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2 Introduction 

Ecotoxicology is the science that researches effects of toxicants on biological entities. 

Following the famous toxicological principle formulated 1538 by von Hohenheim, known as 

Paracelsus, thereby generally all chemicals are able to act as toxicants1. Unlike human 

toxicology that focuses on toxic effects on individuals and populations of one species, Homo 

sapiens, ecotoxicology is not constrained in its scope of biological entities. It is interested in 

toxic effects on individuals and populations of any species (excluding humans), and on 

communities and entire ecosystems (Walker et al., 2012; Köhler & Triebskorn, 2013; Newman 

2014). One example of where the ecological foundation of ecotoxicology manifests itself are 

indirect effects, which are effects on biological entities that are not directly caused by 

chemicals but instead are mediated by ecological interactions and environmental conditions 

(Walker et al., 2012). With this large scope, ecotoxicology is an inter- and multidisciplinary 

science that links chemical, biological and environmental knowledge. 

With millions of species and at least 100,000 chemicals that potentially interact with them in 

the environment (Wang et al., 2021), ecotoxicology has a large ground to cover. Among these 

sheer numbers, there are some groups that are of special importance regarding their potential 

environmental impact. Pesticides are one group of chemicals that have a large, if not the 

largest, ecotoxicological relevance: they are toxic for biological entities, sometimes in very low 

concentrations2, and they are used in large amounts and globally (Bernhardt et al., 2017). The 

high toxicity of pesticides, much higher than that of most other groups of chemicals, is a result 

of their intended use: they are designed to reduce detrimental effects of, e.g., insects, plants 

or fungi on agriculture by controlling respective populations, often, and in the sense of their 

 

1 In his work Sieben Defensiones, von Hohenheim responses to his critics: “Wenn ihr jedes Gift recht auslegen 
wollt, was ist, das nit Gift ist? Alle Dinge sind Gift, und nichts ist ohne Gift; allein die dosis machts, daß ein Ding 
kein Gift sei.” 
2 “Concentration” is used throughout the text as a general measure of substance mass per medium, simplifying the 
commonly in ecotoxicology applied distinction of terms by medium, such as “concentration” for mass per volume, 
“dose” for mass per mass bodyweight or food, “rate” for mass per area, etc. 
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Latin name, through induced lethality (Walker et al., 2012). However, they act not specific 

enough to be toxic only for the intended species that are considered pests, but also show 

toxicity towards species living in habitats next to pesticide-treated areas. The widespread 

agricultural use of pesticides, on the other hand, is a result of their work-and-cost-efficiency 

for securing yields, but also results in exposure of ecosystems at a global scale (Sharma et 

al., 2019). In summary, pesticides can be abstractly seen as toxicity intentionally applied to 

agricultural areas, unintentionally also exposing organisms in non-agricultural areas to toxicity. 

The risks of pesticide use for ecosystems have led major jurisdictions, like the United States 

of America (US) and the European Union (EU), to enact elaborated regulatory processes that 

require a registration of pesticides prior use (EFSA, 2013; EPA, 2011; Stehle & Schulz, 

2015b). A by-product of these registration processes are regulatory threshold levels (RTL) 

which can be used for scientific risk analysis outside the regulatory process (Stehle & Schulz, 

2015a). The RTL for an organism group is basically derived from the most sensitive effect 

concentrations found in standardized toxicity tests for species representative for the group, 

multiplied by a safety factor, although specifics differ among regulatory processes. 

Conceptually, they mark the threshold that separates environmental concentrations 

associated with acceptable risk (concentrations below the RTL) from concentrations 

associated with unacceptable risk (concentrations above the RTL).  

Due to the high degree of procedural standardization in the derivation of RTLs, they have been 

found as a good measure to make the toxicities of different pesticides comparable, and they 

were employed in a series of studies to characterize environmental pesticide concentrations 

(e.g., Stehle & Schulz, 2015a; Stehle et al., 2018; Wolfram et al., 2018; Wolfram et al., 2021; 

Schulz et al., 2021, also, in Appendix B; Bub et al., 2023, also, in Appendix C). RTL reflect, 

for instance, that insecticides show regulatory unacceptable concentrations towards fish 

between 3 ng/L (deltamethrin, a pyrethroid) and 110 mg/L (imidacloprid, a neonicotinoid), a 

range of nine orders of magnitude. At the same, imidacloprid is very toxic to pollinators (RTL 

of 1.52 ng/organism), while more than 95% of all of the insecticides, with regulatory 
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unacceptable concentrations among insecticides ranging as high as 1,6 mg/organism, 

indicating a toxicity six orders of magnitude lower than that of imidacloprid. 

At large-scales, ecotoxicology deals with pesticide impacts on a national (e.g., Bub et al., 

2023; Douglas & Tooker, 2015; Hallmann et al., 2014; Schulz et al., 2021; Stehle et al., 2019; 

Wolfram et al., 2018), continental (Wolfram et al., 2021) or the global scale (Stehle & Schulz, 

2015a; Stehle et al., 2018). This maximization of considered scale is in line with the general 

tendency of ecotoxicology towards larger scales, but generally requires new methodological 

and conceptual approaches. Historically, individual chemicals and groups of chemicals have 

been identified that mark, caused by their immense release into the environment, main 

disruptors of processes in the Earth system, like greenhouses gases for the climate change, 

chlorofluorocarbons for the depletion of the atmosphere’s ozone layer, dichlorodiphenyl-

trichloroethane and other organochlorides for bioaccumulation in food webs and declines in 

bird populations, etc., but for other phenomena, like declines in biodiversity or numbers of 

insect species (Outhwaite et al., 2020; Seibold et al., 2019; Vörösmarty et al., 2010), the active 

part of chemical pollution is only understood to a much lesser extent. There are indicators that 

pesticides may play a major role 

This dissertation contributes to the research of large-scale risks of pesticide use, and of large-

scale ecotoxicology in general, in several ways (Figure 1). In Chapter 2, it presents a labeled 

property graph, the MAGIC graph (Meta-Analysis of the Global Impact of Chemicals graph), 

as a solution to the methodological issues that arise when increasing amounts of data from 

more and more sources are combined for analysis (Bub et al., 2019; also, in Appendix A). The 

MAGIC graph is able to link chemical information from different sources, even if these sources 

use different nomenclatures. This enables analyses that incorporate toxicological data, like 

thousands of RTLs (for different organism groups and jurisdictions) for hundreds of pesticides, 

and information on pesticide use and chemical classes. The MAGIC graph is implemented in 

a way that allows it to be organically extended by additional chemical, biological and 

environmental data, and eventually scaled to all chemicals of environmental interest. 
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Figure 1. Overview over this cumulative dissertation thesis. Journal articles Bub et al. (2019), Schulz et al. (2021) 
and Bub et al. (2023) can be also found in Appendix A, B and C, respectively. 

 

Chapter 3 shows, how the combination of the linked pesticide data with a systemic 

consideration of pesticide use supports the interpretation of pesticide risks in the US (Schulz 

et al., 2021; also, in Appendix B). This systemic approach includes a new measure, the total 

applied toxicity (TAT), which integrates used pesticide amounts and pesticide toxicities, and 

the consideration of pesticide use as a complex system whose state and evolution can be 

visualized in phase-space plots. The combination of the described methods and concepts led 

to a novel view on pesticide risks in the US and can provide a framework for future 

ecotoxicological research at large scales. 

Chapter 4 displays the results of the methods and concepts of the US pesticide risk analysis 

applied to Germany (Bub et al., 2023; also, in Appendix C). A pesticide risk analysis of 

Germany is of special importance in the context of the EU’s goal to drastically reduce pesticide 

risks (European Commission, 2020) and Germany being one of the important agricultural 
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producers in the EU. A comparison of the results for Germany to those for the US did also 

allow to evaluate the impact of scale and differing RTLs, information that can help other 

ecotoxicological large-scale assessments. Chapter 5 adds a conclusion and an outlook. 
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3 Database for large-scale evaluations of chemicals 

A problem that occurs during the seemingly simple task of collating chemical data from 

different sources is the use of different denominators by the various data providers. For 

ecotoxicology, at least the 100,000 chemicals are of environmental interest (Wang et al., 

2021), but the use of concurring chemical nomenclatures in is a long-known issue that 

impedes immediate data collation (Heller et al., 2013; Wiswesser, 1968). To identify, for which 

of these chemicals which kind of information is available, chemical denominations among 

various data sources must be harmonized. Within the available sources, a chemical substance 

can be denominated using one (of often many) trivial, brand or scientific names. Alternatively, 

its identity can be specified by a data provider using one of the many available chemical 

registries. For instance, the Chemical Abstracts Service (CAS) is an early computerized 

provider of widely used registry numbers for chemicals (CAS Registry System, 1978). Other 

ways of identifying chemicals are directly based on the molecular structure of chemicals, like 

the Simplified Molecular Input Line Entry Specification (SMILES) or the International Chemical 

Identifier (InChI; Heller et al., 2013). Related to the differences in how the same chemical is 

denominated using different systems, is the problem of differing scopes of what is named at 

all, e.g., only distinct compounds or also mixtures, and the ecotoxicological relevant distinction 

of different levels of specificity of chemicals (Smith, 2009; Stehle & Schulz, 2015a). Other 

domains, like biology, show similar difficulties as described here for chemicals. 

The MAGIC graph is an endeavor to represent ecotoxicological knowledge for large-scale 

analysis in a labeled property graph (Bub et al., 2019; also, in Appendix A), a type of data 

representation that is known to be performant for linked data (Vicknair et al., 2010). 

Conceptually, labeled property graphs (Robinson et al., 2015) represent information as nodes 

that are linked by relationships. Properties of various data types can be attached to nodes and 

relationships for further specification. Relationships have a single, user-defined type, and an 

arbitrary number of labels can be attached to each to group nodes together in sets. 
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Figure 2. Schema of the “Meta-analysis of the Global Impact of Chemicals” (MAGIC) graph, depicting typed 
relationships (arrows) between labeled nodes (circles). From Bub et al. (2019). 

 

The MAGIC graph defines an extendable set of relationship types, labels and properties that 

allow describing important ecotoxicological entities, like chemicals, their names, and chemical 

classes, as well as the relationships between these entities (Figure 2). Its initial goal is to 

provide means to link data from existing databases of ecotoxicological relevance, which use 

different chemical denominations of different specificity. Such databases include the United 

States Environmental Protection Agency’s (EPA) ECOTOX Knowledgebase (EPA, n.d.) that 

provides a large set of records on aquatic and terrestrial toxicity tests, including effect 

concentrations for more than 11,000 chemicals; the European Food Safety Authority’s (EFSA) 

Chemicals Hazards Database (OpenFoodTox; Kovarich et al., 2022) that provides data used 

during the official registrations of chemicals in the European Union for more than 3,000 

chemicals; the US National Water Quality Monitoring Council’s Water Quality Portal (National 

Water Quality Monitoring Council, n.d.) that provides water quality parameters, including 

physical, chemical (for more than 3,000 chemicals), and biological characteristics in US 

waters, collated from samples of more than 400 agencies; the United States Geological 

Survey’s (USGS) Estimated Annual Agricultural Pesticide Use dataset (Baker, 2016) that 
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provides estimates on use amounts of pesticides (more than 400 chemicals) at the county 

level; the Pesticide Action Network’s PesticideInfo database (Pesticide Action Network, n.d.) 

that provides summary information on pesticides and other chemicals (more than 6,000 

chemicals), including chemical classification and use type. 

With the MAGIC graph, the linkage of chemicals between databases increases considerably 

compared to a relational join (Figure 3). This is especially true for links between data sources 

that are based on chemical names, e.g., links between EPA’s ECOTOX database (identifies 

chemicals by name and CAS registry number) and USGS’s use dataset (only chemical 

names). The multitude of realized possibilities to name chemicals, and even differences in 

spelling, result in generally unsatisfying linkages with naive relational joins based on chemical 

names. Some databases employ both, chemical names and CAS registry numbers, e.g., 

EPA’s ECOTOX database and EFSA’s OpenFoodTox database. In such cases, links based 

on registry numbers have considerably higher success rates (Fig. 1). However, although CAS 

registry numbers act as a superordinate naming scheme that supposedly should result in a 

success rate of 100%, this is not the case. One of the reasons why CAS registry numbers may 

not match among data sources is that chemicals can have multiple CAS registry numbers. 

Among them is always only one valid number, but for historic reasons, the same chemical 

could have been assigned different numbers over time. If data sources do not update their 

identifiers when registry numbers for a chemical change, it might occur that the same chemical 

appears under different CAS registry numbers in different data bases. 
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Figure 3. Linkage of chemical data relative to a theoretical 100%-maximum for different databases. Complete 
linkage presumes that all chemicals listed in the smaller database are contained in the larger one. Linkage with a 
relational approach, where only CAS registry numbers (light blue) or same-spelling chemical identifiers match (dark 
blue), is compared to the additional gain with the graph approach (orange). From Bub et al. (2019). 

 

The MAGIC graph provides a methodological solution for providing complex and linked 

ecotoxicological knowledge to large-scale analyses, for example chemical monitoring data, 

chemical or biological taxonomies, or effect data. Augmented with other, differently structured 

data, for instance geoinformation that is available in high resolution for large extents, the 

linking of already available information in a graph database, as done by the MAGIC graph, 

can act as a profound base for large-scale ecotoxicology. The MAGIC graph has so far been 

successfully applied to link chemicals, among others, for evaluation of pesticide risks in the 

US (Schulz et al., 2021; also, in Appendix B) and in Germany (Bub et al., 2023; also, in 

Appendix C), to model regulatory threshold levels of pesticides (Petschick et al., 2019) and to 

compare various chemical databases (Heinemann et al., 2020). 
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4 Systemic aspects of pesticide use and toxicity 

A fundamental insight of ecotoxicology is that toxicities among chemicals towards the same 

group of organisms differ greatly. That is even true within groups of similar chemicals, for 

instance, insecticides, where the RTLs for aquatic invertebrates span multiple orders of 

magnitude (Schulz & Stehle, 2015a). Schulz et al. (2021; also, in Appendix B) highlight that 

this insight is strikingly often ignored in public discussions about pesticide use, and even in 

the ecotoxicological discourse. Trends in pesticide use are instead often based solely on the 

amounts of pesticides used, more specifically, often on the total mass of pesticides used, e.g., 

within a country and a year (e.g., Douglas & Tooker, 2015; Ewald et al., 2015; Lamberth et al., 

2013; Larsen & Noack, 2017; Osteen & Fernandez-Cornejo, 2013).  

In Schulz et al. (2021), a new measure, the TAT, was introduced, that divides the used 

amounts of pesticides by their RTLs for different organism groups before summing them up, 

and that so incorporates both used amounts and toxicities into a single measure. The TAT so 

provided a measure to analyze trends in pesticide use and their potential environmental effects 

in the US over the last 25 years (Figure 4 B-D,F-H,J,K). For instance, decreasing TATs for 

mammals (Figure 4C) and birds (Figure 4D) indicate that these organism groups may face 

decreasing burden by pesticide use, whereas increasing TATs for aquatic invertebrates 

(Figure 4F), pollinators (Figure 4G) and terrestrial plants (Figure 4J) indicate potentially 

increasing burden to these organism groups. With applied pesticide amounts being 

determined by market situation, pest pressure and other dynamic factors, but toxicity being a 

substance-specific property covering many orders of magnitudes, changes in TAT are often 

induced by changes in the composition of the set of pesticides used. 
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Figure 4. Temporal trends in total applied pesticide amount (i.e., mass) versus total applied toxicity (TAT) and main 
pesticide classes contributing to applied toxicity during a 25-year period for different nontarget species groups. 
Phase-space plots (both axes z-score normalized) for vertebrates (A), invertebrates (E) and plants (I) with 
highlighted areas indicating separate phases (a to f). Contribution of major pesticide classes in selected periods 
(three-year averages; phases a-f shown as horizontal time bars): organophosphorus and carbamate insecticides 
in vertebrates (B-D), pyrethroids in aquatic invertebrates (F), neonicotinoids in pollinators (G), and herbicides in 
plants (J, K). From Schulz et al. (2021). 
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A systemic description of pesticide use is able to trace the impact of changes in applied mass 

and composition in more detail. Figure 4A,E,I show phase-space plots, a form of diagram 

originating from mechanical physics and a popular tool in system-theoretic visualizations that 

displays state and change of a system simultaneously (Nolte, 2010). Tracking the evolution of 

complex systems in phase-space plots can help identifying distinct phases of system 

development and distinguishing different kinds of system changes. In the case of pesticide 

use in the US, this reveals some additional insights for different species groups. Plotting the 

TAT for fishes, mammals and birds of different years against the total applied insecticide mass 

(preliminary analysis showed that no other group of pesticide had any influence on the TAT 

for these groups; both parameters were z-score transformed prior plotting to make them 

relatively comparable between groups) and connecting the data points of the individual years 

to represent the temporal system development in the applied mass-TAT space, shows that 

the system states (represented by the individual years) are bound to a single corridor in the 

phase space (Figure 4A). Numerical analysis shows that this single corridor has a width of 

less than 0.5, indicating a relatively low variability, a center line that intersects the coordinate 

system exactly in its origin and a slope of exactly 1. In conclusion, the TAT for the three 

vertebrate groups appears to be proportional to the applied masses of the pesticides that 

contribute to the respective TAT, which are organophosphates and carbamates for mammals 

and birds, and organophosphates, pyrethroids and neonicotinoids for fishes. The same seems 

to be the case for terrestrial plants (Figure 4I), only that the TAT here increases proportionally 

to the increased applied mass of some herbicides belonging to various chemical classes. 

Increased herbicide use is likely also caused by development of pesticide resistances (Gould 

et al., 2018), but is associated with detrimental effects (Morandin & Winston, 2005; Stenoien 

et al., 2016). The proportionality of mass and TAT does, however, not exclude changes in the 

composition of the applied pesticides. For instance, contribution of organochlorines to the fish 

TAT were continuously replaced by equally high contributions of pyrethroids, a group of 

pesticides that is, e.g., correlated with declining abundances of California Bay-Delta fishes 

(Fong et al., 2016). 
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A different picture emerges when considering the phase-space plots for aquatic invertebrates 

and pollinators (Figure 4E). Here, two different phases of system development can be 

discerned. In a first phase from 1992 to approximately 2004, changes in the applied insecticide 

mass (again, only insecticides contribute to the TAT of both invertebrate groups), more 

specifically, the decrease of the applied masses in this time, do not lead to changes in the 

TATs. In a second phase until 2016, the TATs increase considerably, despite further 

decreasing masses. The transition from the first into the second phase occurs within only a 

couple of years. Unlike it was the case for the vertebrate TATs, changes in the amounts of 

applied pesticides are, thus, not a good explanation for changes in the invertebrate TATs. 

Instead, structural change of the pesticide use regime, namely changes in the set of applied 

pesticides, delivers an explanation. Although phases and phase change occur concurrently 

for aquatic invertebrates and pollinators, the specifics of the observed patterns in both phase-

spaces are different: the continuous replacement of high-volume organophosphates by 

pyrethroids (Stehle & Schulz, 2015a), which are much more toxic to aquatic invertebrates but 

used in smaller volumes, explain the initial steadiness and subsequent increase of the TAT 

for aquatic invertebrates despite decreasing applied masses. Pyrethroids are discussed as 

relevant risk contributors to aquatic invertebrates, but their high toxicity, low application rates 

and transient occurrence in surface waters make them hard to cover in monitoring campaigns 

(Stehle & Schulz, 2015a). They are, however, regularly found in biofilms (Mahler et al., 2020) 

and led even to resistances in amphipods (Weston et al., 2013). For pollinators, the 

replacement of organophosphates by neonicotinoids, a group highly toxic to bees (Stanley et 

al., 2015; Woodcock et al., 2017), leads to a similar, concurring phase shift. In conjunction 

with the increasing TAT for terrestrial plants, this could additionally stress these highly 

interlinked organism groups (Biesmeier et al., 2006). The phase shifts around 2004 hint at 

fundamental structural changes in the human-ecological system of agricultural pesticide use 

in the US at this time, but requires further evaluation for a more detailed understanding. 
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The results of Schulz et al. (2021) challenge the widespread view that insecticide risks in the 

US are declining because the applied amounts are decreasing. They show, following a 

systemic approach, that changes in the choice of insecticides, away from those especially 

toxic to vertebrates and towards those especially toxic to invertebrates, may be a major driver 

for the overall risks of the latter organism group. 
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5 Importance of system size for pesticide use and toxicity 

The TAT provides a tool to assess potential risks of pesticide use at large scales for various 

species groups. It can be applied to any region for which the amounts of applied pesticides 

are known on a substance-level. This kind of data is available for an increasing, although still 

limited, number of countries. One of the countries for which use data in sufficient detail, i.e., 

per active ingredient, has recently become available, is Germany, and, for several reasons, it 

is interesting to study the TAT in Germany in more detail (Bub et al., 2023; also, in Appendix 

C): Germany is among the important agricultural producers in Europe; a comparison of the 

German TAT with the US TAT allows insights into the role that the differences in agriculture 

and pesticide use between the two countries play, but also allows studying scale-effects when 

considering that the German agriculture is much smaller than that of the US; finally, the EU 

has set ambitious goals to reduce environmental risks posed by pesticides (European 

Commission, 2020), and the TAT could help to track the accomplishment of these goals. 

Several studies discuss potential biodiversity effects of pesticide use for Germany (Geiger et 

al., 2010; Liess et al., 2020; Nationale Akademie der Wissenschaften Leopoldina et al., 2020; 

Schmitz et al., 2015). 

Pesticide use in Germany forms a system of a much smaller size compared to the US, but it 

also differs in crop composition, field sizes, farming practices, and landscape context (Larsen 

et al., 2017; Sachverständigenrat für Umweltfragen, 2016). For instance, while there are about 

400,000 tons of pesticides applied in the US every year, this figure is only about 30,000 tons, 

or 7.5%, in Germany. This might be one of the reasons, why TAT trends in Germany indicate 

a different, less clear, system behavior. Unlike in the US, where a clear identification of phases 

was possible for all of the six studied organism groups, it was not possible to identify phases 

for the TATs in Germany, although four of the eight studied organism groups showed 

significant trends. Other than in the US, the TAT trends in Germany are not constrained by 

well-defined regime boundaries, they rather show a high degree of freedom in the applied 
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mass-TAT phase spaces. As a consequence, there are also no apparent regime shifts in the 

German TATs. 

The about one order of magnitude smaller scale of German pesticide use, compared to the 

US, increases the relative importance of interannual variance that is caused by smaller-scale 

factors. At smaller scales, pesticide use develops very dynamically, with changes in the 

preferred pesticides applied, and the space and time of applications. This applies especially 

to insecticides, which are applied only on small proportions of agricultural land, in response to 

certain pest pressures, but in regional clusters (Schulz et al., 2021). This could also be seen 

for the US if the TATs were calculated for individual counties instead of for the entire country. 

The larger the (spatial) scale of the considered pesticide use, the more these local effects of 

clustered TAT are averaged over time. Nevertheless, there are striking similarities between 

both countries: both show a significant and decreasing trend in the TAT for terrestrial 

vertebrates, and a significant and increasing trend for the TAT of terrestrial plants. 

Another finding for Germany that resembles insights gained for the US is that a small number 

of pesticides already explains large parts of the TATs of the different organism groups (Figure 

5). Which these pesticides are, is however different in the two countries. A systemic reason 

for these differences is the different structure of agriculture in the two countries and a different 

pesticide use therein. For instance, the lists of the top-5 TAT contributors contain for four of 

the eight considered organisms groups at least one fungicide, a group of pesticides that was 

not relevant for the TAT in the US at all. Fungicides are used in special cultures like vines, 

which have a relatively larger proportion in German agriculture than in the US. Fungicides 

dominate the TAT for soil organisms in Germany, an organism group that was, however, not 

assessed in the US study. Soil organisms are important for soil health (Maeder et al., 2002; 

Riedo et al., 2021), but are also prone to pesticide exposure (Gunstone et al., 2021; Topping 

et al., 2020). Another reason for the difference in the top-5 TAT contributors in the two 

countries are differences in the RTLs that were used to express the toxicity of individual 

pesticides based on the data of the respective regulatory processes. Taking into account that 
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the top-contributors to the TATs are often particularly toxic substances that are only used in 

comparably small amounts, that is, that the high TAT contribution of these substances is more 

determined by their toxicity than by their applied masses, this highlights the large sensitivity 

that large-scale ecotoxicological assessments have on values that were yielded at much 

smaller scales, and, thus, the necessity for a consistent determination of these values.  

 

 

Figure 5. Relative contribution of individual pesticides to the TAT of (a) aquatic invertebrates, (b) fish, (c) aquatic 
plants, (d) arthropods, (e) vertebrates, (f) terrestrial plants, (g) pollinators and (h) soil organisms. Domestic sales 
refer to the sold mass of the pesticide relative to the total sold mass of its pesticide type. For display, the top five 
pesticides per species group regarding TAT contribution were selected. Percentages refer to the total of the years 
1995-2019. From Bub et al. (2023). 

 



22 
 

The results of the US and German studies both point out the large potential risks originating 

from pyrethroids for aquatic invertebrates and, to a lesser extent, for terrestrial arthropods and 

fish, a group of substances that is often not identified as driving pesticide risks due to their low 

total of applied masses. In Germany, the largest observed TAT increase by a factor of 3 was 

observed for fish and has been be attributed to an increase in the usage of highly toxic 

pyrethroids. The role of pesticides for fish declines (Freyhof & Brooks, 2011; Müller et al., 

2018; Wolter, 2001) is currently discussed (Stokstad et al., 2013), and the TAT indicates some 

importance of insecticide use in this context. 

Like for the US, pesticide risks in Germany are often being assumed to decrease as applied 

masses decrease, whereas a consideration based on the TAT much more diverse picture. In 

the context of the ambitious EU goals to reduce pesticide risk in each member state, this 

finding challenges the proposed, mostly mass-based, indicator that is to be used for assessing 

this risk reduction. The comparison between the risk analysis of Germany and that of the US 

hinted at potential scale effects. 
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6 Conclusion 

Ecotoxicology at large scales requires adapted methods and conceptual frameworks. Graph 

databases offer a manageable approach to link and semantically enrich data relevant for 

ecotoxicological risk analyses from different sources. Measures like the TAT are able to 

summarize rich and complex data into comprehensible proxies for assessing large-scale risks. 

System-theoretic conceptual frameworks facilitate the linkage of knowledge among different 

fields of research and enhances the interpretation of results. 

The combination of a graph database approach with system-theoretic interpretations of the 

TAT has revealed insights into the dynamics of pesticide use in the US and Germany, and the 

increasing risk it imposes to different organism groups. Risks for non-target ecosystems may 

even increase more at a global scale than for the two studied countries due to the considerable 

expansion of cropland and pesticide use in many regions. Given the indicators for the 

detrimental impact of pesticide use, these large-scale developments urgently request for 

further research. However, in many regions, fundamental data, like pesticide use, are not 

available. 

Ecotoxicology at large scales is needed more than ever. Processes show increasing dynamics 

at the global scale, some of which are concerning because they may exceed the adaptability 

of natural systems. At a global scale, these dynamics include increasing pesticide use 

(considering mass and toxicity) that co-occur with other stressors to ecosystems, like 

continuous land-transformation and degradation, or climate change, but eventually extends to 

an steadily increasing number of chemicals that are of potential environmental impact. Human 

actions are the main driver for these increasing dynamics, but the role that chemicals as a 

whole play at large scales is not yet entirely understood. Knowledge of this role, however, is 

necessary to adapt human action in order to mitigate, manage and reverse chemical risks and 

effects in the future. 
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Abstract: Assessing the impact of chemicals on the environment and addressing subsequent issues
are two central challenges to their safe use. Environmental data are continuously expanding,
requiring flexible, scalable, and extendable data management solutions that can harmonize multiple
data sources with potentially differing nomenclatures or levels of specificity. Here, we present
the methodological steps taken to construct a rule-based labeled property graph database, the
“Meta-analysis of the Global Impact of Chemicals” (MAGIC) graph, for potential environmental
impact chemicals (PEIC) and its subsequent application harmonizing multiple large-scale databases.
The resulting data encompass 16,739 unique PEICs attributed to their corresponding chemical class,
stereo-chemical information, valid synonyms, use types, unique identifiers (e.g., Chemical Abstract
Service registry number CAS RN), and others. These data provide researchers with additional
chemical information for a large amount of PEICs and can also be publicly accessed using a
web interface. Our analysis has shown that data harmonization can increase up to 98% when
using the MAGIC graph approach compared to relational data systems for datasets with different
nomenclatures. The graph database system and its data appear more suitable for large-scale analysis
where traditional (i.e., relational) data systems are reaching conceptional limitations.

Dataset: The dataset can be found in Supplementary Materials, http://www.mdpi.com/2306-5729/
4/1/34/s1.

Dataset License: CC-BY-SA

Keywords: ecotoxicology; graph database; environmental data; data harmonization; chemical use
types; organic contaminants; synonyms; nomenclature; specificity

1. Summary

The primary concern of ecotoxicology is the impact of chemicals on the environment [1]. To assess
this impact at a large-scale, i.e., continental or global context, data of environmental concentrations,
effects, use types or application rates have to be incorporated into a consistent structure. Today,
science can rely on numerous databases providing these data (Table 1) for potential environmental
impact chemicals (PEICs, e.g., pesticides, industrial chemicals, flame retardants, and solvents).
However, the process of linking them takes significant harmonization efforts, even after a common
semantic framework has been established, i.e., even after their integration into a coherent base.
Among the most fundamental reasons hindering instant data linkage and affecting dimensions of the
ecotoxicological data are differing nomenclatures and differing levels of specificity (see Table 2 for
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examples). For instance, when linking data spatially, some problems typically arise around issues of
specificity, i.e., data present at different spatial scales or resolutions, while linking data within chemical
dimension is often impeded by the usage of different nomenclatures. For ecotoxicology, however,
the specific interest lies in the chemical dimension, as it applies to all core data (Table 1).

Table 1. Core data, their dimensions and exemplary datasets, providing these data and being used in
this study.

Type of Data Dimensions Example Datasets

Environmental Concentrations Space, time, medium, chemical WQP 1

Biological effects Species, medium, chemical ECOTOX 2, FOODTOX 3

Use types Chemical PAN 4, (WQP)
Application rates Space, time, chemical USE 5

1 National Water Quality Monitoring Council—Water Quality Portal (WQP) [2]. 2 U.S. EPA ECOTOX database (ECOTOX) [3].
3 European Food Safety Authority—OpenFoodTox (FOODTOX) [4]. 4 Pesticide Action Network—Pesticide Database
(PAN) [5]. 5 U.S. Geological Survey—Estimated Annual Agricultural Pesticide Use (USE) [6].

The usage of different nomenclatures is a well-known issue in chemistry [7,8]. Although a
chemical compound is defined by its molecular structure, there is no exclusive convention for naming
or identifying it. Instead, there are many concurring schemes based on two different approaches:
naming chemicals based on their molecular structure (International Chemical Identifier (InChI) and
Simplified Molecular Input Line Entry Specification (SMILES) [7,9]) or assigning arbitrary, yet unique,
identifiers to them (e.g., Chemical Abstract Services registry number (CAS RN) and Distributed
Structure-Searchable Toxicity substance identifier (DTXSID) [10,11]). In addition, many chemicals,
such as pesticides, also have various other names (e.g., trivial, brand, and formulation names) that
may also differ among languages (Table 2). The co-existence of these naming schemes results in a
high number of synonyms making nomenclature an important issue, particularly when linking larger
datasets. This issue further aggravates in analyses that operate in a trans-national or global context,
consider many PEICs and require harmonizing many different data sources.

Table 2. Examples of problems occurring when linking data from different sources.

Field of Problem Affected Dimension Problem Example

Nomenclature Chemical Different spellings Lambda-cyhalothrin–cyhalothrin,
lambda

Different nomenclatures Thiametoxam
(trivial name)–153719-23-4 (CAS RN)

Space Different languages United States of America–Estados
Unidos de América

Specificity Chemical Different stereo-chemical
information

Concentration of
beta-cyfluthrin–threshold of cyfluthrin

Space Different spatial
resolution

Concentration at GPS coordinate–use
rate at county-level

Time Different temporal
resolution

Concentration with date–use data in
yearly resolution

Differing data specificity is also an issue when linking chemical data. Measured environmental
concentrations or effect endpoints may be provided in different databases specifically for any kind of
isomers, including data specific to enantiomers or diastereomers, or at the level of unique compound
structures, ignoring stereo-compositions and, thus, including isomeric and racemic mixtures. Differing
specificity, if not addressed, substantially hinders the integration of data from different sources for
some of the ecotoxicologically most important groups of compounds, e.g., insecticides [12], that may
act substantially differently based on their stereo-chemical composition [13].
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For analyses that cover only relatively small sets of PEICs, problems of nomenclature and
specificity can be handled manually by expert judgment. Knowledge of PEICs thereby allows
constructing data analysis workflows that cover all deviations in chemical names and that reasonably
span different levels of specificity. Larger analyses that cover several dozens, or more, of PEICs are
often based on relational data representations [12]. In the case only two different naming schemes
are involved, e.g., if only two data sources are linked, differing identifiers of the same chemical
can still be resolved by establishing a synonym table. However, relational database joins are costly,
and linking more than two different data sources by joining their chemical identifiers (e.g., chemical
name) with synonym tables increases the processing complexity significantly, quickly reaching points
where complex data analyses become cumbersome [14]. Moreover, resolving different levels of
specificity within and among relational datasets requires sophisticated techniques that entail even
more effort to develop and that can hardly be established without significant lack of performance [15].
At least when combining more than two data sources—a requirement of many ecotoxicological
meta-analyses—relational data representations are suboptimal due to their constraints in performance
and usability [15–17].

Labeled property graph databases represent an effective tool to address the aforementioned
issues of extendibility, scalability, and flexibility [14,18,19]. Briefly, a labeled property graph consists of
nodes (vertices) that are connected through relationships (directed edges) [19]. Both nodes and
relationships can be labeled to distinguish functional roles and can be enriched with properties
(see Appendix A for further details). In contrast to relational database systems, the number and
type of relationships between entities is, thus, not strictly defined and allows linking information
very flexibly [18,20]. This flexibility and the graph’s emphasis on relationships appear well suited
for the establishment of a synonym database that can also resolve hierarchical relationships [14,15].
Consequently, over the last years, graph databases have evolved as a technical alternative to the
established relational database systems, featuring large-scale business (e.g., logistics, social media,
and health management) and scientific applications (e.g., web science and sociology) where relational
solutions become unfeasible [21,22]. However, even after an extensive literature review, we could not
find any published approach that uses a graph for managing and analyzing data in ecotoxicology.

The aim of this study was to assess the usability of graph databases for large-scale ecotoxicological
meta-analyses that integrate and link a wide range of relevant data (Table 1) and was conducted by the
research group “Meta-Analysis of the Global Impact of Chemicals” (MAGIC). In addition, multiple
ecotoxicologically-relevant databases were used to perform a data harmonization, using U.S. EPA
Chemical Dashboard (CDDB) [11] as a synonym provider, demonstrating the method’s applicability in
a large-scale ecotoxicological scope and quantifying the method’s advantages compared to relational
joins. The data were subsequently reprojected into tabular form, granting easy accessibility to
researchers and professionals. The Microsoft® Excel worksheet published with this data description
summarizes the information that is currently contained in the MAGIC graph in a tabular format, while
an up-to-date version of the MAGIC graph can be explored using our website (https://magic.eco;
see User Notes). Harmonized data for 16,739 PEICs in the MAGIC graph contain information about
unique identifiers (CAS RN and DTXSID), valid synonyms, respective chemical classes, use type
classification and their inclusion in various databases.

We are positive that the MAGIC graph can serve as a reliable proof that, with graph databases,
one already has a suited data integration tool at hand. With it already being actively integrated in
large-scale risk analysis at the national level [23], the MAGIC graph will find further applications and
become a central tool in trans-national or global risk analyses in the future (DFG SCHU 2271/6-2).
The MAGIC graph is publicly available and will provide a continuously expanding feature set, allowing
researchers to take advantage of graph database solutions.

https://magic.eco
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2. Data Description

2.1. Database

The MAGIC graph contains 16,731 PEICs (see Microsoft® Excel worksheet for complete list).
For these chemicals, chemical identifiers (n = 66,636) used by relevant datasets (Table 1) are stored and
linked to the chemicals they identify. Each chemical has a preferred name for consistent creation of
output. Use types and chemical classes, as provided by external datasets, are included in the MAGIC
graph and linked with the chemical identifier used by the external dataset. The resulting schema
(Figure 1) allows collecting chemical information over multiple databases regardless of the individually
used identifiers by navigating the graph (Figure 2). Up-to-date contents of the graph can be retrieved
using the website https://magic.eco (also see user notes).
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2.2. Summary Microsoft® Excel Worksheet

Published with this data descriptor is a Microsoft® Excel worksheet that summarizes the content of
the MAGIC graph. The columns of this worksheet are described in Table 3.

Table 3. Description of the submitted Microsoft® Excel worksheet.

Column Description

Chemical The preferred name of the chemical as derived from the CDDB. In most instances,
the name given here equals the preferred name of the CDDB.

CAS RN
The currently valid Chemical Abstract Service registry number as given by the CDDB. Alternative

CAS RNs, such as deleted numbers, are given under synonyms
if they are used by at least one of the databases included in the MAGIC graph.

DTXSID The substance identifier of the distributed structure-searchable toxicity database
as provided by the CDDB

Synonyms Additional identifiers of the chemical. Synonyms are only listed if they are used by
at least one of the databases included in the MAGIC graph.

Chemical Class
The chemical class according to the PAN and WQP dataset. Only chemicals occurring in one of

these datasets are classified and classifications are given here as is. Chemical classifications will be
extended by considering further databases and harmonized among databases in the future.

Stereochemical An “x” indicates stereo-chemical information is associated with the chemical.

Insecticide An “x” indicates that the chemical is used as an insecticide according to the PAN database.

Herbicide An “x” indicates that the chemical is used as an herbicide according to the PAN database.

Fungicide An “x” indicates that the chemical is used as a fungicide according to the PAN database.

Microbiocide An “x” indicates that the chemical is used as a microbiocide according to the PAN database.

Other Uses
A list of other uses of this chemical (excluding insecticide, herbicide, fungicide and microbiocide)

according to the PAN and WQP databases. As with chemical classes,
use type classification will be improved continuously over the next versions of the MAGIC graph.

WQP Entries marked “x” indicate that the WQP database contains records of this chemical,
using any of its identifiers.

ECOTOX Entries marked “x” indicate that the ECOTOX database contains records of this chemical,
using any of its identifiers.

FOODTOX Entries marked “x” indicate that the FOODTOX database contains records of this chemical,
using any of its identifiers.

USE Entries marked “x” indicate that the USE database contains records of this chemical,
using any of its identifiers.

PAN Entries marked “x” indicate that the PAN database contains records of this chemical,
using any of its identifiers.

2.3. Database Linkage and Pesticide Use Types

The databases listed in Table 1 were integrated into the MAGIC graph and subsequently analyzed
individually regarding the chemical identifiers they contain (Table 4). These databases were selected
because they are the most comprehensive resources for large-scale ecotoxicological core data from
governmental and non-governmental sources. The MAGIC graph made it possible to evaluate how
many of the identifiers used by each dataset actually identified chemicals, and how the identified
chemicals were distributed among chemicals with stereo-chemical information and those without.
Further, the number of synonymous identifiers within each dataset was identified.
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Table 4. Characterization of ecotoxicologically-relevant datasets using the MAGIC graph.

Dataset ID Type Identifiers
Syno-nyms 4 Chemicals

Chemical 1,2 Other 2,3 Stereo- 5 Non-Stereo 5

WQP CAS RN, name 6384 (65%) 3374 (35%) 3133 385 (11%) 2987 (89%)
ECOTOX CAS RN 11,550 (73%) 4214 (27%) 28 1454 (13%) 10,068 (87%)

USE Name 451 (92%) 40 (8%) 2 58 (13%) 391 (87%)
PAN CAS RN, name 10,399 (69%) 4640 (31%) 4453 707 (12%) 5388 (88%)

FOODTOX CAS RN, name 4190 (75%) 1375 (25%) 752 636 (18%) 2802 (82%)
1 Identifiers that were linked to specific structurally unique compounds using the CDDB. 2 Percentages refer to the
entirety of chemical identifiers in the dataset. 3 Identifiers used by the respective dataset that could not be linked to
a specific chemical using the CDDB. 4 Synonyms refer to the amount of additional chemical identifiers attributed to
chemicals. 5 Percentages refer to the entirety of chemicals in the dataset.

The considered databases vary in the absolute number of chemicals they cover and the
proportion of identifiers for chemicals (Table 4). For instance, 35% of WQP identifiers are not
categorized as a “chemical”, because they refer to mixtures, physical attributes (e.g., temperature and
flow velocity), biological parameters (e.g., algal density and toxicity endpoints) or other, non-chemical
information. Lower proportions of chemical identifiers may primarily indicate that the respective
database is not only focused on PEICs but also on other entities, such as formulations, mixtures, etc.
However, lower proportions may also be a result of low-quality data reporting, such as non-adherence
to standardized nomenclature.

The characterization of databases further reveals that PEICs with isomeric information constitute
11–18% of chemicals in all analyzed databases (Table 4). Integration of hierarchical structuring is
therefore a graphs’ valuable feature that not only allows for a more detailed differentiation among
chemicals but also enables transparent analyses over multiple levels of specificity. Synonym analysis
shows that, for instance, in the ECOTOX database, synonymous relationships are rare (n = 28; <0.2%),
which underlines the CAS RNs’ suitability as identifiers. Nonetheless, while CAS RNs uniquely
identify chemicals, there may be multiple CAS RNs (e.g., CAS RN vs. deprecated CAS RN) referring to
the same chemical (e.g., cyfluthrin). This may produce spurious analysis results, if unaddressed. With
the MAGIC graph, however, analyses are based on chemicals, instead of identifiers, and all data,
related to a chemical, are considered equally, regardless of the chemical identifier used.

We also assessed to what extent the MAGIC graph allows linking more chemicals over the different
datasets compared to a relational approach where only same-spelling identifiers were considered
linkable (Figure 3). We found that linkage increased only marginally (1–2%) when using the graph
in the case both merged databases used CAS RN (see Table 4). This increase, although only small,
underlines that, even with CAS RN, nomenclature can be an issue for data linkage. Relational
joins using same-spelling names were only successful for 0–63% compared to the graph approach
(Figure 3), signifying that joins relying on names are substantially affected by differing nomenclatures.
In contrast, the graph approach successfully linked 21–99% of entries. With relational joins, it was
impossible to link CAS RN from one dataset and chemical names from another, whereas, with the
graph approach, we successfully linked 98% of the data from ECOTOX and FOODTOX, a linkage
that depends on using CAS RN and names simultaneously (Table 4). While this case may also be
partially resolved using relational joins, prior manual harmonization of chemical identifiers would be
required, which is time-intensive, yet unnecessary, when using the graph approach. Figure 3 provides
further information, e.g., on fractions for individual database pairs or total linkage of chemical
data. In large-scale ecotoxicological assessments, transcending national or continental boundaries,
harmonization and subsequent linking of data may become unfeasible, while the MAGIC graph
approach can provide better performance and coverage compared to traditional relational joins.
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Figure 3. Linkage of chemical data relative to a theoretical maximum for different databases. Complete
linkage presumes that all chemicals listed in the smaller database are contained in the larger one.
Linkage with a relational approach, where only CAS RN (light blue) or same-spelling chemical
identifiers match (dark blue), is compared to the additional gain with the graph approach (orange).
See Table 4 for the types of identifiers that were available for each database.

The use types and chemical classes of the PAN database give an example of how data, included
in the MAGIC graph, can be used for characterizing datasets: the ECOTOX, FOODTOX and PAN
databases cover a broad range of chemicals, including similar proportions of insecticides, herbicides,
fungicides and microbiocides (Figure 4). In contrast, the USE dataset shows a higher proportion of
insecticides, herbicides and fungicides, and a lower proportion of microbiocides, reflecting its focus on
agricultural pesticide applications. Similarly, the WQP contains relatively fewer data of insecticides,
herbicides and fungicides, since the number of chemicals being breakdown products (classified as
other use type) in this environmental concentration dataset is rather high. The integration of the PAN
database use types into the MAGIC graph thus enables an unprecedentedly comprehensive overview of
the kind of PEICs that are contained in individual datasets (Figure 4). In addition, the successful
data harmonization further demonstrates that ancillary chemical data can be readily incorporated
into the MAGIC graph. For instance, supplementing regulatory information (e.g., regulatory status,
environmental quality criteria) may now be added with only little effort.



Data 2019, 4, 34 8 of 17

Data 2018, 3, x FOR PEER REVIEW  8 of 18 

 

 

Figure 4. PAN use types of the chemicals in different datasets after linking them with the MAGIC 

graph. Chemicals may have multiple use types and are then included in several categories. 

3. Methods 

In contrast to relational database management systems, graph databases do not depend on 

predefined schemata. Briefly, nodes, relationships, labels, types and properties can be added, 

modified and removed ad hoc and as needed. While this tremendously facilitates the management 

of changing and growing heterogeneous datasets, it also complicates the usage of these data. Without 

a static and technically binding schema, the current semantics have to be discovered dynamically: it 

has to be found what kinds of nodes there are, what properties they have, how nodes are related to 

other nodes, etc. These concerns were addressed by specifying features of the data model informally 

outside the database and included semantics of node labels, relationships between nodes and 

restrictions of properties. To maintain consistency between this specification and the content of the 

database, as well as safeguard data integrity, 32 rules, checking specific aspects of the data model, 

were implemented (Appendix B, Table A1). Rules were iteratively formulated by expert judgment 

whenever new conceptual or technical requirements arose, while it was generally aimed at 

maintaining a small set of rules. Violations of the rules result in notifications that have to be resolved 

manually or semi-automatically (Figure 5). This rule-based approach provides a balanced tradeoff 

between benefits of an agreed schema and flexibility of a graph database. Turning the a priori schema 

known from relational databases into a posteriori applied consistency rules also resulted in work-

flows that resemble those of test-driven developments [24]. For instance, extension of the domain of 

the graph database application, e.g., by additionally linking taxonomic data to effect data, is achieved 

in the two following steps. First, one specifies and implements a set of additional rules, e.g., “species 

and genus are allowed labels”, “an effect must be linked to a species”, “a species belongs to a genus”, 

etc., and afterwards modifies the database by adding nodes and relationships until all rules are 

fulfilled. Fulfillment of all rules then marks a new version of the database application that provides 

additional information. 

Figure 4. PAN use types of the chemicals in different datasets after linking them with the MAGIC
graph. Chemicals may have multiple use types and are then included in several categories.

3. Methods

In contrast to relational database management systems, graph databases do not depend on
predefined schemata. Briefly, nodes, relationships, labels, types and properties can be added, modified
and removed ad hoc and as needed. While this tremendously facilitates the management of changing
and growing heterogeneous datasets, it also complicates the usage of these data. Without a static and
technically binding schema, the current semantics have to be discovered dynamically: it has to be found
what kinds of nodes there are, what properties they have, how nodes are related to other nodes, etc.
These concerns were addressed by specifying features of the data model informally outside the database
and included semantics of node labels, relationships between nodes and restrictions of properties.
To maintain consistency between this specification and the content of the database, as well as safeguard
data integrity, 32 rules, checking specific aspects of the data model, were implemented (Appendix B,
Table A1). Rules were iteratively formulated by expert judgment whenever new conceptual or technical
requirements arose, while it was generally aimed at maintaining a small set of rules. Violations of
the rules result in notifications that have to be resolved manually or semi-automatically (Figure 5).
This rule-based approach provides a balanced tradeoff between benefits of an agreed schema and
flexibility of a graph database. Turning the a priori schema known from relational databases into a
posteriori applied consistency rules also resulted in work-flows that resemble those of test-driven
developments [24]. For instance, extension of the domain of the graph database application, e.g.,
by additionally linking taxonomic data to effect data, is achieved in the two following steps. First,
one specifies and implements a set of additional rules, e.g., “species and genus are allowed labels”,
“an effect must be linked to a species”, “a species belongs to a genus”, etc., and afterwards modifies
the database by adding nodes and relationships until all rules are fulfilled. Fulfillment of all rules then
marks a new version of the database application that provides additional information.



Data 2019, 4, 34 9 of 17

Data 2018, 3, x FOR PEER REVIEW  9 of 18 

 

 

Figure 5. Workflow for adding data to the MAGIC graph while maintaining its integrity. 

Initially, six publicly available chemical databases were identified and compared regarding 

quality of synonyms they provide for an array of organic pesticides (n = 655). After extensive quantity 

and quality assessments of the generated synonym links, the U.S. EPA Chemical Dashboard [11], 

containing approximately 765,000 chemical entries, was chosen as a synonym provider (see 

Appendix C). 

In the first implementation, synonymous chemical identifiers (e.g., substance names) were 

interlinked directly (Figure 6a). However, following this concept, the number of steps necessary to 

collect all synonyms of a given identifier varied between queries, which resulted in complex queries. 

This concept also complicated the estimation of the quality of synonym relationships, as two distant 

identifiers could be linked over relationships of different certainty. A later refined representation 

distinguished between the chemical itself and its identifiers (Figure 6b), leading to a representation 

where the step sequence for collecting all synonyms of a chemical is well defined and only requires 

two steps. This adjustment improved the computational efficacy, at the same time allowing to add 

further chemical identifiers without increasing the maximum number of steps required. 
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Initially, six publicly available chemical databases were identified and compared regarding
quality of synonyms they provide for an array of organic pesticides (n = 655). After extensive quantity
and quality assessments of the generated synonym links, the U.S. EPA Chemical Dashboard [11],
containing approximately 765,000 chemical entries, was chosen as a synonym provider (see
Appendix C).

In the first implementation, synonymous chemical identifiers (e.g., substance names) were
interlinked directly (Figure 6a). However, following this concept, the number of steps necessary
to collect all synonyms of a given identifier varied between queries, which resulted in complex queries.
This concept also complicated the estimation of the quality of synonym relationships, as two distant
identifiers could be linked over relationships of different certainty. A later refined representation
distinguished between the chemical itself and its identifiers (Figure 6b), leading to a representation
where the step sequence for collecting all synonyms of a chemical is well defined and only requires
two steps. This adjustment improved the computational efficacy, at the same time allowing to add
further chemical identifiers without increasing the maximum number of steps required.
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Figure 6. Two representations of four synonym identifiers (1–4) in a graph. (a) Links between
identifiers indicate known synonym relationships. Synonyms of an identifier are all directly or
indirectly connected other identifiers. (b) Identifiers point to the identified chemical (blue circle).
All identifiers pointing to the same chemical are synonyms. The chemical has a preferred identifier
(double arrow).

Consistency between chemical query results was achieved by attributing each chemical a preferred
identifier (used by the CDDB), so that chemicals can be identified in a default way. A descriptive
property was attributed to relationships between identifiers and chemicals to reflect the identification
type, e.g., CAS RN. Data output for chemicals can, thus, be restricted to specific types of relationships
for identifying chemicals.

Substances relevant in ecotoxicological contexts can be described by varying detail of specificity
(e.g., isomerism), which was addressed by creating hierarchical chemical sub-graphs. For example,
permethrin (Figure 7), an insecticidal compound, represents a stereoisomeric mixture of cis- and
trans-permethrin isomers. The respective relationships between chemicals were resolved considering
the presence of stereo-layers in their standard InChI strings [25], creating a hierarchical sub-graph
(Figure 7). Further distinction of hierarchical levels (e.g., enantiomers and diastereomers) currently
is not technically possible, as standard InChI strings do not support this operation [25]. However,
it is also rarely needed for ecotoxicological assessments using field concentrations.
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Figure 7. Representation of some synonyms and different levels of specificity for permethrin. Identifiers
(green) refer (solid arrows) to chemicals (blue). Chemicals with stereo-information refer (dashed arrow)
to a structural identical chemical without stereo-information.
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After evaluation of different solutions, the MAGIC graph was hosted using the Neo4j native graph
database, a mature, actively developed and widespread graph database product that is available as an
Open Source Community Edition (GPLv3 license) and as an extended Enterprise Edition. The MAGIC
graph was implemented using versions 3.4.5 to 3.5.0 of the Community Edition (updates were applied
as soon as available). Validation rules (Appendix B), as well as tools for automatic rule violation fixes,
were implemented using PHP and integrated into an Apache 2 web server. For conducting manual
fixes, a set of graphical tools was evaluated (Appendix D). The web server hosts a publicly available
website (https://magic.eco) that allows, among other functions, to access the data of the MAGIC
graph (see user notes).

Currentness of data is accomplished by synchronization routines, which update the MAGIC graph
when some external data sources, especially the synonym provider, change. To detect differences
between the graph and external sources, we reapplied the rule-based approach by implementing
a set of synchronization rules (Table A2). Violations of these rules indicated differences between
databases, prompting a synchronization routine.

4. User Notes

The website https://magic.eco provides access to the most recent version of the MAGIC graph.
It offers the possibility to visit individual chemical identifiers and to discover the synonyms and
generalizations as well as the data that are currently connected to the chemical. The website also
provides a user with an option to download an up-to-date version of the Microsoft® Excel worksheet
published with this data descriptor.

Supplementary Materials: MAGIC Graph Summary.xlsx, http://www.mdpi.com/2306-5729/4/1/34/s1.
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Appendix A

A graph consists of vertices that are connected by edges. There is a variety of graph models
that define the specifics of how vertices are connected by edges, but we adhere to the conceptually
simple, yet powerful, labeled property graph model. A graph consists, according to this model, of
vertices named nodes that are interconnected by directed edges named relationships [19]. Relationships
always connect two nodes but nodes may have an arbitrary number of out- or ingoing relationships,
including relationships to itself or multiple relationships to the same other node. Nodes have zero
to many labels that allow differentiating them functionally. Similarly, relationships have types, but
the number of types per relationship is limited to one. Nodes and relationships can be enriched by
attaching an arbitrary number of properties to them, each containing additional information to the
node or relationship. In essence, the labeled property graph model offers a high degree of flexibility
while it provides constructs such as labels, types, and properties that help in structuring the data.

Appendix B

A rule-based approach has been chosen to maintain integrity of the MAGIC graph and to keep it
synchronized with its synonym provider. This appendix sections lists the rules that have been defined
and implemented in the MAGIC graph.

https://magic.eco
https://magic.eco
http://www.mdpi.com/2306-5729/4/1/34/s1
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Table A1. Rules defining the MAGIC chemical graph.

ID “Rule” and Rule Description

G1

“All nodes must have a single label”: Ensuring that each node has exactly one label results in a graph
that is easier to maintain, as other rules can refer to specific sets of nodes without having to deal with
possible labeling overlaps. If the graph gets more complex in the future, it might however become

advantageous to allow multiple labels per node.

G2
“Only a set of predefined labels is allowed for nodes”: Restricting labels to a predefined set prevents

nodes in the graph that are not targeted by rules. The MAGIC graph may currently contain nodes
with labels “ChemicalIdentifier”, “Chemical” and “Dataset”.

G3 “Nodes should have a label with an associated view”: Making sure that each label has a defined way
that it is represented by the front-end website makes the MAGIC graph completely navigable.

G4
“Only a set of predefined types is allowed for relationships”: Predefining types assures that all

relationships are addressed by rules. Currently, the relationship types “identifies”,
“prefers_identifier”, “uses_identifier” and “specifies” are allowed in the MAGIC graph.

G5

“Every item in the MAGIC graph must have a name”: Naming items provides an endpoint for
visiting the item using the website front-end and facilitates modifications and synchronization of the

graph by allowing identification of individual nodes. For many types of items,
such as chemical identifiers, the name is a natural part of the data.

G6 “Labels should have an associated edit view”: Edit views allow smaller modifications of items using
the website front-end and the provision of such edit views helps in maintaining the graph database.

G7

“MAGIC graph items should have at least one ingoing relationship”: Items, having no ingoing
relationship, lack in significance because they are not navigable along the graph relationships and

should not be part of the graph. Some items are considered as entry points to the graph
(e.g., datasets) and are marked as globally available. The rule does not apply to these items.

CI1
“All chemical identifiers nodes must have a timestamp”: Registering the date of item creation assists

in synchronization chemical identifiers with external data sources and helps to
resolve rule conflicts by indicating which item is more recent.

CI2

“All chemical identifiers that actually identify a chemical should be linked to exactly one chemical”:
A chemical identifier should identify a chemical, otherwise it is irrelevant for the chemical graph.
However, there are two typical occasions when a chemical identifier does not identify a chemical:

(1) when a data source, from which data were imported into the graph listed an identifier as a
chemical identifier, but further investigation revealed that the identifier did not refer to a chemical in a
strict sense (e.g., it identifies a mixture of chemicals); and (2) when a chemical identifier was not found

by the synonym provider. Violating this rule gives the user a chance to recognize and mitigate the
second occasion, e.g., by adding manual synonym relationships. The user also has a chance to mark a

chemical identifier in such a way that it does not trigger this rule anymore (by marking it as a
chemical identifier that does not actually identify a chemical), which also signifies that the rule

violation was recognized and managed manually.

CI3
“All chemical identification relationships should have a timestamp”: Registering the date of

relationship creation assists in synchronization with external data sources and helps to resolve rule
conflicts by indicating which relationship is more recent.

CI4

“All chemical identifications should have a type”: Specifying the mode in which a chemical identifier
identifies a chemical helps in estimating the quality and uncertainty of the relationship.

It also helps to output specific sets of identifiers, e.g., only CAS RN. The types used for specifying the
relationship of identification are currently not restricted but may be a predefined set in the future.

CI5
“All chemical identifiers should be used by at least one dataset”: The data sources where a chemical
identifier is used should be given. If this is not the case, retracing the origin of chemical identifiers

is not possible which decreases the overall quality of the MAGIC graph.

CI6

“All chemical identifiers should have an identifier from a predefined list showing what is actually
identified”: Other rules depend on the information that a chemical identifier actually identifies a

chemical, that is, there applies a stricter meaning of chemical than in some other databases.
To provide this information, a chemical identifier should describe what it actually identifies.

Currently, the following possibilities are considered here: chemical, mixture, unmatched chemical
(by no means a corresponding chemical could be identified), unspecific (is not specific enough to

identify exactly one chemical) and ignored (for any reason).
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Table A1. Cont.

ID “Rule” and Rule Description

CI7

“A chemical identifier, that does not actually identify a chemical, should not be linked with a
chemical”: Specifying that a chemical identifier identifies a chemical only does make sense in case the

chemical identifier is marked as actually identifying a chemical. If this is not the case,
but an identifying relationship exists nonetheless, a manual examination of the case is advised.

C1 “All chemicals must have a timestamp”: Registering the date of item creation assists in resolving
conflicts involving chemicals by indicating which item is more recent.

C2
“All chemicals should have exactly one preferred name”: According to the MAGIC graph data model,

a chemical is considered having many names. Making sure that every chemical has exactly one
designated preferred name still allows it to be referred to in outputs in a harmonized way.

C3 “All chemicals should be identified by at least one chemical identifier”: Chemicals that have no
identifier cannot be related to actual chemicals and should be removed from the graph.

C4
“All identifier preferences should have a timestamp”: Name preferences of chemicals, especially
when taken from external sources, may change over time. In these occasions, timestamps help to

identify the more recent preference.

C5
“All chemicals should indicate whether they have bond stereo-chemical information”: To understand

which level of specificity regarding stereo-chemistry a chemical has, presence or absence of
stereo-information at double bonds should be indicated.

C6
“All chemicals should indicate whether they have tertrahedral stereo-chemical information”:

To understand which level of specificity regarding stereo-chemistry a chemical has, presence or
absence of stereo-information at tetrahedral stereo centers should be indicated.

C7

“Chemicals with stereo-information should specify other chemicals or indicate to not do so”:
The purpose of considering stereo-information is to distinguish two levels of specificity regarding

stereo-chemistry: absence and presence of stereo-information. In the case of stereo-information
presence, a chemical should specify a chemical without stereo-information but with the same

chemical structure, so representing the two levels of specificity in the graph. For some chemicals,
it is not reasonable to find a chemical with the same structure but without stereo-information.
In this case, the more specific chemical should be marked such that this rule can be ignored.

C8 “Chemicals may not specify themselves”: Violations of this rule may occur when stereo-information
in external data sources changes.

D1 “All datasets must have a timestamp”: Registering the date of item creation assists in resolving
conflicts in datasets by indicating which item is more recent.

D2 “All datasets must have a title”: A title provides a more extensive way for a short description of the
dataset but is not, unlike its name, used as an identifier.

D3 “All datasets must have a description”: A description is an even more extensive opportunity to
characterize a dataset by text.

D4
“All datasets should haven an indicator of whether they are published”: Distinction between

published and non-published datasets allows to decide which datasets are
accessible by the website front-end.

D5 “All datasets should be published”: At least at later stages, after inserting a dataset into the graph and
fixing possible rule violations, the dataset should be published to make its data available.

D6 “All datasets must have at least one author”: Assigning authors to a dataset is an attribution to the
persons who were responsible for inserting the dataset into the graph.

UTI1 “All Use Type Identifiers should be used by at least one dataset”: Use type identifiers originate from
datasets and attributions to these datasets should be given.

UTI2 “All Use Type Identifiers should be used by at least one chemical identifier”: All use type identifiers
should be linked to at least one chemical identifier, otherwise they are of limited use for assessments.

CCI1 “All Chem Class Identifiers should be used by at least one dataset”: Chemical class identifiers
originate from datasets and an attribution to this dataset should be given.

CCI2
“All Chem Class Identifiers should be used by at least one chemical identifier”: All chemical class

identifiers should be linked to at least one chemical identifier, otherwise they are of
limited use for assessments.
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Table A2. Synchronization rules.

ID Rule and Description

SyncCDDB1

“All identifiers in the MAGIC graph that actually identify a chemical should have exactly one match
in the CDDB”: Identifiers that have no match in the CDDB have been removed from there and

should also be removed from the MAGIC graph. In some (rare) cases, chemical identifiers have two
or more matches in the CDDB. These cases should be resolved manually, e.g., by ignoring the

chemical identifier.

SyncCDDB2

“All identifiers of a specific chemical in the MAGIC graph should have the same preferred name
and DTXSID in the CDDB”: Having different preferred names among the synonym identifiers of a
chemical is a strong indicator that synonym relationships in the CDDB have changed. This should

result in an update of synonym relationships in the MAGIC graph as well.

SyncCDDB3

“The preferred name of a chemical in the MAGIC graph should be the same as the preferred name
in the CDDB”: Preferred names of the CDDB may change. Making sure we use the same preferred
name in the MAGIC graph as in the CDDB circumvents the need to establish a custom scheme for

preferred names.

SyncCDDB4

“The stereo-information of a chemical in the MAGIC graph should be the same as the
stereo-information of that chemical in the CDDB”: This rule captures changes in the chemical

structure stored in the CDDB. Again, these changes should be synchronized with the MAGIC graph
to reflect the most recent specifying relationships.

SyncCDDB5

“The identifier type of the relationship between a chemical identifier and a chemical in the MAGIC
graph should be the same as in the CDDB”: Synchronizing the identifier type between CDDB and

MAGIC graph eliminates the necessity to manage a custom set of identifier types while still
allowing to use the benefits of typed identifiers.

SyncCDDB6

“All identifiers in the MAGIC graph that do not actually identify a chemical should have no match
in the CDDB”: On some occasions, new identifiers become recognized by the CDDB. This rule

captures those instances where the newly recognized identifiers match identifiers in the MAGIC
that previously have been marked as not actually identifying chemicals.

Appendix C

In total, 655 substance names—categorized as organic contaminants—were obtained from the
Water Quality Portal (https://www.waterqualitydata.us/) and used for benchmarking six databases.
First, successful synonym attribution was compared quantitatively (Table A3) between databases,
and then the quality of synonym relationships was manually assessed by validating correctness of
generated links using assigned standard InChI-Keys.

Table A3. Comparison of chemical synonym providers regarding automated attribution of InChI-Keys
for 655 organic contaminants.

Database Coverage (%) Remarks

U.S. EPA Chemical Dashboard 1 586 (89.5%) correct links
PubChem 2 645 (98.5%) ambiguous response, incorrect links
PUG REST 3 604 (92.2%) ambiguous response, incorrect links

SRS 4 601 (91.8%) rarely incorrect links
ChemSpider 5 346 (52.8%) low coverage

Chemical Translation Service 6 613 (93.6%) ambiguous response, incorrect links
1 https://comptox.epa.gov/dashboard/. 2 https://pubchem.ncbi.nlm.nih.gov/. 3 https://pubchemdocs.ncbi.nlm.
nih.gov/pug-rest. 4 http://www.exchangenetwork.net/data-exchange/srs/. 5 http://www.chemspider.com/.
6 http://cts.fiehnlab.ucdavis.edu/.

Attribution of synonyms and InChI-Keys was high for all six databases with the exception of
one (ChemSpider), which was removed from subsequent analyses due to its comparatively low
coverage (Table A3). Following this, manual validation of assigned InChI-Keys revealed that attribution
was frequently incorrect or query responses were ambiguous, except for the U.S. EPA Chemical
Dashboard (CDDB). Although multiple factors leading to misattribution of InChI-Keys or synonyms
were identified, automatic aggregation of synonym lists from online-sources lacking expert curation
was found the most prevalent factor that adversely affected attribution quality. The CDDB, that, unlike

https://www.waterqualitydata.us/
https://comptox.epa.gov/dashboard/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchemdocs.ncbi.nlm.nih.gov/pug-rest
https://pubchemdocs.ncbi.nlm.nih.gov/pug-rest
http://www.exchangenetwork.net/data-exchange/srs/
http://www.chemspider.com/
http://cts.fiehnlab.ucdavis.edu/
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the other considered databases, curates records and gives quality indicators, was thus identified as
the most reliable source for synonyms and corresponding InChI-Keys (see below for sample data
retrieved from the CDDB). Synonym quality provided by the CDDB was further assessed to sustain
the robustness of the method. Although automated linking of Chemical Identifiers to chemicals was
high (89.5%, n = 586) when using the CDDB (Table A3), 69 WQP entries could not be automatically
assigned to Chemical Identifiers. Missing entries were manually assigned CAS RN and InChI-Keys via
cross-validation using, among other databases, PubChem, PAN and PPDB. Attributed CAS RN and
InChI-Keys were then used to link missing entries with the corresponding CDDB entry, which was
successful in 75.4% (n = 52) of remaining cases. No manual links could be established in 24.6% (n = 17) of
cases, because no corresponding entry was found in the CDDB. Failure to automatically establish
synonym relationships was mostly due to chemical names in WQP being abbreviated, using wrong or
uncommon identifiers, or referring to entities that are not chemicals in a strict sense (i.e., mixtures).
Most importantly, a manual check revealed that no false synonym relationships (i.e., incorrect links)
were generated automatically using the CDDB as synonym provider, which was manually checked.
Thus, overall correctness and reliability of generated links were without any noticeable concern.

Data were retrieved from the EPA Chemistry Dashboard (https://comptox.epa.gov/dashboard)
using its batch search. The following is an excerpt of data retrieved:

1. Input: Lindane, Found by: Approved Name, DTXSID: DTXSID2020686, Preferred name: Lindane,
InChI key: JLYXXMFPNIAWKQ-GNIYUCBRSA-N, InChI string: InChI=1/C6H6Cl6/c7-1-
2(8)4(10)6(12)5(11)3(1)9/h1-6H/t1-,2-,3-,4+,5+,6+

2. Input: cis-Permethrin, Found by: Expert Validated Synonym, DTXSID: DTXSID0038338,
Preferred name: (+/−)-cis-Permethrin, InChI key: RLLPVAHGXHCWKJ-HKUYNNGSSA-N,
InChI string: InChI=1/C21H20Cl2O3/c1-21(2)17(12-18(22)23)19(21)20(24)25-13-14-7-6-10-
16(11-14)26-15-8-4-3-5-9-15/h3-12,17,19H,13H2,1-2H3/t17-,19-/s2

3. Input: lambda-Cyhalothrin, Found by: Synonym from Valid Source, DTXSID: DTXSID7032559,
Preferred name: λ-Cyhalothrin, InChI key: ZXQYGBMAQZUVMI-GCMPRSNUSA-N, InChI
string: InChI=1/C23H19ClF3NO3/c1-22(2)17(12-19(24)23(25,26)27)20(22)21(29)31-18(13-28)14-7-
6-10-16(11-14)30-15-8-4-3-5-9-15/h3-12,17-18,20H,1-2H3/b19-12-/t17-,18+,20-/s2

These data are sufficient: (1) to identify synonymous identifiers (Input, DTXSID, Preferred name,
(InChI key, InChI string)); (2) to evaluate the quality of the synonym relationship (Found by); (3) to
assess the presence of stereo-chemical information in a chemical and compare chemicals with the
same structure (InChI string, InChI key); and (4) to assign a common preferred name to a chemical
(Preferred name).

Appendix D

Various graphical user interfaces have been tested to identify a suitable tool for minor interactive
modifications of the MAGIC graph, preferably without coding Cypher queries (Table A4).

Table A4. Comparison of graphical user interfaces for Neo4j databases.

Name Version License Graph Edit Last Update Remarks

Bloom commercial + recently https://neo4j.com/bloom/

Cytoscape 3.7.0 GNU − 10/2018 Does not support Neo4j natively, but possibly via (outdated)
plug-in 1; http://www.cytoscape.org/

Gephi 0.9.2 commercial
(free edition) − 9/2017 Does not support Neo4j natively, but possibly via plug-in2;

https://gephi.org/

Graphexp Apache + 10/2018 Does not support Neo4j natively;
https://github.com/bricaud/graphexp

https://comptox.epa.gov/dashboard
https://neo4j.com/bloom/
http://www.cytoscape.org/
https://gephi.org/
https://github.com/bricaud/graphexp
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Table A4. Cont.

Name Version License Graph Edit Last Update Remarks

Graphileon 2.0.0-beta GNU + 8/2018
Graphs with datetime properties (introduced in Neo4j v3.4)

cannot be visualized or edited;
https://graphileon.com/graphileon-personal-edition/

Keylines 5.0 commercial − 11/2018 https://cambridge-intelligence.com/keylines

Linkurious 2.5.4 commercial + 7/2018 Offers trial version, without price information;
https://linkurio.us/solution/neo4j/

Neo4j Browser 3.2.5 GNU − 11/2018 Shipped with Neo4j database;
https://neo4j.com/developer/guide-neo4j-browser/

Neo4j Browser
(forked) 3.2.7 GNU + 11/2018 Extends Neo4j Browser by editing functionality;

https://github.com/phdd/neo4j-browser

Neo4js 2 open source + 5/2018 https://github.com/adadgio/neo4j-js-ng2

Neoclipse 1.9.5 open source + 9/2014 Does not support current Neo4j version;
https://github.com/neo4j-contrib/neoclipse

Structr 3.0.3 commercial + 9/2018 https://structr.com/

Tom Sawyer 8.2.2 commercial − 11/2018 https://www.tomsawyer.com/graph-database-browser/
1. https://apps.cytoscape.org/apps/cyneo4j. 2 https://tbgraph.wordpress.com/2017/04/01/neo4j-to-gephi.
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PESTICIDES

Applied pesticide toxicity shifts toward plants
and invertebrates, even in GM crops
Ralf Schulz1,2*, Sascha Bub1, Lara L. Petschick1, Sebastian Stehle1,2, Jakob Wolfram1

Pesticide impacts are usually discussed in the context of applied amounts while disregarding the large
but environmentally relevant variations in substance-specific toxicity. Here, we systemically interpret
changes in the use of 381 pesticides over 25 years by considering 1591 substance-specific acute toxicity
threshold values for eight nontarget species groups. We find that the toxicity of applied insecticides
to aquatic invertebrates and pollinators has increased considerably—in sharp contrast to the applied
amount—and that this increase has been driven by highly toxic pyrethroids and neonicotinoids,
respectively. We also report increasing applied toxicity to aquatic invertebrates and pollinators in
genetically modified (GM) corn and to terrestrial plants in herbicide-tolerant soybeans since
approximately 2010. Our results challenge the claims of a decrease in the environmental impacts
of pesticide use.

R
ecent debates about the potential side
effects of pesticides on humans (1) and
the environment (2, 3) have been domi-
nated by the comparison of use rates
(e.g., kilograms per hectare) or applied

amounts (e.g., kilograms per year) (4–9). These
weight-based measures are not necessarily in-
formative from an environmental perspective
because toxicity among pesticides varies over
several orders of magnitude (tables S1 to S3).
This suggests that environmental effects strong-
ly depend on the shares of individual pesticides
in the total applied amount (1).
In this study, we extended a weight-based

assessment of 381 pesticides for the years 1992
to 2016 (figs. S1 to S3) by 1591 regulatory
threshold levels (RTLs) [as officially derived
thresholds indicative of potential biodiversity
impacts (3)] for eight different groups of non-
target species (10). We multiplied the annu-
ally applied amount (i.e., mass) of individual
pesticides [data from theUSGeological Survey
(USGS)] with the reciprocal of the pesticide-
and species group–specific RTLs (10) [data
mainly from the US Environmental Protection
Agency (EPA), see tables S1 and S2; species
groups were unequally represented, see table
S5] to derive the total applied toxicity (TAT)
per substance, species group, and year (for TAT
sensitivity, see fig. S4). The TAT is predictive
of the potential pesticide impact (fig. S5). The
annual TAT values were aggregated over dif-
ferent sets of substances (e.g., pesticide use
types, chemical classes, andmodes of action)
to derive relative measures of temporal trends
in agriculture both overall and for genetically
modified (GM)–dominated crops specifically.
A comparisonof the appliedpesticide amount

and the TAT reveals different temporal phases

for the different species groups. Regarding ver-
tebrate toxicity (Fig. 1A), great reductions in
acute toxicity have been achieved over the past
few decades, driven almost entirely by insecti-
cides (fig. S6A), whose TATs decreased by ap-
proximately a factor of 9 formammals (Fig. 1C)
and birds (Fig. 1D) through the replacement of
organophosphorus and carbamate insecticides
by pyrethroids and neonicotinoids (figs. S2
and S7, A and B). This development, which
coincided with a proportional decrease in the
applied amount (Fig. 1A, phase a) and an in-
crease in corn acreage (fig. S10A), occurred in
response to the high toxicity found in verte-
brates (9). The fish TAT (TATfish) (Fig. 1B)
remained constant overall since 2004 because
of pyrethroid toxicity, which is relevant for this
group (fig. S7C).
In sharp contrast, the invertebrate TAT has

markedly increased since approximately 2005
(Fig. 1E, phase c). Both aquatic invertebrate
TAT (TATaqua-inverts) andTATpollinatorsmore than
doubled, with an increase of ~8% per year be-
tween 2005 and 2015 (Fig. 1, F and G; fig. S6B;
and fig. S8, A and C), whereas the terrestrial
arthropod TAT (TATterr-arthropods) (referring here
to nonpollinating species) increased less (Fig.
1H and figs. S6B and S8B; note, there is lower
data availability for terrestrial arthropods, table
S5). The TAT was driven solely by insecticides
in all invertebrate groups (fig. S6B), coinciding
with a proportional increase in cultivated
area in relevant crops (figs. S10, B and C,
and S11). Simultaneously, the applied insecti-
cide amount decreased by ~40% (fig. S1B).
Although pollinators and aquatic inverte-

brates show similar temporal patterns regard-
ing the applied amount of pesticides and TAT
(Fig. 1E, phases b and c), the toxicities are
driven by distinct classes of insecticides.
For pollinators—e.g., bees or bumble bees—
neonicotinoids are increasingly responsible
for the TAT (Fig. 1G and fig. S8A). Neonico-
tinoids have been documented as being highly

toxic to bees (11, 12), and some of them have
therefore been banned in the EuropeanUnion
(EU). Although seed treatments constitute
>80% of all neonicotinoid use in the US (4)
and restrictions on postbloom applications
in perennial (tree) crops receiving spray ap-
plications have reduced pollinator risks (13),
neonicotinoid use remains problematic (12),
for example because of oral-based bee toxic
load, which has increased particularly in
heartland corn and soybeans (13). For aqua-
tic invertebrates (e.g., crustaceans, mayflies,
caddisflies, and dragonflies), pyrethroid insec-
ticides have dominated the TAT since 1992,
and they have also become increasingly rele-
vant for terrestrial arthropods (nonpollina-
tors such as mites, flies, and beetles; Fig. 1, F
andH, and fig. S8, B andC). Figure 1E highlights
a regime shift in the evolution of pesticide use
in the mid-2000s (phase bc), when a phase of
prevailing structural change in insecticide use
(b) turned into a phase of TAT growth that is
completely decoupled from trends in the total
applied amount (c). Increases in applied pyre-
throid toxicity have previously been implied
only for fish (14). In the case of TATaqua-inverts,
just four pyrethroids explained >80% of the
increase since 2006. Because the detection
limits of these four compounds in water are
more than two orders of magnitude higher
than their respective RTLs (table S3), it
appears virtually impossible to track them
at the entire range of ecologically relevant
concentrations through scientific monitoring
efforts (3, 15, 16). The highly effective, low–use
rate insecticides (tables S3 and S4), often
associated with an environmentally benign
character (6, 9), increase in toxicity and use
(fig. S12) and have the potential to be a
considerable but widely unrecognized threat
to both terrestrial and aquatic invertebrates
(2, 3, 16).
The TAT for nontarget plants, which has

been driven solely by herbicide use, showed
an upward trend since approximately 2006
(Fig. 1I, phases a' and f, and figs. S6C and S9),
likely related to resistance in crops (17). Al-
though no single mode of action dominates
plant toxicity, growth regulators (e.g., acetochlor)
contribute mainly to the terrestrial and aqua-
tic plant TAT, and amino acid synthesis inhibi-
tors, such as the increasingly used glyphosate
(fig. S3B) and cell membrane disruptors (e.g.,
oxyfluorfen), contribute to the TATterr-plants

(Fig. 1, J and K, and fig. S9). The increases in
plant TAT may have major impacts on terres-
trial food webs, for example through reduced
plant seed production (18) or plant species
decline (19), requiring a systemic evaluation
of previously unrecognized aspects of pesti-
cide use.
Toxicity-weighted use is the strongest pre-

dictor of the potential impact of a pesticide
on the environment (20). Its application in the
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present study relies on the assumption that
pesticide use and its effects on organisms are
robustly connected to each other at large scales,
even though there is tremendous variability
in substance properties (table S4), application
patterns, and local exposure situations. This
assumption is, however, supported by multi-
ple lines of evidence, even in the crucial case
of pyrethroid risk to aquatic invertebrates.
Monitoring data from a total of 89 available
peer-reviewed studies [1977 insecticide con-
centrations from 231 different surface waters
across the US (20, 21)] show that the rate at
which measured insecticide and pyrethroid
concentrations exceed the RTLaqua-inverts is
significantly correlated with the applied tox-
icity to aquatic invertebrates (fig. S5). RTL
exceedance in surface waters is indicative of
negative effects on aquatic biodiversity (3),
and pyrethroids exhibit the highest RTL ex-
ceedance rates (3, 21). Pyrethroids show ad-
verse effects in midwestern streams (15), occur
regularly in stream biofilms (22), and even
cause resistance in nontarget freshwater am-

phipods (23). Taken together, multiple lines of
evidence provide a clear link between the use
of, exposure to, and effects of pyrethroid insec-
ticides in aquatic systems. This link likely also
applies to other pesticide and species groups,
although further investigation in this field is
needed.
From a broader perspective, decreases in

vertebrate TAT were achieved at the cost of
increased invertebrate TAT (Fig. 1, A and E).
Additionally, ecologically linked pollinators
and terrestrial plants (11, 24) are among those
with the largest TAT increases (Fig. 1, E and I).
The cumulative direct impact ofmodern insec-
ticides on invertebrates and the indirect im-
pact of herbicides on invertebrates through the
food chain thus likely contribute to the current-
ly debated decline in arthropods (2, 3, 5, 25–27).
This decline may ultimately lead to indirect
effects on vertebrate predators (2).
The TAT increased even in GM crops (Fig. 2,

B, D, and F). Herbicide use has undergone
substantial changes with the implementa-
tion of herbicide-tolerant GM crops (Fig. 2A),

which has led to a strong increase in the use
of glyphosate (8, 28) (Fig. 2A and fig. S3B).
TATterr-plants has increased steadily since ap-
proximately 2008 for herbicides in herbicide-
tolerant soybeans (Fig. 2B and fig. S14, A and B),
likely in response to glyphosate resistance (17).
However, downward trends have been reported
forGMsoybeanherbicide toxicity to humans (1).
In the most widely grown GM crop that pro-

duces a Bacillus thuringiensis (Bt) toxin, corn,
the insecticide TAT increased. Considering
only data for corn, of which 79% in 2016 was
Bt hybrids (Fig. 2C), TAT increased for both
aquatic invertebrates (mainly because of pyre-
throids; Fig. 2D) and terrestrial pollinators
(mainly because of neonicotinoids; Fig. 2E) at
the same rate observed for US agriculture as a
whole (fig. S8, A and C). We verified that the
toxicity per hectare of insecticides applied
to Bt corn is equal to that for non-Bt corn
(Fig. 2D, fig. S13, and fig. S14, C to F). The
increasing insecticide TAT may be a result of
preemptive, possibly unnecessary applications
(4) or resistance (17). Our analysis suggests that

Schulz et al., Science 372, 81–84 (2021) 2 April 2021 2 of 4

Fig. 1. Temporal trends in total applied pesticide amount
(i.e., mass) versus TAT and main pesticide classes
contributing to applied toxicity during a 25-year period
for different nontarget species groups. (A, E, and I) Phase-
space plots (both axes z-score normalized) for vertebrates
(A), invertebrates (E), and plants (I), with highlighted
areas indicating separate phases a to f (see table S6). (B to D,
F to H, J, and K) Contribution of major pesticide classes in
selected periods (3-year averages; see figs. S7 to S9 for annual
values) (phases a to f are shown as horizontal time bars):
organophosphorus and carbamate insecticides in vertebrates
[(B) to (D)], pyrethroids in aquatic invertebrates (F),
neonicotinoids in pollinators (G), insecticides in terrestrial
arthropods (H), and herbicides in plants [(J) and (K)].
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claims of reduced chemical insecticide use in
US Bt crops (8, 9, 28) simply reflect the con-
siderably lower application rates required for
more recently developed, more toxic insec-
ticide classes, whereas the TATpollinators and
TATaqua-inverts both continue to increase.
TAT valuesmay increase evenmore in global

agriculture than they do in the US as impor-
tant TAT drivers increase simultaneously.
Such global developments include increased
pesticide sales in Asia, Latin America, and
Europe (9); expanded global cropland area
(www.fao.org/faostat); and increased global
pesticide use (29). Widespread resistance de-
velopment (17), increasing field size (7), de-
creasing crop diversification (7), international
market connectedness (30), and increasing
temperatures (5) are key drivers of these de-
velopments. Although insecticide effects have
been repeatedly documented (2, 15, 22), inver-
tebrate biodiversity trends are generally de-
bated (25, 26), and large-scale studies often
do not focus on pesticides (25, 26, 31, 32).
The unavailability of open-access pesticide use
data in many regions, such as Latin America,
the EU, China, andRussia, also prevents analy-
ses such as those presented here, which po-
tentially masks a crucial driver of the global
biodiversity decline.
Despite being based on high-quality, curated

data, our analysis carries some uncertainties.

The link between pesticide use and potential
ecological impacts is formed by complex pro-
cesses at different scales, and the methods
applied here can only be indicative of the role
pesticide use plays in the degradation of eco-
systems, even at large scales. In light of the
multiple emergent risks and resistance prob-
lems (6, 17), pesticide risks should be more
integrated into policy strategies (33) to de-
velop resilient global production systems
(30, 31). Advancements in precision agricul-
ture, mixed and organic farming, and nano-
scale delivery platforms provide examples
of how agriculture can develop productively
while reducing environmental impacts (34, 35).
Because 61% of US drinking water originates
from surface waters, according to the EPA,
TAT-based pesticide evaluations may also
benefit human health evaluations. Overall,
a system-centric view is conducive to under-
standing the dynamics of pesticide use onme-
dium to large scales (36), and this is evenmore
important given that ecosystem-wide pesti-
cide impacts are becoming increasingly evi-
dent (2, 11, 12, 16).
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Fig. 2. Annual applied
amount (i.e., mass) and
nontarget species
toxicity of the main
classes of pesticides
used in two of the
most widely grown
GM crops—soybeans
and corn—in the US
between 1992 and 2016.
(A) Amount of herbicides
applied in soybeans (Mann-
Kendall tests for monotonic
trend: t = 0.873, P <
0.001). (B) TATterr-plants of
78 herbicides applied in
soybeans (t = 0.387,
P = 0.129). (C) Amount of
insecticides applied in corn
(t = −0.553, P = 0.019).
(D) TATaqua-inverts of
72 insecticides applied in
corn (t = 0.5, P = 0.017).
(E) TATpollinators of 63
insecticides applied in corn
(t = 0.653, P = 0.009).
Lines in (A) and (C) were
fitted using generalized
additive models.
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and have been supplemented for some species groups with data
from www.efsa.europa.eu/en/data/chemical-hazards-data. The
RTLs, the data for additional analysis regarding GM corn, and the
code for this analysis can be found at https://static.magic.eco/
TAT and are archived on Zenodo (37).
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ABSTRACT: Expressing temporal changes in the use of
pesticides, based not only on amounts (masses) but also on their
toxicity for different species groups, was proposed as a sensible
approach for evaluating potential environmental risks. Here, we
calculated the total applied toxicity (TAT) between 1995 and 2019
for Germany, mapped it, and compared it to the US TAT and
other risk indicators. Results show that the German TAT for
terrestrial vertebrates decreased over time by about 20%. The TAT
increased by a factor of three for fishes, largely due to insecticides,
by a factor of two for soil organisms, largely due to fungicides and
insecticides, and, to a lower extent, for terrestrial plants, solely due
to herbicides. Other species groups showed no trends in TAT,
which for pollinators likely results from neonicotinoid use
restrictions. Many TAT trends from Germany and the US differ, partly due to different insecticide and fungicide uses. TAT,
SYNOPS risk indicators, and the EU Harmonized Risk Indicators, currently being used to assess the German National Action Plan’s
goal to reduce risks by 30% by 2023, lead to clearly different risk perceptions. Validated approaches are needed for evaluation of risk
quantifications at the national scale.
KEYWORDS: EU, Farm to Fork Germany, NAP, pesticides, risk analysis, SYNOPS risk indicators, USA

■ INTRODUCTION
Approximately 30 000 tons of pesticides are applied in German
agriculture yearly (2019).1 Herbicides contribute the most to
these applications (59% of mass), followed by fungicides
(38%) and insecticides (3%). Potential ecological side effects
of this pesticide use for aquatic and terrestrial biodiversity in
Germany2−5 and the European Union6−9 have been critically
debated. Previously, trends in the ecological impact of
pesticide use on human health and the environment were
discussed mostly by use rates and applied masses.10−12

However, trends based on these mass-based quantities ignore
the important impact of the changing toxicity of the applied
substance spectrum.13,14

Recently, total applied toxicity (TAT) has been used as an
environmental risk indicator for pesticide use in US
agriculture.14 TAT integrates the total amount of applied
pesticides, weighted by their individual toxicities. It thereby
avoids the shortcomings of solely mass-based evaluations and
has been shown indicative of potential biodiversity effects on
aquatic organisms.14 Similar approaches had already been
applied to specific pesticide or species groups;13,15−20 however,
so far, TAT provides the most comprehensive large-scale
approach for the identification of long-term temporal trends of
potential pesticide risks for different nontarget species groups.
Calculation of TAT is straightforward but depends on the
availability of two data sets: high-quality ecotoxicity data
(endpoints) for a large range of pesticides and species, and use

data for these pesticides over a sufficiently long time period.
The European Food Safety Authority’s (EFSA) OpenFoodTox
database21 provides ecotoxicity data used during the
registration of pesticides in the European Union. Here,
substance-specific toxicity thresholds were derived by applying
the following principles of the official EFSA regulatory risk
assessment:8,22 quality criteria for the consideration of
individual ecotoxicity endpoints, application of assessment
factors, and usage of both acute and chronic endpoints. With
regard to pesticide use, only censored data (broad mass classes
per substance and year) had long been published for Germany,
but recently, more detailed data for 1995−2019 have been
made available by the German Federal Office of Consumer
Protection and Food Safety (BVL).1

Here, we calculate TAT trends for three aquatic
(invertebrates, fish, and plants) and five terrestrial (arthropods,
pollinators, vertebrates, soil organisms, and plants) species
groups. This study extends the species groups of the US
study14 by calculating TAT for soil organisms, which, on the
one hand, are particularly important for ecosystem services
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(e.g., nutrient cycling or carbon storage), soil health, and
agricultural sustainability,23 and, on the other hand, are
exposed to risks from pesticide use.19,24 Compared to aquatic
and terrestrial off-field ecosystems, in-field soil ecosystems are
more directly exposed to applied pesticides.25,26 We also
present maps of the spatial TAT distribution for the eight
species groups in Germany based on the available use data, the
information on the use of individual pesticides in different
crops,27 and a high-resolution crop map for Germany.28

Agriculture in Germany and the US differs substantially in
extent, crop composition, field sizes, farming practices, and
landscape context.12,29 These factors, plus different pest
pressures and different regulatory contexts, lead to a dissimilar
pesticide use in both countries. In US agriculture, fungicides
contribute to the applied pesticide amount by only 12%
(compared to 38% in Germany), and insecticides by 7% (with
only 3% in Germany).14 The comparison of TAT trends in
both countries, as conducted here, shows how the trends for
various species groups differ between the countries and helps
to understand the large-scale impact of pesticide use globally.14

Reduction of pesticide risks is a declared goal of the European
Union, and in 2009, the European Commission issued a
directive on the sustainable use of pesticides (2009/128/EC).
From each member state, this directive requests to set up a
National Action Plan (NAP) to “reduce risks and impacts of
pesticide use on human health and the environment”. The
Federal Government of Germany enacted its NAP in 2013
with the major goal to reduce the environmental risk potentials
for aquatic and terrestrial nontarget organisms by 2023 by
30%, compared to the mean risk potentials of the period from
1996 to 2005.30 Recently, the EU Farm to Fork Strategy has
even promised a reduction of both use and risks of chemical
pesticides by 50% by 2030.31 The NAP initially stipulated the
use of a complex of risk indicators called SYNOPS
(Synoptische Bewertung von Pflanzenschutzmitteln; synoptic
assessment of plant protection products) to assess these target
quotas.27,30,32 SYNOPS compares modeled exposure estimates
with effect endpoints to calculate risk estimates. With the EU
directive 2019/782, the use of common Harmonized Risk
Indicators (HRI) was stipulated for all member states. HRI are
calculated as the sum of used amounts per substance
multiplied by substance-specific weighting factors that are
defined by hazard groups (group 1: low risk; group 2:
approved; group 3: candidates for substitution; group 4: not
approved), regardless of substance-specific toxicities.
In the present study, we calculate TAT trends for Germany,

compare them to mass trends, identify the main pesticides
contributing to these trends, and map the TAT for different
nontarget species groups. We then compare TAT trends
between 1995 and 2019 with existing data from the US14 to
identify differences in pesticide risk trends between the two
countries. Also, we compare the TAT to the SYNOPS risk
indicators33 and to the EU HRI to identify advantages and
disadvantages of the three approaches for a large-scale
pesticide risk indication in Germany as required by the
National Action Plan.

■ MATERIALS AND METHODS
Pesticide Use Data. From the BVL,1 data on pesticide

sales in Germany are available for 562 active ingredients, of
which 441 outdoor-use pesticides (145 fungicides, 163
herbicides, and 133 insecticides) were selected for the analysis
in this study. Overall sales remained constant over time; only

fungicide sales increased significantly and monotonously
between 1995−1999 and 2015−2019 (Figure S1 and Table
S1). For some individual pesticide classes (e.g., azoles,
triazines, pyrethroids), sales trends were significant (Figure
S2). Although sold pesticides are not necessarily used in the
year of purchase, we assume that the potential lag between
sales and applications is negligible for a large-scale analysis, and
that pesticide sales are a robust proxy for pesticide use.
Toxicity Data. Here, we used ecotoxicity endpoints from

the EFSA OpenFoodTox database.34 This database compiles
endpoints that were considered during the official risk
assessments of pesticides in Europe. In a few cases, data for
relevant species groups (Table S2) were added from sources
like the Pesticides Properties DataBase (PPDB)35 or the US
EPA Office of Pesticide Programs Pesticide Ecotoxicity
Database.36 For 292 out of the 441 pesticides considered in
this study, ecotoxicity data were retrieved for the following
species groups: aquatic invertebrates (e.g., crustaceans, insect
larvae; nine species in total), fish (e.g., trout, carp; 10 species in
total), aquatic plants (e.g., algae, macrophytes; 13 species in
total), arthropods (e.g., predatory mites, parasitoid wasps; two
species in total), pollinators (bees; one species), vertebrates
(e.g., birds, mammals; five species in total), soil organisms
(e.g., earthworms, springtails, mites; five species in total), and
terrestrial plants (e.g., onion, ryegrass; 13 species in total).
These ecotoxicity data represent 92.0−98.0% (mean = 96.0%)
of the applied mass of relevant pesticide types per species
group (Table S2 and Figure S3). Following the tier-1 risk
assessment principles for pesticide registration in the EU22 and
previous studies,8 all endpoints were divided by an assessment
factor and also by an adjustment factor for vertebrate
endpoints based on concentrations in feed (Table S3). The
most sensitive, and therefore most protective, endpoint per
substance and species group was finally used for TAT
calculation.
TAT Trend Calculation. The TAT for Germany was

calculated according to Schulz et al.14 TAT serves as a tool to
display large-scale temporal trends of how changes in pesticide
use are reflected in different species groups.14 An increasing
TAT does not necessarily translate into an equally higher
toxicity that is actually faced by the respective species group,
yet it indicates an overall increase of mass and/or toxicity
characteristics of the pesticides applied in agriculture. A
positive correlation between applied insecticide amounts and
ecological threshold exceedances has been shown using 1977
field measurements in 231 surface waters in the US.14 For
other pesticide types and terrestrial ecosystems, similar links
need to be proved, but the required data are largely missing.
For better readability, TAT values were displayed 0-max scaled
and without physical units throughout this study (see also ref
14). Differences in TAT trends were analyzed by both
comparing absolute differences between the 5-year periods of
1996−2000 and 2015−2019 and by assessing the monotony of
trends over the entire time period. Significance of differences
was assessed using nonparametric Wilcoxon rank-sum tests (α-
level of 0.05 for all statistics). Monotony was assessed with a
variance-corrected Mann−Kendall Test, which accounts for
serial autocorrelation.37

TAT Mapping. To visualize its spatial distribution, we
calculated the TAT for 1 km × 1 km grid cells in Germany for
each species group. The individual TAT calculation of each
grid cell was based on the estimated amount of active
ingredients used in this cell and their toxicity thresholds.
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Amounts were estimated by first calculating nationwide
fractions of use, with data from Strassemeyer et al.,27 for
each pesticide in 27 crop classes in 2015 (latest year for which
these data are available) and then by linking these fractions to
the 18 crop types depicted in the 10-m-resolution crop map of
Germany for 2017 (first year for which these data are
available), provided by Blickensdörfer et al.28 The linking was
done by combining various pome fruits and vegetables into
broader classes. By integrating the 100 m2 crop cells, for which
species group-specific TATs were calculated by dividing the
total TAT per crop class by the number of 100 m2 cells of this
class, an estimate for 1 km2 grid cells was made under
consideration of their crop composition. It should be noted,
though, that spatial homogeneity of use and TAT rates in

entire Germany is a generalizing assumption. Use data with
higher resolution would be necessary to depict regional
differences more accurately.
Comparison of TAT Germany with TAT US and

SYNOPS. The TAT approach was applied for Germany in
the same way as reported for the US,14 yet country-specific
pesticide use and ecotoxicity endpoints were considered. Bird
and mammal TAT were combined into a vertebrate TAT for
Germany, as the ecotoxicity data for birds and mammals were
insufficient to represent both groups separately. Soil organisms
were considered in the TAT Germany, yet not in the TAT US.
For the comparison with SYNOPS, TAT trends were
calculated individually for acute and chronic risks in aquatic
and terrestrial ecosystems, reflecting the same statistical

Figure 1. Total applied toxicity (TAT) of relevant pesticide types (Table S2) in German agriculture by pesticide classes for (a) aquatic
invertebrates, (b) fish, (c) aquatic plants, (d) terrestrial arthropods, (e) vertebrates, (f) terrestrial plants, (g) pollinators, and (h) soil organisms.
Horizontal lines show the average TAT for 1995−1999 and 2015−2019. Significant differences between average TAT for these two 5-year intervals
are marked by an asterisk. If the underlying trends are monotonic, they are additionally marked by a dagger (Table S1).
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populations as found in the SYNOPS risk indicator reports.4

The acute aquatic TAT was calculated using the minimum
acute endpoint for aquatic invertebrates, fish, and plants; the
chronic aquatic TAT using the minimum chronic endpoint for
aquatic invertebrates and fish. The pollinator TAT corresponds
with the SYNOPS’s acute terrestrial risk, and the soil organism
TAT with the SYNOPS’s chronic terrestrial risk.

■ RESULTS AND DISCUSSION
TAT Trends in Germany. Out of the TAT trends

calculated for the eight species groups, three show a significant
and monotonic overall increase (fish, terrestrial plants, soil
organisms) and one a significant and monotonic overall
decrease (vertebrates; Figures 1, S4 and Table S1). The
remaining four species groups (aquatic invertebrates, aquatic
plants, terrestrial arthropods, pollinators) show no overall
trend. TATs that are largely determined by insecticides (e.g.,
aquatic invertebrates and fish) show a high relative interannual

variability with changes up to 20%. This is likely a result of the
flexible insecticide applications to control invertebrates that
show high temporal variabilities in their population dynamics.
The strongest increase in TAT, up to a factor of more than

three, is observed for fishes, with insecticides driving almost
the entire increase (Figure 1b). Pyrethroid insecticides account
for more than 82% of the TATfish in the last 5 years (Figure
1b) with lambda-cyhalothrin, tefluthrin, and β-cyfluthrin
contributing the most (Figure 2b). Pyrethroid use in
agriculture has been linked to decreases in California Bay-
Delta fish species38 and to potentially detrimental effects on
fish, including endocrine disruption, growth, and development
alterations.39 Recently, pesticides have been debated as
potential contributors to the observed fish declines in
Switzerland.40 It is curious that the TATfish in Germany is
increasing despite all efforts taken in the past decades to reduce
the vertebrate toxicity of pesticides.41 Although being applied
in low and even decreasing amounts, insecticides may be

Figure 2. Relative contribution of individual pesticides to the TAT of (a) aquatic invertebrates, (b) fish, (c) aquatic plants, (d) arthropods, (e)
vertebrates, (f) terrestrial plants, (g) pollinators, and (h) soil organisms. Domestic sales refer to the sold mass of the pesticide relative to the total
sold mass of its pesticide type. For display, the top five pesticides per species group regarding TAT contribution were selected. Percentages refer to
the total of the years 1995−2019.
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critical to the decline of freshwater fish species,42−44 and even
to repeatedly observed fish kills.45,46

The TAT for soil organisms significantly increased by a
factor of two between 1995 and 2019 (Figure 1h). This trend
reflects an increasing use of fungicides and changes in the use
of neonicotinoid insecticides (Figures 1h and S2a,c). The latter
changes are also responsible for the decreasing contribution of
insecticides to the TATsoil‑organisms since 2013. For agriculture,
biological soil health is of utmost importance;23,47 so an
increasing TAT should receive appropriate attention to
understand whether and to what extent soil communities are
disrupted. Increased applied toxicity faced by soil organisms
may have long-term effects on the productivity of agricultural
soils, such as lower soil productivity and soil matter turnover
rates, and may so induce secondary responses, e.g., an
increased use of fertilizers, causing potentially adverse
environmental effects.23 Recent studies have reported the
widespread presence of herbicides, fungicides, and neonicoti-
noids at high concentrations in European topsoils.25,26 The
fungicide epoxiconazole, the largest contributor to the soil
organism TAT (Figure 2h), was found in ∼25% of soil
samples,25,26 and it was assumed that epoxiconazole and some
other pesticides in field soils degrade much slower than
expected after laboratory tests.47 Chronic risks for soil
organisms may, thus, be underestimated. Also, both fungicide
and insecticide seed dressings were shown to negatively affect
the surface activity of earthworms, with herbicides amplifying
these effects.48

The data for both fish and soil organisms highlight that the
TAT increases can be associated with some pesticides that do
not contribute considerably to domestic sales (Figure 2b,h). In
both species groups, the five pesticides that had a combined
TAT contribution of ≥60% only accounted for ≤5% of the
total mass applied (Table S4). A pure mass-based evaluation
approach might, thus, overlook these pesticides that are highly
relevant from an ecotoxicological point of view. Figure 2 clearly
points out that often a very few pesticides in combination
constitute a large share of the overall risk. This means that the
selection of ecotoxicity endpoints, used for deriving the TAT,
is of utmost importance, as further discussed below in the
section on the comparison of risk indicators relevant for
Germany.
The TAT for terrestrial plants shows an upward trend and a

significant increase over time, which both can be attributed to
herbicides (Figure 1f). The trend results mainly from increased
uses of diflufenican, glyphosate, and mesotrione (Figures 1f
and S2b), which, together, contribute to the TATterr‑plants
∼36% (Figure 2f). Of these three herbicides, glyphosate
alone makes a considerable percentage of domestic sales
(Figure 2f). Urea-derived herbicides, after playing an important
role for the plant TAT in the 1990s, started on a continuous
decline and finally ceased to contribute to the TAT in the most
recent years. Only very few large-scale experimental or field
studies on herbicide effects on nontarget plants are available.5

A large field-scale experiment in Germany found sublethal
effects on the common buttercup (Ranunculus acris), e.g., an
85% reduced flower intensity, following exposure to
sulfonylurea herbicides at concentrations typically occurring
in field margins.49 In the same study, this plant species was also
documented to be absent in field margins along cereal fields,
although it frequently occurred next to nonsprayed meadows.
Also, declines in plant species may lead to indirect effects on
herbivorous insect species. Modeling studies suggest that a

herbicide-induced landscape-level reduction in milkweed
(Asclepias spp.) caused observed declines in monarch butterfly
larvae (Danaus plexippus).50 On a larger scale, nontarget plant
species richness in Germany was found continuously declining
by 1.9% per decade between 1960 and 2017,51 and the
increasing TAT for terrestrial plants shown here may have
contributed to this decline.
A number of species groups show no significant overall TAT

trends for Germany. The TAT for aquatic invertebrates is
almost entirely determined by a few pyrethroids (Figures 1a
and 2a and Table S4) and shows high interannual variability.
Based on the fact that the total pyrethroid use in German
agriculture increased (Figure S2c), these TAT variations
(Figure 1a) are presumably a consequence of use shifts
among individual pyrethroids. Continental or global stud-
ies7,52,53 as well as studies from the US54−60 or Germany4,61

repeatedly highlighted pesticide and, more specifically,
insecticide risks to aquatic invertebrates. The TAT for aquatic
plants similarly lacks a temporal trend (Figure 1c). A prevalent
and continuous increase up until 2012 in the use of amide-
derived and aniline-derived herbicides (Figure S2b), as the
main contributors to TATaqua‑plants (Figure 1c; especially
diflufenican, Figure 2c), was compensated by a decrease in
the combined use of other herbicides.
The terrestrial arthropod TAT shows high variation over

time, yet no trend (Figure 1d), with various pyrethroids and
organophosphates (especially dimethoate, Figure 2d) being the
most important contributors (Figure 1d). The general shift
from organophosphate to pyrethroid use (Figure S2c) does not
level out the differences in TAT for this group in every year. It
must be noted, though, that, due to the limited availability of
ecotoxicological endpoints, only two species (Aphidius
rhopalosiphi and Typhlodromus pyri) represent the enormous
diversity of terrestrial arthropods,62 which increases the
uncertainty for assessment of this species group. Potential
negative effects of insecticide and fungicide use have been
concluded for carabid beetles in a large-scale study of nine
areas across the EU,2 and also for terrestrial invertebrates in a
21-year crop rotation experiment, comparing different conven-
tional and organic farming approaches in Switzerland.23

The pollinator TAT increased until it peaked in 2012 and
then decreased considerably (Figure 1g), showing no overall
trend. As the pollinator TAT is primarily determined by
neonicotinoids (Figure 1; see also ref 14), especially
imidacloprid (Figure 2g), this decrease can be mainly
explained by restrictions on neonicotinoid use enacted by
the EU in 201363 that in fact consequently led to a decreasing
use in Germany (Figure S2c). While data from France showed
that use restrictions for neonicotinoids led to increased
applications of pyrethroids,64 this shift is not found in the
German use data, where both neonicotinoid and pyrethroid
use decreased since 2012. The German Ministry of Food and
Agriculture has recently issued a number of exceptions to the
neonicotinoid use restrictions (e.g., ref 65), which may have an
impact on future use and TAT trends for pollinators.
Terrestrial vertebrates are the only species group in the

present study that encounter a significant, also monotonic,
TAT decrease (Figure 1e). Fungicides, herbicides, and
insecticides are all relevant to the vertebrate TAT, but the
decreasing TATterr‑vertebrates trend is, similar to the US
TATterr‑vertebrates trend,

14 mainly based on the decreasing use
of organophosphates (Figures S2c and 1e), whereas even larger
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combined TAT contributions from fungicides and herbicides
(especially diquat, Figure 2e) remain stable over time.
Spatial Distribution of TAT. Our unprecedented spatial

mapping of the TAT reveals regional differences that can help
to identify target regions for subnational risk reduction actions
(Figure S5). Although the spatial TAT patterns for the eight
considered species groups are generally determined by the
areal intensity of agriculture, and so are overall similar (Figure
S5), there are some evident differences. For the three species
groups with increasing TAT trends, different crops and regions
are important (Figure S5). For fish, high TAT values are
observed in western North-Rhine-Westphalia (Figure S5b),
likely due to strong pyrethroid use in vegetable crops; for soil
organisms in the southeast of Rhineland-Palatinate (Figure
S5h), likely due to fungicide use in vineyards; and for
terrestrial plants in the southwest of Lower-Saxony (Figure
S5f), likely due to high herbicide use. The described regional
differences emerge from very broad assumptions, like
homogeneous spatial distribution of pesticide usage within
each crop class. Publication of higher resolved use data for
Germany, preferably crop-specific and, e.g., at the level of the
19 Regierungsbezirke or 400 districts in Germany, would allow
depicting spatial patterns and their changes over time much
more accurately.
Comparison to US TAT Trends. The main finding of a

previous study for the US14 was postulating distinct phases and
regime shifts in the applied mass and TAT phase space. The
vertebrate and plant TAT responded proportionally to changes
in the applied mass of insecticides (vertebrates) and herbicides
(terrestrial and aquatic plants). The invertebrate TAT showed
a regime shift around 2003, evolving from a phase of
decreasing applied insecticide mass and a stable TAT into a
phase of increasing TAT decoupled from mass changes,
induced by pyrethroids in the case of aquatic invertebrates and
by neonicotinoids in the case of pollinators. In Germany,
unlike in the much larger US agriculture (∼400 000 tons
annual pesticide application compared to ∼30 000 tons in
Germany), no clear phases in pesticide use are discernible
(Figure S6). Here, applied herbicide and insecticide masses,
the sole drivers for the US TATs, fluctuate around an average
value with high relative interannual variance. This is likely a
scale effect that would also be seen in the US agriculture if
individual states or counties were considered. The composition
of the applied pesticide aggregate also differs considerably
between the two countries. In Germany, 38% of the applied
pesticide mass refers to fungicides, 59% to herbicides, and 3%
to insecticides,1 whereas in the US, it was 12% for fungicides,
81% for herbicides, and 7% for insecticides.66 The higher share
of fungicides in Germany is likely caused by climatic
differences and a higher proportion of cultivated crops that
receive high fungicide treatments. For instance, the percentage
of vineyard acreage is ∼4 times higher in Germany than in the
US.67

There are, however, some interesting similarities and
differences in the use trends and TAT trends of both countries
for individual species groups. In both cases, the TATaqua‑inverts is
nearly exclusively driven by pyrethroids and correlates with the
applied amounts of this insecticide class. However, two of the
most important TAT contributors at the substance level in the
US, bifenthrin and esfenvalerate, are not important for the
TAT in Germany, whereas β-cyfluthrin and cypermethrin are
not important in the US. Nonetheless, the TATaqua‑inverts in the
US strongly increased, yet remained overall stable in Germany.

In the US, the TATfish decreased between 1999 and 2006
because of a reduced use of organophosphorus and organo-
chlorine insecticides.41 In Germany, these insecticide classes
contribute to the TATfish only very little (Figure 1b). An
important finding of the present study is the fact that the
TATfish in Germany is driven by the increasing use of
pyrethroids. Organophosphates and organochlorines combined
contribute 14 times the mass of pyrethroids to all US
applications (mean between 1995 and 201966), whereas in
Germany this factor is only four.1 Further, aquatic plants in
Germany face no change in TAT (Figure 1c), whereas the US
aquatic plant TAT has increased since 2006, along with the
increased use of shoot-growth inhibitors, e.g., acetochlor, a
herbicide that is not registered for use in Germany.1

The arthropod TAT is mainly affected by pyrethroids and
organophosphates, both in Germany (Figure 1d) and in the
US.14 A considerable TAT reduction for mammals and birds in
the US was caused by diminishing use of organophosphates
and carbamates.41 Organophosphate insecticides caused a
decrease in the vertebrate TAT in Germany (Figure 1e), but
the TAT nearly plateaued around 2005 at a level determined
by fungicides and herbicides, both pesticide types that did not
affect the US TAT for vertebrates. Vertebrates are, therefore, a
prominent example of how the choice of ecotoxicity thresh-
olds, as well as the composition of applied pesticides, both
impact the reception of applied toxicity. The TAT trend for
terrestrial plants is more similar between Germany and the US.
In both countries, amide-derived and aniline-derived herbi-
cides (although with differences at the substance level) and
glyphosate contribute to an increase in the TAT (Figure 1f).
The TATpollinator in the US saw a stark and continuous increase
caused by an increased use of neonicotinoids. In Germany,
neonicotinoids are also the main contributor to the TATpollinator
(Figure 1g), but their use is reduced since 2012 due to
regulatory restrictions. As a result of this comparison, it
becomes evident that differences in pesticide use patterns are
an important driver for dissimilarities in TATs between
Germany and the US. Moreover, the regulatory system, the
availability, and the choice of ecotoxicity data21,36 are decisive.
The increases in TATs for a number of species groups are,
however, concerning in both Germany and the US.
Discussion of Risk Indicators Relevant for Germany.

Given the fact that the NAP stipulates a quantitative reduction
of pesticide risks in Germany by 2023,30 the quantification of
pesticide risks at a national scale is of special importance.
Evaluating large-scale pesticide risks is not trivial and generally
hindered by data availability. However, various indicators of
differing complexity and underlying assumptions have been
formulated by various institutions. Here, we discuss TAT and
two other types of indicators that are important in the context
of the NAP: SYNOPS risk indicators and European HRI.
TAT is conceptually based on the principle that pesticide

risks at large scales decrease if smaller amounts of pesticides
are used or if pesticides are (partly) replaced by the same
amount of less toxic pesticides (considering a specific species
group). Likewise, risks increase with increasing amounts or
higher toxicity. This principle is expressed by the TAT and can
be evaluated with a basic set of data that is normally available
at the national level (applied amounts per pesticide and
toxicity thresholds per pesticide). Although it is not necessarily
true that each change in TAT equally translates into changes in
risk (due to many factors, like differences in application,
different environmental fates of chemicals, etc.), it was shown
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that TAT is indicative of pesticide risks in the US,14 and we
argue here, that it is also suited for assessment of general
pesticide risk trends in Germany.
SYNOPS risk indicators, which were used in previous NAP

reports to evaluate risk trends,33,68 show some methodological
differences to TAT (Table S5) but are eventually largely based
on the same input data, applied amounts, and pesticide
toxicities. The main methodological difference is that SYNOPS
risk indicators strive to include exposure and environmental
fate of applied pesticides by predicting environmental
concentrations through scenario-based simulations of regis-
tered usages for different exposure pathways. Scenarios are
formulated for indications, i.e., combinations of one pesticide,
one target pest, and one target crop, and weighted during
consolidation of risk indicators, on a yearly basis, by the
calculated area to which they are applied. This area is derived
by distributing the sold pesticide amount for a year among
individual indications. Although interannual changes in
registered usages and crop composition could, thus, alter the
overall relative contribution that individual pesticides have to
the risk over time, this was the case only for very few pesticides
within the time period from 1996 to 2020 (Figure S7). In
essence, SYNOPS risk indicators can be generally described,
like TAT, as a model of applying (mostly) constant
proportionality factors to the applied amounts of a pesticide
to estimate its overall risks. Determination of these factors,
however, is not trivial due to the complexity of the involved
exposure and environmental fate modeling. And with currently
limited documentation of methodology (e.g., by source code)
and input parameters (e.g., applied ecotoxicity endpoints),
recalculation and evaluation of SYNOPS risk indicators are
generally hindered. Additionally, quantification of the explan-
atory power of SYNOPS risk indicators at large scales, which
would require comparing them to empirical monitoring data,
remains open.
Despite their conceptual similarities, TAT and SYNOPS risk

indicators show mostly different risk trends for Germany if
TAT is calculated for the combinations of risk groups and
pesticide types used by SYNOPS risk indicators (Figure S8).
Compared to the average of 1996−2005, the SYNOPS risk
indicators show lower risks for 2015−2019 in six of 10
considered combinations, unchanged risks in two combina-
tions, and higher risks in the other two. The TAT is lower for
2015−2019, compared to 1996−2005, in four combinations,
unchanged in two, and higher in four. Herbicide-based risk
trends, except for soil organisms, and the fungicide-based risk
trend for soil organisms show high concordance between the
SYNOPS and the TAT approach, but all other combinations of
risk groups and species groups show no common temporal
trends (Figure S9). It could be assumed that the differences in
trends result from the additional exposure and environmental
fate modeling employed by SYNOPS risk indicators, but it is
more likely that the selection of threshold values causes the
discrepancies. Considered thresholds for the TAT span up to
10 orders of magnitude (for aquatic risks), reflecting the span
of underlying ecotoxicity values. The proportionality factors for
the SYNOPS risk indicators also span up to 9.4 orders of
magnitude (for terrestrial nontarget arthropod risk), with
toxicity presumably contributing to these factors in a very large
proportion. Differing physicochemical properties and other
factors, determining the outcome of the fate simulations, are
less likely to impact individual risk contributions a lot.69,70

Differences in the choice of threshold levels can have
significant effects on risk calculations. For instance, the acute
aquatic invertebrate TAT is driven by deltamethrin, for which
a threshold of 0.0017 ng/L71 was used during TAT calculation,
resulting in a 31 times higher relative risk contribution per
applied unit than that of cypermethrin’s (threshold of 0.053
ng/L72), the most contributing pesticide to the SYNOPS acute
aquatic risk. If, instead of the EU tier-1 principle thresholds,
EC50 Daphnia magna values from the PPDB were used,
cypermethrin (EC50 = 0.21 μg/L) would contribute to the risk
about 2.7 times more per unit applied mass than deltamethrin
(EC50 = 0.56 μg/L), and it would decrease deltamethrin’s
absolute contribution to the TAT by five orders of magnitude.
Although it is unknown to us as to which ecotoxicity endpoints
are actually used for the SYNOPS risk indicators, we assume
that differences in the choice of endpoints explain both most of
the different weighting of individual pesticides regarding their
risk contribution (Figure S10) and, eventually, most of the
divergences in risk trends (Figure S8). In conclusion to the
comparison of the TAT and the SYNOPS risk trends, we find
that often only a few pesticides determine trends, and also that
the identity of these trend-defining pesticides is highly
dependent on a priori assumptions, e.g., the thresholds
considered. We also think that large-scale risk quantifications
can benefit from the consideration of differing exposures and
environmental fates among pesticides, although further
validation at large scales is required. Overall, the formal
comparison of TAT with SYNOPS is hindered by a lack of
transparency regarding how the SYNOPS indicator is exactly
derived.
Like TAT and SYNOPS risk indicators, HRI adjust applied

pesticide masses by proportionality factors to quantify risks at
the national scale. According to EC 2019/718, one of four
fixed factors is assigned to each pesticide depending on its
regulatory status. Low-risk substances gain a factor of 1,
approved substances a factor of 8, candidates for substitution a
factor of 16, and nonapproved substances a factor of 64. The
annex of EU 540/2011 thereby lists the category of each
pesticide. This declarative approach has a series of
implications. First, the assertion of an arbitrary fixed factor
for all pesticides within a regulatory category, e.g., for all
approved substances, makes risk trends within this category
solely mass-based, ignoring the (eco)toxicological principle
that substances are toxic at very dissimilar concentrations. Risk
trends within categories are, therefore, determined by
pesticides with large used amounts (e.g., inorganics),
potentially masking risks of highly toxic but less used
pesticides. Second, risk trends change if the categorization of
a pesticide changes. There are several reasons why the
classification of a pesticide is altered, e.g., why an approved
pesticide becomes a candidate for substitution. These reasons
include, for instance, evidence of a pesticide’s carcinogenicity
or reproductive toxicity, which are important properties for
human risk, but which do not necessarily justify why ecological
risk also should be considered with a doubled proportionality
factor (16 instead of 8). Intermingling human and ecological
toxicity, thus, limits the application of HRI for the
quantification of environmental risks, which is necessary to
monitor the environmental risk reduction goals of the NAP.
Additionally, reclassification of pesticides alters the risk trends
in retrospect. As the most conceivable sequence of a pesticide’s
classification is in the order approved, candidate for substitution,
nonapproved, risk factors tend to increase over the lifecycles of
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pesticides’ regulations (from 8 to 16 to 64), leading to HRI
suggesting stronger decreasing risks. This is because pesticide
use normally drops with the decision to substitute or
disapprove of a pesticide, but amounts used in the past are
now multiplied by an increased factor. With these character-
istics, it is less surprising that the HRI in Germany decreased
by 11% for 202073 (17% for the entire EU74) compared to its
baseline period 2011−2013 and by even 32% if carbon dioxide
is excluded from index calculation.73 Overall, the comparison
of TAT with HRI is difficult since HRI are not real risk
indicators: they rather represent trends in pesticide use
weighted by legislative categories.
In summary, the present study provides initial evidence that

for certain species groups (fish, terrestrial plants, and soil
organisms), potential risks arising from changes in pesticide
use in German agriculture have increased over the past 25
years. This contrasts the aim to reduce environmental risks of
pesticides as stipulated by the EU directives and the German
NAP. Currently, the progress of the German NAP is being
evaluated using HRI, indicators that can be easily applied to
the available data but that also show striking conceptual
shortcomings for the quantification of environmental risks
compared to the previously used SYNOPS risk indicators,
which are rather untransparent. The TAT approach applied
here illustrates, though, that it is also possible to describe both
the development of risks over time and their spatial
distribution by an easily calculable index that incorporates
the most important risk determinant�the individual toxicity
of a pesticide for different species groups. The TAT has been
partly validated for insecticides through a comparison with
1977 insecticide monitoring results in 231 US surface waters.14

Thorough validations of risk indicators are, however, generally
nonexistent. The TAT approach can be easily used in many
countries, at continental or even at the global scale. We argue
that beyond any indicative index, thorough evaluation of large-
scale pesticide risks requires approaches that are thoroughly
validated, e.g., through extensive monitoring. This is needed to
ensure that risks are estimated in a protective manner and to
support both policy setting and a transparent environmental
risk assessment for protection authorities, science, and the
general public. To better fulfill these requirements, a much
better availability of pesticide use data with a high spatial
resolution is urgently needed. The available data highlight that
strongly improved measures for the reduction of pesticide risks
are needed.
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Table S1. Results of Wilcoxon-Rank-Sum tests and variance-corrected Mann-Kendall1 for 
the data shown in Figures 1 and S1. Wilcoxon-Rank-Sum tests refer to the comparison of the 

20 time intervals of 1995–1999 and 2015–2019 and Mann-Kendall tests to the analysis of 
monotonic temporal trends between 1995 and 2019. Significant differences and monotonic 
trends (p < 0.05) are printed in bold.

Wilcoxon test Mann-Kendall test
Figure Category

p-value tau p-value
1 Aquatic plants 0.841 0.027 0.870

Terrestrial arthropods 0.310 0.120 0.614
Fish 0.008 0.553 0.019
Aquatic invertebrates 0.151 0.213 0.291
Pollinators 0.151 0.36 0.043
Soil organisms 0.008 0.627 <0.001
Terrestrial plants 0.008 0.647 <0.001

 Terrestrial vertebrates
0.008 -0.547 <0.001

S1 All pesticides 0.840 0.213 0.141
Fungicides 0.032 0.433 <0.001
Herbicides 0.151 0.007 0.986

 Insecticides 0.095 -0.113 0.441
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25 Table S2. Relevance of pesticide types for the TAT of different species groups (marked X). 
Relevance has been determined by calculating the TAT using the available toxicity data for 
all pesticide types from the EFSA OpenFoodTox database2 and checking whether the 
pesticide type contributes >5% on average to the TAT of the respective species group in the 
years between 1995 and 2019, or at least 10% in a single year. 

Species group Fungicides Herbicides Insecticides
Aquatic invertebrates -- -- X
Fish X -- X
Aquatic plants X X --
Terrestrial arthropods X -- X
Terrestrial vertebrates X X X
Terrestrial plants -- X --
Pollinators -- -- X
Soil organisms X X X

30
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Table S3. Assessment and feed adjustment factors applied to ecotoxicological endpoints of 
different species groups according to the tier-1 EU risk assessment of pesticides. 
Assessment factors are a means of covering uncertainty in the representativeness of 

35 considered endpoints. Adjustment factors are used to compare vertebrate endpoints based 
on feed to those based on body weight.

Species group Taxonomic entities Duration
Assessment 
factor

Adjustment 
factor (feed)

Aquatic invertebrates acute 100 -
chronic 10 -

Fish acute 100 -
chronic 10 -

Aquatic plants acute 10 -
chronic 10 -

Terrestrial arthropods acute/chronic 2 -
Terrestrial vertebrates Mus musculus acute 10 5

chronic 5 5
Rattus norvegicus acute 10 10

chronic 5 10
Avian species acute 10 10

chronic 5 10
Terrestrial plants acute/chronic 5 -
Pollinators acute 50 -
Soil organisms Folsomia candida acute/chronic 5 -

Hypoaspis acule acute/chronic 5 -
Eisenia spp. acute 10 -

chronic 5 -
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Table S4. Relative contribution of pesticides to the TAT and applied mass for different 
40 species groups. Contribution is expressed as percentage of the TAT, and mass (USE) as 

percentage of the total from pesticide types relevant for the species group (see Table S2). 
For each species group, the top-10 contributors regarding the TAT are shown. Percentages 
refer to the total TAT and mass contributions for the years 1995-2019.

Species group Chemical Pesticide
 class

Pesticide
 type %TAT %USE

Aquatic Deltamethrin Pyrethroids Insecticides 50.51 0.49
invertebrates lambda-Cyhalothrin Pyrethroids Insecticides 26.83 2.94
acute beta-Cyfluthrin Pyrethroids Insecticides 13.54 1.79

Cypermethrin Pyrethroids Insecticides 4.30 1.31
gamma-Cyhalothrin Pyrethroids Insecticides 2.70 0.07
tau-Fluvalinat Pyrethroids Insecticides 0.58 0.70
Parathion Organophosphates Insecticides 0.47 2.98
alpha-Cypermethrin Pyrethroids Insecticides 0.28 1.74
Tefluthrin Pyrethroids Insecticides 0.20 0.74

 Parathion-methyl Organophosphates Insecticides 0.17 1.25
Aquatic lambda-Cyhalothrin Pyrethroids Insecticides 69.29 3.07
invertebrates beta-Cyfluthrin Pyrethroids Insecticides 22.72 1.87
chronic Fenoxycarb Carbamates Insecticides 1.51 0.49

Bifenthrin Pyrethroids Insecticides 1.00 0.19
alpha-Cypermethrin Pyrethroids Insecticides 1.00 1.82
Methiocarb Carbamates Insecticides 0.77 15.57
Chlorpyrifos-methyl Organophosphates Insecticides 0.74 1.49
Esfenvalerate Pyrethroids Insecticides 0.64 0.49
Deltamethrin Pyrethroids Insecticides 0.63 0.52

 Tefluthrin Pyrethroids Insecticides 0.48 0.77
Fish lambda-Cyhalothrin Pyrethroids Insecticides 35.92 0.24
acute beta-Cyfluthrin Pyrethroids Insecticides 25.18 0.15

Tefluthrin Pyrethroids Insecticides 11.75 0.06
Esfenvalerate Pyrethroids Insecticides 4.47 0.04
Chlorothalonil Other Fungicides 4.22 6.22
Mancozeb Carbamates Fungicides 2.49 16.00
Captan Other Fungicides 2.46 3.13
gamma-Cyhalothrin Pyrethroids Insecticides 1.87 0.01
Bifenthrin Pyrethroids Insecticides 1.75 0.02

 Pyraclostrobin Other Fungicides 1.48 0.77
Fish Esfenvalerate Pyrethroids Insecticides 29.64 0.04
chronic beta-Cyfluthrin Pyrethroids Insecticides 27.03 0.14

Tefluthrin Pyrethroids Insecticides 11.78 0.06
Mancozeb Carbamates Fungicides 9.06 15.6
lambda-Cyhalothrin Pyrethroids Insecticides 5.99 0.24
alpha-Cypermethrin Pyrethroids Insecticides 3.67 0.14
Chlorothalonil Other Fungicides 3.40 6.06
Dithianon Other Fungicides 2.16 1.27
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Cypermethrin Pyrethroids Insecticides 1.08 0.11
 Bifenthrin Pyrethroids Insecticides 0.97 0.01
Aquatic plants Diflufenican Amides Herbicides 28.08 0.93
acute Bifenox Other Herbicides 14.53 0.34

Metazachlor Amides Herbicides 9.59 2.91
Spiroxamine Other Fungicides 7.25 1.24
Pendimethalin Dinitroanilides Herbicides 6.98 3.50
Flufenacet Amides Herbicides 4.78 1.26
Isoproturon Ureas Herbicides 4.28 7.32
Dimethachlor Amides Herbicides 2.12 0.61
Epoxiconazol Azoles Fungicides 1.97 1.12

 Diuron Ureas Herbicides 1.82 0.24
Terrestrial Dimethoat Organophosphates Insecticides 27.28 1.68
arthropods alpha-Cypermethrin Pyrethroids Insecticides 17.17 0.14
acute lambda-Cyhalothrin Pyrethroids Insecticides 14.88 0.24

beta-Cyfluthrin Pyrethroids Insecticides 13.45 0.15
Cypermethrin Pyrethroids Insecticides 8.48 0.11
Imidacloprid Neonicotinoids Insecticides 6.58 0.64
Prochloraz Other Fungicides 6.57 2.85
gamma-Cyhalothrin Pyrethroids Insecticides 2.16 0.01
Esfenvalerate Pyrethroids Insecticides 0.69 0.04

 Methiocarb Carbamates Insecticides 0.59 1.23
Terrestrial Mesotrione Other Herbicides 49.54 0.27
vertebrates Ioxynil Other Herbicides 18.42 0.42
acute Carbofuran Carbamates Insecticides 7.23 0.02

Methiocarb Carbamates Insecticides 4.40 0.50
Dimethoat Organophosphates Insecticides 2.86 0.68
Metconazol Azoles Fungicides 2.29 0.21
Spiroxamine Other Fungicides 2.06 1.40
Folpet Other Fungicides 1.53 1.54
Carbosulfan Carbamates Insecticides 0.86 0.02

 Dimoxystrobin Other Fungicides 0.77 0.09
Terrestrial Diquat Other Herbicides 21.84 0.46
vertebrates Epoxiconazole Azoles Fungicides 11.09 1.17
chronic Spiroxamine Other Fungicides 6.11 1.30

Isoproturon Ureas Herbicides 6.06 7.69
Dimethoate Organophosphates Insecticides 5.98 0.63
Oxydemeton-methyl Organophosphates Insecticides 5.19 0.08
Tebuconazole Azoles Fungicides 3.81 2.33
Mancozeb Carbamates Fungicides 3.02 6.00
Terbuthylazin Triazines Herbicides 2.05 3.00

 Pendimethalin Dinitroanilides Herbicides 1.99 3.67
Terrestrial Diflufenican Amides Herbicides 12.86 1.49
plants Glyphosat Other Herbicides 12.02 27.17
acute Mesotrione Other Herbicides 10.81 0.38
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Isoproturon Ureas Herbicides 9.16 11.78
MCPA Phenoxy. Herbicides 7.4 4.33
Metazachlor Amides Herbicides 6.63 4.68
S-Metolachlor Amides Herbicides 4.63 3.34
Florasulam Amides Herbicides 3.91 0.03
Flufenacet Amides Herbicides 3.21 2.03

 Metamitron Triazines Herbicides 3.09 6.81
Pollinators Imidacloprid Neonicotinoids Insecticides 39.42 8.07
acute Clothianidin Neonicotinoids Insecticides 21.13 4.43

Thiamethoxam Neonicotinoids Insecticides 8.17 2.26
Deltamethrin Pyrethroids Insecticides 6.23 0.52
Dimethoat Organophosphates Insecticides 3.85 21.29
Methiocarb Carbamates Insecticides 3.52 15.59
beta-Cyfluthrin Pyrethroids Insecticides 2.83 1.88
Etofenprox Pyrethroids Insecticides 2.75 2.28
zeta-Cypermethrin Pyrethroids Insecticides 2.58 0.28

 Spinosad Other Insecticides 1.91 0.38
Soil organisms Epoxiconazole Azoles Fungicides 18.58 1.14
chronic Thiacloprid Neonicotinoids Insecticides 16.42 0.24

Methiocarb Carbamates Insecticides 15.31 0.45
Chlorothalonil Other Fungicides 8.23 2.28
Difenoconazol Azoles Fungicides 4.95 0.37
Fluazinam Other Fungicides 3.89 0.50
Dichlorprop-P Phenoxys Herbicides 3.12 1.44
Prothioconazol Azoles Fungicides 2.53 1.24
Quinmerac Other Herbicides 2.52 0.72

 Pethoxamid Amides Herbicides 1.75 0.52

45
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Table S5. Main methodological differences between TAT and SYNOPS risk indicators for 
deriving trends in pesticide risks of aquatic and terrestrial species groups.

Characteristic TAT SYNOPS
Mass input Sum of all outdoor pesticide 

applications per pesticide and 
year

Sum of all outdoor pesticide 
applications per pesticide 
and year distributed among 
individual application 
scenarios by target crop and 
target pest

Toxicity endpoints Derived from endpoints 
according to European tier-1 
risk assessment

LC50/EC50/NOEC/LOEC 
values of test species

Risk index accounting Pesticide applications account 
in sum

Application scenarios 
account weighted by cropped 
area and application 
frequency

Pesticide class 
accounting

Pesticide types are evaluated 
together

Pesticide types are 
evaluated separately

Species group accounting Species groups are evaluated 
separately

Risk indexes for aquatic and 
terrestrial ecosystems are 
aggregated from individual 
test species risks

Modeling No further modeling Exposure and environmental 
fate modeling based on 
physico-chemical properties 
and exposure scenarios
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Figure S1. Domestic sales of active ingredients in Germany between 1995 and 2019 for (a) 
50 the total of 441 pesticides considered in this study, (b) the 145 fungicides, (c) the 163 

herbicides and (d) the 133 insecticides contained therein. Annual domestic sales (mass in 
tons) are provided by the BVL3 for 562 active ingredients, which were reported to federal 
authorities as required under §64 Pflanzenschutzgesetz (German Plant Protection Law). In 
concordance with the US TAT approach, we constrained the German dataset to chemical 

55 pesticides that are primarily used in outdoor-agriculture. 45 ingredients were not further 
considered because they were biological or physical agents or because they did not primarily 
act as toxicants, e.g., oils, suffocating or repelling pest organisms. Fourteen were not 
included in the analysis because they were found to be primarily used indoors. The 
remaining 503 active ingredients were classified into major use types: fungicides, herbicides, 

60 insecticides, molluscicides, plant growth regulators and other pesticides, according to the 
harmonized substance classification system used by EU regulation (2009/1185/EC). Initial 
analysis showed that molluscicides, plant growth regulators and other pesticides had virtually 
no contributions to the TAT for the assessed species groups (<0.5% each), thus, results for 
these groups (containing 62 pesticides) were not further considered. Significant differences 

65 between the first and last five-year averages (horizontal lines) are indicated in the figure by 
an asterisk and, if the underlying trend over the entire range of years is monotonic (variance-
corrected Mann-Kendall-Test; Table S1), also by a dagger.
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70 Figure S2. Domestic active ingredient sales in Germany between 1995 and 2019 for 
different classes of (a) fungicides, (b) herbicides and (c) insecticides. Significant differences 
between the first and last five-year averages (horizontal lines) are indicated in the figure by 
an asterisk and, if the underlying trend over the entire range of years is monotonic (variance-
corrected Mann-Kendall-Test; Table S1), also by a dagger in case of an increasing trend or 

75 by an inverted dagger in case of a decreasing trend.
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Figure S3. Tonnage of pesticide sales in Germany differentiated by the availability of toxicity 
data (thresholds) for the different species groups: (a) aquatic invertebrates, (b) fish, (c) 

80 aquatic plants, (d) terrestrial arthropods, (e) terrestrial vertebrates, (f) terrestrial plants, (g) 
pollinators and (h) soil organisms. Only the sales of relevant pesticide types (Table S2) were 
considered per species group.
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85

Figure S4. The TAT in German agriculture for relevant pesticide types (Table S2) for (a) 
aquatic invertebrates, (b) fish), (c) aquatic plants, (d) terrestrial arthropods, (e) terrestrial 
vertebrates, (f) terrestrial plants, (g) pollinators and (h) soil organisms. Horizontal lines show 
the average TAT for 1995-1999 and 2015-2019. Significant differences between the first and 

90 last five-year averages (horizontal lines) are indicated in the figure by an asterisk and, if the 
underlying trend over the entire range of years is monotonic (variance-corrected Mann-
Kendall-Test; Table S1), also by a dagger in case of an increasing trend or by an inverted 
dagger in case of a decreasing trend.

95
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Figure S5. Spatial distribution of the estimated TAT in German agriculture for relevant 
pesticide types (Table S2) in 2015-2017 on a 1 km x 1 km grid for (a) aquatic invertebrates, 
(b) fish), (c) aquatic plants, (d) terrestrial arthropods, (e) terrestrial vertebrates, (f) terrestrial 

100 plants, (g) pollinators and (h) soil organisms. (i) shows the borders of the federal states and 
identifies those mentioned in the main text (NRW = North-Rhine-Westphalia; RLP = 
Rhineland-Palatinate; LS = Lower Saxony). Grid cells are colored by their percentile in the 
respective TAT distribution over all cells (darker areas indicate higher percentiles). Aquatic 
(blue) TAT values refer to a theoretical exposure of water bodies in a grid cell and are not 

105 projected onto actual water bodies.
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Figure S6. Phase space-plots (both axes z-score normalized) for (a) aquatic invertebrates, 
(b) fish, (c) aquatic plants, (d) terrestrial arthropods, (e) terrestrial vertebrates, (f) terrestrial 
plants, (g) pollinators and (h) soil organisms, showing temporal trends of applied pesticide 

110 mass (only relevant pesticide types according to Table S2) and the TAT in Germany.
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Figure S7. Adjusted R-square for linear models relating the annual SYNOPS trend risk 
indicator contributions of individual pesticides to their applied amounts in the same year. 

115 High adjusted R-square (≥0.9) values indicate proportionality between the SYNOPS trend 
risk indicator and applied masses, i.e., applied amounts contribute by an approximately time-
constant factor to the risk indicator. This is the case for most of the pesticides. For only few 
pesticides, factors vary over time (adjusted R-square <0.9) due to changes in registered 
usages or crop composition. Most of the combinations of pesticides with an adjusted R-

120 square <0.9 and one of the four risk indicators (in total n=135, 59 pesticides) do, however, 
indicate comparably little contribution to the respective risk indicator (≤0.1 in any year), with 
only a few exceptions (n=14, 12 pesticides) that potentially impact the shape of the SYNOPS 
risk indicator trends: copper hydroxide (adjusted R-square 0.74; maximum yearly SYNOPS 
trend contribution: 0.25) for acute aquatic risk; abamectin (0.70; 0.36), clothianidin (0.56; 

125 0.34), dimethoate (0.76; 0.81), dithianon (0.25; 0.16), imidacloprid (0.06; 1.35), copper 
oxychloride (0.77; 0.71), mancozeb (0.08; 0.19) and sulfur (0.85; 0.14) for acute non-target 
arthropod risk; fenoxycarb (0.66; 0.95), copper oxychloride (0.78; 0.25), mancozeb (0.15; 
0.43) for chronic aquatic risk; prothioconazole (0.62; 0.27) for chronic soil organism risk. 
Linear models were fitted only for pesticides that contributed at least five years to a risk 

130 indicator.



Page S16 of S20



Page S17 of S20

Figure S8. Trends in fungicide, herbicide and insecticide risks in Germany according to the 
TAT approach and the SYNOPS-trend approach.4 Results are represented as acute and 

135 chronic risks in aquatic and terrestrial ecosystems per pesticide type using the reporting units 
of the SYNOPS risk indicators. The acute aquatic risk TAT was calculated by the minimum 
acute endpoint of aquatic invertebrates, fish and aquatic plants per pesticide, the chronic 
aquatic risk TAT by the minimum chronic endpoint for aquatic invertebrates and fish per 
pesticide. The acute terrestrial risk is represented by the TAT for pollinators and the chronic 

140 terrestrial risk by the TAT for soil organisms, both fitting the species groups considered by 
the SYNOPS risk indicators for the respective risks. The reference line (=100) on the y-axis 
is the average value for the years 1996 to 2005 used as the baseline in the German NAP. 
The TAT values were normalized accordingly. Acute terrestrial risks are provided only for 
insecticides, since this is the only pesticide type relevant for the TAT of pollinators (Table 

145 S2). Asterisks mark trends where the risk in 2015-2019 significantly differs from that in 1996-
2000. Daggers indicate statistically significant monotonic increasing trends, inverted daggers 
monotonic decreasing trends.1 The yearly SYNOPS-trend indicators for 1996 to 2019 were 
retrieved from the Julius Kühn-Institute’s Pesticide-Trends Database Explorer.5 Monotony of 
potentially underlying trends were examined using a variance-corrected Mann-Kendall test1, 

150 whereas differences between the two five-year time periods 1996 to 2000 and 2015 to 2019 
were assessed using non-parametric Wilcoxon tests. 
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Figure S9. Comparison of the yearly SYNOPS and TAT indexes for different groups of 
chemical use types and species groups. Similarity of the SYNOPS and TAT trends was 

155 determined by a linear regression model relating the yearly normalized SYNOPS and TAT 
values for each considered group of chemical use type and risk, and expressed by the non-
adjusted coefficient of determination of the fit. Higher values indicate higher similarity 
between the indicators.
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Figure S10. Comparison of proportionality factors applied to pesticide amounts for weighting 
the risk contribution of individual pesticides. For the SYNOPS risk indicators, proportionality 
factors were determined by fitting a linear regression model for applied pesticide amounts 
and individual pesticide risk contributions retrieved from 3. For the TAT, factors are the 

165 reciprocal of the pesticide’s threshold. The nearer to the black regression line in the plot, the 
more similar is the relative weighting of a pesticide by both indicators. Pesticides that are 
among the top-5 contributors to an indicator are marked by symbols. For the SYNOPS risk 
indicators, top-5 contributors were considered individually per pesticide class (fungicide, 
herbicide, insecticide), i.e., up to 15 pesticides are marked. For the TAT, top-5 pesticides for 

170 all species groups contributing to a risk group were considered (fish, aquatic invertebrates 
and aquatic plants for acute aquatic risk, fish and aquatic invertebrates for chronic aquatic 
risk, pollinators for acute NTA risk and soil organisms for chronic soil organism risk). 
Pesticides that are among the top-5 following the aforementioned method are marked by a 
triangle. Not all pesticides have quantified contributions to a risk group for both indicators, 

175 e.g., due to missing thresholds. These pesticides are not shown in the figure, resulting in 
varying numbers of pesticides shown in the individual panels.
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