
On Algorithmic Certification
of Graph Structures

Oliver Bachtler

Vom Fachbereich Mathematik
der Rheinland-Pfälzischen Technischen Universität

Kaiserslautern-Landau
zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften
(Doctor rerum naturalium, Dr. rer. nat.)

genehmigte Dissertation

Gutachter: Prof. Dr. Sven Oliver Krumke
Prof. Dr. Ir. Arie M.C.A. Koster

Datum der Disputation: 30.03.2023

DE-386

Abstract

Many open problems in graph theory aim to verify that a specific class of graphs has a
certain property. One example, which we study extensively in this thesis, is the 3-decom-
position conjecture. It states that every cubic graph can be decomposed into a spanning
tree, cycles, and a matching. Our most noteworthy contributions to this conjecture are
a proof that graphs which are star-like satisfy the conjecture and that several small
graphs, which we call forbidden subgraphs, cannot be part of minimal counterexamples.
These star-like graphs are a natural generalisation of Hamiltonian graphs in this context
and encompass an infinite family of graphs for which the conjecture was not known
previously. Moreover, we use the forbidden subgraphs we determined to deduce that
3-connected cubic graphs of path-width at most 4 satisfy the 3-decomposition conjecture:
we do this by showing that the path-width restriction causes one of these forbidden
subgraphs to appear.

In the second part of this thesis, we delve deeper into two steps of the proof that
3-connected cubic graphs of path-width 4 satisfy the conjecture. These steps involve a
significant amount of case distinctions and, as such, are impractical to extend to larger
path-width values. We show how to formalise the techniques used in such a way that
they can be implemented and solved algorithmically. As a result, only the work that
is ‘interesting’ to do remains and the many ‘straightforward’ parts can now be done by
a computer. While one step is specific to the 3-decomposition conjecture, we derive a
general algorithm for the other. This algorithm takes a class of graphs G as an input,
together with a set of graphs U , and a path-width bound k. It then attempts to answer
the following question: does any graph in G that has path-width at most k contain a
subgraph in U? We show that this problem is undecidable in general, so our algorithm
does not always terminate, but we also provide a general criterion that guarantees
termination.

In the final part of this thesis we investigate two connectivity problems on directed
graphs. We prove that verifying the existence of an st-path in a local certification setting,
cannot be achieved with a constant number of bits. More precisely, we show that a
proof labelling scheme needs Θ(log ∆) many bits, where ∆ denotes the maximum degree.
Furthermore, we investigate the complexity of the separating by forbidden pairs problem,
which asks for the smallest number of arc pairs that are needed such that any st-path
completely contains at least one such pair. We show that the corresponding decision
problem in Σ2P-complete.

iii

Zusammenfassung

Viele offene Probleme in der Graphentheorie beschäftigen sich mit dem Nachweis einer
speziellen Eigenschaft für eine bestimmte Klasse von Graphen. Ein Beispiel, welches wir
in dieser Arbeit detailliert untersuchen, ist die 3-Zerlegungsvermutung. Diese besagt, dass
jeder kubische Graph in einen Spannbaum, Kreise und ein Matching zerlegt werden kann.
Unsere wichtigsten Beiträge zu dieser Vermutung sind ein Beweis, dass sternförmige
Graphen die Vermutung erfüllen und dass mehrere kleine Graphen, die wir verbotene
Subgraphen nennen, nicht Teil minimaler Gegenbeispiele sind. Dabei sind sternförmige
Graphen eine natürliche Verallgemeinerung von Graphen die einem Hamiltonkeis besitzen
und es gibt eine unendliche Familie von sternförmigen Graphen, für die die Vermutung
bisher nicht geklärt war. Darüber hinaus verwenden wir die verbotenen Subgraphen, um
zu beweisen, dass 3-zusammenhängende kubische Graphen mit Pfadweite höchstens 4 die
3-Zerlegungsvermutung erfüllen: Dazu zeigen wir, dass die Beschränkung der Pfadweite
dazu führt, dass einer der verbotenen Subgraphen auftauchen muss.

Im zweiten Teil dieser Arbeit schauen wir uns zwei Schritte des Beweises, dass 3-zu-
sammenhängende kubische Graphen mit Pfadweite höchstens 4 die Vermutung erfüllen,
genauer an. Diese Schritte sind für den Großteil der Fallunterscheidungen verantwortlich
und führen dazu, dass der Beweis sich schlecht auf größere Werte für die Pfadweite
fortsetzt. Deshalb formalisieren wir die verwendeten Techniken so, dass man sie imple-
mentieren und diese Schritte algorithmisch lösen kann. Dies führt dazu, dass man sich bei
den Beweisen auf die „interessanten“ Teile fokussieren kann und die vielen „geradlinigen“
Schritte überprüft ein Computer. Ersterer der beiden Schritte ist spezifisch für die
3-Zerlegungsvermutung. Den zweiten behandeln wir jedoch allgemeiner und entwickeln
dafür einen Algorithmus, der als Eingabe eine Klasse von Graphen G, eine Menge von
Graphen U und eine Pfadweitebeschränkung k nimmt. Dieser Algorithmus versucht nun,
folgende Frage zu beantworten: Enthält jeder Graph in G der Pfadweite höchstens k
einen Subgraph in U? Wir zeigen, dass dieses Problem im Allgemeinen unentscheidbar
ist, womit der Algorithmus im Allgemeinen nicht terminieren muss, aber wir beweisen
auch ein Terminierungskriterium.

Im letzten Teil behandeln wir zwei Zusammenhangsprobleme auf gerichteten Graphen.
Wir zeigen, dass eine konstante Anzahl Bits nicht ausreicht, um lokal zu überprüfen,
ob ein st-Pfad in einem Graph existiert. Genauer gesagt, beweisen wir, dass ein Proof
Labelling Scheme Θ(log ∆) Bits für diese Aufgabe benötigt, wobei ∆ der Maximalgrad ist.
Weiterhin analysieren wir die Komplexität des Separating by Forbidden Pairs Problems,
das die geringste Anzahl an Kantenpaaren sucht, sodass jeder st-Pfad mindestens ein
Paar komplett enthält. Wir zeigen, dass dieses Problem Σ2P-vollständig ist.

v

Acknowledgements

I cannot begin to express my gratitude to my supervisor Sven O. Krumke for everything
he has done for me. Aside from giving me free rein to pursue my research interests,
he was (and still is) always there to encourage and support me. I am also extremely
thankful to Irene Heinrich and Pascal Schweitzer for going out of their way to assist me
with helpful suggestions, advice, and insights.

Special thanks go to my co-authors Tim Bergner, Irene Heinrich, and Sven O. Krumke,
who all provided invaluable contributions to this work. It is a joy to work with all of
you. I also wish to thank my external examiner Prof. Dr. Ir. Arie M.C.A. Koster for
agreeing to read and evaluate this thesis.

I very much appreciate the time and effort my proofreaders put into reading this thesis.
Thank you, Tim Bergner, Sebastian Blauth, Jan Böckmann, Tobias Dietz, Christoph
Geis, Nils Hausbrandt, Irene Heinrich, Stephan Helfrich, Helena Petri, Kathrin Prinz,
Adrian Rettich, and Eva Schmidt for all your useful feedback.

Many thanks also go to all my colleagues, current and former, in the optimisation group
for all the fruitful discussions and nice work atmosphere that make coming to work every
day both beneficial and enjoyable.

Finally, I am grateful to my family for their unwavering support.

vii

Contents

1. Introduction 1

2. Preliminaries 7
2.1. Graph theory . 7
2.2. Complexity theory . 14
2.3. Local certification . 15

I. The 3-Decomposition Conjecture 19

3. Known and Preliminary Results 21
3.1. Equivalent conjectures . 22
3.2. Studied classes . 27
3.3. Finding non-separating cycles . 28
3.4. A relaxation of the conjecture . 39

4. Star-Like Graphs 45
4.1. Decompositions and their extension . 47
4.2. Finding decompositions in cycles . 51
4.3. Proof of the main theorem . 58
4.4. Extending the decompositions . 59
4.5. New graphs for which the 3-decomposition conjecture holds 61

5. Reducible Configurations and Minimum Counterexamples 67
5.1. Extensions and reductions . 68
5.2. New reducible configurations . 72
5.3. Properties of minimum counterexamples 79

II. Algorithmic Proof Support 85

6. Naive Extensions 87
6.1. Algorithmically checking 3-compatibility 87
6.2. The complexity of naive extensions . 90
6.3. 3-decompositions for small graphs . 92

ix

Contents

7. Unavoidable Structures 95
7.1. The base algorithm . 97
7.2. Isomorphism rejection . 102
7.3. Achieving termination . 105
7.4. Tailoring the algorithm to cubic graphs 114
7.5. Unavoidable minors and induced subgraphs 117
7.6. Revisiting Lemma 5.20 . 117

8. Relating the Girth and Path-Width of Cubic Graphs 121
8.1. A first bound on the girth . 124
8.2. A second bound on the girth . 128
8.3. Classifying cubic graphs of path-width 3 and girth 4 135

III. Two Graph Connectivity Problems 141

9. Local Certification of Reachability 143
9.1. Two examples of proof labelling schemes 145
9.2. A lower bound for the reachability problem 147

10. Separating by Forbidden Pairs 151
10.1. An overview of ADP . 154
10.2. The complexity of SFP . 155

11. Conclusion and Future Research 171

A. Straightforward Extensions of 3-Decompositions 173

Bibliography 179

x

Chapter 1.
Introduction

Many results and conjectures in graph theory are of the following (very generic) form,
where G is a class of graphs and π is some property.

Generic Conjecture. Every graph in G satisfies π. ◁

Examples are Dirac’s theorem [Dir52], which states that every graph G whose minimum
degree is at least |V G|

2 is Hamiltonian, and the four colour theorem [AH77, AHK77],
which states that every loopless planar graph has chromatic number at most 4. The
conjecture we extensively study is called the 3-decomposition conjecture [Hof11] which
is of the form above.

3-Decomposition Conjecture. Every finite connected cubic graph has a decomposi-
tion consisting of a spanning tree, a 2-regular subgraph, and a matching. ◁

Such decompositions are called 3-decompositions and Figure 1.1 depicts four examples.

To keep the 3-decomposition conjecture company, we add two more well-known con-
jectures to the mix: the cycle double cover conjecture [Sze73, Sey79] states that every
bridgeless graph has a family of cycles such that every edge is covered exactly twice and
the Berge-Fulkerson conjecture [Ful71] claims that every bridgeless cubic graph has a
family of six perfect matchings such that every edge is covered exactly twice.

A common approach to studying such conjectures is to derive properties satisfied by
every minimum counterexample, in case counterexamples exist. Here, a minimum
counterexample is just a counterexample that is minimal in some sense, usually with
respect to the number of vertices. For all the stated conjectures, such results exist. For

Figure 1.1.: Examples of 3-decompositions for four small cubic graphs. The green edges
are part of the spanning tree, the red ones make up the 2-regular subgraph,
and the blue edges form a matching.

1

Chapter 1. Introduction

example, no minimum counterexample to the 3-decomposition conjecture contains a
triangle [Bac15, Hei20]. The cycle double cover conjecture can be reduced to snarks
of girth at least 12 [Jae85, Huc00]. (Snarks are cubic, cyclically 4-edge-connected
graphs that are not 3-edge-colourable.) Similarly, the Berge-Fulkerson conjecture needs
a cyclically 5-edge-connected snark as a minimum counterexample [MM20].

Such properties are generally obtained as follows: let G be a minimum counterexample.
Then, using some operation, a smaller graph G′ is generated from G, which is not a
counterexample and, therefore, satisfies π. This graph is then used to show that G also
satisfies π, contradicting that it is a counterexample. The last step heavily depends on
how G′ was generated from G and this has to be done in a way that is compatible with
the property π. Usually, one can use this method to determine structures that cannot be
part of a minimum counterexample, like the triangle for the 3-decomposition conjecture
or certain edge-cuts for the cycle double cover and Berge-Fulkerson conjectures.

Even if one cannot prove the conjecture in its entirety this way, it is oftentimes possible
to rule out certain graphs, for example, those of small path- or tree-width. This works by
showing that the additional width restriction is sufficient to make one of those structures
appear that may not be part of a minimum counterexample. We call such structures
forbidden and conclude that no minimum counterexample to the conjecture can have
small width. This does not yet show that all graphs of small width satisfy the conjecture
since the smaller graph G′ constructed from G could have larger width. However, if we
can additionally construct the smaller graph G′ from G is such a way that its width
does not increase, then we actually get a proof for all graphs of small width. To see this,
simply repeat the above arguments when starting with a minimum counterexample of
small width.

This serves as motivation for the first two parts of this thesis. In Part I we study the
3-decomposition conjecture. In particular, we look at it in the way described above
and show that it holds for all graphs of path-width at most 4. In Part II we revisit the
two proof techniques we used in this process that are responsible for a majority of case
distinctions that are needed. We show how these can be automated algorithmically and
discuss how they can be made practically useful, despite the corresponding problems
being hard in general. In addition, the techniques we develop to prove the algorithms’
correctness are also independently helpful and we use them to obtain bounds on the
girth of cubic graphs.

A paradigm shift occurs in the transition to Part III, where we consider two connectivity
problems on directed graphs with a given source s and sink t. Since graphs represent
how objects are connected, it is unsurprising that connectivity problems are well-studied.
Numerous generalisations of the ‘standard’ notion of connectivity exist, like vertex- and
edge-connectivity. These have been studied in detail and are closely related to flows and
cuts. One of the main results in this area is Menger’s theorem [Men27, cf. Die16] or
the closely related max-flow min-cut theorem [DF55, cf. AMO93], which both describe
duality. Menger’s theorem shows that edge-separators are dual to disjoint paths and the
max-flow min-cut theorem establishes the duality of st-flows and -cuts. Connectivity

2

problems have also been investigated algorithmically, and fast algorithms have been
developed, see [AMO93]. Some typical examples are algorithms computing connected
components, shortest paths, or maximum flows.

The first connectivity problem we look at in this thesis is the standard st-reachability
problem, where we wish to determine the existence of an st-path. We look at this
problem in the setting of local certification (which we intuitively describe below and
formally define later). The second problem we study is the separating by forbidden pairs
problem. In it, we want to find the fewest pairs of arcs such that every st-path contains
at least one of these pairs completely. This problem appears as the dual of the almost
disjoint paths problem in which the goal is to find as many st-paths as possible that
share at most one arc. This is a very natural generalisation of the disjoint paths problem
where vertex- or edge-cuts are the dual concept. For the almost disjoint paths and the
separating by forbidden pairs problem, we get weak duality: any path in a set of almost
disjoint paths must contain a pair and none can share one. Unlike in the disjoint case
however, where Menger’s theorem yields strong duality, the optimal solution values here
need not coincide.

We now go into a bit more detail by describing what happens in the upcoming chapters
and what our contributions are.

Part I. The 3-Decomposition Conjecture

The first part of this thesis consists of three chapters. In Chapter 3 we discuss known
results for the 3-decomposition conjecture and present several preliminary results of
our own. We investigate a relaxation in which the matching is extended to allow for
paths of length at most 2 and, in this context, study non-separating cycles in graphs.
Next, in Chapter 4, we look at a special class of graphs, which are ‘star-like’ in some
sense and naturally generalise Hamiltonian graphs in this setting, and show that the
conjecture holds for the graphs in this class. We also construct an infinite family of
star-like graphs that are in none of the classes for which the conjecture is already known
to hold. Lastly, in Chapter 5, we follow the steps from our motivation to determine six
graphs that cannot be part of a minimum counterexample to the conjecture and use
these to conclude that it holds for all graphs of path-width at most 4. The former step,
when done manually, contains a large amount of easy cases, which we have relegated to
Appendix A.

Contributions. In this part, we obtain several new results for the 3-decomposition
conjecture by using both a local and a global approach. We already mentioned that we
prove the conjecture for star-like graphs and for those of path-width at most 4. The
former uses the imposed global structure and we define certain sub-decompositions
of which we hope they are both reusable and extendable, such that this result can
potentially be generalised. A natural candidate for such an extension are ‘tree-like’

3

Chapter 1. Introduction

graphs. For the latter, we determine and use forbidden structures, making it a local
approach. From these structures we also derive some additional properties of minimum
counterexamples. Moreover, we describe a new conjecture that is equivalent to the
3-decomposition conjecture and which would yield an alternative method to Wormald’s
theorem (see Theorem 2.12) for constructing all cubic graphs in case it is true.

Furthermore, we look at a generalisation of the 3-decomposition conjecture, where the
matching condition is relaxed to allow for paths of length at most 2. It is known
that this guarantees the existence of such decompositions, and we describe an efficient
way of computing them. This is done by depth-first search essentially, but requires a
non-separating cycle to be known beforehand. We show that such a cycle can be found
in linear time on cubic graphs, despite the problem of deciding whether a non-separating
cycle exists being NP-complete on subcubic graphs.

Part II. Algorithmic Proof Support

In this part, we show how to largely automate the two proof techniques from Part I
that result in the majority of the case distinctions needed there. More precisely, we
implement the two key steps of the proof that graphs of path-width at most 4 satisfy
the conjecture. These are:

(1) determining whether a certain graph is not a subgraph of a minimum counter-
example and

(2) determining whether every cubic graph of small path-width contains a subgraph
in a given set.

These steps are automated in Chapters 6 and 7, respectively. The latter step is actually
handled in more generality and is not restricted to cubic graphs and the 3-decomposition
conjecture. The techniques we develop to prove the resulting algorithm’s correctness are
used in Chapter 8 where we show general bounds on the girth of cubic graphs of small
path-width.

Contributions. For Step (1), the method we use in Chapter 5 is to replace the graph S
in question by a smaller graph R and to check whether the possible behaviours of a
3-decomposition on R can be extended back to S. In many cases, this can be done
in a ‘straightforward’ manner, making it easy but lengthy to do since R can admit
many possible behaviours that need to be checked. We formalise what a straightforward
extension is and show how they can be checked algorithmically. We also prove that this
problem is NP-complete and computationally verify that all cubic graphs of order at
most 20 satisfy the 3-decomposition conjecture.

To deal with Step (2), we formalise the procedure we used in Chapter 5 to show that
the path-width bound guarantees the existence of a certain subgraph in a more general
setting. Doing so, we obtain an algorithm that tries to answer the question whether every

4

graph in a class G that has path-width at most k contains a subgraph in a finite set U . In
case the answer is negative, it returns a smallest counterexample. The reason we wrote
that the algorithm ‘tries’ to answer the question is that it does not necessarily terminate.
We show that this problem is undecidable, making this behaviour unavoidable. However,
we obtain a termination criterion as well: if the graphs in U are connected, the class G
has bounded maximum degree, and containment in G can be checked locally, in some
sense, the algorithm can be adjusted in a way that it does terminate. To speed up this
algorithm, we checked symmetries and specifically tailored it to cubic graphs since these
are our main use case.

Lastly, we prove two upper bounds on the girth of a cubic graph of path-width at most k,
determining the largest possible values precisely for all k ≤ 10. Moreover, we present a
new constructive characterisation of the cubic graphs of path-width 3 and girth 4.

Part III. Two Graph Connectivity Problems

The final part of this thesis is only comprised of two chapters. In Chapter 9 we study
the st-reachability problem in the context of local certification. Roughly speaking, we
want to determine whether an st-path exists, while only seeing what the graph looks
like locally around every vertex. For this to be possible for interesting classes, local
certification allows passing additional information to every vertex that can be used
to check whether each local view is consistent. For example, bipartiteness becomes
a property that is easy to check locally once one tells all vertices which side of the
bipartition they reside on [GS16]. The quality of the local certification is measured by
the amount of information that needs to be passed to the vertices of the graph, the less
the better. Several concepts for local certification exist, which differ in their definition of
a local view and a common one is the concept of proof labelling schemes.

In Chapter 10 we investigate a second connectivity problem: the separating by forbidden
pairs problem. Here, the goal is to find few pairs of arcs such that any st-path contains
both arcs of at least one chosen pair. This is an extension of the path avoiding forbidden
pairs problem where a set of arc pairs is given and the objective is to find a path that
does not contain any pair. It is also dual to the almost disjoint paths problem, which
looks for a largest set of st-paths such that every pair of paths in this set share at most
one arc.

Contributions. It is known that certifying st-reachability in undirected graphs can
be done using a single bit of information [GS16], but the directed case has not yet been
answered. We show that, for proof labelling schemes, a constant number of bits are
insufficient in the directed case. In fact, Θ(log ∆) bits are necessary, where ∆ denotes
the maximum degree. Concerning the separating by forbidden pairs problem, we show
that it is Σ2P-complete.

5

Chapter 1. Introduction

A Note on Publications

Chapters 4 and 7 to 9 of this thesis have been published in the following peer-reviewed
articles:

[BBK22] O. Bachtler, T. Bergner, and S. O. Krumke. ‘Local Certification of Reachabil-
ity’. Proceedings of the 10th International Network Optimization Conference.
INOC 2022. OpenProceedings.org, 2022, pages 40–44. doi: 10.48786/inoc.
2022.08.

[BH23] O. Bachtler and I. Heinrich. ‘Automated testing and interactive construction
of unavoidable sets for graph classes of small path-width’. Journal of Graph
Theory early view (2023). doi: https://doi.org/10.1002/jgt.22964.

[BK22] O. Bachtler and S. O. Krumke. ‘Towards Obtaining a 3-Decomposition from
a Perfect Matching’. The Electronic Journal of Combinatorics 29.4 (2022).
doi: 10.37236/11128.

To be precise, [BK22] corresponds to Chapter 4, [BH23] to Chapters 7 and 8, and
[BBK22] to Chapter 9.

Additionally, the following two preprints also contains parts of this thesis.

[BBK22] O. Bachtler, T. Bergner, and S. O. Krumke. Almost Disjoint Paths and Sep-
arating by Forbidden Pairs. Version 1. 2022. arXiv: 2202.10090 [math.CO].

[BH21] O. Bachtler and I. Heinrich. Reductions for the 3-Decomposition Conjecture.
Version 2. 2021. arXiv: 2104.15113 [math.CO].

More precisely, [BH21] contains the majority of Chapters 3, 5, and 6 and has been
submitted to the Latin-American Algorithms, Graphs and Optimization Symposium.
Chapter 10 is part of [BBK22] and is also included in the dissertation of Tim Bergner.
It has been submitted to Theoretical Computer Science.

6

https://doi.org/10.48786/inoc.2022.08
https://doi.org/10.48786/inoc.2022.08
https://doi.org/https://doi.org/10.1002/jgt.22964
https://doi.org/10.37236/11128
https://arxiv.org/abs/2202.10090
https://arxiv.org/abs/2104.15113

Chapter 2.

Preliminaries

In this chapter, we introduce the notation used throughout this thesis. We shall refrain
from introducing everything in detail, assuming that certain basic concepts and common
notation are known. In case this assumption is incorrect, we also refer to literature
(textbooks, for the most part) that defines the parts we leave out.

2.1. Graph theory

The graph-theoretic notation used here is mainly based on [Die16], to which we refer the
reader unfamiliar with a concept we do not explicitly introduce. Other notable mentions,
from which we have taken some notation, are [Wes01, KN12, Sch03, BM08] and to all of
which we add several personal preferences.

Basics. For a set X, we write
(

X
k

)
for the set of all k-element subsets of X.

We now introduce graphs by starting with the general definition that allows loops and
parallel edges (defined momentarily), before simplifying it for easier use in the cases
where no problems occur when doing so.

An undirected graph, or just graph, G is a triple (V G,E G, γ) consisting of a vertex
set V (G) or V G, an edge set E(G) or E G, and a function γ : E G !

(
V G

1

)
∪
(

V G
2

)
.

The sets V G and E G are assumed to be disjoint and finite. Note that we omit the
parentheses whenever this is possible without harming clarity. Edges e with γ e = {v}
are called loops and edges e, e′ with γ e = γ e′ are parallels. We write e = uv for an
edge e ∈ E G with γ e = {u, v} if the edge has no parallels, or if it does not matter which
parallel is used.

Similarly, a directed graph or digraph D is a quadruple (V D,AD,α, ω) consisting of
a vertex set V D, an arc set AD, and two functions α, ω : AD ! V D. The sets V D
and AD are disjoint and finite. Loops are arcs a with α a = ω a and parallels are arcs a,
a′ with α a = α a′ and ω a = ω a′. Additionally, arcs a, a′ with α a = ω a′ and ω a = α a′

7

Chapter 2. Preliminaries

are anti-parallels. Again, we write a = uv for an arc a ∈ AD with α a = u and ω a = v.
The underlying graph of D is the undirected graph G with vertex set V D and edge
set AD where γ a = {α a, ω a}.

For the remainder of this section, let G and H be graphs, but most definitions we go
through immediately translate to the directed case as well (usually by replacing the
word edge by arc or using the underlying graph). As we announced before the definition,
we now simplify our notions: we forget about the functions γ, α, and ω that graphs
come with, instead identifying an edge with the representation by its ends. This makes
it impossible to distinguish a specific parallel arc, but this is not something we shall
need. Moreover, we write v ∈ G and e ∈ G and read it as v ∈ V G and e ∈ E G.

The order of G is |G| := |V G| and its size is ∥G∥ := |E G|. The graph G is called simple
if it has neither loops nor parallels.

We mostly deal with undirected graphs, with the only major exception being Part III.
For these, we primarily assume that they are simple, making a note in all places where
we explicitly allow parallels and loops. Since this is important to remember, let us store
it in an environment.
2.1 Assumption. Unless explicitly stated otherwise, all undirected graphs considered
in this thesis are simple. ◁

When considering graphs that need not be simple, we refer to them as multigraphs.

Two more useful bits of notation are the following: for X ⊆ V G, we define NX = NG X
as the set of neighbours of X, that is,

NX := {v ∈ V G \X : v is adjacent to some x ∈ X} .
Here, and in all other definitions, we drop braces for single-element sets, letting us
write Nv. For X, Y ⊆ V G we write E(X, Y) = EG(X, Y) for the set of edges between
X and Y , that is,

E(X, Y) := {uv ∈ E G : u ∈ X and v ∈ Y } .
We also use the shorthand EX for E(X, V G\X). The degree of a vertex v is equal to the
number of incident edges (where loops are counted twice) and we denote it by d v = dG v.
So, in a graph without loops, we have d v = |E v|.
We complete the basics with the handshaking lemma.
2.2 Handshaking Lemma ([Die16]).(8.3) In a graph G, ∑v∈V d v = 2∥G∥. ◁

Statements like these will be referred to in the main text by their name. Moreover, this
is a good opportunity to explain some conventions we employ. All environments with
the exception of proofs end with the symbol ◁ to make it visually clear where they end.
Additionally, if we just cite the result, like the one above, the text will be slanted. We
also note the references on the margin. These appear throughout this thesis and have
the following meaning: if a theorem, for example, comes with references in brackets,
then these are used in its proof and references in parentheses make use of the theorem.

8

2.1. Graph theory

Subgraphs and graph operations. The graph H is a subgraph of G if V H ⊆ V G
and EH ⊆ E G. In this situation we call G a supergraph of H.

For ∅ ̸= X ⊆ V G, G[X] is the subgraph induced by X. We write G−X for G[V G \X].
Furthermore, for a set X disjoint from V G, we denote the graph with vertex set V G∪X
and edge set E G by G+X. For F ⊆ E G, G[F] is the subgraph induced by F , that is,
the subgraph with vertex set V G and edge set F . We write G−F for G[E G \F]. Since
we forbid subgraphs induced by the empty vertex set, G[∅] is well-defined. If F is a set
of potential edges, then we write G+ F for the graph (V G,E G ∪ F).

The union G ∪H and intersection G ∩H of G and H are obtained by taking the union
and intersection of their vertex and edge sets, respectively.

Let uv be an edge of G. Subdividing the edge uv results in the graph G′ which is
obtained from G by removing uv and adding a new vertex w /∈ V G together with the
edges uw and wv. We call w a subdivision vertex. The inverse operation is the following:
given a vertex w ∈ V G with dw = 2 and neighbours u and v, suppressing w yields the
graph G− w + uv.

Paths and cycles. A path P in G is a sequence v0e1v1 . . . ekvk alternating between
vertices v0, . . . , vk ∈ V G and edges e1, . . . , ek ∈ E G such that vi−1 and vi are the ends
of the edge ei for i ∈ {1, . . . , k} and all the vertices are different. Usually, we drop the
edges in the sequence: they are implicitly given unless we are in the multigraph case,
though we also omit them when the choice of edge is not unique, but irrelevant. The
length of P is k. Additionally, we regard P as a subgraph of G and, as such, we may
write V P = {v0, . . . , vk} and E P = {e1, . . . , ek}. Note that the sequence definition of a
path specifies a ‘direction’ while the subgraph variant has none in undirected graphs. So
the two paths v0e1v1 . . . ekvk and vkekvk−1 . . . e1v0 correspond to the same subgraph.

We say that P is a v0vk-path and call the vertices v0 and vk the start and end of P ,
respectively. The remaining vertices v1, . . . , vk−1 are inner vertices of P . For S, T ⊆ V G,
an ST -path in G is an st-path in G for some s ∈ S and t ∈ T . The distance from S
to T is the length of a shortest ST -path in G and denoted by d(S, T) = dG(S, T). In
accordance with our singleton-set policy, the distance from u to v in G is d(u, v).

For the path P and i ≤ j, we write viPvj for the path viei+1vi+1 . . . ejvj and call it a
subpath of P . In case that i = 0 or j = k we write Pvj for v0Pvj or viP for viPvk,
respectively. If i < j we write v̊iPvj for vi+1Pvj and viP v̊j for viPvj−1. When i < j − 1
we also denote vi+1Pvj−1 by v̊iP v̊j and write P̊ for v̊0P v̊k, if allowed.

Let Q := w0f1w1 . . . flwl be another path in G. If vk = w0, we write PQ for the
concatenation v0e1v1 . . . ekvkf1w1 . . . flwl of P and Q. While this need not be a path
in general since vertices could repeat, we apply this operation only when the result is
again a path. Similarly, if h is another index with vi = wh, then we write PviQ for the
concatenation of Pvi and viQ = whQ. If G is undirected, then the inverse path P−1

of P is vkekvk−1 . . . e1v0.

9

Chapter 2. Preliminaries

We also generalise this notation to trees: since there is a unique path between two
vertices u and v in a tree T , we use uTv to denote this path.

A cycle C := v0v1 . . . vkv0 is a path together with a further edge connecting its ends,
that is, C = P + vkv0 where P := v0v1 . . . vk is a path and v0vk /∈ P . Again, we also
regard cycles as subgraphs and obtain the notation V C and E C. An edge between two
non-adjacent vertices of a cycle C is a chord of C.

Some types of graphs. We use the following notation for specific isomorphism classes
of graphs:

Pn A path of order n.
Cn A cycle of order n.
Kn A complete graph of order n.
Kn,m A complete bipartite graph with parts of size n and m.
En An edgeless graph of order n.

We write 2K2 for the disjoint union of two copies of a K2, so for the union of two edges.

Some graph properties. We now introduce some useful graph properties:

forest An acyclic graph is a forest and its degree 1 vertices are its leaves.
star A star is a K1,n. The vertex adjacent to all others is the centre.
max. degree The maximum degree ∆G of G is the maximum degree of any vertex.
min. degree The minimum degree δ G is defined analogously.
regular A graph G with d v = k for all v ∈ V G is k-regular, or cubic if k = 3.
diameter The maximum distance between two vertices in G is its diameter diamG.
girth The minimum length of a cycle in G is the girth of G.
Hamiltonian A cycle C or path P in G whose vertex set is V G is Hamiltonian. If G

has a Hamiltonian cycle or path, then it is Hamiltonian or traceable.
H-free If G has no subgraph isomorphic to a graph H, then G is H-free.
connectivity The graph G is k-(vertex-)connected if |G| > k and G−X is connected

for all X ⊆ V G with |X| < k. The graph G is l-edge-connected if G− F
is connected for all F ⊆ E G with |F | < l.

Decompositions. A decomposition of a graph G consists of subgraphs of G whose
edge sets partition E G. As this notion will see some major use in Part I, we make it a
definition.
2.3 Definition. Let G be a graph and G1, . . . , Gk be subgraphs of G. Then (G1, . . . , Gk)
is a decomposition of G if the edge sets of the Gi partition E G, that is, ⋃k

i=1 E Gi = E G
and E Gi ∩ E Gj = ∅ for i ̸= j. ◁

Note that we are generous with our use of the word partition, it allows some sets to be
empty, which is often not the case.

10

2.1. Graph theory

v1

v2

v3

v4

v5

v6 v7 v1, v2
v3

v3, v4
v5

v4, v5
v6

v6
v7

Figure 2.1.: An example of a graph of path-width 2 on the left and a corresponding
path-decomposition on the right. This path-decomposition is not smooth,
but can be made to be by inserting the bag {v2, v3, v4} between the first and
the second bag on the path and adding the vertex v5 to the last bag.

Tree- and path-width. We now get to a graph parameter that is central for this
thesis: the path-width. Since it goes hand-in-hand with tree-width, we define both
here.

Let T be a tree and V = (Vt)t∈T be a family of vertex sets Vt ⊆ V G. The pair (T,V) is
a tree-decomposition of G if it satisfies the three properties below.

(i) Every vertex v ∈ V G is contained in some set Vt.
(ii) For each edge uv ∈ E G there exists a set Vt such that {u, v} ⊆ Vt.
(iii) The set {t : v ∈ Vt} is connected for all v ∈ V G.

The sets Vt are called bags of the decomposition (T,V) and the value max {|Vt| : t ∈ T}−1
is its width. Furthermore, the tree-width twG of a graph G is the minimal width of any
of its tree-decompositions. Note that tree-decompositions are not decompositions in the
sense of Definition 2.3.

If the tree above is required to be a path, the resulting decomposition is a path-
decomposition and its width as well as the path-width of G are defined analogously and
denoted by pwG. An easy example of a graph of path-width 2 and a corresponding
path-decomposition can be found in Figure 2.1.

A tree-decomposition (or path-decomposition) (T,V) of width k is smooth if

(i) all bags have cardinality k + 1 and
(ii) |Vt1 ∩ Vt2| = k for all t1t2 ∈ T .

2.4 Theorem ([Bod98]). (2.11)
(5.20)

Let G be a graph. There exists a smooth tree-decomposition
of G with width twG. The same holds true for path-decompositions. ◁

The decomposition in Figure 2.1 can be made smooth by adding a new vertex to the
path, between the first and second one, whose associated bag is {v2, v3, v4}. Additionally,
the last bag needs an additional vertex, adding v5 does the job, for example.

The following shorthand is very useful and thus deserves to be set apart.

2.5 Definition. Given a smooth path-decomposition (P,V) of the graph G with a
path P = 1 . . . n, then there exists a unique vertex in Vi \ Vi−1 for i ∈ {2, . . . , n},
which we call the vertex entering Vi. Similarly, we call the unique vertex in Vi \ Vi+1,
for i ∈ {1, . . . , n− 1}, the vertex leaving Vi. ◁

11

Chapter 2. Preliminaries

Again, we refer to Figure 2.1, where we saw how to make the path-decomposition smooth.
The second and third bag in the figure remain unchanged in the smooth version, and
the vertex leaving the second bag is v3, while the vertex entering the third is v6.

Connectivity. Like decompositions, the next definition is used frequently in Part I.

2.6 Definition. A cycle C in a graph G is non-separating if G− E C is connected. ◁

We also recall some basic connectivity results. A cut-vertex of G is a vertex v such
that G − v has more components than G. A block of G is an inclusion-wise maximal
connected subgraph without a cut-vertex, making the K1 and K2 the only potential
blocks that are not 2-connected. Every edge of G lies in a unique block and different
blocks have at most one (cut-)vertex in common. The block-cutpoint graph of G has
a vertex for every block and one for every cut-vertex of G, which are connected if the
cut-vertex is contained in the block.

2.7 Theorem ([HT73]).(3.6) The block-cutpoint graph is a tree and can be computed in
linear time. ◁

If G is connected and its block-cutpoint graph consists of more than one vertex, it has at
least two leaves, which correspond to blocks with exactly one cut-vertex. We call these
leaf blocks.

The next result we need is Menger’s theorem, which has many formulations, of which we
present just one.

2.8 Menger’s Theorem ([Men27, cf. Die16]).(4.25)
(5.6)
(5.7)

Let s, t be two vertices in a graph G
with st /∈ G. The minimum number of vertices required to separate s and t is equal to
the maximum number of internally vertex-disjoint st-paths in G. ◁

Paths P , Q are internally vertex-disjoint if P̊ and Q̊ have no vertices in common. From
this theorem, it follows that G is k-connected if and only if there are (at least) k internally
vertex-disjoint paths between any pair of vertices.

We also wish to recall the max-flow min-cut theorem. Since we only need the result, we
refrain from introducing flow notation here and just refer to [AMO93].

2.9 Max-Flow Min-Cut Theorem ([DF55, cf. AMO93]).(5.17) Let D be a digraph to-
gether with a source s and a sink t. The value of a maximum st-flow in D is equal to
the capacity of a minimum st-cut. ◁

12

2.1. Graph theory

Figure 2.2.: The operations described in Theorem 2.12 to generate all cubic graphs
starting from a K4. In all cases, the grey vertices are those with neighbours
outside of the drawn configuration. Operations (i) to (iii) are displayed from
left to right and we note that the grey vertices need not be distinct in the
subdivision operation (on the left).

Cubic graphs. Since cubic graphs play an important role in Parts I and II, we present
some useful results concerning these. First, we take a look at their behaviour with
respect to connectivity and path-width.

2.10 Observation. [Die16]
(8.12)

For cubic graphs, vertex- and edge-connectivity coincide. ◁

Proof. The vertex-connectivity is always a lower bound for the edge-connectivity, see
[Die16, Proposition 1.4.2]. For the other inequality, suppose G−X is disconnected for
some X ⊆ V G and let U1 ∪ U2 be a partition of V G \ X with E(U1, U2) = ∅. Every
vertex x ∈ X has at most one neighbour in one of these two sets, and adding it to the
other yields a partition V1 ∪ V2 of V G with at most |X| edges in E(V1, V2). □

2.11 Observation. [2.4]
(8.12)

Cubic graphs have tree- and path-width at least 3. ◁

Proof. This follows directly from graphs of tree-width at most k having a vertex of
degree at most k, which can be seen by considering the bag of a leaf in a smooth tree-
or path-decomposition. □

We now cite the characterisations of (3-connected) cubic graphs by Tutte and Wormald.

2.12 Theorem (Wormald’s Characterisation [Wor79]). (8.13)Apart from theK4, every
connected cubic graph can be obtained from a smaller cubic graph by one of the following
three operations, which are shown in Figure 2.2.

(i) Subdivide two edges and join the subdivision vertices by a new edge.
(ii) Replace an edge by a diamond and join the degree-2 vertices of the diamond

with the former ends of the replaced edge.
(iii) Take the disjoint union with a K4, subdivide an edge in each component of this

union and join the subdivision vertices.

Moreover, every graph obtained from the K4 by a repeated application of these operations
is connected and cubic. ◁

2.13 Theorem (Tutte’s Characterisation [Tut66, cf. Tut19]). (4.24)
(8.16)

Excluding the K4,
every 3-connected cubic graph can be obtained from a smaller cubic graph using Opera-
tion (i) and every graph obtained this way is 3-connected and cubic. ◁

13

Chapter 2. Preliminaries

Automorphisms and actions. Let φ be a bijection with domain V G. For U ⊆ V G
and F ⊆ E G, we define φU := {φu : u ∈ U} and φF := {(φu)(φv) : uv ∈ F}. We
write φG for the graph with vertex set φ(V G) and edge set φ(E G). The map φ is an
isomorphism from G to H if H = φG. The graph G is isomorphic to H, denoted by
G ∼= H, if an isomorphism from G to H exists. If φG = G, then φ is an automorphism
of G. The automorphisms of a graph G together with the composition of maps form a
group and every subgroup Γ of this group of automorphisms acts on V G by mapping (φ, v)
to φv. Let v ∈ V G. The orbit of v (under the action of Γ) is the set vΓ := {φv : φ ∈ Γ}
and the stabiliser of v is Γv := {φ ∈ Γ: φv = v}. We also recall the orbit stabiliser
theorem, in this particular setting.

2.14 Orbit-Stabiliser Theorem ([Rot95]). Let G be a graph, Γ be a subgroup of
the automorphism group of G, and v ∈ V G. Then

|vΓ| · |Γv| = |Γ|. ◁

2.2. Complexity theory

Complexity classes and undecidability. The most-used complexity classes in this
thesis are P and NP, which are luckily also the most well-known. Aside from these two
classes, we need the class Σ2P in Chapter 10. All three of these classes are in the first
three levels of the polynomial hierarchy. As a very rough overview, a language L is in

P if there exists a deterministic polynomial-time Turing machine M such that

a ∈ L ⇐⇒ M(a) = 1.

NP if there exists a deterministic polynomial-time Turing machine M and a polyno-
mial p such that

a ∈ L ⇐⇒ ∃x ∈ {0, 1}p(|a|) : M(a, x) = 1.

Σ2P if there exists a deterministic polynomial-time Turing machine M and a polyno-
mial p such that

a ∈ L ⇐⇒ ∃x ∈ {0, 1}p(|a|) : ∀y ∈ {0, 1}p(|a|) : M(a, x, y) = 1.

We also make use of the fact that Σ2P = NPNP, meaning that the languages in Σ2P are
exactly those languages decidable by a polynomial-time Turing machine with access
to an oracle for some NP-complete problem [AB09, Remark 5.16]. We refer to [GJ90]
for more information on the classes P and NP. In particular, it provides a list of many
NP-complete problems, one of which we define shortly. For Σ2P we refer to [AB09,
Pap94, Haa19].

14

2.3. Local certification

Complete problems. To show that problems are complete for the classes NP and Σ2P,
we present (polynomial-time) Karp reductions from the complete problems we present
here. For these, we note that a Boolean formula φ is in 3-CNF if it is the conjunction
of clauses and each clause is the disjunction of exactly three literals. Similarly, it is in
3-DNF if it is the disjunction of clauses which are the conjunction of three literals.

2.15 Problem (3-SAT). Given a formula φ in 3-CNF depending on variables x, does
a truth assignment to the x-variables exist that satisfies φ? ◁

2.16 Problem (Σ2SAT). Given a formula φ in 3-DNF depending on variables x and y,
does a truth assignment to the x-variables exist that satisfies φ for all possible truth
assignments to the y-variables? ◁

The 3-SAT problem is NP-complete and Σ2SAT is Σ2P-complete, see [GJ90, Prob-
lem LO2] and [Pap94, Theorem 17.10] or [Haa19, Section 2.2.1], respectively.

Undecidability. Finally, we also need the notion of undecidability. A language L
is undecidable if there exists no Turing machine M that terminates on all inputs a
and outputs 1 if and only if a ∈ L. To show undecidability later, we use the Post
correspondence problem, which is undecidable [Pos46].

2.17 Problem (Post correspondence problem). Let x1, . . . , xN and y1, . . . , yN be
strings over the alphabet {a, b}. Does a finite sequence (i1, . . . , ik) of indices exist such
that xi1 . . . xik

= yi1 . . . yik
? ◁

2.3. Local certification

We formally define local certification here. It is mainly needed in Chapter 9, but also
in a part of Chapter 7. For a motivation, an intuitive description of the concept, and
information on the corresponding literature, we refer to Chapter 9.

Provers and verifiers. Let G be a class of (directed or undirected) graphs, for example,
G could be the class of all connected undirected graphs. Further, let F ⊆ G be the
graphs in G that satisfy a certain property (bipartiteness, for example). In this context
we specify that graphs G ∈ G have an identity for every vertex v ∈ V G which can be
encoded in O (log(|G|)) bits. All identities in a graph are distinct, making them an
injective map from V G to {0, 1}c log(|G|) for some constant c. Furthermore, vertices also
have labels, which can contain further information (but may be empty). For example,
these can be used to indicate colours of vertices or to select a certain subset of incident
edges.

A proof for a graph G is a function P : V G! {0, 1}∗ that assigns a binary certificate
(a bit string) to each vertex of G. The size |P| of a proof is the maximum number of

15

Chapter 2. Preliminaries

bits in any of its certificates and the set of all proofs for a graph G is denoted by PG.
For the empty certificate and the empty label we use the usual notation for the empty
word: ε.

A verifier for a class G is a function V defined for all triples (G,P, v) with G ∈ G,
P ∈ PG, and v ∈ V G. Its output is a single bit, that is,

V :
⋃

G∈G
({G} × PG× V G)! {0, 1} .

A verifier V accepts (a proof P) at a vertex v if V(G,P, v) = 1 and rejects if V(G,P, v) = 0.
If V accepts at all v ∈ V G, then it accepts (a proof P for) a graph G and it rejects the
proof otherwise. The verifier is sound for a subset F of G if it rejects any graph not
in F , regardless of the proof provided, that is, for all G ∈ G \ F and all proofs P ∈ PG,
there exists a vertex v ∈ V G such that V(G,P, v) = 0.

A prover is a function P that maps every G ∈ F to a proof P G ∈ PG. The size sP of
a prover is the maximum size of any proof it assigns to a graph in F , often expressed
as a function of |G|. We note that, technically, the proofs assigned by a prover have
access to 2s P+1 − 1 many different certificates, but we will assume they only use the 2s P

many of length exactly sP as this is convenient and commonplace in the literature. A
prover P is complete for a verifier V if V accepts P G for all G ∈ F . Note that the label
of a vertex v is part of the graph G whereas its certificate is provided by the prover.

A pair π = (P ,V), consisting of a prover and a verifier, is a local certification for F ⊆ G
if P is complete for V and V is sound for F . The size s π of π is the size of its prover P .

An example. To illustrate these concepts, we take a look at an easy example. We
can verify whether a graph is bipartite as follows [GS16]: the prover, given a bipartite
graph, specifies a bipartition using the certificates 0 and 1. The verifier then only needs
to check, at each vertex, that the certificate of this vertex differs from the certificates of
its neighbours. If this is the case everywhere, then the graph is bipartite, so the verifier
never accepts a non-bipartite graph. Furthermore, the bipartition specified by the prover
makes the verifier accept. Hence, this prover-verifier pair is a local certification for
bipartiteness using a single bit.

Restricting the verifier. In the example, the verifier only looked at its direct
neighbours. However, so far, the definition does not include locality and this is where the
various concepts that are used in the literature differ. We now describe restrictions on
the verifier that make its computation local and lead to the definition of proof labelling
schemes and locally checkable proofs.

Let G be a graph and v ∈ V G. The set of vertices in G with distance at most r (with
respect to number of edges) to v is denoted by Br

G v or just Br v and called the ball of

16

2.3. Local certification

radius r at v. For directed graphs, we always use the underlying undirected graph to
determine balls. A verifier is r-local if it satisfies that

V(G,P, v) = V(Gr
v,Pr

v, v) for all G,P, v

where Gr
v = G[Br v] and Pr

v = P[Br v] is the restriction of P to Br v. We say a verifier
is neighbourhood-local if

V(G,P, v) = V(GN
v ,P1

v, v) for all G,P, v

where GN
v = (B1 v, E v). If the verifier does not depend on the labels or identities of any

vertex other than v when faced with (G,P, v), then we call the verifier label- or identity-
restricted, respectively. We say it is restricted, if it is both label- and identity-restricted
and satisfies that

V(G,P, v) = V(G−
v ,P−

v , v) for all G,P, v

where G−
v is the star with v at its centre and an edge vxe for each edge e = vu in G. (For

digraphs vxa or xav is used for arc a as appropriate.) The proof P−
v maps v to P v and

xe to the certificate Pu if e = vu or e = uv. The difference between this construction
and the graph GN

v is that it also hides parallels (and anti-parallels) since it ‘splits’ such
vertices.

With this notation we can now define proof labelling schemes and locally checkable
proofs.

2.18 Definition. A local certification for F ⊆ G whose verifier is restricted is a proof
labelling scheme. ◁

2.19 Definition. A local certification for F ⊆ G whose verifier is r-local for some
constant r ≥ 1 is a locally checkable proof. ◁

A few remarks on these definitions are in order. Our notation is mostly based on the
paper by Göös and Suomela [GS16], who study locally checkable proofs. Sadly, the
notation is inconsistent with that of Korman, Kutten, and Peleg [KKP10] who use the
term ‘label’ for what we have called a certificate. Thus, they named their concept ‘proof
labelling schemes’, which is a misleading name here. However, in order to adhere to the
literature, we keep this name and emphasise here that these schemes do not actually set
the labels, but the certificates, despite their name.

Moreover, we note that, in a proof labelling scheme, the verifier at a vertex v may only
use v’s identity and label, as well as the certificates assigned to v and its neighbours. As
such, the local certification we presented in the example above meets the requirements
of a proof labelling scheme. In contrast, the verifier in a locally checkable proof has
access to much more information. Even if we restrict ourselves to a 1-local verifier, it
can still use the identities and labels of the neighbours as well as the graph structure of
the neighbourhood, meaning it knows which of its neighbours are the same and whether
or not they are adjacent.

17

Chapter 2. Preliminaries

We introduced the term neighbourhood-local, which comes between the two. In contrast
to proof labelling schemes, the verifier here can detect parallels and anti-parallels, but,
unlike locally checkable proofs, it is still limited to direct neighbours and does not know
which of these are adjacent. This is needed in Chapter 9.

A local class of graphs. For Chapter 7 we also introduce the term highly local.

2.20 Definition. Let G be the class of all undirected graphs. A class F ⊆ G is highly
local if there exists a local certification π = (P ,V) for F ⊆ G with the following properties:

• P has constant size s,
• V is r-local and identity-restricted, and
• V is invariant under isomorphism, that is, for every G ∈ G, v ∈ V G, and every

bijection φ with domain V G we have that

V(G,P, v) = V(φG,φP, φ v)

where φP : φG! {0, 1}∗ is the map satisfying φP(φv) = P v. ◁

Examples for highly local graph classes are the bipartite graphs (as we saw in the
example) or, more generally, l-colourable graphs (using r = 1, s = ⌈log l⌉). Moreover,
l-regular graphs (with r = 1, s = 0) and graphs without an (induced) subgraph H (using
r =

⌈
log diam H

2

⌉
, s = 0) are further examples.

18

Part I.

The 3-Decomposition
Conjecture

In this part, we present new results concerning the
3-decomposition conjecture, which states that any con-
nected cubic graph can be decomposed into a spanning
tree, cycles, and a matching. In Chapter 3 we survey
known and prove some preliminary results. The latter
include an equivalent conjecture, as well as an efficient
algorithm for computing a weaker decomposition in
which the matching part is replaced by paths of length
at most 2. We generalise the result that all Hamilto-
nian cubic graphs have a 3-decomposition to the class
of star-like cubic graphs in Chapter 4. We then de-
termine several reducible configurations (subgraphs
that can be shrunk without hurting the existence
of 3-decompositions) in Chapter 5. Using these, we
derive properties of minimum counterexamples, in
particular, we determine that graphs of path-width
at most 4 satisfy the conjecture.

19

Chapter 3.
Known and Preliminary Results

The 3-decomposition conjecture, by Hoffmann-Ostenhof, states that every connected
cubic graph can be decomposed into a spanning tree, a 2-regular subgraph, and a
matching. In this chapter, we consider known equivalent formulations of this conjecture
and add a new one to the list. We also review for which classes of graphs the conjecture
is known to hold and broadly sort these into two groups (a ‘local’ and ‘global’ one),
based on the proof techniques employed. Next, we deviate a bit from the conjecture
and study the complexity of finding non-separating cycles, in particular, we show that
in a cubic graph, one such cycle can be found in linear time. We use this result to
efficiently compute a relaxation of a 3-decomposition, in which the matching part is
replaced by disjoint paths of length at most 2.

Removing the edges of a spanning tree from a cubic graph results in a graph of maximum
degree 2, which is necessarily a union of vertex-disjoint paths and cycles. The 3-decom-
position conjecture, postulated by Hoffmann-Ostenhof, see [Hof11, Cam11], asserts that
the spanning tree can be chosen so that all of the arising paths are of length 0 or 1.

3-Decomposition Conjecture. Every finite connected cubic graph has a decomposi-
tion consisting of a spanning tree, a 2-regular subgraph, and a matching. ◁

Recall Definition 2.3: a decomposition of a graph G is a tuple of edge-disjoint subgraphs
whose union is G. Any such decomposition (T,C,M), consisting of a spanning tree T , a
2-regular graph C, and a matching M , is called a 3-decomposition. Note that formally
the last component is a subgraph whose edge set is a matching, but, to adhere to the
literature, we ignore this distinction. Moreover, the matching may be empty (and a
simple counting argument shows that the cycle component is not).

Decompositions into trees and graphs of small maximum degree are of general interest
and find applications, for example, in determining upper bounds for the game chromatic
number [He+02]. Several such decompositions are known, for example, Balogh et al.
[Bal+05] showed that it is possible to decompose a planar graph into three forests such
that one of them has degree at most 8 and Gonçalves [Gon09] presented decompositions

21

Chapter 3. Known and Preliminary Results

into two forests and a graph of maximum degree at most 4. By requiring the girth
to be at least 8, Wang and Zhang [WZ11] found a decomposition into a forest and a
matching.

We also note that many conjectures in graph theory consider or can be reduced to
(bridgeless) cubic graphs. Thus, obtaining structural information about these is of
interest. A prominent example is the cycle double cover conjecture [Jae85], three others
are the Berge-Fulkerson [Ful71], the shortest cycle cover [AT85], and the Fan-Raspaud
conjectures [FR94].

The 3-decomposition conjecture is the topic of this entire part, but in this chapter, we
start by taking a look at three equivalent reformulations in Section 3.1, the last of which
is new and would provide a constructive way of obtaining all cubic graphs. Next, we
review the literature to see which classes of graphs are known to have 3-decompositions
in Section 3.2. We also use this opportunity to discuss the proof techniques used and to
sort these into two groups, which can be roughly summarised as ‘using local arguments’
and ‘using global arguments’.

Lastly, we investigate a relaxation of a 3-decomposition in Section 3.4, in which the
third component is allowed to contain paths of length 1 and 2. Compared to a matching,
which is a collection of paths of length 1, the last value is new. These decompositions are
known to exist, and we provide a linear time algorithm to compute them. This requires
a more detailed look at the complexity of finding non-separating cycles in a graph, which
we study in Section 3.3. It turns out that this problem is NP-hard, even on subcubic
graphs, but it is possible to find one in linear time in a graph with minimum degree at
least 3.

The content of Sections 3.1 and 3.2 is joint work with Irene Heinrich and is included
in [BH21] on arXiv. The last two sections are unpublished.

3.1. Equivalent conjectures

We start this section with two known equivalent reformulations of the 3-decomposition
conjecture. These are the strong 3-decomposition conjecture and the 2-decomposition
conjecture, both of which can be found in [Hof15].

Strong 3-Decomposition Conjecture. Let G be a connected cubic graph and C ′ be
a non-separating 2-regular subgraph of G. Then there exists a 3-decomposition (T,C,M)
of G such that C ′ ⊆ C. ◁

2-Decomposition Conjecture. Let G be a connected graph in which all vertices
have degree 2 or 3 and every cycle is separating (recall Definition 2.6). Then G has a
decomposition into a spanning tree and a matching. ◁

22

3.1. Equivalent conjectures

We note that replacing the degree condition by the adjective subcubic, which allows
vertices of degree 1, does not strengthen the conjecture. The edge incident to any vertex
of degree 1 is automatically part of the tree. Thus, by (iteratively) removing such vertices
we obtain a subgraph that has minimum degree 2 and a decomposition there can be
extended to the entire graph since all deleted edges must be added to the tree.

Hoffmann-Ostenhof, Kaiser, and Ozeki [HKO18] prove that the 3- and 2-decomposi-
tion conjectures are equivalent. That the latter implies the former can be seen as
follows: remove the edges of a maximal non-separating 2-regular graph C (in the sense
of Definition 2.6) to obtain a graph as required for the 2-decomposition conjecture. It
then provides the spanning tree and the matching.

For the missing implication, we attach a small graph to each degree 2 vertex of a subcubic
graph G such that the new edge is a bridge (see Operation (iii) of Theorem 2.12). A
3-decomposition of this new graph has no cycles in G since these are separating (in the
larger graph as well). Thus, the restricted decomposition is as desired.

This also gives us the result for the strong 3-decomposition conjecture. One implication
is simply obtained by letting C ′ be the null graph. For the other, we are given a
non-separating 2-regular graph C ′. By taking a maximal non-separating 2-regular
supergraph C of C ′ and using the previous equivalence, G− E C has a decomposition
into a spanning tree and a matching. This yields a 3-decomposition that contains C ′ in
its 2-regular subgraph.

We complete this section by presenting a new equivalent conjecture: the HIST-extension
conjecture. A HIST is a homeomorphically irreducible spanning tree, that is, a spanning
tree without vertices of degree 2. For an overview of the study of HISTs, see [CS13].
Furthermore [HNO18] provides a necessary condition for their existence specifically in
the setting of cubic graphs.

Let us begin by explaining the conjecture and formally stating it. Essentially, the HIST-
extension conjecture claims that every cubic graph G can be constructed from a smaller
cubic graph G′ that has a HIST using just two operations. More precisely, the graph G
can be obtained by starting with a graph G′ that has a HIST T ′, colouring exactly the
edges of T ′ in green, and then iteratively applying Tutte- and diamond-extensions. These
operations are shown in Figure 3.1. If we do not require the graphs to be simple, then it
already suffices to only use Tutte-extensions, which are now also allowed to choose the
same edge twice. In both cases, the extensions have to respect the edge colours.

We can now state the conjecture, where we call an extension (and reduction) simple if it
results in a simple graph.

HIST-Extension Conjecture. Let G be a connected cubic graph. There exists a
cubic graph G′ admitting a HIST T ′ ⊆ G′ such that, if exactly the edges of T ′ are
coloured green, then G can be obtained from G′ by a finite sequence of simple Tutte-
and diamond-extensions (see Figure 3.1). ◁

23

Chapter 3. Known and Preliminary Results

xu

yu

xv

yv

Tutte-
extension

Tutte-
reduction

xu

u

yu

xv

v

yv

x

y

diamond-
extension

diamond-
reduction

x

y

d1
d2 d3

d4

Figure 3.1.: Coloured extensions and reductions. Grey vertices are those with neighbours
outside of the configuration. A Tutte-extension takes two green edges,
subdivides them, and connects the resulting subdivision vertices by an
uncoloured (black) edge. Note that the two chosen edges may be incident
and, if we do not restrict to simple graphs, they need not even be different.
This last case creates parallels. On the other hand, a diamond-extension
inserts a diamond onto a green edge xy, that is, it removes xy, inserts new
vertices d1, d2, d3, and d4, as well as edges xd1, d1d2, d2d3, d3d4, d4y, d1d3,
and d2d4, where all but the last two are green.

The version for multigraphs drops the word ‘simple’ and the diamond reduction.
HIST-Extension Conjecture (Multigraph Version). Let G be a connected cubic
multigraph. There exists a cubic multigraph G′ admitting a HIST T ′ ⊆ G′ such that, if
exactly the edges of T ′ are coloured green, then G can be obtained from G′ by a finite
sequence of Tutte-extensions (see Figure 3.1). ◁

We wish to emphasise the strong similarities between the HIST-extension conjecture and
Wormald’s characterisation of cubic graphs. The first two operations in Wormald’s the-
orem are the same as ours, with the exception that they need not conform to a colouring.
Thus, the difference between the theorems is that the HIST-extension conjecture restricts
the operations that may be performed and instead allows a substantially larger (infinite)
ground set, namely all cubic graphs containing a HIST, instead of just the K4.

Let us now prove the equivalence. First we note that if a cubic graph G has a HIST T ,
then it satisfies the 3-decomposition conjecture, as all vertices in G− E T have degree 0
or 2. Therefore, using a HIST, we obtain a decomposition into a spanning tree and
a 2-regular subgraph. The idea of the proof is to show that our allowed extensions
result in new (green) trees that are part of a 3-decomposition (Lemma 3.1) and we then
show how to reduce a 3-decomposition in a graph without a HIST to one in a smaller
graph, which may or may not have one (Theorem 3.2). This is done by using a Tutte-
or diamond-reduction and, inductively, this smaller graph is obtained from one with a
HIST. Thus, the original graph is as well.

We begin by showing that 3-decompositions are preserved by the operations described.
3.1 Lemma.(3.3) Let G′ be a cubic multigraph with a spanning tree T ′. Colour exactly
the edges of T ′ green. If G and T are obtained from G′ and T ′ by either a Tutte- or a
diamond-extension (see Figure 3.1), then T is a tree. Moreover G − E T decomposes
into cycles and a matching if and only if G′ − E T ′ does. ◁

24

3.1. Equivalent conjectures

Proof. First observe that the respective extensions and reductions preserve the property
that the green edges form a spanning tree (both only insert subdivision vertices on green
edges and connect them by black edges). Since G′−E T ′ is a graph of maximum degree 2
it decomposes into a 2-regular graph C ′ and a disjoint union of paths P ′. If G is obtained
from G′ by a Tutte-extension, then G decomposes into T , the 2-regular graph C ′, and
the disjoint union of P ′ with an additional K2. Otherwise, G is a diamond-extension
of G′ and decomposes into T , C ′, and the disjoint union of P ′ with a 2K2. In both
cases P ′ is a matching if and only if G− E T − E C ′ is a matching. □

The lemma above gives us one direction of the equivalence, namely that any cubic graph
constructed this way has a 3-decomposition. For the converse, we show that we can
perform a reduction somewhere in a 3-decomposition, unless its tree is a HIST.

3.2 Theorem. (3.3)Let G be a cubic multigraph with a 3-decomposition (T,C,M) in which
exactly the edges of T are coloured green. If T is a HIST, then M = ∅.

Otherwise, G with its 3-decomposition (T,C,M) can be obtained by a Tutte-extension
from a smaller cubic multigraph G′ with 3-decomposition (T ′, C,M ′) where exactly
the edges of T ′ are green. In particular, every 3-decomposition can be reduced to a
3-decomposition with a HIST by a finite sequence of Tutte-reductions.

Analogously, if G is simple, it can be obtained by a simple Tutte- or diamond-extension
from a smaller simple cubic graph G′ with 3-decomposition (T ′, C,M ′) and thus, every
3-decomposition can be reduced to a 3-decomposition with a HIST by a finite sequence
of simple Tutte- and diamond-reductions. ◁

Proof. In this proof, a graph G is always given with a 3-decomposition (T,C,M). The
edges of T are coloured green and all other edges are black. If T is homeomorphically
irreducible, then G−E T only has vertices of degree 0 and 2. In particular, G−E T is
a vertex-disjoint union of isolated vertices and cycles. Hence, M = ∅.

From now on, we may assume that T contains a vertex v with dT v = 2. Since (T,C,M)
is a 3-decomposition of G, we obtain that v is incident to an M -edge uv in G and, in
particular, u ≠ v. Moreover, u has degree 2 in T as well, and we may apply a Tutte-
reduction (potentially yielding a single edge), completing the first part of the theorem.

We may now assume that G is simple and obtain that both u and v differ from their
neighbours. We denote these neighbours by xu, yu, xv, and yv respectively as depicted
in Figure 3.2a. Since uv is an M -edge, the edges uxu, uyu, vxv, and vyv are T -edges.

We can apply a Tutte-reduction here unless one of the edges xuyu or xvyv is present
in G since these would create parallels. Hence, if neither of these edges is in G, then
G and (T,C,M) can be obtained via a Tutte-extension from G− {u, v} + {xuyu, xvyv}
with the 3-decomposition (T − {xuu, uyu, xvv, vyv} + {xuyu, xvyv} , C,M \ {uv}).

By symmetry, we may assume that xuyu ∈ E G. This implies that xuyu is an M -edge:
a T -edge would cause the cycle uxuyuu in T whereas a C-edge would disconnect the

25

Chapter 3. Known and Preliminary Results

xu

u

yu

xv

v

yv

(a) A degree 2 vertex.

x̃u

ỹu

xu

u

yu

xv

v

yv

(b) x̃u, ỹu ̸= v.
ỹu

xu = xv

u

yu

v = x̃u

yv

(c) x̃u = v.
ỹu

xu = xv

u

yu

v = x̃u

yv

ỹ′
u ỹv

(d) ỹuyv ∈ G.

Figure 3.2.: Key steps in the proof of Theorem 3.2. The subgraphs shown here represent
an expanding local view of the entire graph G where the green edges are
exactly those in the tree part of the 3-decomposition of G. Note that the
vertices xu, xv, yu, yv need not be distinct, as is seen on the right.

T -edges uxu and uyu from the rest of the tree. We may conclude that xux̃u and yuỹu are
T -edges, where x̃u (respectively ỹu) denotes the unique neighbour of xu (respectively yu)
outside the triangle uxuyuu. In particular, we obtain x̃u ̸= ỹu since T is cycle-free. This
is illustrated in Figure 3.2b.

The only obstacle to applying a Tutte-reduction using the M -edge xuyu is the case where
x̃u = v or ỹu = v since this creates a parallel to the M -edge uv. Thus, if v /∈ {x̃u, ỹu},
then G can be obtained by a Tutte-extension of G′ := G − {xu, yu} + {ux̃u, uỹu} with
the 3-decomposition (T − E(x̃uxuuyuỹu) + {x̃uu, uỹu} , C,M \ {xuyu}).

Otherwise x̃u = v or ỹu = v. Assume that x̃u = v (the other case works similarly
by interchanging the roles of x and y). Moreover, we assume that xu = xv (otherwise
rename xv and yv). This is illustrated in Figure 3.2c. Observe that yv ̸= ỹu since this
would cause a cycle in T . If yv and ỹu are not adjacent, then G can be obtained by a
diamond-extension of the graph G− {yu, xu, u, v} + {ỹuyv} together with the 3-decom-
position (T − E(ỹuyuuxuvyv) + {ỹuyv} , C,M \ {yuxu, uv}). If, otherwise, yvỹu ∈ E G,
then this edge is an M -edge (a T -edge would cause a cycle in T and a C-edge would
disconnect T). Let ỹv be the unique vertex in NG yv \ {x̃u, ỹu} and let ỹ′

u be the unique
neighbour of ỹu which is not in {yu, yv}. This situation is illustrated in Figure 3.2d. Since
yu and v already have three neighbours, we obtain that yuỹ

′
u and vỹv are not edges of G.

In particular, G can be obtained by a Tutte-extension of G−{yv, ỹu} + {vỹv, yuỹ
′
u} with

the 3-decomposition (T − {ỹ′
uỹu, ỹuyu, vyv, yvỹv} + {vỹv, yuỹ

′
u} , C,M \ {yvỹu}). □

We derive the equivalence of the two conjectures from Lemma 3.1 and Theorem 3.2.

3.3 Corollary.[3.1]
[3.2]

The 3-decomposition conjecture and the HIST-extension conjecture are
equivalent. Additionally, the 3-decomposition conjecture holds for all multigraphs if and
only if the multigraph version of the HIST-extension conjecture is true. ◁

26

3.2. Studied classes

Proof. Throughout this proof, whenever a graph is given with a spanning tree we impli-
citly assume that the edges of the tree are green and all other edges are black.

Let G be a connected cubic multigraph. First assume that G satisfies the 3-decomposi-
tion conjecture and let (T,C,M) be a 3-decomposition of G. If T is homeomorphically
irreducible, then G trivially satisfies the HIST-extension conjecture (with an empty se-
quence of extensions). Otherwise, by Theorem 3.2, there exists a multigraph G′ with a
HIST T ′ such that (T ′, C,∅) is a 3-decomposition of G′ and G can be obtained from G′

(with the green-black colouring induced by T ′) by a finite sequence of Tutte-extensions
or simple Tutte- and diamond-extensions, that is, G satisfies the HIST-extension con-
jecture, in the multigraph or normal version.

Now we assume that G satisfies the HIST-extension conjecture. In particular, there
exists a graph G′ with a homeomorphically irreducible spanning tree T ′ such that G can
be obtained by a finite sequence of Tutte- (or simple Tutte- and diamond-extensions)
from G′. Since all vertices of T ′ are of degree 1 or 3, the graph G − E T ′ decomposes
into a 2-regular graph C and isolated vertices. Thus, (T ′, C,∅) is a 3-decomposition
of G′. By Lemma 3.1, G satisfies the 3-decomposition conjecture. □

Note that, while seemingly weaker, the HIST-extension conjecture has some advantages
over the multigraph variant. First, it already holds if the 3-decomposition conjecture is
true for graphs, making it potentially easier to prove (or, in the perhaps unlikely case
that the conjecture only holds for simple and not for multigraphs, making it provable
at all). It also imposes a further restriction on the Tutte-extension, forbidding those
that subdivide the same edge twice (since these do not lead to simple graphs). This is
useful for the case that one wants to only deal with graphs, where the operations now
guarantee that all of these are obtained without needing to go over intermediate graphs
that are not simple.

3.2. Studied classes

Whilst the 3-decomposition conjecture itself is still open, it has been proved for quite a
few classes of graphs. In this section, we give an overview of the results that have been
obtained and we classify the methods used to obtain them into two types.

Manipulation of a global structure. One common technique that is used to find
3-decompositions is restrict to a certain class of graphs that has some global structure,
such as a Hamiltonian cycle, and then use this structure as a starting point to find a
3-decomposition of the graph.

The Hamiltonian case was proved by Akbari, Jensen, and Siggers [AJS15] in 2015.
Abdolhosseini et al. [Abd+16] and Li and Liu [LL20] showed that traceability is a
sufficient requirement already. Ozeki and Ye [OY16] presented first results for planar

27

Chapter 3. Known and Preliminary Results

graphs, namely that 3-connected cubic graphs satisfy the conjecture if they are planar or
on the projective plane. Xie, Zhou, and Zhou [XZZ20] proved the conjecture for graphs
with a 2-regular subgraph consisting of three cycles. We take a look at a similar structure
in Chapter 4, where we want a 2-regular subgraph whose cycles are arranged in a star,
roughly speaking. Last year, Botler et al. [Bot+21] showed that the 2-decomposition
conjecture holds if the graphs in question are restricted to ones in which the degree 3
vertices induce a certain collection of cacti. (A cactus is a graph in which every edge is
part of at most one cycle.)

Reductions. Another technique finds (small) local structures that behave well with
respect to the conjecture. This is often done by assuming that the conjecture does not
hold for the class of graphs in question, and taking a minimum counterexample. One then
determines that certain structures must appear and that replacing these by smaller ones
makes it possible to extend decompositions of the resulting smaller graph to the larger
one. By checking that the replacement preserves containment in the class, a contradiction
is derived because the smaller graph would also need to be a counterexample.

Let us provide some classes where these local arguments are used: as an extension of
[OY16], Bachstein [Bac15] deals with 3-connected cubic graphs on the Torus and Klein
Bottle and Hoffmann-Ostenhof, Kaiser, and Ozeki [HKO18] showed that all connected
plane cubic graphs satisfy the conjecture in 2018. It was also proved to hold for claw-free
(sub)cubic graphs by Aboomahigir, Ahanjideh, and Akbari [AAA18] and Hong, Liu,
and Yu [HLY20]. Heinrich [Hei19] verified it for 3-connected cubic graphs of (at most)
tree-width 3, and we extend this technique to get the analogous result for path-width at
most 4 in Chapter 5.

3.3. Finding non-separating cycles

In this section, we investigate the complexity of finding non-separating cycles (see
Definition 2.6) in graphs. We obtain that it is, in general, NP-hard to determine the
existence of a non-separating cycle in a graph, even when restricting to subcubic graphs.
However, if we require the graph to have a minimum degree of 3, we can then compute a
non-separating cycle in linear time. These results will be put to use in the next section,
where we consider a relaxation of the 3-decomposition conjecture and show that these
weaker decompositions exist and can be computed efficiently.

We begin by showing that finding a non-separating cycle in a subcubic graph is hard.

3.4 Theorem.(3.5) It is NP-complete to determine whether a given graph G has a non-
separating cycle. ◁

Proof. The problem is in NP since, given a cycle C, it is easy to determine whether
G − E C is connected. To obtain NP-hardness, we describe a reduction from 3-SAT

28

3.3. Finding non-separating cycles

v1
s v1

t
x1 xn

X1 = x1 ∨ x1 ∨ x1 Xm

w

w1
1

Figure 3.3.: The graph constructed for the reduction in Theorem 3.4. The clause gadgets
(see Figure 3.4b) can be seen at the bottom whilst the variable gadgets
(Figure 3.4a) are in the middle. Some exemplary connecting edges are drawn.

(Problem 2.15) similar to that used by Even, Itai, and Shamir [EIS76] to prove that
the integer multi-commodity flow problem is NP-hard. To this end, let φ be a formula
with variables x1, . . . , xn and clauses X1, . . . , Xm. Without loss of generality we assume
that the first n clauses are of the form xi ∨ xi ∨ xi. We construct a graph G which is
visualised in Figure 3.3.

For the variable xi, let pi be the number of clauses containing it in a non-negated fashion
and ni the number containing xi. Then G has vertices vi

s, vi
t, vi

1, . . . , v
i
2pi

, vi
1, . . . , v

i
2ni

.
These vertices are connected to form two paths

vi
sv

i
1v

i
2 . . . v

i
2pi−1v

i
2pi
vi

t and vi
sv

i
1v

i
2 . . . v

i
2ni−1v

i
2ni
vi

t.

We call these parts variable gadgets and they are connected in series, that is, vi
t is

connected to vi+1
s by an edge, for i ∈ {1, . . . , n− 1}. This is illustrated in Figure 3.4a.

Next, we get further vertices uj, uj
1, u

j
2, u

j
3 for every clause Xj. These are connected

by edges ujuj
l for l ∈ {1, 2, 3}, as seen in Figure 3.4b. We call these clause gadgets and

they interconnect with the variable gadgets as follows. If the lth literal of Xj is xi and
this is the kth occurrence of xi in φ, then the edge uj

l v
i
2k is part of the graph. Similarly,

if the lth literal is xi and this is its kth occurrence, then the edge uj
l v

i
2k is added.

To complete the construction, we add a vertex w with a path of length 2 to all vi
k

where k is odd and call the intermediate vertices wi
k. We do the same for the vi

k with
intermediate vertex wi

k. We also add an edge connecting v1
s to vn

t .

29

Chapter 3. Known and Preliminary Results

vi
s

vi
1

vi
1

vi
2

vi
2

vi
2pi−1

vi
2ni−1

vi
2pi

vi
2ni

vi
t

xi

(a) The ith variable gadget.
uj

uj
1 uj

2 uj
3

(b) The jth clause gadget.

Figure 3.4.: The gadgets used in Theorem 3.4. For their interconnections in the complete
graph, see Figure 3.3.

Claim. The constructed graph G has a non-separating cycle if and only if the formula φ
is satisfiable. ◁

Proof. We begin with the forward implication, in which we have a non-separating
cycle C. We notice that C does not contain a vertex of degree 2 as any such cycle
is separating. In particular, C only consists of edges that are in the variable gadgets
or connect them. We see that C cannot be the unique cycle in xi’s gadget as this sep-
arates the gadget of Xi from the remaining graph. By symmetry, we can assume that
C contains an edge in one of the paths of x1’s gadget, and, consequently, it contains
an entire path. It cannot use any of the edges on the remaining one, as otherwise it
would already be the cycle in x1’s gadget. The remaining cycle is, thus, a path from v1

t

to v1
s using no edges in the first variable gadget. As a result, it contains all the edges

connecting the variable gadgets and uses one of the two available paths in each. We
now get a truth assignment T by setting T xi := True when the bottom path is used
and T xi := False when the top one is. This assignment satisfies φ as, for any j, Xj’s
clause gadget is not separated from the graph, yielding a path from one uj to w. But
this path must be of the form ujuj

lxy . . . w where x and y are two neighbouring vertices
in the variable gadget corresponding to the lth literal of Xj. Therefore, the cycle avoids
the path corresponding to this literal, so Xj is satisfied by T.

For the converse, let φ by satisfiable with satisfying assignment T. We obtain a cycle C
as in the forward implication by taking the top path through a variable gadget when
the corresponding variable is set to False and the bottom one otherwise, together with
all the edges between the variable gadgets. This cycle in non-separating. To see this
we check that all vertices are connected to w. This is trivial for all vertices with an
odd index in a variable gadget, as they have a direct path. The initial vertices vi

s are
covered this way as well. On the other hand, all the even vertices, and with them all
the final vertices vi

t, are connected to some vertex uj, so we only need to ensure that
these are connected to w as they also cover their neighbours. But as T was satisfying,
the clause Xj has a satisfied literal, say the lth which is xi, the case xi is analogous. If
this is its kth occurrence, then ujuj

l v
i
2kv

i
2k−1w

i
2k−1w connects uj to w as required and

C is non-separating. ⋄

This completes the reduction. □

30

3.3. Finding non-separating cycles

3.5 Corollary. [3.4]Deciding whether a graph has a non-separating cycle is already NP-
complete in the case of subcubic graphs. ◁

Proof. Notice that the only vertex in the construction of Theorem 3.4 with a degree
exceeding 3 is the vertex w. We modify the construction slightly by replacing it by a
path of length 3m where each vertex receives one of the edges originally incident to w.
The backwards implication is unaffected by this, as we remove none of the connecting
edges and all these vertices are in the same component after removing the cycle anyway.
For the forward implication we only need to check that the non-separating cycle still
has the same form. But since all edges incident to the path cannot be part of a non-
separating cycle, none of the edges on it can be either. So this adjustment does not
harm the validity of the construction. □

With this part completed, we can finish the section by proving the second result we
promised.

3.6 Theorem. [2.7]
[3.11]
(3.17)

Let G be a connected multigraph with δ G ≥ 3, then G has a non-
separating cycle C and such a cycle can be computed in linear time. ◁

That such a cycle exists was shown by Thomassen and Toft [TT81, Corollary 2]. Note
that the cited corollary is stated in a slightly different setting, where the vertices of the
cycle are deleted instead of the edges. But the cycles are required to be induced, so it
carries over to our case, thanks to the imposed degree condition: the only case where
removing vertices instead of edges saves on components are when the cycle has degree 2
vertices.

The proof provided chooses an induced cycle maximising the order of some component.
It is constructive and yields a quadratic algorithm, which we now sketch. The algorithm
starts with some cycle C and fixes a component K∗ of H := G − C. If the cycle
is separating, it determines a new cycle C ′ by starting at a vertex in C that is in a
component different from K∗. From there, it performs a breadth-first search in H. Under
reasonable assumptions, like δ G ≥ 3, this either finds a path that ends at a vertex in C
or a cycle completely contained in this other component. In either case, we can find a
cycle C ′ such that G− C ′ has a component K ′ ⊋ K∗ in linear time. Since K∗ can only
grow at most n times before the cycle is non-separating, this runs in quadratic time.

The rest of this section is devoted to cutting down this runtime by removing unnecessary
operations. Intuitively, the idea is to perform a single breadth-first search instead of
restarting the computations for each subsequent cycle. Since this requires a rather precise
formulation of the algorithm, we first present a mildly coarser variant for graphs, with
the primary focus of proving correctness for it. We then flesh out the algorithmic details
to show that all operations used can be implemented in a way that does not require
more than linear time. Finally, we argue that we can handle the more general case of
multigraphs using this algorithm as well.

31

Chapter 3. Known and Preliminary Results

Algorithm 3.1: An algorithm for computing a non-separating cycle.
Input: A connected graph G and a vertex v∗ ∈ G such that all vertices in V G \ {v∗}

have degree at least 3.
Output: A non-separating cycle C in G.

1 def NonSeparatingCycle(G):
2 for v ∈ V do
3 vis[v] False, π[v] None # initialise BFS-variables
4 C ∅, vis[v∗] True, Q [v∗]
5 while Q ̸= ∅ do
6 x Q.dequeue() # explore the next vertex
7 if x ∈ K∗ then continue # ignore vertices already in K∗

8 for y ∈ Nx do # not updated by calls to UpdateCycle
9 if vis[y] = False then

10 vis[y] True, π[y] x, Q.append(y) # update BFS-variables
11 else
12 UpdateCycle() # update the cycle using cross-edges
13 if x ∈ K∗ then break # stop on entering K∗

14 return C

15 def UpdateCycle():
16 Let zx, zy be the first vertices of P π

x , P π
y that are in C, or v∗ if none of them are

17 if P π
x zx ∩ P π

y zy ̸= ∅ then
18 Let z be the first vertex these paths have in common
19 Update C := xP π

x z(P π
y)−1yx

20 else
21 Update C := xP π

x zxCzy(P π
y)−1yx, where zxCzy avoids a vertex of K∗

Let us start with the coarse variant which is shown in Algorithm 3.1. Note that in the
algorithm and its discussion, we use the following notation:

• G is a connected graph, v∗ ∈ G, and all vertices in V G\ {v∗} have degree at least 3,
• H := G− E C, where C is a (potentially empty) cycle in G,
• K∗ is the component containing v∗ in H if C ̸= ∅ or K∗ := ∅ otherwise,
• the array vis keeps track of which vertices have been visited and the array π tracks

the predecessors,
• Nv := NH v \ {π[v]}, and
• P π

v := vπ[v]π2[v] . . . v∗ is the predecessor-path from v to v∗.

We see that the algorithm mainly consists of a single breadth-first search in G, starting
at v∗. Once a cross-edge is found, it creates the first cycle C. Afterwards, the breadth-
first search disregards all vertices that are in K∗ already. It thus explores the remaining
components and uses cross-edges to create new cycles that enlarge the component K∗.

These cycles are obtained by following the predecessor-paths back until they either meet
in a common vertex or reach C. In the first case we obtain a new cycle that is completely

32

3.3. Finding non-separating cycles

v∗

z

xy

v∗

z

xy

(a) An update as in Line 19.

v∗

zxzy

x
y

v∗

zxzy

x
y

(b) An update as in Line 21.

v∗

x = zx

y

zy

x = zx

y

zy

(c) A second update at x.

Figure 3.5.: Cycles obtained by a call to UpdateCycle. Blue vertices indicate contain-
ment in K∗, dotted edges represent predecessor paths, and the cycles are
highlighted.

contained in a component of H different from K∗. The second case yields two paths to
vertices in C which can be augmented by one of two paths between them in C. Since
some vertex in C is in K∗, we can choose a path that avoids this vertex and K∗ grows.

We explicitly remark that, when exploring a vertex x, we ignore the edges at x that are
in C, by definition of Nx. If UpdateCycle is called, this set may change, but the for
loop continues to iterate over the original version.

To prove correctness, we shall start by convincing ourselves that the UpdateCycle
function actually finds cycles.

3.7 Lemma. (3.9)
(3.10)

After each call to UpdateCycle, C is a cycle. ◁

Proof. We denote the data before the update by C ′, H ′, and (K ′)∗ and write C for
the cycle after. First, we note that, if UpdateCycle was called for vertices x and y,
then vis[x] = True = vis[y]. We claim that xy /∈ C ′: this holds for the first call to
UpdateCycle at x by the condition of the for loop. Moreover, a call to UpdateCycle
satisfies that (E C \E C ′) ∩E x ⊆ {xy, xπ[x]}. Thus, for all edges considered later, the
property still holds.

Hence, P π
x and P π

y are defined and we obtain zx and zy in Line 16. Let P1 := P π
x zx and

P2 := P π
y zy and assume P1 ∩P2 ̸= ∅, meaning the update in Line 19 is performed. This

is exemplified is Figure 3.5a. Then P := P1zP
−1
2 is a path and C = xPyx is a cycle

unless xy ∈ P . But xy ∈ P implies that P = xy and thus π[x] = y or π[y] = x. The
first does not occur by Line 8 and the second one implies that the BFS-variables for y
were updated at x, in which case UpdateCycle is not called. Therefore, C is a cycle.

We may now assume that P1 ∩ P2 = ∅ as illustrated in Figure 3.5b. In particular,
C ′ ≠ ∅ since, otherwise, zx = v∗ = zy and the paths P1 and P2 are not disjoint. Also,

33

Chapter 3. Known and Preliminary Results

x, y /∈ (K ′)∗, which holds for x by Lines 7 and 13 and for y since they are in the
same component of H. Consequently, the paths P π

x and P π
y intersect C ′ and zx, zy are

both in C ′. This yields disjoint paths P1, P2 that live in H as well as two paths in C ′

between zx and zy. Since C ′ contains at least one vertex of (K ′)∗, we can, indeed, choose
a path zxC

′zy such that it avoids an element of (K ′)∗ and P := P1zxC
′zyP

−1
2 is a path.

The cycle update in Line 21 sets C to xPyx, which is a cycle unless xy ∈ P . But again
this can only occur if P = xy, which implies that zxC

′zy is empty since xy /∈ C ′. Hence,
we have zx = zy, contradicting the assumption P1 ∩ P2 = ∅. □

Next we show several useful invariants of the for loop.

3.8 Lemma.(3.9)
(3.11)

After every iteration of the for loop in Line 8 the following properties
hold:

(a) (K ′)∗ ⊆ K∗,
(b) E C ′ \ E C ⊆ EK∗,
(c) v ∈ C ⇒ v ∈ K∗ or vπ[v] ∈ C, and
(d) v /∈ K∗ ⇒ Nv ̸= ∅,

where C ′ be the cycle before this iteration of the loop, H ′ := G − E C ′, and (K ′)∗ be
the component of H ′ containing v∗. If UpdateCycle is called at a vertex x in this
iteration, we also obtain that

(e) x ∈ C ′ ⇒ x ∈ K∗. In particular, UpdateCycle is called at most twice at any
vertex. ◁

Proof. We prove Properties (a) to (c) together. All three of them are true initially (after
the 0th iteration), where C ′ = C = ∅, and they continue to hold after an iteration in
which UpdateCycle is not called since C ′ = C in this case. So we may assume that
UpdateCycle is called on vertices x and y in this iteration.

If C is set to xP π
x z(P π

y)−1yx in Line 19, then

E C = {xy} ∪
{
vπ[v] : v ∈ P π

x z̊ ∪ P π
y z̊
}
.

Since x /∈ (K ′)∗, we have E C ∩ E((K ′)∗) = ∅ and (K ′)∗ ⊆ K∗, proving Property (a).
Additionally, unless C ′ is empty, it contains a vertex of (K ′)∗ and E C ′ ∩ E C = ∅.
Hence, C ′ ⊆ K∗, showing Property (b). Lastly, for all v ∈ C−z, we have that vπ[v] ∈ C
and z ∈ K∗ since P π

z is a zv∗-path in H, proving Property (c).

If C is set to xP π
x zxC

′zy(P π
y)−1yx in Line 21, then

E C = {xy} ∪
{
vπ[v] : v ∈ P π

x z̊x ∪ P π
y z̊y

}
∪ E(zxC

′zy).

Here C ′ ̸= ∅ and (E C \ E C ′) ∩ E((K ′)∗) = ∅, showing (K ′)∗ ⊆ K∗ and Property (a).
Moreover, E C ′ \ E C = E(C ′ − z̊xC

′z̊y) which is completely contained in K∗ since

34

3.3. Finding non-separating cycles

zxC
′zy avoids an element of (K ′)∗, proving Property (b). Finally, for all vertices v

in C − V (zxC
′zy), we have vπ[v] ∈ C. For the vertices v ∈ z̊xC

′z̊y the edge vπ[v] is
in C if and only if it is in C ′. Since we may assume that Property (c) holds for C ′

and (K ′)∗, we either get vπ[v] ∈ C or v ∈ (K ′)∗ ⊆ K∗. The vertices zx and zy are in K∗

by Property (b) since they are ends of edges in E C ′ \E C. Thus, Property (c) holds as
well.

We use this to quickly prove Property (e): note that x ∈ C ′ implies that zx = x as
illustrated in Figure 3.5c. This gives us that x = P π

x zx and P π
y zy are disjoint and the

cycle is updated as in the paragraph above. Therefore we know that x = zx ∈ K∗. This
also shows that UpdateCycle can be called at most twice at x: after the first call, x
is either in K∗ or on the cycle, and the latter places it in K∗ after the next call, ending
the iteration at x.

Property (d) follows from Property (c) and the requirement on the minimum degree:
let v /∈ K∗. If K∗ is empty, then H = G and |Nv| = |NG v| ≥ 1 since G is connected.
Otherwise, v ≠ v∗ and NG v contains at least three vertices. If v /∈ C ′, then Nv contains
at least two vertices and, otherwise, two of the edges incident with v are removed in the
transition to H, so NH v contains at least one vertex. Moreover, since v /∈ K∗, the edge
vπ[v] is in C by Property (c) and NH v = NH v \ {π[v]} = Nv. □

Now that we have gathered these properties, let us prove correctness of the algorithm.
We know that C is a cycle after each call to UpdateCycle by Lemma 3.7, which
ensures that the result returned by the algorithm is, indeed, a cycle. This is true
since UpdateCycle must be called at least once because cross-edges exist due to the
requirement on the minimum degree. To see that this cycle is non-separating, we prove
the following invariant of the while loop.

3.9 Theorem. [3.7]
[3.8]
(3.10)

After every iteration of the while loop in Line 5 every component
K ̸= K∗ of H contains a vertex in Q. ◁

Proof. To see that the property holds, we note that it is true initially, where there is
just one component and v∗ ∈ Q. We can now assume it was true before the current
iteration and need to show that it remains true after. To this end, let C, H, K∗, and Q
be the corresponding variables after this iteration.

We prove three claims.

Claim 1. If x has an unvisited neighbour y at the start of the iteration, then x and y
are in the same component of H and x is in K∗ or y ∈ Q. ◁

Proof. We have already seen, in the proof of Lemma 3.7, that a call to UpdateCycle
at x and y′ adds the edge xy′ to the cycle. Since y is not visited, UpdateCycle is
not called at y and xy /∈ C. In particular, x and y are in the same component of H.
Additionally, y ≠ π[x], so y ∈ Nx. Thus, y is considered in the for loop in Line 8 and
added to Q unless x is in or enters the component containing v∗. In either of the latter
cases, the iteration terminates with x in K∗ by Property (a). ⋄

35

Chapter 3. Known and Preliminary Results

v∗

π[v]

v

w

w′

T ′
v

π[v]

v

Figure 3.6.: The BFS-tree in the proof of Claim 3. Dotted edges represent predecessor
paths in T ′, and a part of the cycle C ′ is highlighted. The edge ww′ is not
part of T ′.

Claim 2. If x has no unvisited neighbour at the start of the iteration, then x ∈ K∗. ◁

Proof. If x has no unvisited neighbours, then x ̸= v∗ and UpdateCycle is called on
any vertex considered by the for loop. This occurs for all vertices in the set N specified
in Line 8 unless x enters the same component as v∗, putting it in K∗. But the set N
has at least one element by Property (d) (of Lemma 3.8) and it has at least two if x is
not on the cycle at the start of the iteration. In the latter case, a call to UpdateCycle
either places x in K∗ or ensures that it lies on the cycle, unifying the two cases. A call
to UpdateCycle now places x ∈ K∗ by Property (e). ⋄

Claim 3. Let C ′ be the cycle after an iteration of the for loop, H ′ := G − E C ′, and
let (K ′)∗ the component of H ′ containing v∗. Then any component K ′ ̸= (K ′)∗ of H ′

with x /∈ K ′ contains a vertex in Q. ◁

Proof. Let K ′ be a component of H ′, K ′ ̸= (K ′)∗, and x /∈ K ′, then K ′ contains a
vertex v ∈ C ′. Because K ′ ̸= (K ′)∗, Property (c) implies that vπ[v] ∈ C ′. Let T ′ be the
BFS-tree of the current iteration, that is, T ′ contains all arcs π[v′]v′ for vertices v′ with
π[v′] ̸= None. This can be regarded as a tree rooted at v∗. (We refer to [Cor+22] for
more information on BFS-trees.) Let T ′

v be the subtree of T ′ rooted at v which contains
all vertices reachable from v in T ′ −E C ′ and is illustrated in Figure 3.6. We show that
all leaves of T ′

v, which are all in K ′ as well, are in Q, proving the claim.

Let w be such a leaf and suppose it is not in Q. Since w ̸= x by choice of K ′, w was
removed from the queue in a prior iteration of the while loop. Let Cw be the cycle from
the start of this prior iteration, Hw := G − E Cw, and let (Kw)∗ be the component
of Hw containing v∗. Moreover, let Nw := NHw w \ {π[w]} and N ′ := NH′ w \ {π[w]}.

We know that w /∈ (K ′)∗ since v is not, which implies that N ′ ̸= ∅ by Property (d). We
take a vertex w′ ∈ N ′ and claim that w′ ∈ Nw. Because ww′ /∈ C ′, ww′ /∈ Cw since it
would be removed in a call to UpdateCycle otherwise, which implies that w ∈ (K ′)∗

36

3.3. Finding non-separating cycles

by Properties (a) and (b), yielding a contradiction. By w′ ∈ N ′ we know w′ ̸= π[w] and,
as ww′ ∈ Hw, we get w′ ∈ Nw.

Furthermore, when w is considered, it is not in (Kw)∗ since w /∈ (K ′)∗. Thus, w′ is
considered in the iteration where w is removed from the queue. Since w is a leaf of T ′

v

and ww′ is in H ′ but not in T ′
v, we get that π[w′] ̸= w. In particular, UpdateCycle

is called on w and w′. Consequently, ww′ enters the cycle and, since it is not in C ′,
Properties (a) and (b) imply again that w ∈ K∗, yielding a contradiction once more. ⋄

To see that these claims imply the theorem, note that any component K ≠ K∗ of H
contains x or a vertex of Q by induction on the iterations of the for loop using Claim 3.
For the component K containing x we have K = K∗ if x has no unvisited neighbour by
Claim 2 and, otherwise, Claim 1 yields K = K∗ or K contains a vertex of Q. □

3.10 Corollary. [3.7]
[3.9]
(3.11)

Algorithm 3.1 is correct. ◁

Proof. Correctness follows from Lemma 3.7 and Theorem 3.9: the first guarantees that
the algorithm returns a cycle while the second ensures that H is connected on termina-
tion, since Q is empty. □

We now get to the promised implementation details. First, note that most of Algorithm 3.1
already runs in linear time: the initialisation, the vertex exploration, and the BFS-variable
updates are all unproblematic. What we need to efficiently implement are the calls to
UpdateCycle as well as the checking of whether or not a vertex x is in K∗, see Lines 7
and 13.

We can easily combine these problems as follows: we create an array K, which has an
entry for every vertex, is initialised to False, and maintains the invariant K[v] = True if
and only if v ∈ K∗. Therefore, we can replace both conditions by K[v] = True, which can
be checked in constant time. Since the entries in K only change after a cycle update, we
can move the maintenance of this array to UpdateCycle as well. Hence, it suffices to
show that we can implement UpdateCycle in such a way that all calls to it combined
take linear time.

For the implementation of UpdateCycle we need to discuss how we represent the cycle.
It also comes with an array C, which has an entry specifying containment in C for every
vertex and is initialised with False since no cycle is available initially. Additionally,
we store the cycle as a circular doubly linked list, which is what we return. (This
is just a doubly linked list in which the first and last element point to one another.)
The ‘first’ element in this list, to which we store a pointer, is ensured to be in K∗

and we denote it by z∗. Finally, we track the distances to v∗ obtained by the BFS in
NonSeparatingCycle, using an array d.

If UpdateCycle is called on x and y, we know that |d[x] − d[y]| ≤ 1 by the properties
of BFS. We set x′ x and y′ y and then go over to predecessors by setting x′ π[x′]

37

Chapter 3. Known and Preliminary Results

and y′ π[y′]. We do this at most once for either x′ or y′ to ensure they have the
same distance and then we continue updating both simultaneously, such that we always
consider vertices with the same distance. This continues until either

• x′ = y′ or
• x′ ∈ C or y′ ∈ C.

In the second case, we continue transitioning at the remaining vertex, until it, too, ends
in C. This yields the paths P π

x zx and P π
y zy used in Line 21 whereas the first case finds

the paths P π
x z and P π

y z used in Line 19.

Next, we remove those vertices from the cycle that leave it (this step is skipped when C
is empty). If we update as in Line 19, then we set C[v] False for all vertices different
from z on the current cycle and delete the linked list. For the update in Line 21, we start
at z∗ and follow the cycle in both directions until zx and zy are found. Vertices along
the way are removed from C and their entries in the linked list are deleted. This leaves
us with a doubly linked list representing the path zxCzy that avoids the vertex z∗ ∈ K∗.
In both cases we can now create a circular doubly linked list representing the new cycle
and update C accordingly. As the first vertex we choose z or zx, depending on the case,
both of which are in K∗ by Properties (b) and (c) (of Lemma 3.8).

We still need to update K, which will involve a second BFS. When the first cycle is
found, we start a BFS at v∗ in H. Afterwards, the only additional edges that can be
explored are at vertices that were previously in K∗ ∩ C since these are the only ones
with newly accessible edges. But when we explore the cycle to update the array C, we
can easily add all vertices v with K[v] = True to the queue again and continue exploring
from there. Since a vertex is only added again if it leaves C (to K∗), we get that any
vertex is readded at most once by Property (a). Hence, this update runs in linear time
since each neighbourhood is explored at most twice.

This just leaves the cycle updates, whose running time we need to determine. The
removal of vertices from C and the deletion of their list entries is unproblematic, since
it only happens once per vertex as we just argued. However, at any vertex, we only
transition to its predecessor in at most one call to UpdateCycle since such an update
places it in the cycle and stops subsequent paths at it. Thus, we only have a linear
number of transitions to predecessors amongst all cycle updates. But all other operations
(adding the edge xy, connecting to the path zxCzy) only require constant time and there
are at most a linear number of calls to UpdateCycle. Hence, the runtime is linear and
we obtain the theorem below.

3.11 Theorem.[3.8]
[3.10]
(3.6)

Let G be a connected graph and v∗ ∈ V G such that all vertices
in V G \ {v∗} have degree at least 3. Then G contains a non-separating cycle and such a
cycle can be found in linear time. ◁

For the proof of Theorem 3.6 we still need to deal with multigraphs G that have loops or
parallels. To this end, we first note that, without loss of generality, G has no loops, since

38

3.4. A relaxation of the conjecture

any loop is a non-separating cycle. Similarly, we can assume there is no pair of vertices
with three or more edges between them. To deal with the remaining parallels, notice
that two edges between vertices u and v yield a non-separating cycle unless u and v are
cut-vertices. Consequently, we can begin by computing the blocks of G, which can be
done in linear time by Theorem 2.7. If the graph is 2-connected, we are done. Otherwise,
we take a leaf block and obtain a 2-connected subgraph of G in which all vertices other
than the cut vertex v∗ have degree at least 3. If it contains parallels, we have found a
non-separating cycle and otherwise it is simple and we can apply Theorem 3.11.

3.4. A relaxation of the conjecture

In this section, we study a relaxation of the conjecture where we allow paths of length
up to 2 instead of restricting to a matching. We call these decompositions long 3-
decompositions and they are guaranteed to exist.

3.12 Theorem. [LC14]
[LM19]

Every connected cubic graph has a long 3-decomposition. ◁

This is not a new result, it was already shown by Li and Cui [LC14] and, in a more general
form, by Lyngsie and Merker [LM19]. (If we were to classify these papers according to
the proof techniques presented in Section 3.2, the first would fall into the manipulation
and the second into the reduction category.) Since long 3-decompositions exist, we are
also interested in how they can be computed.

We first argue that the proof presented in [LM19] does not directly provide us with an
algorithm. Next, we present another proof for the existence of long 3-decompositions
based on a potential function argument and use it to obtain an algorithm. Finally, we
note that the proof presented in [LC14] is incomplete, present a small example where it
goes wrong, and show how to avoid this case. Moreover, this proof is based on depth-first
search and, together with Theorem 3.6, can be turned into a linear time algorithm.

As announced, we begin by looking at the proof in [LM19], in which it is actually shown
that it is possible to decompose any connected, not necessarily cubic, graph into a
spanning tree, an even graph, and a star forest. The last part is a forest in which each
component is a star. If we look at cubic graphs, which have a maximum degree of 2 after
removing a spanning tree, the second component is a disjoint union of cycles and the
last part can only contain paths of length at most 2, giving us a long 3-decomposition.

The proof reduces to the case that all cycles in the graph G are separating (since any
non-separating cycle can be put into the even graph), and then shows properties that
hold for any minimal counterexample. These are all shown by finding a way to reduce
the problem to a smaller graph. Once sufficiently many properties have been obtained,
a contradiction is derived. As such, the proof seems constructive, since it provides
operations that can be performed in any step to reach a smaller graph. The problem is
the initial assumption that all cycles of the graph are separating, which we would need

39

Chapter 3. Known and Preliminary Results

v3
v2v1

v0

(a) The paths P and Q.

v3v0 v3v0

v2v1

(b) The situation with no xi.

xi xi−1xi xi−1

v3
v2v1

v0

(c) After the transition to T ′.

Figure 3.7.: The reduction used in the potential function proof for Theorem 3.12. Here,
green edges are part of the tree and the remaining ones are blue. Note that,
on the left, the endpoint v0 need not be disjoint from the cycle Q + v1v2,
and neither does v3 if it is also an endpoint.

to guarantee algorithmically. However, by Corollary 3.5 this is a hard problem, even in
the subcubic case (which we reach after the first cycle removal).

Next, we present a proof that uses a potential to obtain this result.

Proof (of Theorem 3.12 using a potential function argument). Let G be a connected cu-
bic graph and let H be a spanning subgraph of G. Then G − EH is a disjoint union
of paths and cycles. Let P H be the set of paths of length at least 2 in G − EH and
define

φH :=
∑

P ∈P H

∥P∥2.

Let T be a spanning tree in G that minimises φT amongst all spanning trees. We claim
that, for this T , G− E T consists only of paths of length at most 2.

Suppose not, and let P := v0 . . . vk be a longest path in G − E T of length k ≥ 3. Let
Q := v2Tv1 = x1x2 . . . xt be the unique path in T from v2 to v1. This situation is
visualised in Figure 3.7a.

We prove that Q contains a vertex xi that is not incident to any non-tree (blue) edge.
Suppose this were not the case. The two vertices v1 and v2 have degree 1 in T and 2
in G−T , while the remaining vertices of Q have degree at least 2 in T . But now, all these
are incident to a non-tree edge as well, meaning they have degree exactly 2 in T . As a
result, Q is a component of T and, as T is a spanning tree, Q = T and V G = V Q. Hence,
P has length exactly 3 and both endpoints are on the cycle. The form of G in this case is
illustrated in Figure 3.7b and we note that E G \ (EQ∪ {v1v2}) is a matching. We now
show how to obtain a 3-decomposition in this case, which contradicts the minimality
of φT > 0 as the tree of a 3-decomposition has potential 0.

To this end, we choose a non-tree edge e = xixj, with i < j such that ℓ e := j − i is
minimal. Note that e ̸= v2v1 = x1xt, as it attains the maximal value ℓ(x1xt) = t− 1, so
at least v2v3 is preferred. Therefore, we may consider the cycle C := xiQxj + e and the
path P ∗ := xixi−1 . . . v2v1xt−1 . . . xj in G − E C that connects all vertices except those
in the set {xi+1, . . . , xj−1}. But any vertex not connected to P ∗ yet has an incident
edge that is not in C. Its other endpoint is on P ∗, since it cannot also be on C by

40

3.4. A relaxation of the conjecture

the minimality of ℓ e. By adding all these edges to P ∗, we obtain a spanning tree T ∗

that yields a 3-decomposition as desired. To see that this is indeed the case, note that
G− E T ∗ consists of the cycle C and edges in the matching E G \ (EQ ∪ {v1v2}).

Consequently, we now know we have a vertex xi ∈ Q whose incident edges are all in T .
We define T ′ as the tree T+v1v2−xi−1xi, which is visualised in Figure 3.7c. To complete
the proof, we show that φT ′ < φT , giving us our desired contradiction. To this end,
we first consider φG′ where G′ := T + v1v2. By adding the edge v1v2 to T , the path P
is split into the path v2 . . . vk and the edge v0v1. This means that we lose a path of
length k and obtain one of length k − 2 and one of length 1. Hence,

φG′ ≤ φT − k2 + (k − 2)2 = φT − 4k + 4,

where the first inequality is only strict when k = 3, in which case the (k − 2)2 would
not be added. Due to the removal of xi−1xi from T , we obtain an additional edge in the
set of paths. By construction, the degree of xi in G − T ′ is one, making it the end of
a path. It can be a matching edge, which does not increase the value of φ at all, or it
lengthens a path in G−G′ of length k′ by one edge. If k′ = 1, we obtain that

φT ′ = φG′ + 4 ≤ φT − 4k + 8 < φT

and for k′ ≥ 2 we get

φT ′ = φG′ − (k′)2 + (k′ + 1)2

≤ φT − 4k + 4 + 2k′ + 1
≤ φT − 2k + 5
< φT.

In all three cases we have obtained φT ′ < φT and the proof is complete. □

Let us note a couple of things. First, we observe the existence of xi can be obtained
faster using that the path Q together with the edge v1v2 forms a Hamiltonian cycle and
the 3-decomposition conjecture is known to hold for these graphs. This would have
provided us with the tree whose potential is 0. What we did instead is, in essence, a
repetition of the proof we could have used. The purpose of this exercise was to see how
the decomposition is obtained since this lets us turn the proof into an algorithm.

3.13 Corollary. For a connected cubic graph we can compute a decomposition into a
spanning tree, a 2-regular subgraph, and vertex-disjoint paths of length at most 2 in
O (n3) time. ◁

Proof. Notice that the potential proof above is constructive in the sense that it gives an
explicit transformation that reduces the value of φT in the case that G−E T has paths
of length at least 3. It can thus be used to construct a decomposition of a graph into

41

Chapter 3. Known and Preliminary Results

u∗
v∗

Figure 3.8.: An example of a depth-first search tree that leaves a path of length 4. The
black arcs are part of the DFS-tree, which has u∗ as its root while the
remaining blue edges form a path of length 4.

a spanning tree and paths of length at most 2. As G is cubic, it has 3n
2 edges, leaving

only n
2 + 1 for G− E T . Therefore,

φT =
∑

P ∈P T

∥P∥2 ≤
(∑

P ∈P T

∥P∥
)2

≤
(
n

2 + 1
)2

∈ O
(
n2
)
.

So, by starting with some spanning tree T , it takes at most O (n2) transformation steps
to find a spanning tree T ′ such that G−E T ′ has no path of length 3 or more or we run
into the special case, where we can compute a 3-decomposition.

Computing a spanning tree using depth-first-search only takes O (n) time, so it suffices
to show that we can implement the transformation steps or find the 3-decomposition
in linear time. We start with the former: finding the longest path P in G − E T and
the corresponding path Q in T from the proof can be done in O (n) time. Finding the
vertex xi and swapping the edge is also unproblematic.

This just leaves the computation of the 3-decomposition, which occurs when no vertex xi

is found. Here, checking the distance between the endpoints of all edges in G − E T ,
removing the cycle, and updating the tree are all operations that can be completed in
linear time. This yields an O (n3) time algorithm. □

To round out this section, we look at [LC14]. The authors obtain the desired long
3-decomposition as a direct consequence of the following result.

3.14 Theorem ([LC14]). Let G be a connected subcubic graph. Then G contains a
spanning tree T such that every component of G− E T is a path of length at most 3.
Moreover, the number of paths of length 3 is at most one. ◁

Their proof claims that the spanning tree obtained by depth-first search does the trick
but the example in Figure 3.8 illustrates that this is not the case in general.

However, this example already illustrates the worst case that can occur: there is at most
one path whose length exceeds 2 and this path has length at most 4. This result is
implied by the following lemma.

3.15 Lemma.(3.16) Let G be a connected subcubic multigraph and T be a spanning tree
in G computed by depth-first search starting at u∗ ∈ G. If u and v are distinct vertices
of degree 2 in G− E T and uv ∈ E G, then without loss of generality u = u∗. ◁

42

3.4. A relaxation of the conjecture

Proof. Let T , u∗, u, and v be as in the statement and assume without loss of generality
that u is visited before v by the depth-first search. We regard T , like in Figure 3.8,
as a directed graph with an edge xy directed from x to y if y is visited from x by the
depth-first search. Since u has an unvisited neighbour, namely v, it has out-degree at
least 1. Moreover, u has degree 2 in G−E T , giving it degree 1 in T . Therefore, u has
in-degree 0 and u = u∗. □

This limits the longest path length to 4 since any edge between degree 2 vertices must
have u∗ as an end, meaning there are at most two such edges in all of G and they lie in
the same component of G − E T . As a result, if we replace the 3 in Theorem 3.14 by
a 4, the claim is now proved (even without needing the restriction to simple graphs, only
loops need to be prohibited). Furthermore, if G contains a vertex of degree at most 2,
then starting the DFS at this vertex guarantees that no path of length 3 exists: in this
case, we can choose such a vertex as u∗ and get that u∗ has degree at most 1 in G−E T
and by Lemma 3.15 no adjacent degree 2 vertices exist.

We get the complete result of Theorem 3.14 by modifying the depth-first search slightly,
to exclude the case that a length 4 path exists. In fact, we can actually show the result
for all graphs without loops (which necessarily leave cycles in G−E T). To achieve this,
we first choose a vertex u∗ ∈ G, giving preference to one that has degree at most 2 or
that is adjacent to parallels if the graph is not simple. Then we run depth-first search
starting at u∗ and have it prioritise neighbours of u∗ in case it has a choice of successors
to visit next. We call this algorithm modified DFS.

3.16 Theorem. [3.15]Let G be a connected subcubic multigraph without loops and T be a
spanning tree in G computed by modified DFS. Then every component of G− E T is a
path of length at most 3. Moreover, the number of paths of length 3 is at most one. ◁

Proof. Let u∗ be the vertex chosen by modified DFS. If u∗ has degree at most 2, we
are done by the previous arguments. Thus, we may assume that u∗, and therefore all
vertices of G, have degree 3.

Furthermore, let u and v be two adjacent vertices of degree 2 in H := G − E T with
P := suvt ⊆ H. By Lemma 3.15 we may assume that u = u∗. We now prove that P is
a component of H. This implies the theorem as it shows that adjacent degree 2 vertices
live in a path of length at most 3 that contains u∗, making this path unique.

We refer to Figure 3.9 for an illustration of the vertices considered in the following. Let
Nu := {s, v, x}. When v is visited by the modified DFS, vt is not chosen, so t must have
been visited prior to v. On the other hand, when t is visited, tv is not chosen either, so
some edge ty must have been used, for an unvisited vertex y. Since v is preferred over
any non-neighbour of u and x has been visited, we can conclude that y ∈ Nu \ {x}.

We start with the case that y = s, which is illustrated in Figure 3.9a. Note that this is
mandatory if G is simple. By the fact that tv /∈ T , we also conclude that v is visited

43

Chapter 3. Known and Preliminary Results

u = u∗ v

s tx

(a) The case that ts ∈ G.
u = u∗ v

s t

(b) The situation in multigraphs.

Figure 3.9.: The behaviour of modified DFS. As before, black arcs are part of the DFS-
tree, which is rooted at u, while blue ones are not.

before we backtrack at s, in particular, modified DFS finds an unvisited successor at s.
This makes P a component, since both s and t have degree 1.

This leaves the case y = v shown in Figure 3.9b. Here we also have that the degree of t
in H is 1, but we still need to consider s. However, parallels exist in G in this case, and
by choice of u∗ = u, this vertex must be incident to a pair of parallels. Since a parallel
to uv is not an option for degree reasons, we get a parallel to the edge us, which is also
the first edge traversed by the modified DFS. But, once more, we must visit v before
backtracking at s, so modified DFS finds an unvisited successor and dH s = 1. □

We can obtain the existence of long 3-decompositions for all cubic graphs (not just the
simple ones) by the same argument as in [LC14]. Let G be a cubic graph. By Theorem 3.6
we can find a non-separating cycle C in G in linear time. The graph G − E C has a
vertex of degree 1, so choosing it as u∗ and running DFS (modified or otherwise), yields
a long 3-decomposition. This shows the theorem below since, for a long 3-decomposition,
the now allowed loops pose no threat.

3.17 Theorem.[3.6] Every connected cubic multigraph has a long 3-decomposition and
such a decomposition can be computed in O (n) time. ◁

44

Chapter 4.

Star-Like Graphs

In this chapter, we consider a natural extension of Hamiltonian graphs: removing a
Hamiltonian cycle from a cubic graph leaves a perfect matching. Conversely, removing a
perfect matching M from a cubic graph G leaves a disjoint union of cycles. Contracting
these cycles yields a new graph GM . The graph G is star-like if GM is a star for some
perfect matching M , making Hamiltonian graphs star-like. We extend the technique
used to prove that Hamiltonian graphs satisfy the 3-decomposition conjecture to show
that 3-connected star-like graphs satisfy it as well.

Here we look at graphs that are a natural extension of Hamiltonian cubic graphs in
the context of the 3-decomposition conjecture. Notice that a cubic graph G with a
Hamiltonian cycle C has a perfect matching, namely the edges of G− E C. In general,
for a cubic graph G with a perfect matching M , G−M is the disjoint union of cycles,
leading us to the following definition.

4.1 Definition. Let G be a connected cubic graph with a perfect matching M . Then
G−M consists of disjoint cycles and contracting these in G to single vertices yields a
new graph GM , the contraction graph, that has a vertex for every cycle in G−M and
an edge between two vertices if the corresponding cycles are connected by an edge of M .
If G has a perfect matching M such that GM is a star, then G is star-like. ◁

We wish to make a few remarks on this definition, which is illustrated in Figure 4.1 by
an example. First note that all Hamiltonian cubic graphs are star-like. Furthermore, by
Petersen’s theorem [Pet91], all bridgeless cubic graphs have a perfect matching. Also,
using this definition, the main theorem in [XZZ20] now reads as: the 3-decomposition
conjecture holds for any connected cubic graph with a perfect matching such that its
contraction graph has order 3. We observe that a graph has a contraction graph of
order 1 if and only if it is Hamiltonian. Moreover, graphs with a contraction graph of
order 2 are traceable, so, in fact, we can say that the 3-decomposition conjecture holds
for all graphs with a contraction graph of order at most 3.

45

Chapter 4. Star-Like Graphs

C1

C2

C3

C4

u

v

w

Figure 4.1.: An example of a star-like graph. The edges of M are grey, while the edges
of G−M are black.

Our goal here is to show that the conjecture holds for all star-like graphs, which restricts
how the cycles of GM may be arranged, but does not limit their number. More precisely,
we shall prove the following theorem:

4.2 Theorem.[4.8]
[4.12]
[4.13]
[4.14]
[4.15]
[4.18]

Every 3-connected star-like graph has a 3-decomposition. ◁

The idea of this proof is to construct a tree on the vertices of the centre cycle and
to iteratively extend it to the tips of the star. Once extended to all cycles it yields
a 3-decomposition. To make this precise, we introduce two types of decompositions
in Section 4.1. One describes this tree and the other formalises the properties that we
need to extend it to further cycles. To achieve this extension, we show that certain
decompositions always exist in Section 4.2 and that these are actually sufficient in
Section 4.3. As such it falls into the first proof type in our classification from Section 3.2,
since we manipulate a global structure.

We note that the result in [XZZ20] is similar to ours, both in their claim as in the approach,
though the final result differs. However, our approach has two main advantages: due to
the definition of the decompositions we provide, it is easier to obtain reusable components
(whereas the proof in [XZZ20] consists of a series of very long case distinctions in which
a lot of details have been omitted). In contrast to this, our final proof is very short and
a direct application of the components we proved before.

Additionally, these decompositions have straightforward extensions that allow them to
deal with more general contraction graphs and our results carry over to this more general
form. This leaves hope that the decompositions we introduce here could be a helpful tool
for proving the conjecture for larger classes of graphs, tree-like being a natural candidate.
We go into a bit more detail on this in Section 4.4.

46

4.1. Decompositions and their extension

Finally, in the Section 4.5, we exhibit an infinite family of graphs that are 3-connected
and star-like, and therefore covered by Theorem 4.2, but for which the conjecture had
not yet been proved.

The content presented in this chapter is joint work with Sven O. Krumke and is published
in [BK22].

4.1. Decompositions and their extension

We start by fixing some notation.

4.3 Convention. From now on, until the end of this chapter, let

• G be a star-like graph
• with perfect matching M
• and cycles C1, . . . , Cl in G−M , where C1 is the centre cycle. ◁

Also, the following definitions are used excessively.

4.4 Definition. For ∅ ̸= I ⊆ {1, . . . , l}, we denote ⋃i∈I V Ci by VI and G[VI] by GI ,
writing Gi for G{i}. We write ∂ GI for the set of degree 2 vertices in GI and call these
vertices the boundary of GI . ◁

We refer back to Figure 4.1 to illustrate this definition as well. The boundary of G3 are
all three vertices of C3. For I = {1, 3}, the graph GI contains all vertices but the four
in C2 and the five in C4. Its boundary ∂ GI consists of the vertices in the set {u, v, w}.

Once more, we recall Definition 2.3 and note that we allow a matching to be part of a
decomposition despite not formally being a subgraph. As promised, we begin with the
two types of decompositions we need, starting with the one describing the tree we wish
to extend. Intuitively, it describes a tree T in GI , for 1 ∈ I ⊆ {1, . . . , l}, that could be
part of a 3-decomposition of the entire graph. The definition does this by ensuring a
few necessary conditions: it requires that all vertices of degree 3 in GI are part of T .
Additionally, edges not in T should either be matching edges or in the set of cycles and
paths one gets by restricting a collection of cycles to a subgraph. These paths need to
be extended to cycles in a later step, so they must end at the boundary ∂ GI .

4.5 Definition. Let 1 ∈ I ⊆ {1, . . . , l} and DI = (TI , CI ,MI) be a decomposition of GI

such that

• TI is a tree containing all degree 3 vertices of GI ,
• CI is a disjoint union of (positive length) paths and cycles in GI , and
• MI is a matching.

If all path components (components that are paths) of CI end at vertices in the bound-
ary ∂ GI , then DI is an I-decomposition. ◁

47

Chapter 4. Star-Like Graphs

m

p

p
2

0

(a) An I-decomposition with two cycles.

p

p

m
2

2

0

(b) An (A0, Ap, Am, A2)-decomposition.

Figure 4.2.: The two types of decompositions introduced in Definitions 4.5 and 4.7. Green
edges should be part of the tree in the final decomposition, red ones are on
cycles, and the blue ones form a matching. This is also the colour scheme
for figures concerning 3-decompositions in general.

Note that for I = {1, . . . , l} this is just a 3-decomposition since CI is no longer allowed
to contain path components. We also remark that this does not describe all possible
restrictions of a 3-decomposition of G to the graph GI , we would have to allow forests
for that to be true, but, for the upcoming proof, trees suffice.

An example of an I-decomposition is shown in Figure 4.2a. There, the edges in TI are
coloured in green, those in CI are red, and the ones in MI are blue. The edges on the
boundary are not actually part of the decomposition, but they exist and their colours
describe which component they should eventually end up in.

A bit of additional notation is useful at this point.

4.6 Definition. We write Ai DI , i ∈ {0, 1, 2}, for the set of vertices in ∂ GI that have
degree i in TI , where A0 DI denotes those that are not in TI at all. Moreover, we split
the set A1 DI into Ap DI and Am DI , where the former contains those degree 1 vertices
of TI that are ends of path components of CI , whereas the latter contains the ends of
matching edges. ◁

As the vertices in A1 DI have degree 2 in GI and degree 1 in TI , they are either in Ap DI

or Am DI . As a result, we have that ∂ GI is the disjoint union of the four sets Ax DI

for x ∈ {0, p,m, 2}. The drawn vertices in Figure 4.2a represent the boundary and those
in set Ax DI are labelled by x.

We can now move on to the second type of decomposition we need. The next definition
might seem cryptic at first glance, which is why we shall invest some time into giving an
intuition for why this is what we want our decomposition to do. Our goal is to formalise
the extension of an I-decomposition DI to another cycle Ci, with i /∈ I, by describing a
spanning forest Fi of Gi that satisfies conditions analogous to those of the tree TI above.
Once again, the remaining edges of Gi should either be part of a matching Mi or on
cycles or paths in Ci.

48

4.1. Decompositions and their extension

But we cannot take just any decomposition of Gi, it also needs to ‘fit together’ with the
I-decomposition that we have. We notice that we do not actually need the details of DI ,
it suffices to know the behaviour of the vertices on the boundary of GI with an edge
to Ci. Let u be a vertex in ∂ GI with unique neighbour v in Ci, more precisely in ∂ Gi.
We now classify the vertices v based on the behaviour of u, placing them into the four
sets Ax := N(Ax DI) ∩ V Ci for x ∈ {0, p,m, 2}. Let us see what we want v to satisfy in
each of these cases.

If u ∈ A2 DI and thus v ∈ A2, then uv can either be in the tree or matching part,
depending on whether we need it to connect to Ci or not. So vertices of this type
actually have some leeway in their behaviour, making them rather useful when finding
decompositions. The remaining types will not be as kind.

When u is in Ap DI , we need to extend the path ending at this vertex to a cycle, meaning
it must continue in Ci. Hence, this calls for a path at v to another vertex in ∂ Gi of this
type. Thus, we require that the vertices in Ap are exactly the ends of path components
of Ci. This is a necessary condition as paths must end at the boundary and all other
types of vertices have conflicting behaviour.

If u is in Am DI , then the edge uv must be part of the tree and we have to ensure that it
does not create cycles. This is achieved by requiring that any component of Fi contains
at most one vertex that is either in Am or both a leaf of Fi and in A2. Such vertices
need a tree edge to TI , which we have already seen for those in Am and it holds for the
leaves as well: the missing edge in Gi at such a vertex must be in Mi as the ends of
paths are in Ap.

Finally, u can be in A0 DI , where it needs the edge uv to be part of the tree and v must
be connected to TI in Ci. We ensure that v ends up in a component of Fi that can
be connected to TI . For this we require every component of Fi to contain an element
of A2 ∪ Am, which are vertices that can or need to connect to TI . With these ideas at
hand, let us give the definition.

4.7 Definition. Let (A0, Ap, Am, A2) be a partition of ∂ Gi for some i ∈ {1, . . . , l}. Also
let Di = (Fi, Ci,Mi) be a decomposition of Gi such that

• Fi is a spanning forest in Gi,
• Ci is a disjoint union of (positive length) paths and cycles in Gi, and
• Mi is a matching.

The decomposition Di is an (A0, Ap, Am, A2)-decomposition of Ci if it satisfies the following
two conditions.

(i) Every component of Fi contains a vertex in A2 ∪ Am and it contains at most
one vertex v such that v ∈ Am or v is both in A2 and a leaf of Fi.

(ii) The set of ends of path components of Ci is exactly Ap. ◁

49

Chapter 4. Star-Like Graphs

Figure 4.2b on Page 48 visualises such a decomposition, where vertices in Ax are labelled
by x for x ∈ {0, p,m, 2} and the colour scheme is analogous to before: the edges in Fi

are coloured in green, those in Ci are red, and the ones in Mi are blue.

We are now in a position to prove that the conditions we incorporated into our defin-
itions suffice to let us extend an I-decomposition. More precisely, we show that an
I-decomposition can be extended to a new cycle Ci if we have an (A0, Ap, Am, A2)-
decomposition there. Here the sets Ax, for x ∈ {0, p,m, 2}, are assigned exactly those
vertices we gave them when we described the intuition behind Definition 4.7. Afterwards,
we only need to take a look at what kinds of decompositions we can find in the cycles Ci

and how we can piece them together to obtain one of G.

4.8 Lemma.(4.2) Let 1 ∈ I ⊆ {1, . . . , l}, i /∈ I, J := I ∪{i}, and DI := (TI , CI ,MI) be an I-
decomposition of G. If there exists an (A0, Ap, Am, A2)-decomposition Di := (Fi, Ci,Mi)
of Ci where

Ax := N(Ax DI) ∩ V Ci for x ∈ {0, p,m, 2} ,
then G has a J-decomposition (TJ , CJ ,MJ) with

TI ∪ Fi ⊆ TJ , CI ∪ Ci ⊆ CJ , and MI ∪Mi ⊆ MJ . ◁

Proof. Let DI and Di be decompositions as in the claim. In order to get a decomposi-
tion DJ as desired, we need to assign the edges in E(V GI , V Ci) to the graphs TI ∪ Fi,
CI ∪ Ci, and the set MI ∪Mi. Note that, by definition of the sets Ax,

E(V GI , V Ci) = E(∂ GI , V Ci) =
⋃
x

E(Ax DI , Ax) where x ∈ {0, p,m, 2} .

We add the set E(Ap DI , Ap) to CI ∪ Ci to get CJ . The sets E(Am DI , Am) and
E(A0 DI , A0) are both added to TI ∪ Fi. Additionally, for any component K of Fi

that contains a vertex of A2 but none of Am, we pick a vertex in A2 ∩ V K of least
degree in K and add the edge incident to it with an end in A2 DI to the tree part
as well. Such vertices exist by Condition (i) of Definition 4.7 and the minimality just
means that we choose a leaf in case one is present. This yields TJ . The remaining edges
of E(A2 DI , A2) are added to MI ∪Mi to get MJ .

We claim that DJ := (TJ , CJ ,MJ) is a desired J-decomposition of G. The set CJ is
the union of two disjoint graphs CI and Ci, both of which consist of paths and cycles,
together with edges E(Ap DI , Ap) connecting degree 1 vertices of these subgraphs. Hence
it, too, is a disjoint union of paths and cycles as required. Furthermore, a degree 1
vertex in CJ must have degree 1 in CI or Ci. In the first case, it is an element of ∂ GI by
definition of an I-decomposition and it cannot be part of N(V Ci) without increasing its
degree when we add the edges in E(Ap DI , Ap). So it is in ∂ GJ as desired. The second
case does not occur as vertices of degree 1 in Ci are in Ap and have degree 2 in CJ .

The set MJ is also a matching as it is the union of two matchings MI and Mi in disjoint
subgraphs and the additional edges are part of E(A2 DI , A2), meaning their ends in GI

50

4.2. Finding decompositions in cycles

have degree 2 in TI ⊆ TJ . Their ends in Ci also have degree 2 in Fi ⊆ TJ as a lower
degree makes them a leaf or an isolated vertex of Fi. In the first case the component
containing that vertex cannot contain a vertex in Am and the leaf is unique, meaning
the edge is added to TJ by our construction. The second case is faced with a component
having a unique edge to GI , which is also added to TJ .

This just leaves TJ . Let K be the set of components of Fi and let F be the union of TI

with the components in K. By adding the edges of E(Am D, Am) to F we have connected
all components K ∈ K that contain a vertex of Am to TI by exactly one edge each. The
result is a new forest F ′ consisting of a tree T ′ ⊇ TI and remaining components K′ ⊆ K
that have no vertex in Am. By adding our chosen elements of E(A2 DI , A2) we connect
the components of K′, which all contain an element of A2, to T ′ by exactly one edge.
This results in a tree T ′′. Finally, the edges in E(A0 DI , A0) connect vertices of GI that
are not in T ′′ to it by a single edge, creating the tree TJ .

Now we only need to check that TJ spans all vertices of degree 3 in GJ . To this end,
consider a vertex of GJ that is not part of TJ . It cannot be in Ci as all the components
of Fi are part of TJ and Fi was spanning. A vertex in GI that is not part of TJ is also
not in TI , putting it in A0 DI . But such vertices still have degree 2 in GJ as they cannot
be in A0 DI ∩N(V Ci) because the degree of such a vertex is 1 now. □

4.2. Finding decompositions in cycles

In this section, let Ci be some cycle in G−M , as defined in Convention 4.3, and A0, Ap,
Am, and A2 be a partition of ∂ Gi for which we want to find an (A0, Ap, Am, A2)-decom-
position. We need four different types of decompositions in order to handle all cases that
occur when combining them.

Before we start, a bit more notation will come in handy, which we now introduce.
4.9 Definition. For a chord e ∈ Gi of Ci we get two paths in Ci between its ends which,
together with the chord, yield two cycles, say C ′ and C ′′. We call C ∈ {C ′, C ′′} minimal
or a minimal cycle of Ci if it is a chordless cycle in G. The unique edge in M ∩E C of a
minimal cycle C is denoted by eC and we write PC for the path C − eC . ◁

We directly observe that, if we want to spare a vertex x ∈ ∂ Gi, then we can find a
minimal cycle in Ci − x, as long as Ci has a chord.
4.10 Observation. (4.12)

(4.14)
If Ci has a chord, then there is a minimal cycle of Ci that avoids

any specific vertex in ∂ Gi. ◁

Proof. Let e be a chord of Ci and let P1 and P2 be the two paths in Ci between its ends.
For j ∈ {1, 2}, we choose vjwj ∈ M such that dPj

(vj, wj) is minimal. Using these edges,
we find two minimal cycles vjPjwjvj that meet disjoint sets of vertices of ∂ Gi. Note that
the vertices vj, wj always exist as the ends of e are candidates. The cycles are minimal
as a chord of vjPjwjvj must be an edge of M whose ends have smaller distance. □

51

Chapter 4. Star-Like Graphs

A useful construction that we apply regularly is the following. Let C be a minimal cycle
of Ci that does not contain some vertex x ∈ A2 ∪ Am and where V C ∩ ∂ Gi contains
only vertices of A2 ∪Am. Additionally, we require that Ap = ∅ and |Am \ V C| ≤ 1. We
assign the edges of E Gi to our three components by setting

Ci := C, M ′ := M ∩ (E Gi \ E C), and F ′ := Ci − E C.

In this assignment Ci is a cycle and thus contains no path components, M ′ is a matching,
and F ′ consists of a path P together with a set of isolated vertices. As x ∈ P , this
path is not disjoint from A2 ∪ Am and has no leaf in ∂ Gi as its ends are incident to a
chord, so it satisfies Condition (i) of Definition 4.7. Let v be an isolated vertex of F ′. If
v has degree 3 in Gi, then it is incident to an edge vu /∈ C whose other end is in P . We
remove this edge from M ′ and add it to F ′, leaving F ′ acyclic by adding a new leaf to
the tree P . As this leaf has degree 3 in Gi, the larger component continues to satisfy
Condition (i). In the case where v has degree 2 in Gi, we assumed that v ∈ A2 ∪ Am

and this component also satisfies Condition (i). The resulting spanning forest Fi and
matching Mi therefore form an (A0, Ap, Am, A2)-decomposition of Ci together with Ci.
We call this the decomposition given by C. To summarise, we obtain the following
result.

4.11 Observation.(4.12)
(4.14)
(4.18)

If C is a minimal cycle of Ci satisfying that

V C ∩ ∂ Gi ⊊ A2 ∪ Am, |Am \ V C| ≤ 1 and Ap = ∅,

then the decomposition given by C is an (A0, Ap, Am, A2)-decomposition of Ci. ◁

We now show that certain (A0, Ap, Am, A2)-decompositions exist, starting with A0 = ∅,
Ap = ∅, Am = {x} for some x ∈ ∂ Gi, and A2 = ∂ Gi \ Am.

4.12 Lemma.[4.10]
[4.11]
(4.2)

(4.13)

There exists an (∅,∅, {x} , A2)-decomposition of Ci. ◁

Proof. If the cycle Ci is chordless, V Ci = ∂ Gi and E Gi = E Ci. Here, setting

Fi := Gi[∅], Ci := Ci and Mi := ∅

does the trick. In the case where the cycle Ci has a chord, it contains a minimal cycle C
that avoids x by Observation 4.10 and we can use the decomposition given by C by
Observation 4.11. □

We also find decompositions this way when all elements of ∂ Gi are in A2, since this is
just a weaker requirement.

4.13 Corollary.[4.12]
(4.2)

If ∂ Gi ̸= ∅, then Ci has an (∅,∅,∅, ∂ Gi)-decomposition. ◁

Proof. By Lemma 4.12 there exists an (∅,∅, {x} , A2 \ {x})-decomposition of Ci for
some x ∈ A2. This is an (∅,∅,∅, A2)-decomposition by definition. □

52

4.2. Finding decompositions in cycles

Next, let A0 = {x} for some x ∈ ∂ Gi, Ap = ∅, Am = ∅, and A2 = ∂ Gi \ A0.

4.14 Lemma. [4.10]
[4.11]
(4.2)

If A2 ̸= ∅, then there exists an ({x} ,∅,∅, A2)-decomposition of Ci. ◁

Proof. We begin by looking at the case where Ci is chordless. Let y be a neighbour of x
in Ci and consider the spanning tree Fi := Ci −xy. This contains an element of A2 and it
has only one leaf in A2, namely y. Thus, Fi satisfies Condition (i) of Definition 4.7. The
last missing edge xy of E Gi is assigned to Mi, making this a matching and leaving Ci

with no edges and thus no path component. This gives us an ({x} ,∅,∅, A2)-decompo-
sition.

Now we assume that Ci has a chord. The existence of a minimal cycle C that neither
contains x nor all elements of A2 is another good case since it satisfies both requirements
necessary for us to obtain a decomposition given by C, see Observation 4.11.

In the final and most complicated case, we may assume that Ci has chords but none of
them yield a cycle as described above. We have already seen that any chord naturally
gives rise to two minimal cycles C, C ′ for which PC , PC′ have no inner vertex in common
in Observation 4.10. Consequently one of them must contain x while the other contains
all vertices of A2. Hence, all vertices of A2 must form a path P : a vertex of degree 3
between them is incident to a chord and this would yield a minimal cycle as above.
Let P1 and P2 be the two paths in Ci − E P between x and the ends of P . Then any
chord e of Ci must connect an inner vertex of P1 to one of P2: if both were on the same
path, then one of the two minimal cycles that e yields would contain neither x nor any
element of A2, contradicting our assumption. Hence, P1 and P2 have the same length.

Let x1, . . . , xr and y1, . . . , yr be the inner vertices of P1 and P2 respectively, ordered
by increasing distance to x. We call a chord xkyl of Ci short if |k − l| ≤ 1 and long
otherwise. As an illustration, the two blue chords in Figure 4.3a are short, whereas the
edge xkyl is a long chord. It turns out that long chords are helpful and the presence of
only short ones is structurally very restrictive. More precisely, we prove by induction on
1 ≤ d ≤ r that if all chords xkyl in Gi with k, l ≤ d are short, then we have xkyl is in G
if and only if xlyk is, for all k, l ≤ d. The case that d ≤ 1 is clear as the only candidate
is x1y1. So let it hold up to d − 1 for d ≥ 2 and let xkyl satisfy k, l ≤ d. If k, l < d
or k, l = d we are done, so we may assume, by symmetry, that k = d and l = d − 1.
But xd−1 is matched to a vertex in {yd−2, yd−1, yd} by M . Of these three, only yd is an
option as yd−1 is taken by xd and xd−1yd−2 cannot be in M by induction since xd−2yd−1
is not.

With this preparation, we can now look at the case in which a long chord xkyl exists.
We choose one minimising min {k, l} and may, by symmetry, assume that k < l and all
chords with an end of index at most k−1 are short. As a result, the vertices yk, yk+1 are
matched to vertices in xk+1P1: this holds as neither is matched to xk whose neighbour
in G[M] is yl with l ≥ k + 2. All vertices in P1xk−2 have neighbours in P2yk−1, so none
of these are possible either. This just leaves the vertex xk−1. Since xkyk−1 /∈ M , yk−1 is
matched to xk−1 or xk−2, giving us xk−1yk−1 ∈ M or xk−1yk−2 ∈ M , eliminating xk−1 as
well.

53

Chapter 4. Star-Like Graphs

x

P

yk

yk+1

yl

xk

zk

zk+1

P1 P2

(a) The cycle obtained from a long chord xkyl.

x

vP

P1 P2

(b) The case when all chords are short.

Figure 4.3.: The decompositions used in the proof Lemma 4.14. On the left, the presence
of a long chord yields a decomposition from a cycle. On the right the
non-existence of long chords leads to a Hamiltonian path through the cycle.

Now, let zk, zk+1 be the neighbours of yk, yk+1 in G[M] and take a look at the cycle

C := ykyk+1zk+1P1zkyk

shown in Figure 4.3a. We now apply a construction similar to the one for minimal
cycles: assign the edges of E Gi to the three components by setting

Ci := C, M ′ := M ∩ E Gi \ E C, and F ′ := Ci − E C.

Then Ci is a cycle, M ′ is a matching, and F ′ consists of two paths together with isolated
vertices. The ends of these paths are part of C, so they have degree 3 in Gi and we
can connect the two paths using the long chord xkyl. This replaces the two paths by a
tree T ′ and the isolated vertices have degree 3 in Gi with a neighbour in P2. As their
neighbours are not on C, they are part of T ′ and we can connect them by adding such
edges to T ′. Give Fi the edges of T ′ and put the remaining edges into Mi, then Mi ⊆ M ′

is still a matching and Fi is a spanning tree. Since Fi contains P and thus (all) vertices
of A2, the conditions of an ({x} ,∅,∅, A2)-decomposition are satisfied.

This just leaves the case that all chords are short, which makes use of the very potent
knowledge of the way these behave. Here, we give Ci no edges of E Gi, instead we divide
them up amongst Fi and Mi. Note that the degree 2 vertices of Gi are those in the
set {x} ∪A2 where the vertices of A2 are all on P . We suppress all vertices of degree 2
except x and one element of A2. The resulting graph G′ is left with just two vertices of
degree 2, namely x and a vertex vP that has replaced the entire path P . The paths P1
and P2 are now xvP -paths, so we have P1 = xx1 . . . xrvP and P2 = xy1 . . . yrvP . An
illustration of this and the decomposition we now choose can be found in Figure 4.3b.

Since P1 and P2 have the same length, P1 ∪ P2 is a Hamiltonian cycle of even length.
Its edges thus decompose into two perfect matchings M1 and M2, and we claim that
the graph Q := G′ − M1 is a Hamiltonian xvP -path in G′. To see that this is indeed
the case, notice that all vertices in V G′ \ {x, vP } have degree 2 in Q, where the two

54

4.2. Finding decompositions in cycles

excluded ones have degree 1. Hence, Q consists of an xvP -path and possibly additional
cycles. Suppose it contains a cycle C and choose a vertex of minimal index in C. By
symmetry, we assume this vertex is xk ∈ P1. Then the edge xkxk−1 is in M1 as xk−1 /∈ C
(where x0, y0 := x and xr+1, yr+1 := vP). Thus, xkxk+1 and ykyk−1 are in M2 and Q.
The edge xkyk−1 cannot be in G′ either since yk−1 is not part of C. But now xkyk ∈ Q
or xkyk+1, xk+1yk ∈ Q. Both yield an xkyk−1-path in C, xkykyk−1 or xkxk+1ykyk−1
respectively, a contradiction.

Hence, Q is a Hamiltonian path and we can obtain the desired decomposition by re-
placing vP by the path P again and putting all edges of P ∪ Q into Fi, which is a
Hamiltonian path in Gi ending at x and at an end of P . The graph Ci receives no edges
and Mi := M1. This is an ({x} ,∅,∅, A2)-decomposition of Ci since the only component
of Fi contains an element of A2 and it only has one leaf in A2. □

Here we remark that this lemma was also obtained by Xie, Zhou, and Zhou [XZZ20,
Lemma 2.3]. Their formulation essentially describes the two cases in our proof, as they
either get a decomposition containing a cycle with two chords or a Hamiltonian path.
We repeated the statement to make it fit into our notation. The reason we also presented
our proof is that it is different and we believe that it reveals more structure of the graph.
Our case distinction is based on the existence of long chords and we obtained that either
the graph has one or all chords are short, in which case a Hamiltonian path is present.
But we also know that all chords in this case are either of the form xiyi or they come in
pairs xiyi+1, xi+1yi. Xie, Zhou, and Zhou prove this by distinguishing whether or not
Ci has a non-separating two-chord cycle. This turns out to be exactly our distinction, as
we obtain such cycles in the case that there is a long chord and they do not exist when
all chords are short, but it obscures the structure of the chords.

Lastly, we let A0 = ∅, Ap = {x, y} for x, y ∈ ∂ Gi, Am = ∅, and A2 = ∂ Gi \ Ap. Due
to the abundance of indices needed in the proof, we denote the considered cycle by C
instead of Ci and write GC for G[V C].

4.15 Lemma. (4.2)If G is 3-connected, then C has an (∅, {x, y} ,∅, A2)-decomposition. ◁

Proof. Let P , P ′ be the two xy-paths in C. Since G − {x, y} is connected, A2 is non-
empty and we may assume that, without loss of generality, V P ′ ∩ A2 ̸= ∅. Next, let

u1v1, u2v2, . . . , usvs

be a maximal sequence of edges of M with ends in P satisfying, for all i ∈ {1, . . . , s},
that

(a) the path Pi := uiPvi is disjoint from all prior ones, that is, Pi ⊆ P − ⋃
k<i Pk,

(b) Pi either contains an element of A2 or there is an edge ei ∈ E(V Pi, Xi) where
Xi := V P ′ ∪ ⋃k<i V Pk, and

(c) P has no vertices u′, v′ with u′v′ ∈ M and Pi ⊊ u′Pv′ ⊆ P − ⋃
k<i Pk.

55

Chapter 4. Star-Like Graphs

x

y1

x1

y2

x2

ysxs

y

P ′

Q0

Q1

Qs

Pi1

Pi2

Pis

Figure 4.4.: The notation used in the proof of Lemma 4.15. The visible part of Q is red,
that of F is green, and matching edges are omitted in favour of clarity.

We remark that these paths Pi end up as part of the tree and Property (b) ensures that
they either contain an element of A2 (and can form a component on their own) or can
connect to a prior path or P ′, which will have such a vertex by induction. Also notice
that Property (c) can be read as ‘Pi is chosen maximally’ in the sense that it forbids
the existence of candidates u′, v′ for ui, vi that would yield a longer path.

Let Xu := {ui : i = 1, . . . , s}, Xv = {vi : i = 1, . . . , s}. We assume that ui occurs before
vi in P for all i. By Property (a), no Pi contains an element of Xu ∪ Xv as an inner
vertex, meaning vertices of Xu and Xv alternate. Now let yi (xi) be the ith occurrence
of a vertex of Xu (Xv) in P , for i ∈ {1, . . . , s}, which is just a labelling of the vertices in
the order they appear on the path. We refer to Figure 4.4 to keep track of the notation.

We show that for Qi := xiPyi+1, where i ∈ {0, . . . , s} and x0 := x, ys+1 := y, there are
no edges u′v′ in E(V Q̊i, V Q̊j) ∩M , for i < j: let m be the minimal index in {1, . . . , s}
such that Pm is part of yi+1Pxj where m is well-defined as yi+1Pxj contains at least the
path yi+1Pxi+1. Be aware that yi+1Pxi+1 need not be Pm as we choose the path observed
first by the construction, which might appear later in the ordering. Vertices u′ ∈ Q̊i,
v′ ∈ Q̊j satisfy

Pm ⊊ u′Pv′ ⊆ P −
⋃

k<m

Pk,

where the last subset relation uses the choice ofm: before it, no paths in xiPyj+1 ⊇ u′Pv′

were chosen. Hence, Property (c) implies that u′v′ /∈ M .

As exemplified in Figure 4.4, we now set

Q :=
s⋃

i=0
Qi + {xiyi : i ∈ {1, . . . , s}} = Q0y1x1Q1y2 . . . xsQs,

F ′ := P ′ ∪
s⋃

i=1
Pi + {ei : V Pi ∩ A2 = ∅} , and

F := (V C, E F ′ ∪ (E(S, V F ′) ∩M)) where S :=
s⋃

i=0
V Q̊i.

56

4.2. Finding decompositions in cycles

Notice that F ′ is well-defined: the edges ei exist in the specified case by Property (b)
and we have just fixed one of them arbitrarily. We now show that

FC := F , CC := Q, and MC := M \ (E F ∪ EQ)

is an (∅, {x, y} ,∅, A2)-decomposition of C. The edges of GC are partitioned completely
as F ∪ Q contains all edges of C. Additionally, MC is a matching and CC consists of
a path from x to y. We thus need to show that F is a spanning forest in GC whose
components each contain an element of A2, at most one of which is a leaf.

We first show that every vertex of Q̊i, for i ∈ {0, . . . , s}, is either in A2 or adjacent
to a vertex of F ′ in G[M]. To see this, let W be the set of vertices in Q̊i that satisfy
one of these two conditions and assume W ̸= V Q̊i. Then take two elements w, z
ofW∪{xi, yi+1} of minimal distance inQi such that wPz contains an element of V Q̊i\W .
As G − {w, z} is connected, there exists an edge e incident to a vertex u of ẘP z̊ with
other end in G − wPz. We show that this edge could be used to extend the sequence
u1v1, u2v2, . . . , usvs, contradicting maximality.

Since A2 ∪ {x, y} is disjoint from ẘP z̊, the other end v of e is also in C. By assumption,
it is a matching edge that does not end at a vertex in F ′. But we already know
that e cannot end in another Q̊j, so it must have both ends in Q̊i. Hence it satisfies
Properties (a) and (b), where the latter holds as either w or z is part of the resulting
path and this vertex is in W . Consequently, e either satisfies Property (c) or there exist
vertices u′, v′ as stated there. Choosing them to have maximal distance (in Q̊i) yields
an edge u′v′ that satisfies all three properties. In either case we get a contradiction to
the maximality of the sequence u1v1, u2v2, . . . , usvs.

To see that F is a forest, note that F ′ is the disjoint union of paths with solitary edges
connecting those with V Pi ∩A2 = ∅ to ones prior in the ordering. This ensures that F ′

is acyclic and its leaves are precisely the ends of the paths Pi and P ′, none of which are
in A2. The transition to F now only adds edges of M between a vertex of F ′ and one
not in F ′, which becomes a leaf of the component and is not in A2. So F is a spanning
forest of GC without any leaves in A2. Now take a component K of F ′. If it contains one
of the paths Pi then it has a vertex of A2. This just follows from Property (b), for P1
directly and for the others inductively. Any component of F that does not contain such
a path must be an isolated vertex in S = ⋃s

i=0 V Q̊i without an edge of M to a vertex
in F ′. But as vertices of S that do not have such an edge are in A2 by the previous two
paragraphs, we get that these components have a vertex of A2, too. □

This lemma also requires us to take a look at [XZZ20] again. Our construction is similar
to the one found in Lemma 2.1 there, though our assumption and obtained decomposition
differ. If we formulate their lemma in our notation, we obtain the following.

4.16 Lemma. Let x, y ∈ ∂ Gi and A2 = ∂ Gi \ {x, y} ≠ ∅. The cycle Ci has an
(∅, {x, y} ,∅, A2)-decomposition or there exists an (A′

0,∅,∅, A′
2)-decomposition for any

choice of A′
0, A′

2 with A′
0 ∪ A′

2 = ∂ Gi, A′
0 ∩ A′

2 = ∅, and A′
2 ̸= ∅. ◁

57

Chapter 4. Star-Like Graphs

We do, however, need the first decomposition to exist in our proof and cannot use this
to eliminate the 3-connectivity requirement from Lemma 4.15.

4.3. Proof of the main theorem

To shorten the proof of Theorem 4.2, we define desirable I-decompositions and show
that they exist. These are basically just decompositions of the centre cycle where the
required behaviour of the remaining cycles corresponds to one of our previous lemmas.

4.17 Definition. Let I := {1}. We call an I-decomposition DI of G desirable if every
cycle Cj with j > 1 satisfies that

• |A0 DI ∩N(V Cj)| ≤ 1,
• |Am DI ∩N(V Cj)| ≤ 1,
• |Ap DI ∩N(V Cj)| ∈ {0, 2}, and
• at most one of the sets Ax DI ∩N(V Cj) for x ∈ {0,m, p} is non-empty. ◁

We begin by showing that desirable decompositions exist.

4.18 Lemma.[4.11]
(4.2)

Let I = {1}, then G has a desirable I-decomposition. ◁

Proof. We may assume that l > 1 as otherwise G is Hamiltonian and has a 3-decomposi-
tion. We begin by taking a look at the case where C1 has a chord. This lets us basically
repeat the construction for decompositions given by cycles (see Observation 4.11). We
choose some minimal cycle C of G1 and consider the number of elements in N(V Cj)
that are on C for cycles Cj with j > 1. If these sets contain at most one element for
all cycles, we set CI := C and let T be the path in C1 − E C. The path T is a tree
spanning all degree 3 vertices of G1 except those on C. As C is minimal, any such vertex
is connected to T by an edge of M and we add this to T to obtain TI . The remaining
edges, which are a subset of M , form MI and this is an I-decomposition DI . For this
decomposition the sets Am DI and Ap DI are both empty. Furthermore A0 DI ∩N(V Cj)
contains at most one element of C and all vertices of ∂ G1 that are not in C are in A2 DI ,
so the conditions of a desirable decomposition are satisfied. This case is illustrated in
Figure 4.5a.

Next, we assume that C contains multiple vertices of some N(V Ck). Choosing two
vertices in PC ∩NCk for some k so as to minimise the distance between them, let P by
the path between them in PC . This path contains at most one vertex from sets N(V Cj)
for j ̸= k, j > 1. We apply a similar construction, where we set CI := P and let T be
the path C1 −V P̊ . Again we connect vertices of degree 3 in GI that are not part of T yet
and obtain TI and an I-decomposition. This, too, is desirable as Am DI is still empty,
Ap DI contains exactly the two ends of P , which are in N(V Ck), and A0 DI ∩ N(V Cj)
is empty for j = k and has at most one element otherwise. Figure 4.5b shows the
decomposition constructed in this case.

58

4.4. Extending the decompositions

(a) TI in case no cycle has multiple edges to C. (b) And TI in case the cycle Ck does.

Figure 4.5.: The decompositions used in Lemma 4.18 if the centre has a chord.

Finally, in the case that C1 is chordless, we take two adjacent vertices u, v on C1. If they
have neighbours in different cycles, we set TI := C1 − uv and MI := {uv}, leaving CI

empty. This gives us a spanning tree and a matching that form a desirable I-decom-
position DI since all vertices are in A2 DI except for u and v, which are part of Am DI

and in different sets N(V Cj). Should u and v be in the same set N(V Ck), then we
add uv to CI instead and obtain another desirable I-decomposition, this time with
Ap DI = {u, v} ⊆ N(V Ck). □

Now we can finally finish up the proof of Theorem 4.2.

Proof (of Theorem 4.2). Let I := {1}. By Lemma 4.18 there exists a desirable I-de-
composition D{1} of G. We now iteratively extend this decomposition to more cycles by
checking the conditions of Lemma 4.8 and verifying that we can satisfy them with the
help of Corollary 4.13 and Lemmas 4.12, 4.14, and 4.15.

As long as I ≠ {1, . . . , l} take an element i /∈ I and set J := I ∪ {i}. Then we can apply
Lemma 4.8 which gives us a J-decomposition if we can exhibit an (A0, Ap, Am, A2)-
decomposition where Ax := N(Ax DI) ∩ V Ci, x ∈ {0, p,m, 2}. As G is star-like, we
know that ∂ GI ∩ NCi = ∂ G1 ∩ NCi. Using that D{1} is desirable we can conclude
that all vertices in ∂ GI ∩ NCi are in A2 DI , with the possible exception of either one
element in A0 DI , one in Am DI , or two in Ap DI . Consequently, we have that all vertices
in ∂ Gi are in A2 aside from a single one in either A0 or Am, or two in Ap. Note that
this is true initially and remains true in later steps as Lemma 4.8 ensures that edges
in the centre are never reassigned. The set ∂ Gi contains at least three elements as
it separates Ci from C1 in G and G is 3-connected. Hence, A2 ̸= ∅. We have thus
fulfilled the premise of Corollary 4.13 and Lemmas 4.12, 4.14, and 4.15, giving us an
(A0, Ap, Am, A2)-decomposition and completing the proof. □

4.4. Extending the decompositions

In this section, we briefly sketch how our definitions can be extended in order to
encompass a larger class of graphs. We still assume the existence of a perfect matching

59

Chapter 4. Star-Like Graphs

but we wish to allow more general contraction graphs than just stars. Definition 4.5
needs no immediate adjustment, though we can use I ̸= ∅ instead of distinguishing the
first cycle now, since we need not keep track of the centre of the star.

However, Definition 4.7 cannot be used in the more general case where multiple cycles
can have edges to Ci. If we wish to extend an I-decomposition to this cycle, we would
need all neighbouring cycles to be contained in the decomposition already, which will
not always be the case. Thus, an introduction of a further set R becomes necessary, in
which all degree 2 vertices are collected that have neighbours in cycles that have yet to
be included in I. Condition (i) is expanded to allow F to contain isolated vertices in R
and Condition (ii) allows path components to end in Ap ∪R.

Note that this does not restrict the behaviour of vertices in R: they can be isolated
in Fi or part of a component, in which case they are allowed to be incident to an edge
in Mi or Ci. Thus, the results presented here remain true. All lemmas in Section 4.2
continue to hold, which can be seen by simply suppressing all vertices in R, taking the
decomposition acquired there, and subsequently subdividing again. If an edge in Fi or
Ci is subdivided, both resulting edges are associated with the same set. Subdividing an
edge of Mi lets us assign one of the two edges to Mi and the other to Fi. This ensures
that Mi remains a matching and affects only one component K of Fi which obtains
a new leaf in R. The validity of Condition (i) is unaffected by this change and the
decomposition remains valid. Furthermore, Lemma 4.8 is also true in this setting, so
these extended versions can be combined.

Finally, let us take a look at what parts of our proof would extend to tree-like graphs:
graphs with a contraction graph that is a tree. Recall that for the proof of Theorem 4.2
we defined desirable I-decompositions DI in Definition 4.17 as ones in which the boundary
vertices neighbouring a common cycle exhibited a very restrictive behaviour. In the
generalisation to tree-like graphs, we want the extension to a new cycle Ci to again have
the same restricted behaviour for all the new neighbouring cycles. Thus, we call an
(A0, Ap, Am, A2)-decomposition desirable if its vertices in R, which are the boundary
vertices with neighbours in newly connected cycles, satisfy an analogous condition.

With this adjustment, Lemma 4.8 can be extended to allow the extension of a desirable
I-decomposition by a desirable (A0, Ap, Am, A2)-decomposition to obtain a desirable
J-decomposition. Most of the decompositions we discussed in Section 4.2 are desirable
or can be made to be (sometimes requiring additional restrictions that are guaranteed by
3-connectivity and the restriction to tree-like graphs). The only exception to this it the
decomposition from Lemma 4.15. This type of decomposition is problematic however,
since it cannot be ensured to exist without resulting in new behaviours at the boundary.
We illustrate this with the example in Figure 4.6, in which a part of a 3-connected
tree-like graph is shown.

We focus on the cycle in the centre, in which, based on the edge colours, we want to find
an (∅, {x, y} ,∅, A2)-decomposition, where A2 consists only of the vertex z. In such a
decomposition Di := (Fi, Ci,Mi), Ci uses an edge at x and y. Thus, the edge uv separates

60

4.5. New graphs for which the 3-decomposition conjecture holds

x

u

z

y

v

Figure 4.6.: The problematic decomposition for the tree-like case. When vertices in
further cycles are present, it becomes impossible to ensure the existence of
a path without allowing any new behaviours to occur at the boundary.

the tree we currently want to extend from the right cycle entirely. This means that uv
must end up in the tree eventually, so we cannot include it in the cycle. Proceeding
as we would in Lemma 4.15 and using the xy-path that avoids u and z causes us to
isolate two vertices of R. This presents us with a new behaviour, namely the need to
find a (A0, Ap, Am, A2)-decomposition where A0 contains two vertices. But not taking
this path is not an option. At y, we cannot take the edge to z without cutting off the
tree immediately, so the only alternative is to take the edge to the right cycle. But then
we need to do this with the path at x as well since we need to close the cycle on the
right. However, this isolates an edge of the centre cycle, which is not allowed either.

There are multiple ways to proceed at this point. Looking for further decompositions
that allow us to cover more behaviours would be the primary goal, but with the rather
strict requirements we currently impose, this is a difficult task. The natural alternative
is to make the decompositions more powerful, for example by dropping the requirement
that an I-decomposition is essentially a tree, up to isolated vertices. Once we allow
larger components, we reach a state where any 3-decomposition can be represented.
Additionally, we can be more lenient with the requirements on (A0, Ap, Am, A2)-decom-
positions then, making them easier to obtain.

Of course this comes at a cost. Proving a statement analogous to Lemma 4.8 will
be much harder. The core problem would be to keep track of which components are
safe to combine and which are not, when not everything is directly attached to the
main tree. To manage this, it appears necessary to either introduce restrictions after
all, or to do a lot of tedious bookkeeping, resulting in a complicated generalisation
of (A0, Ap, Am, A2)-decompositions.

4.5. New graphs for which the 3-decomposition conjecture
holds

We construct 3-connected star-like graphs, for which Theorem 4.2 shows there is a
3-decomposition. As the conjecture is already proved for graphs that are traceable,

61

Chapter 4. Star-Like Graphs

planar, claw-free, 3-connected and of tree-width at most 3, embeddable in the Torus or
Klein bottle, or have a matching with a contraction graph of order at most 3, our goal is
to find examples that have none of these properties. We present a construction closely
based on [FS07], which we have modified in order to obtain graphs that are actually
star-like.

4.19 Definition. A graph H is hypohamiltonian if it is not Hamiltonian, but H − v is
for all v ∈ V . ◁

4.20 Observation ([FS07, Lemma 3.1 (b)]).(4.24) For a hypohamiltonian graph H and
z ∈ H, H − z has no Hamiltonian path between two neighbours of z, as this could be
extended to a Hamiltonian cycle of H. ◁

For the construction, let Hi, i ∈ I := {1, 2, 3}, be graphs that are 3-connected, cubic,
non-planar, and hypohamiltonian. In order to see that such Hi exist and to obtain
infinitely many examples, we exhibit an infinite family of candidates for the Hi. First,
note that we can drop the 3-connectivity requirement.

4.21 Observation. Any hypohamiltonian graph is 3-connected. ◁

Proof. Let G be a hypohamiltonian graph and v ∈ V G. Since G− v is Hamiltonian, it
has at least three vertices, G has order at least 4, and G − {u, v} is connected for any
other vertex u ∈ V G. □

So we only need to find a family of cubic graphs that are hypohamiltonian and non-planar.
The Petersen graph and the family of flower snarks satisfies both these properties.

4.22 Lemma ([HS93]). The Petersen graph is cubic and hypohamiltonian. It also has
a K5 as a minor and is thus non-planar. ◁

4.23 Lemma.[CE83]
[Isa75]

There exists an infinite family of cubic, non-planar, and hypohamiltonian
graphs: the flower snarks. ◁

Proof. We refer to [CE83] for the definition of these cubic graphs since their descrip-
tion is lengthy and we do not need the details. The same paper shows that they are
hypohamiltonian and [Isa75] proves non-planarity. □

Now on to the construction. For each i ∈ I we pick some vertex zi ∈ Hi and set H−
i

to Hi − zi. Our next goal is to expand Hi to the slightly larger 3-connected cubic
graph Gi shown in Figure 4.7a. To ensure 3-connectivity we use Tutte’s characterisation
of 3-connected cubic graphs, by which we may iteratively subdivide two distinct edges and
connect the resulting degree two vertices. We apply this first to two of the edges incident
to zi and call the subdivision vertices xi and yi. This step is drawn in blue in the figure.
Next note that we can also subdivide three edges and connect the subdivision vertices to
a single new vertex since this is just a sequence of two subdivision steps. We apply this

62

4.5. New graphs for which the 3-decomposition conjecture holds

H−
i

yi zi

xi

y′
i

z′
i

x′
i

(a) The extension Gi of the graph Hi.

G−
1

G−
2 G−

3

x

a1

a2 a3

b1

c2

b2 c3

b3

c1

(b) The graph G := K4[G1, G2, G3].

Figure 4.7.: The star-like graph G that has none of the properties for which the conjecture
is known. On the left, the construction preceding Lemma 4.24 is illustrated
step by step, where the colour order is black, blue, red, green, and orange.
On the right, the so constructed graphs G−

i are combined to make the
graph G.

to the edges of the triangle xiyizixi and call the new vertex x′
i, which is drawn in red.

Next, we subdivide three of the newly split edges of the triangle that form a matching
and connect them to the new vertex y′

i, shown in green. Finally, we subdivide all edges
incident to y′

i and connect them to z′
i, which are the orange vertices and edges. Let the

resulting graph be called Gi, denote Gi − z′
i by G−

i , and set NGi
z′

i := {ai, bi, ci}.

Before we go on, we show some properties that the graphs Gi and G−
i possess.

4.24 Lemma. [2.13]
[4.20]
(4.25)
(4.26)

The following properties hold:

(a) The graph Gi is 3-connected and cubic.
(b) The graph G−

i has Hi as a minor.
(c) The graph G−

i has no Hamiltonian path with both ends in NGi
z′

i.
(d) For any u ∈ G−

i , three uNGi
z′

i-paths exist that are disjoint apart from u.
(e) For any pair of distinct vertices u, v ∈ NGi

z′
i, the graph G−

i − H−
i contains a

Hamiltonian uv-path Pi(u, v).
(f) The graph H−

i is Hamiltonian. ◁

Proof. Property (a) holds by the assumption onHi and the construction, while the minor
for Property (b) is obtained by taking the subgraph consisting only of the black edges in
Figure 4.7a and suppressing the subdivision vertices. For Property (c) we notice that a
Hamiltonian path in G−

i that does not end in H−
i must use exactly two of the three edges

between {xi, yi, zi} and NHi
zi (as they form a cut). Thus it would induce a Hamiltonian

path in H−
i with both ends in NHi

zi, which does not exist by Observation 4.20. The
fourth part follows from the 3-connectivity of G, the paths for Property (e) are shown
in Figure 4.8, and the last part holds because Hi is hypohamiltonian. □

63

Chapter 4. Star-Like Graphs

Figure 4.8.: The three Hamiltonian paths between pairs of neighbours of zi in G−
i −H−

i .
Note that these paths are symmetric, even if the drawing obscures it.

With this out of the way we now construct our desired graph G := K4[G1, G2, G3] as
follows: let G4 := ({x} ,∅) be a further vertex. Take G−

1 ∪ G−
2 ∪ G−

3 ∪ G4 and add
the following six edges: xa1, xa2, xa3, b1c2, b2c3, and b3c1. This graph is visualised in
Figure 4.7b. We now prove that this does the trick.
4.25 Theorem.[2.8]

[4.24]
The graph G is cubic, non-traceable, star-like, and 3-connected. ◁

Proof. The graph is cubic by construction. To see that G is not traceable, we simply
need to realise that a Hamiltonian path P would yield a graph G−

i in which no end of the
path resides. This means that P restricted to G−

i would necessarily be a Hamiltonian
path with ends in NGi

z′
i, which does not exist by Lemma 4.24 (c).

In order to prove thatG is star-like, we need to specify the cycles. We take a Hamiltonian
cycle in each H−

i for i ∈ I, which exist by Lemma 4.24 (f). In addition, we use the paths
given by Lemma 4.24 (e) to obtain a Hamiltonian cycle C in G− ⋃

i∈I H
−
i , namely

C := xa1P1(a1, b1)b1c2P2(c2, b2)b2c3P3(c3, a3)a3x.

This yields a decomposition where the contraction graph is a star in which the centre
corresponds to C and the three tips to the cycles in the H−

i .

Finally, we are left with the proof that G is 3-connected. To this end, we use Menger’s
theorem to find three internally vertex-disjoint paths between every pair of distinct
vertices u, v ∈ G. Assume u ∈ G−

1 , without loss of generality. If v ∈ G−
1 , then

G/(V G \ V G−
1) ∼= G1 contains three uv-paths by the 3-connectivity of G1. If one such

path uses the super node, we replace it by a path through the subgraph we contracted.
So assume that v /∈ G−

1 . If v ∈ G−
2 (the case that v ∈ G−

3 is analogous), we use
Lemma 4.24 (d) to reduce the problem to finding three disjoint NG1 z

′
1 NG2 z

′
2-paths.

But these exist, just take

P1 := a1xa2, P2 := b1c2, P3 := c1b3P3(b3, c3)c3b2.

Similarly we deal with the case that v = x, where it suffices to find three xNz′
1-paths

that are disjoint aside from x. This time we use

P1 := xa1, P2 := xP2a2(a2, c2)c2b1, P3 := xa3P3(a3, b3)b3c1.

This completes the proof. □

64

4.5. New graphs for which the 3-decomposition conjecture holds

To see that the star-like graph G constructed this way fulfils none of the requirements
necessary to apply one of the previously existing results, we now only need to verify
that its tree-width is greater than 3, it has no contraction graph of order at most 3,
and it cannot be embedded in the Torus or the Klein bottle. But as soon as one of the
non-planar graphs contains a K5-minor, the tree-width is at least 4. So, by assuming
that H1 is the Petersen graph, for example, we can ensure that the graphs constructed
here have a sufficiently large tree-width.

To see that they do not admit a matching with a contraction graph of order 3, we show
that G has no 2-regular subgraph consisting of 3 cycles. Let C be any 2-regular subgraph
of G, then C contains a cycle completely contained in G−

i for all i ∈ {1, 2, 3}. This is true
as any cycle in C is either completely contained in G−

i , disjoint from it, or consists of a
path in it. But there can be at most one cycle that restricts to a path because E(V G−

i)
contains only three edges. Since this path is not Hamiltonian by Lemma 4.24 (c), the
graph G−

i contains at least one cycle of C. Thus C is made up of at least four cycles, one
in each G−

i and one containing x.

To complete the proof that our examples fall in none of the classes covered previously,
we now only need to check that G cannot be embedded in the Torus or the Klein bottle.
The (non-orientable) genus of a graph H is the minimal n such that H can be embedded
in a surface of (non-orientable) genus n. In particular, since the Torus has genus 1 and
the Klein bottle has non-orientable genus 2, it suffices to show that G has genus and
non-orientable genus at least 3, which we now prove to finish this section.

4.26 Theorem. [RS90]
[Bat+62]
[SB77]
[4.24]

The graph G has genus and non-orientable genus at least 3. ◁

Proof. We denote the genus of a graph H by γ H and its non-orientable genus by γ̃ H.
We first note that it suffices to find a minor H of G with γ H ≥ 3 to get γ G ≥ 3 since
having genus at most 2 is characterised by forbidden minors [RS90]. The same holds
for the non-orientable genus.

To obtain this minor, we use that the Hi are non-planar, meaning they each have a
K5- or K3,3-minor H ′

i for i ∈ {1, 2, 3}. By Lemma 4.24 (b), the graph G−
i contains an

H ′
i-minor. As the G−

i are connected, we may assume that all their vertices are contained
in some super node of H ′

i. By taking these minors and removing the edges b1c2, b2c3,
and b3c1 from G, we obtain the minor H ′

1 ∪H ′
2 ∪H ′

3 ∪G4 +E ′ where E ′ contains the three
edges from x to the super nodes containing the vertices a1, a2, and a3. By contracting
the edges in E ′ as well, we obtain a connected graph H with the three blocks H ′

1, H ′
2,

and H ′
3.

The genus of the H ′
i is 1 and so is the non-orientable genus, as they are non-planar but

can be embedded in the Torus or the projective plane, respectively. Consequently, we
get γ H = ∑3

i=1 γ H
′
i = 3, because the genus of a graph is the sum of the genuses of its

blocks by [Bat+62]. We also have that H is not orientably simple by [SB77, Theorem 1],
which states that a connected graph is orientably simple if and only if all of its blocks are,

65

Chapter 4. Star-Like Graphs

as K5 and K3,3 are not. Thus, the non-orientable genus can be computed as specified
in Corollary 3 of the same paper, giving us

µH ′
i = max {2 − 2 γ H ′

i, 2 − γ̃ H ′
i} = max {0, 1} = 1, and

γ̃ H = 2 · 3 −
3∑

i=1
µH ′

i = 6 − 3 = 3.

As a result, G has a minor of genus and non-orientable genus at least 3, proving the
claim. □

66

Chapter 5.

Reducible Configurations and Minimum
Counterexamples

A graph that does not occur as a subgraph in (3-connected) minimum counterexamples
to the 3-decomposition conjecture is a reducible configuration. We prove that the
following graphs are reducible configurations: the triangle, the K2,3, the Petersen graph
with one vertex removed, the claw-square, the twin-house, and the domino.
As an application, we show that all 3-connected graphs of path-width at most 4 satisfy
the 3-decomposition conjecture and that a 3-connected minimum counterexample to
the conjecture is triangle-free, all cycles of length at most 6 are induced, and every
edge is in the centre of an induced P6.

In this chapter, we determine small graphs that do not occur as subgraphs in minimum
counterexamples to the 3-decomposition conjecture (minimum with respect to number
of vertices) and use these to prove properties that such counterexamples must possess.

A subcubic graph S is a reducible configuration if no minimum 3-connected counter-
example to the 3-decomposition conjecture contains S as a subgraph. We show that the
following six configurations, shown in Figure 5.1, are reducible: the triangle, the K2,3,
the Pet−, the claw-square, the twin-house, and the domino.

triangle K2,3 Pet− claw-square twin-house domino

Figure 5.1.: Reducible configurations for the 3-decomposition conjecture. The names
refer to the graphs induced by the black vertices and the grey vertices need
not be distinct.

67

Chapter 5. Reducible Configurations and Minimum Counterexamples

Roughly speaking, the reducibility proofs proceed as follows: given a cubic graph G
containing the reducible configuration R, replace R by some smaller graph S. This
yields a new graph H containing S and we show that every local behaviour that a
3-decomposition might exhibit on S can be extended to R. Consequently, these proofs
are constructive: we can obtain a 3-decomposition of a graph G containing R from a
3-decomposition of the graph H. As such, these proofs fall into the second category we
described in Section 3.2.

We formalise the concepts of extensions and reductions, which are fundamental for
these proofs, in Section 5.1, where we also show initial properties concerning these.
Furthermore, we give proofs of reducibility of the six configurations shown in Figure 5.1
in Section 5.2 (and partly in Appendix A).

In Section 5.3, we use the new reducible configurations to extend the list of graph classes
which satisfy the 3-decomposition conjecture to include the 3-connected cubic graphs of
path-width at most 4. Due to the constructive nature of the reducibility proofs, this
yields a method of obtaining decompositions for these graphs, too.

As a further use of our reducible configurations, we gain new insights into the structure of
(potential) 3-connected minimum counterexamples G to the 3-decomposition conjecture.
Not containing any of the graphs in Figure 5.1 as a subgraph lets us show that G has
girth at least 4, every cycle of length 4, 5, or 6 in G is induced, and every edge of G is
the centre edge of an induced P6.

The results covered in this chapter are joint work with Irene Heinrich and they, like
Sections 3.1 and 3.2 in Chapter 3, are part of [BH21].

5.1. Extensions and reductions

Defining extensions and reductions. In the following, we formalise the replacement
of an induced subgraph R of a cubic graph G by some other subcubic graph S. Intuitively,
this means that we add the graph S toG−V R and connect the vertices of S ‘appropriately’.
In order to define what ‘appropriately’ means, we augment R to a graph X by adding
(new) leaves to all vertices of R of degree less than 3 such that all vertices of R are of
degree 3 in X. We do the same for S and use these additional vertices to specify the
edges between S and G− V R.

This leads us to the definition of a template graph.

5.1 Definition. A template graph is a graph X whose vertex set is partitioned into a
set of inner vertices I X and a set of outer vertices OX = {v1, . . . , vk}. All inner vertices
have degree 3 and all outer vertices have degree 1. We call X −OX = X[I X] the core
of X and denote it by cX. For a subcubic graph R, the unique template graph X (up
to labelling the outer vertices) with R as its core is called the template graph of R. ◁

68

5.1. Extensions and reductions

v1 v2

v3 v4

v1 v2

v3 v4

Figure 5.2.: Template graphs and transformations. This example illustrates the extension
where cX is the K2 and c Y is the domino. The outer vertices of the template
graphs are grey.

The template graph of the domino can be seen on the right of Figure 5.2, where the
outer vertices are grey.

We can now define the replacements we need: let R, S be subcubic graphs and let X, Y
be their template graphs, for which we require that OX = OY . Furthermore, let G be a
cubic graph containing an induced subgraph R′ isomorphic to R, that is, φR = R′ for
some isomorphism φ. Since G is cubic, any vertex φv ∈ R′ has exactly as many incident
edges to vertices in G − V R′ as v has neighbours in OX. Thus, we can identify each
neighbour w of v that is an outer vertex with a neighbour ψ w of φv that is not in R′.

The graph

Gφ[X ! Y] :=(G− V R′) ∪ S + {v ψ w : vw ∈ Y , w ∈ OY }
=(G− φ(I X)) ∪ c Y + {v ψ w : vw ∈ Y , w ∈ OY }

is the (X, Y, φ)-transformation of G. Note that the resulting graph does not depend
on the choice of ψ. When specifying transformations, we only care about the template
graphs since we do not yet have the graphs they are embedded in.

5.2 Definition. Let X and Y be template graphs with OX = OY . An (X, Y)-transfor-
mation ofG is a graphG[X ! Y] := Gφ[X ! Y] for some isomorphism φ : cX ! R′ and
induced subgraph R′ of G. Moreover, the pair (X, Y) is called an (X, Y)-transformation.
Transformations are called extensions if |V X| < |V Y | and reductions if |V X| > |V Y |.◁

We depict (X, Y)-transformations as seen in Figure 5.2. Instead of formally writing
down vertex and edge sets, we use such illustrations to describe the transformations
since they are more convenient and easier to understand. We mostly omit the labels of
the outer vertices; their positioning shows which of these coincide.

This seems like a good opportunity to note that we have used such extensions and
reductions before. The operations from Wormald’s characterisation of cubic graphs in
Figure 2.2, as well as our operations for the HIST-extension conjecture in Figure 3.1
actually fall perfectly into this framework. From these, we can recall that the outer
vertices of the template graph do not necessarily correspond to distinct vertices of the
graph G containing the core and, as a result, G need not have a subgraph isomorphic
to X, just to cX. Additionally, the graphs G[X ! Y] are not necessarily simple, even if

69

Chapter 5. Reducible Configurations and Minimum Counterexamples

G, X, and Y are. Therefore, technically, we should have used the word ‘multigraph’ for
the graph G[X ! Y] above. However, we only intend to apply transformations which
yield simple graphs, so this mainly serves as a reminder that this is a property we need
to verify. A sufficient condition for ensuring simplicity is that no vertex in the core of Y
has multiple adjacent outer vertices, or equivalently, that the minimum degree in the
core of Y is 2. Another one is that G[X ! Y] is 3-connected, since all 3-connected cubic
graphs are simple.

Compatible extensions and reducible configurations. We can now provide the
definitions we need to actually show that certain graphs do not occur as subgraphs of
minimum counterexamples.
5.3 Definition. A reducible configuration is a (subcubic) graph R that is not part of a
3-connected minimum counterexample to the 3-decomposition conjecture. In this case
we also say that R is reducible. ◁

Our goal is to describe (X, Y)-extensions that allow us to extend 3-decompositions. For
ease of use, we provide the following definition as well.
5.4 Definition. An (X, Y)-extension is 3-compatible if, for every cubic graph G with a
3-decomposition and for every extension H := G[X ! Y] of G, the graph H also has a
3-decomposition. ◁

In fact, in our proofs that certain transformations are 3-compatible we show how to
construct a 3-decomposition of H from one of G.

Finding a 3-compatible extension (X, Y) is very helpful for proving that the core of Y
is reducible. The following lemma exhibits a property that implies reducibility if it is
satisfied by such an extension.
5.5 Lemma.(5.10)

(5.13)
(5.16)
(5.18)

Let (X, Y) be a 3-compatible extension. The core c Y is reducible if for
every 3-connected cubic graph H containing (a subgraph isomorphic to) c Y

• H has a 3-decomposition, or,
• c Y is induced and the reduction G := H[Y ! X] is a 3-connected graph. ◁

Proof. Suppose H is a minimum counterexample containing c Y as an induced subgraph
and let G := H[Y ! X] be a 3-connected graph. Since H is a minimum counterexample,
G has a 3-decomposition and, because (X, Y) is 3-compatible, H = G[X ! Y] also has
a 3-decomposition, which is a contradiction. □

Note that this proof would have worked just as well if we had required 3-compatibility to
yield extensions only for 3-connected graphs. We opted for this more inclusive definition
since it strengthens the results for the extensions we prove to be 3-compatible.

Whenever possible, we want to apply this lemma. Therefore, in order to prove that a
certain configuration R is reducible, we proceed as follows:

70

5.1. Extensions and reductions

(1) Prove a certain (X, Y)-extension to be 3-compatible where R = c Y .
(2) Check that in any 3-connected cubic graph H containing a subgraph R′ isomorphic

to R, R′ is actually induced and a (Y,X)-reduction of H yields another 3-connected
graph.

The first option of Lemma 5.5 lets us assume that the graph obtained from the reduction is
still sufficiently large by excluding some small graphs that already have 3-decompositions.
Furthermore, the procedure described here is actually entirely constructive in the sense
that, given a graph H, we can perform reductions using the reducible structures as long
as they are present. Let G be the resulting graph. If we can find a 3-decomposition
for this smaller graph G, then we can undo the reductions step by step and extend our
decompositions to the larger graphs, finally obtaining one for H.

To use this procedure, we regularly need to check whether subgraphs are induced and
whether reductions yield 3-connected graphs. To facilitate this, we end this section with
two lemmas that are helpful in this respect. Their proofs use Menger’s theorem when
verifying 3-connectivity, which requires simple graphs to be applicable.
5.6 Lemma. [2.8]

(5.10)
(5.13)
(5.16)

Let H be a 3-connected cubic graph that contains the core of a template
graph Y with |OY | = 3 and let X be the template graph of a single vertex. Then
c Y is induced and, if H − I Y consists of more than one vertex, then the reduction
G := H[Y ! X] is 3-connected. ◁

Proof. The 3-connectivity ofH implies that there are at least three edges joiningH−I Y
with c Y . Since Y has three outer vertices, there are exactly three such edges and c Y is
induced. Furthermore, if H − I Y has more than one vertex, then the three neighbours
of c Y are distinct: if all three of the neighbours coincide, then H is not connected,
which is a contradiction. If exactly two of them coincide, then we find a 2-edge cut
in H, which contradicts to H being 3-connected. Consequently, G is simple in this case.

To see that G is 3-connected, consider two distinct vertices u and v of G. If neither u
nor v is the vertex in cX, then they are in H and we obtain three internally vertex-
disjoint paths linking them in H. At most one of these paths can use vertices of c Y since
|E(V H \ I Y, I Y)| = 3. Thus, by potentially replacing the path segment through c Y
by the vertex in cX, we obtain three paths in G.

If u is the vertex in cX, then let u′ ∈ I Y . We obtain three vertex-disjoint u′v-paths
in H, each of which uses one of the edges from c Y to the rest of H. Thus we can replace
these initial path segments by the edges incident to u in G and obtain the required paths
there. □

5.7 Lemma. [2.8]
(5.13)
(5.16)
(5.18)

Let H be a 3-connected cubic graph that contains the core of a template
graph Y with |OY | = 4 and |I Y | ≥ 5. Moreover, let X be the template graph of the
square. Then c Y is induced and the reduction G := H[Y ! X] is 3-connected. ◁

Proof. The 3-connectivity of H implies that there are at least three edges between c Y
and H − I Y . Since Y only has four outer vertices, c Y is induced in H and G is simple
because the square has minimum degree 2.

71

Chapter 5. Reducible Configurations and Minimum Counterexamples

triangle K2,3 Pet− claw-square twin-house domino

A repetition of Figure 5.1.

To verify the 3-connectivity of G, we consider two vertices u and v of G. If both are not
vertices of the square, then we obtain three internally vertex-disjoint paths linking them
in H. At most two of these paths use vertices of c Y since Y only has four outer vertices
and all other paths exist in G. If a single path passes c Y , then it can be replaced by
one in the square and so can two paths unless they both need to connect non-adjacent
vertices of the square. In this case, we can cross the paths by pairing the start of one
with the end of the other and vice versa. In all cases we obtain the three desired disjoint
paths.

Next, we consider the case that exactly one of the two vertices, say v, is in the square.
Let v′ be the vertex in c Y that is adjacent to the same outer vertex in Y as v is in X.
By 3-connectivity of H, we obtain three paths between u and v′ in H. Of these, one
path only meets c Y in v′ while the remaining two start with a path segment in c Y .
However, the square contains such path segments as well, so we can replace the initial
part of the paths by ones in the square to get three paths in G. We remark that v′ may
have degree 1 in c Y , in which case two paths in H meet c Y only in v′. This causes
no problems, however, it just means that one of the two remaining paths segments we
needed above is very short.

Finally, if both vertices are in the square, replace u by its neighbour x outside of the
square. By the previous case, we obtain a path from x to v that only meets the square
in v. We extend this path to u and take the two disjoint paths the square provides.
Thus G is also 3-connected. □

5.2. New reducible configurations

In this section, we prove the following theorem:

5.8 Theorem.(5.22) The six graphs in Figure 5.1 on Page 67 are reducible. ◁

For convenience, we repeat Figure 5.1 on this page.

The first two were shown to be reducible in [Hei19, Hei20] but we include them for
completeness. (Actually, [Bac15] also contains the triangle.) All but one of these proofs
adhere to the general proof structure described in the previous section and we illustrate
it using the triangle. For the remaining graphs we focus on the more challenging cases

72

5.2. New reducible configurations

u

v1

v2 v3

u1

u2 u3

v1

v2 v3

Figure 5.3.: Transforming a vertex into a triangle.

Figure 5.4.: Possible behaviours of a 3-decomposition at a single vertex.

and refer to Appendix A for the others. The first step for the triangle is to find an
(X, Y)-extension that is 3-compatible and where c Y is the triangle. For this, we choose X
such that cX is a single vertex.

5.9 Lemma. The extension shown in Figure 5.3 is 3-compatible. ◁

Proof. Let G be a cubic graph with a 3-decomposition (T,C,M) and let H be an
(X, Y)-extension of G, where the extension is the one from Figure 5.3. We wish to
extend (T,C,M) to H. To this end, we start by determining the possible behaviours
at u. As T is a spanning tree, at least one of the edges incident to u is in T . If it
is exactly one, then the other two are part of a cycle. If there are exactly two, then
the missing edge is in the matching and, otherwise, there are three. These options are
shown in Figure 5.4, up to rotational symmetry. Recall that edges of T are green, those
of C are red, and those in M are blue.

We now need to turn the decomposition (T,C,M) of G into one of H, which we do
by distinguishing between the possible behaviours described above. The extensions
obtained are shown in Figure 5.5. We describe how these depictions are to be read,
using the first case as an example. The remaining ones should then be self-explanatory.

If we only have a single T -edge, say uv1, incident to u, we make the following extension:
we begin by setting T ′ := T − I X + I Y , C ′ := C − I X + I Y , and M ′ := M − EX.
These are a spanning forest, a disjoint union of cycles together with a v2v3-path, and a
matching. Technically, C ′ also contains u1 as an isolated vertex, which we drop. The
forest has four components, three of them being the vertices I Y of the triangle.

By adding the edges u1v1, u1u2, and u1u3 to T ′ we obtain a spanning tree of G and
adding the remaining edges incident to u2 and u3 to C ′ yields a disjoint union of cycles.
As a result (T ′, C ′,M ′) is a 3-decomposition of G.

Figure 5.5.: Extending a 3-decomposition from a vertex to a triangle.

73

Chapter 5. Reducible Configurations and Minimum Counterexamples

(a) Transforming a vertex into a K2,3. (b) Transforming a square into a claw-square.

(c) Transforming an edge into a domino.

Figure 5.6.: Three straightforward 3-compatible extensions.
The figure illustrates how to extend the decomposition for the remaining two behaviour
types, giving us a 3-decomposition of H in all cases, and thus showing that the extension
is 3-compatible. □

We can now complete the second step to obtain the reducibility of the triangle.

5.10 Corollary.[5.5]
[5.6]
[6.8]

The triangle is reducible. ◁

Proof. Here we consider the inverse (Y,X)-reduction also shown in Figure 5.3. Let H
be a 3-connected cubic graph containing a triangle u1u2u3u1. By Lemma 5.5 it suffices
to prove that the triangle is induced and that a (Y,X)-reduction G = H[Y ! X] is
3-connected. In fact, we may assume that H ̸= K4 as the K4 has a 3-decomposition
(for example, by Theorem 6.8). However, all required properties follow directly from
Lemma 5.6. □

Now that we have illustrated the general concept, let us fix some notation for the
remainder of this section.

5.11 Convention. Whenever we consider a transformation, we denote the smaller graph
by X and the larger one by Y , unless explicitly stated otherwise. Furthermore, when we
prove that an extension is 3-compatible, we write G for the smaller graph containing the
core of X and H := G[X ! Y] is an (X, Y)-extension of G. The 3-decomposition of G
is (T,C,M) and we want to construct a 3-decomposition (T ′, C ′,M ′) for H. ◁

Next, we look at three further examples of 3-compatible extensions that are straightfor-
ward. As such, the proof of the following lemma can be found in Appendix A (Figures A.1,
A.4, and A.8 on Pages 173, 174, and 177).

5.12 Lemma.[A.1]
[A.4]
[A.8]

(5.18)

The extensions shown in Figures 5.6a to 5.6c are 3-compatible. ◁

By completing the second step for the K2,3 and the claw-square, we get reducibility for
the next two configurations.

74

5.2. New reducible configurations

u

v1 v2
v3

u1 u2

u3 u4

u5

u6 u7

u8 u9
v1

v2

v3

(a) Transforming a vertex into a Pet−. (b) Extending a local behaviour.

Figure 5.7.: A transformation for the Pet−.

5.13 Corollary. [5.5]
[5.6]
[5.7]
[6.8]

The K2,3 and the claw-square are reducible. ◁

Proof. Regard the (Y,X)-reductions in Figures 5.6a and 5.6b. By Theorem 6.8 and
Lemma 5.5, it suffices to prove that, given a 3-connected cubic graph H with |H| > 6
containing the core of Y , c Y is induced and the reduction G := H[Y ! X] is simple
and 3-connected. This holds for the K2,3 by Lemma 5.6 (since we excluded the K3,3 by
requiring |H| > 6) and for the claw-square by Lemma 5.7. □

We could not include the domino here since reducing it to a single edge could harm
3-connectivity. We postpone completing the domino until the end of this section since
its proof is the most complex and having seen more examples should make it easier to
follow. Therefore, we continue with the Pet− and the twin-house.

5.14 Lemma. [A.2]The extension shown in Figure 5.7a is 3-compatible. ◁

Proof. We note that the Pet−, like the triangle, is symmetric. Thus, we only need to
check the three possible behaviours seen in Figure 5.4 on Page 73. Of these, the first and
the last are straightforward and can be found in Appendix A (Figure A.2 on Page 173).
This leaves the second one, where an M -edge is at the single vertex, and we extend the
decomposition as shown in Figure 5.7b.

Note that the removal of the edges uv1 and uv3 from T (where the vertex names are
taken from Figure 5.7a) creates three connected components, one containing only u and
one with v2 and v3, respectively. By adding all edges of H (including v2u5) except those
on the cycle u1u4u3u2u5u1 to this forest we obtain a spanning tree T ′ and adding the
excluded cycle to C yields C ′. Now (T ′, C ′,M \ {v2u5}) is a 3-decomposition of H. □

The twin-house is reduced to the square, which has significantly more possible local
behaviours than the K1 or the K2. In order to reduce the number of cases that need
to be extended, we show that some can be transformed into one another. Again, this
is found in Appendix A (resulting in the behaviours shown in Figure A.6 on Page 175)
and we only show how to deal with the problematic cases in the proofs here.

5.15 Lemma. [A.9]The extension shown in Figure 5.8a is 3-compatible. ◁

75

Chapter 5. Reducible Configurations and Minimum Counterexamples

u1 u2

u3 u4

v1 v2

v3 v4

u1 u2

u5 u6

u3 u4

v1 v2

v3 v4
(a) Transforming a square into a twin-house. (b) The two problematic local behaviours.

(c) Extending the first behaviour. (d) Extending the second behaviour.

Figure 5.8.: A transformation for the twin-house.

Proof. For this extension, we consider the local behaviours in Figure 5.8b and refer to
Appendix A (Figure A.9 on Page 178) for the remaining ones.

For the first forest, we note that the removal of the edge u1u2 (using the terminology
from Figure 5.8a) from T creates two connected components, one containing u1 and
one containing u2. By symmetry we may assume that the component containing u2
also contains u3 and u4. Once we remove the edge u3u4 as well, we end up with three
components. One of these three contains u1 whereas the other two either contain u2, u3,
and u4 or u2, u4, and u3. The assignments we now make are illustrated in Figure 5.8c.
By replacing the square by the twin-house and adding the edges

u1u5, u5u3, u2u6, u6u4 or u1u5, u5u4, u2u6, u6u3

to the forest, we obtain a spanning tree T ′ of H. The missing edges are

u1u2, u5u4, u6u3 or u1u2, u5u3, u6u4

which form a matching M ′ together with M \ {u1u3, u2u4}. Thus (T ′, C,M ′) is a 3-
decomposition of the extended graph.

For the second forest, removing the three edges u1u3, u3u4, u4u2 from T yields a spanning
forest with four components, two of which are the isolated vertices u3, u4. By replacing
the square by the twin-house and adding the edges u1u2, u1u5, u2u6 to the forest, we
obtain a spanning tree of G− {u3, u4}. We can connect these last two vertices by using
their incident edges u3v3, u4v4 in M to obtain a spanning tree T ′ of G as shown in
Figure 5.8d. We then take M ′ to be the set M \ {u1u2, u3v3, u4v4}, which is still a
matching. The remaining edges in the twin-house form a C4 which we add to C to
obtain C ′. Then (T ′, C ′,M ′) is a 3-decomposition of G. □

5.16 Corollary.[5.5]
[5.6]
[5.7]

The Pet− and the twin-house are reducible. ◁

Proof. The (Y,X)-reductions in Figures 5.7a and 5.8a yield 3-connected graphs by Lem-
mas 5.6 and 5.7. By Lemma 5.5 both graphs are reducible. □

76

5.2. New reducible configurations

Figure 5.9.: The bad local behaviour for the domino.
This just leaves the domino, whose reducibility proof is the most complex. If we regard
the reduction to the square again, then all but one case is straightforward, which is
the one shown on the left in Figure 5.9. However, this case is difficult to remedy and
requires us to know more about the structure of the graph G in which this occurs. To
obtain this information, we first attempt to reduce the domino to a single edge, for which
the corresponding extension is 3-compatible by Lemma 5.12. If this reduction yields a
3-connected graph, then we are done. Otherwise, we have acquired enough information
to deal with the only problematic case occurring in the reduction to the square.

5.17 Lemma. [2.9]
[A.10]
(5.18)

Let (X, Y) be the extension and (X,Z) be the reduction of the square
shown in Figure 5.10. Moreover, let G be a 3-connected graph containing the core of X
such that its (X,Z)-reduction is not 3-connected. If G has a 3-decomposition, then the
(X, Y)-extension of G also has a 3-decomposition.

u1 u2

v1 v2

v3 v4

u1 u2

u3 u4

v1 v2

v3 v4

u1 u2

u5 u6

u3 u4

v1 v2

v3 v4

Z X Y

H ′ G H

Figure 5.10.: Transforming a square into a domino or an edge.

Proof. Let G be a graph as in the claim and let (T,C,M) be a 3-decomposition of G.
Furthermore, let H be the extension G[X ! Y] and H ′ the reduction G[X ! Z]. If
any local behaviour other than the one in Figure 5.9 occurs, then we can extend the
decomposition of G to H, see Figure A.10. Thus, we restrict ourselves to the forest TX

with E TX := {v2u2, u2u1, u1u3, u3u4, u4v4}.

If we remove the three edges of TX in the square, then we end up with four components:
the vertices u1, u3 and componentsH2 ∋ u2, H4 ∋ u4. If v3 /∈ V H4, then we take all edges
of Y except those on the cycle u1u2u6u5u1 to be part of the tree component, as shown
in Figure 5.9. This results in a spanning tree since each of the five edges added connects
different components and its complement is the matching M \{u1v1, u3v3, u2u4} and the
cycles in C together with u1u2u6u5u1. This lets us assume that v3 ∈ V H4. Note that
a symmetric assignment (leaving the cycle u5u6u4u3u5) lets us assume that v1 ∈ V H2.
Now let C1 and C3 be the unique cycles in T + u1v1 and T + u3v3, which are disjoint in
the situation we are in now. We illustrate this in Figure 5.11.

77

Chapter 5. Reducible Configurations and Minimum Counterexamples

C1

C2

H2

H4

Figure 5.11.: The bad case in the proof on Lemma 5.17. In it, C1 and C2 are two disjoint
cycles in the graph T + {u1v1, u3v3}, whose edges are coloured green.

We claim this shows that H ′ is 3-connected, contrary to the assumption of the lemma.
The graph H ′ is simple since the neighbours of u1 in H ′ are distinct, they are in different
components of T − u1u3. The same holds for the neighbours of u2. If H ′ were not 3-
connected, then, by the max-flow min-cut theorem, a partition (A′, B′) of V H ′ exists
such that EH′(A′, B′) contains at most two edges. We now consider the partition (A,B)
of V G obtained by adding u3 to the set containing u1 and u4 to the set containing u2.
Next, we compare the sets EH′(A′, B′) and EH(A,B). An edge xy ∈ EH′(A′, B′) is
also in EH(A,B) if neither of its ends is u1 or u2. If just one of them is, say x, then
it corresponds to a unique edge in EH(A,B), where x is potentially replaced by the
vertex u3 or u4. Only the edge u1u2 corresponds to multiple edges in EH(A,B), namely
to the edges u1u2 and u3u4.

Since G is 3-connected, we can conclude that |EH′(A′, B′)| = 2, |EH(A,B)| = 3, and
u1u2 ∈ EH′(A′, B′), u1u2, u3u4 ∈ EH(A,B). This lets us assume that u1, u3 ∈ A and
u2, u4 ∈ B. Both cycles C1 and C3 contain an element of A and one of B, resulting in
a cut of these cycles. These cuts have at least two edges crossing, giving us a total of
at least four since the cycles are disjoint, which is a contradiction. □

5.18 Corollary.[5.5]
[5.7]

[5.12]
[5.17]
[6.8]

The domino is reducible. ◁

Proof. In light of the new situation, we cannot just apply Lemma 5.5. Let H be a
minimum counterexample containing the domino, that is, H is a 3-connected cubic graph
without a 3-decomposition. Since all cubic graphs on six vertices have a 3-decomposition
by Theorem 6.8, we may assume that H has more vertices than the ones in the domino.
Also, by Lemma 5.7, we may assume that the domino is induced.

If we can replace the domino by a single edge without harming 3-connectivity as shown
in Figure 5.6c, then we obtain a 3-decomposition of H by Lemma 5.12, a contradiction.

So we may assume that this is not the case. By replacing the domino by a square as
shown in Figure 5.10 on Page 77, we obtain a new graph G which is 3-connected by
Lemma 5.7. By minimality of H, G has a 3-decomposition and satisfies the premise of
Lemma 5.17 (since the reduction of the square to an edge corresponds to the reduction
of the domino in H to an edge directly). This gives us a contradiction. □

78

5.3. Properties of minimum counterexamples

5.3. Properties of minimum counterexamples

In this section, we prove properties of minimum counterexamples to the 3-decomposition
conjecture (under the assumption that such a counterexample exists). To do so, we
exploit our new reducible configurations.

We prove that all 3-connected cubic graphs of path-width at most 4 have a 3-decomposi-
tion. Therefore minimum 3-connected counterexamples have path-width at least 5. This
proof makes use of the reducible configurations we determined in Section 5.2 by showing
that the restriction of the path-width causes one of them to appear. Hence, the proof
follows an analogous structure to the one for tree-width 3 in [Hei20], which shows the
following (slightly modified) lemma:

5.19 Lemma ([Hei20, Lemma 8.9]). (5.20)Every cubic graph of tree-width at most 3
contains at least one isomorphic copy of the following graphs as a subgraph: the triangle,
the K2,3, or the domino. ◁

Actually, [Hei20] proved this result for a larger graph than the domino (which behaves
more nicely than the domino with respect to 3-decompositions) and requires the graphs
to be 3-connected, but this assumption can be replaced by requiring them to be simple.
For path-width we obtain the following result:

5.20 Lemma. [2.4]
[5.19]
[7.10]
[7.25]
(5.21)

Every cubic graph of path-width at most 4 contains at least one iso-
morphic copy of the following graphs as a subgraph: the triangle, the K2,3, the domino,
the twin-house, or the claw-square. ◁

Proof. A graph of path-width at most 3 is also of tree-width at most 3 and, hence,
the lemma follows from Lemma 5.19 in this case. Consequently, we assume G has
path-width 4 and consider a smooth path-decomposition (P,V) of G with P := 1 . . . n′

and P ′ := P − n′, which exists by Theorem 2.4. Thus, all bags contain exactly five
vertices of G and |Vi ∩ Vi+1| = 4 for all i ∈ P ′. For each i ∈ P , we denote the vertex
entering Vi by vi and the vertex leaving Vi by wi (if they exist). In this proof, we make
strong use of the following property, which is a direct consequence of the definition of
path-decompositions:

NG wi ⊆
i⋃

j=1
Vj for all i ∈ P ′. (5.1)

Since the proof involves quite a few case distinctions, we refer to Figure 5.12 for an
orientation of which edges are present in each case. Moreover, we use a lot of symmetry
arguments and omit stating that these are without loss of generality every time.

Let V1 = {v, u1, u2, u3, u4} and w1 = v. (This is a typical example of the symmetries
we use: we can always rename the vertices such that this is true.) By (5.1), we obtain
Nv ⊆ {u1, u2, u3, u4}, say Nv = {u1, u2, u3}. We get two cases for w2, namely

w2 = v2 or w2 = u1.

79

Chapter 5. Reducible Configurations and Minimum Counterexamples

v

u1 u2 u3 u4

v v2

u1 u2 u3 u4

v u1

u2 u3 u4 v2

v v2 v3

u1 u2 u3 u4

v u1 v3

u2 u3 u4 v2

∼ =

v v2 v3 v4

u1 u2 u3 u4

Figure 5.12.: A roadmap of the case distinctions made in the proof of Lemma 5.20.
Column i shows the options that occur when the ith bag is considered.

In the first case, Nv2 = Nv gives us a K2,3. Thus, Nv2 = {u2, u3, u4}. This time, we
have three options for w3: u1, u2, or v3. The first and last case yield a desired subgraph:
if w3 = u1, then Nu1 contains a vertex in {u2, u3, u4}. The first two options give us a
triangle, the last a twin-house. For w3 = v3, we get a K2,3 or Nv3 = {u1, u2, u4} and a
domino is present.

This puts us in the case that w3 = u2, which must have a neighbour in {v3, u1, u3, u4}.
All but v3 yield a triangle, so we are done or u2v3 ∈ E G. We now get four cases
for w4: u1, u3, v3, or v4. If w4 = u1, then u1 has a neighbour in {v3, u3, u4}, yielding a
domino, a triangle, or a twin-house. If w4 = v3, then v3 has a neighbour in {u1, u3, u4},
yielding a domino, a K2,3, or another domino. If w4 = v4, then v4 has three neighbours
in {u1, u3, u4, v3}. From u3 ∈ Nv4, we get a domino if the edge v4u1 or v4u4 is present,
one of which must be. Otherwise, Nv4 = {u1, u4, v3} and the graph contains a claw-
square.

The last option is w4 = u3, in which we have u3v4 ∈ E G since u3u4 and u3u1 result
in triangles and u3v3 yields a K2,3. By considering w5, for which only the two options
w5 = v3 or w5 = v5 remain, we complete this branch of the proof. We get that v3v4,
v3u1, and v3u4 give us a twin-house and two dominoes, finishing the case w5 = v3.
For w5 = v5, choosing any three of the possible neighbours (all choices are symmetric)
creates a claw-square.

Now we go back to our first split and deal with the case that w2 = u1. We get a triangle
or Nu1 = {v, v2, u4}. This gives two choices for w3 here, namely v3 or v2. The first
case gives Nv3 = {u2, u3, u4} and a twin-house is present. If w3 = v2, then we need
two neighbours in {u2, u3, u4, v3}. We can exclude u4 as it forms a triangle, and both u2
and u3 yield a K2,3. Thus, Nv2 = {u1, u2, v3} and the obtained case is actually one we
have already seen before, see Figure 5.12. □

Using Lemma 5.20 and the reductions from Section 5.2 we can prove the following
theorem.

80

5.3. Properties of minimum counterexamples

5.21 Theorem. [5.20]Every 3-connected cubic graph of path-width at most 4 satisfies the
3-decomposition conjecture. ◁

Proof. Suppose towards a contradiction that the class of all 3-connected cubic graphs
of path-width at most 4 does not satisfy the 3-decomposition conjecture. Let H be a
counterexample of minimum order amongst all graphs of this class. By Lemma 5.20, at
least one of the graphs listed there is a subgraph ofH. Observe that all the corresponding
reductions (as discussed in Section 5.2) produce a minor ofH and are, hence, path-width
preserving. Moreover, these transformations preserve 3-connectivity. Altogether, H can
be reduced to a 3-connected graph G of path-width at most 4 with |V G| < |V H|.
Since H was a minimum counterexample, the graph G satisfies the 3-decomposition
conjecture and, because the transformations used are 3-compatible, so does H, yielding
a contradiction. (Note that for the domino, we only use the reduction to the edge if
it preserves 3-connectivity and that we can extend a decomposition from the square to
the domino in the case we do not reduce to the edge.) □

Next, we prove the following properties of minimum counterexamples.

5.22 Theorem. [5.8]If G is a minimum counterexample to the 3-decomposition conjecture
amongst all 3-connected cubic graphs, then it does not contain any of the graphs in
Figure 5.1 on Page 67 as a subgraph. In particular,

(a) the girth of G is at least 4,
(b) every cycle of length 4, 5, or 6 in G is induced, and
(c) every edge of G is the centre edge of an induced P6. ◁

Proof. Suppose that there exists a 3-connected counterexample to the 3-decomposi-
tion conjecture. Choose G to be minimum amongst all such counterexamples. By
Theorem 5.8, the six graphs listed in the claim are reducible and hence not subgraphs
of G. We refer to the property that the triangle is not a subgraph of G by (∆) and
use (K2,3), (Pet−), (cs), (th), and (⊟) for the respective properties corresponding to
the other subgraphs. Properties (a) and (b) follow immediately from (∆) and (⊟). We
prove Property (c). Let wx be some edge of G.

Claim 1. If wx is in a cycle of length 6, then Property (c) is satisfied for wx. ◁

Proof. Let C := uvwxyzu be a cycle which contains wx. By Property (b) the cycle C
is induced and, consequently, there exists a vertex v′ ∈ NG v \ V C. Consider the path
P := v′vwxyz as shown on the left of Figure 5.13. If P is induced, then Claim 1 holds.
Therefore, we may assume that there is an edge in G between two vertices of P that
are non-adjacent in P . For simplicity, we call such an edge a chord of P . Since C is
induced, one end of this chord is v′ and by (∆) the other end is neither w nor u, leaving
the cases that

v′x, v′y, or v′z

is an edge of G.

81

Chapter 5. Reducible Configurations and Minimum Counterexamples

u z

v

v′

y

w x

y′

y′

w′w′′

(⋆)

x′
x′′

w̃

Figure 5.13.: The graphs occurring in the proof of Claim 1. By starting with a C6
containing wx on the top left and using the properties available in this
case, the local view of the graph is expanded until an induced P6 is found
that contains wx as its centre edge.

Assume that v′z ∈ E G. The vertex y has a neighbour y′ /∈ V C ∪ {v′} by (∆). Consider
the path uvwxyy′. If this path is not induced, then y′w ∈ E G by (∆) and (⊟). We label
this situation by (⋆) so we can refer to it later. From (∆) and (⊟) we obtain that x has
a neighbour x′ /∈ V C ∪ {v′, y′}. We prove that both remaining neighbours of x′ are not
in V C∪{v′, y′}: since G is cubic, x′ is not adjacent to v, w, y, or z. By (K2,3) we obtain
that x′y′ /∈ E G and with (cs) we obtain x′u, x′v′ /∈ E G. Hence, there exists a vertex x′′

in NG x
′ \ (V C ∪ {v′, y′}). Consider the paths uvwxx′x′′ and v′vwxx′x′′. At least one

of the two paths is induced since the only possible chords are ux′′ or v′x′′, respectively.
However, if both chords exist, then (K2,3) is violated. Altogether, if v′z ∈ E G, then G
contains a path of the desired form.

Now assume that v′x ∈ E G. There exists y′ ∈ NG y\(V C∪{v′}) since C is chordless and
(∆) holds. Consider the path uvwxyy′. We may assume that this path is not induced,
that is, y′u ∈ E G (the other potential chord wy′ violates (⊟)). Observe that the vertices
can be relabelled such that we are in the same situation as (⋆), which includes the fact

82

5.3. Properties of minimum counterexamples

u z

v y

w x

v′ y′

v′

w′w′′

Figure 5.14.: The graphs occurring in the proof of Claim 2. Again, the initial P6
containing wx is expanded until an induced version is found.

that the edge wx is identified, even though its ends are ‘swapped’. Hence, there exists
an induced P6 with wx at its centre.

Finally, let v′y ∈ E G. Since C is chordless and (∆) holds, we obtain that there exists a
vertex w′ ∈ NG w\(V C∪{v′}). The only possible neighbour of w′ in V C∪{v′} is z by (∆),
(th), and (cs). Since dG w

′ = 3 there exists another vertex w′′ ∈ NG w
′ \ (V C ∪ {v′}).

If w′′w′wxyv′ is induced, then Claim 1 is true. Therefore, assume there is a chord
of w′′w′wxyv′ in G. By (∆), the only possible chords are

w′′x and w′′v′.

If w′′v′ ∈ E G, then the path w′′w′wxyz is induced: the edges w′′x and xz violate (∆),
the edges w′′x and w′′z are prohibited by (th), and the last potential chord w′z contra-
dicts (Pet−). Otherwise, if w′′x ∈ E G, then there exists w̃ ∈ NG w

′ \ (V C ∪ {w′′, v′})
by (⊟) and (th), and the path w̃w′wxyv′ is induced by (cs). ⋄

Claim 2. If wx is the centre edge of a P6 and wx is not contained in a cycle of length 6,
then Property (c) is satisfied for wx. ◁

Proof. Let P := uvwxyz be a P6 contained as a subgraph G as seen in Figure 5.14. If
P is induced, then Claim 2 is satisfied. Therefore, we may assume that P has a chord.
By (∆) and since wx is not contained in a C6, the following chords are possible: ux, uy,
vy, vz, and wz. By symmetry, it suffices to consider the chords

ux, uy, and vy.

83

Chapter 5. Reducible Configurations and Minimum Counterexamples

v

w x

u

y

z

Figure 5.15.: The graphs occurring in the proof of Claim 3. Using the forbidden sub-
graphs, the graph around wx is explored until a P6 with wx at its centre is
found.

First assume that ux ∈ E G. By (K2,3) and (th), v has a neighbour v′ /∈ V P . Similarly,
we get that y has a neighbour y′ /∈ V P∪{v′} by (∆), (K2,3), and (th). The path v′vwxyy′

is induced since a chord would either violate (∆) or (⊟) or lead to a C6 containing wx.

Now assume that uy ∈ E G. There is a neighbour v′ of v with v′ /∈ V P by (∆) and (th).
The path v′vwxyz is induced since a chord of this path would either violate (∆) or (th)
or create a C6 with wx as an edge.

Finally assume that vy ∈ E G. From (∆) and (K2,3), we obtain that w has a neigh-
bour w′ /∈ V P and w′ has a neighbour w′′ /∈ V P by (∆), (⊟), and (th). A chord
of w′′w′wxyz does not exist due to the same three properties and the assumption that
no C6 contains wx. ⋄

Claim 3. There exists a P6 whose centre edge is wx. ◁

Proof. By (∆), we have NG w ∩ NG x = ∅. Let v ∈ NG w \ {x} as seen in Figure 5.15.
There exists a neighbour u of v with u /∈ NG w ∪ NG x due to (∆) and (K2,3). Let y
be a vertex in NG x \ {w}. By (∆), (K2,3), and (th), we obtain that y has a neighbour
z /∈ NG w ∪NG x ∪ {u}. Altogether uvwxyz is the desired P6. ⋄

This completes the proof. □

84

Part II.

Algorithmic Proof Support

In this part, we readdress two of the proof techniques
we used in Chapter 5. We target those that deal with
exhaustive case analyses and show how to formalise
these proofs such that they can be checked automat-
ically. Specifically, we revisit the proofs for 3-com-
patibility of extensions in Chapter 6 and provide a
method for finding all the ‘straightforward’ exten-
sions we relegated to Appendix A. We also verify that
all small cubic graphs have a 3-decomposition. In
Chapter 7, we automate the proof of Lemma 5.20
where we showed that certain subgraphs are part of
every cubic graph of path-width at most 4. More pre-
cisely, we develop an algorithm that checks whether a
set U of graphs is unavoidable for a class of graphs G if
we restrict their path-width. This problem is undecid-
able in general (so the algorithm need not terminate
in case U is unavoidable), but we give a criterion that
ensures termination. Finally, in Chapter 8, we use
the developed techniques to provide upper bounds on
the girth of cubic graphs with small path-width.

85

Chapter 6.
Naive Extensions

We formalise and automate the part of the reducibility proofs of Section 5.2 that we
discuss in Appendix A. Moreover, we determine that the process described here leads
to an NP-complete problem. Finally, we note that all cubic graphs of order at most 20
satisfy the 3-decomposition conjecture.

At the core of our reducibility proofs in Section 5.2 lies the task of checking that
every behaviour, which a 3-decomposition might exhibit on a (smaller) graph S, can
be extended to R. This leads to a lot of cases, many of which are straightforward.
We identify these naively extendable cases and demonstrate how they can be handled
algorithmically in Section 6.1. This provides an alternative proof for the contents of
Appendix A. The algorithm we use for checking the extendability is an exhaustive search,
which suffices for our purposes since the configurations we check are small. Nevertheless,
we prove that checking for naive extendability is an NP-complete problem in Section 6.2.
We also use the same exhaustive search (together with a heuristic) to show that all
cubic graphs of order at most 20 satisfy the 3-decomposition conjecture in Section 6.3,
meaning a potential counterexample must have order at least 22.

This chapter is joint work with Irene Heinrich and is the last part of [BH21] that was
missing.

6.1. Algorithmically checking 3-compatibility

Recall that we wanted to prove that certain (X, Y)-extensions are 3-compatible for
template graphs X and Y . We refer to Definitions 5.1, 5.2, and 5.4 for the corresponding
definitions. To make it possible to check the 3-compatibility of an extension in an
automated fashion, we start by taking a look at what the tree-component of a valid
behaviour looks like when restricted to a template graph, which is exactly what the
following definition describes.

6.1 Definition. A spanning forest TX of a template graph X is 3-consistent if

87

Chapter 6. Naive Extensions

Figure 6.1.: A naively extendable 3-consistent forest. The green edges in both graphs
form a 3-consistent forest. Moreover, the forest for the template graph of
the edge is naively extendable to the template graph of the domino.

• every component of TX contains an outer vertex and
• every component of X − E TX is a single vertex, a single edge, a cycle, or a path

joining two outer vertices of X.

We write MX for the set of edges uv for which {u, v} is a component of X − E TX and
denote the union of the cycles and paths between outer vertices in X − E TX by CX . ◁

See Figure 6.1 for two examples of 3-consistent forests, where we employ our usual colour
scheme: the edges of TX are green, those in CX are red, and the ones in MX are blue.

6.2 Observation.(6.5) The requirements for a forest to be 3-consistent are all necessary
for it to be a restriction of a 3-decomposition. In other words, if a cubic graph G
contains cX as an induced subgraph and has a 3-decomposition (T,C,M), then the
restriction TX of T to X is 3-consistent. ◁

Recall that X is not necessarily a subgraph of G (just the core of X is), but we treat it
as one since its edges can be identified with ones of G. Thus, the restriction of T to X
is the subgraph of X containing the edges that correspond to ones in T . Further, we
remark that the restriction of T to X is not necessarily connected, and the restrictions
of C and M to X are CX and MX , where CX may now contain paths in addition to
cycles.

An assignment is a function f : OX ! {t, c, m}. We say that TX realises f if, for each
vertex v ∈ OX, its incident edge e satisfies that e ∈ TX (e ∈ CX , e ∈ MX) if f v = t
(f v = c, f v = m).

6.3 Definition. A 3-consistent forest TX is naively extendable to Y if there exists a
3-consistent forest TY of Y such that

• TY realises the same assignment as TX (in particular, OX = OY) and
• two outer vertices of X are in the same component of TX if and only if they are in

the same component of TY . ◁

An example of a naively extendable forest is shown in Figure 6.1.

We show that a naively extendable forest TX allows us to extend a 3-decomposition that
locally behaves like TX .

88

6.1. Algorithmically checking 3-compatibility

6.4 Lemma. (6.5)If G has a 3-decomposition (T,C,M) such that the restriction TX of T
to X is naively extendable to Y with forest TY , then the extension H := G[X ! Y] has
a 3-decomposition. ◁

Proof. We verify that the decomposition (T ′, C ′,M ′) of H given by

E T ′ := (E T \ E TX) ∪ E TY ,
E C ′ := (E C \ E CX) ∪ E CY , and
M ′ := (M \MX) ∪MY

is, indeed, a 3-decomposition of H.

We first prove that T ′ is a spanning tree, where we assume that T ′ is spanning. Therefore,
we only need to verify that T ′ is connected and acyclic. To show that T ′ is connected,
fix a vertex v ∈ H − I Y = G − I X. There exists a path P in T from this vertex
to every other vertex in G − I X. If P does not use vertices of cX, then it is present
in T ′. Otherwise, P contains a subpath that links two outer vertices of X. This places
them in the same component of TX and they are connected in TY . Thus, we can replace
every such subpath in TX by one in TY to obtain a path in T ′. Any vertex w ∈ c Y is
in the same component of TY as an outer vertex, which is connected to v, making T ′

connected.

Suppose now that T ′ contains a cycle K. This cycle cannot be contained in H − I Y
and, hence, K consists of paths using edges in E T \E TX and paths using edges in E TY .
By choosing a cycle that consists of a minimal number of such segments, we can ensure
that it enters every component of TY at most once. Any such path can be replaced by
one in TX , giving us a cycle in T which is a contradiction.

The set M ′ is a matching since the edges that are in M \ MX and those in MY are
independent. So if e, e′ ∈ M ′ share an end v, we may assume that e ∈ M \ MX and
e′ ∈ MY . Therefore, their common end is a vertex in OX. In this case e′ /∈ MX ,
giving us e′ /∈ MY since f v ≠ m, where f is the assignment realised by TX , which is a
contradiction.

Finally, for v ∈ H, we take a look at the number of edges in C ′ incident to v. If v ∈ c Y
or v is in H but not adjacent to c Y , then this degree is either 2 or 0. This just leaves
the vertices OY . Since TX and TY realise the same assignment, any edge from a vertex
of G − cX to cX is in CX if and only if the corresponding edge from H − c Y to c Y
is in CY . Consequently, the degree of these vertices remains the same in C and C ′,
yielding a degree of 2 or 0 here as well. □

The proof of Lemma 6.4 is constructive in the sense that, given a 3-decomposition for G
as in the statement, we can construct a 3-decomposition for H. We can now automate
the proofs we relegated to Appendix A in Chapter 5 by verifying that 3-consistent forests
are naively extendable.

89

Chapter 6. Naive Extensions

6.5 Theorem.[6.2]
[6.4]

To prove that an (X, Y)-extension is 3-compatible, it suffices to show
that any 3-consistent forest TX of X satisfies

(i) TX is naively extendable to Y or
(ii) every (X, Y)-extension H := G[X ! Y] of a graph G has a 3-decomposition if

G has a 3-decomposition (T,C,M) for which the restriction of T to X is TX . ◁

Proof. This is true as any 3-decomposition (T,C,M) of a graph G containing an in-
duced cX has a 3-consistent restriction TX of T to X by Observation 6.2. If TX is
naively extendable, then H has a 3-decomposition by Lemma 6.4 and otherwise such a
decomposition exists by Condition (ii). □

The task of determining all 3-consistent forests and checking whether they are naively
extendable can be accomplished algorithmically. We have implemented this1. With the
exception of our analysis of the triangle in Lemma 5.9, the local behaviours covered in
Section 5.2 are exactly the ones that are not naively extendable, that is, where we are
required to use Condition (ii) (disregarding symmetric cases).

6.2. The complexity of naive extensions

We now prove that determining whether a graph has a naive extension is an NP-complete
problem. We first restrict ourselves to the subproblem of finding a 3-consistent forest TY

that realises some assignment f . As in Theorem 3.4, this reduction is also based on the
one for the integral multi-commodity flow problem [EIS76].

6.6 Theorem.(6.7) Given a template graph Y and an assignment f , checking whether a
3-consistent forest TY for Y exists that realises f is NP-complete. ◁

Proof. The problem is in NP since a spanning forest TY of Y can be checked to be
3-consistent and realise f in polynomial time. To prove NP-hardness we use a reduc-
tion from 3-SAT, see Problem 2.15. Let φ be a formula with variables x1, . . . , xn and
clauses X1, . . . , Xm. We assume that, for every variable x, both x and x occur equally
often in the clauses. This is without loss of generality since we can add additional
clauses of the form x ∨ x ∨ x or x ∨ x ∨ x as required to reach the desired state.

We first note that we can force edges uv to end up in the tree part TY by subdividing
them and adding an outer vertex to the subdivision vertex whose incident edge is in
the matching. Formally, we remove uv and add edges uw, vw, wy, where w, y are
new vertices and y is an outer vertex. By setting f y := m, wy needs to be in MY and
both uw and vw are necessarily in TY . For simplicity, we refer to such a gadget as a
forced tree-edge.

1GitLab repository containing 3-decompositions for all connected cubic graphs of order at most 20 and
code to check for naive extensions, https://gitlab.rlp.net/obachtle/reductions-for-the-3-
decomposition-conjecture, August 2022.

90

https://gitlab.rlp.net/obachtle/reductions-for-the-3-decomposition-conjecture
https://gitlab.rlp.net/obachtle/reductions-for-the-3-decomposition-conjecture

6.2. The complexity of naive extensions

si ti

an occurrence of xi

an occurrence of x̄i

(a) The ith variable gadget.

cj

(b) The jth clause gadget.

Figure 6.2.: The gadgets used in the proof of Theorem 6.6. Here, the forced tree-edges
are simply drawn by a green edge (without depicting the additional vertices
they contain).

With this gadget at hand, we can describe the clause and variable gadgets we construct.
Clause gadgets are very simple and shown in Figure 6.2b. They just consist of a vertex cj

incident to three forced tree-edges, whose ends are in the variable gadgets (we describe
where momentarily). Each such edge corresponds to one of Xj’s literals.

The variable gadget for xi consists of two paths of length 4li + 1 which coincide in
their ends si and ti and are disjoint otherwise. Here, li is the number of occurrences
of xi (or xi) in φ. We call one of these paths the upper path and the other the lower
one. In this gadget, we partition the 4li distinct vertices on the upper and lower paths
into li blocks of four consecutive vertices and each block on the upper path corresponds
to an occurrence of xi while each block on the lower path corresponds to an xi in some
clause. Furthermore, the lth vertices of the upper and lower path are connected by a
forced tree-edge for all even l. This is visualised in Figure 6.2a.

The entire graph now concatenates all the variable gadgets by adding edges from si

to ti+1 for i ∈ {1, . . . , n− 1}. It adds an outer vertex to s1 and tn, where the edges
are required to be part of CY (by setting the f -value of the outer vertices to c). A
forced tree-edge in a clause gadget corresponding to a literal L is connected to the third
vertex in the block that corresponds to L. Finally, all the first vertices in a block are
connected by a forced tree-edge to a path consisting of only forced tree-edges that ends
in two more leaves. These two leaves are assigned an f -value of t. The construction
of Y runs in polynomial time, so we just need to prove that φ is satisfiable if and only
if there exists a 3-consistent forest TY realising f .

First assume that a 3-consistent TY exists that realises f . The cycle component CY

contains a path P from s1 to tn in the graph Y − E TY . Since TY contains all forced
tree-edges, P either uses the upper or lower path in each variable gadget. If it uses
the lower path in the gadget for xi, then we set xi to True and otherwise we set it to
False. Suppose this assignment would not satisfy φ. This yields a clause Xj for which
all three of its literals are not satisfied, meaning that we use the upper path for the
positive literals and the lower path for the negated ones. Consequently, the vertex cj

91

Chapter 6. Naive Extensions

and its neighbours in the variable gadgets form a component of TY without an outer
vertex, contradicting the fact that TY is 3-consistent.

Conversely, assume that we are given a satisfying assignment for φ. Let TY consist of
the following edges: TY contains all forced tree-edges. Additionally, if xi is set to True,
TY uses the upper path and otherwise it uses the lower one. Here, uses a path means
that TY contains the path’s edges incident to si and ti and in each block it contains the
first and third edge. As a result, after the first edge, the edges on the path alternate
between being and not being in TY .

This is a forest: it has a component for each clause gadget Xj which subsumes the
third vertices of all blocks corresponding to its literals. Disregarding the components
consisting of a single outer vertex, there is one other component containing the path of
forced tree-edges and the first (and second) vertex of all blocks. The cycle component CY

consists of a path which links the outer vertices at s1 and tn and all other components
are single edges, placing them in MY . As a result, TY realises f and we can make
it 3-consistent by choosing a satisfied literal in every clause Xj and connecting the
component of Xj to the one containing the path by adding the edge from the second to
the third vertex in the corresponding block to TY . □

Using the same notation as in the proof above, we note that the reduction presented in
Theorem 6.6 can also be used to prove the following corollary.

6.7 Corollary.[6.6] Determining whether a forest is naively extendable is NP-complete. ◁

Proof. To get this result, one simply needs to define a graph X and a 3-consistent
forest TX that also realises the assignment f specified in Theorem 6.6 and in which the
only two outer vertices with an incident edge in TX are in the same component of TX .
Such a graph X can be constructed by taking a path P that has an inner vertex for
every forced tree-edge. All these inner vertices have degree 2 and are assigned an outer
vertex as their final neighbour. The ends of P receive one outer vertex and one further
neighbour in the core of X. These final two vertices are connected by an edge and each
of them is incident to another outer vertex. The forest TX now uses P and all edges
incident to the ends of P , yielding a path as CX and leaving MX with all edges incident
to inner vertices of P that are not in P . □

6.3. 3-decompositions for small graphs

In this section, we just briefly explain how we obtained the following result.

6.8 Theorem.(5.10)
(5.13)
(5.18)

All graphs of order at most 20 satisfy the 3-decomposition conjecture.
In particular, a minimum counterexample has order at least 22. ◁

92

6.3. 3-decompositions for small graphs

The cubic graphs of order at most 20 are known, see [Bri96, Mer99, Bri+13]. We used
the complete list of cubic graphs of order at most 20 as provided by [Bri+13]. For each
graph in this list, we computed a tree that leads to a 3-decomposition for this graph,
i.e., removing the edges of this tree from its host graph results in the disjoint union of a
2-regular graph, a 1-regular graph, and some isolated vertices. To obtain such a tree
for a given cubic graph, we first employed a heuristic. If the heuristic did not lead to a
desired tree, then our algorithm tackled the problem by an enumeration approach. The
code as well as the computed trees can be found in our GitLab repository2.

We complete this section with a brief overview of the heuristic employed. When presented
with a graph G, it first searches for non-separating cycles in the graph and removes
them. It does so heuristically, by computing a spanning tree in the graph and seeing if
the cycle obtained by adding one of the remaining edges to this tree is non-separating.
(Recall that finding such cycles in NP-complete by Theorem 3.4.) After removing a
non-separating cycle, the degree 1 vertices are recursively pruned, their incident edges
must be part of the tree. Since we know, by the equivalence to the 2-decomposition
conjecture, that decompositions continue to exist in the new graph unless the conjecture
is false, we continue with the preprocessed version.

In it, we then compute a spanning tree T , which yields a decomposition into this
spanning tree, a 2-regular subgraph C, and paths P . Note that the edges left over when
removing T can contain cycles as well, we combine those with the non-separating cycles
we found. If no path in P has length greater than 1, a 3-decomposition has been found
and is returned. Otherwise, to reduce the number of long paths, an edge e at the end
of such a path is taken. By adding it to T , we obtain a cycle C ′ in T + e. If this cycle
is non-separating, we include it in the cycle component and compute a new spanning
tree. Otherwise, we check whether the cycle contains an edge e′ = uv where both u
and v have degree 0 in P (and thus degree 3 in T + e). In the case that it does, we
remove e′ from T and add it to P , where it forms a path of length 1. Should we manage
to remove all excessively long paths this way, we obtain a 3-decomposition and otherwise
the heuristic fails.

When the heuristic fails, we revert to the preprocessed graph and check whether it
contains a spanning tree with the desired behaviour by iteratively extending assignments
to the three components in a consistent way. In essence, we use the possible local
behaviours at a vertex, as displayed in Figure 5.4, and use these to colour all edges. We
keep track of components to detect when adding edges to the tree creates a cycle.

2GitLab repository containing 3-decompositions for all connected cubic graphs of order at most 20 and
code to check for naive extensions, https://gitlab.rlp.net/obachtle/reductions-for-the-3-
decomposition-conjecture, August 2022.

93

https://gitlab.rlp.net/obachtle/reductions-for-the-3-decomposition-conjecture
https://gitlab.rlp.net/obachtle/reductions-for-the-3-decomposition-conjecture

Chapter 7.

Unavoidable Structures

Let G be a class of graphs with a membership test, k ∈ N, and let Gk be the class of
graphs in G of path-width at most k. We present an interactive framework that finds
an unavoidable set for Gk, that is, a set of graphs U such that any graph in Gk contains
an isomorphic copy of a graph in U . At the core of our framework is an algorithm that
verifies whether a set of graphs is, indeed, unavoidable for Gk. If it is not, it provides a
counterexample that can be used to extend the set U .
In general, it is undecidable whether a finite set of graphs is unavoidable for a given
graph class, even if the graphs in the class are all of path-width 2 and the class itself
is decidable. However, we give a criterion for termination: our algorithm terminates
whenever G is highly local, of bounded maximum degree, and U is a finite set of
connected graphs. We put special emphasis on the case that G is the class of cubic
graphs and tailor the algorithm to this case. In particular, we introduce the new
concept of high-degree-first path-decompositions, which enable highly efficient pruning
techniques.

A set of graphs is unavoidable for a graph class if every graph in the class contains an
isomorphic copy of a graph in the set. Unavoidable sets are extensively used in

• recursive algorithms and inductive proofs, for example [Bod+19, FGH20],
• structural graph theory, where unavoidable sets give insights into the possible

composition of graphs, see [Chu+16] for an example, and
• interactive proofs, for example Appel and Haken’s proof of the famous four colour

theorem, see [AH77, AHK77].

While discharging [CW17] is a tool to find unavoidable structures for colouring problems
and Ramsey theory [CFS15] studies unavoidable sets in extremal graph theory, there is no
generic approach for finding or checking whether a given set is unavoidable. Frequently,
tedious case distinctions are necessary to prove that some set is indeed unavoidable for a
considered class, see [Bod+19, FGH20]. We contribute a new automated method to this
sparse list of techniques for finding unavoidable sets.

95

Chapter 7. Unavoidable Structures

We present an interactive framework for the automatic construction and testing of
unavoidable sets parametrised by path-width. More precisely, let a class G with a
membership test and a number k ∈ N be given and let Gk be the class of graphs in G of
path-width at most k. At the core of our framework is an algorithm which investigates
the hypothesis that a finite set of graphs U is unavoidable for Gk. It can be adapted to
serve as a check for unavoidable induced subgraphs or minors, as we see in Section 7.5.
We prove that the algorithm terminates for a large variety of graph classes, for example
if G is the class of all l-regular graphs for some l ∈ N and the graphs in U are connected.
The framework uses the algorithm as follows: it starts with a (potentially empty) set
of graphs and runs the algorithm on it. If the set is not unavoidable, the provided
counterexample can be used to extend the set of structures, either by adding the graph
itself or a subgraph. This is the interactive part of the framework, since the desired or
useful unavoidable structures often depend on the application. This process is repeated
until the set of structures is unavoidable.

We now give a high-level description of the algorithm we develop in this chapter and
describe the challenges that occur. Roughly speaking, our algorithm searches for a
minimum counterexample to the hypothesis that U is unavoidable for Gk. We face two
major challenges on our way to a practically applicable algorithm: a very large search
space and the fact that, in general, it is undecidable whether a finite set of graphs is
unavoidable for a given graph class, even if the class is decidable and of path-width 2
(see Lemma 7.13). In order to reduce the search space we exploit a natural linear vertex-
ordering which is given by a path-decomposition and we make strong use of isomorphism
rejection (described very vaguely below and in detail in Section 7.2). Concerning the
undecidability, which prevents the algorithm from terminating in general, we prove a
criterion which allows us to guarantee termination whenever G is highly local and of
bounded maximum degree and the graphs in U are connected in Section 7.3. Recall
that, amongst many others, the following graph classes are highly local: bipartite graphs,
l-colourable graphs, and H-free graphs, where H is some fixed graph. We also analyse
the running time of the algorithm when applied to highly local graph classes.

Let us now give a slightly more precise description of the algorithm, which runs in phases.
After the ith phase, it either

• returns a counterexample of order k + i, or
• returns None, guaranteeing that no counterexample exists and U is unavoidable, or
• ensures that no counterexample of order k + i exists and proceeds with phase i+ 1.

In essence, the algorithm checks graphs G ∈ Gk by simulating the traversal of a smooth
path-decomposition from left to right. It manages a queue that, at the beginning of
phase i, contains all pairs of the form (U,H) which satisfy:

• H is a subgraph of some graph G ∈ Gk which has a smooth path-decomposition
with U as its ith bag. In particular, |V H| = k + i.

• H contains all information provided by the bags preceding U .
• H is a potential subgraph of a counterexample to U being unavoidable for Gk.

96

7.1. The base algorithm

The base algorithm, presented in Section 7.1, checks for the current pair (U,H) whether
adding edges to H results in a graph in Gk that avoids all graphs in U . If this is the case,
then the obtained graph is returned as a certificate that U is not unavoidable for Gk.
Otherwise, (U,H) is replaced by multiple pairs (U ′, H ′), which correspond to potential
next steps in our simulation of the traversal of a smooth path-decomposition. Here, the
sets U ′ are candidates for the next bag in the decomposition and H ′ is a supergraph
of H of order |H| + 1. If no pairs remain in the queue, without a counterexample being
found, then the algorithm guarantees that U is unavoidable for Gk.

To drastically limit the number of additional pairs created, we heavily rely on isomorphism
rejection to prune the resulting search tree. In order to avoid a combinatorial explosion,
we introduce the new concept of high-degree-first path-decompositions. These turn out
to be invaluable when tailoring the algorithm to cubic graphs in Section 7.4 since they
allow us to impose strong restrictions on the next bag in the path-decomposition (U ′ in
the above notation).

We illustrate the algorithm (and the effects of the optimisation) in Section 7.6 where
we use it to reprove Lemma 5.20. Another example, with larger path-width values, is
presented in the next chapter and the results can be seen in Table 8.1. Note that the
last two rows contain the number of pairs considered by the base algorithm and the one
employing both isomorphism rejection and high-degree-first path-decompositions. Our
implementation of the algorithm which produced the results in this table can be found
on GitLab1.

Before we start, note that Courcelle’s theorem [Cou90, CM93] implies the existence of
an algorithm like the one we describe here. However, it does not provide one explicitly
since encoding a bound on the path-width in monadic second order logic uses access
to the forbidden minors, which exist by [RS04], but are unknown for values larger
than 2. (Even if they were known, there are at least (k!)2 many forbidden minors for
path-width k [TUK94], resulting in a very large formula.) Moreover, our algorithm has
more desirable runtime properties than the one which exists according to [Cou90]: the
decision procedure of Courcelle’s theorem has non-elementary complexity [FG04].

The content of this chapter is joint work with Irene Heinrich and a preliminary version
is available as a preprint on arXiv [BH20].

7.1. The base algorithm

We start this section with a toy example that illustrates the by-hand method we automate
and is illustrated in Figure 7.1. We have already seen one such example in the proof of

1GitLab repository containing an implementation of our algorithm for checking whether a set U is un-
avoidable for Gk, https://gitlab.rlp.net/obachtle/testing-unavoidable-sets-for-small-
path-width, October 2022.

97

https://gitlab.rlp.net/obachtle/testing-unavoidable-sets-for-small-path-width
https://gitlab.rlp.net/obachtle/testing-unavoidable-sets-for-small-path-width

Chapter 7. Unavoidable Structures

v1, v2
v3, v4

V1

v1

v2 v4v3

v5, v2
v3, v4

V2

v1 v5

v2 v4v3

v5, v6
v3, v4

V3
v1 v5 v6

v2 v4v3

v6, v2
v3, v4

v1 v5 v6

v2 v4v3

−v1

+v5

−v2

+v6−v5+v6

Figure 7.1.: The by-hand method for cubic graphs of path-width at most 3. Here, the
bags of the path-decomposition are shown, together with their associated
graphs (see Definition 7.2).

Lemma 5.20, but the smaller example presented here should serve as a more clear guide
to what is going on as it directly illustrates the behaviour of our algorithm.

Let G be the class of cubic graphs. We prove that the set U := {C3, C4} is unavoidable
for the class G3 of cubic graphs of path-width at most 3. To this end, let (P,V) be
a smooth width 3 path-decomposition of a graph G ∈ G3. Let v = v1 and v′ be the
vertices leaving the bags V1 and V2, respectively. Since v leaves V1 (and has degree 3),
we obtain NG v = V1 \ {v}. If v′ is a neighbour of v, then we may assume that v′ = v2
and v′ has two other neighbours in V2 \ {v′}. Consequently, v and v′ have a common
neighbour, say v3, and G contains a C3. Otherwise, v′ is the vertex v5 entering V2. In
this case, NG v

′ = V2 \ {v′} = V1 \ {v} and we obtain a C4.

Before we can describe our base algorithm, we need some definitions and notation.

7.1 Convention. Barring few exceptions, all path-decompositions occurring in the
remainder of this chapter are smooth and adhere to the following naming convention:
their path is P := 1 . . . n′ and their bags are V := (Vi)i∈P . ◁

Moreover, we need the next definition, which will play an essential role in the remainder
of this and the next chapter.

7.2 Definition. The graph associated with Vi is

Gi := G

⋃
j≤i

Vj

− E(G [Vi]).
◁

Intuitively, Gi contains all information provided by the bags preceding Vi as it has
(exactly) the edges incident to vertices that have left already. Note that if v leaves Vi,
then Gi+1 = Gi + E v + vi+1 for some new vertex vi+1. For convenience, the following
term is introduced.

7.3 Definition. A vertex u is a new neighbour of v if v is the vertex leaving Vi and
u ∈ NGi+1 v \NGi

v. ◁

98

7.1. The base algorithm

Thus, the new neighbours of v are exactly those vertices u in Gi+1 for which uv is an
edge of G that was not already present in Gi.

Additionally, we introduce notation to make the statement ‘every graph in G of path-width
at most k has a subgraph in U ’ concise.

7.4 Definition. Let G be a class of graphs, U be a finite set of graphs, and let k ∈ N.
We write

• Gk for the class containing all graphs in G of path-width at most k, and
• super U for the class containing those graphs with a subgraph isomorphic to a

graph in U , that is, super U contains all graphs G for which an S ∈ U exists with
S ∼= S ′ ⊆ G. ◁

With this, the question whether U is unavoidable for Gk translates to: is Gk ⊆ super U?

Given this setup, we can describe our algorithm that answers the question whether
Gk ⊆ super U , by implementing the proof technique illustrated in the toy example with
which we started this section. The only requirement on G is that it is given together
with a membership test, which allows checking whether a specific graph is in G. By
checking all graphs of order at most k explicitly, we may assume that G only contains
graphs with at least k + 1 vertices. This ensures that all graphs in G of path-width at
most k have a smooth path-decomposition of width k.

Next, we define the pairs we talked about in the outline of the chapter.

7.5 Definition. For each smooth path-decomposition (P,V) of a graph G and each
i ∈ {1, . . . , n′} we say that G contains (Vi, Gi). A pair (U,H) is good if every G ∈ Gk

containing it satisfies G ∈ super U . ◁

We remark that any pair (U,H) with H ∈ super U is good. This holds as every graph G
containing (U,H) has H as a subgraph. As a preparation for the formal description and
the correctness proof of our algorithm, we prove the following lemma.

7.6 Lemma. (7.7)
(7.9)
(7.18)

Let G be a graph with path-decomposition (P,V) that contains the
pair (U,H) and let φ be a bijection with domain V G.

(a) Renaming the vertices of G according to φ, in both G and its path-decomposition,
yields an isomorphic graph φG ∼= G with path-decomposition (P, (φVi)i∈P).

(b) The graph φG contains the pair (φU, φH).
(c) If (V1, (V1,∅)) is a good pair, then Gk ⊆ super U . ◁

Proof. Parts (a) and (b) are immediate from the respective definitions. For Part (c),
consider a graph H ∈ Gk with a smooth path-decomposition of width k. After renaming
the vertices, we may assume that the first bag is V1. In particular, the graph H1
associated with V1 is (V1,∅). Thus, the graph H contains (V1, (V1,∅)) and, hence,
H ∈ super U . □

99

Chapter 7. Unavoidable Structures

Algorithm 7.1: Base algorithm for checking whether Gk ⊆ super U .
Input: A class of graphs G with a membership test, a finite set of graphs U , and a

path-width value k.
Output: An element of Gk \ super U or None if no such graph exists.

1 def TestUnavoidability(G, U , k):
2 V1 {u1, . . . , uk, v1}
3 Q [(V1, (V1,∅))]
4 if (V1,∅) is good then Q.dequeue()
5 while Q ̸= ∅ do
6 (U,H) Q.dequeue()
7 for E ′ ⊆ {xy : x, y ∈ U , x ̸= y} do # search for counterexamples
8 if H + E ′ ∈ G \ super U then
9 return H + E ′

10 i |H| − k
11 for u ∈ U do # explore next bag
12 U ′ U \ {u} ∪ {vi+1}
13 for Y ⊆ U \ {u} do
14 H ′ H + vi+1 + {uy : y ∈ Y }
15 if H ′ /∈ super U and there exists a G ∈ G containing (U ′, H ′) then
16 Q.append((U ′, H ′))
17 return None

We are now ready to describe the algorithm, whose pseudocode can be found in Al-
gorithm 7.1. Given a graph class G with a membership test, k ∈ N, and a finite set
of graphs U , the algorithm manages a queue Q of pairs (U,H). By Lemma 7.6 (a) we
may assume that the vertex set V G is exactly the set V := {u1, . . . , uk, v1, . . . vn′} and
the first bag of the path-decomposition consists of the vertices in V1 := {u1, . . . , uk, v1}.
Therefore, the queue is initialised with the pair (V1, (V1,∅)). We maintain the following
invariant.

If all pairs in the queue are good, then Gk ⊆ super U . (7.1)

This holds initially by Lemma 7.6 (c) and, once the queue is empty, we may return
that U is unavoidable, or more precisely, we return None since no counterexample exists.
During the execution of the algorithm, it iteratively removes pairs (U,H) from the queue.
To maintain the invariant (7.1), the algorithm needs to ensure that every graph G ∈ G
containing (U,H) is in super U . Every such graph has a smooth path-decomposition
with U as a bag whose associated graph is H. If this is the last bag in the path-
decomposition, then G is obtained from H by adding edges between vertices of U and the
algorithm checks all such augmentations to see whether one of them avoids U . Should
this occur, the algorithm returns this augmentation as a counterexample. Otherwise,
the decomposition does not end with the bag U and the algorithm checks all possible
options for the next bag and its associated graph, adding these new pairs to the queue
for processing. If any option for a subsequent pair is good, then the original must be as
well.

100

7.1. The base algorithm

7.7 Theorem. [7.6]
(7.8)
(7.16)
(7.25)

If Algorithm 7.1 terminates, then the returned result is correct. ◁

Proof. We first prove that V H =
{
u1, . . . , uk, v1, . . . , v|H|−k

}
for every pair (U,H) in the

queue. Furthermore, we define the path-decomposition of (U,H) for such pairs, which is
a smooth path-decomposition (P,V) of H of width k with last bag U . For (V1, (V1,∅))
the claim on the vertex set holds and we use a path of length 0 with bag V1 as our
decomposition. Now let (U ′, H ′) be a pair added in the iteration in which (U,H) was
removed. As V H ′ = V H ∪ {vi+1} for i = |H| − k and vi+1 /∈ V H, we get |H ′| = |H| + 1
and V H ′ satisfies the claim. To obtain the decomposition of (U ′, H ′), we extend the one
of (U,H) by adding an additional vertex to the end of the path whose corresponding
bag is U ′. This decomposition has width k and is smooth as |U ′| = k+1 and the bags U
and U ′ differ in exactly one vertex.

Next, we prove that the results returned are correct if the algorithm terminates. If the
algorithm returns a graph H+E ′ in Line 9, then H+E ′ ∈ G\super U . It has path-width
at most k, since the path-decomposition of (U,H) has width k with last bag U , which is
also a path-decomposition for H +E ′. Therefore, it suffices to check that Gk ⊆ super U
in case the algorithm returns None.

We verify this by inductively proving the following invariant: before any iteration of the
while loop, (7.1) holds. We have already argued that (7.1) holds for the initialisation
of Q, by renaming the vertices and using Lemma 7.6 (c). If, before the first iteration,
the single pair in Q is removed, then this pair is good and (7.1) holds. So it is true
before the first iteration of the while loop.

Now assume that the invariant holds up to iteration l and consider the queue before
iteration l + 1. In iteration l only a single element (U,H) was removed from Q. Con-
sequently, it suffices to prove that (U,H) is good if all newly added pairs are. To verify
this, let G ∈ Gk be a graph containing (U,H) with corresponding decomposition (P,V).
First assume that U is the last bag of this decomposition, that is,

G = H + E ′ for some E ′ ⊆ {xy : x, y ∈ U , x ̸= y} .

The algorithm considers this graph in some iteration of the for loop in Line 7. Since it
does not terminate in this iteration and G ∈ G, we have G ∈ super U .

Now assume that the path-decomposition of G does not end with the bag U . Let U ′

be the subsequent bag. We know that, for i = |H| − k, V H = {u1, . . . , uk, v1, . . . , vi}.
Thus vi+1 is not in V H and we can assume that the element that enters U ′ is vi+1 by
Lemma 7.6 (b). (Simply choose a mapping φ that is the identity restricted to H and
maps the vertex that enters U ′ to vi+1.) Denote the vertex leaving U by u, then the
graph H ′ associated with the bag U ′ has the form

H + E ′ + vi+1 with E ′ ⊆ {uy : y ∈ U \ {u}} .

Note that E ′ is the set of edges between u and its new neighbours. The algorithm
considers the set U ′ := U \ {u} ∪ {vi+1} in the for loop in Line 11 and also looks at

101

Chapter 7. Unavoidable Structures

the graph H ′ in Line 13. Since G ∈ Gk, it is an element of G that contains (U ′, H ′). If
H ′ ∈ super U , then G ∈ super U and if it is not, then (U ′, H ′) is added to the queue.
In this case, we have assumed it is a good pair and G contains it, meaning that G is
in super U . □

The algorithm remains correct if we remove the check whether there exists a graph G ∈ G
containing (U ′, H ′) in Line 15. It is used to reduce the number of pairs added to the
queue. Should this condition be hard to check, it can be omitted. Heuristics may be used
instead as long as they are correct in case they return a negative answer. For example,
if G is the class of cubic graphs, we can check whether H ′ is subcubic.

Since we need it again later, we note that we obtained the following result in the proof.

7.8 Corollary.[7.7]
(7.16)
(7.17)

For every pair (U,H) added to Q in Algorithm 7.1 there is a path-
decomposition (P,V) of H of width k whose last bag is Vl = U and for which the
associated graph satisfies that Hl = H. ◁

Proof. We showed the existence of this path-decomposition in the proof of Theorem 7.7,
we just did not remark that the graph associated with the last bag is, in fact, H. But
this holds since H only contains edges with at most one end in U . □

7.2. Isomorphism rejection

Now that we have proved the base algorithm to be correct, we demonstrate how to
drastically improve the running time by exploiting isomorphism rejection, which reduces
the number of pairs added in each iteration (see also Table 8.1 on Page 122).

7.9 Lemma.[7.6]
(7.10)

For a bijection φ with domain V H, the pair (U,H) is good if and only if
the pair (φU, φH) is good. ◁

Proof. Let (φU, φH) be a good pair and G be a graph containing (U,H). Let φ be
the extension of φ to V G, where φv = v for all v ∈ V G \ V H. By Lemma 7.6 (b)
the graph φG contains the pair (φU, φH), which is good. Hence, φG ∈ super U and
φG ∼= G, which implies G ∈ super U . This shows that (U,H) is good. The missing
direction follows by considering φ−1. □

As a consequence of Lemma 7.9, we can improve our base algorithm: we only need to
add pairs (U ′, H ′) to Q for which the queue does not already have an element of the
form (φU ′, φH ′) for some bijection φ.

What we describe now are special cases of Lemma 7.9 that can be checked before Line 15
of Algorithm 7.1. Assume we are in the iteration in which the pair (U,H) is removed
from the queue. We denote the set of automorphisms of H that stabilise U as a set
by Aut(U,H), that is, Aut(U,H) contains all automorphisms φ of H with φU = U . For

102

7.2. Isomorphism rejection

convenience, the automorphisms φ in Aut(U,H) are called (U,H)-maps and we note
that Aut(U,H) is a subgroup of the automorphism group of G. We use these maps
to eliminate certain pairs without needing to consider them. To facilitate this, the
set Aut(U,H) is computed directly after the pair (U,H) is removed.

Algorithm 7.2: An optimised version of Algorithm 7.1 using isomorphism rejection.
Input: A class of graphs G with a membership test, a finite set of graphs U , and a

path-width value k.
Output: An element of Gk \ super U or None if no such graph exists.

1 def TestUnavoidability(G, U , k):
2 V1 {u1, . . . , uk, v1}
3 Q [(V1, (V1,∅))]
4 if (V1,∅) is good then Q.dequeue()
5 while Q ̸= ∅ do
6 (U,H) Q.dequeue()
7 Determine Aut(U,H)
8 F {xy : x, y ∈ U , x ̸= y} and F 2F

9 while F ̸= ∅ do
10 Remove a set E ′ from F
11 if H + E ′ ∈ G \ super U then
12 return H + E ′

13 else
14 F F \ {φE ′ : φ ∈ Aut(U,H)}
15 i |H| − k

16 Let U ⊆ U contain a vertex from every orbit
17 for u ∈ U do
18 U ′ U \ {u} ∪ {vi+1}
19 Y 2U\{u}

20 while Y is not empty do
21 Remove a set Y from Y
22 H ′ H + vi+1 + {uy : y ∈ Y }
23 if H ′ /∈ super U and there exists a G ∈ G containing (U ′, H ′) and
24 there is no bijection φ with (φU ′, φH ′) ∈ Q then
25 Q.append((U ′, H ′))
26 Y Y \ {φY : φ ∈ Aut(U,H), φ u = u}
27 return None

Our goal is to optimise all three for loops in Lines 7, 11, and 13 of Algorithm 7.1 by
reducing the number of potential counterexamples, candidates for subsequent bags, and
associated graphs considered. See Algorithm 7.2 for the pseudocode of the algorithm
with these additions.

First, we improve the for loop in Line 7 in which the algorithm looks for counterexamples.

103

Chapter 7. Unavoidable Structures

If we have checked an edge set E ′ ⊆ {xy : x, y ∈ U , x ̸= y}, then we do not need to
check the sets φE ′ for φ ∈ Aut(U,H). This holds as

H + E ′ ∼= φ(H + E ′) = H + φE ′.

Second, we reduce the number of candidates for the next bag in Line 11. By using
(U,H)-maps, we can reduce the number of vertices that need to be considered. Let

φ ∈ Aut(U,H) with φv = u for some u, v ∈ U and

let φ be the extension of φ to V H ∪ {vi+1} where φ(vi+1) = vi+1. We set
U ′ := U \ {u} ∪ {vi+1} and U ′′ := U \ {v} ∪ {vi+1} .

By Lemma 7.9 we know that the pair (U ′′, H ′′) is good if and only if (φU ′′, φH ′′)
is, where φU ′′ = U ′. Therefore, if, for every Y ′ ⊆ U \ {u}, the pair (U ′, H ′) with
H ′ := H+vi+1 + {uy : y ∈ Y ′} is good, then the same holds for the pairs (U ′′, H ′′) where
H ′′ := H + vi+1 + {vy : y ∈ Y ′′} with Y ′′ ⊆ U \ {v}. To see this, let H ′′ be of the form
above, then

φH ′′ = φH + φ(vi+1) + φ({vy : y ∈ Y ′′}) = H + vi+1 + {uy : y ∈ φY ′′} .
But as φY ′′ ⊆ φ(U \ {v}) = U \ {u}, the graph φH ′′ is a candidate for H ′ and this pair
is good by assumption.

This means that we only need to consider the case where u leaves, so the pairs (U ′, H ′)
above, and can disregard the pairs with U ′′ altogether. In other words, it suffices to
consider one vertex from each orbit (where the group Aut(U,H) acts on V H). We
may thus replace the for loop iterating over all u ∈ U by one that iterates over the
set U :=

{
uAut(U,H) : u ∈ U

}
. Notice that elements of Aut(U,H) stabilise U as a set, so

any representative of this orbit can be chosen.

Third, we reduce the number of vertex sets that are checked in Line 13. Assume the
next bag is U ′ = U \ {u} ∪ {vi+1}. We show that we do not need to add a pair (U ′, H ′)
for a set Y ′ if we have already added the pair (U ′, H ′′) for a set Y ′′ and there exists a
φ ∈ Aut(U,H) with

φY ′ = Y ′′ and φu = u.

To see this, observe that the pair (U ′, H ′) is good if and only if the pair (φU ′, φH ′) is,
where φ is, again, the extension of φ to vi+1 with φ(vi+1) = vi+1. By assumption we
have that φU ′ = U ′. We set

E ′ := {uy′ : y′ ∈ Y ′} and E ′′ := {uy′′ : y′′ ∈ Y ′′} .
But, since

φ(H ′ − E ′) = φ(H + vi+1) = H + vi+1 = H ′′ − E ′′

and φE ′ = E ′′, we get that φH ′ = H ′′. Consequently, we may ignore all sets φY ′, for
any map φ in the stabiliser Aut(U,H)u = {φ ∈ Aut(U,H) : φu = u}, upon adding the
pair (U ′, H ′) in Line 13.

Since we have only made allowed modifications, the algorithm remains correct.

104

7.3. Achieving termination

7.10 Theorem. [7.9]
(5.20)

Algorithm 7.2 is correct if it terminates. ◁

7.11 Remark. By the orbit-stabiliser theorem, |Aut(U,H)| = |Aut(U,H)u| · |uAut(U,H)|.
Hence, assuming a reasonable size of Aut(U,H), we know that either the orbit is large,
reducing the number of iterations of the for loop in Line 11, or the number of graphs
that can be eliminated by our optimisation of Line 13 of Algorithm 7.1 is large. ◁

7.3. Achieving termination

So far, we have seen that our algorithm is correct if it terminates. We begin our
discussion of termination by showing that our problem is generally undecidable, so the
algorithm need not terminate. Afterwards, we determine restrictions for G and U that
are sufficient to guarantee termination after all, at least after we make some modifications
to the algorithm so it uses the additional structure we impose. As a result, we obtain
the following theorem.

7.12 Theorem. [7.20]Let G be a highly local graph class of bounded maximum degree, U a
finite set of connected graphs, and k ∈ N. There is an algorithm that decides whether
U is unavoidable for Gk or not. In the latter case, the algorithm returns a counterexample
of smallest order. ◁

Undecidability of the general problem. As announced, we start by proving that
the problem of deciding whether a finite set of graphs is unavoidable for a graph class is
undecidable.

7.13 Lemma. It is undecidable to determine whether a set of graphs U is unavoidable
for a graph class G even if U is a finite set of connected graphs and G is a decidable class
containing graphs of path-width at most 2 and of maximum degree at most 3. ◁

Proof (sketch). We describe a reduction from the undecidable Post correspondence prob-
lem Problem 2.17. Let x1, . . . , xN and y1, . . . , yN be strings over {a, b}. Let I be the set
of finite sequences in {1, . . . , N} and f : N! I be an enumeration of I.

For n ∈ N, let Pn := v1 . . . vn and set Gn := Pn if fn is a solution to the Post correspond-
ence problem. Otherwise, set Gn := Pn+2 + vn+2vn. Hence, all Gn have path-width at
most 2, maximum degree at most 3, and they contain a C3 if and only if the correspond-
ing fn is not a solution. We define G := {Gn : n ∈ N}, which is decidable. Consequently,
the set U := {C3} is unavoidable for G if and only if no path is in G, which is equivalent
to there being no solution to the Post correspondence problem. □

105

Chapter 7. Unavoidable Structures

Modified algorithm for highly local classes. To achieve termination, we need to
modify our algorithm in accordance with the new restrictions on the input. Assume
that

• G is a highly local class with verifier A of radius r and size s,
• all graphs G ∈ G have maximum degree at most ∆,
• U contains only connected graphs, and
• D := max {diamS : S ∈ U}.

Note that we use A for the verifier here instead of V since the latter is already in use.

Before we modify our algorithm, let us prove a few basic properties. For a pair (U,H),
where U ⊆ V H, and d ∈ N we set

Ld
(U,H) := {v ∈ H : dH(v, U) > d} .

First, we show that if we have not found an unavoidable structure in a pair, then vertices
at large distance to the last bag are irrelevant for U being unavoidable.

7.14 Lemma.(7.20) Let G be a graph containing a pair (U,H). If H /∈ super U , then for
every S ′ ⊆ G with S ′ ∼= S ∈ U we have that

S ′ ⊆ G− LD
(U,H). ◁

Proof. Let S ′ ⊆ G with S ′ ∼= S ∈ U . Suppose V S ′ ∩ LD
(U,H) ̸= ∅, then there exists a

vertex v ∈ S ′ such that d(v, U) > D. Hence, every vertex u ∈ S ′ satisfies

d(u, U) ≥ d(v, U) − d(u, v) > 0

and, therefore, V S ′ ∩ U = ∅. Since U separates H − U and G − V H in G and
S ′ is connected, we get that S ′ ⊆ H − U , contradicting that H /∈ super U . Hence,
S ′ ⊆ G− LD

(U,H). □

Next we prove a similar result for vertices that are needed to check containment in the
class G.

7.15 Lemma.(7.16)
(7.20)

Let (U,H) be a pair, G ∈ G be a graph containing (U,H), and P be a
proof for G. We have that

• for every v ∈ Lr
(U,H) the verifier satisfies

A(G,P, v) = A(H,P[V H], v) and

• for every v ∈ V G \ Lr
(U,H) and L ⊆ L2r

(U,H) we obtain

A(G,P, v) = A(G− L,P[V G \ L], v). ◁

106

7.3. Achieving termination

Proof. Let v ∈ H and B := Br
G v. If v ∈ Lr

(U,H) it follows that d(v, U) > r and, therefore,
B ⊆ H − U = G[V H \ U] since U separates H − U and G − V H. Consequently, we
have that

A(G,P, v) = A(G[B],P[B], v)
= A(H[B],P[B], v)
= A(H,P[V H], v).

Otherwise, if v ∈ V G \ Lr
(U,H), then v ∈ H and d(v, U) ≤ r or v /∈ H. This implies that

B ⊆ G− L and we get

A(G,P, v) = A(G[B],P[B], v)
= A((G− L)[B],P[B], v)
= A(G− L,P[V G \ L], v). □

Before we make adjustments, let us give an outline of how we intend to proceed.

(1) Algorithm 7.1 on Page 100 is extended from pairs (U,H) to triples (U,H,P) that
also contain a proof for H. We also adjust the checking of containment in G and
introduce a heuristic to exclude new triples from being added to the queue.

(2) The isomorphism rejection is reintroduced, in a stronger version. Instead of
considering the entire graph H ′ when applying a bijection, we show that we may
forget about vertices that are too far away from U ′ to be relevant.

Let us start with Step (1), in which we work towards Algorithm 7.3. As a first step,
let us generalise our notation from Section 7.1 to triples in a straightforward manner.
A graph G contains a triple (U,H,P) if it contains the pair (U,H) and there exists a
proof P for G that A accepts and which satisfies P[V H] = P. Such a triple is good if
any graph G ∈ Gk containing it is in super U .

We now make the following alterations to Algorithm 7.1 resulting in Algorithm 7.3.

• The queue is initialised with all triples (V1, (V1,∅),P) in Line 3 where P is a proof
for (V1,∅), so some function P : V1 ! {0, 1}s.

• The verification of H + E ′ ∈ G when checking for counterexamples is replaced by
checking that A accepts P at all vertices in H, see Line 8.

• We create all triples (U ′, H ′,P′) from (U,H,P) in Lines 11 to 16 where P′ is a
proof for H ′, that is, P′ : V H ′ ! {0, 1}s, with P′[V H] = P.

• We verify that A accepts P′ at all vertices v ∈ Lr
(U ′,H′) in H ′ before adding the new

triple (U ′, H ′,P′) to the queue, see Line 17.

We note that thanks the heuristic specified in Line 17, it suffices to check that the verifier
accepts P at the vertices of H − Lr

(U,H) when checking for counterexamples, instead of
checking all vertices of H as done in Line 8.

We now need to verify that this has not hurt the correctness.

107

Chapter 7. Unavoidable Structures

Algorithm 7.3: Modified base algorithm for checking whether Gk ⊆ super U .
Input: A highly local class of graphs G with bounded maximum degree, a finite set of

connected graphs U , and a path-width value k. Here, A is a verifier for G and s
is the size of the prover.

Output: An element of Gk \ super U or None if no such graph exists.
1 def TestUnavoidability(G, U , k):
2 V1 {u1, . . . , uk, v1}
3 Q [(V1, (V1,∅),P) : P is a proof for (V1,∅)]
4 Remove all good triples from Q
5 while Q ̸= ∅ do
6 (U,H,P) Q.dequeue()
7 for E ′ ⊆ {xy : x, y ∈ U , x ̸= y} do
8 if H + E ′ /∈ super U and A(H + E ′,P, v) = 1 for all v ∈ H then
9 return H + E ′

10 i |H| − k
11 for u ∈ U do
12 U ′ U \ {u} ∪ {vi+1}
13 for Y ⊆ U \ {u} do
14 H ′ H + vi+1 + {uy : y ∈ Y }
15 for p ∈ {0, 1}s do
16 Let P′ be the proof for H ′ with P′[V H] = P and P(vi+1) = p
17 if H ′ /∈ super U and A accepts P′ at all vertices of Lr

(U ′,H′) then
18 Q.append((U ′, H ′,P′))
19 return None

7.16 Theorem.[7.7]
[7.8]

[7.15]

The result returned by Algorithm 7.3 is correct if it terminates. ◁

Proof. This proof proceeds similarly to the one for Theorem 7.7. We know that Al-
gorithm 7.1 only adds pairs (U,H) for which a path-decomposition of H exists that has
width k and last bag U , by Corollary 7.8. This remains true here, since we only added
a third component to these pairs, and it lets us conclude that a graph H +E ′ returned
in Line 9 has path-width at most k. It is also not in super U and because the verifier
accepts P at all vertices, it must be in G, making it a counterexample as desired.

So again, we focus on the case that None is returned, for which we show the analogue
of invariant (7.1) on Page 100.

If all triples in the queue are good, then Gk ⊆ super U . (7.2)

This holds initially: we add all possible proofs to the queue, so any graph in G contains
a triple (V1, (V1,∅),P) for an appropriately chosen P. In the iteration where (U,H,P)
is removed, we just need to show that it is good if all newly added triples are. So, once
more, let G ∈ Gk be a graph containing (U,H,P) with a path-decomposition having
U as a bag. If U is the last bag, then G is in super U since the verifier accepts P on
G = H + E ′ by assumption.

108

7.3. Achieving termination

Otherwise, let U ′ be the next bag. As before

U ′ := U \ {u} ∪ {vi+1} , H ′ := H + E ′ + vi+1,

and both are considered by the algorithm. Since G contains (U,H,P), it has a proof P
that A accepts and which satisfies P[V H] = P. Hence G also contains the pair
(U ′, H ′,P′) where P′ := P[V H ′]. If H ′ ∈ super U , then we are done and, otherwise,
we claim that (U ′, H ′,P′) is added to the queue. This is true since it passes the addi-
tional condition we imposed in Line 17 by Lemma 7.15: the verifier accepts at these
vertices since it does so for G and the results coincide. □

Before we proceed with Step (2), let us make a few easy observations about the current
version that will serve us well shortly.
7.17 Observation. [7.8]

(7.20)
Every triple (U,H,P) added to the queue satisfies that

• H ′ /∈ super U ,
• there exists a smooth path-decomposition (Q,W) of H with last bag U whose

associated graph is H, and
• A(H,P, v) = 1 for all v ∈ Lr

(U,H). ◁

Proof. These first and last property follow directly from Line 17 and the second is just
the result of Corollary 7.8, which carries over to Algorithm 7.3. □

Now that we have successfully extended our algorithm to triples, it is time to deal with
Step (2). We shall only introduce the generic elimination technique, taking the place of
Lemma 7.9. Note that the direct analogue of this lemma is easily obtained but sadly
insufficient to guarantee termination. However, since we need it later, we prove it now
to familiarise ourselves with the new terminology.
7.18 Lemma. [7.6]

(7.20)
For a bijection φ with domain V H, the triple (U,H,P) is good if and

only if the triple (φU, φH,φP) is. ◁

Proof. Let (φU, φH,φP) be a good triple and G be a graph containing (U,H,P). Let
P be a proof on G that A accepts with P[V H] = P and let φ be the extension of φ
to V G, where φv = v for all v ∈ V G \ V H.

By Lemma 7.6 (b) the graph φG contains the pair (φU, φH), A accepts φP on φG by
definition of highly local, and φP[V (φH)] = φP. Therefore, φG contains the triple
(φU, φH,φP) and, as this triple is good, φG ∈ super U . Hence, φG ∼= G, G ∈ super U ,
and (U,H,P) is good. The missing direction follows by considering φ−1 again. □

The stronger variant we need for termination allows us to neglect the parts of H that
are ‘too far away’ from U . As Lemmas 7.14 and 7.15 suggest, all vertices in H whose
distance to U exceeds both 2r and D are no longer relevant for the algorithm. They
are neither helpful for finding subgraphs in U nor do we need to check whether the
verifier accepts at these vertices, since we already know that it does. We formalise this
observation in the following definition.

109

Chapter 7. Unavoidable Structures

7.19 Definition. Let (U,H,P) and (U ′, H ′,P′) be two triples. Furthermore, let

d := max {2r,D} , L := Ld
(U,H), and L′ := Ld

(U ′,H′).

A restricted correspondence of two triples (U,H,P) and (U ′, H ′,P′) is a bijective map
φ : V H \ L! V H ′ \ L′ satisfying

φU = U ′, φ(H − L) = H ′ − L′, and φP[V H ′ \ L′] = P′[V H ′ \ L′]. ◁

Our goal is to show that we can eliminate triples if there is a restricted correspondence
between them. That this is allowed is implied by the theorem below.

7.20 Theorem.[7.14]
[7.15]
[7.17]
[7.18]
(7.12)

Let (U,H,P) and (U ′, H ′,P′) be two triples. Assume that

• (U,H) was added to the queue by the algorithm and
• there exists a restricted correspondence φ of (U,H,P) and (U ′, H ′,P′).

If (U,H,P) is good, then so is (U ′, H ′,P′). ◁

Proof. Let d, L, and L′ be as in the definition of restricted correspondence above and
let G′ be a graph containing (U ′, H ′,P′). By definition, we obtain a path-decompo-
sition (P ′,V ′) of G′ with P ′ = 1 . . . n′ such that V ′

j = U ′ and G′
j = H ′ for some j.

Additionally, we know that there is a proof P′ such that A(G′,P′, v) = 1 for all v ∈ G′

and P′[V H ′] = P′.

We now want to use that (U,H,P) is good to show that G′ is in super U . Intuitively,
we achieve this by replacing H ′ (the left part of G′) by φH and showing that the new
graph G obtained this way is still in Gk and contains the triple (φU, φH,φP), which
is good by Lemma 7.18. With these two properties, G must then be in super U . But
since the subgraphs in U cannot be contained in the left part of G, they must be on the
right, which is where G concides with G′.

To obtain the graph described above, we first extend the bijection φ to H by choosing
the images of L such that φL ∩ V G′ = ∅ and then define

G := φH ∪ (G′ − L′).

We see that

• φ(V H) ∩ V (G′ − L′) = V (H ′ − L′),
• V G is the disjoint union of φ(V H) and V (G′ − V H ′), and
• G− φL = G′ − L′.

Now that we have the graph we want, we can go about proving the two desired properties.
To this end, we construct a smooth path-decomposition ofG of width k that contains φU
as a bag with associated graph φH. Let (Q,W) be a smooth path-decomposition of H

110

7.3. Achieving termination

with last bag Wl = U , which exists by Observation 7.17. Define P := 1 . . . n′ + l− j and
let V contain the sets

Vi :=
φWi for i ∈ {1, . . . , l} ,
V ′

i+j−l for i ∈ {l + 1, . . . , l + n′ − j} .

Notice that Vl = φU = U ′ = V ′
j , giving us a smooth decomposition of width k if it is a

path-decomposition. Moreover, Gl = φH, so G contains the pair (φU, φH).

We now verify the properties of a path-decomposition to get that G has path-width at
most k and contains (φU, φH). Let v ∈ G. If v ∈ φH then v ∈ φWi = Vi for some
i ≤ l and, otherwise, v ∈ G′ − V H ′ and v enters a bag V ′

i for i > j, placing it in Vi+l−j.
For an edge uv ∈ E G we get that uv is covered by a bag Vi = φWi with i < l if u
is in φ(H − U), as it leaves one of the first l − 1 bags. If this is not the case, we may
assume that both u and v are in (G′ − V H ′) ∪ U ′. This means that uv is an edge of G′

and covered by a bag V ′
i with i ≥ j. Hence, uv is covered by the bag Vi+l−j. Finally,

note that the set {i : v ∈ Vi} can be written as

{i ≤ l : v ∈ φWi} ∪
{
i ≥ l : v ∈ V ′

i+j−l

}
,

making it the union of two paths. If both sets are non-empty, then v ∈ φ(V H) as
well as v ∈ (V G′ \ V H ′) ∪ U ′, so v ∈ U ′ and l is in both sets. Thus, (P,V) is a
path-decomposition.

We now verify that G ∈ G by exhibiting a proof P for G that A accepts and which satis-
fies P[φH] = φP. This shows that G ∈ G and that G contains the triple (φU, φH,φP).
We define

P v :=
φP v if v ∈ φH,

P′ v otherwise.

Note that P[V H ′ \ L′] = φP[V H ′ \ L′] = P′[V H ′ \ L′], from which we can deduce that
P[V G \ φL] = P[V G′ \ L′] = P′[V G′ \ L′]. Using Lemma 7.15, we conclude that

A(G,P, v) =
A(φH,φP, v) = A(H,P, φ−1 v) if v ∈ Lr

(φ U,φ H),

A(G− φL,P[V G \ φL], v) = A(G′,P′, v) otherwise

and in both cases A(G,P, v) = 1.

In summary, G contains (φU, φH,φP), which is a good triple by Lemma 7.18. Hence,
we can find a subgraph S ′ ⊆ G with S ′ ∼= S ∈ U . By Lemma 7.14 we know that

S ′ ⊆ G− LD
(φ U,φ H) ⊆ G− φL = G′ − L′ ⊆ G′

and the triple (U ′, H ′,P′) is good. □

111

Chapter 7. Unavoidable Structures

As a consequence of Theorem 7.20, we can augment Algorithm 7.3 by the condition
that triples (U ′, H ′,P′) are only added to Q in Line 18 if no restricted correspondence
of (U ′, H ′,P′) and a previously found triple exists.

Note that we only needed to check the queue in Algorithm 7.2, but this was due to
the orders being increasing. This does not remain valid here, since we no longer need
bijections on all of H.

This is now sufficient to guarantee termination.

Proof (of Theorem 7.12). Now that we eliminate triples which have a restricted corres-
pondence to a triple previously added to the queue, we have limited the number of
triples that can be added to the queue to a finite number. That this is allowed follows
from Theorem 7.20. To see that only finitely many triples are added, we note that the
bound ∆ on the maximum degree of the graphs in G gives us a bound on the number
of vertices in H − Ld

(U,H). Hence, the number of such graphs is also constant, as is
the number of choices for U , and the potential proofs on H − Ld

(U,H), up to restricted
correspondence. □

Running time analysis. We analyse the running time of our algorithm to show
that it is elementary and, in particular, it is better than the running time obtained by
Courcelle’s theorem. Since this is our main objective, the estimations will be coarse and
unoptimised.

The iterations of the outer loop in Line 5 are bounded by the number of triples (U,H,P)
we add to the queue. We had already seen that there are only finitely many of these and
we now put a number to these amounts, which we neglected earlier. The graphs H − L
have at most

y := (k + 1)∆d+1

vertices, bounding their number by y2y2 . Here, and from here on, L denotes Ld
(U,H). The

set U is part of H −L, so there are at most
(

y
k+1

)
possible choices for it. This just leaves

the proofs on H − L, of which up to 2sy different ones can exist. Thus, at most

x := y2y2
(

y

k + 1

)
2sy

triples are added to the queue, which also bounds these iterations.

The cost of checking whether H + E ′ has a subgraph in U in Line 8 can be bounded
by O (|U|y!y2): simply try all possible locations of S ∈ U in (H + E ′) − L and check
whether they are correct. The loop in Line 7 goes through at most 2(k+1)2 iterations.
If we denote the time it takes to run the verifier A by TA, we get a running time
of O (y TA + |U|y!y2) for each iteration of this loop. Here we did make use of the
previously mentioned optimisation that checking the vertices v ∈ H − Lr

(U,H) suffices.

112

7.3. Achieving termination

Now we get to the next three nested loops. The one in Line 11 goes through at most k+1
iterations, the one in Line 13 brings another 2k to the table, and the final loop in Line 15
comes with 2s many. In these nested loops, the creation of P′ is a cheap operation, but
checking that H /∈ super U comes at cost O (|U|y!y2) again. Running the verifier on
all elements of Lr

(U ′,H′) sounds like it could be expensive, but we need not do this for
vertices also in Lr

(U,H). Therefore, we can bound the time required for this generously
by O (y TA).

This just leaves the time required to determine whether there exists a restricted corres-
pondence of (U ′, H ′,P′) and some previously found triple. For this, we have to compare
the current triple to at most the O (x) many found before. For each we can try the
O (y!) bijections φ to see whether they are a restricted correspondence, where checking
takes O (y2) time.

We use this opportunity to note that TA cannot be arbitrarily bad. Since the verifier is
only ever faced with a finite number of local views, we can implement it as a lookup
table. The bound on the number of views it can ever see is obtained in analogy to the
bound x for the triples, and strictly smaller, since fewer vertices are present. Once we
have the lookup table, we only need to analyse the neighbourhood to see which value we
must return, letting us (generously) assume that TA ∈ O (y2).

Altogether, by collecting everything, we get a total running time of

O
(
x ·
(
2(k+1)2 ·

(
y TA + |U|y!y2

)
+ (k + 1) · 2k · 2s ·

(
y TA + |U|y!y2 + xy!y2

)))
,

which we can simplify to
O
(
x2y!y2 · 2(k+2)2+s

)
.

Necessity of the adjustments to the algorithm. To wrap up this section, we show
that our adjustments to the algorithm are necessary to achieve termination. To this end,
we provide examples in which the algorithm does not terminate and that adhere to all
but one of our additional conditions.

If we drop the highly local requirement, we are back in a case where the problem is
undecidable and termination cannot be guaranteed.

If we remove the requirement on bounded maximum degree, we can still use our modified
algorithm, since we only needed the bound on the degree to estimate the number of
triples that are added to the queue. But there can now be infinitely many such triples,
as illustrated by the following example. Regard the class G which contains all graphs
that consist of two stars connected by a single edge between their centre vertices. Every
graph in this class has diameter 3, making it locally checkable. By choosing k = 1 and
letting the set U consist of a path of length 3, we obtain an example for which the
algorithm does not terminate. Every path-decomposition of a graph G ∈ G starts by
covering the edges in one of the two stars, followed by the edge connecting it to the

113

Chapter 7. Unavoidable Structures

second, and ending with the edges of this star. Consequently, the path of length 3 can
appear arbitrarily late in the path-decomposition.

A similar problem occurs when one drops the connectivity requirement for the graphs
in U . This is what guarantees a finite diameter in the proof, so again this makes infinitely
many triples possible. An example of this can be obtained as follows: let the class G
contain those graphs which are the union of a path with two triangles where the each of
the triangles intersects the path in one of its ends. We set U := {2K3} and k = 2. Again,
every path-decomposition starts with one triangle and then traverses the path and ends
at the other, meaning that the 2K2 can appear arbitrarily late. This is an example of a
class with bounded maximum degree and it is also locally checkable: roughly speaking,
a proof simply accepts at degree 2 vertices and the degree 3 ones must see a triangle.

7.4. Tailoring the algorithm to cubic graphs

We begin this section by proving that we can make strong assumptions on the path-
decompositions of (cubic) graphs without loss of generality. These will then serve us
well for both tailoring our algorithm to cubic graphs and for proving results on the girth
of cubic graphs in the next chapter.

7.21 Lemma.(7.22)
(7.24)
(8.14)
(8.15)

Let (P,V) be a smooth path-decomposition of G and i ∈ {1, . . . , n′ − 1}.
If NG v ⊆ V Gi for some v ∈ Vi, then there exists a smooth path-decomposition (P,W)
of G such that

Vj = Wj for j ≤ i and v leaves Wi. ◁

Proof. Let v ∈ Vi be such a vertex and assume that some other vertex u ̸= v leaves Vi.
Replacing v by u in all bags of index greater than i yields another path-decomposi-
tion (P,W) of G as all edges with v as an end are already covered by the bags up to Vi.
It is also smooth, satisfies Vj = Wj for j ≤ i, and v leaves the bag Wi as required. □

7.22 Lemma.[7.21]
(7.24)
(7.25)
(8.14)
(8.15)

Let (P,V) be a smooth path-decomposition of G, let i ∈ {1, . . . , n′ − 1}.
If Gi contains a vertex v with |NG v \ NGi

v| ≤ 1, then there is a smooth path-
decomposition (P,W) of G with

Vj = Wj for j < i, Vi−1 \ Vi = Wi−1 \Wi, and v leaves Wi. ◁

Proof. Let v be as in the statement and assume that u ≠ v is the vertex leaving Vi. If
NG v ⊆ V Gi, then we apply Lemma 7.21 to obtain the claim.

Hence, we assume there exists a vertex w ∈ NG v \ V Gi and let Vj be the bag of lowest
index containing w. By assumption, we have j > i and Lemma 7.21 lets us assume
that v leaves Vj or Vj is the last bag. We describe how to obtain the desired path-
decomposition (P,W) in case the bag Vj+1 exists, making note of what would change if
it does not in parentheses. The process is illustrated in Figure 7.2.

114

7.4. Tailoring the algorithm to cubic graphs

u, v
x

u, v w
vi

v, w w
vj+1

Vi−1 Vi Vj Vj+1

−x−v

+vi+w

−u

+vi+1

−y

+w

−v

+vj+1

−y − v

+w + vj+1u, v
w

−x
+w

−v
+vi

V ′

Figure 7.2.: The path-decomposition constructed in the proof of Lemma 7.22. First,
the bag Vj is deleted, in the red step, resulting in the red modifications.
Then v is replaced by w, as marked in green, and finally, the blue bag V ′ is
inserted.

First, we delete the bag Vj, connecting Vj−1 to Vj+1 (if it exists). Note that if a bag
uniquely covers an edge of G, then the vertex entering and the one leaving it are an end
of this edge, otherwise the bag before or after would have done this as well. Therefore,
the result is a path-decomposition of G − vw (G − w). This step is marked in red in
Figure 7.2.

Next, we replace all occurrences of v in the bags Vi, . . . , Vj−1 by w, which is marked in
green in Figure 7.2. As all these bags contain v but do not contain w, so they continue
to have k + 1 elements. Also the now neighbouring bags Vj−1 and Vj+1 have k vertices
in common. Since we only removed v from bags and all its neighbours but w already
shared a bag before Vi, this is a path-decomposition of G − vw (now also in the case
that Vj was the last bag, where Vj−1 contains all neighbours of w).

Finally, we insert the bag V ′ = Vi−1 ∪ {w} \ {x}, where x is the vertex in Vi−1 \ Vi,
between Vi−1 and Vi to make the decomposition smooth and turn it into a path-decom-
position of G as this bag contains both v and w, see the blue part of Figure 7.2. This
completes the construction and the proof. □

By iteratively applying this lemma to a smooth path-decomposition of a cubic graph G,
we may assume that the vertex leaving bag Vi has degree at least 2 in Gi, whenever such
a vertex exists. If, additionally, a degree 3 vertex is chosen to leave whenever present,
we obtain a decomposition as defined below.

7.23 Definition. Let (P,V) be a path-decomposition of a cubic graph G as in Conven-
tion 7.1 and, for i ∈ {1, . . . , n′}, let

di := max {dGi
v : v ∈ Vi} .

Then (P,V) is called high-degree-first (hdf) or an hdf-decomposition if the vertex vi

leaving the ith bag satisfies

dGi
vi = 3 if di = 3 and dGi

vi = 2 if di = 2. ◁

115

Chapter 7. Unavoidable Structures

Such hdf-decompositions always exist.

7.24 Theorem.[7.21]
[7.22]

Let G be a cubic graph of path-width k. Then G has an hdf-decompo-
sition of width k. ◁

Proof. The theorem follows from iteratively applying Lemmas 7.21 and 7.22 as outlined
above. □

Aside from making use of general properties of cubic graphs, such as that |G| is even and
∥G∥ = 3

2 |G|, hdf-decompositions are immensely helpful in speeding up the algorithm.
More precisely, when considering a pair (U,H), Lemma 7.22 lets us choose the vertex to
leave U if H has a vertex of degree at least 2, eliminating the need to iterate over U
entirely.

7.25 Theorem.[7.7]
[7.22]
(5.20)

Instead of iterating over the set U :=
{
uAut(U,H) : u ∈ U

}
, it suffices to

choose a single vertex of degree at least 2, if such a vertex is present, in the case that
G contains only cubic graphs. ◁

Proof. To see that this holds, recall the proof of Theorem 7.7. There we proved the
invariant that Gk ⊆ super U if all pairs in the queue are good. More precisely, we
showed that in the iteration where we remove the pair (U,H), this pair is good if all the
newly added ones are. Consequently, we need to show that a pair (U,H) is already good
if we only add pairs of form (U ′, H ′) for which U ′ = U \ {u} ∪ {vi+1} for some vertex u
of degree at least 2 in H. If H has no such vertex, the algorithm remains unchanged.

In this situation, where u and U ′ are defined as above, let G ∈ Gk be a graph contain-
ing (U,H) with corresponding path-decomposition (P,V) and U = Vi. Assume, without
loss of generality, that vj is the vertex entering bag j for j ∈ {2, . . . , i+ 1}. We know that
G ∈ super U if U is the last bag of the decomposition, so we may assume there is a sub-
sequent bag Vi+1. By applying Lemma 7.22, we get a smooth path-decomposition (P,W)
of G such that Vj = Wj for all j < i, Vi−1 \ Vi = Wi−1 \ Wi, and u leaves Wi. Let φ be
a bijection on V G with φ

V (Gi−1) = idV (Gi−1) that maps the unique vertices entering Wi

and Wi+1 to vi and vi+1. This gives us that φG contains the pair (φ(Wi+1), φ(Hi+1))
where Hi+1 is the graph associated with Wi+1. Since the vertices leaving Vi−1 and Wi−1
coincide and φu = u, we get that φWi = U and φ(Wi+1) = U ′. Note that φu = u
follows from the fact that dH u > 0, which implies that it is not the vertex entering Vi.

The graph H ′ := φ(Hi+1) is of the form H + vi+1 + {uy : y ∈ Y }, where Y ⊆ U \ {u}.
If H ′ ∈ super U , then G ∈ super U and we may assume this is not the case. As the
set Y is in Y , it is considered by the algorithm and added to the queue unless there is
already an element (ψ U ′, ψ H ′) contained in it. In either case, the pair (U ′, H ′) is good
by assumption and thus both φG and G are in super U . □

116

7.5. Unavoidable minors and induced subgraphs

7.5. Unavoidable minors and induced subgraphs

Our algorithm can easily be extended to a test for unavoidable minors or induced
subgraphs. We only need to adapt the definition of super U to denote the set that
contains all graphs with a minor or an induced subgraph in U . In these cases a
pair (U,H) is good if H has a minor in U , respectively if H−U has an induced subgraph
in U since this subgraph is inevitably induced every graph G containing (U,H). Our
termination proof carries over to the induced subgraph case, without further modification.
Note that this is due to Lemma 7.14 considering H − U already.

7.6. Revisiting Lemma 5.20

In this section we want to revisit the proof of Lemma 5.20 and show how our algorithm
determines that every cubic graph of path-width at most 4 has one of the five graphs in
Figure 5.1 as a subgraph. To this end, we apply Algorithm 7.2 with the optimisations
from Section 7.4.

Proof (of Lemma 5.20 using Algorithm 7.2). As announced, we execute Algorithm 7.2
with G being the class of all cubic graphs, U containing the triangle, K2,3, domino, twin-
house, and claw-square, and k = 4. We may also assume that the graphs in G have at
least five vertices as the only cubic graph with less is the K4, which contains a triangle.
The progress of the algorithm is visualised if Figure 7.3.

The algorithm begins with the pair (V1, (V1,∅)) where V1 = {u1, . . . , u4, v1}. This does
not contain any of the subgraphs specified above, so it is removed in the first iteration
of the while loop (and not before). In this iteration, we can find no counterexample
as no cubic graph has five vertices. Also, any bijection on V1 can be extended to a
(U,H)-map, so all vertices are in the same orbit. Thus we only need to consider the
case that v1 leaves and U ′ = U \ {v1} ∪ {v2}. As v1 has degree 0 in H, we consider
sets Y ⊆ U \ {v1} that have cardinality 3. We remove the set {u1, u2, u3} and add the
pair (U ′, H ′) it creates to the queue. The update of Y removes all other sets.

Again the queue only consists of a single element, which we remove in the next iteration.
For sake of simplicity, we call this pair (U,H) now, to coincide with the names used in
the algorithm. For this pair, the maps in Aut(U,H) are those maps that fix v1 and map
the set {v2, u4} to itself. We thus set U to {u1, v2}. We again find no counterexamples
as the only two cubic graphs on six vertices are the K3,3, which contains a K2,3, and the
prism on six vertices, which has a triangle.

For the set U ′ = U \{v2}∪{v3} we again only consider sets Y ⊂ U \{v2} of cardinality 3.
If u4 is not in Y , then the graph H ′ in the algorithm contains a K2,3. Thus, Y consists
of two elements of the set {u1, u2, u3} and u4. But as we have elements in Aut(U,H)
that arbitrarily permute first three vertices while fixing v2, it suffices to consider the

117

Chapter 7. Unavoidable Structures

v
1

u
1 ,u

2 ,u
3 ,u

4

v
2

u
1 ,u

2 ,u
3 ,u

4

v
3

u
1 ,u

2 ,u
3 ,u

4

v
2 ,

v
3

u
2 ,

u
3 ,

u
4

v
4

u
1 ,u

2 ,u
3 ,u

4

v
3 ,

v
4

u
2 ,

u
3 ,

u
4

v
3 ,

v
4

u
1 ,

u
3 ,

u
4

v
3 ,

v
4

u
2 ,

u
3 ,

u
4

v
2 ,

v
4

u
2 ,

u
3 ,

u
4

v
3 ,

v
4 ,

v
5

u
1 ,

u
4

v
3 ,

v
5

u
1 ,

u
3 ,

u
4

v
4 ,

v
5

u
1 ,

u
3 ,

u
4

v
3 ,

v
4 ,

v
5

u
3 ,

u
4

v
3 ,

v
4 ,

v
6

u
1 ,

u
4

v
4 ,

v
5 ,

v
6

u
1 ,

u
4

−
v

1

−
v

2

−
u

1

−
v

3

−
u

1

−
u

2

−
v

2

−
v

3

∼=

−
u

3

−
v

4

−
v

3

−
u

1

−
v

5

−
v

3

+
v

2
+

v
3

+
v

4
+

v
5

+
v

6

v1

u
1

u
2

u
3

u
4

v1

u
1

u
2

u
3

u
4

v2

v1

u
1

u
2

u
3

u
4

v2
v3

v1
u

1

u
2

u
3

u
4

v2

v3

v1

u
1

u
2

u
3

u
4

v2
v3

v4

v1
u

1

u
2

u
3

u
4

v2

v3
v4v1

u
1

u
2

u
3

u
4

v2
v3

v4v5

Figure
7.3.:A

roadm
ap

ofthe
case

distinctionsm
ade

in
the

proofofLem
m

a
5.20.The

nodesin
thisfigure

representbagsand
their

associated
graphs

are
draw

n
close

to
them

.
A

bag
is

w
hite

ifit
causes

additionalpairs
to

be
added

to
the

queue,grey
ifit

does
not,light

green
ifit

is
not

added
because

ofthe
last

sym
m

etry
(in

Line
24),and

light
blue

ifit
would

be
optim

ised
away

by
T

heorem
7.25.

118

7.6. Revisiting Lemma 5.20

set Y = {u2, u3, u4}. We now obtain multiple pairs, so we call this one (U1, H1) (and
recommend using Figure 7.3 to keep track of the algorithm’s progress).

The final set we consider here is U ′ = U \ {u1} ∪ {v3}. This time we only need to check
sets Y of cardinality 2 as u1 has degree 1. If u2 or u3 are in Y , G contains a triangle and
otherwise Y = {u4, v2}. Consequently, only the pair (U2, H2) is added, where U2 = U ′

and H2 = H + v3 + {u1u4, u1v2}.

We continue and remove the pair (U1, H1). We cannot extend H1 to a cubic graph as it
has odd order, so we can proceed to choosing U = {u1, u2, v3}. Note that Aut(U1, H1)
is generated by the permutation that exchanges u2 and u3 and the one that exchanges
u1, v1 with u4, v2. Here, Theorem 7.25 would let us use U = {u2} and we could skip
the next two paragraphs.

We begin with U ′ = U1 \ {v3} ∪ {v4}. In this case, the set Y has cardinality 3, so v3
has exactly one non-neighbour in α ∈ {u1, u2, u3, u4}. If α ∈ {u1, u4}, then G contains
a K2,3 and otherwise it contains a domino, so nothing new needs to be added here.

Next up is U ′ = U1 \ {u1} ∪ {v4}. Candidates for the set Y must have two elements,
giving u1 a neighbour in {u2, u3, u4}. If u1 is adjacent to u2 or u3, then G contains a
triangle and otherwise G contains a twin-house.

Finally, let U ′ = U1 \ {u2} ∪ {v4} and consider the one-element sets Y . If it is not the
set {v3}, then G contains a triangle and otherwise we add the corresponding pair to the
queue and call it (U3, H3).

This leaves us with two pairs again, of which (U2, H2) is removed next. By the same
cardinality argument, we can skip looking for a counterexample and, instead, directly
look at the set Aut(U2, H2). Its elements are generated by the three maps exchanging u2
and u3, u4 and v2, and v1, u2, u3 and u1, u4, v2. As a result, the orbits are {v3} and
U2 \ {v3} and we can choose U = {v2, v3}.

We begin with the option that U ′ = U2 \ {v3} ∪ {v4}. Again, we consider sets Y with
three vertices, starting with Y = {u3, u4, v2}. As this can be mapped to any other three
element set with a map in Aut(U2, H2), it also suffices to look at this Y . But here the
graph (H2 − u2) + E v3 is isomorphic to twin-house and nothing new is added here.

This leaves U ′ = U2 \ {v2} ∪ {v4} in which case we need sets Y with two elements. If
u4 is in Y , then we obtain a triangle and if u2 and u3 are in Y , then we have found
a K2,3. Nothing is added in either case and we are left with the two sets Y containing v3
and either u2 or u3. We only need to consider Y = {v3, u2} as the other is removed
after this is processed. The resulting pair (U ′, H ′) need not be added to the queue as
(φU ′, φH ′) = (U3, H3) where φ is the following permutation of V G: it maps

v3 7! u4, u1 7! u2, u2 7! u3, u3 7! u1, u4 7! v3, and identifies all other vertices.

We now remove the last element (U3, H3) from our queue. This graph has only one
non-trivial element in Aut(U3, H3), which exchanges v1, u1 and v2, u4. Also we find no

119

Chapter 7. Unavoidable Structures

counterexample as every cubic graph G′ = H3 +E ′ contains an edge incident to u1 with
other end in {v3, u3, u4}. But the presence of this edge gives us a domino, a triangle, or
a twin-house, in that order. Proceeding to the set U , we choose {v4, v3, u1, u3}. Once
more, Theorem 7.25 yields a reduction of the set U to just the single element set {u3}.

Start with U ′ = U2 \ {u1} ∪ {v5}, which we have already handled. In it, we need sets Y
with two elements, putting at least one of then in the set {v3, u3, u4} and giving us a
graph that contains an element of U .

The case U ′ = U2 \ {v3} ∪ {v5} is analogous, here v3 has a neighbour in {u1, u4, u3},
resulting in two dominoes and a K2,3.

For U ′ = U2 \ {v4} ∪ {v5}, we need three vertices in Y . If Y contains u3, then it also
contains either u1 or u4, giving us a domino in both cases. Otherwise Y = {u1, u4, v3}
and the resulting graph is claw-square.

This just leaves U ′ = U2 \{u3}∪{v5}. The sets Y that are of interest are those with just
a single element and of those, the ones containing just u1, u4, v3 lead to two triangles
and a K2,3. So we consider the missing set Y = {v4}, which yields a new pair that is
added to the queue.

As this is the final iteration, we go back to calling this pair (U,H). As H has an odd
number of vertices we need not look for a counterexample and there are two orbits in H,
namely {v5} and U \ {v5}. We choose U = {v3, v5} and start with U ′ = U \ {v3} ∪ {v6}.
For a set Y of cardinality 2, we get that Y contains a vertex α ∈ {u1, u4, v4}. The
resulting edge v3α either forms a domino, in the first two cases, or gives us a twin-house.
Finally, let U ′ = U \ {v5} ∪ {v6}, and Y be a set with three vertices. The graph H ′

obtained this way contains a claw-square. Consequently, nothing new is added and the
algorithm terminates. □

120

Chapter 8.
Relating the Girth and Path-Width of Cubic
Graphs

We exploit our framework from the previous chapter to prove new lower bounds on the
path-width of cubic graphs. Moreover, we determine the extremal girth values of cubic
graphs of path-width k for all k ∈ {3, . . . , 10} and all smallest graphs which take on
these extremal girth values. Further, we present a new constructive characterisation of
the extremal cubic graphs of path-width 3 and girth 4.

Inductive proofs in structural graph theory are our main motivation for the research on
unavoidable subsets and, indeed, our new framework from Chapter 7 already provided us
with (an alternative proof for) one structural result, to which we add in this chapter.

Regard (or recall) the following example: let G be the class of cubic graphs and write Ui

for the set {C3, . . . , Ci}. We saw in Section 7.1 that U4 is unavoidable if we restrict
the path-width to at most 3. To investigate the maximal girth values of cubic graphs
in relation to their path-width, we define ξ k as the maximal girth of a cubic graph of
path-width k, that is,

ξ : N≥3 ! N,
k 7! max {g : there is a cubic graph of girth g and path-width k} .

For the case k = 3, we then know that ξ 3 ≤ 4 by the example above. By running the
algorithm on U3 with k = 3 we obtain the K3,3 as a cubic graph of girth 4 and path-width
at most 3. We can apply the algorithm in this fashion for larger values of k and, with
this method, we find the value of ξ k for k = 3, . . . , 7, as shown in Table 8.1.

Thus we have obtained a lower bound on the path-width based on the girth of the graph.
Bodlaender and Koster [BK11] survey lower bounds for tree-width, amongst them is the
following result of Chandran and Subramanian [CS05]. If G is a cubic graph of girth at
least g, path-width k, and tree-width t, then k ≥ t ≥ (e(g + 1))−12⌊(g−1)/2⌋−2 − 2, where e
denotes Euler’s number. We note that the bound in [CS05] is more general since graphs

121

Chapter 8. Relating the Girth and Path-Width of Cubic Graphs

k 3 3 4 5 5 6 6 7
U U3 U4 U4 U4 U5 U5 U6 U6
Result K3,3 None None Petersen None Heawood None None
Pairs base 6 5 81 12484 3841 – – –
Pairs cubic 3 2 3 7 5 15 9 19

Table 8.1.: Computational results for cubic graphs of path-width k and unavoidable
structures U . The row ‘Pairs base’ contains the number of pairs considered by
the base version of the algorithm while the row ‘Pairs cubic’ shows how many
are left after the use of isomorphism rejection and tailoring the algorithm to
cubic graphs. The three dashed cells contain no values as the algorithm did
not terminate in a reasonable time on our machines.

3 4 5 6 7 8 9 10

K3,3
cube Petersen Heawood Pappus McGee Tutte-Coxeter G10twisted cube

Table 8.2.: All smallest graphs of path-width k and girth ξ k. The top row specifies the
value of k while the bottom one contains the graphs. Here G10 denotes the
unique cubic graph of path-width 10 and girth 8. We refer to Figure 8.1 for
drawings of these graphs.

of average degree d are considered. We inserted d = 3 and added the inequality k ≥ t
to arrive at the situation we consider. Lower bounds of the path-width are useful, for
example when trying to compute the path-width of a graph.

Combining our algorithmic formalisms with combinatorial techniques, we prove two new
(linear) bounds on ξ in Sections 8.1 and 8.2 (see Theorems 8.6 and 8.11). These improve
the bound in [CS05] whenever the path-width is less than 26, that is, in all practically
relevant cases when it comes to computing the path-width.

We also determine the precise values of ξ k for k ≤ 10: these are obtained by noting that
the bounds from Theorem 8.11 are tight in these cases, which we show by exhibiting
graphs that have the required girth. In fact, we can give a complete list of the minimal
graphs of path-width k and girth ξ k for all k ∈ {3, . . . , 10}. To do so, we used
the complete list of small cubic graphs [Bri+13] and checked their path-width using
SageMath [Sage20].

8.1 Theorem.[Bri+13]
[Sage20]

[8.11]

For k ∈ {3, . . . , 10} \ {4} there is a unique smallest cubic graph of
path-width k and girth ξ k. There are two smallest graphs of path-width 4 and girth 4.
See Table 8.2. ◁

A (d, g)-cage is a minimal d-regular graph of girth g. The study of cages dates back
to [Tut47]. A recent survey on this topic is [EJ12]. If d = 3, then there is a unique
(3, g)-cage for all g ∈ {3, . . . , 8}. Clearly, if a cubic cage of girth ξ k has path-width k,
then it appears in the table. Thus, it is not surprising that several of the graphs above

122

∼=

Figure 8.1.: All graphs of path-width k and girth ξ k for k ∈ {3, . . . , 10}. First row:
the K3,3, the cube, the twisted cube, and the Petersen and Heawood graph.
Middle row: the Pappus, McGee, and Tutte-Coxeter graph. Last row: two
drawings of the unique graph of girth 8 and path-width 10, which we denote
by G10.

123

Chapter 8. Relating the Girth and Path-Width of Cubic Graphs

are cages: the K3,3, the Petersen graph, the Heawood graph, and the Tutte-Coxeter
graph.

As a final application of our algorithm we obtain a constructive classification for the
cubic graphs of path-width 3 and girth 4 in Section 8.3.

The content of this chapter is joint work with Irene Heinrich and makes up the second
part of [BH20].

8.1. A first bound on the girth

Let G be a cubic graph of path-width k and girth g. We show that large girth necessitates
large path-width. Before we start formally proving Theorem 8.6 (and Theorem 8.11),
let us briefly sketch how these proofs work. First, we gather information about the
associated graphs Gi for the initial bags, by counting both the connected components of
these graphs as well as their number of vertices of degree 0 to 3. To limit the possible
cases and to obtain particularly simple ones with few degree 2 and 3 vertices, we use hdf
path-decompositions. From this we can deduce that a cycle is present by the kth bag
and at least two exist by bag k + 2. Theorem 8.6 is obtained by considering the last
bag l for which Gl contains at most one cycle and use the small number of vertices that
can lie on cycles at all to deduce that Gl+1 has a short cycle. For Theorem 8.11 we show
that Gi is a forest for all i ≤ g − 2 and then combine this knowledge with our degree
and component counts to go through the graphs Gg−1 to Gg+3 to find a short cycle.

We now begin with the formal proof. Recall that hdf-decompositions exist and allow
us to assume that degree 2 or 3 vertices, if present, leave a bag, see Definition 7.23
and Theorem 7.24. These are useful when determining the structure of the graphs Gi

for the initial bags of the decomposition. For these proofs, we also need the extended
graph of G, which is defined as

Gext := G+ Ek+1.

This lets us extend the path-decomposition of G by letting the vertices in the last bag
leave while adding the new degree 0 ones. We call such a path-decomposition an extended
decomposition of G. By starting with an hdf-decomposition of G, this can easily be
made hdf as well. The sole purpose of this extension is to ensure that the decomposition
has enough bags so that sufficiently many associated graphs exist.

For the remainder of this chapter, we adhere to the following conventions.

8.2 Convention. The graph G is cubic and has girth g and path-width k. We denote
the extended graph Gext by H and H comes with a path-decomposition (P,V) that is an
extended decomposition of G and also hdf. Moreover, in terms of notation concerning
the path-decomposition, we refer to Convention 7.1. ◁

124

8.1. A first bound on the girth

Recall the definition of new neighbours of a vertex v, Definition 7.3, which are exactly
those 3 − dHi

v many vertices that are connected to v by an edge in the transition
to Hi+1.

We begin by describing the degree distribution in the associated graphs. To this end, we
set

di
j := |{v ∈ Hi : dHi

v = j}| for j ∈ {0, 1, 2, 3} and i ∈ {1, . . . , n′} .
We write ti for the number of non-trivial components of Hi, where non-trivial means not
of order 1. To determine the degrees, we proceed by induction on i. We consider Hi+1,
assuming that the claim holds for Hi and Hi+1 is of the form Hi + E v + vi+1.

8.3 Lemma. [2.2]
(8.4)
(8.5)
(8.6)
(8.8)
(8.10)
(8.11)

Let i ∈ {1, . . . , n′}. If Hi is a forest, then:

(a) di
0 ≥ 1.

(b) di
1 = i− 1 + 2ti.

(c) di
2 ≤ 3, at most one component of Hi contains vertices of degree 2, and no subpath

of Hi contains more than two degree 2 vertices.
(d) di

3 = i− 1. ◁

Proof. To show the claim, we replace the subpath part of Property (c) by the following
stronger property: there exists a vertex z whose removal separates all degree 2 vertices
of Hi.

For i = 1 the claim holds as H1 = G1 ∼= Ek+1. Assume that the claim holds up to some
index i ≥ 1 and let Hi+1 := Hi + E v + vi+1 be acyclic. We note that dHi+1(vi+1) = 0
and Property (a) follows. Furthermore, any vertex that has left a prior bag has degree 3
in Hi and by Property (d) there are no others. Hence, dHi

v < 3. Since Hi+1 is acyclic, v
and all new neighbours of v are in different components of Hi. Thus, no new neighbour
of v has degree 2 in Hi: if this were the case, then by the hdf property dHi

v = 2 as
well and both these vertices lie in the same component of Hi by Property (c), creating
a cycle. So di+1

3 = di
3 + 1 = i and Property (d) holds.

Next, we remark that the handshaking lemma yields the following equation, where
κ(Hi+1) denotes the number of components of Hi+1:

di+1
1 + 2di+1

2 + 3di+1
3 = 2∥Hi+1∥ = 2 (|Hi+1| − κ(Hi+1)) = 2di+1

1 + 2di+1
2 + 2di+1

3 − 2ti.

From this we deduce that di+1
1 = di+1

3 + 2ti = i+ 2ti+1 and Property (b) is satisfied.

This only leaves Property (c). First assume di
2 > 0, in which case dHi

v = 2 by hdf
and we get a degree 2 vertex z that separates all degree 2 vertices in Hi. Let u be
the unique new neighbour of v. If dHi

u = 1, then dHi+1 u = 2 but u is part of the
same component as the remaining degree 2 vertices of Hi. Moreover z still separates
the vertices of degree 2 in Hi+1 as u is a neighbour of the prior degree 2 vertex v. If u
does not have degree 1, the claim follows directly.

125

Chapter 8. Relating the Girth and Path-Width of Cubic Graphs

If di
2 = 0, then all degree 2 vertices of Hi+1 are new neighbours of v that had degree 1

in Hi. Consequently, there are at most three such vertices, they all lie in the same
component of Hi+1, and they are separated by v. □

8.4 Lemma.[8.3]
(8.5)
(8.6)

Let i ∈ {1, . . . , n′}. If Hi contains a unique cycle, then there exists an
index j ∈ {i, i+ 1} such that Hj contains a unique cycle and satisfies the following
properties:

(a) dj
0 ≥ 1.

(b) dj
1 = j − 3 + 2tj.

(c) dj
2 ≤ 3 and at most one component of Hj contains vertices of degree 2.

(d) dj
3 = j − 1. ◁

Proof. Property (a) is satisfied because vj has degree 0 in Hj, for all j. The claim holds
for i = 1 since H1 is always acyclic. Assume that it holds up to some i ≥ 1 and let
Hi+1 := Hi + E v + vi+1 contain a unique cycle. The graph Hi thus contains at most
one cycle and we first assume it is acyclic, letting us apply Lemma 8.3.

If dHi
v = 2, then the new neighbour u of v is in the same component as v in Hi and

ti+1 = ti. The claim holds for j = i+ 1 when dHi
u = 1: here

di+1
3 = di

3 + 1 = i, di+1
1 = di

1 − 1 = i− 2 + 2ti, di+1
2 = di

2 ≤ 3, and

all degree 2 vertices are in the same component. This leaves the case that dHi
u = 2,

where Hi+1 does not satisfy the properties as it has i+ 1 vertices of degree 3. However,
by hdf, u is the next vertex to leave and Hi+2 := Hi+1 + vi+2. Here, Hi+2 satisfies

di+2
3 = di+1

3 = di
3 +2 = i+1, di+2

1 = di+1
1 = di

i = i−1+2ti, and di+2
2 = di+1

2 = di
2 −2 ≤ 1,

completing this case.

We may now assume that dHi
v ≤ 1 and di

2 = 0. As Hi+1 has a unique cycle, either
one new neighbour is in the same component as v in Hi and the remaining ones are in
different components or no new neighbour is in the same component as v and exactly
two of them share a component. In either case, di+1

3 = di
3 + 1 = i and at most three

degree 2 vertices are present inHi+1, which share a component. For the degree 1 vertices,
note that v has one new neighbour of degree 1 that creates the cycle and the remaining
new neighbours are either of degree 0 or 1. In the first case, the number of degree 1
vertices increases by one and in the second it decreases by one, but so does the number
of non-trivial trees. This shows Property (b).

We are left with the case that Hi is not acyclic, which means it contains a unique cycle
and the induction hypothesis applies. This gives us that either Hi+1 satisfies the degree
properties, and we are done, or Hi does. We may assume the latter. The only new
degree 3 vertex is v since connecting two vertices of degree 2 would result in a new cycle.
If dHi

v = 2, its neighbour has degree 0 or it has degree 1 and is in a different component.

126

8.1. A first bound on the girth

This increases the number of degree 1 vertices by one or decreases their number and the
number of non-trivial trees by one each. Otherwise, dHi

v ≤ 1 and Hi has no degree 2
vertices. The new neighbours now have degree 1 and are in different components of Hi

or degree 0 and the properties hold once more. □

8.5 Observation. [8.3]
[8.4]
(8.6)

The graph Hk is not a forest and Hk+2 has more than one cycle. ◁

Proof. Suppose Hk is acyclic. Lemma 8.3 states that

2k = |Hk| ≥ dk
3 + dk

1 + dk
0 ≥ 2k − 1 + 2tk,

which is a contradiction since k ≥ 3 and, hence, tk > 0. Similarly, if Hk+2 has at most
one cycle, then it has exactly one and either Hk+2 or Hk+3 satisfy the degree properties
of Lemma 8.4. Using these we obtain

2k + 2 = |Hk+2| ≥ dk+2
3 + dk+2

1 + dk+2
0 ≥ 2k + 2tk+2 + 1

or
2k + 3 = |Hk+3| ≥ 2k + 2tk+3 + 3,

which is a contradiction in both cases. □

We are now ready to prove the following bound.

8.6 Theorem. [8.3]
[8.4]
[8.5]

For all k ∈ N≥3 the following inequality is satisfied:

ξ k ≤ 2
3k + 10

3 . ◁

Proof. To prove this result, we need to show that g ≤ 2
3k + 10

3 for any graph G of path-
width k and girth g. Regard the extended graph H of G. Let l be the maximal index
such that Hl contains at most one cycle. By Observation 8.5 we have that l ≤ k + 1.
Since Hl contains either no cycle, and Lemma 8.3 applies, or it contains exactly one,
and Lemma 8.4 can be used, we get that dl

3 = l−1 and dl
2 ≤ 3. Note that Hl+1 contains

multiple cycles, so Lemma 8.4 actually applies to Hl. This lets us estimate the number
of vertices of degree at least 2 in Hl+1: if dl

2 > 0, then at most one edge is added in
the transition to Hl+1 by hdf. Since at least one end of such an edge has degree 2, we
obtain dl+1

3 + dl+1
2 ≤ dl

3 + dl
2 + 1. On the other hand, if dl

2 = 0, then at most one new
degree 3 and three new degree 2 vertices are created. This yields dl+1

3 + dl+1
2 ≤ dl

3 + 4.
Combined these give us that

dl+1
3 + dl+1

2 ≤ dl
3 + 4 = l + 3.

Let C and C ′ be two distinct cycles in Hl+1. If they are disjoint, then |C| + |C ′| ≤ l+ 3,
yielding

g ≤ l + 3
2 ≤ k

2 + 2.

127

Chapter 8. Relating the Girth and Path-Width of Cubic Graphs

Otherwise, C ′ contains a path Q between two non-adjacent vertices of C. Using this
path and C, we obtain two cycles of which one has length at most |C|

2 + ∥Q∥. We
estimate

|Q| ≤ dl+1
3 + dl+1

2 − |C| + 2 ≤ l + 5 − |C|
to get

g ≤ |C| and g ≤ |C|
2 + l + 4 − |C| = l + 4 − |C|

2 .

Consequently, since |C| = l + 4 − |C|
2 holds for |C| = 2

3 l + 8
3 and l ≤ k + 1

g ≤ 2
3k + 10

3 .

The bound from the disjoint cycle case is strictly better than this one and, hence, the
result follows. □

8.2. A second bound on the girth

In this section, we provide the (tight) upper bounds on ξ k for small values of k, which we
need for the proof of Theorem 8.1. In preparation, we make the following observations.

8.7 Observation.(8.8)
(8.11)

The neighbours of a vertex v of degree at most 2 in Hi are of
degree 3. ◁

Proof. Note that Hi only contains edges incident to vertices that have left one of the
first i− 1 bags. Therefore, at least one end of any edge is of degree 3. □

8.8 Observation.[8.3]
[8.7]
(8.9)

(8.10)
(8.11)

If Hi is a forest and Q is a path in Hi, then

|Q| ≤ i+ 2 + min
{
di

2, 2
}

− ti.

If an end of Q has degree 2, then this bound improves by 2 to

|Q| ≤ i+ min
{
di

2, 2
}

− ti. ◁

Proof. The path Q has at most two vertices of degree 1, the remaining ones are of
degree 2 or 3. By Lemma 8.3, Hi has di

3 = i − 1 and at most two of degree 2 lie on Q.
Also, any non-trivial component contains at least one degree 3 vertex by Observation 8.7.
This gives us that |Q| ≤ 2 + min {di

2, 2} + [di
3 − (ti − 1)], which is the first inequality.

If one end, say v has degree 2, then at most one vertex of degree 1 is in Q. Additionally,
both neighbours of v have degree 3 by Observation 8.7 and at most one of them is on Q.
Consequently |Q| ≤ 1 + min {di

2, 2} + [di
3 − 1 − (ti − 1)], completing the proof. □

8.9 Observation.[8.8]
(8.10)
(8.11)

If Hi+1 = Hi +E v+ vi+1, Hi is a forest, and i ≤ g− 2, then no new
neighbour of v is in the same component as v in Hi. ◁

128

8.2. A second bound on the girth

Proof. Suppose that u is a new neighbour of v and in the same component of Hi as v.
Let Q be the path joining v and u in Hi. If di

2 = 0, then |Q| ≤ i + 2 − ti ≤ g − 1
by Observation 8.8. If di

2 ≥ 1, then dHi
v = 2 by hdf. Again Observation 8.8 yields

|Q| ≤ i + min {di
2, 2} − ti ≤ g − 1. In both cases, the edge vu causes a cycle of length

at most g − 1 < g, which is a contradiction. □

Next, we show that high girth necessitates many acyclic associated graphs.

8.10 Lemma. [8.3]
[8.8]
[8.9]
(8.11)

For i ≤ g − 2, Hi is a forest. ◁

Proof. For i = 1 the claim holds since H1 ∼= Ek+1. Assume the claim holds for some
i ≤ g − 3. If i = 1, then |H| > |G| ≥ k + 1 = |H1| and, hence, H2 exists. If i ≥ 2,
then di

1 ≥ 1 by Lemma 8.3 and since any vertex of H is isolated or of degree 3, the
graph Hi+1 exists. Let v be the vertex that leaves Vi. We have Hi+1 = Hi + E v + vi+1.

First note that, by Observation 8.9, no new neighbour of v is part of the same component
as v in Hi. In particular, if dHi

v = 2, then Hi+1 is acyclic. This leaves the case that
dHi

v < 2. Since the path-decomposition is hdf, we know that di
2 = 0 and there are

multiple new neighbours of v. In case two of them are in the same component of Hi, we
get a short cycle by noticing that the path between these neighbours has order at most
i+ 2 − ti ≤ g − 2 by Observation 8.8, which is a contradiction. Thus Hi+1 is a forest.□

With these tools at hand, we can now prove the bound we need. We note that this is an
improvement on the bound in Theorem 8.6 for k ≤ 13.

8.11 Theorem. [8.3]
[8.7]
[8.8]
[8.9]
[8.10]
(8.1)

The values of ξ for small values of k are shown in the table below:

k 3 4 5 6 7 8 9 10
ξ k 4 4 5 6 6 7 8 8

Additionally, ξ k ≤ k − 2 holds for all k ≥ 10. ◁

Proof. The graphs found in Table 8.2 show that ξ k takes at least the value specified
above and it suffices to prove that it is not larger. To this end we show that

g ≤ k + 1 in general, g ≤ k if k ≥ 4, g ≤ k − 1 if k ≥ 7, and g ≤ k − 2 if k ≥ 10.

This proves the equalities for the values specified above and shows that ξ k ≤ k − 2
for k ≥ 10.

We know that H1, . . . , Hg−2 are acyclic by Lemma 8.10. In this proof, we look at the
possibilities that arise for the subsequent associated graphs, starting with Hg−1. Since
Hg−2 is a forest, Lemma 8.3 implies dg−2

3 = g − 3, dg−2
1 = g − 3 + 2tg−2, and dg−2

0 ≥ 1.
Therefore

1 ≤ dg−2
0 + dg−2

2 = k + g − 2 − (g − 3) − (g − 3 + 2tg−2) = k + 4 − g − 2tg−2. (8.1)

129

Chapter 8. Relating the Girth and Path-Width of Cubic Graphs

Rearranging yields g ≤ k + 3 − 2tg−2 ≤ k + 1 proving the first of the four inequalities.

For the remainder of this proof, we may assume

g ≥ k − 1 and k ≥ 4, g ≥ 5

since for smaller values the claimed inequalities are already true. Using the former and
g ≤ k + 3 − 2tg−2, we get tg−2 ≤ 2 and tg−2 = 1 if g ≥ k. We now go through the
graphs Hg−1 to Hg+3 and see what forms they can have. While doing so, we recommend
using Figure 8.2 as a guide, which depicts the major steps.

Let Hg−1 := Hg−2 + E v + vg−1. Since Hg−2 has g − 3 vertices of degree 3, v is not
one of them and it has new neighbours. By Observation 8.9, any new neighbour is
in a component different from v. In particular, if dHg−2 v = 2, then Hg−1 is acyclic.
Assume that v has degree at most 1 in Hg−2, which implies dg−2

2 = 0 by hdf. If all new
neighbours of v are in different components of Hg−2, then Hg−1 is acyclic and we obtain,
by Lemma 8.3, that

Hg−1 is acyclic,

tg−1 = 1, dg−1
3 = g − 2, dg−1

1 = g, and dg−1
0 + dg−1

2 = k + 1 − g. (8.2)

Note that we obtained tg−1 = 1 and dg−1
0 + dg−1

2 = k + 1 − g by counting arguments:
Hg−1 has k + g − 1 ≤ 2g vertices in total and dg−1

0 ≥ 1. The last inequality is true for
all associated graphs, which is why we omit writing it each time. We refer to the left
graph in the top row of Figure 8.2 for an illustration of this situation.

This just leaves the case that two neighbours of v share a component. In analogy to the
proof of Lemma 8.10, the path between two such neighbours has order at most g− tg−2
by Observation 8.8. This implies tg−2 = 1 and the path has length exactly g − 1 and
contains all degree 3 vertices. We conclude that dHg−2 v = 0 in this case and Hg−1 must
be acyclic if dHg−2 v = 1.

Thus, if Hg−1 is not acyclic, then v is isolated and there is either a unique cycle of
length g in Hg−1 or the third new neighbour of v is also in the same component of Hg−2
as the other two. In the first case, Hg−1 has one non-trivial component and satisfies
dg−1

3 = dg−2
3 + 1 = g − 2, dg−1

2 = 2, and dg−1
1 = dg−2

1 − 1 = g − 2. By the same counting
argument as before, we are in the following situation, which is illustrated on the top
right of Figure 8.2,

Hg−1 has a unique cycle,

tg−1 = 1, dg−1
3 = dg−1

1 = g − 2, dg−1
2 = 2, and dg−1

0 = k + 1 − g. (8.3)

Otherwise, if v has all three neighbours u1, u2, u3 in the same component T , the
paths uiTuj are of order at least g − 1 for 1 ≤ i < j ≤ 3. Consequently, all three of
them contain all g − 3 vertices of degree 3 in Hg−2 and differ only in their ends. Hence,
Hg−1 contains a cycle of length at most 4 and g ≤ 4, contradicting our assumption.

130

8.2. A second bound on the girth

g − 2
(8.2)

g − 3
(8.3)Hg−1

g − 3
(8.4)

g − 1
(8.5)

g − 2
(8.6)Hg

g − 3
(8.7)

g − 1
(8.8)Hg+1

g − 1
(8.9)

g − 1
(8.9)Hg+2

Figure 8.2.: The forms the graphs Hg−1 to Hg+2 can take in the proof on Theorem 8.11.
Note that the grey degree 0 vertices may or may not be present in the graph.
In the graph labelled (8.2), both grey vertices cannot occur simultaneously
and exactly one of the grey edges in the graphs labelled (8.6) and (8.8) is
part of the graph.

131

Chapter 8. Relating the Girth and Path-Width of Cubic Graphs

This completes the inequality g ≤ k for k ≥ 4: if g = k + 1, then in both Option (8.2)
and Option (8.3) we get that dg−1

0 = 0, contradicting the fact that this value is always
positive.

From now on we may assume that
k, g ≥ 7

and need to verify the last two inequalities. Our next goal is to describe the graph
Hg := Hg−1 + E w + vg, where we had Options (8.2) and (8.3) for Hg−1. Note that,
by g ≥ k − 1, dg−1

0 ≤ 2.

Let us start with the Option (8.3). We know here that dHg−1 w = 2 and we denote its
unique new neighbour by u. If u has degree 0, then

Hg has a unique cycle,
tg = 1, dg

3 = dg
1 = g − 1, dg

2 = 1, and dg
0 = k − g + 1. (8.4)

Otherwise, u lies in the same component as w and we obtain a path of length at most 2
between two vertices of C since C contains all vertices of degree at least 2. This yields
a cycle of length at most |C|

2 + 2 and we get g ≤ g
2 + 2 or g ≤ 4, a contradiction.

If Hg−1 is acyclic, there are more options. For ease of notation, let T be the non-trivial
component ofHg−1. First assume that dHg−1 w = 2 and let u be its unique new neighbour.
If u is in T , then |wTu| ≤ g − 1 by Observation 8.8 since dg−1

2 ≤ 1, a contradiction.
Thus, u has degree 0 and

Hg is acyclic,
tg = 1, dg

3 = g − 1, dg
2 = 0, dg

1 = g + 1, and dg
0 = 1 (8.5)

by Lemma 8.3. Here we have used that g ≥ k − 1 to obtain that dg
2 = 0, in particular,

this case does not occur if g = k. Again, our illustration in Figure 8.2 puts the degree 3
vertices on a path despite this not being mandatory at this point.

This just leaves the case that dHg−1 w ≤ 1, giving us dg−1
2 = 0. Assume first that

dHg−1 w = 1. Should both new neighbours of w have degree 0, then Hg is acyclic, and
we are in Option (8.5). Otherwise, let u ∈ T be a new neighbour of w. Again we
use Observation 8.8 to see that |uTw| ≤ g and obtain a cycle C of length exactly g
in Hg−1 + uw. Should the second new neighbour of w also be in T , we obtain a path of
length at most 2 between two vertices of C, yielding girth at most 4, just as above. This
does not occur, so Hg contains a unique cycle of length g and checking the values dg

j

shows that we are in Option (8.4).

We are left with the situation where dHg−2 w = 0. Because dg−1
0 ≤ 2 at least two of its

new neighbours, say u1, u2, are in T . We first argue that the third neighbour, u3, is not.
To see this, note that C := u1Tu2wu1 is a cycle in G of length g or g + 1, by the girth
requirement and the number of vertices of degree at least 2. If u3 ∈ T , then we obtain a
path between two vertices of C. If |C| = g + 1, then C contains all vertices of degree 3

132

8.2. A second bound on the girth

and 2, giving this path length at most 2. Otherwise, if |C| = g, this path potentially
has length 3. Hence, we obtain a cycle of length at most g

2 + 3 or g+1
2 + 2. From this we

can deduce that g ≤ g
2 + 3, yielding a contradiction to g ≥ 7.

Consequently, u3 has degree 0 and Hg has a unique cycle u1Tu2wu1 of length at most
g + 1, giving us the final option in which

Hg has a unique cycle,
tg = 1, dg

3 = g − 1, dg
2 = 2, dg

1 = g − 1, and dg
0 = 1. (8.6)

The last equality follows once more from the fact that Hg has k+g vertices, so g = k−1
in this case. Here, Figure 8.2 is almost correct: either all degree 3 vertices lie on the
path or we missed one. The only slight inaccuracy is that this potentially missed vertex
need not be next to the one of degree 2, it could be anywhere.

We now have several possible options for Hg and want to obtain information about
Hg+1 := Hg +E x+ vg+1. We begin by taking a look at Option (8.4), which is the only
one relevant for the case that k = g. Here, dHg x = 2 and the identical argumentation
to before shows that the new neighbour of x has degree 0 and Hg+1 satisfies

Hg+1 has a unique cycle,

tg+1 = 1, dg+1
3 = dg+1

1 = g, dg+1
2 = 0, and dg+1

0 = k − g + 1. (8.7)

We claim that this suffices to prove the third inequality. Assume g = k, then we already
know we are in Option (8.4) as Options (8.5) and (8.6) only occur for g = k− 1. Hence,
Hg+1 is of the form described above and dg+1

0 = 1. We considerHg+2 := Hg+1+E y+vg+2.
If the degree 0 vertex leaves, all its neighbours, u1, u2, u3 say, are in the same component
as the cycle C. Suppose u1 and u2 have minimal distance in C, then there exists a path
of length at most g

3 between them and we obtain a cycle of length g
3 + 4 by extending it

to use u1yu2. Note that all degree 1 vertices of Hg+1 are adjacent to a degree 3 one by
Observation 8.7 and all degree 3 vertices are on C. This yields g ≤ 6, a contradiction.
Hence, dHg+1 y = 1 and it has at least one neighbour u in the same component as the
cycle. But now we get a cycle of length at most g

2 + 3 which again yields g ≤ 6, proving
the g ≤ k − 1 for k ≥ 7.

For the final inequality (g ≤ k − 2 if k ≥ 10), we can update our assumptions to

g = k − 1, and k ≥ 10, so g ≥ 9.

With this we finish the description of the options for Hg+1 and note that, in Option (8.7),
we can now deduce that dg+1

0 = 2.

In the case that Option (8.5) applies to Hg, we denote the non-trivial tree of Hg by T .
If the vertex of degree 0 leaves, then it has all three neighbours, u1, u2, u3 say, in T . As
before, we obtain a cycle C = u1Tu2xu1, this time of length g, g + 1, or g + 2, and a
path of length at most 4, 3, or 2 between two vertices of C. Consequently, there is a

133

Chapter 8. Relating the Girth and Path-Width of Cubic Graphs

cycle of length at most g
2 + 4, g+1

2 + 3, or g+2
2 + 2. Again, we arrive at a contradiction

to g ≥ 9 since we have obtained that g ≤ g
2 + 4.

As a result, dHg x = 1. If x has two neighbours in T , then we repeat the previous
argument for the degree 0 vertex to get a short cycle, contradicting our girth assumption.
So x has one new neighbour of degree 0 and the other one in T . Let u be this neighbour,
then |uTx| ≤ g + 1 by Observation 8.8 and we obtain

Hg+1 has a unique cycle containing the vertex of degree 2,

tg+1 = 1, dg+1
3 = dg+1

1 = g, and dg+1
2 = dg+1

0 = 1. (8.8)

Finally, we consider the Option (8.6), which again contains a unique cycle C. Here,
dHg x = 2 and x has a unique new neighbour u. If u /∈ T , then this coincides with
Option (8.8). Otherwise, if u ∈ T , we obtain a path of length at most 3 or 2 between
two vertices of the cycle C of length g or g + 1. In either case, we obtain a cycle of
length at most g+1

2 + 2 ≤ g
2 + 3 and this yields g ≤ 8, a contradiction.

The next graph is Hg+2 := Hg+1 + E y + vg+2. For Hg+1 only the two Options (8.7)
and (8.8) remain, and we start with the latter. Here, we have dHg+1 y = 2 by hdf and y
is on the unique cycle C. Again, if the new neighbour of y is not a vertex of degree 0,
the same argument as above yields a contradiction. Thus, we may assume that a unique
cycle remains and we get

Hg+2 has a unique cycle,

tg+2 = 1, dg+2
3 = dg+2

1 = g + 1, dg+2
2 = 0, and dg+2

0 = 1. (8.9)

If Hg+1 is as specified in (8.7), then dHg+1 y = 0 results in a path of length 4 between
two vertices of C, which gives us a cycle of length at most g

2 +4. This implies that g ≤ 8,
a contradiction. So y has degree 1 and its new neighbours have degree 0 as otherwise
we obtain a path of length 3 between two vertices of C. This leaves the unique cycle of
length g intact and results in g + 1, 0, g + 1, 1 vertices of degree 3, 2, 1, 0, letting us
include it in Option (8.9).

Now we can wrap up the proof by considering Hg+3. Since only Option (8.9) remains
for Hg+2, it has a unique cycle C. If a vertex of degree 1 leaves, then it is in the same
component as C in Hg−2 and at least one of its new neighbours is in this component
as well. This yields a cycle of length at most g

2 + 4 or g+1
2 + 3 in Hg+3, which are

contradictions to g ≥ 9. Should the degree 0 vertex leave, we get that all three of its
neighbours are in the component of Hg−2 containing C and we find a new cycle of length
at most g

3 + 5 or g+1
3 + 4. Again this contradicts g ≥ 9 and the proof is complete. □

134

8.3. Classifying cubic graphs of path-width 3 and girth 4

Y1 X1 Y2 X2

Y3 X3 Y4 X4

Y5 X5 Y6 X6

Figure 8.3.: Reductions and extensions for graphs of path-width 3 and girth 4.

Figure 8.4.: Obtaining the K3,3 using the reductions in Figure 8.3. Left: a path-width 3
graph of girth 4. It contains c Y2, consisting of the black vertices, as an
induced subgraph. Applying the (Y2, X2)-reduction yields a smaller graph.
Right: this smaller graph contains c Y1 as an induced subgraph and applying
the (Y1, X1)-reduction results in a K3,3. Reversing this process shows how
to construct the start graph from a K3,3.

8.3. Classifying cubic graphs of path-width 3 and girth 4

As a further example of an application of our algorithm, we prove the following theorem,
which gives a constructive characterisation of the class of all cubic graphs of path-width 3
which are extremal with respect to ξ.
8.12 Theorem. [2.10]

[2.11]
[8.14]
[8.15]
(8.16)

(a) Every cubic graph of path-width 3 and girth 4 can be constructed from a K3,3 by
a finite number of (Xi, Yi)-extensions from Figure 8.3, for i ∈ {1, . . . , 6}.

(b) Every 3-connected cubic graph of path-width 3 and girth 4 can be obtained from
a K3,3 by a finite number of (X1, Y1)- and (X2, Y2)-extensions from Figure 8.3. ◁

We recall Definition 5.2 for the notion of transformations and refer to Figure 8.4 for an
example of this constructive characterisation.

For the proof of Theorem 8.12 we establish the following lemmas.

135

Chapter 8. Relating the Girth and Path-Width of Cubic Graphs

8.13 Lemma.[2.12]
(8.14)
(8.15)

If G is a subcubic graph of girth 4 with at most two vertices of degree 2
and none of degree less than 2, then G has a minor M ∼= K4. ◁

Proof. Note that all cubic graphs have a K4-minor by Wormald’s characterisation of
cubic graphs. Since G has girth 4, the neighbours of every vertex are non-adjacent.
Thus, if G has exactly one degree 2 vertex, we can remove it and join its two neighbours
by an edge. The result is a cubic graph and, hence, has the desired minor.

This also works if G has two degree 2 vertices u and u′ unless Nu = Nu′ = {v, v′}. In
the latter case, we proceed inductively: either G − {u, u′, v, v′} is a smaller subcubic
graph with two degree 2 vertices, or it has a single degree 1 vertex w and only degree 3
vertices otherwise. In the first case, the claim follows by induction and, in the remaining
case, we delete w to end up with one vertex of degree 2 and obtain the desired minor
by the first part of the proof. □

8.14 Lemma.[7.21]
[7.22]
[8.13]
(8.12)

Let uv be a cut-edge in a connected cubic graph G of path-width 3
and girth 4. Furthermore, let Ku, Kv be the components of G − uv containing u, v,
respectively. If Nu = {v, u1, u2}, then there exists a path-decomposition of Ku − u of
width 3 whose first bag contains {u1, u2}. ◁

Proof. Let Nv := {u, v1, v2}. Notice that Kv is a subcubic graph with exactly one
vertex of degree 2. By Lemma 8.13 it contains a minor M with M ∼= K4. Hence,
H := Ku ∪M + uw, where w ∈ VM , is a minor of G and has path-width 3. Let (P,V)
be a smooth path-decomposition of H, then there exists a bag Vi = VM .

Since H−VM is connected, i is an end of P , say i = 1. By Lemma 7.21 we may assume
that the vertices in VM \ {w} are the first to leave the path-decomposition. Using
Lemma 7.22, we may further assume that the vertex w leaves next. Consequently,
V5 = {u, x1, x2, x3} for some x1, x2, x3 ∈ V H \ VM .

If u leaves V5, then {u1, u2} ⊆ V5. Otherwise the vertex x1 leaving V5 has degree 3,
so Nx1 = {u, x2, x3}. In particular, x1 is a neighbour of u, say x1 = u1. Again, by
Lemma 7.22, we may assume that u leaves V6. Replacing V5 by {u, u1, u2, x2} and V6
by {u1, u2, x2, x3} yields another path-decomposition of H. Since {u1, u2} ⊆ V5 in either
case now, deleting the vertices of the M and u together with the first four (now empty)
bags yields a path-decomposition of Ku − u with the desired property. □

8.15 Lemma.[7.21]
[7.22]
[8.13]
(8.12)

Let {uv, u′v′} be a 2-edge-separator of a connected cubic graph G of
path-width 3 and girth 4 such that uu′ /∈ E G and u ̸= u′. Assume that the vertices u
and u′ are contained in the same component Ku,u′ of G− {uv, u′v′}. If Nu = {v, u1, u2}
and Nu′ = {v′, u′

1, u
′
2}, then there exists a path-decomposition of Ku,u′ − u of width 3

whose first bag contains {u′, u1, u2} or there exists a path-decomposition of Ku,u′ − u′ of
width 3 whose first bag contains {u, u′

1, u
′
2}. ◁

Proof. Let Kv,v′ be the component of G − {uv, u′v′} containing v and v′. Similarly to
the previous proof, we apply Lemma 8.13 to Kv,v′ to obtain a minor M ∼= K4. Hence,

136

8.3. Classifying cubic graphs of path-width 3 and girth 4

H = Ku,u′ ∪M + {uw, u′w′} (where w and w′ are vertices of M and w = w′ is possible)
is a minor of G and has path-width 3. Let (P,V) be a smooth path-decomposition of H,
then there exists a bag Vi = VM .

Since H − VM is connected, i is an end of P and we may assume that V1 = VM . By
Lemma 7.21 we may assume that the two or three vertices of M that have degree 3
in H are the first to leave. In the case that w ̸= w′, we thus have V3 = {w,w′, x1, x2}.
The vertices x1 and x2 cannot leave next: if x1 left, Nx1 = {w,w′, x2}, but w and w′

have no common neighbours outside of M . (Here, we used that u ̸= u′ by assumption.)
Hence, we may assume that w leaves V3 and, by Lemma 7.22, w′ leaves V4. As a result,
the vertices of M are the first vertices to leave and V5 = {u, u′, y1, y2}.

In the case that w = w′, we can assume this is the case as well. As stated already, we
may assume that the vertices of M−w leave the first three bags and V4 = {w, x1, x2, x3}.
If w leaves this bag, we are in the situation we want and, otherwise, we may assume that
x1 leaves. Consequently, Nx1 = {w, x2, x3} and we may assume that x1 = u. Moreover,
wx2, wx3 /∈ E G since G has girth 4. By Lemma 7.22, we may assume that w leaves V5
and, thus, V5 = {w, u′, x2, x3}. By setting V4 to {w, u, u′, x2} and V5 to {u, u′, x2, x3} we
get another smooth path-decomposition of H in which the vertices of M are the ones
to leave the first four bags.

Using that V5 = {u, u′, y1, y2}, we now obtain the decomposition asked for in the lemma.
If u or u′ leave V5, then the remaining two vertices in the bag are its neighbours as
uu′ /∈ E G by assumption. Therefore, deleting the vertices of M together with u or u′

and the first four bags yields the desired decomposition.

Otherwise, assume that y1 leaves. Since Ny1 = {u, u′, y2}, y1 is a neighbour of u, say u1.
By Lemma 7.22 we may assume that u leaves V6 = {u, u′, y2, y3}. Since G has girth 4,
y2u /∈ E G and y3 = u2. By setting V5 to {u, u′, u1, u2} and V6 to {u′, u1, u2, y2}, we get
another path-decomposition of H in which u leaves V5. As above, this yields a desired
decomposition. □

We are now ready to prove Theorem 8.12.

Proof (of Theorem 8.12). Let G be a cubic graph of path-width 3 and girth 4. Running
Algorithm 7.2 for G being the class of cubic graphs of girth 4, U := {K3,3, c Y1, . . . , c Y6},
and k := 3 confirms that U is unavoidable for G3. If G ∼= K3,3, then we are done without
needing to apply any extensions. Therefore, we may assume that G contains one of the
graphs c Y1, . . . , c Y6 as a subgraph.

To be able to apply a (Yi, Xi)-reduction, we need to ensure that such a subgraph is
induced. We immediately notice that this is the case if G has c Yi as a subgraph for i ̸= 2,
since G has girth 4 and is not the K3,3. For i = 2, two of the vertices of degree less
than 3 may be adjacent, however, if this occurs, then G contains c Y6. Thus, we may, in
fact, assume that G contains one of the graphs c Y1, . . . , c Y6 as an induced subgraph.

137

Chapter 8. Relating the Girth and Path-Width of Cubic Graphs

Y4

u
v

u′

v2

v′
2

v1

v′

x

X4 Y6

u
v

v1

v2

X6

Figure 8.5.: Reductions ρ4 and ρ6 for graphs of path-width 3 and girth 4.

We fix i ∈ {1, . . . , 6} and assume that G′ is obtained from G by a (Yi, Xi)-reduction.
Note that G′ is connected and simple since the minimum degree in all cXi is 2. Its girth
remains 4 since no triangles are introduced. If i ∈ {1, 2, 3, 5}, then G′ is a minor of G
and, hence, G′ is of path-width at most, and therefore exactly, 3, see Observation 2.11.

For c Y6 we denote the cut-edge by uv, as seen in the right of Figure 8.5, and the compon-
ents of G−uv by Ku and Kv. By applying Lemma 8.14, we get a path-decomposition of
width 3 for Kv −v that has Nv\{u} =: {v1, v2} in its first bags. This can now be turned
into a path-decomposition of width 3 for G′ by combining it with a path-decomposition
of cX6 whose last bag contains the neighbours of OX6.

We use Lemma 8.15 to obtain that G′ has path-width 3 if it was obtained from G by a
(Y4, X4)-reduction. Let {uv, u′v′} be the two edge separator in c Y4 as illustrated on the
left in Figure 8.5. We also refer to this figure for all upcoming vertex names.

Since uu′, vv′ /∈ E G and all four ends are distinct, the lemma is applicable to Kv,v′ .
Hence, we obtain a width 3 path-decomposition of Kv,v′ − v whose first bag contains
{v′, v1, v2} or of Kv,v′ − v′ whose first bag contains {v, v1, v

′
2}. By replacing v′ by v′

2, v1
by x, and v by v2 in all bags, we obtain a path-decomposition of G − I Y4 whose last
bag is {v2, v

′
2, x}, in both cases. As before, we obtain a path-decomposition of width 3

for G′ by combining it with a path-decomposition of cX4 whose last bag contains the
neighbours of OX4.

With this, we have now determined that all six reductions in Figure 8.3 yield a new
connected cubic graph G′ which has path-width 3 and girth 4. Since |G′| ≤ |G| − 2,
we obtain inductively that G can be obtained from K3,3 by a finite number of (Xi, Yi)-
extensions, proving Part (a). For Part (b), we note that the graphs c Y3, . . . , c Y6 all
exhibit a 2-edge-separator and cannot be a subgraph of G if G is 3-connected. Thus, if
the remaining two reductions preserve 3-connectivity, we are done.

To see that they do, let G′ be obtained from a 3-connected graph G by a (Yi, Xi)-
reduction for i ∈ {1, 2}. Let uv, u′v′ be two edges of G′. By Observation 2.10 it suffices
to show that G′ − {uv, u′v′} is connected. This is, in particular, the case if neither edge
is in H := G′ − I Xi = G− I Yi.

We note that H is 2-edge-connected: let e be a bridge of H and K1, K2 the components
of H − e. We obtain a 2-edge-separator of G since EH−e Kj ⊆ EH contains only a
single edge for one of the two components Kj, contradicting the 3-connectivity of G.

138

8.3. Classifying cubic graphs of path-width 3 and girth 4

Thus, if H contains just one of the two edges uv and u′v′, then these do not separate G′.
If H contains both, then H − {uv, u′v′} is either connected, and we are done, or it
consists of two components. Since G − {uv, u′v′} is not disconnected, each of these
components has a neighbour in c Yi in G and, therefore, one in cXi in G′, ensuring
connectivity and completing the proof. □

We now know that with the six operations from Figure 8.3 we can construct all cubic
graphs of path-width 3 and girth 4 if we do it right. We complete this section by showing
that this is easy to do.

8.16 Theorem. [2.13]
[8.12]

Let G be the graph obtained from G′ by an (Xi, Yi)-extension from
Figure 8.3. Then G is a cubic multigraph of path-width 3. It is simple and has girth 4
unless two outer vertices u, v of Yi exist which satisfy

dYi
(u, v) + dG′(u, v) ≤ 3.

Moreover, if G′ is 3-connected and i ∈ {1, 2}, then G is 3-connected as well. ◁

Proof. To see that the girth remains 4, we note that G−I Yi and Yi contain no triangles.
By the requirement that dYi

(u, v) + dG′(u, v) ≥ 4, none exist between them either. This
also implies that G is simple.

Let F be the set of the (one or three) possible edges between the outer vertices ofXi inG′

and letH := G′−I Xi. The graphH+F is a minor of G′, so G′ has a path-decomposition
with a bag containing OXi. This bag is at an end, since OXi is not a separator of G′.
Similarly to the proof of Theorem 8.12, we can extend this decomposition to G.

For the 3-connectivity claim, we just note that the transition from X2 to Y2 performs
Operation (i) from Tutte’s characterisation once, and the one from X1 to Y1 does it
twice. Thus, by said characterisation, both resulting graphs are 3-connected. □

Theorem 8.16 shows that we only need to obey minor restrictions when applying the
extensions: the first and third are always applicable, the second and fourth require the
top two outer vertices to be distinct in G′, the fifth also needs this for its outer vertices,
and the sixth even wants them at distance at least 2. Additionally, only applying the
first two extensions ensures that we do not leave the class of 3-connected graphs.

139

Part III.

Two Graph Connectivity
Problems

In this part we consider two graph connectivity prob-
lems. More precisely, we are concerned with a di-
graph D that has two designated vertices s and t.
We want to know something about the existence or
non-existence of (certain) st-paths in D: in Chapter 9
we study the complexity of locally certifying the ex-
istence of an st-path and see that a constant amount
of bits does not suffice for this task (in contrast to
the undirected case, where a single bit is enough). In
Chapter 10 we look at the complexity of the separ-
ating by forbidden pairs problem, which asks for a
smallest set of (unordered) arc pairs in D such that
every st-path contains both arcs from some pair. We
prove that this problem is Σ2P-complete.

141

Chapter 9.

Local Certification of Reachability

Motivated by self-stabilising algorithms, the objective of local certification is to verify
whether a (global) property holds while being restricted to a local view of the graph.
For example, despite being a global property, bipartiteness is easy to verify locally. By
specifying a bipartition, a vertex can simply check that all its neighbours are assigned
to the other part. If no vertex encounters a problem, then the graph is bipartite.
As the example suggests, local certification, roughly speaking, works as follows: a
prover assigns a certificate to every vertex of a graph. Subsequently a verifier checks,
for every vertex, whether its local view of the graph is consistent with the property we
wish to verify. If this is the case at all vertices, then it accepts and it rejects otherwise.
For a prover-verifier pair to locally certify a graph property, the verifier must accept all
graphs with this property given the certificates from the prover and it must reject any
proof on a graph that does not have the desired property. The quality of such a pair is
measured by the prover’s size which is the length of the longest certificate it uses.
One local certification concept is that of proof labelling schemes and, in this setting,
determining whether an undirected graph has an st-path (for specified vertices s and t)
can be done with a prover of size 1. In the directed case it is known that O (log ∆)
bits suffice. We prove a matching lower bound, showing, in particular, that a constant
number of bits are insufficient.

The objective of local certification is to locally verify (global) properties in a distributed
system. It is motivated by self-stabilising algorithms [Dol00]. These algorithms are
used in distributed systems which are subject to faults and have the property that
they converge to a solution for a given problem. A possible way of designing such an
algorithm is to first move to a solution and then to maintain it for as long as it remains
correct. This so-called local detection paradigm was introduced by Afek, Kutten, and
Yung [AKY97]. Local certification describes this last step, where the algorithm needs to
detect whether the solution is correct or not.

In local certification, a global prover has to convince a verifier that a graph has a specific
property. To do so, the prover first presents a proof by assigning certificates to the

143

Chapter 9. Local Certification of Reachability

vertices. Afterwards, the verifier decides at every vertex whether to accept or reject
the proof provided. The decision at a vertex v is solely based on the local view of the
graph around v, including certificates. If a graph has the designated property, the prover
must be able to choose certificates in a way that makes the verifier accept at every
vertex. Otherwise, the verifier must reject at some vertex of the graph, regardless of
which certificates are given. What exactly the term local view means differs amongst
the various local certification concepts.

As an illustration, we sketch how local certification of bipartiteness works [GS16]. As
local view, we assume that every vertex has access to its own certificate as well as
those of its neighbours. In the case of a bipartite graph, the prover could specify a
bipartition using the certificates 0 and 1. The verifier then only needs to check that the
certificates of its neighbours differ from its own. If this is the case everywhere, then the
graph is bipartite, so the verifier never accepts a non-bipartite graph. Furthermore, the
bipartition specified by the prover makes the verifier accept. Hence, this prover-verifier
pair locally certifies bipartiteness using a single bit. As a slightly more interesting
example, we also present the proof labelling scheme for acyclicity from [KKP10] at the
start of Section 9.1.

Local certification does not restrict the computational power of the prover or verifier.
Instead the quality is measured by the certificate lengths needed. The prover’s size is the
length of the longest certificate it assigns to a vertex. Given some property, a natural
question to consider is what size a prover needs to have and what size suffices to locally
certify this property.

The answer to this question may depend on the precise concept used since a ‘larger’ local
view of the verifier may result in smaller certificate lengths being sufficient. Here, we are
interested mainly in two such concepts: proof labelling schemes and locally checkable
proofs, which we defined in Section 2.3. These were introduced by Korman, Kutten, and
Peleg [KKP10] and Göös and Suomela [GS16], respectively. Recall that the verifiers
in locally checkable proofs are more powerful than the ones in proof labelling schemes.
Thus, ideally, one determines lower bounds on the prover’s size using locally checkable
proofs, and upper bounds using proof labelling schemes (since then they hold for both
concepts).

Many lower and upper bound results are known, for example, certifying acyclicity [KKP10]
and planarity [Feu+20] both require Θ (log n) bits, whilst minimum spanning trees need
Θ (log n logW) bits [KK06], where n is the order of the graph and W is the largest weight
of an edge. These bounds are for proof labelling schemes, though the planarity result
also works for locally checkable proofs. That Θ (log n) bits are required for acyclicity is
also true in the locally checkable proof setting was open until recently and is, in fact,
also shown in [Feu+20]. For more results we refer to [Feu21], a recent survey of local
certification.

A very basic problem is that of certifying whether an st-path exists, for two specified
vertices s and t, which we refer to as the st-reachability problem. In [GS16] it is shown

144

9.1. Two examples of proof labelling schemes

how to solve this for undirected graphs using a single bit. In the directed case, a prover
using O (log ∆) bits is described. Whether a constant size proof exists is posed as an
open question. We recapitulate how these locally checkable proofs work in Section 9.1
and why the directed case cannot be solved analogously.

Foerster et al. [Foe+18] look at locally certifying st-reachability as well. The authors use
a significantly more restrictive model in which the verifier sees less information, making
it weaker. To obtain a logarithmic lower bound for st-reachability, they additionally
restrict to a one-way communication model in which vertices only see their predecessors.
The proof heavily relies on this restriction and a lower bound for the standard two-way
communication is left open.

This suggests that the directed version is harder than the undirected one, which is a
common occurrence: in the k disjoint paths problem the task to find vertex-disjoint
paths between k pairs of specified vertices. It can be solved in polynomial time on
undirected graphs for any fixed k [RS95] but it is NP-complete in the directed case,
even for k = 2 [FHW80]. Similarly, the feedback arc set problem is NP-complete [GJ90]
while its undirected counterpart is solved by computing a spanning tree. Ajtai and
Fagin [AF90] demonstrate that undirected st-reachability can be expressed by existential
monadic second order logic whereas directed reachability cannot be.

We show that locally certifying st-reachability (in the proof labelling scheme setting)
is another such example. More precisely, we prove that the upper bound of O (log ∆)
is tight. In particular, this covers the missing lower bound in [Foe+18] and shows that
no constant number of bits suffice. Hence, this yields a new very basic problem where
we now have tight bounds for proof labelling schemes, but whose lower bounds do not
extend to locally checkable proofs.

This chapter is joint work with Tim Bergner and Sven O. Krumke and is published
in [BBK22b].

9.1. Two examples of proof labelling schemes

We start this chapter by presenting two examples for proof labelling schemes, starting
with acyclicity and then moving on to the reachability problem we are interested in.

Verifying acyclicity. We have already seen how to certify bipartiteness and have
mentioned in the introduction that Θ (log n) bits are needed for verifying acyclicity
on undirected graphs. Let us now sketch the upper and lower bound proofs presented
in [KKP10], to which we refer for the details. We note that the lower bound proof does
not extend to locally checkable proofs (but [Feu+20] provides one).

The upper bound is obtained by rooting a tree: we choose an arbitrary vertex as the
root and the certificate at each vertex is its distance to this root. To locally verify

145

Chapter 9. Local Certification of Reachability

this, a vertex with certificate d need only check that it has exactly one neighbour with
distance d − 1 and all other neighbours have distance d + 1 (unless d = 0 in which
case all neighbours must have distance 1). This is a proof labelling scheme since the
graph is a tree if the verifier accepts: in any cycle in the graph, the vertex with largest
certificate has at least two neighbours whose certificates are not larger, which the verifier
can detect.

To obtain the lower bound, assume that a proof labelling scheme exists that uses o(log n)
bits. Then, for large enough n, we can assume it has fewer than c log n bits for some
appropriate constant c. By choosing n large enough, we can ensure that any path
of length n contains two disjoint pairs of adjacent vertices (u1, v1) and (u2, v2) with
the property that u1, u2 and v1, v2 are assigned the same certificate, respectively. By
connecting the second vertex of the first pair to the first vertex of the second pair, a cycle
is obtained in which all local behaviour is identical. Since the path must be accepted,
the verifier also accepts the cycle, contradicting soundness.

The reason this no longer works for locally checkable proofs is because the stronger
verifier there can see the identities of its neighbours. As a result, the verifier would
notice that its neighbour has changed in the transition to the cycle, since the ends of
the new edge now have a neighbour whose identity differs from the path.

Verifying reachability. In order to discuss the reachability problem, let us first
formally define it: the (directed) st-reachability problem starts with the graph class G of
(directed) graphs in which there is a unique vertex labelled s and a vertex labelled t (and
all other vertices have empty labels). The subclass F that we wish to verify contains
those graphs in which t is reachable from s, that is, those graphs in G that have an
st-path. For the remainder of this chapter, G and F will be used to denote these graph
classes.

In the undirected case, a single bit is sufficient to verify reachability (as described
in [GS16]): by fixing some shortest st-path P and setting P v = 1 if v ∈ P and P v = 0
otherwise, a vertex v can check that either P v = 0 or exactly two of its neighbours are
also assigned a 1 as their certificate. The vertices s and t are exceptions, they must
receive certificate 1 and require exactly one neighbour with this property.

This breaks down in the directed case, since the analogous requirement of asking for
exactly one predecessor and one successor does not yield a proof labelling scheme. The
reason this works in the undirected case is because, on shortest paths, vertices have a
unique predecessor and successor on this path: multiple ones would create a shortcut. In
the directed case, however, the existence of back-edges may lead to larger quantities of
both, even on shortest paths. This can be fixed by additionally specifying the distance
from s (as in the verification of acyclicity), letting us detect back-edges. Alternatively,
one can specify which of the edges incident to a vertex leads to the successor on the path.
These yield upper bounds of O (log(diam)) and O (log ∆), both of which are potentially
O (log n) many.

146

9.2. A lower bound for the reachability problem

a u v b a u v b

Figure 9.1.: The split-path operation.

9.2. A lower bound for the reachability problem

In this section, we show that the second approach, where the prover specified which
outgoing edge the path uses, is best possible in the sense that o(log ∆) bits are insufficient
to obtain a proof labelling scheme in the directed case. To achieve this, we assume
that a proof labelling scheme (P ,V) exists that only uses x bits and therefore uses at
most c := 2x distinct certificates. We construct a digraph D ∈ G that the verifier would
falsely accept and check that its maximum degree is polynomial in c. This yields that
log ∆ is some multiple of x, and x ∈ Ω(log ∆).

Our construction works even if we can detect parallels and anti-parallels and can see
the labels of neighbouring vertices. It also does not use the relation between c and x.
Therefore, we suppose that (P ,V) is a prover-verifier pair with neighbourhood-local and
identity-restricted verifier that locally certifies directed st-reachability using c distinct
certificates. To facilitate our argumentation, we now provide some notation.

Split paths and their properties. Let −P be an st-path with back-edges, that is,
P := sv1 . . . vkt,

 −
A := {vivj : i > j}, and P ⊆ −P ⊆ P + −A (for some k). Note that

 −
P ∈ F . Let uv be an edge of P and ba be a back-edge in −P with uv ∈ åP b̊. The
split-path (of −P) at uv using ba is the digraph −P − {uv, ba} + {bv, ua}, which is in G \ F .
This operation is illustrated in Figure 9.1.

We now show that assigning certain certificates to the vertices of a path with back-edges
would make V accept a split-path, and hence these assignments may not occur. For
simplicity, we write Pxy for (Px,P y), where P is some proof and xy is an edge.

9.1 Lemma. (9.2)Let −P be an st-path with back-edges, P = P −P , uv be an edge of P ,
and ba be a back-edge in −P with uv ∈ åP b̊. If v /∈ Nb, u /∈ Na, and vu /∈ −P (in the
underlying graph), then Puv ̸= P ba. ◁

Proof. Suppose Puv = P ba. Let S be the split path of
 −
P at uv using ba. We show

that V accepts P for S, which contradicts S ∈ G \ F .

Recall that the graphs
 −
P N

x and SN
x are the local views the verifier has access to as

defined in Section 2.3. Notice that for all vertices x /∈ {a, b, u, v} the digraphs
 −
P N

x re-
mains unchanged in the transition to SN

x and thus V accepts at all these vertices. In the
remaining four balls we only exchange the vertices a with v and b with u. Since these
are assigned the same certificate by assumption, the verifier is faced with the same certi-
ficates. Moreover, none of these vertices can be s or t, so they are all unlabelled. Finally

147

Chapter 9. Local Certification of Reachability

H1 Hk
s u0 v0 sH1 tH1 u1 v1 sHk

tHk
uk vk t

Figure 9.2.: The digraph Dk constructed for the proof of Theorem 9.4. It consists of k
copies H1, . . . , Hk of Dk−1 which are paths with back-edges, together with
the vertices and edges shown, making it a path with back-edges as well.

note that the remaining assumptions of the lemma ensure that none of the edges uv, ba,
bv, or ua have a parallel or an anti-parallel in

 −
P or S, hence the digraphs

 −
P N

x and SN
x

also coincide for x ∈ {a, b, u, v}. □

Constructing a counterexample. We are now ready to construct a path with
back-edges −P in which any proof that the verifier accepts leads to a split path which is
accepted as well. Since the verifier accepts P −P , this is a contradiction.

We let r :=
(

c
2

)
+ c and define a digraph Dk for 0 ≤ k ≤ r, each of which is an st-path

with back-edges. For a copy H of a digraph Dk, we write PH for the copy of the st-path
of Dk in H and write sH , tH for its start and end, respectively. The digraph D0 is the
path su0v0t. For k ≥ 1, the digraph Dk is the disjoint union of k copies H1, . . . , Hk

of Dk−1 which are combined to an st-path with back-edges as follows: copies Hi and Hi+1
are connected by a path tHi

uivisHi+1 introducing new vertices ui and vi. Additionally,
we prepend the path su0v0sH1 and append the path tHk

ukvkt. Finally, all possible
back-edges between vertices {ui, vi} and {uj, vj} for i > j are added.

This construction is visualised in Figure 9.2 and a formal definition of the edge and
vertex set of the digraph Dk is given below:

V Dk :=
k⋃

i=1
V Hi ∪ {ui, vi : 0 ≤ i ≤ k} ∪ {s, t} ,

ADk :=
k⋃

i=1
AHi ∪ {uivi : 0 ≤ i ≤ k}

∪ {vi−1sHi
, tHi

ui : 1 ≤ i ≤ k} ∪ {su0, vkt}
∪ {xixj : xi ∈ {ui, vi} , xj ∈ {uj, vj} , i < j} .

We say that a pair of certificates (c1, c2) is missing on a path with back-edges if no edge
on the path has certificate (c1, c2). We extend this definition to sets {c1, c2}, where c1
and c2 need not be distinct, and call such a set missing if the tuples (c1, c2) and (c2, c1)

148

9.2. A lower bound for the reachability problem

are. Note that r is exactly the number of such sets. With these definitions at hand we
can now prove the following lemma.

9.2 Lemma. [9.1]
(9.4)

For every k ≤ r, the digraph Dr contains a copy H of Dk in which at
least r − k sets are missing on the path P̊H . ◁

Proof. We prove this by induction on k, where in the case k = r there is nothing to
show. For k < r let H ′ be the copy of Dk+1 given by the induction hypothesis and
let P ′ := P̊H′ . Then r − (k + 1) sets are missing on P ′ and every vertex on this path
is assigned a certificate whose corresponding set is amongst the remaining k + 1 many.
Since Dk+1 has the k + 2 edges u0v0, . . . , uk+1vk+1, at least two of the corresponding
edges in P ′ are assigned certificates that give rise to the same set {c1, c2}. For simplicity,
we assume these edges are u0v0 and u1v1. The set {u0v0, u1v1} is not missing in P ′, but
we show that it is missing on the path P := P̊H where H is the copy of Dk between u0v0
and u1v1 in H ′.

To see that this is indeed the case, we note that for any edge uv on the path P we
can apply Lemma 9.1 to the edges uv and ba := u1u0 in Dr: since the only edges with
an end in V H ′ \ V H and the other in V H are v0sH and tHu1, we get that v /∈ Nu1
and u /∈ Nu0. Moreover, vu /∈ Dr since Dr has no anti-parallels by construction.
Therefore, the assumptions of Lemma 9.1 are satisfied, and Puv ̸= P(u1u0). The same
holds for the back-edges u1v0, v1u0, and v1u1.

Since we assumed that both u0v0 and u1v1 are assigned a certificate corresponding to
the set {c1, c2}, one of the four back-edges has certificate (c1, c2) and another has (c2, c1).
Thus, we have ensured that both of these are missing, giving us the new missing
set {c1, c2} (in addition to the r − (k + 1) many provided by the induction hypothesis),
which completes the proof. □

By Lemma 9.2 for k = 0, Dr has a copy H of D0 in which r pairs are missing on the
path P := P̊H . But since these are all possible pairs, the single edge in P has no valid
assignment, which is a contradiction. To complete this section, we only need to see how
c relates to ∆Dr.

9.3 Observation. (9.4)The maximum degree of Dr is 2r + 2 = c2 + c+ 2. ◁

Proof. We prove by induction that the maximum degree of Dk is 2k + 2. Since D0 is
a path, this holds initially. For k > 0 let v be a vertex in Dk. If v is in some copy H
of Dk−1, then its degree is at most 2k: in H only the vertices sH and tH have incident
edges to vertices outside of this copy of H, and these have degree 2 in Dk.

The vertices of Dk that are not in a copy of Dk−1 are s, t, and those in {u0, v0, . . . , uk, vk}.
The first two have degree 1 and every ui and vi has two neighbours on the path and
2k further neighbours in Dk, namely all uj and vj for j ∈ {0, . . . , k} \ {i}. Hence, the
maximum degree of Dk is 2k + 2.

The missing equality follows from the definition of r. □

149

Chapter 9. Local Certification of Reachability

By Observation 9.3, ∆Dr is, indeed, polynomial in c: at least log2(c + 1) bits are
required to obtain c + 1 distinct certificates. From simple computations we get that
log2(∆Dr) ≤ 2 log2 c + 2. Consequently, since we need at least c + 1 certificates to
correctly verify Dr, at least 1

2 log2(∆Dr) − 1 bits are necessary. We have thus arrived at
the desired result.

9.4 Theorem.[9.2]
[9.3]
(9.5)

The st-reachability problem cannot be locally certified by a prover-
verifier pair (P ,V) of size o(log(∆D)) if the verifier is neighbourhood-local and identity-
restricted. ◁

As a corollary, we get the same result for proof labelling schemes.

9.5 Corollary.[9.4] There exists no proof labelling scheme of size o(log(∆D)) for directed
st-reachability. ◁

150

Chapter 10.

Separating by Forbidden Pairs

By Menger’s theorem, the maximum number of arc-disjoint paths from a vertex s
to a vertex t in a directed graph is equal to the minimum number of arcs needed to
disconnect s and t, that is, the minimum size of an st-cut. The max-flow problem
in a network with unit capacities is equivalent to the arc-disjoint paths problem.
Moreover, the max-flow and min-cut problems form a strongly dual pair. We relax the
disjointedness requirement on the paths, allowing them to be almost disjoint, meaning
they may share up to one arc. The resulting almost disjoint paths problem (ADP)
asks for k st-paths such that they share at most one arc pairwise. The separating by
forbidden pairs problem (SFP) is the corresponding dual problem and asks for a set
of k arc pairs such that every st-path contains both arcs of at least one such pair.
In this chapter, we analyse the complexity of these two problems by giving an overview
of results for ADP and proving that SFP is Σ2P-complete, even for acyclic graphs.

In many applications, customers receive various offers from which they can select one or
between which they can switch. Usually, these offers should be as diverse as possible to
provide the customer with many different options. A common use case is the construction
of alternative routes in transportation or road networks. These make sense in this context,
for example to avoid route closures, heavy traffic, or tolls. Another example where
alternative routes are of use is to distribute risk. For example, if dangerous goods need
to be transported regularly, alternative routes that affect different people allow for an
equal risk distribution amongst the people exposed. Several practical algorithms for
computing alternative routes have been developed, see, for example, [Abr+10, AEB00,
Bad+11, DGS05, Jeo+09].

On the graph-theoretic side, the (arc- or vertex-) disjoint paths problem is well-studied.
Determining a maximum number of disjoint st-paths can easily be done using maximum
flow techniques [AMO93]. By Menger’s theorem, this number is equal to the minimum
number of arcs needed to separate s from t. This result is implied by the max-flow
min-cut theorem, which shows that these two problems form a strongly dual pair.

151

Chapter 10. Separating by Forbidden Pairs

The following extension of the disjoint paths problem is also well-understood: given
k pairs of terminals (s1, t1), . . . , (sk, tk), the objective is to find disjoint siti-paths. For
undirected graphs it is solvable in polynomial time if k is constant (see [RS95] for a
cubic and [KKR12] for a quadratic algorithm) and NP-complete in general [EIS76]. In
the case of directed graphs, a single path is easy to find and two paths are already
NP-complete [FHW80]. Vygen [Vyg95] showed that the problem remains NP-complete for
few paths even on very restricted graph classes like acyclic, Eulerian, or planar graphs.

Another possible extension is to ask for k disjoint st-paths that are short, which again
makes sense for routing purposes. Suurballe [Suu74] describes an algorithm for this
problem that is based on shortest path labellings. It is possible to combine both
extensions and ask for shortest paths between different terminals. Eilam-Tzoreff [Eil98]
shows that these problems in all configurations (for directed and undirected graphs with
vertex- or arc-disjoint paths) are NP-complete and provides a polynomial algorithm for
two paths in an undirected graph with positive edge-weights. Berczi and Kobayashi
[BK17] present a polynomial algorithm for the directed version, also for the case of two
paths and positive arc-lengths.

In contrast, the same problem where the paths need not be completely disjoint has
not garnered as much attention in the literature. There are several natural relaxations
of the disjointedness condition: a first option allows arcs to be part of more than one
path, say each arc may be used by two. This problem can be solved in the same way as
the disjoint paths problem, by a maximum flow computation in the graph with arcs of
capacity 2. Another alternative is to allow some arcs, say one, to be part of an arbitrary
number of paths. This, too, can be solved by maximum flow techniques, but requires
one flow computation for each arc. These flows are computed in the graphs where one
arc’s capacity is set to infinity (and the rest remain at capacity 1).

The choice we consider here uses the following relaxation:

10.1 Definition. A set of paths is almost disjoint if every two paths in the set share at
most one edge. ◁

With this definition, we arrive at the problem below.

10.2 Problem. The almost disjoint paths problem (ADP) is given by a digraph D
together with two designated vertices s, t ∈ V D and a natural number k ∈ N. The
question is whether a set of k almost disjoint st-paths exist. ◁

Despite being a natural choice, this problem has not been previously studied. We give
an overview of complexity results regarding ADP in Section 10.1.

Most of the literature on nearly disjoint paths is of a very practical nature as is evidenced
by the initial examples we presented. We now discuss some of the (rarer) theoretical
results that exist for problems similar to ADP. Liu et al. [Liu+18] introduce the k shortest
paths with diversity problem, in which the goal is to find a set of sufficiently dissimilar

152

paths of maximum size (bounded by k). Of such sets, the one that minimises the total
path length is optimal. For this problem, an incorrect NP-hardness proof as well as a
greedy framework is presented. Chondrogiannis et al. [Cho+18] fix said NP-hardness
proof, showing that the problem is indeed strongly NP-hard, and develop an exact
algorithm for it as well as heuristics. Moreover, Chondrogiannis et al. [Cho+20] consider
the problem of finding k shortest paths with limited overlap. They prove that this
variant is weakly NP-hard and develop two exact algorithms for it. The problems here
are similar to ADP in the sense that they look for paths that are sufficiently dissimilar,
though the measures used always result in similarity values between 0 and 1 because
they compare the number of arcs in common with some function based on the lengths
of the two paths. Additionally, they want to minimise the total length of the paths
found.

Inspired by the strong duality of max-flow and min-cut, we make analogous considerations
for our almost disjoint paths problem. By dualising the linear relaxation of an integer
programming formulation, we obtain a dual problem whose integer version we call
separating by forbidden pairs (SFP). Its goal is to select as few arc pairs as possible
such that every st-path in G contains both arcs of at least one chosen pair.

10.3 Definition. Let D be a digraph with two designated vertices s, t ∈ V D. A set of
(unordered) arc pairs A ⊆

(
A D

2

)
separates s and t in D if every st-path contains both

arcs of at least one pair in A. ◁

Again, we formalise SFP in the following problem statement.

10.4 Problem. The separating by forbidden pairs problem (SFP) is given by a di-
graph D, two designated vertices s, t ∈ V D, and a natural number k ∈ N. The question
is whether a set A of k arc pairs exists which separates s and t in D. ◁

While the linear programming relaxations of these problems form a dual pair and thus
have the same objective value [GKT51], the corresponding integer versions are only
weakly dual. Note that in the min-cut problem we select an arc on every st-path whereas
in SFP we select a pair of arcs on every st-path.

Apart from being dual to ADP, SFP adds another level on top of the well-known path
avoiding forbidden pairs problem (PAFP). In the latter problem one is given a set of arc
pairs A and has to identify whether some st-path avoids all pairs in A (meaning SFP asks
for a set that makes the corresponding PAFP instance unsolvable). Originating from
the field of automated software testing [KSG73], PAFP also has applications in aircraft
routing [Bla+15] and biology, for example in peptide sequencing [Che+01] or predicting
gene structures [KVB09]. PAFP is NP-complete [GMO76] and various restrictions on the
set of forbidden pairs have been considered. The problem becomes solvable if the pairs
satisfy certain symmetry properties [Yin97] or if they have a hierarchical structure [KP09]
while it remains NP-hard even if the pairs have a halving structure [KP09] or no two pairs
are nested [Kov13]. The structure of the PAFP polytope has been analysed [Bla+15]

153

Chapter 10. Separating by Forbidden Pairs

and Hajiaghayi et al. [Haj+10] show that determining a path that uses a minimal number
of forbidden pairs cannot have a sublinear approximation algorithm.

Note that some of the referenced papers consider forbidden pairs of vertices instead
of pairs of arcs. However, these two variants can be converted into one another by
standard constructions. In Section 10.2 we show that SFP is Σ2P-complete, even on
acyclic digraphs (which is a natural restriction for the PAFP that most authors assume
there).

This chapter is joint work with Tim Bergner and Sven O. Krumke and a preprint is
available on arXiv [BBK22a].

10.1. An overview of ADP

Chapter setup. As the title of this paragraph indicates, we provide some global
conventions for the entire chapter here.

10.5 Convention. In this chapter, D is a directed graph with designated vertices s
and t. ◁

We also make the following two assumptions on D, that are without loss of generality
for both problems.

10.6 Assumption. Let D be a digraph with designated vertices s and t.

(i) The direct arc st is not contained in D.
(ii) Every arc and every vertex of D is contained in an st-path. ◁

If the direct arc st is contained in the graph, this arc itself forms an st-path. With
respect to ADP this path is disjoint from every other st-path and can always be added
to a set of almost disjoint paths. (Note that it is even almost disjoint from itself, so
if we did not require the solution to be a set of paths, it could be included arbitrarily
often.) Regarding SFP this is a path that never contains a forbidden pair as it only
has length 1. Thus, in every instance containing the direct arc st, s and t cannot be
separated. This justifies Assumption 10.6 (i).

For both problems, ADP as well as SFP, every arc and every vertex that is not contained
in any st-path is irrelevant and can be removed. Hence, we assume such arcs and vertices
do not exist as stated in Assumption 10.6 (ii).

154

10.2. The complexity of SFP

Duality. We noted that the problems ADP and SFP form a pair of weakly dual
problems, meaning they have integer programming formulations whose LP-relaxations
are dual to one another. In contrast to Menger’s theorem, these problems have an
unbounded duality gap, as the following lemma shows.

10.7 Lemma ([BBK22a, Lemma 2.4]). The duality gap between ADP and SFP is
unbounded. ◁

However, the duality gap is not always unbounded. For example, if we restrict ourselves
to graphs that have an st-cut with a single outgoing arc, the duality gap disappears
[BBK22a, Lemma 2.5].

Complexity. The almost disjoint paths problem is in NP, since verifying that paths
are almost disjoint is easy. If we restrict k to being constant, the problem becomes
solvable in polynomial time, by making use of a dynamic program.

10.8 Theorem ([BBK22a, Theorem 1.1]). For constant k, ADP is polynomial-time
solvable. ◁

For k = 2, a quadratic algorithm is obtained by using maximum flow techniques [BBK22a,
Lemma 3.1]. If k is not a constant however, the problem becomes NP-hard.

10.9 Theorem ([BBK22a, Theorem 1.2]). ADP is NP-complete, even on acyclic
digraphs. ◁

10.2. The complexity of SFP

The objective of this section is to prove the following theorem.

10.10 Theorem. [10.20]
[10.21]
[10.22]
[10.23]
[10.24]

SFP is Σ2P-complete, even on acyclic digraphs. ◁

SFP is contained in Σ2P = NPNP since it can be solved by a non-deterministic Turing
machine that has access to an oracle for the NP-complete [GMO76] path avoiding
forbidden pairs problem (see [AB09, Remark 5.16]). In the remainder of this section
we reduce the Σ2P-complete problem Σ2SAT, see Problem 2.16, to SFP proving its
Σ2P-hardness.

155

Chapter 10. Separating by Forbidden Pairs

10.2.1. Notation for the problem Σ2SAT

We already saw the Σ2SAT problem in the preliminaries. In order to work with it here
we first have to introduce some notation.

10.11 Notation. The Boolean formula φ := φ(x, y) depends on nx many x-variables
X := {x1, . . . , xnx} and on ny many y-variables Y :=

{
y1, . . . , yny

}
whose union we

denote by Z := X ∪ Y . A truth assignment T : Z ! {True, False} assigns a Boolean
value to every variable. If we are only interested in the assignments of x- or y-variables,
we write TX : X ! {True, False} as well as TY : Y ! {True, False} and identify T
with (TX , TY), where TX := T

X
and TY := T

Y
. ◁

We say that the instance φ is satisfiable if an x-variable assignment TX exists such that
φ evaluates to True for every y-variable assignment TY .

10.2.2. Outline of the Σ2P-hardness proof

To prove the hardness of SFP, we construct a directed acyclic graph D for such a
Boolean formula φ. For carefully chosen k ∈ N we show that a source s and a target t
in D can be separated by a set A of k forbidden pairs if and only if the Σ2SAT instance φ
is satisfiable.

In this digraph D, most separating pairs are predetermined. Those that are not have
essentially two options, which are used to encode assignments of the x-variables. This
means that an assignment TX of the x-variables corresponds to a selection of forbidden
pairs A and vice versa. An assignment TY of the y-variables will correspond to st-paths
in the digraph that contain a pair from A if and only if the assignment T = (TX , TY)
satisfies a clause. From this we conclude that an assignment TX exists such that
φ evaluates to True for all assignments TY if and only if there exists a small set A such
that every st-path contains a pair from A. However, the construction of the digraph also
generates st-paths that do not correspond to any y-variable assignment TY . To make the
argumentation work, we have to enforce that all these paths contain forbidden pairs.

In the following, we start with non-restrictive assumptions about the Boolean formula φ.
Thereafter, we introduce the different gadgets and concepts required for the final Σ2P-
hardness proof.

10.2.3. Assumptions and assignments

Without loss of generality we may assume that the Boolean formula φ is given in 3-DNF,
that is, in disjunctive normal form where each clause contains exactly three literals, see
[Haa19, Section 2.2.1]. Hence, we can write φ = C1 ∨ . . . ∨ Cm as a disjunction of m
clauses where each clause is the conjunction of three literals.

156

10.2. The complexity of SFP

10.12 Assumption. The Boolean formula φ is given in 3-DNF. ◁

Let us consider a clause consisting entirely of x-variables. If it contains a variable xi

and its negation xi, the clause can never be fulfilled and we can remove it. Otherwise,
we can satisfy this clause (and with it the entire formula φ) solely by an appropriate
x-variable assignment. Hence, we might also assume that every clause contains at least
one y-variable.

10.13 Assumption. No clause of φ consists entirely of x-variables. ◁

Our last assumption is that no variable is contained in a single clause only. This can be
guaranteed, for example, by duplicating all clauses.

10.14 Assumption. Every variable is contained in at least two clauses of φ. ◁

Assumptions 10.12 and 10.13 directly imply the following lemma.

10.15 Observation. Every clause contains either one, two, or three y-variables. ◁

Before we continue, let us give an example of a formula satisfying these assumption:

φ(x, y) = (x1 ∧ y1 ∧ y2) ∨ (x1 ∧ y1 ∧ y2) ∨ (x1 ∧ x2 ∧ y2) ∨ (x2 ∧ y1 ∧ y2) ∨ (x1 ∧ y1 ∧ y2)

is in 3-DNF, every variable occurs at least twice, and no clause consists entirely of
x-variables. It is also a yes-instance to the Σ2SAT problem since setting x1 to True
and x2 to False satisfies all clauses, regardless of what truth values are assigned to the
y-variables.

Before we describe the graph construction in detail, we introduce local as well as global
y-variable assignments and define inconsistencies.

10.16 Notation. The Boolean formula φ := C1 ∨ . . . ∨ Cm is given as a disjunction
of m clauses, where every clause Ci := l1j ∧ l2j ∧ l3j is a conjunction of exactly three literals
lij ∈ {z, z : z ∈ Z}. By Y C we denote the set of y-variables that occur (negated or
otherwise) in a clause C. We call an assignment of these variables a local (y-variable)
assignment and denote it by TY C : Y C ! {True, False}. In the same spirit, we call
TY a global assignment. ◁

10.17 Definition. Two local y-variable assignments L := TY C and L′ := TY C′ for
distinct clauses C and C ′ are consistent if they coincide on Y C ∩ Y C ′. Otherwise, they
are inconsistent and the (unordered) pair I := {L,L′} is an inconsistency. ◁

We are now ready to start with our graph construction, which requires the introduction
of several gadgets.

157

Chapter 10. Separating by Forbidden Pairs

sI tI
vI

1 vI
2 vI

3 vI
4

Figure 10.1.: An inconsistency gadget corresponding to an inconsistency I.

10.2.4. Graph components

Inconsistency gadgets. We start with the simplest gadget, the inconsistency gadget.
It corresponds to inconsistencies and its only purpose is to enforce that a minimal
separating set A contains a specific pair of arcs. We use inconsistency gadgets to ensure
that paths not corresponding to a global y-variable assignment contain a forbidden
pair.

Every inconsistency gadget is a directed acyclic graph as depicted in Figure 10.1. It
consists of an sItI-path with five arcs where the first, third, and last arc is replaced by
two parallel arcs.

10.18 Lemma.(10.22)
(10.23)
(10.24)

The unique optimal solution to separate sI and tI in an inconsistency
gadget by forbidden pairs is AI =

{{
vI

1v
I
2 , v

I
3v

I
4

}}
. ◁

Proof. The set AI separates sI and tI and every separating set needs at least one pair.
Thus, every optimal solution consists of a single forbidden pair. To prove the uniqueness,
suppose there is an optimal solution whose pair contains one of two parallel arcs. In
this case, a path using the other arc does not completely contain this pair, which yields
a contradiction. □

Variable Gadgets. The variable gadgets correspond to the x-variables in φ. Their
purpose is to reflect a truth assignment TX of these variables. That is, there should be
exactly two optimal sets of forbidden pairs in such a gadget: one corresponding to setting
the variable to True and one for making it False. An illustration of such a gadget is
given in Figure 10.2. We now describe its construction in more detail. Thereafter, we
explain what the two separating sets look like and prove that these are indeed the only
two optimal solutions.

Essentially, the variable gadget corresponding to a variable xi consists of two vertices si

and ti that are connected by several paths. Similar to the inconsistency gadgets we
double some arcs on these paths and we link them in a certain way.

The gadget contains an siti-path for every occurrence of xi in the formula φ. More
precisely, the jth occurrence corresponds to a path sivi

j,1 . . . v
i
j,7t

i on which we re-
place the first, fourth, fifth, and last arc by two parallels. Additionally, we add a
path sivi

0,1v
i
0,2v

i
0,3v

i
0,5v

i
0,6v

i
0,7t

i, which is not associated with any occurrence. On this path
we replace the first, fourth, and last arc by two parallel arcs. Furthermore, we introduce
the arcs vi

0,3v
i
j,4 and vi

j,4v
i
0,5 between these paths.

158

10.2. The complexity of SFP

si ti

vi
0,1

vi
1,1

vi
2,1

vi
q,1

...

vi
0,2

vi
1,2

vi
2,2

vi
q,2

...

vi
0,3

vi
1,3

vi
2,3

vi
q,3

...

vi
1,4

vi
2,4

vi
q,4

...

vi
0,5

vi
1,5

vi
2,5

vi
q,5

...

vi
0,6

vi
1,6

vi
2,6

vi
q,6

...

vi
0,7

vi
1,7

vi
2,7

vi
q,7

...

Figure 10.2.: A variable gadget corresponding to variable xi. We use q := qi for the
number of occurrences of xi (including negated literals) in formula φ.

Let qi denote the number of occurrences of variable xi in the formula φ. As there are, by
construction, qi +1 arc-disjoint siti-paths in this gadget, an optimal set of forbidden pairs
separating si and ti must contain at least qi +1 pairs. Thus, the two separating sets Ai :={{
vi

j,1v
i
j,2, v

i
j,2v

i
j,3

}
: j = 0, . . . , qi

}
and Ai :=

{{
vi

j,5v
i
j,6, v

i
j,6v

i
j,7

}
: j = 0, . . . , qi

}
are op-

timal. The following lemma shows that these are, in fact, the only two optimal sets of
forbidden pairs. We identify choosing the separating set Ai with setting xi to True and
choosing Ai with setting xi to False.
10.19 Lemma. (10.22)

(10.23)
(10.24)

The sets Ai and Ai are the only optimal sets of forbidden pairs separ-
ating si and ti in the variable gadget corresponding to variable xi. ◁

Proof. As argued above, an optimal separating set contains exactly qi + 1 pairs, thus
Ai and Ai are optimal separating sets. It remains to prove their uniqueness.

Similarly to the proof of Lemma 10.18 we can show that no forbidden pair of an optimal
solution uses one of two parallel arcs: otherwise, there are still qi + 1 disjoint siti-paths,
none of which completely contains this pair. With the same argumentation it follows
that none of the arcs vi

0,3v
i
j,4 and vi

j,4v
i
0,5 between these paths is contained in a forbidden

pair of an optimal solution.

Thus, all forbidden pairs are composed of arcs of the form vi
j,1v

i
j,2, vi

j,2v
i
j,3, vi

j,5v
i
j,6,

and vi
j,6v

i
j,7. For j ∈ {1, . . . , qi} we consider the four different paths

sivi
0,1 . . . v

i
0,7t

i, sivi
j,1 . . . v

i
j,7t

i, sivi
0,1v

i
0,2v

i
0,3v

i
j,4 . . . v

i
j,7t

i, and sivi
j,1 . . . v

i
j,4v

i
0,5v

i
0,6v

i
0,7t

i.

An optimal solution has to separate these four paths with only two forbidden pairs as
there are qi − 1 disjoint paths in the remaining gadget. This, however, is only possible
if either the pairs {

vi
0,1v

i
0,2, v

i
0,2v

i
0,3

}
and

{
vi

j,1v
i
j,2, v

i
j,2v

i
j,3

}
or the pairs {

vi
0,5v

i
0,6, v

i
0,6v

i
0,7

}
and

{
vi

j,5v
i
j,6, v

i
j,6v

i
j,7

}
are chosen. Since this holds for all j ∈ {1, . . . , qi}, the claim follows. □

159

Chapter 10. Separating by Forbidden Pairs

s0 t0

T 1
Y (C1)

T 2
Y (C1)

T 1
Y (C2)

T 2
Y (C2)

T 3
Y (C2)

T 4
Y (C2)

· · ·

T 1
Y (Cm)

T 2
Y (Cm)

Figure 10.3.: The formula gadget for the formula φ := C1 ∨ C2 ∨ . . . ∨ Cm in 3-DNF.
To distinguish the different possible local assignments of a clause C we
enumerate them T 1

Y C , T 2
Y C , and so on.

Formula Gadget. The formula gadget consists of clause assignment units, which we
describe later, that are ordered in a layered structure. For now it suffices to know that
they have one input vertex and one output vertex, which we use to connect them. By
Observation 10.15, every clause C of φ, contains l ∈ {1, 2, 3} many y-variables. For
every of the 2l possible local y-variable assignments L := TY C for C we introduce one
such clause assignment unit. We denote its input vertex by sL and its output vertex
by tL. This yields either two, four, or eight clause assignment units for each clause.

The jth layer of the formula gadget consists of all clause assignment units corresponding
to the jth clause of φ. A source s0 is connected to the input sL of every clause assignment
unit corresponding to a local assignment L := TY C1 of the first clause. In addition, we
connect the clause assignment units of consecutive clauses in the formula gadget by
complete bipartite graphs. Finally, we connect every output tL of a unit corresponding
to the last clause Cm with the target t0. This construction is visualised in Figure 10.3.

Most clause assignment units provide paths from their input to their output vertex.
Therefore, s0t0-paths through the formula gadget pass through exactly one clause
assignment unit of every layer. This way, every such path selects a local y-variable
assignment for every clause. If these are consistent, that is, if every y-variable is assigned
the same truth value in each local assignment of a clause that contains it, they can
be combined to a global y-variable assignment. Conversely, we can also associate an
assignment TY with an s0t0-path which uses, in every layer, the clause assignment unit
corresponding to TY C = TY Y C

for the respective clause C.

Thus, the paths through the formula gadget are linked with the global y-variable
assignments. Our goal is to ensure that any such path contains a forbidden pair if and
only if the associated assignment satisfies the formula φ (in conjunction with the x-
variable assignment). For this, the variable gadgets will play an important role. However,
we also have to take those paths into consideration that do not correspond to consistent
y-variable assignments. In order to ensure that these paths contain forbidden pairs as
well, we will make use of the inconsistency gadgets.

160

10.2. The complexity of SFP

s t

D1

D2

s1 t1

s2 t2

Figure 10.4.: An exemplary typification construction. The bold arcs ss1, ss2, t1t, and
t2t represent bunches of p parallel arcs. The even thicker arcs s1t2 and s2t1

represent bunches of p+ 1 parallel arcs.

Typification. All the gadgets introduced until now need to be part of st-paths in the
final graph. Our construction so far has only looked at paths living entirely in one of
these gadgets. Since it will be possible to travel between gadgets later, new paths arise.
In particular, we obtain ‘mixed’ paths that start at the source of one gadget and end at
the terminal of another. In order to keep these mixed paths in check when we finally
put these pieces together we need the concept of typification.

To explain the idea of typification, we start with a small example. Let two disjoint
digraphs D1 and D2 be given. In each digraph Di we want to separate a source si and a
target ti by forbidden pairs. However, we want to combine these two digraphs to a single
digraph D without affecting the optimal choice of forbidden pairs, that is, we still only
want to select pairs in D1 and D2. Simply adding a source s, a target t, and connecting
these with arcs ss1, ss2, t1t, and t2t does not suffice as the combined instance can always
be separated by the two forbidden pairs {ss1, t1t} and {ss2, t2t}. But if we know that
p− 1 pairs are sufficient to separate Di for i ∈ {1, 2}, we can replace each of the four
additional arcs by a bunch of p parallel arcs. In other words: if ki pairs are sufficient to
separate Di, we can choose any p > max {k1, k2}. Therefore, an optimal solution in the
combined instance only uses arcs that are contained within the subgraphs D1 and D2.

If we also add p + 1 parallel arcs from s1 to t2 as well as from s2 to t1, we have to
choose forbidden pairs separating all paths ss1t2t and all paths ss2t1t. These paths
only consist of additional arcs not contained in the original digraphs D1 and D2. The
unique optimal solution to separate these paths is to choose the 2p2 forbidden pairs
that combine an arc ss1 with an arc t2t and an arc ss2 with an arc t1t. Thus, we can
separate D1 by k1 forbidden pairs and D2 by k2 forbidden pairs if and only if we can
separate D by 2p2 + k1 + k2 forbidden pairs. This situation is visualised in Figure 10.4.

The reason we introduce these additional arcs is because they help us weed out mixed
paths: if we allow arcs between D1 and D2 in D, then it becomes possible to obtain st-
paths containing si and tj for i ≠ j. By adding the additional ‘diagonal’ arcs s1t2

161

Chapter 10. Separating by Forbidden Pairs

and s2t1 we enforce the choice of all 2p2 pairs {ssi, tjt} for i ̸= j and, thus, ensure that
these mixed paths are already saturated with at least one pair. This just leaves paths
that start with ssi and end with tit. We only have to examine whether all paths of these
two types contain a forbidden pair or not. Note that this does include paths that are
not solely part of a subgraph Di, as they can leave and return, but it does reduce the
potential paths without a forbidden pair immensely.

This construction can be generalised to encompass more than only two types. For q
subgraphs D1, . . . , Dq with sources si and targets ti, i ∈ {1, . . . , q}, we can add p parallel
arcs from s to every source si and from every target ti to t. Additionally, we add p+ 1
parallel arcs sitj for all i, j ∈ {1, . . . , q} with i ̸= j. Every optimal solution has to use
the p2 forbidden pairs of arcs {ssi, tjt} of different types i ≠ j. Thus, every optimal
solution has p2q(q − 1) forbidden pairs and, additionally, the pairs required to separate
all paths of the q different types (all paths using ssi and tit for some i). We intend to
use this to give all inconsistency gadgets, all variable gadgets, as well as the formula
gadget their own type.

Clause Assignment Units and Graph Construction. To construct the digraph
corresponding to formula φ we use the formula gadget, a variable gadget for every
x-variable, and several inconsistency gadgets. More precisely, for every pair of clause
assignment units (within the formula gadget) that corresponds to incompatible assign-
ments we introduce one such inconsistency gadget. All these gadgets are combined into
the digraph D as explained in the typification section.

Let us describe the graph construction in detail. That is, we finally have to specify what
the clause assignment units look like and how these are connected to the other gadgets.
Recall that the formula gadget contains a clause assignment unit for every clause C and
every possible assignment TY C of Boolean values to the y-variables contained in C. As
already stated in the formula gadget section, these are 2l clause assignment units for a
clause with l many y-variables.

A clause assignment unit corresponding to a y-variable assignment L of a clause C
contains exactly three vertices: sL, vL, and tL. Note that we use sL and tL in order
to connect the clause assignment units in the formula gadget as described above. The
vertices vL and tL are connected by an arc vLtL if and only if C contains at least one
y-literal that evaluates to False with the y-variable assignment L. This arc is missing in
exactly one clause assignment unit corresponding to a clause C as there is only exactly
one assignment TY C that satisfies all y-literals in C.

These are all components within a clause assignment unit. In particular, the clause
assignment units are not connected and, thus, neither is the formula gadget. The following
modifications only add some arcs between different gadgets. These are illustrated by
dashed arcs in Figures 10.5 to 10.7.

162

10.2. The complexity of SFP

sL · · ·
vL

tL

P L

Figure 10.5.: A clause assignment unit. It corresponds to a local y-variable assignment L
for clause C containing a single x-variable. The assignment L does not
fulfil all y-literals of C as the arc vLtL is present. The coloured, solid arcs
are contained in other gadgets and the dashed arcs connect these, see also
Figures 10.6 and 10.7.

si ti

vi
0,1

vi
1,1

vi
2,1

vi
q,1

...

vi
0,2

vi
1,2

vi
2,2

vi
q,2

...

vi
0,3

vi
1,3

vi
2,3

vi
q,3

...

vi
1,4

vi
2,4

vi
q,4

...

vi
0,5

vi
1,5

vi
2,5

vi
q,5

...

vi
0,6

vi
1,6

vi
2,6

vi
q,6

...

vi
0,7

vi
1,7

vi
2,7

vi
q,7

...

Figure 10.6.: A variable gadget with the connections to clause assignment units. New,
in comparison to Figure 10.2, are the blue and the dashed orange arcs
which correspond to those from Figure 10.5. In this example, the first and
last occurrence of the corresponding x-variable occurs non-negated and the
second occurrence is negated.

sI tI
vI

1 vI
2 vI

3 vI
4

Figure 10.7.: An inconsistency gadget with its connections to clause assignment units
or other inconsistency gadgets. The red and the dashed green arcs are
newly introduced in comparison to Figure 10.1 and correspond to those
from Figure 10.5.

163

Chapter 10. Separating by Forbidden Pairs

In addition to the (potentially non-existing) arc vLtL, we add another path from vL to tL
for every x-literal contained in C. The path of a literal corresponding to variable xi

passes through the variable gadget of xi. If the occurrence of xi in C is the jth occurrence
in φ in total, this path uses either the arcs vi

j,1v
i
j,2 and vi

j,2v
i
j,3 (if C contains the literal xi)

or the arcs vi
j,5v

i
j,6 and vi

j,6v
i
j,7 (if C contains the literal xi). In the former case we add the

inter-gadget arcs vLvi
j,1 and vi

j,3t
L and in the latter case we add vLvi

j,5 as well as vi
j,7t

L.
These connecting arcs are indicated by dashed orange arcs in Figures 10.5 and 10.6.

Additionally, we introduce arcs between different gadgets that provide paths from sL to vL.
For this, we introduced one inconsistency gadget for every inconsistency which connect
them as follows. A clause assignment unit corresponding to an assignment L := TY Ci

of clause Ci gets an sLvL-path PL that passes through every inconsistency gadget for
an inconsistency I =

{
L, TY Cj

}
containing L. In such a gadget, this path uses either

the arc vI
1v

I
2 (if j > i) or the arc vI

3v
I
4 (if j < i). The path PL collects all these arcs

in arbitrary order by introducing further arcs between them. The connecting arcs are
indicated by dashed green arcs in Figures 10.5 and 10.7.

Magnitudes and Parameters. Recall that we denote the number of clauses of the
formula φ := C1 ∨ . . . ∨ Cm by m and the number of x- and y-variables by nx and ny,
respectively (compare Notations 10.11 and 10.16). Also as before, let qi denote the
number of occurrences of the ith x-variable xi in the formula φ. Additionally, we denote
the number of inconsistencies by nI .

The digraph of the corresponding SFP instance consists of one formula gadget, nx variable
gadgets, and nI inconsistency gadgets. The formula gadget consists of at most eight
clause assignment units per clause. Hence, we have O (m) clause assignment units.
Moreover, since we have at most one inconsistency gadget for every pair of clause
assignment units, we have nI ∈ O (m2).

As shown in Lemmas 10.18 and 10.19 we need one forbidden pair to separate sI and tI

in the inconsistency gadget for I and qi + 1 forbidden pairs to separate si and ti in the
variable gadget for xi. Since the formula gadget itself is not connected, we do not need
additional forbidden pairs for it. Thus, for the typification framework, we choose

p = max
i=1,...,nx

qi + 2 (10.1)

and add p parallel arcs from a source s to all input vertices of variable and inconsistency
gadgets as well as to the formula gadget. That is, we add all parallels of the form ssi,
ssI , and ss0. Analogously, we add p parallel arcs from every such output vertex to a
target t resulting in parallels tit, tIt, and t0t. Furthermore, we add p+ 1 parallel arcs
from every input vertex of such a gadget to the output vertices of all other gadgets. In
total, we introduce

2p(nx + nI + 1) + (p+ 1)(nx + nI + 1)(nx + nI) ∈ O
(
m5
)

164

10.2. The complexity of SFP

arcs for the typification, where the claimed asymptotic complexity O (m5) follows since
nI ∈ O (m2) and since both nx and p are bounded by the number 3m of literals in φ.
As explained in the typification section we need

k0 = p2(nx + nI + 1)(nx + nI) (10.2)

pairs to separate s and t in the graph that only consists of arcs introduced for typification.
We show in the analysis subsection below that we can separate the digraph D by

k = k0 + nI +
nx∑
i=1

(qi + 1) (10.3)

forbidden pairs if and only if the Boolean formula φ has an x-variable assignment such
that φ evaluates to True for every y-variable assignment.

10.2.5. Analysis

So far, given a Boolean formula φ, we have constructed an SFP instance D with source s
and target t and specified the number k of forbidden pairs. In the following, we use this
to give a proof for Theorem 10.10, divided into Lemmas 10.20 to 10.24.

10.20 Lemma. (10.10)The digraph D that is constructed as described above is acyclic. ◁

Proof. As a digraph is acyclic if and only if it exists a topological ordering, we prove the
claim by specifying such a topological ordering for D. However, we do not explicitly map
every vertex to a natural number. Instead, we describe a procedure how to obtain the
order of the vertices. The reason is that we have to insert some vertices in between others
multiple times. This would make a formal definition of this mapping quite technical.

In a first step, we enumerate all vertices in the formula gadget together with the interior
vertices from inconsistency gadgets. Here, the ‘interior vertices’ of an inconsistency
gadget for an inconsistency I are the vertices vI

1 , . . . , v
I
4 . Note that each arc of the

form vI
1v

I
2 and vI

3v
I
4 is contained in an sLvL-path PL of some clause assignment unit.

We start to enumerate the vertices in clause assignment units corresponding to the first
clause C1. There, we first enumerate the paths PL of assignments L for C1 followed
by the output vertices tL of the corresponding gadgets. Afterwards, we proceed in the
same way with the subsequent clauses. This procedure is visualised in Figure 10.8.

By enumerating the formula gadget this way, for i < j, every vertex corresponding to
a clause Ci gets a lower number than every vertex corresponding to clause Cj. This
holds, in particular, for the vertices on the sLvL-paths PL in the clause assignment
units. For every inconsistency I := {L,L′} with L := TY Ci

, L′ := TY Cj
and i < j, the

path PL uses the arc vI
1v

I
2 and the path PL′ uses the arc vI

3v
I
4 within the corresponding

inconsistency gadget. Thus, the partial topological ordering defined up to this point is
not only consistent with all arcs of the formula gadget and the arcs in between formula
and inconsistency gadgets, but also within all these inconsistency gadgets.

165

Chapter 10. Separating by Forbidden Pairs

s0 t0· · · · · ·

Figure 10.8.: A topological ordering of the formula gadget. Here, a schematic representa-
tion of how to enumerate the vertices in a formula gadget for a topological
ordering is shown. The sLvL-paths within the clause assignment units are
drawn as wavy lines. The paths and lines that might connect vL and tL are
only indicated. This visualises the first step in the proof of Lemma 10.20.

It remains to be proved that we can extend this partial ordering to the variable gadgets
and the missing in- and output vertices. The latter are, however, no problem as we can
put all input vertices at the beginning and all output vertices at the end, directly after s
or before t (except for the in- and outputs of clause assignment units that already are
assigned a number in the first step).

Thus, in a second step, we have to assign numbers to the vertices of the variable gadgets.
Such a variable gadget corresponding to a variable xi consists of qi + 1 many siti-paths.
With the exception of the additional path, every path corresponds to one occurrence
of this variable. Let us consider the jth occurrence and let C be the corresponding
clause. Depending on whether xi occurs negated or not, we have restrictions either
for the values of vi

j,5 and vi
j,7 or for the values of vi

j,1 and vi
j,3, respectively (as those

have arcs to vertices in clause assignment units that are already assigned a number).
In particular, we only have restrictions on the ‘left half’ or on the ‘right half’ of the
path but not on both. In the case the jth occurrence is not negated, we assign the
vertices vi

j,1, . . . , v
i
j,3 increasing values that we insert in between the highest number of

a vertex vL and the lowest number of a vertex tL in the topological ordering for every
assignment L of clause C. Note that we have enumerated these vertices in the first
phase, such that the highest number of a vertex vL is in fact smaller than the lowest
number of a vertex tL for all assignments L of clause C.

As all paths in the variable gadget are only connected to the additional path

sivi
0,1v

i
0,2v

i
0,3v

i
0,5v

i
0,6v

i
0,7t

i,

we can extend the partial topological ordering within every variable gadget. Therefore,
we can assign vi

0,1, vi
0,2, and vi

0,3 values that are smaller and vi
0,5, vi

0,6, and vi
0,7 values

that are larger than any values of vertices within the variable gadget. Thereafter, we
can insert the ‘missing half’ of paths accordingly. □

166

10.2. The complexity of SFP

10.21 Lemma. (10.10)The digraph D corresponding to the formula φ is of polynomial size
and it can be constructed in polynomial time, both with respect to the size of φ. ◁

Proof. For a given instance φ = C1 ∨ . . . ∨ Cm with nx many x-variables, let D be the
digraph as described in this section. Its size is polynomial in the size of φ as it contains
O (m) clause assignment units, nx variable gadgets, and O (m2) inconsistency gadgets.
The size of the clause assignment and inconsistency gadgets is constant and the size of
a variable gadget is linear in the number of occurrences of the corresponding x-variable.
We add O (m5) arcs for the typification and to see that also only polynomially many arcs
connect different gadgets we can associate these to at least one of the two corresponding
gadgets. Every inconsistency gadget is connected by exactly four inter-gadget arcs and
every clause assignment unit is connected by either two, four, or six arcs. All the arcs
connecting a variable gadget to other gadgets have their other endpoint in a clause
assignment unit and are thus already considered. Hence, the number of inter-gadget
arcs is polynomially bounded. Moreover, we can also construct the digraph D from the
formula φ in polynomial time. □

10.22 Lemma. [10.18]
[10.19]
(10.10)
(10.24)

At least k forbidden pairs are required to separate s and t in D, where
k is defined as in Equation (10.3) on Page 165. ◁

Proof. This follows from the typification construction. Every set of forbidden pairs A
has to contain

• the k0 pairs to separate the graph that consist only of typification arcs,
• the nI pairs to separate all inconsistency gadgets (see Lemma 10.18), and
• for every xi either Ai or Ai (see Lemma 10.19). □

10.23 Lemma. [10.18]
[10.19]
(10.10)

If the Σ2SAT instance φ is satisfiable, then we can separate s and t
in D by k forbidden pairs, where k is defined as in Equation (10.3) on Page 165. ◁

Proof. If φ is satisfiable, then there is an x-variable assignment TX such that φ evaluates
to True no matter which values are assigned to the y-variables. We define a set A of
forbidden pairs depending on TX as follows.

First, A contains the k0 forbidden pairs that separate the graph only consisting of
typification arcs. Secondly, it contains the nI pairs that separate all inconsistency
gadgets, compare Lemma 10.18. And finally, we choose a separating set for every x-
variable xi. If TX(xi) = True, we use the separating set Ai. Otherwise, we use Ai. See
Lemma 10.19 for more information on these two sets.

By Equation (10.3) and Lemmas 10.18 and 10.19 we have chosen k forbidden pairs.
Moreover, by the typification construction, all paths that do not use any gadget and
those whose first and last gadgets are not the same contain a forbidden pair.

It remains to prove that every path that enters a gadget via a direct arc from s and
leaves this gadget via a direct arc to t completely contains at least one forbidden pair.
We consider the different gadgets.

167

Chapter 10. Separating by Forbidden Pairs

First, consider an inconsistency I and the corresponding inconsistency gadget DI . Every
path entering DI via ssI must also use the arc vI

1v
I
2 . Analogously, every path leaving

DI via tIt must also use the arc vI
3v

I
4 . Thus, every path entering and leaving this gadget

via input sI and output tI contains the forbidden pair
{
vI

1v
I
2 , v

I
3v

I
4

}
that we have chosen.

Next, consider the variable gadget Di for a variable xi. Similarly to the inconsistency
gadget, a path entering Di via si can leave Di at some vertex vi

j,3 at the earliest and,
thus, such a path has to contain the pair

{
vi

j,1v
i
j,2, v

i
j,2v

i
j,3

}
. Analogously, a path leaving

Di via ti must enter Di at some vertex vi
j′,5 at the latest and, thus, this path has to

contain the pair
{
vi

j′,5v
i
j′,6, v

i
j′,6v

i
j′,7

}
. At least one of these two pairs is contained in the

set of forbidden pairs we have chosen.

Finally, let us consider the formula gadget and let P be a path that enters the gadget
via s0 and leaves it finally via t0. The path P passes through multiple inconsistency
gadgets. If it uses more than one arc from one of them, it directly contains the forbidden
pair chosen in this inconsistency gadget. Thus, we can assume that P uses at most one
arc from every inconsistency gadget.

If the path P leaves some clause assignment unit for a clause C via an arc to a variable
gadget, it has to leave this variable gadget via an arc to the vertex tL of a clause assign-
ment unit that also corresponds to clause C. Thus, for every clause, this path enters
exactly one clause assignment unit via its input sL and uses the sLvL-path PL therein.
Consequently, if P passes through clause assignment units corresponding to inconsist-
ent assignments L and L′, it contains the forbidden pair contained in the inconsistency
gadget for I = {L,L′}.

Therefore, we can assume that P enters only clause assignment units corresponding to
consistent assignments. This allows us to define a global y-variable assignment TY by
combining the local clause assignments related to the clause assignment units that P
enters via sL. As φ is satisfiable and TX is chosen appropriately, we have that φ evaluates
to True with T = (TX , TY). In particular, there is at least one clause C that is fulfilled.
Let us consider the clause assignment unit associated with C that P enters via sL. Since
this clause is fulfilled, all y-literals are True and, thus, the arc vLtL is not present. Hence,
the path P has to pass through an x-variable gadget. However, as this x-literal in C is
also True, by the construction of the digraph and the choice of the forbidden pairs, P
has to use a forbidden pair in this variable gadget.

In all possible cases, the path P contains a forbidden pair. Thus, s and t can be
separated in D by k forbidden pairs. □

10.24 Lemma.[10.18]
[10.19]
[10.22]
(10.10)

If the Σ2SAT instance φ is not satisfiable, we cannot separate s and t
in D by k forbidden pairs, where k is defined as in Equation (10.3) on Page 165. ◁

Proof. Suppose for the sake of a contradiction that we can separate s and t in D by k
forbidden pairs.

168

10.2. The complexity of SFP

By Lemma 10.22 we need at least k forbidden pairs. By the typification construction
and by Lemmas 10.18 and 10.19 we have to choose the forbidden pairs from Ai or Ai

in a variable gadget corresponding to variable xi.

We define an x-variable assignment TX based on this set of forbidden pairs. A variable xi

is set to True if we have chosen Ai to separate its variable gadget. Otherwise, if we
have chosen Ai, we set xi to False.

As φ is not satisfiable, there exists a y-variable assignment TY such that φ evaluates to
False with T = (TX , TY). This y-variable assignment TY corresponds to exactly one
clause assignment unit TY C = TY Y C

for every clause C. We now construct an st-path
in D that does not contain a forbidden pair: this path starts with the arc ss0 and ends
with t0t. For every clause C it passes through the clause assignment unit corresponding
to L = TY Y C

where it first uses the sLvL-path PL. If the clause contains a y-literal that
is False, the path continues along the arc vLtL that is present in this case. Otherwise,
there is an x-literal that is not fulfilled. In this case, there exist a vLtL-path through
the corresponding variable gadget using two arcs that are not chosen as a forbidden pair
(as this literal is False).

The path constructed this way does not contain a forbidden pair from a variable gadget.
It does not contain a forbidden pair from an inconsistency gadget either as it uses at
most one arc from every inconsistency gadget. This is the case because it only uses
consistent assignments for the clauses. And since the path does not contain a forbidden
pair used to separate the graph consisting of only typification arcs, the path does not
contain a forbidden pair at all. This contradicts our initial assumption and the proof is
complete. □

10.2.6. A note on parallels

Since we are usually primarily concerned with simple graphs, we take a look at the
necessity of parallels in the reduction we just presented. Parallels appeared in the
inconsistency and variable gadgets as well as in the typification construction. For those
occurring in the gadgets, this was purely a cosmetic choice. Subdividing these arcs
removes the parallels and still ensures that neither of the ‘parallel replacement arcs’ are
used in a forbidden pair.

However, the typification construction breaks if we simply subdivide the parallels. To see
this, recall the example from Figure 10.4 where we needed 2p2 pairs, together with those
required to separate D1 and D2. If we now subdivide all parallels, we suddenly have
access to the pairs consisting of both arcs on these newly created length 2 paths. Using
these, we can separate s and t using just 2p pairs, none of which touch the graphs Di at
all.

This issue can be remedied by the following construction: the p + 1 parallels from si

to tj for i ≠ j are replaced by M := q2p2 many and subdivided, where q is the number

169

Chapter 10. Separating by Forbidden Pairs

s

tj

si

t

s

tj

s̃i

t̃j

si

t
M

tim
es

Figure 10.9.: Replacing the parallels in the typification construction. Each arc in a
bundle of parallels out of s or into t is replaced by an arc that is followed
by M parallels, each of which is then subdivided.

of graph types in use, as in the typification paragraph. The p parallels from s to si or
from ti to t are replaced as illustrated in Figure 10.9.

We assume that p ≥ 2 (we set it to 2 otherwise) and claim that, with this construction, it
is again optimal to pick q(q − 1)p2 pairs, together with those needed to separate the Di.
That this many suffice can be seen as before, except that this time we choose the pairs{
ss̃i, tj t̃j

}
instead of {ssi, tjt}.

We now just need to verify that fewer pairs are not possible. To this end, let A be a
minimal set of pairs. We show that A contains no pair with an arc in a length 2 path
from si to tj : to see that this holds, suppose A has a pair {a, a′} where a is on a length 2
path. Then there exists an st-path P that only contains this pair by the minimality of A.
In P , we can replace the length 2 path containing a by any of the M − 1 alternatives, at
least one of which does not contain an arc in a pair of A since |A| ≤ q(q − 1)p2 < M .
Hence, this replacement avoids all pairs in A, a contradiction.

In the same fashion, we conclude that no pair contains an arc on the paths from s̃i

to si or from t̃j to t. Hence, we are only left with the pairs presented above that can
possibly separate the st-paths of length 8 that avoid the graphs Di, making this choice
optimal.

170

Chapter 11.

Conclusion and Future Research

Many combinatorial proofs contain a significant number of case distinctions, a statement
which is also true for several proofs in this thesis. While these yield results, they are
often hard to read, especially if little work is put into structuring and illustrating them.
As a result, such proofs generally do not scale well if they are done for a special case,
even if a majority of the arguments carry over to a more general setting. In our study of
the 3-decomposition conjecture, we encountered two such proofs and put emphasis on
making them more scalable.

The first one is our proof that star-like cubic graphs satisfy the 3-decomposition conjecture.
It is true that the proof we presented is not the shortest way to obtain the result, but
shortening the proof comes at the cost of readability and several insights are lost in
the process. Instead, we structured it in a way that first describes decompositions that
can be obtained in the restriction to a cycle, where the star-like structure plays no role
yet. After investing the time to properly define these decompositions and prove that
they exist, we easily derive the result for star-like graphs. However, we now also know
decompositions we can use in a more general setting, where the cycles are not nicely
arranged in a star. We believe that tree-like graphs are within reach by employing similar
methods.

The second example of a proof requiring many case distinctions and which does not
scale well is our proof that the 3-decomposition conjecture holds for path-width 4. First,
we proved this in the usual way, by looking at all the cases, and then determined the
steps responsible for most of the manual labour required. These are: the finding of local
structures that behave nicely with respect to 3-decompositions and the checking that
small path-width makes one of these appear. We show how both steps can be largely
automated, making them feasible for larger graphs and path-width values. With the
algorithmic support provided, it should be possible to prove the result for path-width 5,
though it seems to require either a non-negligible number of larger graphs that can
easily be seen to behave well or a clever argument to show that some smaller subgraph
is compatible with 3-decompositions.

We note that the procedure we use to find compatible local structures is specific to the
3-decomposition conjecture. However, our algorithm for determining whether small path-
width implies the existence of certain subgraphs is more general and can theoretically be

171

Chapter 11. Conclusion and Future Research

applied to many conjectures. It does benefit from somewhat restrictive graph classes
though, such as cubic or, more generally, regular graphs.

Aside from this main narrative, we also looked at two connectivity problems. We proved
a tight lower bound on the number of bits needed to locally certify the standard st-
reachability problem on digraphs for (a concept slightly stronger than) proof labelling
schemes. While the undirected case is easy and known, the directed case was missing a
lower bound, even in a very restricted setting. Ideally, one would want a lower bound for
the stronger concept of locally checkable proofs, though a different construction appears
to be needed for this.

We also studied the separating by forbidden pairs problem, which is the dual to a very
natural generalisation of the disjoint paths problem in which paths are allowed to share
up to one arc, pairwise. This almost disjoint paths problem has garnered little to no
attention in the literature, despite the fact that disjoint paths are well-studied. We
obtained first complexity results here, but a further investigation of the almost disjoint
paths problem and its duality is an interesting new research direction.

172

Appendix A.

Straightforward Extensions of 3-Decompositions

Here we go over the straightforward local behaviours of the extensions to the K2,3, the
claw-square, the domino, the Pet−, and the twin-house that we omitted in Chapter 5.
We specify these in the same way we did for the triangle in Figure 5.5, by determining
the possible local behaviours at the smaller graph and showing how to extend them.
We also reduce the number of local behaviours required for the square by employing
switching arguments.

The K2,3. Recall the extension shown in Figure 5.6a. We determined the local
behaviours of the single vertex in Figure 5.4 and, because the K2,3 is symmetric, we
only need to check these three cases. For each, Figure A.1 shows how to extend these to
the K2,3.

The Pet−. For the extension from Figure 5.7a we need the same three behaviours as
above, since the Pet− is also symmetric. The second one is covered in Lemma 5.14, and
the remaining two are shown in Figure A.2.

Figure A.1.: Extending a 3-decomposition from a vertex to a K2,3. (5.12)

Figure A.2.: Extending a 3-decomposition from a vertex to a Pet−. (5.14)

173

Appendix A. Straightforward Extensions of 3-Decompositions

Figure A.3.: Behaviour of a 3-decomposition at an edge (without reflections).

Figure A.4.: Extending a 3-decomposition from an edge to a domino.(5.12)

The domino, part I. Next, we look at the extension in Figure 5.6c. For this, we first
need to look at the possible behaviours of a 3-decomposition of G at the edge u1u2 we
are extending. If the edge is in C, then one further edge at each end must also be in C
with the remaining two being part of T . This yields, up to reflectional symmetry at the
horizontal and vertical axis, the first two cases in Figure A.3. Note that both the edge
and the domino have these two symmetries, such that it suffices to consider one of the
symmetrical cases.

Next, assume that u1u2 is in M , then all remaining edges are in T , giving us the third
case. For all other cases, we have u1u2 ∈ T and we need to distinguish the behaviour
of the remaining edges. Should one of them be in C, say one at u1, then both at this
vertex are and at least one at u2 is in T . This gives us the fourth and fifth case.

We may now assume no edges are in C and only need to consider the number of M -edges
left. If there are none, all edges must be in T . A single M -edge just yields one case up
to symmetries and two give us two more. More than two are not possible.

In total, there are nine types of behaviours to check, all of which give rise to a straight-
forward extension to the domino, as shown in Figure A.4.

Local behaviours of the square. All remaining extensions start from the square,
which is why we first check which local behaviours 3-decompositions can exhibit. After-
wards, we use switching arguments to eliminate behaviours that need not be considered.
Let u1u2u4u3u1 be a square (as seen in Figure 5.10) in a graph G with 3-decompo-
sition (T,C,M). The possibilities obtained initially are shown in Figure A.5, up to
rotational symmetry.

174

Figure A.5.: Behaviours of a 3-decomposition at a square (without rotations).

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

Figure A.6.: The local behaviours of the square that suffice to be checked. These are
all behaviours shown in Figure A.5, including the rotations, but excluding
ones removed by the transformations shown in Figure A.7.

We first distinguish cases based on the number of edges of C in the square. If there are
four such edges, then the remaining edges with an end in the square must be part of T .
It is not possible for exactly three edges to be in C as this isolates an edge. In the case
of two edges, they form a path between two non-adjacent vertices and all other edges
are in T , yielding just one case with four rotations. For a single edge, we need each
of its ends to be incident to another edge in C that leaves the square. Thus, the last
remaining edge at the ends is part of T . The final edge of the square can then be in M ,
resulting in two more T -edges, or in T , resulting in at most one M -edge. This gives the
next four cases, each of which has four rotations.

This just leaves the case without any C-edges in the square. We now differentiate by the
number of M -edges, where zero, three, and four are impossible. Two M -edges must be
opposite and all other edges are in T , resulting in one case with two rotations. If there
is just a single M -edge, it comes with five T -edges (three in the square and two more at
its ends). The remaining two can be any combination of M - and T -edges, yielding a
total of four more cases with four rotations each.

The total number of cases is now 39, so significantly more than we want to check for
each extension, which is why we show how these can be reduced to the 18 shown in
Figure A.6. This is done by locally changing the decomposition of the eliminated cases
into one that is still present.

The switches used to achieve this are shown in Figure A.7 and we describe each of them
here in turn. For the first one we note that the length 2 paths through the square can

175

Appendix A. Straightforward Extensions of 3-Decompositions

or

Figure A.7.: The transformations used to eliminate cases for the square. By replacing
the left decomposition with the right one (or, in the last case, with one of
the ones on the right) a new 3-decomposition is obtained.

be used interchangeably, removing the two edges of the tree creates two isolated vertices
that are reconnected by using those previously in a cycle, saving us two cases.

Next, consider the case with a single C-edge u1u2 where the edge at u3 that is not in the
square is in the matching. By removing the T -edge u3u4, we get two components, one
of which is the edge u1u3. By moving the M -edge at u3 to the tree, these components
are unified, giving us a new tree. The analogous transformation works if the M -edge is
at u4 and for all rotations, saving us eight cases in total.

This completes the reduction of cases with C-edges. Let us now consider the case in
which the square contains a single M -edge, say u2u4 and there is a second one at u3.
Adding the edge u2u4 to the tree yields the square as the unique cycle and we can remove
u1u2 to create a new spanning tree and 3-decomposition. As this works for the four
rotations, we save another four cases. We can also remove three of the four rotations of
the square with one M -edge and only T -edges elsewhere with the same argument.

Finally, the graph with M -edges u1u2 and u3v3 can be reduced to one of the two cases
with two M -edges, reducing the total number of cases by four yet again. To see this, note
that adding the M -edge at u3 to the tree yields a cycle. If it uses the edge u3u4, we put
it into the matching instead and get a new 3-decomposition. Otherwise, the edge u3u1 is
used and the cycle consists of this edge and a path from u1 to u3 that does not meet
the square. But we have already seen that we may exchange the edges u1u2 and u2u4
and in the resulting graph the cycle obtained when adding the M -edge at u3 to the tree
remains unchanged. This lets us swap it with u1u3 to obtain a new 3-decomposition.

We have now completed the switches. Note that there are symmetric cases amongst the
remaining 18, but the symmetries we may use also depend on which are present in the
extension. We cannot use ninety degree rotations, for example, as neither the domino,
the twin-house, nor the claw-square have this symmetry.

176

Figure A.8.: Extending a 3-decomposition from a square to a claw-square. (5.12)

The claw-square. We can now look at extension of the square to the claw-square,
seen in Figure 5.6b. Here we can eliminate the behaviours at position 6, 7, 10, 11, 13,
16, and 17 in Figure A.6 by symmetry. We are left with the eleven behaviours shown in
Figure A.8.

The twin-house. The next extension of the square that we consider is the one to the
twin-house, seen in Figure 5.8a. Of the behaviours from Figure A.6, we can omit the
ones at position 7, 11, and 17, by symmetry. We have covered behaviours 13 and 14 in
Lemma 5.17, leaving the thirteen shown in Figure A.9.

The domino, part II. We finish by completing the missing extension for the domino,
seen on the right of Figure 5.10. Of the behaviours from Figure A.6, we can omit the
following due to the domino’s symmetries: 3, 6, 7, 10, 11, 16, and 17, where the number
indicates their position. We have covered behaviour 15 in Lemma 5.17, leaving the ten
shown in Figure A.10.

177

Appendix A. Straightforward Extensions of 3-Decompositions

Figure A.9.: Extending a 3-decomposition from a square to a twin-house.(5.15)

Figure A.10.: Extending a 3-decomposition from a square to a domino.(5.17)

178

Bibliography

[AAA18] E. Aboomahigir, M. Ahanjideh, and S. Akbari. Decomposing Claw-Free
Subcubic Graphs and 4-Chordal Subcubic Graphs. Version 2. 2018. arXiv:
1806.11009 [math.CO].

[AB09] S. Arora and B. Barak. Computational Complexity: A Modern Approach.
First edition. Cambridge University Press, 2009. isbn: 978-0-511-80409-0.

[Abd+16] F. Abdolhosseini et al. Hoffmann-Ostenhof’s Conjecture for Traceable Cubic
Graphs. Version 1. 2016. arXiv: 1607.04768 [math.CO].

[Abr+10] I. Abraham et al. “Alternative Routes in Road Networks”. Experimental
Algorithms. 9th International Symposium, SEA 2010. Lecture Notes in
Computer Science 6049. Springer Berlin Heidelberg, 2010, pages 23–34. doi:
10.1007/978-3-642-13193-6_3.

[AEB00] V. Akgün, E. Erkut, and R. Batta. “On Finding Dissimilar Paths”. European
Journal of Operational Research 121.2 (2000), pages 232–246. doi: 10.1016/
S0377-2217(99)00214-3.

[AF90] M. Ajtai and R. Fagin. “Reachability Is Harder for Directed than for Undir-
ected Finite Graphs”. Journal of Symbolic Logic 55.1 (1990), pages 113–150.
doi: 10.2307/2274958.

[AH77] K. Appel and W. Haken. “Every Planar Map Is Four Colorable. Part I:
Discharging”. Illinois Journal of Mathematics 21.3 (1977), pages 429–490.
doi: 10.1215/ijm/1256049011.

[AHK77] K. Appel, W. Haken, and J. Koch. “Every Planar Map Is Four Colorable. Part
II: Reducibility”. Illinois Journal of Mathematics 21.3 (1977), pages 491–567.
doi: 10.1215/ijm/1256049012.

[AJS15] S. Akbari, T. R. Jensen, and M. Siggers. “Decompositions of Graphs into
Trees, Forests, and Regular Subgraphs”. Discrete Mathematics 338.8 (2015),
pages 1322–1327. doi: 10.1016/j.disc.2015.02.021.

[AKY97] Y. Afek, S. Kutten, and M. Yung. “The Local Detection Paradigm and
Its Applications to Self-Stabilization”. Theoretical Computer Science 186.1
(1997), pages 199–229. doi: 10.1016/S0304-3975(96)00286-1.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993. isbn: 978-0-13-617549-0.

179

https://arxiv.org/abs/1806.11009
https://arxiv.org/abs/1607.04768
https://doi.org/10.1007/978-3-642-13193-6_3
https://doi.org/10.1016/S0377-2217(99)00214-3
https://doi.org/10.1016/S0377-2217(99)00214-3
https://doi.org/10.2307/2274958
https://doi.org/10.1215/ijm/1256049011
https://doi.org/10.1215/ijm/1256049012
https://doi.org/10.1016/j.disc.2015.02.021
https://doi.org/10.1016/S0304-3975(96)00286-1

Bibliography

[AT85] N. Alon and M. Tarsi. “Covering Multigraphs by Simple Circuits”. SIAM
Journal on Algebraic Discrete Methods 6.3 (1985), pages 345–350. doi:
10.1137/0606035.

[Bac15] A. C. Bachstein. “Decomposition of Cubic Graphs on the Torus and Klein
Bottle”. Master’s thesis. Middle Tennessee State University, 2015. url:
http://jewlscholar.mtsu.edu/handle/mtsu/4753.

[Bad+11] R. Bader et al. “Alternative Route Graphs in Road Networks”. Theory
and Practice of Algorithms in (Computer) Systems. 1st International ICST
Conference, TAPAS 2011. Lecture Notes in Computer Science 6595. Springer,
2011, pages 21–32. doi: 10.1007/978-3-642-19754-3_5.

[Bal+05] J. Balogh et al. “Covering Planar Graphs with Forests”. Journal of Combin-
atorial Theory, Series B 94.1 (2005), pages 147–158. doi: 10.1016/j.jctb.
2004.12.002.

[Bat+62] J. Battle et al. “Additivity of the Genus of a Graph”. Bulletin of the American
Mathematical Society 68.6 (1962), pages 565–568. doi: 10.1090/S0002-
9904-1962-10847-7.

[BBK22a] O. Bachtler, T. Bergner, and S. O. Krumke. Almost Disjoint Paths and Sep-
arating by Forbidden Pairs. Version 1. 2022. arXiv: 2202.10090 [math.CO].

[BBK22b] O. Bachtler, T. Bergner, and S. O. Krumke. “Local Certification of Reachabil-
ity”. Proceedings of the 10th International Network Optimization Conference.
INOC 2022. OpenProceedings.org, 2022, pages 40–44. doi: 10.48786/inoc.
2022.08.

[BH20] O. Bachtler and I. Heinrich. Automated Testing and Interactive Construction
of Unavoidable Sets for Graph Classes of Small Path-Width. Version 1. 2020.
arXiv: 2010.08373 [math.CO].

[BH21] O. Bachtler and I. Heinrich. Reductions for the 3-Decomposition Conjecture.
Version 2. 2021. arXiv: 2104.15113 [math.CO].

[BK11] H. L. Bodlaender and A. M. C. A. Koster. “Treewidth Computations II.
Lower Bounds”. Information and Computation 209.7 (2011), pages 1103–
1119. doi: 10.1016/j.ic.2011.04.003.

[BK17] K. Berczi and Y. Kobayashi. “The Directed Disjoint Shortest Paths Problem”.
25th Annual European Symposium on Algorithms. ESA 2017. Leibniz Inter-
national Proceedings in Informatics (LIPIcs) 87. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, 2017. doi: 10.4230/LIPIcs.ESA.2017.13.

[BK22] O. Bachtler and S. O. Krumke. “Towards Obtaining a 3-Decomposition from
a Perfect Matching”. The Electronic Journal of Combinatorics 29.4 (2022).
doi: 10.37236/11128.

[Bla+15] M. Blanco et al. “On the Path Avoiding Forbidden Pairs Polytope”. Electronic
Notes in Discrete Mathematics 50 (2015), pages 343–348. doi: 10.1016/j.
endm.2015.07.057.

180

https://doi.org/10.1137/0606035
http://jewlscholar.mtsu.edu/handle/mtsu/4753
https://doi.org/10.1007/978-3-642-19754-3_5
https://doi.org/10.1016/j.jctb.2004.12.002
https://doi.org/10.1016/j.jctb.2004.12.002
https://doi.org/10.1090/S0002-9904-1962-10847-7
https://doi.org/10.1090/S0002-9904-1962-10847-7
https://arxiv.org/abs/2202.10090
https://doi.org/10.48786/inoc.2022.08
https://doi.org/10.48786/inoc.2022.08
https://arxiv.org/abs/2010.08373
https://arxiv.org/abs/2104.15113
https://doi.org/10.1016/j.ic.2011.04.003
https://doi.org/10.4230/LIPIcs.ESA.2017.13
https://doi.org/10.37236/11128
https://doi.org/10.1016/j.endm.2015.07.057
https://doi.org/10.1016/j.endm.2015.07.057

Bibliography

[BM08] J. A. Bondy and U. S. R. Murty. Graph Theory. First edition. Springer,
2008. isbn: 978-1-84996-690-0.

[Bod+19] H. L. Bodlaender et al. Knot Diagrams of Treewidth Two. Version 2. 2019.
arXiv: 1904.03117 [cs.DS].

[Bod98] H. L. Bodlaender. “A Partial k-Arboretum of Graphs with Bounded Tree-
width”. Theoretical Computer Science 209.1 (1998), pages 1–45. doi: 10.
1016/S0304-3975(97)00228-4.

[Bot+21] F. Botler et al. “The 2-Decomposition Conjecture for a New Class of Graphs”.
Procedia Computer Science 195 (2021), pages 359–367. doi: 10.1016/j.
procs.2021.11.044.

[Bri+13] G. Brinkmann et al. “House of Graphs: A Database of Interesting Graphs”.
Discrete Applied Mathematics 161.1 (2013), pages 311–314. doi: 10.1016/j.
dam.2012.07.018.

[Bri96] G. Brinkmann. “Fast Generation of Cubic Graphs”. Journal of Graph Theory
23.2 (1996), pages 139–149. doi: 10.1002/(sici)1097-0118(199610)23:
2<139::aid-jgt5>3.0.co;2-u.

[Cam11] P. J. Cameron. “Research Problems from the BCC22”. Discrete Mathematics
311.13 (2011), pages 1074–1083. doi: 10.1016/j.disc.2011.02.024.

[CE83] L. Clark and R. Entringer. “Smallest Maximally Nonhamiltonian Graphs”.
Periodica Mathematica Hungarica 14.1 (1983), pages 57–68. doi: 10.1007/
BF02023582.

[CFS15] D. Conlon, J. Fox, and B. Sudakov. “Recent Developments in Graph Ramsey
Theory”. Surveys in Combinatorics 2015. London Mathematical Society
Lecture Note Series 424. Cambridge University Press, 2015. isbn: 978-1-316-
10685-3.

[Che+01] T. Chen et al. “A Dynamic Programming Approach to De Novo Peptide
Sequencing via Tandem Mass Spectrometry”. Journal of Computational
Biology 8.3 (2001), pages 325–337. doi: 10.1089/10665270152530872.

[Cho+18] T. Chondrogiannis et al. “Finding k-Dissimilar Paths with Minimum Col-
lective Length”. Proceedings of the 26th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. SIGSPATIAL
’18. Association for Computing Machinery, 2018, pages 404–407. doi: 10.
1145/3274895.3274903.

[Cho+20] T. Chondrogiannis et al. “Finding k-Shortest Paths with Limited Overlap”.
The VLDB Journal 29.5 (2020), pages 1023–1047. doi: 10.1007/s00778-
020-00604-x.

[Chu+16] M. Chudnovsky et al. “Unavoidable Induced Subgraphs in Large Graphs
with No Homogeneous Sets”. Journal of Combinatorial Theory, Series B
118 (2016), pages 1–12. doi: 10.1016/j.jctb.2016.01.008.

181

https://arxiv.org/abs/1904.03117
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/j.procs.2021.11.044
https://doi.org/10.1016/j.procs.2021.11.044
https://doi.org/10.1016/j.dam.2012.07.018
https://doi.org/10.1016/j.dam.2012.07.018
https://doi.org/10.1002/(sici)1097-0118(199610)23:2<139::aid-jgt5>3.0.co;2-u
https://doi.org/10.1002/(sici)1097-0118(199610)23:2<139::aid-jgt5>3.0.co;2-u
https://doi.org/10.1016/j.disc.2011.02.024
https://doi.org/10.1007/BF02023582
https://doi.org/10.1007/BF02023582
https://doi.org/10.1089/10665270152530872
https://doi.org/10.1145/3274895.3274903
https://doi.org/10.1145/3274895.3274903
https://doi.org/10.1007/s00778-020-00604-x
https://doi.org/10.1007/s00778-020-00604-x
https://doi.org/10.1016/j.jctb.2016.01.008

Bibliography

[CM93] B. Courcelle and M. Mosbah. “Monadic Second-Order Evaluations on
Tree-Decomposable Graphs”. Theoretical Computer Science 109.1 (1993),
pages 49–82. doi: 10.1016/0304-3975(93)90064-Z.

[Cor+22] T. H. Cormen et al. Introduction to Algorithms. Fourth edition. MIT press,
2022. isbn: 978-0-262-04630-5.

[Cou90] B. Courcelle. “The Monadic Second-Order Logic of Graphs. I. Recognizable
Sets of Finite Graphs”. Information and Computation 85.1 (1990), pages 12–
75. doi: 10.1016/0890-5401(90)90043-H.

[CS05] L. S. Chandran and C. R. Subramanian. “Girth and Treewidth”. Journal of
Combinatorial Theory, Series B 93.1 (2005), pages 23–32. doi: 10.1016/j.
jctb.2004.05.004.

[CS13] G. Chen and S. Shan. “Homeomorphically Irreducible Spanning Trees”.
Journal of Combinatorial Theory, Series B 103.4 (2013), pages 409–414. doi:
10.1016/j.jctb.2013.04.001.

[CW17] D. W. Cranston and D. B. West. “An Introduction to the Discharging
Method via Graph Coloring”. Discrete Mathematics 340.4 (2017), pages 766–
793. doi: 10.1016/j.disc.2016.11.022.

[DF55] G. B. Dantzig and D. R. Fulkerson. On the Max Flow Min Cut Theorem of
Networks. RAND Corporation, 1955. url: https://www.rand.org/pubs/
papers/P826.html.

[DGS05] P. Dell’Olmo, M. Gentili, and A. Scozzari. “On Finding Dissimilar Pareto-
Optimal Paths”. European Journal of Operational Research 162.1 (2005),
pages 70–82. doi: 10.1016/j.ejor.2003.10.033.

[Die16] R. Diestel. Graph Theory. Fifth edition. Graduate Texts in Mathematics
173. Springer, 2016. isbn: 978-3-662-53622-3.

[Dir52] G. A. Dirac. “Some Theorems on Abstract Graphs”. Proceedings of the
London Mathematical Society s3-2.1 (1952), pages 69–81. doi: 10.1112/
plms/s3-2.1.69.

[Dol00] S. Dolev. Self-Stabilization. MIT press, 2000. isbn: 978-0-262-52921-1.
[Eil98] T. Eilam-Tzoreff. “The Disjoint Shortest Paths Problem”. Discrete Applied

Mathematics 85.2 (1998), pages 113–138. doi: 10.1016/S0166-218X(97)
00121-2.

[EIS76] S. Even, A. Itai, and A. Shamir. “On the Complexity of Timetable and
Multicommodity Flow Problems”. SIAM Journal on Computing 5.4 (1976),
pages 691–703. doi: 10.1137/0205048.

[EJ12] G. Exoo and R. Jajcay. “Dynamic Cage Survey”. The electronic journal of
combinatorics (2012). doi: 10.37236/37.

[Feu+20] L. Feuilloley et al. Compact Distributed Certification of Planar Graphs.
Version 1. 2020. arXiv: 2005.05863 [cs.DC].

182

https://doi.org/10.1016/0304-3975(93)90064-Z
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/j.jctb.2004.05.004
https://doi.org/10.1016/j.jctb.2004.05.004
https://doi.org/10.1016/j.jctb.2013.04.001
https://doi.org/10.1016/j.disc.2016.11.022
https://www.rand.org/pubs/papers/P826.html
https://www.rand.org/pubs/papers/P826.html
https://doi.org/10.1016/j.ejor.2003.10.033
https://doi.org/10.1112/plms/s3-2.1.69
https://doi.org/10.1112/plms/s3-2.1.69
https://doi.org/10.1016/S0166-218X(97)00121-2
https://doi.org/10.1016/S0166-218X(97)00121-2
https://doi.org/10.1137/0205048
https://doi.org/10.37236/37
https://arxiv.org/abs/2005.05863

Bibliography

[Feu21] L. Feuilloley. “Introduction to Local Certification”. Discrete Mathematics &
Theoretical Computer Science 23.3 (2021). doi: 10.46298/dmtcs.6280.

[FG04] M. Frick and M. Grohe. “The Complexity of First-Order and Monadic
Second-Order Logic Revisited”. Annals of Pure and Applied Logic 130.1
(2004), pages 3–31. doi: 10.1016/j.apal.2004.01.007.

[FGH20] E. Fuchs, L. Gellert, and I. Heinrich. “Cycle Decompositions of Pathwidth-
6 Graphs”. Journal of Graph Theory 94.2 (2020), pages 224–251. doi:
10.1002/jgt.22516.

[FHW80] S. Fortune, J. Hopcroft, and J. Wyllie. “The Directed Subgraph Homeo-
morphism Problem”. Theoretical Computer Science 10.2 (1980), pages 111–
121. doi: 10.1016/0304-3975(80)90009-2.

[Foe+18] K.-T. Foerster et al. “Local Checkability, No Strings Attached: (A)Cyclicity,
Reachability, Loop Free Updates in SDNs”. Theoretical Computer Science
709 (2018), pages 48–63. doi: 10.1016/j.tcs.2016.11.018.

[FR94] G. Fan and A. Raspaud. “Fulkerson’s Conjecture and Circuits Covers”.
Journal of Combinatorial Theory, Series B 61.1 (1994), pages 133–138. doi:
10.1006/jctb.1994.1039.

[FS07] M. Frick and J. Singleton. “Cubic Maximal Nontraceable Graphs”. Discrete
Mathematics 307.7 (2007), pages 885–891. doi: 10.1016/j.disc.2005.11.
039.

[Ful71] D. R. Fulkerson. “Blocking and Anti-blocking Pairs of Polyhedra”. Mathem-
atical programming 1.1 (1971), pages 168–194. doi: 10.1007/BF01584085.

[GJ90] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1990. isbn:
978-0-7167-1045-5.

[GKT51] D. Gale, H. W. Kuhn, and A. W. Tucker. “Linear Programming and the
Theory of Games”. Activity analysis of production and allocation 13 (1951),
pages 317–335.

[GMO76] H. N. Gabow, S. N. Maheshwari, and L. J. Osterweil. “On Two Problems
in the Generation of Program Test Paths”. IEEE Transactions on Software
Engineering SE-2.3 (1976), pages 227–231. doi: 10.1109/TSE.1976.233819.

[Gon09] D. Gonçalves. “Covering Planar Graphs with Forests, One Having Bounded
Maximum Degree”. Journal of Combinatorial Theory, Series B 99.2 (2009),
pages 314–322. doi: 10.1016/j.jctb.2008.07.004.

[GS16] M. Göös and J. Suomela. “Locally Checkable Proofs in Distributed Com-
puting”. Theory of Computing 12.19 (2016), pages 1–33. doi: 10.4086/toc.
2016.v012a019.

[Haa19] R. de Haan. Parameterized Complexity in the Polynomial Hierarchy. First
edition. Lecture Notes in Computer Science. Springer, 2019. isbn: 978-3-
662-60670-4.

183

https://doi.org/10.46298/dmtcs.6280
https://doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.1002/jgt.22516
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1016/j.tcs.2016.11.018
https://doi.org/10.1006/jctb.1994.1039
https://doi.org/10.1016/j.disc.2005.11.039
https://doi.org/10.1016/j.disc.2005.11.039
https://doi.org/10.1007/BF01584085
https://doi.org/10.1109/TSE.1976.233819
https://doi.org/10.1016/j.jctb.2008.07.004
https://doi.org/10.4086/toc.2016.v012a019
https://doi.org/10.4086/toc.2016.v012a019

Bibliography

[Haj+10] M. T. Hajiaghayi et al. “The Checkpoint Problem”. Approximation, Ran-
domization, and Combinatorial Optimization. 13th International Workshop,
APPROX 2010, and 14th International Workshop, RANDOM 2010. Lec-
ture Notes in Computer Science 6302. Springer, 2010, pages 219–231. doi:
10.1007/978-3-642-15369-3_17.

[He+02] W. He et al. “Edge-Partitions of Planar Graphs and Their Game Coloring
Numbers”. Journal of Graph Theory 41.4 (2002), pages 307–317. doi: 10.
1002/jgt.10069.

[Hei19] I. Heinrich. “On Graph Decomposition: Hajós’ Conjecture, the Cluster-
ing Coefficient and Dominating Sets”. PhD thesis. Technische Universität
Kaiserslautern, 2019.

[Hei20] I. Heinrich. On Graph Decomposition: Hajós’ conjecture, the clustering
coefficient and dominating sets. Dr. Hut, 2020. isbn: 978-3-8439-4294-2.

[HKO18] A. Hoffmann-Ostenhof, T. Kaiser, and K. Ozeki. “Decomposing Planar
Cubic Graphs”. Journal of Graph Theory 88.4 (2018), pages 631–640. doi:
10.1002/jgt.22234.

[HLY20] Y. Hong, Q. Liu, and N. Yu. “Edge Decomposition of Connected Claw-Free
Cubic Graphs”. Discrete Applied Mathematics 284 (2020), pages 246–250.
doi: 10.1016/j.dam.2020.03.040.

[HNO18] A. Hoffmann-Ostenhof, K. Noguchi, and K. Ozeki. “On Homeomorphically
Irreducible Spanning Trees in Cubic Graphs”. Journal of Graph Theory 89.2
(2018), pages 93–100. doi: 10.1002/jgt.22242.

[Hof11] A. Hoffmann-Ostenhof. “Nowhere-Zero Flows and Structures in Cubic
Graphs”. PhD thesis. University of Vienna, 2011. doi: 10.25365/thesis.
19501.

[Hof15] A. Hoffmann-Ostenhof. “A Survery on the 3-Decomposition Conjecture”.
Talk. 8th Workshop on the Matthews-Sumner Conjecture and Related
Problems. 2015. url: http://www.iti.zcu.cz/plzen15/talks/1-2a-
Arthur-Survey_decomposition.ppt.

[HS93] D. A. Holton and J. Sheehan. The Petersen Graph. Australian Mathematical
Society Lecture Series 7. Cambridge University Press, 1993. isbn: 978-0-511-
66205-8.

[HT73] J. Hopcroft and R. Tarjan. “Algorithm 447: Efficient Algorithms for Graph
Manipulation”. Communucations of the ACM 16.6 (1973), pages 372–378.
doi: 10.1145/362248.362272.

[Huc00] A. Huck. “Reducible Configurations for the Cycle Double Cover Conjecture”.
Discrete Applied Mathematics 99.1 (2000), pages 71–90. doi: 10.1016/
S0166-218X(99)00126-2.

184

https://doi.org/10.1007/978-3-642-15369-3_17
https://doi.org/10.1002/jgt.10069
https://doi.org/10.1002/jgt.10069
https://doi.org/10.1002/jgt.22234
https://doi.org/10.1016/j.dam.2020.03.040
https://doi.org/10.1002/jgt.22242
https://doi.org/10.25365/thesis.19501
https://doi.org/10.25365/thesis.19501
http://www.iti.zcu.cz/plzen15/talks/1-2a-Arthur-Survey_decomposition.ppt
http://www.iti.zcu.cz/plzen15/talks/1-2a-Arthur-Survey_decomposition.ppt
https://doi.org/10.1145/362248.362272
https://doi.org/10.1016/S0166-218X(99)00126-2
https://doi.org/10.1016/S0166-218X(99)00126-2

Bibliography

[Isa75] R. Isaacs. “Infinite Families of Nontrivial Trivalent Graphs Which Are
Not Tait Colorable”. The American Mathematical Monthly 82.3 (1975),
pages 221–239. doi: 10.1080/00029890.1975.11993805.

[Jae85] F. Jaeger. “A Survey of the Cycle Double Cover Conjecture”. Annals of
Discrete Mathematics (27): Cycles in Graphs. North-Holland Mathematics
Studies 115. Elsevier, 1985. isbn: 978-0-444-87803-8.

[Jeo+09] Y.-J. Jeong et al. “A Dissimilar Alternative Paths-Search Algorithm for Nav-
igation Services: A Heuristic Approach”. KSCE Journal of Civil Engineering
14.1 (2009), pages 41–49. doi: 10.1007/s12205-010-0041-8.

[KK06] A. Korman and S. Kutten. “Distributed Verification of Minimum Spanning
Trees”. Proceedings of the 25th Annual ACM Symposium on Principles of
Distributed Computing. PODC ’06. Association for Computing Machinery,
2006, pages 26–34. doi: 10.1145/1146381.1146389.

[KKP10] A. Korman, S. Kutten, and D. Peleg. “Proof Labeling Schemes”. Distributed
Computing 22.4 (2010), pages 215–233. doi: 10.1007/s00446-010-0095-3.

[KKR12] K. Kawarabayashi, K. Kobayashi, and B. Reed. “The Disjoint Paths Problem
in Quadratic Time”. Journal of Combinatorial Theory, Series B 102.2 (2012),
pages 424–435. doi: 10.1016/j.jctb.2011.07.004.

[KN12] S. O. Krumke and H. Noltemeier. Graphentheoretische Konzepte und Al-
gorithmen. German. Third edition. Teubner, 2012. isbn: 978-3-8348-1849-2.

[Kov13] J. Kováč. “Complexity of the Path Avoiding Forbidden Pairs Problem
Revisited”. Discrete Applied Mathematics 161.10 (2013), pages 1506–1512.
doi: 10.1016/j.dam.2012.12.022.

[KP09] P. Kolman and O. Pangrác. “On the Complexity of Paths Avoiding Forbidden
Pairs”. Discrete Applied Mathematics 157.13 (2009), pages 2871–2876. doi:
10.1016/j.dam.2009.03.018.

[KSG73] K. W. Krause, R. W. Smith, and M. A. Goodwin. “Optimal Software Test
Planning Through Automated Network Analysis”. Proceedings 1973 IEEE
Symposium on Computer Software Reliability. IEEE Press, 1973, pages 18–
22.

[KVB09] J. Kováč, T. Vinař, and B. Brejová. “Predicting Gene Structures from
Multiple RT-PCR Tests”. Algorithms in Bioinformatics. 9th International
Workshop, WABI 2009. Lecture Notes in Computer Science 5724. Springer,
2009, pages 181–193. doi: 10.1007/978-3-642-04241-6_16.

[LC14] R. Li and Q. Cui. “Spanning Trees in Subcubic Graphs”. Ars Combinat-
oria 117 (2014), pages 411–415. url: http://www.combinatoire.ca/
ArsCombinatoria/AC_article10.pdf.

[Liu+18] H. Liu et al. “Finding Top-k Shortest Paths with Diversity”. IEEE Transac-
tions on Knowledge and Data Engineering 30.3 (2018), pages 488–502. doi:
10.1109/TKDE.2017.2773492.

185

https://doi.org/10.1080/00029890.1975.11993805
https://doi.org/10.1007/s12205-010-0041-8
https://doi.org/10.1145/1146381.1146389
https://doi.org/10.1007/s00446-010-0095-3
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.dam.2012.12.022
https://doi.org/10.1016/j.dam.2009.03.018
https://doi.org/10.1007/978-3-642-04241-6_16
http://www.combinatoire.ca/ArsCombinatoria/AC_article10.pdf
http://www.combinatoire.ca/ArsCombinatoria/AC_article10.pdf
https://doi.org/10.1109/TKDE.2017.2773492

Bibliography

[LL20] P. Li and W. Liu. “Decompositions of Cubic Traceable Graphs”. Discussiones
Mathematicae Graph Theory 40.1 (2020), pages 35–49. doi: 10.7151/dmgt.
2132.

[LM19] K. S. Lyngsie and M. Merker. “Decomposing Graphs into a Spanning Tree,
an Even Graph, and a Star Forest”. English. The Electronic Journal of
Combinatorics 26.1 (2019). doi: 10.37236/7970.

[Men27] K. Menger. “Zur Allgemeinen Kurventheorie”. German. Fundamenta Math-
ematicae 10.1 (1927), pages 96–115. doi: 10.4064/fm-10-1-96-115.

[Mer99] M. Meringer. “Fast Generation of Regular Graphs and Construction of
Cages”. Journal of Graph Theory 30.2 (1999), pages 137–146. doi: 10.1002/
(sici)1097-0118(199902)30:2<137::aid-jgt7>3.0.co;2-g.

[MM20] E. Máčajová and G. Mazzuoccolo. “Reduction of the Berge-Fulkerson Con-
jecture to Cyclically 5-Edge-Connected Snarks”. Proceedings of the American
Mathematical Society 148.11 (2020), pages 4643–4652. doi: 10.1090/proc/
15057.

[OY16] K. Ozeki and D. Ye. “Decomposing Plane Cubic Graphs”. European Journal
of Combinatorics 52 (2016), pages 40–46. doi: 10.1016/j.ejc.2015.08.
005.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
isbn: 978-0-201-53082-7.

[Pet91] J. Petersen. “Die Theorie der Regulären Graphs”. Acta Mathematica 15.1
(1891), page 193. doi: 10.1007/BF02392606.

[Pos46] E. L. Post. “A Variant of a Recursively Unsolvable Problem”. Bulletin
of the American Mathematical Society 52.4 (1946), pages 264–268. doi:
10.1090/S0002-9904-1946-08555-9.

[Rot95] J. J. Rotman. An Introduction to the Theory of Groups. Fourth edition.
Graduate Texts in Mathematics 148. Springer, 1995. isbn: 978-1-4612-4176-
8.

[RS04] N. Robertson and P. D. Seymour. “Graph Minors. XX. Wagner’s Conjecture”.
Journal of Combinatorial Theory, Series B 92.2 (2004), pages 325–357. doi:
10.1016/j.jctb.2004.08.001.

[RS90] N. Robertson and P. D. Seymour. “Graph minors. VIII. A Kuratowski
Theorem for General Surfaces”. Journal of Combinatorial Theory, Series B
48.2 (1990), pages 255–288. doi: 10.1016/0095-8956(90)90121-F.

[RS95] N. Robertson and P. D. Seymour. “Graph Minors. XIII. The Disjoint Paths
Problem”. Journal of Combinatorial Theory, Series B 63.1 (1995), pages 65–
110. doi: 10.1006/jctb.1995.1006.

[Sage20] The Sage Developers. SageMath, the Sage Mathematics Software System.
Version 9.0. 2020. url: https://www.sagemath.org.

186

https://doi.org/10.7151/dmgt.2132
https://doi.org/10.7151/dmgt.2132
https://doi.org/10.37236/7970
https://doi.org/10.4064/fm-10-1-96-115
https://doi.org/10.1002/(sici)1097-0118(199902)30:2<137::aid-jgt7>3.0.co;2-g
https://doi.org/10.1002/(sici)1097-0118(199902)30:2<137::aid-jgt7>3.0.co;2-g
https://doi.org/10.1090/proc/15057
https://doi.org/10.1090/proc/15057
https://doi.org/10.1016/j.ejc.2015.08.005
https://doi.org/10.1016/j.ejc.2015.08.005
https://doi.org/10.1007/BF02392606
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1016/0095-8956(90)90121-F
https://doi.org/10.1006/jctb.1995.1006
https://www.sagemath.org

Bibliography

[SB77] S. Stahl and L. W. Beineke. “Blocks and the Nonorientable Genus of Graphs”.
Journal of Graph Theory 1.1 (1977), pages 75–78. doi: 10 . 1002 / jgt .
3190010114.

[Sch03] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. First
edition. Springer, 2003. isbn: 978-3-540-44389-6.

[Sey79] P. D. Seymour. “Sums of Circuits”. Graph Theory and Related Topics 1
(1979), pages 341–355.

[Suu74] J. W. Suurballe. “Disjoint Paths in a Network”. Networks 4.2 (1974),
pages 125–145. doi: 10.1002/net.3230040204.

[Sze73] G. Szekeres. “Polyhedral Decompositions of Cubic Graphs”. Bulletin of the
Australian Mathematical Society 8.3 (1973), pages 367–387. doi: 10.1017/
S0004972700042660.

[TT81] C. Thomassen and B. Toft. “Non-Separating Induced Cycles in Graphs”.
Journal of Combinatorial Theory, Series B 31.2 (1981), pages 199–224. doi:
10.1016/S0095-8956(81)80025-1.

[TUK94] A. Takahashi, S. Ueno, and Y. Kajitani. “Minimal Acyclic Forbidden Minors
for the Family of Graphs with Bounded Path-Width”. Discrete Mathematics
127.1 (1994), pages 293–304. doi: 10.1016/0012-365X(94)90092-2.

[Tut19] W. T. Tutte. Connectivity in Graphs. University of Toronto Press, 2019.
isbn: 978-1-4875-8486-3.

[Tut47] W. T. Tutte. “A Family of Cubical Graphs”. Mathematical Proceedings
of the Cambridge Philosophical Society 43.4 (1947), pages 459–474. doi:
10.1017/S0305004100023720.

[Tut66] W. T. Tutte. Connectivity in Graphs. University of Toronto Press, 1966.
isbn: 978-1-4875-7296-9.

[Vyg95] J. Vygen. “NP-Completeness of Some Edge-Disjoint Paths Problems”. Dis-
crete Applied Mathematics 61.1 (1995), pages 83–90. doi: 10.1016/0166-
218X(93)E0177-Z.

[Wes01] D. B. West. Introduction to Graph Theory. Second edition. Prentice Hall,
2001. isbn: 978-0-13-014400-3.

[Wor79] N. C. Wormald. “Classifying k-Connected Cubic Graphs”. Combinatorial
Mathematics VI. 6th Australian Conference on Combinatorial Mathematics.
Lecture Notes in Mathematics 748. Springer, 1979, pages 199–206. doi:
10.1007/BFB0102696.

[WZ11] Y. Wang and Q. Zhang. “Decomposing a Planar Graph with Girth at
Least 8 into a Forest and a Matching”. Discrete Mathematics 311.10 (2011),
pages 844–849. doi: 10.1016/j.disc.2011.01.019.

[XZZ20] M. Xie, C. Zhou, and S. Zhou. “Decomposition of Cubic Graphs with a
2-Factor Consisting of Three Cycles”. Discrete Mathematics 343.6 (2020).
doi: 10.1016/j.disc.2020.111839.

187

https://doi.org/10.1002/jgt.3190010114
https://doi.org/10.1002/jgt.3190010114
https://doi.org/10.1002/net.3230040204
https://doi.org/10.1017/S0004972700042660
https://doi.org/10.1017/S0004972700042660
https://doi.org/10.1016/S0095-8956(81)80025-1
https://doi.org/10.1016/0012-365X(94)90092-2
https://doi.org/10.1017/S0305004100023720
https://doi.org/10.1016/0166-218X(93)E0177-Z
https://doi.org/10.1016/0166-218X(93)E0177-Z
https://doi.org/10.1007/BFB0102696
https://doi.org/10.1016/j.disc.2011.01.019
https://doi.org/10.1016/j.disc.2020.111839

Bibliography

[Yin97] H. Yinnone. “On Paths Avoiding Forbidden Pairs of Vertices in a Graph”.
Discrete Applied Mathematics 74.1 (1997), pages 85–92. doi: 10.1016/
S0166-218X(96)00017-0.

188

https://doi.org/10.1016/S0166-218X(96)00017-0
https://doi.org/10.1016/S0166-218X(96)00017-0

Curriculum Vitae

Oliver Bachtler

2019 – today Doctoral Studies in Mathematics, TU Kaiserslautern
2019 – today Research Assistant, TU Kaiserslautern
2014 – 2019 Student Assistant, TU Kaiserslautern
2013 – 2019 Studies in Computer Science, TU Kaiserslautern

• B.Sc. Computer Science (March 2017)
• M.Sc. Computer Science (July 2019)

2017 – 2018 Semester Abroad, University of Southern Denmark, Odense
2013 – 2018 Studies in Mathematics, TU Kaiserslautern

• B.Sc. Mathematics (January 2017)
• M.Sc. Mathematics (November 2018)

2013 Abitur (high school graduation), Otto-Hahn-Gymnasium, Landau

189

Wissenschaftlicher Werdegang

Oliver Bachtler

2019 – heute Promotion: Mathematik, TU Kaiserslautern
2019 – heute Wissenschaftlicher Mitarbeiter, TU Kaiserslautern
2014 – 2019 Studentische Hilfskraft, TU Kaiserslautern
2013 – 2019 Studium: Informatik, TU Kaiserslautern

• B.Sc. Informatik (März 2017)
• M.Sc. Informatik (Juli 2019)

2017 – 2018 Auslandssemester, University of Southern Denmark, Odense
2013 – 2018 Studium: Mathematik, TU Kaiserslautern

• B.Sc. Mathematik (Januar 2017)
• M.Sc. Mathematik (November 2018)

2013 Abitur, Otto-Hahn-Gymnasium, Landau

191

	Introduction
	Preliminaries
	Graph theory
	Complexity theory
	Local certification

	The 3-Decomposition Conjecture
	Known and Preliminary Results
	Equivalent conjectures
	Studied classes
	Finding non-separating cycles
	A relaxation of the conjecture

	Star-Like Graphs
	Decompositions and their extension
	Finding decompositions in cycles
	Proof of the main theorem
	Extending the decompositions
	New graphs for which the 3-decomposition conjecture holds

	Reducible Configurations and Minimum Counterexamples
	Extensions and reductions
	New reducible configurations
	Properties of minimum counterexamples

	Algorithmic Proof Support
	Naive Extensions
	Algorithmically checking 3-compatibility
	The complexity of naive extensions
	3-decompositions for small graphs

	Unavoidable Structures
	The base algorithm
	Isomorphism rejection
	Achieving termination
	Tailoring the algorithm to cubic graphs
	Unavoidable minors and induced subgraphs
	Revisiting Lemma 5.20

	Relating the Girth and Path-Width of Cubic Graphs
	A first bound on the girth
	A second bound on the girth
	Classifying cubic graphs of path-width 3 and girth 4

	Two Graph Connectivity Problems
	Local Certification of Reachability
	Two examples of proof labelling schemes
	A lower bound for the reachability problem

	Separating by Forbidden Pairs
	An overview of ADP
	The complexity of SFP

	Conclusion and Future Research
	Straightforward Extensions of 3-Decompositions
	Bibliography

