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Homogenization and dimension reduction for periodic textiles made of linear elastic
yarns with sliding contact

by Riccardo FALCONI

This work aims to study textile structures in the frame of linear elasticity to understand how
the structure and material parameters influence the macroscopic homogenized model. More
precisely, we are interested in how the textile design parameters, such as the ratio between
fibers” distance and cross-section width, the strength of the contact sliding between yarns,
and the partial clamp on the textile boundaries determine the phenomena that one can see in
shear experiments with textiles. Among others, when the warp and weft yarns change their
in-plane angles first and, after reaching some critical shear angle, the textile plate comes out
of the plane, and its folding starts.

The textile structure under consideration is a woven square, partially clamped on the left
and bottom boundary, made of long thin fibers that cross each other in a periodic pattern.
The fibers cannot penetrate each other, and in-plane sliding is allowed. This last assump-
tion, together with the partial clamp, adds new levels of complexity to the problem due to
the anisotropy in the yarn’s behavior in the unclamped subdomains of the textile.

The limiting behavior and macroscopic strain fields are found by passing to the limit with
respect to the yarn’s thickness r and the distance between them ¢, parameters that are asymp-
totically related. The homogenization and dimension reduction are done via the unfolding
method, which separates the macroscopic scale from the periodicity cell. In addition to the
homogenization, a dimension reduction from a 3D to a 2D problem is applied. Adapting
the classical unfolding results to both the anisotropic context and to lattice grids (which are
constructed starting from the center lines of the rods crossing each other) are the main tools
we developed to tackle this type of model. They represent the first part of the thesis and are
published in Falconi, Griso, and Orlik, 2022b and Falconi, Griso, and Orlik, 2022a.

Given the parameters mentioned above, we then proceed to classify different textile prob-
lems, incorporating the results from other works on the topic and thoroughly investigating
some others. After the study is conducted, we draw conclusions and give a mathematical
explanation concerning the expected approximation of the displacements, the expected solv-
ability of the limit problems, and the phenomena mentioned above. The results can be found
in “Asymptotic behavior for textiles with loose contact”, which has been recently submitted.
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Ziel dieser Arbeit ist es, textile Strukturen im Rahmen der linearen Elastizitit zu unter-
suchen, um zu verstehen, wie die Struktur- und Materialparameter das makroskopisch ho-
mogenisierte Modell beeinflussen. Genauer gesagt interessiert uns, wie die textilen Design-
parameter, biespielweise das Verhéltnis zwischen dem Faserabstand und der Querschnitts-
breite, die Starke des Kontaktgleitens zwischen Garnen und die partielle Klemmung an den
Textilrandern, die sichtbaren Phinomene bei Scherversuchen mit Textilien bestimmen. Ins-
besondere interessiert uns der Effekt, wenn sich der Winkel zwischen den Kett- und Schuss-
faden zuerst nur in der Ebene dndert und, nach Erreichen eines kritischen Scherwinkels, die
Textilplatte aus der Ebene kommt und ihre Faltung beginnt.

Die betrachtete Textilstruktur ist ein Quadratgewebe, das aus langen diinnen Fasern besteht,
die sich in einem periodischen Muster kreuzen und teilweise an dem linken und unteren
Rand geklemmt werden. Die Fasern konnen nicht ineinander eindringen und ein Gleiten in
der Ebene ist erlaubt. Diese letzte Annahme, zusammen mit der partiellen Klemmung, fligt
dem Problem, aufgrund der Anisotropie im Verhalten des Garns in den nicht geklemmten
Teilbereichen des Textils, eine neue Komplexitdtsebenen hinzu.

Das Grenzverhalten und die makroskopischen Dehnungsfelder werden gefunden, indem
man das assymptotische Verhalten des Gewebes in Bezug auf Garndicke r und Abstand
€, unter Annahme eines vorgeschriebenen Verhiltnisses der beiden Parameter, untersucht.
Die Homogenisierung und Dimensionsreduktion erfolgen tiber ein Entfaltungsverfahren,
das die makroskopische Skala von der Periodizitdtszelle trennt. Zusammen mit der Ho-
mogenisierung wird zusatzlich eine Dimensionsreduktion von einem 3D- auf ein 2D-Problem
angewendet. Die Anpassung der klassischen Entfaltungsergebnisse sowohl an die Anisotropie,
als auch an das Gitter (die kreuzende und oszillierende Balkenachsen) sind die wichtigsten
Werkzeuge in der Arbeit. Sie stellen den ersten Teil der Arbeit dar und sind in Falconi, Griso,
and Orlik, 2022b und Falconi, Griso, and Orlik, 2022a veroffentlicht.

Anhand der oben genannten Parameter gehen wir dann zur Klassifizierung verschiedener
Textilprobleme iiber, wobei wir die Ergebnisse, die bereits in anderen Arbeiten zu diesem
Thema erzielt wurden, einbeziehen und einige andere griindlich untersuchen. Nachdem die
Studie durchgefiihrt wurde, ziehen wir die Schlussfolgerungen und geben eine mathema-
tische Erkldrung beztiglich der erwarteten Anndherung der Verschiebungen, der erwarteten
Losbarkeit der Grenzwertprobleme und der oben erwdhnten Phianomene. Die Ergebnisse
sind in “Asymptotic behavior for textiles with loose contact” zu finden, das kiirzlich ein-
gereicht wurde.
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Chapter 1

Introduction

This work deals with textile structures made of long thin beams, which cross each other on
a periodic pattern. The aim is to find a mathematical model for the textile, which adequately
describes its mechanical behavior at a small scale and which can then be homogenized to
capture the textile’s macroscopic behavior in the context of linear elasticity.

The homogenization is done via the unfolding method, an equivalent to the two-scale con-
vergence. The method was first presented in Cioranescu, Damlamian, and Griso, 2002, with
further development in Cioranescu, Damlamian, and Griso, 2005; Cioranescu, Donato, and
Zaki, 2006; Damlamian et al., 2006; Cioranescu, Damlamian, and Griso, 2008 and extensively
in Cioranescu, Damlamian, and Griso, 2018.

This homogenizing tool is well suited for these types of problems, involving periodic pat-
terns and structures made of yarns. Indeed, it has largely found application in the ho-
mogenization of periodically perforated domains (see, e.g., Damlamian, Meunier, and Van
Schaftingen, 2007; Damlamian and Meunier, 2010; Donato, Le Nguyen, and Tardieu, 2011;
Ould Hammouda, 2011; Cioranescu, Damlamian, and Orlik, 2013a; Cabarrubias and Do-
nato, 2016; Donato and Yang, 2016) and of thin structures with a periodic pattern, like peri-
odically perforated shells (see Griso, Hauck, and Orlik, 2021), textiles made of long woven
beams in strong contact (see Griso, Orlik, and Wackerle, 2020b; Griso, Orlik, and Wackerle,
2020a) and 3D lattice structures made of either beams or segments in a stable configuration
(see Griso et al., 2020; Griso et al., 2021).

In order to simplify the structures we are going to investigate, a dimension reduction from
three to two dimensions is also applied, so that in the limit the macroscopic behavior only de-
pends on the in-plane variables. About dimension reduction of plates or rods, one can read,
for instance, in Blanchard, Gaudiello, and Griso, 2007a; Blanchard, Gaudiello, and Griso,
2007b; Griso, 2004; Griso, 2008a; Griso, 2008b. For more information on the combination
of periodic unfolding and dimension reduction, one can look into Chapter 11 of Cioranescu,
Damlamian, and Griso, 2018.

The model we consider is a woven textile made of long thin rods that are not glued (so they
cannot be extended to a perforated shell) but do allow for a small amount of in-plane sliding.
The interest in this type of structure comes from the large number of numerical progress on
the topic (among others, we would like to mention Madeo et al., 2015; Boisse et al., 2011;
Orlik, Panasenko, and Shiryaev, 2016; Orlik and Shiryaev, 2016), so the aim is to give a
mathematical explanation of the phenomena that arise in simulations and experiments. In
particular, we are interested in how the contact between fibers and the partial clamp influ-
ence the textile behavior at a macroscopic level. In this sense, this work shows the range
of possible cases and, starting from the ones already studied in Griso, Orlik, and Wackerle,
2020a, investigates the remaining ones and compares them in a qualitative manner.

The investigation of woven structures with contact sliding is able to describe more phenom-
ena and be closer to reality but it also involves a more complex setting, and finds its limita-
tion in the classical unfolding theorems. Hence, we decided to split the thesis into two main
parts: a preparatory part, where we extend the classical unfolding results to new structures
and new classes of sequences, and an investigative part, where we study different elasticity
problems for the small deformations of this kind of textile structures.



2 Chapter 1. Introduction

1.1 First part: new tools for the periodic unfolding

The first three chapters of the thesis will furnish the necessary extensions of the classical
unfolding theory and the main notions and properties concerning the N-linear and N-cubic
interpolation. These results are important not only to investigate the particular periodic
structures we are interested in but also all those alike.

The first section of Chapter 2 recalls the classical unfolding theory. We consider a bounded
domain O C RN with Lipschitz boundary and periodically paved with unitary cells Y =
[0,1]N rescaled by a small parameter e. The unfolding operator takes measurable functions
on () and splits the functions’ variable into the reference cell’s position and the variable’s
position on the reference cell. As ¢ goes to zero, it splits the limit function into macroscopic
behavior on () and microscopic behavior on the reference cell Y (see Figure 4.2). This method
is very powerful in the frame of homogenization because in the limit we have separation of
the microscopic cell problem from the macroscopic homogenized problem.

The unfolding operator can easily be applied to bounded sequences in LF (which admit a
weakly convergent subsequence in L?) since its L” norm can be bounded by the sequence’s
bound. From the classical unfolding theory in Section 1.4 of Cioranescu, Damlamian, and
Griso, 2018, we present the unfolding for:

(i) Sequences {¢}e C WP (Q) such that ||gell () + €| Vel 1r(a) < C;
(i) Sequences {¢¢}. C WP(Q) such that [@ellwirqy < G

(ii) Sequences {¢¢}e C WP (Q) such that [|¢e[ly2p(q) < C-

The rest of the chapter is devoted to the properties of linear and cubic approximation of
functions on a reference grid G that connects the vertices of the reference cell Y (and on the
rescaled one €Y), as well as the N-linear and N-cubic extension to the cell itself Y (and on the
rescaled one). The properties will be often used throughout the whole work.

The first extension of the unfolding method is done in Chapter 3 and concerns sequences
that present better estimates in some (privileged) directions with respect to others. Unlike
the sequences above, whose estimates are isotropically bounded, this chapter will deal with
the periodic unfolding of "anisotropically bounded" sequences.

To describe them rigorously, we consider the decomposition RN = RM x RM and define
x = (x’,x"), where the variable x’ corresponds to the first N; directions. From the unfold-
ing with parameters of Cioranescu, Damlamian, and Griso, 2018, Chap. 7, we develop the
"two-steps unfolding" and show the asymptotic behavior of the following new classes of
anisotropically bounded functions:

()" Sequences {¢e}. C LF(Q), V) such that [|¢pel|1r () + €| Var@ellr ) < C;

(ii)” Sequences {¢e}c C LP(Q), V) such that [[¢cl1r(q) + [V@ellra) < G
(iii)" Sequences {¢¢}e C W'P(Q) such that [[¢e|| Lp(cy) + | Vardellr(ca) + el Varellr ) < G
(iv)" Sequences {¢}e C LF(Q, V) with {V ¢ }e C LP(Q), V) such that

ellr) + I Vadellr) + el Vir (Vige) | 1r ) < C.

As a direct application of this unfolding, in the last section we proceed to the complete
homogenization of the following homogeneous Dirichlet problem

Find u, € H}(Q) such that:

Ve V¢ .
/QAS } : vaqu} dx = /qu)dx, Ve € Hi(Q),

va//ug
whose nature is anisotropic. We prove the existence and uniqueness of solutions for cell
problems and macroscopic problems, the correctors, and the homogenizing operator.

Chapter 4 deals with the second type of extension of the periodic unfolding method, which



1.2. Second part: classification and homogenization of textile structures made of linear

elastic yarns with sliding contact 3

is the unfolding for sequences defined on periodic lattice structures. In this sense, by "pe-
riodic lattice structure," we mean one-dimensional grids S defined on each ¢ cell and pe-
riodically repeated for each cell of (). For further reading on the topic of lattice structures
and homogenization, we recommend Abrate, 1991; Caillerie and Moreau, 1995; Panasenko,
1998; Lenczner and Senouci-Bereksi, 1999; Casado-Diaz, Luna-Laynez, and Martin, 2001;
Lenczner and Mercier, 2004.

After giving a rigorous definition of the periodic lattice S; C RN, we define the functions
on these structures. The problem of defining an unfolding operator for lattices is that the
unfolding itself is done separately on each lattice direction. This means, that in the limit we
obtain N different functions and we no longer know if these functions are either indepen-
dent from each others, or the restriction to each line of a unique function.

To overcome this issue, we adopted the following strategy: given a sequence {¢; } bounded
on WP(S;), we first uniquely decompose it into a sequence {¢,.}e, defined as an inter-
polation between lattice nodes, and a remainder term {¢g}.. Concerning {¢, .}, we can
extend it by N-linear interpolation to the whole space, apply the unfolding results on RN
and restrict it back to the lattice itself. Concerning {¢o,}e, we can directly apply the one-
dimensional unfolding since it is defined on straight segments of S,. With this workaround,
and due to the results of the previous chapter, we show the asymptotic behavior of se-
quences:

()" {pe}e C WP(S;) such that [|¢e|lp(s,) +€ll0sellp(s,) < Ce 7 ;

1-N
(ii)l/ {gbe}g C Wl'p(sg) such that ||¢£||Wl'p((3g)) S Cep ;

1-N
(ii))” {pe}e C W'P(Se) such that ||| r(s,) + [10sellLr(sr) +€llOsellp(syy < Ce 7.

For sequences bounded on W??(S;), more work is required since the N-cubic extensions
of the interpolating sequence are not uniquely defined, and thus more assumptions on the
bounds must be made. However, we also present another strategy, which consists of twice
applying (on the functions and their partial derivatives) the results for functions bounded
WLP(S;). In this sense, no other bounds are needed but at the cost of a lesser regularity of
the limit fields.

At last, we again consider an application of the new results and proceed to the complete
homogenization of a fourth-order Dirichlet problem defined on a lattice structure:

Find u. € H}(S:) N H?(S;) such that:
/;Agagus 2 ds = /S e 0 ds +/S fopds, Vo € HY(S.) NHA(S,).

1.2 Second part: classification and homogenization of textile
structures made of linear elastic yarns with sliding con-
tact

In the second part of the thesis, we investigate our actual problem, that is, the linearized
elasticity problem for a textile structure made of yarns with contact sliding. A first break-
through for this kind of problem has been made in Griso, Orlik, and Wackerle, 2020a, and
we will initially consider the same setting. Then, we will apply the tools developed in the
first part to extend the study to a whole new set of problems.

We dedicate Chapter 5 to the mathematical model for the structure, well-posedness of the
problem, and classification according to the initial parameters.

We start by considering the simplest structure of a woven textile: a long, oscillating rod of
length L with a small squared cross section of width r. From the results in Griso, 2004; Griso,
2008a; Griso, 2008b, every displacement u, on the rod can be decomposed according to

Ue = ugd + e,
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where the U is the elementary displacement and consists of the middle line and rotation of
the cross-section, while  is the remainder term. We improve this decomposition by showing
that any rod displacement is the sum of a Bernoulli-Navier displacement and a residual term.

The construction of the whole textile structure T; is done as depicted in Figure 1.1: we set a
small parameter ¢ and define two beams of rods. The distance between two parallel rods is
g, and the rods of different directions cross each other in a periodic pattern (see the zoom in
Figure 1.1), creating a woven canvas in the square Q) = (0, L)2. For every displacement on

L

-

.
Clamp
e o

T R R

s S A A A A5
Y s

0 Clamp 1 L

FIGURE 1.1: The textile structure. Each cell has a 2¢ periodic pattern. The
distance between fibers is ¢, and their cross-section is 2r. A partial clamp is
set on the left and bottom boundaries.

the textile structure u, € H!(T;) we set the following natural assumptions:

(i) clamp conditions: on a partial segment of the left and bottom boundaries, the displace-
ments vanish;

(ii) In-plane contact conditions: in the in-plane component, the displacements are allowed
to shear relative to the other in two directions up to a maximum bound given by a gap
function g, = €''g, where h € N* denotes the "contact strength";

(iif) Outer plane non-penetration condition: in the outer plane component, the displace-
ments are not allowed to penetrate each other.

We define the set of admissible displacements as
X, = {ve € H'(T;) | ve satisfies conditions (i)-(iv) }.

Due to conditions (ii)-(iii), the elasticity problem is set via variational inequality, similar to
in Cioranescu, Damlamian, and Orlik, 2013b; Griso, Orlik, and Wackerle, 2020a:

Find u, € A, such that for every v, € X,:

(1.1)
/T ijt,e €ij(ue) exr (e — ve) dx < /T fe - (ue — ve) dx,
where 4, is the fourth order strain tensor describing the material law, and f; is the applied
stress. The problem admits solution by Stampacchia’s Lemma (see Kinderlehrer and Stam-
pacchia, 2000), a version of Lax—Milgram for closed convex subsets of Hilbert spaces. In
order to give a classification of the different textile structures, we need the estimates of all
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the fields and their derivatives involved in (1.1) with respect to the L2 norm of the strain ten-
sor. In the clamped subdomains, these estimates are obtained by the bound on their deriva-
tives together with Poincaré’s inequality. The estimates on the unclamped subdomains are
proved by the results on the clamped ones together with the relations given by the contact
conditions, the non-penetration condition, and the Trace theorem.

We note that the fields’ estimates depend on three factors, and so does the behavior of the
textile before the limit. Namely:

1. The ratio between the fibers distance ¢ and their cross section width 7;
2. The fact that we are interested in the study of small deformations;
3. The contact strength i € IN* (or friction between yarns).

Concerning the first aspect, for simplicity, we assume that e ~ r. Of course, another whole
study can be done without this assumption and would lead to another interesting case
(r ~ €2), but given the complexity of the problem, we leave it out of the scope of this work.
Concerning the second aspect, we show that the linearization for the elasticity problem is
ensured if and only if the following assumption on the strain bound holds:

lle(ue) |l r2(r,) ~ e/*te, 6>0. (1.2)

A suitable choice of forces on the right-hand side must be made to keep the bound in such a
linear regime. At last, contact strength is the parameter we are most interested in because it
heavily determines the transfer of estimates from the clamped fields to the unclamped ones,
influencing the final textile behavior. We spot four representative cases: textiles with almost
glued fibers (g. ~ e*g or higher), with strong contact (g. ~ €3¢), with loose contact (g ~ £2g)
and with very loose contact (g; ~ €g). We collect all the estimates for the fields in the final
Table 5.1, and draw some a priori conclusions on the displacement behaviors.

In Chapter 6, we briefly analyze the almost glued fibers, the strong contact, and the very
loose contact case. The homogenization for the first two cases has already been achieved in
Griso, Orlik, and Wackerle, 2020a, and we will not investigate it further. However, we will
reach the same final displacement decomposition with the newly developed lattice strategy
and recall the results in the conclusive chapter. The case of a very loose contact textile as-
sumes g, ~ £g, leading to a trivial configuration: the contact is so loose that, with the applied
model, we completely lose information on the in-plane fields in the unsupported domains.
Even the assumption of completely stitching the left and bottom boundary of ) (glued con-
ditions) does not help. Hence, a study in a woven context is of no use.

Chapter 7 deals with the loose contact case (g: ~ €2g), and it can be considered the core of
the work. The full homogenization is done for this case, together with the newly developed
tools. We assume the gap function g, only in the in-plane components since it is possible to
prove (see Lemma 19) that in the outer-plane direction, the estimate of the displacements’
difference does not depend on the contact due to the woven behavior of the fibers crossing
each other.

We start by giving sufficient forces to obtain the strain tensor bound (1.2) to stay in a linear
regime. With the choice of (1.2), the ratio r ~ ¢, and the contact strength i1 = 2, we get the ex-
plicit estimates for the displacement fields” bound.Due to compactness, the fields converge
weakly in the space.

The unfolding process goes through different steps. We first show the weak convergences
of the unfolded fields, using the results in Chapter 2-4. We define three operators for the
textile, all in relation with each other: 7;('5 for the unfolding of the yarns’ middle lines, I, for
the whole three-dimensional textile structure, and 7;(: for the unfolding of the contact areas,
thus where the yarns are above each other. Once we find the weak limits via unfolding of
the displacement fields, the form of the strain tensors, and the contact conditions, we define
the limit set of admissible displacements X

In order to go to the limit with problem (1.1), we also need to construct suitable test func-
tions. Namely, they must have sufficient regularity to be dense in the limit set of displace-
ments and ensure strong convergence via unfolding, give the same limit contact conditions,
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limit strain tensors, and satisfy the contact conditions before the limit.

At last, we can finally go to the limit via unfolding for ¢ — 0 and find the limit problem
(7.61), whose existence is again ensured by the Stampacchia Lemma. According to the pro-
cedure in Chapter 5.6 of Cioranescu, Damlamian, and Griso, 2018, we split the microscopic
scale from the macroscopic one, find the correctors of the problem, the homogenizing oper-
ator, and the macroscopic problem.

Chapter 8 is the conclusive chapter, where we give an overview of the results and do some
final considerations.

Concerning the extension of the unfolding method to anisotropically bounded functions and
functions defined on lattice structures, we mention their applicability to a context wider than
textiles, such as structures made of beams (lattice-like in IR?) and in an unstable configura-
tion (anisotropic behavior).

Concerning the main object of our study, small deformation of textiles with contact sliding,
from Griso, Orlik, and Wackerle, 2020a and the newly achieved results, we gather the results
from the homogenized problems and the final approximation of the displacement for each
case. Then, from a comparison, we draw the following qualitative considerations:

A. In all cases, the woven nature of the textile allows the displacements in the third direc-
tion to stay sufficiently close. This fact is of particular importance when the contact is
loose or very loose;

B. The contact determines the linearity of the homogenized problem. In particular, with
almost glued fibers, we have a linear macroscopic problem; with strong contact we
have a Leray-Lions equality; with loose contact, a Leray-Lions inequality; with very
loose contact, we have an in-plane separation of the problem for the two independent
beams of yarns;

C. If the contact is strong or almost glued, the displacement behaves the same in the
whole domain (), despite a partial clamp. Moreover, the fibers do not have in-plane
rotation (tend to stay straight). On the other hand, if the contact is loose or very loose,
the displacement behaves differently in (3;-(), and in-plane rotation appears in the
unsupported domains. Such phenomena can be observed in reality (see Figure 1.2);

D. The macroscopic limit contact conditions give us a qualitative bound for the in-plane
rotations. The maximum slide depends on the L® norm of g.

In general, we can say that this work offers a detailed mathematical explanation of phe-
nomena that involve friction between fibers and its consequences on both microscopic and
macroscopic scales and ends the study of textiles made of yarns in the linear elasticity con-
text with contact sliding. However, it gives access to further investigations concerning a
different ratio between e and r, different periodicity patterns, and other elasticity regimes,
such as the nonlinear one.

For the rest of the work, the Einstein convention over repeated indexes will be used.
Moreover, if not specified, the constants C, Cy and Cq do not depend on the parameter e.
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FIGURE 1.2: On the left, we have a mathematical sketch of the analysis of
yarn’s deformations in each textile part. On the right, we have a real experi-
ment for textile tension with 45 to the yarn directions.






Chapter 2

Preliminaries

In this chapter, we briefly recall some known definitions and results that often occur through-
out the rest of the thesis. We can group them into two main sections. The first one concerns
the classical periodic unfolding method and its main properties. The second one is focused
on the N-linear and N-cubic interpolation of functions defined on a unit cell.

2.1 The periodic unfolding method

The periodic unfolding is our main homogenization tool. It takes bounded sequences on
periodically paved domains and operates a scale splitting so that in the limit, we have a
macroscopic behavior of the structure and a microscopic behavior, or cell behavior. Among
many works that contributed to the development of this method, we will often refer to the
most recent Cioranescu, Damlamian, and Griso, 2018, where most of the results are rigor-
ously gathered.

Let RN be the euclidean space with usual basis (ey,...,ey) and Y = (0,1)N the open unit
parallelotope associated with this basis. For a.e. z € RN, we set the unique decomposition
z = [z]y + {z}y such that

N
[Z]y = Zkiei, ki € ZN and {Z}y =z [Z]y ey.
i=1

In fact, instead of the grid ZN, we could use a more general lattice structure, but since we
will not need it, we omit it for simplicity.

Let {€} be a sequence of strictly positive parameters going to 0. We scale our paving by &
writing
—* X N
x—s[s]y—i-s{s}y fora.e. x € R™. (2.1)

Let now Q) be a bounded domain in RN with a Lipschitz boundary. We consider the covering
Ee={CezZN|eE+Y)Ccl
and set (see also Figure 2.1 left)
O, = int{ U e(C+7)}, Ae = O\ Q.. 2.2)
[qSen

We recall the definitions of classical unfolding operator and mean value operator from Cio-
ranescu, Damlamian, and Griso, 2018, Definition 1.2.

Definition 1. For every measurable function ¢ on Q, the unfolding operator T is defined as follows:

N .
2], +a) osear et
0 forae. (x,y) € Ae X Y.

Te(9) =

It is important to note that such an operator acts on functions defined in () by operating
on their restriction to ();. As shown in Figure 2.1, the operator splits the function variables
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into reference cell number and variable position in the cell. In the limit, we obtain a split of
the macroscopic scale (domain () from the microscopic one (reference cell Y).

Together with the definition of unfolding operator, we have the notion of mean value oper-

e e

Az
et >
=0

e el
0 0 (0,0) (1,0)

. e

FIGURE 2.1: The unfolding via 7; of the variables in Q C IR?. One has a split
of the macroscopic and microscopic scale in the limit.

ator. This operator takes unfolded functions and integrates them over the periodicity cell so
that only the macroscopic part is left. We recall the definition from Cioranescu, Damlamian,
and Griso, 2018, Definition 1.10

Definition 2. For every measurable function ¢ on L1(Q x Y), the mean value operator My is
defined as follows:

My (§)(x |Y| / o(x,y)dy,  forae x € Q.

Let p € [1, +o0] and denote by LF(Q)) the subspace of measurable functions f such that

Iy = ([P < e

From Cioranescu, Damlamian, and Griso, 2018, Propositions 1.8 and 1.11, we recall the prop-
erties of these periodic unfolding and mean value operators:

1
ITe@)llr@xy) < Y7 MI9llpiq)  forevery ¢ € LP(QQ), 23)

~ 1 ~
My (@)llr) < YT 7lgllrxy) forevery ¢ e LP(QxY).
At last, we recall the following definitions concerning Sobolev spaces:

W;er Y) = {¢ € W'P(Y) | ¢ is periodic with respect to y;, i € {1,...,N}},
Wyito(X) = {9 € Wyl (Y) | My(9) =0}, .4
(Y))

perO
LP( WY (Y) = {p e LF(QxY) | Vyp € LF(Qx )N}

2.1.1 Asymptotic behavior of (isotropically) bounded functions

Now, we recall some known results concerning the unfolding method for the following
classes of bounded functions. Namely, we consider the following:

(i) Sequences {¢:}. € W' (Q) such that ¢ellLr() + el Veellrq) < C;
(ii) Sequences {¢:}. € W?(Q) such that ¢ellr ) + IV@ellry < C

(iii) Sequences {¢:}. € W*P(Q) such that ||¢e||1p () + [[Vellr () + ID*¢ell1r () < C.

As we can see, the notion of "isotropic bound" comes from the fact that the partial derivatives
of the functions’ gradients are bounded with the same order concerning all N directions.

Concerning the asymptotic behavior of sequences bounded as in (i), we recall the following
proposition from Cioranescu, Damlamian, and Griso, 2018, Theorem 1.36.
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Proposition 1. Let p € (1, +00) and let {¢. }¢ be a sequence in WP (Q) such that
¢ellr ) + el Vel ra) < C.

Then, there exist a subsequence of {e}, still denoted {e}, and ¢ € LP(Q), ¢ € LP(Q; W;gf;/o(Y))

such that
$pe = ¢ weaklyin LP(QY),

Te(pe) = ¢+ ¢ weakly in  LF (Q; WIP(Y)),
eTe(Ve) = Vy(Te(¢e)) = Vyp weaklyin  LP(Q x Y)N.

The same results hold for p = oo with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Sometimes, in Proposition 1 we find convenient to replace the sum ¢ + ¢, with ¢ € LP(Q)
and ¢ € LP(Q; WP (Y)), by a unique function ¢ € LP(Q, W;;’;(Y)).

per,0
Concerning the asymptotic behavior of sequences bounded as in (ii), we recall the following
results from Cioranescu, Damlamian, and Griso, 2018, Corollary 1.37 and Theorem 1.41

Proposition 2. Let p € (1,+00) and let {¢.}¢ be a sequence in WP (Q) such that
P — ¢ weaklyin WYP(Q). (2.5)

Then, there exist a subsequence of {&}, still denoted {e}, and ¢ € LP(Q; WP

per’O(Y)) such that

Te(pe) — ¢ strongly in  LP(Q; WYP(Y)),

Te(Vge) = Vo + Vyp weaklyin LP(Q x Y)N,

%(72(%) - My((Pg)) —~ Y- Vo+¢ weaklyin LP(Q;WYP(Y)).
where y© =y — My (y).

The same results hold for p = oo with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Sometimes, we replace hypothesis (2.5) with

3C >0 suchthat [[¢cllyipq) < C,

which is an equivalent formulation due to compactness results.

At last, the unfolding for sequences bounded as in (iii) is treated according to the case k = 2
of Cioranescu, Damlamian, and Griso, 2018, Theorem 1.47. Even though such theorem holds
for every sequence such that

@ellwrray = N¢ellir) + 1IVeellrq) + ID?ellp(a) + - - + ID*¢ell o) < C,
with k € IN*, we will not investigate higher orders since we do not need them.

Proposition 3. Let p € (1, +00) and let {¢}e be a sequence in W>P Q) such that
e — ¢ weakly in WP (Q).
Then, there exist a subsequence of {&}, still denoted {e}, and ¢ € LP(Q; W;g’; (Y)) such that

Te(¢pe) — ¢ stronglyin  LP(Q; W2P(Y)),
Te(Ve) — V¢ stronglyin  LP(Q; WYP(Y))N,
T:(D?¢p:) — D¢ + Dﬁgﬁ weakly in  LP(Q x Y)N*N,

The same results hold for p = oo with weak topology replaced by weak-* topology in the correspond-
ing spaces.
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2.2 The approximation of functions to linear and cubic inter-
polates

In this section, we discuss another recurrent concept: the decomposition of functions de-
fined on one-dimensional structures in RN into interpolation on nodes and remainder term.
Such approximation, which can be linear or cubic depending on the regularity of the original
function, is of great importance since it can be extended from the one-dimensional structure
to the whole space and vice versa.

For a one-dimensional structure in RY, we consider the simplest possible: the grid connect-
ing the vertices of a unitary cell. Needless to say, all the proven results can be easily adapted
to any parallelotope of fixed lengths.

Let Y = (0,1)N be the N-dimensional unit cell. We denote the set of vertices of Y by

N
== {ve]RN ‘ v=1) vie;, v;€ {0,1}}
i=1

We denote Qc(i) and G the following sets of segments whose direction is e; by

6= | [oo+e]l, 69 =10,...,0),(0,...,0) +e]

‘01':0

Hence, the one-dimensional grid constructed as the union of vertices of the cell Y is defined
by

N . . N ) .
G.=Jgcy, ¢=Jg¥cv
i=1 i=1

The difference between the two grids is that one is complete (hence the letter "c"), as we can
see in Figure 2.2. In these sections, we will always deal with the complete grid G., even

e

0,0,1) (0,0,1)

S
A0,1,0) / 0.1,0)

(0,0,0) (1,0,0) (0,0,0) (1,0,0)

FIGURE 2.2: The complete grid G, and the not complete one G for a reference
cell Y C R3.

though this will fade later in the chapters when the considered structures consist of many
rescaled reference grids G periodically repeated.

Now, let € be a small parameter. We define €Y, which consists of the cell Y but is rescaled by
a small parameter e. Accordingly, we rescale the grid and obtain

gc,e =eG. C ‘C—?/ Ge=G C €Y.
Denote G the running point of G, and g that of G.,. That gives (i € {1,...,N})
G=o+te inG”, te[01], v;=0,
g=co+ete; inG, tel0,1], v =0.

Let C(G.) and C(G.) be the spaces of continuous functions defined on G, and G, respec-
tively. Leti € {1,..., N}. We denote the spaces of functions defined on the segments in the
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i-th direction and on the whole unit grid by

w7 (G = (¢ € L7(G) | 3o € LP (61},
W (G, :{(])ECQC | 9 € LP(Gc)}-

and ‘ ‘
w2 (G1) = {p e WP (G) | agp € WP (G))),

WP(Ge) = {9 € C(Ge) | a1 € wir (Y, je{1,...,N}}.
Accordingly, we define the spaces on the rescaled grid by
WY (Ged) = {p € LP(GED) | 3g0 € LV (GED)),
W' (Gee) = {9 € C(Gee) |9 € LP (Gee) }-

and
WM(Q& = {p e WP (G))| agp € WP (G},

W2(Gee) = {9 € C(Gee) |99 5 € WP(GR), j € {1, N},

Here again, even if it is possible to extend the definition of the spaces W*" to every k € IN,
we will not do it since these cases will not be considered. Hence, we omit them for the sake
of simplicity.

2.2.1 The N-linear interpolation

Let f be a function belonging to W'?(0,1). Denote f, the affine function

fa(t) = f(0) +£(f(1) = £(0)),  t€[01], (2.6)

and fj the reminder function vanishing at the extremities
folt) = f(8) = fu(t),  te0,1].
Define the spaces of affine functions defined on the unit grid and the rescaled one by

QY (G.) = {¢ € Wh(G,) | ¢ is the linear interpolation between two adjacent vertices of G.. },

QY (Gee) = {p e WY (Gee) | ¢ is the linear interpolation between two adjacent vertices of Ge. }

and the spaces of functions vanishing on the vertices of the unit grid and the rescaled one by

W&’fj(gc) ={yp e W (G:) | =0 oneveryv € V},
W(%g(gc,s) ={¢p € W"P(G..) | =0 onevery ev, v € V}.
Now;, since the grid G, (resp. the rescaled grid G, ) is a union of intervals, we can decompose
any function ¢ € W?(G,) (resp. ¢ € W'P(G.,)) into an affine function, which coincides

with the original one on each vertex of the grid, and a reminder function that is zero on each
vertex:

=+, Pa€Q(G) o€ Wyh(Ge),
(resp. p=a+o,  da € Q Gee), P0 € Wy (Gee))-

Such decomposition is unique, and we have the following estimates.

.7)

Lemmal. Leti € {1,...,N}and ¢ € WVP(G,). Suppose that 1 is decomposed as in (2.7)1. Then,
there exists a constant C > 0, which does not depend on ¢, such that

186l g0, < Cllgall,y g, 9
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and
Hacvang cnacwang

1ol gy + I196¥oll Ly gy < ClIdG¥ N, g

Let ¢ € WYP(G.) and suppose that ¢ is decomposed as in (2.7)p. Then, there exists C > 0, such
that

(2.9)

C
and
901l g1 +wwwwmgzscw%wmﬁb. '
Proof. A simple computation on (2.6) and the Poincaré’s inequality give
o 1 1
W00 = [ W (OPat = [ lea(1) = pu@)Pdt < 3 n(0)]P = [l
v=0

and , ,
I¥aller01) < 19 lzr o0,

I$ollwir 1) < Cllvoliro1) < ClY = ¢allwir o) < 2C1Y (I 01)-

Hence, estimates (2.8) and (2.9) follow by the fact that gcl is the union of a finite number of
segments whose extremities belong to V.

The proof of estimates (2.10)-(2.11) is done in the same fashion, but taking into account that
now the interval rescaled of ¢, thus the Poincaré’s inequality becomes
l[ollwreo,e) < CellgollLr(0.)-
O

The main advantage of this decomposition is that the function ,, which is affine on the
grid segments G, can be extended by N-linear interpolation to the whole cell Y.

Definition 3. For every function p € Q'(G.) (resp. ¢ € Q' (Ge)), its extension Q(p) € WH(Y)
(resp. Q(¢) € WV (eY)) is defined as the N-linear interpolation on each vertex of the cell Y (resp.
of the cell €Y).

This extension is injective: a function belonging to Q!(G,) is uniquely determined by its
values on the set of vertices V and thus can be naturally extended to a function defined on
Y. We also make it surjective by defining the spaces

Ql(y) = {‘Y € Whe(Y) ’ Yy is the Q! interpolate of its values on the vertices of Y},

Ql(eY) = {QJ € WI™(gY) ‘ @,y is the Q! interpolate of its values on the vertices of 8Y}.

Hence, the extension £ is one-to-one from Q'(G,) to Q' (Y) (resp. from Q!(G..) to Q! (eY)).
Its inverse is the mere restriction of functions from the cell to the grid g (resp. g ).

Below, we show the main properties of the extension operator L.

Lemma 2. Leti € {1,...,N}and p € [1,+00]. For every ¥ € Q'(G.), there exist Cy, C; > 0
such that (i € {1,...,N})

CollQW) e vy < 1¥llr(g.) < QW) I v),

2.12
Coll @) sv) < 13631, g, < Col 3P v i
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For every ¢ € Q'(Ge,e), there exist Cg, C; > 0 such that (i € {1,...,N})

N—1
CollQ(P)llr(er) < Ce 7 [[@llr(g..) < CrlIQP) I Lrev),

N-1 (2.13)
ColloiQ(P) |l Lr(ey) < Ce 7 Hag(PHU,(gc(ig)) < Ci10i2(¢) Iy ev) -

Proof. We will only consider the case p € [1,400) since the case p = +o0 is trivial.

First, remind that for every function ¢ defined as the N-linear interpolation of its values on
the vertices of the cell Y, there exist Cyp, C; > O such that (i € {1,...,N})

1/p
C » S P S C 14 7
oll#llzr o) (UQW’(U” ) 9l (2.14)

Colloiwllyrv) < 96 W[ r gy < Culldipllie(y).

where the constants do not depend on p. This proves (2.12).

We now prove (2.13);. For every ¢ € Q'(G), set ® = Q(¢). From (2.14); and an affine
change of variables, we easily get

[ Je@lrdx =N [ @)y = [ 0(G)raG =N [ |o(g)|dg

and thus (2.13); holds since D6, = ¢.

We prove now (2.13),. Letibein {1, ..., N}. From (2.14), and an affine change of variables,
we have

J Piw—eN-vr [ |2 P, — N-p p
/SY ’aTCz‘qD(x)‘ dx=c¢ /y ‘ayiq)(gy)‘ ay =¢ /g(i) ’acq’(SG)’ 4G
=Vt /gg(f) |ag®(g)|pdg-

And thus (2.13); holds since <I>|g(,-) = qb‘g(,-). O

To conclude, we summarize what we did in this section in Figure 2.3.

FIGURE 2.3: The decomposition of a function ¢ € wlp (Y),withY € R?, into
linear interpolation on the vertices of the cell and remainder. The interpola-
tion on the vertices can be extended one-to-one to the whole domain.
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2.2.2 The N-cubic interpolation

We would like now to apply the same decomposition but for functions defined on W27 (G,)
(and on W2P(G,.)). As we will see, the adaptation will not be straightforward.

Let f be a function belonging to W% (0,1). Denote f. the cubic polynomial

fe(t) = FOO)2t+1)(t—1)> + F()EE(B —28) + f (Ot —1)> + f/()E*(t—1),  t€]0,1].
(2.15)
By construction, the reminder term defined by

fo=f() = fe(),  te[01].
vanishes at the extremities, as well as its first order derivatives:
fo(0) = fo(1) = f5(0) = fo(1) =
Define the spaces of cubic polynomials defined on the unit grid and the rescaled one by
Q3(Ge) = {y € W**(G.) | ¢ is cubic interpolation between two adjacent vertices of G.. },
Q3(Gee) = {9 € W2 (Ge ) | ¢ is cubic interpolation between two adjacent vertices of G . }

and the spaces of functions vanishing on the vertices, and with first derivative vanishing of
the vertices, of the unit grid and the rescaled one by

Wzs(gc) ={ype W2P(G.) | =095y =0 oneveryv e V},
Wg:]r;g(gc,e) ={¢pe W2P(Gee) | =03sp =0 oneveryev, v eV}

Similarly to the decomposition in the previous section, any ¢ € W2p (Ge) (resp. ¢ € whp (Gee))
can be decomposed as

p=vetvo, P € Q%) o€ Woh(Ge) 216
(l‘eSp~ ¢ = ¢c + ¢o, ¢c € Q3(gc,£)/ ¢o € ngﬁ(gc,e))'
Such decomposition is unique, and we have the following estimates.

Lemma 3. Leti € {1,...,N} and v € W*P(G.). Suppose that  is decomposed as in (2.16);.
Then, there exists C > 0 such that

e Y

I3l g0 <w%wmw o
\mmpm_dwmwi,

190l g0, + 1Petoll, g, + 1940l o) < CIAEP g0

(2.17)

Let ¢ € WP (G ). Suppose that ¢ is decomposed as in (2.16). Then, there exists C > 0 such that

||ag¢CHLp(gL_fe) — CHag¢le,p(gc(’ls))/
||¢)C||Lp(gc(’12) S CH‘inz,p gci )’

19001660, + e13gl g, + 101, g0, < CEIRRN 50

(2.18)

Proof. Step 1. In this step we prove the result for f € W*7(0,1).
Let f; be the cubic polynomial defined as in (2.15). Rewriting it differently and computing
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the first and second order derivative, we get that

(F/(0) + F/(1)) )23~ 26) + 2 (£ (1) ~ F(0)) + FO)f + £(0),
(£/(0) +£/(1)) )6t(1 = 1) + (£(1) = £(0))t + £'(0),
(f/(0) + £/(1)) )6(1 = 2t) + (£(1) = £(0)).

fel)) = (£(1) = £(0) =
f) = (F) = £(0) -
!t = (f() - £(0) -

NI—= NI~ DN -

(2.19)
As a consequence, we have that

1 e o) < CIF 0,0y
1flr o0y < CUF Neroay + 1 eeny)
I fellray < CUF Nero) + 1F ey + 1 e o))-

Moreover, from the definition of fj, Poincaré’s inequality applied twice, and the above esti-
mates, we have that

I follwzeo,1) < ClA ey < CIF" = fllerony < 2CN1F" v o,1)-
(0,1)

Step 2. We prove the statements of the lemma.

By construction, gc(” is the union of a finite number of segments whose extremities belong
to V. Hence, estimates (2.17) follow from the estimates in Step 1 and an affine change of
variables. The proof for estimates (2.18) is done in the same fashion, but taking into account
that now the interval rescaled of ¢, thus the Poincaré’s inequality applied twice becomes

||<P0||w2,n(o,e) < C‘S”(PE)”WLP(O,S) < CSZ”‘P(,)/”LP(O,s)-
O

Now, we would like to extend the function ¢, defined on the grid segments G, to the
whole cell Y by N-cubic interpolation.

Definition 4. For every function p € Q3(G.) (resp. ¢ € Q3(Gee)), its extension Q () € W (Y)
(resp. Q(p) € W2 (eY)) is defined as the N-cubic interpolation on each vertex of the cell Y (resp.
of the cell €Y).

It is clear that such extension is not surjective in the spaces:

Q3 (Y) = {‘I’ € Whe(y) ‘ Y|y is the N-cubic interpolate of its values and its partial
derivatives values on the vertices of Y},
Q3(eY) = {CD € Wi (eY) ’ &,y is the N-cubic interpolate of its values and its partial

derivatives values on the vertices of SY}.
Indeed, let N = 2. In order to define the bi-cubic polynomial ¥, in dimension 2, we would
need 16 coefficients. But from a function 1. defined on the grid G, we only get 12:

e 4 coefficients are given by the function values on the vertices of the cell (1.(0,0),

¥e(1,0), ¥c(0,1) and e (1,1));

e 4 coefficients are given by the values of the partial derivative of the function in direc-
tion e; on the vertices of the cell (914(0,0), 919(1,0), 919:(0,1) and 01¢.(1,1));

e 4 coefficients are given by the values of the partial derivative of the function in direc-
tion e; on the vertices of the cell (d24:(0,0), d2¢:(1,0), d2c(0,1) and d29(1,1)).
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The last four coefficients should be given by the mixed partial derivatives of the function
on the vertices, which do not exist, since the function . is defined on the grid. As a con-
sequence, this compromises not only the uniqueness of the N-cubic extension starting from
the cubic polynomials defined on the grid G, but also a bound for this function on R".

To override this issue, we need to artificially construct these lacking "mixed derivatives"” with
the help, once again, of the linear interpolation.

Remind that for any ¢ € W*#(G) (resp. ¢ € W>P(},)), its der1vat1ves Gy (resp. dg¢) in

direction e; are functions belonging to W* (G (1)) (resp. Wl? (g£ ), foreveryi e {1,...,N}.
As a consequence, they are defined on every node of the structure G (resp. Ge). Set

N . . N .
gl= | 6¥  (resp. gL= |J g¥)).
j=1,j# j=1j#
For every i € {1,...,N }, we denote the following extensions (see also Figure 2.4)
9P = {f e whp (gc(")) x Whe( ‘ f is extended by N — 1-linear interpolation on gc 3
99 ={fe€ whr (gc(’g) x Whe( | f is extended by N — 1-linear interpolation on Qc g}

This allows us to uniquely determine the N-cubic extension since we artificially created the

e

FIGURE 2.4: The extensions 91 and 9,1 for the derivatives 91y and 9,4 of a
function ¢ € W?(G,) in dimension two.

mixed derivatives. Moreover, we can bound the interpolated function by the bound on the
original function, with the additional assumption of boundedness for these derivatives.

Lemma 4. For every ¢ € Q3(G,), one has

N E—
”DZE-2 ”LP Z HaG(aiw)HLP(gC)/
i=1
IV < C(IlPc¥ ) + 2 196 @) |(q,) ) (2.20)

N E—
190y < (i@ + 16¥lusca + 1196 @) g, )
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For every ¢ € Q3(Ge,e), one has

N
4

N _
ID2Q($) |1 ev) 2 ||ag(ai‘f’)||m(gc,g)’

IV en < Ce 7 (19l +2Ha @) .. ) (2.21)

L
19@) lrer) < Ce 7 (19lur(g,n) + 1980 lr,, +2Hag 59| )

Proof. We will only prove the case N = 2 since the extension to a higher dimension is done
by an analogous argumentation.

Denote Qp, Q1, dQp and dQ; the following polynomial functions (t € [0,1])
Qo(t) = (2t +1)(t—1)?%, dQo(t) = t(t —1)?,
Qi(t) = (3 -21), Qi (t) = £(t - 1).

Let ¢ be a function belonging to W>?(G,). Denote ¥ € W>®(Y) its extension to the whole
domain by
() =9(0,0)Poo(t) +(0,1) Por (£) + 9(1,0) Pro(t) + (1, 1) Pra (¢)
+ 014(0,0)d1 Poo (£) + 01 (1,0)d1 Pro(t) + 919p(0, 1)dy Pos (t) + 019(1,1)d1 Pra (t)
+ aleJ(O, O)dzpoo(t) + 821p(0, 1)d2P01 (t) + 821p(1, O)dzplo(t) + a2lp(1, 1)d2P11(t)

where for all t = (t1,t,) € [0,1]%:

Poo(t) = Qo(t1)Qo(t2),  d1Poo = dQo(t1)Qo(t2),  d2Poo = Qo(t1)dQo(t2),
Pyo(t) = Qi1(t1)Qo(t2),  d1Po = dQl(tl)QO(tZ)r d2P1o = Q1(t1)dQo(t2),
Por(t) = Qo(t1)Q1(t2),  diPor = dQo(t1)Q1(t2),  d2Por = Qo(t1)dQ1(t2),
Pyi(t) = Qi(t1)Q1(t2),  diPi1 =dQq(t1)Qi1(t2),  daP1y = Qi1(t1)dQ1(t2).

First, observe that the polynomial ¥ can be rewritten as

¥ (t) =((0,0)Qo(t1) + ¥(1,0)Q1(t1) + 919(0,0)dQo(t1) 4 011(1,0)dQ1 (1)) Qo(t2)
+ ((0,1)Qo(t1) + ¥(1,1)Q1(t1) + 019(0,1)dQo(t1) + 019(1,1)dQ1 (1)

+ (929(0,0)dQo (t2) + 021p(0,1)dQ1 (t2)) Qo (t1)

+ (929(1,0)dQq (t2) + 029p(1,1)dQ1 (t2)) Q1 (1)

Straightforward calculations lead to
ID*¥ (v <C(lea Wl gy +10290(1,0) = 029(0, 0)] + |029(1,1) — 929(0, 1)
+ [019(0,1) = 91(0,0)| + 219(1,1) — 91p(1,0)])

<c(z||a 9l g0 +2||ac 39l r(an) )

Hence, estimate (2.20) is proven since (i € {1,2})
195811 gy < CIGHI g, < ClPG@i)llir(g,)-
On the other hand, straightforward calculations lead to

IV¥lr(v) < C(19s9llr g + ID*Flr(v))-
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and to
¥l e vy < CUDNLrg) +IIVElLery).
which ends the proof of (2.20) for N = 2.

Estimates (2.21) are proven in the same way as (2.14), together with an affine change of
variables. u
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Chapter 3

New tool: periodic unfolding for
anisotropically bounded functions

The entirety of this chapter is dedicated to the extension of the classic periodic unfolding
described in Section 2.1 to a new class of functions: the functions "anisotropically bounded".
The notion of anisotropy comes from the fact that there is a contrast in the gradient’s esti-
mates, which creates privileged directions. We will show how to apply the periodic unfold-
ing to this type of functions and find their asymptotic behavior.

A first application of the obtained results will be given at the end of this section, where we
proceed to the homogenization of a diffusion problem in an anisotropic context. Some more
applications will occur in the next chapters, in the context of periodic unfolding for lattice
structures, and in the homogenization of textiles with loose contact sliding.

3.1 Space partition and anisotropy of the functions

In order to show the contrast in the gradient estimates, we find convenient to set a decom-
position of the Euclidean space in two sub-spaces.

Let (N7, Np) be in N x IN* and such that N = Nj + N,. Denote

N
RM = {x’ e RN . xX'=Y xe;, xi€ IR},
i=1

N
RN = {x” e RN ‘ =Y xe, x€ ]R},
i=Nj+1
and
/ / N / N
Y = {y €R ’y =Y vie, yic (O,l)},
i=1
" __ i N "o A .o .
Y'"=4Jy"€eR y = Z Yiei, ]/,E(O,l)
i=Ni+1
and
ZM =Ze 1@ ... B Zey,  ZN =Zen 1 6...D Zey.
One has

RN=RMaRM, vyv=Yaov, 2ZN=2ZMaozM
For every x € RN and y € Y, we write
x=x+x" e RMoRM, y=y+y eY oY’
From now on, however, we find easier to refer to such decomposition with the vectorial notation

x=,2") e RM xRN,  y=(/,y)eY xY"
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Similarly to (2.1), we apply the paving to a.e. ' € RM and x” € RM setting

/ / / /

x’zs[x—} —l—s{x—} , with [x—] ezM, {x—} ey,
e ly e Sy e ly e Sy

/! /! /! /!
x X ) x x
X" = e[—} + e{—} . with [—] VA {—} cY”.
e lyn e Jyn e lyn e Jyn

We denote the following spaces of functions:

L'(Q, V) = {p € LP(Q) | Vyp € LP(Q)M},

LP(Q, V) = {¢p € LP(Q) | Vg € LP(Q)M2},
LP(Q, Vi, WP (Y")) = {p € LP(Q X Y") | Vyd € LP(Q X Y")M, Vg € LP(Q x Y')N2},
LP(Q, Vi, WHP(Y') = {p e LP( QA xY') | Vg € LF(Q x Y)N2, V¢ € LP(Q x V)N,
LI Qx YW (Y) = {p e LF(QxY) | Vyp € LF(Qx Y)NM},
LI Qx Y;WP(Y") = {p e LF(Q X Y) | Vo € LP(Q x Y)N2}.

We endow these spaces with the respective norms:

I ler,w,) = - ler@) + IV Ol pqym
I v vy = 1 ler) + IV Ol e
H ’ HU’(Q,V WLP(Y)) = || ’ HLP(QxY”) + Hvx’(')HLP(QXw)M + Hvy”(')HLP(Qxy//)Nz/
; ’ 3.1)
- er v wir ey = 1 e @xyy + 1V Ol @uynyme + 1Vy Ol sy
- e @xymmiryryy = I sy + 1Vy Ol
- e @xyrwir ey = I e @xr) + 1V Ol sy

Since the definition of "anisotropic behavior" only denotes a contrast in the estimates with
respect to the observed direction, we state here rigorously the four classes of sequences to
which we are going to apply the unfolding. Namely, we have:

(i) Sequences {¢¢}e € LF(Q), V) such that ||¢e|[rr () + €| Vel 1r(a) < C;

(i) Sequences {¢e}e € LF(Q, V) such that [|¢¢ || 1r (o) + | Var@ellr () < C
(iii)" Sequences {¢¢}e € W' (Q) such that [|¢e]|» () + | Vel r(r) + el Varpellr ) < G
(iv)" Sequences {¢;}e € LF(Q, V), with {V ¢ }e € LP(Q, V») and such that

@ellr) + Ve ellrqy + el Var (Vage)lrq) < C.

As we can expect, the different amount of information we have on the sequences estimates
arises a different asymptotic behavior at the limit.

3.2 The two-step unfolding

The best ready-to-use tool to tackle this kind of problems is the unfolding with parameters,
which has been already developed in Cioranescu, Damlamian, and Griso, 2018, Chap. 7. It
consists of unfolding only some directions of the domain, treating the variable components
in the other directions as "parameters".

Here, we proceed in a similar way and define the so called "two-step unfolding". Namely,
we define two partial unfolding operators with parameters. These operators are built in
order to apply the unfolding only to their respective half of the domain and such that the
composition of both gives the unfolding for the whole domain.
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Definition 5. For every measurable function ¢ on Q, the unfolding operator T/ is defined as follows:

/1

x o~
T (@) (', 2" y") = ¢(x/’£[?]y~ +£V”> forae (x',x",y") € Qe x Y,
& 7 7
0 forae. (x',x",y") € Ae x Y.

For every measurable function  on Q) x Y”, the unfolding operator T is defined as follows:

/

x o~
Ty = LT ], e ) forae (A" € Oex Y,
& 4 7 7
0 forae (x,x",y,y") € Ae x Y.

Note that, in the partial unfolding operator 7.”(¢), the variable x” plays the role of a
parameter, while in 7/ (¢) the role of parameters is played by the variables (x”,y").

Accordingly, we give the definition of partial mean value operators.

Definition 6. For every ¢ € L'(Q x Y), the partial mean value operators are defined as follows:

~ 1 PN
My @) y") = g [, 8y, forae. (x,y") € QA x Y,

—~ o1 ~
Myn () (x,y) = v /Y” o(x,y,y")dy", forae (x,y') e QxY'.

These operators satisfy the following properties.
Lemma 5. One has
Te=T oT! ae in QxY, (3.2)
My = My o My ae in Q. ’
Moreover, for every ¢ € LY(Q, V), one has
VT (¢) =T (Vyp)  aein Q¢ x Y. (3.3)

Proof. Let ¢ be measurable on (). We have that

/ 1
X

To @ =T (o( 2] ver)) =o(e[X] + e[ +er)
= gb(e{ﬂy —i—sy) =Te(¢)(x,y) forae. (x,y) € Qe x Y.

For (x,y) € Ae X Y the result is obvious.
Let ¢ bein L1(Q x Y). We have

~ 1 ~
MY/OMW(GD)(X):MYI ] Sy P9y

|Y’ |Y”| /Y’ /Y” y y dy,/dy _ﬁ/(P( y)dy
= My(¢)(x) forae xcQ.

Let now ¢ be in L1(Q, V,/). We have

/1

W) < ([, ) - b))
=T/ (Vud)(x,y") forae (x,y") € Qe x Y.
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3.3 Asymptotic behavior of anisotropically bounded sequences

We are now ready to proceed to the periodic unfolding for the classes of anisotropically
bounded sequences defined in (i)’-(iv)” and find their asymptotic behavior.

Lemma 6. Let p € (1,400) and let {¢e}¢ be a sequence in LF (Q), V) satisfying
¢ellLr () + el Vel r ) < C.

Then, there exist a subsequence of {e}, still denoted {e}, and a function § € LP(Q x Y"; W (Y"))

per
such that
¢e = ¢  weaklyin LP(Q)),

7;(¢€) - (/ﬁ we{lkly in LP(Q X Y//,. Wl,p(Y’)),

where p = My ().
The same results hold for p = +oco with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. The proof is similar to Cioranescu, Damlamian, and Griso, 2018, Theorem 1.36. O
An analogous result holds for sequences in (ii)’, i.e. uniformly bounded in LP(Q), V).

Lemma 7. Let p € (1,400) and let {¢e}e be a sequence in LF (Q, V) satisfying
[@ellLrav,) < C.

Then, there exist a subsequence of {e}, still denoted {e}, and functions ¢ € LP(Q x Y", V),

¢ € LP(QxY" W;jr’,o(Y’)) such that

e — ¢  weaklyin LP(Q, V),
7;((PS) - Eﬁ ZUEEZkly n LP(Q % Y”,. Wl’p(Y’))’
Te(Vytpe) = Vo + Vy/(/ﬁ weakly in L (Q x Y)M,

o | =

(7;(4%) —Myro 72(4’3)) — Vx/fﬁ-y'c + qAb weakly in  LP(Q) x Y)Nl

where ¢ = Myn (¢) and y'® =y' — My (y').
The same results hold for p = +oco with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. The proof is similar to Cioranescu, Damlamian, and Griso, 2018, Corollary 1.37 and
Cioranescu, Damlamian, and Griso, 2018, Theorem 1.41. O

Now, we proceed to the unfolding of the sequences in (iii)’ and (iv)’. In these cases, the
two-steps unfolding will be needed.

Lemma 8. Let p € (1,+00) and let {¢ }e be a sequence in WYP(Q)) satisfying
1@ellLra,v ) + el VargellLrq) < C. (3.4)
Then, there exist a subsequence of {e}, still denoted {e}, and functions

§ € LP(Q,V; Wl (Y") and € LP(Q x Y, WP (V)
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such that
pe —~ ¢  weaklyin LP(Q, V),
Te(pe) = ¢ weaklyin LP(Q; WYP(Y)),
Te(Voge) = Vo + Vy/glA) weakly in  LP(Q x Y)M, (3.5)
eTe(Vyrpe) = Vi weaklyin  LP(Q x Y)N2,

%(72(4&) — My o Te(¢pe)) — Vod -y +¢ weaklyin LF(QxY)M

where p = Myn(§) and y'° =y’ — My (y').

The same results hold for p = 4-oo with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. From hypothesis (3.4), up to a subsequence of {e}, still denoted {e}, one has the exis-
tence of ¢ € LP(Q), V /) such that (3.5); holds.

Set {®:}e = {7 (¢¢)}e. This sequence belongs to L (Q, V,; WL (Y")) and from estimate
(3.4) and equality (3.3), it satisfies

||q>£||L7’((A15,Vx/;W1/F’(Y”)) S C. (36)

Up to a subsequence of {e}, still denoted {e}, there exists functions ¢ € LP(Q); er,é’;(Y” )
and ® € LP(Q x Y")M (the periodicity of ¢ is proved as in Cioranescu, Damlamian, and

Griso, 2018, Theorem 1.36) such that
q)slﬁs <Y — & weakly ln LP (Q, Wl,}ﬂ (Y//) )/

Vu®elg yn — ®  weaklyin LF(Qx Y")M,

where 14 denotes the characteristic function of the domain ﬁg x Y.

Qe xY"
Let g be in C&°(Q x Y”)N1. For ¢ sufficiently small such that supp(g) C Q. x Y”, we have

/OXY” Vx'q)glﬁgxy// -gdxdy“ — /ﬁ . VD, -gdxdy“

= — O, Vygdxdy' = —/

/!
By oy @slosxwvx/g dxdy”.

Then, passing to the limit yields

& dd”:—/ - Voededy, VYeelC®(Qx YN,
/wa g dxdy oy Vwgdxdy”, Vg € CP(QxYT)

This means that ® = V¢ ae. in Q x Y, thus Vyd € LP(Q x Y")M and therefore ¢
belongs to the space L¥ (Q, V/; W:,Z;(Y”)).
Now, we transform the sequence {®; }, using the unfolding operator 7/, Y” being a set of

parameters.
From the above convergence and estimate (3.6), up to a subsequence of {e}, still denoted

{e}, Proposition 2 gives ¢ € LF(Q x Y”; W;Z;/O( ")) such that (using the rule (3.2);)

Te(¢pe) = T/ (@) = ¢ weaklyin LP(Q; WP (Y x Y")),

Te(Vuge) = T/ (Vo ®:) = Vyp+Vyp  weaklyin LP(Qx Y x Y")M,

1 1 ~ ~

(Te(e) = My (Te(¢e))) = (T (Pe) = Myr (T (D2))) = Vo -y +¢
weakly in LP(Q x Y x Y").
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This proves convergences (3.5)235. Moreover, from convergence (3.5); and the unfolding
properties of T, we get that

eTe(Vurge) = VyrTe(pe) = Vyrp  weaklyin  LP(Q x Y")Nz,
which proves convergence (3.5). O

We now consider the last class of functions.
Lemma9. Let p € (1,400) and let {¢e}e be a sequence in LF (Q, V) satisfying
19ellir0,5.,) + el T (T8 1y < C- 67)
Then, there exist a subsequence of {e}, still denoted {e}, functions
¢ € LP(Q, VWl (Y") and & € LP(Q; Wy (Y))
such that My, (®) = 0a.e. in Q x Y”,
Ve € LPOW L (Y')N, V& e LP(Qx YWl (Y")M
and we have
¢e —~ ¢  weaklyin LP(Q, V),
Te(pe) = ¢ weaklyin LF(Q; WHP(Y)), (3.8)
Te(Vute) = Vup+Vy®  weaklyin  LP(Qx Y; WP (Y")M
where ¢ = My ().

The same results hold for p = +oco with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. By estimate (3.7); and Lemma 7, there exists a subsequence of {e}, still denoted {e},

and functions ¢ € LP(QA x Y, V), ¢ € LP(QA x Y, W;;}Z,O(Y/)) such that

¢e — ¢  weaklyin LF(Q,Vy),
Te(¢e) = ¢  weaklyin LF(Q x Y, WP (Y')), (3.9)
Te(Vuge) = Vup+Vyp  weaklyin LF(Qx Y)N.

Set {1 }e = { Ve }e. By estimate (3.7), this sequence satisfies
[WellLr o) + SHVx”‘/’SHLP(Q) =C

where the constant does not depend on e.
Hence, applying Lemma 6 to the above sequence (but swapping Y’ and Y”), there exists a

function ¢ € LP(Q x Y/; er,é’;(Y”))Nl such that
Te(Vude) = Te(pe) = ¢ weaklyin LP(Q x Y; WP (Y"))M.

This, together with convergence (3.9); implies that the quantity V¢ + Vyz(f belongs to
LP(QxY; W;;;:(Y” ))N1. Since ¢ does not depend on ' and ¢ is periodic with respect to
y', we have that N N R R

Vo = My (Vu@) + My (Vy¢) = My (9),
thus V¢ € LP(Q; Wy (Y”))M and therefore ¢ € LP(Q, V.0, Wy (Y")).
Moreover, the quantity V¢ belongs to LP(Q x Y’; W;g’,’(Y/ ))M and thus, by the technical
Lemma 30 in Appendix, there exists ¢ € LP(Q); W;g’,’(Y)) with V¢ = Vy/$ such that (3.8)3
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holds. The proof follows by replacing ¢ by the function ® = ¢ — My (¢), which belongs
to the space LP((); W;@';(Y)) and satisfies My, (®) = O a.e. in Q x Y”. O

3.4 Application: homogenization of a diffusion problem in
an anisotropic environment

In this last section we want to give a direct application of the periodic unfolding for anisotrop-
ically bounded sequences to a diffusion problem.

Let O be an open subset of RN and let «, € R with 0 < & < B. Denote M(«, B, O) the set
of N x N matrices A = (a;j)1<;j<n With coefficients in L*(O) such that for every A € RN
and for a.e. x € O, the following inequalities hold:

@ (A(x)A,A) > alAP;
(i) [A(x)A]? < B(A(x)A,A).

Let Abebein M(a,B,Y) and let { A, }¢ be the sequence of matrices belonging to M(«, 8, 2)
defined by

A = A({%}Y) ae xcQ. (3.10)

For the rest of the section, let p = 2. From (2.4), we recall the definition of the Hilbert spaces
H;er (Y) = {¢ € H'(Y) | ¢ is periodic with respect toy;, i € {1,...,N}},
HperO (Y) = {(PE per Y) | MY(¢):O}'

Let f be a function in L?(Q). Consider the following Dirichlet problem in variational formu-

lation:
Find 1 € H}(Q) such that:

Vo] [ Vg (3.11)
| 4 vaﬁue] [ev ‘ 4)} = [ fodx, vgeHy(),
) Ve Ve
where - denotes the dot product by the column vectors A [svxuuj and va,, de|"

By the Poincaré inequality and the fact that u, € H}(Q), we have that
el 12(00) < ClIVirttellr2(q)

Thus, problem (3.11) admits a unique solution by the Lax—Milgram theorem and the fol-
lowing inequality holds:

a(|IVattel|T2 ) + IV ariel Tz i) < If ooy lluellizy < ClF 2ol Vetell 2

Hence
el 2(q) + 1 Vartiell2(q) + €l Varttell 120y < Cllfll12(q)- (3.12)
Set
Hj o (O x Y") = {¢p € H(QXY") [ ¢(x,y") =0 forae. (x,y") €2 xY"
and ¢(x,-) is Y” periodic for a.e. x € O }.

Denote L3(Q), V) (resp. L3(Q), V,; per(Y”))) the closure of H}(Q) (resp. of H} per (2 X

Y")) in L2(Q) (resp. L?(Q x Y"')) for the norm of L2(Q), V) (resp. L?(Q, Vy; per(Y”)))
see Section 3.1).

Below, we give the periodic homogenization via unfolding.
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Theorem 1. Let u, be the solution of problem (3.11).

There exist i € L3(Q), Vx/;H;er(Y”)) and it € L2(Q x Y"; H;er’O(Y’)) such that

ue — My (i) weaklyin L3(Q,Vy),
Te(ue) = weaklyin  L2(Q; HY(Y)),

3.13
Te(Vyste) = Vil + Vil strongly in L>(Qx Y)M, (3.13)
eTe(Vynuie) = Vil strongly in L2(Q x Y)N2,
The couple (i1, ) is the unique solution of problem
Vuti(x,y") + Vii(x,y) Ved(x,y") +V,o(x,y)
A . . X rJ Y ’ dxdy,
Oy ) Vyuu(x,y”) Vy“(P(xr]///) xay
(3.14)

=Y [ FE§y"dxdy,

V$ € L§(Q, Vs Hppy o(Y")) and Vo € L2(Q x Y"; Hppp o (Y')).

Proof. Step 1. We show (3.14) and the weak formulation of convergences (3.13).
First, by the fact that A € M(a, B,Y) by definition (3.10) and the unfolding operator proper-
ties, we immediately get that Tz (A¢)(x,y) = A(y) for a.e.(x,y) € Qe x Y.
Now, note that the solution u, of (3.11) satisfies (3.12). Hence, up to a subsequence of {¢},
still denoted {e}, Lemma 8 gives il € L§(Q, V; Hp,(Y")) and it € L*(Q x Y, H,,,, (Y'))
such that
ue — My(if)  weaklyin L3(Q,V,),
Te(ue) = weaklyin L2(Q; H'(Y)),
Te(Vyue) = Vyii+ Vi weaklyin L*(Qx Y)M,
eTe(Vyrtte) = Vyuil  weaklyin  L2(Q x Y")N2,

Now, we choose the test functions

(3.15)

Y

o ®in HY(Q), §in HL, (Y"),
e ®inCl(QAxY"),

o pinHy, o(Y").

L~ . x// x// R xl
Set e (x) = <I>(x)4>(?) +ed (X, ?>¢(?) fora.e. x € Q.
Applying the unfolding operator to the sequence {¢; }., we get that

Te(¢pe) — dNDEﬁ strongly in LZ(Q; Hl(Y)),
Te(Vype) = (Vu®)p + PV, ¢  strongly in L2(Qx Y)M,
eTe(Vynge) — Vy/@ strongly in LZ(Q X Y)NZ.

Taking ¢, as test function in (3.11), then transforming by unfolding and passing to the limit,
it gives (3.14) with (®¢, @¢). Then, we extend such results for all ¢ € L3(Q, V,; Hper (Y"))
and all ¢ € L2(Q x Y"; H; or0(Y')) by density argumentation. Since the solution is unique,
the sequences converge to their limit.

Step 2. We prove that convergences (3.13)3 4 are strong.

First, setting ¢ = u, in (3.11), then transforming by unfolding and using the weak lower
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semicontinuity yield

/ A [waH-Vylu} . VXIM—FV i dxdy
axy

vyuﬁ //T/l

o Te(Vyue) Te (Vi)
<liminf | Te(4e) Lfr(v ,/ue)] ' [sﬁ(vx//ug) dxdy

T Vx/ug . Vx/ug
= 112215& A A [va//ug_ [evxou dxdy

< limsup A Ae [erug ] : [Vx/ug } dxdy
J0.

30 va//ug vauug

. Vx/uﬁ vx’ue —
< hr?jélp QAS vauug] . va”uj dxdy = hl?_?élp fuedx,

- ll—% Qxyﬁ(fﬁ;(ue) ax = / fudxdy
_ A |:vx/1/7+ Vy/T/Al:| ) [Vx/u + V U

~ dxdy,
Qxy vy”u Vyuu :| o

from which it follows that all the above inequalities are in fact equalities. Hence

erus erug o
/€ AS [evxou ' |:£vx//ug:| dXdy =0

and T(Vou) ] [TV i)
. e x! Ug . e ! Ug
5 Joer Lre(vx,,ug)} [sﬁ(vx,,ug)} dxdy
T Vx/ug . Vx/u5
= J A €Vx~uJ LV //ug] dxdy
_ A |:Vx/17+ Yy/l/l\] |:vx/1/l +V /u:| dx dy
QxY Vy//u Vy//u

Since the map ¥ € L2(Q x V)N — \/ / AY-¥ dxdy is a norm equivalent to the usual
Qxy

norm of L2(Q x Y)N, we get

li = ~
EE)I(} axY dXdy V. il

E’E(Vx//ug) y

aQxYy

[ﬁ(vx%)} ?

[VX/LNI + Vy/ ﬁ]

This, together with the fact that (3.15)3 4 already converge weakly, ensures the strong con-
vergences (3.13)3 4. The proof is therefore complete. O

Now, consider the following partition of A into blocks
_ (A A
4= (As A4> '
where

e Ajpisa Nj x Ny matrix with entries in L*(Y),

(Y)
e Ajisa Nj x Np matrix with entries in L*(Y),
e Ajzisa N, x Ny matrix with entries in L*(Y),

(Y)

e Ayisa Np x N matrix with entries in L*(Y).
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We define the correctors Xy, k € {1,..., N}, as the unique solutions in L*(Y”, H}M’O(Y’ )) for
the cell problems

/Y’ A1(y) [vy’k\k(y/ry“)} : [Vy/@(y’)} dy/ = —'/;ﬂ A(y) ey - [Vylzg(y/)} d}/,,

Vi € H;er,O(Y’).

(3.16)

By the Lax—Milgram theorem applied in Hilbert space L?(Y”, H;W,O(Y’ )), we obtain the

existence and uniqueness of the solution of (3.16) for every k € {1,...,N}.
Since A belongs to M(a, B,Y) we get for every k € {1,...,N}:

B
e

||vy’)/€k('/y”) ||Hl (Y’)Nl S for a.e. y” = Y".

As a consequence, X belongs to L®(Y”, H! (Y"))! for every k € {1,...,N}, and we have

per,0
1 Xkl oo (v, (vry) < C-
We can finally give the form of the homogenized problem.

Proposition 4. The function ily € L3(Q, V,; H;M(Y” )) is the unique solution of the following
homogenized problem:

Vuilg(x,y") | [Vud(x,y")
Ahom " B . X/ E\A dxd "
/wa ") [Vy//uo(x,y”) [Vyuqb(x,y”)} Y

(3.17)
= [ 0@y dxdy, e L0, Vi Hly (Y)).
The homogenizing operator A" ¢ L°(Y"\N*N s the matrix defined by
Ay = o | (A (41) Vox ) 0y ay (3.18)
Y| Jy Az) Y ’ ’ '
whereX = (X1 X2 -+ AN, XNj+1 --- XN)and thus VX is the Ny x N matrix
Vy/;? = (Vle\l Vyljc\z - Vy/)le Vy’X\Nl-‘rl e Vy/)EN) .

Note, that in such a formulation the problem mixes the macroscopic x” and microscopic
variables that correspond to x”. Nevertheless, the homogenization is considered to be con-
cluded since all the involved functions depend on such variables.

Before proceeding to the proof, we find convenient to clarify the boundary conditions for
the solutions of problem (3.17) in a simple domain in two dimensions.

Remark 1. Assume that Q = (0,1)? C R?. Then, the function of i belongs to the space
{(,DGLZ(Q,al;H;N(Y”)) | ¢(0,x2,y2) =¢(1, x2,y2) =0 for a.e. (x2,2) € (0,1) x Y"}.

Proof of Proposition 4. Equation (3.14) with ¢ = 0 leads to:
Al AZ /] Vy/ﬁ(x,y’,y”) Vy/gl?(x,y’,y”) '
/Q><Y(A3 A4> W.y") { 0 : J dxdy/dy
_ Al AZ 1o vxlﬁ(X,]/”> Vy/$(x,y',y") 131 (319)
= _/QXY(A3 A4> (]/ Y ) [Vy"ﬁ(%y”) . 0 dxdy d]/ ’
V(/ﬁ = LZ(Q X YN" Hrlﬂer,O(Y/))/

from which the form of the cell problems (3.16) follows.

10ne can prove that ¥y also belongs to L (Y).
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By (3.19), we can write i/ as

Nl N
ue,yy") =Y Xy ot y") + Y, Xy )y a(x,y")
k=1 k=N +1

forae. (x,y,y") e QxY' xY".

Replacing i by the above equality in (3.14) (note that ¢ is set to be zero since the correctors
have been found) we first get

Ay Az) }
~ | dxd
/Q><Y<A3 A4 Vy//u vy//(l) xay

Vx/ﬂ—i- Vy/ljl\‘| |:Vx,¢7

Ay Az) Vil {Vx“l;]
= |- Ll dxd
Q><Y<A3 A4 Vy”” Vy//(i) xay
+/ (Al A2> 211(\1:11 vy’i(\kaxkﬁ‘F Z]I(\]:N1+1 vy’??kaykﬁ . [vx’(q dxdy
axy\As Ag 0 V]/”(P ’

Concerning the second term, straightforward calculations lead to
/ <A1 Az) Loty Vi i 0+ Ly o1 Vi Rk Oy a] . [vx@] dxdy
axy\Az Ay 0 Vi
=it ) |87 7] [ e
= oo (32) 742 [553][sp ete

VR
0

where we denoted > the N x N matrix partitioned into the upper N x N block V,/x

and the lower N, x N block with zero entrances. Hence, we get that
Vil + Vy,ﬁ vx,{ﬁ

. | dxd

Vil ] { ] Y

/ <A1 A2>
oxy\Az Ay y V¢
w a) s (R)ves) o)) [55
= + Vy |- =\ dxdy.
QXY( <A3 Ay Az yX Vy//u Vy//qb xay

Gathering all the v/ dependent terms, we get the form (3.18) for the operator A",
Since A € L*(Y)N*N and the x;’s are in L (Y"; H'(Y")), it is clear that A" ¢ L (Y )N*N,
We prove now that Alom s coercive. Let & = (&, &) be a vector with fixed entries in the

space RN = RM x RM:. By the construction of the homogenizing operator, straightforward
calculation imply that

Alom(g] (g = 1 /Y ((2 ﬁi) + (i;) Vw?) Eﬂ _ [gj »
LD
= 7 /Y (i; 2) Fl +§y’7?§] , {61 +§y,&] »

_ L (Al A2> Flﬂ‘vy’fﬁ} . {Vy’&} dy/
[Y'| Jy \As A4 & 0 '

= 3]

~<‘~h<

where Xz = 211\121 XkCk- Observe that by the cell problems (3.16), the second term in the last
equality is equal to zero.



32 Chapter 3. New tool: periodic unfolding for anisotropically bounded functions

Now, the coercivity of the matrix A and the fact that xz € L*(Y”; H; ero(Y')) imply that

APy (] - (@

_ 1 Ay A2 o [G1+ Ve XeW v 61+ Vyxe(y,y")
= w7 o (As AJ“"”[ s } [ & W
> 8161+ Ty Re 4" ooy + 1221%)
=a

|§1|2 + ‘§2|2 v ’XZ( //)HL2 y’)Nl) > 06|é‘|2 for a.e. y// ey

which proves that A" is coercive.

Replacing the form of A" on the original problem (3.14), we get (3.17). By the boundedness
and coercivity of A" and by the fact that the function i belongs to L3(Q, Vi H;l;er (Y'")), the
above problem admits a unique solution iy by the Poincaré inequality and the Lax—Milgram
theorem. O

At last, we would like to remind that the obtaned results to this section occur not only
when there is anisotropy in the displacements, but also if the contrast is present in the coef-
ficients of the material law:

Find u. € H}(Q) such that:

Ate A (3.20)
[ (G &) 1vud 1volax = [ foar, vpeHYO),

Indeed, this new formulation differs from (3.11) by a simple shift of contrast from the ma-
terial law to the displacement. Hence, the developed method applies also to this kind of
structures.
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Chapter 4

New tool: periodic unfolding for
functions defined on lattice
structures

In this section, we developed a second tool to extend the classical results of the periodic un-
folding. This time, we will not deal with a new class of functions but rather with sequences
bounded on particular domains: one-dimensional lattice structures in RN. As we will see,
this presents quite a challenge for the periodic unfolding.

4.1 The periodic lattice structure

We start by giving a rigorous definition of a one-dimensional periodic lattice structure in
RN,
Leti € {1,...,N}andletKy,..., Ky € IN*. Set the following subsets of N~ by

K=TT{0,..., K}, K = {k€ K|k =0},
K=JJ{0,...,Ki—-1}, K;={keK|k=0}.

We denote K the set of points in the closure of the unit cell Y by
N

K= {A(k) e RN ( A(k):zgei, keK} cy.
i=1""1

In this sense, the whole unit cell Y is partitioned in a union of cells

Y = Z A(k) +?K/
keK

where the reference cell Yk is defined by
N 1

Yi = ]‘{ 0,1), L= K
1=

We denote S§i> and S the sets of segments whose direction is e; by

S = | [AKk),AK) +e], 8D = | [AK), AK) +e]]
keK; keK;
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Hence, the lattice structure in the unit cell Y is defined by (see also Figure 4.1 right)

N N
S=Uscy, s=Js¥cy,
i=1 i=1

where again, as in Section 2.2, the letter "c" denotes the complete lattice.

Now, let QO C RN be an open set. We consider its covering Q. defined by the ¢ paving

(0,0) (1,0)

FIGURE 4.1: The lattice S in dimension two for K = {0,1,2,3} x {0,1,2}.

Qe=int{ U ec+7V)}, E={cez" ] {(C+Y)NQ# D).

CEE,
From (2.2), we have (see the comparison between Figures 2.1 left and Figure 4.2 left)
Q. cQcQ,. (4.1)

Note that the covering () is a connected, open set. This fact will be later crucial to get
estimates of the functions defined as interpolates on lattice nodes.

The periodic lattice structure over () is defined by
Se= | (e€+eS) cQe,  Ke= | (e€+¢K),
FeE, {Sch

S0 = U (e¢ +eSW).

ZeB,
Denote S the running point of S and s that of S;. That gives (i € {1,...,N})
S=A(k)+te; inSW,tec[0,1],k €K,
s =¢l +eA(k)+ete; in Ss(i), te0,1], ke K;, e Ee.

Let C(S) and C(S;) be the spaces of continuous functions defined on S and S; respectively.
For p € [1,+o0], we denote the spaces of functions defined on the lattice by (i € {1,...,N})
WP (SW) = {p e LF(SD) | asp € LP (ST},

WP (st) = {g e L7(s1) | asp € L (ST},

WIP(S) = {p e C(S) | a5 € L'(S)},
WP (Se) = {¢ € C(Se) | 9sp € LP(Se) }
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and
WP (S0 = {p € WP (SU)) | 9gp € WHP(S1)],
W2 (S = {p e W (SY) | asp € WP (SI)},
W2P(8) = {p € C(S) | ds5) € WP (SV), je{1,...,N}},
WPP(Se) = (¢ € C(S:) | 3sh gy € WP (S sy, je{1,...,N}}.

4.1.1 The unfolding operator for lattices

We are now in the position to give an equivalent formulation of the unfolding operator
defined in 1, but for lattice structures.

Definition 7. For every measurable function ¢ on S, the unfolding operator T.° is defined as fol-

lows:
TS (9)(x,S) = gb(e{ﬂ +€S) forae (x,8) € Qe x S.

(0,1

o

L
%\‘

e e e
0 ! 0 (0,0 mo !

FIGURE 4.2: The unfolding via 75 of the variables in the periodic lattice
Se € Oy C R2. In the limit, one has a split between the macroscopic scale
and the reference lattice S.

Observe that in the above definition of 7;5, the map from Q. x S into S
x
(x,8) — sh] +eS

is almost everywhere one to one. This is not the case if we replace & with S;. Nevertheless,
considerations and result for functions defined on S and on S, are the same.

In the same way, we define the mean value operator defined in 2 but for lattice structures.

Definition 8. For every function ¢ on LY(SW), i € {1,..., N}, the mean value operator M)
on direction e; is defined as follows:

N . A(k)+e; , , ~
Mo ($)(S) = /A o PS)as,  vSElA®,AK) el VkeR:

Below, we give the main property of 7.°.
Proposition 5. Let p € [1,+oo|. For every ¢ € LV (S;), one has
L

P

ITE@) ipans) <€ 7 Y17 I9lircs,)-
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Proof. We start with p = 1. Let ¢ be in L (S;). We have
S N s
/ﬁsxs 175 (¢)(x,S)|dxdS = /(~2 ;/SW 1T5(¢)(x,S)|dxdS

N 1
= Y fec+ex|Y 2/0 1 (e8 + eA(k) + ef) |dt

E=E, i=1 keK,;
Ny v ! N-1
=YY X [ Ig(es+eAlh) +et)dt < MUY [ [g(s)lds.
i=1 kef([ 0 Se
The case p € (1, +0) follows by definition of L¥ norm. The case p = 4o is trivial. O

4.2 Periodic unfolding for sequences defined as N-linear in-
terpolates on the lattice nodes

Before proceeding to the actual strategy for the periodic unfolding for lattices, we dedicate
this section to a useful class of functions: the sequences defined as N-linear extension from
the lattice nodes to the whole domain.

The unfolding of this class of functions has two main advantages. The first is that fewer
hypotheses are required for the sequences to ensure weak convergence (see property (2.10)).
The second is that the convergences can be restricted to sub-spaces with lower dimensions,
which will be key in the next sections.

First, since we are now working on Q, which contains ), we need to extend Definition (1)
of the classical unfolding operator to functions defined in the following neighborhood of ():

{x € RN | dist(x,Q) < ediam(Y)}.

Definition 9. For every measurable function ® on Q, the unfolding operator T is defined as
follows:

T (D) = Cb(s [ﬂ Lt ey) forae. (x,y) € Qe x Y.
For every ® € LP(().), this operator satisfies (see also property (2.3)):
1 ~
1T (@) vy < Y7 @], forevery @ € LP(Q).

Every measurable function defined on Q) can be extended to the set ), by setting it to 0 on
Q. N (RN \ Q). Now, let p € (1, +00). Assume {®;}. to be a sequence uniformly bounded
in LP(Q)). Then, the unfolded sequence {7 (®;)}. is uniformly bounded in L?(Q x Y)
and thus in LP(Q x Y). Hence, there exists a subsequence of {e}, still denoted {e}, and
® € LP(Q x Y) such that

7;”t(<1>g)mxy —~ & weaklyin LP(QxY).
For simplicity, we will omit the restriction and always write the above convergence as
T (D) = @ weaklyin  LP(Qx Y).

In this sense, we can easily transpose to this operator all the convergence results in Subsec-
tion 2.1.1 concerning the isotropically bounded sequences and in Section 3.3 concerning the
anisotropically bounded ones .
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We define the spaces of interpolated functions on the lattice nodes in Y (resp. in () by
Q}C(Y) = {‘I’ € Whe(y) ‘ ‘P|A(k)+YT< is the Q; interpolate of its values
on the vertices of A(k) + Y, Vk € IA(},

} . 42)
0L, (6e) = {@ € W(O)

<D| eE+eA(K) eV is the Q; interpolate of its values

on the vertices of e¢ + eA(k) + &Yy, Vk € K, V¢ € EE}.

From the N-linear interpolations properties (2.10) and (2.13), for every ® € Q1 (()g), there
exist a constant depending only on p such that

C
||V(D||Lp(ﬁs) < ;”qDHLP(()S)' (4-3)

Below, we give the equivalent formulation of Propositions 1, 2 and Lemma 8 but for this
special class of functions.

Corollary 1. Let {®.}. be a sequence in Q}Cs (Q) satisfying

||©6||Lp(()£) <C

Then, there exist a subsequence of {}, denoted {e}, and ® € LP(Q)), ® € LP(O; Q}C,per,O(Y))

such that
Dy — @ weaklyin  LP(Q),

T (D) = @+ D weaklyin L (Q; QL(Y)),
SﬁEXt(quE) N vy&\) weakly in LP(Q X Y)N

The same results hold for p = oo with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. First, from property (4.3) on the N-linear interpolated functions, we have that
cheHLp(ﬁg) + SHV‘beHLn(ﬁS)

Then, the proof is done in the same fashion as Proposition 1, together with the fact that
{7 (@) Je € LP(Qe; Qi (V). =
Corollary 2. Let {®;}, be a sequence in Q}Cg (Q)) satisfying

| e <cC

||W1,p(ﬁg) =

Then, there exist a subsequence of {€}, denoted {e}, and ® € WP(Q)), ® € LP(Q); Q}C,per,()(Y))
such that

Doy — O weakly in WP (Q),

T (D) = @ weaklyin  LP(Q Q}C(Y)),

T (VD) — VO + VyCTD weaklyin  LP(Q x Y)N,

LT @0~ My o T (@) < VO 1@ waklyin Q)
where y'* =y — My ().

The same results hold for p = +oo with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. The proof follows from Proposition 2, together with the fact that {7:°(®,)}. €
LP(Qe; Q1 (Y)). O
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Corollary 3. Let N, N, € N such that Ny + N, = N. Let x = (x/,x") € RM x RN and
y=(y,y") € Y x Y. Let {®¢}¢ be a sequence in Qi (Q) satisfying

19l 1,y + 190y, <
where the constant does not depend on e.

Then, there exist a subsequence of {e}, denoted {e}, and functions ® € LP(Q,Vy; Q}C/per(Y”)),
P € LP(Q X Y";Qk ero(Y)) N LP(Q; Q) (Y)) such that

D, = P weaklyin LF(Q, V),
T (D) — @ weaklyin  LP(Q; Qk(Y)),
T (Vo ®e) = V@ + Vyd  weaklyin  LP(Q x V)M,

%(7;”“(@8) — My o T (®g)) = V@ -y + & weaklyin LP(QxY),
where ® = My (®) and y'* = y' — My (y').
The same results hold for p = +oco with weak topology replaced by weak-* topology in the correspond-
ing spaces.
Proof. First, since the sequence {®; } belongs to Q}CE (Q), property (4.3) implies that
||q)5HLP((~)S) + Hvx’q)SHLn(()s) +€Hvx”q)€||m(()s) <C.

The proof follows by Lemma 8 together with the fact that { 7z (@)} C LP(Q; Qr(Y)). O

Note that the above lemma, which deals with anisotropically bounded sequences, in-
cludes the results of Proposition 1 in the particular case N; = 0 and N, = N, as well as the
results of Proposition 2 in the particular case Ny = N and N, = 0.

4.3 How to unfold sequences defined on periodic lattice struc-
tures

Given a function ¢ defined on the lattice structure S (resp. ¢ on S;), a direct application of
the unfolding operator for lattices 75 would result in an independent unfolding for each of
the N directions. This might break the continuity of the functions in the limit since nothing
ensures that the N obtained functions coincide on the lattice nodes. Hence, we need to work
around this issue.

4.3.1 A first decomposition
Recall the decomposition that we have already done in Subsection 2.2.1, but for each of the
repeated cells Yk contained in the unitary cell Y.

Since the union is finite, this does not change the results in Subsection 2.2.1, which is why
we will refer many proofs to this subsection.

On the lattice structures S (resp. S), we define the spaces Q- (S) and Q}CS (Se) by

Qk(S) = {1/) € C(S) ’ ¢ is affine between two contiguous points of K },

(4.4)
Qk.(S0) = {9 e C(Sy)

¢ is affine between two contiguous points of K, }

Then, we define the spaces of functions vanishing on the lattice nodes by (p € [1, +-o0])

W&’,@(S) = {yp € W'P(S) | =0 onevery node of K},
Wé:fés (Se) = {¢p € WP(S;) | ¢ = 0 on every node of K¢ }.
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Every function ¢ in W7 (S) (resp. ¢ € WP (S;)) is defined on the set of nodes K (resp. ;)
and therefore can be decomposed as

=ty Pa€QK(S), Yo e Wyh(S),

(4.5)
(resp. ¢ =gt ¢ €QL(S), g0 € Wik (),

where ¢, (resp. ¢,) is an affine function defined as Q! interpolation on the nodes, and g
(resp. ¢p) is the remainder term, which is zero on every node.

Lemma 10. Let ¢ € WVP(S;) be decomposed as in (4.5). Then, there exists C > 0 such that
(ie{l,...,N})

1goll 50y +elldsdoll g0 < Celldsll -

Proof. The proof is done in the same fashion as the one in Lemma 1, but for a grid of a
cell with arbitrary length Yk, that we will call Gg. Then, the results follow by the fact that
the lattice S is a finite union of grids of the form Gk, together with an affine change of
variables. O

4.3.2 A commutative diagram: from lattice to RY, and to lattice again

As we already know, a function belonging to Q}C (S) (resp. Q}Cs (Se)) is determined only by
its values on the set of nodes KC (resp. K), and thus we can naturally extend it to a function
defined on Y (resp. on ().

Definition 10. For every function { € Q}(S), its extension Q() belonging to WL (Q) is
defined by N-linear interpolation on each parallelotope A(k) + Yx belonging to Y, for every k € K.
For every function ¢ € Q}Cs (Se), its extension Q(¢) belonging to WV (Q)) is defined by N-linear
interpolation on each parallelotope & + eA(k) + €Yy belonging to e + €Y, for every ¢ € B¢ and
keK

Now, recall the spaces (4.2). By the same argumentation done in Subsection 2.2.1 but for
a finite union of cells, the extension operator Q is both one to one and onto from Q}.(S)
to Q- (Y) (resp. from Q}CE(SS) to Q}Cs(ﬁg)). Its inverse is given by the restriction |5 from
Q1 (Y) to Qk-(S) (resp. s, from Q}Cs(ﬁs) to Q}CC (Se))-
Below, we show the main properties of this operator.

Lemma 11. For every ¢ € Q'(S;), one has (p € [1,+o0],i € {1,...,N})

N-1

N2 N-1
12(0) 15 < €7 19llris 1920 pia < Ce 7 1969, g0

Proof. The proof is done in the same fashion as the one of Lemma 2 but for a cell with arbi-
trary length Yx. Then, the results follow since the unitary cell Y is a finite union of cells of
the form Yk, together with an affine change of variables. O

Finally, we can apply the following strategy: given a function defined on the lattice ¢
WLP(S;), we first decompose it as in (4.5). Then, the unfolding for the affine function ¢, €
Qk (S¢) is equivalent to first extending ¢, to ®, = Q(¢a), then applying the unfolding
results for N-linear interpolates in Section 4.2 and finally restricting the convergences to the
lattice again, as the following commutative diagrams show (i € {1,...,N}):

{ TE(9) = TS (P1s.) = TEHP) i, s

(4.6)
725(854’) = 725 (854’|s§f)) = 7?” (ai‘i’)\()gxs(i)'

On the other hand, the unfolding for the remainder term ¢y € Wg’fég (S¢) can be done using
the classical unfolding results in Section 2.1, since it is only defined on segments. Hence, the
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final sum of the limiting unfolded fields has continuity on the nodes since it is the sum of a
N-linear interpolated function restricted to the lattice and a reminder function which is zero
on the nodes.

4.4 Asymptotic behavior of sequences defined on lattices with
information on the first order derivatives

Finally, we can unfold sequences belonging to W7 (S;), for which we have information on
the sequence itself and the gradients.
4.4.1 Sequences isotropically bounded on lattices

We start with the sequences in W7 where there is a contrast between the bound on the
function and the bound on their gradient. This lemma is the equivalent of Proposition 1, but
for lattice structures.

Note that on the sequence bounds, a rescaling factor, which depends on the p-norm and the
N-dimension, is additionally applied due to the dimension reduction.

Lemma 12. Let p € (1, +00) and let {¢¢ }¢ be a sequence in WP (S,) satisfying

ellLr(s,) + €llOs@ellrp(s,) < Ce 7 . 4.7)
Then, there exist a subsequence of {e}, denoted {e}, and ¢ € LP(Q); W},,’f; (S)) such that
TE(ge) = ¢ weaklyin LF(Q; W'(S)).! (4.8)

The same results hold for p = +-oco with weak topology replaced by weak-* topology in the corre-
sponding spaces.

Proof. Given {¢¢}e C WP(S,), we decompose it as in (4.5) and get

{(Ps}s = {(Pa,s}s + {(PO,E}SI {(Pu,s}s € Q}CS (Ss)/ {(PO,S}S € Wéjés (Ss)
By Lemma 10 and hypothesis (4.7), we have

< Celd <cer *! 4
1r(se) < Cellosellps,) <Ce 7 7, (4.9)

1-N
17(8e) < ellrrs) + [1oellr(s,) +elldspellirs,) < Ce 7 (4.10)

”4)0,5
paellLr(s,) + €ll9spae

1r(s.) +ellosPose

We first consider the sequence {¢p,}e C WS',ZE(SS). By estimate (4.9) and Proposition 1,

there exist a subsequence, still denoted ¢, and a function ¢ € LP (Q; Wg,’é » . (S)) such that

%7;3(%,&)44?0 weakly in  LP(Q; W'P(S)). (4.11)

We consider now the sequence {¢ne}e C Q}CS (Se). We extend it to {@pete = {Q(¢ae)te,
which belongs to Q}Cg (Q). By Lemma 11 and estimate (4.10), this sequence satisfies

||<D8Hyn(ﬁf) + 8”vq)fHL”(@s) =G

L As for T:%%, this convergence must be understood
TE(@e)jaxs = ¢ weaklyin LP(Q;W'P(S)).

It will be the same for all convergences involving the unfolding operator 7;5.
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By construction, {®.}, € Q}Cg(ﬁg) and thus {72 (®,)}e € LP(Qy; Qk(Y)). Hence, Corol-
lary 1 implies that there exist ®, € LP((); Q}C,per(Y)), such that
T (D) — B, weakly in L (Q; Qk(Y)).

Using the relations (4.6), we can restrict the above convergences from (2 x Y to the subset
Q x S. We denote ¢, = EISa\QxSI which then belongs to L7 (€); Q}C/per(S)). We have

7;S(¢a,g) — (ﬁz weakly in  LP(Q); Q}C(S))

Hence, from the above convergence and convergence (4.11), we get

TE(9e) = TE (fea) + T (9e0) = §a weakly in  LP(Q; Qjc(S)),
which concludes the proof by setting ¢ = ¢;. O

Now, we show the asymptotic behavior of uniformly bounded sequences in W7 (S;).
This lemma is the equivalent of Proposition 2 but for lattice structures.

Lemma 13. Let {¢: }. be a sequence in WP (S,) satisfying (p € (1, +00))

1-N
I pellwines,) <Ce v, (4.12)

where the constant does not depend on e.
Then, there exist a subsequence of {}, still denoted {e},and ¢ € WP (Q) and ¢ € LP(Q); W;Z:,O(S))
such that (i € {1,...,N})

TS (pe) = ¢ stronglyin  LP(Q; WYP(S)),
TS (Bspe) — ¢ +0sp  weaklyin  LP(Q x SO,

The same results hold for p = oo with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. Given {¢¢}e C WP(S;), we decompose it as in (4.5) and get

{@e}e = {Paete +{¢oetes {$ae}e € Q}CS (Se), {¢oete € Wé",’és (Se).
By Lemma 10 and hypothesis (4.12), we have

1-N
Igo.ellir(s,) +eldsgoellirs,) < Celldseellins, < Ce 7 ™, (4.13)

1-N
I @aellwiris) < l1@ellir(sy) + oellr(s.) + 19sPellLr(s,) < Ce » (4.14)
We first consider the sequence {¢ge}e C Wé,’,rés (S¢). By estimate (4.13) and Proposition 1,
there exist a subsequence, still denoted {e}, and ¢y € L (Q), ¢p € LP(Q); Wé,’;é,p er0(S)) such
that(i € {1,...,N})
1 ~ .
57;8(4)0,5) —¢o+¢do  weaklyin LP(Q;WIP(S)),
TS Bspoe) — dsdo  weaklyin LF(Q; xSW).

(4.15)

We consider now the sequence {¢c}e C Q}Cg(SS). We extend it to {@gete = {Q(Pae) te,
which belongs to Q}Cg (Q). By Lemma 11 and estimate (4.14), this sequence satisfies

||q>a,e||wl,p(ﬁ£) <C
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By construction, we have {®,,}. € Q}Cg(ﬁs) and thus {77 (®¢) }e € LP(Qe; Q1 (Y)).
Hence, Corollary 2 implies that there exist ®, € W?(Q) and ®, € LV (Q); Q}C,per,O(Y))’ such

that
q)s,a\ﬂ — P strongly in WLP(Q),

T (Dgp) — @, stronglyin  LF(Q; Qk(Y)),
T (VD) = VO, + VP,  weaklyin LF(Q x Y)N.

Using the relations (4.6), we can restrict the above convergences from () x Y to the subset
QO x S§. We denote ¢, = ;) s, which belongs to WP (Q), and ¢, = D,/ xs, which then
belongs to L ((); Q}C,per,O(S))' We have

7;5(4%5) — ¢g stronglyin LP(Q); Q}C(S)),
TS (sae) — dipa + dspa weaklyin LP(QAxS), ie{l,...,N}.

Hence, the statement follows from the above convergence, convergence (4.15) and setting
¢ = ¢ € WVP(Q) and ¢ = §, + Po, which belongs to LP((); W;(’J:,O(S)). O

4.4.2 Sequences anisotropically bounded on lattices

We now consider sequences whose gradient is anisotropically bounded on the lattice.

Accordingly to Section 3.1, we apply the decomposition RN = RN @ RM and define the
following partition of our lattice structure:

Ny Ny
§=sh  si=ys, sz U (e,
i=1 i=1 eE,
N . N .
s'= Y s, sr= |y S, 8= (£+eS).
i=Nj+1 i=Ni+1 ZeB,

Accordingly to (4.2), we define the spaces Q}Cg (Sh, Q}Cg (8). Accordingly to and (4.4), we
also define the spaces QL (S8’), Qk(S"), Q}C,per(S), Q}C’per(S’), Q}C,per(é’”) and their respec-

tive extensions QL (Y’), Qk-(Y"), Q}C,per(Y), Q}C’per(Y’) and Q}C,pw(Y”).

We now prove the asymptotic behavior for sequences anisotropically bounded on W7 (S;).

Lemma 14. Let p € (1,+00) and let {¢e } be a sequence in WP (S,) satisfying

1-N
ellr(s,) + [19s@ellLr(sr) + ellOsellpp(sry < Ce P (4.16)

Then, there exist a subsequence of {e}, denoted {e}, ¢ € LP(Q,Vy ;W;;’,’(S” )), and functions
€ LP(Qx S W)L () VLY (O WoH(S)), such that (i € {1,..., N })
TS (pe) = ¢ weakly in  LP(Q; WP(S)),
TS (9spe) — 0;p +9sp  weakly in  LP(Q) x S1)), (4.17)
%(7}3(%) - Mg o 725(4)8)) — aiasc + (,5 weakly in  LP(Q) x S(i)),
where S° = (S — Mg (S)) - e

The same results hold for p = +oco with weak topology replaced by weak-* topology in the correspond-
ing spaces.

2 One has S = A(k) + te; in the line [A(k), A(k) + te;], t € [0,1],k € K;. Hence 8¢ =t —1/2.
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Proof. Given {¢¢}e C WP (S;), we decompose ¢ as in (4.5) and get

{478}8 - {4)&1 S}E + {470 8}8 + {¢Oe 24

where . .
{Paele € Q}CS(SS)/ {496,5}5 € WO,,]FéE (S0, {4’05 e € Wo,'}éf (S).
By Lemma 10 and hypothesis (4.16), we have

LN
10l r(sy) + €llOshellr(sy < Celldsellpp(sy < Ce 7,

=N
||4’6/,s||U’ S + €]|9sgpp e ||LP sy = CEHaS(PS”LP sy <Cev, (4.18)
1 Pacllirs,) + 19sPacllresy + ellosPaellrrisyy < Ce .

By estimate (4.18)1 and Proposition 1 applied on each line of &/, there exist a subsequence,
still denoted {e}, and functions ¢} € LP(Q), ) € LP(Q; Wo e pgrO(S’)) such that

LTS (oo = g5 weaklyin L/(Q;W(S)),

TS (0s¢oe) — dspy ~ weaklyin LP(Q x S).

(4.19)

By estimate (4.18), and Proposition 1 applied on each line of S/, there exist a subsequence,
still denoted {e}, and functions ¢} € LP(Q), §§ € LP(Q); Wg:fé,p or0(S")) such that

7;3(450,5) N (Pé/ + $6’ weakly in LP(Q,. wlirp (5//))’

N (4.20)
eTS (0soe) — 95y weaklyin LF(Q x S”).

Now, we consider the sequence {¢ge}e € Q. (Sc) and we extend it to {®@ge}e = {Q(Pae) }e
belonging to Q% K. (Q). By Lemma 11, we get

||<Da£||m + ||vx’q>a8|‘m +€||Vx”q)ae“m < C.

By construction, the sequence {®, .} belongs to Q} K. (Q) and thus {7 (®)}. belongs to
LP(Q; QL (Y)). Hence, Corollary 3 imply that there exist functions ®, € LP(Q, V,/; Q} K per (Y'"))
and &, € LP(Q x Y, Q}C,per,O(Y’)) N LP(Q; Qk(Y)) such that

@, 0 — Pa weaklyin LP(Q, V),
T (Dye) — @,  weaklyin LP(Q;Qk(Y)),
T (Vo ®ye) = Vd, + Vy/C/Isa weakly in  LP(Q x Y)M

where q)a = My// (&311).

Using the relations (4.6), we can restrict the above convergences from () X Y to the subset
QxS (and from Q x Y/, Q x Y to Q x &', Q x S respectively). Setting ¢, = @, 0x s We
have ¢, € LF(Q, Vy; Q}C,pe,(sl "}). Now, let us consider qADumX s, which belongs to the space
P, € LF(O); Q}C per oS ")), and we extend it as an affine function between two adjacent nodes
in S” (see Figure 4.3). This gives ¢, € LP(Q x S”; Q}C,per,O(Sl)) NLP(O Q}C,per(S)). Hence,
the following convergences hold:

T (fae) = ¢ weaklyin LP(0;QY(S)),

I . 4.21)
7;5(354;“,8) — 0i¢s + ds¢po, weaklyin LP(Q x S(’))
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Finally, from convergences (4.19), (4.20) and (4.21), we get (i € {1,...,N1})
728(4%) — Eﬁa strongly in LP(Q; WLP(S’)),
TE(Pe) = Pa+ 90 + P35 weaklyin LP(Q;W(S")),
TS (3spe) — 9iha + 35 (Pa + @) weaklyin LP(Q x W),
Setting GT? = (ﬁz + ¢ + %’, we get that (’ﬁbelongs toLP(Q), Vy; W;gf(s")), Setting 4A7 - 43{1 L (%’

this function belongs to L? (Q) x S§”; Q}C,per,O(Sl)) NLP (O Q}CIPW(S)). Convergence (4.17)3 is
an immediate consequence of (4.17),. The proof is complete. O

= @ \
’ Iu\QxS(U

‘/ or/‘ilxs\’l]

€

)

e YalQ

FIGURE 4.3: Construction of the microscopic variables of the periodic func-

tion (fg in dimension two. On the left, the restriction to S (1) of the 2-linear

interpolate ®,. On the right, the extension of ¢, from S to S(?) by linear
interpolation along th lattice nodes.

Again, note that the convergences in Lemma 14 include the isotropic cases in Lemma 12
forS'=@and 8" =8, and in Lemma 13 for 8’ = Sand " = @.

4.5 Asymptotic behavior of sequences defined on lattices with
information until the second order derivatives

We would like now to apply the same strategy but to sequences bounded in W2”, which
have information till the second order derivative.

451 The problem of mixed derivatives

As we have seen in Subsection 2.2.2, the N-cubic extension from a cubic interpolation on the
lattices to the whole domain is not uniquely defined because of the lack of mixed deriva-
tives for the function defined on the lattice. This is because a function defined on the lattice
segments can be derived twice, only in the segment directions. We overcome the problem in
two different ways:

(i) We proceed as in Subsection 2.2.2 and linearly extend the N partial derivatives to adopt
the same strategy above but using the N-cubic interpolation instead of the linear. This
method will lead to a better regularity of the limit fields but at the cost of some artificial
assumptions on the boundedness of the extended derivatives.

(if) We adopt twice the N-linear interpolation: on the function and its partial derivatives.
This method will lead to a worse regularity of the limit fields, but no further assump-
tions are made on the boundedness of the original sequences.

4.5.2 Unfolding via N-cubic interpolation

We proceed in the same fashion as the previous section and decompose a function into a
remainder term and a cubic polynomial, extending the latter by N-cubic interpolation to the
whole space.
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On the lattice structures S, (resp. S) we define the space of functions Q3(S;) (resp. Q3(S))
by

Qk.(S0) = {p e c(s)
Qi(S) = {([) €C(S) ’ ¢ is a cubic polynomial between two contiguous points of IC}.

1 is a cubic polynomial between two contiguous points of ICE},

Then, we define the spaces of functions vanishing on the lattice nodes, and with derivative
vanishing on the lattice nodes, by (p € [1,+],i € {1,...,N})

2,
Wok(S) = {9 € W2¥(S) | = V§ =0 on K},
WL (S) = {9 € W(S) | ¢ = Vg =0 on K}
Every function ¢ € W27 (S) (resp. ¢ € WP (S,)) is defined on the set of nodes K (resp. K¢)
and therefore can be uniquely decomposed as
p=tptpo, Yo €QR(S), o€ Wok(S), .
(resp. ¢ =¢c+o, e € Q(S), g € Wok.(Se)),

where . (resp. ¢.) is the cubic polynomial that coincides with the original function on the
nodes (and its derivatives coincide with the original function’s derivatives on the nodes),
and g (resp. ¢p) is the reminder term which is zero on every node (and its derivatives are
zero on every node).

Lemma 15. Leti € {1,...,N} and ¢ € W*P(S;). Suppose that ¢ is decomposed as in (4.22).
Then, there exists C > 0 such that

1929el 50, < CIAE, 50
”as(PCHLF’(SS(i)) S C”aS(PHWl,p(SS(i))’ (4 23)
||¢C||Lp(55<i)) < C||¢‘|W2'V(S€(i))’

Ipoll,, 60, + elldsoll , 50, + 21950l 50, < CEN35PN L, 50
Proof. The proof is done in the same fashion as the one in Lemma 3, but for a grid of a cell

with arbitrary length Yk, that we will call Gk. Then, the results follow since the lattice S is a
finite union of grids of the form G, together with an affine change of variables. O

Set the spaces
Qi(Y) = {‘I’ € Wh(Y) ‘ ¥ a7, 18 N-cubic interpolate of its values and partial
derivatives values on the vertices of A(k) + Yk, Vk € IA(},

Q, () = {@ € W(Oy)

Pz ea(k)ter, 18 N-cubic interpolate of its values and partial

derivatives values on the vertices of ¢ + eA (k) + &Y, Vk € K, V¢ € EE}.

As we already did in Section 4.2, we give an equivalent formulation of Proposition 3 but for
functions defined as N-cubic interpolations on the lattice nodes.

Corollary 4. Let p € (1, 400) and let {P,} be a sequence in Q,3C€ (Q)) satisfying

| e <cC

|| W2P ()
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Then, there exist a subsequence of {e}, still denoted {e}, and ® € WP (Q), ® € LP(Q; Q;’C,per(Y))
such that

Te(®e) — @ stronglyin  LP(Q; WP (Y)),

Te(V®,) — V@ strongly in L (Q; WP (Y))N,

Te(D*®;) — D*® + D;®  weaklyin LP(Q x Y)N*N.
The same results hold for p = +oco with weak topology replaced by weak-* topology in the correspond-
ing spaces.
Proof. The proof directly follows by Proposition 3, together with the fact that {7;3’“ (®e)}e €
LP(QS; Q?C(Y)) O

Given a function ¢, defined on S (resp. ¢, defined on S;), its extension to the whole

cell Y (resp. to the whole domain ();) is given by any function ¥, € W?*®(Y) (resp. ®. €
W22 ((),)) that restricted on S (on S;) gives back the original function.

As we already know from Subsection 2.2.2, the extension is not unique. For this reason, we
set

N ) N .
Sil= |J 8 (resp. S = | sY). (4.24)
j=1,j#i j=1,j#i

Foreveryi € {1,...,N}, we denote the following extensions
9y ={fe€ WP (8D s whee (sl |f8(i) is extended by N — 1-linear interpolation on S },

99 ={fe€ Wl"”(Sg(i)) X Wl'm(Sg[i}) ’fsa) is extended by N — 1-linear interpolation on Sg[i] }.

(4.25)
These extensions not only uniquely determine the N-cubic interpolation ¥.: setting a bound
for them allows us to bound the interpolation ¥, by the bounds on the lattice function ., as
the following lemma shows.

Lemma 16. Let ®. € WP (Q) be the unique cubic extension of the function ¢. € WP (S) with
the derivatives extended as in (4.25). One has

N-1 N -
[Pcllyp(a,) < Ce 7 (”‘PHLP(&) + 195l (s + X ||as(3i¢c)||Lp(5€)>- (4.26)
i=1
Proof. The proof follows from Lemma 4 but for the finite union of cells eYg of Y. O

We can finally show the asymptotic behavior of sequences bounded in W27 (S;).

Theorem 2. Let p € (1,+00) and let {¢; } be a sequence in W>P(S,), satisfying

N
I9ell2(s,) + 10s@ell2(s,) + X 195 (@igpe) | 25,y < CE7 (4.27)
i=1

Then, there exist a subsequence of {e}, still denoted {e}, and ¢ € W>P(Q), ¢ € LP(Q; W;;r,’(S))
such that (i € {1,...,N})

725(455) — ¢ strongly in LP(Q; Wz'p(S)),
TS Bspe) — 0ip stronglyin  LP(Q; WP (S0)Y),
s (634’8) - al%{p + a§$ weakly in  LP(Q x S(i)),

Proof. Given the sequence {¢¢}e C W?*?(S;), we decompose it as in (4.22) and get

Pe = e+ Poe  Pee € Q. (Se),  boe € Wk (Se).
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We first consider the sequence {¢o;}. belonging to Wg’,’ég (S¢). By estimate (4.23); and hy-
pothesis (4.27), we have

LNgp
H4’0,EHLP(SS) ‘|'€||884’0,£||LV(88) +82||a£¢0,£||LP(SE) < C€2||ag¢e||ua(5g) <Cevr 2

Hence, Proposition 3 implies that there exist ¢y € LP((); Wg,’é » o (S)) such that

1 ~ .
877;8(¢0’8) — ¢ weakly in LZ(Q; W2"’(S)). (4.28)

Now we consider the sequence {¢.¢}e € Q;’CE (S¢). For every i € {1,...,N}, we define its

derivatives extensions 9;¢.. Then, we can define the extension of the sequence to the whole
domain {®..}, € Q;O’Cf (Q)¢). By estimates (4.26), we have

N-1

| Dce W2P (0 <Cev (H(Pc,e

N
s + 139l izsy + 1 3 @ides) [ 125, ) < C-
i=1

Hence, Corollary 4 implies that there exist &, € W27 (Q)) and &, € LP(Q; Q3-(Y)) such that

D0 = Pc weakly in W>P(Q),

Te(Pee) — P strongly in  LP(Q); Wz'p(Y)),

Te(VO ) — VP, strongly in  LP (Q; WP (Y))N,
Te(D?*®, ) — D>®, + Dﬁ&% weakly in  LP(Q x Y)N*N,

Note that the following relations hold (i € {1,...,N}):

7;S(¢C,S) = 7;8(q>c,s|82) = 7;ext(q>c,£)|ﬁ€><8’

S S
7; (aS¢C,€)|(~)S><S(") = 7; (aquC,E\SS(i)) = 72830‘ (aiq)ﬁ,s)ﬁsxs(i)r

2 2 2
f(as@,s)@xs(i) =75 (asq)c,e|85i)) = 7 (9f DPee) 500

We then restrict the above convergences from Q x Y to the subsets Q) x S and Q x SU), for
every i € {1,...,N}. Hence, there exist a function ¢. = @ s € W>¥(Q2) and a function

$e = Dejas € LP(Q; Wp(S)) such that (i € {1,...,N})

TS (Pee) = ¢pc  stronglyin  LP(Q; WP (S)),
TS (3sPee) — dipe  stronglyin  LP(Q; WP (S1))),
TS (Rpee) — e + 03 weaklyin LP(Q x S@).

Note that the strong convergences are preserved due to the polynomial character of the
function 7.5 (¢ ) with respect to the second variable.

Finally, by the above convergences and (4.28), we get (i € {1,...,N})

TS (¢e) = ¢ stronglyin  L2(Q; W2P(S)),
T:5 (3spe) — 9ipe  strongly in  L2(Q; WP (SW)),
o8 (32¢e) — 02pe + 02 (fc + Go) weaklyin L2(Q2 x 87).

The proof follows by setting ¢ = ¢. € W>P(Q) and ¢ = ¢ + ¢ € L>(Q); W;Zr’(S ). O
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4.5.3 Unfolding via known results for sequences bounded in W1?

With this method, we consider a sequence in W27 (S;) as a sequence in W' (S;) with partial
derivatives in Wl? (Sg(l)) (i € {1,...,N}), so that we can apply the results of Section 5.5.

Even though no gradient extension is needed, the limiting functions will have less regularity.
Moreover, we must do some additional work to show that the N different limit functions,
one for each partial derivative, are a unique function restricted to each line.

Let p € (1, +o0). From Chapter 9 of Gilbarg and Trudinger, 1997, we recall that:
(i) If u € WHP(Q) satisfies Au € LP(Q), then u € WLP(Q) N leof(Q)o’,

(i) If Q is a bounded domain in RN with a C'! boundary and if u € W&’p (Q) satisfies
Au € LP(Q), then u € W, 7 () N W2P(Q).

Denote

WP (Q) = {p € WP(Q) W (Q) | 92 € LP(Q) forevery i€ {1,...,N}}.

1

We endow Wi’p (Q)) with the following norm

N
1937 = 191wy + 15 1,

Theorem 3. Let p € (1, +00) and let {¢. }¢ be a sequence in WP (Se) satisfying

el zr(s,) + 19s@ellr(s,) + 1950ellps,) < Ce 7 . (4.29)

Then, there exist a subsequence of {¢}, still denoted {e}, and ¢ € Wi’p(Q), P cLP(Oy W;Z:,O(S))
such that (i € {1,...,N})

TE(pe) = ¢ stronglyin  LP(Q; WP (S)),
TS (9spe) — i weakly in  LP(Q x S1), (4.30)
TS5 (2¢e) — 2+ 3¢ weaklyin  LP(Q x SW).
The same results hold for p = +oco with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. Step 1. We prove convergences (4.30) 5.
By estimate (4.29), the sequence {¢: }¢ satisfies

[Pellwir(s,) < Ce 7

and thus by Lemma 13, there exist ¢ € W7(Q) and ¢ € LP(Q); WP

wer0(S)) such that

7;5(455)—)4) strongly in L”(Q;WL”(S)),

~ , (4.31)
Te(dspe) — 0ip +9sp weaklyin LP(Qx SD),  ie{1,...,N}.

Now, we consider the sequences {1,L7S(i)}E = {85478‘ site i €{1,...,N}. From estimate (4.29)

we have
1-N

||lp§l)’|wl,p(ss(l)) S CE 4

Recall the definition of Sg[i] from (4.24). Since for every i € {1,...,N}, the function tpg(i)

is defined on every node of S;, we extend it as in (4.25) and denote this extension @gl). It

3In fact, we have pD?u € LP(Q)N*N where p(x) = dist(x, 3Q) for all x € RN.
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second order derivatives

satisfies
1-N

||¢£i)”L”(5e) + HaS@i)H +€Haslps HLP (st =Ce 7,

Lemma 14 gives a subsequence of {e}, still denoted {e}, and ¢\ € LF(Q,9; W;;E(S y),
P € Lr(Q x S;WyP (S©)) U LP(Q; Wik (8)) such that (i € {1,...,N})

TS@D) ~ ¢ weaklyin LP(Q;WYP(S)),
Te (asl/Je ) — aillJ(i) +aslﬁ(i) weakly in  LP(Q) x S(i))_

The above second convergence and (4.31); yield (i € {1,...,N})
9ip + 9sp = P ae. inQ xS0,

Since () does not depend on S in S and ¢ is periodic with respect to S in S() we have
3¢ = ) and 9gp = D a.e. @ x SU) foreveryi € {1,...,N}.

Hence, we get that ¢() belongs to L? (), 9;) and thus that 9;¢ € LP(Q,9;). Since A € LP(Q),
we have ¢ € Wi’p (Q)). Moreover, the following convergences hold:

TE(ge) = strongly in  LP(Q; W2P(S)),
7;8(85¢8) — 0i¢p weakly in LP(Q) x S(i))’

TeS (03¢:) — 959 + 95! weaklyin LP(Q x S1),
and foreachi € {1,..., N}, we also have that

%(7}5(85@) ~ Mg o 7;5(as¢>€)) —~2¢S + 90 weaklyin LP(Qx SD). (4.32)

Step 2. We prove the convergence (4.30)3.

We have to prove the existence of ¢ € L¥(Q; Wb

perO(S)) such that

asp = M ae in O xSV,

dsp = lﬁ(N) ae.in Qx SN,

A necessary and sufficient condition to get the existence of the function ¢ is (remind that
A(k+e;) = A(k) + Lie;)

A(k+e;) ,\ . (k+e; +e]
/ N S+ / » (., 8)ds
= A (k+e;)
vk €K, A(k+ej) ~ (k+e; Jre] (4.33)
- / #0)(.,S)ds + / (-,S)dS
Alk+e;)

a.e. in Q).

Since on a line belonging to S*), one has (see Lemma 14) S¢ = t — 5 te [0,1], the above
equality (4.33) is equivalent to:

'A(k+8,') P A(k+8,'+e]') PP
2 HS°¢ @(.,8))ds 2 hS°¢ 0 (.,8))ds
L @5 8OCs)as+ [ @gs g0 (,8)

vk € K
’ A(k+e;) A(k+e;+e;) .
= S¢ ))dS 208 + ') (.,8))ds
Ju | @os a0 snas s [ (Ges+ 0 (8)

(4.34)
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a.e. in Q).

Convergence (4.32) gives (remind that 9%¢ does not depends on S)

A(k+e;) 1
/A(k) € (728(854)8) - Mgpo 725(85@))015

Vk € K —>/ 82¢SC §0)ds

(ki+1); 1 A(k+e) .

=92 _ = )
8”4)/k,~l,~ (¢ z)dt Ly PSS,
Similarly, one has (j # i)

(k+ej+e;) 1 s s
/A(k+e]-) € (7; (Os¢e) = Mgy o Te (as¢e))d8

5 (kiJrl)l k+e]+el A,
— ¢
k

dt + (x,8)ds
ili Alk+ej)

and the same kind of results for the other two quantities.
Hence, to get (4.33), we have to prove that both quantities

(k+e;)
/A(k) - (728(854’8) — Mg o %S(BS‘PS))dS

frarse) 1 (4:35)
+/ TS( sPe) — s © 7}5(85438))115
A(k+e;)

and
A(k+e) 1
/A(k) j B (7;8(854)5) - M0 738(3s¢s))d8

(4.36)
(k+ej+e;) 1 s s
* /A(k+ej) e (7; (Os¢e) — Mg o Te (asqbg))ds.

admit the same limit or equivalently that the limit of their difference is 0
First, we note that

~A(k+e;) S 1 A(k+e;)
se)dS = = 95 TS (¢ )dS
L T Gspis = [ 05T 90

- E(%S(¢S)("A(k+ei)) - 7ZS(<Ps)(~,A(k))> ae. in Q.

Hence,

1(/Af(lgc+e) . ( " dS+/ (k+ej+e;) 7;5(85@)1:15)

A(k+e;)

1 A(k+e) (k+eite) o~
€ (/A(k) Te" (@59 dS+/ Alke) Te (as¢e)d8) ae. in Q..

Now, recall that the function M Te ( sPe) is defined on (ng x 8 and is constant on
every line of SV (). One has a.e. in Q

A(K)+e; L1 AWK
Mg o TS 0ute) = || o T s ds = -/, i 5T (g)as

= {59 (AK) + &) ~ TS @) (L AK)))
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on Q x [A(K'), A(K') + ¢;], k' € K;. Hence,

Alk+e) S
/A o Msuo T @gas

= LT (A0 ) =T [, AK)) ae.in 3,

where k' € K; is such that k = k¥’ + k;e;. Hence, we get

1 A(k+el) A(k+e-+ei)
([ Mo TS @pds = [T Mgy 0 T (0ge)dS )

e\ Jaw Alkte;)
= (TS0 (AWK + ) — T 00 (AR
— TS (¢e) (- AK +¢)) +e) + T (¢e) (-, A(K + e]-))> ae in Q

where k' € K; is such that k = k' + k;e;.
Now, we can apply Lemma 31 and claim that the limit of the difference of the quantities in
(4.35) and (4.36) is equal to 0. This proves (4.34) for every k € K. Asa consequence, there

exists a unique ¢ € LP(Q; W;ZZ,O(S )) such that convergence (4.30)3 holds. O

4.6 Application: homogenization of a fourth 4th order homo-
geneous Dirichlet problem on a periodic lattice structure
Now that we concluded the unfolding for functions on lattice structures, we proceed as

in Section 3.4 to the homogenization of a Dirichlet problem by the meanings of the newly
developed tools.

From the rest of this section, let p = 2 and Q be a bounded domain in RN with a C1!
boundary. Let { AS }. be the sequence of functions belonging to L*(S,) and defined by

AS(s) £A5<{Z}> forae. se S,

where AS € L®(S) satisfies
3C—0,Cy € (0,+00) suchthat Cy < AS(S) < C; forae. SeS. (4.37)
Let {gc}e and {f:} be sequences in L?(S;). Set
HY(Se) = {¢p € H'(S:) | ¢ =0 ae. ondQ NS}
By the Poincaré’s and Poincaré—Wirtinger’s inequalities, we have
Vo € Hy(Se) NHA(Se),  [19lli2s,) < Clospllizgs,) < Cllogollracs,)-

Note also that M g (ds¢) = 0 forevery i € {1,...,N}.
We consider the fourth order homogeneous Dirichlet problem in the variational formulation:

Find u, € Hé(Sg) N HZ(SS) such that:
(4.38)

LAfagug 2pds = /S e 0 ds +/S Fepds, Vo € HL(S.) N HA(S,).
By the Lax—Milgram’s theorem, problem (4.38) admits a unique solution. Moreover,

CHag”eH%Z(&) < H&HLZ(SS)HBS”SHLZ(&) + HfEHLZ(SC)”uﬁnLZ(Sg)
< C(lIgellrzsy) + I fellizs)) 1193 uellr2(s, -
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Hence,

el 25,y + 19stell 25,y + 195uell12(s,) < ClIgelliz(s,) + Ifellrz(s,))- (4.39)

Below, we give the periodic homogenization via unfolding.

Theorem 4. Let u; be the solution of problem (4.38) and {g¢ }e, { fe }¢ be such that

8
1—

S(g ) =g stronglyin L*(QxS), (4.40)

~\
Z

€ S(fe) = f stronglyin  L*(Q x S).

Then, there exist u € H}(Q) N H*(Q) and @ € L*(Q); H>

perO(S)) such that (i € {1,...,N})

TS (ue) — u strongly in  L*(Q; H*(S)),
%S(asus) — al-u weakly in LZ(Q; Hl(S(’))),
T8 (2ue) — 2u+ 93 strongly in  L*(Q x SW).

The couple (u, it) is the unique solution of problem

Z/st S (02u + 930 )(a§¢+a§$)dxdsz/ﬂc-wdx+/ Fodx,

V¢ € Hy(Q) N H*(Q) and Y € L*(Q; Hy,, (S)),

G= Z(/ .8)ds)e;, Fi/sf(-,s)ds

Proof. The solution u, of (4.38) satisfies (4.39). Due to the convergences (4.40) we have that

(4.41)

where

1-N
el r2(s,) + 19stellz(s,) + 195 uell 12(s,) < Ce

Hence, up to a subsequence of {e}, still denoted {e}, Theorem 3 gives u € H}(Q) N H2(Q))

and i € LP(Q); Hfm 0(S)) such that the following convergences hold (i € {1,...,N}):

TS(ue) —u  stronglyin L*(Q; H2(S)),
TS (dsute) — dju weaklyin  L2(C; H(SW))

) (4.42)
75 (%ue) — %u+ 930 weaklyin  L2(Q x SU).

Now, we choose the test functions
e ¢inC®(Q) NHHQ),
e ®inC?(0),

(S).

e ¢in Hper0

Set
1-N

Pe(s) =¢e 2 (47(5) + ezcb(s)(f(Z)), ae. scS.
Applying the unfolding operator to the sequence {¢:}., we get (i € {1,...,N})
TS(pe) = ¢ stronglyin L*(Q); H3(S)),
T:5(3se) — 0i¢p  stronglyin  L2(Qy; HY(S1)),
TS (02¢e) — 0% + D3P stronglyin  L2(Q x Sy,

Taking ¢ as test function in (4.38), then transforming by unfolding and passing to the
limit give (4.41) with (¢, ®¢). By density argumentation, we extend such results to all
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¢ € HY(Q)NH?(Q) and ¢ € L2(Q; H}%er,o(S)). Since the solution is unique, the whole

sequences converge to their limit.

To conclude the proof, it is left to show that the third convergence in (4.42) is, in fact, strong.
Taking ¢ = u in (4.38), then transforming by unfolding and using the weak lower semicon-
tinuity yield

N
» /st(iqu [OFiu + 8§ﬁ|2 dxdS
i=1

N N
o 2 o _ 2
< hmmfZ/Qij;(Af) |75 (0%ue) |~ dxdS < lns‘gglfeN ! Z_Z;/qug |93ue|” ds

e—0 i1

e—0

N
. N-1 S192,, 12 3 13 N-1
<limsupe 1; /Sflg |85u5] ds = hr?jélps (/ggggasugds—b—/ggfg ugds)
y S 132 2~2
- |S|(/QG~V¢dx+/QF¢dx) :;/st(ifq |0%u + ogii|”~ dxdS.
Also, observe that

N N .
liminf ) / Te(AS) | TS (%ue) | dxdS < limsup }_ / Te(AS) | 75 (3%ue) | dxds
=0 /xS JOxS

e—0 =1

N
. — 2
< limsup eV ! E /A‘f ’83115’ ds
e—0 i=17Se

From the above inequalities, it follows that

N
. 2
g%i; /&7;5(A§) |75 (92u,)|* dxdS
. S 152, |? al S 132 2~ 2
ZL%EXSAE 021 | ds = g/ﬁxs(l{x |02u + 02| dxdS.
= € =

Since the map ¥ € L?(Q x S) — \// s AS |¥|?2dxdS is a norm equivalent to the usual
Qx

norm of L2(Q x S), we get

2u+ aéﬁlzdxds.

lim |75 (92ue) | *dxdS = /
JO

]
e—=0.JOxS xS

This, together with the fact that (4.42); already converges weakly, ensures strong conver-
gence. O

We define the correctors Xy, k € {1,..., N}, as the unique solution in H?, (S) of the cell

per,0
problem
/S AS (L) + 93R6) B3@dS =0, VD € Hp(S). (4.43)

Theorem 5. The function u € H}(QY) N H?(Q) is the unique solution of the following homogenized
problem:

/Q AShom g2, 32 dx = /Q G- Vdx + /Q Fodx, Vpec HY(Q)NHAQ), (444)

) T . T
where 9%u = (04u,...,0%\yu) and *¢ = (33,¢,...,0%nP) -

In particular, the homogenized matrix AS""™ is given by ((i,j) € {1,...,N}?)

.1 - -
Al = S| /s A% (150 + 95%:) (Lg0) + 93;) dS. (4.45)
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Proof. Equation (4.41) with ¢ = 0 leads to
Z /m § (2u+93) 2PdxdS =0, VP € L2(Q; 2y (S)),
from which we obtain the form of the cell problems (4.43) and thus the representation of i
N
S) =) o%u(x) Xi(S), forae. (x,S) € O x S.
Replacing the above expression of i in (4.41) and choosing
N
S) =) 2.9 (x) Xk(S), forae. (x,S) € QxS
k=1

lead to the following left hand side of (4.41):

1 PR N

S Joes (i 1( 93Xi)d )(}; +03%)9%¢) dxds

/2 |3|/AS +3%1) (1500 +R;) dS ) 2u g dx.
i,j=1

Taking into account (4.43), the above expression becomes / ASHhom g2y, 8243 dx with the
Q

matrix A5 given by (4.45).
We prove now that A5 is coercive. Let & = (&1,...,&n) € RN be a vector with fixed
entries. From (4.45) we first have

ASHoE = |3\ 3 1.4 (150 + 9% (15 + 93%) dS & ¢
i,j=1
~ ~\2
_ E/SA“S(f;Jragx;;) ds
where

N N
E=Y ¢lsy, Xe= ) &ZXr aeinS andforall &€ RN

i=1 k=1

Then, by hypothesis (4.37) on A, we get
c

AShomg & > ST H(:,’-i-a X@‘HLZ(S

By the periodicity of ds Xz, for every & € RN we get that
712
&+ &Rz s ||§||Lz s+ 198z [2s) 2 18Iz,
N
~ SISO > min [SW] Y7 18 = (min|SW])[g].
i=1 i=1

S, hom

Thus the coercivity of A is proved since

AS,homér . ér Z c |ér|2/ vg c ]RN.

By the coercivity of AS/™ and the fact that u € H}(Q) N H2(Q), problem (4.44) admits a
unique solution. O
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Chapter 5

Classification of elasticity
problems for textile structures in
linear regimes

In this chapter, we enter the second part of the thesis, where we investigate the asymptotic
behavior of a textile canvas. The structure is modeled as a squared piece of cloth made of
long and thin yarns, partially clamped on the left and bottom edges as in Figure 1.1.

Our investigation will span two main directions. The first is to determine which parame-
ters affect the textile behavior among all those introduced to model the structure and how
they do so. Different parameters lead to a range of elasticity problems to study, which are
collected and classified at the end of this chapter. The second aspect is to investigate some
of these problems in a linear regime (small deformations for the yarns) to understand how
the different obtained displacements behave at the macroscopic level. This will be done in
Chapter 6 and 7.

Before getting started, we find it convenient to give the following definitions, which will
often appear throughout the rest of the work.

Symbol Definition Meaning

LeR* Constant Lenght of the fibers.

I<LeR" Constant Length of the partial clamp.

Q = (0,L)? In-plane textile domain.

Yy = (0,2)? In-plane reference cell.

ee Rt Small parameter Distance between fibers.

Ne €N =L Number of 2e-segments in L.

ne € N = 2% Number of 2e-segments in I.

KCe =10,...,2N:}? Set of nodes in Q.

x € 1[0,1/3] Constant Rat.io between. the fiber’s distance and
their cross-section.

re Rt = ke Width of the fiber’s cross section.

Wy = (—x,x)? Reference fiber’s cross section.

Wy = Wye = (—r,1)? = (—xe, Ke)? Rescaled fiber’s cross section.

x € R3 = (x1,x2,x3) Variables in the mobile reference frame.

zeR3 = (z1,22,23) Variables in the straight reference frame.

2 € R2 = (21,22) Variables restricted to the in-plane compo-
nents.

d; = a% Partial derivative with respect to to z;.
Linearized strain tensor (symmetric gradi-

e(u) = 3(Vut (Vu)T) ent) of a displacement u.( ! i

w, B € {1,2}2 Constant Shorten notation for direction e; and es.

a,b,c € {0,1) Constant Sg(l)rjt}en notation for lines in the reference
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5.1 Parameterization of a curved rod

In order to model a woven canvas structure, we start by modeling the basic component
of which a textile consists: a long, thin, strongly oscillating rod. Then, we will define a
displacement over it and its associated strain tensor. These results have already been proved
in Section 3 of Griso, Orlik, and Wackerle, 2020b.

We start by considering a relaxed rod of length L € R and squared cross-section w, =
(—xe, ke)%:
Pe = (0,L) X wy.

Then, we define the 2-periodic function

—K ift € 0,x],
(t—x)? (t—x)3 .
_ -1 _
D(t) = K(6(1 207 2 ) iftelni-x, (5.1)
K iftel—x1],
D2t ift €[1,2]
and we rescale it to a 2¢e-periodic function setting ®(t) = ¢P (2) , which is piecewise C?(R)

and overall C!(R). By definition, such a function satisfies
&P |00 (r) + el Pl 1o () + | Pell 1o (r) < Ce.
We now define the function
ME(Z1) = z1€1 —|—CD£(21)63, Z1 € [0, L}.

This curve has mean direction e and oscillations in direction e3. Hence, we can define the
mobile reference frame (ts, e, ng) , or so-called Frenet-Serret frame, by

. alMg 1 . 1
t. = = —(eq +01D.e3), n=t:-Ney = —(—01d.e; +e 5.2
¢ = oM %( 1+ 01Dce3) e=t:Ney %( 1Dceq + e3) (5.2)

where 7, = /1 + (9P, )2. We have t., n. € C'([0, L])3. Their derivatives are

& = CeYel, @ = —Ceet
iz, = CeYeNg, iz, = eYele
a%q)s(zl)

where the piecewise continuous function ¢g(z1) = is the curvature. Denote by

7 (21)
Ce=(t e ng) €SO(3)

the basis transformation matrix from the fixed frame (ej, e, e3) to the mobile one (t;, ey, n¢).
Now, we are ready to define our 2e-oscillating rod:

Q. = ws(Ps)/

where the function ¢, : [0,L] x R? — R3 is the transition map from the straight to the
oscillating rod. It is defined by

Pe(z1,Y2,Y3) = Me(z1) + y2e2 +y3ne(z1),  (z1,¥2,¥3) € [0, L] X wy.

Note that we use the variable z to denote the yarn length while we use y to denote the cross-
section.
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Straightforward calculations show that

e 0 0 B Wl 00
sz:(allps ayzlps ays'vbﬁ)ch 0 10 and (v2¢€> =({0 10 Cg'
0 01 0 1

where 7, is the Jacobian for the changing of coordinates
Me(z1,y2,y3) = det (Vipe(z1,12,y3)) = ve(z1) (1 — yace(z1)),  V(z1,¥2,¥3) € Pe.
As it has already been shown in Remark A.1 of Griso, Orlik, and Wackerle, 2020b, if
ke (0,1/3],

then the Jacobian 7, of ¢, is bounded from below and above and therefore the transformation
e from P, onto Q, results to be a diffeomorphism. In particular, there exist two constants
Co, C; such that for every ¢ € L?(Q,):

Collg o Yelli2p,) < ¢lli2(0n) < Calld o Pell2(p,)- (5.4)

This means that the L? estimates for a function computed on the straight beam and the
estimates computed on the oscillating one will only differ by a constant.

From now on, we will simply denote ¢ the function ¢ o .

5.2 Decomposition of a curved rod’s displacement

Let u € H'(Q;)3 be a displacement. From Theorem 3.1 of Griso, 2008b and Lemma 3.2 of
Griso, 2008a we have the following decomposition for a curved rod:

u=Uy+1u, a.e. in Q; or equivalently in P. (5.5)
The first quantity U,; € H'(P)? is called elementary displacement and it is defined by
Uer(z1,Y2,y3) =U(z1) + R(z1) A (202 + y3ne(z1)),

where the fields ¢/ and R belong to H'(0, L)3. They represent, respectively, the rod’s middle
line and the rod’s cross-section’s rotation. The second quantity # € H'(P;)? is called warp-
ing and it consists of the remainder term of the displacement. From Griso, 2008b, it satisfies
fora.e. z; € (0,L):

/w ﬁ(zll ]/2/ ]/3)dy2d]/3 - 0/ /(;J ﬂ(zl/ }/2/ y3) A (]/292 +y3n€(zl))dy2dy3 =0.

Due to the equivalence of norms (5.4), the estimates with respect to the arc parameter and
the straight reference frame differ from a constant. Applying this concept to the estimates
for a displacement over an oscillating rod derived in Griso, 2008b, we get:

C C
HalRHLZ oL S 7||€x(”)||LZ(Q€), Halu - R/\alMSHLZ 0L S 7||ex(u)“L2(Qg)’ (56)
OL) = ¢ OL) = ¢
#1200,y < Cellex(u)ll 120,/ IVattl| 1200,y < Cllex(u)ll2(g,)- (57)

Identically to Griso, Orlik, and Wackerle, 2020a, we find it convenient to define a more suit-
able decomposition for the middle line displacement /-

U(Z]) = U(Z]) +'R/\CDS(21)83, z1 € [0, L],
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where U € H'(0,L). In this sense, we can rewrite the elementary displacement in the fol-
lowing way

Ue(z1,y2,y3) = U(z1) + R(z1) A (Pe(z1)e3 + yoes + y3ne(z1)) (5.8)
and from Lemma 3.4 in Griso, Orlik, and Wackerle, 2020a, estimate (5.6), becomes

C
|10 =R Aer]| 2 < allex()li2g,) (5.9)

where C only depends on «.
We also remind that if a rod is clamped at one extremity, e.g., z1 = 0, then

UO)=U(0)=R(0), #0,-)=0 ae w,. (5.10)

As we will see in the next section, the clamp is important to estimate the fields themselves
starting from the estimates on their derivatives (5.6)-(5.7)-(5.9) and using the Poincaré in-
equality.

5.2.1 The linearized strain tensor associated with the displacement

Now that we set a suitable decomposition for the displacement, we are interested in the
form of the associated strain tensor since it will later enter the left-hand side of the elasticity
problem.

Note that since we are in the assumption of small deformation, we recall that the linearized
strain tensor coincides with the symmetric gradient of the displacement.

Given u € H'(Q,)?, equality (5.3) yields
e

00
(azlu ayZu aysu) - VXM VIIJS = qu Cg (O 1 0) .
0 01

Since we will later state the problem in the straight reference frame, we want to express the
symmetric gradient in such a frame. Note that the above equality implies that

1
’78211/! N tg ayzu N tg ayBM N tg
€
1
CIvVucCe = ;7—8211/1‘%2 Oyt~ ey, Oyli-ey, |,
€

77—821u‘ns dy,U Mg Oyl - Mg
&

which, together with the definition of symmetric gradient

(Vau+ (Viu)T)

N| =

ex(u) =

leads to the quantity we are interested in:

1
iazlu‘tg * *
11"
Cle,(u)C. = §<iazlu-ey2+8y2u~t£> Iy, - ey, *
1

1 1
5 (iazlu ‘Mg + Dy, U - t£> > (Byzu ‘Mg + dy, U - ey2> dy - Mg

By straightforward calculations on the gradient of the decomposition (5.5)-(5.8), the sym-
metric gradient of a rod displacement in the straight reference frame is

e(u) = e(Uey) +e(u),
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where the first quantity is the symmetric gradient of the elementary displacement

;((aﬂU—R/\(ﬂ) + R A (q)geg-l-]/zez-l-]/gng)) b % %
e

1
e(Uez) = 2778<(81U —RA 91) + 01 RA (Cpseg +12ep —|—y3n€)) ey 0 x (5.11)
2}1((811[} — RAE]) +RA (CDge3 + o€ +y3n€)> ‘ng 0 0
e

and the second one is the symmetric gradient of the warping

1
— 0z, U - te * *
1,1 "
e(@) = | 5 (ﬂ—azlﬁ ey, + 0y, k) 3y, - ey, « |, 1
&
1,1 _ _ 1 _ _ _
E(iazlwng—b—aysu-tg) E(awu-ns—i—a%weyz) dy, 1 - g

5.3 A new decomposition for the displacement

Now, we would like to define a new decomposition of the displacement to simplify the
form of the elementary symmetric gradient (5.11). To be sure that the new decomposition is
close enough to the old one, we will use the approximation of functions by interpolations on
intervals of length ¢, as we have already seen in Section 2.2.

5.3.1 Properties of the interpolating functions

Let A = (Ay,..., Azn,) be a vector in R?2Ne*1. Given a function ¢ € H'(0, L), we define its

linear interpolation ¢>l[;.?1] € WL*(0, L) on the e-intervals of the segment (0, L) by setting

. - —(p+1
o8 (z) = A,,H(Zl - ”S) —A,,(W), Vz1 € [pe, (p+1)e], ¥p € {0,...,2N: —1}.

Let B = (By,...,Ban,) and B’ = (B, ..., By ) be two vectors in R2Ne*1 Given a function

¢ € H?(0,L), we define its cubic interpolation c/)c[ﬁ'bm € W2>(0, L) on the e-intervals by

4)5,;3/](21) N Bp(Zzl — (ip — 1)8) <21 — (Z + 1)8)2 +Bp+1<(3+2p€)£—221> (21 2 pS)Z

B P DS (1 (e pe) 1 Bz~ (p+ 1)),

Vz1 € [pe, (p+1)e], Vp € {0,...,2N; — 1}.

Atlast, let D = (D, ..., Day,) be a vector in R2Ne+1 Given a function ¢ € H'(0,L), we
define its "y"-interpolation (P! € W1 (0, L) on the e-intervals of the segment (0, L) by

pPl(z1) = DP+1(21 z Ps) B Dp(%p—i_l)w

G - Dola @9 (),

Vz1 € [pe, (p+1)e], Vp € {0,...,2N; — 1}.

+

Below, we set the estimates for these interpolations.

Lemma 17. For every A € R?Net! we have

(Al 12 T, (A2 Wl Ay g — Ay 2
95 Wiz < Ce 1o 149 1000 Nz < Co 1 ey
pP= p=

. (5.13)
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For every B, B’ € R2Net1 e have

2N, Werl Ay i—A, By +Bpp
(B,B' +1 P +1 P
o5 Moy < Ce( L (14, + 2B ) + ) |20 - TP,
p=0 p=0
2N, Wl A1 — A, Byiq+B,p2
[B,B'] 2 2 p+1 P p+1 p
lorgi 320, <Ce(Z|Bp| + ) | - )
— =0 g 2
2Ne— A B + B, 2
[B,B +1 = 4p +1 14
Ha%lcpcub 12 L2(OL Z (|BP+1 BP‘2+‘ : — 2 ’ )
(5.14)
For every D € R2Net! we have
2N; 2Ne 2
11—
HlP[D]Hp 0,L) < Ce 2 |DP|2’ HallP[D HL2 0,L) < Ce Z P ’ ’ (5'15)

p=0

Proof. The proof of (5.13) and (5.15) follows by the definition of the interpolating functions,
the fact that (0,L) = Y™ (pe, (p + 1)¢) and an affine change of variables.

p=0
The proof of (5.14) follows from the same meanings, together with the particular decompo-
sition of a cubic interpolation (2.19). O

5.3.2 The prime decomposition

In this subsection, we decompose the displacement as a sum of a Bernoulli-Navier displace-
ment and a residual one (warping). This new fields decomposition has two main advan-
tages:

o It contains identities that otherwise must be proven later in the limit;
o Simplifies the linearized form of the strain tensor (symmetric gradient).
Let u be a displacement in H'(7P;)® decomposed as (5.5) and recall the 3-vector fields U,
R € H'(0,L)3. We define the new field U € WV*(0,L) x W2*(0,L)? by
U (z1) =92 (z1), with (U7(0), ..., U3 (2Nee)),
Uy(z) =¢ %8 (z),  with B = (U(0),...,U(2Nee)), B' = —(R3(0),...,R3(2Nee)),

cub
Us(z) =¢BF(z1),  with B = (Us(0),..., Us(2Nee)), B = (Ra(0),..., Ra(2Ne)),

Vz1 € [pe, (p+1)e], Vpe{0,...,2N; —1},

and the new field R’ by

Ri(z1) =pPl(z1), with D = (R1(0),..., R1(2Nee)),
Vz1 € |pe, (p+1)e|, Vp € {0,...,2N, — 1},
o / 1€ [pe, (p+1)e], Vp € { e—1} (5.16)
R2(Zl) = - 81U3(Zl), Z1 € [0, L],
R;(Zl) ﬁalUlz(Zl), Z1 € [O, L]
By construction, we get the following relation:
nU —R' Nep =0,Uje;, ae. in(0,L). (5.17)

Then, for a.e. (z1,2,¥3) € (0,L) X w,, we can define Uy, and 7 by

U (z1,¥2,¥3) = U (21) + R (z1) A (@e(z1)e3 + y2e2 +y3ne(z1)),
i (21,y2,3) = u(21,¥2,y3) — Upn (21,42, 3).
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Note that by the relation (5.17), the quantity U;S ~ is a Bernoulli-Navier displacement.
If a rod is clamped at one extremity, e.g., z; = 0, then it still holds

U'(0) = R'(0), 7(0,-)=0 ae w. (5.18)
We have the following estimates for the fields of this new decomposition.

Theorem 6. The fields U and R’ satisfy the following estimates:

01R z01) < Sles@lizmy, 180 Iz < Slec@lizgy,  G19)

||allU2||L2 0,L) +||811U3HL2(0L i||3x( u)ll2(p,)- (5.20)
The warping term W' satisfies

1@ 20, < Cellexllizipy, IV llizgpy < Cllex(@)llizcpy. (5.21)

Proof. First, note that R} is defined as the "¢" interpolation on the nodal values of R1. Hence,
estimates (5.6); and the "¢" interpolation estimates of Lemma 17 imply that

2Ne1 ((p+1)e) — Ri(pe) |2
Ra((p 1(p
HalR L2(0,L) < Z ‘ P ‘

< H81R1HL2 OL) 4 HeX( )”%2(7%)

Now, note that 1U’1 is defined as the linear interpolation on the nodal values of U;. Hence,
estimates (5.9) in the first component and the linear interpolation estimates of Lemma 17
imply that

2N—1
1 Ui ((p+1)e) — Us(pe) 2
EEAEVED W - |

p_

< HalUlHLZ(OL) 2”695(”)”%2(7)5)'

Now we prove the estimate for U). From the cubic interpolation estimates of Lemma 17 and
estimates (5.6)-(5.9), we have

2Ng—1 —
193105 12201, <5 by g’Uz((pH)j) Us(pe) L Rallpe 1) + Ratpe)
+2N€Z ‘ Rs((p+ 1)) — Ra(pe) f)

C
(H(alU RAel) e2||L2 OL)+€2||81R3”L2 OL)) 4”696( )H%Z(pg)

which by definition of R} it also proves the estimate for 8172/3. By the same argumentation
we prove the estimate for 911U} and 91 R/, and thus (5.19)-(5.20) are proved.

Now, we prove the warping estimates (5.21). From the clamp conditions (5.10)-(5.18) the
Poincaré inequality and estimates (5.19)-(5.20) and (5.6), we obtain

/ C
IR —RHLZ(O,L) < Cel|o1(R = R)|l 12 (orL) = *H@x( )HLZ(PE)

and

U} — Uil 2o,y < Cella1(U) = Un) 1200,y < Cllex ()]l 12(p,)
IU'2 = sl r2(g0) < Ce(llor(L; —Uz>||Lz o) < Ce(1[911 (U, — Ua) |l 120, < Cllex (w)l2(p,),
IU'3 = Usll 1201y < Ce([101(Us — Us) [l2(,1) < Ce? (11 (U3 = Us) 2oy < Cllex()ll2(p,)-
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Now, note that by construction, we have
U7 = (IU/ -U) + (R/ —R) A (Deez + yoe2 +y3ne) a.e. in Q.
Hence, from the above estimates and estimates (5.7), we have
17 0l 2(p,) < Ce(IU" = Ul 20y + €l R = Rlli2o)) + [Hlli2m,) < Cellex(w) 12,0
IV l12p, < Ce(Jon(U" — 1))

< Cllex(w)[22(p,

12o,L) T elo1(R' — R)ll20.0) + IR~ Rll2o,0)) + 1Vl 2p,

which ends the proof of estimate (5.21). O

Note that estimate (5.21) is of the same order as the classical residual displacement (5.7).
This fact is important because it justifies our prime decomposition: it is more suitable for our
purposes and will give the same limit fields as the classical one.

5.3.3 The linearized strain tensor associated with the prime decomposi-
tion

The definition of the fields together with equality (5.17) for the new rod decomposition leads
to the following form of the symmetric gradient of the prime displacement in the straight
reference frame:

e(u) = e(Uy) + (@),

where the first quantity is the symmetric gradient of the Bernoulli-Navier displacement

1 (U] 1Ry
— 0 + | 0uU; | A (Pees+yrer +ysne) | -t * x
e 0 —onU,

N Rt R,
e(U),) = 2 0 + | o} A (Pees +yrer+ysng) | -ex 0 % (5.22)
- U}

s HR,
o 0 + 811U’3 AN (@Eeg + yoer + y3n€) ‘ng 0 O
A\ o ~an U,

and the second one is the symmetric gradient of the warping

1
iazla/'tg * *
1,1, —
e() = E(iazluﬂew+ay2ﬁ’~t8) 3,1 - ey, N S
1

1 _ _ 1 _ _ _
E (iazlul ‘N + ayaul : ts) E (ayzul ‘ng + ay3”/ ’ eyz) ay3”/ ‘Mg

In comparison with (5.11)-(5.12), we have reduced the number of involved fields and incor-
porated some identities.

5.4 The textile structure and natural assumptions

As Figure 1.1 shows, the textile structure is defined as two beams of parallel oscillating
rods that cross each other in a periodic pattern. On such a structure, we set the natural
assumptions that the woven fibers should satisfy: the boundary conditions to ensure the
well-posedness of the elasticity problem, the contact conditions to allow shear between rods
in the areas where they are one above the other, and the non-penetration conditions not to
allow fibers to penetrate one into other. These assumptions will shape the admissible set of
displacements.
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5.4.1 The woven structure

In Section 5.1, we studied the structure of a single curved rod in direction e;. Now, we do
the same for a beam of parallel rods in direction e; and a second beam of parallel rods in
direction e; to obtain a woven canvas.

We denote &, the reference lattice structure

2N, 2Ng
s.=oMuel, ol =] x{ge}, ¥ = J{pe} x [0,L].
q=0 p=0

This grid represents the domain of the beam of rods’ center lines in both directions. For

(2)

every (z1,q¢) € QSEU and every (pe, z2) € &, the middle lines of the beams of rods become

Mg(l)(zl,qs) = z1e1 + qeep + <I>£1) (z1,9¢)es, @gl)(zl,qs) = (1) D (21),

Méz)(pe,zz) = peeq + zpep + @gz)(ps,zz)eg, @Ez)(pe,zz) = (=1)PD,(z7).

Note that the quantities (—1)77! and (—1)? denote the fact that the curved rods are alternate,
allowing crossing between them in an alternate manner (see the zoom in Figure 1.1).

Accordingly, we denote the Frenet-Serret mobile frames derived from (5.2) in the respective
direction by

1
(tg ),ez, (1)), where tgl)(zl,qs) = o) (e +81<I>£1)(21,qs)e3), ngl) = t£1> Aey,
&
1
(el,tg ),ng )), where tgz)(ps,zz) = ey (e +92¢£2)(P5/22)e3)/ ngz) = t£2> A eq.
€

In these frames, the diffeomorphisms become
9t (21,98, y2,13) = MY (21,€) + ez + ysnl (z1,q¢),  forace. (z1,4e,y2,v3) €€ &Y

¢ (pe, 22,91, 93) = M (pe, z2) +e1 +yan (pe,z2),  forace. (pe,zay,y3) € 6 x wy.

X Wy,

Finally, the whole textile results to be
T.=TYUT?, where TV =ypM (61 xw,), TP =9 (6P xw,). (5.24)

(@) ()

For simplicity, a function defined on &; ’ is also considered as an element defined in T;
constant in the cross-sections w,. This is the main reason, why we name z the beam center
line variables and y the cross-section variables.

Let C(®&,) be the space of continuous functions defined on the lattice grid &,. We denote the
spaces of functions by (x € {1,2})

H'(6") = {p € 12(6™) | 8,0 € 12(6!V)},
H'(8¢) = {¢ € C(&;) | dugp € L*(& ()) fora € {1,2}},

and
H2(6") = {9 € H' (6!Y) |99 € H ()},

H2(6,) = {¢ € H'(&) |dup € H (")), for a € {1,2}}.
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We endow these spaces with the following norms:

2
2 2 - 2
I o) = 41 ooy #1001 iy = | K1 g
2 2 2 2
I ) = 1 P oy + 10O o iy = ) Bl o

Every displacement defined on such structure is a couple (#(1),1(2)) which belongs to the
product space H' (T(l) )3 x H! (TS(Z))3 (or, due the equivalence of norms (5.4), to the product
space H! ((’5( ) % w ) x H! (058) X w,)B).

5.4.2 Boundary conditions

We set a partial clamp on the left and bottom boundary of the domain (). Here, the displace-
ment is equal to zero. Given the structure (5.24), we have

M(0,ge,-) =0 e {0,...,2n.},
Clamp condition u(0,qe,) orevery 4 € { e} (5.25)
u(z)(ps,0,~) =0 forevery p € {0,...,2n:}.

As we can see in Figure 1.1, this partial clamp leads to a natural partition of the domain
Q=int(Q U UO3UQy),
where the four subdomains are defined by
O =(0,1), O, =(,L)x(0,1), Q3=(0,1)x(I,L), Q4= (I,L)%

Note that even if the partial clamp that takes place on the left boundary of (); affects the

behavior of the displacement u(!) in the whole subdomain (; U ) since the fibers are the
same. Symmetrically, the partial clamp on the bottom boundary of (); affects the behavior

of the displacement 12 in the whole Q); U Q.

5.4.3 Contact and non-penetration conditions

These conditions determine how the fibers interact in the internal part of the domain. Here,
we assume that they can shear one with respect to another in the in-plane and outer-plane
directions and cannot penetrate each other.

The contact is restricted to the portions where the rods are right above each other. We define
such contact domains in the straight reference frame (el, e, e3) by setting ((p,q) € Ke)

C= [J Cue  Cppe= (CpgenNQ) x {0},  Cpge = (pe,ge) + wr. (5.26)
(pa)€Ke

In terms of the textile domain variables, these areas correspond to

(0551)><wr)| = (et ugey, ()P ee), (y1,2) € wr,
(67 x )\, = (pede+yay, (1) xe),  (y1,12) € wr

The sliding between the fibers is characterized by the non-negative gap functions g.. We
assume

ge=¢"g, geC(),
where h € [0, c0) is a parameter representing the "contact strength." Now, let (ugl), ugz)) be

in H! (osé” X wr)B x H! (&, 82 x wr) be a displacement on the textile. We define the in-plane
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contact conditions by setting

|u,§1€) — ug(22| < £hg,x, aein Cpge, Y(p,q) € Ke. (5.27)

From the physical point of view, these conditions mean that in the contact areas, the dis-
placements can slide one with respect to the other from a value more than zero to a maxi-
mum given by the L* norm of g in that direction.

In this sense, it becomes clear the notion of contact strength. Indeed, if & = 0, then we have
a constant on the right-hand side, and thus no actual bound as the difference of the in-plane
displacements (which still depend on €) goes to zero. On the other hand, if # — co, then the
right-hand side goes to zero faster, and it is then equivalent to setting g, = 0, which would

imply uS),,x = uﬁ?)ﬂ a.e. in Cpg ¢, thus that the fibers are glued on the whole domain.

In the outer-plane component, we define the non-penetration and contact conditions

0< ()P (ul) —ull)) <y aein Cpe, V(pg) € Ke. (5.28)

From the physical point of view, on the left-hand side, we assume that the fibers cannot
penetrate each other, while on the right-hand side, we assume an upper bound on the ad-
missible deflection again.

5.5 Well posedness of the elasticity problem

In this section, we proceed to the definition of the elasticity problem for the small defor-
mations of a textile structure under stress. This problem is the one we want to investigate
through homogenization via the periodic unfolding method.

5.5.1 Set of admissible displacements

Given the structure, the clamp condition, the contact conditions, and the non-penetration
condition, we finally define the set of admissible displacements as the closed convex set

X, = {(u<1>,u<2>) e HY(8Y x w,)? x HY(8?) x w,)? ] (uV),u@) satisfies (5.25)—(5.27)—(5.28)}.

We endow the product space H' (@El) x wy)® x H (652) x wy)® with the semi-norm

7. = ¢|e<l><u<l>>u2 <

LZ(Qial)xw,

2) (u(2))2 )
) + [[e!) (u >||L2(®£2>xw,)
By the clamped conditions (5.25), this semi-norm is, in fact, an equivalent norm to the usual
one of the product space Hl(ﬁgl) x wy)? x Hl(ﬁgz) x w;)3. Thus, X; is a closed convex
subset of H'(&1 x w,)3 x H(8P) x w,)3.

5.5.2 The problem in linear elasticity

Since we are interested in the small deformations for the textile yarns, we will give the lin-
earized formulation of the elasticity problem. We state it now as an assumption, even though
later, we will give sufficient stress on the right-hand side to stay in this regime.

For now, let fg(a) € LZ(TS(“) )3 simply be some applied stress and let aﬁ“) be the fourth order
strain tensor describing the elasticity of the material. Due to the contact constraints (5.27)
and (5.28), we write the linearized elasticity problem in variational formulation:

Find (ugl), ugz)) € X; such that for every (vgl),vgz)) € X

2 ' o o o o 2 o o w (5'29)
a;l /T§“> quk)l,s ex,ij(”g ) ex,kz(ug ) — o™y dx < 0621/% fz-:( Vo™ — o™ dx.
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We find it more convenient to consider this problem in the straight reference frame:
Find (ug ),ug )) € X, such that for every (vﬁ”,vﬁz)) € X

Z/ z]kls €jj )(uga)) I(d)( ga) Uga))ﬂs(a) dzldy3—ad]/3 (5.30)

2 / - (= oy g a2l dys_odys,

where the strain tensors are defined as the symmetric gradients (5.22)-(5.23), but for each
direction.

For the material elasticity of the tensors AE”‘), we refer to the usual Hooke’s Law, from which
we derive that:

i A § *) is bounded: AE r)zjkl € L”(Qﬁé“) X wy);

(ii) A( ) is symmetric: AW =AW =A@

erijkl = “ejikl T s,r,klij;
(iii) A" is elliptic: 3Co, C1 > 0 such that Col[|¢[[[} < A}y, &G < Cil[g][} ae. in
6 x w, and for all symmetric 3 x 3 matrix § (here ||| - |||r denotes the Frobenius
norm).

The existence of solutions for the problem is ensured by Stampacchia’s lemma in Kinder-
lehrer and Stampacchia, 2000.

However, uniqueness is not ensured everywhere in the domain. Indeed, let u, and u/ be
both solutions of (5.30). We can first choose u/ as a solution and u{ as a test function and
vice versa. We get two inequalities, and their sum results in

Z / ZJﬂ;dE ﬁfa)(”f(a) —u'") éf;)(”s(“) —u W)™ d2'dys_odys < 0,

from which property (iii) of A, implies that é(u;) = é(u]), hence u; and u differ from a
rigid motion. Hence, from the clamp conditions (5.25), it becomes clear that we only have

ul(l) (Zl/q81y2/y3) = u”(l)(zqugr]h,]/?.) Vq S {0/~--/2n€}/ (ley2/y3) S (OIL) X Wy,
' @ (pe, 20, y1,y3) = u” @ (pe, 22, y1,y3) Vp € {0,...,2n:}, (z2,v1,y3) € (0,L) X wy,

while uniqueness does not hold in general in the whole domain.

5.6 Estimates for the displacements fields

Let (1), u(?)) be a displacement in X;. Recall the prime decomposition of section 5.3.2:

W (21,96, y2,y3) = U' D (21, q6) + RV (21, 9¢) A (@1 (21, ge)es + yaes + yan (21, ge))
+ﬁ’(1)(zl,q5,y2,y3), for a.e. (z1,4¢,12,y3) € (’521) X Wy,
u® (pe, z0,y1,y3) = U@ (pe, 22) + R'@ (pe, z2) A (D) (pe, z2)es + yrer + yan® (pe, 22))

+7 @ (pe, 20, y1,y3),  forace. (pe,z2,y1,y3) € 6

X W
(5.31)
In order to pass to the limit in problem (5.30), we need to bound the fields and their deriva-
tives that appear in both the left-hand side (strain tensor (5.11)-(5.23) and its equivalent for-
mulation in direction e;) and the right-hand side (fields that appear on the above displace-

ment).
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5.6.1 Fundamental estimates

From Theorem 6, the estimates for the prime decomposition’s fields satisfy (« € {1,2})

! / C
eaR ) 3 )+ 106Ua | 100 < 5 iz,

HaiﬂéU;ﬁt)XHLZ(@ (a) + ||az U (a>||L2(Q§ (a) ) S 87|‘u||T£’ (532)
170,y NI < Cellil
Moreover, from the clamp conditions (5.25), we easily derive that
U™ (0,9e) = R'M(0,q¢) = 0, € {0,...,2nc},
(0, ¢) (0, 4¢) g€ el (5.33)

U’(Z)(pe,o) — R/(Z) (pgl O) = O, p c {Ol .. ,Zne}'

5.6.2 Contact and non-penetration estimates

In order to have a bound for the fields, we use the bound on their derivatives, Poincaré’s
inequality, and the clamp conditions. However, since the domain is partially clamped, we
need to transfer the bound from the fields in the clamped subdomains to those in the not
clamped ones. To do so, we will use the contact and non-penetration conditions.

Starting from (5.31), we note that for a.e. (t1,t2) € wy, the displacements in the contact areas
reduce to

ne (pe + t1,q¢,tp, (—1)P T ke) = u® (pe +t1,q¢) + R/(l)(ps +t1,9¢) A taen
—I—ﬁ/(l)(pe + 1y, ge, by, (—1)P 1T xe),

, , (5.34)
u@ (pe, ge + ta, t1, (=1)PTxe) = U @ (pe, ge + 1) + R P (pe, ge + t2) A teq
+7 @ (pe, ge + ty, t1, (—1)PHke).
We start by giving the warping estimates in the contact areas.
Lemma 18. The warping terms satisfy
Y, (™ ||Lz (Cpge) T 117 ) H%Z(Cw)) < Ceflul?, (5.35)
(p)eke
Proof. Itis a direct consequence of the third estimate in (5.32) of the remainder displacements
7 () and the trace theorem. O
We have the following.

Lemma 19. The in-plane contact conditions lead to the following estimate:

/ _ 1
Y (10 —U®)(pe,ge) P+ 1Ry = R D) (pe,qe) ) < € (2282w ) + Il )-

(P ke
(5.36)
The outer-plane non-penetration conditions lead to the following estimates:

"1 "2 "1 "2 C
Y (107 -0 (pege) P + 2R ~ RSP (pesge) P) < Zlullh. (6:37)
(pa)eKe
Proof. First, from the proof of Lemma 5.6 in Griso, Orlik, and Wackerle, 2020a, we have
2N,

( Z |U (pe, ge) — /(2)(pe,q£)|2 +£2|R/(1)(pe, ge) — R 2 (e, pE)’2>
pq=0

<cy (2 +21g(pe,qe) 2+ 17 Vlac, ) + 17 DN2aic, ) < C(118 1200 +ellully.)
p.q=0
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which proves (5.36).

Concerning the third direction, a first upper bound is given by the above equation. However,
a better bound, that is (5.37), and that does not depend on g3, is proven in Section C in
Appendix due to the long and tedious computation. O

The fact that the outer-plane direction no longer depends on the contact bound g3 is
very important. From the physical point of view, the fact that the displacement alternatively
switches vertical position and the yarns cannot penetrate one into the other gives a sufficient
condition to estimate the difference of the displacements in the third component.

As we will see later, by the fact that the fibers are naturally close enough, the upper bound
contact function g3 in (5.28) in the limit plays a role only when the contact is very strong
(namely, only if & > 3).

5.6.3 Outer-plane fields’ estimates in the whole domain ()

/ ! !/
In this subsection we give the estimates regarding the fields IUS(“) and Rl(“), R2(“). We will
use the relations in the previous sections and the Poincaré inequality to obtain them.

Proposition 6. The outer-plane rotation fields satisfy:

C
The outer-plane middle line fields satisfy
C
||U ”HZ )+ ||U HHZ @) < ?Hu”Tg' (5.39)

Proof. By estimate (5.32), the clamp conditions (5.33) and Poincaré’s inequality, we have

2ne

C
zwn %MWL+ZHR W2y < el

Now we consider direction e; and estimate R'(!) in the non supported domain. We have

T () )2 2 C, 2
L 3 R e ge) < C z (1R (pe, Yy + 2102R b, ) By 1) < Sl
q=0p=0
Then

2N, 27 2N, 27 2N, 27

ZZ£|R psqs|2<ZZ£|R (pe, qe) — p£q£|2+228|72 (pe, ge) |2
q=0p=0 q=0p=0 q=0p=0

1 1\, 1 _Co o
<C(+3)lulf, < Zllulf.
and thus
2 D e )2 ) 2 Ci 2
[ H o) = c), Z elRY (pe, ge) 2 + CE|ar Ry || o) = il
S q Op S

This proves estimate (5.38) for direction e;.

Now we prove estimate (5.39) in direction e;. From (5.38) and identities (5.16), we already
know that

2n

g C
¥ 10 e Wi o) +2||azU (pe ) o) < Il
q=0

Then, the proof follows by the same meaning as the previous estimate.
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From a symmetrical argumentation, we obtain the estimate for direction e;. O

5.6.4 In-plane fields” estimates in the whole domain ()

In this subsection, we give all the in-plane estimates, that are, the estimates regarding the
/ / !

fields Ul(“), IUZ(“) and R;“). Again, the relations and Poincaré’s inequality will be sufficient.

Without loss of generality, we assume a unique bound in direction e; and e, and set

Iglle(a) = 18110y + 182l L)
We have the following.

Proposition 7. The in-plane rotation fields satisfy:

_ 1
IR} 0, IR o) < C( ¥ 2lglimi) + 5 lullz). (5.40)

||H1

The in-plane middle line fields satisfy

/(2 _ 1
10 o) + 102 ooy < C (#2218l + 5 lllr.)

] (5.41)
10 iy + 103 N ) < € (722 gl + 5 l)-

Proof. The proof is done in the same fashion as the previous one, but using estimate (5.36):

2Ne 2n¢ 2N; 2n, 2N, 2n,

Zzem peqe|2<zzsm< (pe, ge) — <><peqs|2+zzsm< (pe, ge)

q=0p=0 q=0p=0 q=0p=0
1
h—
<C(#2 gl + g lul},)-

This proves estimate (5.40) for direction e;. The second direction follows by a symmetrical
argumentation.

Now we prove estimate (5.41);. From (5.40) and identities (5.16), we already know that

2ne 2n,

_ 1
L 10 a0 o)+ 1 19205 e oy < (2Nl + o).

Then, the proof follows in the same fashion as the proof of estimate (5.40).

(1)

Now we prove estimate (5.41);. We consider direction e; and estimate U,
ported domain. We have

in the unsup-

T )P o 2 2 '(2) 2
Y 3 eV (peae) P < € 3 (10 (e ) o + 10201 () o)
q=0p=0 p=

_ 1
< (gl + el )-

Then

N, 2ne , 2N 2, , e

ZZEHU (pe, ge)| <ZZ£|U (pe, qe) — psq€| —i—ZZsﬂU (pe, ge)|?
q=0p=0 q=0p=0 q=0p=0

_ 1
< C(" gl miq) + g|\u||%g).
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and thus
"(1)2 T 2 2 2
1071, ) <c;}}W (pe,qe) + C2U V1, o
1
2h-3 || (|2 2
< (gl + Ul
which concludes the proof. O

5.6.5 Other important estimates

In this subsection, we give the last important estimates that we need to take into account:
the estimates concerning the fields in the clamped subdomains, which we expect to be better
than on the unsupported ones, and the estimate concerning the in-plane derivatives, which
we will later use to improve the in-plane estimates for strong contacts via Korn’s inequality.

Corollary 5. One has

(1
o, + Uy ||u\|n,

||L2 (1) N(QUM)) HLZ(Qj N(OUQ ))

" ) (5.42)
2 h—1/2 st
||]I'J ||L2 ) (01UQ3)) + ||U1 HLZ(ﬁgz)ﬁ(QlUQz)) S C(s ||g||L°°(Q) + € ||uHT£)

Proof. Estimate (5.42); follows from estimate (5.32), the Poincaré Inequality and the clamp
conditions.

Now we prove (5.42),. From (5.42)1, we first have that

2N 2n,

2ne , C
) Z U (pe,ge) > < C Y. (U2 (pe, )| 2(0,0) + 22U, (pe M) < gllul\i-
q=0p=0 p=0

Then
2N; 2n, ') 5 2N 2n, ( ) ) 2N; 2ng '2)
ZZEIU (pe,ge)] <ZZS!U (pe,qe) — (P8q€|+ZZEIU (e, qe) |?
q=0p=0 q=0p=0 q=0p=0
1
Zh 1 2h 1 2 2
< (g uiy + (14 ) Nl ) < (&g Buier + oz )
and thus
2N; 2N, 2n, ') ) ) )
ZIIU 216)Ez0p) < € 1 . U3 ege) 2+ 103" gl
q=0p=0
1
2h—1 2 2h—1 2
< c(s I8y + (14 ) 13,) < C(2 gl + oz Nl )-
The proof is complete. O

Corollary 6. In the whole domain, the following estimate holds:
’ ’ _ 1
100, + 32012 | 2o, < C (&2 llp(r) + S Il ). (5:49)

Proof. From the fact that (alU;(l), E)le/l(z)) = (—R;(l), R;(Z) ), estimate (5.36) implies

2N¢ 2Ne

/ 1
Z Z | 81U +82U1(2))(p£,qs)| < C( e 4Hg||L<>°(Q ?3||M||2T5)
q=0p=0
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Hence,
"(1 "2
[0, + 3207 z (101057 - 98) 22,1 ) + z (10:0,7 (pe, ) 2241
2Ng 2N; (1) '2) ”
+e) Z‘ 61U +0,U, ) (pe, ge) |
q 0p=0
O ulB, + Ce( 3 1Bumiy + 5 13,
2h—3 2 2
< c(e 181y + zlulB.),
which concludes the proof. O

5.7 Choice of the parameters

Looking at the estimates in the previous section, we notice that three factors influence the
estimates for the displacement fields: The estimates proven in the previous section depend
on three main factors:

1. The ratio between the thickness of fibers r and the distance between them ¢;
2. The assumption of small deformations (which gives a bound for the strain ||u||1,) ;
3. The strength of contact between the fibers & (which gives a bound for g¢).

Concerning the first aspect, as we already know, we assume that
r=Ke, with « € (0,1/3],

so that the parameters for the fibers’ cross-section and the distance between them are asymp-
totically related as they go to zero. We can remove this assumption, but it would require a
model that does not involve the prime decomposition. Because of this, and because the
problem already has a high level of difficulty, we leave the other cases out of the scope of
this work.

Concerning the second aspect, we know from Friesecke, James, and Miiller, 2006 that a
bound for the elastic energy for the deformation of a rod v € H'(P)? (remind that P, =
(0, L) x wy) leads to the following regimes:

0>5 Linear theory;
6=5 Von Kéarmaén theory;
|| dist(Vxo, SO(3))H%;E < Ce®, with { € (3,5) Linearized isometry constraint theory;
6=3 Bending theory;
5<3 Membrane theory.
From the decomposition of a rod deformation made in Blanchard and Griso, 2009, Section

I1.2.2 and the associated fields estimates, it is then possible to find a bound for the elastic
energy of a textile deformation

1 .
5 1(Va0) " (Vi0) = Ia, < C|dist(V0, SO(3))]I7,

Iz,

Hence, if we are in the linear regime, we would have that the strain tensor can be approxi-
mated to the symmetric gradient of the displacement u = v — Id, and we have

1 A
HMH%} = EH(qu)T"' (vxu)HTs < Cgé, for § > 5.
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For simplicity, we will fix § = 5 and get the following bound for the strain tensor
[ullf, < Ce, (5.44)

while continuing to use the linear formulation of the elasticity problem and the linearized strain tensor
(symmetric gradient of the displacement).

This is a more convenient way of proceeding, and avoids the writing of § > 5 in every
future estimate. We just keep in mind that, since the estimate for the strain tensor of the
elasticity problem (5.44) depends on the applied stress, we can always rescale the applied
stress according to ¢ to remain in the context of linear elasticity.

At last, we have the contact strength. The lower bound of this value is the maximum slide
we can allow such that the textile keeps a reasonable shape (for i = 0, there is no actual
bound), while the upper bound is given by the minimum strength applied, up to which we
can assume the fibers to be glued (limit case +o0).

5.7.1 Different type of r = «e textiles in linear regime (||u|| 1, ~ &5/?)

In order to find the most representative textile structures, we first collect the estimates of
Section 5.6: the global ones (5.32), the outer-plane ones (5.38), (5.39), the in-plane ones (5.40),
(5.41), the ones in the clamped subdomains (5.42) and the mixed derivative ones (5.43).

Then, we need to choose the parameters in the previous subsection: we already fixed the
relation r = ke, and in addition, we fix the gradient estimate ||u|| . ~ €/ to study the linear
elasticity of yarns. The last parameter to fix is the contact strength. Without loss of generality,
we can assume /1 € IN* and obtain the following:

e h > 3: We have a textile with glued fibers;

e h = 3: We have a textile with strong contact;

o 1 = 2: We have a textile with loose contact;

e h = 1: We have a textile with very loose contact.

We collect all the explicit estimates for the cases mentioned above in Table 5.1.
This table is really important because we can derive some preliminary considerations on

CONTACT ORDER

FIELDS h>3 | h=2 | h=1
(1 (2

Outer-plane IRa2 s ) 1R N ) ~VE | ~MVE |~ VR
"(1 (2

1052 () + 102 sy ~VE | ~VE |~ e
(1 (2

In-pl HR3('€)HH1(®§1)) - ”RS(,S)”H%E”) Ve Ve
n-plane 2% (o

P 1052 ) + 1052 st ~VE | ~vE |~
"(1 "2

0 e ) + 1052 g st ~VE | e |~k
M (2

In-plane ||Ul(,€) ”LZ(@S)Q(QlUQZ)) + |1U2(,8) ||L2(®£2)m(01u03)) ~eyE | ~eye | ~eye
"1 (2

clamped 1026 12 (000,000 + Y1 200,00, | ~EVE | ~EVE | ~ Ve

In-plane "(a) (1) '(2) ~ L

derivatives ||aO¢UOL,€ ||L2(Q5£a)) + ||81U2,g + a2U1,g HLZ(ng) ~ S\/‘E ~ \/E \/E

TABLE 5.1: Table of explicit estimates for the fields r = xe textiles in a linear
regime ||u||1. ~ €/? and according to the different contact strength 1 € IN*.

how the displacement behaves in the different subdomains (21-0)4, which can help us define
proper final decomposition for the displacements for each case. In particular:

A. We have an idea of how contact and strain tensor quantity interact with each other
and govern the field estimates. Indeed, for i > 3, the field estimates do not change
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because, for such values, the contact part becomes smaller than the strain tensor one
and does not influence the estimates anymore. On the other hand, as the value of
diminishes, we get worse estimates of the displacement fields because the contact part
gets the upper hand.

B. The outer-plane estimates are the same for every contact case. This fact means that the
outer-plane fields have a sufficiently good estimate, even if the contact is very loose or
if no contact is set. Hence, the same final decomposition will apply in all cases.

C. The in-plane estimates in the clamped parts are better than in the whole domain. This
is because a looser contact between fibers would compromise the transfer of informa-
tion from the clamped subdomains to the not clamped ones.

D. The in-plane derivatives in the case 1 > 3 are of the same order as the in-plane fields
in the clamped parts. This allows us to obtain in-plane estimates for the fields ~ e/¢
due to Korn’s inequality, hence the in-plane fields behave the same in the whole ),
and a partition is no more necessary. It is not the case for i = 2, where the in-plane
derivatives have a worse estimation, and thus the in-plane fields will have a contrast
in the estimates (anisotropy) and behave differently in the four subdomains of ().

E. For h = 1, the contact is so loose that the estimates do not give a bound for the in-plane
fields as e — 0. For this reason, we need to elaborate on a different strategy for this
case, introducing some more assumptions.

In the next two chapters, we will delve into the investigation of these cases one by one. From
now on, only the choice of r = ke and the contact strength & will be fixed, while the strain
tensor estimate still needs to be justified by the choice of the forces on the right-hand side
of problem (5.30). Hence, the field estimates will continue to depend on the bound for the
strain tensor.
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Chapter 6

The cases of a textile with strong
contact (g: ~ € or higher) and very
loose contact (g ~ ¢)

This small chapter is dedicated to the cases of textiles with strong contact and very loose
contact. The first case has already been investigated in Griso, Orlik, and Wackerle, 2020a,
and here we will only show that we can reach the same final displacement decomposition
with the newly developed strategy. The second case turns out to be trivial; hence no homog-
enization will be needed.

6.1 Textiles with very strong contact
Concerning textiles with very strong contact, for # = 3 the contact and non-penetration
conditions (5.27)-(5.28) become:

{|u,§l€) - u0(¢2€)| < gy, aein Cpye, Y(p,q) € K¢, 6.1)

0< (—1)”*‘4(11&) - uézg)) <e&lgs aein Cpe, Y(pq) € Ke.

If then the contact is even higher (& > 4), no improvement is made on the fields estimates,
hence no improvements on the difference between the displacement estimates (see (5.36)-
(5.37)). Hence, conditions (5.27)-(5.28) are equivalent to the following:

i) —ul? <o
—1)?

, aein Cpge, Y(p,q) € Ke,
0<(-1) +‘7(ug€) — ugi)) <0 aein Cppe, Y(p,q) € Ke.

6.2)

(1) (2)

This implies uy¢ = uye a.e. Cpge, hence that we can assume the fibers to be glued in the
contact areas of the whole domain. In this sense, one can first extend the woven textile to
a periodically perforated shell and then proceed to homogenization, as it has been done in
Griso, Orlik, and Wackerle, 2020b.

The above cases have already been investigated in Griso, Orlik, and Wackerle, 2020a and
have been the first breakthrough for this kind of problem. For this reason, we will reach the
final decomposition for the displacement before the limit with the newly developed lattice
strategy and recall the conclusions in the final chapter as a comparison with the other cases.

6.1.1 Final decomposition of the displacement in the in-plane component

Comparing the estimates for each field in Table 5.1 and the ones concerning their difference
(5.36)-(5.37) for h > 3 and (5.44), we find it convenient to define the final displacements fields
such that they combine both directions and that take into account the clamp conditions.
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Proceeding as in Subsection 5.3.2, we define the field U3 € H?(&,) by

Us(z1,9¢) = ¢BF)(z)), with B =~ ((UY +1U?)(0,q2), ..., (UL + US?) (2Nee, ge)),

cub

1

2

1

B =2
2

(Ry" +Ry)(0.99), ., (R + R,V (2Nee, ge),
Vz1 € [pe, (p+1)e], Vq€{0,...,2N¢},
Us(pe, z2) = ‘Pcub ( 2), with B= ((U3(1) +1U3(2))(p£,0),. e (U3(1) +1U3(2))(p£,2Ng£)),
(R + R (pe,0),..., (R + RV)(2Nee, ge)),
Vzy € [qe, (g +1)e], Vpe{0,...,2N;}.
We then define the fields Rq, R, € H!(®;) by
Ra(z1,9¢) = —01U3(z1, g¢), Vzy € [0,L], Vq€{0,...,2N;},
(RS + R (pe,0), ..., (RYY + Ry ) (pe, 2Nee)),
Vzy € [qe, (g +1)e], Vpe{0,...,2N;},

. . 1
Ra(pe, z2) = ¢Pp(z2) with B = 3

and

(R + R (pe,0),..., (RIY + R{P) (pe, 2Nee)),

Vzp € [ge, (g +1)e], VpeA{0,...,2N¢},
Ri(pe, z2) = 0, U3(pe, z2), Vzp € [0,L], Vpe{0,...,2N¢}.

Ri1(z1,9¢) = pp(z1) with B =

NI~

According to the clamp conditions (5.33), we replace
WY +U,?)(0,g¢) and (R\V + R V) (0,4¢) by 0 if g€ {0,...,2n.},
WY + U ) (pe,0) and (R\Y + R V) (pe,0) by 0 if pe{0,...,2n.}.
Note that the fields defined above vanish on the clamped points of &, and satisfy equalities
Ry, = —01U3z a.e.in 651) and Ri1=09U3z a.e. in 622).

Proposition 8. The outer-plane fields satisfy the following estimates:

C
IRillmn (e, + IR2ll (e, + 1Usllie) = S llulr.:

Proof. Step 1. We prove the estimates of R and R».

From the definitions of R, and R;(l), R,z(z)

Lemma 17, we get

, estimates (5.37), the clamp condition (5.33) and

: C
IRy — R 0, + €l (Ry ~ Ryl < Zlull.. 6.3)

HLZ (650‘))

Hence, the first estimate in (5.32) and the above one lead to
C
HalRZHLZ(éél)) + ||82R2HL2(6£2)) S ?Hu”Ts'

By the fact that R»(0,ge) = 0 for all g € {0,...,2n,}, the above estimate and the Poincaré
inequality imply
2ne

C
ZIIRz 38l < lulT-
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One has
21 2N, 2 2ne ) C
Z 28|R2 pe g€ | <C Z HRZ /q€ HLZ 0,L) +e HalRZ /g€ HLZ 0,L) ) < T;HMHTe
q=0p=0 q=0 €
and then
2 & 2 ) 2 C 2
IRelR, ) < € L B elRalpesae) P+ R, oo <
¢ q=0p=0

By a symmetrical argumentation, we prove the above estimate in QSEU and get that

C
IRl (e, = Zllull-

We prove the estimate for R; in the same fashion.
Step 2. We prove the estimates of Us.
First, from estimates (5.37), the clamp condition (5.33) and Lemma 17, we have

IUs —U o €0 (Us = US| 5 o0, + €2 0F (Us — U5 < Clullr..

(6.4)

||L2 )HLZ(ggﬂﬁ))

Then, the second estimate in (5.32) and the above one lead to
C
132 U5 2 ) < 2l

In Subsection 2.2.2, we saw that the function U3 € Hz(Qﬁé“)) can be extended from the grid
to a function Q(Us) € H?(Q) by extending it to every small cell Yy, = (pe, qe) + €[0, 1]
The values of U3, R1, R, and their derivatives at the vertices of the cell Y}, . uniquely define
this extension, and we have:

Q(U3)|@S = Us;, alﬂ(Ug,)'@ = —R,, BZD(U:),)'@ =R (6.5)
and
Q(Ujz) = VQ(U3) =0 ae. on {0} x (0,1)U(0,1) x {0}.
Thus, applying twice Korn’s inequality, we get
12(Us) [ 112(q) < Clle(Q(Us )HHl < CID*A(Us) | 2(q)
C (6.6)
< CVe(||3,Uf IILZ ) IRl @) + I R2ll(6,) < ezl

Taking the restriction to the lattice grid &, it first gives

C
1Usll2(s,) < g”“HTs'

Then, we obtain
C
19Usll 2 0 < 25 Il

The proof is concluded. O
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6.1.2 Final decomposition of the displacement in the in-plane component

We again recall the interpolations in Subsection 5.3.2 and define the field U; € H?(&,) by

Uiz ge) = ¢N(z),  with A= 2(UY +UP)(pe,0),..., 0N + U2 (pe, 2Nee)),

2
Vz1 € [pe, (p+1)e], Vgq€{0,...,2N.},

. 1 / / ’
Ui(pe ) = ¢l (z2), with B =2 (U +U®)(pe,0),..., (U + U) (pe 2Nee)),
B = %((R D L R (pe,0),..., RV + RP) (pe, 2Nee)),

Vzy € [ge, (g +1)e], Vpe{0,...,2N.},

and the field U, € H?(&,) by

, 1
Ua(z1,q) = gl (1), with B = (0" +U2)(0,q¢), .., (U + U, 7)) (2Nee, ge)),
1 ’ ’ / /
B = —5( RV +R3D)(0,q¢), ..., (R + R{) (2Nee, ge)),
Vzy € [pe, (p+1)e], Vq€{0,...,2N¢},
. . 1 / ,
Ua(pe,z2) = 9y (z2),  with A= (U +U7)(0,¢),.., (U3 + U3 (2Nee, o)),

Vzp € [qe, (g +1)e], Vpe{0,...,2N;}.
Then, we define the field R3 € H'(&;) by

Rs3(z1,9¢) = —01Uz(z1,9¢),  Vz1 € [0,L], Vgq€{0,...,2N;},
Rs3(pe, z2) = 0, U1 (pe, z2), Vzp € [0,L], Vpe{0,...,2N;}.

By the clamp condition (5.33), we replace
WY +1U,2)(0,g¢) and (RSV +R{V)(0,4¢) by 0 if g€ {0,...,2n.},
WY + U ) (pe,0) and (R + RV (pe,0) by 0 if p e {0,...,2n}.
Note that these fields vanish on the clamped points of &, and satisfy equalities
Rz = —01U, a.e.in @ﬁ” and Rz =d,U; a.e.in @ﬁz).

Proposition 9. The in-plane fields satisfy the following estimates:

1
1U1 (@) + 022Ut | 22 < C(evEllgllimay + - llullr, ),
1
10251y + €000z 20y < C(evellglioy + ; lln),
1
IRall 2 () + 11 RS g, + 102R5 o)) < C(evElglimgen + ¢ lullr, ).

Proof. Step 1. We prove that the following estimate holds:

1
191Ul 5 gy + 192Uzl 5 ) + 19102 + 02U1 [l 12, < C(S\/EHgHLw(Q) + g||u\|n)
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From the definition of the fields estimates (5.36) and Lemma 17, we get

Uy - u,? 22+ €l102(Ur = u,?) 2, + €922 (Us — u,?)

||L2(®£ ||L2(®£2))

< C(eVelgllis(q) + lullz,),

1) 1) > ) (©7)
||U2—U2 ||L2(6£1))+£||81(U2—U2 ) 1)) + ¢ ||811(U2_U2 )HLZ(@£1>)

< C(Velgls(ay + lulz,)

”LZ(@E

and
102 =0y )+ el1 (01 = Uy ) < C(EVElg iy + el
1U2 = U3y o, + €102(U2 = U3 [ 2 o0, < C(VElSllim(y + 1ullr,)-

Hence, estimates in (5.32) and the above ones lead to

(1 "1 1
181013 g0, < 18101 =0Vl g + 10U g, < C(VElg ey + ¢ ),

(2 (1 1
192U2 ] ) < 0202 = 32U, g, + 102U o, < C(VEllgllisgeny + < Nz, )

101U + 02U1 [ 12,y < [|01U2 — 91U, y, + 02U - 3,0,

1)

/ / 1
10103 =00\ 1200 < C(VEliglimioy + £ lulr)-

Step 2. We prove the statement of the lemma.
The estimates for U; and U, follow from the clamp conditions and Korn’s inequality with
the estimates in Step 1, while the second order derivatives follow from (6.7) and (5.32).

Concerning the estimates for R3, they directly follow from the construction of such function.
O

Now that we defined the final fields, the final decomposition of the Bernoulli-Navier
displacements becomes

1 Uy R 1 1
uz(n\)r(zlfﬂlf, Y2,Y3) = gz (z1,9¢) + gz (z1,9€) A (CDE )(21,178)63 +yer + y3n£ )(leqﬁ)),
3 3

for a.e. (z1,4¢,12,y3) € 6 x w,,

2) Lt R (2) 2)
Ugg(pe, zo,y1,y3) = [ Uz | (pe,z2) + | R2 | (pe,22) A (Cbg (pe,z2)e3 + y1eq + ysng (ps,Zz)),
U, Rs

fora.e. (pe,z2,v1,13) € 62 x w,.
As a consequence, the residual displacements are (x € {1,2})
7@ =y — Ul e HY(TY)
and due to the third estimate in (5.32), estimates (6.3), (6.4) and (??) they satisty

||ﬂ( ) +€HVﬁ(D‘)||L2(Q§(D‘)

. wa) S C€||u||T£'

M0

L2(&," xwy
Note that this estimate is of the same order as the residual displacement of the prime de-
composition (5.21) and of the classical one (5.7). This fact justifies the choice of this final
decomposition, which is close enough to the classical one but incorporates all the identities
and simplifications for the unfolding and homogenization.
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6.1.3 A priori conclusions

The decomposition and the estimates remind us of the results obtained in Griso, Orlik, and
Wackerle, 2020b. Of particular relevance is that the estimates have the same order anywhere.
This is because the contact between fibers keeps them so close to each other (since it is very
strong) that we can transpose the clamped subdomains’ behavior to the not clamped ones
without loss of information. In this sense, a domain partition is no longer necessary since
the displacement will behave the same anywhere.

6.2 Textiles with very loose contact

In this section, we comment on the case of textiles with very loose contact. This means, that
the contact and non-penetration conditions (5.27)-(5.28) become for h = 1:

uid — ull)

0< (—l)pﬂ(u&) - uéz)) aein Cpye, Y(p,q) € Ke.

,€

< €ga, aein Cpye, Y(p,q) € K,

Note that in the outer-plane component, no upper bound is set. This comes from estimate
(5.37), which does not depend on the norm of g. Indeed, the alternate switch of the vertical
position of the fibers and the non-penetration condition gives a sufficiently good estimate
(namely, ~ &) for the difference between displacements in the outer-plane component. That
is why set no bound if 1 < 3.

6.2.1 Final decomposition of the displacement in the outer-plane compo-
nent

Looking at the estimates in Table 5.1 for the different contact strengths, we notice that the
estimates do not change. Hence, the outer-plane component’s final displacement is decom-
posed in the same way as in subsection 6.1.1 and gives the fields Ry, R, € H!(®,) and
Uz € H%(&,).

6.2.2 New assumption: the glued conditions

From the estimates in Table (5.1), it is clear that the used lattice strategy fails. Indeed, while
we have good estimates in the outer-plane direction, the in-plane ones explode to infinity as
€ goes to zero. It physically means that the contact strength is so loose that the fibers in the
unsupported subdomains do not inherit the estimates from the clamped ones. Hence, we
have no information on the bound on those domains, leading to the textile falling apart as
in Figure 6.1.

In order to avoid this behavior, we need to set more boundary conditions. Namely, we can
glue the displacements in both directions on the whole left and bottom boundary of the
domain:

u(l)(O, ge,-) = u(z)(O, ge,-) forevery g € {0,...,2N;},

Glued condition
u(l)(p£,0,~) = u(z)(ps,O,-) forevery p € {0,...,2N;}.
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FIGURE 6.1: A textile with very loose contact. The contact is so loose that the
fibers fall apart in the unsupported subdomains.

In this case, the displacements coincide but they are not zero. In the same fashion as in the
proof of Lemma 19, this new assumption leads to the following in-plane estimates:

2Ne ’ i /

Y (10 - U)o + 2R - R (e, 0F) < Sl
p=0

T (U _ @ 2, 2 @) 2\ < Cu2
Y (10 = U)(0,0e) P + (RS = RP)(0,q¢)2) < < ul
7=0

(6.8)

Consequently, we get the following Lemma, which gives a better estimate for some of the

in-plane fields. For some others, such as U/l(l) and U/z(z), there is no hope of getting a bound
in the unsupported areas.

The proof is done in the same fashion as the proof of Lemma 6, but working on the boundary
of the domain (Q to avoid the in-plane contact estimates and use the glued estimates (6.8)
instead.

Lemma 20. The in-plane fields satisfy
/ C
105 et + IR N g0 < 2 l1lls.
Proof. By estimate (5.32), the clamp conditions (5.33) and Poincaré’s inequality, we have

1RSY 0} 3201y + IR0, gy < 5 Nl

Now we consider direction e; and estimate R () in the non supported domain. We have

2N,

S : C
Y Ry (0,g0) 2 < C(IRSD (0,1 + 2102R5™ (0, ) 22(q1) <
q=0

Then

2N, 2Ne

2N
1 £ (2 C
):em (0,q¢)[2 < Z£|R( (0.¢) = RV (0,q0) 2 + 1 el Ry (0,90) P < Fllulf-
9=0 7=0
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and thus

2N,
‘(1)12 e (D) 2 2 "(1)12 Ci 2
IR, HLZ(ngl)) SC;)€|R3 (0,g¢)|” + Ce*[|01R3 HL2(®£1>) Sg””HTE'

This, together with (5.32)1, proves the H 1 estimate for R;(l) for direction e;. Moreover, from
the above estimate and identities (5.16), we get that

(1 (2 C
||811U2( )”?—I](t’ﬁ(l)) + ||aZU1( )”?{1(6(2)) S STlHuH%}

!/
Then, the proof for the L? estimate of Uz(l) is done in the same fashion as for the L? estimate
!/
of R3(1).
A symmetrical argumentation gives the estimate for direction e;. O

6.2.3 Final decomposition of the displacement in the in-plane component
and a priori conclusions

Since the glued conditions helped to give a bound for the divergent fields, we can now
define the final decomposition. Namely, we keep the in-plane fields in different directions

separately and define the functions Ug“), Ug‘x) and Ré‘x) by

vl =u, =, RY=rY ae &,
u? —u?, v =1, RP =R ae 8?.

Then, taking into account the clamping conditions (5.33), we replace
U, Y(0,9¢), U (0,4¢) and Ry (0,qe) by 0 if g€ {0,...,2n.},

/

U™ (pe,0), U3" (pe,0) and Ry"(pe,0) by 0 if g€ {0,...,2n}.

Note that, due to (5.16) in the respective direction, these fields vanish on the clamped points
of &, and satisfy equalities alUS) = Rgl) a.e. in ngl) and 821U§2) = —Réz) a.e. in (’522).
Now note that no combined directions can be defined while going to the limit since the
displacements keep a certain distance while going to the limit (see estimate (5.36) for h = 1).
Hence, the fibers no more influence each other due to the too-loose contact, and the two
directions can be studied separately in the in-plane component and lead, therefore, to a
trivial case.

Since the main focus is devoted to the influence of contact on woven textiles and how the
behavior on clamped subdomains is transferred to the unsupported ones, we can consider
this case out of scope and will not proceed to the homogenization. On the other hand, the
third direction is always the same and can be, in fact, homogenized, as in the case that
follows.
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Chapter 7

The case of a textile with loose
contact (ge ~ €°)

In this chapter, we give the complete study of the homogenization of textiles with loose
contact. The investigation of this case is the core of the whole thesis and why we developed
the tools of Chapter 3 and 4 in the first place.

The contact and non-penetration conditions (5.27)-(5.28) become for h = 2:

{|u§ls) — u§22| < ezg,x, aein Cpye, Y(p,q) € K, 7.1

0< (—1)P*1 (uéls) - uézs)) aein Cpye, Y(p,q) € Ke.
Again, note that we set no upper bound in the outer-plane component because of estimate
(5.37), which gives a sufficiently good estimate (namely, ~ ¢3) concerning the difference be-
tween displacements.

Additionally, as we will later see in the construction of the test functions (to obtain the con-
tact condition), we need the further assumption that there not exist and are in the internal
part of () in which the fibers are glued:

3C3 >0 suchthat g, > C3 a.e. in (. (7.2)

7.1 Final decomposition of the displacements

Again, comparing the estimates for each field in Table 5.1 and the ones concerning their
difference (5.36)-(5.37) for h = 2 and (5.44), we need to be careful on how we combine the
final displacement fields, especially in the in-plane components.

7.1.1 ... in the outer-plane component

Looking at the estimates in Table 5.1 for the different contact strengths, we notice that the
estimates do not change. Hence, the outer-plane component’s final displacement is decom-
posed in the same way as in subsection 6.1.1 and gives the fields Ry, R, € H!(®;) and
Uz € H%(&,).

7.1.2 ... the in-plane component

Regarding the in-plane component, differently from the case & = 3, we know that estimate

alUS) + 82U§2) has the same order as the estimate for the fields in the unsupported areas
and therefore the Korn’s inequality would not lead to an improvement of the fields esti-
mates from the clamped subdomains to the rest of the square, as we have seen in the proof
of Proposition (9).

Hence, we have a contrast in the estimates for the in-plane fields between the clamped sub-
domains and the not clamped ones, leading to an anisotropic behavior of the fields in ()1-Q)y4.

In order to find a suitable in-plane decomposition, we proceed as in the "very loose" contact
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case and start by considering the directions separately: we define the functions U(a) Ug “)

and R\") by

vV =u®, Ul =ul, rRY =RV ae &Y,
v =u®, v =10, RP=RP ae 6.

Then, taking into account the clamping conditions (5.33), we replace

U;(“)(O,qe), U;(“) (0,g¢) and R;('X) (0,g9¢) by 0 if g €{0,...,2n.},

/“)

U1( (pe,0), U;(“) (pe,0) and R;(“)(ps, 0) by 0 if g€ {0,...,2n¢}.
Note that, due to (5.16) in the respective direction, these fields vanish on the clamped points
of &, and satisfy equalities allUgl) = Rgl) a.e. in ®£ ) and 92 U(z) R(z) a.e. in 05( )

Corollary 7. The in-plane rotation fields satisfy the following:

1
IRS 1 o) + 1RS N 2y < C(VElSllinioy + 5 1l ). 73)

The in-plane middle line fields satisfy

1
105 gy + 1UF Doy < C(Vellglliomay + z lul,), o
: .
0P s o) + UL gy < C(Velglliiy + 5 l,)-

Moreover, in the clamped subdomains, we have

C

1 2
Ui, + Uy =ullr,

'n(0u0,)) ”L2<®<2> U0y =

1
||U2 || (Q UQ + ||U ||L2 ) (Q1UQz)) S C(e\/E”gHLw(Q) + E”uHTs)
Proof. By construction, the in-plane fields are the same as the ones of the prime decomposi-
tion. Hence, the proof follows directly from Proposition 7 and Corollary 5 for i = 2. O

Now that the fields are set, we can construct the Bernoulli-Navier displacements Ug’;\)j by

(1)

U, R

U 219, 2,92) = | Ol <zl,qe>+(7%) (21,06) A (@17 (21 ge)es +es + yonl?) (o106,
Uz Ry

for a.e. (z1,9¢,12,y3) € 6 x w,,

(2)

U, R

U (pez2,1,95) = [ 0P (PE,22)+(R&)) (pe,z2) A (@47 (pe,z)es +yrer +ysni™ (pe,22)),
Us Ry

for a.e. (pe, z2,y1,y3) € 81 x w,.

(7.5)
Again, the residual displacements are
7@ — @ _ Ug;\)] c H! (Te(“))/
where the warping term satisfies
||ﬂ(“) ||L2(®£D‘) pr) + SH Vﬁ(“) ‘|L2(®§"‘) X W ) S Cs” u || Te- (76)
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As in the previous section, this estimate justifies the choice of the final decomposition since
it is of the same order as the residual displacement in the prime decomposition (5.21) and of
the classical one (5.7).

7.1.3 Final split of the in-plane “centerline” displacements

In this subsection, we operate a better split of the in-plane middle line fields U,&l) and ng)
in order to later better understand how they stretch and bend according to the different sub-
domains )1-Q)y.

We recall that a function ¢ € Hl(GSg“)) is defined in all the nodes of &, and thus can be
uniquely extended to a function ® € H!(®,) by linear interpolation between two consecu-

tive nodes of the lines in (’5237“). In this sense, from (2.10) and (2.14) for N = p = 2, there
exist two constants Cy, C; > 0 such that

CO(HCDHLZ(Qig) +€||a370¢(1)HLZ(@@—”‘))) < \/ Z €|q>(p€,q£)|2 < C1(||©||L2(®(‘1)) +€||alJéq)||Lz(
‘ (p)€Ke ‘

(7.7)
Now, we notice that from estimates (5.36), the definition of Uga) and (7.4), we have
2N: 2N,
&€ € 1 2 1
Y (L 10 U (peqe) 2+ e UP (pe, ) gry) < C(EM8lE () + 5llul},)-
p=0 "q=0
Then, there exists p € {0, ...,2N;} such that

2Ne

Y (U — U (pe, ge) P + ¢ U (P, ) 3o
q=0

¥y 2 (2 (7.8)
-2M+1Z LU ) (e, qe) P+ €0 (b, o ) -

sc%émﬁmn+gw%)

We define the following decomposition of the in-plane fields in direction e;:

Ui(zp) =U (2) (?s 22) fora.e. zp € (0,L),
(B) ) (p.s 27) — Uy (z2) forae.zy; € (0,L), p € {2ng,...,2N¢},
U; 7 (pe, z2) =
(ps,zz) forae.z; € (0,L), pe{0,...,2n,—1},
s) ) (z e) — Uy (qge) forae. z; € (0,L), g€ {2ng,...,2N;},
U;™ (z1,9¢) =
(zl,qs) forae.z; € (0,L), g€{0,...,2n, —1}.

Clearly, there exist also g such that a symmetrical formulation of (7.8) holds in the second
direction. This allows us to define the in-plane fields in direction e, as well:

Ujy(z1) = U(l)(zl,ﬁs) fora.e. z; €

21, g€

UP) (21, qe) = M (z1,9¢)
z1,q¢) — Uz (z1) fora.e. z1 €

)

) —

It
(2)
U, £,z
Ués)(Pff/Zz) - { EP 2

7 7

(0,L)
forae.z; € (0,L), g€ {0,...,2n, — 1},
(0,L), q€{2ng,...,2N;},

7

,L), pe{0,...,2n, — 1},

p e {2n,...,2N:}.

fora.e. z; € (0,L),
pe, z2) — Ua(pe) forae. z; € (0,L),

7

Below, we estimate the newly defined fields.

QS§“>)) :
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Proposition 10. The in-plane component fields satisfy the following estimates:

1
[Ualleqony < C(elglimio + 7 luln).
1
e, < C(evelsllmo + £ llul,), 79)

(B) 1
10 o o, < C(Veligllimioy + lullz, ).

o

Moreover, we have the following improvements of some L? norms:

Uallizion < (Nl + 2 i)
IO, 50, < C(eVElglimay + 3 lulr,):

Proof. We will only prove the proposition for « = 1. The case « = 2 will follow by a sym-
metrical argumentation.

We start with estimates (7.9).
Estimate (7.9); follows from the definition of U; and estimate (7.8). From estimates (7.7),

(7.8), (7.4)2 and thedefinition of Ugs), we have

(7.10)

S 1
112, oy < NUY = W12, o+ 1ROV, o
2N, 2N; ) 5 (1 (1)
<c(s22|ru (pe,qe) — Un(qe) 2 + 10101 (- g8) 22 g 1) + 19001 (- q8) 221 )
p=0g=0
2N, 2N; (1) 2Ng (1 )
<Ce( L X U (pege) — U (e ge) P (2N +1) 3 U (e ge) = Un (g
p=04=0 q=
+ClnU (- ge)22g
& 2 (1 2 o112 2
cyv (e, ge) ~ U () + CIRULY (- g6) 2 ) < Ce( 8By + 5l ).
(7.11)
which proves (7.9),. From (7.4) and (7.9);, we have
B) 2 2
U2 gy < IO =02, 22 (0 (pe, VB o) + U Ig01)) o

1 1

which gives (7.9)3.

Now we prove estimates (7.10). From (7.4); and the fact thaﬂUgl) (0,g¢) = 0 for every g €
{0,...,2n¢} gives

1)
2 (pe.q)? <L Y ol 1) ooy < 5l
= q_O
This, together with (7.8), yields
2n,

1
2 < 2 L 2
L 1Ui(ao) Ce( 8l + 5 l1)-
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Hence, from estimates (7.7) and (7.9); we get

2n
£ 1
13201y < C( L elUs(@e)? + 202Un Iz ) < € (M8l + 5 1)
q=0

which proves (7.10);. Now, note that (UgB) — Ugs))(ps, qe) = (ng) - Ugl))(pe, ge) for all
(p,q) € K¢. Hence, from the in-plane contact estimates (5.36), we obtain

1
Y (WP —U)(pe,qe)? < C(82||8||2°°(0) + ?Huﬁe)‘
(p)eKe

Then, estimate (7.9); and (7.7) yield

1
Y U (pe,ge) P < CIUP 2, o) < C(El8ln) + Flull)-
(pa)eke
So .
Y elU (pe.go)? < Ce(glE () + 5llul},)-
(pa)eke
Finally, we obtain (7.10), from (7.7) and (7.9)3. O

We end this section by giving the final decomposition of the Bernoulli-Navier displace-
ments (7.5), together with the decomposition of the in-plane fields:

U, + U(S) R1

e _ Is) R (1 1)

BN(Zl/ qe, Yo, _1/3) - U2 —+ UZ (Zl/ 175) + (%) (le qg) A (¢€ (Zl/ q5)33 + e + Y3ng (le qfi)),
Us R3

fora.e. (z1,9¢,12,y3) € 81 x w,,

) U; + U( ) R @ @)
Ui (pe. 2 0,95) = [ U, + U | (pez2) + Ré) (pe,z2) A (@7 (pe, z2)es +yrer +yane” (pe,22)),
Us Rs

for a.e. (pe,z2,y1,Y3) € oW x w,.
(7.13)

7.2 The sufficient applied stress to stay in a linear regime

As we already mentioned in Section 5.7, the assumption of linear elasticity is related to the
estimate of the strain tensor of the displacement, which is given in (5.44).

Since such an estimate is determined by the stress applied to the right-hand side of the
problem (5.30), we dedicate this section to the sufficient forces to apply so to obtain estimate
(5.44) and stay on a linear regime.

From property (iii) of tensor AE “)

such that

applied to problem (5.29) with v(“) = 0, there exists Cy > 0

CollueB, < 2 g A 8 ) 0l -
(7.14)

: (@) (@)
Z’ / ) E uly ™ dzodysdys|.

Let f(“) € H'(Q)3 and f(“) € H'(Q)?, such that

F9 =0 aein Q3UQ;,  AY=0 aein QU
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We choose the forces for the right-hand side of problem (5.30) by setting

1 2 2
1 AVt efy! . A2 +efy? X
Fg( ) = /2 ;1) + gfz(l) a.e. in ng ), Fg( ) = /2 ;2) + gfz(z) a.e. in ®§ ).
ef (V) ef

The Holder inequality, straightforward computation and estimates in Proposition 7 and 10
lead to

2
Y [ EO O dzadys iy
a=1"Ce  XWr

2
~ " 1
<€ Y (17l + 17 ) (gl + 7 el ).
a=1

which, together with (7.14), gives the desired estimate (5.44).

7.3 Weak convergence of the displacement fields via unfold-
ing

We apply (5.44) to the estimates in Propositions 8 and 10 and extend the ones defined on
lines to the whole grid by the meanings of (7.7) (with abuse of notation, we will call them
the same way). hence, the explicit estimates for the final decomposition of the displacement
(7.13) are

Ueallie) < Ve Reallns,) + IRGIL, 6o < CV&,

S
[Ueallieon < Co [Ueallizon < €& Uy o) < Ceve,  (715)

(e
B B B
U l2(e.) + eogULy l2(e.) + ell0d 45 UL 20, < Ceve

while the ones for the residual terms come from (7.6):

@@ +¢||Va )gcé¢a (7.16)

(«) I v
12(6 xw,) 12(6 xw,

It is known that by compactness, these fields weakly converge in the space. In the next
subsections, we will introduce the unfolding operators and go to the limit via unfolding.

7.3.1 The unfolding operators for a textile with contact sliding

The convergence via unfolding is done through three different unfolding operators, all re-
lated to each other:

e The middle line unfolding operator 7,®, which unfolds the functions defined on the
one-dimensional lattice &, given by the middle lines of the displacements;

o The global unfolding operator Il;, which unfolds the functions defined on the whole
three-dimensional textile structure Tg;

o The contact unfolding operator TS (for (a,b) € {0,1}?), which unfolds the functions
defined on the four two-dimensional contact domains of the reference cell ).

This subsection introduces the first and most important middle line unfolding operator and
its properties.
Define the reference lattice grid by ((a,b) € {1,2}?)

M =(0,2) x{0,1}, &P ={01}%x(02), &=6Dus?®,
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Definition 11 (Middle line unfolding operator). For every measurable function ¢ on &, one
defines the measurable function T.2 (¢) in Q x & by
Z/
TE($)(Z, Y1, Y2) = 4)(28[%} +e(Yieq + Yzez)) forae (Z,Y1,Y2) € Qx ®.

Note that this operator is defined on the periodic grid &,, which is, in fact, a lattice in
Q) C R%. Hence, we can recall the results of Chapter 4 for this specific structure.

From Proposition 5 for N = 2 and p = 2, such an operator satisfies

172 (D) lr2(0xe) < CVellPllize,, V9 € LP(6e).

We have the following corollaries.

G

Corollary 8 (Adaptation of Lemma 12). Let {¢e } be a sequence in H' (&), satisfying

S0

19ell 2060+ £(1919el 2 g0, + 1920 2 21 <

There exist a subsequence of {e}, still denoted {e}, and ¢ € L>(Q); Hrl,gr(05)) such that

TE(pe) = ¢ weaklyin L*(Q; H(®)).
Corollary 9 (Adaptation of Lemma 13). Let {¢e } be a sequence in H' (&), satisfying

C
1@ell (s < NG

There exist a subsequence of {e}, still denoted {e}, and ¢ € H'(Q), and ¢ € L*(Q; H}M’O(Qi)),
such that (« € {1,2})

TE () — ¢ stronglyin  L*(C; HY(&)),

T8 (dupe) — dup + 3y, ¢ weakly in  L2(Q x &®),

Similar to the spaces defined in Section 3.1, we set (here N; = 1 and N, = 1)
L2(0,0; H, (8079))) =
{p e L2(Qx 65 ) | 9,9 € L2(Q x 6C~) and ¢ € L2(Q; HL,, (6C79)))].

per
We have the following adaptation for the anisotropically bounded functions on lattices.

Corollary 10 (Adaptation of Lemma 14). Let {¢¢}e be a sequence in H' (&) and satisfying

(x € {1,2})
C
I9ell 2 (@) + 10aell 5 1) + llO3—agell 5 gy 3-01) < 7

There exist a subsequence of {e}, still denoted {e}, and functions ¢ € L2(Q,9,; H},er(ﬁ(?”“))) and

¢ € LA(Qx 6B HL((&®) NL2(Q; Hye (8)), such that

er,0 per

TE(pe) = ¢ weaklyin L*(Q; HY(®)),
T2 (dupe) — 0up + 3y, § weakly in  L2(Q x &),

Since we are in two dimensions, we can explicitly write the extension of the field’s deriva-
tives (4.25) in the hypothesis of the corollary below.
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Corollary 11 (Adaptation of Theorem 2). Let {¢}e be a sequence in H?(&,), satisfying

2Ne 2Ne—1

010 019¢(pe, g¢) |2
H‘P€H2 )+Z 2 ‘ 1¢ pe, q€+£) 1¢ (ps q&)‘

€

ZNS 1 2Nb

+ZZ

da¢e(pe + €, g¢) — Dagpe(pe, ge) ‘2 . C
&

B

There exist a subsequence of {}, still denoted {e}, and functions ¢ € H>(Q)), ¢ € L*(QY; H’%e,( ),
such that (« € {1,2})
TE(pe) = ¢ stronglyin LP(Q; H*(®)),
Te® (Qutpe) — 9u¢p  strongly in  L*(Q; H' (™)),
Te® (duatpe) — Py + 3y ¢ weaklyin L}(Qx &),
Now, set the 2-periodic reference cell Y = (0, 2)2. Below, we also adapt the definition of

the classical unfolding operator to this structure. Note that by construction, from (4.1), we
have O, = Q. =Qand A, =@

Definition 12 (Adaptation from Definition 1). For every measurable function ¢ in (), one defines
the measurable function T¢(¢) in Q x Y by

/

T(Z, Y1, Y,) = ¢(2€[; } +e(Yieq + Yzez)) forae (Z,Y1,Y2) € Qx ).
As we know from diagram (4.6) in Chapter 4, if p € H'(Q), then
T(9)joxe =0 (¢s,)- (7.17)

7.3.2 Limit displacement fields via the middle line unfolding operator

We prepare the ground for the weak convergences of the fields via the middle line unfolding
operator. We first define the limit boundary condition

I = {0} x (0,1)uU(0,1) x {0}.

Then, we set the limit spaces
HL(Q)={p e H(Q) | $=0 ae. onT}, 7.18)
HE(Q)={p e H*(Q) | $=0 and V¢ =0 ae.onT} '

and
)={peL?0,L) | $=0 ae in(0,1)},

L
L)={peH(O,L) | =0 ae.in(0,1)}, (7.19)
L)={¢p e H*O,L) | $=0 ae.in(0,1)}.

L(oz)(or
Hi) (0
H(2 »(0,L)
We also define the limit spaces of anisotropic functions
(0 {0,1},3,) = {¢ € 2@ x {0,1}) | dugp € L2 (Q x {0,1}) },
L2(Q x {0,1},3) = {¢ € L2(Q2 x {0,1},3;) | ¢ = O a.e. on {0} x (o,l)}, (7.20)
L2(Q x {0,1},3,) = {¢ € L2(Q x {0,1},3,) | ¢ = O a.e. on (0,1) x {0}}

We are ready to give the asymptotic behavior of our unfolded sequences.
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Lemma 21. There exist a subsequence of {¢}, still denoted {e}, and functions Us € HZ(Q) and
Us € L?(0; H,,(6)) such that

®(Ugs) — Us strongly in L*(Q; HA(8)),

3

T8 (3.Ue3) — 9,Us strongly in L2(Qy; H' (™)), (7.21)

® (92, U,3) — 02, Us + 3%y Us weakly in L2(Q x 8®));

M=M= m =
sl

and R, € L2(Q; H!

per, o(®)) such that

(7.22)

MR MM =m] =

T8 (3Rep) — — 90Uz + 9y, Ry weakly in L2(Q; H (6™)).

Moreover, we have

aylﬁg =Ry ae. inQx W), 8y21[AJ3 =R, ae inQx . (7.23)

There exist a subsequence of {e}, still denoted {e}, and functions U, € H(ZO,Z) ((0,L)z_,), U, in
L2((0,L); H3,,((0,2)y,_,)) with U (234, -) = 0 a.e. in (0,1) x (0,2) such that (x € {1,2})

®(Uen) — Uy strongly in L2(Q; HA(637%))),

!

®(93-4Ue) — 934Uy strongly in L*(Q; H(60G-)), (7.24)

M=M= Mm =
ol

® (ag—aii—aUSra) - a%—th—aU“ + a%/af,stﬂxﬁ"‘ weakly in Lz(Q X 6(37“))

!

and
® R ) — Uy strongly in L*(Q; H'(6(1)),

=

® (RY)) — 011Uz + 83y, U, weakly in L2(0y; H' (1)),

ol

(7.25)

=

(
(

®(RE)) = —0oUy strongly in L2(0); H'(62))),
(

© BZR ) — —adnpU; — a%/zyzﬁl} weakly in L*(Q); Hl(@(z)))_

MLm= M= m| =
el

There exist a subsequence of {e}, still denoted {e}, and functions U e L2(Q; H,, ((0,2)y,_,)),
such that

1

ST (UB)) = UP weakly in L2(0; H2(63~))) N L2(Q; HY(8)), (7.26)

e

and U € 12(Q,3,; HL,,(®)), UL € [2(Q; H,,(6)) such that
512726 (Uﬁs,,)) — U§S> weakly in L*(Qy; HY(®)), 727

812726 (8aU£i)) — 9, U + ayaﬁgls) weakly in L*(Q) x &®)). |

Proof. We organize the proof in steps.
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Step 1. We prove convergences (7.21)-(7.22).
First, from the estimates concerning sequences { R }¢ in (7.15); and Corollary 9, there exist

Ry € HY(Q) and R, € L2(0Y; H}m 0(®)) such that the following convergence hold ((«, B) €
{1,2}%)

7.2 (Rea) — Ra strongly in L*(Q; H'(8)),
(7.28)

M| ==

~7: (9pRa) — 9pRa + 9y, Ry weakly in L2(Q x 7)),

Now, we consider the sequence {U, 3}, € H?(®). By construction, we have (9; U, 3,9,U, 3) =
(—Re2, Ren). Hence, the derivatives 9,U, 3 belong to H 1(g®)), can be naturally extended
by 2-linear interpolation to the whole domain Q) and these extensions are bound by the H'
norms of R,. Proceeding as in Subsection 2.2.2, for every ¢ there exist a unique 2-cubic
extension (U, 3) and from estimates (7.15);, the sequence {Q(U,3)}. € H?(Q) satisfies

12(Wea) 12 (0) < CVE(IUesllrz(e) + 1Retll (o) + 1 Relli(e)) < Ce

Hence, from the proof of Theorem 2 and the boundary conditions, there exist U € HZ(Q)
and {3 € L*(Q); H2,,(Y)) such that (&, B) € {1,2}?)

1
EE(Q(Ues)) —U; strongly in L?(Q); Hfm(y))

1 .
Eﬁ(aaQ(U&3)) —9,U; strongly in L2((); H;e,(y))

1 -~ .

Eﬁ(aaﬁg(mﬁ)) — 9,5Us + 9y,y,ll3  weakly in L*(Q x Y)).

Hence, restricting the above convergences to the lattice and setting Uz = 33‘ Qxe, Which
belongs to L?(0); Hfm(Qﬁ)), we get convergences (7.21), while convergences (7.22) and iden-
tities (7.22) follow from the above convergences restricted to the lattice, (7.28) and the fact
that in the limit we have (d;Us, 0,Uz) = (—R2, R1).

Step 2. We prove the convergences (7.24)-(7.25)-(7.26).

From estimates (7.15), and Proposition 3 applied to one dimension, there exist functions
U, € H*((0,L)3_,) and U, € L*(O; Hpe,(O,Z)yya) such that convergences (7.24) hold.
Moreover, again estimates (7.15), imply that U, vanish on (0,1)3_, and thus they belong to
H(ZO,I) ((0' L)Z3fa ) .

Now, from estimates (7.15); and the extension property (7.7), we have that

< Cve

IR 1 gty + €lls-a RGN 2 a0

Hence, Corollary 10 implies that there exist functions Rél) € L2(Q,0; per(Qi(z))) and
RY e 12(Q x 6@); HY,  (6M)) N L2(Q; H],,(®)) such that

perO per
%7}6 (RSS)) — Rgl) strongly in L2(Q); HY(&)),
(7.29)
%7; (@1RY) = 1R + 9y, Ry weakly in L2 (; H'(6(1)).
and RY) € L(Q, 0y b, (61)) and RYY € 12(Q x 6W; HL, ((6))) 0 LX) H, (®))
such that ,
5726 (Rg) — Rg) strongly in L2(Q); HY(®)),
(7.30)
%7?’5 (8273223)) — amé” + ayzﬁ§2) weakly in L2(Q; H' (6%))).

From convergences (7.15)3, there exist U® € 12(0,HL,, (&) N L2(Q, H2, (63-9)) such

per per
that (7.26) holds.
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Now, by the fact that (alUiz), —dy U( )) (Rgl), R(Z)) and the fact that the U, vanish on
(0,1)3_4, we have that

alUgg)(-,qs) 213)( qe), a.e. (0,L) x{0,...,2n, — 1},

{allug,z( )+ U (- qe) = RUY (-, ge) ae. (0,L) x {2ng,...,2N}, o
BZUE 1)(;?8 = g)(ps, ), a.e. (0,L) x{0,...,2n, — 1}, .
{BZUEJ( )+ ang )(ps, )= Rg(ps, 3 a.e. (0,L) x {2n,...,2N;}.

Hence, applying the unfolding operator, convergences (7.24),, (7.26) and (7.29)1-(7.30); im-
ply that in the limit we get

U, + aleém = Rél) ae. Ox o6 and nLU; + BYZUgB) = Rgz) ae. QOx 6@,

Since 9;U; and Rél) do not depend on Y; and UgB) belongs to L?(Q); H}%er(ﬁ(l))) and is
therefore periodic with respect to Y;, we get that (the same argumentation holds for d,Uj,

Rgz) and UgB) with respect to Y3)

01 Us(z1) = Rél)(z’,b) forae. (z,b) € Qx{0,1} and alegB) =0 ae inQxo6W,
U1 (z) = R (Z,a) forae. (z,a) € x{0,1} and 3,UP =0 ae inQxe®.

Asa consequence, the U do not depend on Y, (thus they belong to L2(0); H3er ((0,2)y;,.,)))-

Moreover, in the limit holds (911U, —dU;) = (817?,:())1),827?,;2)) and thus convergences
(7.24), (7.26) and (7.29)1-(7.30); imply that

aY1Y1IU2 + a\/1Y1 ( ) = a%ﬁYl@Z = alﬁﬁ’gl) a.e.in () x 6(1)/
aYZYZUl + aY YZUgB) - a%/zyzﬁl - ayzﬁz(;Z) a.e. ln Q X 6(2)

Step 3. We prove convergence (7.27).
From estimates (7.15)3 and the extension property (7.7), we have that

GS GS
IUSD g iy + €103-0U7 2 o0, < CeVe.

Hence, Corollary 10 implies that there exist functions US(S) € L2(Q,0,; HY,,(653-%)) and

per
U € 12(Q x &G~ HL, (6()) N L2(Q; H}, (8)) such that convergences (7.27) hold.

per
Since U,EC ) belongs to L?(Q); Hrl,e,(Qﬁ)), it is affine with respect to Y3_, in Q x &©~%) and
is independent of Y, in Q x &®), we will consider it as a function belonging to L? (Q x
{0,1},94). Moreover since Uy ¢(0,ke) = 0 (resp. Uy (ke, 0) = 0) for every k € {0,...,2n,},
the function U (resp U( ) vanishes on {0} x (0,1) (resp. (0,1) x {0}). Thus 1U( s
L2(Q x {0,1}, a ). O

7.3.3 Limit of the strain tensor’s fields via global unfolding operator

This operator takes functions that live in the three-dimensional textile structure. It is the
operator with which we will go to the limit in problem (5.30), and with which we express
the form of the limit of the strain tensors.

We define the three-dimensional reference cell in the respective direction by setting

Cyl(l) =60 x w, = (0,2) x {0,1} x (—K,K)2,
Cyl® =62 x w, = {0,1} x (0,2) x (—x,«)2.
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Definition 13. [Global unfolding operator] For every measurable function ® on ® §1) x wyand ¥ on

Qﬁgl) X wy, one defines the measurable functions Hgl) (@) on Q x CylM and ng) (¥) on Q) x Cyl?)
respectively by
/

1Y (@) (2, 1,5, s, Ys) = dD(ZS[; } T eYie; +ebey +e(Yoer + Y3e3))
forae. (z/,Y1,b,Y2,Y3) € Q x Cyl(l),

!/

)
112 (%) (2,0, Y, V1, Y3) = 11/(25 [; } teaey +eYo + +e(Yie + Y3e3))
forae. (z',a,Y2,Y1,Y3) € Q x Cyl(z).
We have the following.

Lemma 22. For every ¢ € Ll(Qﬁ( ) x wy) and ¢ € Ll(QS( ) % wy), we have

ZNE
— (1) / ,
/ 0.1y, § 1 A5 Y2, Y3) A1y 5. /Cylm 1 (9)(2, Y1,b, Yo, Ya)dz'dY|

< / |9(z1, L, y2, y3)|dz1dyadys,
(0,L) x wy

2Ng 1
2 / ’
/OL )X wy P(pe 22,91, y3)dz2dyrdys — /Q/Cyl(z) 17 (¢) (2, a, Y2, Y1, Y3)dz dY‘

< [W(L, 22, y1,y3)|dz2dy 1 dys3.
(0,L) xwy

Proof. We consider the unfolding in direction e;. Then, the statement follows from the fact
that by Definition 13, we have in the straight reference frame:

ZNE

(1) / ,
/OL <y ¢(z1,9¢,y2,y3)dz1dy2dys = 2 axcyll )Hs (9)(',Y1,b,Y,, Y3)dZ'dY.

The proof in direction e, is done in the same fashion. O

As a direct consequence of the above lemma, we get

2
g )l 2 xcyio \/||¢>||Lz Vg € L*(Te). (7.32)

For every measurable function ¢ defined on &,, the middle line unfolding operator 7, and

«)

the global unfolding operators Hg are related in the following way:

/
(@), 1,6,0,0) = ¢ (26 2| + eier + eber) = T2 (9)(2,11,b), ae. (2,1,0) € Q@ x &,
!
ng)(cp)(z’,a, Y,0,0) = ¢(2£E } + eae; + sYzez) =T2(p)(Z,a,Y), ae. (Z,a,Y;) € Qx ®?).
(7.33)
Hence, unfolding functions restricted to the beams” middle lines via HE"‘) is equivalent to

unfolding them via 7;6. Therefore, we can use the convergence results of the previous sub-
section to express the strain tensor convergences on the whole structure.



7.3. Weak convergence of the displacement fields via unfolding 95

Lemma 23. The following convergences hold:

1 n 1 012 U3 a\ﬁ@l
EHE )(ale )) — | =0uUz | + | oy, Rz weakly in L2(Q2 x Cyl)3,
011U, a%/lleZ 730
1)1 () 2ls MR
EHS (02Re7) = | —012U3 | + dy,R2 weakly in L2(Q) x Cyl(z))3
_aZZUl _82Y2Y2U1
and (x = {1,2})
éngw 0, U%)) = 2,0 42y, U weakly in L2(Q x Cyl®). (7.35)

Proof. First, for every function ¢ € LZ(QSE“)), we have the following change of convergence
rate:

I @) 2y < CVEIRI 3 0

Hence, convergence (7.34) follows from the above inequality, equality (7.33), and conver-
gences (7.21), (7.23), (7.24) and (7.25). Convergence (7.35) is proven by the same meanings of
(7.34), together with convergence (7.27),. O

7.3.4 Unfolded limit of the frame

In order to find the strain tensors’ and displacement limit form, we need to unfold not only
the fields but the reference frame as well. We do it in this subsection, and due to symmetry
reasons, we will only consider direction e;.

We start by the unfolding of the oscillating function <I>£1) and we have

%H(l)(cbél)) — @1 strongly in H2(Cyl"),
where @ is given in (5.1). Note that the convergence is strong due to the regularity of the
function (see Section 5.1). As a direct consequence, straightforward calculations show that
the following strong convergences hold:

<1> ' m OPNONRCIONG A
I (ye) = v =\ 1+ (01P7)?, ellg "(ce ') = ¢t = 7
.1 )
Hgl)(tgl)) — tll) = b (e + 31/1‘1’(1)93), Hgl)(ﬂél)) =7V =9 (1-v5eV),
1
10) 0 = L (“ay0e ve), @) (4000 e n)
(7.36)
7.3.5 Form of the limit strain tensors for the warping
We define the limit space of microscopic functions (« € {1,2})
w = {w(“) € H'(Cyl®™)3 | 2-periodic with respect to ya}. (7.37)

In the lemma below, we show the warping convergences.
Lemma 24 (Lemma 7.7 of Griso, Orlik, and Wackerle, 2020a). There exist a subsequence of {€},
still denoted {e}, and 7" e L2(Q; W), 7 e L2(C; W@) such that

glgngw(agwpmw weakly in  L2(0; H' (Cyl®))3.
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In the same fashion as in Subsection 7.3 of Griso, Orlik, and Wackerle, 2020a, by the above
convergences and the convergences of the reference frame (7.36), we go to the limit with the
strain tensor of the warping (5.23) for the final displacement’s warping. We get

—

1 &) (5(+ &) r—(« : 13
8—21_[E >(e(u8)) — 51(, ) (@) weakly in  L2(Q) x Cyl(®))3*3,

where for every Y1) € H(Cyl(M))3 and every ¥?) € H'(Cyl(?)3, we have

1 1) (1
1,1
51(/1)(1{:(1)) - §(W8Y1T(l) ey + ayzly(l) .t(l)) ayzly(l) ey %
1,1 1
E(Waylly(l) a4 aYS‘{I(l) .t(l)) 5 (aYZ\}f(l) M 4 ay3lff(1) ~ez) aYSqf(l) .nM
(7.38)
and
ayl‘f(z) - €1 * *
1 2) (2 1 2 1 2) (2
51(/2) (‘{’(2)) N E(ayllf( )2 4 ﬁaYZT( ) '91) ﬁaYz\P( ). 42 %
1 1,1
5(aqur(Z) .n® 4 aY3‘P(2) ) E(ﬁayzly(z) .n®@ ¢ ay3xf(2) .t(2)) ay3‘f(2) .n®@
(7.39)

7.3.6 Form of the limit strain tensors

We denote by O (and its derivative by @’) the following function belonging to W;ff (0,1):

1 £ ift € [0,x], t ift € [0,%),
o(t) = 5 K ift e x,1—x], e'(t)=1<0 ifte(x,1—x),
(t—1)* ifte[l—x1], t—1  ifte (1—x1].

We define the notation for the strain tensors’ form in the limit. Let X = (Xo, X, X1, X2, X3)
in R®. For a = {1,2}, we define the functions £® by

ENx) = | 30X e 0 x|, @) = |zmFPX) e HFVX) L)
1 2 2
zﬂlwg(l)(x) a2 0 0 0 Ws< )(X)-n® 0
(7.40)
where @ are the functions from R? into R? x &%) respectively defined by
Xo X1
0 |+ |-X | A(®Wes+ Yoer + YsnV) ifb=0,
—0'X, X;
sV (x) =
%) Xoo X1
0 + | -Xa | A(®@Wes + Yaes + YanD) ifb =1,
—0'X, X5
and
0 X3
Xo |+ [ -X2| A (@Pe3+Yie; +v3n?) ifa=0,
-0'X —X
(2) X) = 1 3
R ) 0 X3
Xoo |+ | -Xo| A(@Pes+Yiey +Y3n®?) ifa=1.
—0'X, —X;
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Before going to the limit, we must prove that the unfolded strain tensor is bounded. From
the change of convergence rate (7.32) and (5.44), we have

1
< s lluelln. <C

L)
HgHS (e(us)) LZ(Qchl(A)) — 85/

We first consider the direction e;. Due to the representation of the strain tensors (5.11)-(5.12),
the convergences in Lemmas 23-24 and the frame convergences (7.36), we obtain

ST (8(ue)) = EVEUD) + M @Dy weakly in L2(Q; HY(CylM))¥3,  (7.41)
where the first quantity is given as in (7.40);, but with X replaced by

aulh) = (81U§S)(-,0),81U§S)(-,1),812U3,811U3, 011U2),

and where the second quantity is given by (7.38) and is the symmetric gradient of the dis-
placement

7l = @%S)(ﬁ + UéB)eg + (@3 + 08%11U3)e3 + (7@161 + 7%262 + ayllﬁgeg)

(7.42)
A(@WVes + YanM) 4 voep) +alh).

We have i) e L2(Q; W),
Concerning direction ey, the same argumentation applies and the limit strain tensor becomes

Slzn?) (@(ue)) — EDEUA) + P (@) weaklyin L2(Q; H'(Cyl?))3*3,  (7.43)
where again the first quantity is given by (7.40),, but with X replaced by

U = (E)ZUES)(~,0),821U§S)(~,1),822U3,8121U3, 9 U1),

and where the second quantity is given by (7.39) and is the symmetric gradient of the dis-
placement

12 = UPe; + TU¥e, + (Us + 093, Us)es + (Rie; + Raey — dy,Uses)

(7.44)
A®Pe; +Y3n? 4 Yiep) + 72,

We have i(?) € L2(Q; W®).

Note that in the expressions of 1) and 7?) given above, the terms 00%,U; and ©93,U3 do
come neither from the asymptotic behavior of the strain tensors nor from other displacement
fields” weak convergences. These terms have been added to simplify the non-penetration
limit condition in the next section (see Lemma 26).

7.3.7 Unfold of the contact conditions via contact unfolding operator

The main purpose of this unfolding operator is to unfold functions on the two-dimensional
contact areas C, defined in (5.26), in order to find out the unfolded limit contact conditions.

We define the limit reference contact domains by
Cw = ((a,0) +wx) NQ,  for (a,b) € {0,1}2
Definition 14 (Contact unfolding operator). For every measurable function ¢ in C,p, we define
the four measurable functions Te™ (¢) in Q0 x wy by ((a,b) € {0,1}2)
/

T ™ ($)(Z, Y1, Y2) = ¢ (28 [;] + ¢(ae + bey) +e(Yrer + Y2e2)> forae. (z/,Y1,Y2) € QX w.
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Note that for every ¢ € L2(®£1)) (resp. ¥ € L2(®£2))), the unfolding perator TS ()
(resp. TS (1)) is given by
/
T () (2, Y1,0) = ¢ (28 [;J + ¢(aeq + bey) + £Y1e1) forae. (Z,Y1) € Q x (—x,x),
!

(resp. TSP (9)(,0,Y2) = ¢ (28 [

28} + e(aey + bey) + sY2e2> forae. (Z/,Y2) € Q x (—x,x)).

Let ¢ be in L2(e5£1>). The operator 7.5 is related to 7.2 via the following relations:

T2 (¢)(Z,Y1,b) forae. (z/,Y1,b) € Q x (0,x) x {0,1},
T (9)(2,Y1,0) = { T8 (¢) (2 — 2¢e1,2+ Y1,b)  forae. (2,Y1,b) € (AN (Q+ 2eey))
x (—x,0) x {0,1},
TEU () (2, Y1,0) = T2 (9) (2, 1+ Yq,b) forae. (z/,Y1,b) € Q x (—x,x) x {0,1},
(7.45)
One can easily give similar equalities if i € LZ(Q5§2) ), or ® € L?(T;). We have

C,
1T (@) l12(0xwe) < CVElIP 2o, 9 € L2(6),
( ) (&) 7.46)
' C :
I ) 200 < 2 (1l gy + eIVl zqgo ) Vb € HUTE),
Now, recall the form of the final displacements (7.13) and restrict it to the contact areas. For
a.e. (t1,t2) in wy (or equivalently, in wy,), we have

U, +U§S) R
u (pe + 1, ge, ty, (—1)P 1+ xe) = U, +UEB) (pe+t1,qe) + R&) (pe +t1,qe) A taey
Us R3

+7 M (pe + 11, ge, ta, (—1)P T ke),

U1 + UgB) 7zl

u® (pe, ge + to, t1, (—1)PHke) = U, + Ués) (pe,ge + t2) + R% (pe, ge + t2) N teq
U; R:g )

+7? (pe, ge + ta, t1, (—1)PTke).

(7.47)

We start with the in-plane components: due to the contact conditions (7.1), we have the
following bound for the difference between the displacements in the contact areas:

1 2
( )ZK ||u£,ﬂt) - ug,a)”%Z(CW,S) S C€4.
pg)ERe

Hence, the unfolded sequence {ufﬁ,? — u£2a) }e is bounded, and we can go to the limit in the
in-plane components.

Lemma 25. Let (a,b) € {0,1}2. Fora.e. 2’ € Q, the in-plane limit contact conditions are

W (2,b) = UP (2, )| + x[32U1 (22) + 01 Us(21)| < 81(2"),

(8) /1 (B) (1 / (7.48)
U, (2',a) = Uy (2, b)] + x|02U1 (22) + 01Uz (21)| < g2(2').

Proof. We prove only the first inequality in (7.48), since the second one follows the same
lines. We split the proof into two steps.

Step 1. A preliminary convergence.
Fora.e. (z,Y,) in Q x (—x, «), we define the function ((a,b) € {0,1}?)

Ue1(2, Yo 8,b) = TS (U, 1) (2,0,0) — Te (U 1) (2,0, Ya),
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which does not depend on z; by definition of Uy ;. It belongs to L?(Q; H!(—x,x)) and the
following relation holds:

.. c,
aYZUS,l = —¢T; b(azUS,l).

From the Poincaré inequality, the first inequality in (7.46) and estimates (7.15), we have
||IDS,1HL2(Q;H1(7K/K)) < Ce2.

This, together with the third convergence in (7.24) and (7.45), imply that there exist a function
U, € L?(O; H'(—x,«)) such that

1
21U81 — U; weakly in LZ(Q Hl( LK),
1

28y Ueq — 9y,Us = —9,U; weakly in L2(Q x (—x,x)).

As a consequence, we get the equality Uy (z/, Y2,4,b) = —Y20,U(22) a.e. in Q x (—x, k).

Step 2. We prove the first statement of the lemma.
By the form of the final displacement in the contact areas (7.47), we go to the limit for the
following expressions ((p,q) € {0,...,2N¢} x {2n,...,2N¢})

1 _
ST (U (e +y1,08) = U (pe,ge + v2) = 2R (3 (pe+ v, q¢) + 1)) — a7

Ui (ge) = Usa(ge +92) )
and ((p,q) € {0,...,2N¢} x {0,...,2n})

1
TC“”( '(pe+y1,9e) = UL (pe,qe +y2) — yzR<)(p€+y1,q£)+“§1)—”£21))

Concerning the warping terms, from estimate (7.16) and the second inequality in (7.46), we
obtain

Cop (—(1) —(2) 3
||Tg b( —Z/lga)HLz(waK) > \[” uEDCHLZ(@th)pr) < Ce”.
Hence, applying the contact unfolding operator to the in-plane warping quantity leads to
1
2 TS o fm) ﬁg,?) — 0 strongly in L2(Q x wy). (7.49)

Using convergences (7.25),(7.27), (7.26), (7.49) and the ones in Step 1 we get

1 _
ng“”((Uﬁi)(PHyl’qe)—Uﬁﬁ)(zﬂ&qswz) wRY (pe+y1,q0) + (@) —uﬁi)))

1..
+€7U€,l('/ Yl/a/ b)
— U§s>(',b) — IU%B) (-,a) — Y201Up — Y20,U; weakly in L?((Q3 U Qy) x (—K,K))2

and

1 S _
E—ZTE“”(( £1)(P5+]/1 qe) — Uﬁﬁ)(PS/quryz) —y2R£,13)(P5+]/L‘75)) + (Mi,ll) 5,21)))
— Ugs)(,b) — USB)(',LI) — Yzale

weakly in LZ((Ql UQy) x (—x, K))Z.
So, fora.e (z/,Yz) € O x (—«, k) we get
U, 0) ~ U, 0) - (02U () + 01U (20) | < 1 (2).

The statement follows by the admissible choice of Y, = +x. O
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Now, we look at the outer-plane component. From equalities (5.34) and estimates (5.35),
(5.37) (a consequence of the non-penetration condition) lead to the following estimate in the
contact areas (see also Griso, Orlik, and Wackerle, 2020a):

Y fuly —uy
(p.q)€Ke

2 6
L2(Cpoe) < Ce°.

We are ready to go to the limit in the outer-plane component.

Lemma 26. Let (a,b) € {0,1}2. Fora.e. Q x wy, the outer-plane limit contact conditions are
Cya+b (A1) Caa+b+1y  ~2) _qya+b
0<(-1) iy (,a+Y,b Yy, (—1) k) =iy (,a,b+ Yy, Yy, (=1)""x)). (7.50)

Proof. We split the proof into two steps.

Step 1. Preliminary convergences.
For a.e. (z/,Y1) in Q x (—«,x) we consider the function ((a,b) € {0,1}?)

1 . C C C,
U (2, Y1,0,b) = TS (Ues) (2, Y1,0) — T (Ues) (,0,0) — V1 TS (3,Us) (2,0, 0).
This function belongs to L?(Q; H?>(—x, x)) and we have

. 1
3.y, ULy = 15 (93U, 5).

&,

From the Poincaré inequality, the first inequality in (7.46) and estimates (7.15), we obtain
oy 22 (—xx) < CE

This, together with the third convergence in (7.21) and equalities (7.45), imply that there

exists a function Ugl) € L?(Q; H*(—x,«x)) such that

1

8—31[}213) — IUgl) weakly in L2(Q; H?(—x, x)),

1 .. (1 .. (1 ~ .
8—38%1Y1U£,3) — B%IYIUQB? =o Uz + a%/lleg(',a +Y1,b) weakly in L2(Q x (—x,x)).

As a consequence, we get a.e. in () X wy
.. 1 A . .
Ugl) (Z/, Y1, a, b) = §Y12811U3(Z/) + Ug(zl, a-—+ Yl, b) - Ug(Z/, a, b) — Ylaleg(Z/, a, b)

Now, for a.e. (z/,Y7) in Q x (—x,«), we consider the function ((a,b) € {0,1}?)

R (2, 1,a,0) = TS (Re) (2, Y4,0) — TS (Ren)(2,0,0).

This function belongs to L2(Q); H'(—«,x)). Proceeding as in the proof of Lemma 25, we
show that there exists a function 7?%1) € L2(Q; H'(—x,«)), such that

;27%2/11) — 7?%1) weakly in L(Q; H' (—x,x)),

where
72%1) (2,Y1,a,b) = Y1912Us(2') + R (2, a+ Y, b) —R1(Z,a,b) forae. (Z,Y;)in Q x (—k,«).
Regarding direction e;, we set for a.e. (z/,Y3) in Q x (—x, k) the functions

Ué,z?,) (Z// YZ/ a, b) = TSCab (US 3) (Z// 0/ Y2) - Tcab (U€,3) (Z// 0/ 0) - SYZTSCM] (aer,?)) (Z// 0/ 0) s

% €
RE) (2, Ya,a,b) = TS (Ren) (2,0, Ya) — T (Re)(2,0,0).
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We have ,
—1U£3) - U( ) weakly in L2(Q; H?(—x,x)),

?Rgz) - 7@&2) weakly in L2(Q; H (—x,x)),
where
U )(Z Y2,a,b) = 5 zzazzUs(Zl) +Us(2,a0,b+Ys) — Us(2,a,b) — Y20y,Us(2,a,b),
Ré )(z’, Ys,a,b) = —Y2812U3(z') +Ro(Z,a,b4+Y,) — Ro(2,a,b) ae. (Z,Y,)in Q x (—k, k).

Step 2. We prove the statement.

We consider the difference (7.47) in the third direction. Using 7.5 and taking into account
the functions introduced in the first step, that gives

1 cpy 1 2 1 .0 2 . (2
8—31"g b(u§,3) —ué;) = 8—3(1U£3) U( )+8Y R( )+8Y R( )+T " (7 (3) u£3))) — A
weakly in L2(Q x wy),
where

1 PN P N
A(Z/, Y1,Ys,a, b) = EleaulUg(z’) + Ug(Z’,ﬂ + Yl,b) — Ug(Z/, a, b) — Ylaleg(Z,, a, b)

_(%Y22822U3(Z/) +Us(2,a,b+Yz) — Us(,a,b) - Y23y2U3 Z,a, b)>
+Y1( — Y2012U3(2") + Ra(2,a,b + Ya) — Ra(2',a,b))
+Y2(Y1012U3(z N+ Ri(Z,a+Yy,b) — Ri(2,a,b))

#1520+ 13,0, Yo, (<)) P (20, b4 Yo, Yo, (1) ).

Taking into account the expressions of (1) and 7#(?) given by (7.42)-(7.44) and equalities
(7.23), we have

8y1®3(z’, a,b) = —Ry(Z,a,b), 8y2@3(z’,a,b) = R1(2,a,b).

Hence, the outer-plane contact condition (7.50) is proved. O

7.3.8 The displacements limit set

Now, since all the fields involved in the limit strain tensor, limit displacement, and limit
contact conditions have been found, we can finally define the limit set of admissible dis-
placements.

From (7.18),(7.19),(7.20) and (7.37), we set

o Xy = H(0 . ((0,L)z,) x H(20,l) ((0,L)z,) x HE(Q)) the space of macroscopic functions;

e X5 = L2(Q x {0,1},91) x L?(Q x {0,1},0,) the space of the relative macroscopic
stretching functions;

e Xp = L2(Q x {0,1})? the space of the relative macroscopic bending functions;
o X, = L2(; W) x 12(0); W®) the space of all the microscopic functions.

In particular, the functions belonging to their respective spaces are defined by

V= (Vy, Vo, Vs) ey, VO = (v v®) e a,

ve = (VB vy eas o= (00, 59)ex

(7.51)
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Including the limit contact conditions (7.48) and (7.50), the limit set of admissible displace-
ments is defined by

X = {(W,V(s),W(B),ﬁ) € Xy X Xg X X X X

V¥ (,b) — VP (0)| + K]92V1 + 91 V2| < g1 ae in Q

VI (,a) = VE ()| +x]9,V1 + 01V, | < g ae.in Q,

0< (1) (8" (0 + 1,0, Yo, (—1) 1) =5 (0,0 4+ Yo, 11, (<1) "))
a.e. in QO X wy, (a,b) € {0,1}2}-

Note that & is a closed convex subset of the Hilbert space X x Xs x Xp x &}, endowed
with the product norm. We set

avil) = (31‘7%5)(',0),31\7%5)(71),312V3, 011V3,011V2),

(2) (S) (S) (7.52)
oV = (0,V,7(+,0),0,V,7(+,1),022V3,012V3,02 V7).

7.4 Strong convergence of the test functions via unfolding

We construct the test functions with sufficient regularity to belong to a dense subset of X
and ensure strong convergence via unfolding. In addition, they must have the same strain
tensor as in the limit and match the contact condition before and after the limit.

7.4.1 Construction of the test functions

Consider the spaces
Cum ics(ﬁ)sﬂXM, Cs icz(ﬁx {0,1})2ﬂX5,
Cp=CXOx{0,11)2NXs  Cu=CHWD)xcl(W?).

Accordingly to (7.51), we take (W,V(S),W(B),ﬁ) € Cp % Cs x Cp X Cyy.
First, we define the vectors of the test function for the combined directions

Vi (ge) Vi (z2)
( Vs (z1) ) ae. (z1,q¢) € V) and ( V,(pe) ) ae. (pez)e6?.
V3(z1, g¢) Vs(pe, 22)

Then, we define the test functions for stretching v W(g) and bending vy by

gl’ Ve, el Vg2
S . S
Vi (21,90 = Vi (21,2

{ 1)
VY (z1,9e) = VI (21,2 ae. (z1,q¢) € &Y,

}

}

N
A
N
—~
NS NS
——
N—— ———

VE,Sz) (pe,z2) = V§

N—
~

ae. (pgz;) e 6?

—— —

NI NI

Vﬁ,‘i) (pe,z2) = V|

N—
~
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At last, we define the warping test functions Z/J\g ), ) by

2’7(1)(;78 [q]s 2{28} 2{%},%%) if z1 € [pe—r,pe+7],

linear interpolated with respect to z; if z1 € [pe+7r,(p+1)e —7],

651) (er qer er ]/3) = {

ae. (z1,9¢Y2,Y3) € s x w,,

z?(2)<2[§}8,q8,2{g} 2{25} N y3) if zp € [ge—r1,qe+71],

linear interpolated with respect to zo if zp € [ge+7,(q+1)e — 7],

?7§2)(p€, 22,Y1,Y3) = {

ae. (pez2,y1,y3) € 6% x w,.

The final test displacements v, in directions e; and e, result to be (« € {1,2})

o = v+ e, (7.53)

€

where the Bernoulli-Navier displacements VE( B)N' A B)N are given by

1 .
Vg(,B)N(quS, Y2,Y3) = eVo(z1) + 62\/22) (z1,qe) | T —881\/5,;, (Zl’?g
eV3(z1, q¢) 2(2) +E0Ve,

Menrte (2 }) e vt i1 (2{3}) )

eV (ge) + €2V§,Sl) (z1,9¢) ( €02V, 3(21, q¢) )
ed1 Ve (z1,9¢)

and
@ eVi(z) + 82\7?? (pe, z2) €02V, 3(pe, z2)
Viin(peznvs) = ¢ | evy(pe) + V) (pe,zp) | + “eVesrna)
eV3(pe, z2) —e0,V,1(22) — €702V, ' (pe, 22)

Mere (2 e tmeswm {5 )

7.4.2 Limit strain tensors for the test functions

The limit of the unfolded strain tensor is an immediate consequence of (5.22) and (5.23)
for the final displacement, the unfolding operator properties, and the regularity of the test
functions (see also Lemma 8.1 in Griso, Orlik, and Wackerle, 2020a). We obtain

—11® (E(vé“))) — EWRVW) 4+ 51(;)‘)(77(”‘)) strongly in L?(Q) x Cyl(®))3*3, (7.54)

where £(1) and £(?) are respectively given by (7.40) with the fields 9V(1), 9V(2) given as in
definition (7.52).

7.4.3 Contact conditions for the test functions

First, the clamping conditions are satisfied by the construction of the test displacements.
Now, we check the in-plane contact conditions (5.27). We set

N = 2 (||VW HL°° @x{01}) T & % ||L°° (Qx{o1}) + &S ||L00(Q><cy1(ﬂ)))'

(1) (2)

Below, we replace the components v;; and v, of the test displacement by A} vﬁl,,? and A} vﬁ?
in order to satisfy the contact conditions (5.27). We will choose A} =1 — C*¢, where C* is a
non-negative constant that will be assigned later.

We start with the first component. Taking the difference between the displacements, we have
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(remind that x < 1)

o) (y1 + pe, ge, v, (=1)" 0+ k) — 017 (pe, ge + v, y1, (=1)"Pxe)

= e(Vi(qe) — Vi(qe +y2) + 1201 Vo (pe + 1))
+ (VI (pe +y1,q2) = VLT (pe,ge + y2) + 1201 VLS (pe + y1,4¢)
+& (0 (1 + pe, e v, (—1)" P ke) — 55 (pe, e + 2, 11, (—1)" ) ).
Besides, for a.e. (y1,y2) € w, we have
(V1(ge) — Vi(qe + y2) + y202V1(qe + y2)| < K7€*(|03, V1|1 (q)
and

S
|V (pe +y1,98) = V) (pe, ge + y2) + 1200V (pe + 1, qe))

- (Vgi) (pe+y1,9e +y2) — Viﬁ) (pe +y1,qe +12))|
< KE(HVV?)HL”(Q) + \|V2V§B)||Lw(ox{o,1}))

~(1 a 1 q PEtyi Y2 a
51 (1 + e ge,y2, (~1) 0 xe) — 811 (pe+y1, e + 2, 2{ 2} 2{ FS AL} 22, (—1)etoi) |

1
< C||82z7§ )||L°°(Q><Cyl(1))’

6% (pe,qe +y2,y1, (=1)"xe) — 577 (Pe +y1,9¢e + yz,Z{ g } 2{ e } a, (—1)“”’K) ’

2¢e €
1
< €129 1 ey

Hence, we have a.e. in Cy; that

‘ (0} (21,8, 2, (1) 1%) — 0] (pe, 20,31, (~1)" %))

S B y (7.55)
— (VI (2, b) - V®(Z,a) - 2(92V1(z2) + alvz(zl))‘ < C°&N,
where C° does not depend on ¢. So a.e. in Cpg e, we have
o) — o] < g1 + C°EN. (7.56)

Taking into account the property (7.2) of g., we take the value C* = C°N/Cs. Hence, the
in-plane contact conditions (5.27) with & = 2 are satisfied, since

\/\jvsl) - /\jvii” < e?\g +AIC°EN
< e2g) — C*e3g1 + C°SN < 2gy — 3(C*C3 — C°N) = €%y,
This proves that the contact conditions are satisfied before the limit for the first component.

To prove that they hold in the limit, we first note that lim,_,o A} = 1. Hence, going to the
limit via unfolding with (7.55) and (7.56), we get the limit contact condition (7.48);.

The second component follows by analogous argumentation, while the test displacement in
the outer-plane component is constructed in the same way as in Section 8.1 of Griso, Orlik,
and Wackerle, 2020a and, by the meanings of such section, they satisfy the non-penetration
conditions before and in the limit.

7.5 Study of the limit problem

In this section, we employ all the results developed in the previous ones to go to the limit
for problem (5.30). We will then proceed to its investigation.

Before going to the limit, we provide a couple of preliminary lemmas for the section.
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Lemma 27. Let X = (Xo, X0, X1, X2, X3) be in RS and 5% € W« satzsfymg
@ (x)+ W (5@) =0, (7.57)

Then X = 0 and 5®) are periodic rigid displacements.
Moreover, there exist two strictly positive constants Cy, Cy such that for every X € R* and every
7 ¢ wl),

Co(IX? + [1& (8 Do) < 1E@E) + @ Dz, Cy,

(7.58)
<C(IX\2+||5 ( )IILszl )-

Proof. We prove the statement for &« = 1.
The solution of the equation (7.57) is given by

50 = AV 1 BU A (@Wes + Yaey + ¥sn), AW, B ¢ Fl(&M)?

with first (see (7.38)-(7.40)) dy, B D) = Xye; — Xpey + Xzes. Since BMY is periodic, this gives
X; = X = X3 = 0and BY(Yy,b) = BO(b) for ae. (Yy,b) € &1, Then, we get
aylA(l)(Yl,O) = BMW(0) A eg — Xper (resp. aylA(l)(Y1,1) = BW(1) Ae; — Xgoer), again
since AW is periodic, this gives Xo = Xop = 0 and Bl = b(l)el. Hence (1) is a rigid
periodic displacement

51 (1,6, Y2, Y3) = AV () + bV (b)eg A (@M ez + Yaes + YanD),  AD(b), b (b) € R®.

The inequality in the right-hand side of (7.58) is obvious. The left-hand side inequality is
proven by contradiction. O

The lemma below concerns the integration of the reference frame over the limit reference
cells Cyl(®).

Lemma 28. One has the following values for the integrals (v € {1,2})

2
gy — 4 2/ dt,
/Cyzw" T

) (7.59)
(a) (@Y () 7y — 452
/Cyl<”‘> (CD e3 + Y3,“e3,a + Ygl‘l )7] dy = 4x (/0 Y (I)dt) es.

Proof. We will just prove the statement for direction ej, since the second one follows by an
analogous argumentation.

From the definition of #(!) and the symmetries of the cross-section with respect to the lines
Y, = 0 and Y3 = 0, equality (7.59); holds.

Concerning (7.59);, we first note that the symmetries of the cross-section with respect to the
lines Y, = 0 and Y3 = 0 lead to

/Cyl(l) (@ (M1)es + Yaer +Yan (1)) (11, Y3)dY

= 41{2(/02 qD(l)Wle)es + ? ( /02 8y1<13(1)c(1)dY1)e1 - 4;4(/02 c(l)le>e3.

Then, we note that the second and third integral vanish since ® is 2-periodic with respect to
Y; and satisfies dy, ®(0) = dy, (1) = 9y, P(2) = 0. 0

7.5.1 The unfolded limit problem

We are now ready to show the limit elasticity problem.
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Theorem 7. Let ue € X, be a solution of problem (5.30) and let f*) € H'(Q)?, f®) € HY(Q)3 be
as in Subsection 7.2. Assume that there exist AW € L®(Cyl(®)0%6 syuch that

g (AE"‘) (é))(z', Y) = ADW(Y) forae (z,Y) € Qx Cyl®. (7.60)

Then, there exist a subsequence of {e}, still denoted {e}, and functions (U, US),U®B), &) € X such

that a solution (ugl), Ug ) of problem (5.30) converges. The unfolded limit problem admits solutions
and has the following formulation:

Find (U,U(S),U(B),ﬁ) € X such that for every (V,V(B),V(B),ﬁ) € X:

2
] Qxcyl(é;«i]"’lc()l (Ei(ja) (aU([X)) =+ 51(/“1)]( Mo ))) (Elgla) (aU(“) — aV(“)) 4 81(/ak)l( ~a) _ z/)\(pc)))”(lx)dz/dy
=

<o) X [ AP W Va) 4 AP (U - V)

a,f=1

+ Z / A WS - v 4 (w® - vP) dz’)

—Ci(x /fa (9aUs — 9, V3)dz,
txﬁ 1
(7.61)
where 9U®) and 9V @ are defined in (7.52) and where

Co(x) = 4x? /O aBdt, G = 4P /0 * o (1) ().

Proof. First, from the weak convergence of the strain tensors (7.41)-(7.43) the strong con-
vergence of the test functions (7.54), convergence (7.60) and Corollary 2.12 of Cioranescu,
Damlamian, and Griso, 2008, we get that

& Z%/; uHe%ﬂughEHuéw)ﬂwhh o
e 6
~ Jacye A% (E57@UW) + 75 @) (7 @VW) + £ @)y az'ay,

where (ugl), ugz)) is a solution of (5.30) and (vgl), vgz)) is the test function defined in (7.53).
By the weak convergences (7.41)-(7.43), the weak lower semicontinuity of the convex func-
tionals and the definition of problem (5.30) we have

[ AR(ER@UE) + ) @) () QUW) + &5, @)y dz'd

a1/ QxCyll®
( ) (@) )
< 11{22101\&8—5 Z/ 1]kl (e Ve (u) n®dz < 11£1Onf“z:/ pr 7 ®dz.
(7.63)

We prove now that the last term in (7.63) converges. By the strong convergence of the applied
forces, the definition of displacement (7.13) together with the weak convergences in Lemma
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21, the reference frame convergences (7.59), we obtain

&S Z/ ) o a) ’7(“) dz'

— Co(x Z /f U, + £P Usd? +/]A‘<“ )4y )dz) (7.64)
«,p=1

2
- Ci(x) Y, /fiﬁ)a,ﬂ[kdz’.
a,f=1 0

At last, we get the limit of

5 2/ pr ol® n(®) dz

by replacing in (7.64) the functions (U, U, u®) by the functions (V, V), V(). Hence,
inequality (7.61) follows due to (7.62), (7.63) and (7.64). A density argument gives (7.61) for
any test function in &',

The existence of solutions for problem (7.61) is a direct consequence of the bilinearity, bound-

edness, and coercivity of A® (inherited from the properties (i)-(iii) of A( *) in Subsection
5.5.2 through convergence (7.60)) and the Stampacchia’s Lemma. O

7.5.2 The microscopic cell problem

Now that the limit problem has been found, we can proceed to the split of the microscopic
scale from the macroscopic one. In this subsection, we investigate the microscopic problem,
or cell problem, whose solution is the correctors that will later form the homogenizing oper-
ator in the macroscopic scale.

We first define W as the the convex subset of W(1) x W(2) by
w={@Y,a@) e Wl x W) |
0. < (=1)"* (@5 (@ +Y1,b, Yo, (~1)"* ) — @5 (b + Yo, Vi, (1))

a.e. on wy, (a,b) € {0, 1}2}.
Now, we introduce the correctors” problem. For every X € R?, we denote
XMW = (X1, Xa, X5, X6, X7),  XP = (X3, Xy, Xg, X5, Xo).
We consider the following microscopic cell problems:

For each X(®) € R5, find ¥ € W such that for every 7 € W :

3 o @ ~ (7.65)
5 A )+ )R 2 -9 av <o

The existence of solutions follows by Stampacchia’s Lemma.

Now, if ¥ and X are both solutions of (7.65), then we can first consider problem (7.65) with X
as solution and x as test-function and then vice versa. Summing up both inequalities leads
to

2
)y /cyzm Al‘(fi)l gi(fy)@v -x) gzgzof)y()? — %) g™ dy <o,
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from where we get that 6’3(/“) (x) = 81(/“) (X), since by coercivity the above quantity is also

non-negative. Hence, Lemma 27 implies that there exist rigid displacements +*) € W such
that
=19 +7%, a.e. in Cyl(“).

As the strain tensors of the solutions of (7.65) are uniquely determined, we will henceforth
denote them E}(,a) (R(X®),.)).

7.5.3 The homogenizing operator and the macroscopic cell problem

Now that problem (7.65) has been investigated, we can define the homogenizing operators
by integrating over the solutions of the cell problems.

Definition 15. We define the homogenizing operator Apypy by
9 - (®) (g (®) (®) (@)
VXERY,  Apoma(X) =), /Cyl(‘?ijkz (&; (x®)) +5y,ij(??(X(“)/Y)))5kl (ex”) 4 dy,
a=1

where X (X, -) are a solution of problem (7.65) and (e1,...,e9) the usual basis of R°.

Now, to ensure the existence of solutions for the macroscopic problem, we need to prove
some properties of the homogenizing operator to apply the Stampacchia Lemma.

Proposition 11. The operator Ay, is continuous (and thus of Caratheodory type), bounded, mono-
tone and coercive.

Proof. Step 1. We show that the map X(1) € RS — &y (x(XW),-)) is Lipschitz continuous for the
strong topology of L2(Cyl(1))®,

We will only prove the statement for @ = 1, since the proof for « = 2 is analogous.

Let X(1), Z() be two vectors in R? and (X, -), x(Z(1), -) be the associated solutions given
by the cell problem (7.65). By the coercivity of the tensor A(1), we have

& @D, ) = &7 RED, Dz e

= Jego Al EREREW, ) — e (x(ZW, ) (R, ) — & (72, ) 1 ay

< g A EHER ) (ELAGERX, ) = £ RED, ) 1 aY

oy A SV REZD, ) (EREY, ) = EG X, ) n dy

=7 /Cylﬂ) Al €9 (xW) () (R(XW, ) - el (x(2, ) 4V dy
- /cyzm Al € (W) (e (x(ZM, ) = X (R(XD, ) 4V dy
= /Cyl(l) Al € (X = W) (el (RXW, ) — & (R(2Y, ) 1M ay
< ClleMED = Z0)]| e 157 @XM, )) =7 REZD, M)z ey
Hence, the Lipschitz continuity is proven since

e @XM, ) = £ RZY, D 2y < CUED XD =ZD)|| oy < CIXD =20,

So, the statement of this step is proved. As a consequence the map X € R? — Ay, (X) €
IR? is continuous.

Step 2.We prove that Ay, is monotone.
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Let X and Z be two vectors in R®. By the coercivity of the tensor A, we have
(Ahom(X) - Ahom(Z)) ' (X - Z)

- Z /c p 1(]01?1 8 (x@ _ z0)y 4 g)({‘i‘i}(f(x(a), )= x(Z®, ) 5,£f)(X(“) — Z@) 4@ gy

scy [ [E0 (X — 20 1 g8 RX, ) = R(Z®), ) Py dy
= Cyl(”‘) ] ]

2
_Z/Cylm A’(Jiz(gi(f“)(x(“))—i_g )( R(X@, ) EVLRXW, ) = (2@, ) @ ay

_Z/cz SHER (29 + ef(R(ZW, ) EVL(R(Z®, ) = R(X®), ) g dy >0,

where the last passage follows from the fact that the first integral is non-negative, while the
second and third integrals are non-negative by definition of problem (7.65) with the choice of
test functions x (X1, ) and x(Z(1), ) respectively. Thus the monotonicity of Ay, is proved.

Step 3. We prove that Ay, is coercive.
From the first inequality of (7.58) we have (x € {1,2})

/C o [EOXO) + W (7(XW, ) Py ay > CoIx@]2 vx® e RS, (7.66)

Hence, for every X in R’ we get

Apon(X) - X = 2 oy Al (657X + € ROXO, ) €7 (X)) ay

2
=) /W Ay (657 (X00) + £ (RXW, ) (77 (X) + ER(RX®, ) g ay

2
L e Al 6 X) + EG R, D) EH RO, 4 dy 2 ColXP,
=1

where the last passage follows from inequality (7.66) and the fact that the second integral
is non-negative by the definition of problem (7.65) with the choice of a zero test function.
Hence, the coercivity of Ay,,, is proved. O

We can finally write the macroscopic problem. Set
xH = {(v,v@),v(‘”) € Xy X Xs X Xp ]

|W§S)(',b) B WgB)('/ﬂ” +x[02V1 +01V,| < g1 ae.in Q,
WES)(-,a) — WgB)(-,b)| +x|92V1 +01Vy| < g ae in Q,(ab) € {0,1}2},

which consists of the original space X without the microscopic functions.
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Theorem 8. The macroscopic homogenized problem has the following formulation:

Find (TU,U(S),U(B)) € XH such that for every (W,V(S),W(B)) c XH:

2 2
/n Apom (9U) - (0U — V) dz" < Co(x) ﬁgl (‘; /Q P (U, - V) dZ + /Qfém (U; — W3>d2’)
1
+ COT(K) /QCX%) (J?y) (Ugs) - VgS))(',C) +f$37“) (U&B) _ Vch))(~,c)) iz

2 .
—Ci(x) ). /Q 7P (3,U3 — 9, V3)dz, V(V, V), VB € Xy x Xs x Ap.
x=1,6=1"

(7.67)
It admits solutions, but in general, the solution is not unique.

Proof. The existence of solutions to problem (7.67) is a direct consequence of the properties
of the homogenizing operator Ay, given in Proposition 11 together with the Stampacchia’s
Lemma. 0

The operator structure of the homogenized problem is known as the Leray—Lions oper-
ator.
Starting from the form of the final decomposition of the displacement (7.13) and going to the
limit, the cell problem (7.65) and the macroscopic problem (7.67) give the approximation of
the limit displacements in the direction of beams e; and ey, that are a.e. z/ € ()

. eUq (ge) + gngs) (z1,4¢,b) €d,Us(z1, g¢) @
(21,06, 12, 13) = | eUy(z1) + 2UP (21, g6, b) | + | —€1Us(z1,98) | A (z1)es
eUs(z1, ge) ed1Uz(z1)

middle line displacement

e, U3(z1, g¢) "
+ | —€01U3(z1, g¢) /\(y292+]/3ne (Zl)),
£01U(z1)

cross-section rotation

, eUq(zp) + szUéB) (pe, z2,0) edr U3z (pe, 22) @
u® (pe,z2,y1,13) = | eUy(pe) + 2US (pe,z) | + | —e1Us(pe,z2) | AR (z2)es
£U3(p8, Zz) ed, Uy (ZZ)

€Uz (pe, 22) )
+ | —€91Us(pe, z2) | A (y1e1 +y3n§ )(Zz))-
€0, U1 (z2)
(7.68)
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Chapter 8

Conclusions

In this chapter, we gather all the obtained results throughout the thesis to have a final
overview of our achievements, their physical meaning, and their application.

8.1 Results of the extension of the unfolding method

Concerning the periodic unfolding for anisotropically bounded sequences, the results have
been crucial to find the convergences of fields in the unsupported subdomains in Chapter 7.
However, the theoretical results exceed the frame of textile structures and can be applied to
many other contexts. Among others, we mention Griso, Khilkova, and Orlik, 2022, where
structures made of beams are considered, and the same contrast on the gradient estimates
appears on the unstable oscillating thin straits. Moreover, the homogenization of problem
(3.11), and its equivalent formulation (3.20), where the anisotropy is shifted to the material
coefficients, can be found Griso, Migunova, and Orlik, 2017 and Griso, Migunova, and Orlik,
2016.

Concerning the periodic unfolding for lattice structures, it is a very powerful tool when
dealing with thin periodic structures made from lattices. In this context, we would like
to cite again lattice structures made of beams in stable (see Griso et al., 2020; Griso et al.,
2021) and unstable configuration (see again Griso, Khilkova, and Orlik, 2022, together with
anisotropic behaviors). More generally, such a tool can be applied to many other problems
related to partial differential equations on domains involving periodic grids, lattices, thin
frames, and glued fiber structures.

8.2 Macroscopic behavior of r = ke textiles with linear elastic
yarns according to the contact strength ¢".

Concerning the second part of the thesis (Chapter 5-7), we now give an overview of the
results concerning the macroscopic behavior of our square of woven elastic yarns, with par-
ticular attention to the role the contact strength between yarns plays in the supported and
unsupported parts of the domain, and on the displacement behavior.

For the sake of completeness, to the results obtained in Section 6.2 for & = 1 and in Section
7.5 for h = 2, we also recall the main results in Griso, Orlik, and Wackerle, 2020a concerning
textiles with strong contact (h = 3) or almost glued fibers (h > 4).

8.2.1 Results (known) for a textile with contact g. ~ e*¢ or higher

As we know from Section 6.1, the estimates for the displacement fields are the same for & > 3
in the whole domain Q). However, the contact conditions are not (see (6.1) and (6.2)), and so
they are not on the homogenized problem.

Recall the space definitions (7.18) and let U = (U;, U,, U;) € HY(Q)2 x H?(Q)r. Set

60 (U) = %(aawﬁ +opUy), () € {1,2)2
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The macroscopic homogenized problem has the following formulation:

Find U € HY(Q)2 x H2(Q)r such that for every V € H(Q)% x H2(Q)r:
8.1
/Q Apomiin(3U) -9V dz’ = Cy(x) /Q vz, ®1)
where .
oU = (e11(U), e12(U), e2(U), 911U3,922U3,012U3), 62)

oV = (e11(V),e12(V),en(V),011V3,022V3,01,V3).

The homogenizing operator Ay, ji, is the bilinear function from R® to R® defined by
Apomin(Xon, Xir) = XouXo Z o A 65 )+ £ ) () ) .

For every X € IR®, the macroscopic strain tensors £(1)(X) and £(2)(X) are defined as in
(7.40), but with

X1 Xe
S'(l) (X) = Xo + | X4 | A (Q)(l)eg + Yoer + an(l)) ,
-0'X, 0
(8.3)

X2 X5
3(2)(}() = X3 + | X6 | A ((D(Z)e?, + Yie1 + an(z))
-0'X5 0

The correctors X1, - . ., X belong to the convex set W defined by

Wy, = {(@(1),@(2)) e Wl x W |
(Y1 = a)X; — (Yo = 0)Xa + @ (a + Y1, b, Ya, (~1)"FH) — @ (0,6 + Yo, Yy, (~1)740)| =0,
(Y1 — @)Xy — (Yo = b)X3 + @5 (a+ Yy, b, Yo, (—1)*4) — @8 (a,b+ Yy, ¥y, (—1)*T) | = 0
@ (a4 11,6, Y2, (~1)" ) =@ (0,0 + Y2, 11, (~1)™*) = 0,a. on oy, (a,b) € {0,1}2}.

Furthermore, they are the solution of the microscopic cell problems:

For each X; € R®, find X; € W;,, such that for every o € Wy;,, :

Z/CZ Al (€7 (X9) + £ (R) @) 1 a4y =o0.
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The displacements behave the same in the whole domain (). In particular, their approxima-
tion with the limit fields as solutions of the homogenized problem (8.1):

£2U1 882U3 1
uW(z1,qe,y2,y3) ~ [ U, | (z1,9¢) + | —€01U3 | (z1,9¢) A @ )(21)93
€U3 0

middle line displacement

882U3 1

+ | —€01Us | (21,49¢) A(y2e2 +y3n£ )(Zl))/
0

(8.4)

cross-section rotation

€2U1 €aZU3 )
u(z)(ps, z2,¥1,y3) ~ | €U, | (pe,z2) + | —€91Us | (pe,z2) A CDE )(zz)e3
£U3 0

8821U3 )
+ | —€01Us | (pe,z2) A (vreq +y3n£ )(zz)).
0

Concerning this elasticity problem, we note that in the definition of the microscopic space
Wi, the contact is so strong that the gap function vanishes on the right-hand side, leaving
linear conditions in the three components. This fact leads to linear cell problems, a bi-linear
homogenizing operator, and thus a fully linear problem.

This case could have been achieved by gluing all the fibers in all the contact domains of (2,
namely ¢ = 0 in (5.27)-(5.28). The problem could have been studied as in Griso, Orlik, and
Wackerle, 2020b by extending the woven textile to a periodically perforated domain.

From (8.4), the displacement is expected to behave the same in all the four subdomains
Oy — (4, and a partition is unnecessary. This means that the contact is so strong that even if
a partial clamp is set, the fibers inherit all the properties from the clamped ones.

We also note that the limit displacements (8.4) have the third component of the cross-section
rotation equal to zero. This translates into an absence of in-plane rotation for the fibers: the
fibers tend to stay straight for small deformations.

8.2.2 Results (known) for a textile with contact g, ~ ¢3¢

As in the previous case, the macroscopic homogenized problem has the following formula-
tion:

{Find U € HY(Q)2 x H?(Q)r such that for every V € H!(Q)% x H?(Q)r:
(8.5)

/Q Apom1in (0U) - 0V dz’ = Co (k) /Qf(“) Vdz,

where dU and 0V are defined as in (8.2).
The homogenizing operator Ay, 1, is function from R® to R® defined by

2
Aron (2, Xo) X0 =X 13 [ ASG]ER 0m) + £ Gon (2, 0) 6 (@1 1 .
a=1

For every X € RR®, the macroscopic strain tensors £()(X) and £?)(X) are defined as in
(7.40), but with ) (X), 2 (X) replaced by (8.3).
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The correctors X1(z,-), ..., X¢(z, -) belong to the convex set W defined by
W, = {(@(1)/ ) e W x W® |

(Vs — )Xy — (Yo — b)Xa + @ (a + Y1,b, Yo, (1)) 2P (0, b+ Yo, Yy, (—1)"10)| < g1,
_(2)

(Y1 — @)Xy — (Yo = b)X3 + @5 (a+ Y3, b, Yo, (—1)*H) — 08 (0, b+ Yo, vy, (—1)") | < g,
0 < (=) @Y (a+Y1,b, Yo, (1)) — @ (0,b+ Yo, ¥y, (—1)*7)) < g3,
a.e.onwy, (a,b) € {0,1}2}.

Furthermore, they are the solution of the microscopic cell problems:

For each (Z/,X;) € Q x R®, find x; € W, such that for every 0 € W, :
2

/!

ey A (87 00+ EE i ) EV (i, ¥) = 0 ) ) Y < 0

a=1

The displacements” approximation by the limit fields as solutions of the homogenized prob-
lem (8.5) is given by (8.4).

In this case, we make some new considerations. Looking at the definition of the mi-
croscopic space W the function ¢ does not vanish on all three components and maintains
the macro-micro inequality, leading to non-linear cell problems with field coupling. Conse-
quently, the solutions are non-linear correctors that still depend on the macroscopic variable

z.

The homogenizing operator also depends non-linearly on the macroscopic fields, but the
absence of only macroscopic conditions leads to a linear homogenized problem.

The displacement is the same as in the previous case: it behaves the same in all four subdo-
mains ()1 — ()4 due to the strong contact order, and we expect no in-plane rotations.

8.2.3 New results for a textile with contact g, ~ ¢2¢

For this case, we refer to the results rigorously proved in Section 7.5 and more generally in
Chapter 7.

We note that in the definition of the microscopic space W, only one inequality appears in the
third direction. It involves the macro-micro remainders @, and an upper bound given by
g3 is no more present. Nevertheless, the inequality is maintained in the cell problems and
leads to the presence of non-linear correctors, as in the strong contact case. But differently
from this case, the absence of fully macroscopic fields in W implies that the correctors do not
depend on z/, and so does not the homogenizing operator Aj,,.

On the other hand, the in-plane macroscopic fields become a constraint for the homogenized
problem in the in-plane components (see the definition of X'7), and therefore inequality is
also maintained in the macroscopic scale.

Concerning the approximation of the displacement, we note that due to the definition of the
fields U (which vanishes in (1 U ();) and U, (which vanishes in ()1 U Q)3), the displacement
(7.68) is different in the four subdomains (2;-Q)4. Moreover, their presence is responsible for
the displacement’s in-plane rotations (see the comparison between the third component in
the rotation cross-section of (7.68) and the ones of (8.4). In this sense, the presence of these
partially vanishing fields is one of the biggest results of the study of this type of textile.

The limit contact conditions give another crucial aspect of this case: they bind not only
the distance between stretching and bending in the contact areas but also give a maximum
bound on the in-plane rotations.

Delving into this last point in more detail, we find it convenient to restrict the limit contact
conditions to the respective subdomain ()1-Q)4. Since the function U; vanishes by definition
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in (0 U () and Uj vanishes by definition in )y U )3, we have:

s B
{lrU% (oY E <l

U (#,0) ~ U (2, 0)] < ale),

U (2,b) — U (2, a)| + [0, Ua(z1)] < g1(2), ne 2 e O
.e. 2

U5, 0) ~ U7 (2, b)| + 5[0 Un(z1)] < g2(),

U (2,b) — U (2, )| +x[,U1 (z2)| < g1(2'), e 2 €0
.e. 3

U () ~ U (2, b)] + 5[3:U1 (z2)] < 82(),

U0 - UP )l + Uiz + )l < )
UV (2, 0) ~ US)(2,0)] + faaUs (z2) + 01 Ua(a1)]| < ga(2),

In the subdomain ()4, the fields U; and U, both vanish, and thus the displacements (7.68)
have no common directions, and their difference is bounded by the in-plane contact func-
tions g1 and g». In (), the field U; appears as a common direction in the second component
of the displacements and as an in-plane rotation of the displacement u(1). hence, the yarns in
direction e; have an in-plane rotation with an angle given by ¢d;U;. This angle is bounded
by the macroscopic in-plane constraint «|d;Uz| < g». A symmetrical equivalent appears
in 3 due to the presence of Uj. In (), both fields are present: the displacements have
an in-plane common direction and in-plane rotations. These rotations are bounded by the
macroscopic contact conditions x|d,U; + 91U, | < min{g1, g2 }. This behavior is represented
in Figure 8.1 (in the drawing, the rotations are exaggerated for the sake of understanding,
we still consider small deformations).

8.2.4 The trivial case of a textile with contact g, ~ g

The displacement in the third direction is expected to be homogenized and behave as in the
previous cases. Concerning the in-plane limit displacements, the contact is so loose that no
interaction between the yarns in direction e; and in direction e; takes place (and the beams

are free to have in-plane rotations Rgl) and Réz), which do not depend on each other).

Since the in-plane behavior consists of the homogenization of each direction independently,
this last case is of little interest for the initial task of a woven textile and especially for the
role of yarns’ contact.
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FIGURE 8.1: The expected displacement behavior in the different parts of
the domain for a textile with loose contact. The black rectangles denote the
admissible in-plane sliding allowed by the contact function g.
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Appendix A

Technical lemmas

In this appendix, we present the technical lemmas that furnished a decisive theoretical break-
through for the proofs of quite some of the propositions through the whole draft. Georges
Griso has done the formulation of these Lemmas.

A.1 ..aboutthe periodic unfolding for anisotropically bounded
sequences

Lemma 29. Let p € (1, +00) and let u be in LP(Y"; WY (Y')) such that

"

Vyu € LP(Y; WY (Y )N
Then u = u — My (u) belongs to WP (Y). It satisfies

Vyu =V u ae inY (A1)

and
Iullwiriyy < CUNVysllr oy + 11V (Vi) e vrcyn)) - (A.2)

Proof. Step 1. We prove the statement for u € C(Y).

Setu = u — My (u). Itis clear that (A.1) is satisfied. We prove now the estimate (A.2) of u.
By definition of u, equality (A.1) and the Poincaré-Wirtinger Inequality we have

HuHLP(Y’xY”) = [ju — MY/(”)HLP(Y’XY”) < C||Vy/“||m(y'xw)/

(A3)
Hvy’u”LP(Y’xY”) = Hvy’u”LP(Y’xY”)'
Observe that My/(Vy//u) = Vyu/\/ly/(u) =0.
Then, again by equality (A.1) and the Poincaré-Wirtinger Inequality, we get
HVyuuHLp(wa//) = ||Vyuu — MY/ (Vyuu) HLV(Y’XY”) S C||Vy/(Vy//u) ||Lp(y/><y//) (A 4)

= CHvy”(vy/u)||LP(Y’><Y”) = CHVy”(Vy/u)||U’(Y’><Y”)'

Hence, by estimates (A.3)-(A.4), we obtain (A.2).

Step 2. We prove the statement of the lemma

Suppose u € LP(Y'; WP (Y')) and Vyu € LP(Y'; WLP(Y"))M. Since C2(Y) is dense in this
subspace of LP(Y"; WL?(Y")), there exists a sequence of functions u, € C2(Y) such that

Uy — U strongly in LP(Y"; WP (Y))),
My (1) = My (u) strongly in LV(YN),
Vyn = Vyu strongly in LP(Y/; WY (Y )M,

The corresponding sequence {u,} (given by Step 1) satisfies V,/u;, = V,/u,, moreover it
belongs to C?(Y) and is bounded in W?(Y) (from (A.2)). Passing to the limit, this gives
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u € WLP(Y) such that
u;, — u strongly in W (Y), Vyu=Vyu aeinY.
Finally, observe that u = u — My (u). O

Lemma 30. Let p € (1, +oc0) and let u be in LP(Y"; W;g’;(Y’)) such that

Ve LP(Y; Wy (YN
Then, there exists ro € W,l,;lf (Y) such that
Vyo =Vyu ae. inY. (A.5)

Proof. Since uin LP(Y"; W;;f; (Y'))and V,u € LP(Y'; W;{fr’ (Y"))Ni, Lemma 29 shows that the
function u = u — My (u) belongs to WP (Y). It is obvious that u is periodic with respect to
the variables y1,...,yN,. One also has V u =V u € LP(Y’; W;,;‘;(Y"))Nl_ Denote

Yi={yeY|y=0y<€(01),je{l,....N} j#i}, ie{l,...,N},
Y ={yeY |y, =0,y,€(0,1), j€{Ny+1,...,N} j#i}, i€ {Ny+1,...,N}.
Since Vu = Vu and is y; periodic, j € {N; +1,..., N}, one gets
Vy/u|yj+ej — Vy/u|yj = Vy/u‘yﬁe], — Vy/u‘yj =0 a.e. inY;.

Hence ,
Uy e — Uy, € WTVPP(Y)),  je{Ni+1,..., N}

Besides, one has

U‘yj_;'_e].—U‘yj:O, jE{l,...,Nl}.

Then, following the same lines of the proofs of Cioranescu, Damlamian, and Griso, 2018,
Proposition 13.34 and Lemmas 13.35-13.36, there exits v € W,l,,’f,’ (Y) such that

w—ue Wh(Y")

and we have

N
o —ullwireyy SC D Mlupyyve; =y llw-vmp
j=N1+1 ]
SC(Hvy/MHLp(Y) + Hvy’u”LP(Y’;WW(Y”))) .
The function v satisfies (A.5). O

A.2 ..about the periodic unfolding for lattices

Lemma 31. Let p € (1,+00) and let {¢; }. be a sequence in W>P(S;) satisfying

1-N
I pellir(s.) + 119sellLr(s,) + 1103@ellp(s,) < Ce 7 .



A.2. ..about the periodic unfolding for lattices 119

For every k' € Kand (i,j) € {1,...,NY2, i # j, we define in O x K; the piecewise constant
function <I>< ) by

(TS 90 (AWK +e) ~ T (90 (- AK))
q’«gi'j)('rk,) = — TS (¢ e) (- A(K' +ej) +e;) + 78 (¢e) (-, A(K +e]'))) ae in Qf x K,
0 ae. in (RN \a) x K;.
Then, there exist a subsequence of {e}, still denoted {e}, and a function ¢ in WP(Q) N leof (Q)
such that ((i,j) € {1,...,N}%, i #j, K € K;)
TS(pe) = ¢ stronglyin  LP(Q; W?P(S)),
75 (9spe) — 0jp  weaklyin LP(Cy; whr(s0y), (A.6)
O (,K) = —L1;%¢  weaklyin  WYP(RV).
Proof. There exist a subsequence of {¢}, still denoted {e}, and a function ¢ in the space

WLir(Q)n leof(Q) such that convergences (A.6); » hold (see Theorem 3).
Now, let ¢ be in W#' (RN), one has

[ ) @l () ax
:wigw@<<@(MxHMW+w)@@+mw»
~ cp (er;‘ +eA(K +eej) + ce;) + e (cC + cA(K +ey)))
_ Ny, y Me)(e - 862) My () (e0)
e (eC +eA(K)) — Pe(eC + eA(K +ej))
e

— /Q M( / f(k/ﬂj ) 7;5(as¢g)ds)dx.

A(K')

FezZN

Then, due to convergences (A.6),, we get
- (i) ! )
lim [ (x) @) (x, k') dx = I /Q 2 / 9jpdS ) dx = I 3,04 .

e—=0J0

Hence, (A.6)3 is proved. O
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Appendix B

Complements of the periodic
unfolding for anisotropically
bounded functions

This appendix is dedicated to the extension of Lemma 11.11 of Cioranescu, Damlamian, and
Griso, 2018 to the anisotropic case. We initially gave it interest by the crucial role it plays in
the unfolding of periodic structures made of beams (see Griso, Hauck, and Orlik, 2021) and
yarns (seeGriso, Orlik, and Wackerle, 2020b), and the original plan was to extend it to the
anisotropic case to homogenize the textile with loose contact.

However, the change of strategy that involved the periodic unfolding of lattice structures
made it superfluous for this purpose. Nevertheless, we give here the results since they can
be useful for the study of other structures.

We start by giving its original formulation.

Lemma 32. Let {(ue, v¢)}e be a sequence converging weakly to (u,v) in WP (Q) x WLP(Q)N,
p € (1,+00). Moreover, assume that there exist Z € LP(Q)N and & € LP(Q); W;j;lo(Y))N such
that

%(V”g +0ve) = Z weaklyin LF(Q)N,
Te(Voe) = Vo+ V0 weaklyin LP(Q x Y)N*N.
Then, u belongs to W>P(Q)). Moreover, there exist a subsequence of {e}, still denoted {e}, and

u e LP () W;;’;’O(Y)) such that

%ﬁ(vue +0) = Z+Vyu+9 weaklyin LF(QxY)N.

As a direct consequence, we get the following.

Corollary 12. Let O be an open set in RM, M > 1. Let { (e, v¢) }e be a sequence converging weakly
to (u,v) in LF(O; WP(Q)) x LP(O; WP (Q))N, p € (1, +00). Moreover, assume that there exist

ZeLP(OxO)Nandd € LP(O x W, (V)N such that

%(Vug +ve) = Z weaklyin LF(O x Q)N,
Te(Voe) = Vo+ V0 weaklyin LP(O x Q x Y)N*N.

Then, u belongs to LP(O; W>P(Q))). Furthermore, there exist a subsequence of {e}, still denoted

eb,andu e LP(O x O WP (YY) such that:
per,0

%ﬁ(Vug+U£)AZ+Vyu+z7 weakly in  LF (O x Q x Y)N.
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Define the spaces

LP(QxY”, Di,) = {gﬁ? eLP(QxY") ’ Ve LP(Q x Y")M
and (Vx/ ® V, )43 c LP(Q <Y N1><N1}
1 1, L
LP(0, Dy; Wy (Y")) = {¢ € L (Q; Wy (Y")) | Vo € LP(O; Wy (Y1) ™
and (V0 @ V. )f € LI (0 Wi (1)),

where (V,/ ® V)¢ denotes the first N; x Nj entries of the Hessian matrix of ¢.
We endow such spaces with the respective norms:

| - HLP(wa,Dg,) = |1 leraxyny + 1V ) llr sy + 1D% Ol sy,
I HLP(Q,Di,;WLP(Y”)) = ||Lv(nxw,D§,) + IV yr (llzexymy-

We are ready to extend Lemma 32 to the class of anisotropically bounded sequences.

Lemma 33. Let {(ue,v¢)}e be a sequence in the space LP(Q, V) x LP(Q, V)N, p € (1, +00),
satisfying
luelrow,) <C  lvelrav,) <G (B.1)

where the constant does not depend on e.
Moreover, assume that there exist Z € L (Q)N such that

%(Vx/ug +ve) = Z weaklyin LP(Q)N. (B.2)

Then, there exist a subsequence of {e}, still denoted {e}, and

Z e LP(Qx YN with Myn(Z) = Z,
ieLlP(QxY" D2),

ue LPF(QxY”; wpero(y’))

(Y")M

deLP(Qx YW

such that
T(Vx/vg) — Di;ft-l— Vy/f)\ weakly in LP(Q % Y)N1><N1,
Z (B.3)
77-( wlte +0e) = Z+Vyu+0 weaklyin LF(Q x Y)M

Proof. We first apply the unfolding operator 7 to both sequences {u, } and {v,}. By Lemma
7 and estimates (B.1), there exist a subsequence of {e}, denoted {¢}, and functions i €

LP(Q XYY", Vy), 7€ LPQXY, V)N, i € LP(Q x Y'; WY (Y')) and a function & €

per,0
LP(Q x Y"; WWO(Y’))Nl such that

Te(ue
Te(Vyue
Te(ve
Te(V v,

— & weaklyin LP(QxY",W'P(Y")),
— Vypil+ Vil weaklyin LP(Q x Y)N
— 7 weaklyin LP(Q x Y";W'P(Y")M,
— Vy0+V,0 weaklyin LP(Q x Y)NixN

(B.4)

~— ~— ~— ~—

By convergence (B.2), there exist a subsequence of {¢}, denoted {e}, and Z € LF(Q x Y)M
with My (Z) = Z such that

%ﬂ(vx/ug +0e) — z weakly in  LP(Q) x Y)Nl. (B.5)
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From convergences (B.4); 3 and (B.5) we get

Vei+Vyii+7=0 ae in QxY.

Applying My to the above equality and since # € LP(Q x Y”; W;;’;,O(Y’ )), while i €

LP(QxY", V), 7€ LP(QxY", V)N, we get that Vil + 7 = 0 a.e. in Q x Y. Hence,
Vil = 0 and thus i = 0 because it belongs to L (Q x Y”; WP (Y"). Asa consequence,

per,0
one has
e LP(QxY" D?).

Set Uy = T/ (u¢), Ve = T (ve). Again by convergence (B.2), there exist a subsequence of {¢},
still denoted {e}, and Z € LP(Q x Y")Ni such that
%Vx/llg + V. — Z weaklyin LP(Q x Y")N,

Then, due to convergence (B.5) we have Z = My/(Z).
Now, let w’ and w” be two open sets such that

W cRM, " cRM and o xw” C Q. (B.6)
First, observe that
U, € Lp(w// % Y”,‘ Wl’p(w/)), V. € Lp(w// > Y”; Wl’p(w/))Nl.

By the above convergence and (B.4)4, one has

%Vx/ug + Ve = Z weakly in U’(w’ < W x Y”)Nl,
7;(VXIU€) = ﬁ/(vxlvs) — vx’5+ Vy/z7 weakly in Lp(w/ X w// % Y/ % Y//)NIXNl'

Lemma 12 claims that up to a subsequence, there exists . » € LP (w' x 0" x Y”; W;j;/o(Y’ ),

such that the following convergence holds:
%ﬁ’(vx,ug +V)— Z+ Vylgixer +0 weaklyin  LP (@' x @' x Y x Yy )N,
Taking into account convergence (B.5) we get
Z=Z+ Vylgiser +9 in @' x @ x Y.

Since one can cover () by a countable family of open subsets w’ x w” satisfying (B.6), there

exists uin LP(Q x Y”; W;Z;,O(Y’ ))suchthat Z — Z — 5 = V,su. The proof of (B.3) is therefore

complete. O
With some more assumptions, we can improve the regularity of the limit functions.

Lemma 34. Let {(ug,ve)}e be a sequence in LP(Q, V) x LP(Q, V)N, with p € (1,+00),
satisfying the assumptions in Lemma 33. Moreover, assume that

||vx“ (Vx/ug + UE) ||LP(Q) + eHqu (Vx/vg) HLP(Q) <C, (B.7)
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where the constant does not depend on e.
Then, there exist a subsequence of {e}, still denoted {e}, such that

Ze LMW (Y )M,
i€ LP(Q, DX Wo (")),
w € LP(O; W2 5(Y)),
vell(o; WWO( M

such that
72(Vx/vg) N — Di;ft-l— Vylv weakly n LP(Q X Y)N1><N1,

%ﬁ(vx/ug +0;) = Z+Vyw+V weaklyin LP(Qx Y)N

Proof. From Lemma 33, there exist a subsequence of {¢}, still denoted {¢}, and Z € LV (Q x
YN, u e LP(Q x Y, WperO(Y’)), ieLlP(QxY",D%)and 0 € LP(QA X Y"; Wpero(Y’))
such that

Te(Vwoe) = — D3+ V,0 weaklyin LP(Qx Y)N<Ny

1 ~
E'E(Vx/ug +ve) =~ Z+V,yu+0 weaklyin LP(Q x Y)M
By hypothesis (B.7), Lemma 6 (swapping Y’ and Y”’) and the proof of Lemma 9 one has
Te(Veve) = — D%l + Vv weaklyin LP(Q x y) NNy
1
STe(Vatte +0e) = Z+ Vyu+9 € LP(Qx YW Wb (Y")N
with Z € LP(Q x Y)M, T € LP(Q,D%; Wy (Y")) and ¥ € LP(Q; Wyl (Y))M satisfying
My (V) =0ae. inQ x Y.
Since, V satisfies My/(V) = 0a.e. in Q x Y” and My/(V i) = 0a.e. in Q x Y by periodicity

of u, we obtain
Z = My(Z) € LP(Q; Wy (Y") M,

Hence Vu lies in LP(Q x Y'; Wper(Y"))Nl. Lemma 30 in Appendix gives a function w &

LP (O Wp;f 0(Y)) such that V,/ro = Vu. The proof is complete. 0O
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Appendix C

Proof of a better bound for estimate
(5.37) in Lemma 19

The idea behind the proof is to take the difference between the displacements in the contact
areas and set as remainders the terms with a "sufficiently good" estimate, namely ~ ¢||u ||§E
Then, the remaining terms are paired, taking into account the oscillating manner, which
again gives remainders with a sufficiently good estimate ~ ¢||u ||‘29E Iterating this procedure,

we get that all the terms paired have an estimate ~ ¢||u H‘ZSS

Proof of estimate (5.37) of Lemma 19. First, to shorten the notation, a.e. (t1, f2) in wye, we set

ull) (t1,82) = uD (1) + pe,ge, ta, (—1)P T xe),  ulD (1, t2) = u@ (pe, ty + qe, 1, (—1)7Hxe),
ﬁp(ql) (tl, tz) = ﬁ/(l) (tl + pe, g, ty, (—1)p+‘7+1;{8)l ﬁp(qZ) (tl/ tz) _ ﬁ/(Z) (ng to +qe, t1, (71);7-&-171(8).

From (5.34), the displacements become

u,(glq)(tl, tr) = U/(l)(ps +t1,q¢) + R (pe+ t1,q¢) A trep +ﬁp(;>(t1,t2),

/ / / (Cl)
uézq)(tl/ fz) =U (2)(P€, ge + fz) +R @ (pe, qe+ tz) N tieq +ﬁp(qz)(t1, i’z).
We then organize the proof in steps.
Step 1. We rewrite the displacements in the contact areas as (for a.e. (t1,t2) in wye)
u]glq)(tlz ty) = U M (pe, ge) + R' D (pe, qe) A (tre1 + tren) + Q;%) (t1,t2), 2
uézq)(tl, ty) = U@ (pe, ge) + R' @ (ge, pe) A (tre1 + trep) + Q,%) (t,t2),
where the remainder terms Q](f,;) are estimated by
Y. ||Q%)||%2(wm) < Cel|ul3,- (C.3)

(pa) €K

From the form of the displacement in the contact areas (C.1), for a.e. (t1,t2) in wy, the re-

mainder terms Q%) are defined by

Qi (11, 12) =(U'D (pe + 11, g¢) — UV (pe, ge) — R'D (pe, ge) A trey)
+ (RO (pe+t1,q8) = R’ D (pe, qe)) A taey + 10 (11, 1),

ng) (b fa) = (U,(z) (pe, qe + 1) — U @ (pe, ge) — R'® (pe, qe) A trep)
+ (R/(Z)(pe, qe + tp) — R/(z)(ps, qe)) A tre +ﬁ;f{12)(t1,t2).
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We want now to prove (C.3) and due to the symmetrical behavior, we will only estimate
Q%). We first have that

Y oI e, = £ (/
(pg) €K (pg)efce 7 re

t , 2
+ t%‘/ HR m(ps—l—s,qe)ds‘ dtldtz) + ) Hﬁ(l)”%}(w“)'
wre 10 (pa)EKe

/ / 2
U0 (pe+5,q¢) = RV (pe, ge) A exds| ddty

Using Jensen’s inequality on each term in the parenthesis and equality (5.17), we get

2N.—1

/ tz/ R (pe + s, ge) ds] dhdty < CE Z 10RO (- 48) 220 )
() ke 7 e 9=

/ / 1 U D (pe+5,9e) — R (pe, ge) A eldt‘ dtydty
Wie

(pa)€Ke
ey &3 5 2
<c ) (EIRU g0 ey + SR D ) 1)

By the first line of estimates in (5.32) and Lemma 18, we get (C.3).

Step 2. By the non penetration condition (5.28) in the contact parts of the cell (pe, qe) + €Y, for a.e.
(t1, ) in wye we show that

0 <=1 (s =) + (43 1y g5 = ¥y gon)) + (5 hgs — i)
(s~ Yyl a) | (1t2) c4
=(=1)"*1[¢(R{" (pe, ge) — RY® (pe +¢,q¢) — RY (pe, ge + ) + R (pe, g¢) ) “y
+ (Rbg + Ry + Ry + R ) (t1,12)]
where the four remainder terms R%), R}% 1) and Rg?ﬂ)q are estimated by
Y IRE e + IR [Py + 1RGP < Cellull- (C5)

(p.q)€Ke

Indeed, by the non-penetration condition (5.28) on the vertices of the cell (pe, ge) + €Y and
pairing the involved terms differently, we get a.e. (#1,t2) in wy, that

W @ 1) 2) @) 1)
0<L (—1)P+‘1 (( Ypa3 upq,3) + (u(p+1)(q+1),3 - u(p+l)(q+l),3) + (u(PH)qs _ u(p+l)q,3)
©) (1)
+ (up(q+1),3 N up(q+1),3)) (t1,t2)
_ m _,m @ @) " "
: (_1)p+q(( U3 ~ Wpr1g3) T oinga T pangrna) T M gens T Yees)

2 2)
+ (ui’(21+1),3 - “;q,e,)) (t1,t2).

Then, the right-hand side of the above equality is rewritten in the following way:

(u;;)?) p+1 q3)( 1h) = (PS qe) + R;q)(tlltz)
(“E;)ﬂ)w - p+1) q+1 3)(t1,t2) = (p8+£ qe) +RE ) ) (t1,12)
1
(“Ep)+1>(q+1),3 q+1 3)(f1/f2) = —eRy (pe, e + ¢) +R(() y(tt2)
2 (1, 12)

— eR\P (pe, ge) + R (11, 1),
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where R;(a}y) (t1,t2) and Rﬁ) (t1,t2) are defined by

RE = (UM (pe, ge) — UM (pe + ¢, q¢) — eRYV (pe, ge)) + (R (pe, qe) — R\ (pe + &,q¢) ) 12

— RV (pe, ge) — RV (pe +&,qe) ) 1 + ng) _ QE;)Jrl)q’
Ry = (U3 (pe, ge) — Uy (pe,qe +€) + R, (pe,ge)) + (R, (pe, ge) — Ry (pe,ge +¢)) 12
— (R (pe,qe) - R (pe ge + €)1y + Q) — Q% o

and R'? R are referred from the above defined. It is now left to prove estimate
(p+1)g” “plg+1)

(C.5) and due to the symmetrical behavior, we will only estimate R%). We first have

Y IR, = X (]
(p.q)€Ke Wre

(p)€Ke

g ’ 2 € ’ 2
+ t%’/o alRl(l)(ps+s,qe)ds’ dtldter/w t% / ale(l)(pe+s,qe)ds‘ dt1dt2)

Wke
+ L 10 B+ L 100, R

() ek ()€K

PR AL (1) 2
/081U3 (pe+s,q¢) — R, (ps,qe)ds’ dtidt,

Using Jensen’s inequality on each term in the parenthesis and equality (5.17), we get

2N:—1

/ tz‘/ 3R (pe + 5, ge)ds| dndty < CE Y 1R (-8 22 0.
(pg)eke 7 xe q=0
( 2Ne—1 (
Y / 2 /am (pe +s,qe)ds| dhdty < C& Y RV, 9|22,
(pg)eke 7 xe q=0
€ / f 2N —
Y /0811U3(1)(p€+s,qe)—R2(1)(ps,qs) dtldt2<Ce Z HalR ( ‘78)HL2(0L
(pag)eke 7 xe q=0

By the first estimates in (5.32) and estimate (C.3) in Step 1, we get estimate (C.5) for R;,lq).

Step 3. In this step we prove that for a.e. (t1,17) € wye

p+1 q+1 ! ! !
2 Y (U — 0P (ke, be) — 11 (RS — RSP (ke, Le) + £ (R = R\ (ke £e))
=pt=q
< (—1)”+"8(R§ \(pe, ge) — R (pe + €, qe) — R (pe, ge +¢) + RY (pe, qf)) + Spg(tr, t2),
(C.6)
where the remainder term Sy, is estimated by
Y ISpalliage, < Cellulls,- (C7)

(pa)eKe

We first note that in (C.4), the left-hand side is positive. Hence, we replace the left-hand side
with (C.2) and take the modulus. Applying Step 1 on the left-hand side and Step 2 on the
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right-hand side, we get a.e (f1,t2) € wye that

(S ! ! ’ ’ ’
Z ; (U U ke ) — 1 (R — R ke, ) + 12 (R.Y) — RV (ke, £e)
=pt=q
+ <Q£2?3 — Q) (t, )]
= (17 [e(Ry (b ge) = RY (pe +.qe) — R (pe, g+ ) + Ry (pe o))

1 2
+ (R;; 1 REP)H) 1 R;(LH) T R,Sq)) (1, tz)] .

Then, the above equation can be rewritten in the form (C.6) with S, defined by

p+1g+1

Sp,qi(—l)pﬂ( ()+R;+)1q R;;+1_RPQ>+Z€Z‘QMS le3)
pl=q

Step 4. In this step, we prove the statement, i.e., estimate (5.37).

Starting from inequality (C.6) of Step 3, we replace (p,q) by (2p,29), 2p+1,2q), (2p,29+1)
and (2p +1,2q + 1). For a.e (11, t2) € wye, we oObtain

2p+12g9+1

YOV (U —UP) (ke le) — 1 (RYY — R (ke, te) + 12 (R — RP) (e, Le)|
k=2p (=2q

2p+1 2q+2

+Y ) |(1U/3(1) (2)) (ke, le) — t1 (R, o ’R/z(z)) (ke, le) + to (Rll(l) — R/l(z)) (ke, Ce)|
k=2p (=29+1

2p+2 2q+1

+ Y (WY —UP) ke, te) — 1 (R — YD) (ke, ) + 12 (R — R\ (ke, )]
k=2p+1£=2g

2p+2  2q+2 )

+ Y (U UP) (ke te) — 1 (R — RSP (ke, Le) + b2 (R — R\ (ke, L) |
k=2p+1{=2q+1

2p+12g+1

<e) ) (—1)k+ (R/z(l) (ke, le) — 7?,/1(2) (ke +¢,le) — R/z(l) (ke, e +¢€) + Rll(z) (ke, Ks))
k=2p {=2q

+ (5<zp><2q> +S2p+1)29) +Sp)2041) T 5<2p+1><2q+1>) (t1,t2).

(C.8)
We set
2p+12g9+1
Tpg(t1,ta) =€ Y Y (— k*”( U (ke, te) — R§2) (ke +e, le) — ’Rgl) (ke, be+¢) +R§2) (ke, fs))
k=2p (=2q
and we want to prove that this term has a sufficiently good estimate
Yo 1Tl e < Celluls, (C9)

(pa)€Ke
Indeed, by writing down the sum and pairing the terms, we get that
qu(tl, tz)
= s((R(l)(Zps, 2ge) — R(l) (2pe + ¢,2q¢) ) + (R(l) 2ps +¢2qe+¢) — R(l)(Zps, 2ge +¢))
+ (R é (2pe +¢,2qe +€) — ( )( (2pe, 2qe +¢€)) + ( 2pe 2ge + 2¢) — gl) (2pe + €,2q¢ + 2¢))
- (R g (2pe+¢€,29e) — R 2)(2;75 +¢,2ge +¢€)) — ( 2pe +2¢,2qe +¢€) — Rgz) (2pe + 2¢,2g¢))
— (R (2pe, 208 + ) - R (2pe, 24¢)) — (R (2pe +,2q2) — RY) (2pe +,2e +¢)) ).

_~ =~
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Hence, estimate (C.9) follows from first estimates in (5.32) and the fact that

Y 1 Tpltze,
(P ke
€ / / 2

= ) ( / / —81722(1) (2pe +s,2q¢e) + 28173&1) (2pe+5,2ge +¢) — 81732(1) (2pe +5,2qe + 2£)ds‘ dtydty
(payeKe o 10

+ “_9,R @ (2pe,2 R ? — R ds| dt,d

2R, 7 (2pe, 2qe +5) +202R, 7 (2pe + €,29e +5) — 2R, (2pe + 2¢,2qe + 5)ds| dtydty

Jwye 1

2N — 2Ne—
<C 2 1R (- 98) 1P 1 + z 3R, (pe, ) |2 < Cellul}.
< 1 g 2(0,L) 2 p 1200.L) ) = Se

Taking the L% norm in the left-hand side of (C.8) and applying (C.7)-(C.9) on the right hand
side, we finally obtain

Y (@10 —UP) (pege)” + (R~ REY) (pesge)|*) < Cellull},
(pa)Eke

which divided by €2, gives estimate (5.37). O
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