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Homogenization and dimension reduction for periodic textiles made of linear elastic
yarns with sliding contact

by Riccardo FALCONI

This work aims to study textile structures in the frame of linear elasticity to understand how
the structure and material parameters influence the macroscopic homogenized model. More
precisely, we are interested in how the textile design parameters, such as the ratio between
fibers’ distance and cross-section width, the strength of the contact sliding between yarns,
and the partial clamp on the textile boundaries determine the phenomena that one can see in
shear experiments with textiles. Among others, when the warp and weft yarns change their
in-plane angles first and, after reaching some critical shear angle, the textile plate comes out
of the plane, and its folding starts.
The textile structure under consideration is a woven square, partially clamped on the left
and bottom boundary, made of long thin fibers that cross each other in a periodic pattern.
The fibers cannot penetrate each other, and in-plane sliding is allowed. This last assump-
tion, together with the partial clamp, adds new levels of complexity to the problem due to
the anisotropy in the yarn’s behavior in the unclamped subdomains of the textile.
The limiting behavior and macroscopic strain fields are found by passing to the limit with
respect to the yarn’s thickness r and the distance between them ε, parameters that are asymp-
totically related. The homogenization and dimension reduction are done via the unfolding
method, which separates the macroscopic scale from the periodicity cell. In addition to the
homogenization, a dimension reduction from a 3D to a 2D problem is applied. Adapting
the classical unfolding results to both the anisotropic context and to lattice grids (which are
constructed starting from the center lines of the rods crossing each other) are the main tools
we developed to tackle this type of model. They represent the first part of the thesis and are
published in Falconi, Griso, and Orlik, 2022b and Falconi, Griso, and Orlik, 2022a.
Given the parameters mentioned above, we then proceed to classify different textile prob-
lems, incorporating the results from other works on the topic and thoroughly investigating
some others. After the study is conducted, we draw conclusions and give a mathematical
explanation concerning the expected approximation of the displacements, the expected solv-
ability of the limit problems, and the phenomena mentioned above. The results can be found
in “Asymptotic behavior for textiles with loose contact”, which has been recently submitted.
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by Riccardo FALCONI

Ziel dieser Arbeit ist es, textile Strukturen im Rahmen der linearen Elastizität zu unter-
suchen, um zu verstehen, wie die Struktur- und Materialparameter das makroskopisch ho-
mogenisierte Modell beeinflussen. Genauer gesagt interessiert uns, wie die textilen Design-
parameter, biespielweise das Verhältnis zwischen dem Faserabstand und der Querschnitts-
breite, die Stärke des Kontaktgleitens zwischen Garnen und die partielle Klemmung an den
Textilrändern, die sichtbaren Phänomene bei Scherversuchen mit Textilien bestimmen. Ins-
besondere interessiert uns der Effekt, wenn sich der Winkel zwischen den Kett- und Schuss-
fäden zuerst nur in der Ebene ändert und, nach Erreichen eines kritischen Scherwinkels, die
Textilplatte aus der Ebene kommt und ihre Faltung beginnt.
Die betrachtete Textilstruktur ist ein Quadratgewebe, das aus langen dünnen Fasern besteht,
die sich in einem periodischen Muster kreuzen und teilweise an dem linken und unteren
Rand geklemmt werden. Die Fasern können nicht ineinander eindringen und ein Gleiten in
der Ebene ist erlaubt. Diese letzte Annahme, zusammen mit der partiellen Klemmung, fügt
dem Problem, aufgrund der Anisotropie im Verhalten des Garns in den nicht geklemmten
Teilbereichen des Textils, eine neue Komplexitätsebenen hinzu.
Das Grenzverhalten und die makroskopischen Dehnungsfelder werden gefunden, indem
man das assymptotische Verhalten des Gewebes in Bezug auf Garndicke r und Abstand
ε, unter Annahme eines vorgeschriebenen Verhältnisses der beiden Parameter, untersucht.
Die Homogenisierung und Dimensionsreduktion erfolgen über ein Entfaltungsverfahren,
das die makroskopische Skala von der Periodizitätszelle trennt. Zusammen mit der Ho-
mogenisierung wird zusätzlich eine Dimensionsreduktion von einem 3D- auf ein 2D-Problem
angewendet. Die Anpassung der klassischen Entfaltungsergebnisse sowohl an die Anisotropie,
als auch an das Gitter (die kreuzende und oszillierende Balkenachsen) sind die wichtigsten
Werkzeuge in der Arbeit. Sie stellen den ersten Teil der Arbeit dar und sind in Falconi, Griso,
and Orlik, 2022b und Falconi, Griso, and Orlik, 2022a veröffentlicht.
Anhand der oben genannten Parameter gehen wir dann zur Klassifizierung verschiedener
Textilprobleme über, wobei wir die Ergebnisse, die bereits in anderen Arbeiten zu diesem
Thema erzielt wurden, einbeziehen und einige andere gründlich untersuchen. Nachdem die
Studie durchgeführt wurde, ziehen wir die Schlussfolgerungen und geben eine mathema-
tische Erklärung bezüglich der erwarteten Annäherung der Verschiebungen, der erwarteten
Lösbarkeit der Grenzwertprobleme und der oben erwähnten Phänomene. Die Ergebnisse
sind in “Asymptotic behavior for textiles with loose contact” zu finden, das kürzlich ein-
gereicht wurde.
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Chapter 1

Introduction

This work deals with textile structures made of long thin beams, which cross each other on
a periodic pattern. The aim is to find a mathematical model for the textile, which adequately
describes its mechanical behavior at a small scale and which can then be homogenized to
capture the textile’s macroscopic behavior in the context of linear elasticity.
The homogenization is done via the unfolding method, an equivalent to the two-scale con-
vergence. The method was first presented in Cioranescu, Damlamian, and Griso, 2002, with
further development in Cioranescu, Damlamian, and Griso, 2005; Cioranescu, Donato, and
Zaki, 2006; Damlamian et al., 2006; Cioranescu, Damlamian, and Griso, 2008 and extensively
in Cioranescu, Damlamian, and Griso, 2018.
This homogenizing tool is well suited for these types of problems, involving periodic pat-
terns and structures made of yarns. Indeed, it has largely found application in the ho-
mogenization of periodically perforated domains (see, e.g., Damlamian, Meunier, and Van
Schaftingen, 2007; Damlamian and Meunier, 2010; Donato, Le Nguyen, and Tardieu, 2011;
Ould Hammouda, 2011; Cioranescu, Damlamian, and Orlik, 2013a; Cabarrubias and Do-
nato, 2016; Donato and Yang, 2016) and of thin structures with a periodic pattern, like peri-
odically perforated shells (see Griso, Hauck, and Orlik, 2021), textiles made of long woven
beams in strong contact (see Griso, Orlik, and Wackerle, 2020b; Griso, Orlik, and Wackerle,
2020a) and 3D lattice structures made of either beams or segments in a stable configuration
(see Griso et al., 2020; Griso et al., 2021).
In order to simplify the structures we are going to investigate, a dimension reduction from
three to two dimensions is also applied, so that in the limit the macroscopic behavior only de-
pends on the in-plane variables. About dimension reduction of plates or rods, one can read,
for instance, in Blanchard, Gaudiello, and Griso, 2007a; Blanchard, Gaudiello, and Griso,
2007b; Griso, 2004; Griso, 2008a; Griso, 2008b. For more information on the combination
of periodic unfolding and dimension reduction, one can look into Chapter 11 of Cioranescu,
Damlamian, and Griso, 2018.
The model we consider is a woven textile made of long thin rods that are not glued (so they
cannot be extended to a perforated shell) but do allow for a small amount of in-plane sliding.
The interest in this type of structure comes from the large number of numerical progress on
the topic (among others, we would like to mention Madeo et al., 2015; Boisse et al., 2011;
Orlik, Panasenko, and Shiryaev, 2016; Orlik and Shiryaev, 2016), so the aim is to give a
mathematical explanation of the phenomena that arise in simulations and experiments. In
particular, we are interested in how the contact between fibers and the partial clamp influ-
ence the textile behavior at a macroscopic level. In this sense, this work shows the range
of possible cases and, starting from the ones already studied in Griso, Orlik, and Wackerle,
2020a, investigates the remaining ones and compares them in a qualitative manner.
The investigation of woven structures with contact sliding is able to describe more phenom-
ena and be closer to reality but it also involves a more complex setting, and finds its limita-
tion in the classical unfolding theorems. Hence, we decided to split the thesis into two main
parts: a preparatory part, where we extend the classical unfolding results to new structures
and new classes of sequences, and an investigative part, where we study different elasticity
problems for the small deformations of this kind of textile structures.



2 Chapter 1. Introduction

1.1 First part: new tools for the periodic unfolding

The first three chapters of the thesis will furnish the necessary extensions of the classical
unfolding theory and the main notions and properties concerning the N-linear and N-cubic
interpolation. These results are important not only to investigate the particular periodic
structures we are interested in but also all those alike.
The first section of Chapter 2 recalls the classical unfolding theory. We consider a bounded
domain Ω ⊂ RN with Lipschitz boundary and periodically paved with unitary cells Y =
[0, 1]N rescaled by a small parameter ε. The unfolding operator takes measurable functions
on Ω and splits the functions’ variable into the reference cell’s position and the variable’s
position on the reference cell. As ε goes to zero, it splits the limit function into macroscopic
behavior on Ω and microscopic behavior on the reference cell Y (see Figure 4.2). This method
is very powerful in the frame of homogenization because in the limit we have separation of
the microscopic cell problem from the macroscopic homogenized problem.
The unfolding operator can easily be applied to bounded sequences in Lp (which admit a
weakly convergent subsequence in Lp) since its Lp norm can be bounded by the sequence’s
bound. From the classical unfolding theory in Section 1.4 of Cioranescu, Damlamian, and
Griso, 2018, we present the unfolding for:

(i) Sequences {φε}ε ⊂W1,p(Ω) such that ‖φε‖Lp(Ω) + ε‖∇φε‖Lp(Ω) ≤ C;

(ii) Sequences {φε}ε ⊂W1,p(Ω) such that ‖φε‖W1,p(Ω) ≤ C;

(iii) Sequences {φε}ε ⊂W2,p(Ω) such that ‖φε‖W2,p(Ω) ≤ C.

The rest of the chapter is devoted to the properties of linear and cubic approximation of
functions on a reference grid G that connects the vertices of the reference cell Y (and on the
rescaled one εY), as well as the N-linear and N-cubic extension to the cell itself Y (and on the
rescaled one). The properties will be often used throughout the whole work.
The first extension of the unfolding method is done in Chapter 3 and concerns sequences
that present better estimates in some (privileged) directions with respect to others. Unlike
the sequences above, whose estimates are isotropically bounded, this chapter will deal with
the periodic unfolding of "anisotropically bounded" sequences.
To describe them rigorously, we consider the decomposition RN = RN1 ×RN2 and define
x = (x′, x′′), where the variable x′ corresponds to the first N1 directions. From the unfold-
ing with parameters of Cioranescu, Damlamian, and Griso, 2018, Chap. 7, we develop the
"two-steps unfolding" and show the asymptotic behavior of the following new classes of
anisotropically bounded functions:

(i)’ Sequences {φε}ε ⊂ Lp(Ω,∇x′) such that ‖φε‖Lp(Ω) + ε‖∇x′φε‖Lp(Ω) ≤ C;

(ii)’ Sequences {φε}ε ⊂ Lp(Ω,∇x′) such that ‖φε‖Lp(Ω) + ‖∇x′φε‖Lp(Ω) ≤ C;

(iii)’ Sequences {φε}ε ⊂W1,p(Ω) such that ‖φε‖Lp(Ω)+ ‖∇x′φε‖Lp(Ω)+ ε‖∇x′′φε‖Lp(Ω) ≤ C;

(iv)’ Sequences {φε}ε ⊂ Lp(Ω,∇x′) with {∇x′φε}ε ⊂ Lp(Ω,∇x′′) such that

‖φε‖Lp(Ω) + ‖∇x′φε‖Lp(Ω) + ε‖∇x′′(∇x′φε)‖Lp(Ω) ≤ C.

As a direct application of this unfolding, in the last section we proceed to the complete
homogenization of the following homogeneous Dirichlet problem

Find uε ∈ H1
0(Ω) such that:∫

Ω
Aε

[
∇x′uε

ε∇x′′uε

]
·
[
∇x′φ

ε∇x′′φ

]
dx =

∫
Ω

f φ dx, ∀φ ∈ H1
0(Ω),

whose nature is anisotropic. We prove the existence and uniqueness of solutions for cell
problems and macroscopic problems, the correctors, and the homogenizing operator.
Chapter 4 deals with the second type of extension of the periodic unfolding method, which
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is the unfolding for sequences defined on periodic lattice structures. In this sense, by "pe-
riodic lattice structure," we mean one-dimensional grids S defined on each ε cell and pe-
riodically repeated for each cell of Ω. For further reading on the topic of lattice structures
and homogenization, we recommend Abrate, 1991; Caillerie and Moreau, 1995; Panasenko,
1998; Lenczner and Senouci-Bereksi, 1999; Casado-Diaz, Luna-Laynez, and Martin, 2001;
Lenczner and Mercier, 2004.
After giving a rigorous definition of the periodic lattice Sε ⊂ RN , we define the functions
on these structures. The problem of defining an unfolding operator for lattices is that the
unfolding itself is done separately on each lattice direction. This means, that in the limit we
obtain N different functions and we no longer know if these functions are either indepen-
dent from each others, or the restriction to each line of a unique function.
To overcome this issue, we adopted the following strategy: given a sequence {φε}ε bounded
on W1,p(Sε), we first uniquely decompose it into a sequence {φa,ε}ε, defined as an inter-
polation between lattice nodes, and a remainder term {φ0,ε}ε. Concerning {φa,ε}ε, we can
extend it by N-linear interpolation to the whole space, apply the unfolding results on RN

and restrict it back to the lattice itself. Concerning {φ0,ε}ε, we can directly apply the one-
dimensional unfolding since it is defined on straight segments of Sε. With this workaround,
and due to the results of the previous chapter, we show the asymptotic behavior of se-
quences:

(i)” {φε}ε ⊂W1,p(Sε) such that ‖φε‖Lp(Sε) + ε‖∂sφε‖Lp(Sε) ≤ Cε
1−N

p ;

(ii)” {φε}ε ⊂W1,p(Sε) such that ‖φε‖W1,p((Sε))
≤ Cε

1−N
p ;

(iii)” {φε}ε ⊂W1,p(Sε) such that ‖φε‖Lp(Sε) + ‖∂sφε‖Lp(S ′ε) + ε‖∂sφε‖Lp(S ′′ε ) ≤ Cε
1−N

p .

For sequences bounded on W2,p(Sε), more work is required since the N-cubic extensions
of the interpolating sequence are not uniquely defined, and thus more assumptions on the
bounds must be made. However, we also present another strategy, which consists of twice
applying (on the functions and their partial derivatives) the results for functions bounded
W1,p(Sε). In this sense, no other bounds are needed but at the cost of a lesser regularity of
the limit fields.
At last, we again consider an application of the new results and proceed to the complete
homogenization of a fourth-order Dirichlet problem defined on a lattice structure:

Find uε ∈ H1
0(Sε) ∩ H2(Sε) such that:∫

Sε

Aε∂
2
suε ∂2

sφ ds =
∫
Sε

gε ∂sφ ds +
∫
Sε

fε φ ds, ∀φ ∈ H1
0(Sε) ∩ H2(Sε).

1.2 Second part: classification and homogenization of textile
structures made of linear elastic yarns with sliding con-
tact

In the second part of the thesis, we investigate our actual problem, that is, the linearized
elasticity problem for a textile structure made of yarns with contact sliding. A first break-
through for this kind of problem has been made in Griso, Orlik, and Wackerle, 2020a, and
we will initially consider the same setting. Then, we will apply the tools developed in the
first part to extend the study to a whole new set of problems.
We dedicate Chapter 5 to the mathematical model for the structure, well-posedness of the
problem, and classification according to the initial parameters.
We start by considering the simplest structure of a woven textile: a long, oscillating rod of
length L with a small squared cross section of width r. From the results in Griso, 2004; Griso,
2008a; Griso, 2008b, every displacement uε on the rod can be decomposed according to

uε
.
= U el

ε + uε,
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where the U el is the elementary displacement and consists of the middle line and rotation of
the cross-section, while u is the remainder term. We improve this decomposition by showing
that any rod displacement is the sum of a Bernoulli-Navier displacement and a residual term.
The construction of the whole textile structure Tε is done as depicted in Figure 1.1: we set a
small parameter ε and define two beams of rods. The distance between two parallel rods is
ε, and the rods of different directions cross each other in a periodic pattern (see the zoom in
Figure 1.1), creating a woven canvas in the square Ω = (0, L)2. For every displacement on

FIGURE 1.1: The textile structure. Each cell has a 2ε periodic pattern. The
distance between fibers is ε, and their cross-section is 2r. A partial clamp is

set on the left and bottom boundaries.

the textile structure uε ∈ H1(Tε) we set the following natural assumptions:

(i) clamp conditions: on a partial segment of the left and bottom boundaries, the displace-
ments vanish;

(ii) In-plane contact conditions: in the in-plane component, the displacements are allowed
to shear relative to the other in two directions up to a maximum bound given by a gap
function gε = εhg, where h ∈ N∗ denotes the "contact strength";

(iii) Outer plane non-penetration condition: in the outer plane component, the displace-
ments are not allowed to penetrate each other.

We define the set of admissible displacements as

Xε =
{

vε ∈ H1(Tε)
∣∣ vε satisfies conditions (i)-(iv)

}
.

Due to conditions (ii)-(iii), the elasticity problem is set via variational inequality, similar to
in Cioranescu, Damlamian, and Orlik, 2013b; Griso, Orlik, and Wackerle, 2020a:

Find uε ∈ Xε such that for every vε ∈ Xε:∫
Tε

aijkl,ε eij(uε) ekl(uε − vε) dx ≤
∫

Tε

fε · (uε − vε) dx,
(1.1)

where aε is the fourth order strain tensor describing the material law, and fε is the applied
stress. The problem admits solution by Stampacchia’s Lemma (see Kinderlehrer and Stam-
pacchia, 2000), a version of Lax−Milgram for closed convex subsets of Hilbert spaces. In
order to give a classification of the different textile structures, we need the estimates of all
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the fields and their derivatives involved in (1.1) with respect to the L2 norm of the strain ten-
sor. In the clamped subdomains, these estimates are obtained by the bound on their deriva-
tives together with Poincaré’s inequality. The estimates on the unclamped subdomains are
proved by the results on the clamped ones together with the relations given by the contact
conditions, the non-penetration condition, and the Trace theorem.
We note that the fields’ estimates depend on three factors, and so does the behavior of the
textile before the limit. Namely:

1. The ratio between the fibers distance ε and their cross section width r;

2. The fact that we are interested in the study of small deformations;

3. The contact strength h ∈N∗ (or friction between yarns).

Concerning the first aspect, for simplicity, we assume that ε ∼ r. Of course, another whole
study can be done without this assumption and would lead to another interesting case
(r ∼ ε2), but given the complexity of the problem, we leave it out of the scope of this work.
Concerning the second aspect, we show that the linearization for the elasticity problem is
ensured if and only if the following assumption on the strain bound holds:

‖e(uε)‖L2(Tε)
∼ ε5/2+δ, δ > 0. (1.2)

A suitable choice of forces on the right-hand side must be made to keep the bound in such a
linear regime. At last, contact strength is the parameter we are most interested in because it
heavily determines the transfer of estimates from the clamped fields to the unclamped ones,
influencing the final textile behavior. We spot four representative cases: textiles with almost
glued fibers (gε ∼ ε4g or higher), with strong contact (gε ∼ ε3g), with loose contact (gε ∼ ε2g)
and with very loose contact (gε ∼ εg). We collect all the estimates for the fields in the final
Table 5.1, and draw some a priori conclusions on the displacement behaviors.
In Chapter 6, we briefly analyze the almost glued fibers, the strong contact, and the very
loose contact case. The homogenization for the first two cases has already been achieved in
Griso, Orlik, and Wackerle, 2020a, and we will not investigate it further. However, we will
reach the same final displacement decomposition with the newly developed lattice strategy
and recall the results in the conclusive chapter. The case of a very loose contact textile as-
sumes gε ∼ εg, leading to a trivial configuration: the contact is so loose that, with the applied
model, we completely lose information on the in-plane fields in the unsupported domains.
Even the assumption of completely stitching the left and bottom boundary of Ω (glued con-
ditions) does not help. Hence, a study in a woven context is of no use.
Chapter 7 deals with the loose contact case (gε ∼ ε2g), and it can be considered the core of
the work. The full homogenization is done for this case, together with the newly developed
tools. We assume the gap function gε only in the in-plane components since it is possible to
prove (see Lemma 19) that in the outer-plane direction, the estimate of the displacements’
difference does not depend on the contact due to the woven behavior of the fibers crossing
each other.
We start by giving sufficient forces to obtain the strain tensor bound (1.2) to stay in a linear
regime. With the choice of (1.2), the ratio r ∼ ε, and the contact strength h = 2, we get the ex-
plicit estimates for the displacement fields’ bound.Due to compactness, the fields converge
weakly in the space.
The unfolding process goes through different steps. We first show the weak convergences
of the unfolded fields, using the results in Chapter 2-4. We define three operators for the
textile, all in relation with each other: T G

ε for the unfolding of the yarns’ middle lines, Πε for
the whole three-dimensional textile structure, and T C

ε for the unfolding of the contact areas,
thus where the yarns are above each other. Once we find the weak limits via unfolding of
the displacement fields, the form of the strain tensors, and the contact conditions, we define
the limit set of admissible displacements X .
In order to go to the limit with problem (1.1), we also need to construct suitable test func-
tions. Namely, they must have sufficient regularity to be dense in the limit set of displace-
ments and ensure strong convergence via unfolding, give the same limit contact conditions,
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limit strain tensors, and satisfy the contact conditions before the limit.
At last, we can finally go to the limit via unfolding for ε → 0 and find the limit problem
(7.61), whose existence is again ensured by the Stampacchia Lemma. According to the pro-
cedure in Chapter 5.6 of Cioranescu, Damlamian, and Griso, 2018, we split the microscopic
scale from the macroscopic one, find the correctors of the problem, the homogenizing oper-
ator, and the macroscopic problem.
Chapter 8 is the conclusive chapter, where we give an overview of the results and do some
final considerations.
Concerning the extension of the unfolding method to anisotropically bounded functions and
functions defined on lattice structures, we mention their applicability to a context wider than
textiles, such as structures made of beams (lattice-like in R3) and in an unstable configura-
tion (anisotropic behavior).
Concerning the main object of our study, small deformation of textiles with contact sliding,
from Griso, Orlik, and Wackerle, 2020a and the newly achieved results, we gather the results
from the homogenized problems and the final approximation of the displacement for each
case. Then, from a comparison, we draw the following qualitative considerations:

A. In all cases, the woven nature of the textile allows the displacements in the third direc-
tion to stay sufficiently close. This fact is of particular importance when the contact is
loose or very loose;

B. The contact determines the linearity of the homogenized problem. In particular, with
almost glued fibers, we have a linear macroscopic problem; with strong contact we
have a Leray-Lions equality; with loose contact, a Leray-Lions inequality; with very
loose contact, we have an in-plane separation of the problem for the two independent
beams of yarns;

C. If the contact is strong or almost glued, the displacement behaves the same in the
whole domain Ω, despite a partial clamp. Moreover, the fibers do not have in-plane
rotation (tend to stay straight). On the other hand, if the contact is loose or very loose,
the displacement behaves differently in Ω1-Ω4, and in-plane rotation appears in the
unsupported domains. Such phenomena can be observed in reality (see Figure 1.2);

D. The macroscopic limit contact conditions give us a qualitative bound for the in-plane
rotations. The maximum slide depends on the L∞ norm of g.

In general, we can say that this work offers a detailed mathematical explanation of phe-
nomena that involve friction between fibers and its consequences on both microscopic and
macroscopic scales and ends the study of textiles made of yarns in the linear elasticity con-
text with contact sliding. However, it gives access to further investigations concerning a
different ratio between ε and r, different periodicity patterns, and other elasticity regimes,
such as the nonlinear one.

For the rest of the work, the Einstein convention over repeated indexes will be used.
Moreover, if not specified, the constants C, C0 and C1 do not depend on the parameter ε.
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FIGURE 1.2: On the left, we have a mathematical sketch of the analysis of
yarn’s deformations in each textile part. On the right, we have a real experi-

ment for textile tension with 45o to the yarn directions.
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Chapter 2

Preliminaries

In this chapter, we briefly recall some known definitions and results that often occur through-
out the rest of the thesis. We can group them into two main sections. The first one concerns
the classical periodic unfolding method and its main properties. The second one is focused
on the N-linear and N-cubic interpolation of functions defined on a unit cell.

2.1 The periodic unfolding method

The periodic unfolding is our main homogenization tool. It takes bounded sequences on
periodically paved domains and operates a scale splitting so that in the limit, we have a
macroscopic behavior of the structure and a microscopic behavior, or cell behavior. Among
many works that contributed to the development of this method, we will often refer to the
most recent Cioranescu, Damlamian, and Griso, 2018, where most of the results are rigor-
ously gathered.
Let RN be the euclidean space with usual basis (e1, . . . , eN) and Y = (0, 1)N the open unit
parallelotope associated with this basis. For a.e. z ∈ RN , we set the unique decomposition
z = [z]Y + {z}Y such that

[z]Y
.
=

N

∑
i=1

kiei, ki ∈ ZN and {z}Y
.
= z− [z]Y ∈ Y.

In fact, instead of the grid ZN , we could use a more general lattice structure, but since we
will not need it, we omit it for simplicity.
Let {ε} be a sequence of strictly positive parameters going to 0. We scale our paving by ε
writing

x = ε
[ x

ε

]
Y
+ ε
{ x

ε

}
Y

for a.e. x ∈ RN . (2.1)

Let now Ω be a bounded domain in RN with a Lipschitz boundary. We consider the covering

Ξε
.
=
{

ξ ∈ ZN ∣∣ ε(ξ + Y) ⊂ Ω
}

and set (see also Figure 2.1 left)

Ω̂ε
.
= int

{ ⋃
ξ∈Ξε

ε(ξ + Y)
}

, Λε
.
= Ω \ Ω̂ε. (2.2)

We recall the definitions of classical unfolding operator and mean value operator from Cio-
ranescu, Damlamian, and Griso, 2018, Definition 1.2.

Definition 1. For every measurable function φ on Ω̂ε, the unfolding operator Tε is defined as follows:

Tε(φ)
.
=

φ
(

ε
[ x

ε

]
Y
+ εy

)
for a.e. (x, y) ∈ Ω̂ε ×Y,

0 for a.e. (x, y) ∈ Λε ×Y.

It is important to note that such an operator acts on functions defined in Ω by operating
on their restriction to Ω̂ε. As shown in Figure 2.1, the operator splits the function variables
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into reference cell number and variable position in the cell. In the limit, we obtain a split of
the macroscopic scale (domain Ω) from the microscopic one (reference cell Y).
Together with the definition of unfolding operator, we have the notion of mean value oper-

FIGURE 2.1: The unfolding via Tε of the variables in Ω ⊂ R2. One has a split
of the macroscopic and microscopic scale in the limit.

ator. This operator takes unfolded functions and integrates them over the periodicity cell so
that only the macroscopic part is left. We recall the definition from Cioranescu, Damlamian,
and Griso, 2018, Definition 1.10

Definition 2. For every measurable function φ̂ on L1(Ω × Y), the mean value operator MY is
defined as follows:

MY(φ̂)(x) .
=

1
|Y|

∫
Y

φ̂(x, y)dy, for a.e. x ∈ Ω.

Let p ∈ [1,+∞] and denote by Lp(Ω) the subspace of measurable functions f such that

‖ f ‖p ≡
( ∫

Ω
| f (x)|p dx

) 1
p
< +∞.

From Cioranescu, Damlamian, and Griso, 2018, Propositions 1.8 and 1.11, we recall the prop-
erties of these periodic unfolding and mean value operators:

‖Tε(φ)‖Lp(Ω×Y) ≤ |Y|
1
p ‖φ‖Lp(Ω) for every φ ∈ Lp(Ω),

‖MY(φ̂)‖Lp(Ω) ≤ |Y|
− 1

p ‖φ̂‖Lp(Ω×Y) for every φ̂ ∈ Lp(Ω×Y).
(2.3)

At last, we recall the following definitions concerning Sobolev spaces:

W1,p
per(Y)

.
=
{

φ ∈W1,p(Y)
∣∣ φ is periodic with respect to yi, i ∈ {1, . . . , N}

}
,

W1,p
per,0(Y)

.
=
{

φ ∈W1,p
per(Y)

∣∣MY(φ) = 0
}

,

Lp(Ω; W1,p(Y)) .
=
{

φ ∈ Lp(Ω×Y)
∣∣ ∇yφ ∈ Lp(Ω×Y)N}.

(2.4)

2.1.1 Asymptotic behavior of (isotropically) bounded functions

Now, we recall some known results concerning the unfolding method for the following
classes of bounded functions. Namely, we consider the following:

(i) Sequences {φε}ε ∈W1,p(Ω) such that ‖φε‖Lp(Ω) + ε‖∇φε‖Lp(Ω) ≤ C;

(ii) Sequences {φε}ε ∈W1,p(Ω) such that ‖φε‖Lp(Ω) + ‖∇φε‖Lp(Ω) ≤ C;

(iii) Sequences {φε}ε ∈W2,p(Ω) such that ‖φε‖Lp(Ω) + ‖∇φε‖Lp(Ω) + ‖D2φε‖Lp(Ω) ≤ C.

As we can see, the notion of "isotropic bound" comes from the fact that the partial derivatives
of the functions’ gradients are bounded with the same order concerning all N directions.
Concerning the asymptotic behavior of sequences bounded as in (i), we recall the following
proposition from Cioranescu, Damlamian, and Griso, 2018, Theorem 1.36.
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Proposition 1. Let p ∈ (1,+∞) and let {φε}ε be a sequence in W1,p(Ω) such that

‖φε‖Lp(Ω) + ε‖∇φε‖Lp(Ω) ≤ C.

Then, there exist a subsequence of {ε}, still denoted {ε}, and φ ∈ Lp(Ω), φ̂ ∈ Lp(Ω; W1,p
per,0(Y))

such that
φε ⇀ φ weakly in Lp(Ω),

Tε(φε) ⇀ φ + φ̂ weakly in Lp(Ω; W1,p(Y)),

εTε(∇φε) = ∇y(Tε(φε)) ⇀ ∇yφ̂ weakly in Lp(Ω×Y)N .

The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Sometimes, in Proposition 1 we find convenient to replace the sum φ+ φ̂, with φ ∈ Lp(Ω)

and φ̂ ∈ Lp(Ω; W1,p
per,0(Y)), by a unique function φ̂ ∈ Lp(Ω, W1,p

per(Y)).

Concerning the asymptotic behavior of sequences bounded as in (ii), we recall the following
results from Cioranescu, Damlamian, and Griso, 2018, Corollary 1.37 and Theorem 1.41

Proposition 2. Let p ∈ (1,+∞) and let {φε}ε be a sequence in W1,p(Ω) such that

φε ⇀ φ weakly in W1,p(Ω). (2.5)

Then, there exist a subsequence of {ε}, still denoted {ε}, and φ̂ ∈ Lp(Ω; W1,p
per,0(Y)) such that

Tε(φε)→ φ strongly in Lp(Ω; W1,p(Y)),

Tε(∇φε) ⇀ ∇φ +∇yφ̂ weakly in Lp(Ω×Y)N ,
1
ε

(
Tε(φε)−MY (φε)

)
⇀ yc · ∇φ + φ̂ weakly in Lp(Ω; W1,p(Y)).

where yc .
= y−MY(y).

The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Sometimes, we replace hypothesis (2.5) with

∃C > 0 such that ‖φε‖W1,p(Ω) ≤ C,

which is an equivalent formulation due to compactness results.
At last, the unfolding for sequences bounded as in (iii) is treated according to the case k = 2
of Cioranescu, Damlamian, and Griso, 2018, Theorem 1.47. Even though such theorem holds
for every sequence such that

‖φε‖Wk,p(Ω)
.
= ‖φε‖Lp(Ω) + ‖∇φε‖Lp(Ω) + ‖D2φε‖Lp(Ω) + . . . + ‖Dkφε‖Lp(Ω) ≤ C,

with k ∈N∗, we will not investigate higher orders since we do not need them.

Proposition 3. Let p ∈ (1,+∞) and let {φε}ε be a sequence in W2,p(Ω) such that

φε ⇀ φ weakly in W2,p(Ω).

Then, there exist a subsequence of {ε}, still denoted {ε}, and φ̂ ∈ Lp(Ω; W2,p
per(Y)) such that

Tε(φε)→ φ strongly in Lp(Ω; W2,p(Y)),

Tε(∇φε)→ ∇φ strongly in Lp(Ω; W1,p(Y))N ,

Tε(D2φε) ⇀ D2φ + D2
yφ̂ weakly in Lp(Ω×Y)N×N .

The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.
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2.2 The approximation of functions to linear and cubic inter-
polates

In this section, we discuss another recurrent concept: the decomposition of functions de-
fined on one-dimensional structures in RN into interpolation on nodes and remainder term.
Such approximation, which can be linear or cubic depending on the regularity of the original
function, is of great importance since it can be extended from the one-dimensional structure
to the whole space and vice versa.
For a one-dimensional structure in RN , we consider the simplest possible: the grid connect-
ing the vertices of a unitary cell. Needless to say, all the proven results can be easily adapted
to any parallelotope of fixed lengths.
Let Y = (0, 1)N be the N-dimensional unit cell. We denote the set of vertices of Y by

V .
=
{

v ∈ RN
∣∣∣ v =

N

∑
i=1

viei, vi ∈ {0, 1}
}

We denote G(i)c and G(i) the following sets of segments whose direction is ei by

G(i)c
.
=
⋃

vi=0

[
v, v + ei

]
, G(i) .

=
[
(0, . . . , 0), (0, . . . , 0) + ei

]
Hence, the one-dimensional grid constructed as the union of vertices of the cell Y is defined
by

Gc
.
=

N⋃
i=1

G(i)c ⊂ Y, G .
=

N⋃
i=1

G(i) ⊂ Y.

The difference between the two grids is that one is complete (hence the letter "c"), as we can
see in Figure 2.2. In these sections, we will always deal with the complete grid Gc, even

FIGURE 2.2: The complete grid Gc and the not complete one G for a reference
cell Y ⊂ R3.

though this will fade later in the chapters when the considered structures consist of many
rescaled reference grids G periodically repeated.
Now, let ε be a small parameter. We define εY, which consists of the cell Y but is rescaled by
a small parameter ε. Accordingly, we rescale the grid and obtain

Gc,ε
.
= εGc ⊂ εY, Gε

.
= G ⊂ εY.

Denote G the running point of Gc and g that of Gc,ε. That gives ( i ∈ {1, . . . , N})

G = v + tei in G(i)c , t ∈ [0, 1], vi = 0,

g = εv + εtei in G(i)c,ε , t ∈ [0, 1], vi = 0.

Let C(Gc) and C(Gc,ε) be the spaces of continuous functions defined on Gc and Gc,ε respec-
tively. Let i ∈ {1, . . . , N}. We denote the spaces of functions defined on the segments in the
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i-th direction and on the whole unit grid by

W1,p(G(i)c )
.
=
{

φ ∈ Lp(G(i)c )
∣∣ ∂Gφ ∈ Lp(G(i)c )

}
,

W1,p(Gc)
.
=
{

φ ∈ C(Gc)
∣∣ ∂Gφ ∈ Lp(Gc)

}
.

and
W2,p(G(i)c )

.
=
{

φ ∈W1,p(G(i)c )
∣∣ ∂Gφ ∈W1,p(G(i)c )

}
,

W2,p(Gc)
.
=
{

φ ∈ C(Gc)
∣∣ ∂Gφ

|G(j)
c
∈W1,p(G(j)

c ), j ∈ {1, . . . , N}
}

.

Accordingly, we define the spaces on the rescaled grid by

W1,p(G(i)c,ε )
.
=
{

φ ∈ Lp(G(i)c,ε )
∣∣ ∂gφ ∈ Lp(G(i)c,ε )

}
,

W1,p(Gc,ε)
.
=
{

φ ∈ C(Gc,ε)
∣∣ ∂gφ ∈ Lp(Gc,ε)

}
.

and
W2,p(G(i)c,ε )

.
=
{

φ ∈W1,p(G(i)c,ε )
∣∣ ∂gφ ∈W1,p(G(i)c,ε )

}
,

W2,p(Gc,ε)
.
=
{

φ ∈ C(Gc,ε)
∣∣ ∂gφ

|G(j)
ε
∈W1,p(G(j)

c,ε ), j ∈ {1, . . . , N}
}

.

Here again, even if it is possible to extend the definition of the spaces Wk,p to every k ∈ N,
we will not do it since these cases will not be considered. Hence, we omit them for the sake
of simplicity.

2.2.1 The N-linear interpolation

Let f be a function belonging to W1,p(0, 1). Denote fa the affine function

fa(t)
.
= f (0) + t

(
f (1)− f (0)

)
, t ∈ [0, 1], (2.6)

and f0 the reminder function vanishing at the extremities

f0(t)
.
= f (t)− fa(t), t ∈ [0, 1].

Define the spaces of affine functions defined on the unit grid and the rescaled one by

Q1(Gc)
.
=
{

φ ∈W1,∞(Gc)
∣∣ φ is the linear interpolation between two adjacent vertices of Gc.

}
,

Q1(Gc,ε)
.
=
{

ψ ∈W1,∞(Gc,ε)
∣∣ψ is the linear interpolation between two adjacent vertices of Gc,ε.

}
and the spaces of functions vanishing on the vertices of the unit grid and the rescaled one by

W1,p
0,V (Gc)

.
=
{

ψ ∈W1,p(Gc) | ψ = 0 on every v ∈ V
}

,

W1,p
0,Vε

(Gc,ε)
.
=
{

φ ∈W1,p(Gc,ε) | φ = 0 on every εv, v ∈ V
}

.

Now, since the grid Gc (resp. the rescaled grid Gc,ε) is a union of intervals, we can decompose
any function ψ ∈ W1,p(Gc) (resp. φ ∈ W1,p(Gc,ε)) into an affine function, which coincides
with the original one on each vertex of the grid, and a reminder function that is zero on each
vertex:

ψ = ψa + ψ0, ψa ∈ Q1(Gc), ψ0 ∈ W
1,p
0,V (Gc),(

resp. ψ = φa + φ0, φa ∈ Q1(Gc,ε), φ0 ∈ W
1,p
0,Vε

(Gc,ε)
)
.

(2.7)

Such decomposition is unique, and we have the following estimates.

Lemma 1. Let i ∈ {1, . . . , N} and ψ ∈W1,p(Gc). Suppose that ψ is decomposed as in (2.7)1. Then,
there exists a constant C > 0, which does not depend on ε, such that

‖∂Gψa‖Lp(G(i)c )
≤ C‖ψa‖Lp(G(i)c ) (2.8)
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and
‖∂Gψa‖Lp(G(i)c )

≤ C‖∂Gψ‖
Lp(G(i)c )

,

‖ψ0‖Lp(G(i)c )
+ ‖∂Gψ0‖Lp(G(i)c )

≤ C‖∂Gψ‖
Lp(G(i)c )

.
(2.9)

Let φ ∈ W1,p(Gc,ε) and suppose that φ is decomposed as in (2.7)2. Then, there exists C > 0, such
that

‖∂gφa‖Lp(G(i)c,ε )
≤ C

ε
‖φa‖Lp(G(i)c,ε )

(2.10)

and
‖∂gφa‖Lp(G(i)c,ε )

≤ C‖∂gφ‖
Lp(G(i)c,ε )

,

‖φ0‖Lp(G(i)c,ε )
+ ε‖∂gφ0‖Lp(G(i)c,ε )

≤ Cε‖∂gφ‖
Lp(G(i)c,ε )

.
(2.11)

Proof. A simple computation on (2.6) and the Poincaré’s inequality give

‖ψ′a‖
p
Lp(0,1) =

∫ 1

0
|ψ′a(t)|pdt =

∫ 1

0
|ψa(1)− ψa(0)|pdt ≤

1

∑
v=0
|ψa(v)|p = ‖ψa‖p

Lp(0,1)

and
‖ψ′a‖Lp(0,1) ≤ ‖ψ′‖Lp(0,1),

‖ψ0‖W1,p(0,1) ≤ C‖ψ′0‖Lp(0,1) ≤ C‖ψ′ − ψ′a‖W1,p(0,1) ≤ 2C‖ψ′‖Lp(0,1).

Hence, estimates (2.8) and (2.9) follow by the fact that G(i)c is the union of a finite number of
segments whose extremities belong to V .
The proof of estimates (2.10)-(2.11) is done in the same fashion, but taking into account that
now the interval rescaled of ε, thus the Poincaré’s inequality becomes

‖φ0‖W1,p(0,ε) ≤ Cε‖φ′0‖Lp(0,ε).

The main advantage of this decomposition is that the function ψa, which is affine on the
grid segments Gc, can be extended by N-linear interpolation to the whole cell Y.

Definition 3. For every function ψ ∈ Q1(Gc) (resp. φ ∈ Q1(Gc,ε)), its extension Q(ψ) ∈W1,∞(Y)
(resp. Q(φ) ∈ W1,∞(εY)) is defined as the N-linear interpolation on each vertex of the cell Y (resp.
of the cell εY).

This extension is injective: a function belonging to Q1(Gc) is uniquely determined by its
values on the set of vertices V and thus can be naturally extended to a function defined on
Y. We also make it surjective by defining the spaces

Q1(Y) .
=
{

Ψ ∈W1,∞(Y)
∣∣∣Ψ|Y is the Q1 interpolate of its values on the vertices of Y

}
,

Q1(εY) .
=
{

Φ ∈W1,∞(εY)
∣∣∣Φ|εY is the Q1 interpolate of its values on the vertices of εY

}
.

Hence, the extension Q is one-to-one from Q1(Gc) to Q1(Y) (resp. from Q1(Gc,ε) to Q1(εY)).
Its inverse is the mere restriction of functions from the cell to the grid |Gc (resp. |Gc,ε ).
Below, we show the main properties of the extension operator Q.

Lemma 2. Let i ∈ {1, . . . , N} and p ∈ [1,+∞]. For every ψ ∈ Q1(Gc), there exist C0, C1 > 0
such that (i ∈ {1, . . . , N})

C0‖Q(ψ)‖Lp(Y) ≤ ‖ψ‖Lp(Gc) ≤ C1‖Q(ψ)‖Lp(Y),

C0‖∂iQ(ψ)‖Lp(Y) ≤ ‖∂Gψ‖
Lp(G(i)c )

≤ C0‖∂iQ(ψ)‖Lp(Y).
(2.12)
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For every φ ∈ Q1(Gc,ε), there exist C0, C1 > 0 such that (i ∈ {1, . . . , N})

C0‖Q(φ)‖Lp(εY) ≤ Cε
N−1

p ‖φ‖Lp(Gc,ε) ≤ C1‖Q(φ)‖Lp(εY),

C0‖∂iQ(φ)‖Lp(εY) ≤ Cε
N−1

p ‖∂gφ‖
Lp(G(i)c,ε )

≤ C1‖∂iQ(φ)‖Lp(εY).
(2.13)

Proof. We will only consider the case p ∈ [1,+∞) since the case p = +∞ is trivial.
First, remind that for every function ψ defined as the N-linear interpolation of its values on
the vertices of the cell Y, there exist C0, C1 > 0 such that (i ∈ {1, . . . , N})

C0‖ψ‖Lp(Y) ≤
(

∑
v∈V

∣∣ψ(v)∣∣p)1/p
≤ C1‖ψ‖Lp(G),

C0‖∂iψ‖Lp(Y) ≤
∥∥∂Gψ

∥∥
Lp(G(i)) ≤ C1‖∂iψ‖Lp(Y).

(2.14)

where the constants do not depend on p. This proves (2.12).
We now prove (2.13)1. For every φ ∈ Q1(Gε), set Φ = Q(φ). From (2.14)1 and an affine
change of variables, we easily get∫

εY
|Φ(x)|pdx = εN

∫
Y
|Φ(εy)|pdy = εN

∫
G
|Φ(εG)|pdG = εN−1

∫
Gε

|Φ(g)|pdg

and thus (2.13)1 holds since Φ|Gε
= φ.

We prove now (2.13)2. Let i be in {1, . . . , N}. From (2.14)2 and an affine change of variables,
we have ∫

εY

∣∣∣ ∂

∂xi
Φ(x)

∣∣∣pdx = εN−p
∫

Y

∣∣∣ ∂

∂yi
Φ(εy)

∣∣∣pdy = εN−p
∫
G(i)
|∂GΦ(εG)

∣∣∣pdG

= εN−1
∫
G(i)ε

∣∣∂gΦ(g)
∣∣pdg.

And thus (2.13)2 holds since Φ
|G(i)ε

= φ
|G(i)ε

.

To conclude, we summarize what we did in this section in Figure 2.3.

FIGURE 2.3: The decomposition of a function ψ ∈W1,p(Y), with Y ∈ R2, into
linear interpolation on the vertices of the cell and remainder. The interpola-

tion on the vertices can be extended one-to-one to the whole domain.
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2.2.2 The N-cubic interpolation

We would like now to apply the same decomposition but for functions defined on W2,p(Gc)
(and on W2,p(Gc,ε)). As we will see, the adaptation will not be straightforward.
Let f be a function belonging to W2,p(0, 1). Denote fc the cubic polynomial

fc(t) = f (0)(2t + 1)(t− 1)2 + f (1)t2(3− 2t) + f ′(0)t(t− 1)2 + f ′(1)t2(t− 1), t ∈ [0, 1].
(2.15)

By construction, the reminder term defined by

f0
.
= f (t)− fc(t), t ∈ [0, 1].

vanishes at the extremities, as well as its first order derivatives:

f0(0) = f0(1) = f ′0(0) = f ′0(1) = 0.

Define the spaces of cubic polynomials defined on the unit grid and the rescaled one by

Q3(Gc)
.
=
{

ψ ∈W2,∞(Gc)
∣∣ψ is cubic interpolation between two adjacent vertices of Gc.

}
,

Q3(Gc,ε)
.
=
{

φ ∈W2,∞(Gc,ε)
∣∣ φ is cubic interpolation between two adjacent vertices of Gc,ε.

}
and the spaces of functions vanishing on the vertices, and with first derivative vanishing of
the vertices, of the unit grid and the rescaled one by

W2,p
0,V (Gc)

.
=
{

ψ ∈W2,p(Gc)
∣∣ ψ = ∂Sψ = 0 on every v ∈ V

}
,

W2,p
0,Vε

(Gc,ε)
.
=
{

φ ∈W2,p(Gc,ε)
∣∣ φ = ∂sφ = 0 on every εv, v ∈ V

}
.

Similarly to the decomposition in the previous section, any ψ ∈W2,p(Gc) (resp. φ ∈W1,p(Gc,ε))
can be decomposed as

ψ = ψc + ψ0, ψc ∈ Q3(Gc), ψ0 ∈ W
2,p
0,V (Gc),(

resp. φ = φc + φ0, φc ∈ Q3(Gc,ε), φ0 ∈ W
2,p
0,Vε

(Gc,ε)
)
.

(2.16)

Such decomposition is unique, and we have the following estimates.

Lemma 3. Let i ∈ {1, . . . , N} and ψ ∈ W2,p(Gc). Suppose that ψ is decomposed as in (2.16)1.
Then, there exists C > 0 such that

‖∂2
Gψc‖Lp(G(i)c )

≤ C‖∂2
Gψ‖

Lp(G(i)c )
,

‖∂Gψc‖Lp(G(i)c )
≤ C‖∂Gψ‖

W1,p(G(i)c )
,

‖ψc‖Lp(G(i)c )
≤ C‖ψ‖

W2,p(G(i)c )
,

‖ψ0‖Lp(G(i)c )
+ ‖∂Gψ0‖Lp(G(i)c )

+ ‖∂2
Gψ0‖Lp(G(i)c )

≤ C‖∂2
Gψ‖

Lp(G(i)c )
.

(2.17)

Let φ ∈W2,p(Gc,ε). Suppose that φ is decomposed as in (2.16)2. Then, there exists C > 0 such that

‖∂2
gφc‖Lp(G(i)c,ε )

≤ C‖∂2
gφ‖

Lp(G(i)c,ε )
,

‖∂gφc‖Lp(G(i)c,ε )
≤ C‖∂gφ‖

W1,p(G(i)c,ε )
,

‖φc‖Lp(G(i)c,ε )
≤ C‖φ‖

W2,p(G(i)c,ε )
,

‖φ0‖Lp(G(i)c,ε )
+ ε‖∂gφ0‖Lp(G(i)c,ε )

+ ε2‖∂2
gφ0‖Lp(G(i)c,ε )

≤ Cε2‖∂2
gφ‖

Lp(G(i)c,ε )
.

(2.18)

Proof. Step 1. In this step we prove the result for f ∈W2,p(0, 1).
Let fc be the cubic polynomial defined as in (2.15). Rewriting it differently and computing
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the first and second order derivative, we get that

fc(t) =
(

f (1)− f (0)− 1
2
(

f ′(0) + f ′(1)
))

t2(3− 2t) +
1
2
(

f ′(1)− f ′(0)
)
t2 + f ′(0)t + f (0),

f ′c(t) =
(

f (1)− f (0)− 1
2
(

f ′(0) + f ′(1)
))

6t(1− t) +
(

f ′(1)− f ′(0)
)
t + f ′(0),

f ′′c (t) =
(

f (1)− f (0)− 1
2
(

f ′(0) + f ′(1)
))

6(1− 2t) +
(

f ′(1)− f ′(0)
)
.

(2.19)
As a consequence, we have that

‖ f ′′c ‖Lp(0,1) ≤ C‖ f ′′‖Lp(0,1),

‖ f ′c‖Lp(0,1) ≤ C
(
‖ f ′′‖Lp(0,1) + ‖ f ′‖Lp(0,1)

)
,

‖ fc‖Lp(0,1) ≤ C
(
‖ f ′′‖Lp(0,1) + ‖ f ′‖Lp(0,1) + ‖ f ‖Lp(0,1)

)
.

Moreover, from the definition of f0, Poincaré’s inequality applied twice, and the above esti-
mates, we have that

‖ f0‖W2,p(0,1) ≤ C‖ f ′′0 ‖Lp(0,1) ≤ C‖ f ′′ − f ′′c ‖Lp(0,1) ≤ 2C‖ f ′′‖Lp(0,1).

Step 2. We prove the statements of the lemma.

By construction, G(i)c is the union of a finite number of segments whose extremities belong
to V . Hence, estimates (2.17) follow from the estimates in Step 1 and an affine change of
variables. The proof for estimates (2.18) is done in the same fashion, but taking into account
that now the interval rescaled of ε, thus the Poincaré’s inequality applied twice becomes

‖φ0‖W2,p(0,ε) ≤ Cε‖φ′0‖W1,p(0,ε) ≤ Cε2‖φ′′0 ‖Lp(0,ε).

Now, we would like to extend the function φc, defined on the grid segments Gc, to the
whole cell Y by N-cubic interpolation.

Definition 4. For every function ψ ∈ Q3(Gc) (resp. φ ∈ Q3(Gc,ε)), its extension Q(ψ) ∈W2,∞(Y)
(resp. Q(φ) ∈ W2,∞(εY)) is defined as the N-cubic interpolation on each vertex of the cell Y (resp.
of the cell εY).

It is clear that such extension is not surjective in the spaces:

Q3(Y) .
=
{

Ψ ∈W1,∞(Y)
∣∣∣Ψ|Y is the N-cubic interpolate of its values and its partial

derivatives values on the vertices of Y
}

,

Q3(εY) .
=
{

Φ ∈W1,∞(εY)
∣∣∣Φ|εY is the N-cubic interpolate of its values and its partial

derivatives values on the vertices of εY
}

.

Indeed, let N = 2. In order to define the bi-cubic polynomial Ψc in dimension 2, we would
need 16 coefficients. But from a function ψc defined on the grid G, we only get 12:

• 4 coefficients are given by the function values on the vertices of the cell (ψc(0, 0),
ψc(1, 0), ψc(0, 1) and ψc(1, 1));

• 4 coefficients are given by the values of the partial derivative of the function in direc-
tion e1 on the vertices of the cell (∂1ψc(0, 0), ∂1ψc(1, 0), ∂1ψc(0, 1) and ∂1ψc(1, 1));

• 4 coefficients are given by the values of the partial derivative of the function in direc-
tion e2 on the vertices of the cell (∂2ψc(0, 0), ∂2ψc(1, 0), ∂2ψc(0, 1) and ∂2ψc(1, 1)).
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The last four coefficients should be given by the mixed partial derivatives of the function
on the vertices, which do not exist, since the function ψc is defined on the grid. As a con-
sequence, this compromises not only the uniqueness of the N-cubic extension starting from
the cubic polynomials defined on the grid Gc, but also a bound for this function on RN .
To override this issue, we need to artificially construct these lacking "mixed derivatives" with
the help, once again, of the linear interpolation.
Remind that for any ψ ∈ W2,p(G) (resp. φ ∈ W2,p(}ε)), its derivatives ∂Gψ (resp. ∂Gφ) in
direction ei are functions belonging to W1,p(G(i)) (resp. W1,p(G(i)ε )), for every i ∈ {1, . . . , N}.
As a consequence, they are defined on every node of the structure G (resp. Gε). Set

G [i]c
.
=

N⋃
j=1, j 6=i

G(j)
c

(
resp. G [i]c,ε

.
=

N⋃
j=1, j 6=i

G(j)
ε,c
)
.

For every i ∈ {1, . . . , N}, we denote the following extensions (see also Figure 2.4)

∂iψ
.
=
{

f ∈W1,p(G(i)c )×W1,∞(G [i]c )
∣∣ f
G(i)c

is extended by N − 1-linear interpolation on G [i]c
}

,

∂iφ
.
=
{

f ∈W1,p(G(i)c,ε )×W1,∞(G [i]c,ε)
∣∣ f
G(i)c,ε

is extended by N − 1-linear interpolation on G [i]c,ε
}

.

This allows us to uniquely determine the N-cubic extension since we artificially created the

FIGURE 2.4: The extensions ∂1ψ and ∂2ψ for the derivatives ∂1ψ and ∂2ψ of a
function ψ ∈W2(Gc) in dimension two.

mixed derivatives. Moreover, we can bound the interpolated function by the bound on the
original function, with the additional assumption of boundedness for these derivatives.

Lemma 4. For every ψ ∈ Q3(Gc), one has

‖D2Q(ψ)‖Lp(Y) ≤ C
N

∑
i=1

∥∥∂G(∂iψ)
∥∥

Lp(Gc)
,

‖∇Q(ψ)‖Lp(Y) ≤ C
(
‖∂Gψ‖Lp(Gc) +

N

∑
i=1

∥∥∂G(∂iψ)
∥∥

Lp(Gc)

)
,

‖Q(ψ)‖Lp(Y) ≤ C
(
‖ψ‖Lp(Gc) + ‖∂Gψ‖Lp(Gc) +

N

∑
i=1

∥∥∂G(∂iψ)
∥∥

Lp(Gc)

)
.

(2.20)
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For every φ ∈ Q3(Gc,ε), one has

‖D2Q(φ)‖Lp(εY) ≤ Cε
N−1

p
N

∑
i=1

∥∥∂g(∂iφ)
∥∥

Lp(Gc,ε)
,

‖∇Q(φ)‖Lp(εY) ≤ Cε
N−1

p
(
‖∂gφ‖Lp(Gc,ε) +

N

∑
i=1

∥∥∂g(∂iφ)
∥∥

Lp(Gc,ε)

)
,

‖Q(φ)‖Lp(εY) ≤ Cε
N−1

p
(
‖φ‖Lp(Gc,ε) + ‖∂gφ‖Lp(Gc,ε) +

N

∑
i=1

∥∥∂g(∂iφ)
∥∥

Lp(Gc,ε)

)
.

(2.21)

Proof. We will only prove the case N = 2 since the extension to a higher dimension is done
by an analogous argumentation.
Denote Q0, Q1, dQ0 and dQ1 the following polynomial functions (t ∈ [0, 1])

Q0(t) = (2t + 1)(t− 1)2, dQ0(t) = t(t− 1)2,

Q1(t) = t2(3− 2t), dQ1(t) = t2(t− 1).

Let ψ be a function belonging to W2,p(Gc). Denote Ψ ∈ W2,∞(Y) its extension to the whole
domain by

Ψ(t) =ψ(0, 0)P00(t) + ψ(0, 1)P01(t) + ψ(1, 0)P10(t) + ψ(1, 1)P11(t)
+ ∂1ψ(0, 0)d1P00(t) + ∂1ψ(1, 0)d1P10(t) + ∂1ψ(0, 1)d1P01(t) + ∂1ψ(1, 1)d1P11(t)
+ ∂2ψ(0, 0)d2P00(t) + ∂2ψ(0, 1)d2P01(t) + ∂2ψ(1, 0)d2P10(t) + ∂2ψ(1, 1)d2P11(t)

where for all t = (t1, t2) ∈ [0, 1]2:

P00(t) = Q0(t1)Q0(t2), d1P00 = dQ0(t1)Q0(t2), d2P00 = Q0(t1)dQ0(t2),
P10(t) = Q1(t1)Q0(t2), d1P10 = dQ1(t1)Q0(t2), d2P10 = Q1(t1)dQ0(t2),
P01(t) = Q0(t1)Q1(t2), d1P01 = dQ0(t1)Q1(t2), d2P01 = Q0(t1)dQ1(t2),
P11(t) = Q1(t1)Q1(t2), d1P11 = dQ1(t1)Q1(t2), d2P11 = Q1(t1)dQ1(t2).

First, observe that the polynomial Ψ can be rewritten as

Ψ(t) =
(
ψ(0, 0)Q0(t1) + ψ(1, 0)Q1(t1) + ∂1ψ(0, 0)dQ0(t1) + ∂1ψ(1, 0)dQ1(t1)

)
Q0(t2)

+
(
ψ(0, 1)Q0(t1) + ψ(1, 1)Q1(t1) + ∂1ψ(0, 1)dQ0(t1) + ∂1ψ(1, 1)dQ1(t1)

)
Q1(t2)

+
(
∂2ψ(0, 0)dQ0(t2) + ∂2ψ(0, 1)dQ1(t2)

)
Q0(t1)

+
(
∂2ψ(1, 0)dQ0(t2) + ∂2ψ(1, 1)dQ1(t2)

)
Q1(t1).

Straightforward calculations lead to

‖D2Ψ‖Lp(Y) ≤C
( 2

∑
i=1
‖∂2

iiψ‖Lp(G(i)c )
+ |∂2ψ(1, 0)− ∂2ψ(0, 0)|+ |∂2ψ(1, 1)− ∂2ψ(0, 1)|

+ |∂1ψ(0, 1)− ∂1ψ(0, 0)|+ |∂1ψ(1, 1)− ∂1ψ(1, 0)|
)

≤C
( 2

∑
i=1
‖∂2

iiψ‖Lp(G(i)c )
+

2

∑
i=1
‖∂G(∂iψ)‖Lp(Gc)

)
.

Hence, estimate (2.20) is proven since (i ∈ {1, 2})

‖∂2
iiΨ‖Lp(G(i)c )

≤ C‖∂2
Gψ‖

Lp(G(i)c )
≤ C‖∂G(∂iψ)‖Lp(Gc).

On the other hand, straightforward calculations lead to

‖∇Ψ‖Lp(Y) ≤ C
(
‖∂Sψ‖Lp(Gc) + ‖D

2Ψ‖Lp(Y)
)
.
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and to
‖Ψ‖Lp(Y) ≤ C

(
‖ψ‖Lp(Gc) + ‖∇Ψ‖Lp(Y)

)
,

which ends the proof of (2.20) for N = 2.
Estimates (2.21) are proven in the same way as (2.14), together with an affine change of
variables.
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Chapter 3

New tool: periodic unfolding for
anisotropically bounded functions

The entirety of this chapter is dedicated to the extension of the classic periodic unfolding
described in Section 2.1 to a new class of functions: the functions "anisotropically bounded".
The notion of anisotropy comes from the fact that there is a contrast in the gradient’s esti-
mates, which creates privileged directions. We will show how to apply the periodic unfold-
ing to this type of functions and find their asymptotic behavior.
A first application of the obtained results will be given at the end of this section, where we
proceed to the homogenization of a diffusion problem in an anisotropic context. Some more
applications will occur in the next chapters, in the context of periodic unfolding for lattice
structures, and in the homogenization of textiles with loose contact sliding.

3.1 Space partition and anisotropy of the functions

In order to show the contrast in the gradient estimates, we find convenient to set a decom-
position of the Euclidean space in two sub-spaces.
Let (N1, N2) be in N×N∗ and such that N = N1 + N2. Denote

RN1 =
{

x′ ∈ RN
∣∣∣ x′ =

N1

∑
i=1

xiei, xi ∈ R
}

,

RN2 =
{

x′′ ∈ RN
∣∣∣ x′′ =

N

∑
i=N1+1

xiei, xi ∈ R
}

,

and

Y′ =
{

y′ ∈ RN
∣∣∣ y′ =

N1

∑
i=1

yiei, yi ∈ (0, 1)
}

,

Y′′ =
{

y′′ ∈ RN
∣∣∣ y′′ =

N

∑
i=N1+1

yiei, yi ∈ (0, 1)
}

and
ZN1 = Ze1 ⊕ . . .⊕ZeN1 , ZN2 = ZeN1+1 ⊕ . . .⊕ZeN .

One has
RN = RN1 ⊕RN2 , Y = Y′ ⊕Y′′, ZN = ZN1 ⊕ZN2 .

For every x ∈ RN and y ∈ Y, we write

x = x′ + x′′ ∈ RN1 ⊕RN2 , y = y′ + y′′ ∈ Y′ ⊕Y′′.

From now on, however, we find easier to refer to such decomposition with the vectorial notation

x = (x′, x′′) ∈ RN1 ×RN2 , y = (y′, y′′) ∈ Y′ ×Y′′.
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Similarly to (2.1), we apply the paving to a.e. x′ ∈ RN1 and x′′ ∈ RN2 setting

x′ = ε
[ x′

ε

]
Y′
+ ε
{ x′

ε

}
Y′

, with
[ x′

ε

]
Y′
∈ ZN1 ,

{ x′

ε

}
Y′
∈ Y′,

x′′ = ε
[ x′′

ε

]
Y′′

+ ε
{ x′′

ε

}
Y′′

, with
[ x′′

ε

]
Y′′
∈ ZN2 ,

{ x′′

ε

}
Y′′
∈ Y′′.

We denote the following spaces of functions:

Lp(Ω,∇x′)
.
=
{

φ ∈ Lp(Ω)
∣∣ ∇x′φ ∈ Lp(Ω)N1

}
,

Lp(Ω,∇x′′)
.
=
{

φ ∈ Lp(Ω)
∣∣ ∇x′′φ ∈ Lp(Ω)N2

}
,

Lp(Ω,∇x′ ; W1,p(Y′′)) .
=
{

φ̃ ∈ Lp(Ω×Y′′)
∣∣ ∇x′ φ̃ ∈ Lp(Ω×Y′′)N1 , ∇y′′ φ̃ ∈ Lp(Ω×Y′′)N2

}
,

Lp(Ω,∇x′′ ; W1,p(Y′)) .
=
{

φ̃ ∈ Lp(Ω×Y′)
∣∣ ∇x′′ φ̃ ∈ Lp(Ω×Y′)N2 , ∇y′ φ̃ ∈ Lp(Ω×Y′)N1

}
,

Lp(Ω×Y′′; W1,p(Y′)) .
=
{

φ̂ ∈ Lp(Ω×Y)
∣∣ ∇y′ φ̂ ∈ Lp(Ω×Y)N1

}
,

Lp(Ω×Y′; W1,p(Y′′)) .
=
{

φ̂ ∈ Lp(Ω×Y)
∣∣ ∇y′′ φ̂ ∈ Lp(Ω×Y)N2

}
.

We endow these spaces with the respective norms:

‖ · ‖Lp(Ω,∇x′ )
.
= ‖ · ‖Lp(Ω) + ‖∇x′(·)‖Lp(Ω)N1 ,

‖ · ‖Lp(Ω,∇x′′ )
.
= ‖ · ‖Lp(Ω) + ‖∇x′′(·)‖Lp(Ω)N2 ,

‖ · ‖Lp(Ω,∇x′ ;W
1,p(Y′′))

.
= ‖ · ‖Lp(Ω×Y′′) + ‖∇x′(·)‖Lp(Ω×Y′′)N1 + ‖∇y′′(·)‖Lp(Ω×Y′′)N2 ,

‖ · ‖Lp(Ω,∇x′′ ;W
1,p(Y′))

.
= ‖ · ‖Lp(Ω×Y′) + ‖∇x′′(·)‖Lp(Ω×Y′)N2 + ‖∇y′(·)‖Lp(Ω×Y′)N1 ,

‖ · ‖Lp(Ω×Y′′ ;W1,p(Y′))
.
= ‖ · ‖Lp(Ω×Y) + ‖∇y′(·)‖Lp(Ω×Y)N1 ,

‖ · ‖Lp(Ω×Y′ ;W1,p(Y′′))
.
= ‖ · ‖Lp(Ω×Y) + ‖∇y′′(·)‖Lp(Ω×Y)N2 .

(3.1)

Since the definition of "anisotropic behavior" only denotes a contrast in the estimates with
respect to the observed direction, we state here rigorously the four classes of sequences to
which we are going to apply the unfolding. Namely, we have:

(i)’ Sequences {φε}ε ∈ Lp(Ω,∇x′) such that ‖φε‖Lp(Ω) + ε‖∇x′φε‖Lp(Ω) ≤ C;

(ii)’ Sequences {φε}ε ∈ Lp(Ω,∇x′) such that ‖φε‖Lp(Ω) + ‖∇x′φε‖Lp(Ω) ≤ C;

(iii)’ Sequences {φε}ε ∈W1,p(Ω) such that ‖φε‖Lp(Ω) + ‖∇x′φε‖Lp(Ω) + ε‖∇x′′φε‖Lp(Ω) ≤ C;

(iv)’ Sequences {φε}ε ∈ Lp(Ω,∇x′), with {∇x′φε}ε ∈ Lp(Ω,∇x′′) and such that

‖φε‖Lp(Ω) + ‖∇x′φε‖Lp(Ω) + ε‖∇x′′(∇x′φε)‖Lp(Ω) ≤ C.

As we can expect, the different amount of information we have on the sequences estimates
arises a different asymptotic behavior at the limit.

3.2 The two-step unfolding

The best ready-to-use tool to tackle this kind of problems is the unfolding with parameters,
which has been already developed in Cioranescu, Damlamian, and Griso, 2018, Chap. 7. It
consists of unfolding only some directions of the domain, treating the variable components
in the other directions as "parameters".
Here, we proceed in a similar way and define the so called "two-step unfolding". Namely,
we define two partial unfolding operators with parameters. These operators are built in
order to apply the unfolding only to their respective half of the domain and such that the
composition of both gives the unfolding for the whole domain.
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Definition 5. For every measurable function φ on Ω, the unfolding operator T ′′ε is defined as follows:

T ′′ε (φ)(x′, x′′, y′′) =

φ
(

x′, ε
[ x′′

ε

]
Y′′

+ εy′′
)

for a.e. (x′, x′′, y′′) ∈ Ω̂ε ×Y′′,

0 for a.e. (x′, x′′, y′′) ∈ Λε ×Y′′.

For every measurable function ψ on Ω×Y′′, the unfolding operator T ′ε is defined as follows:

T ′ε (ψ)(x′, x′′, y′, y′′) =

ψ
(

ε
[ x′

ε

]
Y′
+ εy′, x′′, y′′

)
for a.e. (x′, x′′, y′, y′′) ∈ Ω̂ε ×Y,

0 for a.e. (x′, x′′, y′, y′′) ∈ Λε ×Y.

Note that, in the partial unfolding operator T ′′ε (φ), the variable x′ plays the role of a
parameter, while in T ′ε (ψ) the role of parameters is played by the variables (x′′, y′′).
Accordingly, we give the definition of partial mean value operators.

Definition 6. For every φ̂ ∈ L1(Ω×Y), the partial mean value operators are defined as follows:

MY′(φ̂)(x, y′′) .
=

1
|Y′|

∫
Y′

φ̂(x, y′, y′′)dy′, for a.e. (x, y′′) ∈ Ω×Y′′,

MY′′(φ̂)(x, y′) .
=

1
|Y′′|

∫
Y′′

φ̂(x, y′, y′′)dy′′, for a.e. (x, y′) ∈ Ω×Y′.

These operators satisfy the following properties.

Lemma 5. One has
Tε = T ′ε ◦ T ′′ε a.e. in Ω×Y,
MY =MY′ ◦MY′′ a.e. in Ω.

(3.2)

Moreover, for every φ ∈ L1(Ω,∇x′), one has

∇x′T ′′ε (φ) = T ′′ε (∇x′φ) a.e. in Ω̂ε ×Y′′. (3.3)

Proof. Let φ be measurable on Ω. We have that

T ′ε ◦ T ′′ε (φ)(x, y) = T ′ε
(

φ
(

x′, ε
[ x′′

ε

]
Y′′

+ εy′′
))

= φ
(

ε
[ x′

ε

]
Y′
+ εy′, ε

[ x′′

ε

]
Y′′

+ εy′′
)

= φ
(

ε
[ x

ε

]
Y
+ εy

)
= Tε(φ)(x, y) for a.e. (x, y) ∈ Ω̂ε ×Y.

For (x, y) ∈ Λε ×Y the result is obvious.
Let φ̂ be in L1(Ω×Y). We have

MY′ ◦MY′′(φ̂)(x) =MY′
( 1
|Y′′|

∫
Y′′

φ̂(x, y′, y′′)dy′′
)

=
1

|Y′||Y′′|

∫
Y′

∫
Y′′

φ̂(x, y′, y′′)dy′′dy′ =
1
|Y|

∫
Y

φ̂(x, y)dy

=MY(φ̂)(x) for a.e. x ∈ Ω.

Let now φ be in L1(Ω,∇x′). We have

∇x′T ′′ε (φ)(x, y′′) = ∇x′
(

φ
(

x′, ε
[ x′′

ε

]
Y′′

+ εy′′
))

= ∇x′φ
(

x′, ε
[ x′′

ε

]
Y′′

+ εy′′
)

= T ′′ε (∇x′φ)(x, y′′) for a.e. (x, y′′) ∈ Ω̂ε ×Y′′.
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3.3 Asymptotic behavior of anisotropically bounded sequences

We are now ready to proceed to the periodic unfolding for the classes of anisotropically
bounded sequences defined in (i)’-(iv)’ and find their asymptotic behavior.

Lemma 6. Let p ∈ (1,+∞) and let {φε}ε be a sequence in Lp(Ω,∇x′) satisfying

‖φε‖Lp(Ω) + ε‖∇x′φε‖Lp(Ω) ≤ C.

Then, there exist a subsequence of {ε}, still denoted {ε}, and a function φ̂ ∈ Lp(Ω×Y′′; W1,p
per(Y′))

such that
φε ⇀ φ weakly in Lp(Ω),

Tε(φε) ⇀ φ̂ weakly in Lp(Ω×Y′′; W1,p(Y′)),

where φ =MY(φ̂).
The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. The proof is similar to Cioranescu, Damlamian, and Griso, 2018, Theorem 1.36.

An analogous result holds for sequences in (ii)’, i.e. uniformly bounded in Lp(Ω,∇x′).

Lemma 7. Let p ∈ (1,+∞) and let {φε}ε be a sequence in Lp(Ω,∇x′) satisfying

‖φε‖Lp(Ω,∇x′ )
≤ C.

Then, there exist a subsequence of {ε}, still denoted {ε}, and functions φ̃ ∈ Lp(Ω × Y′′,∇x′),
φ̂ ∈ Lp(Ω×Y′′; W1,p

per,0(Y
′)) such that

φε ⇀ φ weakly in Lp(Ω,∇x′),

Tε(φε) ⇀ φ̃ weakly in Lp(Ω×Y′′; W1,p(Y′)),

Tε(∇x′φε) ⇀ ∇x′ φ̃ +∇y′ φ̂ weakly in Lp(Ω×Y)N1 ,
1
ε

(
Tε(φε)−MY′ ◦ Tε(φε)

)
⇀ ∇x′ φ̃ · y′c + φ̂ weakly in Lp(Ω×Y)N1

where φ =MY′′(φ̃) and y′c .
= y′ −MY′(y′).

The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. The proof is similar to Cioranescu, Damlamian, and Griso, 2018, Corollary 1.37 and
Cioranescu, Damlamian, and Griso, 2018, Theorem 1.41.

Now, we proceed to the unfolding of the sequences in (iii)’ and (iv)’. In these cases, the
two-steps unfolding will be needed.

Lemma 8. Let p ∈ (1,+∞) and let {φε}ε be a sequence in W1,p(Ω) satisfying

‖φε‖Lp(Ω,∇x′ )
+ ε‖∇x′′φε‖Lp(Ω) ≤ C. (3.4)

Then, there exist a subsequence of {ε}, still denoted {ε}, and functions

φ̃ ∈ Lp(Ω,∇x′ ; W1,p
per(Y′′)) and φ̂ ∈ Lp(Ω×Y′′; W1,p

per,0(Y
′))
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such that

φε ⇀ φ weakly in Lp(Ω,∇x′),

Tε(φε) ⇀ φ̃ weakly in Lp(Ω; W1,p(Y)),

Tε(∇x′φε) ⇀ ∇x′ φ̃ +∇y′ φ̂ weakly in Lp(Ω×Y)N1 ,

εTε(∇x′′φε) ⇀ ∇y′′ φ̃ weakly in Lp(Ω×Y)N2 ,
1
ε

(
Tε(φε)−MY′ ◦ Tε(φε)

)
⇀ ∇x′ φ̃ · y′c + φ̂ weakly in Lp(Ω×Y)N1

(3.5)

where φ =MY′′(φ̃) and y′c .
= y′ −MY′(y′).

The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. From hypothesis (3.4), up to a subsequence of {ε}, still denoted {ε}, one has the exis-
tence of φ ∈ Lp(Ω,∇x′) such that (3.5)1 holds.
Set {Φε}ε = {T ′′ε (φε)}ε. This sequence belongs to Lp(Ω̂ε,∇x′ ; W1,p(Y′′)) and from estimate
(3.4) and equality (3.3), it satisfies

‖Φε‖Lp(Ω̂ε ,∇x′ ;W
1,p(Y′′)) ≤ C. (3.6)

Up to a subsequence of {ε}, still denoted {ε}, there exists functions φ̃ ∈ Lp(Ω; W1,p
per(Y′′))

and Φ̃ ∈ Lp(Ω × Y′′)N1 (the periodicity of φ̃ is proved as in Cioranescu, Damlamian, and
Griso, 2018, Theorem 1.36) such that

Φε1Ω̂ε×Y′′ ⇀ φ̃ weakly in Lp(Ω; W1,p(Y′′)),

∇x′Φε1Ω̂ε×Y′′ ⇀ Φ̃ weakly in Lp(Ω×Y′′)N1 ,

where 1Ω̂ε×Y′′ denotes the characteristic function of the domain Ω̂ε ×Y′′.

Let g be in C∞
c (Ω×Y′′)N1 . For ε sufficiently small such that supp(g) ⊂ Ω̂ε ×Y′′, we have∫

Ω×Y′′
∇x′Φε1Ω̂ε×Y′′ · g dxdy′′ =

∫
Ω̂ε×Y′′

∇x′Φε · g dxdy′′

= −
∫

Ω̂ε×Y′′
Φε∇x′g dxdy′′ = −

∫
Ω×Y′′

Φε1Ω̂ε×Y′′∇x′g dxdy′′.

Then, passing to the limit yields∫
Ω×Y′′

Φ̃ · g dxdy′′ = −
∫

Ω×Y′′
φ̃ · ∇x′g dxdy′′, ∀g ∈ C∞

c (Ω×Y′′)N1 .

This means that Φ̃ = ∇x′ φ̃ a.e. in Ω × Y′′, thus ∇x′ φ̃ ∈ Lp(Ω × Y′′)N1 and therefore φ̃

belongs to the space Lp(Ω,∇x′ ; W1,p
per(Y′′)).

Now, we transform the sequence {Φε}ε using the unfolding operator T ′ε , Y′′ being a set of
parameters.
From the above convergence and estimate (3.6), up to a subsequence of {ε}, still denoted
{ε}, Proposition 2 gives φ̂ ∈ Lp(Ω×Y′′; W1,p

per,0(Y
′)) such that (using the rule (3.2)1)

Tε(φε) = T ′ε (Φε) ⇀ φ̃ weakly in Lp(Ω; W1,p(Y′ ×Y′′)),

Tε(∇x′φε) = T ′ε (∇x′Φε) ⇀ ∇x′ φ̃ +∇y′ φ̂ weakly in Lp(Ω×Y′ ×Y′′)N1 ,
1
ε

(
Tε(φε)−MY′(Tε(φε))

)
=

1
ε

(
T ′ε (Φε)−MY′(T ′ε (Φε))

)
⇀ ∇x′ φ̃ · y′c + φ̂

weakly in Lp(Ω×Y′ ×Y′′).
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This proves convergences (3.5)2,3,5. Moreover, from convergence (3.5)2 and the unfolding
properties of Tε we get that

εTε(∇x′′φε) = ∇y′′Tε(φε) ⇀ ∇y′′ φ̃ weakly in Lp(Ω×Y′′)N2 ,

which proves convergence (3.5)4.

We now consider the last class of functions.

Lemma 9. Let p ∈ (1,+∞) and let {φε}ε be a sequence in Lp(Ω,∇x′) satisfying

‖φε‖Lp(Ω,∇x′ )
+ ε
∥∥∇x′′

(
∇x′φε

)∥∥
Lp(Ω)

≤ C. (3.7)

Then, there exist a subsequence of {ε}, still denoted {ε}, functions

φ̃ ∈ Lp(Ω,∇x′ ; W1,p
per(Y′′)) and Φ̂ ∈ Lp(Ω; W1,p

per(Y))

such thatMY′
(
Φ̂
)
= 0 a.e. in Ω×Y′′,

∇x′ φ̃ ∈ Lp(Ω; W1,p
per(Y′′))N1 , ∇y′ Φ̂ ∈ Lp(Ω×Y′; W1,p

per(Y′′))N1

and we have

φε ⇀ φ weakly in Lp(Ω,∇x′),

Tε(φε) ⇀ φ̃ weakly in Lp(Ω; W1,p(Y)),

Tε(∇x′φε) ⇀ ∇x′ φ̃ +∇y′ Φ̂ weakly in Lp(Ω×Y′; W1,p(Y′′))N1

(3.8)

where φ =MY′′(φ̃).
The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. By estimate (3.7)1 and Lemma 7, there exists a subsequence of {ε}, still denoted {ε},
and functions φ̃ ∈ Lp(Ω×Y′′,∇x′), φ̂ ∈ Lp(Ω×Y′′; W1,p

per,0(Y
′)) such that

φε ⇀ φ weakly in Lp(Ω,∇x′),

Tε(φε) ⇀ φ̃ weakly in Lp(Ω×Y′′; W1,p(Y′)),

Tε(∇x′φε) ⇀ ∇x′ φ̃ +∇y′ φ̂ weakly in Lp(Ω×Y)N1 .

(3.9)

Set {ψε}ε
.
= {∇x′φε}ε. By estimate (3.7), this sequence satisfies

‖ψε‖Lp(Ω) + ε
∥∥∇x′′ψε

∥∥
Lp(Ω)

≤ C,

where the constant does not depend on ε.
Hence, applying Lemma 6 to the above sequence (but swapping Y′ and Y′′), there exists a
function ψ̂ ∈ Lp(Ω×Y′; W1,p

per(Y′′))N1 such that

Tε(∇x′φε) = Tε(ψε) ⇀ ψ̂ weakly in Lp(Ω×Y′; W1,p(Y′′))N1 .

This, together with convergence (3.9)3 implies that the quantity ∇x′ φ̃ + ∇y′ φ̂ belongs to

Lp(Ω × Y′; W1,p
per(Y′′))N1 . Since φ̃ does not depend on y′ and φ̂ is periodic with respect to

y′, we have that
∇x′ φ̃ =MY′(∇x′ φ̃) +MY′(∇y′ φ̂) =MY′(ψ̂),

thus ∇x′ φ̃ ∈ Lp(Ω; W1,p
per(Y′′))N1 and therefore φ̃ ∈ Lp(Ω,∇x′ ; W1,p

per(Y′′)).

Moreover, the quantity ∇y′ φ̂ belongs to Lp(Ω× Y′; W1,p
per(Y′′))N1 and thus, by the technical

Lemma 30 in Appendix, there exists φ̂ ∈ Lp(Ω; W1,p
per(Y)) with ∇y′ φ̂ = ∇y′ φ̂ such that (3.8)3
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holds. The proof follows by replacing φ̂ by the function Φ̂ = φ̂−MY′(φ̂), which belongs
to the space Lp(Ω; W1,p

per(Y)) and satisfiesMY′
(
Φ̂
)
= 0 a.e. in Ω×Y′′.

3.4 Application: homogenization of a diffusion problem in
an anisotropic environment

In this last section we want to give a direct application of the periodic unfolding for anisotrop-
ically bounded sequences to a diffusion problem.
Let O be an open subset of RN and let α, β ∈ R with 0 < α < β. Denote M(α, β,O) the set
of N × N matrices A = (aij)1≤i,j≤N with coefficients in L∞(O) such that for every λ ∈ RN

and for a.e. x ∈ O, the following inequalities hold:

(i) (A(x)λ, λ) ≥ α|λ|2;

(ii) |A(x)λ|2 ≤ β(A(x)λ, λ).

Let A be be inM(α, β, Y) and let {Aε}ε be the sequence of matrices belonging to M(α, β, Ω)
defined by

Aε
.
= A

({ x
ε

}
Y

)
a.e. x ∈ Ω. (3.10)

For the rest of the section, let p = 2. From (2.4), we recall the definition of the Hilbert spaces

H1
per(Y)

.
=
{

φ ∈ H1(Y)
∣∣ φ is periodic with respect to yi, i ∈ {1, . . . , N}

}
,

H1
per,0(Y)

.
=
{

φ ∈ H1
per(Y)

∣∣MY(φ) = 0
}

.

Let f be a function in L2(Ω). Consider the following Dirichlet problem in variational formu-
lation: 

Find uε ∈ H1
0(Ω) such that:∫

Ω
Aε

[
∇x′uε

ε∇x′′uε

]
·
[
∇x′φ

ε∇x′′φ

]
dx =

∫
Ω

f φ dx, ∀φ ∈ H1
0(Ω),

(3.11)

where · denotes the dot product by the column vectors Aε

[
∇x′uε

ε∇x′′uε

]
and

[
∇x′φε

ε∇x′′φε

]
.

By the Poincaré inequality and the fact that uε ∈ H1
0(Ω), we have that

‖uε‖L2(Ω) ≤ C‖∇x′uε‖L2(Ω).

Thus, problem (3.11) admits a unique solution by the Lax−Milgram theorem and the fol-
lowing inequality holds:

α
(
‖∇x′uε‖2

L2(Ω) + ε2‖∇x′′uε‖2
L2(Ω)

)
≤ ‖ f ‖L2(Ω)‖uε‖L2(Ω) ≤ C‖ f ‖L2(Ω)‖∇x′uε‖L2(Ω).

Hence
‖uε‖L2(Ω) + ‖∇x′uε‖L2(Ω) + ε‖∇x′′uε‖L2(Ω) ≤ C‖ f ‖L2(Ω). (3.12)

Set

H1
0,per(Ω×Y′′) =

{
φ ∈ H1(Ω×Y′′) | φ(x, y′′) = 0 for a.e. (x, y′′) ∈ ∂Ω×Y′′

and φ(x, ·) is Y′′ periodic for a.e. x ∈ Ω
}

.

Denote L2
0(Ω,∇x′) (resp. L2

0(Ω,∇x′ ; H1
per(Y′′))) the closure of H1

0(Ω) (resp. of H1
0,per(Ω ×

Y′′)) in L2(Ω) (resp. L2(Ω× Y′′)) for the norm of L2(Ω,∇x′) (resp. L2(Ω,∇x′ ; H1
per(Y′′))),

see Section 3.1).
Below, we give the periodic homogenization via unfolding.
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Theorem 1. Let uε be the solution of problem (3.11).
There exist ũ ∈ L2

0(Ω,∇x′ ; H1
per(Y′′)) and û ∈ L2(Ω×Y′′; H1

per,0(Y
′)) such that

uε ⇀MY(ũ) weakly in L2
0(Ω,∇x′),

Tε(uε) ⇀ ũ weakly in L2(Ω; H1(Y)),

Tε(∇x′uε)→ ∇x′ ũ +∇y′ û strongly in L2(Ω×Y)N1 ,

εTε(∇x′′uε)→ ∇y′′ ũ strongly in L2(Ω×Y)N2 .

(3.13)

The couple (ũ, û) is the unique solution of problem

∫
Ω×Y

A(y)

[
∇x′ ũ(x, y′′) +∇y′ û(x, y)

∇y′′ ũ(x, y′′)

]
·
[
∇x′ φ̃(x, y′′) +∇y′ φ̂(x, y)

∇y′′ φ̃(x, y′′)

]
dxdy,

= |Y′|
∫

Ω×Y′′
f (x)φ̃(x, y′′)dxdy′′,

∀φ̃ ∈ L2
0(Ω,∇x′ ; H1

per,0(Y
′′)) and ∀φ̂ ∈ L2(Ω×Y′′; H1

per,0(Y
′)).

(3.14)

Proof. Step 1. We show (3.14) and the weak formulation of convergences (3.13).
First, by the fact that A ∈ M(α, β, Y) by definition (3.10) and the unfolding operator proper-
ties, we immediately get that Tε(Aε)(x, y) = A(y) for a.e.(x, y) ∈ Ω̂ε ×Y.
Now, note that the solution uε of (3.11) satisfies (3.12). Hence, up to a subsequence of {ε},
still denoted {ε}, Lemma 8 gives ũ ∈ L2

0(Ω,∇x′ ; H1
per(Y′′)) and û ∈ L2(Ω× Y′′; H1

per,0(Y
′))

such that
uε ⇀MY(ũ) weakly in L2

0(Ω,∇x′),

Tε(uε) ⇀ ũ weakly in L2(Ω; H1(Y)),

Tε(∇x′uε) ⇀ ∇x′ ũ +∇y′ û weakly in L2(Ω×Y)N1 ,

εTε(∇x′′uε) ⇀ ∇y′′ ũ weakly in L2(Ω×Y′′)N2 .

(3.15)

Now, we choose the test functions

• Φ̃ in H1
0(Ω), φ̃ in H1

per(Y′′),

• Φ in C1
c (Ω×Y′′) ,

• φ̂ in H1
per,0(Y

′).

Set φε(x) .
= Φ̃(x)φ̃

( x′′

ε

)
+ εΦ

(
x,

x′′

ε

)
φ̂
( x′

ε

)
for a.e. x ∈ Ω.

Applying the unfolding operator to the sequence {φε}ε, we get that

Tε(φε)→ Φ̃φ̃ strongly in L2(Ω; H1(Y)),

Tε(∇x′φε)→ (∇x′ Φ̃)φ̃ + Φ∇y′ φ̂ strongly in L2(Ω×Y)N1 ,

εTε(∇x′′φε)→ ∇y′′ φ̃ strongly in L2(Ω×Y)N2 .

Taking φε as test function in (3.11), then transforming by unfolding and passing to the limit,
it gives (3.14) with (Φ̃φ̃, Φφ̂). Then, we extend such results for all φ̃ ∈ L2

0(Ω,∇x′ ; H1
per(Y′′))

and all φ̂ ∈ L2(Ω× Y′′; H1
per,0(Y

′)) by density argumentation. Since the solution is unique,
the sequences converge to their limit.
Step 2. We prove that convergences (3.13)3,4 are strong.
First, setting φ = uε in (3.11), then transforming by unfolding and using the weak lower
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semicontinuity yield∫
Ω×Y

A
[
∇x′ ũ +∇y′ û
∇y′′ ũ

]
·
[
∇x′ ũ +∇y′ û
∇y′′ ũ

]
dxdy

≤ lim inf
ε→0

∫
Ω×Y
Tε(Aε)

[
Tε(∇x′uε)

εTε(∇x′′uε)

]
·
[
Tε(∇x′uε)

εTε(∇x′′uε)

]
dxdy

= lim inf
ε→0

∫
Ω̂ε

Aε

[
∇x′uε

ε∇x′′uε

]
·
[
∇x′uε

ε∇x′′uε

]
dxdy

≤ lim sup
ε→0

∫
Ω̂ε

Aε

[
∇x′uε

ε∇x′′uε

]
·
[
∇x′uε

ε∇x′′uε

]
dxdy

≤ lim sup
ε→0

∫
Ω

Aε

[
∇x′uε

ε∇x′′uε

]
·
[
∇x′uε

ε∇x′′uε

]
dxdy = lim sup

ε→0

∫
Ω

f uε dx,

= lim
ε→0

∫
Ω×Y
Tε( f )Tε(uε) dx =

∫
Ω×Y

f ũ dxdy

=
∫

Ω×Y
A
[
∇x′ ũ +∇y′ û
∇y′′ ũ

]
·
[
∇x′ ũ +∇y′ û
∇y′′ ũ

]
dxdy,

from which it follows that all the above inequalities are in fact equalities. Hence∫
Λε

Aε

[
∇x′uε

ε∇x′′uε

]
·
[
∇x′uε

ε∇x′′uε

]
dxdy = 0

and

lim
ε→0

∫
Ω×Y

A
[
Tε(∇x′uε)

εTε(∇x′′uε)

]
·
[
Tε(∇x′uε)

εTε(∇x′′uε)

]
dxdy

= lim
ε→0

∫
Ω

Aε

[
∇x′uε

ε∇x′′uε

]
·
[
∇x′uε

ε∇x′′uε

]
dxdy

=
∫

Ω×Y
A
[
∇x′ ũ +∇y′ û
∇y′′ ũ

] [
∇x′ ũ +∇y′ û
∇y′′ ũ

]
dxdy.

Since the map Ψ ∈ L2(Ω× Y)N 7−→
√∫

Ω×Y
AΨ ·Ψ dxdy is a norm equivalent to the usual

norm of L2(Ω×Y)N , we get

lim
ε→0

∫
Ω×Y

∣∣∣∣ [ Tε(∇x′uε)
εTε(∇x′′uε)

] ∣∣∣∣2dxdy =
∫

Ω×Y

∣∣∣∣ [∇x′ ũ +∇y′ û
∇y′′ ũ

] ∣∣∣∣2dxdy.

This, together with the fact that (3.15)3,4 already converge weakly, ensures the strong con-
vergences (3.13)3,4. The proof is therefore complete.

Now, consider the following partition of A into blocks

A =

(
A1 A2
A3 A4

)
,

where

• A1 is a N1 × N1 matrix with entries in L∞(Y),

• A2 is a N1 × N2 matrix with entries in L∞(Y),

• A3 is a N2 × N1 matrix with entries in L∞(Y),

• A4 is a N2 × N2 matrix with entries in L∞(Y).
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We define the correctors χ̂k, k ∈ {1, . . . , N}, as the unique solutions in L∞(Y′′, H1
per,0(Y

′)) for
the cell problems∫

Y′
A1(y)

[
∇y′ χ̂k(y′, y′′)

]
·
[
∇y′ ŵ(y′)

]
dy′ = −

∫
Y′

A(y) ek ·
[
∇y′ ŵ(y′)

0

]
dy′,

∀ŵ ∈ H1
per,0(Y

′).
(3.16)

By the Lax−Milgram theorem applied in Hilbert space L2(Y′′, H1
per,0(Y

′)), we obtain the
existence and uniqueness of the solution of (3.16) for every k ∈ {1, . . . , N}.
Since A belongs toM(α, β, Y) we get for every k ∈ {1, . . . , N}:

‖∇y′ χ̂k(·, y′′)‖H1(Y′)N1 ≤
β

α
. for a.e. y′′ ∈ Y′′.

As a consequence, χ̂k belongs to L∞(Y′′, H1
per,0(Y

′))1 for every k ∈ {1, . . . , N}, and we have

‖χ̂k‖L∞(Y′′ ;H1(Y′)) ≤ C.

We can finally give the form of the homogenized problem.

Proposition 4. The function ũ0 ∈ L2
0(Ω,∇x′ ; H1

per(Y′′)) is the unique solution of the following
homogenized problem:

∫
Ω×Y′′

Ahom(y′′)

[
∇x′ ũ0(x, y′′)
∇y′′ ũ0(x, y′′)

]
·
[
∇x′ φ̃(x, y′′)
∇y′′ φ̃(x, y′′)

]
dxdy′′

=
∫

Ω×Y′′
f (x) φ̃(x, y′′) dxdy′′, ∀φ̃ ∈ L2

0(Ω,∇x′ ; H1
per(Y

′′)).

(3.17)

The homogenizing operator Ahom ∈ L∞(Y′′)N×N is the matrix defined by

Ahom(y′′) .
=

1
|Y′|

∫
Y′

(
A +

(
A1
A3

)
∇y′χ

)
(y′, y′′) dy′, (3.18)

where χ̂ =
(
χ̂1 χ̂2 . . . χ̂N1 χ̂N1+1 . . . χ̂N

)
and thus ∇y′ χ̂ is the N1 × N matrix

∇y′ χ̂
.
=
(
∇y′ χ̂1 ∇y′ χ̂2 . . . ∇y′ χ̂N1 ∇y′ χ̂N1+1 . . . ∇y′ χ̂N

)
.

Note, that in such a formulation the problem mixes the macroscopic x′ and microscopic
variables that correspond to x′′. Nevertheless, the homogenization is considered to be con-
cluded since all the involved functions depend on such variables.
Before proceeding to the proof, we find convenient to clarify the boundary conditions for
the solutions of problem (3.17) in a simple domain in two dimensions.

Remark 1. Assume that Ω .
= (0, 1)2 ⊂ R2. Then, the function of ũ0 belongs to the space{

φ∈L2(Ω, ∂1; H1
per(Y

′′))
∣∣ φ(0, x2, y2)=φ(1, x2, y2)=0 for a.e. (x2, y2) ∈ (0, 1)×Y′′

}
.

Proof of Proposition 4. Equation (3.14) with φ̃ = 0 leads to:∫
Ω×Y

(
A1 A2
A3 A4

)
(y′, y′′)

[
∇y′ û(x, y′, y′′)

0

]
·
[
∇y′ φ̂(x, y′, y′′)

0

]
dxdy′dy′′

= −
∫

Ω×Y

(
A1 A2
A3 A4

)
(y′, y′′)

[
∇x′ ũ(x, y′′)
∇y′′ ũ(x, y′′)

]
·
[
∇y′ φ̂(x, y′, y′′)

0

]
dxdy′dy′′,

∀φ̂ ∈ L2(Ω×Y′′; H1
per,0(Y

′)),

(3.19)

from which the form of the cell problems (3.16) follows.

1One can prove that χ̂k also belongs to L∞(Y).
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By (3.19), we can write û as

û(x, y′, y′′) =
N1

∑
k=1

χ̂k(y′, y′′)∂xk ũ(x, y′′) +
N

∑
k=N1+1

χ̂k(y′, y′′)∂yk ũ(x, y′′)

for a.e. (x, y′, y′′) ∈ Ω×Y′ ×Y′′.

Replacing û by the above equality in (3.14) (note that φ̂ is set to be zero since the correctors
have been found) we first get

∫
Ω×Y

(
A1 A2
A3 A4

)[∇x′ ũ +∇y′ û
∇y′′ ũ

]
·
[
∇x′ φ̃
∇y′′ φ̃

]
dxdy

=
∫

Ω×Y

(
A1 A2
A3 A4

)[∇x′ ũ
∇y′′ ũ

]
·
[
∇x′ φ̃
∇y′′ φ̃

]
dxdy

+
∫

Ω×Y

(
A1 A2
A3 A4

)[
∑N1

k=1∇y′ χ̂k ∂xk ũ + ∑N
k=N1+1∇y′ χ̂k ∂yk ũ

0

]
·
[
∇x′ φ̃
∇y′′ φ̃

]
dxdy.

Concerning the second term, straightforward calculations lead to

∫
Ω×Y

(
A1 A2
A3 A4

)[
∑N1

k=1∇y′ χ̂k ∂xk ũ + ∑N
k=N1+1∇y′ χ̂k ∂yk ũ

0

]
·
[
∇x′ φ̃
∇y′′ φ̃

]
dxdy

=
∫

Ω×Y

(
A1 A2
A3 A4

) [(
∇y′ χ̂

0

) [
∇x′ ũ
∇y′′ ũ

]]
·
[
∇x′ φ̃
∇y′′ φ̃

]
dxdy

=
∫

Ω×Y

((
A1
A3

)
∇y′ χ̂

) [
∇x′ ũ
∇y′′ ũ

]
·
[
∇x′ φ̃
∇y′′ φ̃

]
dxdy,

where we denoted
(
∇y′ χ̂

0

)
the N× N matrix partitioned into the upper N1× N block∇y′ χ̂

and the lower N2 × N block with zero entrances. Hence, we get that

∫
Ω×Y

(
A1 A2
A3 A4

)[∇x′ ũ +∇y′ û
∇y′′ ũ

]
·
[
∇x′ φ̃
∇y′′ φ̃

]
dxdy

=
∫

Ω×Y

((
A1 A2
A3 A4

)
+

(
A1
A3

)
∇y′ χ̂

)[∇x′ ũ
∇y′′ ũ

]
·
[
∇x′ φ̃
∇y′′ φ̃

]
dxdy.

Gathering all the y′ dependent terms, we get the form (3.18) for the operator Ahom.
Since A ∈ L∞(Y)N×N and the χ̂k’s are in L∞(Y′′; H1(Y′)), it is clear that Ahom ∈ L∞(Y′′)N×N .
We prove now that Ahom is coercive. Let ξ

.
= (ξ1, ξ2) be a vector with fixed entries in the

space RN = RN1 ×RN2 . By the construction of the homogenizing operator, straightforward
calculation imply that

Ahom[ξ] · [ξ] = 1
|Y′|

∫
Y′

((
A1 A2
A3 A4

)
+

(
A1
A3

)
∇y′ χ̂

) [
ξ1
ξ2

]
·
[

ξ1
ξ2

]
dy′

=
1
|Y′|

∫
Y′

(
A1 A2
A3 A4

) [
ξ1 +∇y′ χ̂ξ

ξ2

]
·
[

ξ1
ξ2

]
dy′

=
1
|Y′|

∫
Y′

(
A1 A2
A3 A4

) [
ξ1 +∇y′ χ̂ξ

ξ2

]
·
[

ξ1 +∇y′ χ̂ξ

ξ2

]
dy′

− 1
|Y′|

∫
Y′

(
A1 A2
A3 A4

) [
ξ1 +∇y′ χ̂ξ

ξ2

]
·
[
∇y′ χ̂ξ

0

]
dy′,

where χ̂ξ
.
= ∑N

k=1 χ̂kξk. Observe that by the cell problems (3.16), the second term in the last
equality is equal to zero.
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Now, the coercivity of the matrix A and the fact that χ̂ξ ∈ L∞(Y′′; H1
per,0(Y

′)) imply that

Ahom(y′′)[ξ] · [ξ]

=
1
|Y′|

∫
Y′

(
A1 A2
A3 A4

)
(y′, y′′)

[
ξ1 +∇y′ χ̂ξ(y′, y′′)

ξ2

]
·
[

ξ1 +∇y′ χ̂ξ(y′, y′′)
ξ2

]
dy′

≥ α
(
‖ξ1 +∇y′ χ̂ξ(·, y′′)‖2

L2(Y′)N1
+ |ξ2|2

)
= α

(
|ξ1|2 + |ξ2|2 + ‖∇y′ χ̂ξ(·, y′′)‖2

L2(Y′)N1

)
≥ α|ξ|2 for a.e. y′′ ∈ Y′′,

which proves that Ahom is coercive.
Replacing the form of Ahom on the original problem (3.14), we get (3.17). By the boundedness
and coercivity of Ahom and by the fact that the function ũ belongs to L2

0(Ω,∇x′ ; H1
per(Y′′)), the

above problem admits a unique solution ũ0 by the Poincaré inequality and the Lax−Milgram
theorem.

At last, we would like to remind that the obtaned results to this section occur not only
when there is anisotropy in the displacements, but also if the contrast is present in the coef-
ficients of the material law:

Find uε ∈ H1
0(Ω) such that:∫

Ω

(
A1,ε εA2,ε

εA3,ε ε2 A4,ε

)
[∇uε] · [∇φ] dx =

∫
Ω

f φ dx, ∀φ ∈ H1
0(Ω),

(3.20)

Indeed, this new formulation differs from (3.11) by a simple shift of contrast from the ma-
terial law to the displacement. Hence, the developed method applies also to this kind of
structures.
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Chapter 4

New tool: periodic unfolding for
functions defined on lattice
structures

In this section, we developed a second tool to extend the classical results of the periodic un-
folding. This time, we will not deal with a new class of functions but rather with sequences
bounded on particular domains: one-dimensional lattice structures in RN . As we will see,
this presents quite a challenge for the periodic unfolding.

4.1 The periodic lattice structure

We start by giving a rigorous definition of a one-dimensional periodic lattice structure in
RN .
Let i ∈ {1, . . . , N} and let K1, . . . , KN ∈N∗. Set the following subsets of NN by

K .
=

N

∏
i=1
{0, . . . , Ki}, Ki

.
=
{

k ∈ K | ki = 0
}

,

K̂ .
=

N

∏
i=1
{0, . . . , Ki − 1}, K̂i

.
=
{

k ∈ K̂ | ki = 0
}

.

We denote K the set of points in the closure of the unit cell Y by

K .
=
{

A(k) ∈ RN
∣∣∣ A(k) =

N

∑
i=1

ki
Ki

ei, k ∈ K
}
⊂ Y.

In this sense, the whole unit cell Y is partitioned in a union of cells

Y = ∑
k∈K̂

A(k) + YK,

where the reference cell YK is defined by

YK
.
=

N

∏
i=1

(
0, li
)
, li =

1
Ki

.

We denote S (i)c and S (i) the sets of segments whose direction is ei by

S (i)c
.
=

⋃
k∈Ki

[
A(k), A(k) + ei

]
, S (i) .

=
⋃

k∈K̂i

[
A(k), A(k) + ei

]
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Hence, the lattice structure in the unit cell Y is defined by (see also Figure 4.1 right)

Sc
.
=

N⋃
i=1

S (i)c ⊂ Y, S .
=

N⋃
i=1

S (i) ⊂ Y,

where again, as in Section 2.2, the letter "c" denotes the complete lattice.

Now, let Ω ⊂ RN be an open set. We consider its covering Ω̃ε defined by the ε paving

FIGURE 4.1: The lattice S in dimension two for K = {0, 1, 2, 3} × {0, 1, 2}.

Ω̃ε
.
= int

{ ⋃
ξ∈Ξ̃ε

ε(ξ + Y)
}

, Ξ̃ε
.
=
{

ξ ∈ ZN
∣∣∣ ε(ξ + Y) ∩Ω 6= ∅

}
.

From (2.2), we have (see the comparison between Figures 2.1 left and Figure 4.2 left)

Ω̂ε ⊂ Ω ⊂ Ω̃ε. (4.1)

Note that the covering Ω̃ε is a connected, open set. This fact will be later crucial to get
estimates of the functions defined as interpolates on lattice nodes.
The periodic lattice structure over Ω is defined by

Sε
.
=

⋃
ξ∈Ξ̃ε

(
εξ + εS

)
⊂ Ω̃ε, Kε

.
=

⋃
ξ∈Ξ̃ε

(
εξ + εK

)
,

S (i)ε
.
=

⋃
ξ∈Ξ̃ε

(
εξ + εS (i)

)
.

Denote S the running point of S and s that of Sε. That gives ( i ∈ {1, . . . , N})

S = A(k) + tei in S (i), t ∈ [0, 1], k ∈ K̂i,

s = εξ + εA(k) + εtei in S (i)ε , t ∈ [0, 1], k ∈ K̂i, ξ ∈ Ξ̃ε.

Let C(S) and C(Sε) be the spaces of continuous functions defined on S and Sε respectively.
For p ∈ [1,+∞], we denote the spaces of functions defined on the lattice by (i ∈ {1, . . . , N})

W1,p(S (i)) .
=
{

φ ∈ Lp(S (i))
∣∣ ∂Sφ ∈ Lp(S (i))

}
,

W1,p(S (i)ε )
.
=
{

φ ∈ Lp(S (i)ε )
∣∣ ∂sφ ∈ Lp(S (i)ε )

}
,

W1,p(S) .
=
{

φ ∈ C(S)
∣∣ ∂Sφ ∈ Lp(S)

}
,

W1,p(Sε)
.
=
{

φ ∈ C(Sε)
∣∣ ∂sφ ∈ Lp(Sε)

}
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and
W2,p(S (i)) .

=
{

φ ∈W1,p(S (i))
∣∣ ∂Sφ ∈W1,p(S (i))

}
,

W2,p(S (i)ε )
.
=
{

φ ∈W1,p(S (i)ε )
∣∣ ∂sφ ∈W1,p(S (i)ε )

}
,

W2,p(S) .
=
{

φ ∈ C(S)
∣∣ ∂Sφ|S (j) ∈W1,p(S (j)), j ∈ {1, . . . , N}

}
,

W2,p(Sε)
.
=
{

φ ∈ C(Sε)
∣∣ ∂sφ

|S (j)
ε
∈W1,p(S (j)

ε ), j ∈ {1, . . . , N}
}

.

4.1.1 The unfolding operator for lattices

We are now in the position to give an equivalent formulation of the unfolding operator
defined in 1, but for lattice structures.

Definition 7. For every measurable function φ on Sε, the unfolding operator T Sε is defined as fol-
lows:

T Sε (φ)(x, S) = φ
(

ε
[ x

ε

]
+ εS

)
for a.e. (x, S) ∈ Ω̃ε × S .

FIGURE 4.2: The unfolding via T Sε of the variables in the periodic lattice
Sε ⊂ Ω̃ε ⊂ R2. In the limit, one has a split between the macroscopic scale

and the reference lattice S .

Observe that in the above definition of T Sε , the map from Ω̃ε × S into Sε:

(x, S) 7−→ ε
[ x

ε

]
+ εS

is almost everywhere one to one. This is not the case if we replace S with Sc. Nevertheless,
considerations and result for functions defined on S and on Sc are the same.
In the same way, we define the mean value operator defined in 2 but for lattice structures.

Definition 8. For every function φ̂ on L1(S (i)), i ∈ {1, . . . , N}, the mean value operator MS (i)
on direction ei is defined as follows:

MS (i)(φ̂)(S)
.
=
∫ A(k)+ei

A(k)
φ̂(x, S′)dS′, ∀S ∈ [A(k), A(k) + ei], ∀k ∈ K̂i.

Below, we give the main property of T Sε .

Proposition 5. Let p ∈ [1,+∞]. For every φ ∈ Lp(Sε), one has

‖T Sε (φ)‖Lp(Ω̃ε×S) ≤ ε
N−1

p |Y|
1
p ‖φ‖Lp(Sε).
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Proof. We start with p = 1. Let φ be in L1(Sε). We have

∫
Ω̃ε×S

|T Sε (φ)(x, S)|dxdS =
∫

Ω̃ε

N

∑
i=1

∫
S (i)
|T Sε (φ)(x, S)|dxdS

= ∑
ξ=Ξ̃ε

|εξ + εY|
N

∑
i=1

∑
k∈K̂i

∫ 1

0
|φ
(
εξ + εA(k) + εt

)
|dt

= εN |Y|
N

∑
i=1

∑
k∈K̂i

∫ 1

0
|φ
(
εξ + εA(k) + εt

)
|dt ≤ εN−1|Y|

∫
Sε

|φ(s)|ds.

The case p ∈ (1,+∞) follows by definition of Lp norm. The case p = +∞ is trivial.

4.2 Periodic unfolding for sequences defined as N-linear in-
terpolates on the lattice nodes

Before proceeding to the actual strategy for the periodic unfolding for lattices, we dedicate
this section to a useful class of functions: the sequences defined as N-linear extension from
the lattice nodes to the whole domain.
The unfolding of this class of functions has two main advantages. The first is that fewer
hypotheses are required for the sequences to ensure weak convergence (see property (2.10)).
The second is that the convergences can be restricted to sub-spaces with lower dimensions,
which will be key in the next sections.

First, since we are now working on Ω̃ε, which contains Ω, we need to extend Definition (1)
of the classical unfolding operator to functions defined in the following neighborhood of Ω:{

x ∈ RN ∣∣ dist(x, Ω) < εdiam(Y)
}

.

Definition 9. For every measurable function Φ on Ω̃ε, the unfolding operator T ext
ε is defined as

follows:

T ext
ε (Φ)

.
= Φ

(
ε
[ x

ε

]
Y
+ εy

)
for a.e. (x, y) ∈ Ω̃ε ×Y.

For every Φ ∈ Lp(Ω̃ε), this operator satisfies (see also property (2.3)):

‖T ext
ε (Φ)‖Lp(Ω̃ε×Y) ≤ |Y|

1
p ‖Φ‖Lp(Ω̃ε)

for every Φ ∈ Lp(Ω̃ε).

Every measurable function defined on Ω can be extended to the set Ω̃ε by setting it to 0 on
Ω̃ε ∩ (RN \Ω). Now, let p ∈ (1,+∞). Assume {Φε}ε to be a sequence uniformly bounded
in Lp(Ω̃ε). Then, the unfolded sequence {T ext

ε (Φε)}ε is uniformly bounded in Lp(Ω̃ε × Y)
and thus in Lp(Ω × Y). Hence, there exists a subsequence of {ε}, still denoted {ε}, and
Φ̂ ∈ Lp(Ω×Y) such that

Tε
ext(Φε)|Ω×Y ⇀ Φ̂ weakly in Lp(Ω×Y).

For simplicity, we will omit the restriction and always write the above convergence as

Tε
ext(Φε) ⇀ Φ̂ weakly in Lp(Ω×Y).

In this sense, we can easily transpose to this operator all the convergence results in Subsec-
tion 2.1.1 concerning the isotropically bounded sequences and in Section 3.3 concerning the
anisotropically bounded ones .
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We define the spaces of interpolated functions on the lattice nodes in Y (resp. in Ω̃ε) by

Q1
K(Y)

.
=
{

Ψ ∈W1,∞(Y)
∣∣∣Ψ|A(k)+YK

is the Q1 interpolate of its values

on the vertices of A(k) + YK, ∀k ∈ K̂
}

,

Q1
Kε
(Ω̃ε)

.
=
{

Φ ∈W1,∞(Ω̃ε)
∣∣∣Φ|εξ+εA(k)+εYK

is the Q1 interpolate of its values

on the vertices of εξ + εA(k) + εYK, ∀k ∈ K̂, ∀ξ ∈ Ξ̃ε

}
.

(4.2)

From the N-linear interpolations properties (2.10) and (2.13), for every Φ ∈ Q1(Ω̃ε), there
exist a constant depending only on p such that

‖∇Φ‖Lp(Ω̃ε)
≤ C

ε
‖Φ‖Lp(Ω̃ε)

. (4.3)

Below, we give the equivalent formulation of Propositions 1, 2 and Lemma 8 but for this
special class of functions.

Corollary 1. Let {Φε}ε be a sequence in Q1
Kε
(Ω̃ε) satisfying

‖Φε‖Lp(Ω̃ε)
≤ C.

Then, there exist a subsequence of {ε}, denoted {ε}, and Φ̂ ∈ Lp(Ω), Φ̂ ∈ Lp(Ω; Q1
K,per,0(Y))

such that
Φε|Ω ⇀ Φ weakly in Lp(Ω),

Tε
ext(Φε) ⇀ Φ + Φ̂ weakly in Lp(Ω; Q1

K(Y)),

εTε
ext(∇Φε) ⇀ ∇yΦ̂ weakly in Lp(Ω×Y)N .

The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. First, from property (4.3) on the N-linear interpolated functions, we have that

‖Φε‖Lp(Ω̃ε)
+ ε‖∇Φε‖Lp(Ω̃ε)

Then, the proof is done in the same fashion as Proposition 1, together with the fact that
{Tε

ext(Φε)}ε ∈ Lp(Ω̃ε; Q1
K(Y)).

Corollary 2. Let {Φε}ε be a sequence in Q1
Kε
(Ω̃ε) satisfying

‖Φε‖W1,p(Ω̃ε)
≤ C.

Then, there exist a subsequence of {ε}, denoted {ε}, and Φ ∈ W1,p(Ω), Φ̂ ∈ Lp(Ω; Q1
K,per,0(Y))

such that

Φε|Ω ⇀ Φ weakly in W1,p(Ω),

Tε
ext(Φε) ⇀ Φ weakly in Lp(Ω; Q1

K(Y)),

Tε
ext(∇Φε) ⇀ ∇Φ +∇yΦ̂ weakly in Lp(Ω×Y)N ,

1
ε

(
T ext

ε (Φε)−MY ◦ T ext
ε (Φε)

)
⇀ ∇Φ · y′c + Φ̂ weakly in Lp(Ω×Y),

where y′c .
= y′ −MY′(y′).

The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. The proof follows from Proposition 2, together with the fact that {Tε
ext(Φε)}ε ∈

Lp(Ω̃ε; Q1
K(Y)).
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Corollary 3. Let N1, N2 ∈ N such that N1 + N2 = N. Let x = (x′, x′′) ∈ RN1 × RN2 and
y = (y′, y′′) ∈ Y′ ×Y′′. Let {Φε}ε be a sequence in Q1

Kε
(Ω̃ε) satisfying

‖Φε‖Lp(Ω̃ε)
+ ‖∇x′Φε‖Lp(Ω̃ε)

≤ C,

where the constant does not depend on ε.
Then, there exist a subsequence of {ε}, denoted {ε}, and functions Φ̃ ∈ Lp(Ω,∇x′ ; Q1

K,per(Y
′′)),

Φ̂ ∈ Lp(Ω×Y′′; Q1
K,per,0(Y

′)) ∩ Lp(Ω; Q1
K(Y)) such that

Φε|Ω ⇀ Φ weakly in Lp(Ω,∇x′),

Tε
ext(Φε) ⇀ Φ̃ weakly in Lp(Ω; Q1

K(Y)),

Tε
ext(∇x′Φε) ⇀ ∇x′ Φ̃ +∇y′ Φ̂ weakly in Lp(Ω×Y)N1 ,

1
ε

(
T ext

ε (Φε)−MY′ ◦ T ext
ε (Φε)

)
⇀ ∇x′ Φ̃ · y′c + Φ̂ weakly in Lp(Ω×Y),

where Φ =MY′′(Φ̃) and y′c .
= y′ −MY′(y′).

The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. First, since the sequence {Φε}ε belongs to Q1
Kε
(Ω̃ε), property (4.3) implies that

‖Φε‖Lp(Ω̃ε)
+ ‖∇x′Φε‖Lp(Ω̃ε)

+ ε‖∇x′′Φε‖Lp(Ω̃ε)
≤ C.

The proof follows by Lemma 8 together with the fact that {Tε
ext(Φε)}ε ⊂ Lp(Ω̃ε; Q1

K(Y)).

Note that the above lemma, which deals with anisotropically bounded sequences, in-
cludes the results of Proposition 1 in the particular case N1 = 0 and N2 = N, as well as the
results of Proposition 2 in the particular case N1 = N and N2 = 0.

4.3 How to unfold sequences defined on periodic lattice struc-
tures

Given a function ψ defined on the lattice structure S (resp. φ on Sε), a direct application of
the unfolding operator for lattices T Sε would result in an independent unfolding for each of
the N directions. This might break the continuity of the functions in the limit since nothing
ensures that the N obtained functions coincide on the lattice nodes. Hence, we need to work
around this issue.

4.3.1 A first decomposition

Recall the decomposition that we have already done in Subsection 2.2.1, but for each of the
repeated cells YK contained in the unitary cell Y.
Since the union is finite, this does not change the results in Subsection 2.2.1, which is why
we will refer many proofs to this subsection.
On the lattice structures Sε (resp. S), we define the spaces Q1

K(S) and Q1
Kε
(Sε) by

Q1
K(S)

.
=
{

ψ ∈ C(S)
∣∣∣ψ is affine between two contiguous points of K

}
,

Q1
Kε
(Sε)

.
=
{

φ ∈ C(Sε)
∣∣∣ φ is affine between two contiguous points of Kε

}
.

(4.4)

Then, we define the spaces of functions vanishing on the lattice nodes by (p ∈ [1,+∞])

W1,p
0,K(S) =

{
ψ ∈W1,p(S) | ψ = 0 on every node of K

}
,

W1,p
0,Kε

(Sε) =
{

φ ∈W1,p(Sε) | φ = 0 on every node of Kε

}
.
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Every function ψ in W1,p(S) (resp. φ ∈ W1,p(Sε)) is defined on the set of nodes K (resp. Kε)
and therefore can be decomposed as

ψ = ψa + ψ0, ψa ∈ Q1
K(S), ψ0 ∈ W

1,p
0,K(S),(

resp. φ = ψa + φ0, φa ∈ Q1
Kε
(Sε), φ0 ∈ W

1,p
0,Kε

(Sε)
)
,

(4.5)

where ψa, (resp. φa) is an affine function defined as Q1 interpolation on the nodes, and ψ0
(resp. φ0) is the remainder term, which is zero on every node.

Lemma 10. Let φ ∈ W1,p(Sε) be decomposed as in (4.5). Then, there exists C > 0 such that
(i ∈ {1, . . . , N})

‖∂sφa‖Lp(S (i)ε )
+ ‖∂sφ0‖Lp(S (i)ε )

≤ C‖∂sφ‖
Lp(S (i)ε )

,

‖φ0‖Lp(S (i)ε )
+ ε‖∂sφ0‖Lp(S (i)ε )

≤ Cε‖∂sφ‖
Lp(S (i)ε )

.

Proof. The proof is done in the same fashion as the one in Lemma 1, but for a grid of a
cell with arbitrary length YK, that we will call GK. Then, the results follow by the fact that
the lattice S is a finite union of grids of the form GK, together with an affine change of
variables.

4.3.2 A commutative diagram: from lattice to RN, and to lattice again

As we already know, a function belonging to Q1
K(S) (resp. Q1

Kε
(Sε)) is determined only by

its values on the set of nodes K (resp. Kε), and thus we can naturally extend it to a function
defined on Y (resp. on Ω̃ε).

Definition 10. For every function ψ ∈ Q1
K(S), its extension Q(ψ) belonging to W1,∞(Ω̃ε) is

defined by N-linear interpolation on each parallelotope A(k) + YK belonging to Y, for every k ∈ K̂.

For every function φ ∈ Q1
Kε
(Sε), its extension Q(φ) belonging to W1,∞(Ω̃ε) is defined by N-linear

interpolation on each parallelotope εξ + εA(k) + εYK belonging to εξ + εY, for every ξ ∈ Ξ̃ε and
k ∈ K̂.

Now, recall the spaces (4.2). By the same argumentation done in Subsection 2.2.1 but for
a finite union of cells, the extension operator Q is both one to one and onto from Q1

K(S)
to Q1

K(Y) (resp. from Q1
Kε
(Sε) to Q1

Kε
(Ω̃ε)). Its inverse is given by the restriction |S from

Q1
K(Y) to Q1

K(S) (resp. |Sε
from Q1

Kε
(Ω̃ε) to Q1

Kε
(Sε)).

Below, we show the main properties of this operator.

Lemma 11. For every φ ∈ Q1(Sε), one has (p ∈ [1,+∞], i ∈ {1, . . . , N})

‖Q(φ)‖Lp(Ω̃ε)
≤ Cε

N−1
p ‖φ‖Lp(Sε), ‖∂iQ(φ)‖Lp(Ω̃ε)

≤ Cε
N−1

p ‖∂sφ‖
Lp(S (i)ε )

.

Proof. The proof is done in the same fashion as the one of Lemma 2 but for a cell with arbi-
trary length YK. Then, the results follow since the unitary cell Y is a finite union of cells of
the form YK, together with an affine change of variables.

Finally, we can apply the following strategy: given a function defined on the lattice φ ∈
W1,p(Sε), we first decompose it as in (4.5). Then, the unfolding for the affine function φa ∈
Q1
Kε
(Sε) is equivalent to first extending φa to Φa = Q(φa), then applying the unfolding

results for N-linear interpolates in Section 4.2 and finally restricting the convergences to the
lattice again, as the following commutative diagrams show (i ∈ {1, . . . , N}): T Sε (φ) = T Sε (φ|Sε

) = T ext
ε (φ)|Ω̃ε×S ,

T Sε (∂sφ) = T Sε
(
∂sφ
|S (i)ε

) = T ext
ε

(
∂iφ
)
|Ω̃ε×S (i) .

(4.6)

On the other hand, the unfolding for the remainder term φ0 ∈ W
1,p
0,Kε

(Sε) can be done using
the classical unfolding results in Section 2.1, since it is only defined on segments. Hence, the
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final sum of the limiting unfolded fields has continuity on the nodes since it is the sum of a
N-linear interpolated function restricted to the lattice and a reminder function which is zero
on the nodes.

4.4 Asymptotic behavior of sequences defined on lattices with
information on the first order derivatives

Finally, we can unfold sequences belonging to W1,p(Sε), for which we have information on
the sequence itself and the gradients.

4.4.1 Sequences isotropically bounded on lattices

We start with the sequences in W1,p where there is a contrast between the bound on the
function and the bound on their gradient. This lemma is the equivalent of Proposition 1, but
for lattice structures.
Note that on the sequence bounds, a rescaling factor, which depends on the p-norm and the
N-dimension, is additionally applied due to the dimension reduction.

Lemma 12. Let p ∈ (1,+∞) and let {φε}ε be a sequence in W1,p(Sε) satisfying

‖φε‖Lp(Sε) + ε‖∂sφε‖Lp(Sε) ≤ Cε
1−N

p . (4.7)

Then, there exist a subsequence of {ε}, denoted {ε}, and φ̂ ∈ Lp(Ω; W1,p
per(S)) such that

T Sε (φε) ⇀ φ̂ weakly in Lp(Ω; W1,p(S)).1 (4.8)

The same results hold for p = +∞ with weak topology replaced by weak-* topology in the corre-
sponding spaces.

Proof. Given {φε}ε ⊂W1,p(Sε), we decompose it as in (4.5) and get

{φε}ε = {φa,ε}ε + {φ0,ε}ε, {φa,ε}ε ∈ Q1
Kε
(Sε), {φ0,ε}ε ∈ W1,p

0,Kε
(Sε).

By Lemma 10 and hypothesis (4.7), we have

‖φ0,ε‖Lp(Sε) + ε‖∂sφ0,ε‖Lp(Sε) ≤ Cε‖∂sφε‖Lp(Sε) ≤ Cε
1−N

p +1, (4.9)

‖φa,ε‖Lp(Sε) + ε‖∂sφa,ε‖Lp(Sε) ≤ ‖φε‖Lp(Sε) + ‖φ0,ε‖Lp(Sε) + ε‖∂sφε‖Lp(Sε) ≤ Cε
1−N

p (4.10)

We first consider the sequence {φ0,ε}ε ⊂ W1,p
0,Kε

(Sε). By estimate (4.9) and Proposition 1,

there exist a subsequence, still denoted ε, and a function φ̂0 ∈ Lp(Ω;W1,p
0,K,per(S)) such that

1
ε
T Sε (φ0,ε) ⇀ φ̂0 weakly in Lp(Ω; W1,p(S)). (4.11)

We consider now the sequence {φa,ε}ε ⊂ Q1
Kε
(Sε). We extend it to {Φa,ε}ε = {Q(φa,ε)}ε,

which belongs to Q1
Kε
(Ω̃ε). By Lemma 11 and estimate (4.10), this sequence satisfies

‖Φε‖Lp(Ω̃ε)
+ ε‖∇Φε‖Lp(Ω̃ε)

≤ C.

1As for Tε
ext, this convergence must be understood

T Sε (φε)|Ω×S ⇀ φ̂ weakly in Lp(Ω; W1,p(S)).

It will be the same for all convergences involving the unfolding operator T Sε .
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By construction, {Φε}ε ∈ Q1
Kε
(Ω̃ε) and thus {T ext

ε (Φε)}ε ∈ Lp(Ω̃ε; Q1
K(Y)). Hence, Corol-

lary 1 implies that there exist Φ̂a ∈ Lp(Ω; Q1
K,per(Y)), such that

Tε
ext(Φε,a) ⇀ Φ̂a weakly in Lp(Ω; Q1

K(Y)).

Using the relations (4.6), we can restrict the above convergences from Ω × Y to the subset
Ω× S . We denote φ̂a

.
= Φ̂a|Ω×S , which then belongs to Lp(Ω; Q1

K,per(S)). We have

T Sε (φa,ε) ⇀ φ̂a weakly in Lp(Ω; Q1
K(S)).

Hence, from the above convergence and convergence (4.11), we get

T Sε (φε) = T Sε (φε,a) + T Sε (φε,0) ⇀ φ̂a weakly in Lp(Ω; Q1
K(S)),

which concludes the proof by setting φ
.
= φ̂a.

Now, we show the asymptotic behavior of uniformly bounded sequences in W1,p(Sε).
This lemma is the equivalent of Proposition 2 but for lattice structures.

Lemma 13. Let {φε}ε be a sequence in W1,p(Sε) satisfying (p ∈ (1,+∞))

‖φε‖W1,p(Sε)
≤ Cε

1−N
p , (4.12)

where the constant does not depend on ε.
Then, there exist a subsequence of {ε}, still denoted {ε}, and φ ∈W1,p(Ω) and φ̂ ∈ Lp(Ω; W1,p

per,0(S))
such that (i ∈ {1, . . . , N})

T Sε (φε)→ φ strongly in Lp(Ω; W1,p(S)),
Tε
S (∂sφε) ⇀ ∂iφ + ∂Sφ̂ weakly in Lp(Ω× S (i)).

The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. Given {φε}ε ⊂W1,p(Sε), we decompose it as in (4.5) and get

{φε}ε = {φa,ε}ε + {φ0,ε}ε, {φa,ε}ε ∈ Q1
Kε
(Sε), {φ0,ε}ε ∈ W1,p

0,Kε
(Sε).

By Lemma 10 and hypothesis (4.12), we have

‖φ0,ε‖Lp(Sε) + ε‖∂sφ0,ε‖Lp(Sε) ≤ Cε‖∂sφε‖Lp(Sε) ≤ Cε
1−N

p +1, (4.13)

‖φa,ε‖W1,p(Sε)
≤ ‖φε‖Lp(Sε) + ‖φ0,ε‖Lp(Sε) + ‖∂sφε‖Lp(Sε) ≤ Cε

1−N
p (4.14)

We first consider the sequence {φ0,ε}ε ⊂ W1,p
0,Kε

(Sε). By estimate (4.13) and Proposition 1,

there exist a subsequence, still denoted {ε}, and φ0 ∈ Lp(Ω), φ̂0 ∈ Lp(Ω;W1,p
0,K,per,0(S)) such

that (i ∈ {1, . . . , N})

1
ε
T Sε (φ0,ε) ⇀ φ0 + φ̂0 weakly in Lp(Ω; W1,p(S)),

T Sε (∂sφ0,ε) ⇀ ∂Sφ̂0 weakly in Lp(Ω;×S (i)).
(4.15)

We consider now the sequence {φa,ε}ε ⊂ Q1
Kε
(Sε). We extend it to {Φa,ε}ε = {Q(φa,ε)}ε,

which belongs to Q1
Kε
(Ω̃ε). By Lemma 11 and estimate (4.14), this sequence satisfies

‖Φa,ε‖W1,p(Ω̃ε)
≤ C.
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By construction, we have {Φa,ε}ε ∈ Q1
Kε
(Ω̃ε) and thus {T ext

ε (Φε)}ε ∈ Lp(Ω̃ε; Q1
K(Y)).

Hence, Corollary 2 implies that there exist Φa ∈W1,p(Ω) and Φ̂a ∈ Lp(Ω; Q1
K,per,0(Y)), such

that
Φε,a|Ω → Φa strongly in W1,p(Ω),

Tε
ext(Φε,a)→ Φa strongly in Lp(Ω; Q1

K(Y)),

Tε
ext(∇Φε,a) ⇀ ∇Φa +∇yΦ̂a weakly in Lp(Ω×Y)N .

Using the relations (4.6), we can restrict the above convergences from Ω × Y to the subset
Ω× S . We denote φa

.
= Φa|Ω×S , which belongs to W1,p(Ω), and φ̂a

.
= Φ̂a|Ω×S , which then

belongs to Lp(Ω; Q1
K,per,0(S)). We have

T Sε (φa,ε)→ φa strongly in Lp(Ω; Q1
K(S)),

T Sε (∂sφa,ε) ⇀ ∂iφa + ∂Sφ̂a weakly in Lp(Ω× S), i ∈ {1, . . . , N}.

Hence, the statement follows from the above convergence, convergence (4.15) and setting
φ

.
= φa ∈W1,p(Ω) and φ̂

.
= φ̂a + φ̂0, which belongs to Lp(Ω; W1,p

per,0(S)).

4.4.2 Sequences anisotropically bounded on lattices

We now consider sequences whose gradient is anisotropically bounded on the lattice.
Accordingly to Section 3.1, we apply the decomposition RN = RN1 ⊕RN2 and define the
following partition of our lattice structure:

S ′ .
=

N1⋃
i=1

S (i), S ′c
.
=

N1⋃
i=1

S (i)c , S ′ε
.
=

⋃
ξ∈Ξ̃ε

(
εξ + εS ′c

)
,

S ′′ .
=

N⋃
i=N1+1

S (i), S ′′c
.
=

N⋃
i=N1+1

S (i)c , S ′′ε
.
=

⋃
ξ∈Ξ̃ε

(
εξ + εS ′′c

)
.

Accordingly to (4.2), we define the spaces Q1
Kε
(S ′ε), Q1

Kε
(S ′′ε ). Accordingly to and (4.4), we

also define the spaces Q1
K(S ′), Q1

K(S ′′), Q1
K,per(S), Q1

K,per(S ′), Q1
K,per(S ′′) and their respec-

tive extensions Q1
K(Y

′), Q1
K(Y

′′), Q1
K,per(Y), Q1

K,per(Y
′) and Q1

K,per(Y
′′).

We now prove the asymptotic behavior for sequences anisotropically bounded on W1,p(Sε).

Lemma 14. Let p ∈ (1,+∞) and let {φε}ε be a sequence in W1,p(Sε) satisfying

‖φε‖Lp(Sε) + ‖∂sφε‖Lp(S ′ε) + ε‖∂sφε‖Lp(S ′′ε ) ≤ Cε
1−N

p . (4.16)

Then, there exist a subsequence of {ε}, denoted {ε}, φ̃ ∈ Lp(Ω,∇x′ ; W1,p
per(S ′′)), and functions

φ̂ ∈ Lp(Ω× S ′′; W1,p
per,0(S ′)) ∩ Lp(Ω; W1,p

per(S)), such that (i ∈ {1, . . . , N1})

T Sε (φε) ⇀ φ̃ weakly in Lp(Ω; W1,p(S)),
T Sε (∂sφε) ⇀ ∂iφ̃ + ∂Sφ̂ weakly in Lp(Ω× S (i)),
1
ε

(
Tε
S (φε)−MS (i) ◦ Tε

S (φε)
)
⇀ ∂iφ̃ Sc + φ̂ weakly in Lp(Ω× S (i)),

(4.17)

where Sc .
=
(
S−MS (i)(S)

)
· ei

2.
The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.

2 One has S = A(k) + tei in the line [A(k), A(k) + tei ], t ∈ [0, 1], k ∈ K̂i . Hence Sc = t− 1/2.
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Proof. Given {φε}ε ⊂W1,p(Sε), we decompose φε as in (4.5) and get

{φε}ε = {φa,ε}ε + {φ′0,ε}ε + {φ′′0,ε}ε,

where
{φa,ε}ε ∈ Q1

Kε
(Sε), {φ′0,ε}ε ∈ W1,p

0,Kε
(S ′ε), {φ′′0,ε}ε ∈ W1,p

0,Kε
(S ′′ε ).

By Lemma 10 and hypothesis (4.16), we have

‖φ′0,ε‖Lp(S ′ε) + ε‖∂sφ′0,ε‖Lp(S ′ε) ≤ Cε‖∂sφε‖Lp(S ′ε) ≤ Cε
1−N

p +1,

‖φ′′0,ε‖Lp(S ′′ε ) + ε‖∂sφ′′0,ε‖Lp(S ′′ε ) ≤ Cε‖∂sφε‖Lp(S ′′ε ) ≤ Cε
1−N

p ,

‖φa,ε‖Lp(Sε) + ‖∂Sφa,ε‖Lp(S ′ε) + ε‖∂Sφa,ε‖Lp(S ′′ε ) ≤ Cε
1−N

p .

(4.18)

By estimate (4.18)1 and Proposition 1 applied on each line of S ′ε, there exist a subsequence,
still denoted {ε}, and functions φ′0 ∈ Lp(Ω), φ̂′0 ∈ Lp(Ω;W1,p

0,K,per,0(S
′)) such that

1
ε
T Sε (φ0,ε) ⇀ φ′0 + φ̂′0 weakly in Lp(Ω; W1,p(S ′)),

T Sε (∂sφ0,ε) ⇀ ∂Sφ̂′0 weakly in Lp(Ω× S ′).
(4.19)

By estimate (4.18)2 and Proposition 1 applied on each line of S ′′ε , there exist a subsequence,
still denoted {ε}, and functions φ′′0 ∈ Lp(Ω), φ̂′′0 ∈ Lp(Ω;W1,p

0,K,per,0(S
′′)) such that

T Sε (φ0,ε) ⇀ φ′′0 + φ̂′′0 weakly in Lp(Ω; W1,p(S ′′)),
εT Sε (∂sφ0,ε) ⇀ ∂Sφ̂′′0 weakly in Lp(Ω× S ′′).

(4.20)

Now, we consider the sequence {φa,ε}ε ∈ Q1
Kε
(Sε) and we extend it to {Φa,ε}ε = {Q(φa,ε)}ε

belonging to Q1
Kε
(Ω̃ε). By Lemma 11, we get

‖Φa,ε‖Lp(Ω̃ε)
+ ‖∇x′Φa,ε‖Lp(Ω̃ε)

+ ε‖∇x′′Φa,ε‖Lp(Ω̃ε)
≤ C.

By construction, the sequence {Φa,ε}ε belongs to Q1
Kε
(Ω̃ε) and thus {T ext

ε (Φε)}ε belongs to
Lp(Ω̃ε; Q1

K(Y)). Hence, Corollary 3 imply that there exist functions Φ̃a ∈ Lp(Ω,∇x′ ; Q1
K,per(Y

′′))

and Φ̂a ∈ Lp(Ω×Y′′; Q1
K,per,0(Y

′)) ∩ Lp(Ω; Q1
K(Y)) such that

Φa,ε|Ω ⇀ Φa weakly in Lp(Ω,∇x′),

Tε
ext(Φa,ε) ⇀ Φ̃a weakly in Lp(Ω; Q1

K(Y)),

Tε
ext(∇x′Φa,ε) ⇀ ∇x′ Φ̃a +∇y′ Φ̂a weakly in Lp(Ω×Y)N1 ,

where Φa =MY′′(Φ̃a).
Using the relations (4.6), we can restrict the above convergences from Ω × Y to the subset
Ω× S (and from Ω× Y′, Ω× Y′′ to Ω× S ′, Ω× S ′′ respectively). Setting φ̃a = Φ̃a|Ω×S , we
have φ̃a ∈ Lp(Ω,∇x′ ; Q1

K,per(S ′′)). Now, let us consider Φ̂a|Ω×S ′ , which belongs to the space

Φ̂a ∈ Lp(Ω; Q1
K,per,0(S ′)), and we extend it as an affine function between two adjacent nodes

in S ′′ (see Figure 4.3). This gives φ̂a ∈ Lp(Ω× S ′′; Q1
K,per,0(S ′)) ∩ Lp(Ω; Q1

K,per(S)). Hence,
the following convergences hold:

T Sε (φa,ε) ⇀ φ̃a weakly in Lp(Ω; Q1(S)),
Tε
S (∂sφa,ε) ⇀ ∂iφ̃a + ∂Sφ̂a weakly in Lp(Ω× S (i))

(4.21)
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Finally, from convergences (4.19), (4.20) and (4.21), we get (i ∈ {1, . . . , N1})

T Sε (φε)→ φ̃a strongly in Lp(Ω; W1,p(S ′)),
T Sε (φε) ⇀ φ̃a + φ′′0 + φ̂′′0 weakly in Lp(Ω; W1,p(S ′′)),
T Sε (∂sφε) ⇀ ∂iφ̃a + ∂S(φ̂a + φ̂′0) weakly in Lp(Ω× S (i)).

Setting φ̃
.
= φ̃a +φ′′0 + φ̃′′0 , we get that φ̃ belongs to Lp(Ω,∇x′ ; W1,p

per(S ′′)). Setting φ̂
.
= φ̂a + φ̂′0,

this function belongs to Lp(Ω×S ′′; Q1
K,per,0(S ′))∩ Lp(Ω; Q1

K,per(S)). Convergence (4.17)3 is
an immediate consequence of (4.17)2. The proof is complete.

FIGURE 4.3: Construction of the microscopic variables of the periodic func-
tion φ̂a in dimension two. On the left, the restriction to S (1) of the 2-linear
interpolate Φ̂a. On the right, the extension of φ̂a from S (1) to S (2) by linear

interpolation along th lattice nodes.

Again, note that the convergences in Lemma 14 include the isotropic cases in Lemma 12
for S ′ = ∅ and S ′′ = S , and in Lemma 13 for S ′ = S and S ′′ = ∅.

4.5 Asymptotic behavior of sequences defined on lattices with
information until the second order derivatives

We would like now to apply the same strategy but to sequences bounded in W2,p, which
have information till the second order derivative.

4.5.1 The problem of mixed derivatives

As we have seen in Subsection 2.2.2, the N-cubic extension from a cubic interpolation on the
lattices to the whole domain is not uniquely defined because of the lack of mixed deriva-
tives for the function defined on the lattice. This is because a function defined on the lattice
segments can be derived twice, only in the segment directions. We overcome the problem in
two different ways:

(i) We proceed as in Subsection 2.2.2 and linearly extend the N partial derivatives to adopt
the same strategy above but using the N-cubic interpolation instead of the linear. This
method will lead to a better regularity of the limit fields but at the cost of some artificial
assumptions on the boundedness of the extended derivatives.

(ii) We adopt twice the N-linear interpolation: on the function and its partial derivatives.
This method will lead to a worse regularity of the limit fields, but no further assump-
tions are made on the boundedness of the original sequences.

4.5.2 Unfolding via N-cubic interpolation

We proceed in the same fashion as the previous section and decompose a function into a
remainder term and a cubic polynomial, extending the latter by N-cubic interpolation to the
whole space.
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On the lattice structures Sε (resp. S) we define the space of functions Q3(Sε) (resp. Q3(S))
by

Q3
Kε
(Sε)

.
=
{

ψ ∈ C(Sε)
∣∣∣ψ is a cubic polynomial between two contiguous points of Kε

}
,

Q3
K(S)

.
=
{

φ ∈ C(S)
∣∣∣ φ is a cubic polynomial between two contiguous points of K

}
.

Then, we define the spaces of functions vanishing on the lattice nodes, and with derivative
vanishing on the lattice nodes, by (p ∈ [1,+∞], i ∈ {1, . . . , N})

W2,p
0,K(S) =

{
ψ ∈W2,p(S) | ψ = ∇ψ = 0 on K

}
,

W2,p
0,Kε

(Sε) =
{

φ ∈W2,p(Sε) | φ = ∇φ = 0 on Kε

}
.

Every function ψ ∈ W2,p(S) (resp. φ ∈ W2,p(Sε)) is defined on the set of nodes K (resp. Kε)
and therefore can be uniquely decomposed as

ψ = ψc + ψ0, ψc ∈ Q3
K(S), ψ0 ∈ W

2,p
0,K(S),(

resp. φ = φc + φ0, φc ∈ Q3
Kε
(Sε), φ0 ∈ W

2,p
0,Kε

(Sε)
)
,

(4.22)

where ψc (resp. φc) is the cubic polynomial that coincides with the original function on the
nodes (and its derivatives coincide with the original function’s derivatives on the nodes),
and ψ0 (resp. φ0) is the reminder term which is zero on every node (and its derivatives are
zero on every node).

Lemma 15. Let i ∈ {1, . . . , N} and φ ∈ W2,p(Sε). Suppose that φ is decomposed as in (4.22).
Then, there exists C > 0 such that

‖∂2
ssφc‖Lp(S (i)ε )

≤ C‖∂2
sφ‖

Lp(S (i)ε )
,

‖∂sφc‖Lp(S (i)ε )
≤ C‖∂sφ‖

W1,p(S (i)ε )
,

‖φc‖Lp(S (i)ε )
≤ C‖φ‖

W2,p(S (i)ε )
,

‖φ0‖Lp(S (i)ε )
+ ε‖∂sφ0‖Lp(S (i)ε )

+ ε2‖∂2
sφ0‖Lp(S (i)ε )

≤ Cε2‖∂2
sφ‖

Lp(S (i)ε )
.

(4.23)

Proof. The proof is done in the same fashion as the one in Lemma 3, but for a grid of a cell
with arbitrary length YK, that we will call GK. Then, the results follow since the lattice S is a
finite union of grids of the form GK, together with an affine change of variables.

Set the spaces

Q3
K(Y)

.
=
{

Ψ ∈W1,∞(Y)
∣∣∣Ψ|A(k)+YK

is N-cubic interpolate of its values and partial

derivatives values on the vertices of A(k) + YK, ∀k ∈ K̂
}

,

Q3
Kε
(Ω̃ε)

.
=
{

Φ ∈W1,∞(Ω̃ε)
∣∣∣Φ|εξ+εA(k)+εYK

is N-cubic interpolate of its values and partial

derivatives values on the vertices of εξ + εA(k) + εYK, ∀k ∈ K̂, ∀ξ ∈ Ξ̃ε

}
.

As we already did in Section 4.2, we give an equivalent formulation of Proposition 3 but for
functions defined as N-cubic interpolations on the lattice nodes.

Corollary 4. Let p ∈ (1,+∞) and let {Φε}ε be a sequence in Q3
Kε
(Ω̃ε) satisfying

‖Φε‖W2,p(Ω̃ε)
≤ C.
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Then, there exist a subsequence of {ε}, still denoted {ε}, and Φ ∈W2,p(Ω), Φ̂ ∈ Lp(Ω; Q3
K,per(Y))

such that
Tε(Φε)→ Φ strongly in Lp(Ω; W2,p(Y)),

Tε(∇Φε)→ ∇Φ strongly in Lp(Ω; W1,p(Y))N ,

Tε(D2Φε) ⇀ D2Φ + D2
yΦ̂ weakly in Lp(Ω×Y)N×N .

The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. The proof directly follows by Proposition 3, together with the fact that {Tε
ext(Φε)}ε ∈

Lp(Ω̃ε; Q3
K(Y)).

Given a function ψc defined on S (resp. φc defined on Sε), its extension to the whole
cell Y (resp. to the whole domain Ω̃ε) is given by any function Ψc ∈ W2,∞(Y) (resp. Φc ∈
W2,∞(Ω̃ε)) that restricted on S (on Sε) gives back the original function.
As we already know from Subsection 2.2.2, the extension is not unique. For this reason, we
set

S [i] .
=

N⋃
j=1, j 6=i

S (j) (
resp. S [i]ε

.
=

N⋃
j=1, j 6=i

S (j)
ε

)
. (4.24)

For every i ∈ {1, . . . , N}, we denote the following extensions

∂iψ
.
=
{

f ∈W1,p(S (i))×W1,∞(S [i])
∣∣ f
S (i)c

is extended by N − 1-linear interpolation on S [i]
}

,

∂iφ
.
=
{

f ∈W1,p(S (i)ε )×W1,∞(S [i]ε )
∣∣ f
S (i)ε

is extended by N − 1-linear interpolation on S [i]ε

}
.

(4.25)
These extensions not only uniquely determine the N-cubic interpolation Ψc: setting a bound
for them allows us to bound the interpolation Ψc by the bounds on the lattice function ψc, as
the following lemma shows.

Lemma 16. Let Φc ∈ W2,p(Ω̃ε) be the unique cubic extension of the function φc ∈ W2,p(Sε) with
the derivatives extended as in (4.25). One has

‖Φc‖W2,p(Ω̃ε)
≤ Cε

N−1
p
(
‖φ‖Lp(Sε) + ‖∂sφ‖Lp(Sε) +

N

∑
i=1

∥∥∂s(∂iφc)
∥∥

Lp(Sε)

)
. (4.26)

Proof. The proof follows from Lemma 4 but for the finite union of cells εYK of εY.

We can finally show the asymptotic behavior of sequences bounded in W2,p(Sε).

Theorem 2. Let p ∈ (1,+∞) and let {φε}ε be a sequence in W2,p(Sε), satisfying

‖φε‖L2(Sε)
+ ‖∂sφε‖L2(Sε)

+
N

∑
i=1

∥∥∂s(∂iφε)
∥∥

L2(Sε)
≤ Cε

1−N
p . (4.27)

Then, there exist a subsequence of {ε}, still denoted {ε}, and φ ∈ W2,p(Ω), φ̂ ∈ Lp(Ω; W2,p
per(S))

such that (i ∈ {1, . . . , N})

T Sε (φε)→ φ strongly in Lp(Ω; W2,p(S)),
Tε
S (∂sφε)→ ∂iφ strongly in Lp(Ω; W1,p(S (i))),

Tε
S(∂2

sφε

)
⇀ ∂2

iiφ + ∂2
Sφ̂ weakly in Lp(Ω× S (i)).

Proof. Given the sequence {φε}ε ⊂W2,p(Sε), we decompose it as in (4.22) and get

φε = φc,ε + φ0,ε, φc,ε ∈ Q3
Kε
(Sε), φ0,ε ∈ W

2,p
0,Kε

(Sε).
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We first consider the sequence {φ0,ε}ε belonging to W2,p
0,Kε

(Sε). By estimate (4.23)4 and hy-
pothesis (4.27), we have

‖φ0,ε‖Lp(Sε) + ε‖∂sφ0,ε‖Lp(Sε) + ε2‖∂2
sφ0,ε‖Lp(Sε) ≤ Cε2‖∂2

sφε‖Lp(Sε) ≤ Cε
1−N

p +2.

Hence, Proposition 3 implies that there exist φ̂0 ∈ Lp(Ω;W2,p
0,K,per(S)) such that

1
ε2 T

S
ε (φ0,ε) ⇀ φ̂0 weakly in L2(Ω; W2,p(S)). (4.28)

Now we consider the sequence {φc,ε}ε ∈ Q3
Kε
(Sε). For every i ∈ {1, . . . , N}, we define its

derivatives extensions ∂iφc,ε. Then, we can define the extension of the sequence to the whole
domain {Φc,ε}ε ∈ Q3

Kε
(Ω̃ε). By estimates (4.26), we have

‖Φc,ε‖W2,p(Ω̃ε)
≤ Cε

N−1
p
(
‖φc,ε‖L2(Sε)

+ ‖∂sφc,ε‖L2(Sε)
+

N

∑
i=1

∥∥∂s(∂iφc,ε)
∥∥

L2(Sε)

)
≤ C.

Hence, Corollary 4 implies that there exist Φc ∈W2,p(Ω) and Φ̂c ∈ Lp(Ω; Q3
K(Y)) such that

Φc,ε|Ω ⇀ Φc weakly in W2,p(Ω),

Tε(Φc,ε)→ Φc strongly in Lp(Ω; W2,p(Y)),

Tε(∇Φc,ε)→ ∇Φc strongly in Lp(Ω; W1,p(Y))N ,

Tε(D2Φc,ε) ⇀ D2Φc + D2
yΦ̂c weakly in Lp(Ω×Y)N×N .

Note that the following relations hold (i ∈ {1, . . . , N}):
T Sε (φc,ε) = T Sε (Φc,ε|Sε

) = T ext
ε (Φc,ε)|Ω̃ε×S ,

T Sε (∂sφc,ε)|Ω̃ε×S (i) = T
S

ε

(
∂sΦ

c,ε|S (i)ε
) = T ext

ε

(
∂iΦc,ε

)
Ω̃ε×S (i) ,

T Sε (∂2
sφc,ε)|Ω̃ε×S (i) = T

S
ε

(
∂2

sΦ
c,ε|S (i)ε

) = T ext
ε

(
∂2

i Φc,ε
)

Ω̃ε×S (i) .

We then restrict the above convergences from Ω× Y to the subsets Ω× S and Ω× S (i), for
every i ∈ {1, . . . , N}. Hence, there exist a function φc

.
= Φc|Ω×S ∈ W2,p(Ω) and a function

φ̂c = Φ̂c|Ω×S ∈ Lp(Ω; W2,p
per(S)) such that (i ∈ {1, . . . , N})

T Sε (φc,ε)→ φc strongly in Lp(Ω; W2,p(S)),
Tε
S (∂sφc,ε)→ ∂iφc strongly in Lp(Ω; W1,p(S (i))),
Tε
S (∂2

sφc,ε) ⇀ ∂2
iiφc + ∂2

Sφ̂c weakly in Lp(Ω× S (i)).

Note that the strong convergences are preserved due to the polynomial character of the
function T Sε (φc,ε) with respect to the second variable.
Finally, by the above convergences and (4.28), we get (i ∈ {1, . . . , N})

T Sε (φε)→ φc strongly in L2(Ω; W2,p(S)),
Tε
S (∂sφε)→ ∂iφc strongly in L2(Ω; W1,p(S (i))),
Tε
S (∂2

sφε) ⇀ ∂2
iiφc + ∂2

S
(
φ̂c + φ̂0

)
weakly in L2(Ω× S (i)).

The proof follows by setting φ
.
= φc ∈W2,p(Ω) and φ̂

.
= φ̂c + φ̂0 ∈ L2(Ω; W2,p

per(S)).
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4.5.3 Unfolding via known results for sequences bounded in W1,p

With this method, we consider a sequence in W2,p(Sε) as a sequence in W1,p(Sε) with partial
derivatives in W1,p(S (i)ε ) (i ∈ {1, . . . , N}), so that we can apply the results of Section 5.5.
Even though no gradient extension is needed, the limiting functions will have less regularity.
Moreover, we must do some additional work to show that the N different limit functions,
one for each partial derivative, are a unique function restricted to each line.
Let p ∈ (1,+∞). From Chapter 9 of Gilbarg and Trudinger, 1997, we recall that:

(i) If u ∈W1,p(Ω) satisfies ∆u ∈ Lp(Ω), then u ∈W1,p(Ω) ∩W2,p
loc (Ω)3;

(ii) If Ω is a bounded domain in RN with a C1,1 boundary and if u ∈ W1,p
0 (Ω) satisfies

∆u ∈ Lp(Ω), then u ∈W1,p
0 (Ω) ∩W2,p(Ω).

Denote

W1,p
∆ (Ω)

.
=
{

φ ∈W1,p(Ω) ∩W2,p
loc (Ω)

∣∣ ∂2
ii ∈ Lp(Ω) for every i ∈ {1, . . . , N}

}
.

We endow W1,p
∆ (Ω) with the following norm

‖φ‖
W1,p

∆ (Ω)

.
= ‖φ‖W1,p(Ω) +

N

∑
i=1
‖∂2

iiφ‖Lp(Ω).

Theorem 3. Let p ∈ (1,+∞) and let {φε}ε be a sequence in W2,p(Sε) satisfying

‖φε‖Lp(Sε) + ‖∂sφε‖Lp(Sε) + ‖∂
2
sφε‖Lp(Sε) ≤ Cε

1−N
p . (4.29)

Then, there exist a subsequence of {ε}, still denoted {ε}, and φ ∈ W1,p
∆ (Ω), φ̂ ∈ Lp(Ω; W2,p

per,0(S))
such that (i ∈ {1, . . . , N})

T Sε (φε)→ φ strongly in Lp(Ω; W1,p(S)),
Tε
S (∂sφε) ⇀ ∂iφ weakly in Lp(Ω× S (i)),

Tε
S(∂2

sφε

)
⇀ ∂2

iiφ + ∂2
Sφ̂ weakly in Lp(Ω× S (i)).

(4.30)

The same results hold for p = +∞ with weak topology replaced by weak-* topology in the correspond-
ing spaces.

Proof. Step 1. We prove convergences (4.30)1,2.
By estimate (4.29), the sequence {φε}ε satisfies

‖φε‖W1,p(Sε)
≤ Cε

1−N
p

and thus by Lemma 13, there exist φ ∈W1,p(Ω) and φ̂ ∈ Lp(Ω; W1,p
per,0(S)) such that

T Sε (φε)→ φ strongly in Lp(Ω; W1,p(S)),
Tε(∂sφε) ⇀ ∂iφ + ∂Sφ̂ weakly in Lp(Ω× S (i)), i ∈ {1, . . . , N}.

(4.31)

Now, we consider the sequences {ψ(i)
ε }ε = {∂sφ

ε|S (i)ε
}ε, i ∈ {1, . . . , N}. From estimate (4.29)

we have
‖ψ(i)

ε ‖W1,p(S (i)ε )
≤ Cε

1−N
p .

Recall the definition of S [i]ε from (4.24). Since for every i ∈ {1, . . . , N}, the function ψ
(i)
ε

is defined on every node of Sε, we extend it as in (4.25) and denote this extension ψ
(i)
ε . It

3In fact, we have ρD2u ∈ Lp(Ω)N×N where ρ(x) = dist(x, ∂Ω) for all x ∈ RN .
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satisfies
‖ψ(i)

ε ‖Lp(Sε) +
∥∥∂sψ

(i)
ε

∥∥
Lp(S (i)ε )

+ ε
∥∥∂sψ

(i)
ε

∥∥
Lp(S [i]ε )

≤ Cε
1−N

p ,

Lemma 14 gives a subsequence of {ε}, still denoted {ε}, and ψ̃(i) ∈ Lp(Ω, ∂i; W1,p
per(S [i])),

ψ̂(i) ∈ Lp(Ω× S [i]; W1,p
per,0(S (i))) ∪ Lp(Ω; W1,p

per(S)) such that (i ∈ {1, . . . , N})

T Sε (ψ
(i)
ε ) ⇀ ψ̃(i) weakly in Lp(Ω; W1,p(S)),

Tε
S (∂sψ

(i)
ε ) ⇀ ∂iψ̃

(i) + ∂Sψ̂(i) weakly in Lp(Ω× S (i)).

The above second convergence and (4.31)2 yield (i ∈ {1, . . . , N})

∂iφ + ∂Sφ̂ = ψ̃(i) a.e. in Ω× S (i).

Since ψ̃(i) does not depend on S in S (i) and φ̂ is periodic with respect to S in S (i) we have
∂iφ = ψ̃(i) and ∂Sφ̂ = 0 a.e. Ω× S (i) for every i ∈ {1, . . . , N}.
Hence, we get that ψ̃(i) belongs to Lp(Ω, ∂i) and thus that ∂iφ ∈ Lp(Ω, ∂i). Since ∆φ ∈ Lp(Ω),
we have φ ∈W1,p

∆ (Ω). Moreover, the following convergences hold:

T Sε (φε)→ φ strongly in Lp(Ω; W2,p(S)),
Tε
S (∂sφε) ⇀ ∂iφ weakly in Lp(Ω× S (i)),

Tε
S(∂2

sφε

)
⇀ ∂2

iiφ + ∂Sψ̂(i) weakly in Lp(Ω× S (i)),

and for each i ∈ {1, . . . , N}, we also have that

1
ε

(
Tε
S (∂sφε)−MS (i) ◦ Tε

S (∂sφε)
)
⇀ ∂2

iiφ Sc + ψ̂(i) weakly in Lp(Ω× S (i)). (4.32)

Step 2. We prove the convergence (4.30)3.
We have to prove the existence of φ̂ ∈ Lp(Ω; W2,p

per,0(S)) such that
∂Sφ̂ = ψ̂(1) a.e. in Ω× S (1),
...

∂Sφ̂ = ψ̂(N) a.e. in Ω× S (N).

A necessary and sufficient condition to get the existence of the function φ̂ is (remind that
A(k + ei) = A(k) + liei)

∀k ∈ K̂,

∫ A(k+ei)

A(k)
ψ̂(i)(·, S)dS +

∫ A(k+ei+ej)

A(k+ei)
ψ̂(j)(·, S)dS

=
∫ A(k+ej)

A(k)
ψ̂(j)(·, S)dS +

∫ A(k+ei+ej)

A(k+ej)
ψ̂(i)(·, S)dS

(4.33)

a.e. in Ω.
Since on a line belonging to S (i), one has (see Lemma 14) Sc = t− 1

2
, t ∈ [0, 1], the above

equality (4.33) is equivalent to:

∀k ∈ K̂,

∫ A(k+ei)

A(k)

(
∂2

iiφSc + ψ̂(i)(·, S)
)
dS +

∫ A(k+ei+ej)

A(k+ei)

(
∂2

jjφSc + ψ̂(j)(·, S)
)
dS

=
∫ A(k+ej)

A(k)

(
∂2

jjφSc + ψ̂(j)(·, S)
)
dS +

∫ A(k+ei+ej)

A(k+ej)

(
∂2

iiφSc + ψ̂(i)(·, S)
)
dS

(4.34)
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a.e. in Ω.
Convergence (4.32) gives (remind that ∂2

iiφ does not depends on S)

∀k ∈ K̂

∫ A(k+ei)

A(k)

1
ε

(
Tε
S (∂sφε)−MS (i) ◦ Tε

S (∂sφε)
)

dS

→
∫ A(k+ei)

A(k)

(
∂2

iiφ Sc + ψ̂(i))dS

= ∂2
iiφ
∫ (ki+1)li

ki li

(
t− 1

2

)
dt +

∫ A(k+ei)

A(k)
ψ̂(i)(x, S)dS..

Similarly, one has (j 6= i)

∫ A(k+ej+ei)

A(k+ej)

1
ε

(
Tε
S (∂sφε)−MS (i) ◦ Tε

S (∂sφε)
)

dS

→ ∂2
iiφ
∫ (ki+1)li

ki li

(
t− 1

2

)
dt +

∫ A(k+ej+ei)

A(k+ej)
ψ̂(i)(x, S) dS

and the same kind of results for the other two quantities.
Hence, to get (4.33), we have to prove that both quantities

∫ A(k+ei)

A(k)

1
ε

(
Tε
S (∂sφε)−MS (i) ◦ Tε

S (∂sφε)
)

dS

+
∫ A(k+ei+ej)

A(k+ei)

1
ε

(
Tε
S (∂sφε)−MS (j) ◦ Tε

S (∂sφε)
)

dS
(4.35)

and ∫ A(k+ej)

A(k)

1
ε

(
Tε
S (∂sφε)−MS (j) ◦ Tε

S (∂sφε)
)

dS

+
∫ A(k+ej+ei)

A(k+ej)

1
ε

(
Tε
S (∂sφε)−MS (i) ◦ Tε

S (∂sφε)
)

dS.
(4.36)

admit the same limit or equivalently that the limit of their difference is 0.
First, we note that∫ A(k+ei)

A(k)
Tε
S (∂sφε)dS =

1
ε

∫ A(k+ei)

A(k)
∂STε

S (φε)dS

=
1
ε

(
Tε
S (φε)

(
·, A(k + ei)

)
− Tε

S (φε)
(
·, A(k)

))
a.e. in Ω̃ε.

Hence,
1
ε

( ∫ A(k+ei)

A(k)
Tε
S (∂sφε)dS +

∫ A(k+ej+ei)

A(k+ei)
Tε
S (∂sφε)dS

)
=

1
ε

( ∫ A(k+ej)

A(k)
Tε
S (∂sφε)dS +

∫ A(k+ei+ej)

A(k+ej)
Tε
S (∂sφε)dS

)
a.e. in Ω̃ε.

Now, recall that the function MS (i) ◦ Tε
S (∂sφε) is defined on Ω̃ε × S (i) and is constant on

every line of S (i). One has a.e. in Ω̃ε

MS (i) ◦ Tε
S (∂sφε) =

∫ A(k′)+ei

A(k′)
Tε
S (∂sφε) dS =

1
ε

∫ A(k′)+ei

A(k′)
∂STε

S (φε)dS

=
1
ε

(
Tε
S (φε)

(
·, A(k′) + ei

)
− Tε

S (φε)
(
·, A(k′)

))
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on Ω̃ε × [A(k′), A(k′) + ei], k′ ∈ K̂i. Hence,∫ A(k+ei)

A(k)
MS (i) ◦ Tε

S (∂sφε)dS

=
li
ε

(
Tε
S (φε)

(
·, A(k′) + ei

)
− Tε

S (φε)
(
·, A(k′)

))
a.e. in Ω̃ε,

where k′ ∈ K̂i is such that k = k′ + kiei. Hence, we get

1
ε

( ∫ A(k+ei)

A(k)
MS (i) ◦ Tε

S (∂sφε)dS−
∫ A(k+ej+ei)

A(k+ej)
MS (i) ◦ Tε

S (∂sφε)dS
)

=
li
ε2

(
Tε
S (φε)

(
·, A(k′) + ei

)
− Tε

S (φε)
(
·, A(k′)

)
− Tε

S (φε)
(
·, A(k′ + ej) + ei

)
+ Tε

S (φε)
(
·, A(k′ + ej)

))
a.e. in Ω̃ε

where k′ ∈ K̂i is such that k = k′ + kiei.
Now, we can apply Lemma 31 and claim that the limit of the difference of the quantities in
(4.35) and (4.36) is equal to 0. This proves (4.34) for every k ∈ K̂. As a consequence, there
exists a unique φ̂ ∈ Lp(Ω; W2,p

per,0(S)) such that convergence (4.30)3 holds.

4.6 Application: homogenization of a fourth 4th order homo-
geneous Dirichlet problem on a periodic lattice structure

Now that we concluded the unfolding for functions on lattice structures, we proceed as
in Section 3.4 to the homogenization of a Dirichlet problem by the meanings of the newly
developed tools.
From the rest of this section, let p = 2 and Ω be a bounded domain in RN with a C1,1

boundary. Let {ASε }ε be the sequence of functions belonging to L∞(Sε) and defined by

ASε (s)
.
= AS

({s
ε

})
for a.e. s ∈ Sε,

where AS ∈ L∞(S) satisfies

∃C− 0, C1 ∈ (0,+∞) such that C0 ≤ AS (S) ≤ C1 for a.e. S ∈ S . (4.37)

Let {gε}ε and { fε}ε be sequences in L2(Sε). Set

H1
0(Sε)

.
=
{

φ ∈ H1(Sε)
∣∣ φ = 0 a.e. on ∂Ω̃ε ∩ Sε

}
.

By the Poincaré’s and Poincaré−Wirtinger’s inequalities, we have

∀φ ∈ H1
0(Sε) ∩ H2(Sε), ‖φ‖L2(Sε)

≤ C‖∂sφ‖L2(Sε)
≤ C‖∂2

sφ‖L2(Sε)
.

Note also thatMS (i)(∂sφ) = 0 for every i ∈ {1, . . . , N}.
We consider the fourth order homogeneous Dirichlet problem in the variational formulation:

Find uε ∈ H1
0(Sε) ∩ H2(Sε) such that:∫

Sε

ASε ∂2
suε ∂2

sφ ds =
∫
Sε

gε ∂sφ ds +
∫
Sε

fε φ ds, ∀φ ∈ H1
0(Sε) ∩ H2(Sε).

(4.38)

By the Lax−Milgram’s theorem, problem (4.38) admits a unique solution. Moreover,

c‖∂2
suε‖2

L2(Sε)
≤ ‖gε‖L2(Sε)

‖∂suε‖L2(Sε)
+ ‖ fε‖L2(Sε)

‖uε‖L2(Sε)

≤ C
(
‖gε‖L2(Sε)

+ ‖ fε‖L2(Sε)

)
‖∂2

suε‖L2(Sε)
.
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Hence,

‖uε‖L2(Sε)
+ ‖∂suε‖L2(Sε)

+ ‖∂2
suε‖L2(Sε)

≤ C
(
‖gε‖L2(Sε)

+ ‖ fε‖L2(Sε)

)
. (4.39)

Below, we give the periodic homogenization via unfolding.

Theorem 4. Let uε be the solution of problem (4.38) and {gε}ε, { fε}ε be such that

ε
1−N

2 T Sε (gε)→ g strongly in L2(Ω× S),

ε
1−N

2 T Sε ( fε)→ f strongly in L2(Ω× S).
(4.40)

Then, there exist u ∈ H1
0(Ω) ∩ H2(Ω) and û ∈ L2(Ω; H2

per,0(S)) such that (i ∈ {1, . . . , N})

T Sε (uε)→ u strongly in L2(Ω; H2(S)),
Tε
S (∂suε) ⇀ ∂iu weakly in L2(Ω; H1(S (i))),
Tε
S(∂2

suε

)
→ ∂2

iiu + ∂2
Sû strongly in L2(Ω× S (i)).

The couple (u, û) is the unique solution of problem

N

∑
i=1

∫
Ω×S (i)

AS
(
∂2

iiu + ∂2
Sû
) (

∂2
iiφ + ∂2

Sφ̂
)

dxdS =
∫

Ω
G · ∇φ dx +

∫
Ω

F φ dx,

∀φ ∈ H1
0(Ω) ∩ H2(Ω) and ∀φ̂ ∈ L2(Ω; H2

per,0(S)),
(4.41)

where

G .
=

N

∑
i=1

( ∫
S (i)

g(·, S) dS
)

ei, F .
=
∫
S

f (·, S) dS.

Proof. The solution uε of (4.38) satisfies (4.39). Due to the convergences (4.40) we have that

‖uε‖L2(Sε)
+ ‖∂suε‖L2(Sε)

+ ‖∂2
suε‖L2(Sε)

≤ Cε
1−N

2 .

Hence, up to a subsequence of {ε}, still denoted {ε}, Theorem 3 gives u ∈ H1
0(Ω) ∩ H2(Ω)

and û ∈ Lp(Ω; H2
per,0(S)) such that the following convergences hold (i ∈ {1, . . . , N}):

T Sε (uε)→ u strongly in L2(Ω; H2(S)),
Tε
S (∂suε) ⇀ ∂iu weakly in L2(Ω; H1(S (i))),
Tε
S(∂2

suε

)
⇀ ∂2

iiu + ∂2
Sû weakly in L2(Ω× S (i)).

(4.42)

Now, we choose the test functions

• φ in C∞(Ω) ∩ H1
0(Ω),

• Φ in C2
c (Ω) ,

• φ̂ in H2
per,0(S).

Set
φε(s)

.
= ε

1−N
2

(
φ(s) + ε2Φ(s)φ̂

(s
ε

))
, a.e. s ∈ Sε.

Applying the unfolding operator to the sequence {φε}ε, we get (i ∈ {1, . . . , N})

T Sε (φε)→ φ strongly in L2(Ω; H2(S)),
Tε
S (∂sφε)→ ∂iφ strongly in L2(Ω; H1(S (i))),
Tε
S (∂2

sφε)→ ∂2
iiφ + Φ∂2

Sφ̂ strongly in L2(Ω× S (i)).

Taking φε as test function in (4.38), then transforming by unfolding and passing to the
limit give (4.41) with (φ, Φφ̂). By density argumentation, we extend such results to all
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φ ∈ H1
0(Ω) ∩ H2(Ω) and φ̂ ∈ L2(Ω; H2

per,0(S)). Since the solution is unique, the whole
sequences converge to their limit.
To conclude the proof, it is left to show that the third convergence in (4.42) is, in fact, strong.
Taking φ = uε in (4.38), then transforming by unfolding and using the weak lower semicon-
tinuity yield

N

∑
i=1

∫
Ω×S (i)

AS
∣∣∂2

iiu + ∂2
Sû
∣∣2 dxdS

≤ lim inf
ε→0

N

∑
i=1

∫
Ω×S
Tε(ASε )

∣∣T Sε (∂2
suε)

∣∣2 dxdS ≤ lim inf
ε→0

εN−1
N

∑
i=1

∫
Sε

ASε
∣∣∂2

suε

∣∣2 ds

≤ lim sup
ε→0

εN−1
N

∑
i=1

∫
Sε

ASε
∣∣∂2

suε

∣∣2 ds = lim sup
ε→0

εN−1
( ∫
Sε

gε ∂suε ds +
∫
Sε

fε uε ds
)

= |S|
( ∫

Ω
G · ∇φ dx +

∫
Ω

F φ dx
)
=

N

∑
i=1

∫
Ω×S (i)

AS
∣∣∂2

iiu + ∂2
Sû
∣∣2 dxdS.

Also, observe that

lim inf
ε→0

N

∑
i=1

∫
Ω×S
Tε(ASε )

∣∣T Sε (∂2
suε)

∣∣2 dxdS ≤ lim sup
ε→0

N

∑
i=1

∫
Ω×S
Tε(ASε )

∣∣T Sε (∂2
suε)

∣∣2 dxdS

≤ lim sup
ε→0

εN−1
N

∑
i=1

∫
Sε

ASε
∣∣∂2

suε

∣∣2 ds

From the above inequalities, it follows that

lim
ε→0

N

∑
i=1

∫
Sε

T Sε (ASε )
∣∣T Sε (∂2

suε)
∣∣2 dxdS

= lim
ε→0

N

∑
i=1

∫
Sε

ASε
∣∣∂2

suε

∣∣2 ds =
N

∑
i=1

∫
Ω×S (i)

AS
∣∣∂2

iiu + ∂2
Sû
∣∣2 dxdS.

Since the map Ψ ∈ L2(Ω× S) 7−→
√∫

Ω×S
AS |Ψ|2 dxdS is a norm equivalent to the usual

norm of L2(Ω× S), we get

lim
ε→0

∫
Ω×S

∣∣T Sε (∂2
suε)

∣∣2dxdS =
∫

Ω×S

∣∣∂2
iiu + ∂2

Sû
∣∣2dxdS.

This, together with the fact that (4.42)3 already converges weakly, ensures strong conver-
gence.

We define the correctors χ̂k, k ∈ {1, . . . , N}, as the unique solution in H2
per,0(S) of the cell

problem ∫
S

AS
(
1S (k) + ∂2

Sχ̂k
)

∂2
Sŵ dS = 0, ∀ŵ ∈ H2

per,0(S). (4.43)

Theorem 5. The function u ∈ H1
0(Ω)∩H2(Ω) is the unique solution of the following homogenized

problem:∫
Ω

AS ,hom ∂2u · ∂2φ dx =
∫

Ω
G · ∇φ dx +

∫
Ω

F φ dx, ∀φ ∈ H1
0(Ω) ∩ H2(Ω), (4.44)

where ∂2u .
=
(
∂2

11u, . . . , ∂2
NNu

)T and ∂2φ
.
=
(
∂2

11φ, . . . , ∂2
NNφ

)T .

In particular, the homogenized matrix AS ,hom is given by ((i, j) ∈ {1, . . . , N}2)

AS ,hom
ij

.
=

1
|S|

∫
S

AS
(
1S (i) + ∂2

Sχ̂i
)(

1S (j) + ∂2
Sχ̂j
)

dS. (4.45)
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Proof. Equation (4.41) with φ = 0 leads to

N

∑
i=1

∫
Ω×S (i)

AS
(
∂2

iiu + ∂2
Sû
)

∂2
Sφ̂ dxdS = 0, ∀φ̂ ∈ L2(Ω; H2

per,0(S)),

from which we obtain the form of the cell problems (4.43) and thus the representation of û

û(x, S) =
N

∑
k=1

∂2
kku(x) χ̂k(S), for a.e. (x, S) ∈ Ω× S .

Replacing the above expression of û in (4.41) and choosing

φ̂(x, S) =
N

∑
k=1

∂2
kkφ(x) χ̂k(S), for a.e. (x, S) ∈ Ω× S

lead to the following left hand side of (4.41):

1
|S|

∫
Ω×S

AS
( N

∑
i=1

(
1S (i) + ∂2

Sχ̂i
)
∂2

iiu
) ( N

∑
j=1

(
1S (j) + ∂2

Sχ̂j
)
∂2

jjφ
)

dxdS

=
∫

Ω

N

∑
i, j=1

( 1
|S|

∫
S

AS
(
1S (i) + ∂2

Sχ̂i
)(

1S (j) + ∂2
Sχ̂j
)

dS
)

∂2
iiu ∂2

jjφ dx.

Taking into account (4.43), the above expression becomes
∫

Ω
AS ,hom ∂2u · ∂2φ dx with the

matrix AS ,hom given by (4.45).
We prove now that AS ,hom is coercive. Let ξ = (ξ1, . . . , ξN) ∈ RN be a vector with fixed
entries. From (4.45) we first have

AS ,homξ · ξ =
1
|S|

N

∑
i, j=1

∫
S

AS
(
1S (i) + ∂2

Sχ̂i
)(

1S (j) + ∂2
Sχ̂j
)

dS ξi ξ j

=
1
|S|

∫
S

AS
(
ξ̃ + ∂2

Sχ̂ξ

)2 dS

where

ξ̃
.
=

N

∑
i=1

ξi1S (i) , χ̂ξ =
N

∑
k=1

ξk χ̂k, a.e. in S and for all ξ ∈ RN .

Then, by hypothesis (4.37) on AS , we get

AS ,homξ · ξ ≥ c
|S|
∥∥ξ̃ + ∂2

Sχ̂ξ

∥∥2
L2(S).

By the periodicity of ∂Sχ̂ξ , for every ξ ∈ RN we get that∥∥ξ̃ + ∂2
Sχ̂ξ

∥∥2
L2(S) =

∥∥ξ̃
∥∥2

L2(S) +
∥∥∂2

Sχ̂ξ

∥∥2
L2(S) ≥

∥∥ξ̃
∥∥2

L2(S)

=
N

∑
i=1
|S (i)||ξi|2 ≥ min

k
|S (k)|

N

∑
i=1
|ξi|2 =

(
min

k
|S (k)|

)
|ξ|2.

Thus the coercivity of AS ,hom is proved since

AS ,homξ · ξ ≥ c |ξ|2, ∀ξ ∈ RN .

By the coercivity of AS ,hom and the fact that u ∈ H1
0(Ω) ∩ H2(Ω), problem (4.44) admits a

unique solution.
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Chapter 5

Classification of elasticity
problems for textile structures in
linear regimes

In this chapter, we enter the second part of the thesis, where we investigate the asymptotic
behavior of a textile canvas. The structure is modeled as a squared piece of cloth made of
long and thin yarns, partially clamped on the left and bottom edges as in Figure 1.1.
Our investigation will span two main directions. The first is to determine which parame-
ters affect the textile behavior among all those introduced to model the structure and how
they do so. Different parameters lead to a range of elasticity problems to study, which are
collected and classified at the end of this chapter. The second aspect is to investigate some
of these problems in a linear regime (small deformations for the yarns) to understand how
the different obtained displacements behave at the macroscopic level. This will be done in
Chapter 6 and 7.
Before getting started, we find it convenient to give the following definitions, which will
often appear throughout the rest of the work.

Symbol Definition Meaning
L ∈ R+ Constant Lenght of the fibers.
l < L ∈ R+ Constant Length of the partial clamp.
Ω .

= (0, L)2 In-plane textile domain.
Y .

= (0, 2)2 In-plane reference cell.
ε ∈ R+ Small parameter Distance between fibers.
Nε ∈ N .

= L
2ε

Number of 2ε-segments in L.
nε ∈ N .

= l
2ε

Number of 2ε-segments in l.
Kε

.
= {0, . . . , 2Nε}2 Set of nodes in Ω.

κ ∈ [0, 1/3] Constant Ratio between the fiber’s distance and
their cross-section.

r ∈ R+ .
= κε Width of the fiber’s cross section.

ωκ
.
= (−κ, κ)2 Reference fiber’s cross section.

ωr = ωκε
.
= (−r, r)2 = (−κε, κε)2 Rescaled fiber’s cross section.

x ∈ R3 .
= (x1, x2, x3) Variables in the mobile reference frame.

z ∈ R3 .
= (z1, z2, z3) Variables in the straight reference frame.

z′ ∈ R2 .
= (z1, z2)

Variables restricted to the in-plane compo-
nents.

∂i
.
= ∂

∂zi
Partial derivative with respect to to zi.

e(u) .
= 1

2
(
∇u + (∇u)T) Linearized strain tensor (symmetric gradi-

ent) of a displacement u.
α, β ∈ {1, 2}2 Constant Shorten notation for direction e1 and e2.

a, b, c ∈ {0, 1} Constant Shorten notation for lines in the reference
cell Y .
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5.1 Parameterization of a curved rod

In order to model a woven canvas structure, we start by modeling the basic component
of which a textile consists: a long, thin, strongly oscillating rod. Then, we will define a
displacement over it and its associated strain tensor. These results have already been proved
in Section 3 of Griso, Orlik, and Wackerle, 2020b.
We start by considering a relaxed rod of length L ∈ R and squared cross-section ωr =
(−κε, κε)2:

Pε
.
= (0, L)×ωr.

Then, we define the 2-periodic function

Φ(t) .
=



−κ if t ∈ [0, κ],

κ
(

6
(t− κ)2

(1− 2κ)2 − 4
(t− κ)3

(1− 2κ)3 − 1
)

if t ∈ [κ, 1− κ],

κ if t ∈ [1− κ, 1],
Φ(2− t) if t ∈ [1, 2]

(5.1)

and we rescale it to a 2ε-periodic function setting Φε(t) = εΦ
( t

ε

)
, which is piecewise C2(R)

and overall C1(R). By definition, such a function satisfies

ε2‖Φ′′ε ‖L∞(R) + ε‖Φ′ε‖L∞(R) + ‖Φε‖L∞(R) ≤ Cε.

We now define the function

Mε(z1)
.
= z1e1 + Φε(z1)e3, z1 ∈ [0, L].

This curve has mean direction e1 and oscillations in direction e3. Hence, we can define the
mobile reference frame

(
tε, e2, nε

)
, or so-called Frenet-Serret frame, by

tε
.
=

∂1Mε

|∂1Mε|
=

1
γε

(
e1 + ∂1Φεe3

)
, nε

.
= tε ∧ e2 =

1
γε

(
− ∂1Φεe1 + e3

)
(5.2)

where γε
.
=
√

1 + (∂1Φε)2. We have tε, nε ∈ C1([0, L])3. Their derivatives are

dtε

dz1
= cεγεnε,

dnε

dz1
= −cεγεtε

where the piecewise continuous function cε(z1)
.
=

∂2
1Φε(z1)

γ3
ε (z1)

is the curvature. Denote by

Cε
.
=
(
tε e2 nε

)
∈ SO(3)

the basis transformation matrix from the fixed frame (e1, e2, e3) to the mobile one (tε, e2, nε).
Now, we are ready to define our 2ε-oscillating rod:

Qε
.
= ψε(Pε),

where the function ψε : [0, L] × R2 → R3 is the transition map from the straight to the
oscillating rod. It is defined by

ψε(z1, y2, y3)
.
= Mε(z1) + y2e2 + y3nε(z1), (z1, y2, y3) ∈ [0, L]×ωr.

Note that we use the variable z to denote the yarn length while we use y to denote the cross-
section.
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Straightforward calculations show that

∇ψε =
(
∂1ψε ∂y2 ψε ∂y3 ψε

)
= Cε

ηε 0 0
0 1 0
0 0 1

 and
(
∇zψε

)−1
=

 1
ηε

0 0
0 1 0
0 0 1

CT
ε .

(5.3)
where ηε is the Jacobian for the changing of coordinates

ηε(z1, y2, y3)
.
= det

(
∇ψε(z1, y2, y3)

)
= γε(z1)

(
1− y3cε(z1)

)
, ∀(z1, y2, y3) ∈ Pε.

As it has already been shown in Remark A.1 of Griso, Orlik, and Wackerle, 2020b, if

κ ∈ (0, 1/3],

then the Jacobian ηε of ψε is bounded from below and above and therefore the transformation
ψε from Pε onto Qε results to be a diffeomorphism. In particular, there exist two constants
C0, C1 such that for every φ ∈ L2(Qε):

C0‖φ ◦ ψε‖L2(Pε)
≤ ‖φ‖L2(Qε)

≤ C1‖φ ◦ ψε‖L2(Pε)
. (5.4)

This means that the L2 estimates for a function computed on the straight beam and the
estimates computed on the oscillating one will only differ by a constant.
From now on, we will simply denote φ the function φ ◦ ψε.

5.2 Decomposition of a curved rod’s displacement

Let u ∈ H1(Qε)3 be a displacement. From Theorem 3.1 of Griso, 2008b and Lemma 3.2 of
Griso, 2008a we have the following decomposition for a curved rod:

u = Ue` + u, a.e. in Qε or equivalently in Pε. (5.5)

The first quantity Ue` ∈ H1(Pε)3 is called elementary displacement and it is defined by

Ue`(z1, y2, y3)
.
= U (z1) +R(z1) ∧

(
y2e2 + y3nε(z1)

)
,

where the fields U andR belong to H1(0, L)3. They represent, respectively, the rod’s middle
line and the rod’s cross-section’s rotation. The second quantity u ∈ H1(Pε)3 is called warp-
ing and it consists of the remainder term of the displacement. From Griso, 2008b, it satisfies
for a.e. z1 ∈ (0, L):∫

ωr
u(z1, y2, y3)dy2dy3 = 0,

∫
ωr

u(z1, y2, y3) ∧
(
y2e2 + y3nε(z1)

)
dy2dy3 = 0.

Due to the equivalence of norms (5.4), the estimates with respect to the arc parameter and
the straight reference frame differ from a constant. Applying this concept to the estimates
for a displacement over an oscillating rod derived in Griso, 2008b, we get:

∥∥∂1R
∥∥

L2(0,L) ≤
C
ε2 ‖ex(u)‖L2(Qε)

,
∥∥∂1U −R∧ ∂1Mε

∥∥
L2(0,L) ≤

C
ε
‖ex(u)‖L2(Qε)

, (5.6)

‖u‖L2(Qε)
≤ Cε‖ex(u)‖L2(Qε)

, ‖∇xu‖L2(Qε)
≤ C‖ex(u)‖L2(Qε)

. (5.7)

Identically to Griso, Orlik, and Wackerle, 2020a, we find it convenient to define a more suit-
able decomposition for the middle line displacement U :

U (z1)
.
= U(z1) +R∧Φε(z1)e3, z1 ∈ [0, L],
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where U ∈ H1(0, L). In this sense, we can rewrite the elementary displacement in the fol-
lowing way

Ue`(z1, y2, y3)
.
= U(z1) +R(z1) ∧

(
Φε(z1)e3 + y2e2 + y3nε(z1)

)
(5.8)

and from Lemma 3.4 in Griso, Orlik, and Wackerle, 2020a, estimate (5.6)2 becomes∥∥∂1U−R∧ e1
∥∥

L2(0,L) ≤
C
ε2 ‖ex(u)‖L2(Qε)

, (5.9)

where C only depends on κ.
We also remind that if a rod is clamped at one extremity, e.g., z1 = 0, then

U (0) = U(0) = R(0), u(0, ·) = 0 a.e. ωr. (5.10)

As we will see in the next section, the clamp is important to estimate the fields themselves
starting from the estimates on their derivatives (5.6)-(5.7)-(5.9) and using the Poincaré in-
equality.

5.2.1 The linearized strain tensor associated with the displacement

Now that we set a suitable decomposition for the displacement, we are interested in the
form of the associated strain tensor since it will later enter the left-hand side of the elasticity
problem.
Note that since we are in the assumption of small deformation, we recall that the linearized
strain tensor coincides with the symmetric gradient of the displacement.
Given u ∈ H1(Qε)3, equality (5.3) yields

(
∂z1 u ∂y2 u ∂y3 u

)
= ∇xu∇ψε = ∇xu Cε

ηε 0 0
0 1 0
0 0 1

 .

Since we will later state the problem in the straight reference frame, we want to express the
symmetric gradient in such a frame. Note that the above equality implies that

CT
ε ∇xu Cε =


1
ηε

∂z1 u · tε ∂y2 u · tε ∂y3 u · tε

1
ηε

∂z1 u · ey2 ∂y2 u · ey2 ∂y3 u · ey2

1
ηε

∂z1 u · nε ∂y2 u · nε ∂y3 u · nε

 ,

which, together with the definition of symmetric gradient

ex(u)
.
=

1
2
(
∇xu + (∇xu)T)

leads to the quantity we are interested in:

CT
ε ex(u)Cε =


1
ηε

∂z1 u · tε ∗ ∗
1
2

( 1
ηε

∂z1 u · ey2 + ∂y2 u · tε

)
∂y2 u · ey2 ∗

1
2

( 1
ηε

∂z1 u · nε + ∂y3 u · tε

) 1
2

(
∂y2 u · nε + ∂y3 u · ey2

)
∂y3 u · nε

 .

By straightforward calculations on the gradient of the decomposition (5.5)-(5.8), the sym-
metric gradient of a rod displacement in the straight reference frame is

e(u) .
= e(Ue`) + e(u),
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where the first quantity is the symmetric gradient of the elementary displacement

e(Ue`)
.
=


1
ηε

((
∂1U−R∧ e1

)
+ ∂1R∧

(
Φεe3 + y2e2 + y3nε

))
· tε ∗ ∗

1
2ηε

((
∂1U−R∧ e1

)
+ ∂1R∧

(
Φεe3 + y2e2 + y3nε

))
· e2 0 ∗

1
2ηε

((
∂1U−R∧ e1

)
+ ∂1R∧

(
Φεe3 + y2e2 + y3nε

))
· nε 0 0

 (5.11)

and the second one is the symmetric gradient of the warping

e(u) .
=


1
ηε

∂z1 u · tε ∗ ∗
1
2

( 1
ηε

∂z1 u · ey2 + ∂y2 u · tε

)
∂y2 u · ey2 ∗

1
2

( 1
ηε

∂z1 u · nε + ∂y3 u · tε

) 1
2

(
∂y2 u · nε + ∂y3 u · ey2

)
∂y3 u · nε

 . (5.12)

5.3 A new decomposition for the displacement

Now, we would like to define a new decomposition of the displacement to simplify the
form of the elementary symmetric gradient (5.11). To be sure that the new decomposition is
close enough to the old one, we will use the approximation of functions by interpolations on
intervals of length ε, as we have already seen in Section 2.2.

5.3.1 Properties of the interpolating functions

Let A = (A0, . . . , A2Nε) be a vector in R2Nε+1. Given a function φ ∈ H1(0, L), we define its

linear interpolation φ
[A]
lin ∈W1,∞(0, L) on the ε-intervals of the segment (0, L) by setting

φ
[A]
lin (z1)

.
= Ap+1

( z1 − pε

ε

)
−Ap

( z1 − (p + 1)ε
ε

)
, ∀z1 ∈ [pε, (p+ 1)ε], ∀p ∈ {0, . . . , 2Nε− 1}.

Let B = (B0, . . . , B2Nε) and B′ = (B′0, . . . , B′2Nε
) be two vectors in R2Nε+1. Given a function

φ ∈ H2(0, L), we define its cubic interpolation φ
[B,B′ ]
cub ∈W2,∞(0, L) on the ε-intervals by

φ
[B,B′ ]
cub (z1)

.
= Bp

(2z1 − (2p− 1)ε
ε

)( z1 − (p + 1)ε
ε

)2
+ Bp+1

( (3 + 2p)ε− 2z1

ε

)( z1 − pε

ε

)2

+
(z1 − pε)(z1 − (p + 1)ε)

ε2

(
B′p+1(z1 − pε) + B′p(z1 − (p + 1)ε)

)
,

∀z1 ∈ [pε, (p + 1)ε], ∀p ∈ {0, . . . , 2Nε − 1}.

At last, let D = (D0, . . . , D2Nε) be a vector in R2Nε+1. Given a function φ ∈ H1(0, L), we
define its "ψ"-interpolation ψ[D] ∈W1,∞(0, L) on the ε-intervals of the segment (0, L) by

ψ[D](z1)
.
= Dp+1

( z1 − pε

ε

)
− Dp

( z1 − (p + 1)ε
ε

)
+
(z1 − pε)(z1 − (p + 1)ε)(2z1 − (2p + 1)ε)

ε3

(
Dp+1 − Dp

)
,

∀z1 ∈ [pε, (p + 1)ε], ∀p ∈ {0, . . . , 2Nε − 1}.

Below, we set the estimates for these interpolations.

Lemma 17. For every A ∈ R2Nε+1, we have

‖φ[A]
lin ‖

2
L2(0,L) ≤ Cε

2Nε

∑
p=0
|Ap|2, ‖∂1φ

[A]
lin ‖

2
L2(0,L) ≤ Cε

2Nε−1

∑
p=0

∣∣∣Ap+1 − Ap

ε

∣∣∣2. (5.13)
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For every B, B′ ∈ R2Nε+1, we have

‖φ[B,B′ ]
cub ‖

2
L2(0,L) ≤ Cε

( 2Nε

∑
p=0

(|Ap|2 + ε2|Bp|2) +
2Nε−1

∑
p=0

ε2
∣∣∣Ap+1 − Ap

ε
−

Bp+1 + Bp

2

∣∣∣2),

‖∂1φ
[B,B′ ]
cub ‖

2
L2(0,L) ≤ Cε

( 2Nε

∑
p=0
|Bp|2 +

2Nε−1

∑
p=0

∣∣∣Ap+1 − Ap

ε
−

Bp+1 + Bp

2

∣∣∣2),

‖∂2
11φ

[B,B′ ]
cub ‖

2
L2(0,L) ≤

C
ε

2Nε−1

∑
p=0

(
|Bp+1 − Bp|2 +

∣∣∣Ap+1 − Ap

ε
−

Bp+1 + Bp

2

∣∣∣2).

(5.14)
For every D ∈ R2Nε+1, we have

‖ψ[D]‖2
L2(0,L) ≤ Cε

2Nε

∑
p=0
|Dp|2, ‖∂1ψ[D]‖2

L2(0,L) ≤ Cε
2Nε

∑
p=0

∣∣∣Dp+1 − Dp

ε

∣∣∣2. (5.15)

Proof. The proof of (5.13) and (5.15) follows by the definition of the interpolating functions,
the fact that (0, L) = ∑2Nε

p=0(pε, (p + 1)ε) and an affine change of variables.

The proof of (5.14) follows from the same meanings, together with the particular decompo-
sition of a cubic interpolation (2.19).

5.3.2 The prime decomposition

In this subsection, we decompose the displacement as a sum of a Bernoulli-Navier displace-
ment and a residual one (warping). This new fields decomposition has two main advan-
tages:

• It contains identities that otherwise must be proven later in the limit;

• Simplifies the linearized form of the strain tensor (symmetric gradient).

Let u be a displacement in H1(Pε)3 decomposed as (5.5) and recall the 3-vector fields U,
R ∈ H1(0, L)3. We define the new field U

′ ∈W1,∞(0, L)×W2,∞(0, L)2 by

U
′
1(z1)

.
=φ

[A]
lin (z1), with

(
U1(0), . . . , U1(2Nεε)

)
,

U
′
2(z1)

.
=φ

[B,B′ ]
cub (z1), with B =

(
U2(0), . . . , U2(2Nεε)

)
, B′ = −

(
R3(0), . . . ,R3(2Nεε)

)
,

U
′
3(z1)

.
=φ

[B,B′ ]
cub (z1), with B =

(
U3(0), . . . , U3(2Nεε)

)
, B′ =

(
R2(0), . . . ,R2(2Nεε)

)
,

∀z1 ∈ [pε, (p + 1)ε], ∀p ∈ {0, . . . , 2Nε − 1},

and the new fieldR′ by

R′1(z1)
.
=ψ[D](z1), with D =

(
R1(0), . . . ,R1(2Nεε)

)
,

∀z1 ∈ [pε, (p + 1)ε], ∀p ∈ {0, . . . , 2Nε − 1},

R′2(z1)
.
=− ∂1U

′
3(z1), z1 ∈ [0, L],

R′3(z1)
.
=∂1U

′
2(z1), z1 ∈ [0, L].

(5.16)

By construction, we get the following relation:

∂1U
′ −R′ ∧ e1 = ∂1U

′
1e1, a.e. in (0, L). (5.17)

Then, for a.e. (z1, y2, y3) ∈ (0, L)×ωr, we can define U
′
BN and u

′
by

U
′
BN(z1, y2, y3)

.
= U

′
(z1) +R

′
(z1) ∧

(
Φε(z1)e3 + y2e2 + y3nε(z1)

)
,

u
′
(z1, y2, y3)

.
= u(z1, y2, y3)−U

′
BN(z1, y2, y3).
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Note that by the relation (5.17), the quantity U
′
BN is a Bernoulli-Navier displacement.

If a rod is clamped at one extremity, e.g., z1 = 0, then it still holds

U′(0) = R′(0), u′(0, ·) = 0 a.e. ωr. (5.18)

We have the following estimates for the fields of this new decomposition.

Theorem 6. The fields U
′

andR′ satisfy the following estimates:

‖∂1R
′‖L2(0,L) ≤

C
ε2 ‖ex(u)‖L2(Pε)

, ‖∂1U
′
1‖L2(0,L) ≤

C
ε
‖ex(u)‖L2(Pε)

, (5.19)

‖∂2
11U

′
2‖L2(0,L) + ‖∂2

11U
′
3‖L2(0,L) ≤

C
ε2 ‖ex(u)‖L2(Pε)

. (5.20)

The warping term u′ satisfies

‖u′‖L2(Pε)
≤ Cε‖ex(u)‖L2(Pε)

, ‖∇u
′‖L2(Pε)

≤ C‖ex(u)‖L2(Pε)
. (5.21)

Proof. First, note thatR′1 is defined as the "ψ" interpolation on the nodal values ofR1. Hence,
estimates (5.6)1 and the "ψ" interpolation estimates of Lemma 17 imply that

‖∂1R′1‖2
L2(0,L) ≤

2Nε−1

∑
p=0

ε
∣∣∣R1

(
(p + 1)ε

)
−R1(pε)

ε

∣∣∣2 ≤ ‖∂1R1‖2
L2(0,L) ≤

C
ε4 ‖ex(u)‖2

L2(Pε)
.

Now, note that U′1 is defined as the linear interpolation on the nodal values of U1. Hence,
estimates (5.9) in the first component and the linear interpolation estimates of Lemma 17
imply that

‖∂1U′1‖2
L2(0,L) ≤

2Nε−1

∑
p=0

ε
∣∣∣U1

(
(p + 1)ε

)
−U1(pε)

ε

∣∣∣2 ≤ ‖∂1U1‖2
L2(0,L) ≤

C
ε2 ‖ex(u)‖2

L2(Pε)
.

Now we prove the estimate for U′2. From the cubic interpolation estimates of Lemma 17 and
estimates (5.6)-(5.9), we have

‖∂2
11U

′
2‖2

L2(0,L) ≤
C
ε2

( 2Nε−1

∑
p=0

ε
∣∣∣U2

(
(p + 1)ε

)
−U2(pε)

ε
− 1

2
(
R3
(
(p + 1)ε

)
+R3(pε)

)∣∣∣2
+

2Nε−1

∑
p=0

ε3
∣∣∣R3

(
(p + 1)ε

)
−R3(pε)

ε

∣∣∣2)
≤ C

ε2

(
‖(∂1U−R∧ e1) · e2‖2

L2(0,L) + ε2‖∂1R3‖2
L2(0,L)

)
≤ C

ε4 ‖ex(u)‖2
L2(Pε)

which by definition of R′3 it also proves the estimate for ∂1R
′
3. By the same argumentation

we prove the estimate for ∂11U′3 and ∂1R′2 and thus (5.19)-(5.20) are proved.
Now, we prove the warping estimates (5.21). From the clamp conditions (5.10)-(5.18) the
Poincaré inequality and estimates (5.19)-(5.20) and (5.6), we obtain

‖R′ −R‖L2(0,L) ≤ Cε‖∂1(R′ −R)‖L2(0,L) ≤
C
ε
‖ex(u)‖L2(Pε)

and

‖U′1 −U1‖L2(0,L) ≤ Cε‖∂1(U
′
1 −U1)‖L2(0,L) ≤ C‖ex(u)‖L2(Pε)

,

‖U′2 −U2‖L2(0,L) ≤ Cε
(
‖∂1(U

′
2 −U2)‖L2(0,L) ≤ Cε2(‖∂11(U

′
2 −U2)‖L2(0,L) ≤ C‖ex(u)‖L2(Pε)

,

‖U′3 −U3‖L2(0,L) ≤ Cε
(
‖∂1(U

′
3 −U3)‖L2(0,L) ≤ Cε2(‖∂11(U

′
3 −U3)‖L2(0,L) ≤ C‖ex(u)‖L2(Pε)

.
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Now, note that by construction, we have

u− u
′
=
(
U
′ −U

)
+
(
R′ −R

)
∧
(
Φεe3 + y2e2 + y3nε

)
a.e. in Qε.

Hence, from the above estimates and estimates (5.7), we have

‖u′‖L2(Pε)
≤ Cε

(
‖U′ −U‖L2(0,L) + ε‖R′ −R‖L2(0,L)

)
+ ‖u‖L2(Pε)

≤ Cε‖ex(u)‖2
L2(Pε)

,

‖∇u
′‖L2(Pε)

≤ Cε
(
‖∂1(U

′ −U)‖L2(0,L) + ε‖∂1(R
′ −R)‖L2(0,L) + ‖R

′ −R‖L2(0,L)
)
+ ‖∇u‖L2(Pε)

≤ C‖ex(u)‖2
L2(Pε)

which ends the proof of estimate (5.21).

Note that estimate (5.21) is of the same order as the classical residual displacement (5.7).
This fact is important because it justifies our prime decomposition: it is more suitable for our
purposes and will give the same limit fields as the classical one.

5.3.3 The linearized strain tensor associated with the prime decomposi-
tion

The definition of the fields together with equality (5.17) for the new rod decomposition leads
to the following form of the symmetric gradient of the prime displacement in the straight
reference frame:

e(u) = e(U′e`) + e(u′),

where the first quantity is the symmetric gradient of the Bernoulli-Navier displacement

e(U′e`)
.
=



1
ηε

∂1U
′
1

0
0

+

 ∂1R
′
1

∂11U′3
−∂11U′2

 ∧ (Φεe3 + y2e2 + y3nε

) · tε ∗ ∗

1
2ηε

∂1U
′
1

0
0

+

 ∂1R
′
1

∂11U′3
−∂11U′2

 ∧ (Φεe3 + y2e2 + y3nε

) · e2 0 ∗

1
2ηε

∂1U
′
1

0
0

+

 ∂1R
′
1

∂11U′3
−∂11U′2

 ∧ (Φεe3 + y2e2 + y3nε

) · nε 0 0


(5.22)

and the second one is the symmetric gradient of the warping

e(u′) .
=


1
ηε

∂z1 u′ · tε ∗ ∗
1
2

( 1
ηε

∂z1 u′ · ey2 + ∂y2 u′ · tε

)
∂y2 u′ · ey2 ∗

1
2

( 1
ηε

∂z1 u′ · nε + ∂y3 u′ · tε

) 1
2

(
∂y2 u′ · nε + ∂y3 u′ · ey2

)
∂y3 u′ · nε

 . (5.23)

In comparison with (5.11)-(5.12), we have reduced the number of involved fields and incor-
porated some identities.

5.4 The textile structure and natural assumptions

As Figure 1.1 shows, the textile structure is defined as two beams of parallel oscillating
rods that cross each other in a periodic pattern. On such a structure, we set the natural
assumptions that the woven fibers should satisfy: the boundary conditions to ensure the
well-posedness of the elasticity problem, the contact conditions to allow shear between rods
in the areas where they are one above the other, and the non-penetration conditions not to
allow fibers to penetrate one into other. These assumptions will shape the admissible set of
displacements.
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5.4.1 The woven structure

In Section 5.1, we studied the structure of a single curved rod in direction e1. Now, we do
the same for a beam of parallel rods in direction e1 and a second beam of parallel rods in
direction e2 to obtain a woven canvas.
We denote Gε the reference lattice structure

Gε
.
= G

(1)
ε ∪G

(2)
ε , G

(1)
ε =

2Nε⋃
q=0

[0, L]× {qε}, G
(2)
ε =

2Nε⋃
p=0
{pε} × [0, L].

This grid represents the domain of the beam of rods’ center lines in both directions. For
every (z1, qε) ∈ G

(1)
ε and every (pε, z2) ∈ G

(2)
ε the middle lines of the beams of rods become

M(1)
ε (z1, qε)

.
= z1e1 + qεe2 + Φ(1)

ε (z1, qε)e3, Φ(1)
ε (z1, qε) = (−1)q+1Φε(z1),

M(2)
ε (pε, z2)

.
= pεe1 + z2e2 + Φ(2)

ε (pε, z2)e3, Φ(2)
ε (pε, z2) = (−1)pΦε(z2).

Note that the quantities (−1)q+1 and (−1)p denote the fact that the curved rods are alternate,
allowing crossing between them in an alternate manner (see the zoom in Figure 1.1).
Accordingly, we denote the Frenet-Serret mobile frames derived from (5.2) in the respective
direction by

(
t(1)ε , e2, n(1)

ε

)
, where t(1)ε (z1, qε) =

1
γε(z1)

(
e1 + ∂1Φ(1)

ε (z1, qε)e3
)
, n(1)

ε
.
= t(1)ε ∧ e2,

(
e1, t(2)ε , n(2)

ε

)
, where t(2)ε (pε, z2) =

1
γε(z2)

(
e2 + ∂2Φ(2)

ε (pε, z2)e3
)
, n(2)

ε
.
= t(2)ε ∧ e1.

In these frames, the diffeomorphisms become

ψ
(1)
ε (z1, qε, y2, y3)

.
= M(1)

ε (z1, qε) + y2e2 + y3n(1)
ε (z1, qε), for a.e. (z1, qε, y2, y3) ∈∈ G

(1)
ε ×ωr,

ψ
(2)
ε (pε, z2, y1, y3)

.
= M(2)

ε (pε, z2) + y1e1 + y3n(2)
ε (pε, z2), for a.e. (pε, z2y1, y3) ∈ G

(2)
ε ×ωr.

Finally, the whole textile results to be

Tε
.
= T(1)

ε ∪ T(2)
ε , where T(1)

ε
.
= ψ

(1)
ε

(
G

(1)
ε ×ωr

)
, T(2)

ε
.
= ψ

(2)
ε

(
G

(2)
ε ×ωr

)
. (5.24)

For simplicity, a function defined on G
(α)
ε is also considered as an element defined in T(α)

ε

constant in the cross-sections ωr. This is the main reason, why we name z the beam center
line variables and y the cross-section variables.
Let C(Gε) be the space of continuous functions defined on the lattice grid Gε. We denote the
spaces of functions by (α ∈ {1, 2})

H1(G
(α)
ε )

.
=
{

φ ∈ L2(G
(α)
ε )

∣∣ ∂αφ ∈ L2(G
(α)
ε )
}

,

H1(Gε)
.
=
{

φ ∈ C(Gε)
∣∣ ∂αφ ∈ L2(G

(α)
ε ), for α ∈ {1, 2}

}
,

and
H2(G

(α)
ε )

.
=
{

φ ∈ H1(G
(α)
ε )

∣∣ ∂αφ ∈ H1(G
(α)
ε )
}

,

H2(Gε)
.
=
{

φ ∈ H1(Gε)
∣∣ ∂αφ ∈ H1(G

(α)
ε ), for α ∈ {1, 2}

}
.
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We endow these spaces with the following norms:

‖ · ‖
H1(G

(α)
ε )

.
=
√
‖ · ‖2

L2(G
(α)
ε )

+ ‖∂α(·)‖2
L2(G

(α)
ε )

, ‖ · ‖H1(Gε)
.
=

√√√√ 2

∑
α=1
‖ · ‖2

H1(G
(α)
ε )

,

‖ · ‖
H2(G

(α)
ε )

.
=
√
‖ · ‖2

H1(G
(α)
ε )

+ ‖∂αα(·)‖2
L2(G

(α)
ε )

, ‖ · ‖H2(Gε)
.
=

√√√√ 2

∑
α=1
‖ · ‖2

H2(G
(α)
ε )

.

Every displacement defined on such structure is a couple (u(1), u(2)) which belongs to the
product space H1(T(1)

ε )3 × H1(T(2)
ε )3 (or, due the equivalence of norms (5.4), to the product

space H1(G(1)
ε ×ωr

)3 × H1(G(2)
ε ×ωr

)3).

5.4.2 Boundary conditions

We set a partial clamp on the left and bottom boundary of the domain Ω. Here, the displace-
ment is equal to zero. Given the structure (5.24), we have

Clamp condition

{
u(1)(0, qε, ·) = 0 for every q ∈ {0, . . . , 2nε},
u(2)(pε, 0, ·) = 0 for every p ∈ {0, . . . , 2nε}.

(5.25)

As we can see in Figure 1.1, this partial clamp leads to a natural partition of the domain

Ω = int
(
Ω1 ∪Ω2 ∪Ω3 ∪Ω4

)
,

where the four subdomains are defined by

Ω1
.
= (0, l)2, Ω2

.
= (l, L)× (0, l), Ω3

.
= (0, l)× (l, L), Ω4

.
= (l, L)2.

Note that even if the partial clamp that takes place on the left boundary of Ω1 affects the
behavior of the displacement u(1) in the whole subdomain Ω1 ∪Ω2 since the fibers are the
same. Symmetrically, the partial clamp on the bottom boundary of Ω1 affects the behavior
of the displacement u(2) in the whole Ω1 ∪Ω3.

5.4.3 Contact and non-penetration conditions

These conditions determine how the fibers interact in the internal part of the domain. Here,
we assume that they can shear one with respect to another in the in-plane and outer-plane
directions and cannot penetrate each other.
The contact is restricted to the portions where the rods are right above each other. We define
such contact domains in the straight reference frame

(
e1, e2, e3

)
by setting ((p, q) ∈ Kε)

Cε
.
=

⋃
(p,q)∈Kε

Cpq,ε, Cpq,ε
.
=
(
Cpq,ε ∩Ω

)
× {0}, Cpq,ε

.
= (pε, qε) + ωr. (5.26)

In terms of the textile domain variables, these areas correspond to(
G

(1)
ε ×ωr

)
|Cpq,ε

.
=
(

pε + y1, qε, y2, (−1)p+q+1κε
)
, (y1, y2) ∈ ωr,(

G
(2)
ε ×ωr

)
|Cpq,ε

.
=
(

pε, qε + y2, y1, (−1)p+qκε
)
, (y1, y2) ∈ ωr.

The sliding between the fibers is characterized by the non-negative gap functions gε. We
assume

gε = εhg, g ∈ C(Ω)3,

where h ∈ [0, ∞) is a parameter representing the "contact strength." Now, let (u(1)
ε , u(2)

ε ) be
in H1(G(1)

ε ×ωr
)3×H1(G(2)

ε ×ωr
)3 be a displacement on the textile. We define the in-plane
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contact conditions by setting

|u(1)
α,ε − u(2)

α,ε | ≤ εhgα, a.e in Cpq,ε, ∀(p, q) ∈ Kε. (5.27)

From the physical point of view, these conditions mean that in the contact areas, the dis-
placements can slide one with respect to the other from a value more than zero to a maxi-
mum given by the L∞ norm of g in that direction.
In this sense, it becomes clear the notion of contact strength. Indeed, if h = 0, then we have
a constant on the right-hand side, and thus no actual bound as the difference of the in-plane
displacements (which still depend on ε) goes to zero. On the other hand, if h → ∞, then the
right-hand side goes to zero faster, and it is then equivalent to setting gα = 0, which would
imply u(1)

ε,r,α = u(2)
ε,r,α a.e. in Cpq,ε, thus that the fibers are glued on the whole domain.

In the outer-plane component, we define the non-penetration and contact conditions

0 ≤ (−1)p+q(u(1)
3,ε − u(2)

3,ε
)
≤ εhg3 a.e in Cpq,ε, ∀(p, q) ∈ Kε. (5.28)

From the physical point of view, on the left-hand side, we assume that the fibers cannot
penetrate each other, while on the right-hand side, we assume an upper bound on the ad-
missible deflection again.

5.5 Well posedness of the elasticity problem

In this section, we proceed to the definition of the elasticity problem for the small defor-
mations of a textile structure under stress. This problem is the one we want to investigate
through homogenization via the periodic unfolding method.

5.5.1 Set of admissible displacements

Given the structure, the clamp condition, the contact conditions, and the non-penetration
condition, we finally define the set of admissible displacements as the closed convex set

Xε
.
=
{(

u(1), u(2)) ∈ H1(G
(1)
ε ×ωr)

3×H1(G
(2)
ε ×ωr)

3
∣∣∣ (u(1), u(2)) satisfies (5.25)-(5.27)-(5.28)

}
.

We endow the product space H1(G
(1)
ε ×ωr)3 × H1(G

(2)
ε ×ωr)3 with the semi-norm

‖u‖Tε

.
=
√
‖e(1)(u(1))‖2

L2(G
(1)
ε ×ωr)

+ ‖e(2)(u(2))‖2
L2(G

(2)
ε ×ωr)

.

By the clamped conditions (5.25), this semi-norm is, in fact, an equivalent norm to the usual
one of the product space H1(G

(1)
ε × ωr)3 × H1(G

(2)
ε × ωr)3. Thus, Xε is a closed convex

subset of H1(G
(1)
ε ×ωr)3 × H1(G

(2)
ε ×ωr)3.

5.5.2 The problem in linear elasticity

Since we are interested in the small deformations for the textile yarns, we will give the lin-
earized formulation of the elasticity problem. We state it now as an assumption, even though
later, we will give sufficient stress on the right-hand side to stay in this regime.

For now, let f (α)ε ∈ L2(T(α)
ε )3 simply be some applied stress and let a(α)ε be the fourth order

strain tensor describing the elasticity of the material. Due to the contact constraints (5.27)
and (5.28), we write the linearized elasticity problem in variational formulation:

Find (u(1)
ε , u(2)

ε ) ∈ Xε such that for every (v(1)ε , v(2)ε ) ∈ Xε:
2

∑
α=1

∫
T(α)

ε

a(α)ijkl,ε ex,ij(u
(α)
ε ) ex,kl(u

(α)
ε − v(α)ε ) dx ≤

2

∑
α=1

∫
Tε

f (α)ε · (u(α)
ε − v(α)ε ) dx.

(5.29)
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We find it more convenient to consider this problem in the straight reference frame:

Find (u(1)
ε , u(2)

ε ) ∈ Xε such that for every (v(1)ε , v(2)ε ) ∈ Xε:
2

∑
α=1

∫
G

(α)
ε ×ωr

A(α)
ijkl,ε e(α)ij (u(α)

ε ) e(α)kl (u(α)
ε − v(α)ε ) η

(α)
ε dz′dy3−αdy3

≤
2

∑
α=1

∫
G

(α)
ε ×ωr

F(α)
ε · (u(α)

ε − v(α)ε ) η
(α)
ε dz′dy3−αdy3,

(5.30)

where the strain tensors are defined as the symmetric gradients (5.22)-(5.23), but for each
direction.
For the material elasticity of the tensors A(α)

ε , we refer to the usual Hooke’s Law, from which
we derive that:

(i) A(α)
ε is bounded: A(α)

ε,r,ijkl ∈ L∞(G
(α)
ε ×ωr);

(ii) A(α)
ε is symmetric: A(α)

ε,r,ijkl = A(α)
ε,jikl = A(α)

ε,r,klij;

(iii) A(α)
ε is elliptic: ∃C0, C1 > 0 such that C0|||ξ|||2F ≤ A(α)

ijkl,ε ξij ξkl ≤ C1|||ξ|||2F a.e. in

G
(α)
ε × ωr and for all symmetric 3 × 3 matrix ξ (here ||| · |||F denotes the Frobenius

norm).

The existence of solutions for the problem is ensured by Stampacchia’s lemma in Kinder-
lehrer and Stampacchia, 2000.
However, uniqueness is not ensured everywhere in the domain. Indeed, let u′ε and u′′ε be
both solutions of (5.30). We can first choose u′ε as a solution and u′′ε as a test function and
vice versa. We get two inequalities, and their sum results in

2

∑
α=1

∫
G

(α)
ε ×ωr

A(α)
ijkl,ε ẽ(α)ij (u

′(α)
ε − u

′′(α)
ε ) ẽ(α)kl (u

′(α)
ε − u

′′(α)
ε ) η

(α)
ε dz′dy3−αdy3 ≤ 0,

from which property (iii) of Aε implies that ẽ(u′ε) = ẽ(u′′ε ), hence u′ε and u′′ε differ from a
rigid motion. Hence, from the clamp conditions (5.25), it becomes clear that we only have

u
′(1)(z1, qε, y2, y3) = u

′′(1)(z1, qε, y2, y3) ∀q ∈ {0, . . . , 2nε}, (z1, y2, y3) ∈ (0, L)×ωr,

u
′(2)(pε, z2, y1, y3) = u

′′(2)(pε, z2, y1, y3) ∀p ∈ {0, . . . , 2nε}, (z2, y1, y3) ∈ (0, L)×ωr,

while uniqueness does not hold in general in the whole domain.

5.6 Estimates for the displacements fields

Let (u(1), u(2)) be a displacement in Xε. Recall the prime decomposition of section 5.3.2:

u(1)(z1, qε, y2, y3) = U
′(1)(z1, qε) +R′(1)(z1, qε) ∧

(
Φ(1)

ε (z1, qε)e3 + y2e2 + y3n(1)(z1, qε)
)

+u
′(1)(z1, qε, y2, y3), for a.e. (z1, qε, y2, y3) ∈ G

(1)
ε ×ωr,

u(2)(pε, z2, y1, y3) = U
′(2)(pε, z2) +R

′(2)(pε, z2) ∧
(
Φ(2)

ε (pε, z2)e3 + y1e1 + y3n(2)(pε, z2)
)

+u
′(2)(pε, z2, y1, y3), for a.e. (pε, z2, y1, y3) ∈ G

(2)
ε ×ωr.

(5.31)
In order to pass to the limit in problem (5.30), we need to bound the fields and their deriva-
tives that appear in both the left-hand side (strain tensor (5.11)-(5.23) and its equivalent for-
mulation in direction e2) and the right-hand side (fields that appear on the above displace-
ment).
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5.6.1 Fundamental estimates

From Theorem 6, the estimates for the prime decomposition’s fields satisfy (α ∈ {1, 2})

ε‖∂αR
′(α)‖

L2(G
(α)
ε )

+ ‖∂αU
′(α)
α ‖

L2(G
(α)
ε )
≤ C

ε
‖u‖Tε ,

‖∂2
ααU

′(α)
3−α‖L2(G

(α)
ε )

+ ‖∂2
ααU

′(α)
3 ‖

L2(G
(α)
ε )
≤ C

ε2 ‖u‖Tε ,

‖u′(α)‖
L2(G

(α)
ε ×ωr)

+ ε‖∇u
′(α)‖

L2(G
(α)
ε ×ωr)

≤ Cε‖u‖Tε .

(5.32)

Moreover, from the clamp conditions (5.25), we easily derive that

U
′(1)(0, qε) = R′(1)(0, qε) = 0, q ∈ {0, . . . , 2nε},

U
′(2)(pε, 0) = R′(2)(pε, 0) = 0, p ∈ {0, . . . , 2nε}.

(5.33)

5.6.2 Contact and non-penetration estimates

In order to have a bound for the fields, we use the bound on their derivatives, Poincaré’s
inequality, and the clamp conditions. However, since the domain is partially clamped, we
need to transfer the bound from the fields in the clamped subdomains to those in the not
clamped ones. To do so, we will use the contact and non-penetration conditions.
Starting from (5.31), we note that for a.e. (t1, t2) ∈ ωr, the displacements in the contact areas
reduce to

u(1)(pε + t1, qε, t2, (−1)p+q+1κε) = U
′(1)(pε + t1, qε) +R′(1)(pε + t1, qε) ∧ t2e2

+u
′(1)(pε + t1, qε, t2, (−1)p+q+1κε),

u(2)(pε, qε + t2, t1, (−1)p+qκε) = U
′(2)(pε, qε + t2) +R

′(2)(pε, qε + t2) ∧ t1e1

+u
′(2)(pε, qε + t2, t1, (−1)p+qκε).

(5.34)

We start by giving the warping estimates in the contact areas.

Lemma 18. The warping terms satisfy

∑
(p,q)∈Kε

(
‖u′(1)‖2

L2(Cpq,ε)
+ ‖u′(2)‖2

L2(Cpq,ε)

)
≤ Cε‖u‖2

Tε
. (5.35)

Proof. It is a direct consequence of the third estimate in (5.32) of the remainder displacements
u
′(α) and the trace theorem.

We have the following.

Lemma 19. The in-plane contact conditions lead to the following estimate:

∑
(p,q)∈Kε

(
|(U

′(1)
α −U

′(2)
α )(pε, qε)|2 + ε2|(R

′(1)
3 −R

′(2)
3 )(pε, qε)|2

)
≤ C

(
ε2h−2‖g‖2

L∞(Ω)+
1
ε
‖u‖2

Tε

)
.

(5.36)
The outer-plane non-penetration conditions lead to the following estimates:

∑
(p,q)∈Kε

(
|(U

′(1)
3 −U

′(2)
3 )(pε, qε)|2 + ε2|(R

′(1)
α −R

′(2)
α )(pε, qε)|2

)
≤ C

ε
‖u‖2

Tε
. (5.37)

Proof. First, from the proof of Lemma 5.6 in Griso, Orlik, and Wackerle, 2020a, we have

ε2
( 2Nε

∑
p,q=0

∣∣U′(1)(pε, qε)−U
′(2)(pε, qε)

∣∣2 + ε2∣∣R′(1)(pε, qε)−R′(2)(qε, pε)
∣∣2)

≤ C
2Nε

∑
p,q=0

(
ε2h+2|g(pε, qε)|2 + ‖u′(1)‖2

L2(Cpq,ε)
+ ‖u′(2)‖2

L2(Cpq,ε)

)
≤ C

(
ε2h‖g‖2

L∞(Ω) + ε‖u‖2
Tε

)
,
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which proves (5.36).
Concerning the third direction, a first upper bound is given by the above equation. However,
a better bound, that is (5.37), and that does not depend on g3, is proven in Section C in
Appendix due to the long and tedious computation.

The fact that the outer-plane direction no longer depends on the contact bound g3 is
very important. From the physical point of view, the fact that the displacement alternatively
switches vertical position and the yarns cannot penetrate one into the other gives a sufficient
condition to estimate the difference of the displacements in the third component.
As we will see later, by the fact that the fibers are naturally close enough, the upper bound
contact function gε,3 in (5.28) in the limit plays a role only when the contact is very strong
(namely, only if h ≥ 3).

5.6.3 Outer-plane fields’ estimates in the whole domain Ω

In this subsection we give the estimates regarding the fields U
′(α)
3 and R

′(α)
1 , R

′(α)
2 . We will

use the relations in the previous sections and the Poincaré inequality to obtain them.

Proposition 6. The outer-plane rotation fields satisfy:

‖R
′(1)
α ‖H1(G

(1)
ε )

+ ‖R
′(2)
α ‖H1(G

(2)
ε )
≤ C

ε2 ‖u‖Tε . (5.38)

The outer-plane middle line fields satisfy

‖U
′(1)
3 ‖H2(G(1)) + ‖U

′(2)
3 ‖H2(G(2)) ≤

C
ε2 ‖u‖Tε . (5.39)

Proof. By estimate (5.32), the clamp conditions (5.33) and Poincaré’s inequality, we have

2nε

∑
q=0
‖R

′(1)
α (·, qε)‖2

L2(0,L) +
2nε

∑
p=0
‖R

′(2)
α (pε, ·)‖2

L2(0,L) ≤
C
ε4 ‖u‖

2
Tε

.

Now we consider direction e1 and estimateR′(1) in the non supported domain. We have

2Nε

∑
q=0

2nε

∑
p=0

ε|R
′(2)
α (pε, qε)|2 ≤ C

2nε

∑
p=0

(
‖R

′(2)
α (pε, ·)‖2

L2(0,L) + ε2‖∂2R
′(2)
α (pε, ·)‖2

L2(0,L)

)
≤ C

ε4 ‖u‖
2
Tε

.

Then

2Nε

∑
q=0

2nε

∑
p=0

ε|R
′(1)
α (pε, qε)|2 ≤

2Nε

∑
q=0

2nε

∑
p=0

ε|R
′(2)
α (pε, qε)−R

′(1)
α (pε, qε)|2 +

2Nε

∑
q=0

2nε

∑
p=0

ε|R
′(2)
α (pε, qε)|2

≤ C
( 1

ε4 +
1
ε2

)
‖u‖2

Tε
≤ C

ε4 ‖u‖
2
Tε

.

and thus

‖R
′(1)
α ‖2

L2(G
(1)
ε )
≤ C

2Nε

∑
q=0

2nε

∑
p=0

ε|R
′(1)
α (pε, qε)|2 + Cε2‖∂1R

′(1)
α ‖2

L2(G
(1)
ε )
≤ C

ε4 ‖u‖
2
Tε

.

This proves estimate (5.38) for direction e1.
Now we prove estimate (5.39) in direction e1. From (5.38) and identities (5.16), we already
know that

2nε

∑
q=0
‖∂1U

′(1)
3 (·, qε)‖2

H1(0,L) +
2nε

∑
q=0
‖∂2U

′(2)
3 (pε, ·)‖2

H1(0,L) ≤
C
ε4 ‖u‖

2
Tε

.

Then, the proof follows by the same meaning as the previous estimate.
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From a symmetrical argumentation, we obtain the estimate for direction e2.

5.6.4 In-plane fields’ estimates in the whole domain Ω

In this subsection, we give all the in-plane estimates, that are, the estimates regarding the

fields U
′(α)
1 , U

′(α)
2 andR

′(α)
3 . Again, the relations and Poincaré’s inequality will be sufficient.

Without loss of generality, we assume a unique bound in direction e1 and e2 and set

‖g‖L∞(Ω)
.
= ‖g1‖L∞(Ω) + ‖g2‖L∞(Ω).

We have the following.

Proposition 7. The in-plane rotation fields satisfy:

‖R
′(1)
3 ‖H1(G

(1)
ε )

+ ‖R
′(2)
3 ‖H1(G

(2)
ε )
≤ C

(
εh−3/2‖g‖L∞(Ω) +

1
ε2 ‖u‖Tε

)
. (5.40)

The in-plane middle line fields satisfy

‖U
′(1)
2 ‖H2(G(1)) + ‖U

′(2)
1 ‖H2(G(2)) ≤ C

(
εh−3/2‖g‖L∞(Ω) +

1
ε2 ‖u‖Tε

)
,

‖U
′(1)
1 ‖H1(G(1)) + ‖U

′(2)
2 ‖H1(G(2)) ≤ C

(
εh−3/2‖g‖L∞(Ω) +

1
ε2 ‖u‖Tε

)
.

(5.41)

Proof. The proof is done in the same fashion as the previous one, but using estimate (5.36):

2Nε

∑
q=0

2nε

∑
p=0

ε|R
′(1)
3 (pε, qε)|2 ≤

2Nε

∑
q=0

2nε

∑
p=0

ε|R
′(2)
3 (pε, qε)−R

′(1)
3 (pε, qε)|2 +

2Nε

∑
q=0

2nε

∑
p=0

ε|R
′(2)
3 (pε, qε)|2

≤C
(

ε2h−3‖g‖2
L∞(Ω) +

1
ε4 ‖u‖

2
Tε

)
.

This proves estimate (5.40) for direction e1. The second direction follows by a symmetrical
argumentation.
Now we prove estimate (5.41)1. From (5.40) and identities (5.16), we already know that

2nε

∑
q=0
‖∂1U

′(1)
2 (·, qε)‖2

H1(0,L) +
2nε

∑
q=0
‖∂2U

′(2)
1 (pε, ·)‖2

H1(0,L) ≤ C
(

ε2h−3‖g‖2
L∞(Ω) +

1
ε4 ‖u‖

2
Tε

)
.

Then, the proof follows in the same fashion as the proof of estimate (5.40).

Now we prove estimate (5.41)2. We consider direction e1 and estimate U
′(1)
1 in the unsup-

ported domain. We have

2Nε

∑
q=0

2nε

∑
p=0

ε|U
′(2)
1 (pε, qε)|2 ≤ C

2nε

∑
p=0

(
‖U

′(2)
1 (pε, ·)‖2

L2(0,L) + ε2‖∂2U
′(2)
1 (pε, ·)‖2

L2(0,L)

)
≤ C

(
ε2h−3‖g‖2

L∞(Ω) +
1
ε4 ‖u‖

2
Tε

)
.

Then

2Nε

∑
q=0

2nε

∑
p=0

ε|U
′(1)
1 (pε, qε)|2 ≤

2Nε

∑
q=0

2nε

∑
p=0

ε|U
′(1)
1 (pε, qε)−U

′(2)
1 (pε, qε)|2 +

2Nε

∑
q=0

2nε

∑
p=0

ε|U
′(2)
1 (pε, qε)|2

≤ C
(

ε2h−3‖g‖2
L∞(Ω) +

1
ε4 ‖u‖

2
Tε

)
.
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and thus

‖U
′(1)
1 ‖

2
L2(G

(1)
ε )
≤ C

2Nε

∑
q=0

2nε

∑
p=0

ε|U
′(1)
1 (pε, qε)|2 + Cε2‖∂1U

′(1)
1 ‖

2
L2(G

(1)
ε )

≤ C
(

ε2h−3‖g‖2
L∞(Ω) +

1
ε4 ‖u‖

2
Tε

)
,

which concludes the proof.

5.6.5 Other important estimates

In this subsection, we give the last important estimates that we need to take into account:
the estimates concerning the fields in the clamped subdomains, which we expect to be better
than on the unsupported ones, and the estimate concerning the in-plane derivatives, which
we will later use to improve the in-plane estimates for strong contacts via Korn’s inequality.

Corollary 5. One has

‖U
′(1)
1 ‖L2(G

(1)
ε ∩(Ω1∪Ω2))

+ ‖U
′(2)
2 ‖L2(G

(2)
ε ∩(Ω1∪Ω3))

≤ C
ε
‖u‖Tε ,

‖U
′(1)
2 ‖L2(G

(1)
ε ∩(Ω1∪Ω3))

+ ‖U
′(2)
1 ‖L2(G

(2)
ε ∩(Ω1∪Ω2))

≤ C
(

εh−1/2‖g‖L∞(Ω) +
1
ε
‖u‖Tε

) (5.42)

Proof. Estimate (5.42)1 follows from estimate (5.32), the Poincaré Inequality and the clamp
conditions.
Now we prove (5.42)2. From (5.42)1, we first have that

2Nε

∑
q=0

2nε

∑
p=0

ε|U
′(2)
2 (pε, qε)|2 ≤ C

2nε

∑
p=0

(
‖U

′(2)
2 (pε, ·)‖2

L2(0,L) + ε2‖∂2U
′(2)
2 (pε, ·)‖2

L2(0,L)

)
≤ C

ε2 ‖u‖
2
Tε

.

Then

2Nε

∑
q=0

2nε

∑
p=0

ε|U
′(1)
2 (pε, qε)|2 ≤

2Nε

∑
q=0

2nε

∑
p=0

ε|U
′(1)
2 (pε, qε)−U

′(2)
2 (pε, qε)|2 +

2Nε

∑
q=0

2nε

∑
p=0

ε|U
′(2)
2 (pε, qε)|2

≤ C
(

ε2h−1‖g‖2
L∞(Ω) +

(
1 +

1
ε2

)
‖u‖2

Tε

)
≤ C

(
ε2h−1‖g‖2

L∞(Ω) +
1
ε2 ‖u‖

2
Tε

)
and thus

2Nε

∑
q=0
‖U

′(1)
2 (·, qε)‖2

L2(0,l) ≤ C
2Nε

∑
q=0

2nε

∑
p=0

ε|U
′(1)
2 (pε, qε)|2 + Cε2‖∂1U

′(1)
2 (·, qε)‖2

L2(0,l)

≤ C
(

ε2h−1‖g‖2
L∞(Ω) +

(
1 +

1
ε2

)
‖u‖2

Tε

)
≤ C

(
ε2h−1‖g‖2

L∞(Ω) +
1
ε2 ‖u‖

2
Tε

)
.

The proof is complete.

Corollary 6. In the whole domain, the following estimate holds:

‖∂1U
′(1)
2 + ∂2U

′(2)
1 ‖L2(Gε)

≤ C
(

εh−3/2‖g‖L∞(Ω) +
1
ε
‖u‖Tε

)
. (5.43)

Proof. From the fact that (∂1U
′(1)
2 , ∂2U

′(2)
1 ) = (−R

′(1)
3 ,R

′(2)
3 ), estimate (5.36) implies

2Nε

∑
q=0

2Nε

∑
p=0

∣∣(∂1U
′(1)
2 + ∂2U

′(2)
1 )(pε, qε)

∣∣2 ≤ C
(

ε2h−4‖g‖2
L∞(Ω) +

1
ε3 ‖u‖

2
Tε

)
.



5.7. Choice of the parameters 71

Hence,

‖∂1U
′(1)
2 + ∂2U

′(2)
1 ‖

2
L2(Gε)

≤
2Nε

∑
q=0

(
ε2‖∂1U

′(1)
2 (·, qε)‖2

L2(0,L)

)
+

2Nε

∑
p=0

(
ε2‖∂2U

′(2)
1 (pε, ·)‖2

L2(0,L)

)
+ ε

2Nε

∑
q=0

2Nε

∑
p=0

∣∣(∂1U
′(1)
2 + ∂2U

′(2)
1 )(pε, qε)

∣∣2
≤ 2C

ε2 ‖u‖
2
Tε
+ Cε

(
ε2h−4‖g‖2

L∞(Ω) +
1
ε3 ‖u‖

2
Tε

)
≤ C

(
ε2h−3‖g‖2

L∞(Ω) +
1
ε2 ‖u‖

2
Tε

)
,

which concludes the proof.

5.7 Choice of the parameters

Looking at the estimates in the previous section, we notice that three factors influence the
estimates for the displacement fields: The estimates proven in the previous section depend
on three main factors:

1. The ratio between the thickness of fibers r and the distance between them ε;

2. The assumption of small deformations (which gives a bound for the strain ‖u‖Tε ) ;

3. The strength of contact between the fibers h (which gives a bound for gε).

Concerning the first aspect, as we already know, we assume that

r = κε, with κ ∈ (0, 1/3],

so that the parameters for the fibers’ cross-section and the distance between them are asymp-
totically related as they go to zero. We can remove this assumption, but it would require a
model that does not involve the prime decomposition. Because of this, and because the
problem already has a high level of difficulty, we leave the other cases out of the scope of
this work.
Concerning the second aspect, we know from Friesecke, James, and Müller, 2006 that a
bound for the elastic energy for the deformation of a rod v ∈ H1(Pε)3 (remind that Pε

.
=

(0, L)×ωr) leads to the following regimes:

‖dist(∇xv, SO(3))‖2
Pε
≤ Cεδ, with



δ > 5 Linear theory;
δ = 5 Von Kármán theory;
δ ∈ (3, 5) Linearized isometry constraint theory;
δ = 3 Bending theory;
δ < 3 Membrane theory.

From the decomposition of a rod deformation made in Blanchard and Griso, 2009, Section
II.2.2 and the associated fields estimates, it is then possible to find a bound for the elastic
energy of a textile deformation

1
2

∥∥(∇xv)T(∇xv)− I3
∥∥

Tε
≤ C‖dist(∇xv, SO(3))‖2

Tε
.

Hence, if we are in the linear regime, we would have that the strain tensor can be approxi-
mated to the symmetric gradient of the displacement u = v− Idx and we have

‖u‖2
Tε

=
1
2

∥∥(∇xu)T + (∇xu)
∥∥

Tε
≤ Cεδ, for δ > 5.
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For simplicity, we will fix δ = 5 and get the following bound for the strain tensor

‖u‖2
Tε
≤ Cε5, (5.44)

while continuing to use the linear formulation of the elasticity problem and the linearized strain tensor
(symmetric gradient of the displacement).
This is a more convenient way of proceeding, and avoids the writing of δ > 5 in every
future estimate. We just keep in mind that, since the estimate for the strain tensor of the
elasticity problem (5.44) depends on the applied stress, we can always rescale the applied
stress according to δ to remain in the context of linear elasticity.
At last, we have the contact strength. The lower bound of this value is the maximum slide
we can allow such that the textile keeps a reasonable shape (for h = 0, there is no actual
bound), while the upper bound is given by the minimum strength applied, up to which we
can assume the fibers to be glued (limit case +∞).

5.7.1 Different type of r = κε textiles in linear regime (‖u‖Tε ∼ ε5/2)

In order to find the most representative textile structures, we first collect the estimates of
Section 5.6: the global ones (5.32), the outer-plane ones (5.38), (5.39), the in-plane ones (5.40),
(5.41), the ones in the clamped subdomains (5.42) and the mixed derivative ones (5.43).
Then, we need to choose the parameters in the previous subsection: we already fixed the
relation r = κε, and in addition, we fix the gradient estimate ‖u‖Tε ∼ ε5/2 to study the linear
elasticity of yarns. The last parameter to fix is the contact strength. Without loss of generality,
we can assume h ∈N∗ and obtain the following:

• h > 3: We have a textile with glued fibers;

• h = 3: We have a textile with strong contact;

• h = 2: We have a textile with loose contact;

• h = 1: We have a textile with very loose contact.

We collect all the explicit estimates for the cases mentioned above in Table 5.1.
This table is really important because we can derive some preliminary considerations on

FIELDS CONTACT ORDER
h ≥ 3 h = 2 h = 1

Outer-plane ‖R
′(1)
α,ε ‖H1(G

(1)
ε )

+ ‖R
′(2)
α,ε ‖H1(G

(2)
ε )

∼
√

ε ∼
√

ε ∼
√

ε

‖U
′(1)
3,ε ‖H2(G(1)) + ‖U

′(2)
3,ε ‖H2(G(2)) ∼

√
ε ∼

√
ε ∼

√
ε

In-plane
‖R

′(1)
3,ε ‖H1(G

(1)
ε )

+ ‖R
′(2)
3,ε ‖H1(G

(2)
ε )

∼
√

ε ∼
√

ε ∼ 1√
ε

‖U
′(1)
2,ε ‖H2(G(1)) + ‖U

′(2)
1,ε ‖H2(G(2)) ∼

√
ε ∼

√
ε ∼ 1√

ε

‖U
′(1)
1,ε ‖H1(G(1)) + ‖U

′(2)
2,ε ‖H1(G(2)) ∼

√
ε ∼

√
ε ∼ 1√

ε

In-plane ‖U
′(1)
1,ε ‖L2(G

(1)
ε ∩(Ω1∪Ω2))

+ ‖U
′(2)
2,ε ‖L2(G

(2)
ε ∩(Ω1∪Ω3))

∼ ε
√

ε ∼ ε
√

ε ∼ ε
√

ε

clamped ‖U
′(1)
2,ε ‖L2(G

(1)
ε ∩(Ω1∪Ω3))

+ ‖U
′(2)
1,ε ‖L2(G

(2)
ε ∩(Ω1∪Ω2))

∼ ε
√

ε ∼ ε
√

ε ∼
√

ε

In-plane ‖∂αU
′(α)
α,ε ‖L2(G

(α)
ε )

+ ‖∂1U
′(1)
2,ε + ∂2U

′(2)
1,ε ‖L2(Gε) ∼ ε

√
ε ∼

√
ε ∼ 1√

εderivatives

TABLE 5.1: Table of explicit estimates for the fields r = κε textiles in a linear
regime ‖u‖Tε

∼ ε5/2 and according to the different contact strength h ∈N∗.

how the displacement behaves in the different subdomains Ω1-Ω4, which can help us define
proper final decomposition for the displacements for each case. In particular:

A. We have an idea of how contact and strain tensor quantity interact with each other
and govern the field estimates. Indeed, for h ≥ 3, the field estimates do not change
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because, for such values, the contact part becomes smaller than the strain tensor one
and does not influence the estimates anymore. On the other hand, as the value of h
diminishes, we get worse estimates of the displacement fields because the contact part
gets the upper hand.

B. The outer-plane estimates are the same for every contact case. This fact means that the
outer-plane fields have a sufficiently good estimate, even if the contact is very loose or
if no contact is set. Hence, the same final decomposition will apply in all cases.

C. The in-plane estimates in the clamped parts are better than in the whole domain. This
is because a looser contact between fibers would compromise the transfer of informa-
tion from the clamped subdomains to the not clamped ones.

D. The in-plane derivatives in the case h ≥ 3 are of the same order as the in-plane fields
in the clamped parts. This allows us to obtain in-plane estimates for the fields ∼ ε

√
ε

due to Korn’s inequality, hence the in-plane fields behave the same in the whole Ω,
and a partition is no more necessary. It is not the case for h = 2, where the in-plane
derivatives have a worse estimation, and thus the in-plane fields will have a contrast
in the estimates (anisotropy) and behave differently in the four subdomains of Ω.

E. For h = 1, the contact is so loose that the estimates do not give a bound for the in-plane
fields as ε → 0. For this reason, we need to elaborate on a different strategy for this
case, introducing some more assumptions.

In the next two chapters, we will delve into the investigation of these cases one by one. From
now on, only the choice of r = κε and the contact strength h will be fixed, while the strain
tensor estimate still needs to be justified by the choice of the forces on the right-hand side
of problem (5.30). Hence, the field estimates will continue to depend on the bound for the
strain tensor.
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Chapter 6

The cases of a textile with strong
contact (gε ∼ ε3 or higher) and very
loose contact (gε ∼ ε)

This small chapter is dedicated to the cases of textiles with strong contact and very loose
contact. The first case has already been investigated in Griso, Orlik, and Wackerle, 2020a,
and here we will only show that we can reach the same final displacement decomposition
with the newly developed strategy. The second case turns out to be trivial; hence no homog-
enization will be needed.

6.1 Textiles with very strong contact

Concerning textiles with very strong contact, for h = 3 the contact and non-penetration
conditions (5.27)-(5.28) become:|u

(1)
α,ε − u(2)

α,ε | ≤ ε3gα, a.e in Cpq,ε, ∀(p, q) ∈ Kε,

0 ≤ (−1)p+q(u(1)
3,ε − u(2)

3,ε
)
≤ ε3g3 a.e in Cpq,ε, ∀(p, q) ∈ Kε.

(6.1)

If then the contact is even higher (h ≥ 4), no improvement is made on the fields estimates,
hence no improvements on the difference between the displacement estimates (see (5.36)-
(5.37)). Hence, conditions (5.27)-(5.28) are equivalent to the following:|u

(1)
α,ε − u(2)

α,ε | ≤ 0, a.e in Cpq,ε, ∀(p, q) ∈ Kε,

0 ≤ (−1)p+q(u(1)
3,ε − u(2)

3,ε
)
≤ 0 a.e in Cpq,ε, ∀(p, q) ∈ Kε.

(6.2)

This implies u(1)
α,ε = u(2)

α,ε a.e. Cpq,ε, hence that we can assume the fibers to be glued in the
contact areas of the whole domain. In this sense, one can first extend the woven textile to
a periodically perforated shell and then proceed to homogenization, as it has been done in
Griso, Orlik, and Wackerle, 2020b.
The above cases have already been investigated in Griso, Orlik, and Wackerle, 2020a and
have been the first breakthrough for this kind of problem. For this reason, we will reach the
final decomposition for the displacement before the limit with the newly developed lattice
strategy and recall the conclusions in the final chapter as a comparison with the other cases.

6.1.1 Final decomposition of the displacement in the in-plane component

Comparing the estimates for each field in Table 5.1 and the ones concerning their difference
(5.36)-(5.37) for h ≥ 3 and (5.44), we find it convenient to define the final displacements fields
such that they combine both directions and that take into account the clamp conditions.
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Proceeding as in Subsection 5.3.2, we define the field U3 ∈ H2(Gε) by

U3(z1, qε)
.
= φ

[B,B′ ]
cub (z1), with B =

1
2
(
(U

′(1)
3 + U

′(2)
3 )(0, qε), . . . , (U

′(1)
3 + U

′(2)
3 )(2Nεε, qε)

)
,

B′ = −1
2
(
(R

′(1)
2 +R

′(1)
2 )(0, qε), . . . , (R

′(1)
2 +R

′(1)
2 )(2Nεε, qε)

)
,

∀z1 ∈ [pε, (p + 1)ε], ∀q ∈ {0, . . . , 2Nε},

U3(pε, z2)
.
= φ

[B,B′ ]
cub (z2), with B =

1
2
(
(U

′(1)
3 + U

′(2)
3 )(pε, 0), . . . , (U

′(1)
3 + U

′(2)
3 )(pε, 2Nεε)

)
,

B′ =
1
2
(
(R

′(1)
1 +R

′(1)
1 )(pε, 0), . . . , (R

′(1)
1 +R

′(1)
1 )(2Nεε, qε)

)
,

∀z2 ∈ [qε, (q + 1)ε], ∀p ∈ {0, . . . , 2Nε}.

We then define the fieldsR1,R2 ∈ H1(Gε) by

R2(z1, qε)
.
= −∂1U3(z1, qε), ∀z1 ∈ [0, L], ∀q ∈ {0, . . . , 2Nε},

R2(pε, z2)
.
= ψB(z2) with B =

1
2
(
(R

′(1)
2 +R

′(2)
2 )(pε, 0), . . . , (R

′(1)
2 +R

′(2)
2 )(pε, 2Nεε)

)
,

∀z2 ∈ [qε, (q + 1)ε], ∀p ∈ {0, . . . , 2Nε},

and

R1(z1, qε)
.
= ψB(z1) with B =

1
2
(
(R

′(1)
1 +R

′(2)
1 )(pε, 0), . . . , (R

′(1)
1 +R

′(2)
1 )(pε, 2Nεε)

)
,

∀z2 ∈ [qε, (q + 1)ε], ∀p ∈ {0, . . . , 2Nε},
R1(pε, z2)

.
= ∂2U3(pε, z2), ∀z2 ∈ [0, L], ∀p ∈ {0, . . . , 2Nε}.

According to the clamp conditions (5.33), we replace

(U
′(1)
3 + U

′(2)
3 )(0, qε) and (R

′(1)
2 +R

′(1)
2 )(0, qε) by 0 if q ∈ {0, . . . , 2nε},

(U
′(1)
3 + U

′(2)
3 )(pε, 0) and (R

′(1)
1 +R

′(1)
1 )(pε, 0) by 0 if p ∈ {0, . . . , 2nε}.

Note that the fields defined above vanish on the clamped points of Gε and satisfy equalities

R2 = −∂1U3 a.e. in G
(1)
ε and R1 = ∂2U3 a.e. in G

(2)
ε .

Proposition 8. The outer-plane fields satisfy the following estimates:

‖R1‖H1(Gε)
+ ‖R2‖H1(Gε)

+ ‖U3‖H2(G) ≤
C
ε2 ‖u‖Tε .

Proof. Step 1. We prove the estimates ofR1 andR2.

From the definitions of R2 and R
′(1)
2 , R

′(2)
2 , estimates (5.37), the clamp condition (5.33) and

Lemma 17, we get

‖R2 −R
′(α)
2 ‖

L2(G
(α)
ε )

+ ε‖∂α

(
R2 −R

′(α)
2
)
‖

L2(G
(α)
ε )
≤ C

ε
‖u‖Tε . (6.3)

Hence, the first estimate in (5.32) and the above one lead to

‖∂1R2‖L2(G
(1)
ε )

+ ‖∂2R2‖L2(G
(2)
ε )
≤ C

ε2 ‖u‖Tε .

By the fact that R2(0, qε) = 0 for all q ∈ {0, . . . , 2nε}, the above estimate and the Poincaré
inequality imply

2nε

∑
q=0
‖R2(·, qε)‖2

L2(0,L) ≤
C
ε4 ‖u‖

2
Tε

.
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One has

2nε

∑
q=0

2Nε

∑
p=0

ε|R2(pε, qε)|2 ≤ C
2nε

∑
q=0

(
‖R2(·, qε)‖2

L2(0,L) + ε2‖∂1R2(·, qε)‖2
L2(0,L)

)
≤ C

ε4 ‖u‖Tε

and then

‖R2‖2
L2(G

(2)
ε )
≤ C

2nε

∑
q=0

2Nε

∑
p=0

ε|R2(pε, qε)|2 + Cε2‖∂2R2‖2
L2(G

(2)
ε )
≤ C

ε4 ‖u‖
2
Tε

.

By a symmetrical argumentation, we prove the above estimate in G
(1)
ε and get that

‖R2‖H1(Gε)
≤ C

ε2 ‖u‖Tε .

We prove the estimate forR1 in the same fashion.
Step 2. We prove the estimates of U3.
First, from estimates (5.37), the clamp condition (5.33) and Lemma 17, we have

‖U3 −U
′(α)
3 ‖

L2(G
(α)
ε )

+ ε‖∂α

(
U3 −U

′(α)
3
)
‖

L2(G
(α)
ε )

+ ε2‖∂2
αα

(
U3 −U

′(α)
3
)
‖

L2(G
(α)
ε )
≤ C‖u‖Tε .

(6.4)
Then, the second estimate in (5.32) and the above one lead to

‖∂2
ααU

(α)
3 ‖L2(G

(α)
ε )
≤ C

ε2 ‖u‖Tε .

In Subsection 2.2.2, we saw that the function U3 ∈ H2(G
(α)
ε ) can be extended from the grid

to a function Q(U3) ∈ H2(Ω) by extending it to every small cell Ypq,ε = (pε, qε) + ε[0, 1]2.
The values of U3,R1,R2, and their derivatives at the vertices of the cell Ypq,ε uniquely define
this extension, and we have:

Q(U3)|Gε
= U3, ∂1Q(U3)|G(1)

ε
= −R2, ∂2Q(U3)|G(2)

ε
= R1 (6.5)

and
Q(U3) = ∇Q(U3) = 0 a.e. on {0} × (0, l) ∪ (0, l)× {0}.

Thus, applying twice Korn’s inequality, we get

‖Q(U3)‖H2(Ω) ≤ C‖e
(
Q(U3)

)
‖H1(Ω) ≤ C‖D2Q(U3)‖L2(Ω)

≤ C
√

ε
(
‖∂2

ααU
(α)
3 ‖L2(G

(α)
ε )

+ ‖R1‖H1(Gε)
+ ‖R2‖H1(Gε)

)
≤ C

ε
√

ε
‖u‖Tε .

(6.6)

Taking the restriction to the lattice grid Gε, it first gives

‖U3‖L2(Gε)
≤ C

ε2 ‖u‖Tε .

Then, we obtain

‖∂αU3‖L2(G
(α)
ε )
≤ C

ε2 ‖u‖Tε .

The proof is concluded.
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6.1.2 Final decomposition of the displacement in the in-plane component

We again recall the interpolations in Subsection 5.3.2 and define the field U1 ∈ H2(Gε) by

U1(z1, qε)
.
= φ

[A]
lin (z1), with A =

1
2
(
(U

′(1)
1 + U

′(2)
1 )(pε, 0), . . . , (U

′(1)
1 + U

′(2)
1 )(pε, 2Nεε)

)
,

∀z1 ∈ [pε, (p + 1)ε], ∀q ∈ {0, . . . , 2Nε},

U1(pε, z2)
.
= φ

[B,B′ ]
cub (z2), with B =

1
2
(
(U

′(1)
1 + U

′(2)
1 )(pε, 0), . . . , (U

′(1)
1 + U

′(2)
1 )(pε, 2Nεε)

)
,

B′ =
1
2
(
(R

′(1)
3 +R

′(2)
3 )(pε, 0), . . . , (R

′(1)
3 +R

′(2)
3 )(pε, 2Nεε)

)
,

∀z2 ∈ [qε, (q + 1)ε], ∀p ∈ {0, . . . , 2Nε},

and the field U2 ∈ H2(Gε) by

U2(z1, qε)
.
= φ

[B,B′ ]
cub (z1), with B =

1
2
(
(U

′(1)
2 + U

′(2)
2 )(0, qε), . . . , (U

′(1)
2 + U

′(2)
2 )(2Nεε, qε)

)
,

B′ = −1
2
(
(R

′(1)
3 +R

′(2)
3 )(0, qε), . . . , (R

′(1)
3 +R

′(2)
3 )(2Nεε, qε)

)
,

∀z2 ∈ [pε, (p + 1)ε], ∀q ∈ {0, . . . , 2Nε},

U2(pε, z2)
.
= φ

[A]
lin (z2), with A =

1
2
(
(U

′(1)
2 + U

′(2)
2 )(0, qε), . . . , (U

′(1)
2 + U

′(2)
2 )(2Nεε, qε)

)
,

∀z2 ∈ [qε, (q + 1)ε], ∀p ∈ {0, . . . , 2Nε}.

Then, we define the fieldR3 ∈ H1(Gε) by

R3(z1, qε)
.
= −∂1U2(z1, qε), ∀z1 ∈ [0, L], ∀q ∈ {0, . . . , 2Nε},

R3(pε, z2)
.
= ∂2U1(pε, z2), ∀z2 ∈ [0, L], ∀p ∈ {0, . . . , 2Nε}.

By the clamp condition (5.33), we replace

(U
′(1)
1 + U

′(2)
1 )(0, qε) and (R

′(1)
3 +R

′(1)
3 )(0, qε) by 0 if q ∈ {0, . . . , 2nε},

(U
′(1)
2 + U

′(2)
2 )(pε, 0) and (R

′(1)
3 +R

′(1)
3 )(pε, 0) by 0 if p ∈ {0, . . . , 2nε}.

Note that these fields vanish on the clamped points of Gε and satisfy equalities

R3 = −∂1U2 a.e. in G
(1)
ε and R3 = ∂2U1 a.e. in G

(2)
ε .

Proposition 9. The in-plane fields satisfy the following estimates:

‖U1‖H1(G) + ε‖∂22U1‖L2(G(2)) ≤ C
(

ε
√

ε‖g‖L∞(Ω) +
1
ε
‖u‖Tε

)
,

‖U2‖H1(G) + ε‖∂11U2‖L2(G(1)) ≤ C
(

ε
√

ε‖g‖L∞(Ω) +
1
ε
‖u‖Tε

)
,

‖R3‖L2(Gε)
+ ε
(
‖∂1R3‖H1(G

(1)
ε )

+ ‖∂2R3‖H1(G
(1)
ε )

)
≤ C

(
ε
√

ε‖g‖L∞(Ω) +
1
ε
‖u‖Tε

)
.

Proof. Step 1. We prove that the following estimate holds:

‖∂1U1‖L2(G
(1)
ε )

+ ‖∂2U2‖L2(G
(2)
ε )

+ ‖∂1U2 + ∂2U1‖L2(Gε)
≤ C

(
ε
√

ε‖g‖L∞(Ω) +
1
ε
‖u‖Tε

)
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From the definition of the fields estimates (5.36) and Lemma 17, we get

‖U1 −U
′(2)
1 ‖L2(G

(2)
ε )

+ ε‖∂2
(
U1 −U

′(2)
1
)
‖

L2(G
(2)
ε )

+ ε2‖∂22
(
U1 −U

′(2)
1
)
‖

L2(G
(2)
ε )

≤ C
(

ε2√ε‖g‖L∞(Ω) + ‖u‖Tε

)
,

‖U2 −U
′(1)
2 ‖L2(G

(1)
ε )

+ ε‖∂1
(
U2 −U

′(1)
2
)
‖

L2(G
(1)
ε )

+ ε2‖∂11
(
U2 −U

′(1)
2
)
‖

L2(G
(1)
ε )

≤ C
(

ε2√ε‖g‖L∞(Ω) + ‖u‖Tε

)
(6.7)

and

‖U1 −U
′(1)
1 ‖L2(G

(1)
ε )

+ ε‖∂1
(
U1 −U

′(1)
1
)
‖

L2(G
(1)
ε )
≤ C

(
ε2√ε‖g‖L∞(Ω) + ‖u‖Tε

)
,

‖U2 −U
′(2)
2 ‖L2(G

(2)
ε )

+ ε‖∂2
(
U2 −U

′(2)
2
)
‖

L2(G
(2)
ε )
≤ C

(
ε2√ε‖g‖L∞(Ω) + ‖u‖Tε

)
.

Hence, estimates in (5.32) and the above ones lead to

‖∂1U1‖L2(G
(1)
ε )
≤ ‖∂1U1 − ∂1U

′(1)
1 ‖L2(G

(1)
ε )

+ ‖∂1U
′(1)
1 ‖L2(G

(1)
ε )
≤ C

(√
ε‖g‖L∞(Ω) +

1
ε
‖u‖Tε

)
,

‖∂2U2‖L2(G
(2)
ε )
≤ ‖∂2U2 − ∂2U

′(2)
2 ‖L2(G

(2)
ε )

+ ‖∂2U
′(1)
2 ‖L2(G

(2)
ε )
≤ C

(√
ε‖g‖L∞(Ω) +

1
ε
‖u‖Tε

)
,

‖∂1U2 + ∂2U1‖L2(Gε)
≤ ‖∂1U2 − ∂1U

′(1)
2 ‖L2(G

(1)
ε )

+ ‖∂2U1 − ∂2U
′(2)
1 ‖L2(G

(2)
ε )

+ ‖∂1U
′(1)
2 − ∂2U

′(2)
1 ‖L2(Gε)

≤ C
(√

ε‖g‖L∞(Ω) +
1
ε
‖u‖Tε

)
.

Step 2. We prove the statement of the lemma.
The estimates for U1 and U2 follow from the clamp conditions and Korn’s inequality with
the estimates in Step 1, while the second order derivatives follow from (6.7) and (5.32).
Concerning the estimates forR3, they directly follow from the construction of such function.

Now that we defined the final fields, the final decomposition of the Bernoulli-Navier
displacements becomes

U(1)
BN(z1, qε, y2, y3) =

U1
U2
U3

 (z1, qε) +

R1
R2
R3

 (z1, qε) ∧
(

Φ(1)
ε (z1, qε)e3 + y2e2 + y3n(1)

ε (z1, qε)
)

,

for a.e. (z1, qε, y2, y3) ∈ G(1) ×ωr,

U(2)
BN(pε, z2, y1, y3) =

U1
U2
U3

 (pε, z2) +

R1
R2
R3

 (pε, z2) ∧
(

Φ(2)
ε (pε, z2)e3 + y1e1 + y3n(2)

ε (pε, z2)
)

,

for a.e. (pε, z2, y1, y3) ∈ G(2) ×ωr.

As a consequence, the residual displacements are (α ∈ {1, 2})

u(α) = u(α) −U
(α)
BN ∈ H1(T(α)

ε )

and due to the third estimate in (5.32), estimates (6.3), (6.4) and (??) they satisfy

‖u(α)‖
L2(G

(α)
ε ×ωr)

+ ε‖∇u(α)‖
L2(G

(α)
ε ×ωr)

≤ Cε‖u‖Tε .

Note that this estimate is of the same order as the residual displacement of the prime de-
composition (5.21) and of the classical one (5.7). This fact justifies the choice of this final
decomposition, which is close enough to the classical one but incorporates all the identities
and simplifications for the unfolding and homogenization.
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6.1.3 A priori conclusions

The decomposition and the estimates remind us of the results obtained in Griso, Orlik, and
Wackerle, 2020b. Of particular relevance is that the estimates have the same order anywhere.
This is because the contact between fibers keeps them so close to each other (since it is very
strong) that we can transpose the clamped subdomains’ behavior to the not clamped ones
without loss of information. In this sense, a domain partition is no longer necessary since
the displacement will behave the same anywhere.

6.2 Textiles with very loose contact

In this section, we comment on the case of textiles with very loose contact. This means, that
the contact and non-penetration conditions (5.27)-(5.28) become for h = 1:|u

(1)
α,ε − u(2)

α,ε | ≤ εgα, a.e in Cpq,ε, ∀(p, q) ∈ Kε,

0 ≤ (−1)p+q(u(1)
3,ε − u(2)

3,ε
)

a.e in Cpq,ε, ∀(p, q) ∈ Kε.

Note that in the outer-plane component, no upper bound is set. This comes from estimate
(5.37), which does not depend on the norm of g. Indeed, the alternate switch of the vertical
position of the fibers and the non-penetration condition gives a sufficiently good estimate
(namely, ∼ ε3) for the difference between displacements in the outer-plane component. That
is why set no bound if h < 3.

6.2.1 Final decomposition of the displacement in the outer-plane compo-
nent

Looking at the estimates in Table 5.1 for the different contact strengths, we notice that the
estimates do not change. Hence, the outer-plane component’s final displacement is decom-
posed in the same way as in subsection 6.1.1 and gives the fields R1, R2 ∈ H1(Gε) and
U3 ∈ H2(Gε).

6.2.2 New assumption: the glued conditions

From the estimates in Table (5.1), it is clear that the used lattice strategy fails. Indeed, while
we have good estimates in the outer-plane direction, the in-plane ones explode to infinity as
ε goes to zero. It physically means that the contact strength is so loose that the fibers in the
unsupported subdomains do not inherit the estimates from the clamped ones. Hence, we
have no information on the bound on those domains, leading to the textile falling apart as
in Figure 6.1.
In order to avoid this behavior, we need to set more boundary conditions. Namely, we can
glue the displacements in both directions on the whole left and bottom boundary of the
domain:

Glued condition

{
u(1)(0, qε, ·) = u(2)(0, qε, ·) for every q ∈ {0, . . . , 2Nε},
u(1)(pε, 0, ·) = u(2)(pε, 0, ·) for every p ∈ {0, . . . , 2Nε}.
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FIGURE 6.1: A textile with very loose contact. The contact is so loose that the
fibers fall apart in the unsupported subdomains.

In this case, the displacements coincide but they are not zero. In the same fashion as in the
proof of Lemma 19, this new assumption leads to the following in-plane estimates:

2Nε

∑
p=0

(
|(U

′(1)
α −U

′(2)
α )(pε, 0)|2 + ε2|(R

′(1)
3 −R

′(2)
3 )(pε, 0)|2

)
≤ C

ε
‖u‖2

Sε
,

2Nε

∑
q=0

(
|(U

′(1)
α −U

′(2)
α )(0, qε)|2 + ε2|(R

′(1)
3 −R

′(2)
3 )(0, qε)|2

)
≤ C

ε
‖u‖2

Sε
.

(6.8)

Consequently, we get the following Lemma, which gives a better estimate for some of the

in-plane fields. For some others, such as U
′(1)
1 and U

′(2)
2 , there is no hope of getting a bound

in the unsupported areas.
The proof is done in the same fashion as the proof of Lemma 6, but working on the boundary
of the domain Ω to avoid the in-plane contact estimates and use the glued estimates (6.8)
instead.

Lemma 20. The in-plane fields satisfy

‖U
′(α)
3−α‖H2(G(α)) + ‖R

′(α)
3 ‖

H1(G
(α)
ε )
≤ C

ε2 ‖u‖Sε
.

Proof. By estimate (5.32), the clamp conditions (5.33) and Poincaré’s inequality, we have

‖R
′(1)
3 (·, 0)‖2

L2(0,L) + ‖R
′(2)
3 (0, ·)‖2

L2(0,L) ≤
C
ε4 ‖u‖

2
Tε

.

Now we consider direction e1 and estimateR′(1) in the non supported domain. We have

2Nε

∑
q=0

ε|R
′(2)
3 (0, qε)|2 ≤ C

(
‖R

′(2)
3 (0, ·)‖2

L2(0,L) + ε2‖∂2R
′(2)
3 (0, ·)‖2

L2(0,L)

)
≤ C

ε4 ‖u‖
2
Tε

.

Then

2Nε

∑
q=0

ε|R
′(1)
3 (0, qε)|2 ≤

2Nε

∑
q=0

ε|R
′(2)
3 (0, qε)−R

′(1)
3 (0, qε)|2 +

2Nε

∑
q=0

ε|R
′(2)
3 (0, qε)|2 ≤ C

ε4 ‖u‖
2
Tε

.
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and thus

‖R
′(1)
3 ‖

2
L2(G

(1)
ε )
≤ C

2Nε

∑
q=0

ε|R
′(1)
3 (0, qε)|2 + Cε2‖∂1R

′(1)
3 ‖

2
L2(G

(1)
ε )
≤ C

ε4 ‖u‖
2
Tε

.

This, together with (5.32)1, proves the H1 estimate forR
′(1)
3 for direction e1. Moreover, from

the above estimate and identities (5.16), we get that

‖∂1U
′(1)
2 ‖

2
H1(G(1))

+ ‖∂2U
′(2)
1 ‖

2
H1(G(2))

≤ C
ε4 ‖u‖

2
Tε

.

Then, the proof for the L2 estimate of U
′(1)
2 is done in the same fashion as for the L2 estimate

ofR
′(1)
3 .

A symmetrical argumentation gives the estimate for direction e2.

6.2.3 Final decomposition of the displacement in the in-plane component
and a priori conclusions

Since the glued conditions helped to give a bound for the divergent fields, we can now
define the final decomposition. Namely, we keep the in-plane fields in different directions
separately and define the functions U

(α)
1 , U

(α)
2 andR(α)

3 by

U
(1)
1 = U

′(1)
1 , U

(1)
2 = U

′(1)
2 , R(1)

3 = R
′(1)
3 a.e. G

(1)
ε ,

U
(2)
1 = U

′(2)
1 , U

(2)
2 = U

′(2)
2 , R(2)

3 = R
′(2)
3 a.e. G

(2)
ε .

Then, taking into account the clamping conditions (5.33), we replace

U
′(α)
1 (0, qε), U

′(α)
2 (0, qε) and R

′(α)
3 (0, qε) by 0 if q ∈ {0, . . . , 2nε},

U
′(α)
1 (pε, 0), U

′(α)
2 (pε, 0) and R

′(α)
3 (pε, 0) by 0 if q ∈ {0, . . . , 2nε}.

Note that, due to (5.16) in the respective direction, these fields vanish on the clamped points
of Gε and satisfy equalities ∂1U

(1)
2 = R(1)

3 a.e. in G
(1)
ε and ∂2U

(2)
1 = −R(2)

3 a.e. in G
(2)
ε .

Now note that no combined directions can be defined while going to the limit since the
displacements keep a certain distance while going to the limit (see estimate (5.36) for h = 1).
Hence, the fibers no more influence each other due to the too-loose contact, and the two
directions can be studied separately in the in-plane component and lead, therefore, to a
trivial case.
Since the main focus is devoted to the influence of contact on woven textiles and how the
behavior on clamped subdomains is transferred to the unsupported ones, we can consider
this case out of scope and will not proceed to the homogenization. On the other hand, the
third direction is always the same and can be, in fact, homogenized, as in the case that
follows.
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Chapter 7

The case of a textile with loose
contact (gε ∼ ε2)

In this chapter, we give the complete study of the homogenization of textiles with loose
contact. The investigation of this case is the core of the whole thesis and why we developed
the tools of Chapter 3 and 4 in the first place.
The contact and non-penetration conditions (5.27)-(5.28) become for h = 2:|u

(1)
α,ε − u(2)

α,ε | ≤ ε2gα, a.e in Cpq,ε, ∀(p, q) ∈ Kε,

0 ≤ (−1)p+q(u(1)
3,ε − u(2)

3,ε
)

a.e in Cpq,ε, ∀(p, q) ∈ Kε.
(7.1)

Again, note that we set no upper bound in the outer-plane component because of estimate
(5.37), which gives a sufficiently good estimate (namely, ∼ ε3) concerning the difference be-
tween displacements.
Additionally, as we will later see in the construction of the test functions (to obtain the con-
tact condition), we need the further assumption that there not exist and are in the internal
part of Ω in which the fibers are glued:

∃C3 > 0 such that gα ≥ C3 a.e. in Ω. (7.2)

7.1 Final decomposition of the displacements

Again, comparing the estimates for each field in Table 5.1 and the ones concerning their
difference (5.36)-(5.37) for h = 2 and (5.44), we need to be careful on how we combine the
final displacement fields, especially in the in-plane components.

7.1.1 ... in the outer-plane component

Looking at the estimates in Table 5.1 for the different contact strengths, we notice that the
estimates do not change. Hence, the outer-plane component’s final displacement is decom-
posed in the same way as in subsection 6.1.1 and gives the fields R1, R2 ∈ H1(Gε) and
U3 ∈ H2(Gε).

7.1.2 ... the in-plane component

Regarding the in-plane component, differently from the case h = 3, we know that estimate
∂1U

(1)
2 + ∂2U

(2)
1 has the same order as the estimate for the fields in the unsupported areas

and therefore the Korn’s inequality would not lead to an improvement of the fields esti-
mates from the clamped subdomains to the rest of the square, as we have seen in the proof
of Proposition (9).
Hence, we have a contrast in the estimates for the in-plane fields between the clamped sub-
domains and the not clamped ones, leading to an anisotropic behavior of the fields in Ω1-Ω4.
In order to find a suitable in-plane decomposition, we proceed as in the "very loose" contact
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case and start by considering the directions separately: we define the functions U
(α)
1 , U

(α)
2

andR(α)
3 by

U
(1)
1 = U

′(1)
1 , U

(1)
2 = U

′(1)
2 , R(1)

3 = R
′(1)
3 a.e. G

(1)
ε ,

U
(2)
1 = U

′(2)
1 , U

(2)
2 = U

′(2)
2 , R(2)

3 = R
′(2)
3 a.e. G

(2)
ε .

Then, taking into account the clamping conditions (5.33), we replace

U
′(α)
1 (0, qε), U

′(α)
2 (0, qε) and R

′(α)
3 (0, qε) by 0 if q ∈ {0, . . . , 2nε},

U
′(α)
1 (pε, 0), U

′(α)
2 (pε, 0) and R

′(α)
3 (pε, 0) by 0 if q ∈ {0, . . . , 2nε}.

Note that, due to (5.16) in the respective direction, these fields vanish on the clamped points
of Gε and satisfy equalities ∂1U

(1)
2 = R(1)

3 a.e. in G
(1)
ε and ∂2U

(2)
1 = −R(2)

3 a.e. in G
(2)
ε .

Corollary 7. The in-plane rotation fields satisfy the following:

‖R(1)
3 ‖H1(G

(1)
ε )

+ ‖R(2)
3 ‖H1(G

(2)
ε )
≤ C

(√
ε‖g‖L∞(Ω) +

1
ε2 ‖u‖Tε

)
. (7.3)

The in-plane middle line fields satisfy

‖U(1)
2 ‖H2(G(1)) + ‖U

(2)
1 ‖H2(G(2)) ≤ C

(√
ε‖g‖L∞(Ω) +

1
ε2 ‖u‖Tε

)
,

‖U(1)
1 ‖H1(G(1)) + ‖U

(2)
2 ‖H1(G(2)) ≤ C

(√
ε‖g‖L∞(Ω) +

1
ε2 ‖u‖Tε

)
.

(7.4)

Moreover, in the clamped subdomains, we have

‖U(1)
1 ‖L2(G

(1)
ε ∩(Ω1∪Ω2))

+ ‖U(2)
2 ‖L2(G

(2)
ε ∩(Ω1∪Ω3))

≤ C
ε
‖u‖Tε ,

‖U(1)
2 ‖L2(G

(1)
ε ∩(Ω1∪Ω3))

+ ‖U(2)
1 ‖L2(G

(2)
ε ∩(Ω1∪Ω2))

≤ C
(

ε
√

ε‖g‖L∞(Ω) +
1
ε
‖u‖Tε

)
Proof. By construction, the in-plane fields are the same as the ones of the prime decomposi-
tion. Hence, the proof follows directly from Proposition 7 and Corollary 5 for h = 2.

Now that the fields are set, we can construct the Bernoulli-Navier displacements U
(α)
BN by

U(1)
BN(z1, qε, y2, y3)

.
=

U
(1)
1

U
(1)
2

U3

 (z1, qε) +

 R1
R2

R(1)
3

 (z1, qε) ∧
(
Φ(1)

ε (z1, qε)e3 + y2e2 + y3n(1)
ε (z1, qε)

)
,

for a.e. (z1, qε, y2, y3) ∈ G(1) ×ωr,

U(2)
BN(pε, z2, y1, y3)

.
=

U
(2)
1

U
(2)
2

U3

 (pε, z2) +

 R1
R2

R(1)
3

 (pε, z2) ∧
(
Φ(2)

ε (pε, z2)e3 + y1e1 + y3n(2)
ε (pε, z2)

)
,

for a.e. (pε, z2, y1, y3) ∈ G(1) ×ωr.
(7.5)

Again, the residual displacements are

u(α) = u(α) −U
(α)
BN ∈ H1(T(α)

ε ),

where the warping term satisfies

‖u(α)‖
L2(G

(α)
ε ×ωr)

+ ε‖∇u(α)‖
L2(G

(α)
ε ×ωr)

≤ Cε‖u‖Tε . (7.6)
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As in the previous section, this estimate justifies the choice of the final decomposition since
it is of the same order as the residual displacement in the prime decomposition (5.21) and of
the classical one (5.7).

7.1.3 Final split of the in-plane ”centerline” displacements

In this subsection, we operate a better split of the in-plane middle line fields U
(1)
α and U

(2)
α

in order to later better understand how they stretch and bend according to the different sub-
domains Ω1-Ω4.

We recall that a function φ ∈ H1(G
(α)
ε ) is defined in all the nodes of Gε and thus can be

uniquely extended to a function Φ ∈ H1(Gε) by linear interpolation between two consecu-
tive nodes of the lines in G

(3−α)
ε . In this sense, from (2.10) and (2.14) for N = p = 2, there

exist two constants C0, C1 > 0 such that

C0
(
‖Φ‖L2(Gε)

+ ε‖∂3−αΦ‖
L2(G

(3−α)
ε )

)
≤
√

∑
(p,q)∈Kε

ε|Φ(pε, qε)|2 ≤ C1
(
‖Φ‖

L2(G
(α)
ε )

+ ε‖∂αΦ‖
L2(G

(α)
ε )

)
.

(7.7)
Now, we notice that from estimates (5.36), the definition of U

(α)
1 and (7.4), we have

2Nε

∑
p=0

( 2Nε

∑
q=0
|(U(1)

1 −U
(2)
1 )(pε, qε)|2 + ε‖U(2)

1 (pε, ·)‖2
H2(0,L)

)
≤ C

(
ε2‖g‖2

L∞(Ω) +
1
ε3 ‖u‖

2
Tε

)
.

Then, there exists p ∈ {0, . . . , 2Nε} such that

2Nε

∑
q=0
|(U(1)

1 −U
(2)
1 )(pε, qε)|2 + ε‖U(2)

1 (pε, ·)‖2
H2(0,L)

≤ 1
2Nε + 1

2Nε

∑
p=0

(2Nε

∑
q=0
|(U(1)

1 −U
(2)
1 )(pε, qε)|2 + ε‖U(2)

1 (pε, ·)‖2
H2(0,L)

)
≤ Cε

(
ε2‖g‖2

L∞(Ω) +
1
ε3 ‖u‖

2
Tε

)
.

(7.8)

We define the following decomposition of the in-plane fields in direction e1:

U1(z2)
.
= U

(2)
1 (pε, z2) for a.e. z2 ∈ (0, L),

U
(B)
1 (pε, z2)

.
=

U
(2)
1 (pε, z2)−U1(z2) for a.e. z2 ∈ (0, L), p ∈ {2nε, . . . , 2Nε},

U
(2)
1 (pε, z2) for a.e. z2 ∈ (0, L), p ∈ {0, . . . , 2nε − 1},

U
(S)
1 (z1, qε)

.
=

U
(1)
1 (z1, qε)−U1(qε) for a.e. z1 ∈ (0, L), q ∈ {2nε, . . . , 2Nε},

U
(1)
1 (z1, qε) for a.e. z1 ∈ (0, L), q ∈ {0, . . . , 2nε − 1}.

Clearly, there exist also q such that a symmetrical formulation of (7.8) holds in the second
direction. This allows us to define the in-plane fields in direction e2 as well:

U2(z1)
.
= U

(1)
2 (z1, qε) for a.e. z1 ∈ (0, L),

U
(B)
2 (z1, qε)

.
=

U
(1)
2 (z1, qε) for a.e. z1 ∈ (0, L), q ∈ {0, . . . , 2nε − 1},

U
(1)
2 (z1, qε)−U2(z1) for a.e. z1 ∈ (0, L), q ∈ {2nε, . . . , 2Nε},

U
(S)
2 (pε, z2)

.
=

U
(2)
2 (pε, z2) for a.e. z2 ∈ (0, L), p ∈ {0, . . . , 2nε − 1},

U
(2)
2 (pε, z2)−U2(pε) for a.e. z2 ∈ (0, L), p ∈ {2nε, . . . , 2Nε}.

Below, we estimate the newly defined fields.
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Proposition 10. The in-plane component fields satisfy the following estimates:

‖Uα‖H2(0,L) ≤ C
(

ε‖g‖L∞(Ω) +
1

ε
√

ε
‖u‖Tε

)
,

‖U(S)
α ‖H1(G

(α)
ε )
≤ C

(
ε
√

ε‖g‖L∞(Ω) +
1
ε
‖u‖Tε

)
,

‖U(B)
α ‖H2(G

(3−α)
ε )

≤ C
(√

ε‖g‖L∞(Ω) +
1
ε2 ‖u‖Tε

)
.

(7.9)

Moreover, we have the following improvements of some L2 norms:

‖Uα‖L2(0,l) ≤ C
(

ε2‖g‖L∞(Ω) +
1√

ε
‖u‖Tε

)
,

‖U(B)
α ‖L2(G

(3−α)
ε )

≤ C
(

ε
√

ε‖g‖L∞(Ω) +
1
ε
‖u‖Tε

)
.

(7.10)

Proof. We will only prove the proposition for α = 1. The case α = 2 will follow by a sym-
metrical argumentation.
We start with estimates (7.9).
Estimate (7.9)1 follows from the definition of U1 and estimate (7.8). From estimates (7.7),
(7.8), (7.4)2 and thedefinition of U

(S)
1 , we have

‖U(S)
1 ‖

2
H1(G

(1)
ε )
≤ ‖U(1)

1 −U1‖2
L2(G

(1)
ε )

+ ‖∂1U
(1)
1 ‖

2
L2(G

(1)
ε )

≤ C
(

ε
2Nε

∑
p=0

2Nε

∑
q=0
|U(1)

1 (pε, qε)−U1(qε)|2 + ε2‖∂1U
(1)
1 (·, qε)‖2

L2(0,L) + ‖∂1U
(1)
1 (·, qε)‖2

L2(0,L)

)
≤ Cε

( 2Nε

∑
p=0

2Nε

∑
q=0
|U(1)

1 (pε, qε)−U
(1)
1 (pε, qε)|2 + (2Nε + 1)

2Nε

∑
q=0
|U(1)

1 (pε, qε)−U1(qε)|2
)

+ C‖∂1U
(1)
1 (·, qε)‖2

L2(0,L)

≤ C
2Nε

∑
q=0
|U(1)

1 (pε, qε)−U1(qε)|2 + C‖∂1U
(1)
1 (·, qε)‖2

L2(0,L) ≤ Cε
(

ε2‖g‖2
L∞(Ω) +

1
ε3 ‖u‖

2
Tε

)
.

(7.11)
which proves (7.9)2. From (7.4) and (7.9)1, we have

‖U(B)
1 ‖

2
H2(G

(1)
ε )
≤ ‖U(2)

1 −U1‖2
H2(G

(2)
ε )
≤ 2

2Nε

∑
p=0

(
‖U(2)

1 (pε, ·)‖2
H2(0,L) + ‖U1‖2

H2(0,L)

)
≤ C

(
ε‖g‖2

L∞(Ω) +
1
ε4 ‖u‖

2
Tε

)
+ C(2Nε + 1)

(
ε2‖g‖2

L∞(Ω) +
1
ε3 ‖u‖

2
Tε

)
,

(7.12)

which gives (7.9)3.

Now we prove estimates (7.10). From (7.4)1 and the fact thatU(1)
1 (0, qε) = 0 for every q ∈

{0, . . . , 2nε} gives

2nε

∑
q=0
|U(1)

1 (pε, qε)|2 ≤ L
2nε

∑
q=0
‖∂1U

(1)
1 (·, qε)‖2

L2(0,L) ≤
C
ε2 ‖u‖

2
Tε

.

This, together with (7.8), yields

2nε

∑
q=0
|U1(qε)|2 ≤ Cε

(
ε2‖g‖2

L∞(Ω) +
1
ε3 ‖u‖

2
Tε

)
.
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Hence, from estimates (7.7) and (7.9)1 we get

‖U1‖2
L2(0,l) ≤ C

( 2nε

∑
q=0

ε|U1(qε)|2 + ε2‖∂2U1‖2
L2(0,l)

)
≤ Cε2

(
ε2‖g‖2

L∞(Ω) +
1
ε3 ‖u‖

2
Tε

)
,

which proves (7.10)1. Now, note that
(
U

(B)
1 −U

(S)
1 )(pε, qε) =

(
U

(2)
1 −U

(1)
1 )(pε, qε) for all

(p, q) ∈ Kε. Hence, from the in-plane contact estimates (5.36), we obtain

∑
(p,q)∈Kε

|(U(B)
1 −U

(S)
1 )(pε, qε)|2 ≤ C

(
ε2‖g‖2

L∞(Ω) +
1
ε3 ‖u‖

2
Tε

)
.

Then, estimate (7.9)2 and (7.7) yield

∑
(p,q)∈Kε

ε|U(S)
1 (pε, qε)|2 ≤ C‖U(S)

1 ‖
2
H1(G

(1)
ε )
≤ C

(
ε3‖g‖2

L∞(Ω) +
1
ε2 ‖u‖

2
Tε

)
.

So

∑
(p,q)∈Kε

ε|U(B)
1 (pε, qε)|2 ≤ Cε

(
ε2‖g‖2

L∞(Ω) +
1
ε3 ‖u‖

2
Tε

)
.

Finally, we obtain (7.10)2 from (7.7) and (7.9)3.

We end this section by giving the final decomposition of the Bernoulli-Navier displace-
ments (7.5), together with the decomposition of the in-plane fields:

U(1)
BN(z1, qε, y2, y3) =

U1 + U
(S)
1

U2 + U
(B)
2

U3

 (z1, qε) +

 R1
R2

R(1)
3

 (z1, qε) ∧
(
Φ(1)

ε (z1, qε)e3 + y2e2 + y3n(1)
ε (z1, qε)

)
,

for a.e. (z1, qε, y2, y3) ∈ G(1) ×ωr,

U(2)
BN(pε, z2, y1, y3) =

U1 + U
(B)
1

U2 + U
(S)
2

U3

 (pε, z2) +

 R1
R2

R(1)
3

 (pε, z2) ∧
(
Φ(2)

ε (pε, z2)e3 + y1e1 + y3n(2)
ε (pε, z2)

)
,

for a.e. (pε, z2, y1, y3) ∈ G(1) ×ωr.
(7.13)

7.2 The sufficient applied stress to stay in a linear regime

As we already mentioned in Section 5.7, the assumption of linear elasticity is related to the
estimate of the strain tensor of the displacement, which is given in (5.44).
Since such an estimate is determined by the stress applied to the right-hand side of the
problem (5.30), we dedicate this section to the sufficient forces to apply so to obtain estimate
(5.44) and stay on a linear regime.

From property (iii) of tensor A(α)
ε applied to problem (5.29) with v(α)ε = 0, there exists C0 > 0

such that

C0‖uε‖2
Tε
≤

2

∑
α=1

∫
G

(α)
ε ×ωr

A(α)
ijkl,ε ẽ(α)ij (u(α)

ε ) ẽ(α)kl (u(α)
ε ) η

(α)
ε dzαdy3−αdy3

≤
2

∑
α=1

∣∣∣ ∫
G

(α)
ε ×ωr

F(α)
ε · u(α)

ε η
(α)
ε dzαdy3−αdy3

∣∣∣. (7.14)

Let f (α) ∈ H1(Ω)3 and f̃ (α) ∈ H1(Ω)2, such that

f̃ (α)1 = 0 a.e. in Ω3 ∪Ω4, f̃ (α)2 = 0 a.e. in Ω2 ∪Ω4.
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We choose the forces for the right-hand side of problem (5.30) by setting

F(1)
ε

.
= ε3/2

 f̃ (1)1 + ε f (1)1
f̃ (1)2 + ε f (1)2

ε f (1)3

 a.e. in G
(1)
ε , F(2)

ε
.
= ε3/2

 f̃ (2)1 + ε f (2)1
f̃ (2)2 + ε f (2)2

ε f (2)3

 a.e. in G
(2)
ε .

The Hölder inequality, straightforward computation and estimates in Proposition 7 and 10
lead to

2

∑
α=1

∫
G

(α)
ε ×ωr

|F(α)
ε | |u

(α)
ε η

(α)
ε | dzαdy3−αdy3

≤ Cε5
2

∑
α=1

(
‖ f̃ (α)‖H1(Ω) + ‖ f (α)‖H1(Ω)

)(
‖g‖L∞(Ω) +

1
ε2
√

ε
‖uε‖Tε

)
,

which, together with (7.14), gives the desired estimate (5.44).

7.3 Weak convergence of the displacement fields via unfold-
ing

We apply (5.44) to the estimates in Propositions 8 and 10 and extend the ones defined on
lines to the whole grid by the meanings of (7.7) (with abuse of notation, we will call them
the same way). hence, the explicit estimates for the final decomposition of the displacement
(7.13) are

‖Uε,3‖H2(Gε)
≤ C
√

ε, ‖Rε,α‖H1(Gε)
+ ‖R(α)

ε,3 ‖H1(G
(α)
ε )
≤ C
√

ε,

‖Uε,α‖H2(0,L) ≤ Cε, ‖Uε,α‖L2(0,l) ≤ Cε2, ‖U(S)
ε,α ‖H1(G

(α)
ε )
≤ Cε

√
ε,

‖U(B)
ε,α ‖L2(Gε)

+ ε‖∂βU
(B)
ε,α ‖L2(Gε)

+ ε‖∂2
3−α 3−αU

(B)
ε,α ‖L2(G

(3−α)
ε )

≤ Cε
√

ε,

(7.15)

while the ones for the residual terms come from (7.6):

‖u(α)‖
L2(G

(α)
ε ×ωr)

+ ε‖∇u(α)‖
L2(G

(α)
ε ×ωr)

≤ Cε3√ε. (7.16)

It is known that by compactness, these fields weakly converge in the space. In the next
subsections, we will introduce the unfolding operators and go to the limit via unfolding.

7.3.1 The unfolding operators for a textile with contact sliding

The convergence via unfolding is done through three different unfolding operators, all re-
lated to each other:

• The middle line unfolding operator T G
ε , which unfolds the functions defined on the

one-dimensional lattice Gε, given by the middle lines of the displacements;

• The global unfolding operator Πε, which unfolds the functions defined on the whole
three-dimensional textile structure Tε;

• The contact unfolding operator T Cab
ε (for (a, b) ∈ {0, 1}2), which unfolds the functions

defined on the four two-dimensional contact domains of the reference cell Y .

This subsection introduces the first and most important middle line unfolding operator and
its properties.
Define the reference lattice grid by ((a, b) ∈ {1, 2}2)

G(1) .
= (0, 2)× {0, 1}, G(2) .

= {0, 1} × (0, 2), G
.
= G(1) ∪G(2).
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Definition 11 (Middle line unfolding operator). For every measurable function φ on Gε, one
defines the measurable function T G

ε (φ) in Ω×G by

T G
ε (φ)(z′, Y1, Y2)

.
= φ

(
2ε
[ z′

2ε

]
+ ε(Y1e1 + Y2e2)

)
for a.e. (z′, Y1, Y2) ∈ Ω×G.

Note that this operator is defined on the periodic grid Gε, which is, in fact, a lattice in
Ω ⊂ R2. Hence, we can recall the results of Chapter 4 for this specific structure.
From Proposition 5 for N = 2 and p = 2, such an operator satisfies

‖T G
ε (φ)‖L2(Ω×G) ≤ C

√
ε‖φ‖L2(Gε)

, ∀φ ∈ L2(Gε).

We have the following corollaries.

Corollary 8 (Adaptation of Lemma 12). Let {φε}ε be a sequence in H1(Gε), satisfying

‖φε‖L2(Gε)
+ ε
(
‖∂1φε‖L2(G

(1)
ε )

+ ‖∂2φε‖L2(G
(2)
ε )

)
≤ C√

ε
.

There exist a subsequence of {ε}, still denoted {ε}, and φ̂ ∈ L2(Ω; H1
per(G)) such that

T G
ε (φε) ⇀ φ̂ weakly in L2(Ω; H1(G)).

Corollary 9 (Adaptation of Lemma 13). Let {φε}ε be a sequence in H1(Gε), satisfying

‖φε‖H1(Gε)
≤ C√

ε
.

There exist a subsequence of {ε}, still denoted {ε}, and φ ∈ H1(Ω), and φ̂ ∈ L2(Ω; H1
per,0(G)),

such that (α ∈ {1, 2})

T G
ε (φε)→ φ strongly in L2(Ω; H1(G)),

T G
ε (∂αφε) ⇀ ∂αφ + ∂Yα

φ̂ weakly in L2(Ω×G(α)).

Similar to the spaces defined in Section 3.1, we set (here N1 = 1 and N2 = 1)

L2(Ω, ∂α; H1
per(G

(3−α)))
.
={

φ ∈ L2(Ω×G(3−α))
∣∣ ∂αφ ∈ L2(Ω×G(3−α)) and φ ∈ L2(Ω; H1

per(G
(3−α)))

}
.

We have the following adaptation for the anisotropically bounded functions on lattices.

Corollary 10 (Adaptation of Lemma 14). Let {φε}ε be a sequence in H1(Gε) and satisfying
(α ∈ {1, 2})

‖φε‖L2(Gε)
+ ‖∂αφε‖L2(G

(α)
ε )

+ ε‖∂3−αφε‖L2(G
(3−α)
ε )

≤ C√
ε

.

There exist a subsequence of {ε}, still denoted {ε}, and functions φ̃ ∈ L2(Ω, ∂α; H1
per(G

(3−α))) and
φ̂ ∈ L2(Ω×G(3−α); H1

per,0(G
(α))) ∩ L2(Ω; H1

per(G)), such that

T G
ε (φε) ⇀ φ̃ weakly in L2(Ω; H1(G)),

T G
ε (∂αφε) ⇀ ∂αφ̃ + ∂Yα

φ̂ weakly in L2(Ω×G(α)).

Since we are in two dimensions, we can explicitly write the extension of the field’s deriva-
tives (4.25) in the hypothesis of the corollary below.



90 Chapter 7. The case of a textile with loose contact (gε ∼ ε2)

Corollary 11 (Adaptation of Theorem 2). Let {φε}ε be a sequence in H2(Gε), satisfying

‖φε‖2
H1(Gε)

+
2Nε

∑
p=0

2Nε−1

∑
q=0

ε
∣∣∣∂1φε(pε, qε + ε)− ∂1φε(pε, qε)

ε

∣∣∣2
+

2Nε−1

∑
p=0

2Nε

∑
q=0

ε
∣∣∣∂2φε(pε + ε, qε)− ∂2φε(pε, qε)

ε

∣∣∣2 ≤ C
ε

.

There exist a subsequence of {ε}, still denoted {ε}, and functions φ ∈ H2(Ω), φ̂ ∈ L2(Ω; H2
per(G)),

such that (α ∈ {1, 2})

T G
ε (φε)→ φ strongly in Lp(Ω; H2(G)),

Tε
G(∂αφε)→ ∂αφ strongly in L2(Ω; H1(G(α))),

Tε
G
(
∂ααφε

)
⇀ ∂2

ααφ + ∂2
YαYα

φ̂ weakly in L2(Ω×G(α)).

Now, set the 2-periodic reference cell Y .
= (0, 2)2. Below, we also adapt the definition of

the classical unfolding operator to this structure. Note that by construction, from (4.1), we
have Ω̂ε = Ω̃ε = Ω and λε = ∅.

Definition 12 (Adaptation from Definition 1). For every measurable function φ in Ω, one defines
the measurable function Tε(φ) in Ω×Y by

Tε(z′, Y1, Y2)
.
= φ

(
2ε
[ z′

2ε

]
+ ε(Y1e1 + Y2e2)

)
for a.e. (z′, Y1, Y2) ∈ Ω×Y .

As we know from diagram (4.6) in Chapter 4, if φ ∈ H1(Ω), then

Tε(φ)|Ω×G = T G
ε (φ|Gε

). (7.17)

7.3.2 Limit displacement fields via the middle line unfolding operator

We prepare the ground for the weak convergences of the fields via the middle line unfolding
operator. We first define the limit boundary condition

Γ
.
= {0} × (0, l) ∪ (0, l)× {0}.

Then, we set the limit spaces

H1
Γ(Ω)

.
=
{

φ ∈ H1(Ω) | φ = 0 a.e. on Γ
}

,

H2
Γ(Ω)

.
=
{

φ ∈ H2(Ω) | φ = 0 and ∇φ = 0 a.e. on Γ
} (7.18)

and
L2
(0,l)(0, L) .

=
{

φ ∈ L2(0, L) | φ = 0 a.e. in (0, l)
}

,

H1
(0,l)(0, L) .

=
{

φ ∈ H1(0, L) | φ = 0 a.e. in (0, l)
}

,

H2
(0,l)(0, L) .

=
{

φ ∈ H2(0, L) | φ = 0 a.e. in (0, l)
}

.

(7.19)

We also define the limit spaces of anisotropic functions

L2(Ω× {0, 1}, ∂α)
.
=
{

φ ∈ L2(Ω× {0, 1}) | ∂αφ ∈ L2(Ω× {0, 1})
}

,

L2(Ω× {0, 1}, ∂1)
.
=
{

φ ∈ L2(Ω× {0, 1}, ∂1) | φ = 0 a.e. on {0} × (0, l)
}

,

L2(Ω× {0, 1}, ∂2)
.
=
{

φ ∈ L2(Ω× {0, 1}, ∂2) | φ = 0 a.e. on (0, l)× {0}
}

.

(7.20)

We are ready to give the asymptotic behavior of our unfolded sequences.
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Lemma 21. There exist a subsequence of {ε}, still denoted {ε}, and functions U3 ∈ H2
Γ(Ω) and

Û3 ∈ L2(Ω; H2
per(G)) such that

1
ε
T G

ε

(
Uε,3

)
→ U3 strongly in L2(Ω; H2(G)),

1
ε
T G

ε

(
∂αUε,3

)
→ ∂αU3 strongly in L2(Ω; H1(G(α))),

1
ε
T G

ε

(
∂2

ααUε,3
)
⇀ ∂2

ααU3 + ∂2
YαYα

Û3 weakly in L2(Ω×G(α));

(7.21)

and R̂α ∈ L2(Ω; H1
per,0(G)) such that

1
ε
T G

ε

(
Rε,1

)
→ ∂2U3 strongly in L2(Ω; H1(G)),

1
ε
T G

ε

(
∂αRε,1

)
⇀ ∂α2U3 + ∂Yα

R̂1 weakly in L2(Ω; H1(G(α))),

1
ε
T G

ε

(
Rε,2

)
→ −∂1U3 strongly in L2(Ω; H1(G)),

1
ε
T G

ε

(
∂αRε,2

)
⇀ − ∂α1U3 + ∂Yα

R̂2 weakly in L2(Ω; H1(G(α))).

(7.22)

Moreover, we have

∂Y1Û3 = −R̂2 a.e. in Ω×G(1), ∂Y2Û3 = R̂1 a.e. in Ω×G(2). (7.23)

There exist a subsequence of {ε}, still denoted {ε}, and functions Uα ∈ H2
(0,l)

(
(0, L)z3−α

)
, Ûα in

L2((0, L); H2
per((0, 2)Y3−α

)) with Ûα(z3−α, ·) = 0 a.e. in (0, l)× (0, 2) such that (α ∈ {1, 2})

1
ε
T G

ε

(
Uε,α

)
→ Uα strongly in L2(Ω; H2(G(3−α))),

1
ε
T G

ε

(
∂3−αUε,α

)
→ ∂3−αUα strongly in L2(Ω; H1(G(3−α))),

1
ε
T G

ε

(
∂2

3−α3−αUε,α
)
⇀ ∂2

3−α3−αUα + ∂2
Y3−αY3−α

Ûα weakly in L2(Ω×G(3−α))

(7.24)

and
1
ε
T G

ε

(
R(1)

ε,3
)
→ ∂1U2 strongly in L2(Ω; H1(G(1))),

1
ε
T G

ε

(
∂1R

(1)
ε,3
)
⇀ ∂11U2 + ∂2

Y1Y1
Û2 weakly in L2(Ω; H1(G(1))),

1
ε
T G

ε

(
R(2)

ε,3
)
→ −∂2U1 strongly in L2(Ω; H1(G(2))),

1
ε
T G

ε

(
∂2R

(2)
ε,3
)
⇀ − ∂22U1 − ∂2

Y2Y2
Û1; weakly in L2(Ω; H1(G(2))).

(7.25)

There exist a subsequence of {ε}, still denoted {ε}, and functions U
(B)
α ∈ L2(Ω; H2

per((0, 2)Y3−α
)),

such that

1
ε2 T

G
ε

(
U

(B)
ε,α
)
⇀ U

(B)
α weakly in L2(Ω; H2(G(3−α))) ∩ L2(Ω; H1(G)), (7.26)

and U
(S)
α ∈ L2(Ω, ∂α; H1

per(G)), Û
(S)
α ∈ L2(Ω; H1

per(G)) such that

1
ε2 T

G
ε

(
U

(S)
ε,α
)
⇀ U

(S)
α weakly in L2(Ω; H1(G)),

1
ε2 T

G
ε

(
∂αU

(S)
ε,α
)
⇀ ∂αU

(S)
α + ∂Yα

Û
(S)
α weakly in L2(Ω×G(α)).

(7.27)

Proof. We organize the proof in steps.
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Step 1. We prove convergences (7.21)-(7.22).
First, from the estimates concerning sequences {Rε,α}ε in (7.15)1 and Corollary 9, there exist
Rα ∈ H1(Ω) and R̂α ∈ L2(Ω; H1

per,0(G)) such that the following convergence hold ((α, β) ∈
{1, 2}2)

1
ε
T G

ε

(
Rε,α

)
→ Rα strongly in L2(Ω; H1(G)),

1
ε
T G

ε

(
∂βRα

)
⇀ ∂βRα + ∂Yβ

R̂α weakly in L2(Ω×G(β)).
(7.28)

Now, we consider the sequence {Uε,3}ε ∈ H2(G). By construction, we have (∂1Uε,3, ∂2Uε,3) =

(−Rε,2,Rε,1). Hence, the derivatives ∂αUε,3 belong to H1(G(α)), can be naturally extended
by 2-linear interpolation to the whole domain Ω and these extensions are bound by the H1

norms of Rα. Proceeding as in Subsection 2.2.2, for every ε there exist a unique 2-cubic
extension Q(Uε,3) and from estimates (7.15)1, the sequence {Q(Uε,3)}ε ∈ H2(Ω) satisfies

‖Q(Uε,3)‖H2(Ω) ≤ C
√

ε
(
‖Uε,3‖H2(G) + ‖Rε,1‖H1(G) + ‖Rε,2‖H1(G)

)
≤ Cε.

Hence, from the proof of Theorem 2 and the boundary conditions, there exist U3 ∈ H2
Γ(Ω)

and Û3 ∈ L2(Ω; H2
per(Y)) such that ((α, β) ∈ {1, 2}2)

1
ε
Tε(Q(Uε,3)) ⇀ U3 strongly in L2(Ω; H2

per(Y)),

1
ε
Tε(∂αQ(Uε,3)) ⇀ ∂αU3 strongly in L2(Ω; H1

per(Y)),

1
ε
Tε(∂αβQ(Uε,3)) ⇀ ∂αβU3 + ∂YαYβ

Û3 weakly in L2(Ω×Y).

Hence, restricting the above convergences to the lattice and setting Û3
.
= Û3|Ω×G, which

belongs to L2(Ω; H2
per(G)), we get convergences (7.21), while convergences (7.22) and iden-

tities (7.22) follow from the above convergences restricted to the lattice, (7.28) and the fact
that in the limit we have (∂1U3, ∂2U3) = (−R2,R1).
Step 2. We prove the convergences (7.24)-(7.25)-(7.26).
From estimates (7.15)2 and Proposition 3 applied to one dimension, there exist functions
Uα ∈ H2((0, L)3−α) and Ûα ∈ L2(Ω; H2

per(0, 2)Y3−α
) such that convergences (7.24) hold.

Moreover, again estimates (7.15)2 imply that Uα vanish on (0, l)3−α and thus they belong to
H2
(0,l)

(
(0, L)z3−α

)
.

Now, from estimates (7.15)1 and the extension property (7.7), we have that

‖R(α)
ε,3 ‖H1(G

(α)
ε )

+ ε‖∂3−αR
(α)
ε,3 ‖L2(G

(3−α)
ε )

≤ C
√

ε.

Hence, Corollary 10 implies that there exist functions R(1)
3 ∈ L2(Ω, ∂1; H1

per(G
(2))) and

R̂(1)
3 ∈ L2(Ω×G(2); H1

per,0(G
(1))) ∩ L2(Ω; H1

per(G)) such that

1
ε
T G

ε

(
R(1)

ε,3
)
→ R(1)

3 strongly in L2(Ω; H1(G)),

1
ε
T G

ε

(
∂1R

(1)
ε,3
)
⇀ ∂1R

(1)
3 + ∂Y1R̂

(1)
3 weakly in L2(Ω; H1(G(1))).

(7.29)

and R(2)
3 ∈ L2(Ω, ∂2; H1

per(G
(1))) and R̂(2)

3 ∈ L2(Ω × G(1); H1
per,0(G

(2))) ∩ L2(Ω; H1
per(G))

such that
1
ε
T G

ε

(
R(2)

ε,3
)
→ R(2)

3 strongly in L2(Ω; H1(G)),

1
ε
T G

ε

(
∂2R

(2)
ε,3
)
⇀ ∂2R

(2)
3 + ∂Y2R̂

(2)
3 weakly in L2(Ω; H1(G(2))).

(7.30)

From convergences (7.15)3, there exist U
(B)
α ∈ L2(Ω, H1

per(G)) ∩ L2(Ω, H2
per(G

(3−α))) such
that (7.26) holds.
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Now, by the fact that (∂1U
(1)
ε,2 ,−∂2U

(2)
ε,1 ) = (R(1)

3 ,R(2)
3 ) and the fact that the Uα vanish on

(0, l)3−α, we have that∂1U
(B)
ε,2 (·, qε) = R(1)

ε,3 (·, qε), a.e. (0, L)× {0, . . . , 2nε − 1},

∂1Uε,2(·) + ∂1U
(B)
ε,2 (·, qε) = R(1)

ε,3 (·, qε) a.e. (0, L)× {2nε, . . . , 2Nε},∂2U
(B)
ε,1 (pε, ·) = R(2)

ε,3 (pε, ·), a.e. (0, L)× {0, . . . , 2nε − 1},

∂2Uε,1(·) + ∂2U
(B)
ε,1 (pε, ·) = R(2)

ε,3 (pε, ·) a.e. (0, L)× {2nε, . . . , 2Nε}.

(7.31)

Hence, applying the unfolding operator, convergences (7.24)2, (7.26) and (7.29)1-(7.30)1 im-
ply that in the limit we get

∂1U2 + ∂Y1U
(B)
2 = R(1)

3 a.e. Ω×G(1) and ∂2U1 + ∂Y2U
(B)
1 = R(2)

3 a.e. Ω×G(2).

Since ∂1U2 and R(1)
3 do not depend on Y1 and U

(B)
2 belongs to L2(Ω; H2

per
(
G(1))) and is

therefore periodic with respect to Y1, we get that (the same argumentation holds for ∂2U1,
R(2)

3 and U
(B)
1 with respect to Y2)

∂1U2(z1) = R
(1)
3 (z′, b) for a.e. (z′, b) ∈ Ω× {0, 1} and ∂Y1U

(B)
2 = 0 a.e. in Ω×G(1),

∂2U1(z2) = R
(2)
3 (z′, a) for a.e. (z′, a) ∈ Ω× {0, 1} and ∂Y2U

(B)
1 = 0 a.e. in Ω×G(2).

As a consequence, the U
(B)
α do not depend on Yα (thus they belong to L2(Ω; H2

per((0, 2)Y3−α
))).

Moreover, in the limit holds (∂11U2,−∂22U1) = (∂1R
(1)
3 , ∂2R

(2)
3 ) and thus convergences

(7.24)2, (7.26) and (7.29)1-(7.30)1 imply that

∂2
Y1Y1

Û2 + ∂2
Y1Y1

U
(B)
2 = ∂2

Y1Y1
Û2 = ∂Y1R̂

(1)
3 a.e. in Ω×G(1),

∂2
Y2Y2

Û1 + ∂2
Y2Y2

U
(B)
1 = ∂2

Y2Y2
Û1 = ∂Y2R̂

(2)
3 a.e. in Ω×G(2).

Step 3. We prove convergence (7.27).
From estimates (7.15)3 and the extension property (7.7), we have that

‖U(GS)
ε,α ‖H1(G

(α)
ε )

+ ε‖∂3−αU
(GS)
ε,α ‖L2(G

(3−α)
ε )

≤ Cε
√

ε.

Hence, Corollary 10 implies that there exist functions U
(S)
α ∈ L2(Ω, ∂α; H1

per(G
(3−α))) and

Û
(S)
α ∈ L2(Ω×G(3−α); H1

per,0(G
(α))) ∩ L2(Ω; H1

per(G)) such that convergences (7.27) hold.

Since U
(S)
α belongs to L2(Ω; H1

per(G)), it is affine with respect to Y3−α in Ω × G(3−α) and
is independent of Yα in Ω × G(α), we will consider it as a function belonging to L2(Ω ×
{0, 1}, ∂α

)
. Moreover, since U1,ε(0, kε) = 0 (resp. U2,ε(kε, 0) = 0) for every k ∈ {0, . . . , 2nε},

the function U
(S)
1 (resp. U

(S)
2 ) vanishes on {0} × (0, l) (resp. (0, l) × {0}). Thus U

(S)
α ∈

L2(Ω× {0, 1}, ∂α).

7.3.3 Limit of the strain tensor’s fields via global unfolding operator

This operator takes functions that live in the three-dimensional textile structure. It is the
operator with which we will go to the limit in problem (5.30), and with which we express
the form of the limit of the strain tensors.
We define the three-dimensional reference cell in the respective direction by setting

Cyl(1) .
= G(1) ×ωκ = (0, 2)× {0, 1} × (−κ, κ)2,

Cyl(2) .
= G(2) ×ωκ = {0, 1} × (0, 2)× (−κ, κ)2.
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Definition 13. [Global unfolding operator] For every measurable function Φ on G
(1)
ε ×ωr and Ψ on

G
(1)
ε ×ωr, one defines the measurable functions Π(1)

ε (Φ) on Ω×Cyl(1) and Π(2)
ε (Ψ) on Ω×Cyl(2)

respectively by

Π(1)
ε (Φ)(z′, Y1, b, Y2, Y3)

.
= Φ

(
2ε
[ z′

2ε

]
+ εY1e1 + εb e2 + ε(Y2e2 + Y3e3)

)
for a.e. (z′, Y1, b, Y2, Y3) ∈ Ω× Cyl(1),

Π(2)
ε (Ψ)(z′, a, Y2, Y1, Y3)

.
= Ψ

(
2ε
[ z′

2ε

]
+ εa e1 + εY2 ++ε(Y1e1 + Y3e3)

)
for a.e. (z′, a, Y2, Y1, Y3) ∈ Ω× Cyl(2).

We have the following.

Lemma 22. For every φ ∈ L1(G
(1)
ε ×ωr) and ψ ∈ L1(G

(2)
ε ×ωr), we have

∣∣∣ 2Nε−1

∑
q=0

∫
(0,L)×ωr

φ(z1, qε, y2, y3)dz1dy2dy3 −
ε

2

∫
Ω

∫
Cyl(1)

Π(1)
ε (φ)(z′, Y1, b, Y2, Y3)dz′dY

∣∣∣
≤
∫
(0,L)×ωr

|φ(z1, L, y2, y3)|dz1dy2dy3,

∣∣∣ 2Nε−1

∑
p=0

∫
(0,L)×ωr

ψ(pε, z2, y1, y3)dz2dy1dy3 −
ε

2

∫
Ω

∫
Cyl(2)

Π(2)
ε (ψ)(z′, a, Y2, Y1, Y3)dz′dY

∣∣∣
≤
∫
(0,L)×ωr

|ψ(L, z2, y1, y3)|dz2dy1dy3.

Proof. We consider the unfolding in direction e1. Then, the statement follows from the fact
that by Definition 13, we have in the straight reference frame:

2Nε

∑
q=0

∫
(0,L)×ωr

φ(z1, qε, y2, y3)dz1dy2dy3 =
ε

2

∫
Ω×Cyl(1)

Π(1)
ε (φ)(z′, Y1, b, Y2, Y3)dz′dY.

The proof in direction e2 is done in the same fashion.

As a direct consequence of the above lemma, we get

2

∑
α=1
‖Π(α)

ε (φ)‖L2(Ω×Cyl(α)) ≤
C√

ε
‖φ‖L2(Tε)

, ∀φ ∈ L2(Tε). (7.32)

For every measurable function φ defined on Gε, the middle line unfolding operator T G
ε and

the global unfolding operators Π(α)
ε are related in the following way:

Π(1)
ε (φ)(z′, Y1, b, 0, 0) = φ

(
2ε
[ z′

2ε

]
+ εY1e1 + εbe2

)
= T G

ε (φ)(z′, Y1, b), a.e. (z′, Y1, b) ∈ Ω×G(1),

Π(2)
ε (φ)(z′, a, Y2, 0, 0) = φ

(
2ε
[ z′

2ε

]
+ εae1 + εY2e2

)
= T G

ε (φ)(z′, a, Y2), a.e. (z′, a, Y2) ∈ Ω×G(2).
(7.33)

Hence, unfolding functions restricted to the beams’ middle lines via Π(α)
ε is equivalent to

unfolding them via T G
ε . Therefore, we can use the convergence results of the previous sub-

section to express the strain tensor convergences on the whole structure.
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Lemma 23. The following convergences hold:

1
ε

Π(1)
ε

(
∂1R

(1)
ε

)
⇀

 ∂12U3
−∂11U3
∂11U2

+

 ∂Y1R̂1
∂Y1R̂2

∂2
Y1Y1

Û2

 weakly in L2(Ω× Cyl(1))3,

1
ε

Π(2)
ε

(
∂2R

(2)
ε

)
⇀

 ∂22U3

−∂12U3

−∂22U1

+

 ∂Y2R̂1
∂Y2R̂2
−∂2

Y2Y2
Û1

 weakly in L2(Ω× Cyl(2))3

(7.34)

and (α = {1, 2})

1
ε2 Π(α)

ε

(
∂αU

(α)
ε,α
)
⇀ ∂αU

(S)
α + ∂Yα

Û
(S)
α weakly in L2(Ω× Cyl(α)). (7.35)

Proof. First, for every function φ ∈ L2(G
(α)
ε ), we have the following change of convergence

rate:
‖Π(α)

ε (φ)‖L2(Ω×Cyl(α)) ≤ C
√

ε‖φ‖
L2(G

(α)
ε )

.

Hence, convergence (7.34) follows from the above inequality, equality (7.33), and conver-
gences (7.21), (7.23), (7.24) and (7.25). Convergence (7.35) is proven by the same meanings of
(7.34), together with convergence (7.27)2.

7.3.4 Unfolded limit of the frame

In order to find the strain tensors’ and displacement limit form, we need to unfold not only
the fields but the reference frame as well. We do it in this subsection, and due to symmetry
reasons, we will only consider direction e1.

We start by the unfolding of the oscillating function Φ(1)
ε and we have

1
ε

Π(1)(Φ(1)
ε

)
→ Φ(1) strongly in H2(Cyl(1)),

where Φ is given in (5.1). Note that the convergence is strong due to the regularity of the
function (see Section 5.1). As a direct consequence, straightforward calculations show that
the following strong convergences hold:

Π(1)
ε (γε)→ γ

.
=

√
1 + (∂1Φ(1)

ε )2, εΠ(1)
ε (c(1)ε )→ c(1) .

=
∂2

Y1
Φ(1)

γ3

Π(1)
ε (t(1)ε )→ t(1) .

=
1
γ

(
e1 + ∂Y1 Φ(1)e3

)
, Π(1)

ε (η
(1)
ε )→ η(1)

.
= γ

(
1−Y3c(1)

)
,

Π(1)
ε (n(1)

ε )→ n(1) .
=

1
γ

(
− ∂Y1 Φ(1)e1 + e3

)
, Π(1)

ε (∇ψ
(1)
ε )→

(
η(1)t(1) e2 n(1) ).

(7.36)

7.3.5 Form of the limit strain tensors for the warping

We define the limit space of microscopic functions (α ∈ {1, 2})

W(α) .
=
{

w(α) ∈ H1(Cyl(α))3 ∣∣ 2-periodic with respect to yα

}
. (7.37)

In the lemma below, we show the warping convergences.

Lemma 24 (Lemma 7.7 of Griso, Orlik, and Wackerle, 2020a). There exist a subsequence of {ε},
still denoted {ε}, and u(1) ∈ L2(Ω; W(1)), u(2) ∈ L2(Ω; W(2)) such that

1
ε3 Π(α)

ε (u(α)
ε ) ⇀ u(α) weakly in L2(Ω; H1(Cyl(α)))3.
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In the same fashion as in Subsection 7.3 of Griso, Orlik, and Wackerle, 2020a, by the above
convergences and the convergences of the reference frame (7.36), we go to the limit with the
strain tensor of the warping (5.23) for the final displacement’s warping. We get

1
ε2 Π(α)

ε

(
ẽ(uε)

)
⇀ E (α)Y (u(α)) weakly in L2(Ω× Cyl(α))3×3,

where for every Ψ(1) ∈ H1(Cyl(1))3 and every Ψ(2) ∈ H1(Cyl(2))3, we have

E (1)Y (Ψ(1)) =
.
=



1
η(1)

∂Y1 Ψ(1) · t(1) ∗ ∗
1
2
( 1

η(1)
∂Y1 Ψ(1) · e2 + ∂Y2 Ψ(1) · t(1)

)
∂Y2 Ψ(1) · e2 ∗

1
2
( 1

η(1)
∂Y1 Ψ(1) · n(1) + ∂Y3 Ψ(1) · t(1)

) 1
2
(
∂Y2 Ψ(1) · n(1) + ∂Y3 Ψ(1) · e2

)
∂Y3 Ψ(1) · n(1)


(7.38)

and

E (2)Y (Ψ(2))
.
=


∂Y1 Ψ(2) · e1 ∗ ∗

1
2
(
∂Y1 Ψ(2) · t(2) + 1

η(2)
∂Y2 Ψ(2) · e1

) 1
η(2)

∂Y2 Ψ(2) · t(2) ∗
1
2
(
∂Y1 Ψ(2) · n(2) + ∂Y3 Ψ(2) · e1

) 1
2
( 1

η(2)
∂Y2 Ψ(2) · n(2) + ∂Y3 Ψ(2) · t(2)

)
∂Y3 Ψ(2) · n(2)

 .

(7.39)

7.3.6 Form of the limit strain tensors

We denote by Θ (and its derivative by Θ′) the following function belonging to W1,∞
per (0, 1):

Θ(t) =
1
2


t2 if t ∈ [0, κ],

κ2 if t ∈ [κ, 1− κ],

(t− 1)2 if t ∈ [1− κ, 1],

Θ′(t) =


t if t ∈ [0, κ),
0 if t ∈ (κ, 1− κ),
t− 1 if t ∈ (1− κ, 1].

We define the notation for the strain tensors’ form in the limit. Let X = (X0, X00, X1, X2, X3)

in R5. For α = {1, 2}, we define the functions E (α) by

E (1)(X) =


1

η(1)
F(1)(X) · t(1) ∗ ∗

1
2η(1)

F(1)(X) · e2 0 ∗
1

2η(1)
F(1)(X) · n(1) 0 0

 , E (2)(X) =

 0 ∗ ∗
1

2η(2)
F(2)(X) · e1

1
η(2)

F(2)(X) · t(2) ∗
0 1

2η(2)
F(2)(X) · n(2) 0

 ,

(7.40)
where F(α) are the functions from R5 into R3 ×G(α) respectively defined by

F(1)(X)
.
=



 X0
0

−Θ′X2

+

 X1
−X2
X3

 ∧ (Φ(1)e3 + Y2e2 + Y3n(1)) if b = 0,

 X00
0

−Θ′X2

+

 X1
−X2
X3

 ∧ (Φ(1)e3 + Y2e2 + Y3n(1)) if b = 1,

and

F(2)(X)
.
=



 0
X0
−Θ′X1

+

 X1
−X2
−X3

 ∧ (Φ(2)e3 + Y1e1 + Y3n(2)) if a = 0,

 0
X00
−Θ′X1

+

 X1
−X2
−X3

 ∧ (Φ(2)e3 + Y1e1 + Y3n(2)) if a = 1.
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Before going to the limit, we must prove that the unfolded strain tensor is bounded. From
the change of convergence rate (7.32) and (5.44), we have∥∥∥ 1

ε2 Π(α)
ε

(
ẽ(uε)

)∥∥∥
L2(Ω×Cyl(α))

≤ 1
ε5/2 ‖uε‖Tε ≤ C.

We first consider the direction e1. Due to the representation of the strain tensors (5.11)-(5.12),
the convergences in Lemmas 23-24 and the frame convergences (7.36), we obtain

1
ε2 Π(1)

ε

(
ẽ(uε)

)
⇀ E (1)(∂U(1)) + E (1)Y (û(1)) weakly in L2(Ω; H1(Cyl(1)))3×3, (7.41)

where the first quantity is given as in (7.40)1, but with X replaced by

∂U(1) =
(
∂1U

(S)
1 (·, 0), ∂1U

(S)
1 (·, 1), ∂12U3, ∂11U3, ∂11U2

)
,

and where the second quantity is given by (7.38) and is the symmetric gradient of the dis-
placement

û(1) .
= Û

(S)
1 e1 + U

(B)
2 e2 + (Û3 + Θ∂2

11U3)e3 +
(
R̂1e1 + R̂2e2 + ∂Y1Û2e3

)
∧
(
Φ(1)e3 + Y3n(1) + Y2e2

)
+ u(1).

(7.42)

We have û(1) ∈ L2(Ω; W(1)).
Concerning direction e2, the same argumentation applies and the limit strain tensor becomes

1
ε2 Π(2)

ε

(
ẽ(uε)

)
⇀ E (2)(∂U(2)) + E (2)Y (û(2)) weakly in L2(Ω; H1(Cyl(2)))3×3, (7.43)

where again the first quantity is given by (7.40)2, but with X replaced by

∂U(2) =
(
∂2U

(S)
2 (·, 0), ∂2U

(S)
2 (·, 1), ∂22U3, ∂12U3, ∂22U1

)
,

and where the second quantity is given by (7.39) and is the symmetric gradient of the dis-
placement

û(2) .
= U

(B)
1 e1 + Û

(S)
2 e2 + (Û3 + Θ∂2

22U3)e3 +
(
R̂1e1 + R̂2e2 − ∂Y2Û1e3

)
∧
(
Φ(2)e3 + Y3n(2) + Y1e1

)
+ u(2).

(7.44)

We have û(2) ∈ L2(Ω; W(2)).

Note that in the expressions of û(1) and û(2) given above, the terms Θ∂2
11U3 and Θ∂2

22U3 do
come neither from the asymptotic behavior of the strain tensors nor from other displacement
fields’ weak convergences. These terms have been added to simplify the non-penetration
limit condition in the next section (see Lemma 26).

7.3.7 Unfold of the contact conditions via contact unfolding operator

The main purpose of this unfolding operator is to unfold functions on the two-dimensional
contact areas Cε, defined in (5.26), in order to find out the unfolded limit contact conditions.
We define the limit reference contact domains by

Cab
.
=
(
(a, b) + ωκ

)
∩Ω, for (a, b) ∈ {0, 1}2.

Definition 14 (Contact unfolding operator). For every measurable function φ in Cab, we define
the four measurable functions TCab

ε (φ) in Ω×ωκ by ((a, b) ∈ {0, 1}2)

TCab
ε (φ)(z′, Y1, Y2)

.
= φ

(
2ε

[
z′

2ε

]
+ ε
(
ae1 + be2

)
+ ε(Y1e1 + Y2e2)

)
for a.e. (z′, Y1, Y2) ∈ Ω×ωκ .
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Note that for every φ ∈ L2(G
(1)
ε ) (resp. ψ ∈ L2(G

(2)
ε )), the unfolding perator TCab

ε (φ)

(resp. TCab
ε (ψ) ) is given by

TCab
ε (φ)(z′, Y1, 0) .

= φ

(
2ε

[
z′

2ε

]
+ ε
(
ae1 + be2

)
+ εY1e1

)
for a.e. (z′, Y1) ∈ Ω× (−κ, κ),

(resp. TCab
ε (ψ)(z′, 0, Y2)

.
= φ

(
2ε

[
z′

2ε

]
+ ε
(
ae1 + be2

)
+ εY2e2

)
for a.e. (z′, Y2) ∈ Ω× (−κ, κ)).

Let φ be in L2(G
(1)
ε ). The operator T Cab

ε is related to T G
ε via the following relations:

TC0b
ε (φ)(z′, Y1, 0) =


T G

ε (φ)(z′, Y1, b) for a.e. (z′, Y1, b) ∈ Ω× (0, κ)× {0, 1},
T G

ε (φ)(z′ − 2εe1, 2 + Y1, b) for a.e. (z′, Y1, b) ∈
(
Ω ∩ (Ω + 2εe1)

)
× (−κ, 0)× {0, 1},

TC1b
ε (φ)(z′, Y1, 0) = T G

ε (φ)(z′, 1 + Y1, b) for a.e. (z′, Y1, b) ∈ Ω× (−κ, κ)× {0, 1},
(7.45)

One can easily give similar equalities if ψ ∈ L2(G
(2)
ε ), or Φ ∈ L2(Tε). We have

‖TCab
ε (φ)‖L2(Ω×ωκ)

≤ C
√

ε‖φ‖L2(Gε)
, ∀φ ∈ L2(Gε),

‖TCab
ε (ψ)‖L2(Ω×ωκ)

≤ C√
ε

(
‖ψ‖

L2(T(α)
ε )

+ ε‖∇ψ‖
L2(T(α)

ε )

)
, ∀ψ ∈ H1(T(α)

ε ).
(7.46)

Now, recall the form of the final displacements (7.13) and restrict it to the contact areas. For
a.e. (t1, t2) in ωr (or equivalently, in ωκε), we have

u(1)(pε + t1, qε, t2, (−1)p+q+1κε) =

U1 + U
(S)
1

U2 + U
(B)
2

U3

 (pε + t1, qε) +

 R1
R2

R(1)
3

 (pε + t1, qε) ∧ t2e2

+u(1)(pε + t1, qε, t2, (−1)p+q+1κε),

u(2)(pε, qε + t2, t1, (−1)p+qκε) =

U1 + U
(B)
1

U2 + U
(S)
2

U3

 (pε, qε + t2) +

 R1
R2

R(1)
3

 (pε, qε + t2) ∧ t1e1

+u(2)(pε, qε + t2, t1, (−1)p+qκε).
(7.47)

We start with the in-plane components: due to the contact conditions (7.1), we have the
following bound for the difference between the displacements in the contact areas:

∑
(p,q)∈Kε

‖u(1)
ε,α − u(2)

ε,α ‖2
L2(Cpq,ε)

≤ Cε4.

Hence, the unfolded sequence {u(1)
ε,α − u(2)

ε,α }ε is bounded, and we can go to the limit in the
in-plane components.

Lemma 25. Let (a, b) ∈ {0, 1}2. For a.e. z′ ∈ Ω, the in-plane limit contact conditions are

|U(S)
1 (z′, b)−U

(B)
1 (z′, a)|+ κ|∂2U1(z2) + ∂1U2(z1)| ≤ g1(z′),

|U(S)
2 (z′, a)−U

(B)
2 (z′, b)|+ κ|∂2U1(z2) + ∂1U2(z1)| ≤ g2(z′).

(7.48)

Proof. We prove only the first inequality in (7.48), since the second one follows the same
lines. We split the proof into two steps.
Step 1. A preliminary convergence.
For a.e. (z′, Y2) in Ω× (−κ, κ), we define the function ((a, b) ∈ {0, 1}2)

Üε,1(z′, Y2, a, b) .
= TCab

ε (Uε,1)
(
z′, 0, 0)− TCab

ε (Uε,1)
(
z′, 0, Y2),
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which does not depend on z1 by definition of Uε,1. It belongs to L2(Ω; H1(−κ, κ)) and the
following relation holds:

∂Y2Üε,1 = −εTCab
ε (∂2Uε,1).

From the Poincaré inequality, the first inequality in (7.46) and estimates (7.15), we have

‖Üε,1‖L2(Ω;H1(−κ,κ)) ≤ Cε2.

This, together with the third convergence in (7.24) and (7.45), imply that there exist a function
Ü1 ∈ L2(Ω; H1(−κ, κ)) such that

1
ε2 Üε,1 ⇀ Ü1 weakly in L2(Ω; H1(−κ, κ)),

1
ε2 ∂Y2Üε,1 ⇀ ∂Y2Ü2 = −∂2U1 weakly in L2(Ω× (−κ, κ)).

As a consequence, we get the equality Ü1(z′, Y2, a, b) = −Y2∂2U1(z2) a.e. in Ω× (−κ, κ).
Step 2. We prove the first statement of the lemma.
By the form of the final displacement in the contact areas (7.47), we go to the limit for the
following expressions ((p, q) ∈ {0, . . . , 2Nε} × {2nε, . . . , 2Nε})

1
ε2 T

Cab
ε

(
U

(S)
ε,1 (pε + y1, qε)−U

(B)
ε,1 (pε, qε + y2)− y2R

(1)
ε,3 (pε + y1, qε) + u(1)

ε,1 − u(2)
ε,1

+Uε,1(qε)−Uε,1(qε + y2)
)

and ((p, q) ∈ {0, . . . , 2Nε} × {0, . . . , 2nε})

1
ε2 T

Cab
ε

(
U

(S)
ε,1 (pε + y1, qε)−U

(B)
ε,1 (pε, qε + y2)− y2R

(1)
ε,3 (pε + y1, qε) + u(1)

ε,1 − u(2)
ε,1

)
Concerning the warping terms, from estimate (7.16) and the second inequality in (7.46), we
obtain ∥∥TCab

ε

(
u(1)

ε,α − u(2)
ε,α
)∥∥

L2(Ω×ωκ)
≤ C√

ε
‖u(1)

ε,α − u(2)
ε,α ‖L2(G

(α)
ε ×ωr)

≤ Cε3.

Hence, applying the contact unfolding operator to the in-plane warping quantity leads to

1
ε2 TCab

ε

(
u(1)

ε,α − u(2)
ε,α
)
→ 0 strongly in L2(Ω×ωκ). (7.49)

Using convergences (7.25),(7.27), (7.26), (7.49) and the ones in Step 1 we get

1
ε2 TCab

ε

((
U

(S)
ε,1 (pε + y1, qε)−U

(B)
ε,1 (pε, qε + y2)− y2R

(1)
ε,3 (pε + y1, qε)

)
+
(
u(1)

ε,1 − u(2)
ε,1
))

+
1
ε2 Üε,1(·, Y1, a, b)

⇀ U
(S)
1 (·, b)−U

(B)
1 (·, a)−Y2∂1U2 −Y2∂2U1 weakly in L2((Ω3 ∪Ω4)× (−κ, κ)

)2

and

1
ε2 TCab

ε

((
U

(S)
ε,1 (pε + y1, qε)−U

(B)
ε,1 (pε, qε + y2)− y2R

(1)
ε,3 (pε + y1, qε)

)
+
(
u(1)

ε,1 − u(2)
ε,1
))

⇀ U
(S)
1 (·, b)−U

(B)
1 (·, a)−Y2∂1U2

weakly in L2((Ω1 ∪Ω2)× (−κ, κ)
)2.

So, for a.e (z′, Y2) ∈ Ω× (−κ, κ) we get

|U(S)
1 (z′, b)−U

(B)
1 (z′, a)−Y2(∂2U1(z2) + ∂1U2(z1))| ≤ g1(z′).

The statement follows by the admissible choice of Y2 = ±κ.
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Now, we look at the outer-plane component. From equalities (5.34) and estimates (5.35),
(5.37) (a consequence of the non-penetration condition) lead to the following estimate in the
contact areas (see also Griso, Orlik, and Wackerle, 2020a):

∑
(p,q)∈Kε

‖u(1)
ε,3 − u(2)

ε,3 ‖
2
L2(Cpq,ε)

≤ Cε6.

We are ready to go to the limit in the outer-plane component.

Lemma 26. Let (a, b) ∈ {0, 1}2. For a.e. Ω×ωκ , the outer-plane limit contact conditions are

0 ≤ (−1)a+b
(

û(1)
3 (·, a + Y1, b, Y2, (−1)a+b+1κ)− û(2)

3 (·, a, b + Y2, Y1, (−1)a+bκ)
)

. (7.50)

Proof. We split the proof into two steps.
Step 1. Preliminary convergences.
For a.e. (z′, Y1) in Ω× (−κ, κ) we consider the function ((a, b) ∈ {0, 1}2)

Ü
(1)
ε,3 (z

′, Y1, a, b) .
= TCab

ε (Uε,3)
(
z′, Y1, 0

)
− TCab

ε (Uε,3)
(
z′, 0, 0

)
− εY1TCab

ε (∂1Uε,3)
(
z′, 0, 0

)
.

This function belongs to L2(Ω; H2(−κ, κ)) and we have

∂2
Y1Y1

Ü
(1)
ε,3 = ε2TCab

ε (∂2
11Uε,3).

From the Poincaré inequality, the first inequality in (7.46) and estimates (7.15), we obtain

‖Ü(1)
ε,3 ‖L2(Ω;H2(−κ,κ)) ≤ Cε3.

This, together with the third convergence in (7.21) and equalities (7.45), imply that there
exists a function Ü

(1)
3 ∈ L2(Ω; H2(−κ, κ)) such that

1
ε3 Ü

(1)
ε,3 ⇀ Ü

(1)
3 weakly in L2(Ω; H2(−κ, κ)),

1
ε3 ∂2

Y1Y1
Ü

(1)
ε,3 ⇀ ∂2

Y1Y1
Ü

(1)
ε,3 = ∂11U3 + ∂2

Y1Y1
Û3(·, a + Y1, b) weakly in L2(Ω× (−κ, κ)).

As a consequence, we get a.e. in Ω×ωκ

Ü
(1)
3 (z′, Y1, a, b) =

1
2

Y2
1 ∂11U3(z′) + Û3(z′, a + Y1, b)− Û3(z′, a, b)−Y1∂Y1 Û3(z′, a, b).

Now, for a.e. (z′, Y1) in Ω× (−κ, κ), we consider the function ((a, b) ∈ {0, 1}2)

R̈(1)
ε,1 (z

′, Y1, a, b) .
= TCab

ε (Rε,1)(z′, Y1, 0)− TCab
ε (Rε,1)(z′, 0, 0).

This function belongs to L2(Ω; H1(−κ, κ)). Proceeding as in the proof of Lemma 25, we
show that there exists a function R̈(1)

1 ∈ L2(Ω; H1(−κ, κ)), such that

1
ε2 R̈

(1)
ε,1 ⇀ R̈(1)

1 weakly in L2(Ω; H1(−κ, κ)),

where

R̈(1)
1 (z′, Y1, a, b) = Y1∂12U3(z′)+ R̂1(z′, a+Y1, b)−R̂1(z′, a, b) for a.e. (z′, Y1) in Ω× (−κ, κ).

Regarding direction e2, we set for a.e. (z′, Y2) in Ω× (−κ, κ) the functions

Ü
(2)
ε,3 (z

′, Y2, a, b) .
= TCab

ε (Uε,3)
(
z′, 0, Y2

)
− TCab

ε (Uε,3)
(
z′, 0, 0

)
− εY2TCab

ε (∂1Uε,3)
(
z′, 0, 0

)
,

R̈(2)
ε,2 (z

′, Y2, a, b) .
= TCab

ε (Rε,2)(z′, 0, Y2)− TCab
ε (Rε,2)(z′, 0, 0).
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We have
1
ε3 Ü

(2)
ε,3 ⇀ Ü

(2)
3 weakly in L2(Ω; H2(−κ, κ)),

1
ε2 R̈

(2)
ε,2 ⇀ R̈(2)

2 weakly in L2(Ω; H1(−κ, κ)),

where

Ü
(2)
3 (z′, Y2, a, b) =

1
2

Y2
2 ∂22U3(z′) + Û3(z′, a, b + Y2)− Û3(z′, a, b)−Y2∂Y2Û3(z′, a, b),

R̈(2)
2 (z′, Y2, a, b) = −Y2∂12U3(z′) + R̂2(z′, a, b + Y2)− R̂2(z′, a, b) a.e. (z′, Y2) in Ω× (−κ, κ).

Step 2. We prove the statement.
We consider the difference (7.47) in the third direction. Using T Cab

ε and taking into account
the functions introduced in the first step, that gives

1
ε3 TCab

ε

(
u(1)

ε,3 − u(2)
ε,3
)
=

1
ε3

(
Ü

(1)
ε,3 − Ü

(2)
ε,3 + εY1R̈

(2)
ε,2 + εY2R̈

(1)
ε,1 + TCab

ε

(
u(1)

ε,3 − u(2)
ε,3
))

⇀ ∆

weakly in L2(Ω×ωκ),

where

∆(z′, Y1, Y2, a, b) =
1
2

Y2
1 ∂11U3(z′) + Û3(z′, a + Y1, b)− Û3(z′, a, b)−Y1∂Y1Û3(z′, a, b)

−
(1

2
Y2

2 ∂22U3(z′) + Û3(z′, a, b + Y2)− Û3(z′, a, b)−Y2∂Y2Û3(z′, a, b)
)

+Y1
(
−Y2∂12U3(z′) + R̂2(z′, a, b + Y2)− R̂2(z′, a, b)

)
+Y2

(
Y1∂12U3(z′) + R̂1(z′, a + Y1, b)− R̂1(z′, a, b)

)
+u(1)

3
(
z′, a + Y1, b, Y2, (−1)a+b+1κ

)
− u(2)

3
(
z′, a, b + Y2, Y1, (−1)a+bκ

)
.

Taking into account the expressions of û(1) and û(2) given by (7.42)-(7.44) and equalities
(7.23), we have

∂Y1 Û3(z′, a, b) = −R̂2(z′, a, b), ∂Y2Û3(z′, a, b) = R̂1(z′, a, b).

Hence, the outer-plane contact condition (7.50) is proved.

7.3.8 The displacements limit set

Now, since all the fields involved in the limit strain tensor, limit displacement, and limit
contact conditions have been found, we can finally define the limit set of admissible dis-
placements.
From (7.18),(7.19),(7.20) and (7.37), we set

• XM
.
= H2

(0,l)

(
(0, L)z2

)
× H2

(0,l)

(
(0, L)z1

)
× H2

Γ(Ω) the space of macroscopic functions;

• XS
.
= L2(Ω × {0, 1}, ∂1) × L2(Ω × {0, 1}, ∂2) the space of the relative macroscopic

stretching functions;

• XB
.
= L2(Ω× {0, 1})2 the space of the relative macroscopic bending functions;

• Xm
.
= L2(Ω; W(1))× L2(Ω; W(2)) the space of all the microscopic functions.

In particular, the functions belonging to their respective spaces are defined by

V
.
=
(
V1, V2, V3

)
∈ XM, V(S) .

=
(
V

(S)
1 , V

(S)
2
)
∈ XS,

V(B) .
=
(
V

(B)
1 , V

(B)
2
)
∈ XB, v̂ .

=
(
v̂(1), v̂(2)

)
∈ Xm.

(7.51)
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Including the limit contact conditions (7.48) and (7.50), the limit set of admissible displace-
ments is defined by

X .
=
{(

V, V(S), V(B), v̂
)
∈ XM ×XS ×XB ×Xm

∣∣∣
|V(S)

1 (·, b)−V
(B)
1 (·, a)|+ κ|∂2V1 + ∂1V2| ≤ g1 a.e. in Ω,

|V(S)
2 (·, a)−V

(B)
2 (·, b)|+ κ|∂2V1 + ∂1V2| ≤ g2 a.e. in Ω,

0 ≤ (−1)a+b
(

v̂(1)3 (·, a + Y1, b, Y2, (−1)a+b+1κ)− v̂(2)3 (·, a, b + Y2, Y1, (−1)a+bκ)
)

a.e. in Ω×ωκ , (a, b) ∈ {0, 1}2
}

.

Note that X is a closed convex subset of the Hilbert space XM × XS × XB × Xm, endowed
with the product norm. We set

∂V(1) =
(
∂1V

(S)
1 (·, 0), ∂1V

(S)
1 (·, 1), ∂12V3, ∂11V3, ∂11V2

)
,

∂V(2) =
(
∂2V

(S)
2 (·, 0), ∂2V

(S)
2 (·, 1), ∂22V3, ∂12V3, ∂22V1

)
.

(7.52)

7.4 Strong convergence of the test functions via unfolding

We construct the test functions with sufficient regularity to belong to a dense subset of X
and ensure strong convergence via unfolding. In addition, they must have the same strain
tensor as in the limit and match the contact condition before and after the limit.

7.4.1 Construction of the test functions

Consider the spaces

CM
.
= C3(Ω)3 ∩ XM, CS

.
= C2(Ω× {0, 1})2 ∩ XS,

CB
.
= C2

c (Ω× {0, 1})2 ∩ XB, Cm
.
= C1

c (Ω; W(1))× C1
c (Ω; W(2)).

Accordingly to (7.51), we take (V, V(S), V(B), v̂) ∈ CM × CS × CB × Cm.
First, we define the vectors of the test function for the combined directions V1(qε)

V2(z1)
V3(z1, qε)

 a.e. (z1, qε) ∈ G(1) and

 V1(z2)
V2(pε)

V3(pε, z2)

 a.e. (pε, z2) ∈ G(2).

Then, we define the test functions for stretching V
(S)
ε,1 , V

(S)
ε,2 and bending V

(B)
ε,1 , V

(B)
ε,2 by

V
(S)
ε,1 (z1, qε)

.
= V

(S)
1

(
z1, 2

[ q
2

]
ε, 2
{ q

2

})
,

V
(B)
ε,2 (z1, qε)

.
= V

(B)
2

(
z1, 2

[ q
2

]
ε, 2
{ q

2

})
,

a.e. (z1, qε) ∈ G(1),

V
(S)
ε,2 (pε, z2)

.
= V

(S)
2

(
2
[ p

2

]
ε, z2, 2

{ p
2

})
,

V
(B)
ε,1 (pε, z2)

.
= V

(B)
1

(
2
[ p

2

]
ε, z2, 2

{ p
2

})
,

a.e. (pε, z2) ∈ G(2)
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At last, we define the warping test functions v̂(1)ε , v̂(2)ε by

v̂(1)ε (z1, qε, y2, y3)
.
=

v̂(1)
(

pε, 2
[ q

2

]
ε, 2
{ z1

2ε

}
, 2
{ q

2

}
,

y2

ε

y3

ε

)
if z1 ∈ [pε− r, pε + r],

linear interpolated with respect to z1 if z1 ∈ [pε + r, (p + 1)ε− r],

a.e. (z1, qε, y2, y3) ∈ G(1) ×ωr,

v̂(2)ε (pε, z2, y1, y3)
.
=

v̂(2)
(

2
[ p

2

]
ε, qε, 2

{ p
2

}
, 2
{ z2

2ε

}
,

y1

ε

y3

ε

)
if z2 ∈ [qε− r, qε + r],

linear interpolated with respect to z2 if z2 ∈ [qε + r, (q + 1)ε− r],

a.e. (pε, z2, y1, y3) ∈ G(2) ×ωr.

The final test displacements vε in directions e1 and e2 result to be (α ∈ {1, 2})

v(α)ε = V(α)
ε,BN + ε3v̂(α)ε , (7.53)

where the Bernoulli-Navier displacements V(1)
ε,BN , V(2)

ε,BN are given by

V(1)
ε,BN(z1, qε, y2, y3)

.
=

εV1(qε) + ε2V
(S)
ε,1 (z1, qε)

εV2(z1) + ε2V
(B)
ε,2 (z1, qε)

εV3(z1, qε)

+

 ε∂2Vε,3(z1, qε)
−ε∂1Vε,3(z1, qε)

ε∂1Vε,2(z1) + ε2∂1V
(B)
ε,2 (z1, qε)


∧
(

ε(−1)q+1Φ
(

2
{ z1

2ε

})
e3 + y2e2 + y3(−1)q+1n

(
2
{ z1

2ε

}) )
,

and

V(2)
ε,BN(pε, z2, y1, y3)

.
= ε

εV1(z2) + ε2V
(B)
ε,1 (pε, z2)

εV2(pε) + ε2V
(S)
ε,2 (pε, z2)

εV3(pε, z2)

+

 ε∂2Vε,3(pε, z2)
−ε∂1Vε,3(pε, z2)

−ε∂2Vε,1(z2)− ε2∂2V
(B)
ε,1 (pε, z2)


∧
(

ε(−1)pΦ
(

2
{ z2

2ε

})
e3 + y1e1 + y3(−1)pn

(
2
{ z2

2ε

}) )
.

7.4.2 Limit strain tensors for the test functions

The limit of the unfolded strain tensor is an immediate consequence of (5.22) and (5.23)
for the final displacement, the unfolding operator properties, and the regularity of the test
functions (see also Lemma 8.1 in Griso, Orlik, and Wackerle, 2020a). We obtain

1
ε2 Π(α)

(
ẽ(v(α)ε )

)
→ E (α)(∂V(α)) + E (α)Y (v̂(α)) strongly in L2(Ω× Cyl(α))3×3, (7.54)

where E (1) and E (2) are respectively given by (7.40) with the fields ∂V(1), ∂V(2) given as in
definition (7.52).

7.4.3 Contact conditions for the test functions

First, the clamping conditions are satisfied by the construction of the test displacements.
Now, we check the in-plane contact conditions (5.27). We set

N .
=

2

∑
α=1

(
‖∇V

(S)
α ‖L∞(Ω×{0,1}) + ‖∇2V

(B)
α ‖L∞(Ω×{0,1}) + ‖v̂(α)‖L∞(Ω×Cyl(α))

)
.

Below, we replace the components v(1)ε,α and v(2)ε,α of the test displacement by λ∗ε v(1)ε,α and λ∗ε v(2)ε,α
in order to satisfy the contact conditions (5.27). We will choose λ∗ε

.
= 1− C∗ε, where C∗ is a

non-negative constant that will be assigned later.
We start with the first component. Taking the difference between the displacements, we have
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(remind that κ < 1)

v(1)ε,1 (y1 + pε, qε, y2, (−1)a+b+1κε)− v(2)ε,1 (pε, qε + y2, y1, (−1)a+bκε)

= ε
(
V1(qε)−V1(qε + y2) + y2∂1V2(pε + y1)

)
+ ε2(V(S)

ε,1 (pε + y1, qε)−V
(B)
ε,1 (pε, qε + y2) + y2∂1V

(B)
ε,2 (pε + y1, qε)

)
+ ε3(v̂(1)ε,1 (y1 + pε, qε, y2, (−1)a+b+1κε)− v̂(2)ε,1 (pε, qε + y2, y1, (−1)a+bκε)

)
.

Besides, for a.e. (y1, y2) ∈ ωr we have

|V1(qε)−V1(qε + y2) + y2∂2V1(qε + y2)| ≤ κ2ε2‖∂2
22V1‖L∞(Ω)

and∣∣(V(S)
ε,1 (pε + y1, qε)−V

(B)
ε,1 (pε, qε + y2) + y2∂1V

(B)
ε,2 (pε + y1, qε)

)
−
(
V

(S)
ε,1 (pε + y1, qε + y2)−V

(B)
ε,1 (pε + y1, qε + y2)

)∣∣
≤ κε

(
‖∇V

(S)
1 ‖L∞(Ω) + ‖∇2V

(B)
1 ‖L∞(Ω×{0,1})

)
∣∣∣v̂(1)ε,1 (y1 + pε, qε, y2, (−1)a+b+1κε)− v̂(1)1

(
pε + y1, qε + y2, 2

{ q
2

}
, 2
{ pε + y1

2ε

}
,

y2

ε
, (−1)a+b+1κ

)∣∣∣
≤ C‖∂2v̂(1)1 ‖L∞(Ω×Cyl(1)),∣∣∣v̂(2)ε,1 (pε, qε + y2, y1, (−1)a+bκε)− v̂(2)1

(
pε + y1, qε + y2, 2

{ p
2

}
, 2
{ qε + y2

2ε

}
,

y1

ε
, (−1)a+bκ

)∣∣∣
≤ C‖∂2v̂(1)1 ‖L∞(Ω×Cyl(1)).

Hence, we have a.e. in Cpq that∣∣∣(v(1)ε,1 (z1, qε, y2, (−1)a+b+1κ)− v(2)ε,1 (pε, z2, y1, (−1)a+bκ)
)

− ε2(V(S)
1 (z′, b)−V

(B)
1 (z′, a)− y2

ε
(∂2V1(z2) + ∂1V2(z1)

)∣∣∣ ≤ C�ε3N,
(7.55)

where C� does not depend on ε. So a.e. in Cpq,ε, we have

|v(1)ε,1 − v(2)ε,1 | ≤ ε2g1 + C�ε3N. (7.56)

Taking into account the property (7.2) of gα, we take the value C∗ = C�N/C3. Hence, the
in-plane contact conditions (5.27) with h = 2 are satisfied, since

|λ∗ε v(1)ε,1 − λ∗ε v(2)ε,1 | ≤ ε2λ∗ε g1 + λ∗ε C�ε3N

≤ ε2g1 − C∗ε3g1 + C�ε3N ≤ ε2g1 − ε3(C∗C3 − C�N) = ε2g1.

This proves that the contact conditions are satisfied before the limit for the first component.
To prove that they hold in the limit, we first note that limε→0 λ∗ε = 1. Hence, going to the
limit via unfolding with (7.55) and (7.56), we get the limit contact condition (7.48)1.
The second component follows by analogous argumentation, while the test displacement in
the outer-plane component is constructed in the same way as in Section 8.1 of Griso, Orlik,
and Wackerle, 2020a and, by the meanings of such section, they satisfy the non-penetration
conditions before and in the limit.

7.5 Study of the limit problem

In this section, we employ all the results developed in the previous ones to go to the limit
for problem (5.30). We will then proceed to its investigation.
Before going to the limit, we provide a couple of preliminary lemmas for the section.



7.5. Study of the limit problem 105

Lemma 27. Let X = (X0, X00, X1, X2, X3) be in R5 and v̂(α) ∈W(α) satisfying

E (α)(X) + E (α)Y (v̂(α)) = 0. (7.57)

Then X = 0 and v̂(α) are periodic rigid displacements.
Moreover, there exist two strictly positive constants C0, C1 such that for every X ∈ R4 and every
v̂(α) ∈W(α),

C0
(
|X|2 + ‖E (α)Y (v̂(α))‖2

L2(Cyl(α))

)
≤ ‖E (α)(X) + E (α)Y (v̂(α))‖2

L2(Cyl(α))

≤ C1
(
|X|2 + ‖E (α)Y (v̂(α))‖2

L2(Cyl(α))

)
.

(7.58)

Proof. We prove the statement for α = 1.
The solution of the equation (7.57) is given by

v̂(1) = A(1) + B(1) ∧
(
Φ(1)e3 + Y2e2 + Y3n(1)), A(1), B(1) ∈ H1(G(1))3

with first (see (7.38)-(7.40)) ∂Y1B
(1) = X1e1 − X2e2 + X3e3. Since B(1) is periodic, this gives

X1 = X2 = X3 = 0 and B(1)(Y1, b) = B(1)(b) for a.e. (Y1, b) ∈ G(1). Then, we get
∂Y1A

(1)(Y1, 0) = B(1)(0) ∧ e1 − X0e1 (resp. ∂Y1A
(1)(Y1, 1) = B(1)(1) ∧ e1 − X00e1), again

since A(1) is periodic, this gives X0 = X00 = 0 and B(1) = b(1)e1. Hence v̂(1) is a rigid
periodic displacement

v̂(1)(Y1, b, Y2, Y3) = A(1)(b) + b(1)(b)e1 ∧
(
Φ(1)e3 + Y2e2 + Y3n(1)), A(1)(b), b(1)(b) ∈ R3.

The inequality in the right-hand side of (7.58) is obvious. The left-hand side inequality is
proven by contradiction.

The lemma below concerns the integration of the reference frame over the limit reference
cells Cyl(α).

Lemma 28. One has the following values for the integrals (α ∈ {1, 2})∫
Cyl(α)

η(α)dY = 4κ2
∫ 2

0
γ dt,∫

Cyl(α)

(
Φ(α)e3 + Y3−αe3−α + Y3n(α)

)
η(α)dY = 4κ2

( ∫ 2

0
γ Φ dt

)
e3.

(7.59)

Proof. We will just prove the statement for direction e1, since the second one follows by an
analogous argumentation.

From the definition of η(1) and the symmetries of the cross-section with respect to the lines
Y2 = 0 and Y3 = 0, equality (7.59)1 holds.
Concerning (7.59)1, we first note that the symmetries of the cross-section with respect to the
lines Y2 = 0 and Y3 = 0 lead to∫

Cyl(1)

(
Φ(1)(Y1)e3 + Y2e2 + Y3n(1)(Y1)

)
η(1)(Y1, Y3)dY

= 4κ2
( ∫ 2

0
Φ(1)γdY1

)
e3 +

4κ4

3

( ∫ 2

0
∂Y1 Φ(1)c(1)dY1

)
e1 −

4κ4

3

( ∫ 2

0
c(1)dY1

)
e3.

Then, we note that the second and third integral vanish since Φ is 2-periodic with respect to
Y1 and satisfies ∂Y1 Φ(0) = ∂Y1 Φ(1) = ∂Y1 Φ(2) = 0.

7.5.1 The unfolded limit problem

We are now ready to show the limit elasticity problem.
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Theorem 7. Let uε ∈ Xε be a solution of problem (5.30) and let f (α) ∈ H1(Ω)3, f̃ (α) ∈ H1(Ω)3 be
as in Subsection 7.2. Assume that there exist A(α) ∈ L∞(Cyl(α))6×6 such that

Π(α)
ε

(
A(α)

ε

( ·
ε

))
(z′, Y)→ A(α)(Y) for a.e. (z′, Y) ∈ Ω× Cyl(α). (7.60)

Then, there exist a subsequence of {ε}, still denoted {ε}, and functions (U, U(S), U(B), û) ∈ X such
that a solution (u(1)

ε , u(2)
ε ) of problem (5.30) converges. The unfolded limit problem admits solutions

and has the following formulation:

Find (U, U(S), U(B), û) ∈ X such that for every (V, V(B), V(B), v̂) ∈ X :
2

∑
α=1

∫
Ω×Cyl(α)

A(α)
ijkl
(
E (α)ij (∂U(α)) + E (α)Y,ij(û

(α))
)(
E (α)kl (∂U(α) − ∂V(α)) + E (α)Y,kl(û

(α) − v̂(α))
)
η(α)dz′dY

≤ C0(κ)
( 2

∑
α,β=1

∫
Ω

f (β)
α (Uα −Vα) + f (β)

3 (U3 −V3)dz′

+
2

∑
α=1

∫
Ω

f̃ (α)α

(
U

(S)
α −V

(S)
α

)
+ f̃ (3−α)

α

(
U

(B)
α −V

(B)
α

)
dz′
)

−C1(κ)
2

∑
α,β=1

∫
Ω

f̃ (β)
α (∂αU3 − ∂αV3)dz′,

(7.61)
where ∂U(α) and ∂V(α) are defined in (7.52) and where

C0(κ)
.
= 4κ2

∫ 2

0
γ(t)dt, C1(κ)

.
= 4κ2

∫ 2

0
Φ(t)γ(t)dt.

Proof. First, from the weak convergence of the strain tensors (7.41)-(7.43) the strong con-
vergence of the test functions (7.54), convergence (7.60) and Corollary 2.12 of Cioranescu,
Damlamian, and Griso, 2008, we get that

1
ε5

2

∑
α=1

∫
G

(α)
ε ×ωr

A(α)
ijkl,εẽij(u

(α)
ε )ẽkl(v

(α)
ε ) η(α) dz

→
∫

Ω×Cyl(α)
A(α)

ijkl
(
E (α)ij (∂U(α)) + E (α)Y,ij(û

(α))
)(
E (α)kl (∂V(α)) + E (α)Y,kl(v̂

(α))
)
η(α) dz′dY,

(7.62)

where (u(1)
ε , u(2)

ε ) is a solution of (5.30) and (v(1)ε , v(2)ε ) is the test function defined in (7.53).
By the weak convergences (7.41)-(7.43), the weak lower semicontinuity of the convex func-
tionals and the definition of problem (5.30) we have

2

∑
α=1

∫
Ω×Cyl(α)

A(α)
ijkl
(
E (α)ij (∂U(α)) + E (α)Y,ij(û

(α))
)(
E (α)kl (∂U(α)) + E (α)Y,kl(û

(α))
)
η(α) dz′dY

≤ lim inf
ε→0

1
ε5

2

∑
α=1

∫
G

(α)
ε ×ωr

A(α)
ijkl,εẽij(u

(α)
ε )ẽkl(u

(α)
ε ) η(α)dz ≤ lim inf

ε→0

2

∑
α=1

∫
G

(α)
ε ×ωr

F(α)
ε · u(α)

ε η(α)dz.

(7.63)
We prove now that the last term in (7.63) converges. By the strong convergence of the applied
forces, the definition of displacement (7.13) together with the weak convergences in Lemma
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21, the reference frame convergences (7.59), we obtain

1
ε5

2

∑
α=1

∫
G

(α)
ε ×ωr

F(α)
ε · u(α)

ε η(α) dz′

→ C0(κ)
2

∑
α,β=1

( ∫
Ω

f (β)
α Uα + f (β)

3 U3dz′ +
∫

Ω
f̃ (α)α U

(S)
α + f̃ (3−α)

α U
(B)
α dz′

)
−C1(κ)

2

∑
α,β=1

∫
Ω

f̃ (β)
α ∂αU3dz′.

(7.64)

At last, we get the limit of

1
ε5

2

∑
α=1

∫
G

(α)
ε ×ωr

F(α)
ε · v(α)ε η(α) dz

by replacing in (7.64) the functions (U, U(S), U(B)) by the functions (V, V(S), V(B)). Hence,
inequality (7.61) follows due to (7.62), (7.63) and (7.64). A density argument gives (7.61) for
any test function in X .
The existence of solutions for problem (7.61) is a direct consequence of the bilinearity, bound-
edness, and coercivity of A(α) (inherited from the properties (i)-(iii) of A(α)

ε in Subsection
5.5.2 through convergence (7.60)) and the Stampacchia’s Lemma.

7.5.2 The microscopic cell problem

Now that the limit problem has been found, we can proceed to the split of the microscopic
scale from the macroscopic one. In this subsection, we investigate the microscopic problem,
or cell problem, whose solution is the correctors that will later form the homogenizing oper-
ator in the macroscopic scale.

We first define W as the the convex subset of W(1) ×W(2) by

W .
=
{
(ŵ(1), ŵ(2)) ∈W(1) ×W(2) ∣∣
0 ≤ (−1)a+b

(
ŵ(1)

3 (a + Y1, b, Y2, (−1)a+b+1κ)− ŵ(2,a)
3 (a, b + Y2, Y1, (−1)a+bκ)

)
a.e. on ωκ , (a, b) ∈ {0, 1}2

}
.

Now, we introduce the correctors’ problem. For every X ∈ R9, we denote

X(1) = (X1, X2, X5, X6, X7), X(2) = (X3, X4, X8, X5, X9).

We consider the following microscopic cell problems:

For each X(α) ∈ R5, find χ̂ ∈W such that for every v̂ ∈W :
2

∑
α=1

∫
Cyl(α)

A(α)
ijkl
(
E (α)ij (X(α)) + E (α)Y,ij(χ̂

)
E (α)Y,kl(χ̂− v̂) η(α) dY ≤ 0.

(7.65)

The existence of solutions follows by Stampacchia’s Lemma.
Now, if χ̂ and χ̃ are both solutions of (7.65), then we can first consider problem (7.65) with χ̂
as solution and χ̃ as test-function and then vice versa. Summing up both inequalities leads
to

2

∑
α=1

∫
Cyl(α)

A(α)
ijkl E

(α)
ij,Y(χ̃− χ̂) E (α)kl,Y(χ̃− χ̂) η(α) dY ≤ 0,
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from where we get that E (α)Y (χ̂) = E (α)Y (χ̃), since by coercivity the above quantity is also
non-negative. Hence, Lemma 27 implies that there exist rigid displacements r(α) ∈ W such
that

χ̂ = r(α) + χ̃, a.e. in Cyl(α).

As the strain tensors of the solutions of (7.65) are uniquely determined, we will henceforth
denote them E (α)Y (χ̂(X(α), ·)).

7.5.3 The homogenizing operator and the macroscopic cell problem

Now that problem (7.65) has been investigated, we can define the homogenizing operators
by integrating over the solutions of the cell problems.

Definition 15. We define the homogenizing operator Ahom by

∀X ∈ R9, Ahom,n(X)
.
=

2

∑
α=1

∫
Cyl(α)

A(α)
ijkl
(
E (α)ij (X(α)) + E (α)Y,ij(χ̂(X(α), Y))

)
E (α)kl (e(α)n ) η(α) dY,

where χ̂(X(α), ·) are a solution of problem (7.65) and
(
e1, . . . , e9

)
the usual basis of R9.

Now, to ensure the existence of solutions for the macroscopic problem, we need to prove
some properties of the homogenizing operator to apply the Stampacchia Lemma.

Proposition 11. The operator Ahom is continuous (and thus of Caratheodory type), bounded, mono-
tone and coercive.

Proof. Step 1. We show that the map X(1) ∈ R5 7−→ EY(χ̂(X(1), ·)) is Lipschitz continuous for the
strong topology of L2(Cyl(1))6.
We will only prove the statement for α = 1, since the proof for α = 2 is analogous.
Let X(1), Z(1) be two vectors in R5 and χ̂(X(1), ·), χ̂(Z(1), ·) be the associated solutions given
by the cell problem (7.65). By the coercivity of the tensor A(1), we have∥∥E (1)Y (χ̂(X(1), ·))− E (1)Y (χ̂(Z(1), ·))

∥∥2
L2(Cyl(1))

≤
∫

Cyl(1)
A(1)

ijkl
(
E (1)Y,ij(χ̂(X(1), ·))− E (1)Y,ij(χ̂(Z(1), ·))

) (
E (1)Y,kl(χ̂(X(1), ·))− E (1)Y,kl(χ̂(Z(1), ·))

)
η(1) dY

≤
∫

Cyl(1)
A(1)

ijkl E
(1)
Y,ij(χ̂(X(1), ·))

(
E (1)Y,kl(χ̂(X(1), ·))− E (1)Y,kl(χ̂(Z(1), ·))

)
η(1) dY

+
∫

Cyl(1)
A(1)

ijkl E
(1)
Y,ij(χ̂(Z(1), ·))

(
E (1)Y,kl(χ̂(Z(1), ·))− E (1)Y,kl(χ̂(X(1), ·))

)
η(1) dY

≤ −
∫

Cyl(1)
A(1)

ijkl E
(1)
ij (X(1))

(
E (1)Y,kl(χ̂(X(1), ·))− E (1)Y,kl(χ̂(Z(1), ·))

)
η(1) dY

−
∫

Cyl(1)
A(1)

ijkl E
(1)
ij (Z(1))

(
E (1)Y,kl(χ̂(Z(1), ·))− E (1)Y,kl(χ̂(X(1), ·))

)
η(1) dY

≤
∫

Cyl(1)
A(1)

ijkl E
(1)
ij (X(1) − Z(1))

(
E (1)Y,kl(χ̂(X(1), ·))− E (1)Y,kl(χ̂(Z(1), ·))

)
η(1) dY

≤ C
∥∥E (1)(X(1) − Z(1))

∥∥
L2(Cyl(1))

∥∥E (1)Y (χ̂(X(1), ·))− E (1)Y (χ̂(Z(1), ·)))
∥∥

L2(Cyl(1)).

Hence, the Lipschitz continuity is proven since∥∥E (1)Y (χ̂(X(1), ·))−E (1)Y (χ̂(Z(1), ·))
∥∥

L2(Cyl(1)) ≤ C
∥∥E (1)(X(1)−Z(1))

∥∥
L2(Cyl(1)) ≤ C|X(1)−Z(1)|.

So, the statement of this step is proved. As a consequence the map X ∈ R9 7−→ Ahom(X) ∈
R9 is continuous.
Step 2.We prove that Ahom is monotone.
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Let X and Z be two vectors in R9. By the coercivity of the tensor A(α), we have(
Ahom(X)− Ahom(Z)

)
· (X− Z)

=
2

∑
α=1

∫
Cyl(α)

A(α)
ijkl
(
E (α)ij (X(α) − Z(α)) + E (α)Y,ij(χ̂(X(α), ·)− χ̂(Z(α), ·))

)
E (α)kl (X(α) − Z(α)) η(α) dY

≥ C
2

∑
α=1

∫
Cyl(α)

∣∣E (α)ij (X(α) − Z(α)) + E (α)Y,ij(χ̂(X(α), ·)− χ̂(Z(α), ·))
∣∣2η(α) dY

−
2

∑
α=1

∫
Cyl(α)

A(α)
ijkl
(
E (α)ij (X(α)) + E (α)Y,ij(χ̂(X(α), ·)

)
E (α)Y,kl(χ̂(X(α), ·)− χ̂(Z(α), ·)) η(α) dY

−
2

∑
α=1

∫
Cyl(α)

A(α)
ijkl
(
E (α)ij (Z(α)) + E (α)Y,ij(χ̂(Z(α), ·))

)
E (α)Y,kl(χ̂(Z(α), ·)− χ̂(X(α), ·)) η(α) dY ≥ 0,

where the last passage follows from the fact that the first integral is non-negative, while the
second and third integrals are non-negative by definition of problem (7.65) with the choice of
test functions χ̂(X(1), ·) and χ̂(Z(1), ·) respectively. Thus the monotonicity of Ahom is proved.
Step 3. We prove that Ahom is coercive.
From the first inequality of (7.58) we have (α ∈ {1, 2})∫

Cyl(α)

∣∣E (α)(X(α)) + E (α)Y
(
χ̂(X(α), ·)

)∣∣2η(α) dY ≥ C0|X(α)|2 ∀X(α) ∈ R5. (7.66)

Hence, for every X in R9 we get

Ahom(X) · X =
2

∑
α=1

∫
Cyl(α)

A(α)
ijkl
(
E (α)ij (X(α)) + E (α)Y,ij(χ̂(X(α), ·))

)
E (α)kl (X(α)) η(α) dY

=
2

∑
α=1

∫
Cyl(α)

A(α)
ijkl
(
E (α)ij (X(α)) + E (α)Y,ij(χ̂(X(α), ·))

) (
E (α)kl (X(α)) + E (α)Y,kl(χ̂(X(α), ·))

)
η(α) dY

−
2

∑
α=1

∫
Cyl(α)

A(α)
ijkl
(
E (α)ij (X(α)) + E (α)Y,ij(χ̂(X(α), ·))

)
E (α)Y,kl(χ̂(X(α), ·)) η(α) dY ≥ C0|X|2,

where the last passage follows from inequality (7.66) and the fact that the second integral
is non-negative by the definition of problem (7.65) with the choice of a zero test function.
Hence, the coercivity of Ahom is proved.

We can finally write the macroscopic problem. Set

X H .
=
{(

V, V(S), V(B)) ∈ XM ×XS ×XB

∣∣∣
|V(S)

1 (·, b)−V
(B)
1 (·, a)|+ κ

∣∣∂2V1 + ∂1V2
∣∣ ≤ g1 a.e. in Ω,

|V(S)
2 (·, a)−V

(B)
2 (·, b)|+ κ

∣∣∂2V1 + ∂1V2
∣∣ ≤ g2 a.e. in Ω, (a, b) ∈ {0, 1}2

}
,

which consists of the original space X without the microscopic functions.
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Theorem 8. The macroscopic homogenized problem has the following formulation:

Find
(
U, U(S), U(B)) ∈ X H such that for every

(
V, V(S), V(B)) ∈ X H :∫

Ω
Ahom(∂U) · (∂U− ∂V) dz′ ≤ C0(κ)

2

∑
β=1

( 2

∑
α=1

∫
Ω

f (β)
α (Uα −Vα) dz′ +

∫
Ω

f (β)
3 (U3 −V3)dz′

)
+

C0(κ)

2

∫
Ω

1

∑
c=0

(
f̃ (α)α

(
U

(S)
α −V

(S)
α

)
(·, c) + f̃ (3−α)

α

(
U

(B)
α −V

(B)
α

)
(·, c)

)
dz′

−C1(κ)
2

∑
α=1,β=1

∫
Ω

f̃ (β)
α (∂αU3 − ∂αV3)dz′, ∀

(
V, V(S), V(B)) ∈ XM ×XS ×XB.

(7.67)
It admits solutions, but in general, the solution is not unique.

Proof. The existence of solutions to problem (7.67) is a direct consequence of the properties
of the homogenizing operator Ahom given in Proposition 11 together with the Stampacchia’s
Lemma.

The operator structure of the homogenized problem is known as the Leray−Lions oper-
ator.
Starting from the form of the final decomposition of the displacement (7.13) and going to the
limit, the cell problem (7.65) and the macroscopic problem (7.67) give the approximation of
the limit displacements in the direction of beams e1 and e2, that are a.e. z′ ∈ Ω:

u(1)(z1, qε, y2, y3) ≈

εU1(qε) + ε2U
(S)
1 (z1, qε, b)

εU2(z1) + ε2U
(B)
2 (z1, qε, b)

εU3(z1, qε)

+

 ε∂2U3(z1, qε)
−ε∂1U3(z1, qε)

ε∂1U2(z1)

 ∧Φ(1)
ε (z1)e3

︸ ︷︷ ︸
middle line displacement

+

 ε∂2U3(z1, qε)
−ε∂1U3(z1, qε)

ε∂1U2(z1)


︸ ︷︷ ︸

cross-section rotation

∧
(
y2e2 + y3n(1)

ε (z1)
)
,

u(2)(pε, z2, y1, y3) ≈

εU1(z2) + ε2U
(B)
2 (pε, z2, a)

εU2(pε) + ε2U
(S)
2 (pε, z2)

εU3(pε, z2)

+

 ε∂2U3(pε, z2)
−ε∂1U3(pε, z2)

ε∂2U1(z2)

 ∧Φ(2)
ε (z2)e3

+

 ε∂2U3(pε, z2)
−ε∂1U3(pε, z2)

ε∂2U1(z2)

 ∧ (y1e1 + y3n(2)
ε (z2)

)
.

(7.68)
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Chapter 8

Conclusions

In this chapter, we gather all the obtained results throughout the thesis to have a final
overview of our achievements, their physical meaning, and their application.

8.1 Results of the extension of the unfolding method

Concerning the periodic unfolding for anisotropically bounded sequences, the results have
been crucial to find the convergences of fields in the unsupported subdomains in Chapter 7.
However, the theoretical results exceed the frame of textile structures and can be applied to
many other contexts. Among others, we mention Griso, Khilkova, and Orlik, 2022, where
structures made of beams are considered, and the same contrast on the gradient estimates
appears on the unstable oscillating thin straits. Moreover, the homogenization of problem
(3.11), and its equivalent formulation (3.20), where the anisotropy is shifted to the material
coefficients, can be found Griso, Migunova, and Orlik, 2017 and Griso, Migunova, and Orlik,
2016.
Concerning the periodic unfolding for lattice structures, it is a very powerful tool when
dealing with thin periodic structures made from lattices. In this context, we would like
to cite again lattice structures made of beams in stable (see Griso et al., 2020; Griso et al.,
2021) and unstable configuration (see again Griso, Khilkova, and Orlik, 2022, together with
anisotropic behaviors). More generally, such a tool can be applied to many other problems
related to partial differential equations on domains involving periodic grids, lattices, thin
frames, and glued fiber structures.

8.2 Macroscopic behavior of r = κε textiles with linear elastic
yarns according to the contact strength εh.

Concerning the second part of the thesis (Chapter 5-7), we now give an overview of the
results concerning the macroscopic behavior of our square of woven elastic yarns, with par-
ticular attention to the role the contact strength between yarns plays in the supported and
unsupported parts of the domain, and on the displacement behavior.
For the sake of completeness, to the results obtained in Section 6.2 for h = 1 and in Section
7.5 for h = 2, we also recall the main results in Griso, Orlik, and Wackerle, 2020a concerning
textiles with strong contact (h = 3) or almost glued fibers (h ≥ 4).

8.2.1 Results (known) for a textile with contact gε ∼ ε4g or higher

As we know from Section 6.1, the estimates for the displacement fields are the same for h ≥ 3
in the whole domain Ω. However, the contact conditions are not (see (6.1) and (6.2)), and so
they are not on the homogenized problem.
Recall the space definitions (7.18) and let U .

= (U1, U2, U3) ∈ H1(Ω)2
Γ × H2(Ω)Γ. Set

eαβ(U)
.
=

1
2
(
∂αUβ + ∂βUα

)
, (α, β) ∈ {1, 2}2.
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The macroscopic homogenized problem has the following formulation:Find U ∈ H1(Ω)2
Γ × H2(Ω)Γ such that for every V ∈ H1(Ω)2

Γ × H2(Ω)Γ:∫
Ω

Ahom,lin(∂U) · ∂V dz′ = C0(κ)
∫

Ω
f (α) ·V dz′,

(8.1)

where
∂U .

=
(
e11(U), e12(U), e22(U), ∂11U3, ∂22U3, ∂12U3

)
,

∂V .
=
(
e11(V), e12(V), e22(V), ∂11V3, ∂22V3, ∂12V3

)
.

(8.2)

The homogenizing operator Ahom,lin is the bilinear function from R6 to R6 defined by

Ahom,lin(Xm, Xn)
.
= XmXn

2

∑
α=1

∫
Cyl(α)

A(α)
ijkl
(
E (α)ij (em) + E (α)Y,ij(χ̂m)

)
E (α)kl (en) η(α) dY.

For every X ∈ R6, the macroscopic strain tensors E (1)(X) and E (2)(X) are defined as in
(7.40), but with

F(1)(X)
.
=

 X1
X2
−Θ′X4

+

 X6
−X4

0

 ∧ (Φ(1)e3 + Y2e2 + Y3n(1)) ,

F(2)(X)
.
=

 X2
X3
−Θ′X5

+

 X5
−X6

0

 ∧ (Φ(2)e3 + Y1e1 + Y3n(2)) (8.3)

The correctors χ̂1, . . . , χ̂6 belong to the convex set W defined by

Wlin
.
=
{
(ŵ(1), ŵ(2)) ∈W(1) ×W(2) ∣∣∣∣(Y1 − a)X1 − (Y2 − b)X2 + ŵ(1)

1 (a + Y1, b, Y2, (−1)a+b+1)− ŵ(2)
1 (a, b + Y2, Y1, (−1)a+b)

∣∣ = 0,∣∣(Y1 − a)X2 − (Y2 − b)X3 + ŵ(1)
2 (a + Y1, b, Y2, (−1)a+b+1)− ŵ(2)

2 (a, b + Y2, Y1, (−1)a+b)
∣∣ = 0

ŵ(1)
1 (a + Y1, b, Y2, (−1)a+b+1)− ŵ(2)

1 (a, b + Y2, Y1, (−1)a+b) = 0, a.e. on ωκ , (a, b) ∈ {0, 1}2
}

.

Furthermore, they are the solution of the microscopic cell problems:
For each Xi ∈ R6, find χ̂i ∈Wlin such that for every v̂ ∈Wlin :

2

∑
α=1

∫
Cyl(α)

A(α)
ijkl
(
E (α)ij (X(α)) + E (α)Y,ij(χ̂

)
E (α)Y,kl(v̂) η(α) dY = 0.
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The displacements behave the same in the whole domain Ω. In particular, their approxima-
tion with the limit fields as solutions of the homogenized problem (8.1):

u(1)(z1, qε, y2, y3) ≈

ε2U1
ε2U2
εU3

 (z1, qε) +

 ε∂2U3
−ε∂1U3

0

 (z1, qε) ∧Φ(1)
ε (z1)e3︸ ︷︷ ︸

middle line displacement

+

 ε∂2U3
−ε∂1U3

0

 (z1, qε)

︸ ︷︷ ︸
cross-section rotation

∧
(
y2e2 + y3n(1)

ε (z1)
)
,

u(2)(pε, z2, y1, y3) ≈

ε2U1
ε2U2
εU3

 (pε, z2) +

 ε∂2U3
−ε∂1U3

0

 (pε, z2) ∧Φ(2)
ε (z2)e3

+

 ε∂2U3
−ε∂1U3

0

 (pε, z2) ∧
(
y1e1 + y3n(2)

ε (z2)
)
.

(8.4)

Concerning this elasticity problem, we note that in the definition of the microscopic space
Wlin, the contact is so strong that the gap function vanishes on the right-hand side, leaving
linear conditions in the three components. This fact leads to linear cell problems, a bi-linear
homogenizing operator, and thus a fully linear problem.
This case could have been achieved by gluing all the fibers in all the contact domains of Ω,
namely g = 0 in (5.27)-(5.28). The problem could have been studied as in Griso, Orlik, and
Wackerle, 2020b by extending the woven textile to a periodically perforated domain.
From (8.4), the displacement is expected to behave the same in all the four subdomains
Ω1 −Ω4, and a partition is unnecessary. This means that the contact is so strong that even if
a partial clamp is set, the fibers inherit all the properties from the clamped ones.
We also note that the limit displacements (8.4) have the third component of the cross-section
rotation equal to zero. This translates into an absence of in-plane rotation for the fibers: the
fibers tend to stay straight for small deformations.

8.2.2 Results (known) for a textile with contact gε ∼ ε3g

As in the previous case, the macroscopic homogenized problem has the following formula-
tion: Find U ∈ H1(Ω)2

Γ × H2(Ω)Γ such that for every V ∈ H1(Ω)2
Γ × H2(Ω)Γ:∫

Ω
Ahom,lin(∂U) · ∂V dz′ = C0(κ)

∫
Ω

f (α) ·V dz′,
(8.5)

where ∂U and ∂V are defined as in (8.2).
The homogenizing operator Ahom,lin is function from R6 to R6 defined by

Ahom(z′, Xm) · Xn
.
= Xn

2

∑
α=1

∫
Cyl(α)

A(α)
ijkl
(
E (α)ij (Xm) + E (α)Y,ij(χ̂m(z′, Y))

)
E (α)kl (e(α)n ) η(α) dY.

For every X ∈ R6, the macroscopic strain tensors E (1)(X) and E (2)(X) are defined as in
(7.40), but with F(1)(X), F(2)(X) replaced by (8.3).
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The correctors χ̂1(z, ·), . . . , χ̂6(z, ·) belong to the convex set W defined by

Wz
.
=
{
(ŵ(1), ŵ(2)) ∈W(1) ×W(2) ∣∣∣∣(Y1 − a)X1 − (Y2 − b)X2 + ŵ(1)

1 (a + Y1, b, Y2, (−1)a+b+1)− ŵ(2)
1 (a, b + Y2, Y1, (−1)a+b)

∣∣ ≤ g1,∣∣(Y1 − a)X2 − (Y2 − b)X3 + ŵ(1)
2 (a + Y1, b, Y2, (−1)a+b+1)− ŵ(2)

2 (a, b + Y2, Y1, (−1)a+b)
∣∣ ≤ g2

0 ≤ (−1)a+b(ŵ(1)
1 (a + Y1, b, Y2, (−1)a+b+1)− ŵ(2)

1 (a, b + Y2, Y1, (−1)a+b)
)
≤ g3,

a.e. on ωκ , (a, b) ∈ {0, 1}2
}

.

Furthermore, they are the solution of the microscopic cell problems:
For each (z′, Xi) ∈ Ω×R6, find χ̂i ∈Wz such that for every v̂ ∈Wz :

2

∑
α=1

∫
Cyl(α)

A(α)
ijkl
(
E (α)ij (Xi) + E

(α)
Y,ij(χ̂i(z′, Y)

)
E (α)Y,kl(χ̂i(z′, Y)− v̂(z′, Y)) η(α) dY ≤ 0.

The displacements’ approximation by the limit fields as solutions of the homogenized prob-
lem (8.5) is given by (8.4).

In this case, we make some new considerations. Looking at the definition of the mi-
croscopic space Wz the function g does not vanish on all three components and maintains
the macro-micro inequality, leading to non-linear cell problems with field coupling. Conse-
quently, the solutions are non-linear correctors that still depend on the macroscopic variable
z′.
The homogenizing operator also depends non-linearly on the macroscopic fields, but the
absence of only macroscopic conditions leads to a linear homogenized problem.
The displacement is the same as in the previous case: it behaves the same in all four subdo-
mains Ω1 −Ω4 due to the strong contact order, and we expect no in-plane rotations.

8.2.3 New results for a textile with contact gε ∼ ε2g

For this case, we refer to the results rigorously proved in Section 7.5 and more generally in
Chapter 7.
We note that in the definition of the microscopic space W, only one inequality appears in the
third direction. It involves the macro-micro remainders ŵ, and an upper bound given by
g3 is no more present. Nevertheless, the inequality is maintained in the cell problems and
leads to the presence of non-linear correctors, as in the strong contact case. But differently
from this case, the absence of fully macroscopic fields in W implies that the correctors do not
depend on z′, and so does not the homogenizing operator Ahom.
On the other hand, the in-plane macroscopic fields become a constraint for the homogenized
problem in the in-plane components (see the definition of X H), and therefore inequality is
also maintained in the macroscopic scale.
Concerning the approximation of the displacement, we note that due to the definition of the
fields U1 (which vanishes in Ω1 ∪Ω2) and U2 (which vanishes in Ω1 ∪Ω3), the displacement
(7.68) is different in the four subdomains Ω1-Ω4. Moreover, their presence is responsible for
the displacement’s in-plane rotations (see the comparison between the third component in
the rotation cross-section of (7.68) and the ones of (8.4). In this sense, the presence of these
partially vanishing fields is one of the biggest results of the study of this type of textile.
The limit contact conditions give another crucial aspect of this case: they bind not only
the distance between stretching and bending in the contact areas but also give a maximum
bound on the in-plane rotations.
Delving into this last point in more detail, we find it convenient to restrict the limit contact
conditions to the respective subdomain Ω1-Ω4. Since the function U1 vanishes by definition
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in Ω1 ∪Ω2 and U2 vanishes by definition in Ω1 ∪Ω3, we have:|U
(S)
1 (z′, b)−U

(B)
1 (z′, a)| ≤ g1(z′),

|U(S)
2 (z′, a)−U

(B)
2 (z′, b)| ≤ g2(z′),

a.e. z′ ∈ Ω1,

|U
(S)
1 (z′, b)−U

(B)
1 (z′, a)|+ κ|∂1U2(z1)| ≤ g1(z′),

|U(S)
2 (z′, a)−U

(B)
2 (z′, b)|+ κ|∂1U2(z1)| ≤ g2(z′),

a.e. z′ ∈ Ω2

|U
(S)
1 (z′, b)−U

(B)
1 (z′, a)|+ κ|∂2U1(z2)| ≤ g1(z′),

|U(S)
2 (z′, a)−U

(B)
2 (z′, b)|+ κ|∂2U1(z2)| ≤ g2(z′),

a.e. z′ ∈ Ω3

|U
(S)
1 (z′, b)−U

(B)
1 (z′, a)|+ κ|∂2U1(z2) + ∂1U2(z1)| ≤ g1(z′),

|U(S)
2 (z′, a)−U

(B)
2 (z′, b)|+ κ|∂2U1(z2) + ∂1U2(z1)| ≤ g2(z′),

a.e. z′ ∈ Ω4.

In the subdomain Ω1, the fields U1 and U2 both vanish, and thus the displacements (7.68)
have no common directions, and their difference is bounded by the in-plane contact func-
tions g1 and g2. In Ω2, the field U2 appears as a common direction in the second component
of the displacements and as an in-plane rotation of the displacement u(1). hence, the yarns in
direction e1 have an in-plane rotation with an angle given by ε∂1U2. This angle is bounded
by the macroscopic in-plane constraint κ|∂1U2| ≤ g2. A symmetrical equivalent appears
in Ω3 due to the presence of U1. In Ω4, both fields are present: the displacements have
an in-plane common direction and in-plane rotations. These rotations are bounded by the
macroscopic contact conditions κ|∂2U1 + ∂1U2| ≤ min{g1, g2}. This behavior is represented
in Figure 8.1 (in the drawing, the rotations are exaggerated for the sake of understanding,
we still consider small deformations).

8.2.4 The trivial case of a textile with contact gε ∼ εg

The displacement in the third direction is expected to be homogenized and behave as in the
previous cases. Concerning the in-plane limit displacements, the contact is so loose that no
interaction between the yarns in direction e1 and in direction e2 takes place (and the beams
are free to have in-plane rotationsR(1)

3 andR(2)
3 , which do not depend on each other).

Since the in-plane behavior consists of the homogenization of each direction independently,
this last case is of little interest for the initial task of a woven textile and especially for the
role of yarns’ contact.
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FIGURE 8.1: The expected displacement behavior in the different parts of
the domain for a textile with loose contact. The black rectangles denote the

admissible in-plane sliding allowed by the contact function g.
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Appendix A

Technical lemmas

In this appendix, we present the technical lemmas that furnished a decisive theoretical break-
through for the proofs of quite some of the propositions through the whole draft. Georges
Griso has done the formulation of these Lemmas.

A.1 ...about the periodic unfolding for anisotropically bounded
sequences

Lemma 29. Let p ∈ (1,+∞) and let u be in Lp(Y
′′
; W1,p(Y′)) such that

∇y′u ∈ Lp(Y′; W1,p(Y
′′
))N1 .

Then u = u−MY′(u) belongs to W1,p(Y). It satisfies

∇y′u = ∇y′u a.e. in Y (A.1)

and
‖u‖W1,p(Y) ≤ C

(
‖∇y′u‖Lp(Y′×Y′′) + ‖∇y′′(∇y′u)‖Lp(Y′×Y′′)

)
. (A.2)

Proof. Step 1. We prove the statement for u ∈ C2(Y).
Set u = u−MY′(u). It is clear that (A.1) is satisfied. We prove now the estimate (A.2) of u.
By definition of u, equality (A.1) and the Poincaré-Wirtinger Inequality we have

‖u‖Lp(Y′×Y′′) = ‖u−MY′(u)‖Lp(Y′×Y′′) ≤ C‖∇y′u‖Lp(Y′×Y′′),

‖∇y′u‖Lp(Y′×Y′′) = ‖∇y′u‖Lp(Y′×Y′′).
(A.3)

Observe thatMY′(∇y′′u) = ∇y′′MY′(u) = 0.
Then, again by equality (A.1) and the Poincaré-Wirtinger Inequality, we get

‖∇y′′u‖Lp(Y′×Y′′) = ‖∇y′′u−MY′(∇y′′u)‖Lp(Y′×Y′′) ≤ C‖∇y′(∇y′′u)‖Lp(Y′×Y′′)

= C‖∇y′′(∇y′u)‖Lp(Y′×Y′′) = C‖∇y′′(∇y′u)‖Lp(Y′×Y′′).
(A.4)

Hence, by estimates (A.3)-(A.4), we obtain (A.2).
Step 2. We prove the statement of the lemma

Suppose u ∈ Lp(Y
′′
; W1,p(Y′)) and ∇y′u ∈ Lp(Y′; W1,p(Y

′′
))N1 . Since C2(Y) is dense in this

subspace of Lp(Y
′′
; W1,p(Y′)), there exists a sequence of functions un ∈ C2(Y) such that

un → u strongly in Lp(Y
′′
; W1,p(Y′))),

MY′(un)→MY′(u) strongly in Lp(Y
′′
),

∇y′un → ∇y′u strongly in Lp(Y′; W1,p(Y
′′
))N1 .

The corresponding sequence {un} (given by Step 1) satisfies ∇y′un = ∇y′un, moreover it
belongs to C2(Y) and is bounded in W1,p(Y) (from (A.2)). Passing to the limit, this gives
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u ∈W1,p(Y) such that

un → u strongly in W1,p(Y), ∇y′u = ∇y′u a.e. in Y.

Finally, observe that u = u−MY′(u).

Lemma 30. Let p ∈ (1,+∞) and let u be in Lp(Y
′′
; W1,p

per(Y′)) such that

∇y′u ∈ Lp(Y′; W1,p
per(Y

′′
))N1 .

Then, there exists w ∈W1,p
per(Y) such that

∇y′w = ∇y′u a.e. in Y. (A.5)

Proof. Since u in Lp(Y
′′
; W1,p

per(Y′)) and∇y′u ∈ Lp(Y′; W1,p
per(Y

′′
))N1 , Lemma 29 shows that the

function u = u−MY′(u) belongs to W1,p(Y). It is obvious that u is periodic with respect to
the variables y1, . . . , yN1 . One also has ∇y′u = ∇y′u ∈ Lp(Y′; W1,p

per(Y
′′
))N1 . Denote

Yi =
{

y ∈ Y | yi = 0, yj∈ (0, 1), j ∈ {1, . . . , N} j 6= i
}

, i ∈ {1, . . . , N},

Y
′′
i =
{

y ∈ Y′′ | yi = 0, yj∈ (0, 1), j ∈ {N1 + 1, . . . , N} j 6= i
}

, i ∈ {N1 + 1, . . . , N}.

Since ∇y′u = ∇y′u and is yj periodic, j ∈ {N1 + 1, . . . , N}, one gets

∇y′u|Yj+ej
−∇y′u|Yj

= ∇y′u|Yj+ej
−∇y′u|Yj

= 0 a.e. in Yj.

Hence
u|Yj+ej

− u|Yj
∈W1−1/p,p(Y

′′
j ), j ∈ {N1 + 1, . . . , N}.

Besides, one has
u|Yj+ej

− u|Yj
= 0, j ∈ {1, . . . , N1}.

Then, following the same lines of the proofs of Cioranescu, Damlamian, and Griso, 2018,
Proposition 13.34 and Lemmas 13.35-13.36, there exits w ∈W1,p

per(Y) such that

w− u ∈W1,p(Y
′′
)

and we have

‖w− u‖W1,p(Y) ≤C
N

∑
j=N1+1

‖u|Yj+ej
− u|Yj

‖W1−1/p,p(Y′′j )

≤C
(
‖∇y′u‖Lp(Y) + ‖∇y′u‖Lp(Y′ ;W1,p(Y′′ ))

)
.

The function w satisfies (A.5).

A.2 ...about the periodic unfolding for lattices

Lemma 31. Let p ∈ (1,+∞) and let {φε}ε be a sequence in W2,p(Sε) satisfying

‖φε‖Lp(Sε) + ‖∂sφε‖Lp(Sε) + ‖∂
2
sφε‖Lp(Sε) ≤ Cε

1−N
p .
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For every k′ ∈ K̂ and (i, j) ∈ {1, . . . , N}2, i 6= j, we define in Ω̃ε × K̂i the piecewise constant
function Φ(i,j)

ε by

Φ(i,j)
ε (·, k′) .

=


li
ε2

(
Tε
S (φε)

(
·, A(k′) + ei

)
− Tε

S (φε)
(
·, A(k′)

)
− Tε

S (φε)
(
·, A(k′ + ej) + ei

)
+ Tε

S (φε)
(
·, A(k′ + ej)

))
a.e. in Ω̃ε × K̂i,

0 a.e. in
(
RN \ Ω̃ε

)
× K̂i.

Then, there exist a subsequence of {ε}, still denoted {ε}, and a function φ in W1,p(Ω) ∩W2,p
loc (Ω)

such that ((i, j) ∈ {1, . . . , N}2, i 6= j, k′ ∈ K̂i)

T Sε (φε)→ φ strongly in Lp(Ω; W2,p(S)),
Tε
S (∂sφε) ⇀ ∂jφ weakly in Lp(Ω; W1,p(S (j))),

Φ(i,j)
ε (·, k′) ⇀ − lilj∂

2
ijφ weakly in W−1,p(RN).

(A.6)

Proof. There exist a subsequence of {ε}, still denoted {ε}, and a function φ in the space
W1,p(Ω) ∩W2,p

loc (Ω) such that convergences (A.6)1,2 hold (see Theorem 3).
Now, let ψ be in W1,p′(RN), one has∫

Ω
ψ(x)Φ(i,j)

ε (x, k′) dx

= εN ∑
ξ∈ZN

MY(ψ)(εξ)
li
ε2

(
φε

(
εξ + εA(k′) + εei

)
− φε

(
εξ + εA(k′)

)
− φε

(
εξ + εA(k′ + εej) + εei

)
+ φε

(
εξ + εA(k′ + ej)

))
= εN li ∑

ξ∈ZN

MY(ψ)(εξ − εei)−MY(ψ)(εξ)

ε

·
φε

(
εξ + εA(k′)

)
− φε

(
εξ + εA(k′ + ej)

)
ε

= li
∫

Ω

ψ− ψ(· − εei)

ε

( ∫ A(k′+ej)

A(k′)
Tε
S (∂sφε) dS

)
dx.

Then, due to convergences (A.6)2, we get

lim
ε→0

∫
Ω

ψ(x)Φ(i,j)
ε (x, k′) dx = li

∫
Ω

∂iψ
( ∫ A(k′+ej)

A(k′)
∂jφ dS

)
dx = lilj

∫
Ω
∂iψ∂jφ dx.

Hence, (A.6)3 is proved.
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Appendix B

Complements of the periodic
unfolding for anisotropically
bounded functions

This appendix is dedicated to the extension of Lemma 11.11 of Cioranescu, Damlamian, and
Griso, 2018 to the anisotropic case. We initially gave it interest by the crucial role it plays in
the unfolding of periodic structures made of beams (see Griso, Hauck, and Orlik, 2021) and
yarns (seeGriso, Orlik, and Wackerle, 2020b), and the original plan was to extend it to the
anisotropic case to homogenize the textile with loose contact.
However, the change of strategy that involved the periodic unfolding of lattice structures
made it superfluous for this purpose. Nevertheless, we give here the results since they can
be useful for the study of other structures.
We start by giving its original formulation.

Lemma 32. Let {(uε, vε)}ε be a sequence converging weakly to (u, v) in W1,p(Ω) ×W1,p(Ω)N ,
p ∈ (1,+∞). Moreover, assume that there exist Z ∈ Lp(Ω)N and v̂ ∈ Lp(Ω; W1,p

per,0(Y))
N such

that
1
ε
(∇uε + vε) ⇀ Z weakly in Lp(Ω)N ,

Tε(∇vε) ⇀ ∇v +∇yv̂ weakly in Lp(Ω×Y)N×N .

Then, u belongs to W2,p(Ω). Moreover, there exist a subsequence of {ε}, still denoted {ε}, and
u ∈ Lp(Ω; W1,p

per,0(Y)) such that

1
ε
Tε(∇uε + vε) ⇀ Z +∇yu+ v̂ weakly in Lp(Ω×Y)N .

As a direct consequence, we get the following.

Corollary 12. LetO be an open set in RM, M ≥ 1. Let {(uε, vε)}ε be a sequence converging weakly
to (u, v) in Lp(O; W1,p(Ω))× Lp(O; W1,p(Ω))N , p ∈ (1,+∞). Moreover, assume that there exist
Z ∈ Lp(O ×Ω)N and v̂ ∈ Lp(O ×Ω; W1,p

per,0(Y))
N such that

1
ε
(∇uε + vε) ⇀ Z weakly in Lp(O ×Ω)N ,

Tε(∇vε) ⇀ ∇v +∇yv̂ weakly in Lp(O ×Ω×Y)N×N .

Then, u belongs to Lp(O; W2,p(Ω)). Furthermore, there exist a subsequence of {ε}, still denoted
{ε}, and u ∈ Lp(O ×Ω; W1,p

per,0(Y)) such that:

1
ε
Tε(∇uε + vε) ⇀ Z +∇yu+ v̂ weakly in Lp(O ×Ω×Y)N .
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Define the spaces

Lp(Ω×Y′′, D2
x′)

.
=
{

φ̃ ∈ Lp(Ω×Y′′)
∣∣∇x′ φ̃ ∈ Lp(Ω×Y′′)N1

and (∇x′ ⊗∇x′)φ̃ ∈ Lp(Ω×Y′′)N1×N1
}

,

Lp(Ω, D2
x′ ; W1,p

per(Y′′))
.
=
{

φ̃ ∈ Lp(Ω; W1,p
per(Y′′))

∣∣∇x′ φ̃ ∈ Lp(Ω; W1,p
per(Y′′))N1

and (∇x′ ⊗∇x′)φ̃ ∈ Lp(Ω; W1,p
per(Y′′))N1×N1

}
,

where (∇x′ ⊗∇x′)φ̃ denotes the first N1 × N1 entries of the Hessian matrix of φ.
We endow such spaces with the respective norms:

‖ · ‖Lp(Ω×Y′′ ,D2
x′ )

.
= ‖ · ‖Lp(Ω×Y′′) + ‖∇x′(·)‖Lp(Ω×Y′′) + ‖D2

x′(·)‖Lp(Ω×Y′′),

‖ · ‖Lp(Ω,D2
x′ ;W

1,p(Y′′))
.
= ‖ · ‖Lp(Ω×Y′′ ,D2

x′ )
+ ‖∇y′′(·)‖Lp(Ω×Y′′).

We are ready to extend Lemma 32 to the class of anisotropically bounded sequences.

Lemma 33. Let {(uε, vε)}ε be a sequence in the space Lp(Ω,∇x′)× Lp(Ω,∇x′)
N1 , p ∈ (1,+∞),

satisfying
‖uε‖Lp(Ω,∇x′ )

≤ C, ‖vε‖Lp(Ω,∇x′ )
≤ C, (B.1)

where the constant does not depend on ε.
Moreover, assume that there exist Z ∈ Lp(Ω)N1 such that

1
ε
(∇x′uε + vε) ⇀ Z weakly in Lp(Ω)N1 . (B.2)

Then, there exist a subsequence of {ε}, still denoted {ε}, and

Z̃ ∈ Lp(Ω×Y′′)N1 with MY′′(Z̃) = Z ,

ũ ∈ Lp(Ω×Y′′, D2
x′),

u ∈ Lp(Ω×Y′′; W1,p
per,0(Y

′)),

v̂ ∈ Lp(Ω×Y′′; W1,p
per,0(Y

′))N1

such that
Tε(∇x′vε) ⇀ − D2

x′ ũ +∇y′ v̂ weakly in Lp(Ω×Y)N1×N1 ,
1
ε
Tε(∇x′uε + vε) ⇀ Z̃ +∇y′u+ v̂ weakly in Lp(Ω×Y)N1 .

(B.3)

Proof. We first apply the unfolding operator Tε to both sequences {uε} and {vε}. By Lemma
7 and estimates (B.1), there exist a subsequence of {ε}, denoted {ε}, and functions ũ ∈
Lp(Ω × Y′′,∇x′), ṽ ∈ Lp(Ω × Y′′,∇x′)

N1 , û ∈ Lp(Ω × Y′′; W1,p
per,0(Y

′)) and a function v̂ ∈
Lp(Ω×Y′′; W1,p

per,0(Y
′))N1 such that

Tε(uε) ⇀ ũ weakly in Lp(Ω×Y′′; W1,p(Y′)),

Tε(∇x′uε) ⇀ ∇x′ ũ +∇y′ û weakly in Lp(Ω×Y)N1 ,

Tε(vε) ⇀ ṽ weakly in Lp(Ω×Y′′; W1,p(Y′))N1 ,

Tε(∇x′vε) ⇀ ∇x′ ṽ +∇y′ v̂ weakly in Lp(Ω×Y)N1×N1 .

(B.4)

By convergence (B.2), there exist a subsequence of {ε}, denoted {ε}, and Ẑ ∈ Lp(Ω× Y)N1

withMY(Ẑ) = Z such that

1
ε
Tε(∇x′uε + vε) ⇀ Ẑ weakly in Lp(Ω×Y)N1 . (B.5)
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From convergences (B.4)2,3 and (B.5) we get

∇x′ ũ +∇y′ û + ṽ = 0 a.e. in Ω×Y.

Applying MY′ to the above equality and since û ∈ Lp(Ω × Y′′; W1,p
per,0(Y

′)), while ũ ∈
Lp(Ω× Y′′,∇x′), ṽ ∈ Lp(Ω× Y′′,∇x′)

N1 , we get that ∇x′ ũ + ṽ = 0 a.e. in Ω× Y′′. Hence,
∇y′ û = 0 and thus û = 0 because it belongs to Lp(Ω× Y′′; W1,p

per,0(Y
′)). As a consequence,

one has
ũ ∈ Lp(Ω×Y′′, D2

x′).

Set Uε = T ′′ε (uε), Vε = T ′′ε (vε). Again by convergence (B.2), there exist a subsequence of {ε},
still denoted {ε}, and Z̃ ∈ Lp(Ω×Y′′)N1 such that

1
ε
∇x′Uε + Vε ⇀ Z̃ weakly in Lp(Ω×Y′′)N1 .

Then, due to convergence (B.5) we have Z̃ =MY′(Ẑ).
Now, let ω′ and ω′′ be two open sets such that

ω′ ⊂ RN1 , ω′′ ⊂ RN2 and ω′ ×ω′′ ⊂ Ω. (B.6)

First, observe that

Uε ∈ Lp(ω′′ ×Y′′; W1,p(ω′)), Vε ∈ Lp(ω′′ ×Y′′; W1,p(ω′))N1 .

By the above convergence and (B.4)4, one has

1
ε
∇x′Uε + Vε ⇀ Z̃ weakly in Lp(ω′ ×ω′′ ×Y′′)N1 ,

Tε(∇x′vε) = T ′ε (∇x′Vε) ⇀ ∇x′ ṽ +∇y′ v̂ weakly in Lp(ω′ ×ω′′ ×Y′ ×Y′′)N1×N1 .

Lemma 12 claims that up to a subsequence, there exists uω′×ω′′ ∈ Lp(ω′×ω′′×Y′′; W1,p
per,0(Y

′)),
such that the following convergence holds:

1
ε
T ′ε (∇x′Uε + Vε) ⇀ Z̃ +∇y′uω′×ω′′ + v̂ weakly in Lp(ω′ ×ω′′ ×Y′ ×Y′′)N1 .

Taking into account convergence (B.5) we get

Ẑ = Z̃ +∇y′uω′×ω′′ + v̂ in ω′ ×ω′′ ×Y.

Since one can cover Ω by a countable family of open subsets ω′ × ω′′ satisfying (B.6), there
exists u in Lp(Ω×Y′′; W1,p

per,0(Y
′)) such that Ẑ − Z̃ − v̂ = ∇y′u. The proof of (B.3) is therefore

complete.

With some more assumptions, we can improve the regularity of the limit functions.

Lemma 34. Let {(uε, vε)}ε be a sequence in Lp(Ω,∇x′) × Lp(Ω,∇x′)
N1 , with p ∈ (1,+∞),

satisfying the assumptions in Lemma 33. Moreover, assume that∥∥∇x′′
(
∇x′uε + vε

)∥∥
Lp(Ω)

+ ε
∥∥∇x′′

(
∇x′vε

)∥∥
Lp(Ω)

≤ C, (B.7)
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where the constant does not depend on ε.
Then, there exist a subsequence of {ε}, still denoted {ε}, such that

Z̃ ∈ Lp(Ω; W1,p
per(Y

′′
))N1 ,

ũ ∈ Lp(Ω, D2
x′ ; W1,p

per(Y′′)),

w ∈ Lp(Ω; W1,p
per,0(Y)),

v̂ ∈ Lp(Ω; W1,p
per,0(Y))

N1

such that
Tε(∇x′vε) ⇀ − D2

x′ ũ +∇y′ v̂ weakly in Lp(Ω×Y)N1×N1 ,
1
ε
Tε(∇x′uε + vε) ⇀ Z̃ +∇y′w+ v̂ weakly in Lp(Ω×Y)N1 .

Proof. From Lemma 33, there exist a subsequence of {ε}, still denoted {ε}, and Z̃ ∈ Lp(Ω×
Y′′)N1 , u ∈ Lp(Ω× Y′′; W1,p

per,0(Y
′)), ũ ∈ Lp(Ω× Y′′, D2

x′) and v̂ ∈ Lp(Ω× Y′′; W1,p
per,0(Y

′))N1

such that
Tε(∇x′vε) ⇀ − D2

x′ ũ +∇y′ v̂ weakly in Lp(Ω×Y)N1×N1 ,
1
ε
Tε(∇x′uε + vε) ⇀ Z̃ +∇y′u+ v̂ weakly in Lp(Ω×Y)N1 .

By hypothesis (B.7), Lemma 6 (swapping Y′ and Y′′) and the proof of Lemma 9 one has

Tε(∇x′vε) ⇀ − D2
x′ ũ +∇y′ v̂ weakly in Lp(Ω×Y)N1×N1 ,

1
ε
Tε(∇x′uε + vε) ⇀ Z̃ +∇y′u+ v̂ ∈ Lp(Ω×Y′; W1,p

per(Y′′))N1

with Z̃ ∈ Lp(Ω × Y′′)N1 , ũ ∈ Lp(Ω, D2
x′ ; W1,p

per(Y′′)) and v̂ ∈ Lp(Ω; W1,p
per(Y))N1 satisfying

MY′(v̂) = 0 a.e. in Ω×Y′′.
Since, v̂ satisfiesMY′(v̂) = 0 a.e. in Ω×Y′′ andMY′(∇y′u) = 0 a.e. in Ω×Y′′ by periodicity
of u, we obtain

Z̃ =MY′(Z̃) ∈ Lp(Ω; W1,p
per(Y′′))N1 .

Hence ∇y′u lies in Lp(Ω × Y′; W1,p
per(Y

′′
))N1 . Lemma 30 in Appendix gives a function w ∈

Lp(Ω; W1,p
per,0(Y)) such that ∇y′w = ∇y′u. The proof is complete.
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Appendix C

Proof of a better bound for estimate
(5.37) in Lemma 19

The idea behind the proof is to take the difference between the displacements in the contact
areas and set as remainders the terms with a "sufficiently good" estimate, namely ∼ ε‖u‖2

Sε
.

Then, the remaining terms are paired, taking into account the oscillating manner, which
again gives remainders with a sufficiently good estimate ∼ ε‖u‖2

Sε
. Iterating this procedure,

we get that all the terms paired have an estimate ∼ ε‖u‖2
Sε

.

Proof of estimate (5.37) of Lemma 19. First, to shorten the notation, a.e. (t1, t2) in ωκε, we set

u
(1)
pq (t1, t2) = u(1)(t1 + pε, qε, t2, (−1)p+q+1κε), u

(2)
pq (t1, t2) = u(2)(pε, t2 + qε, t1, (−1)p+qκε),

u
′(1)
pq (t1, t2) = u

′(1)(t1 + pε, qε, t2, (−1)p+q+1κε), u
′(2)
pq (t1, t2) = u

′(2)(pε, t2 + qε, t1, (−1)p+qκε).

From (5.34), the displacements become

u
(1)
pq (t1, t2) = U

′(1)(pε + t1, qε) +R′(1)(pε + t1, qε) ∧ t2e2 + u
′(1)
pq (t1, t2),

u
(2)
pq (t1, t2) = U

′(2)(pε, qε + t2) +R
′(2)(pε, qε + t2) ∧ t1e1 + u

′(2)
pq (t1, t2).

(C.1)

We then organize the proof in steps.
Step 1. We rewrite the displacements in the contact areas as (for a.e. (t1, t2) in ωκε)

u
(1)
pq (t1, t2) = U

′(1)(pε, qε) +R′(1)(pε, qε) ∧
(
t1e1 + t2e2) + Q(1)

pq (t1, t2),

u
(2)
pq (t1, t2) = U

′(2)(pε, qε) +R′(2)(qε, pε) ∧
(
t1e1 + t2e2) + Q(2)

pq (t1, t2),
(C.2)

where the remainder terms Q(α)
pq are estimated by

∑
(p,q)∈Kε

‖Q(α)
pq ‖2

L2(ωκε)
≤ Cε‖u‖2

Sε
. (C.3)

From the form of the displacement in the contact areas (C.1), for a.e. (t1, t2) in ωκε the re-
mainder terms Q(α)

pq are defined by

Q(1)
pq (t1, t2)

.
=
(
U
′(1)(pε + t1, qε)−U

′(1)(pε, qε)−R′(1)(pε, qε) ∧ t1e1
)

+
(
R′(1)(pε + t1, qε)−R′(1)(pε, qε)

)
∧ t2e2 + u

′(1)
pq (t1, t2),

Q(2)
pq (t1, t2)

.
=
(
U
′(2)(pε, qε + t2)−U

′(2)(pε, qε)−R′(2)(pε, qε) ∧ t2e2
)

+
(
R′(2)(pε, qε + t2)−R

′(2)(pε, qε)
)
∧ t1e1 + u

′(2)
pq (t1, t2).
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We want now to prove (C.3) and due to the symmetrical behavior, we will only estimate
Q(1)

pq . We first have that

∑
(p,q)∈Kε

‖Q(1)
pq ‖2

L2(ωκε)
= ∑

(p,q)∈Kε

( ∫
ωκε

∣∣∣ ∫ t1

0
∂1U

′(1)(pε + s, qε)−R′(1)(pε, qε) ∧ e1ds
∣∣∣2dt1dt2

+
∫

ωκε

t2
2

∣∣∣ ∫ t1

0
∂1R

′(1)(pε + s, qε)ds
∣∣∣2dt1dt2

)
+ ∑

(p,q)∈Kε

‖u(1)‖2
L2(ωκε)

.

Using Jensen’s inequality on each term in the parenthesis and equality (5.17), we get

∑
(p,q)∈Kε

∫
ωκε

t2
2

∣∣∣ ∫ t1

0
∂1R

′(1)(pε + s, qε)ds
∣∣∣2dt1dt2 ≤ Cε5

2Nε−1

∑
q=0
‖∂1R

′(1)(·, qε)‖2
L2(0,L),

∑
(p,q)∈Kε

∫
ωκε

∣∣∣ ∫ t1

0
∂1U

′(1)(pε + s, qε)−R′(1)(pε, qε) ∧ e1dt
∣∣∣2dt1dt2

≤ C
2Nε−1

∑
q=0

(
ε3‖∂1U

′(1)
1 (·, qε)‖2

L2(0,L) + ε5‖∂1R
′(1)(·, qε)‖2

L2(0,L)3

)
.

By the first line of estimates in (5.32) and Lemma 18, we get (C.3).
Step 2. By the non penetration condition (5.28) in the contact parts of the cell (pε, qε) + εY, for a.e.
(t1, t2) in ωκε we show that

0 ≤(−1)p+q
[(
u
(1)
pq,3 − u

(2)
pq,3
)
+
(
u
(1)
(p+1)(q+1),3 − u

(2)
(p+1)(q+1),3

)
+
(
u
(2)
(p+1)q,3 − u

(1)
(p+1)q,3

)
+
(
u
(2)
p(q+1),3 − u

(1)
p(q+1),3

)]
(t1, t2)

=(−1)p+q
[
ε
(
R(1)

2 (pε, qε)−R(2)
1 (pε + ε, qε)−R(1)

2 (pε, qε + ε) +R(2)
1 (pε, qε)

)
+
(

R(1)
pq + R(2)

(p+1)q + R(1)
p(q+1) + R(2)

pq

)
(t1, t2)

]
,

(C.4)

where the four remainder terms R(α)
pq , R(1)

p(q+1) and R(2)
(p+1)q are estimated by

∑
(p,q)∈Kε

‖R(α)
pq ‖2

L2(ωκε)
+ ‖R(1)

p(q+1)‖
2
L2(ωκε)

+ ‖R(2)
(p+1)q‖

2
L2(ωκε)

≤ Cε‖u‖2
Sε

. (C.5)

Indeed, by the non-penetration condition (5.28) on the vertices of the cell (pε, qε) + εY and
pairing the involved terms differently, we get a.e. (t1, t2) in ωκε that

0 ≤ (−1)p+q
((

u
(1)
pq,3 − u

(2)
pq,3
)
+
(
u
(1)
(p+1)(q+1),3 − u

(2)
(p+1)(q+1),3

)
+
(
u
(2)
(p+1)q,3 − u

(1)
(p+1)q,3

)
+
(
u
(2)
p(q+1),3 − u

(1)
p(q+1),3

))
(t1, t2)

= (−1)p+q
((

u
(1)
pq,3 − u

(1)
(p+1)q,3

)
+
(
u
(2)
(p+1)q,3 − u

(2)
(p+1)(q+1),3

)
+
(
u
(1)
(p+1)(q+1),3 − u

(1)
p(q+1),3

)
+
(
u
(2)
p(q+1),3 − u

(2)
pq,3
))

(t1, t2).

Then, the right-hand side of the above equality is rewritten in the following way:(
u
(1)
pq,3 − u

(1)
(p+1)q,3

)
(t1, t2) = εR(1)

2 (pε, qε) + R(1)
pq (t1, t2),(

u
(2)
(p+1)q,3 − u

(2)
(p+1)(q+1),3

)
(t1, t2) = −εR(2)

1 (pε + ε, qε) + R(2)
(p+1)q(t1, t2)(

u
(1)
(p+1)(q+1),3 − u

(1)
p(q+1),3

)
(t1, t2) = −εR(1)

2 (pε, qε + ε) + R(1)
p(q+1)(t1, t2)(

u
(2)
p(q+1),3 − u

(2)
pq,3
)
(t1, t2) = εR(2)

1 (pε, qε) + R(2)
pq (t1, t2),
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where R(1)
pq (t1, t2) and R(2)

pq (t1, t2) are defined by

R(1)
pq

.
=
(
U
′(1)
3 (pε, qε)−U

′(1)
3 (pε + ε, qε)− εR

′(1)
2 (pε, qε)

)
+
(
R
′(1)
1 (pε, qε)−R

′(1)
1 (pε + ε, qε)

)
t2

−
(
R
′(1)
2 (pε, qε)−R

′(1)
2 (pε + ε, qε)

)
t1 + Q(1)

pq −Q(1)
(p+1)q,

R(2)
pq

.
=
(
U
′(2)
3 (pε, qε)−U

′(2)
3 (pε, qε + ε) + εR

′(2)
1 (pε, qε)

)
+
(
R
′(2)
1 (pε, qε)−R

′(2)
1 (pε, qε + ε)

)
t2

−
(
R
′(2)
2 (pε, qε)−R

′(2)
2 (pε, qε + ε)

)
t1 + Q(2)

pq −Q(2)
p(q+1)

and R(2)
(p+1)q, R(1)

p(q+1) are referred from the above defined. It is now left to prove estimate

(C.5) and due to the symmetrical behavior, we will only estimate R(1)
pq . We first have

∑
(p,q)∈Kε

‖R(1)
pq ‖2

L2(ωκε)
= ∑

(p,q)∈Kε

( ∫
ωκε

∣∣∣ ∫ ε

0
∂1U

′(1)
3 (pε + s, qε)−R

′(1)
2 (pε, qε)ds

∣∣∣2dt1dt2

+
∫

ωκε

t2
2

∣∣∣ ∫ ε

0
∂1R

′(1)
1 (pε + s, qε)ds

∣∣∣2dt1dt2 +
∫

ωκε

t2
1

∣∣∣ ∫ ε

0
∂1R

′(1)
2 (pε + s, qε)ds

∣∣∣2dt1dt2

)
+ ∑

(p,q)∈Kε

‖Q(1)
pq ‖2

L2(ωκε)
+ ∑

(p,q)∈Kε

‖Q(1)
(p+1)q‖

2
L2(ωκε)

.

Using Jensen’s inequality on each term in the parenthesis and equality (5.17), we get

∑
(p,q)∈Kε

∫
ωκε

t2
2

∣∣∣ ∫ ε

0
∂1R

′(1)
1 (pε + s, qε)ds

∣∣∣2dt1dt2 ≤ Cε5
2Nε−1

∑
q=0
‖∂1R

′(1)
1 (·, qε)‖2

L2(0,L),

∑
(p,q)∈Kε

∫
ωκε

t2
1

∣∣∣ ∫ ε

0
∂1R

′(1)
2 (pε + s, qε)ds

∣∣∣2dt1dt2 ≤ Cε5
2Nε−1

∑
q=0
‖∂1R

′(1)
2 (·, qε)‖2

L2(0,L),

∑
(p,q)∈Kε

∫
ωκε

∣∣∣ ∫ ε

0
∂1U

′(1)
3 (pε + s, qε)−R

′(1)
2 (pε, qε)ds

∣∣∣2dt1dt2 ≤ Cε5
2Nε−1

∑
q=0
‖∂1R

′(1)
2 (·, qε)‖2

L2(0,L).

By the first estimates in (5.32) and estimate (C.3) in Step 1, we get estimate (C.5) for R(1)
pq .

Step 3. In this step we prove that for a.e. (t1, t2) ∈ ωκε

p+1

∑
k=p

q+1

∑
`=q

∣∣(U′(1)
3 −U

′(2)
3
)
(kε, `ε)− t1

(
R
′(1)
2 −R

′(2)
2
)
(kε, `ε) + t2

(
R
′(1)
1 −R

′(1)
1
)
(kε, `ε)|

≤ (−1)p+qε
(
R(1)

2 (pε, qε)−R(2)
1 (pε + ε, qε)−R(1)

2 (pε, qε + ε) +R(2)
1 (pε, qε)

)
+ Spq(t1, t2),

(C.6)
where the remainder term Spq is estimated by

∑
(p,q)∈Kε

‖Sp,q‖2
L2(ωκε)

≤ Cε‖u‖2
Sε

. (C.7)

We first note that in (C.4), the left-hand side is positive. Hence, we replace the left-hand side
with (C.2) and take the modulus. Applying Step 1 on the left-hand side and Step 2 on the
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right-hand side, we get a.e (t1, t2) ∈ ωκε that

p+1

∑
k=p

q+1

∑
`=q

∣∣(U′(1)
3 −U

′(2)
3
)
(kε, `ε)− t1

(
R
′(1)
2 −R

′(2)
2
)
(kε, `ε) + t2

(
R
′(1)
1 −R

′(1)
1
)
(kε, `ε)

+ (Q(1)
k`,3 −Q(2)

k`,3)(t1, t2)
∣∣

= (−1)p+q
[
ε
(
R(1)

2 (pε, qε)−R(2)
1 (pε + ε, qε)−R(1)

2 (pε, qε + ε) +R(2)
1 (pε, qε)

)
+
(

R(1)
pq + R(2)

(p+1)q + R(1)
p(q+1) + R(2)

pq

)
(t1, t2)

]
.

Then, the above equation can be rewritten in the form (C.6) with Spq defined by

Sp,q
.
= (−1)p+q

(
R(1)

p,q + R(2)
p+1,q − R(1)

p,q+1 − R(2)
p,q

)
+

p+1

∑
k=p

q+1

∑
`=q

∣∣∣(Q(1)
k`,3 −Q(2)

k`,3)
∣∣∣.

Step 4. In this step, we prove the statement, i.e., estimate (5.37).
Starting from inequality (C.6) of Step 3, we replace (p, q) by (2p, 2q), (2p+ 1, 2q), (2p, 2q+ 1)
and (2p + 1, 2q + 1). For a.e (t1, t2) ∈ ωκε, we obtain

2p+1

∑
k=2p

2q+1

∑
`=2q

∣∣(U′(1)
3 −U

′(2)
3
)
(kε, `ε)− t1

(
R
′(1)
2 −R

′(2)
2
)
(kε, `ε) + t2

(
R
′(1)
1 −R

′(2)
1
)
(kε, `ε)

∣∣
+

2p+1

∑
k=2p

2q+2

∑
`=2q+1

∣∣(U′(1)
3 −U

′(2)
3
)
(kε, `ε)− t1

(
R
′(1)
2 −R

′(2)
2
)
(kε, `ε) + t2

(
R
′(1)
1 −R

′(2)
1
)
(kε, `ε)

∣∣
+

2p+2

∑
k=2p+1

2q+1

∑
`=2q

∣∣(U′(1)
3 −U

′(2)
3
)
(kε, `ε)− t1

(
R
′(1)
2 −R

′(2)
2
)
(kε, `ε) + t2

(
R
′(1)
1 −R

′(2)
1
)
(kε, `ε)

∣∣
+

2p+2

∑
k=2p+1

2q+2

∑
`=2q+1

∣∣(U′(1)
3 −U

′(2)
3
)
(kε, `ε)− t1

(
R
′(1)
2 −R

′(2)
2
)
(kε, `ε) + t2

(
R
′(1)
1 −R

′(2)
1
)
(kε, `ε)

∣∣
≤ ε

2p+1

∑
k=2p

2q+1

∑
`=2q

(−1)k+`
(
R
′(1)
2 (kε, `ε)−R

′(2)
1 (kε + ε, `ε)−R

′(1)
2 (kε, `ε + ε) +R

′(2)
1 (kε, `ε)

)
+
(

S(2p)(2q) + S(2p+1)(2q) + S(2p)(2q+1) + S(2p+1)(2q+1)

)
(t1, t2).

(C.8)
We set

Tpq(t1, t2)
.
= ε

2p+1

∑
k=2p

2q+1

∑
`=2q

(−1)k+`
(
R(1)

2 (kε, `ε)−R(2)
1 (kε+ ε, `ε)−R(1)

2 (kε, `ε+ ε)+R(2)
1 (kε, `ε)

)
and we want to prove that this term has a sufficiently good estimate

∑
(p,q)∈Kε

‖Tpq‖2
L2(ωκε)

≤ Cε‖u‖2
Sε

. (C.9)

Indeed, by writing down the sum and pairing the terms, we get that

Tpq(t1, t2)

= ε
((
R(1)

2 (2pε, 2qε)−R(1)
2 (2pε + ε, 2qε)

)
+
(
R(1)

2 (2pε + ε, 2qε + ε)−R(1)
2 (2pε, 2qε + ε)

)
+
(
R(1)

2 (2pε + ε, 2qε + ε)−R(1)
2 (2pε, 2qε + ε)

)
+
(
R(1)

2 (2pε, 2qε + 2ε)−R(1)
2 (2pε + ε, 2qε + 2ε)

)
−
(
R(2)

1 (2pε + ε, 2qε)−R(2)
1 (2pε + ε, 2qε + ε)

)
−
(
R(2)

1 (2pε + 2ε, 2qε + ε)−R(2)
1 (2pε + 2ε, 2qε)

)
−
(
R(2)

1 (2pε, 2qε + ε)−R(2)
1 (2pε, 2qε)

)
−
(
R(2)

1 (2pε + ε, 2qε)−R(2)
1 (2pε + ε, 2qε + ε)

))
.
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Hence, estimate (C.9) follows from first estimates in (5.32) and the fact that

∑
(p,q)∈Kε

‖Tpq‖2
L2(ωκε)

= ε2 ∑
(p,q)∈Kε

( ∫
ωκε

∣∣∣ ∫ ε

0
−∂1R

′(1)
2 (2pε + s, 2qε) + 2∂1R

(1)
2 (2pε + s, 2qε + ε)− ∂1R

′(1)
2 (2pε + s, 2qε + 2ε)ds

∣∣∣2dt1dt2

+
∫

ωκε

∣∣∣ ∫ ε

0
−∂2R

′(2)
1 (2pε, 2qε + s) + 2∂2R

′(2)
1 (2pε + ε, 2qε + s)− ∂2R

′(2)
1 (2pε + 2ε, 2qε + s)ds

∣∣∣2dt1dt2

)
≤ Cε5

( 2Nε−1

∑
q=0
‖∂1R

′(1)
2 (·, qε)‖2

L2(0,L) +
2Nε−1

∑
p=0
‖∂2R

′(2)
1 (pε, ·)‖2

L2(0,L)

)
≤ Cε‖u‖2

Sε
.

Taking the L2 norm in the left-hand side of (C.8) and applying (C.7)-(C.9) on the right hand
side, we finally obtain

∑
(p,q)∈Kε

(
ε2∣∣(U(1)

3 −U
(2)
3
)
(pε, qε)

∣∣2 + ε4∣∣(R(1)
α −R

(2)
α

)
(pε, qε)

∣∣2) ≤ Cε‖u‖2
Sε

which divided by ε2, gives estimate (5.37).
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