Lemma 7.3.5 are linearly independent over P ′.
Hence [DK15, Proposition 2.6.3] says that T is Cohen–Macaulay and, equivalently, that
every homogeneous system of parameters is T -regular.

Corollary 7.3.7. The Hilbert series of T is

H(T, t) =
t2δ + 2δtδ + 1 +

∑δ−1
i=1 2t2i

(1 − t2)2(1 − tδ)2
.

Proof. As s1, s4, u0, t0 + uδ is a regular sequence for the P ′-module T , we have that

H(T/⟨s1, s4, u0, t0 + uδ⟩T, t) = (1 − t2)2(1 − tδ)2H(T, t) ,
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by [KR05, Corollary 5.2.17]. Further, we can directly determine the Hilbert series of
T/⟨s1, s4, u0, t0 + uδ⟩T by counting the degrees of the generators in Lemma 7.3.5. From
this we obtain

H(T/⟨s1, s4, u0, t0 + uδ⟩T, t) = t2δ + 2δtδ + 1 +
δ−1∑
i=1

2t2i

and we conclude

H(T, t) =
t2δ + 2δtδ + 1 +

∑δ−1
i=1 2t2i

(1 − t2)2(1 − tδ)2
.

7.3.3. Conclusion

As a reward for the tedious computations in the previous section, we can now derive
the announced generating set of the Cox ring R(X) of a Q-factorial terminalization
X → V/Dd.

Proposition 7.3.8. We have mins I = minsJs.

Proof. Follows from Corollaries 7.2.3 and 7.3.7 together with Lemma 7.3.3.

Theorem 7.3.9. Let d ∈ Z≥3 be odd and let Dd = G(d, d, 2)⊛ ≤ Sp4(C) be the dihedral
group generated by

s :=

(
1

1
1

1

)
and r :=

 ζd
ζ−1
d

ζ−1
d

ζd

,
where ζd is a primitive d-th root of unity. Let X → C4/Dd be a Q-factorial terminaliza-
tion of the linear quotient C4/Dd. Then the Cox ring R(X) identified with a subalgebra
of C[x1, . . . , x4][t

±] is generated by:

x1x2, x3x4, x1x3 + x2x4, (x1x3 − x2x4)t,

xk1x
d−k
4 + xk2x

d−k
3 (0 ≤ k ≤ d),

(xk1x
d−k
4 − xk2x

d−k
3 )t (0 ≤ k ≤ d),

t−2.

Proof. Follows from Proposition 6.2.13 together with Proposition 7.3.8.

Conjecture 7.3.10. Keep the notation of Theorem 7.3.9, but let d be even and write
δ := d

2 . We conjecture that R(X) identified with a subalgebra of C[x1, . . . , x4][t
±
1 , t

±
2 ] is

generated by:

x1x2, x3x4, x1x3 + x2x4, (x1x3 − x2x4)t1t2,

(xk1x
δ−k
4 + xk2x

δ−k
3 )t1 (0 ≤ k ≤ δ),

(xk1x
δ−k
4 − xk2x

δ−k
3 )t2 (0 ≤ k ≤ δ),

t−2
1 , t−2

2 ,

where t1 corresponds to the symplectic reflection rs and t2 to s.
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7.3. The Cox ring of a Q-factorial terminalization

Remark 7.3.11. The challenge in proving Conjecture 7.3.10 is that there are two con-
jugacy classes of symplectic reflections. We see that Proposition 7.3.8 holds in the same
fashion for groups Dd with d even, but we would have to prove the analogous statement
for the second conjugacy class represented by rs. Having done so, we still need to run
the second phase of Algorithm 6.2.1 to combine both results.

We confirmed Conjecture 7.3.10 using a computer for d ≤ 36. The computation for
d = 36 alone took several days.

Remark 7.3.12. Unfortunately, we are not able to give relations of the generators in
Theorem 7.3.9 or Conjecture 7.3.10 to complete a presentation of R(X) as an affine
algebra. For a fixed value of d, one can compute these relations with a computer us-
ing Algorithm 6.3.3, but doing so by hand for arbitrary d appears not to be feasible;
one would need to compute the appropriate homogenization of the relations given in
Proposition 7.2.6.

7.3.4. Constructing the Q-factorial terminalization

Recall from Section 2.4.3 that we can construct a Q-factorial terminalization X ′ → V/Dd

of V/Dd as ProjS(D) with the positively graded algebra

S(D) :=
⊕
k∈Z≥0

Γ(X,OX(kD))

and D a movable divisor on X. In other words, we consider the Veronese subalgebra,
see [ADHL15, Definition 1.1.2.3], of R(X) with respect to the monoid

{[kD] | k ≥ 0} ≤ Cl(X) .

The linear quotient V/Dd with d odd admits a unique Q-factorial terminalization by
[BST18, Proposition 7.2] and we can choose any non-trivial element of Cl(X) ∼= Z to
construct it. Hence we obtain:

Corollary 7.3.13. With the notation of Theorem 7.3.9, let A ≤ (C[x1, . . . , x4])[t] be the
C-algebra generated by

x1x2, x3x4, x1x3 + x2x4, (x1x3 − x2x4)t,

xk1x
d−k
4 + xk2x

d−k
3 (0 ≤ k ≤ d),

(xk1x
d−k
4 − xk2x

d−k
3 )t (0 ≤ k ≤ d).

Then the Q-factorial terminalization X → C4/Dd is isomorphic to ProjA → C4/Dd,
where for the Proj-construction we endow A with a Z-grading via the degree of the
variable t.

Remark 7.3.14. In [BBF+23], a symplectic partial resolution of C4/Dd is constructed via
an explicit blowing-up operation. The authors do not mention this, but at least in the
case where d is odd, this partial resolution must in fact be a Q-factorial terminalization.
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7. A Q-factorial terminalization of C4/Dd

Indeed, as the class group Cl(X) of a Q-factorial terminalization is free of rank 1, the GIT
fan of the Mori dream space X is the subdivision of the real line R into the three cones
consisting of the origin and the positive and negative half-lines. The GIT quotient of
SpecR(X) corresponding to the origin is C4/Dd and the quotients corresponding to the
half-lines are both isomorphic to X by the uniqueness result in [BST18, Proposition 7.2].
The symplectic partial resolution constructed in [BBF+23] must be one of these GIT
quotients and is hence isomorphic to X.

Remark 7.3.15. For Corollary 7.3.13, we could simply find generators for the algebra A
by choosing all generators of R(X) of non-negative degree. It is not clear, how to do this
in general, that is, if X → V/G is the Q-factorial terminalization of a linear quotient by
an arbitrary finite group G ≤ SL(V ). One knows that the Veronese algebra of interest is
again finitely generated as R(X) is finitely generated, see [ADHL15, Proposition 1.1.2.4],
but it is not clear how to construct generators starting from a generating set of R(X).
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Appendix: Computational data

A. Explicit results on parabolic subgroups of
symplectically primitive groups

We state the explicit results required for Lemma 3.1.8 and Theorem 4.3.1, by listing (up
to conjugacy) all the maximal parabolic subgroups one finds for the symplectically and
complex primitive symplectic reflection groups of rank at least 6 in Section A.2. The
results of this appendix are already published in [BST23].

We outline how these groups were computed. Given a symplectically primitive sym-
plectic reflection group, one computes the conjugacy classes of all subgroups using
the computer algebra systems GAP [Gap22] or Magma [BCP97] with the command
ConjugacyClassesSubgroups or Subgroups respectively. One then checks which of
these subgroups are parabolic by determining their fixed space using basic linear algebra
and then the stabilizer of the fixed space using the command Stabilizer in either GAP
or Magma; if this stabilizer coincides with the group, one has found a parabolic subgroup.
Let H be one of the parabolic subgroups. One can compute all symplectic reflections
contained in H by computing the conjugacy classes of H (using ConjugacyClasses in
either GAP or Magma) and checking whether the given representative is a symplectic
reflection. Finally, one checks whether H is generated by the conjugacy classes of sym-
plectic reflections determined in this way. As in Corollary 3.1.9, it is enough to consider
the maximal parabolic subgroups: if v, w ∈ V , with Gw ≤ Gv, then it suffices to check,
by induction on the rank, that Gv is generated by symplectic reflections.

Identifying a parabolic subgroup with a group in Cohen’s classification is an easy
but tedious task using the classification and linear algebra. As the matrices generating
the parabolic subgroups tend to become quite large, we do not do this in detail here;
Section A.1 serves as an example for these computations.

Throughout, i :=
√
−1 is the imaginary unit. Magma and GAP files with the necessary

code to generate the symplectically primitive symplectic reflection groups can be found
on the author’s github page.(1)

A.1. An example: the group W (S1)

As an illustration, we show that there is a parabolic subgroup H of W (S1) which is
isomorphic as a symplectic reflection group to G(3, 3, 3)⊛.

The necessary computer calculations were carried out and cross-checked using the
software package Hecke [FHHJ17] and the computer algebra systems GAP [Gap22] and

(1)https://github.com/joschmitt/Parabolics
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Magma [BCP97].

The group

The group W (S1) is a subgroup of Sp8(C) of order 28 · 33 = 6912. Like all complex
primitive groups, it is given in [Coh80, Table II] by a root system. Cohen lists 36 root
lines for the group. However, four are enough to generate a group of the correct order.
A choice of root lines are

(1, i, 0, 0, 0, 0, 1,−i), (1 − i, 1 − i, 0, 0, 0, 0, 0, 0),

(1 − i, 0, 1 − i, 0, 0, 0, 0, 0), (1 − i, 0, 0, 1 − i, 0, 0, 0, 0).

Note that these are the ‘complexified’ versions of the vectors over the quaternions given in
[Coh80]. The group W (S1) ≤ Sp8(C) is generated by the symplectic reflection matrices

M1 :=
1

2


1 i −1 −i
−i 1 −i 1

1 i 1 i
−i 1 i −1
1 −i 1 −i
−i −1 i 1

−1 i 1 −i
i 1 i 1

 , M2 :=


−1

−1
1
1

−1
−1

1
1

 ,

M3 :=


−1

1
−1

1
−1

1
−1

1

 , M4 :=


−1

1
1

−1
−1

1
1

−1

 ,

through these root lines.

The parabolic subgroup

Let v := (0, 0, 0, 1,−α, α,−α, α + 1)⊤ ∈ C8, where α := 1
2(i − 1). Let H ≤ W (S1) be

the stabilizer of v. Using the command Stabilizer in either GAP or Magma one can
compute this group:

H = ⟨M2,M3M1M3,M4M1M4⟩ .

The space V H ⊆ C8 of vectors fixed by H is generated by v and

(1,−1, 1, 0, α+ 1,−α− 1, α+ 1, 3α)⊤.

The H-invariant complement W of V H has a basis given by the columns w1, . . . , w6 ∈ C8

of the matrix
ζ2+ζ+1 ζ3+ζ2−ζ−2 ζ −ζ3+ζ2+ζ−2 ζ2−ζ+1 −ζ3+ζ

−ζ3−ζ2+ζ+2 −ζ2−ζ−1 −ζ −ζ2+ζ−1 ζ3−ζ2−ζ+2 ζ3−ζ
−ζ3−2ζ2+1 −ζ3−2ζ2+1 ζ ζ3−2ζ2+1 ζ3−2ζ2+1 −ζ3+ζ

0 0 −2ζ3+ζ 0 0 ζ3+ζ
−ζ2−ζ+1 −ζ3+ζ2+ζ ζ3+ζ2 ζ3−ζ2−ζ ζ2+ζ−1 −ζ3+ζ2−1
ζ3−ζ2−ζ ζ2+ζ−1 −ζ3−ζ2 −ζ2−ζ+1 −ζ3+ζ2+ζ ζ3−ζ2+1
ζ3−1 ζ3−1 ζ3+ζ2 −ζ3+1 −ζ3+1 −ζ3+ζ2−1
0 0 −ζ3−ζ2+2ζ+2 0 0 −ζ3−ζ2+2ζ−1

,
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A. Explicit results on parabolic subgroups of symplectically primitive groups

where ζ ∈ C is a primitive 12-th root of unity such that ζ3 = i.
By changing the basis from C8 to W ⊕ V H and restricting to W we may identify H

with the subgroup HW of Sp(W ) generated by the matrices

 1
1

1
1

1
1

 ,

 1
1

1
1

1
1

 ,


ζ2−1

1
−ζ2

−ζ2
1

ζ2−1

 .

The basis of W was chosen so that the symplectic form on W is, up to a constant, given
by the matrix (

I3
−I3

)
.

One can see directly that HW leaves the subspace ⟨w1, w2, w3⟩ invariant and that
this subspace is Lagrangian. Hence, HW is a complex reducible, but symplectically
irreducible, group coming from a complex reflection group in GL(⟨w1, w2, w3⟩). Since
the complex reflection group has rank 3 and order 54 it must be conjugate to G(3, 3, 3)
in the classification [ST54].

A.2. Maximal parabolic subgroups

We list the maximal parabolic subgroups up to conjugacy.

W (Q). The group W (Q) is a subgroup of Sp6(C) of order 26 · 33 · 7 = 12,096. It is
generated by the symplectic reflections corresponding to the root lines

(2, 0, 0, 0, 0, 0) ,
1

2
(2i, 2i,−i+ 1, 0, 0, i

√
5 − 1) ,

1

2
(2i, 2, i+ 1, 0, 0, i+

√
5) ,

1

2
(2, 2i, i+ 1, 0, 0, i+

√
5).

The maximal parabolic subgroups are each conjugate to H1 := G(3, 3, 2)⊛ or H2 :=
G(4, 2, 2)⊛. They stabilize the following vectors:

v

H1 (1, 0, 0, α, β, 0)
H2 (1, 0, 1, α, 2β, α)

where α := 1
6(i

√
5 + i−

√
5 + 1) and β := 1

3(−i+
√

5).

W (R). The group W (R) is a subgroup of Sp6(C) of order 28 · 33 · 52 · 7 = 1,209,600. It
is generated by the symplectic reflections corresponding to the root lines

(2, 0, 0, 0, 0, 0) ,
1

2
(i+ 1, i− 1, 0,−i

√
5 + 1,−i−

√
5, 0) ,

1

2
(0, 0, i+ 1,−i, 1, i+

√
5) ,

1

2
(0, 2i, i+

√
5, 2, 0,−i− 1) .
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The maximal parabolic subgroups are conjugate to H1 := G(3, 3, 2)⊛, H2 := G(5, 5, 2)⊛

and H3 := G(D2,C2, 1). They stabilize the following vectors:

v

H1 (0, 1,
√

5 − 1,
√

5 − 1, 12(i
√

5 − i+
√

5 − 3, 0)

H2 (0, 1, 12(i
√

5 + i− 2), 12(i
√

5 + i+
√

5 + 1), 1, 12(−2i+
√

5 + 1))

H3 (0, 1, 12(
√

5 + 3), 12(−i
√

5 − i+
√

5 + 1), 1, 12(−i
√

5 − 3i))

W (S1). The group W (S1) is a subgroup of Sp8(C) of order 28·33 = 6912. It is generated
by the symplectic reflections corresponding to the root lines

(1, i, 0, 0, 0, 0, 1,−i) , (−i+ 1,−i+ 1, 0, 0, 0, 0, 0, 0) ,

(−i+ 1, 0,−i+ 1, 0, 0, 0, 0, 0) , (−i+ 1, 0, 0,−i+ 1, 0, 0, 0, 0) .

The maximal parabolic subgroups are conjugate to H1 := C2×C2×C2, H2 := G(2, 2, 3)⊛

and H3 := G(3, 3, 3)⊛. They stabilize the following vectors:

v

H1 (1, 0, 0,−1, 0, 0, 0, 0)
H2 (0, 1, i, 0, 0, 0, 0, 0)
H2 (1, i, i,−1, 0, 0, 0, 0)
H2 (0, 0, 1, 0, 0, 0, 0, 0)
H2 (0, 1, 0, 0, 0, 0, 1, 0)
H3 (0, 0, 0, 1, 12(1 − i), 12(i− 1), 12(1 − i), 12(i+ 1))

Note that multiple occurrences of H2 in the above table mean that there are distinct
maximal parabolic subgroups which are conjugate in GL8(C), but not in W (S1).

W (S2). The group W (S2) is a subgroup of Sp8(C) of order 210 · 34 = 82,944. It is
generated by the symplectic reflections corresponding to the root lines

(1, i, 0, 0, 0, 0, 1,−i) , (−i+ 1,−i+ 1, 0, 0, 0, 0, 0, 0) ,

(−i+ 1, 0,−i+ 1, 0, 0, 0, 0, 0) , (2, 0, 0, 0, 0, 0, 0, 0) .

The maximal parabolic subgroups are conjugate to H1 := C2 × G(3, 3, 2)⊛, H2 :=
G(2, 2, 3)⊛, H3 := G(2, 1, 3)⊛, H4 := G(3, 3, 3)⊛ and H5 := G(4, 4, 3)⊛. They stabil-
ize the following vectors:

v

H1 (1,−1,−1, 0, 0, 0, 0, 0)
H2 (1,−1, 0, 0, 0, 0, i− 1, 0)
H3 (0, 1, 0, 0, 0, 0, 0, 0)
H4 (1, 0, 1, 0,−1, i− 1,−i, 0)
H5 (1,−i, 0, 0, 0, 0, 0, 0)
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W (S3). The group W (S3) is a subgroup of Sp8(C) of order 213 · 34 · 5 = 3,317,760. It
is generated by the symplectic reflections corresponding to the root lines

(1, i, 0, 0, 0, 0, 1,−i) , (−i+ 1,−i+ 1, 0, 0, 0, 0, 0, 0) ,

(−i+ 1, 0,−i+ 1, 0, 0, 0, 0, 0) , (2, 0, 0, 0, 0, 0, 0, 0) ,

(−i+ 1, 0, 0, 0, 0,−i+ 1, 0, 0) .

The maximal parabolic subgroups are conjugate to H1 := C2 × G(3, 3, 2)⊛, H2 :=
G(2, 2, 3)⊛, H3 := G(3, 3, 3)⊛ and H4 := G3(D2,C2). They stabilize the following vectors:

v

H1 (1,−i, 0, 0, 0, 0, 3, i)
H2 (0, 0, 2, 0,−1, i, i, 1)
H3 (0, 1, 0,−1,−1, i− 1, i, 0)
H4 (1, 0, 0, 1, 0, 0, 0, 0)

W (T ). The group W (T ) is a subgroup of Sp8(C) of order 28 · 34 · 53 = 2,592,000. It is
generated by the symplectic reflections corresponding to the root lines

(−ζ3 + ζ2 + 1, ζ3 − ζ2,−1, 0, 0, 0, 0, 0) , (1, 0, 0, 0, 0, 0, 0, 0) ,

(1, 1, 1, 1, 0, 0, 0, 0) , (1, i, 0, 0, 0, 0,−1, i) ,

where ζ is a primitive 10-th root of unity. The maximal parabolic subgroups are con-
jugate to H1 := C2 × G(3, 3, 2)⊛, H2 := C2 × G(5, 5, 2)⊛, H3 := G(2, 2, 3)⊛, H4 :=
G(3, 3, 3)⊛, H5 := G⊛

23 and H6 := G(5, 5, 3)⊛. They stabilize the following vectors:

v

H1 (0, 0, 0, 0, 1, 12(−ζ3 + ζ2 + 1),−ζ3 + ζ2 + 1
2 ,

1
2(ζ3 − ζ2))

H2 (0, 0, 0, 0, 1,−ζ3 + ζ2 + 1,−ζ3 + ζ2, 2ζ3 − 2ζ2 − 2)
H3 (1, 0, ζ3 + ζ2 + 1,−3ζ3 + 3ζ2 + 4, iζ3 − iζ2 − ζ3 + ζ2 + 1,

−2iζ3 − 2iζ2 − 2i− 2ζ3 + 2ζ2 + 4, i+ ζ3 − ζ2,−iζ3 + iζ2 + i+ 1)
H3 (0, 0, 0, 0, 1,−ζ3 + ζ2 + 2, 0, ζ3 − ζ2 − 3)
H4 (1, 0,−ζ3 + ζ2 + 1, ζ3 − ζ2,−i, iζ3 − iζ2 − i+ ζ3 − ζ2 − 1,

iζ3 − iζ2 + 1, ζ3 − ζ2)
H5 (0, 1, 15(4iζ3 − 4iζ2 − 2i+ 3ζ3 − 3ζ2 − 4), (2iζ3 − 2iζ2 − 6i− ζ3 + ζ2 + 3),

1
5(4iζ3 − 4iζ2 − 2i− 2ζ3 + 2ζ2 + 6), (3iζ3 − 3iζ2 − 4i+ ζ3 − ζ2 − 3),
1
5(iζ3 − iζ2 − 3i+ 2ζ3 − 2ζ2 − 1))

H6 (0, 1, ζ3 − ζ2, ζ3 − ζ2 + 1,−2iζ3 + 2iζ2,−iζ3 + iζ2 − ζ3 + ζ2 + 1,
−iζ3 + iζ2 + i− 1, i− ζ3 + ζ2)

Note that there are two distinct maximal parabolic subgroups which are conjugate in
GL8(C), but not in W (T ).
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W (U). The group W (U) is a subgroup of Sp10(C) of order 211 · 35 · 5 · 11 = 27,371,520.
It is generated by the symplectic reflections corresponding to the root lines

(2, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

(0, 2, i− 1, i− 1, 2, 0, 0,−i+ 1,−i+ 1, 0) ,

(0, 2, i− 1,−i− 1, 2i, 0, 0, i− 1,−i− 1, 0) ,

(0, 2,−i− 1, i− 1, 0, 0, 0, i+ 1, i− 1, 2) ,

(2, i− 1, i− 1, 2, 0, 0,−i+ 1,−i+ 1, 0, 0) .

The maximal parabolic subgroups are conjugate to H1 := C2 × G(2, 2, 3)⊛, H2 := C2 ×
G(3, 3, 3)⊛, H3 := S⊛

5 , H4 := G(3, 3, 4)⊛ and H5 := W (S1). They stabilize the following
vectors:

v

H1 (2, 0, i− 1, 0,−i+ 3, 2i+ 2,−2,−i− 1, 0, i− 1)
H2 (0, 2, i− 1, 0,−i− 1,−6i, 0, i+ 1, 0,−i+ 1)
H3 (1, 0,−2i+ 1, i+ 1,−i+ 1,−i, 2i, i,−2i, 0)
H4 (2, 0, 0,−i− 1,−i− 1, 0,−i+ 1,−2i,−i− 1, i+ 1)
H5 (2, 0, i+ 1, 0, i− 1, 0,−2i, i− 1, 0, i+ 1)

B. Some results on the remaining groups in the
classification of symplectic resolutions

We present computational evidence suggesting that the linear quotients of some of the
groups for which the existence of a symplectic resolution is still open (see Section 4.4)
do in fact not admit such a resolution. This is based on the following proposition.

Proposition B.1. Let Hc(G) be a symplectic reflection algebra associated to G ≤ Sp(V ).
Let g ∈ G, x ∈ V g and y ∈ V . Then the element g[x, y] ∈ Hc(G) lies in C[G] and is
annihilated by all characters of finite-dimensional representations of Hc(G).

See [BS13, Proposition 1.3.1] for a proof.

This gives a criterion to check if V/G admits a symplectic resolution.

Corollary B.2. If every character χ of G that annihilates all g[x, y] for g ∈ G, x ∈ V g

and y ∈ V contains the regular character as a direct summand, then V/G admits a
symplectic resolution.

See [BS13] for details and an application.

We use this as follows. Given a symplectic reflection group G, we determine computa-
tionally which direct summands of the regular character of G annihilate all of the above
commutator expressions. If there are none, we can conclude that V/G must admit a
symplectic resolution. If we find a proper summand of the regular character, we have
some evidence encouraging us that no such resolution exists. However, in the latter case
we do not have a definite answer, see [BS13, Remark 1.3.2].
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We now formalize and simplify the computational problem. Let χ1, . . . , χm be the
irreducible characters of G. We need to find all 0 ≤ zi ≤ χi(1) such that for χ =

∑
i ziχi

we have: for all g ∈ G, for all x ∈ V g and all y ∈ V : χ(g[x, y]) = 0. Recall that in Hc(G)
we have the commutator relations

[x, y] =
∑

s∈S(G)

c(s)ωs(x, y)s ,

where ωs is defined as in Section 2.3. First, we get rid of the parameters in these
equations. Write

[x, y][s] :=
∑
t∈[s]

ωt(x, y)t ,

where [s] is the conjugacy class of s in G. Let s1, . . . , sr be a system of representatives
of the conjugacy classes in S(G). We then have [x, y] =

∑
i c(si)[x, y][si]. As χ(g[x, y])

must vanish for generic parameters, we obtain the following system of equations since
characters are linear functions. We need to find all 0 ≤ zi ≤ χi(1) such that for χ =∑

i ziχi we have: for all sj , for all g ∈ G, for all x ∈ V g and all y ∈ V : χ(g[x, y][sj ]) = 0.

We can reduce the number of equations as follows. Let g, h ∈ G. For t ∈ S(G) and
x, y ∈ V , we have ωhth−1(x, y) = ωt(h

−1x, h−1y): Indeed,

(id−hth−1)(x) = x− hth−1x = h(h−1x− th−1x) = h(id−t)(h−1x) .

And hence

ωhth−1(x, y) = ω((id−hth−1)(x), (id−hth−1)(y))

= ω(h(id−t)(h−1x), h(id−t)(h−1y))

= ω((id−t)(h−1x), (id−t)(h−1y))

= ωt(h
−1x, h−1y)

as h leaves ω invariant. Therefore we compute:

hgh−1[x, y][si] =
∑
t∈[si]

ωt(x, y)hgh−1t =
∑
t∈[si]

ωhth−1(x, y)hgh−1hth−1

=
∑
t∈[si]

ωt(h
−1x, h−1y)hgth−1 .

Assume now that there is a character χ of G such that for all x ∈ V g, y ∈ V and
i ∈ {1, . . . , r} we have χ(g[x, y][si]) = 0. Let x′ ∈ V hgh−1

, y′ ∈ V and j ∈ {1, . . . , r} be
arbitrary. Then

χ(hgh−1[x′, y′][sj ]) = χ
( ∑
t∈[sj ]

ωt(h
−1x′, h−1y′)hgth−1

)
= χ(g[h−1x′, h−1y′][sj ]) = 0
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Group
number of

integer points

W (O1) 1424
W (O2) 149,347,520
W (O3) 5,078,468

W (P1) 75,810
W (P2) 59,019,794

E(T6) 302
E(T12) 19,024

Group
number of

integer points

E(O4) 174
E(O8) 6090

E(OT2) 154
E(OT4) 672
E(OT6) 8334

E(I4) 6,245,746

Table B.1.: Number of integer points in the polyhedra arising from some of the groups
in Section 4.4

as χ is a class function and h−1x′ ∈ V g and h−1y′ ∈ V . Hence, it suffices to consider
representatives of conjugacy classes in G.

We arrive at the following system of equations. Let s1, . . . , sr be a system of repre-
sentatives of the conjugacy classes in S(G), let g1, . . . , gs be a system of representatives
of the conjugacy classes in G and let y1, . . . , yn be a basis of V . For any k ∈ {1, . . . , s},
let xk1, . . . , x

k
nk

be a basis of V gk . Write

Ai,j,k,l,m := χi(gk[x
k
l , ym][sj ]) .

By the above discussion and the linearity of characters we need to find all z ∈ Zr with
0 ≤ zi ≤ χi(1) such that for all 1 ≤ j ≤ r, 1 ≤ k ≤ s, 1 ≤ l ≤ nk, 1 ≤ m ≤ n we have

r∑
i=1

ziAi,j,k,l,m = 0 .

Fixing any ordering of the tuples (j, k, l,m) we write the entries Ai,j,k,l,m in the i-th row
of a matrix A. Then we have to search for all integer vectors z ∈ Zr with

zA = 0 and 0 ≤ zi ≤ χi(1) . (B.1)

Note that the entries of A live in a cyclotomic extension K of Q. By considering K as
a Q-vector space we can transform A into a rational matrix, say B. Set

c :=
(
0 · · · 0 χ1(1) · · · χr(1)

)⊤ ∈ Q2r

and consider the polyhedron

P := {w ∈ Qr | Bw = 0,
(−Ir
Ir

)
w ≤ c} .

Then a vector z ∈ Zr is a solution to (B.1) if and only if z ∈ P . This means we have
to find all the integer points contained in P , which can be done using the function
lattice points in OSCAR [Osc23]. However, these computations are quite involved as
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the polyhedra quickly get large. We could only compute the integer points for some of
the groups.

Notice that P always contains at least two integer points corresponding to the vector
0 ∈ Zr and the regular character of G. In Table B.1, we list the number of integer
points we computed. This number is always much higher than 2, so we cannot apply
Corollary B.2 immediately, but rather see this as evidence that the corresponding linear
quotients do not admit a symplectic resolution.

C. Generators of Cox rings related to some complex
reflection groups

We list generators of the Cox ring R(X) of a Q-factorial terminalizationX → C2n/G⊛ for
some complex reflection groups G of rank n. The computations were carried out with our
implementation of Algorithm 6.2.1 in the computer algebra system OSCAR [Osc23]. We
use the matrix models from CHEVIE [GHL+96, Mic15] for the complex reflection groups.
As always, we consider the Cox ring R(X) as a subring of C[x1, . . . , x2n][t±1 , . . . , t

±
k ],

where n is the rank of the complex reflection group G and k the number of conjugacy
classes of reflections in G. We do not repeat our results on the dihedral groups G(d, d, 2)⊛

with d ≥ 3, see Chapter 7. Also, for the Cox rings corresponding to the cyclic groups
Cd ∼= G(de, e, 1)⊛ for d > 1 and e ≥ 1 we refer to [FGL11, Don16, Yam18]. In the
following lists, we mark the generators with which we started Algorithm 6.2.1 with ◦.
For d ∈ Z>0, we denote a primitive d-th root of unity by ζd.

Remark C.1. We do not give the relations of the generators of the Cox rings in the
following simply for reasons of space. These relations can be computed in all cases
using Algorithm 6.3.3. We have been suggested to feed these presentations into the
software package [HK15]. However, as far as we know, many algorithms implemented
in [HK15] require a system of pairwise non-associated Cl(X)-prime generators of R(X),
see already the definition of a ‘bunched ring’ in [Kei14, Definition 1.3.5]. We do not
know whether our generators fulfil this condition; we hope that we can return to this
question in subsequent work.

On the other hand, much of the ‘polyhedral’ data regarding the structure of the GIT
fan, which one might want to compute with [HK15], is already known in the case of
complex reflection groups by [BST18].

G(2, 1, 2) = C2 ≀ S2. The group G(2, 1, 2) is of order 8 and rank 2 generated by(
−1 0
2 1

)
and

(
1 1
0 −1

)
.

There are two conjugacy classes of reflections, both with representatives of order 2. The
commutator subgroup of G(2, 1, 2) is generated by(

−1 0
0 −1

)
.
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We have [G(2, 1, 2), G(2, 1, 2)] ∼= C2 and Ab(G(2, 1, 2)) ∼= C2
2 . Generators of the Cox

ring of a Q-factorial terminalization of C4/G(2, 1, 2)⊛ are given by:

◦ (−x1x3 + 2x1x4 + x2x4)t2

◦ (2x1x2 + x22)t2

◦ (x23 − 2x3x4)t2

◦ x1x3 + x2x4

◦ 2x21 + 2x1x2 + x22

◦ x23 − 2x3x4 + 2x24

◦ (−x1x3 − x2x3 + 2x1x4 + x2x4)t1t2

◦ (−x1x3 − x2x3 + x2x4)t1

◦ (x21 + x1x2)t1

◦ (−x3x4 + x24)t1

t−2
1

t−2
2

Remark C.2. The group G(2, 1, 2)⊛ is also treated in [Gra19, Section 7.4], where a differ-
ent representation is used. This representation is isomorphic to the representation above
and the induced isomorphism of invariant rings then leads immediately to a graded iso-
morphism of the Cox ring given above and the one in [Gra19, Theorem 7.4.9]. If we
label the generators for the Cox ring given above as f1, . . . , f12, then this isomorphism
is defined by

f1 7→ −w21, f2 7→ w22, f3 7→ −w23, f4 7→ −w03, f5 7→ w01, f6 7→ w02,
f7 7→ w3, f8 7→ w11, f9 7→ w12, f10 7→ −w13, f11 7→ s, f12 7→ t,

where wij , s and t are as in [Gra19, Theorem 7.4.9] and w3 := φ3t1t2 with φ3 as in
[Gra19, Proposition 7.4.7].

G(4, 2, 2). The group G(4, 2, 2) is of order 16 and rank 2 generated by(
−1 0
0 1

)
,

(
0 −ζ4
ζ4 0

)
and

(
0 1
1 0

)
.

There are three conjugacy classes of reflections, all with representatives of order 2. The
commutator subgroup of G(4, 2, 2) is generated by(

−1 0
0 −1

)
.

We have [G(4, 2, 2), G(4, 2, 2)] ∼= C2 and Ab(G(4, 2, 2)) ∼= C3
2 . Generators of the Cox

ring of a Q-factorial terminalization of C4/G(4, 2, 2)⊛ are given by:

◦ x1x3 + x2x4
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◦ (−x1x3 + x2x4)t2t3

◦ (−x21 + x22)t2

◦ (−x23 + x24)t2

◦ (x2x3 − x1x4)t1t2

◦ (x21 + x22)t3

◦ (x23 + x24)t3

◦ (x2x3 + x1x4)t1t3

◦ x1x2t1

◦ x3x4t1

t−2
1

t−2
2

t−2
3

C3 ≀ S2 = G(3, 1, 2). The group G(3, 1, 2) is of order 18 and rank 2 generated by(
ζ3 0
0 1

)
and

(
0 1
1 0

)
.

There are three conjugacy classes of reflections, all with representatives of order 2. The
commutator subgroup of G(3, 1, 2) is generated by(

ζ3 0

0 ζ−1
3

)
.

We have [G(3, 1, 2), G(3, 1, 2)] ∼= C3 and Ab(G(3, 1, 2)) ∼= C6. Generators of the Cox ring
of a Q-factorial terminalization of C4/G(3, 1, 2)⊛ are given by:

◦ (−x1x3 + x2x4)t1

◦ x3x4t2t
2
3

◦ x1x3 + x2x4

◦ x1x2t
2
2t3

◦ (x31 − x32)t1

◦ (x33 − x34)t1

◦ (x2x
2
3 − x1x

2
4)t1t

2
2t3

◦ (x22x3 + x21x4)t2t
2
3

◦ (x22x3 − x21x4)t1t2t
2
3

◦ x31 + x32

◦ x33 + x34

◦ (x2x
2
3 + x1x

2
4)t

2
2t3
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t−2
1

t−3
2

t−3
3

G(6, 3, 2). The group G(6, 3, 2) is of order 24 and rank 2 generated by(
−1 0
0 1

)
,

(
0 −ζ3

ζ3 + 1 0

)
and

(
0 1
1 0

)
.

There are two conjugacy classes of reflections, both with representatives of order 2. The
commutator subgroup of G(6, 3, 2) is generated by(

−1 0
0 −1

)
and

(
ζ3 0

0 ζ−1
3

)
.

We have [G(6, 3, 2), G(6, 3, 2)] ∼= C6 and Ab(G(6, 3, 2)) ∼= C2
2 . Generators of the Cox

ring of a Q-factorial terminalization of C4/G(6, 3, 2)⊛ are given by:

◦ (−x1x3 + x2x4)t2

◦ x1x3 + x2x4

◦ x1x2t1

◦ x3x4t1

◦ (x42x
2
3 − x41x

2
4)t

2
1t2

◦ (x22x
4
3 − x21x

4
4)t

2
1t2

◦ (x61 − x62)t2

◦ (x63 − x64)t2

◦ (x52x3 − x51x4)t1t2

◦ (x32x
3
3 − x31x

3
4)t

3
1t2

◦ (x2x
5
3 − x1x

5
4)t1t2

◦ (x42x
2
3 + x41x

2
4)t

2
1

◦ (x22x
4
3 + x21x

4
4)t

2
1

◦ x61 + x62

◦ x63 + x64

◦ (x52x3 + x51x4)t1

◦ (x32x
3
3 + x31x

3
4)t

3
1

◦ (x2x
5
3 + x1x

5
4)t1

t−2
1

t−2
2
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C. Generators of Cox rings related to some complex reflection groups

C4 ≀ S2 = G(4, 1, 2). The group G(4, 1, 2) is of order 32 and rank 2 generated by(
ζ4 0
0 1

)
and

(
0 1
1 0

)
.

There are four conjugacy classes of reflections, two with representatives of order 2 and
two with representatives of order 4. The commutator subgroup of G(4, 1, 2) is generated
by (

ζ4 0
0 −ζ4

)
.

We have [G(4, 1, 2), G(4, 1, 2)] ∼= C4 and Ab(G(4, 1, 2)) ∼= C2 × C4. Generators of the
Cox ring of a Q-factorial terminalization of C4/G(4, 1, 2)⊛ are given by:

◦ x3x4t1t3t
3
4

◦ x1x2t1t
3
3t4

◦ (−x1x3 + x2x4)t2

◦ x1x3 + x2x4

◦ (x32x3 + x31x4)t1t3t
3
4

◦ (x2x
3
3 + x1x

3
4)t1t

3
3t4

◦ (x22x
2
3 − x21x

2
4)t

2
1t2t

2
3t

2
4

◦ (x41 − x42)t2

◦ (x43 − x44)t2

◦ x41 + x42

◦ x43 + x44

◦ (x22x
2
3 + x21x

2
4)t

2
1t

2
3t

2
4

◦ (x32x3 − x31x4)t1t2t3t
3
4

◦ (x2x
3
3 − x1x

3
4)t1t2t

3
3t4

t−2
1

t−2
2

t−4
3

t−4
4

G(8, 4, 2). The group G(8, 4, 2) is of order 32 and rank 2 generated by(
−1 0
0 1

)
,

(
0 ζ−1

8

ζ8 0

)
and

(
0 1
1 0

)
.

There are three conjugacy classes of reflections, all with representatives of order 2. The
commutator subgroup of G(8, 4, 2) is generated by(

ζ4 0
0 −ζ4

)
.
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We have [G(8, 4, 2), G(8, 4, 2)] ∼= C4 and Ab(G(8, 4, 2)) ∼= C3
2 . Generators of the Cox

ring of a Q-factorial terminalization of C4/G(8, 4, 2)⊛ are given by:

◦ x1x3 + x2x4

◦ (−x1x3 + x2x4)t2t3

◦ x1x2t1

◦ x3x4t1

◦ (x32x3 − x31x4)t1t2

◦ (x2x
3
3 − x1x

3
4)t1t2

◦ (x32x3 + x31x4)t1t3

◦ (x2x
3
3 + x1x

3
4)t1t3

◦ (x22x
2
3 + x21x

2
4)t

2
1t3

◦ (x41 + x42)t3

◦ (x43 + x44)t3

◦ (x22x
2
3 − x21x

2
4)t

2
1t2

◦ (x41 − x42)t2

◦ (x43 − x44)t2

t−2
1

t−2
2

t−2
3

G(6, 2, 2). The group G(6, 2, 2) is of order 36 and rank 2 generated by(
ζ3 0
0 1

)
,

(
0 −ζ3

ζ3 + 1 0

)
and

(
0 1
1 0

)
.

There are four conjugacy classes of reflections, two with representatives of order 2 and
two with representatives of order 3. The commutator subgroup of G(6, 2, 2) is generated
by (

ζ3 0
0 ζ23

)
.

We have [G(6, 2, 2), G(6, 2, 2)] ∼= C3 and Ab(G(6, 2, 2)) ∼= C2 × C6. Generators of the
Cox ring of a Q-factorial terminalization of C4/G(6, 2, 2)⊛ are given by:

◦ x1x3 + x2x4

◦ (−x1x3 + x2x4)t1t2

◦ x1x2t
2
3t4

◦ x3x4t3t
2
4
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C. Generators of Cox rings related to some complex reflection groups

◦ (x22x3 − x21x4)t2t3t
2
4

◦ (x2x
2
3 + x1x

2
4)t1t

2
3t4

◦ (x22x3 + x21x4)t1t3t
2
4

◦ (x31 + x32)t1

◦ (x33 + x34)t1

◦ (x31 − x32)t2

◦ (x33 − x34)t2

◦ (x2x
2
3 − x1x

2
4)t2t

2
3t4

t−2
1

t−2
2

t−3
3

t−3
4

G(12, 6, 2). The group G(12, 6, 2) is of order 48 and rank 2 generated by(
−1 0
0 1

)
,

(
0 −ζ312 + ζ12
ζ12 0

)
and

(
0 1
1 0

)
.

There are three conjugacy classes of reflections, all with representatives of order 2. The
commutator subgroup of G(12, 6, 2) is generated by(

ζ6 0

0 ζ−1
6

)
.

We have [G(12, 6, 2), G(12, 6, 2)] ∼= C6 and Ab(G(12, 6, 2)) ∼= C3
2 . Generators of the Cox

ring of a Q-factorial terminalization of C4/G(12, 6, 2)⊛ are given by:

◦ x1x3 + x2x4

◦ (−x1x3 + x2x4)t2t3

◦ x1x2t1

◦ x3x4t1

◦ (x52x3 − x51x4)t1t2

◦ (x32x
3
3 − x31x

3
4)t

3
1t2

◦ (x2x
5
3 − x1x

5
4)t1t2

◦ (x52x3 + x51x4)t1t3

◦ (x32x
3
3 + x31x

3
4)t

3
1t3

◦ (x2x
5
3 + x1x

5
4)t1t3

◦ (x42x
2
3 + x41x

2
4)t

2
1t3
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◦ (x22x
4
3 + x21x

4
4)t

2
1t3

◦ (x61 + x62)t3

◦ (x63 + x64)t3

◦ (x42x
2
3 − x41x

2
4)t

2
1t2

◦ (x22x
4
3 − x21x

4
4)t

2
1t2

◦ (x61 − x62)t2

◦ (x63 − x64)t2

t−2
1

t−2
2

t−2
3

C5 ≀ S2 = G(5, 1, 2). The group G(5, 1, 2) is of order 50 and rank 2 generated by(
ζ5 0
0 1

)
and

(
0 1
1 0

)
.

There are five conjugacy classes of reflections, one with representative of order 2 and
four with representatives of order 5. The commutator subgroup of G(5, 1, 2) is generated
by (

ζ5 0

0 ζ−1
5

)
.

We have [G(5, 1, 2), G(5, 1, 2)] ∼= C5 and Ab(G(5, 1, 2)) ∼= C10. Generators of the Cox
ring of a Q-factorial terminalization of C4/G(5, 1, 2)⊛ are given by:

◦ x3x4t2t
2
3t

3
4t

4
5

◦ x1x2t
4
2t

3
3t

2
4t5

◦ (−x1x3 + x2x4)t1

◦ x1x3 + x2x4

◦ (x22x
3
3 + x21x

3
4)t

3
2t

6
3t

4
4t

2
5

◦ (x2x
4
3 − x1x

4
4)t1t

4
2t

3
3t

2
4t5

◦ (x32x
2
3 − x31x

2
4)t1t

2
2t

4
3t

6
4t

3
5

◦ (x32x
2
3 + x31x

2
4)t

2
2t

4
3t

6
4t

3
5

◦ (x42x3 + x41x4)t2t
2
3t

3
4t

4
5

◦ (x42x3 − x41x4)t1t2t
2
3t

3
4t

4
5

◦ (x2x
4
3 + x1x

4
4)t

4
2t

3
3t

2
4t5

◦ (x51 − x52)t1

◦ (x53 − x54)t1
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◦ (x22x
3
3 − x21x

3
4)t1t

3
2t

6
3t

4
4t

2
5

◦ x51 + x52

◦ x53 + x54

t−2
1

t−5
2

t−5
3

t−5
4

t−5
5

G4. The group G4 is of order 24 and rank 2 generated by(
1 0
0 ζ3

)
and

1

3

(
2ζ3 + 1 ζ3 − 1
2ζ3 − 2 ζ3 + 2

)
.

There are two conjugacy classes of reflections, both with representatives of order 3. The
commutator subgroup of G4 is generated by

1

3

(
−2ζ3 − 1 −ζ3 − 2
−2ζ3 + 2 2ζ3 + 1

)
and

1

3

(
−ζ3 − 1 −ζ3 + 1
−2ζ3 − 4 2ζ3 + 1

)
.

We have [G4, G4] ∼= Q8 and Ab(G4) ∼= C3. Generators of the Cox ring of a Q-factorial
terminalization of C4/G⊛

4 are given by:

◦ x1x3 + x2x4

◦ (x33x4 + x44)t1t
2
2

◦ (x22x
2
3 − 4x21x3x4 + 4x1x2x

2
4)t1t

2
2

◦ (x1x
2
2x3 +

4

3
x31x4 −

1

3
x32x4)t1t

2
2

◦ (x2x
3
3 + 6x1x3x

2
4 − 2x2x

3
4)t

2
1t2

◦ (x1x2x
2
3 − x22x3x4 − 2x21x

2
4)t

2
1t2

◦ (x31x2 +
1

8
x42)t

2
1t2

◦ x43 − 8x3x
3
4

◦ x1x
3
3 − 3x2x

2
3x4 + 4x1x

3
4

◦ x31x3 +
1

2
x32x3 − 3x21x2x4

◦ x41 − x1x
3
2

◦ (x22x
4
3 + 4x21x

3
3x4 − 12x1x2x

2
3x

2
4 + 4x22x3x

3
4 − 8x21x

4
4)t1t

2
2

◦ (x31x
2
2x3 −

1

10
x52x3 −

4

5
x51x4 − x21x

3
2x4)t1t

2
2
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◦ (x2x
5
3 − 10x1x

3
3x

2
4 + 10x2x

2
3x

3
4 + 8x1x

5
4)t

2
1t2

◦ (x31x2x
2
3 −

1

4
x42x

2
3 − 3x21x

2
2x3x4 + 2x41x

2
4 + x1x

3
2x

2
4)t

2
1t2

◦ x63 + 20x33x
3
4 − 8x64

◦ 4x31x
3
3 +

1

2
x32x

3
3 + 18x21x2x

2
3x4 + 9x1x

2
2x3x

2
4 + 4x31x

3
4 + 5x32x

3
4

◦ x61 +
5

2
x31x

3
2 −

1

8
x62

(x32x
3
3 + 12x21x2x

2
3x4 − 6x1x

2
2x3x

2
4 + 8x31x

3
4 + 2x32x

3
4)t

3
1t

3
2

t−3
1

t−3
2

G5. The group G5 is of order 72 and rank 2 generated by(
1 0
0 ζ3

)
and

1

3

(
ζ3 + 2 −ζ3 + 1

−2ζ3 + 2 2ζ3 + 1

)
.

There are four conjugacy classes of reflections, all with representatives of order 3. The
commutator subgroup of G5 is generated by

1

3

(
−2ζ3 − 1 −ζ3 − 2
−2ζ3 + 2 2ζ3 + 1

)
and

1

3

(
−2ζ3 − 1 2ζ3 + 1
4ζ3 + 2 2ζ3 + 1

)
.

We have [G5, G5] ∼= Q8 and Ab(G5) ∼= C2
3 . Generators of the Cox ring of a Q-factorial

terminalization of C4/G⊛
5 are given by:

◦ x1x3 + x2x4

◦ (x1x
2
2x3 +

4

3
x31x4 −

1

3
x32x4)t1t

2
2

◦ (x33x4 + x44)t1t
2
2

◦ (x31x2 +
1

8
x42)t

2
1t2

◦ (x2x
3
3 + 6x1x3x

2
4 − 2x2x

3
4)t

2
1t2

◦ (x1x
3
3 − 3x2x

2
3x4 + 4x1x

3
4)t

2
3t4

◦ (x41 − x1x
3
2)t

2
3t4

◦ (x22x
2
3 − 4x21x3x4 + 4x1x2x

2
4)t1t

2
2t

2
3t4

◦ (x1x2x
2
3 − x22x3x4 − 2x21x

2
4)t

2
1t2t3t

2
4

◦ (x31x3 +
1

2
x32x3 − 3x21x2x4)t3t

2
4

◦ (x43 − 8x3x
3
4)t3t

2
4

◦ (x31x
2
2x3 −

1

10
x52x3 −

4

5
x51x4 − x21x

3
2x4)t1t

2
2t3t

2
4
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◦ (x22x
4
3 + 4x21x

3
3x4 − 12x1x2x

2
3x

2
4 + 4x22x3x

3
4 − 8x21x

4
4)t1t

2
2t3t

2
4

◦ x31x
3
3 − x32x

3
3 − 9x21x2x

2
3x4 + 9x1x

2
2x3x

2
4 − 8x31x

3
4 − x32x

3
4

◦ x61 +
5

2
x31x

3
2 −

1

8
x62

◦ x63 + 20x33x
3
4 − 8x64

◦ (x31x2x
2
3 −

1

4
x42x

2
3 − 3x21x

2
2x3x4 + 2x41x

2
4 + x1x

3
2x

2
4)t

2
1t2t

2
3t4

◦ (x2x
5
3 − 10x1x

3
3x

2
4 + 10x2x

2
3x

3
4 + 8x1x

5
4)t

2
1t2t

2
3t4

(x32x
3
3 + 12x21x2x

2
3x4 − 6x1x

2
2x3x

2
4 + 8x31x

3
4 + 2x32x

3
4)t

3
1t

3
2

(2x31x
3
3 − x32x

3
3 − 6x21x2x

2
3x4 + 12x1x

2
2x3x

2
4 − 8x31x

3
4)t

3
3t

3
4

t−3
1

t−3
2

t−3
3

t−3
4

G6. The group G6 is of order 48 and rank 2 generated by(
1 0
0 ζ212 − 1

)
and

1

3

(
−ζ312 + 2ζ12 −ζ312 + 2ζ12
−2ζ312 + 4ζ12 ζ312 − 2ζ12

)
.

There are three conjugacy classes of reflections, two with representatives of order 3 and
one with representative of order 2. The commutator subgroup of G6 is generated by

1

3

(
2ζ212 − 1 −ζ212 + 2
−2ζ212 − 2 −2ζ212 + 1

)
and

(
2ζ212 − 1 2ζ212 − 1
4ζ212 − 2 −2ζ212 + 1

)
.

We have [G6, G6] ∼= Q8 and Ab(G6) ∼= C6. Generators of the Cox ring of a Q-factorial
terminalization of C4/G⊛

6 are given by:

◦ x1x3 + x2x4

◦ (x1x2x
2
3 − x22x3x4 + 2x21x

2
4)t

2
1t2

◦ (x31x2 −
1

8
x42)t

2
1t2

◦ (x22x
2
3 + 4x21x3x4 − 4x1x2x

2
4)t1t

2
2

◦ (x33x4 − x44)t1t
2
2

◦ (x1x
2
2x3 −

4

3
x31x4 −

1

3
x32x4)t1t

2
2t3

◦ (x2x
3
3 − 6x1x3x

2
4 + 2x2x

3
4)t

2
1t2t3

◦ (x31x3 −
1

2
x32x3 − 3x21x2x4)t3

◦ (x1x
3
3 − 3x2x

2
3x4 − 4x1x

3
4)t3
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◦ x41 + x1x
3
2

◦ x43 + 8x3x
3
4

◦ (x2x
5
3 + 10x1x

3
3x

2
4 − 10x2x

2
3x

3
4 + 8x1x

5
4)t

2
1t2

◦ (x31x
2
2x3 +

1

10
x52x3 +

4

5
x51x4 − x21x

3
2x4)t1t

2
2

◦ (x22x
4
3 − 4x21x

3
3x4 + 12x1x2x

2
3x

2
4 − 4x22x3x

3
4 − 8x21x

4
4)t1t

2
2t3

◦ (x31x2x
2
3 +

1

4
x42x

2
3 − 3x21x

2
2x3x4 − 2x41x

2
4 + x1x

3
2x

2
4)t

2
1t2t3

◦ (x61 −
5

2
x31x

3
2 −

1

8
x62)t3

◦ (x63 − 20x33x
3
4 − 8x64)t3

◦ (x31x
3
3 + x32x

3
3 − 9x21x2x

2
3x4 + 9x1x

2
2x3x

2
4 + 8x31x

3
4 − x32x

3
4)t

2
3

(−x32x33 + 12x21x2x
2
3x4 − 6x1x

2
2x3x

2
4 − 8x31x

3
4 + 2x32x

3
4)t

3
1t

3
2

t−3
1

t−3
2

t−2
3

G7. The group G7 is of order 144 and rank 2 generated by(
1 0
0 −1

)
, A :=

1

2

(
−ζ312 + ζ212 + ζ12 −ζ312 + ζ212 + ζ12
−ζ312 − ζ212 + ζ12 ζ312 + ζ212 − ζ12

)
and A⊤.

There are five conjugacy classes of reflections, one with representative of order 2 and
four with representatives of order 2. The commutator subgroup of G7 is generated by(

0 −1
1 0

)
and

(
0 ζ312
ζ312 0

)
.

We have [G7, G7] ∼= Q8 and Ab(G7) ∼= C3 × C6. Generators of the Cox ring of a
Q-factorial terminalization of C4/G⊛

7 are given by:

◦ x1x3 + x2x4

◦ ((1 − 2ζ212)x2x
3
3 + 3x1x

2
3x4 − 3x2x3x

2
4 + (−1 + 2ζ212)x1x

3
4)t1t

2
3t4

◦ ((−1 + 2ζ212)x
4
3 + 6x23x

2
4 + (−1 + 2ζ212)x

4
4)t2t

2
5

◦ ((−1 + 2ζ212)x
4
1 + 6x21x

2
2 + (−1 + 2ζ212)x

4
2)t

2
3t4

◦ (3x21x2x3 + (1 − 2ζ212)x
3
2x3 + (−1 + 2ζ212)x

3
1x4 − 3x1x

2
2x4)t1t3t

2
4

◦ (3x21x2x3 + (−1 + 2ζ212)x
3
2x3 + (1 − 2ζ212)x

3
1x4 − 3x1x

2
2x4)t1t2t

2
5

◦ ((1 − 2ζ212)x
4
1 + 6x21x

2
2 + (1 − 2ζ212)x

4
2)t

2
2t5

◦ (x21x
2
3 + (−1 + 2ζ212)x

2
2x

2
3 − 4x1x2x3x4 + (−1 + 2ζ212)x

2
1x

2
4 + x22x

2
4)t

2
2t3t

2
4t5

◦ ((1 − 2ζ212)x
4
3 + 6x23x

2
4 + (1 − 2ζ212)x

4
4)t3t

2
4
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◦ (x21x
2
3 + (1 − 2ζ212)x

2
2x

2
3 − 4x1x2x3x4 + (1 − 2ζ212)x

2
1x

2
4 + x22x

2
4)t2t

2
3t4t

2
5

◦ ((−1 + 2ζ212)x2x
3
3 + 3x1x

2
3x4 − 3x2x3x

2
4 + (1 − 2ζ212)x1x

3
4)t1t

2
2t5

◦ (2x1x
3
2x

2
3 + x41x3x4 − x42x3x4 − 2x31x2x

2
4)t1t

2
2t

2
3t4t5

◦ (x1x2x
4
3 − 2x22x

3
3x4 + 2x21x3x

3
4 − x1x2x

4
4)t1t2t3t

2
4t

2
5

◦ (x1x
2
2x

3
3 − x32x

2
3x4 − x31x3x

2
4 + x21x2x

3
4)t

2
1

◦ (−x1x53 + 5x2x
4
3x4 + 5x1x3x

4
4 − x2x

5
4)t

2
2t

2
3t4t5

◦ (x51x2 − x1x
5
2)t1

◦ (x53x4 − x3x
5
4)t1

◦ (x51x3 − 5x1x
4
2x3 − 5x41x2x4 + x52x4)t2t3t

2
4t

2
5

(x31x
3
3 + (−3 + 6ζ212)x1x

2
2x

3
3 + 3x21x2x

2
3x4 + (3 − 6ζ212)x

3
2x

2
3x4

+ (3 − 6ζ212)x
3
1x3x

2
4 + 3x1x

2
2x3x

2
4 + (−3 + 6ζ212)x

2
1x2x

3
4 + x32x

3
4)t

3
2t

3
5

((−1 + 2ζ212)x
3
1x

3
3 + 9x1x

2
2x

3
3 + (−3 + 6ζ212)x

2
1x2x

2
3x4 − 9x32x

2
3x4 − 9x31x3x

2
4

+ (−3 + 6ζ212)x1x
2
2x3x

2
4 + 9x21x2x

3
4 + (−1 + 2ζ212)x

3
2x

3
4)t

3
3t

3
4

t−2
1

t−3
2

t−3
3

t−3
4

t−3
5

D. Yamagishi’s algorithm in OSCAR: an example

We give an example of how one can use our implementation of Algorithm 6.2.1 in OSCAR
[Osc23]. See Chapter 6 and in particular Section 6.4 for references of the implemented
algorithms. OSCAR is a software package written in the programming language Julia
[BEKS17]; see the website

https://www.oscar-system.org/install/

for installation instructions. Our implementation and the related functionality is still
under development and we cannot guarantee that the interface remains completely the
same in the future. Further, the relevant code is so far only contained in a developer
version of OSCAR. In order to reproduce our presentation below, the same version of
OSCAR that was used to write this section can be installed by entering

julia> Pkg.add(url="https://github.com/oscar-system/Oscar.jl",

rev="c58ae9abd999507d95d325d525dd7ad877831bbc")

instead of Pkg.add("Oscar") during the installation. After the installation, OSCAR
can be loaded by:
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julia> using Oscar

In the following, we compute the Cox ring of a Q-factorial terminalization of the linear
quotient by the symplectic reflection group G⊛

4 . This group can be defined over a cyc-
lotomic extension of Q of order 3, but in our implementation, we require that the field
contains an e-th root of unity, where e is the exponent of the group. In case of G⊛

4 , we
hence need to work over a cyclotomic extension of order 12.

julia> K, a = cyclotomic_field(12, "a");

We now enter the generators for the group over this field.

julia> g1 = matrix(K, 4, 4, [ 1 0 0 0;

0 a^4 0 0;

0 0 1 0;

0 0 0 a^-4 ]);

julia> g2 = 1//3*matrix(K, 4, 4, [ 2*a^4 + 1 a^4 - 1 0 0;

2*a^4 - 2 a^4 + 2 0 0;

0 0 -2*a^4 - 1 -2*a^4 - 4;

0 0 -a^4 - 2 -a^4 + 1 ]);

We set up the group and the corresponding linear quotient as follows.

julia> G = matrix_group(g1, g2);

julia> L = linear_quotient(G);

Note that the latter command does not do any computations, but only sets up a ‘con-
tainer’. We now ask for representatives of the conjugacy classes of junior elements in G⊛

4 .
Recall that the property of being junior is defined with respect to a fixed root of unity.
In OSCAR, there is the function Oscar.fixed root of unity(L), which returns a fixed
e-th root of unity stored in L, where e is the exponent of G⊛

4 , to ensure consistency of the
computations. Since these functions are still under development, they are not ‘exported’
in OSCAR, so we have to write ‘Oscar.’ in front.

julia> zeta = Oscar.fixed_root_of_unity(L);

julia> Oscar.representatives_of_junior_elements(G, zeta)

2-element Vector{MatrixGroupElem{nf_elem,

AbstractAlgebra.Generic.MatSpaceElem{nf_elem}}}:

[1 0 0 0; 0 -a^2 0 0; 0 0 1 0; 0 0 0 a^2-1]

[1 0 0 0; 0 a^2-1 0 0; 0 0 1 0; 0 0 0 -a^2]

We see that there are two conjugacy classes of junior elements in G⊛
4 . We can also check

whether C4/G⊛
4 has canonical or terminal singularities. This uses the Reid–Tai criterion

[Kol13, Theorem 3.21] in the background.
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julia> has_canonical_singularities(L)

true

julia> has_terminal_singularities(L)

false

We compute the Cox ring of the linear quotient C4/G⊛
4 itself:

julia> RVG, RVGtoR = cox_ring(L);

This returns the Cox ring R(C4/G⊛
4 ) as an affine algebra RVG and a map RVGtoR from

this ring to the polynomial ring C[x1, . . . , x4], that is, the coordinate ring of the vector
space C4. The latter is relevant to obtain an explicit description of the generators of the
Cox ring:

julia> map(RVGtoR, gens(RVG))

18-element Vector{MPolyDecRingElem{nf_elem,

AbstractAlgebra.Generic.MPoly{nf_elem}}}:

x[1]*x[3] + x[2]*x[4]

x[3]^3*x[4] + x[4]^4

x[2]^2*x[3]^2 - 4*x[1]^2*x[3]*x[4] + 4*x[1]*x[2]*x[4]^2

x[1]*x[2]^2*x[3] + 4//3*x[1]^3*x[4] - 1//3*x[2]^3*x[4]

x[2]*x[3]^3 + 6*x[1]*x[3]*x[4]^2 - 2*x[2]*x[4]^3

x[1]*x[2]*x[3]^2 - x[2]^2*x[3]*x[4] - 2*x[1]^2*x[4]^2

x[1]^3*x[2] + 1//8*x[2]^4

x[3]^4 - 8*x[3]*x[4]^3

x[1]*x[3]^3 - 3*x[2]*x[3]^2*x[4] + 4*x[1]*x[4]^3

x[1]^3*x[3] + 1//2*x[2]^3*x[3] - 3*x[1]^2*x[2]*x[4]

x[1]^4 - x[1]*x[2]^3

x[2]^2*x[3]^4 + 4*x[1]^2*x[3]^3*x[4] - 12*x[1]*x[2]*x[3]^2*x[4]^2

+ 4*x[2]^2*x[3]*x[4]^3 - 8*x[1]^2*x[4]^4

x[1]^3*x[2]^2*x[3] - 1//10*x[2]^5*x[3] - 4//5*x[1]^5*x[4]

- x[1]^2*x[2]^3*x[4]

x[2]*x[3]^5 - 10*x[1]*x[3]^3*x[4]^2 + 10*x[2]*x[3]^2*x[4]^3

+ 8*x[1]*x[4]^5

x[1]^3*x[2]*x[3]^2 - 1//4*x[2]^4*x[3]^2 - 3*x[1]^2*x[2]^2*x[3]*x[4]

+ 2*x[1]^4*x[4]^2 + x[1]*x[2]^3*x[4]^2

x[3]^6 + 20*x[3]^3*x[4]^3 - 8*x[4]^6

x[1]^3*x[3]^3 + 1//8*x[2]^3*x[3]^3 + 9//2*x[1]^2*x[2]*x[3]^2*x[4]

+ 9//4*x[1]*x[2]^2*x[3]*x[4]^2 + x[1]^3*x[4]^3 + 5//4*x[2]^3*x[4]^3

x[1]^6 + 5//2*x[1]^3*x[2]^3 - 1//8*x[2]^6

The Cox ring is graded by the class group of C4/G⊛
4 and we can ask for the degree of a

generator. This makes use of the functionality of graded rings provided by OSCAR.

julia> grading_group(RVG)
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GrpAb: Z/3

julia> degree(gen(RVG, 1))

Element of

GrpAb: Z/3

with components [0]

Finally, we compute the Cox ring of a Q-factorial terminalization X → C4/G⊛
4 . Again,

this returns the ring as an affine algebra and a ‘structure morphism’, which maps to
the Laurent polynomial ring C[x1, . . . , x4][t

±
1 , t

±
2 ]. Note that the next command might

compute for a few minutes.

julia> RX, RXtoRt = Oscar.cox_ring_of_qq_factorial_terminalization(L);

To obtain the generators as elements of C[x1, . . . , x4][t
±
1 , t

±
2 ], we do:

julia> map(RXtoRt, gens(RX))

21-element Vector{...}:

x[1]*x[3] + x[2]*x[4]

(x[3]^3*x[4] + x[4]^4)*t1*t2^2

(x[2]^2*x[3]^2 - 4*x[1]^2*x[3]*x[4] + 4*x[1]*x[2]*x[4]^2)*t1*t2^2

(x[1]*x[2]^2*x[3] + 4//3*x[1]^3*x[4] - 1//3*x[2]^3*x[4])*t1*t2^2

(x[2]*x[3]^3 + 6*x[1]*x[3]*x[4]^2 - 2*x[2]*x[4]^3)*t1^2*t2

(x[1]*x[2]*x[3]^2 - x[2]^2*x[3]*x[4] - 2*x[1]^2*x[4]^2)*t1^2*t2

(x[1]^3*x[2] + 1//8*x[2]^4)*t1^2*t2

x[3]^4 - 8*x[3]*x[4]^3

x[1]*x[3]^3 - 3*x[2]*x[3]^2*x[4] + 4*x[1]*x[4]^3

x[1]^3*x[3] + 1//2*x[2]^3*x[3] - 3*x[1]^2*x[2]*x[4]

x[1]^4 - x[1]*x[2]^3

(x[2]^2*x[3]^4 + 4*x[1]^2*x[3]^3*x[4] - 12*x[1]*x[2]*x[3]^2*x[4]^2

+ 4*x[2]^2*x[3]*x[4]^3 - 8*x[1]^2*x[4]^4)*t1*t2^2

(x[1]^3*x[2]^2*x[3] - 1//10*x[2]^5*x[3] - 4//5*x[1]^5*x[4]

- x[1]^2*x[2]^3*x[4])*t1*t2^2

(x[2]*x[3]^5 - 10*x[1]*x[3]^3*x[4]^2 + 10*x[2]*x[3]^2*x[4]^3

+ 8*x[1]*x[4]^5)*t1^2*t2

(x[1]^3*x[2]*x[3]^2 - 1//4*x[2]^4*x[3]^2 - 3*x[1]^2*x[2]^2*x[3]*x[4]

+ 2*x[1]^4*x[4]^2 + x[1]*x[2]^3*x[4]^2)*t1^2*t2

x[3]^6 + 20*x[3]^3*x[4]^3 - 8*x[4]^6

x[1]^3*x[3]^3 + 1//8*x[2]^3*x[3]^3 + 9//2*x[1]^2*x[2]*x[3]^2*x[4]

+ 9//4*x[1]*x[2]^2*x[3]*x[4]^2 + x[1]^3*x[4]^3 + 5//4*x[2]^3*x[4]^3

x[1]^6 + 5//2*x[1]^3*x[2]^3 - 1//8*x[2]^6

(-1//8*x[2]^3*x[3]^3 - 3//2*x[1]^2*x[2]*x[3]^2*x[4]

+ 3//4*x[1]*x[2]^2*x[3]*x[4]^2 - x[1]^3*x[4]^3

- 1//4*x[2]^3*x[4]^3)*t1^3*t2^3

t1^-3

t2^-3
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The ring R(X) is graded by the class group Cl(X) ∼= Z2 via the degrees of the variables
t1 and t2.

julia> grading_group(RX)

GrpAb: Z^2

julia> degree(gen(RX, 1))

graded by [0 0]

julia> degree(gen(RX, 2))

graded by [1 2]
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[BBF+23] Gwyn Bellamy, Cédric Bonnafé, Baohua Fu, Daniel Juteau, Paul Levy and
Eric Sommers, A new family of isolated symplectic singularities with trivial
local fundamental group, Proc. Lond. Math. Soc. (2023), to appear.

[BC20] Gwyn Bellamy and Alastair Craw, Birational geometry of symplectic quotient
singularities, Invent. Math. 222 (2020), no. 2, 399–468.

[BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon and James McKernan,
Existence of minimal models for varieties of log general type, J. Amer. Math.
Soc. 23 (2010), no. 2, 405–468.

[BCP97] Wieb Bosma, John Cannon and Catherine Playoust, The Magma algebra
system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–
265, Computational algebra and number theory (London, 1993).

[BCR+21] Gwyn Bellamy, Alastair Craw, Steven Rayan, Travis Schedler and Hartmut
Weiss, All 81 crepant resolutions of a finite quotient singularity are hyper-
polygon spaces, 2021, preprint, https://arxiv.org/abs/2112.09878.

[Bea00] Arnaud Beauville, Symplectic singularities, Invent. Math. 139 (2000), no. 3,
541–549.

[BEKS17] Jeff Bezanson, Alan Edelman, Stefan Karpinski and Viral B. Shah, Julia: a
fresh approach to numerical computing, SIAM Rev. 59 (2017), no. 1, 65–98.

139

https://arxiv.org/abs/2112.09878


BIBLIOGRAPHY

[Bel09] Gwyn Bellamy, On singular Calogero–Moser spaces, Bull. Lond. Math. Soc.
41 (2009), no. 2, 315–326.

[Bel10] Gwyn Bellamy, Generalized Calogero–Moser spaces and rational Cherednik
algebras, PhD thesis, University of Edinburgh, 2010.

[Ben93] David J. Benson, Polynomial invariants of finite groups, London Mathe-
matical Society Lecture Note Series, vol. 190, Cambridge University Press,
Cambridge, 1993.

[BG03] Kenneth A. Brown and Iain Gordon, Poisson orders, symplectic reflection
algebras and representation theory, J. Reine Angew. Math. 559 (2003), 193–
216.

[BKZ18] Yakov G. Berkovich, Lev S. Kazarin and Emmanuel M. Zhmud’, Characters
of finite groups. Vol. 1, second ed., De Gruyter Expositions in Mathematics,
vol. 63, De Gruyter, Berlin, 2018.

[Bou68] Nicolas Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et
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tions of a 4-dimensional quotient by a group of order 32, Kyoto J. Math. 57
(2017), no. 2, 395–434.

[EG02] Pavel Etingof and Victor Ginzburg, Symplectic reflection algebras, Calogero–
Moser space, and deformed Harish–Chandra homomorphism, Invent. Math.
147 (2002), no. 2, 243–348.

[Eis95] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol.
150, Springer-Verlag, New York, 1995, With a view toward algebraic geo-
metry.

[Fei82] Walter Feit, The representation theory of finite groups, North-Holland Math-
ematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New
York, 1982.

141

https://arxiv.org/abs/1504.07463
https://arxiv.org/abs/1504.07463


BIBLIOGRAPHY
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